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Abstract 

The number of individuals experiencing abnormal cognitive ageing is rapidly 

increasing, which can only in part be explained by an ageing population. 

Prevention of considerable cognitive decline is complicated by its heterogeneity 

and numerous risk factors. The most significant contributions to brain health and 

cognitive decline outside of age are higher genetic risk and poor cardiometabolic 

health. There are gaps in the literature and understanding regarding the extent 

to which common genetic or cardiometabolic conditions contribute to and 

interact with one another to influence brain health. Therefore, the overall aim 

of this PhD project is to explore genetic and cardiometabolic risks in relation to 

structural brain MRI measures, cognitive assessments, and blood biomarkers.  

 

This thesis used large-scale secondary data from the UK Biobank in which several 

analyses investigating associations between cardiometabolic conditions, genetic 

risks, cognition, and brain MRI data are the largest to date. The use of the UK 

Biobank cohort also allowed for controlling of confounders that have not been 

considered or accounted for in previous studies. The primary focus of this thesis 

was on genetic and cardiometabolic contributions to cognition and brain MRI. 

The main objectives were: (1) Contribute to the understanding of cardiovascular 

to brain health and (2) Determine the role of genetic risk factors on the brain 

and physical health in healthy adults.  

 

When examining multimorbidity, there were no clear trends between 

cardiometabolic groups and brain MRI metrics. However, this may have been due 

to a healthy selection bias in which those with multimorbidity were healthy 

enough for MRI assessments. When examining genetically elevated risk of 

cardiovascular disease (CVD) indexed by lipoprotein A (), we found associations 

with mean diffusivity and fractional anisotropy, suggesting a potential role of 

LpA in brain ageing. However, we found discrepancies between genetically 

elevated LpA and blood LpA, which should be further investigated.  

 

When calculating genetic risk scores for Alzheimer’s disease (AD) in healthy 

midlife adults, we found evidence for potential early ageing pathology within 

subfields of the hippocampus prior to significant cognitive impairments. We also 

found that this elevated genetic risk for AD was associated with elevated 

cystatin c. Elevated genetic risk of AD also showed significant sex differences in 

biomarker analyses. Creatinine and oestradiol were significantly associated with 

an elevated risk of Alzheimer’s in women but not men. These findings support 

routine stratification in exploratory research. 

 

This thesis emphasises the importance of epidemiological research that considers 

cardiometabolic, lifestyle and genetic risk factors together in the context of 

cognitive health. There is scope to build on this work in omics and cohort 

studies.   
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1.1 Ageing population 

Population ageing is defined as an increase in median age in a population and has 

been recognised as one of four current global demographic trends alongside 

population growth, international migration, and urbanisation (Leeson, 2018; United 

Nations, 2019). The global number of individuals over 65 is expected to double to 

1.5 billion by 2050, representing major achievements for medicine, social 

development, and public health. Increasing longevity and declining fertility are the 

most significant contributing factors to population ageing and determinants of 

continuing population ageing.  An ageing population will require adapting patterns 

of government support, i.e., mental health services, adequate housing, efforts to 

reduce social isolation, health literacy and income support. Governments must 

meet these needs while ensuring that existing health and economic inequalities do 

not grow, as those in the lowest socio-economic groups are the most likely to 

experience multiple health problems and find it the hardest to access health 

services.  

Population ageing will result in a greater prevalence of both age-related conditions 

and individuals living longer with existing conditions with existing conditions, as 

illustrated in Figure 1.1. One such example is with dementia: 1.7 million individuals 

are projected to live with dementia in the UK by 2051, a substantial increase on 

850,000 individuals in 2015, and the number of individuals over 65 living with 

coronary heart disease, dementia, diabetes, hypertension and high cholesterol is 

also projected to rise (Ageing.ox.ac.uk., 2021).  

The implications of this demographic shift call for further knowledge about age-

related conditions and their risk factors in which stratified medicine and genomics 

is one such research approach that allows for the discovery of disease pathways. 

This approach will be useful in targeting or preventing the leading health conditions 

likely to affect the quality of life in an ageing population, including brain health, 

cognitive health, and addressing key risk conditions, comorbidities, and mechanisms 

mediating brain ageing. 
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Figure 1.1 Number of grouped health conditions by age 
Source: Health Survey for England, NHS Digital, 2016, England 

1.1.1 Cognitive health in ageing 

Age-related changes to cognition are expected over the lifetime but steep declines 

are not always typical or expected features of ageing. As the proportion of older 

adults increases it is important to consider who may be at risk of steep cognitive 

decline or abnormal cognitive decline. Structural brain and cognitive changes of 

healthy ageing have been well documented in the literature. Cognitive abilities 

such as crystallised intelligence typically remain resilient during normal ageing 

(Salthouse, 2010; 2011). Crystalised abilities are skills, abilities and knowledge that 

are learned – they accumulate over a lifetime and are based on experiences. 

Examples of crystallised abilities include reading comprehension, facts or general 

information. In comparison, fluid intelligence or abilities are understood to decline 

in normal ageing. This is considered the innate ability to process novel information 

and problem solve that depends minimally on prior learning or formal education. 

The cognitive domains considered to be fluid include executive function, processing 

speed, memory, and psychomotor ability and are observed to decline after the third 

decade of life. Fluid intelligence is of interest in abnormal ageing as steeper 

declines are seen in conditions such as dementia. Memory is another cognitive 
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ability sensitive to both normal and abnormal ageing. Recognition (retrieving 

memory after a cue), temporal (correct recall of time or sequence of past events) 

and procedural (how to do things) memory tend to remain intact with normal 

ageing. In contrast, free recall (retrieval of information with no cue), source 

memory (knowing the source of the memory) and prospective memory 

(remembering to perform intended actions in the future) tend to decline as part of 

normal cognitive ageing (Harada et al., 2013).  

When individuals age abnormally, cognitive abilities that typically remain intact 

may also begin to deteriorate. Normal age-related declines tend to be subtle and 

affect the speed of thinking and attentional control. However, in abnormal aging, 

cognitive decline is more severe and may include other abilities, such as rapid 

forgetting or difficulties navigating, solving common problems or expressing oneself 

verbally. It is important to note, however, slowed speed of information processing 

accounts for a large proportion of the age-related decline in all cognitive domains 

in which the spectrum of cognitive decline ranges from normal cognitive ageing to 

the dementias. 

Alongside cognitive deficits seen in abnormal ageing, brain tissue damage (as 

measured with structural magnetic resonance imaging, MRI) and changes in neural 

activity (as measured with functional MRI) are often reflected. However, the 

literature has consistently shown structural brain changes alone aren't able to 

provide a full picture at predicting those who will decline. Cognitive reserve may 

help explain why some individuals can withstand age-related and pathological brain 

changes vital in maintaining their cognitive functioning. Cognitive reserve is a 

concept that refers to individual difference in cognitive functioning when changes 

occur in structural and functional brain mechanisms (Stern et al., 2020). 

Sociobehavioural proxies have been found to contribute to cognitive reserve in the 

form of nutrition, sleep and exercise (Radanovic, 2020). A cognitive footprint refers 

to the concept that over the lifetime an individual may have experiences that 

impair or enhance cognition which may indicate their cognitive health. These 

behaviours play a role in brain reserve and maintenance and have been referred to 
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as cognitive footprint (Rossor & Knapp, 2015). It is becoming clear that these 

lifestyle factors must be considered alongside cognition in order to understand 

which individuals are most at risk of deteriorating cognition. Such variables can be 

considered in cohort studies like UK Biobank where there are sociodemographic 

data available. 

 

1.2 Vascular risk factors for brain and cognitive ageing 

Risk factors and determinants are defined as variables associated with an increased 

risk of disease or decline, for which there is a large body of evidence demonstrating 

that the structure and integrity of the ageing brain are closely related to physical 

health. For decades, the relationship between vascular health and brain health has 

been discussed, with cerebrovascular alterations being a common aetiology in 

abnormal cognitive decline in ageing (Knopman et al., 2005). The most common 

presentation of impaired cerebrovascular health is stroke, with high blood pressure 

being the most significant risk factor. However, cerebrovascular health refers to 

various conditions that affect the blood vessels and cerebral circulation of the brain 

and decline in cerebrovascular health can occur due to cardiovascular and 

cardiometabolic conditions or associated risk factors. Cardiometabolic disease 

describes a spectrum of cardiovascular and metabolic related conditions which 

encompasses cardiovascular diseases, but also includes conditions such as insulin 

resistance and diabetes. Cardiovascular disease can be considered one of many 

cardiometabolic conditions where metabolic specific dysfunctions are characterised 

by insulin resistance, impaired glucose tolerance, dyslipidemia, and central 

adiposity. Cardiovascular and cardiometabolic conditions both include hypertension 

and coronary disease, whereas diabetes and ischemic stroke are cardiometabolic 

and cardiovascular conditions respectively. Metabolic and cardiovascular disease 

risk factors are well understood to increase the risk of decline in cerebrovascular 

health (Hegele et al., 2010; Marchant et al., 2012; Hooghiemstra et al., 2017; 

Gupta et al., 2018; Arnoldussen et al., 2019). This thesis does not use the terms 
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interchangeably, but uses both depending on the most relevant term, or the one 

that is commonly referred to in the area of research or papers. 

Impairment of cerebrovascular health causes damage to both cerebral tissue (grey 

matter) and white matter, often presenting on MRI scans as white matter 

hyperintensities (WMH). WMH are visible as areas of increased brightness in MRI T2 

weighted images, as MRI is sensitive to small changes in water content within the 

brain. The initial discovery of WMHs was made in 1987 by Hachinski et al. in which 

they described WMH as patchy low attenuation in the periventricular and deep 

white matter of the brain. However, WMH can also present as small subcortical 

infarcts, lacunes (fluid-filled cavity), microbleeds, atrophy, and also as 

hyperintense periventricular spaces or lesions (Wardlaw et al., 2015). Presentation 

of WMH on MRI scans are the hallmark of cerebrovascular impairments and have 

also consistently been associated with cognitive impairments (Dufouil et al., 2001; 

Wang et al., 2015; Wardlaw et al., 2015; Bangen et al., 2018). These abnormal 

cognitive changes in ageing found with vascular risk factors are thought to be due 

to changes to the myelination of neurons, number of synaptic connections, 

availability of neurotransmitters or cerebral perfusion. However, WMH are found in 

a significant proportion of cognitively normal elderly populations and may initially 

present with no neuropsychological symptoms. They can also be seen in 

autoimmune diseases and psychiatric illnesses (Wardlaw et al., 2015). 

Studies examining how prevalent conditions such as cardiovascular disease (CVD) or 

cardiometabolic disease (CMD) affect structural brain integrity in older age have 

provided insights into mechanisms through which cognitive decline occurs. As a 

result, there is substantial evidence documenting the associations between vascular 

risk factors and cognitive consequences. Lyall et al. (2017) looked at differences 

between single and multiple cardiometabolic conditions and cognitive abilities in 

the UK Biobank and found an additive association between cardiometabolic 

conditions and cognitive functions, specifically processing and reasoning domains. 

Cohen et al. (2009) found atherosclerotic burden within blood vessels was 

associated with lower cognitive function and higher WMH volume. Li et al., (2011) 
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found that vascular risk factors were also valuable in predicting those with mild 

cognitive impairment (MCI) who would go on to develop Alzheimer’s dementia (AD). 

Another study by Espana-Irla et al. (2021) found in healthy middle-aged adults (40-

65 years) that cardiovascular health measured by VO2 (maximal oxygen 

consumption) and a cardiovascular risk assessment were associated with several 

clinical neurocognitive assessments, including visuospatial reasoning (b=-0.046, 

p=0.002), processing speed (b=-0.115, p=<0.001) and memory (b=-0.120, p=<0.001). 

Other landmark studies examining vascular health and cognition, or brain structure 

include Murray et al., (2005), Dickstein et al. (2010), The ARIC Study (Knopman et 

al., 2011) and Cox et al. (2019). 

Many studies in this area highlight the importance of considering lifestyle factors 

when studying cardiovascular, brain and cognitive associations. Younger and 

healthier middle-aged adults may be of interest to study as modifiable factors (such 

as tobacco and alcohol use, or inactivity) contribute to cognitive and brain ageing.  

 

1.2.1 Anatomical and MRI substrates of vascular risk factors  

Some studied examining ageing phenotypes have investigated differences between 

chronological and brain predicted age with the goal of elucidating biological 

mechanisms of neurodegeneration. This is referred to as the brain age gap (BAG), 

with larger BAGs being reported in individuals with psychiatric or neurological 

disorders. Kolbeinsson et al. (2020) looked at 21,382 individuals from UK Biobank 

and calculated brain ages. Six brain regions were found to contribute to accuracy of 

age prediction, including left cerebellar lobules I-IV, left crus and vermis, right 

hippocampus, left amygdala and left insular cortex. When subsequently examining 

these brain differences using ICD codes via a phenome-wide association study, 24 

variables were associated with brain age differences including cardiovascular and 

metabolic diseases, their risk factors, cognitive functioning, and physical strength. 

These analyses showed associations between larger brain age gaps and vascular 

disease risk factors in healthy individuals from the UK Biobank cohort. Similarly, 
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Beck et al., (2020) looked at several cardiometabolic risk factors over time, and 

their respective associations with BAGs. The study found that levels of phosphate, 

blood pressure, smoking, pulse rate and levels of c-reactive protein (CRP) were 

associated with older-appearing brains. These results further support that 

cardiometabolic and vascular risk factors are associated with brain ageing.  

There is now a need for a closer understanding of these cardiometabolic conditions' 

relationship to the brain, as many affect neurodegeneration in vastly different 

ways. Lamar et al. (2020) carried out two separate literature reviews that 

hypothesised that a core group of typical brain structural alterations exists between 

CVD risk factors and Alzheimer's dementia. The study found evidence to support 

their hypothesis in which 23 regions were commonly associated with both CVD risk 

factors and Alzheimer's dementia. Friedman et al. (2014) concluded similar findings 

from 77 studies in individuals without cardiovascular conditions but the presence of 

CVD risk factors including hypertension, diabetes mellitus, obesity, hyperlipidemia, 

and smoking. They found that all risk factors were independently associated with 

brain imaging changes, including whole brain volume reductions, grey matter 

volume reductions and white matter changes, including the presence of WMH. The 

findings of a study by Cox et al. (2019) support the above observations. They 

studied both individual and aggregate measures of vascular risk factors in the UK 

Biobank including smoking, hypertension, pulse pressure, diabetes, 

hypercholesterolemia, BMI and waist-hip ratio. They found that the composite 

vascular risk factor burden score was associated with multiple brain MRI hallmarks 

of dementia, including WMH volumes and poorer white matter microstructure, with 

the strongest effects found in the frontal, anterior lateral and medial temporal 

lobes. These results further support that some brain structures can indicate or 

reflect "unhealthy" brain ageing, with some regions more affected than others.  

Taken together, the current literature provides evidence that cardiometabolic risk 

factors and comorbidities contribute to abnormal age-related brain changes, 

highlighting the need to understand how common comorbid conditions interact with 

and contribute to one another leading to cognitive disability. Particularly as there is 
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evidence that presence of one condition often indicates an increased risk of 

metabolically linked multimorbidities. Neuroimaging studies that have investigated 

commonalities across cardiometabolic conditions and risk factors provide a 

comprehensive understanding of common mid-life modifiable risk factors and their 

mechanistic role in the aetiology of ageing relevant phenotypes. Several cohort 

studies have been dedicated to investigating conditions or specific features of 

cardiometabolic health concerning brain and cognition. These include the SPRINT 

MIND (Systolic Blood Pressure Intervention Trial – Memory and cognition in 

Decreased Hypertension), the Finnish Geriatric Intervention Study to Prevent 

Cognitive Impairment and Disability (FINGER) (Kivipelto et al., 2013), the 

Framingham Heart study (Elena Petrea et al., 2020), and the Atherosclerosis Risk in 

Communities Study (Wu et al., 2019).  

1.3 Genetic risk factors for brain and cognitive ageing 

In the context of genetic research, understanding the role of one gene in one 

condition has historically been considered a major success. However, at present, 

genetic studies looking at factors influencing ageing have developed rapidly in the 

past two decades due to emerging technologies such as next-generation 

sequencing, allowing assays that accommodate over 1 million single nucleotide 

polymorphisms (SNPs). This has allowed genetics research to study population 

genetic variation at the level of the genome. It has also allowed for sequencing of 

the human genome to capture genetic variation in European, African and Asian 

populations (HapMap) and produce SNP databases such as dbSNP. These efforts have 

been used to discover the genetic basis of complex diseases and phenotypic traits, 

particularly phenotypes that are difficult to study such as psychiatric conditions. 

Biobank datasets with large numbers of variables available for large sample sizes 

allow for studies in which hypothesis free approaches can be taken. Such analyses 

have resulted in discovery of age-related phenotypes. One example of such 

phenotype discovery from a large cohort study is with the UK Biobank imaging 

subsample where Elliot et al., (2018) examined the genetic architecture of the UK 

Biobank’s image derived phenotypes to understand the genetic architecture of 
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brain structure. Elliot et al., (2018) carried out GWAS on 3,144 functional and 

structural brain imaging phenotypes. They found that genes linked to brain 

development and plasticity tended to be related to mental health disorders, 

whereas iron-related proteins tended to be related to neurodegenerative disorders, 

such as Alzheimer’s disease. Such studies have allowed for the genetic correlates of 

disease markers to be identified and contribute to the understanding of underlying 

genetic architecture of the brain and cognition. They also found that genes linked 

to brain development and plasticity tended to be related to mental health 

disorders, whereas iron-related proteins tended to be related to neurodegenerative 

disorders, such as Alzheimer’s disease. Such studies have allowed for the genetic 

correlates of disease markers to be understood and identified. Additionally, several 

landmark genome-wide association studies (GWAS) have been published in recent 

years that have implicated many loci, mechanisms and epigenetics, including GWAS 

for Alzheimer's dementia (AD) (Kunkle et al., 2019), cognition (Trampush et al., 

2017), cerebrovascular health and stroke (Hegele & Dichgans, 2010). The most 

extensive genetic study to date of cognitive functioning has been published 

including over 300,000 individuals, identifying over 100 relevant loci, including the 

implication of cardiometabolic traits such as hypertension (Davies et al., 2018). 

The clinical landscape for risk assessment of cognitive ageing or cardiometabolic 

conditions does not currently consider who may be at a higher genetic risk, however 

there is evidence showing stratification of individuals by genetic risk can be 

clinically valuable. A multifactorial risk assessment considering genetics will likely 

be implemented as we learn more about how to differentiate individuals by genetic 

traits. However, it will not be possible to implement such tools clinically until we 

better understand the ways in which single variants influence gene networks and 

lead to a phenotype. Variants do not work in isolation, but thousands interact and 

influence each other in large networks; Ronald Fisher (1918) introduced the basis 

for this idea, suggesting that continuous variation in phenotypes could be the result 

of Mendelian inheritance. Based on this model, it was suggested most genes have an 

infinitely small effect on the phenotype of interest and the concept has since been 

built on by research such as Boyle et al. (2017, p 1), who stated, "most heritability 
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can be explained by effects on genes outside core pathways". It is now well 

understood that individual differences in predispositions to complex traits, whether 

physiological or psychological, are influenced to a greater or lesser degree by 

genetic factors which tend to be polygenic. One method where a large number of 

variants can be considered together is by polygenic risk (PGR) scoring. PGR scoring 

calculates an individual's genetic risk of a trait or disease, such as cardiovascular 

conditions or ageing phenotypes. PGR scores have been developed for specific 

subgroups of conditions, including coronary artery disease CAD (Khera et al., 2017), 

hypertension (Krogager et al., 2018) stroke (Hachiya et al., 2020) and atrial 

fibrillation (Muse et al., 2018). The Polygenic Score Catalog is an open database of 

published PGR scores including information about variants, alleles, weights, and 

relevant GWAS or metadata used. It currently contains around 38 PGR score models 

for CVD in which the number of contributing SNPs ranges from 27 to 6.5 million.  

PGR scoring methods have evolved since the first scores were calculated and now 

tend to be weighted according to effect sizes and are based on genome-wide SNP 

data which allows for the integration of more sites of DNA variation. Different 

statistical approaches can be used to develop a PGR score, in which models are 

then rigorously validated for their value in predicting a disease state or trait. 

Weighted scores can be calculated through the use of software that can account for 

linkage disequilibrium, one of which is LDpred (Vilhjálmsson et al., 2015). However, 

PGR scoring is not standardised, and many factors can still affect the scores, 

including GWAS data used, different statistical approaches to the selection and 

weighting of relevant SNPs, and the process of interpreting the output can also 

influence findings. This has implications in the subsequent application of polygenic 

prediction models. However, there remains growing evidence of the clinical utility 

of stratifying individuals by both clinical and polygenic risk to improve individual 

risk assessment. Incorporating PGR scores has been shown to perform better than 

current clinical risk stratification tools and offers more significant opportunities for 

earlier intervention (Slunecka et al., 2021). This is of particular interest with 

disease prevention as genetic risk is present at birth, and as more sensitive and 

accurate PGR tools are developed, it may help prevent younger individuals from 
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developing classical risk factors. This preventative approach can lead to fewer 

individuals with clinical events, healthier ageing and less cognitive decline.  

One area where PGR scoring methods have shown to work well is within 

cardiovascular health to index cardiovascular risk. A landmark study by Khera et al. 

(2017) was notable as they used a PGR score for CAD using GWAS summary statistics 

(Nickpay et al., 2015). They found when using this PGR score in UK Biobank that 

individuals in the top 1% of genetic risk for CAD had a 5-fold risk of developing CAD. 

This was similar to findings by Abraham et al., (2019) also showing that those in the 

top 1% of polygenic risk were at 3-fold risk of a stroke. When this PGR score was 

examined in other prospective cohorts, including the Women's Genome Health 

Study, adherence to healthy lifestyle was associated with a 50% reduction in disease 

risk in particular for those in the highest quintile of polygenic risk of stroke 

suggesting that risk can be modified via lifestyle strategies in those most at risk. It 

also highlights the importance and role of lifestyle factors when considering genetic 

risk, as it is not the complete picture. 

There is also growing evidence that stratifying by risk can not only be used in joint 

decision making in treatment options such as medication, but also provides greater 

opportunity to further stratify individuals according to other risks, enabling the 

clarification of relative roles of risk factors. For example, Riveros-Mckay et al. 

(2021) found that polygenic risk showed strong predictive power for CAD events, 

which further improved when individuals were stratified into age versus sex 

subgroups. When studying longevity phenotypes, Melzer et al. (2020) found that 

when stratifying those in the top 10% of parental survival age, a GWAS showed 

APOE, CHRNA3, LPA and CDKN2B-AS1 were significantly associated, which are all 

also implicated in cardiometabolic risk. This implies there is some degree of genetic 

overlap between extreme longevity and cardiometabolic health, which is of 

potential interest for assessing risk for cognitive ageing and brain health. 

file:///C:/Users/RTank/Desktop/PhD%20Revisions/10.1038/ng.3396
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Figure 1.2 Overview of risk factors implicated in literature 

 

1.4 Limitations of current research  

To recap, vascular risk factors play a large role in cognitive decline, and anatomical 

substrates have been well documented in the literature. There is also growing 

evidence that the use of polygenic risk scoring can improve prediction specifically 

for CVD and CMD risk and events. Current research on genetic and cardiometabolic 

contributions to brain health is extensive and has been studied for a number of 

years. However, there are some limitations within the literature at present which 

the present thesis aims to address:  

• A significant methodological limitation of current research in this area is 

issues with sample size, particularly as studies with both MRI and genetic 

data are at risk of being underpowered to detect small changes in those who 

have not yet developed clinical symptoms. Due to lack of sample size, 

analyses including blood, genetic and MRI measures have not been 

extensively studied together in the same cohort. 

• A large source of bias and spurious association in the current literature have 

been due to poor controlling for confounders – variables that explain an 
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association that has not been considered or accounted for. The majority of 

study designs studying cognitive or brain MRI metrics in the context of 

cardiometabolic health have not gathered sufficient information on 

confounders such as smoking, BMI, medications or other conditions. The UK 

Biobank resource however has a wide variety of biological, lifestyle, imaging 

and genetic data that allows for variables to be adjusted for and considered. 

One objective of this work is to address this gap within the literature by 

considering external and environmental variables within association analyses 

between complex phenotypes. 

• Currently there is a lack of understanding of how to best stratify and carry 

out disease risk assessment for individuals who are most at risk of cognitive 

decline. For this to be incorporated, more research is needed in order to 

reach a consensus regarding relevant phenotypes and biomarkers. This thesis 

aims to make a contribution to the evidence. 

 

1.5 Thesis research aims 

The present thesis aims to contribute to the current literature by addressing the 

following research aims: 

1. Contribute to understanding of cardiovascular contributions to brain health 

Chapter 3 addresses this research aim by comparing brain MRI of individuals 

varying in number and type of cardiometabolic condition. This was the first 

study to compare such groups with healthy controls in a cross-sectional design 

using the same cohort to our knowledge. The aim of this was to examine 

whether some cardiometabolic comorbidities would reflect worse brain MRI than 

others. Aim 1 of this thesis was also examined in chapters 4 and 6. Chapter 4 

compared differences and associations between genetically elevated lipoprotein 

A and blood lipoprotein A, a well-established cardiovascular risk factor and 

predictor, in the context of brain MRI and cognition. Chapter 6 studied an 
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Alzheimer’s genetic risk score, previously shown in chapter 5 to correlate with 

relevant brain MRI phenotypes, to look at blood biomarker profiles in individuals 

at risk of poorer brain phenotypes, including biomarkers implicated in 

cardiometabolic dysfunction. 

2. Determine potential role of genetic risk factors on the brain and (concurrent) 

blood biochemistry in healthy adults 

Chapter 4 looked at elevated lipoprotein a (LpA) which is a well-established risk 

factor for CVD. This chapter aimed to determine whether polygenic risk of 

elevated LpA may be a valuable genetic instrument for this phenotype and a 

meaningful risk factor for brain health. In chapter 5, a genetic risk score was 

created for Alzheimer’s dementia which was used to look at associations with 

brain health, i.e., MRI and cognitive measures, while chapter 6 examined the 

role of this genetic risk score in physical health, i.e., circulating blood 

biomarkers. 

1.6 Thesis overview and structure  

The present thesis includes one methodology chapter (chapter 2) and four 

analytical chapters (chapters 3-6), which examine the genetic and cardiometabolic 

contributions to brain health in healthy midlife adults. Chapter 7 provides a 

discussion and overview of the findings.  

The first analytical chapter, 3, was based on evidence that cardiometabolic 

diseases (CMD) are associated with brain health metrics and may interact with one 

another, in part due to overlapping mechanisms which accelerate 

neurodegeneration. However, there is little evidence differentiating the ways in 

which separate conditions present in the brain, particularly how common 

comorbidities may differ from one another in terms of brain MRI. Outcomes of CMD 

multimorbidities have not been well studied, which chapter 3 of this thesis aimed 

to examine. This was studied using a cross-sectional analysis of 10, 302 UK Biobank 

participants in midlife with CMDs vs healthy controls. Those with CMDs were split 
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into 8 mutually exclusive groups based on condition, e.g., hypertension, or type 2 

diabetes, and also by number of conditions, e.g., 2 conditions. 

Chapter 3 did not find meaningful differences in brain MRI findings between groups, 

i.e., brain MRI metrics were not more associated with some CMD groups more than 

others. For this reason, chapter 4 turned to investigating specific markers of 

cardiometabolic or cardiovascular health which may elucidate changes occurring to 

the brain in midlife. Chapter 4 investigated the role of a mechanistic blood 

biomarker: lipoprotein A (LpA). Both blood and genetically elevated LpA are 

reliable risk factors for CVD, and a substantial risk factor for neurodegeneration and 

associated conditions such as AD. However, little is known in comparison about the 

extent to which risk factors for CVD, such as LpA, influence pathology in the brain. 

Chapter 4 examined whether LpA was associated with brain health measures in 32, 

790 individuals by using elevated blood LpA and genetically elevated LpA with brain 

phenotypes, including white matter structure, brain volumes and cognitive 

performance. This chapter found both blood and genetically elevated LpA were 

associated with poorer WM integrity (mean diffusivity). 

Chapters 3 and 4 focused on studying the ways in which cardiovascular and 

cardiometabolic factors are associated with poorer brain health. Chapter 4 found 

evidence to suggest that genetic risk of elevated LpA, and elevated blood LpA may 

be variables of interest when examining brain health. Chapter 5 used similar PGR 

scoring methods to chapter 4 to investigate AD as one of the most common and 

widely studied phenotypes of neurodegeneration and cognitive decline. In this 

chapter, we looked at whether the genetic risk of AD, including genes implicated in 

CVD, can better reveal differences in brain MRI and cognition between healthy 

individuals in the same cohort. This chapter analysed whether genetic risk (~6 

million variants) of AD in 32,790 healthy individuals was associated with brain 

structure and cognitive abilities. This chapter introduced brain MRI phenotypes such 

as hippocampal subvolumes, known substrates of dementia and cognitive decline. 

This was the largest study at the time to study the association of PGR of AD and 

brain metrics.  
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Chapter 5 provided evidence that the PGR for AD may indicate the earliest signs of 

pathology in terms of brain MRI before cognitive deficits were apparent. For this 

reason, the final analytical chapter, chapter 6, used this PGR of AD to investigate 

whether genetic risk of AD was associated with 30 blood biomarkers in around 500, 

000 individuals. We found differences amongst blood biomarkers when separating 

males and females, where there was evidence for sex interactions with genetic risk 

of AD.  
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2 Chapter 2: Methodology 
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2.1 UK Biobank 

The UK Biobank is the largest long-term biobank study in the UK, with ~502,000 

participants having baseline data collected in the first instance between 2006 and 

2010. Baseline data includes demographic, lifestyle, genetic, medical and cognitive 

data but not imaging. Participants at baseline were between 40-69 with 

approximately an even number of males (46%) and females (54%). This age range 

was chosen with a follow up period of 10 – 20 years in order to observe onset of 

disease from early years (Sudlow et al., 2015). All participants gave full informed 

consent to the NHS Research Ethics Service at baseline (Ref 11/NW/0382) and study 

sites for UK Biobank data collection include 22 UK assessment centres with bases in 

Stockport, Greater Manchester and Scotland.  

UK Biobank’s first repeat assessment was carried out between 2012 and 2013 in 

which ~20, 000 participants returned for follow up assessments including medical, 

lifestyle and cognitive data. A second repeat assessment was carried out beginning 

in 2014 in which imaging data was introduced for the first time. Lifestyle, imaging 

and cognitive data was collected in the second repeat assessment and all imaging 

data used in this thesis is from this second repeat assessment. The UK Biobank is 

aiming to repeat further follow up assessments at 2-3-year intervals with the aim of 

scanning 100, 000 subjects by 2022. As of 2019, the first repeat imaging began 

(these data are not yet available). Updated retrospective timelines can be found at: 

https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=timelines.  

This thesis will use baseline and first imaging visit (2014+) data. Clarification of 

which UK Biobank assessment points used are specified for each variable.  

2.1.1 Ethical statement 

First written informed consent was obtained from all participants of the UK Biobank 

study, which received ethical approval from the Northwest Haydock Research Ethics 

Committee (REC reference for UK Biobank is 16/NW/0274) and permission for 

approved researchers to disseminate data and samples was granted 

https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=timelines.
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(http://www.ukbiobank.ac.uk/ethics/). Ethical permission for usage of the UK 

Biobank data for this thesis was obtained under UK Biobank Application 17689 (PI 

Donald Lyall; Genetic, environmental and lifestyle predictors of brain/cognitive-

related outcomes). 

2.1.2  Data collection  

During the baseline visit between 2006 and 2010 consent forms were signed, then 

touchscreen questionnaires were presented which included questions about 

socioeconomic markers, ethnicity, medical and mental health history, lifestyle and 

general health. The touchscreen questionnaire at baseline also included five 

cognitive tests. Approximately 20, 000 participants attended a repeat of the 

baseline assessment visit from 2012 – 2013, which included obtaining information on 

a participant’s health and lifestyle, hearing, physical health and cognitive function. 

In 2014 imaging visits were undertaken which included brain and body MRI scans 

with the goal of eventually scanning 100, 000 participants. Cognitive assessments 

were also administered at the first imaging visits, and lifestyle data was taken. 

Since 2013, periodic web-based assessments have taken place which include web-

based cognitive functioning, mental health, pain, food and diet and work 

(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100089).  

http://www.ukbiobank.ac.uk/ethics/
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100089
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Figure 2.1 Chronological sequence of assessments taken during UK Biobank visits 

 

 

  

Figure 2.2 Data collection instances 
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2.2 Sociodemographic and covariate data  

Demographic and covariate characteristics used for this thesis include age, 

ethnicity, sex, education, townsend deprivation score, smoking and BMI. Instance at 

which data was taken from is specified below. 

Age was included in all analyses. For chapters 3, 4 and 5 which used imaging data, 

age was coded as the age each participant was when imaging data was collected 

(Data-Field 21003 “age when attended assessment centre”). For chapter 6 where 

imaging data was not used, age was taken from the baseline measure: Data-Field 

21022.  

Ethnicity when included as a covariate was taken from baseline as a self-reported 

variable (Data-Field 21000). However, in analyses that included genetic analyses, 

only those of white British ancestry were included which was determined by genetic 

QC carried out by UK Biobank where those who self-reported 'White British' and had 

similar genetic ancestry based on a principal components analysis of the genotypes 

were included as white British.  

Sex was included as self-reported dichotomous variable from baseline in which 

analyses with genetic QC excluded those who had a self-report and genetic sex 

mismatch.  

Education (Data-Field 6138) was based on self-reported highest qualification 

received and then was dichotomised into “University degree” or “less”. A-Level or 

equivalent, GCSE or equivalent, CSE, NVQ, HND or equivalent, other professional 

qualification or none of the above were all dichotomised into “less than university 

degree”. Self-reported education was included in all analyses. Chapters 3, 4 and 5 

used data from the first imaging visit. Chapter 6 used baseline data. 

Townsend deprivation index (Data-Field 189) (Townsend, 1987) was derived from 

postcode of residence for which a socioeconomic deprivation score was calculated 

based on national census. The Townsend index is a measure of deprivation in a 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21003
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21022
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21022
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21000
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=6138
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=189
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population which considers four variables: unemployment (as a percentage of those 

aged over 16), non-car ownership (as a percentage of all households), non-home 

ownership (as a percentage of all households) and household overcrowding. It is 

possible for a Townsend score to be calculated for any area in which there is 

information on the four variables. The UK Biobank Townsend scores combined data 

from census output areas, this was based on around 125 households per area in 

England and Wales and around 50 households per area in Scotland. Townsend scores 

were used from baseline, however, there was an option to amended postcode of 

residence by the participant upon arrival at each assessment.  

Smoking was used as a covariate in all analyses as either pack/years or ever vs 

never. Pack years was an average number of packs smoked per year proportional to 

lifetime exposure as measured by age. Pack/years (Data-Field 20162) was 

calculated as: Number of cigarettes per day / 20 * (Age stopped smoking - Age start 

smoking) the output was then taken and calculated as such: Pack years / (Age at 

recruitment - 16) to provide an approximate lifetime exposure. This measure was 

available for all instances, in which the most recent or relevant calculation was 

included for all analyses, similarly to age. 

Body mass index (BMI) (Data-Field 21001) was taken at baseline and was measured 

by trained research staff in which participants removed shoes and heavy outer 

clothing. Weight was measured, to the nearest 0.1 kg, using a Tanita BC-418MA 

body composition analyser and height using a Seca 202 height measure. BMI was 

derived from: weight (kg)/(height (m) height (m)) and used in analyses as a 

continuous measure in Kg/m2. BMI was taken at each visit, where chapters 3, 4 and 

5 used BMI data from the first imaging visit. Chapter 6 used baseline BMI. 

2.3 Cognitive data 

The touchscreen questionnaire included a battery of cognitive tests that were 

designed specifically for UK Biobank. Time to complete the main five cognitive 

assessments was approximately 15 minutes (numeric memory was added later and 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=20162
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21001
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has subsequently been removed from the battery). Cognitive measures were taken 

at baseline, and sub-samples of participants were assessed in subsequent follow ups 

which included the repeat, first imaging and repeat imaging. Several of the 

cognitive function tests administered via touchscreen during the initial assessment 

visit were administered at subsequent instances as web-based questionnaires and 

participants were invited to complete them remotely. Three tests (fluid 

intelligence, numeric memory and prospective memory) were introduced in the 

final two years of baseline recruitment, with numeric memory subsequently being 

removed for time. Therefore, instances at which cognitive data was taken from 

vary and are clarified below after descriptions of each cognitive measure in figure 

2.7.  

2.3.1  Fluid intelligence  

Fluid intelligence (Data-Field 20016) consisted of 13 logic questions and was defined 

as “the capacity to solve problems that require logic and reasoning ability, 

independent of acquired knowledge” in which participants had 2 minutes to 

complete as many of the 13 logic questions. Cronbach alpha coefficient for these 

items has been reported at 0.62 (Lyall et al., 2016). Logic questions included a 

numeric addition test, identification of the largest number, word interpolation, 

positional arithmetic, familial relationship calculation e.g. "If Truda's mother's 

brother is Tim's sister's father, what relation is Truda to Tim?", conditional 

arithmetic, synonym, chained arithmetic, concept interpolation, arithmetic 

sequence recognition, antonym, square sequence recognition and subset inclusion 

logic. Fluid intelligence score was calculated as sum of correct answers. 

2.3.2  Prospective memory 

For prospective memory (Data-Field 20018) participants were asked to engage in a 

specific behaviour later in the assessment. "At the end of the games we will show 

you four coloured shapes and ask you to touch the Blue Square. However, to test 

your memory, we want you to actually touch the Orange Circle instead". 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20018
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Participants were given four attempts, and this was coded in the data as either 0 or 

1 depending on whether the participant gave a correct answer or not.  

2.3.3  Trail making (A+B) 

The trail making task (TMT; Data-Fields 6348 and 6350) was introduced in the first 

imaging visits. For TMT part A, participants were instructed to connect numbers 

from 1 – 25 in ascending order as quickly as possible. Digits were quasi-randomly 

distributed on the screen. For TMT B, participants were required to select both 

letters (A-L) and numbers (1-13) in alternating and ascending order e.g. 1 A 2 B 3 C 

etc. The intervals between two touching points were taken in seconds and summed 

for both A + B for the TMT score in analyses for this thesis. 

  

Figure 2.3 Example screen shown during trail making task 

 

2.3.4  Symbol digit substitution task  

Number of symbol digit matches made correctly (Data-Field 20159) was collected 

from the digit symbol substitution task in which individuals were required to match 

symbols to numbers using a key at the top of the screen. Participants had a brief 

practice consisting of 8 substitutions before the live timed segment began in which 

the number of correct matches made within 2 minutes.  

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20159
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Figure 2.4 Example screen shown during symbol digit substitution task 

 

2.3.5  Reaction time 

The Reaction time (RT) (Data-Field 20023) task consisted of 12 rounds of the card 

game ‘snap’ in which participants were shown two cards at the same time on the 

screen and instructed to press the button on a button box as quickly as possible 

when the symbols on the cards matched, in a ‘go-no-go' manner. The RT score for 

each participant was calculated as mean response times for correctly identified 

matching pairs in milliseconds and Cronbach’s alpha for this task reported at 0.85 

(Hagenaars et al., 2016). RT was positively skewed; therefore this variable was log 

transformed and standardised for all analyses.  

 

Figure 2.5 Example screen shown during reaction time task 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023
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2.3.6 Numeric memory 

Numeric memory (Data-Field 4282) was tested by showing participants a string of 

numbers and asking them to recall from memory via a numeric keypad, the number 

increased by one and numeric memory score was recorded as longest string length 

correctly recalled. Each string was shown on screen for 2000 milliseconds + 500 

milliseconds multiplied by the string length. The test began with two digits and 

advanced to a maximum number of 12 digits. The test was discontinued for two 

incorrect responses at a string length of three or more, or five incorrect responses 

at a string length of two.   

 

 

Figure 2.6 Example screen shown during numeric memory task 

 
 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282
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Figure 2.7 Cognitive measure collection instances and corresponding chapters 

 

 

2.3.7  Reliability and validity of UK Biobank cognitive assessments  

The psychometric properties of UK Biobank cognitive tests have been studied by 

Fawns-Ritchie and Deary (2020), Hagenaars et al. (2016) and Lyall et al. (2016). 

Fawns-Ritchie and Deary (2020) carried out analyses with 160 participants recruited 

at The University of Edinburgh (age range 40 to 80) who took the UK Biobank 

cognitive test battery and corresponding reference tests. The reference tests used 

were well-validated, standard cognitive tests intended to measure the same 
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underlying cognitive domains as those used by the UK Biobank. A subset of 

participants (n= 50) returned to retest on the UK Biobank assessments 3 to 6 weeks 

following the initial assessment. This was conducted to study the short-term test-

retest reliability - this was of interest as the UK Biobank’s cognitive tests are 

intended to assess longitudinal change. Fawns-Ritchie and Deary aimed to 

investigate whether UK Biobank tests and their equivalent reference tests would 

correlate higher than tests assessing different domains, as well as the short-term 

stability of the UK Biobank tests. They also investigated whether a g component 

was present in the UK Biobank and corresponding reference tests, and whether UK 

Biobank and reference tests correlated with one another. A g component is a 

psychometric construct that calculates a composite score from the inter-

correlational structure of cognitive tests. This is calculated through a principal 

component analysis, where the first unrotated principal component typically 

accounts for about 40% of variance in a wide range of different cognitive tests 

(Deary, 2013; Deary et al., 2019). The authors identified a g component in the 

original UK Biobank tests and the reference tests. They also found that, although 

the UK Biobank tests were brief, they did correlate with reference tests purported 

to test the same cognitive ability. This supports the UK Biobank cognitive tests as 

having good concurrent validity. 

Symbol digit substitution is considered a processing speed task, whereas TMT is a 

test of visual attention and task switching. Fawns-Ritchie & Deary (2020) found that 

TMT and symbol digit substitution both showed good concurrent validity with 

respective reference tests (r = 0.50, r =0.64, respectively), and with tests that 

required speed. Hagenaars et al., (2018) also examined TMT in the UK Biobank. 

They investigated whether cognitive abilities required for TMT performance were 

distinct from other cognitive domains. This was of interest due to TMT requiring the 

use of several cognitive processes including attention, visual searching, 

psychomotor speed, abstraction, flexibility and working memory. They found that 

TMT was both phenotypically and genetically associated with general cognitive 

function and processing speed. This would support that processing speed and 

working memory account for age effects on TMT.   
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Reaction time (r = 0.52) and numerical memory (r= 0.43) also showed good 

concurrent validity (Ritchie & Deary, 2020). Lyall et al., (2016) also found 

longitudinal stability in reaction time (intraclass correlation = 0.57; 95% CI = 0.56 - 

0.58). However, it is not possible to further comment on reliability or validity of the 

UK Biobank numerical memory assessment as this was not included for participants 

at baseline. 

Fawns-Ritchie & Deary (2020) examined the UK Biobank prospective memory test, 

which correlated moderately with other memory tests, as well as tests of executive 

function (r = 0.30) and reasoning (r = 0.41). However, it did not correlate highly 

with the chosen reference test (r = 0.22). It is important to note that there may 

have been a ceiling effect for this measure as it was recorded as either completed 

or not completed, which may contribute to low reliability and validity. 

Lastly, although Fawns-Ritchie & Deary (2020) did not include a reference test for 

fluid intelligence to assess concurrent validity, they found that it was negatively 

correlated with age and correlated with other reference tests of working memory 

and non-verbal reasoning. This suggests that UK Biobank’s measure of fluid 

intelligence shows some validity. Lyall et al.’s (2016) study investigating 

longitudinal stability over an average period of four years found two-way intraclass 

correlations were high for fluid intelligence (ICC = 0.65, 95% CI 0.63 - 0.67).     

2.4 Blood sample collections 

45 ml (6 tubes) of blood was collected from each participant at baseline. A total of 

30 blood biomarkers were chosen due to their relevance with diseases and risk 

factors 

(https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_we

bsite_v1-0-aug-2015-edit-2018.pdf). More details about biomarker collection and 

processing are provided in the relevant chapters.  

https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_website_v1-0-aug-2015-edit-2018.pdf
https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_website_v1-0-aug-2015-edit-2018.pdf
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2.5 Genotyping and imputation  

Participants provided a blood sample at the baseline assessment for which two 

similar genotyping arrays were used. Genotyping, imputation and QC was carried 

out centrally by UK Biobank for which documentation can be found here: 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf and 

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/impute_ukb_v1.pdf. QC data 

are available for download and include data on Hardy-Weinberg equilibrium, 

pairwise relatedness of individuals, mismatch between reported and genetic sex, 

and probable white British ancestry.  

The majority of the UK Biobank participants (~450,000) were genotyped using the 

Applied Biosystems UK Biobank Axiom Array which directly measured 825, 927 

markers. The remaining ~50, 000 participants were genotyped using UK BiLEVE 

Axiom array by Affymetrix which included 807, 411 markers. These arrays have over 

95% content in common and they included SNPs chosen because of potential 

associations with diseases and health-related phenotypes. They were also chosen 

because of their common (>5%) and low (1 - 5%) minor allele frequencies in 

European populations. Imputation was based upon a merged reference panel of 

87,696,888 biallelic variants on 12,570 haplotypes constituted from the 1000 

Genomes Phase 3 and UK10K haplotype panels. Principal components analysis was 

conducted by UK Biobank to identify ancestral population structure within the 

cohort (Price et al., 2006), and 8 principal components were used as a covariate for 

analyses to avoid spurious association due to individuals sharing genetic ancestry. 

This thesis elected to use 8 principal components because there is evidence that 

the majority of variance is explained by 5 where 8 is a common approach (Galinsky 

et al., 2016). 

2.5.1 Polygenic risk scores 

Two polygenic risk scores were created using LDpred for the work of this thesis. 

External genome-wide association study (GWAS) summary statistics and UK Biobank 

genotype data were used and discussed in relevant chapters. LDpred (Vilhjálmsson 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/impute_ukb_v1.pdf
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et al., 2015) is a Bayesian approach to polygenic risk scoring those accounts for 

linkage disequilibrium through effect sizes. We used the infinitesimal model of 

LDpred to create polygenic risk (PGR) scores as other polygenic risk scoring methods 

using many small effect SNPs may lead to a more inaccurate PGR score and thus 

increase type 1 or type 2 error rates in estimating overall genetic effect size. We 

therefore elected for a method that uses more accurately estimated SNP effect 

sizes. LDpred reweights raw effect sizes by their linkage disequilibrium using a 

reference panel of 1000 unrelated people, for this thesis we used individuals from 

the UK Biobank cohort who passed genetic QC but did not have imaging or 

biomarker data and therefore were not included in analyses.  
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2.6 Imaging metrics 

Imaging data in UK Biobank was collected for the first time in 2014 – 2019 for brain 

(3T MRI), as well as heart (DXA), abdomen (DXA), bone (DXA) and carotid arteries 

(ultrasound). UK Biobank brain MRI data includes raw T1, T2, FLAIR, diffusion MRI 

(dMRI) and both resting state fMRI (rfMRI) and task fMRI (tfMRI) (protocol: 

http://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf and 

documentation: http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). All 

brain MRI data was acquired on a Siemens Skyra 3T with a 32-channel head coil in 

which T1, T2 (111mm resolution) and FLAIR (1.0511mm resolution) images were 

acquired in sagittal orientation. dMRI acquisition comprised a spin-echo echo planar 

sequence (Miller et al., 2016). Image derived phenotypes (IDPs) were processed 

through a pipeline (Alfaro-Almagro et al., 2018) which can be found on github 

(https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1 ), and were made 

available as 2,501 separate IDPs. There are a total of 25 volumetric IDPs derived 

from T1 scans including subcortical structures and whole brain volumes for white 

and grey matter. T2 and FLAIR images provided anatomical phenotypes and white 

matter hyperintensity measures. dMRI IDPs provided information about tissue 

microstructure including directionality of water molecules within brain tissues, 

giving information about white matter tract integrity. Processed dMRI phenotypes 

include 432 data-fields (category 134) including intracellular volume fraction 

(ISOVF), intracellular volume fraction (ICVF), orientation dispersion (OD), fractional 

anisotropy (FA) and mean diffusivity (MD).  

All MRI volumetric measures were in mm3 and include whole brain volume (Data-

Field 25009), volume of grey matter (Data-Field 25005), volume of white matter 

(Data-Field 25007), volume of white matter hyperintensities (Data-Field 25781), 

whole left (Data-Field 25019) and right (Data-Field 25020) hippocampal volumes. 

Hippocampal subfields were also used, including: right hippocampal body (Data-

Field 26661), head (Data-Field 26662) and tail (Data-Field 26642), and left 

hippocampal body (Data-Field 26639), head (Data-Field 26640) and tail (Data-Field 

26641).  

http://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf
http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1
https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=134
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25009
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25009
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25005
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25007
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25781
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25019
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25020
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26661
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26661
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26662
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26642
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26639
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26640
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26641
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=26641
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IDPs used in this thesis were normalised for head size either manually or as part of 

UK Biobank pre-processing, however, a study by Lyall et al., (2013) compared 

methods to adjust for brain size when looking at hippocampal volumes and found 

that differing normalisation methods may influence associations found with brain 

volumes. 

2.7 Inclusion criteria 

Participants were excluded from all analyses if they self-reported (category 2406) 

the following conditions from the UK Biobank touchscreen questionnaire: Brain 

cancer, brain or subarachnoid haemorrhage, cerebral aneurysm, cerebral palsy, 

chronic/degenerative neurological problem, dementia/Alzheimer's disease, 

encephalitis, epilepsy, meningitis, motor neurone disease, multiple sclerosis, 

neurological injury/trauma, Parkinson's disease, spina bifida, stroke, transient 

ischaemic attack. 

2.8 Cohort demographics and characteristics 

When looking at the UK Biobank cohort as a whole, there were approximately 

502,690 individuals aged between 37 to 73 years old with the vast majority 

(500,205) aged between 40 and 69. 54% of participants at baseline were female, 

and 88% identified as white British. Fry et al., (2017) studied the demographics of 

the UK Biobank cohort in comparison to the 2011 UK census report and reported 

that the UK Biobank is not a representative sampling of the UK due to several 

differences. The study found evidence of a healthy volunteer bias in which UK 

Biobank participants are more likely to smoke less, identify as white, own their 

property, have lower BMI and have fewer self-reported health conditions 

(cardiovascular disease, stroke, chronic kidney disease, cancer and respiratory 

disease) in comparison to the general population. Other studies have found that the 

UK Biobank may not adequately represent the most deprived areas within the UK 

(Pham et al., 2018; Batty et al., 2019; Wilkinson et al., 2019; Lyall et al., 2021) 

which is problematic as individuals in more deprived areas arguably may be most 

affected by health conditions being studied via the UK Biobank. This finding is 

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=2406
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further exacerbated in individuals who underwent imaging assessments as there is 

evidence that they are healthier in comparison to the greater UK Biobank cohort. 

This effect was seen for the imaging subsample in a range of cardiometabolic, 

cognitive and mental health phenotypes. This may in part be due to exclusions such 

as MRI contradictions such as stents or pacemakers (Lyall et al., 2021). 

Demographics of UK Biobank data may have also changed over the years due to 

participants withdrawals, in which the longitudinal studies using follow up data may 

be even less generalisable to minority and socioeconomically deprived individuals. 

  



   
 

   
 

45 
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3.1 Introduction  

Cardiometabolic conditions, collectively, are the leading cause of preventable 

death worldwide. There is a large body of literature supporting the role of 

cardiometabolic disease in the decline of both physical and brain health due to 

detrimental effects on the heart or blood vessels (Rao 2018; Kivimäki et al., 2019; 

Khan et al., 2016). There is also an increasing awareness of the overlap between 

cardiometabolic disease (CMD) and brain pathologies, in which CMDs have been 

consistently associated with decreased cerebrovascular health and increased 

damage to white matter in the brain (Gupta et al., 2018; Wardlaw et al., 2015; 

Wang et al., 2015). Subsequently, there has been an increase in studies identifying 

biological mechanisms that contribute to the development of brain pathologies as a 

result of cardiometabolic conditions.  

Over time CMDs gradually change vascular structure and function, and whilst some 

mechanisms overlap, there are hallmark pathological changes of individual CMDs. 

Hypertension (HT) is a CMD characterised by persistently elevated blood pressure, 

which increases shear stress burden on the vascular system, causing morphological 

changes to blood vessel walls (Thomas et al., 2016). In contrast, mechanisms and 

risk factors underlying type 2 diabetes (T2D) are understood to contribute towards 

oxidative stress and endothelial dysfunction (Stehouwer et al., 2015). coronary 

artery disease (CAD) on the other hand is closely linked to atherosclerosis and is 

characterised by cholesterol plaque deposits causing vessel blockages. 

Atherosclerosis is typically a consequence of high triglyceride levels, high blood 

pressure, high glucose, insulin levels or hypercholesterolemia (Zachariah et al., 

2018), leading to CAD, which is associated with plaque build-up and the consequent 

narrowing of vessels which decreases blood flow (Zachariah et al., 2018).  

Although there are characteristic disease markers for each cardiometabolic 

condition described above, some mechanisms involved in each disease trajectory 

can overlap between conditions. These include the dysregulation of homeostasis in 

lipid metabolism and insulin, which can contribute to overall brain health via direct 
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cerebrovascular damage and inflammation – effects that may accelerate brain 

injury. Comorbidity of T2D, CAD and HT, in particular, may in part be explained by 

common metabolic activity. For example, chronic hyperglycaemia in T2D may lead 

to additional vascular complications or conditions. This can occur through increased 

production of advanced glycation end products (AGEs). AGEs have a range of 

pathological effects including vascular permeability, oxidising low density 

lipoproteins, and endothelial dysfunction resulting from insulin resistance which is a 

known precursor to atherosclerosis due to metabolic disruption of vasoconstriction. 

Another mechanism of T2D which is thought to initiate the development of HT is 

through the abnormal metabolic state associated with diabetes which decreases the 

blood vessel’s ability to vasodilate due to arterial stiffening, initiating 

atherosclerosis and consequent high blood pressure. Diabetes is also known to 

increase the amount of fluid in the body, contributing to high pressure in the 

vessels. Additionally, hyperglycaemia and insulin resistance in diabetes change how 

the body manages insulin which influences blood pressure as insulin is a pleiotropic 

hormone, playing an important role in the development of HT.  

Although HT and T2D are an example of how CMDs can share common mechanisms, 

it is not yet understood why some individuals develop multiple diseases and 

whether some types of multimorbidity are more detrimental than others. The 

comorbidities between T2D, CAD and HT may be due to pathology of one 

cardiometabolic condition initiating pathology for another, which can occur in 

several ways. 

3.1.1 CMD and brain MRI phenotypes 

Such biological mechanisms associated with cardiometabolic conditions have been 

heavily implicated in cerebrovascular disease and brain health with tissue-specific 

effects (Debette et al., 2019). The role of cerebrovascular health in 

neurodegeneration is supported by many studies investigating causes of white 

matter degeneration (Biesbroek et al., 2017; Schilling et al., 2014; Gupta et al., 

2018; Wardlaw et al., 2015). These studies have provided evidence of a CMD and 
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brain health link where cardiometabolic mechanisms are thought to play a key role 

in the aetiology of white matter neurodegeneration and a higher burden of white 

matter hyperintensities (WMH). A longitudinal cohort study by the Mayo Clinic Study 

of Aging found that baseline hypertension, hypertension in midlife, and fasting 

glucose were predictive of WMH progression over time (Scharf et al., 2019). Other 

studies have similarly found that the prevalence of WMH increases with vascular risk 

factors, including hypertension (Dufouil et al., 2001; Van Dijk et al., 2004) and 

chronic hyperglycaemia (Ferguson et al., 2003). Wang et al. (2015) found that 

vascular risk factors such as high blood pressure were associated with reduced brain 

white matter integrity due to increased stress to microvessels, namely cerebral 

small vessels, and were able to predict consequent brain pathology and cognitive 

decline.  

HT and T2D are one example of common cardiometabolic comorbidity associated 

with poorer vascular and brain health metrics (Petrie et al., 2018; Yahagi et al., 

2017; Schmidt et al., 2017; King et al., 2014; Lastra et al., 2014). One study found 

that CAD increased the risk of HT and dyslipidaemia (Murray et al., 2018). The San 

Antonio heart study found that 85% of type 2 diabetics were also hyperintense. 

Around half of the hypertension patients showed evidence of insulin resistance, 

i.e., impaired glucose tolerance (Lorenzo et al., 2003), suggesting an overlap and 

possible interaction in metabolic pathways. These conditions may share common 

metabolic pathways contributing to the development of disease states, including 

adiposity, inflammation from adaptive immune response, upregulation of the 

angiotensin-aldosterone system, abnormal sodium handling and insulin resistance 

(Petrie et al., 2018). A study with The Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) cohort showed that treating comorbid conditions in diabetes 

patients, such as reducing high blood pressure, was more effective in reducing 

vascular complications of diabetes compared to targeting blood glucose levels 

(Mannucci et al., 2013). This suggests that comorbidity is an important factor to 

consider when seeking to reduce cardiovascular risk and associated outcomes, 

including compromised brain health. These findings also suggest type of 

comorbidity is important to consider within multimorbidity. 
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One randomised controlled trial of individuals (n=9, 361) over 50 years of age who 

had hypertension but no history of T2D or stroke found that when participants 

received intensive intervention treatment for HT, they were less likely to decline 

cognitively at follow up (median=3.34 years) when compared to those who received 

a standard treatment for blood pressure (Mayor et al., 2019). The study authors 

concluded that intensive control of blood pressure (goal of <120 mm Hg systolic 

blood pressure) significantly reduced the risk of cognitive impairment in which the 

risk of probable dementia was also reduced (confidence interval: 0.74 to 0.97; 

p=0.01). This finding not only supports the role of vascular contributions to 

cognitive impairment but suggests that control of HT may mediate neurovascular 

damage. The results of this study are consistent with other research, some of which 

identify age-specific effects of vascular cognitive impairment. King et al. (2014) 

found that the relationship between increasing cardiometabolic comorbidity and 

WMH increased significantly after 50 years of age, suggesting detrimental effects of 

cardiometabolic comorbidity may not present until later in life. This study, 

however, only considered WMH volumes for individuals with the specific 

comorbidity of HT and T2D. 

Although there is reliable evidence that mechanisms leading to multimorbidity 

interact in complex ways, is important to remember that comorbidity can also in 

part be explained by aetiology resulting from overlapping environmental exposures; 

examples include nutrition, genetics, air pollution, BMI, effects of genetic risk, as 

well as the interplay between each disease pathology (Yusuf et al., 2020). While 

T2D, CAD and HT are associated with white matter damage to the brain 

individually, the influence of multimorbid T2D, CAD and HT on neurovascular health 

and cognitive consequences is unclear. Understanding is fragmented and may not 

consider the combined impact of the conditions. Consequently, the influence of 

comorbidity on neurocognitive outcomes such as brain MRI is unknown. With a 

significant incidence of HT, CAD and T2D co-occurring in the population, and 

individuals living longer with comorbidities, it is crucial to understand potential 

effects on the brain and contributions to cognitive decline. 
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3.1.2 Previous UK Biobank studies 

The largest single cardiometabolic and brain imaging study (N=9, 722) found that a 

larger number of vascular risk factors were associated with lower grey matter (GM) 

and white matter brain volumes and poorer white matter health (Cox et al., 2019). 

Having a larger number of vascular risk factors was associated with worse brain MRI 

measures for all metrics (ß range 0.042 to 0.110). WMH were associated with 

presence of HT (standardised β = 0.097, p <0.001) and T2D (standardised β = 0.065, 

p <0.001) and significantly with increased global atrophy. This study concluded that 

increased vascular risk factors such as high BMI, high blood pressure and smoking 

were associated with poorer brain health. However, it did not investigate multiple 

comorbid conditions and differences between one another. Whilst HT and T2D were 

considered vascular risk factors in analyses, the coexistence of both conditions and 

others were not studied, which is the aim of the present research. 

One recent UK Biobank study investigated the influence of cardiometabolic 

comorbidity in relation to cognitive outcome. Lyall et al., 2017 (N= 478, 557) found 

that cardiometabolic diseases were associated with worse cognitive abilities, and 

this association was greater with more than one cardiometabolic disease. Other 

research investigating comorbidity of HT and T2D have reported preliminary 

findings to support further research into the influence of cardiometabolic 

comorbidity. It is unclear how comorbidity may affect the developing brain 

pathologies. This research investigates the effects of HT, CAD and T2D comorbidity 

on brain MRI measures. 

3.2 Methods 

3.2.1 UK Biobank  

In 2014, around 40, 000 UK Biobank baseline participants were invited and recruited 

to return for the first brain and body imaging and further follow up assessments. 

Participants used for this study were from the first MRI imaging dataset of which 

there were 21, 225 individuals with complete MRI data at time of analyses. 



   
 

   
 

51 

Individuals were excluded for meeting exclusion criteria described below or having 

incomplete cardiometabolic data, leaving a final 10, 302 individuals that were 

included in all analyses. Further details about data derived from the UK Biobank, 

including processing of MRI data, are found in Chapter 2. 

3.2.2 Cardiometabolic disease subgroupings  

Cardiometabolic diseases were self-reported as part of the UK Biobank health and 

medical history touchscreen questionnaire. The question (data-field 6150 seen in 

Figure 3.1) asked participants if they had “Vascular/heart problems diagnosed by 

doctor” with the option of selecting one or more of the following: “Heart attack”, 

“Angina”, “Stroke”, “High blood pressure”, “None of the above” and “prefer not to 

answer”. Participants who selected “Prefer not to answer” or did not respond were 

excluded from all analyses. Participants who selected “Heart attack” and/or 

“Angina” received a CAD assignment. Participants who selected “High blood 

pressure” received a HT assignment. For categorisation of T2D, another question 

(data-field 2443 seen in Figure 3.2) asked “Has a doctor ever told you that you have 

diabetes?” with options of “Yes”, “No”, “Do not know” and “Prefer not to answer” 

in which participants who selected “Prefer not to answer” or “Do not know” were 

excluded from analyses. 

 

Figure 3.1 Self-reported vascular problems  
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Figure 3.2 Self-reported Type 2 Diabetes 

 

As shown in Figure 3.3, CMD assignments were used to place each participant into 

one of 4 condition groupings or further divided in 8 mutually exclusive 

subgroupings. Subgroups 2, 3 and 4 on the far right included individuals who 

reported having one cardiometabolic condition. Subgroups 5, 6 and 7 included 

individuals who reported having exactly two cardiometabolic conditions. Subgroup 8 

included individuals that reported having all three conditions i.e., HT, T2D and 

CAD. All individuals who reported having “None of the above” were placed in 

subgroup 1 (no cardiometabolic conditions). For analyses, cardiometabolic disease 

groupings were sometimes collapsed according to the number of cardiometabolic 

conditions: subgroups 2, 3 and 4 were placed in “one cardiometabolic condition”. 

Subgroups 5, 6 and 7 were placed in “two cardiometabolic conditions”. Subgroup 8 

was “three cardiometabolic conditions”, and individuals reporting no conditions 

were “No cardiometabolic conditions”.  
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Figure 3.3 Mutually exclusive CMD groupings 
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3.2.3 Brain MRI Measures 

All brain MRI data was acquired on the same 3T Siemens Skyra scanner (Miller et al., 

2016). Brain imaging data was processed by UK Biobank and available to researchers 

as Image Derived Phenotypes (IDPs) (Alfaro-Almagro et al., 2018). IDPs used in these 

analyses include total brain volume, total grey matter volume and white matter 

hyperintensity volume which were all measured as mm3 and normalised for head 

size. All MRI measures were converted to Z-scores for interpretation and 

comparison. 

3.2.4 Covariates 

Covariates included common variables adjusted for within population studies of 

cardiovascular health (Lyall et al., 2017). Townsend deprivation scores were 

derived from self-reported postcode of residence and used as a continuous variable 

in analyses with lower scores indicating more social deprivation. Education was 

based on self-reported highest qualification received and dichotomised into 

university degree or less i.e., an individual with an undergraduate degree and 

postgraduate degree were placed in the same category. Smoking was coded as 

number of packs smoked per year as a proportion to lifetime exposure and was 

taken from data collected at the first imaging visit (2014+).  

3.2.5 Inclusion criteria 

Participants were excluded from analyses if they have reported head injury, brain 

injury received a diagnosis of dementia, stroke, Parkinson’s disease (<5%).  

3.2.6 Analyses 

When running regressions for number of cardiometabolic diseases, they were 

grouped and entered as numerical variables (0, 1, 2 or 3) and run in both partially 

and fully adjusted models. Partially adjusted models were adjusted for age, sex, 

BMI, and ethnicity. Fully adjusted are adjusted additionally for Townsend 

deprivation scores, smoking (pack years) and education.  
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3.3 Results 

3.3.1 Demographic statistics  

Table 3.1 shows overall descriptive statistics for cardiometabolic groups. The group 

with no cardiometabolic conditions (subgroup 1) present with lowest age, highest 

percentage of female, least pack/years smoking and lowest BMI. Subgroup 1 also 

present with highest total brain and grey matter volumes and lowest overall white 

matter hyperintensity. There are fewer observations for individuals with three 

cardiometabolic conditions than other groups (N=34) which is likely underpowered 

and responsible for skewed descriptive characteristics e.g., 26% female. Percentage 

female, age, pack/years of smoking, Townsend score, education and BMI all 

increase in detrimental direction as number of comorbid conditions increases. 

The next table, Table 3.2 shows descriptive characteristics of each subgroup with 

two cardiometabolic conditions where subgroup 7 (T2D & CAD) included 8 

individuals, which is likely to be statistically underpowered.  

Table 3.3 shows descriptive characteristics of each single cardiometabolic condition 

show that group 0 show the healthiest metrics. Subgroup 3 (T2D) present with a 

similar volume of WMH to subgroup 1. 
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Table 3.1 Cardiometabolic group descriptive statistics by number of conditions 

 Cardiometabolic comorbidity groups 

Variable No conditions 1 Condition 2 Conditions 3 Conditions 

N 7, 321 2, 659 288 34 

Age (M, SD) 60 (7.5) 63.63 (6.3) 65.42 (6.3) 66.21 (5.7) 

Sex, N (%F) 4, 155 (56.75)  1,160 (43.66) 89 (30.9) 9(26.47) 

Pack Years (M, SD) 17.54 (13.54) 21.31 (16.31) 28.96 (18.58) 28.36 (30.5)  

Townsend score (M, SD) -1.97 (2.53) -1.93 (2.64) -1.56 (3.14) -1.19 (3.11) 

Education (% degree) 52% 56% 56% 50% 

BMI (Kg/m2) (M, SD) 26.05 (4.17) 28 (4.64) 30.17 (5.0) 31.88 (5.67) 

     
Total Brain Volume (M, SD) 1514.13 (72.25) 1489.07 (70.03) 1462.88 (71.27) 1456.44 (64.82) 

Grey Matter Volume (M, SD) 801.27 (47.36) 781 (45.85) 760.27 (41.12) 741.32 (40.82) 

WMH volume (M, SD) 3.22 (4.42) 5.16(6.17) 5.74 (6.14) 5.49 (4.85) 
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Table 3.2 Two cardiometabolic condition group descriptive statistics 

 Two cardiometabolic disease subgroups 

Variable Subgroup 5 
(HT & T2D) 

Subgroup 6 
(HT & CAD) 

Subgroup 7 
(T2D & CAD) 

Subgroup 1 
No conditions 

 

N 133 147 8 7, 321 

Age, mean (SD) 64.78(6.29) 65.93 (6.28) 66.5 (6.74) 60 (7.5) 

Sex, (%F) 47 (35.34) 40 (27.21) 3 (37.5) 4, 142 (56.73) 

Pack Years (M, SD) 26.1(15.64) 31.27 (20.30) 23.93 (18.63) 17.54 (13.54) 

Townsend score (M, SD) -1.45(3.12) -1.7 (3.08) -0.65 (4.62) -1.97 (2.53) 

Education (% degree) 58% 53% 25% 52% 

BMI (Kg/m2) 30.68(4.9) 29.62 (5.04) 31.83 (5.34) 26.05 (4.17) 

     

Total Brain Volume (M, SD) 1461.73 (71.03) 1466.64 (71.17) 1412.98 (65.67) 1514.13 (72.25) 

Grey Matter Volume (M, SD) 759.73 (47.52) 762.03 (44.97) 736.63 (38.02) 801.27 (47.36) 

WMH volume (M, SD) 6.13 (7.6) 5.37 (4.53)  6.05 (4.79) 3.22 (4.42) 
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Table 3.3 Single cardiometabolic condition descriptive statistics 

 Single cardiometabolic disease subgroups 

Variable Subgroup 2 
(HT)  

Subgroup 3 
(T2D)  

Subgroup 4 
(CAD) 

 

Subgroup 1 
No conditions  

N 2, 351 115 193 7, 321 

Age, mean (SD) 63.47 (6.81) 61.89 (7.57) 66.68 (5.73) 60 (7.5) 

Sex, (%F) 1062 (45.17) 49 (42.61) 50 (25.91) 4, 142 (56.73) 

Pack Years (M, SD) 21 (15.71) 23.74 (17.46) 23.98 (20.41) 17.54 (13.54) 

Townsend score (M, SD) -1.95 (2.63) -1.43 (2.85) -1.94 (2.67) -1.97 (2.53) 

Education (% degree) 55%  50%  61% 52% 

BMI (Kg/m2) 28 (4.61) 28.33 (5.45) 26.95 (4.32) 26.05 (4.17) 

     

Total Brain Volume (M, SD) 1490.42 (69.98) 1486 (72.58) 1474.46 (67.69) 1514.13 (72.25) 

Grey Matter Volume, (M, SD) 782.08 (45.76) 776.12 (48.65) 769.39 (43.56) 801.27 (47.36) 

WMH volume (M, SD) 5.21 (6.25) 3.28 (3.04) 5.63 (6.31) 3.22 (4.42) 
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3.3.2 Associations between cardiometabolic groups and brain MRI  

Table 3.4 shows associations between cardiometabolic groups and white matter 

hyperintensities. When fully adjusted, subgroup 2, subgroup 6 and subgroup 8 were 

significantly associated with WMH volume. Subgroup 8 however did not show 

significance when partially adjusted. When grouping by number of cardiometabolic 

condition, the 1 condition and 2 condition groups were significantly associated with 

an increase in WMH. The 3 cardiometabolic condition group was not significantly 

associated with an increase in WMH.  

Table 3.5 shows associations with grey matter volume. When observing associations 

of cardiometabolic condition with volume of grey matter, all subgroups were 

associated with a lower volume of grey matter when compared to individuals with 

no conditions in subgroup 0. All subgroups were significantly associated with a 

lower grey matter when partially adjusted except for subgroup 4. When fully 

adjusted subgroups 2, 3, 5, 6 and 8 were significantly associated with a decrease, 

however, beta coefficients were small. For grouping of conditions, all three groups 

were significantly associated with a decrease in grey matter volume when both 

partially and fully adjusted, but beta values were also small.  

In Table 3.6 for whole brain volume, subgroups 3 and 7 were significantly associated 

with a decrease when fully adjusted. Subgroups 3, 4 and 5 were no longer 

statistically significant when fully adjusted. For cardiometabolic condition 

groupings, groups including those with 1 condition and 2 conditions were both 

significantly associated with a decrease in brain volume. The group with 1 condition 

was no longer significantly more associated with decreased brain volume than 

individuals in group 0 when fully adjusted 
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Table 3.4 Cardiometabolic subgroups and white matter hyperintensity volume associations 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

HT (Subgroup 2) 0.274 0.211 – 0.337 < 0.001 0.228 0.187 – 0.269 <0.001 

T2D (Subgroup 3) 0.073 -0.066 – 0.232 0.368 0.081 0.054 – 0.317 0.499 

CAD (Subgroup 4) 0.138 0.013 – 0.264 <0.05 0.070 0.122 – 0.263 0.473 

HT + T2D (Subgroup 5) 0.210 0.013 – 0.264 <0.01 0.143 0.070 – 0.357 0.189 

HT + CAD (Subgroup 6) 0.274 0.131 – 0.417 < 0.001 0.308 0.031 – 0.584 <0.01 

T2D + CAD (Subgroup 7) 0.377 -0.283 – 1.036 0.263 0.562 0.042 – 0.747 0.497 

HT + T2D + CAD 
(Subgroup 8) 

0.179 -0.122 – 0.481 0.243 0.501 -2.18 – 1.060 <0.05 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

1 Condition 0.233 0.193 – 0.273 <0.001 0.263 0.201 – 0.324 <0.001 

2 Conditions 0.247 0.142 – 0.352 <0.001 0.197 0.027 – 0.368 <0.01 

3 Conditions 0.179 -0.122 – 1.02 0.243 0.499 -0.0417 – 1.040 0.07 

Note. Beta are standardised per SD. Partially adjusted values are for age, BMI, sex and ethnicity. Fully adjusted values are for age, BMI, sex, 
ethnicity, smoking, education, and Townsend. Associations significant at p=0.05 are bolded.   
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Table 3.5 Cardiometabolic subgroups and brain grey matter volume associations 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

HT (Subgroup 2) -0.003 -0.005 – -0.001 < 0.001 -0.003 -0.006 – 0.001 <0.05 

T2D (Subgroup 3) -0.017 -0.025 – -0.008 < 0.001 -0.021 -0.033 – -0.008 <0.001 

CAD (Subgroup 4) -0.001 -0.006 – 0.007 0.835 -0.001 -0.011 – 0.010 0.888 

HT + T2D (Subgroup 5) -0.020 -0.028 – -0.0124 <0.001 -0.013 -0.024 – -0.002 <0.01 

HT + CAD (Subgroup 6) -0.010 -0.018 – 0.002 < 0.01 -0.021 
 

-0.036 – -0.007 
 

<0.001 

T2D + CAD (Subgroup 
7) 

 
-0.043 

 
-0.073 – -0.01 

 
< 0.05 

 
-0.037 

 
-0.10 – 0.027 

 
0.255 

HT + T2D + CAD 
(Subgroup 8) 

 

 
-0.033 

 
-0.049 – 0.018 

 
< 0.001 

 
-0.035 

 
-0.061 – -0.009 

 
<0.001 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

1 Condition -0.002 -0.002 – -0.001 <0.001 -0.002 -0.003 – -0.001 <0.05 

2 Conditions -0.007 -0.01 – -0.004 <0.001 -0.007 -0.011 – -0.003 <0.001 

3 Conditions -0.014 -0.021 – -0.008 <0.001 -0.015 -0.026 – -0.004 <0.01 
Note. Beta are standardised per SD. Partially adjusted values are for age, BMI, sex, and ethnicity. Fully adjusted values are for age, BMI, sex, 
ethnicity, smoking, education, and Townsend. Associations significant at p=0.05 are bolded.  
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Table 3.6 Cardiometabolic subgroups and whole brain volume associations 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

HT (Subgroup 2) -0.002 -0.004 – -5.754 <0.05 -0.001 -0.004 – 0.002 0.686 

T2D (Subgroup 3) -0.01 -0.017 – -0.003 < 0.001 -0.013 -0.024 – -0.002 <0.05 

CAD (Subgroup 4) 0.001 -0.006 – 0.006 0.917 0.001 -0.008 – 0.010 0.868 

HT + T2D (Subgroup 5) -0.015 
 

-0.022 – -0.008 <0.001 -0.006 -0.016 – 0.004 
 

0.206 

 
HT + CAD (Subgroup 6) 

 
-0.007 

 
-0.014 – -0.001 

 

 
< 0.05 

 
-0.011 

 
-0.024 – 0.001 

 
0.075 

T2D + CAD (Subgroup 7) -0.042 -0.069 – -0.014 <0.01 -0.058 -0.114 – -0.003 <0.05 

HT + T2D + CAD 
(Subgroup 8) 

 
-0.011 

 
-0.025 – 0.002 

 
0.106 

 
-0.021 

 
-0.044 – 0.002 

 
0.06 

 Partially adjusted Fully adjusted 

 Beta 
coefficient 

95% CI P value Beta coefficient 95% CI P value 

1 Condition -0.002 -0.004 – -0.001 <0.01 -0.001 -0.004 – 0.002 0.446 

2 Conditions -0.011 -0.016 – -0.007 <0.001 -0.01 -0.017 – -0.001 <0.01 

3 Conditions -0.011 -0.025 – 0.002 0.107 -0.021 -0.044 – 0.005 0.06 

Note. Beta are standardised per SD. Partially adjusted values are for age, BMI, sex, and ethnicity. Fully adjusted values are for age, BMI, sex, 
ethnicity, smoking, education, and Townsend. Associations significant at p=0.05 are bolded.  
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3.4 Discussion 

3.4.1 Overview of findings 

The current study investigated associations between cardiometabolic disease 

comorbidity and brain MRI metrics in 10, 302 UK Biobank participants. Group 1, 

containing individuals with no self-reported cardiometabolic condition, 

presented with the highest GM and whole-brain volume and lowest WMH volume 

in all analyses as expected. Overall, there were several significant associations 

between the number and type of cardiometabolic comorbidity and worse MRI 

measures compared to individuals with no cardiometabolic conditions, but no 

consistent trends. This is potentially because of the relatively small sample sizes 

in some subgroupings, resulting in lower reliability and unrepresentative or 

spurious results. 

There were several instances in which subgroups showed significant associations 

with worse MRI measures when partially (for age, BMI, sex, and ethnicity) but 

not fully adjusted (for additional education, smoking and Townsend score), 

suggesting the role of external or environmental demographic factors, i.e., 

education, smoking or Townsend score, in brain-related implications of CMD. 

This may be particularly relevant for CAD as smoking is well established as a 

major risk factor for atherosclerosis which leads to CAD (Howard et al., 1998). 

Seven other associations in the present study similarly showed significance 

between cardiometabolic conditions and brain MRI when partially adjusted but 

were no longer associated when models were fully adjusted. This effect was 

highest for whole brain volume which may be due to combined effects of 

mechanistic pathways presenting more clearly within a global measure. One 

paper by Hu et al. (2020) used a machine learning model to rank 

sociodemographic, health and environmental factors to predict cardiovascular 

health in 500 US cities. When looking at HT, coronary heart disease and stroke, 

they found that the most common factors determined by the model as predictors 

of disease included cholesterol screening, obesity, leisure-time physical activity, 

binge drinking, and being aged 65 years or over. A review carried out by Hill-

Briggs et al. (2021) similarly examined social determinants of diabetes found 

evidence of several social determinants that contribute to diabetes risk and 

outcome including economic factors, social cohesion and capital and education. 
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They also found that diabetes disproportionately affects racial and ethnic 

minority and low-income individuals in the US. The review suggested that such 

social determinants of health are predominantly responsible for inequalities in 

health outcomes, which may encompass brain health outcomes. This idea is 

supported by these analyses where several associations do not remain significant 

where environmental factors and deprivation are considered.  

Backholer et al. (2016) also identified differences between men and women 

regarding socioeconomic inequalities as risk factors for cardiovascular 

conditions. The study found that while socioeconomic status and education were 

inversely associated with cardiovascular risk in both sexes, socioeconomic status 

implied an excess risk for women, whereas education did not. Suggesting 

mediating factors and covariates should be carefully considered when concluding 

the implication of cardiovascular risks on health outcomes and considered 

individually for each condition. The present study's findings suggest it may be 

essential also to consider the type of cardiovascular condition when controlling 

for covariates. 

Furthermore, there is evidence that education can pose more significant risks for 

health outcomes depending on income or level of deprivation, i.e., some 

confounding variables may mediate others. This may be one way that covariates 

may influence associations in these analyses. Investigating how 

sociodemographic factors shape health on an individual and community level 

may help understand the aetiology of CMDs and multimorbidity, including factors 

that may differentiate those who develop CMDs in incipient stages and those 

who do not. Studying multimorbidity on a broader scale may help explain 

disparities in disease outcomes that cannot be understood through cohort 

studies. Differences between partially and fully adjusted models in this study 

indicate that such further consideration of social determinants may be helpful. 

Subgroup 7 (T2D and CAD) consistently showed the largesteffect sizes for worse 

MRI measures. However, subgroup 7 only showed statistical significance for 

decreased whole brain volume. This lack of statistical significance may be 

explained by the low observations in this group (N=8). Therefore, due to a 

possible lack of statistical power, these results cannot confirm associations 

between subgroup 7 comorbidity and structural MRI. There are several possible 
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reasons for a low number of observations in this subgroup. MRI related 

contraindications may be one explanation as individuals with pacemakers, 

cardioverter-defibrillators, or prosthetic heart valves may not be able to 

undergo an MRI scan, creating a selection bias. There may also be fewer 

individuals in these subgroups because UK Biobank participants are healthier 

than the general population with those attending MRI scanning sessions reporting 

'healthier' demographics than those who do not (Fry et al., 2017). 

Before carrying out analyses, descriptive characteristics showed when visually 

inspected (i.e., statistical tests were not carried out) that increasing number of 

comorbid conditions was associated with worse MRI metrics; however, regression 

models do not support this after considering covariates in models. Results 

suggest that having two cardiometabolic comorbidities was most consistently 

and significantly associated with worse outcomes for MRI metrics for both 

partially and fully adjusted models, which was not the case for individuals with 

three conditions. However, the group of individuals reporting with three 

conditions was also underpowered (N=34) and may explain why significant 

associations with brain metrics were not consistently present; there is also a 

possibility of a survivor bias seen in the present analyses with this group. 

When comparing associations found for GM, WMH and whole-brain volumes, the 

data showed 8 total groups out of a potential 11 (when including groupings of 

1/2/3 cardiometabolic conditions) were significantly associated with a decrease 

in grey matter in comparison to healthy controls (no cardiometabolic 

conditions), whereas 5 subgroups were significantly associated with WMH and 3 

with total brain volume. This is not consistent with other literature as findings of 

a decrease in the grey matter within cardiovascular and cardiometabolic 

populations are often accompanied by very similar decreases in white matter 

and increases in WMH (Cox et al., 2019; Roberts et al., 2014; Debette et al., 

2011) with some studies emphasising progression of WMH pathology in 

cardiovascular diseases (Knopman et al., 2005; Moroni et al., 2018).The reason 

for this finding is not clear but it may be that grey matter is related to specific 

metabolic changes. However lack of explanation may be a result of grey matter 

being understudied in comparison to white matter in the context of CMD. 
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3.4.2 Limitations 

The most significant limitation of this study was the low number of observations 

within some cardiometabolic subgroups, e.g., subgroup 7 (N=8) and subgroup 7 

(N=34). This may reflect a selection bias or low presence of comorbidity of type 

2 diabetes, hypertension and CAD (subgroup 8) and type 2 diabetes and CAD 

(subgroup 7). This finding may also indicate that it is more beneficial to 

investigate comorbidity by the number of conditions rather than splitting into 

types of condition, as the latter may not provide more specific information 

regarding outcome effects of cardiometabolic disease; however, this is unlikely. 

Another limitation of this work is that alternative risk factors such as diet, 

psychosocial factors or physical activity have not been considered, although 

strongly implicated in developing cardiometabolic disease. One meta-analysis 

studying epidemiological links between mental health and cardiometabolic 

disease highlights bidirectional links between depression and cardiovascular 

disease (Penninix, 2016). Another study showed that 9% of CAD patients 

presented with generalised anxiety disorder compared to 5% of healthy controls 

(Tušek-Bunc & Petek, 2016). Physical activity is another significant factor that 

plays a role in health related outcomes of CMD and was not considered here, and 

may explain some unexpected results. 

There is some evidence to suggest that vascular risk factors are associated with 

worse brain MRI outcomes later in life when exposure is during midlife (Debette 

et al., 2019). This study, however, was cross-sectional, and both 

cardiometabolic and MRI data were taken at the same data instance. This makes 

reverse causation a possibility within this data, for which it is not possible to 

parse out which came first, the cardiometabolic condition or worse brain health. 

The generalisability of these results is limited by selection bias within the UK 

Biobank in which one study from by the Department of Population Health at the 

University of Oxford (Fry et al., 2017) found that UK Biobank participants were 

less likely to be obese, smoke, be socioeconomically deprived and have fewer 

self-reported health conditions when compared to the general population. 95.6% 

of the UK Biobank cohort are of white ethnicity, which is limiting when 

considering the clinical applications of cardiometabolic research findings as 
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there are significant differences in the presentation of cardiovascular disease for 

different populations. For example, classical risk factors such as waist 

circumference or BMI cut-offs vary between populations (Zhu et al., 2005; 

Chaturvedi, 2003). Finally, the methodological definitions of cardiometabolic 

diseases used for these analyses were self-reported and may not be as accurate 

as physical measures such as blood pressure, pulse rate or blood glucose. 

3.4.3 Future work 

One area of future work includes replicating associations with larger groups of 

individuals. The current study analysed single data collection instances; 

therefore, future studies could use longitudinal data such as future follow-up 

waves in UK Biobank to investigate the association of cardiometabolic disease 

with brain health over time, with the ability to conclude directionality.  

Brain MRI metrics in this study were limited. Future investigations may find more 

specific findings when looking closer at metrics of neurodegeneration such as 

white matter tract integrity or additional structural measures, particularly as 

changes are likely to be smaller in midlife. This may include MRI metrics such as 

fractional anisotropy, mean diffusivity, or hippocampal volume.   

This study has also highlighted the need for future studies to look more closely 

at lifestyle factors and consider these in more detail. It is still unclear how 

lifestyle factors such as socioeconomic inequalities or psychosocial factors may 

influence and contribute to brain-related health outcomes of cardiometabolic 

conditions. 

Recent Genome-Wide Association Studies (GWAS) have found that, like most 

complex diseases, there is heritability of HT, CAD and T2D. Common variants 

have been studied in the literature, many of which have been implicated in 

obesity and insulin resistance (Cheung & Li., 2012). One study found that 

offspring of hypertensive individuals presented with heritable abnormal glucose 

metabolism (Friedman et al., 2005), suggesting overlapping genetic 

predispositions for comorbidity where consideration of genetics may be helpful 

when predicting potential effects of comorbidity. 
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3.4.4 Conclusion 

Overall, the associations between cardiometabolic comorbidity and brain MRI 

provide preliminary evidence for differential effects of cardiometabolic 

conditions on brain health outcomes. Most associations were seen for grey 

matter volume in comparison to whole brain volume and WMH. However, it is 

essential to note that findings of cardiometabolic subgroupings and worse brain 

health did not present any clear trends, and there were no consistent findings 

between groups. Despite the lack of evidence for clear associations between 

type of cardiometabolic comorbidity and brain MRI, to our knowledge, this is the 

first study to investigate potential differences between different patterns of 

comorbid cardiometabolic conditions concerning brain health. 
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4 Chapter 4: Elevated Lipoprotein A and brain MRI 
phenotypes 
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4.1 Introduction    

4.1.1 Lipoprotein A and Alzheimer’s disease 

The role of lipids is vital to normal brain functioning, e.g., blood-brain barrier 

(BBB) function, myelination, inflammation, APP processing, receptor signalling 

and energy metabolism (Chew et al., 2020) and recent studies looking at 

differences between healthy cognitive functioning vs abnormal brain-related 

pathology have stressed the importance of lipid disruption (Schilling et al., 2014; 

Proitsi et al., 2017). Studies investigating disturbed lipid functions in the context 

of brain pathology and histology have found that a disrupted brain lipidome can 

lead to abnormalities in the functioning of astrocytes and microglia. One study 

showed that unbalanced lipid homeostasis affected signal transduction via 

membrane phospholipids (Farooqui et al., 1988). GWAS have also implicated 

lipids and lipid metabolism in Late-onset Alzheimer’s Dementia (AD) pathology 

(Kunkle et al., 2019) with lipidomic analyses of different brain areas confirming 

age-related lipid alterations in disease states (Proitsi et al., 2017) and one study 

found that the use of statins reduced the risk of incident AD (Sparks et al., 

2008). Ferguson et al. (2020) found that when looking at n=395,769 healthy 

individuals in the UK Biobank, individuals who were at genetic risk for AD 

presented with different biomarker and lipid profiles to those who were not at 

genetic risk, supporting the use of lipid assessment within healthy populations to 

indicate who is at a higher risk of cognitive decline. There is growing evidence to 

implicate lipid dysfunction in abnormal brain ageing, creating the potential for 

lipid biomarkers.   

Lipoprotein A (LpA) is a low-density lipoprotein variant that is considered to be a 

reliable CVD risk factor. There is evidence of causal associations where 

observational and genetic evidence strongly support a causal relationship 

between high plasma concentrations of LpA and increased risk of CVD–related 

events, such as myocardial infarction and stroke (Larrson et al., 2020). The 

Copenhagen City Heart Study found that high LpA levels were predictive of a 3-

to-4-fold increased risk of myocardial infarction in the general population 

(Kamstrup et al., 2008). It has also been suggested that increased LpA serum 

concentrations may play a role in determining clinical AD outcomes via increased 

risk for cerebrovascular disease (Iturria-Medina, Hachinski and Evans, 2017). 
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However, there is little data in comparison investigating associations of LpA with 

subsequent dementia and impairment in cognition. Previous studies have 

reported observational associations with LpA and AD, but the evidence is 

inconclusive. Solfrizzi et al. (2002) found that LpA serum concentrations were 

significantly associated with an increased risk for AD, independently of APOE 

genotypes and sex. Emanuele et al. (2004) studied LpA isoforms in 73 AD 

patients matched by age and gender with healthy controls. They found that 

isoforms that determine higher levels of LpA were associated with the age of AD 

onset but not progression to AD. Iwamoto et al. (2004) found LpA levels were 

highest in vascular dementia patients (n=46), but with LpA levels still higher in 

the AD group (n=150) than in healthy controls (n=150), suggesting LpA may 

contribute to the development of AD through vascular pathways. However, 

papers present conflicting evidence; Kunutsor et al. (2016) found in a 

prospective cohort study of 2,532 Finnish men that LpA was inversely associated 

with future risk of dementia. This finding may be due to a genuine inverse 

relationship or lack of association, although it has also been proposed that the 

lack of association may be confounded by competing risks and survival bias in 

which individuals with high LpA and CVD do not live long enough to progress to 

AD.   

4.1.2 Lipid biomarkers and brain MRI phenotypes    

Studies investigating the nature of alterations in brain tissue in AD individuals 

show white matter hyperintensities (WMH) are a prominent feature of both CVD 

and AD. Although WMHs are associated with both CVD and AD, it is not clear how 

to differentiate vascular and AD pathophysiological changes and contributions to 

brain damage or cognitive decline. One multicentre study of WMHs in n=2,699 

stroke patients found that cholesterol was a more significant risk factor for WMH 

when individuals were hypertensive than in non-hypertensive individuals where 

age was a more significant risk factor (Ryu et al., 2017). These findings suggest 

that lipid profiles may contribute to the development of WMH to a varying 

extent depending on whether other relevant risk factors are present, 

highlighting the importance of studying such biomarkers profiles in relation to 

other risk and lifestyle factors.  
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Some studies suggest that development rather than presence of WMH is 

associated with adverse outcomes such as cognitive decline, as more rapid 

deterioration is likely to disrupt neural networks (Filippi et al., 2020). A twin 

study by Sachdev et al. (2016) found that heritability for WMH volume was 

between 64% to 77% depending on the brain region, suggesting genetic factors 

may also play a role in developing WMHs, it is possible that such variants are 

pleiotropic and may be involved in lipid function. Some neuroimaging methods 

studying structural changes occurring to white matter integrity have attempted 

to quantify more minor changes to white matter, which is relevant to early 

disease pathology, including investigating microstructure. One study by Cox et 

al. (2016) analysed white matter in 3,513 UK Biobank individuals with MRI data 

and associations with age to understand how white matter microstructure varies 

over the lifespan. The study investigated multiple microstructural 

characteristics, including fractional anisotropy (FA) and mean diffusivity (MD). 

Additional analyses were carried out for FA and MD in which 22 significant white 

matter tracts were identified; these were used within this analysis and discussed 

in the methodology section below.  

4.1.3 Genetic correlates of LpA    

The use of genomics in cardiovascular medicine is increasing, and advancements 

in cardiogenomics are helping to move towards a precision medicine approach to 

preventing cardiovascular diseases in individuals at risk. The American Heart 

Association (AHA) suggested 30 “medically actionable genes” related to CVD, 

based on a paper published by the American College of Medical Genetics and 

Genomics, including TTR and PCSK9, both of which play critical roles in lipid 

homeostasis (Kalia et al., 2016). These studies show that identifying genetic 

variations that indicate the heritability of cardiovascular conditions and 

pathology is helpful for both disease prevention and gaining a closer 

understanding the role of lipids. One of the most common cardiovascular 

conditions is atherosclerosis, which manifests clinically as coronary heart disease 

and stroke. LpA is an established CVD risk factor and plays a role in the 

development of atherosclerosis.  

Heritability of elevated levels of LpA is thought to be around 80 to 90%, where 

the LPA gene locus explains a substantial proportion of the variance (Welsh et 
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al., 2020). One study reports around 30 – 70% of LpA heritability to be 

accountable by the copy number variant (CNV) Kringle-IV (KIV)-2 in the LPA 

gene, with low numbers of KIV repeats resulting in higher levels of LpA 

concentrations (Kronenberg., 2016). Other SNPs known to contribute to LpA 

levels have also been identified. One meta-analysis of five LpA-GWAS reported a 

total of 31 SNPs found to be significantly associated with LpA concentrations in 

both LPA and APOE regions (n=13,781) (Mack et al., 2017). Inheritance of the 

APOE e4 allele may be of relevance as it is involved in regulating lipid 

metabolism, and is associated with several cardiovascular factors, including 

CVD, LDL, total cholesterol, and cerebrovascular related cognitive decline (Rojas 

et al., 2018).   

4.1.4 Study rationale    

LpA has been used as a reliable risk factor for CVD and plays a role in developing 

AD pathologies. Studies investigating causal roles of LpA have found that there 

does appear to be a causal relationship between elevated LpA concentrations 

and subsequent CVD. However, beyond the ε4 allele of apolipoprotein E (APOE), 

comparatively little is known about whether genetic variants associated with a 

higher risk of cardiovascular disease can be considered risk genes for AD through 

potential genetic pleiotropy (Lippi et al., 2019). Previous studies investigating 

genetic links between CVD and AD have found significant overlap in risk factors; 

however, it has been challenging to draw conclusions about the role of LpA in 

the development of neurodegeneration due to lack of evidence. This study 

examines whether individuals with elevated blood LpA and genetically elevated 

LpA are associated with brain phenotypes of dementia, including white matter 

structure, brain volumes and cognitive performance in the UK Biobank.   

 

Figure 4.1 Strength of evidence between LpA, CVD, brain and cognition 
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4.2 Methods   

4.2.1 Biomarker collection and processing   

LpA biomarker levels were analysed in UK Biobank from blood samples at 

baseline from UK Biobank participants. This study investigated baseline measure 

of lipoprotein A which was reported in units of measurement of nmol/L. Values 

more than 5 SDs from the mean were removed (M=44.64, SD=49.21).  

This document outlines quality control approaches that were undertaken to 

mitigate random errors and bias in biomarker samples: 

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/biomarker_issues.pdf.    

4.2.2 LpA GWAS variants  

The variants used to create the PGR score of blood LpA were taken from Pan et 

al. (2019), where they identified 9 SNPs associated with LpA concentrations as 

instrumental variables for an AD Mendelian Randomization study. To identify 

these variants, Pan and colleagues obtained summary-level data from Clarke et 

al. (2009)’s investigation of SNPs from the LpA region for an association analysis 

on level of LpA. Pan et al., (2019) then selected SNPs that achieved significance 

at P<1.0×10−6 from Clarke et al. (2009). Data carried forward from both studies 

for the present analysis was found in individuals with European ancestry only.  

4.2.3 LpA genetic score  

When creating the PGR score for elevated LpA, genetic QC excluded individuals 

with non-white British ancestry, self-report vs genetic sex mismatch, putative 

sex chromosomal aneuploidy, excess heterozygosity, missingness rate > 0.1. 

Additionally, those who reported a neurological condition at baseline were 

excluded. All remaining individuals were included in the analysis in which PGR 

scores were calculated. LDPred was used to create genetic risk scores in which 9 

LpA-raising alleles inherited at each variant were included in the score, 

weighted by each variant’s association with absolute change in LpA mass 

concentration, which was taken from the effect sizes given from the GWAS. 

Further details about genotyping methods used in UK Biobank are outlined in 

chapter 2: Methodology.  

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/biomarker_issues.pdf
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4.2.4 MRI and cognitive measures  

Brain MRI phenotypes included in these analyses were volumes of grey matter 

(log), white matter (log), white matter hyperintensity (log), whole brain (log), 

left hippocampus and right hippocampus. Segmented regions of each left and 

right hippocampus, including hippocampal head, tail and body, were included. 

Right and left grey hippocampal matter have been included as outcome variables 

for the first time in this thesis to investigate grey matter more closely. This is 

different to left and right hippocampus volumes that have been included in 

subsequent chapters that refer to white + grey matter. We also included general 

factors of white matter microstructure as a latent variable. We constructed 

general factors of FA (gFA) and MD (gMD) using principal components analysis 

based on 22 tracts (Cox et al. 2016) where gFA eigenvalue = 10.98, r2 = 49.89% 

and gMD eigenvalue = 11.79, r2 = 53.57%. The 22 tracts included left and right: 

acoustic radiation, anterior thalamic radiation, cingulate gyrus, corticospinal 

tract, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, 

posterior thalamic radiation, superior longitudinal fasciculus, superior thalamic 

radiation, uncinate fasciculus, and both the forceps major and the forceps 

minor. Handedness was not included as an exclusion criterion in these analyses; 

a study by Cox et al (2016) showed that handedness does not have an effect on 

FA and MD in a meaningful way.  

Cognitive measures included in analyses included: fluid intelligence, prospective 

memory, numerical memory, reaction time, total trail making (A+B), and symbol 

digit substitution. More details about how these variables were derived are in 

Chapter 2: Methodology.  

4.2.5 Covariates   

All association models were run twice: once partially adjusted and then fully 

adjusted. Partially adjusted models included age, sex, BMI, PCs 1-8 for 

population stratification, genotyping chip and fully adjusted for additional, APOE 

e4 dose, cardiovascular medication, smoking (never vs ever), education and 

Townsend social deprivation score.  
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4.2.6 Statistical analyses  

Regression models were run with 16 brain MRI and 6 cognitive phenotypes to 

investigate associations between both genetic risk scores for LpA and blood LpA, 

in which covariates were considered. Observational correlations for covariates 

and PGR-LpA and blood LpA were also reported 
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4.3 Results  

4.3.1 Demographic statistics  

Table 4.1 shows demographic statistics of individuals split by male and female 

sex. Table 4.2 shows summary statistics used to create  PGR scores of elevated 

LpA taken from Pan et al. 2019; Causal Effect of Lp(a) Level on Ischemic Stroke 

and Alzheimer’s Disease. Table 4.3 shows correlations between blood and PGR of 

elevated LpA used in this chapter.  

 

Table 4.1 Demographic statistics by male and female sex 

Male vs 

Female 

N Age 

(years) 

BMI 

(kg/m2) 

Smoking 

(% ever) 

Townsend 

deprivation 

score 

LpA 

(nmol/L)  

Female 21,005 63 

(7.41) 

26.1 

(4.75)  

33.65% -1.86 (2.72) 1.65 

(0.26) 

Male 18,690 64.32 

(7.65) 

26.46 

(3.91) 

40.58% -1.94 (2.71) 1.44 

(0.22) 

Note: LpA (nmol/L) is mean (SD) 
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Table 4.2 GWAS significant SNPs associated with LpA 

SNP Chr Locus EA/OA EAF Beta SE p 

rs10455872 6 LPA G/A 0.07 1.18 0.04 3.6×10−166 

rs3798220 6 LPA C/T 0.02 1.27 0.08 5.9×10−51 

rs11751605 6 LPA C/T 0.16 0.50 0.04 5.9×10−28 

rs10945682 6 LPA G/A 0.64 0.32 0.04 1.8×10−17 

rs6919346 6 LPA C/T 0.83 0.43 0.05 1.6×10−16 

rs3127596 6 LPA G/A 0.30 0.30 0.04 1.5×10−14 

rs10755578 6 LPA G/C 0.48 0.27 0.04 3.4×10−13 

rs3798221 6 LPA G/T 0.81 0.28 0.05 2.0×10−9 

rs6415084 6 LPA T/C 0.49 0.22 0.04 2.7×10−9 

Note. Chr = chromosome; EA = effect allele; OA = other allele; EAF = effect allele frequency; SE = 
standard error.  
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Table 4.3 Correlations between covariates and blood and PGR of elevated LpA 

 PGR LpA LpA blood 
 

Age <-0.012 (0.59) 0.14 (0.017) 

Sex -0.07 (0.04) 0.12 (0.06) 

BMI (kg/m2) <-0.012 (0.83) 0.15 (0.19) 

Smoking 
(never vs 
ever) 

-0.15 (0.069) -0.22 (0.078) 

PGR LpA - 0.56 (<0.003) 

Note: Values are: correlation coefficient (p-value) 
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4.3.2 Associations between LpA and brain MRI 

Table 4.4. shows that 9 brain MRI measures were significantly associated with 

blood LpA when partially adjusted, these include WMH (β = 0.04, p = <0.001), 

gFA (β = 0.02, p = 0.006), gMD (β = 0.01, p = 0.04), left hippocampus (β = 7.53, p 

= 0.005), right hippocampus (β = 8.46, p = 0.002), left hippocampal body (β = ,-

1.96 p = 0.01) and tail (β = -1.09, p = 0.05), and grey matter of both left (β = 

5.99, p = 0.01) and right hippocampus (β = 4.98, p = 0.04). When these models 

were further adjusted for CVD medication, BMI and APOE dose the associations 

that remained significant were for gMD (β = 0.03, p = 0.005) and left 

hippocampal body (β = -3.34, p = 0.04). Additionally, whole brain volume (β = -

2.38, p = <0.001) and grey matter volume (β = -3.12, p = <0.001) were 

associated with blood LpA for fully adjusted models only. When looking at all 

significant associations within fully adjusted models, they are in the deleterious 

direction, e.g., lower whole brain volume and higher mean diffusivity associated 

with higher levels of LpA. However, within partially adjusted models, left and 

right hippocampal volumes and left and right grey hippocampal volumes are 

positively associated, suggesting higher brain volumes with increased 

concentration of blood LpA.  

Table 4.5 shows that no brain MRI measures were significantly associated with 

PGR of elevated LpA when partially adjusted. General factor of mean diffusivity 

(β = 0.02, p = 0.03) and general factor of fractional anisotropy (β = -0.01, p = 

0.02) were associated with PGR of elevated LpA in fully adjusted models. No 

other MRI variables were associated with PGR of elevated LpA. Table 4.6 shows 

fully adjusted associations between cognitive measures and blood LpA, and PGR 

of elevated LpA. The table shows that no cognitive measures were associated 

with blood or genetically elevated LpA measures in these analyses. Effect sizes 

were small, and no associations were close to significance 
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Table 4.4 Associations between blood LpA and structural brain MRI 

 Partially adjusted Fully adjusted 

 β 
 

p β 
 

p 

Whole brain volume (log) -3.99 0.09 -2.38 <0.001 

Grey matter volume (log) -4.71 0.08 -3.12 <0.001 

White matter volume (log) -3.03 0.36 -1.15 0.08 

WMH (log) 0.04 <0.001 0.01 0.60 

gFA 0.02 0.006 -0.01 0.08 

gMD 0.01 0.04 0.03 0.005 

Left hippocampus (mm3) 7.53 0.005 -0.84 0.89 

Right hippocampus (mm3) 8.46 0.002 2.74 0.65 

Right hippocampal body 
(mm3) 

-1.37 0.08 -2.62 0.12 

Right hippocampal head 
(mm3) 

-0.76 0.51 -3.35 0.17 

Right hippocampal tail 
(mm3) 

-0.50 0.21 -0.76 0.37 

Left hippocampal body 
(mm3) 

-1.96 0.01 -3.34 0.04 

Left hippocampal head 
(mm3) 

-0.91 0.42 -3.97 0.10 

Left hippocampal tail 
(mm3) 

-1.09 0.05 -2.01 0.09 

Grey matter left 
hippocampus (mm3) 

5.99 0.01 3.06 0.53 

Grey matter right 
hippocampus (mm3) 
 

4.98 0.04 1.12 0.82 

Note. Bold = significant p<.05. Models are partially adjusted for age, BMI, sex, genotyping chip, 8 
genetic principal components and fully adjusted for additional cardiovascular medication, APOE e4 
dose, smoking, education and social deprivation. 
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Table 4.5 Associations between PGR of elevated LpA and MRI measures 

              Partially adjusted                Fully adjusted 

 β 
 

p β 
 

p 

Whole brain volume 
(log) 

5.94 0.69 4.53 0.86 

Grey matter volume 
(log) 

-5.96 0.97 3.11 0.46 

White matter volume 
(log) 

1.78 0.52 4.62 0.36 

WMH (log) 0.01 0.71 0.01 0.39 

gFA 0.01 0.71 -0.01 0.02 

gMD 0.02 0.63 0.02 0.03 

Left hippocampus 
(mm3) 

0.96 0.19 1.21 0.59 

Right hippocampus 
(mm3) 

-0.68 0.77 2.01 0.66 

Right hippocampal 
body (mm3) 
 

1.12 0.09 1.64 0.21 

Right hippocampal 
head (mm3) 
 

1.31 1.18 2.78 0.14 

Right hippocampal tail 
(mm3) 
 

0.23 0.51 0.67 0.31 

Left hippocampal body 
(mm3) 
 

0.91 0.17 1.56 0.22 

Left hippocampal head 
(mm3) 
 

1.33 0.16 3.48 0.06 

Left hippocampal tail 
(mm3) 
 

0.08 0.85 1.22 0.17 

Grey matter left 
hippocampus (mm3) 
 

0.23 0.91 3.82 0.31 

Grey matter right 
hippocampus (mm3) 

0.83 0.68 4.51 0.24 

Note. Bold = significant p<.05. Models are partially adjusted for age, BMI, sex, genotyping chip, 8 
genetic principal components and fully adjusted for additional cardiovascular medication, APOE e4 
dose, smoking, education, and social deprivation. 
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Table 4.6 Associations between cognition and blood LpA, and PGR of elevated LpA 

 LpA blood LpA PGR 

 β 
 

p β 
 

p 

Fluid intelligence 
 

<0.001 0.32 0.006 0.74 

Prospective 

memory 
 

-0.01 0.26 -0.002 0.67 

Numerical 

memory 
 

<0.001 0.66 -0.032 0.15 

Reaction time 
 

0.02 0.51 0.66 0.57 

Trail making 
 

<0.001 0.19 <0.001 0.89 

Symbol digit 
 

<0.001 0.75 -0.05 0.48 
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4.4 Discussion   

This study investigated associations between elevated blood LpA and genetically 

elevated LpA and brain MRI in 39, 695 individuals. We replicated previous 

associations with blood lipid LpA and found that blood LpA was associated with 

whole-brain volume, grey matter volume, gMD and left hippocampal body 

volume. PGR of elevated LpA only showed associations with gMD and gFA. 

Although findings between PGR and blood LpA did not overlap exactly, overall 

findings do suggest both blood and genetically elevated LpA were associated 

with higher MD. A higher value of MD indicates an increase in overall diffusion; 

this may be due to poorer WM microstructural integrity or high-water content 

due to inflammation or oedema, suggesting higher levels of elevated LpA may be 

associated with this endophenotype. No cognitive measures were associated with 

blood or PGR of elevated LpA, suggesting no differences in cognition were 

evident amongst those with the highest levels of LpA and those with the lowest 

levels of LpA.   

4.4.1 PGR LpA vs blood LpA   

When comparing blood and PGR associations with brain MRI phenotypes, 9 out of 

16 showed conflicting directions, in which several PGR LpA associations showed 

unexpected directionality, i.e., higher brain volumes. There could be several 

reasons that blood LpA and genetic risk of elevated LpA showed conflicting 

directionality. Emanuele et al. (2004) compared APOA isoforms to LpA levels in 

the blood and found no differences between isoform expressions and LpA levels 

in AD patients and controls, even when controlling for APOE. However, when 

comparing the age of onset for those with AD, individuals with at least one APOA 

isoform had a significantly higher mean age of onset than those who did not have 

an APOA isoform (76 vs 66, p=0.01). This suggests that genetic determinants of 

LpA concentrations may not present significantly different LpA levels as 

measured by circulating blood samples but may still influence pathogenesis. High 

blood LpA and genetically elevated LpA may reflect different pathogenesis that 

may ultimately influence AD progression in separate ways, e.g., blood LpA may 

be more affected by cardiovascular health or lifestyle factors. This potential 

difference in pathways may also explain why some blood LpA associations with 
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brain volumes no longer remained when models were fully adjusted, but this 

effect was not seen for genetically determined LpA. 

Furthermore, the cross-sectional nature of these analyses could be one reason 

some LpA associations seemingly show unexpected directionality in association 

with MRI measures. The age-of-onset may be a crucial factor to consider when 

investigating the risk of AD and demonstrates that cross-sectional studies cannot 

draw conclusions regarding the role of risk factors over time or may portray an 

incomplete picture depending on when data are taken.  

Another explanation for conflicting PGR and blood directionality may be that the 

genetic risk model in these analyses may not have been a good predictor for 

levels of LpA in midlife; during the discovery of the genetic variants, selection 

may have been biased for extreme values of high LpA, or in those most at risk 

for elevated LpA and therefore not representative of LpA levels within a general 

population. The clinical utility of this genetic risk score based on summary data 

may not be applicable in wider populations, such as the UK Biobank. It is 

possible that the ancestral backgrounds of the summary statistics were not 

compatible with the LpA variants present in the UK Biobank study population 

(Clarke et al., 2009; Pan et al., 2019). Participant demographic and clinical 

characteristics may have differed to the extent that the risk score was not 

generalisable to individuals considered healthier than the general population, 

particularly as LpA concentrations are influenced by lifestyle and demographic 

factors (Wilson et al., 2019).    

4.4.2 Sex differences   

No sex differences were observed in additional analyses. Currently, the 

literature is conflicting and inconclusive regarding whether LpA levels vary 

significantly amongst men and women (Welsh et al., 2020; Wilson et al., 2019); 

it is known that cardiovascular risk factors are more prevalent in men than in 

women under the age of 60, many of which are known to be associated with the 

development of AD (Rojas et al., 2018). There is evidence that sex differences 

could be an essential factor for the stratification of individuals. Ferguson et al. 

(2020) reported that out of 33 biomarkers, 16 showed sex vs APOE genotype 

interaction, including ApoA, ApoB and cholesterol. Alternatively, Gong et al. 
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(2021) examined whether sex differences in cardiovascular risk factors were 

related to all-cause dementia in women within the UK Biobank cohort and found 

that several cardiovascular factors were associated with dementia in women but 

not for men. It may be the case that the UK Biobank sample may be 

underpowered to detect minor effects as individuals with cardiovascular 

conditions appear underrepresented in this cohort (Fry et al., 2017). 

4.4.3 APOE e4    

APOE e4 interactions may be an area of future study, which might help to 

explain why the directionality of some results in partially adjusted models 

differed from fully adjusted models. Mooser et al. (2000) found that while 

elevated LpA levels were a risk factor for AD in those who carry APOE e4 

genotype, non-e4 carriers’ LpA levels were associated with reduced risk of AD in 

those over 80 years of age. While the role of APOE genotype was not examined 

in this study, future studies investigating this association may aid in determining 

the role LpA may play in the development of AD.   

4.4.4 Limitations   

There is evidence that variations in diet, circadian rhythmicity, seasonal cycles, 

medical conditions may all introduce biases and were not considered within 

these analyses (Henriksen et al., 2014). When using known CVD markers such as 

LpA, it is essential to consider multimorbidity and incident diseases in studying 

biomarker profiles; for example, inflammatory processes are likely to be more 

common with multimorbidity and within elderly populations (Henriksen et al., 

2014). Studying biomarkers in isolation makes it difficult to characterise and 

recognise when it is indicative of a disease state. Particularly when using genetic 

instruments, as further unmeasured confounders can occur between genetic 

variants and outcomes. For example, pleiotropic effects of variants within the 

LpA region influencing outcomes of interest through other pathways such as HDL. 

Additionally, confounders that have been considered within these analyses may 

not perfectly characterise them and could result in subsequent residual 

confounding such as CVD medication.   
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Additionally, there is conflicting evidence of what is considered high levels of 

circulating LpA and what cut off points should be to investigate the role of LpA. 

One cohort study by Kamstrup et al. (2009) studied how genetically elevated 

levels of LpA increased the risk of myocardial infarction in which cut-off for high 

levels of LpA was at 30 mg/dL (67th percentile) and 85 mg/dL and 120 mg/dL, 

were approximately 90th and 95th percentiles. However, the LpA HORIZON trial 

uses 70mg/dl as an inclusion criterion at initial screening, and the Heart UK 

consensus statement suggested that LpA levels between 77mg/dL and 150 mg/dL 

should be considered high (Jaimini et al., 2019). This lack of standardisation for 

high LpA levels is partly due to epidemiological differences and differences 

amongst individuals in different ethnic groups (Wilson et al., 2019).   

4.4.5 Conclusion  

This is the first study to study and compare the associations of blood and PGR of 

elevated LpA and brain MRI. We found that both blood LpA and PGR of elevated 

LpA was associated with worse brain MRI phenotypes, particularly with higher 

gMD. This analysis provides some initial evidence that both blood and genetically 

elevated metrics of LpA have potential to be valuable in examining differences 

in brain health; however, we also suggest that there are discrepancies between 

the two measurements which should be further investigated.  
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5.1  Introduction 

According to the WHO, dementias affect about 47.5 million people worldwide, 

60-70% of which are cases of Late-Onset Alzheimer’s disease (AD) (2016) and 

estimates predict that 135 million people will live with dementia in 2050 (WHO, 

2020). As a major health problem of the 21st century, understanding prognosis 

and improving diagnosis for AD is necessary. However, AD is a progressive 

disease with insidious onset, and prior to clinical diagnosis and subsequent 

progression, individuals will already have experienced considerable cognitive 

deficits and attendant brain pathology (Counts et al., 2017).  

5.1.1 Definition and characterisation of AD 

For individuals with AD, functional impairments are typically due to the 

deterioration in cognitive and behavioural domains such as attention, executive 

functioning, and memory (Garcia-Ptacek et al. 2016; Jungsu, Basak & Holtzman, 

2009; Van der Elst) in which individuals tend to experience difficulties with 

language, short-term memory loss, mood swings and presentation of challenging 

behaviour (Hedden & Gabrieli, 2005). Although a definitive Alzheimer’s diagnosis 

can only be made post-mortem via brain autopsy, a probable diagnosis can be 

made when symptoms interfere significantly with an individual’s daily 

functioning. A probable diagnosis is based on neuropsychological assessments 

that evaluate mental and cognitive status. Medical history, blood tests, and 

brain imaging may be used to rule out other causes for symptoms. 

Neuropsychological criteria for diagnosis include objective evidence of memory 

deficits, executive functioning, disturbances in consciousness, or neurological 

pathology (McKhann et al., 2011).  

AD progresses over many years and stages preceding clinical AD include 

preclinical and prodromal dementia. According to NIA-AA criteria, preclinical AD 

refers to a stage in which cognitively normal individuals present Alzheimer’s 

pathology, whereas prodromal stages refer to individuals experiencing 

objectifiable cognitive impairments. Predementia stages include subjective 

cognitive impairment (SCI) and mild cognitive impairment (MCI). When memory 

loss is a predominant symptom of cognitive impairment, around 15% of 

individuals with amnestic MCI develop probable AD per year (Grundman et al., 
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2004). Memory related decline in such instances has been related to changes in 

the entorhinal cortex and medial temporal lobe due to pathologies such as beta 

amyloid-beta peptide accumulation and neurofibrillary tangles; for this reason, 

the entorhinal cortex and hippocampus have been areas of interest in AD 

research. MCI patients do not always progress to Alzheimer’s as it is possible to 

stay stable or revert to normal cognitive functioning. However, this pathological 

process begins decades before the onset of AD symptoms. For this reason, much 

research has aimed to identify methods of risk prediction and opportunities for 

early intervention. 

5.1.2 Genetic correlates of AD 

The most considerable risk factor for AD after age is the ɛ4 allele of the 

apolipoprotein E gene (APOE). (Kim, Basak & Holtzman, 2009). APOE, a gene on 

chromosome 19, codes for a protein that plays a role in the metabolism of fats in 

the body. APOE has been associated with cardiovascular disease and Alzheimer’s 

disease; it typically plays a role in transporting lipoproteins and cholesterols and 

the metabolism of Aβ. The APOE protein enhances the breakdown of Aβ; 

however, the ɛ4 variant is not effective at enhancing the breakdown and 

metabolism of Aβ, creating a pathophysiological vulnerability for AD (Kim, Basak 

& Holtzman, 2009). The ɛ4 allele is associated with the most risk for AD, and the 

ɛ2 allele is protective. The approximate prevalence for Caucasians in the US for 

the six permutations of APOE variants is as follows ɛ2/2 (1%), ɛ2/3 (22%), ɛ2/4 

(2%), ɛ3/3 (58%), ɛ3/4 (14%) and ɛ4/4 (3%). At least one copy of the ɛ4 allele is 

found in around 65% of patients with AD and around 10 – 15% of the general 

population (Zhao et al., 2020). The presence of the ɛ4 allele has also been 

associated with accelerating Aβ deposition and has been implicated in the 

regulation of tau phosphorylation (Hedden and Gabrieli, 2005). One study also 

found that ɛ4 carrying neonates had lower brain volumes in parietal and 

occipital lobes compared to non-carriers, suggesting strong evidence for 

predisposing genetic factors (Ferreira et al., 2017). However, it is essential to 

remember that presence of the APOE ɛ4 allele is not necessary or sufficient for 

AD to develop. 

In addition to APOE ɛ4, there is increasing interest in other genetic contributions 

to AD, and other genetic risk factors are also known to play a role in developing 
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AD through pathways such as inflammation or mediating amyloid and tau 

pathology; these genetic factors can take the form of risk genes. Heritability 

estimates range from 50% to 79%, with both common and rare variants 

contributing to risk and discovery of relevant genetic variants for AD has 

increased substantially in recent years. One study investigated differences 

between PGR of AD for ɛ4 carriers and non-carriers. They found that when 

comparing ɛ4 carriers with non-carriers of the same PGR, carriers had a 

significantly earlier age of onset. The median survival age for ɛ4 carriers was 75; 

this number changed to 73 for individuals with high PGR or 80 for those with low 

PGR (Shi et al., 2019). The findings of this study, along with many others, 

suggest that identifying additional genetic risks for AD could provide a more 

robust risk prediction, and better identification of high-risk individuals 

(Dudbridge et al., 2013; Lupton et al., 2016; Stocker et al., 2018; Shi et al., 

2019). 

The International Genomics of Alzheimer’s Project (IGAP) recently released 

results and summary statistics from a meta-analysis of gene candidate studies 

for AD. This data file included ~7 million genotyped or imputed SNPs, with 8, 527 

cases of AD and 11, 312 controls (Kunkle et al., 2019). The study showed at least 

20 loci associated with AD susceptibility at the genome-wide significance level (P 

< 5 x 10-8). The IGAP consortia findings have significantly contributed to 

advancing genetic research for AD since they were published in 2013. However, 

it is unclear to what extent individual genetic variants can predict risk and 

conversion to AD. One review paper by Stocker et al. (2018) found that out of 18 

PGR studies for AD, all were found to be predictive of AD status or conversion to 

AD. Investigating these additional genetic risks may reveal more about the 

pathology and cognitive deficits experienced leading up to AD, which has not 

been widely studied. 

Genetic variants have also been associated with known risk factors for AD. For 

example, the immune response is highly active in AD, and some research groups 

have been studying the contribution of genetic risk from immune-related genes 

(Mrdjen et al., 2019). However, neurogenetic regulatory mechanisms are very 

interactive, and it is becoming more common to use methods capable of 

considering multiple complex genetic phenotypes. With the identification of 
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relevant genetic variants becoming more robust due to improved GWAS methods 

and data resources, PGR scores are also increasing.  

5.1.3 Additional risk factors 

Vascular problems are the most common comorbidity alongside AD, and for 

decades there has been a clear association with cardiovascular abnormalities 

and development of AD; however, the nature of the relationship is not clear 

(Van Dijk et al., 2004). This may be partly due to reduced blood flow and oxygen 

to the brain, as well as a breakdown of the blood-brain barrier, which regulates 

necessary metabolites such as clearing of toxic beta-amyloid and tau proteins 

(Van De Haar et al., 2017).  Cardiovascular risk factors, including hypertension, 

stroke, diabetes, and cholesterol, can lead to inflammation or cerebrovascular 

disease (CVD) in the brain, markers of CVD including cortical atrophy, white 

matter hyperintensities known as microvascular changes, cortical and subcortical 

infarcts (Tosto et al., 2015). There is evidence from the Vanderbilt Memory and 

Ageing Project that low cardiac index is associated with a reduction of blood 

flow to the temporal lobe but not to other brain areas (Jefferson et al., 2017). 

This may partly explain why low cardiovascular health is a risk factor and 

common comorbidity of AD. Other studies suggest this brain health to heart 

health connection may be due to more epidemiological links such as obesity, sex 

or age. 

The associations between age, sex, and APOE have been termed the “triad risk 

of AD”, each a well-established risk factor for AD, and recent evidence suggests 

complex interplay occurs. It is understood that the female sex is a risk factor for 

developing AD, with around 60% of cases. However, this is not explained by 

greater longevity (Brinton et al., 2015). There has been research investigating 

the role of menopause in AD showing estrogen plays a role in cardiovascular 

health and normal cognitive functioning, in which perimenopausal women can 

experience a decline. However, evidence from longitudinal cohort studies shows 

that cognitive decline seen in perimenopausal women can be limited, and 

individuals showed improvements after 18 months (Morgan et al., 2018). This 

menopause-related cognitive impairment may be due to estrogen-regulated 

systems such as sleep, circadian rhythms and specific cognitive domains that act 

as a risk factor for AD development. However, there is little research to 
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differentiate MCI from neurological symptoms of perimenopause and some 

people are suspected to be misdiagnosed with MCI. 

5.1.4 Brain MRI phenotypes in AD 

AD is primarily known as a neurodegenerative disease in which several brain 

phenotypes have been associated with its progression. Structural imaging 

evaluations with MRI consistently find that the entorhinal cortex is affected. 

Pathological characteristics include hippocampal volume loss or asymmetry, 

lower brain volumes and widespread loss of cortical thickness (Congdon & 

Sigurdsson., 2018). Additionally, abnormalities such as brain infarcts or white 

matter hyperintensities are standard features of AD, with some studies showing 

higher white matter hyperintensities in parietal and occipital lobes. Recent 

evidence has also suggested that the blood-brain barrier becomes compromised 

as part of the AD pathological cascade (Van De Haar et al., 2017). 

Hippocampal atrophy is present in over 80% of AD cases (Hollands et al., 2016), 

but it is not clear why it is often the initial disease epicentre. In vivo, human 

brain imaging studies cannot achieve sufficient spatial resolution to examine 

cellular processes. Mice studies investigating mechanisms of pathology have 

found that when comparing strains of tau aggregate, the hippocampus was highly 

vulnerable to all strains (Mrdjen et al., 2019). Selective vulnerability can be 

explained by the cell types found in these hippocampal areas and may also be 

due to down-regulation of genes related to synaptic transmission and vesicular 

transport and up-regulation of inflammatory responses (Mrdjen et al., 2019). 

Mrdjen et al. (2019) found that specific neuronal subtypes were affected by tau 

in different disease stages, and the level of vulnerability also differed by stage. 

This work summarised cellular and molecular evidence for individual differences 

within neuroanatomical vulnerability for AD and supported the development of 

precise disease subtypes and phenotypes.  

Additional neuroimaging studies have attempted to identify such subtypes within 

AD to implement precision medicine approaches more effectively. A systematic 

review by Ferreira et al. (2020) supported existing evidence for three clinically 

different subtypes of AD based on regional atrophy through post-mortem and 

neuroimaging data. These include typical AD, which affects the hippocampus 
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and association cortex, limbic-predominant AD, which primarily affects the 

hippocampus and hippocampal-sparing AD, which primarily affects the 

association cortex. The hippocampal-sparing subtype was found to have the 

earliest onset, with females and APOE-ɛ4 carriers more frequently having the 

limbic-predominant subtype. There were apparent differences in demographic 

variables between subtypes. Namely, hippocampal sparing was found more 

frequently in individuals with higher education levels and typical atrophy was 

found more frequently in individuals with lower levels of education, implicating 

lifestyle factors in differential brain MRI phenotypes in AD which tend to not be 

considered.  

Evidence of heterogeneity has encouraged research questions on the influence of 

risk factors, neurogenetics and presenting phenotypes in AD development. It is 

thought that patterns of disease propagation are mediated not only by 

underlying neural architecture but many metabolic pathways (Filippi et al., 

2020). The complexities of linking imaging to differences in neurological function 

are also difficult and have not been studied as extensively with consideration of 

subtypes; therefore, it is not yet understood whether these differences can 

predict cognitive decline or prognosis. It is unclear which brain MRI phenotypes 

and structures are significant to study in relation to early pathology and this has 

been an area of interest with inconsistent findings. 

5.1.5 Cognitive phenotypes of AD 

According to the National Institute of Aging in the US, individuals must meet 

specific criteria before a probable diagnosis of AD can be made. This includes 

cognitive impairment that cannot be attributed to a psychiatric disorder, which 

must be diagnosed through neuropsychological examination, and interferes with 

daily functioning affecting at least two of the following domains: the ability to 

acquire new information, impaired reasoning or poor judgement, impaired 

visuospatial abilities, language functioning or changes in personality or 

behaviour. The primary differentiation from MCI is that these affected domains 

must interfere with functioning in daily activities (McKhann et al., 2011). The 

distinction between MCI and amnestic MCI (aMCI) is often made in the literature 

as both structural differences and disease prognosis has been found to differ 

between the two groups consistently (Seppälä et al., 2010; Counts et al., 2016; 
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Lui et al., 2013). A longitudinal study by Wilson et al. (2011) characterised 

cognitive changes that may occur during prodromal phases of AD based on 19 

neuropsychological tests and found that entorhinal cortex tends to be the first 

brain region affected in those who go on to develop AD. The study also found 

that MCI individuals who developed AD showed a sharp decline in cognitive 

abilities in the 5 to 6 years preceding diagnosis, in comparison to MCI individuals 

who did not progress to AD. They found that those presenting with amnestic MCI 

progressed around two years faster than non-amnestic MCI individuals, 

suggesting cognitive ability is an early marker for potential impairment and AD. 

Changes in white matter microstructure have also been implicated in AD where 

processing speed is affected (Salami et al., 2012. 

5.1.6 Previous studies: genetic risk of AD and cognition or brain 
MRI 

The first use of a PGR score for AD was published in 2015 by Escott-Price et al., 

which used GWAS results from the International Genomics of Alzheimer's Project 

to investigate the prediction accuracy of weighted genetic variants. They were 

able to predict conversion with a ROC curve of 78%, which included the APOE 

genotype. In recent years, studies have used PGR scores of AD for phenotype 

association to identify possible causal determinants, improve risk prediction and 

novel diagnostic approaches. One study by Xiao et al. (2017) investigated the 

influence of AD risk alleles on structural MRI measures, including hippocampal 

function and cognitive measures (N=231). This study found reduced brain 

function and metabolism in the hippocampus measured by PET and fMRI in 

healthy individuals with high PGR scores. They found no association of PGR score 

with cognition measured by a neuropsychological battery. However, Mormino et 

al, 2016 also studied healthy participants (N=1,322) and found elevated PGR was 

associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) 

at baseline, as well as greater longitudinal cognitive decline (memory: p = 

<0.001, executive function: p = 0.01) and clinical progression to AD (p < 0.001). 

Other studies have found that genetic risk for AD was associated with several 

structural brain volume metrics, suggesting additional brain imaging markers 

may also be clinically relevant. For example, Chauhan et al. (2015) looked at 24 

novel risk variants (n=8,175 to 11,550). The study investigated the association 
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with MRI- markers of structural brain ageing in older, healthy participants and 

found that a weighted genetic risk score, novel AD genetic risk variants were 

associated with smaller brain volumes, particularly hippocampal volume. 

However, one study by Harrison et al. (2016) found that both weighted and 

unweighted risk scores for AD did not associate with any differences for brain 

regions at baseline but was associated with hippocampal thinning two years after 

baseline in cognitively healthy older adults. This suggests PGR may be a valuable 

tool for predicting conversion to AD or pathological trajectories. However, the 

study considered APOE alleles within weighting, and it may be meaningful to 

look at genetic risk beyond APOE, particularly as many studies investigate the 

influence of APOE ɛ4 on risk factors and interactions with genetic factors. Louge 

et al. (2019) demonstrate a similar prognostic value of genetic risk on cognitive 

functioning. They found that higher PGR for AD (n=1,176) was associated with 

higher odds of having aMCI than being cognitively normal (OR: 1.36 - 1.43, 

p<0.2). 

Numerous heritable factors play a role in risk and aetiology, and some studies 

suggest that genetic loci showing most effects within GWAS (i.e., at the top of 

the hit list) may mediate effects on phenotype outcomes. This brings to question 

whether the interactions of genetic risks may also be of interest. Marioni et al. 

(2017) stratified individuals by risk and found that individuals with high 

compared to low PGR scores for AD (top and bottom 5% of the distribution) show 

significantly lower cognitive functioning. However, when comparing cognitive 

differences by APOE status differences were larger; ɛ4ɛ4 alleles compared to 

ɛ3ɛ3 showed 1.2 fewer points for processing speed and 1 point fewer for 

memory, p<.05. Lupton et al. (2016) found that PGR (including the ɛ4 risk allele) 

was associated with reduced hippocampal and amygdala volume in MCI and 

healthy populations. However, APOE ɛ4 was associated with hippocampal and 

amygdala volume in AD and MCI but not in healthy older adults. Suggesting 

genetic risk including and excluding APOE ɛ4 status may both be valuable in 

identifying those at risk. A study by Lyall et al. (2019) found that although the ɛ4 

genotype did not interact with lifestyle factors, there were suggestive 

interaction results that men were more vulnerable to the ɛ4 genotype in terms 
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of cognition. Studying such interactions with other genetic risks or MRI measures 

may be of interest. 

5.2 Study rationale 

Previous studies investigating associations of PGR of AD and MRI and cognitive 

functioning measures have focused on specific aspects of hippocampal function 

or structure in small sample sizes and with relatively poor ‘controlling’ for 

confounding variables like smoking. The sample size of this study and the 

discovery GWAS sample are bigger than previous studies, with the largest 

previous study using PGR of AD populations and MRI data to our knowledge being 

Marioni et al., (2017) n=3,495. The present study includes n=32,790 individuals 

for analyses. Genetic interaction between loci showing largest effects in GWAS 

have not been extensively studied, and it is known that APOE ɛ4 poses the most 

significant genetic risk of AD with potential gene-gene and gene-environment 

interactions of ɛ4 (Lyall et al., 2019; Lupton et al., 2016). Therefore, interaction 

of the APOE ɛ4 alleles and PGR will be analysed by including APOE status as an 

interaction term as either 0/1/2 depending on the number of ɛ4 alleles present.  

Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, 

control: n=52,427) will be used to create polygenic risk scores, and analyses will 

be carried out using 32,790 participants in the UK Biobank. This will be the 

largest study to date investigating PGR of AD in relation to brain MRI and 

cognitive functioning. Dependent variables include 12 structural MRI volumes 

and 6 cognitive measures. We hypothesise that high genetic loading based on a 

polygenic risk score of 21 loci implicating Aβ, Tau, immunity and lipid processing 

in AD is associated with worse brain MRI and cognitive outcomes in healthy older 

adults within the UK Biobank cohort. 
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5.3 Methods 

5.3.1 UK Biobank data 

In 2014 at the first imaging visit, ~40K UK Biobank baseline participants were 

invited and recruited to return for the very first brain and body imaging and 

further follow up assessments. Participants used for the present analyses were 

filtered from this instance. At the time of analysis, there were 32, 790 

individuals with MRI data who met inclusion criteria and were included for this 

chapter. 

5.3.2  Generating polygenic risk score and genetic variants for AD 

PGR scores were generated for all individuals with genotype data available in UK 

Biobank using LDpred. Summary statistics from a GWAS meta-analysis using 46 

total datasets (cases n=30,344 and cognitively normal controls n=52,427) was 

used. 21 genome-wide-significant loci (6, 578,321 SNPs) associated with AD 

(onset age >65 years) were included to calculate weighted scores. The two SNPs, 

rs429358 and rs7412, used to define APOE status were removed from summary 

statistics and were not carried forward to calculate polygenic risk scores. APOƐ4 

allele dose was included as a separate variable for each individual coded as 0, 1 

or 2 according to the number of ɛ4 alleles and individual had. Once polygenic 

risk scores were calculated, scores close to 0 indicated lowest genetic loading 

and negative scores indicated greater genetic loading. This was standardised to 

Z-scores, i.e. mean=0, SD=1.  

5.3.3  Genotyping  

Some individuals were not included for genetic QC. Individuals not carried 

forward for genetic QC had non-white British ancestry, self-report vs. genetic 

sex mismatch, putative sex chromosomal aneuploidy, excess heterozygosity, and 

missingness rate > 0.1. Genetic QC included SNPs with a MAF greater than 0.01 

and SNPs were tested for HWE in both validation and Biobank cohorts in which 

SNPs that had a p-value less than 0.001 were not included, this left 6, 578,321 

SNPs included in the PGR score calculation which was calculated using LDpred. 

LD was calculated using 1000 unrelated Biobank participants who were not used 

in final analyses but passed genetic QC, this was to prune the SNP set used for 
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the PGR score for minimal LD. Further details about genotyping methods used in 

UK Biobank are outlined in chapter 2. 

5.3.4 Brain MRI phenotypes 

12 MRI volumes considered to have a priori evidence as major substrates of 

cognitive decline or AD pathology were included as outcome measures in this 

study: grey matter, white matter, white matter hyperintensity, whole brain, left 

hippocampus, right hippocampus. Additionally, segmented regions of each left 

and right hippocampus (head, tail and body) were examined. MRI variables were 

converted to Z-scores for interpretation and comparison. 

5.3.5 Cognitive phenotypes  

Cognitive measures used in analyses included: fluid intelligence (reasoning), 

prospective memory, numerical memory, reaction time, trail making (a+b), 

symbol digit substitution. Pairs matching was not included in this study as a 

paper by Lyall et al., (2020) assessing reliability and validity of UK Biobank 

cognitive tests demonstrated the reliability of this measure within the UK 

Biobank cohort showed little test-retest reliability (r=0.19). Further details can 

be found in Chapter 2: Methodology.  

5.3.6 Exclusions 

There were 39, 755 participants with APOE genotype and brain MRI data. We 

excluded participants with non-white British ancestry, self-report vs. genetic sex 

mismatch, putative sex chromosomal aneuploidy, excess heterozygosity, and 

missingness rate > 0.1. We also removed participants who reported a 

neurological condition at baseline. This left n = 32, 790 individuals to include for 

analyses.  

5.3.7 Analyses 

The predictor variables for these analyses include APOE ɛ4 allele dose and PGR 

of AD. Dependent variables include brain MRI and cognitive phenotypes. 

Regression models for all analyses were both partially adjusted and fully 

adjusted for each MRI and cognitive variable of interest. Partially adjusted 
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models controlled for age, sex, BMI, genotyping chip and 8 UK Biobank principal 

components which control for population stratification. Fully adjusted models 

were controlled additionally for Townsend deprivation score, education, smoking 

(as measured by pack per year as a proportion of lifetime exposure) and APOE ɛ4 

dose. Interactions between PGR score and APOE ɛ4 dose were then analysed in 

for each dependent variable using an interaction term (PGR*APOE) to assess if 

there were differences in PGR association with dependent variables for different 

APOE ɛ4 allele doses. All betas are standardised betas for ease of comparison, 

and bold results indicate significance at p<0.05. 
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5.4 Results  

5.4.1 Demographic statistics 

As detailed in the methodology, 32, 790 participants were included in analyses. 

PGR scores were calculated for all individuals and divided into tertiles for the 

purpose of table 5.1 showing demographic statistics by tertile. Tertile 1 

represents individuals with the highest genetic loading.  

Table 5.2 shows demographic information by APOE dose. The APOE dose split for 

all individuals included in analyses were: 73% had 0 ‘dose’ of APOE ɛ4, 24% had 1 

‘dose’ of the ɛ4 allele and 4% had two ‘doses’ of the ɛ4 allele. Individuals with 

two ɛ4 alleles showed the highest proportion of females, lowest BMI and lowest 

level of education.  
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Table 5.1 PGR tertiles and demographic statistics 

PGR 

tertile 
N 

Sex % 

female 

BMI 

(kg/m2) 
Age 

Education (% 

degree) 

Smoking 

(pack/year

s) 

Townsend 
APOE ɛ4 dose  

0 / 1 / 2 

1 11,152 53% 
26.47 

(4.32) 

63.85 

(7.54) 
26.20% 0.37 (0.31) -2.00 (2.1) 73% / 24% / 3% 

2 10,919 52% 
26.48 

(4.39) 

63.76 

(7.49) 
26.32% 0.39 (0.3) -1.99 (2.64) 73% / 23% / 4% 

3 10,719 53% 
26.5 

(4.37) 

63.86 

(7.43) 
25.22% 0.39 (0.3) -2.03 (2.61) 72% / 24% / 4% 
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     Table 5.2 Demographic statistics by APOE dose 

APOE 

dose 
N Age  

Sex (% 

female) 

BMI 

(kg/m2) 

Education (% 

degree) 

Smoking 

(pack/years) 
Townsend 

0 23,830 
63.77 

(7.55) 
52% 

26.52 

(4.36) 
57% 

0.386 

(0.314) 

-1.899 

(2.714) 

1 7,761 
63.32 

(7.41) 
54% 

26.38 

(4.39) 
55% 

0.377 

(0.308) 

-1.885 

(2.717) 

2 1,199 
63.04 

(7.26) 
55% 

25.99 

(4.09) 
54% 

0.351 

(0.301) 

-1.981 

(2.633) 
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Table 5.3 Demographic statistics by male and female genetic sex 

Male vs 

Female 
N Age 

BMI 

(kg/m2) 

Smoking 

(pack/year

s) 

Townsend 
Education  

(% degree) 

Female 17,580 
63.05 

(7.38) 

26.07 

(4.71) 
0.35 (0.28) -1.86 (2.71) 57% 

Male 15,210 
64.34 

(7.63) 

27.02 

(3.89) 
0.41 (0.33) -1.94 (2.71) 56% 
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5.4.2 PGR of AD associations  

Table 5.4 shows significant deleterious associations with PGR were found for 

both left (β = -0.146, p = 0.002) and right (β = -0.128, p =0.026) hippocampal 

volumes when models were partially adjusted. Left hippocampal volume was 

significantly associated (β = -0.118, p =0.020) with PGR when additional 

covariates were added to the model, but not right hippocampal volume (β = -

0.071, p =0.099), this was the only significant association with PGR when the 

model was fully adjusted. White matter hyperintensities showed significant 

interactive effects of PGR and APOE status when partially adjusted (β = 0.034, p 

=0.002) but not when fully adjusted (β = 0.062, p =0.972). There were no 

significant interactive effects for any structural MRI volumes in the fully 

adjusted model.   

Table 5.5 shows PGR of AD associations with hippocampal subdivisions. Results 

show lower hippocampal subdivisions in partially adjusted models for left 

hippocampal head (β = -0.036, p =0.003), body (β = -0.056, p =0.002), right 

hippocampal tail (β = -0.071, p =0.167) and right hippocampal head (β = -0.046, 

p =0.023). When fully adjusted for covariates, all associations remained between 

PGR and left hippocampal head (β = -0.014, p =0.017), body (β = -0.069, p 

=0.002) and tail (β = -0.027, p =0.016), and also for right hippocampal head (β = 

-0.017, p =0.044). There were no significant interactive effects between PGR 

and APOE dose for hippocampal subdivision volumes in this model when partially 

or fully adjusted for covariates.   

Table 5.6 shows 6 cognitive measures were significantly associated with genetic 

risk of AD when the model was partially adjusted for covariates. These included 

fluid intelligence (β = -0.066, p= 5 × 10−6), prospective memory (β = -0.067, p 

=0.006), numerical memory (β = 0.232, p =0.043), reaction time (β = 0.022, p 

=0.003), trail making (β = 0.024, p =0.002) and symbol digit substitution (β = -

0.114, p =0.001).  One measure remained significantly associated with PGR when 

additionally adjusted for social deprivation, education, smoking and APOE dose. 

This was fluid intelligence (β = -0.080, p =0.002).  
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Table 5.4 Associations between PGR of AD and MRI volumetric measures 

 Partially adjusted Fully adjusted 

 Polygenic risk AD PGR*APOE ɛ4 Polygenic risk AD PGR*APOE ɛ4 

 β p β p β p β p 

Left 

hippocampal 

volume 

-0.146 0.002 -0.127 0.620 -0.118 0.020 -0.121 0.447 

Right 

hippocampal 

volume 

-0.128 0.026 -0.111 0.729 -0.071 0.099 -0.185 0.663 

Whole brain 

Volume 
-0.055 0.201 -0.050 0.475 -0.049 0.075 -0.091 0.743 

White matter 

volume 
-0.058 0.351 -0.051 0.801 -0.022 0.115 -0.013 0.158 

White matter 

hyperintensity 

volume 

0.026 0.054 0.041 0.006 0.007 0.549 0.073 0.732 

Grey matter 

volume 
-0.173 0.393 -0.0562 0.933 -0.051 0.904 -0.081 0.472 
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Table 5.5 Associations between PGR of AD and hippocampal subdivisions 

 Partially adjusted Fully adjusted 

 Polygenic risk AD PGR*APOE ɛ4 Polygenic risk AD PGR*APOE ɛ4 

 β p β p β p β p 

Left 

Hippocampal 

head 

-0.036 0.003 -0.034 0.39 -0.014 0.017 -0.041 0.079 

Left 

Hippocampal 

body 

-0.056 0.002 -0.087 0.143 -0.069 0.002 -0.043 0.300 

Left 

Hippocampal 

tail 

-0.071 0.167 -0.021 0.080 -0.027 0.016 0.022 0.124 

Right 

Hippocampal 

head 

-0.046 0.023 -0.033 0.080 -0.017 0.044 -0.012 0.572 

Right 

Hippocampal 

body 

-0.029 0.063 -0.025 0.816 -0.031 0.074 -0.01031 0.126 

Right 

Hippocampal 

tail 

-0.043 0.935 -0.031 0.815 -0.095 0.932 -0.0230 0.113 
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Table 5.6 Associations between PGR of AD and cognitive function 

 Partially adjusted Fully adjusted 

 Polygenic risk AD PGR*APOE ɛ4 Polygenic risk AD PGR*APOE ɛ4 

 β p β p β p β p 

Fluid intelligence -0.066 5 × 10−6 -0.112 0.704 -0.080 0.002 -0.180 0.772 

Prospective 

memory 
-0.067 0.006 -0.039 0.458 -0.369 0.460 -0.511 0.195 

Numerical memory -0.232 0.043 -0.023 0.986 -0.039 0.178 -0.056 0.954 

Reaction time 0.022 0.003 0.058 0.811 0.014 0.226 0.052 0.201 

Trail making 0.073 2 × 10−6 -0.008 0.0689 0.026 0.112 0.006 0.430 

Symbol digit -0.114 0.001 -0.012 0.884 -0.038 0.090 -0.021 0.889 
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5.4.3 APOE ɛ4 dose associations  

Table 5.7 shows APOE significant associations for both MRI and cognitive 

measures. β shows standardised betas reflecting per APOE ɛ4 allele increase. 

Results showed significant associations between APOE dose and cognitive 

functioning for four measures when partially adjusted, but none remained 

significantly associated when fully adjusted. These include fluid intelligence (β = 

-0.064, p =0.012), prospective memory (β = -0.071, p =0.032), trail making (β = -

0.034, p =0.024) and symbol digit substitution (β = -0.173, p =0.032). 6 MRI 

measures showed significant association with APOE dose when fully adjusted for 

covariates. Left hippocampal volume (β = -0.069, p =0.024), right hippocampal 

volume (β = -0.079, p =0.002), white matter hyperintensity volume (β = 0.063, p 

=0.006), left hippocampal body (β = -0.094, p =0.048) right hippocampal body (β 

= -0.067, p =0.046) and right hippocampal tail (β = -0.076, p =0.042).
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Table 5.7 Associations between APOE ɛ4 dose and MRI and cognitive measures 

 APOƐ4 dose  

partially adjusted 

 APOƐ4 dose  

fully adjusted 

 

 β p β p 

Whole brain volume -0.223 0.301 -0.094 0.138 

White matter -0.240 0.347 -0.074 0.206 

Grey matter  -0.089 0.430 -0.022 0.302 

Left hippocampal 

volume 

-0.064 0.019 -0.069 0.024 

Right hippocampal 

volume 

-0.039 0.002 -0.079 0.002 

White matter 

hyperintensity volume 

0.042 0.002 0.063 0.006 

Left hippocampal body -0.026 0.065 -0.094 0.048 

Right hippocampal body -0.015 0.347 -0.067 0.046 

Right hippocampal tail -0.026 0.117 -0.076 0.042 

     

Fluid intelligence -0.064 0.012 -0.069 0.223 

Prospective memory -0.071 0.032 -0.086 0.208 

Numeric memory -0.053 0.085 -0.025 0.648 

Reaction time 0.037 0.063 0.042 0.700 

Trail making (a+b) 0.034 0.024 0.059 0.056 

Symbol digit -0.173 0.032 -0.244 0.155 

Note. β = standardised betas reflecting per APOE ɛ4 allele increase. Bold = uncorrected significant p<0.05. Models are partially adjusted for age, BMI, sex, genotyping 
chip, 8 genetic principal components and fully adjusted for additional smoking, education and social deprivation. 

 



 
 

 
 

5.5 Discussion 

The current study examined the genetic risk of AD in 32, 790 healthy adults 

within the UK Biobank and found that PGR of AD was significantly associated 

with MRI volumes of the whole left hippocampus, left hippocampal head, body 

and tail, right hippocampal head and fluid intelligence when fully adjusted for 

age at the time of assessment, genotyping chip and batch, 8 UK Biobank 

principal components, sex, BMI, smoking, education, social deprivation and 

APOE4 dose. These results suggest genetic risk variants for AD may be able to 

indicate the earliest signs of pathology prior to cognitive problems and that 

there is potential for PGR based AD risk assessment to be made before the onset 

of symptoms. There was no evidence in these analyses to suggest the association 

of PGR with MRI volumes or cognition is dependent on APOE4 dose in healthy 

adults. 

5.5.1 Interpretation 

Many AD studies report baseline presence of WMH on MRI as a correlate of 

cognitive decline or future MCI status (Jacobs et al., 2012; Tosto et al., 2015) in 

healthy adults, whereas these analyses did not find evidence that genetic risk of 

AD was associated with WMH. A study using the Framingham Offspring cohort by 

Bangen et al. (2018) found that hippocampal volumes, but not WMH volume, 

were associated with the conversion of healthy adults to MCI. Although the 

present analyses did not use longitudinal data, there was similarly a lack of 

evidence for the presence of WMH in healthy adults who who may have an 

elevated genetic risk for AD or MCI. The similarities between these findings and 

our results indicate that the earliest signs of pathology in healthy adults may not 

consistently implicate WMH. One explanation for the commonly found presence 

of WMH could be vascular risk factors and vascular diseases that tend to be 

associated with the development of WMH and comorbid with dementias (Attems 

& Jellinger, 2014). A study by Armstrong et al. (2020) found that candidate loci 

for WMH were implicated in stroke, vascular and neuronal functions, but not 

dementia when conducting a GWAS for periventricular WMH and deep WMH. This 

raises the concern of differentiating AD markers from non-AD markers such as 

vascular pathology that may still contribute to AD. However, this is difficult with 

111 
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observational studies as AD refers to an aggregate of neuropathological changes 

assessed postmortem.   

One way this may be better understood is by integrating additional types of 

imaging data such as connectomics, which can give more specific pathological 

information about why some affected regions show further neurodegeneration 

changes and others do not. One theory put forward in a paper by Filppi et al. 

(2020) suggested that once a disease-epicentre is established, further 

propagation of pathology or integrity changes may depend on whether the 

integrity of white matter pathways has been compromised. Therefore disease 

pathology can spread along discrete brain networks. In the context of the 

present study, this may explain why we found disease epicentres such as the 

hippocampus showing differences with higher genetic risk where 

neurodegeneration of structural connectivity may not have yet begun to occur. 

In these analyses, individuals at high genetic risk may represent initial stages of 

AD, with risk scores reflecting primarily affected phenotypes. Mainly as the UK 

Biobank sample is generally healthier than the general population with a younger 

sample than an older adult population, we may expect only to find early signs of 

pathology. 

Further neurodegeneration or cognitive decline from initial pathology may 

depend on an individual’s cerebrovascular health, e.g., Lyall et al. (2017) found 

that an increasing number of cardiometabolic comorbidity was associated with 

worse cognitive abilities. However, no discrete biological pathways or events 

reliably lead to AD, and variants identified by PGR scores are limited by the 

current diagnostic criteria and specificity of AD. Studies investigating clinically 

typical and atypical subtypes of AD suggest specific sub-populations present 

differing pathologies and genetic risk variants, e.g. SNAP populations presenting 

with lower tau levels may not be identified using a risk score that includes tau 

related variants (Dani et al., 2017). A study by Mohanty et al. (2020) proposed 

harmonizing neuroimaging and subtyping methods for AD. There is further 

evidence that subtypes of AD have differing genetics. Some studies have 

identified that APOE ɛ4 status can differ amongst subtypes; Leonenko et al. 

(2019) found that APOE ɛ4 contribution in polygenic risk predictions may indicate 

amyloid deposition. Other risk loci for the PGR included variants associated with 
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amyloid precursor, cholesterol transport, calcium homeostasis, tau binding and 

immune response. 

5.5.2 PGR and APOE interactions 

No PGR × APOE interactions were found in fully adjusted models in these 

analyses. Left hippocampus and left hippocampal body volumes showed 

significance for both APOE dose and PGR separately in fully adjusted models, but 

no evidence of interaction was found for these metrics by the model. However, 

genetic interactions for complex traits are not well understood and there may 

have been potential methodological limitations as to why no interactions were 

found in this study. It is also important to remember when considering 

associations and interactions that the association of APOE with phenotypes may 

not necessarily indicate AD, numerous studies have shown that APOE is a risk 

factor for cerebral angiopathy, Lewy body dementia, cerebrovascular diseases, 

and multiple sclerosis (Verghese et al., 2011).  

5.5.3 APOE associations  

APOE dose was significantly associated with 6 MRI measures: left hippocampal 

volume, right hippocampal volume, WMH, left hippocampal body and right 

hippocampal body and tail. These results are consistent with current literature 

that ɛ4 carriers appear to be at increased risk of hippocampal atrophy and worse 

WM microstructural integrity (Bangen et al., 2018). However, no cognitive 

measures showed APOE dose associations in fully adjusted models. It is possible 

that may in part be explained by the fact that anatomical substrates of cognitive 

decline will occur a number of years before cognitive symptoms show, even 

when brain ageing is accelerated by the APOE risk factor (Hedden and Gabrieli, 

2005; Vernooij and Smits, 2012). APOE 

5.5.4 Limitations 

The genetic associations observed in this study may be limited by the 

methodology of calculating genetic risk scores and modelling assumptions. There 

is no unified approach to efficiently calculating PGR scores, with variations of 

methods differently accounting for linkage disequilibrium, beta shrinkage, and 

GWAS p-value thresholding. Residual signal may come from the APOE genotype 
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within the AD-PGR scores we calculated, as we did not remove all SNPs in LD 

with the APOE ɛ4-defining SNPs (rs429358 and rs7412) although we did 

subsequently control for this genotype and therefore, to some extent SNPs in LD. 

In addition, we could not replicate genetic effects in an independent cohort. 

This is due to challenges finding an appropriately phenotyped cohort not 

included within the original GWAS meta-analysis; replication of gene and 

structural imaging associations is a scientific priority going forward. However, 

recently published recommendations by Wand et al. (2021) were considered, in 

which reporting standards have been met. 

Another limitation of this study is with cognitive testing in which the prospective 

memory measure was associated with PGR and APOE interactions only when 

partially adjusted. UK Biobank’s prospective memory measure showed a ceiling 

effect as it was measured as a binary variable, i.e., completed or not 

completed, with 98% of individuals having completed the task.  

A major limitation of these findings is due to demographics of the UK Biobank 

cohort, who are overall less likely to have health conditions, are more educated 

and live in less socioeconomically deprived areas. Further selection bias may be 

found for MRI data as data collection is time-consuming. Additionally, the 

findings of this study cannot be generalised to populations outside of White 

European ancestry. Genetic risk variants contributing to AD are known to differ 

among populations. A study by Pham et al., (2018) looking at primary care data 

in the UK, reported that African ethnic groups have a higher incidence of AD 

than European individuals; however, they are underdiagnosed in comparison. A 

review by Abondio et al. (2019) showed that the distribution of APOE allele 

frequencies varies across the globe, illustrating the variance of genetic factors 

that require consideration if findings are intended to benefit those who show to 

be most at risk. Cohort studies of different ethnic groups are also necessary to 

fully understand AD's prevalence and biological pathways. 

5.5.5 Future research 

The current analyses use cross-sectional data; future analyses could use 

longitudinal data to assess the validity of a PGR score to identify whether 

genetic risk showed early cognitive and brain MRI markers in those who went on 
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to develop AD. It may also be interesting in longitudinal analyses to examine the 

role of genetics or APOE ɛ4 in the progression rate for those who develop AD. 

The data is currently conflicting regarding whether ɛ4 vs ɛ3 influences the 

progression rate. It has been hypothesised that the ɛ4 genotype may be 

associated with faster decline due to the association of ɛ4 with additional 

diseases, creating additive or interactive pathologies. It is also well understood 

that family history is an informative marker of genetic risk in AD, often 

considered in a clinical context. It may be useful to test associations of PGR and 

AD by proxy with PGR. Marioni et al. (2018) showed that self-reported parental 

AD was a valid proxy for an AD genetic study. 

Studies of PGR and AD in both healthy individuals and individuals who convert 

demonstrate PGR as a tool with the potential to identify individuals at risk 

before presenting clinical symptoms. Determination of such susceptibility can be 

beneficial for conditions where preventative measures have the potential to 

delay onset. The National Institute on Aging and Alzheimer’s Association 

Research Framework has recommended a shift toward a biological definition, 

and the use of biomarkers for in vivo Alzheimer’s diagnosis to identify brain 

markers or profiling cognitive deficits might help gain a better picture of those 

at risk. This relationship between genetic risk and biomarkers of AD can provide 

deeper insights into disease pathology and overall risk. 

5.5.6 Conclusion 

Chapter 5 provided evidence to suggest PGR of LOAD is associated with brain 

structure in healthy individuals with a mean age of 63, suggesting PGR may be a 

useful tool for those in need of early identification for intervention treatments. 
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6 Chapter 6: Associations between PGR of AD and 
blood biomarkers  
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6.1 Introduction 

Genetic markers, neuropsychological examinations, and brain imaging 

approaches to detect and diagnose high-risk individuals of AD, although 

extremely useful, are expensive and time-consuming, whereas examination of 

blood and fluid biomarkers are clinically accessible. CSF measures of β-amyloid 

and tau are the most common clinical methods used to diagnose probable AD 

with high specificity and sensitivity (Khoury & Ghossoub, 2019). However, 

collection of CSF is challenging to obtain as it is invasive due to a lumbar 

puncture and expensive to carry out compared to blood collection, which is 

much more widespread in clinical practice. Although both Aβ and tau have been 

studied for decades in both CSF and blood, they do not occur in isolation or 

necessarily indicate AD. For example, tau levels are high where other types of 

neuronal injury have occurred, such as hypoxia, and research is conflicting 

regarding how closely blood Aβ levels reflect Alzheimer’s disease in the brain 

(Toledo et al., 2013). It is necessary to utilise additional biomarkers to elucidate 

the heterogeneity of specific disease pathways and trajectories of AD, moving 

towards a precision medicine approach within AD. Investigating blood biomarkers 

has been of particular interest as common biomarkers are taken in primary care 

settings and with the ability to reflect plasma levels of proteins, peptides, and 

lipid contributions from different tissues (Zetterberg., 2019). 

6.1.1 Blood biomarkers 

Blood biomarkers have the potential to improve detection and reduce costs in 

primary care settings and within the earliest stages of disease. For this reason, 

identifying novel fluid biomarkers in CSF and blood has been the focus of AD 

research in recent years, in which several emerging biomarkers have been 

proposed, although not yet validated. One such example includes increased CSF 

concentrations of neurofilament light (NFL), a biomarker identified via 

immunoassays that represent axonal damage in neurological disorders (O’Bryant, 

2017). This biomarker is now being considered as a prognostic AD biomarker.  

A recent landscape analysis (Hampel et al., 2018) found that out of 1,404 studies 

of blood-based biomarkers for AD, 34% were on markers of relevant mechanisms 

such as inflammation, mitochondrial dysfunction or microvascular injury, 18% 
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were on Aβ and tau, 29% studied biomarker panels, and 19% were looking at 

genetic markers such as APOE. Several commonly studied biomarkers have been 

implicated in AD. For example, studies looking at protein levels in AD have found 

neurogranin, phosphodiesterase, albumin, cholesterol, LpA beta-secretase and 

rheumatoid factor to be slightly to moderately elevated in AD compared to 

controls (Wojsiat et al., 2017; Huynh & Moham, 2017; Proitsi et al., 2017; 

Blennow et al., 2010; Sanfilippo et al., 2016).  It is hypothesised that lipids and 

lipoproteins also play a more significant role in developing AD than previously 

considered due to lipid involvement in the blood-brain barrier (BBB), amyloid 

precursor processing, myelination, inflammation responses and oxidation (Chew 

et al., 2020). Both AIBL and ADNI1 flagship studies have been involved in 

lipidomic analyses where lipid profiles of AD patients were used in longitudinal 

analyses to validate lipid models, which improved disease classification and 

prediction (Huynh et al., 2020). Previous lipidomic studies have suggested 

dysregulation of lipid profile early in the development of AD and associated 

cognitive impairment. For example, Kunkle et al. (2019) found that several lipid 

metabolism pathways were implicated, consistent with other studies (Reitz, 

2013).   

Many studies have investigated blood-based metabolic changes using a case-

control design with the aim of stratifying patient populations by 

pathophysiology. However, studying blood biomarkers in a genetic context has 

not been as extensively examined. Additionally, previous studies and cohorts 

included in research looking at blood biomarkers in the context of AD include 

patient populations or memory clinics. However, when seeking to validate 

markers within a general population, it is necessary to carry out exploratory and 

validation analyses on wider populations. For this reason, the UK Biobank is a 

valuable cohort for exploratory analysis.  

6.1.2  Sex differences in AD and biomarkers  

Age, sex and ethnicity are all variables that have been shown to influence the 

association of APOE e4 genotype with Alzheimer’s and are also essential to 

consider when carrying out exploratory analysis for blood biomarkers (Farrer et 

al., 1997; Zhao et al., 2020). Biomarker profiles are understood to differ 

between men and women in the general population, in which sex differences are 
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most apparent for biomarkers of adiposity, cardiovascular stress and 

inflammation (Lew et al., 2017). When looking at sex differences in AD, Mosconi 

et al. (2017) found that the preclinical phase of AD is earlier in the lifetime for 

women than it is for men. One study by Lau et al. (2019) looked at 71 circulating 

blood biomarkers between men and women, for which they found that 61 

biomarkers differed significantly, including adipokines, inflammatory markers 

and c reactive protein (CRP). When looking at associations with CVD, there was a 

sex interaction for ApoB. Research investigating sex differences within the 

progression of AD indicates sex-specific patterns of disease manifestation, 

implicating estrogen-related systems (e.g. menopause), sex-genotype 

interactions (e.g. APOE), cardiovascular-specific risk factors and gender-specific 

risk factors (Ferretti et al., 2018).  

6.1.3 Study rationale 

Among genetic studies of AD, there is some research investigating the role of 

genetic risk via APOE e4 genotype in the context of biomarkers. One study by 

Ferguson et al. (2020) looked at the APOE e4 genotype in the UK Biobank in 

relation to circulating blood biomarkers and found a range of associations 

between genotype and blood biomarkers in non-demented participants. In 

chapter 4 of this thesis, we have previously found that our PGR score of AD may 

indicate AD-related pathologies outside of the brain and APOE status. This study 

will conduct a systematic, hypothesis-free analysis of non-APOE PGR of AD for 

blood biomarkers in the UK Biobank in healthy adults.  

 

6.2 Methods  

6.2.1 Biomarker collection and processing  

Biomarker levels were analysed in UK Biobank from serum and red blood cell 

samples at baseline from UK Biobank participants between 2006 – 2010 which 

included biomarker samples. This study investigated baseline measure of 30 

blood biomarkers for 502, 536 individuals. This document outlines quality control 

approaches that were undertaken to mitigate random errors and bias in 
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biomarker samples: 

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/biomarker_issues.pdf.  

30 blood biomarkers of interest were used as dependent variables in these 

analyses including: low density lipoprotein (LDL), high density lipoprotein (HDL), 

lipoprotein a (LpA), oestradiol, phosphate, rheumatoid factor, sex-hormone-

binding-globulin, total-bilirubin, direct-bilirubin, testosterone, protein, urate, c-

reactive protein (CRP), triclycerides, gamma glutamyltransferase, dystatin C 

(CysC), vitamin D, ApoA, ApoB, creatinine , total cholesterol, calcium, urea, 

aspartate transaminase (AST), alanine aminotransferase (ALT), glucose, IGF-1, 

alkaline phosphate, albumin. Processing of very low levels of oestradiol and 

rheumatoid factor (RF) were recorded as missing, these values were recalculated 

as square root of the minimum stated detectable value if individuals had data 

for at least one other biomarker. Missing values for oestradiol and rheumatoid 

factor were only replaced if individuals had data for at least one other 

biomarker and were not coded as ‘no data returned’ or having unrecoverable 

aliquot problems. These ‘missing’ values were intended to be recoded to avoid 

them being zero and therefore not included, instead we recoded them 

conservatively to reflect very low levels. For this reason we chose to recode 

these values as the square root of the minimum stated detectable value. A 

square root transformation was applied instead of other methods because we 

wanted to record a low estimate. 

6.2.2 Genetic risk score for AD 

Non-APOE polygenic scores were calculated using LDPred and based on summary 

statistics from Kunkle et al. (2019) APOE PRS were generated for all individuals 

with genotype data available in UK Biobank using LDpred. Scores close to 0 

indicated lowest genetic loading and negative scores indicated greater genetic 

loading. This was standardised to mean=0, SD=1. More details about how risk 

scores were calculated can be found in chapter 4. 

6.2.3  Covariates and exclusions 

Exclusions were made for those who reported a neurological condition at 

baseline and individuals who were not of white European ancestry. Covariates 
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included in these analyses were age, sex, Townsend deprivation, smoking (never 

vs ever), BMI, education, APOE dose (0/1/2) and CVD medication which was used 

as a proxy for CVD conditions. Medication use for hypertension, insulin and 

statins were included. This data was self-reported and taken at the first imaging 

visit alongside the imaging, cognitive and majority of covariate data (with the 

exception of Townsend deprivation score which was taken from baseline data). 

This was data-field 6177. Further information can be found here: 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6177.  

6.2.4 Statistical analyses 

Minimally adjusted models were run controlling for: age, sex, assessment centre, 

PCs 1-8. Partially adjusted models were run controlling additionally for 

demographic factors including Townsend deprivation score, education and 

smoking. Finally, fully adjusted models controlled further for: BMI, CVD 

medication and APOE dose. Covariates for fully adjusted models differ from 

previous chapters as they were intended to account for covariates most relevant 

for biomarkers. A fourth model was run for all biomarkers using fully adjusted 

covariates with PGR*sex as an interaction term to study whether each biomarker 

showed an interaction with genetic risk. 

  
  

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6177
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6.3 Results 

6.3.1 Sensitivity analyses 

Biomarkers which were not normally distributed (testosterone, rheumatoid 

factor, oestradiol, gamma-glutamyltransferase, and c reactive protein) were log 

transformed and reanalysed: the resulting associations remained insignificant 

and we have reported the original estimates. 

6.3.2 Demographic statistics  

Table 6.1 and 6.2 show demographic statistics of individuals included in 

analyses, with table 6.2 showing demographics by sex. Table 6.3 shows general 

statistics used for each biomarker including number of individuals with available 

data for each.
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Table 6.1 Demographic statistics 

N Age 

(years) 

BMI 

(kg/m2) 

CVD 

medication 

(% taking) 

Smoking 

(% ever) 

Townsend APOE4 

dose  

0 / 1 / 2 

AD PGR AD PGR range  

502 536 64.19 

(7.75) 

26.59 

(4.46) 

43 173 

(8.59%) 

3.7% -1.29 

(3.09) 

   72% / 

25% / 3% 

-1.25 

(0.11) 

-1.68  -  -0.19 

502, 536 individuals were included in these analyses for which covariates included age, BMI, CVD medication, smoking, education, Townsend deprivation 
and APOE dose. Age, BMI, Townsend and AD PGR is mean (SD). 
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Table 6.2 Demographic statistics by sex. 

Male vs 

Female 

N Age (years) BMI 

(kg/m2) 

Smoking 

(never vs 

ever) 

APOE4 

dose 0/1/2 

AD PGR  

 

AD PGR range Townsend 

Female 273 399 63.50 (7.59) 26.15 

(4.83) 

  3.13%   73% / 24% 

/ 3%  

-1.25 (0.11) -1.66  -  -0.19 

 

-1.33 (3.04) 

Male 229 137 64.93(7.84) 27.05 

(3.98) 

 4.28% 73% / 24% / 

2%  

-1.26 (0.10) -1.68  -  -0.21 -1.25 (3.16) 

Age, BMI, AD-PGR and Townsend are mean(SD). Males showed higher levels of smoking and AD-PGR range. Females showed a lower mean Townsend 
deprivation score. 
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Table 6.3 Biomarker descriptive statistics 

Biomarker (nmol/L) 

 

Mean SD Median N 

LDL 3.56 0.87 3.52 412 889 

HDL 1.45 0.38 1.40 378 607 

Triglycerides 1.58 0.97 1.39 413 156 

HemoglobinA1C 36.13 6.77 35.20 410 807 

 

LpA 44.65 49.21 21.10 330 832 

Oestradiol 87.75 250.02 8.54 385 971 

Phosphate 1.16 0.16 1.16 378 057 

Rheumatoid factor 5.05 8.47 3.16 413 633 

Sex-hormone-

binding-globulin 

51.63 27.78 45.27 375 079 

IGF-1 21.36 5.47 22.04 412 684 

Total bilirubin 9.13 4.42 8.07 411 877 

Direct bilirubin 1.83 0.85 1.61 351 075 

 

Testosterone 6.56 6.05 3.94 374 611 

Protein 72.51 4.11 72.31 378 363 

Urate 309.2 80.43 303.0 413 172 

Vitamin D 48.61 21.11 46.80 394 928 

CRP 2.60 4.36 1.33 412 764 
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Gamma-

glutamyltransferase 

37.39 42.08 26.30 413 447 

Cystatin C  0.91 0.17 0.89 413 630 

ApoB 1.03 0.24 1.02 411 547 

ApoA 1.54 0.27 1.51 376 504 

Creatinine 72.31 18.55 70.40 413 454 

Total cholesterol 5.69 1.14 5.65 413 662 

Calcium 2.38 0.09 2.38 378 673 

Glucose 4.85 1.21 4.39 411 306 

Urea 5.40 1.40 5.26 413 378 

AST 26.23 10.66 24.40 412 093 

ALT 23.07 11.65 22.47 375 618 

Alkaline phosphate  83.67 26.45 80.40 413 675 

Albumin 45.21 2.63 45.20 378 794 
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6.3.3 PGR of AD and biomarker associations  

Table 6.4 shows PGR and biomarker associations. Model 1 was adjusted for age, 

sex, assessment centre, PCs. Model 2 was additionally adjusted for smoking, 

education, and Townsend deprivation score. Models 3 and 4 were fully adjusted 

for BMI, CVD medication and APOE dose. CysC was the only biomarker associated 

with PGR of AD in all three regression models. There was, however, no evidence 

for an interactive effect of sex and PGR of AD on the biomarker CysC in the 

fourth model. ApoB was associated with PGR when minimally (β =2.81, p=0.02) 

and partially adjusted (β =2.72, p=0.02) but not fully adjusted. Similarly to LDL 

in minimal (β= 8.95, p= 0.04) and fully adjusted models (β= 8.63, p= 0.05). 

Phosphate was associated with PGR in minimally adjusted model 1 (β =-1.31, 

p=0.09). 13 out of 30 biomarkers showed increased betas as each model 

controlled for further covariates, however there were no meaningful trends for 

change in p-values alongside increased beta value in any direction. These 

biomarkers include albumin, CRP, CysC, direct bilirubin, gamma 

glutamyltransferase, oestradiol, phosphate, rheumatoid factor, sex hormone 

binding globulin, total bilirubin, urate, urea, vitamin D. Additionally, in fully 

adjusted models, ApoA, HDL and LpA showed lower beta values than from the 

first two respective models in which significant association with CVD medication 

were also found. The largest effect sizes were seen with LDL (6.17- 8.95), HDL 

(6.17 - 8.95) urea (-7.36 - -8.21), testosterone (-2.80 - -5.79) and ApoA (0.01 - 

5.95) none of which however showed significant associations with PGR of AD. 

CRP (β= -0.82, p=0.02) creatinine (β= 3.21, p= 0.005), LpA (β=10.05, p= 0.08) 

and oestradiol (β= - 6.39, p= 0.05) showed a significant interactive effect 

between AD-PGR and sex. 12 out of 30 biomarkers showed an opposite (positive 

to negative or vice versa) association with PGR when testing for interactive 

effects with sex. The remaining biomarkers remained consistent in positive or 

negative directionality in their association with PGR of AD and interactive sex 

effects. This is due to 0 representing females and 1 representing males, meaning 

variables that were negatively associated with PGR*sex were higher for females 

than for males if the variable was positive in models 1 and 2 for the same 

biomarker.
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Table 6.4 Associations between blood biomarkers and PGR of AD 

 

 

Minimally adjusted 
(model 1) 

Middle adjusted 
(model 2) 

Fully adjusted (models 3 & 4) 

 Polygenic risk AD  Polygenic risk AD  Polygenic risk AD  PGR * sex 

 β  p β  p β  p β  p 

Albumin 1.64 0.21 1.61 0.21 1.86 0.16 1.75 0.51 

Alkaline phosphate  
 

0.61 0.59 0.58 0.61 0.47 0.68 -2.19 0.34 

ALT 0.64 0.55 0.76 0.28 0.62 0.41 0.18 0.49 

ApoA 5.95 0.64 5.84 0.64 0.01  0.26 0.01 0.83 

ApoB 2.81 0.02 2.72 0.02 1.99 0.11 -2.09 0.41 

AST 0.56 0.27 0.57 0.26 0.62 0.25 -0.74 0.49 

Calcium 
 

4.89 0.29 4.79 0.31 4.79 0.33 3.87 0.69 

CRP 0.11 0.55 0.11 0.54 -0.01 0.96 -0.82 
 

0.02 
 

Creatinine   -1.89 0.73 -0.21 0.70 -1.62 0.78 3.21 0.005 
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Cystatin C -1.26 0.03 -1.26 0.03 -1.47 0.013 1.63 0.17 

Direct bilirubin 1.34 0.69 1.35 0.70 1.86 0.16 0.17 0.52 

Gamma 

glutamyltransferase 

1.26 0.43 1.18 0.46 3.65  0.82 -1.78 0.59 

Glucose 1.03 0.34 1.21 0.72 1.43 0.64 -0.78 0.39 

HDL 5.72 0.74 5.40 0.76 1.76 0.31 3.59 0.92 

IGF-1 -0.71 0.38 -0.28 0.46 -0.89 0.53 -0.12 0.49 

LDL 8.95 0.04 8.63 0.05 6.17 0.18 -5.07 0.58 

LpA 1.36 0.62 1.37 0.61 0.71 0.80 10.05 0.08 

Oestradiol -2.47 0.11 -2.36 0.12 -2.49 0.13 -6.39 0.05 

Phosphate -1.31 0.09 -0.01 0.10 -1.19 0.15 0.001 0.98 

Protein 2.44 0.23 2.35 2.45 2.06 0.33 3.68 0.94 
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Rheumatoid factor 
 

-0.82 0.06 -0.82 0.06 -0.74 0.11 -1.34 0.14 

Sex hormone 

binding globulin 

1.34 0.69 1.35 0.69 1.86 0.16 0.71 0.78 

Testosterone -3.09 0.83 -2.80 0.84 -5.79 0.69 -2.04 0.49 

Total cholesterol  1.09 0.06 1.05 0.06 9.14 0.12 -5.51 0.64 

Total bilirubin 1.34 0.69 1.35 0.70 1.86 0.16 -3.56 0.44 

Triglycerides 0.78 0.23 0.97 0.31 0.58 0.48 0.94 0.73 

Urate 2.17 0.48 2.10 0.50 3.78 0.99 -3.12 0.61 

Urea -7.36 0.21 -7.58 0.19 -8.21 0.18 -7.23 0.55 

Vitamin D -1.36 0.19 -1.34 0.19 -1.72 0.11 -1.28 0.55 
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6.3.4 Biomarker associations by sex 

Table 6.5 shows five biomarker associations by female sex, and Table 6.6 shows 

the same biomarkers by male sex. This subset of biomarkers were shown as they 

were the only biomarkers that differed significantly between men and women, 

or showed evidence of sex interactions in previous models. When looking at CRP, 

creatinine, LpA and oestradiol by sex, creatinine, CysC and oestradiol were 

significantly negatively associated with higher genetic risk scores for females but 

not in men. CysC did not show an interaction by sex in the main models 

(partially or fully adjusted). When stratifying by sex, there was a stronger, 

significant association in females than in males who showed a weaker association 

in the same direction. Beta values were, however, still small. 

When looking at CRP, creatinine, and oestradiol by sex, creatinine, CysC and 

oestradiol were significantly negatively associated with higher genetic risk scores 

for females but not for males. 
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Table 6.5 AD-PGR associations by female sex 

 

Female 

Minimally adjusted 
(model 1) 

Middle adjusted (model 2) Fully adjusted (model 3) 

 Polygenic risk AD  Polygenic risk AD  Polygenic risk AD  

 β  p β  p β  p 

CRP 0.36 0.15 0.36 0.16 0.25 0.34 

Creatinine   -1.87 0.006 -1.88 0.006 -1.72 0.01 

Lipoprotein 

A (LpA) 

-3.68 0.33 -3.71 0.33 -4.41 0.26 

Cystatin C -0.02 0.01 -0.02 0.01 -0.02 0.004 

Oestradiol  -5.59 0.04 -5.43 0.05 -5.68 0.05 
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Table 6.6  AD-PGR associations by male sex 

 

Male 

Minimally adjusted 
(model 1) 

Middle adjusted (model 
2) 

Fully adjusted (model 3) 

 Polygenic risk AD  Polygenic risk AD  Polygenic risk AD  

 β  p β  p β  p 

CRP -0.22 0.39 -0.21 0.39 -0.32 0.21 

Creatinine   1.58 0.07 1.52 0.08 1.49 0.09 

Lipoprotein 

A (LpA) 

6.64 0.09 6.67 0.08 5.83 0.15 

Cystatin C -0.006 0.49 -0.006 0.50 -6.61 0.46 

Oestradiol 

 

1.01 0.07 1.00 0.08 1.42 0.10 
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6.4 Discussion 

The current study investigated associations between circulating blood 

biomarkers and PGR of AD in 502, 536 healthy individuals. This study also 

investigated interactions with sex as there is not sufficient research exploring 

sex differences in relation to blood biomarkers for AD. In terms of genetic risk 

association with circulating biomarkers, decreased levels of CysC were 

associated with an increased polygenic risk of AD, particularly in women. This 

was the only biomarker associated with AD-PGR in all three models. There was 

also evidence to suggest lower levels of oestradiol and creatinine were 

associated with higher PGR in females but not in males.   

6.4.1 Biomarker and AD-PGR associations  

CysC was negatively associated with PGR in all three models (i.e., as genetic risk 

for AD increased, blood CysC tended to decrease). When split into male and 

female, this association only remained significant in women. Genetic and 

biochemical studies have supported the role of CysC expression in neurons and 

microglia, particularly pyramidal neurons that are also vulnerable to 

neurodegeneration in AD (Kaur & Levy, 2012). However, the genetic risk score in 

the present study did not contain the CysC gene, and the role of CysC in the 

brain is currently conflicting. When turning to biomarker studies, it is difficult to 

interpret the influence of CysC on the brain from existing research as it is 

primarily known as a renal biomarker which is typically high when kidney 

function is inadequate. However, it has been suggested that chronic kidney 

disease is itself a risk factor for cerebrovascular health, suggesting a potential 

mediator. This also suggests that lower levels of CysC, which are favourable for 

kidney function, may also be favourable for cerebrovascular health and cognitive 

functioning (Ling Lau et al., 2020). In line with this, higher levels of CysC are 

thought to contribute to increased neuronal vulnerability as CycC is expressed by 

neurons, astrocytes, and microglial cells, where increased CysC involvement has 

been implicated in neuronal death in AD (Deng et al., 2001).   
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By contrast, the results found in this thesis, particularly for women, showed that 

lower levels of CysC were associated with a higher genetic risk of AD. However, 

there are similarities with our findings and other studies of CysC in the context 

of AD, which show it plays a protective role in Alzheimer's by inhibiting 

aggregation of Aβ (Matthews & Levy, 2016; Gauthier et al., 2011; Zhong et al., 

2013). One reason for the differences in our findings by sex may be due to a 

complex interplay between sex-based differences, the vascular system and brain 

ageing. This is supported with results reported by Birgitta Werner et al. (2014), 

who found that male sex and vascular risk factors influenced levels of CysC in 

those without diabetes or vascular disease. Although it has been suggested that 

the association between CysC and age is non-linear, Birgitta Werner et al. (2014) 

found sex-specific effects of ageing for CysC. Taken together, these findings 

suggest there may be a nuanced role of CysC in the ageing brain that is difficult 

to explain with the results in this analysis. 

When looking at biomarker and PGR associations, variability of the beta values 

for fully adjusted models compared to respective beta values for minimally and 

partially adjusted models was notable. This brings to question the role BMI, CVD 

or APOE may play in this population in modifying the association between 

polygenic risk of AD and blood biomarker levels. This was seen particularly with 

ApoA, gamma-glutamyltransferase, HDL, LpA, testosterone, total cholesterol and 

urate. One avenue by which these covariates may influence the association 

between genetic risk of AD and these circulating biomarkers could be the 

pleiotropic nature of APOE on lipid metabolism. Although APOE is expressed 

predominantly in the brain, it is also highly expressed in the adrenal gland, liver 

and kidney. APOE primarily plays a role in cholesterol metabolism as it targets 

lipoproteins and regulates cholesterol utilisation, potentially mediating the 

genetic associations in these analyses. However, if this is the case, it would be 

expected that other biomarkers involved in lipoprotein or cholesterol 

metabolism, such as LDL or ApoB, would also show a similar trend, yet the beta 

values were not as dramatically different in the third model for those 

biomarkers.  

Although the present study controlled for the presence of APOE and CVD, this 

finding amongst fully adjusted models may still reflect the result of 
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comorbidities. Therefore, it is essential to consider whether the comorbidities 

differ across populations studied for exploratory analyses. For example, 

cardiovascular factors previously associated with blood biomarkers and dementia 

include hypercholesterolemia, hypertension, atherosclerosis, coronary heart 

disease, head injury, smoking, obesity, and diabetes. Populations with specific 

comorbidities or pathologies (e.g., cardiovascular conditions, APOE status or 

levels of AB positivity) may represent different risks. Therefore, it may be 

important to consider subtypes as this may allow refinement as biomarker 

profiles are likely to look different amongst different subtypes.   

6.4.2 Biomarker and PGR by sex  

When looking for biomarkers showing interactive effects, CRP, creatinine, LpA 

and oestradiol showed interactive effects for sex but were not associated with 

PGR of AD otherwise. When looking further by males and females separately, 

lower levels of creatinine, oestradiol and CysC were significantly associated with 

AD-PGR in females but not significantly higher for males, supporting the study of 

biomarker profiles differently among men and women. Levels of creatinine, CysC 

and oestradiol showed to be negatively associated for women only.  

Although it is known that women are more at risk to develop AD, longevity does 

not explain this difference entirely. Stratification of individuals by sex in the 

present provides evidence that elevated risk of AD may present with sex specific 

patterns in the context of circulating blood biomarkers. However, the pathways 

behind these findings are not clear. One suggests the role of oestrogen related 

systems, including oestradiol, which has the highest affinity for intracellular 

receptors out of the three commonly considered estrogens and is used for 

hormone replacement therapies in postmenopausal women (Rabeya et al., 

2021). Brain ageing occurs alongside endocrine ageing, where the role of such 

hormone changes should be considered. There are also reported changes in 

cellular and connectivity in the brain and cognition in tandem with decreasing 

oestradiol levels. However, evidence is conflicting regarding the association 

between oestrogen and dementia risk, where observational studies have shown 

evidence for and against protective effects (De Lange et al., 2020; Andrew et 

al., 2018). Some research suggests that oestradiol plays a protective role in 

regulating dendritic activity in hippocampal pyramidal cells in adulthood (Gould 
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et al., 1990). Numerous studies also have found that oestrogen may have 

protective effects against mitochondrial toxicity of Aβ due to the production of 

antioxidants (Vina & Lloret., 2010; Andrew et al., 2018). These findings for 

oestrogen as a potential protective biomarker are consistent with this study 

which found that oestradiol was negatively associated with genetic risk of AD 

outside of APOE genotype.  

In addition to the implication of oestrogen related systems, the relationship 

between Alzheimer's biomarkers and testosterone has been gaining attention, 

with recent evidence suggesting lower levels of testosterone are associated with 

high levels of p-tau (Alvarez de la Rosa et al., 2006). Although tau was not 

considered here, the present analysis found that testosterone showed a negative 

association, meaning lower levels of testosterone were associated with higher 

genetic risk. However, there were no sex interactions with PGR of AD and 

testosterone. That is, we found no evidence to suggest this sex difference is due 

to testosterone as a biomarker. This negative directionality, although not 

significant, may be due to a higher prevalence of AD amongst women compared 

to men (Andrew et al., 2018). 

When looking at CRP, the directionality of association was in opposite directions 

for males and females. Other studies investigating sex differences in CRP 

concerning the development of AD have found that CRP tends to be higher in 

women (Duarte-Guterman et al., 2020; Laffoon et al., 2020). One study found 

that body fat was associated with CRP levels more in women than in men, 

suggesting adiposity may be a factor mediating this association (Khera et al., 

2009). However, CRP levels can be highly variable due to their role in acute 

inflammation, and evidence is mixed for the directionality of association of CRP 

in AD. Some studies suggest that elevated levels of CRP in midlife can indicate a 

risk factor for cognitive decline and development of AD (Schmidt et al., 2002; 

Laurin et al., 2009), whereas studies looking at individuals in late life have found 

lower levels of CRP in individuals with mild to moderate AD compared to healthy 

controls, indicating a negative association (Yarchoan et al., 2020). Fernandes et 

al. (2020) suggested it may be helpful to use age when considering CRP to 

predict risk or disease progression of AD. Some findings suggest APOE e4 

genotype modifies the association between CRP and onset of dementia, with 
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studies reporting lower levels of CRP in those carrying e4 genotypes (Ferguson et 

al., 2020; Fernandes et al., 2020).  

Additionally, due to the immune system's complexity likely, there is not 

sufficient evidence in these analyses to comment on the associations between 

elevated genetic risk of AD and immune system biomarkers such as CRP. Clinical, 

observational, and animal studies suggest that the immune system is 

dysregulated in AD and is related to subsequent cognitive function and clinical 

status (Bettcher et al., 2021). However, this occurs in a non-linear manner which 

may vary amongst individuals according to immune system crosstalk and 

pathological stage of AD. That is innate and adaptive immune mechanisms and 

disease-specific pathogenesis such as the gut microbiome, amyloidosis, and 

peripheral cell infiltration (Bettcher et al., 2021).  

Finally, although not significant, this study found that LpA was negatively 

associated with PGR for females and positively associated with PGR for males. In 

contrast, previous studies have suggested that sex hormones pose females at a 

higher risk of elevated LpA levels and related pathology than men. One study by 

Solfrizzi et al. (2002) found that: LpA serum concentrations were significantly 

associated with an increased risk for AD, independently of APOE genotypes and 

sex; however, this study found evidence to suggest there may be sex differences 

for LpA in the context of AD. It is also interesting to note that LpA was a 

biomarker of interest in chapter 4 where we found that higher blood LpA was 

associated with worse gMD and gFA. The present chapter (6) found LpA was 

negatively associated with PGR for females and positively associated with PGR 

for males. Together, these results suggest there may be sex specific effects of 

LpA that may play a role in WM structure that were not studied in detail as part 

of this thesis. However, although circulating blood biomarkers and 

cardiovascular risk factors may differ between men and women, extrapolating 

these findings to the cause of dementia may be more complex and a closer 

investigation into such differences may provide insights into precise associations. 

6.4.3 Limitations and future research 

The present study found several associations with blood biomarkers, genetic risk 

of AD, and sex interactions, which provide evidence for further biomarker 



139 
 

   
 

research. However, there are a number of limitations with these analyses that 

should be considered when considering the implications of the results. This study 

included only individuals of white European ancestry. There is evidence that 

genetic risk, circulating biomarkers, and relevant comorbidities vary among 

different populations, meaning this research cannot be generalised to a large 

proportion of individuals who will develop AD. This was a cross-sectional 

exploratory study in which further exploratory analyses, replication and 

longitudinal research is needed to understand how biomarkers can be utilised to 

predict future onset of disease.   

A limitation posed by blood biomarker research is that some findings may reflect 

the difficulty of measuring brain-related biomarkers as it is not yet understood 

how accurately measures of circulating blood biomarkers can exhibit metabolic 

activity in the brain. This may be in part due to mediation of the BBB in which 

some measures may indirectly measure the integrity of the BBB (Elwood et al., 

2017). This may be a confounding factor as permeability of the BBB is known to 

increase in AD, with some studies suggesting the direct role of APOE e4 (Halliday 

et al., 2016; Profaci et al., 2020). It is also challenging to determine if an 

altered concentration of a biomarker in the blood reflects activity in the brain or 

if it is secondary to comorbidity. Potential biomarkers may also present at low 

concentrations in blood after crossing the BBB, and it may be possible that 

standardisation or thresholds should be considered when investigating circulating 

biomarkers. It is also likely that genetic risk cannot explain all associations 

reported with blood biomarkers, and there are likely other conditions or 

environmental factors that need to be accounted for in relation to genetic risk.   

6.4.4 Conclusion 

 This study found evidence for sex interactions with genetic risk of AD and 

circulating blood biomarkers in 502,536 individuals in the UK Biobank. We also 

found that CysC was associated with PGR-AD. However, there was little evidence 

for the association of other biomarkers in healthy adults. 
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7 Chapter 7: Thesis overview and discussion 
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7.1 Review of background and findings  

Unhealthy brain ageing leading to cognitive decline in older age is a public 

health concern which is projected to become more prevalent, for which major 

risk factors include cardiometabolic conditions and genetics. The UK Biobank is a 

prospective cohort study that is well placed to examine these risk factors in the 

context of brain and address key gaps in our understanding of how they impact 

pathophysiology and subsequent brain health. This thesis aimed to address these 

gaps by examining two main research aims:  

1. Contribute to the understanding of cardiovascular contributions to brain 

health, in particular multimorbidity.  

2. To determine the role of genetic risk factors (for dementia) on the brain 

and physical health (indexed by biomarkers) in healthy adults.   

7.1.1 Chapter-specific contributions 

Cardiometabolic conditions are often comorbid and are established as 

contributors to worse brain health individually; however, multimorbidity 

outcomes are not well studied. Chapter 3 investigated associations between 

number and type of cardiometabolic comorbidity in relation to structural brain 

MRI. This chapter aimed to understand these associations on a larger scale than 

any previous study and examine differences in neuroanatomical substrates of 

cardiometabolic comorbidity, which are not currently established. Regression 

models examined eight mutually exclusive cardiometabolic groupings, and we 

found that individuals with no conditions presented with the healthiest brain 

metrics. On the other hand, individuals with two cardiometabolic conditions 

were associated with worse MRI measures for WMH, GM and whole-brain volume. 

Lack of trends with more specific subgroups suggests grouping by the number of 

conditions may be more beneficial to research than condition-specific 

subgroupings. This chapter established preliminary evidence to suggest that 

grouping individuals by the number of cardiometabolic comorbidities may be 

informative; however, an unexpected finding of this work was that individuals 

with most comorbidities (i.e., those reporting hypertension, type two diabetes, 

and coronary artery disease) did not present with the poorest brain MRI metrics. 

This may be due to a small sample size within the group or a consequence of 
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survival bias. The reason for this is not apparent, and it would be valuable to 

replicate or find conflicting evidence. Additionally, seven associations were no 

longer significantly associated with worse brain metrics when fully adjusted for 

covariates, implicating the contribution  of external factors on brain health 

when considering cardiometabolic health. 

Chapter 4 focused on a more specific and well-established biomarker for 

cardiovascular and cardiometabolic health; Lipoprotein A (LpA), by investigating 

differences between blood and genetically elevated LpA in brain MRI 

phenotypes. Lipoproteins are gaining interest in the role of brain ageing, as 

shown by an increase in lipidomic analyses and evidence of lipid pathways in 

cognitive ageing (Proitsi et al., 2017). Although cholesterol is the most studied 

lipid in the brain, lipids such as LpA may also be valuable to study due to their 

casual association with CVD. There is currently little literature examining the 

role of this risk factor in the context of brain ageing. Chapter 4 examined 

whether genetically elevated and circulating blood LpA is associated with brain 

MRI measures in healthy adults. We replicated previous associations when 

looking at blood lipid LpA and brain volumes; we found that blood LpA was 

associated with several measures of brain MRI, whereas genetically elevated LpA 

was associated with general factors of white matter microstructure: gMD and 

gFA. A possible explanation for the discrepancy between blood and genetically 

determined LpA associations with MRI may be due to genetically determined 

pathological processes not yet occurring, suggesting there may be a difference in 

blood and genetically elevated LpA that is not yet understood. Age of onset may 

be a crucial factor when considering the effects of genetic risk of LpA. It is also 

interesting to note that although both blood and genetic measures of LpA were 

associated with brain MRI, no associations were found for cognitive measures; 

however, it is important to remember for this cross-sectional analysis that the 

value of genetic risks scores for such outcomes can only be established over 

time. Further epidemiology studies of biomarkers may help us understand 

whether lipoproteins such as LpA ultimately affect cognitive ageing. 

Chapter 5 used similar PGR scoring methods as chapter 4 but aimed to examine 

the association between polygenic risk for late-onset Alzheimer’s Dementia (AD 

PGR) in relation to structural brain MRI and cognitive abilities. Chapter 5 



143 
 

   
 

questioned whether higher AD-PGR is associated with structural brain imaging 

and cognitive performance differences in a large sample of non-demented, 

generally healthy adults. We hypothesised that higher genetic risk would be 

associated with differences even in healthy adults. Summary statistics from an 

existing AD GWAS were used to create PGR scores for 32, 790 white European UK 

Biobank participants with LDpred. We tested for independent associations of 

polygenic risk (per SD), APOE e4 dose, and their interaction. APOE e4 dose was 

associated with several hippocampal volume measures and WMH volume as 

expected. We also found that AD-PGR was associated with worse hippocampal 

phenotypes. There were also associations of AD-PGR with worse cognitive 

performance in fluid intelligence and reaction time. APOE No evidence 

interaction between PGR and APOE dose was found when models were fully 

adjusted for social deprivation, APOE dose and smoking. These results suggested 

that PGR of AD is associated with smaller hippocampal volumes (both overall and 

subdivision specific) and higher WMH volumes in healthy adults without any 

evident cognitive impairments. These findings support a possibility of PGR scores 

supplementing APOE status in risk stratification of cognitive impairment/AD. 

However, we did not find any evidence to suggest that the genetic risk of AD 

may mediated by the most significant genetic risk factor, APOE.   

Chapter 5 found evidence to suggest a PGR score of AD may indicate early signs 

of pathology in healthy individuals; as a result, chapter 6 aimed to use this 

genetic risk score and add further exploratory analyses looking at blood 

biomarkers and interactions by sex. Existing literature shows that differences in 

blood biomarker profile according to genetic risk of AD may help to elucidate 

the mechanisms at play when individuals are at elevated risk in midlife before 

any pathology is evident. Sex differences concerning genetic risk and blood 

biomarkers have been studied very little. Chapter 6 modelled associations 

between PGR of AD and 30 blood biomarkers and explored sex interactions with 

the genetic risk. We found that an increased polygenic risk of AD was associated 

with decreased levels of cystatin c (CysC) for both men and women, but 

particularly in women, which is consistent with existing literature. Sex 

differences were found for levels of creatinine, oestradiol and CysC. Lower 

levels of these were significantly associated with AD-PGR in females but not for 

males. The difference in biomarker profiles by sex provides further evidence to 
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an existing body that stratifying analyses by sex, particularly biomarker studies, 

will help bring to light underlying mechanisms. 

 

7.1.2 Contributions to the literature  

• Health outcomes of cardiometabolic comorbidity have not been well 

studied, despite studies indicating overlap between cardiometabolic 

conditions and decreased brain health. In chapter 3 of the present thesis, 

we compared eight mutually exclusive cardiometabolic subgroups, which 

is the first study to our knowledge to examine such conditions in the same 

cohort in relation to brain MRI. We found that grouping by the number of 

cardiometabolic conditions is of interest.  

• There is evidence that the role of lipids is mechanistic to the ageing brain 

and cognitive decline in which investigation of candidate biomarkers may 

elucidate aetiology. Chapter 4 provided evidence to support the use of 

LpA as a risk factor for brain health, where there is currently little 

evidence for or against it. Chapter 4 showed that elevated LpA (both 

blood and genetically determined) is associated with poorer brain MRI 

measures in healthy adults, with blood LpA showing more associations 

than genetically elevated LpA. This is a novel contribution to the 

literature because there is little evidence to support or disprove the role 

LpA may play in brain and cognitive ageing.  

• Chapter 5 found evidence that using AD-PGR demonstrated significant 

differences in non-demented brain structure in generally healthy 

individuals with a mean age of 64, suggesting PGR may be a helpful tool—

in combination with other factors—for identifying individuals at risk of 

worse cognitive abilities and potentially accelerated decline. A major 

strength of this study is that previous studies testing associations between 

polygenic risk for late-onset Alzheimer’s disease and brain magnetic 

resonance imaging measures have been limited by small samples and lack 

of controlling for confounders. 
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• Chapter 6 found evidence for sex differences in blood biomarkers 

according to genetic risk of AD PGR, which is a novel contribution to our 

knowledge of an elevated genetic risk of AD in a healthy population. We 

were able to provide evidence that sex stratification in biological research 

is valuable. 

A primary role of using brain imaging within clinically relevant research has been 

to aid in diagnosis and to monitor disease progression. It is less common for brain 

MRI metrics to provide predictive indicators or help to stratify individuals. This 

thesis, however, has been able to make use of large sample sizes of healthy 

adults and examine imaging markers of early disease to offer preliminary 

evidence for predictive markers in relation to other risk factors, i.e., genetic or 

cardiometabolic. This allows for insights into cognitive ageing at its earliest 

stages, which could potentially provide initial indicators of disease mechanisms. 

Although we did not draw conflicting conclusions to the consensus within any 

chapters, there were some discrepancies between variables when looking to the 

wider literature in chapter 3. It was difficult to compare findings with similar 

papers due to the nature of the independent variables used, with other studies 

using more specific variables. For example, Beck et al. (2021), Kolbeinsson 

(2020) and Vergoossen et al. (2020) were comparable studies that examined 

cardiometabolic related risk factors and conditions in relation to brain MRI. Beck 

found the most significant contributors to faster brain ageing were high systolic 

blood pressure, waist-hip ratio and smoking. Vergoossen found the most 

significant risks were hyperglycaemia, physical activity, obesity, and 

hypertension. Kolbeinsson found evidence to implicate hypertension in larger 

brain age gaps. Although lack of comparable studies and measures do not explain 

the inconsistency of results in chapter 3, it calls attention to the gap in research 

for multimorbidity. 

 

7.1.3 Implications 

This thesis emphasises the importance of both genetic and cardiometabolic 

contributions to brain and cognitive outcomes. There is evidence within all 

chapters that contribute to understanding associations between several complex 
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phenotypes better. Chapter 6 emphasised the importance of stratification of 

genetic research in this area by sex, where we suggested such stratification by 

should currently be routine. Chapter 3 also provided evidence that stratification 

by number of cardiometabolic conditions aided in elucidating significant 

differences in brain MRI. However, genetic and cardiometabolic factors are 

highly dynamic and unravelling mechanisms by more than one biological level 

may be a better aim than taking a reductionist approach to stratify individuals 

by two categories. This is easier to research within cohort and population studies 

and implementing multiple levels of stratification by individual risk factors may 

help identify the largest risks in relation to the most significant contributors. 

This thesis studied this at a population level instead of an individual level, 

meaning findings are better suited to apply within clinical and public health 

settings; for example, there is scope to educate those at risk of the importance 

of cardiometabolic health with consideration of genetics. 

As reported in chapters 5 and 6, PGR of AD was associated with features of 

abnormal brain ageing and biomarker differences. PGR scores alongside clinical 

data may ultimately help to better understand specific aspects of an individual’s 

brain health and pathology and potentially predict clinical presentations. 

However, PGR scores for AD and LpA in this thesis were used as research tools to 

understand the degrees of correlation. It is important to remember that 

different statistical approaches can be used to develop PGR scores, in which all 

models are then rigorously validated for their value in predicting a disease state 

or trait. PGR scoring is not standardised, and many factors can affect the 

models, including data used, different statistical approaches to selection and 

weighting of relevant variants, and the process of interpreting the output can 

also influence findings. Early studies of genetic variants were shown not to 

replicate consistently (Mufano et al., 2006), and variations in conducting GWAS 

were thought to contribute to this. However, reporting standards are becoming 

more common as the field has grown  (Wand et al., 2021). Moreover, clinical 

practice or applications should not change based on exploratory research as 

standardisation criteria are required. 
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7.2 Thesis limitations  

7.2.1 Selection bias 

The UK Biobank assessment centre recruitment took place over 22 centres in 

which the breakdown of each centre can be found here: 

https://biobank.ctsu.ox.ac.uk/showcase/exinfo.cgi?src=UKB_centres_map. 

There have been several papers assessing the validity and reliability of the 

population used within UK Biobank that has concluded there is a healthy 

volunteer sampling bias in which participants have less cancer incidence, drink 

less alcohol, have fewer self-reported diseases, and live in less 

socioeconomically deprived areas (Fry et al., 2017; Tyrell et al., 2021; Lyall et 

al., 2021). The lack of generalisability and unequal collection of data may be 

limiting to the research in this thesis. One such way is due to restricted range of 

measures for cognition due to a healthy cohort, leading to potential 

underestimates of association. It is possible that valuable indicators of brain 

health or biomarkers could have been overlooked due to unmeasurable or 

unmeasured biases due to a healthy sample (e.g., deprivation, gender, ethnicity 

etc.) that the findings of this thesis will perpetuate. Potential consequences 

include misdiagnosis, underdiagnosis, and increasing healthcare disparities.  

7.2.2 Lack of diversity 

 All analyses using genetic data in this thesis were carried out in healthy middle-

aged White European participants. This sample may be unrepresentative of those 

with the highest genetic risk, as it is a healthy cohort. It is possible that thesis 

may not have studied those with the most increased genetic risks and, 

therefore, those individuals who will go on to present with phenotypes of 

interest. However, some research on the UK Biobank cohort shows that although 

risk factors levels were favourable towards UK Biobank compared to nationwide 

registries, levels of associations would suggest findings are still generalisable 

(Batty et al., 2019). 

7.2.3 Collider bias 

The problem of potential confounders in the UK Biobank was challenging to 

navigate in this thesis as it was difficult to account for all confounding variables 

https://biobank.ctsu.ox.ac.uk/showcase/exinfo.cgi?src=UKB_centres_map
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which may have led to residual or unmeasured confounding. Additionally, when 

the underlying sampling model is biased, for example the UK Biobank is likely a 

healthy cohort in comparison to the general population, large sample size may 

magnify the bias the population presents. In this thesis this could mean that 

results where confounders such as smoking were controlled for may not 

accurately represent the association for other individuals in terms of the 

independent variable, the dependent variable and the role of smoking. We chose 

to regress out confounders from analyses within our models; we did this with 

age, sex, BMI, CVD medication, Townsend deprivation score, education, 

smoking, and included principal components where genetic data was used. There 

are strengths and weaknesses to this approach we used as it could be argued 

that age or sex, for example, should not be considered a confounder but a 

variable of interest. For example, some studies using these variables as 

predictors by carrying out sex-stratified analyses and age-specific effects have 

found this method valuable in understanding individual differences (Guerreiro & 

Van Gerven, 2011; Salami et al., 2012; Lamar et al., 2020). A more critical 

approach may have been to carry out separate association analyses, e.g., for age 

groups to examine whether age should be treated as a confounder or not. Lack 

of further examination of these factors is a limitation of this work as many 

associations in this thesis were no longer significant when models were fully 

adjusted using demographic data such as education, Townsend or smoking. 

Although beyond the scope of this thesis, accounting for other environmental 

influences may have also helped to explain associations we found. Due to the 

way we chose to account for potential confounders in this thesis, it was not 

possible to know the extent to which variance in outcome variables such as brain 

imaging was due to confounders or genuine variance. This has been overlooked 

but highlights the importance of considering these factors closely.  

Some variables we included as confounders are nuanced and related to 

pathology in complex ways such as age, sex, sociodemographic status. One 

example of relevance to this work is age as a phenotype. Some research has 

shown that biological age measures (such as brain age gap) are better at 

predicting ageing outcomes than chronological age. Hou et al. (2019) described 

nine biological hallmarks of ageing: genomic instability, telomere attrition, 

epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular 
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senescence, deregulated nutrient sensing, stem cell exhaustion, and altered 

intercellular communication. The paper suggested that these central 

mechanisms of biological ageing should be considered more closely in 

neurodegenerative diseases and suggest that age is not necessarily linear in the 

context of the brain. One study using UK Biobank calculated biological (age-

adjusted) phenotypes instead of chronological age. They were calculated as 

functions of chronological age, albumin, creatinine, C- reactive protein (CRP), 

alkaline phosphatase, glucose, lymphocyte percentage, mean corpuscular 

volume, red blood cell distribution width, white blood cell count, glycated 

haemoglobin, systolic blood pressure, and total cholesterol. These biological age 

phenotypes have been shown to be robust predictors of ageing outcomes 

(Levine, 2013; Levine et al., 2018). This suggests ageing may not be most 

accurately captured in chronological age alone and raises the question of 

whether we can better define age as a risk factor for cognitive and brain health.   

Alongside age, there are several additional confounders that these analyses 

could not consider that have consistently been implicated in various aspects of 

health, including cognitive health. Objective physical activity and objective 

sleep measures could have been included in this thesis; however, this data was 

only collected in a subset of 100k UK Biobank participants (Doherty et al., 2017; 

Gill, 2020). Sociobehavioural proxies are known to play a role in explaining 

cognitive reserve and cognitive resilience, which are central to avoiding 

cognitive impairment and can help foster cognitive health (Radanovic, 2020). 

Such variables available in the UK Biobank that could have been considered in 

this thesis include sleep, nutrition, depression, parental socioeconomic position, 

air pollution exposure, and social activity (Cullen et al., 2018; 2019; Lyall et al., 

2019). Psychosocial health is also a factor known to influence the brain and 

cognitive health and was not considered here; one study by Cullen et al. (2019) 

found in the UK Biobank that cognitive impairment was associated with mood 

disorders and psychotropic medication use. It is also known that aspects of the 

blood-brain barrier are controlled by the circadian clock, which is strongly 

associated with mood dysregulation, further implicating the role of psychosocial 

factors. Research has also shown that allostatic load, wearing due to exposure to 

chronic stress, may contribute to the disproportionate ageing and health 

outcomes (Higgins et al., 2019).  
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7.2.4 Genetic risk scoring  

The PGR scores in this thesis may be useful for association analyses, more so 

than for clinical practice or predicting disease, as it is not likely that PGR scores 

will be used as standalone tools but combined with other risk estimates. It may 

be in some cases that using fewer variants may improve accuracy as with large 

numbers of variants; for example, the ~6 million in chapter 5, it is not possible 

to understand how each SNP relates to the outcome phenotype. This can be 

problematic as there are likely to be some variant associations included within 

this thesis resulting from spurious associations. If the aim of using such tools are 

more refined diagnoses and improved precision, identifying polymorphic variants 

with clear functional effects on complex traits may be more practical than 

considering many variants which may not play a role in the molecular basis of 

the complex trait of interest. This approach seems closer to implementation and 

is known as ‘partitioned’ or ‘partial’ polygenic scores (Barroso & McCarthy, 

2019). Using such a polygenic score model alongside non-genetic risk factors will 

likely provide a combined risk estimate in the context of clinical applications. 

However, it is important to remember that the number of genetic variants that 

influence a phenotype and the size of their effects on the phenotype vary 

depending on the trait. For this reason, the optimal number of variants to 

consider for a PGR score depends on the underlying genetic architecture and will 

also vary. 

APOE genotype was considered as either 0/1/2 depending on number of e4 

alleles. This was because we were interested in whether an individual was likely 

to have a risk posed by the APOE gene or not. There are limitations to this as 

approach as opposed to using all APOE haplotypes e.g. e2/e2, e2/e3 etc. 

Limitations to not considering refined haplotypes of APOE include not fully 

capturing differences in genetic risk between variations of APOE genotype. The 

e4 allele count is commonly included due to the established genetic risk it poses 

for AD, MCI and cognitive decline (Stocker et al., 2018; Abondio et al., 2019; Shi 

et al., 2019; Zhao et al., 2020). Although there is evidence that consideration of 

further haplotypes can be informative, chapters 4 and 5 of this thesis only 

consider the number of e4 alleles for APOE risk. This was because APOE ε4 allele 

remains the largest genetic risk factor for late-onset AD and the analyses within 
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these chapters aimed to study whether genetics risks may differ according to 

number of e4 alleles. 

7.2.5 Cross-sectional data 

It is also not possible to establish causality from differences within cross-

sectional structural MRI measures; one study found that deep WMH and 

periventricular WMH, which are strongly associated with abnormal ageing and 

dementia, have different genetic underpinnings, suggesting that even well-

established MRI phenotypes still require closer examination when considering 

causality in this area (Armstrong et al., 2020). It has been challenging within the 

work of this thesis to draw justified conclusions about brain imaging differences 

between individuals, as lower brain volume associations cannot be attributed to 

pathology; for example, a paper by Wheater et al. (2021) found that birth 

weight was more strongly associated with brain tissue reserve in later life than 

age-related structural features such as tissue atrophy or WMH was. However, 

more deeply phenotyped measures of brain structure and features may help with 

such challenges to differentiate normal and abnormal changes and attribute 

pathological causes. Analyses in this thesis involving MRI imaging variables were 

carried out in a healthy cohort for which there may not have been sufficient 

age-related for phenotypes to present. However, it is notable that we found 

associations with APOE genotype that would be expected and that are consistent 

with the literature, indicating the findings of the imaging analyses may still be 

informative and can contribute to the literature on cardiometabolic and genetic 

associations. 

Chapters 4 and 6 studied circulating blood biomarkers that were taken at 

baseline. However, covariates included within analyses and imaging data were 

taken at different instances and there may have been an 8 year difference 

between collection of different variables which were analysed within the same 

model. This could lead to inaccuracies of the data as biological biochemistry is 

likely to change over time. The lack of cross-sectional data for these chapters 

raises important considerations around validity of the cross sectional 

associations and inferences made. However, A study by Trinder et al., (2020) 

found that the LpA biomarker within the UK Biobank remained stable which they 
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defined as having minimal influence from age, sex, genetic factors outside 

the LPA gene, environmental factors, or currently available medicines. 

7.2.6. Multiple testing 

This thesis did not correct for multiple testing which has a number of 

limitations. The most significant limitation to the lack of multiple testing 

correction is the possibility of making false inferences due to false positive 

associations reported with simultaneous investigation of more than one research 

question. Adjusting statistical inference usually is done to help avoid declaring 

associations when there are none, and in turn help in making valid scientific 

conclusions. A number of procedures have been developed to deal with 

controlling for appropriate error rates, such as the Bonferroni correction, but 

there is continuing controversy around how to best balance false positive and 

false negative results. Williams & Haines (2011) argue that correcting for 

multiple testing may be overly conservative and result in studies with inflated 

false negative results. The paper argues that a statistical significance threshold 

may not be the most accurate approach to determining which findings are by 

true effects and which are not. A main research objective of this thesis focused 

on carrying out association analyses of phenotypes with consideration of 

confounding variables to formulate more specific research hypotheses for factors 

influencing phenotypes of interest. Validation, replication and confirmatory 

analyses of these findings should be carried out where type 1 errors are more 

easily identified in subsequent studies. However, it is important to note that if 

analyses had been adjusted for multiple testing, there are multiple findings in 

each chapter that would not have survived correction for significance. This 

would consequently change the conclusions and implications of the findings 

within this thesis. 

 

7.3 Future research 

 

7.3.1 Image-Derived Phenotypes  

This thesis used the UK Biobank image-derived phenotypes (IDPs) for which 

processing and quality control procedures are described in: Chapter 2: Methods. 
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These IDPs have been examined within the literature in which there has been 

discussion around the validity and reliability of IDPs as phenotypes. The two 

main limitations of the IDPs used for this thesis are that a broader range of 

neuroimaging parameters could have been used and would be more informative. 

Additionally, the IDPs could not capture relevant brain features to 

cardiometabolic and cognitive health. Investigations of CVD and neurovascular 

dysfunction in dementias have primarily focused on structural brain imaging 

similarly to this thesis; however, multi-modal imaging can reveal more 

information about mechanisms of interest such as rates of blood flow and 

functional connectivity. Specific measures to cardiometabolic health include 

periventricular spaces (Wardlaw et al., 2020) and gyrification, which has been 

shown to decrease with age, including precentral, temporal and frontal areas 

(Gennatas et al., 2017).   

 

7.3.2 Multi-omics 

Omics technologies - such as genomics, transcriptomics, proteomics, and 

metabolomics - in addition to evolving imaging techniques - may allow us to 

understand a larger number of molecular features in relation to phenotypes of 

interest. This may provide the potential to consider more specific and relevant 

environmental factors. Capturing environmental and biological factors of a 

phenotype comprehensively with “multi-omics” may give researchers the ability 

to map complex interactions and carry out assessments in a precise way, leading 

to understanding of causal pathways in cognitive ageing. There is potential for 

omics research within cohorts such as UK Biobank to allow for longitudinal 

analysis, providing a more detailed picture of the biology underlying subtypes 

and contribute to precision medicine approaches. It is understood that hallmark 

biological characteristics of ageing include genomic instability, telomere 

attrition, epigenetic alterations, protein loss and mitochondrial dysfunction 

(Melzer et al., 2020) in which all other age-related phenotypes are proxies of 

this. With better omics technologies, these hallmarks can be measured directly 

in human genetic association studies and potentially reveal more about missing 

heritability. Of specific interest to this area is better understanding of the ways 

by which APOE e4 modulates biological pathways. For example, it is not yet 

understood whether APOE e4 influences the rate of ageing mechanisms or 



154 
 

   
 

neurodegeneration (Henson et al., 2020). Multi-omics could also be extended to 

address gene and environment interactions of complex gaps in our knowledge. 

For example, Andrew & Tierney (2018) outline the drivers of differences 

between men and women in dementia and possibly other age-related cognitive 

decline, including longevity, biological differences, differences in cognitive 

performance, and gendered social roles and opportunities. Another method to 

potentially investigate gene and environment interactions by omics is to examine 

methylation patterns associated with lifestyle traits (Gadd et al., 2021).  

Another potential area for investigation is a better understanding of imaging 

through the application of omics technologies; one example where this has been 

carried out was in a paper by Elliot et al. (2019), who examined the heritability 

of UK Biobank’s IDPs to understand the genetic architecture of the brain. With 

the use of multi-omics, further similar research could be carried out to uncover 

causal pathways that link genetic variants to IDPs and other brain imaging 

metrics to a range of psychiatric and ageing disorders. One current method used 

to approach such investigations is Mendelian Randomization (MR). MR is a 

statistical method that utilises genetic variants that have a well-understood 

function to act as an instrumental variable to establish casual relationships. 

Genetic variants are used as proxies for an exposure where applications and 

developments within MR methodology show the use of MR to inform drug 

development and for phenome-wide studies (Schmidt et al., 2017; Li et al., 

2019; Larsson et al., 2020; Zheng et al., 2020). Mufano & Davey-Smith (2018) 

argue that both replication and triangulation of findings is critical, which they 

describe as the strategic use of more than one methodology or approach to 

address a research question or provide evidence for a relationship. Each 

methodology has different and unrelated sources of bias; for example, within 

MR, many assumptions must be met. Notably, all confounders must be measured 

and fully controlled for, and primary sources of bias for this method are typically 

due to linkage disequilibrium, pleiotropy, population stratification and 

canalisation.   
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7.3.3 Sex stratification 

Most complex traits, including cognitive ageing, are influenced by sex 

differences to a greater or lesser extent, which ultimately affects outcomes such 

as disease progression, presentation of symptoms, or the age of onset – 

phenotypes that are not typically studied in the context of sex. It is understood 

that brain ageing, cardiometabolic health and relevant mechanisms such as lipid 

metabolism are directly modulated by estrogen and testosterone. One study 

examined 530 traits within the UK Biobank and found that 71 traits presented 

significantly different heritability estimates between the sexes (Bernabeu et al., 

2021). Studies elucidating sex differences in cardiometabolic disorders have 

found that women have a higher cardiometabolic risk factor burden than men, 

where female sociocultural factors such as caregiving responsibilities were more 

associated with cardiometabolic risk factors than sex (Gerdts & Regitz-Zagrosek, 

2019). Additionally, when compared to men of the same age, the prevalence of 

metabolic syndrome is lower in premenopausal women but higher in post-

menopausal women. The literature strongly supports that sex and gender play 

central roles in disease pathologies and mechanisms, where the current 

approach to studying sex differences is an area for future research to improve 

upon in this field. Dichotomising sex as a variable may not help to understand 

disease aetiologies in their full complexity; Khramtsova et al. (2019) suggest that 

the term sexual dimorphism has been misused within research to describe two 

distinct forms of a phenotype where many sex differences exist on a spectrum. 

Instead, it may be beneficial to phenotype sex and gender more specifically to 

understand these differences.  

 

7.3.4 Increased diversity 

Another current barrier to progress in this area is that research cohorts such as 

the UK Biobank often lack representativeness, preventing inequalities from 

adequately being examined. The findings of this thesis and a large proportion of 

genetic research in brain and cardiometabolic health as it stands are not 

representative enough to be applied to individuals who do not have white 

European ancestry. Genetics has contributed significantly to our understanding 

of disease processes; however, complex diseases often result from many 
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interactions between biology and environment (including societal factors), both 

of which are understudied in many populations. Studies on cardiovascular 

disease epidemiology suggest that socioeconomic position and education play a 

role in developing modifiable risk factors for cardiovascular disease such as BMI, 

smoking, and blood pressure (Smith et al., 1997). In the literature, the 

socioeconomic position is typically measured at an individual level, e.g., 

educational attainment, and at the population level, e.g. index of deprivation, 

where socioeconomic status implies status determined by societal norms. 

However, it is more likely to result from material resources such as income 

(Krieger, 2002). Krieger states that “health disparities, within and between 

countries, that are judged to be unfair, unjust, avoidable, and 

unnecessary…systematically burden populations rendered vulnerable by 

underlying social structures and political, economic, and legal institutions” 

(Krieger, 2001 pp 72). The first Marmot review examined health inequalities in 

England and found that if mortality rates were the same between the least and 

most deprived individuals, approximately 2 million extra years of life could have 

been lived (Marmot, 2010). It also provided evidence to suggest that 

standardising healthcare access would help address many health inequalities. 

Such modifiable risk factors that may cause health inequalities are challenging 

to consider in models as covariates, and better consideration needs to be given 

as to how genetics and the environment work together to contribute to disease 

risk. This is particularly relevant as one of the primary sources of bias is 

confounding, where both an exposure and an outcome share a common cause. 

For example, adjusting for years of education attained cannot account for 

differences in experience where there are historic and systemic inequalities 

(e.g. along ethnic, gender, class lines). Genetic research may not be an 

objective way to address this, as an overemphasis on genetics as an explanatory 

factor may contribute to disparities or reinforce stereotyping, perpetuating 

disparities and overlooking environmental contributions. 

7.3.5 More representative data 

It is important to note that these factors cannot be considered in isolation and 

should be accompanied by reporting other health determinants and sources of 

inequality. For example, the intersectionality of race and ethnicity for which 

there is comprehensive literature showing the effects of systemic racism within 
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health care and research. Focusing solely on differences in racial categories may 

be an area of improvement within the current field, as these are socially 

constructed classifications that are not treated as such within the research 

(Flanagin et al., 2021). It is crucial to consider the downstream effects of 

exclusion or oversimplification as accompanying assumptions may be built into 

the concepts and methods used, creating the potential for further 

discrimination. One example of this is within unrepresentative research cohorts, 

e.g., Framingham Heart Study or UK Biobank, where research findings are 

overgeneralised to those outside the study sample, creating the potential to 

perpetuate a disproportionate burden of disease. This is an area for research to 

improve upon by carrying out inclusive research. It can also be addressed within 

studies that consider study design by matching or restricting or causal models 

where temporality between exposures and outcomes can be better accounted 

for. There are advantages of including underrepresented individuals to 

investigate genetic variation. For example, population stratification is typically 

adjusted for using principal genetic components as this thesis did; however, 

software such as Tractor allows for the inclusion of admixed individuals in GWAS. 

The inclusion of admix populations is good for the further discovery of 

contributing or causal variants, in which the use of ancestry-specific SNP effect 

sizes has been suggested for the development of PGR scores (Atkinson et al., 

2021). This approach also has the potential to shed light on missing heritability. 

7.4 Summary 

This PhD thesis investigated the effects of two major risk factors for brain 

health: cardiometabolic disease and genetics within a large cohort. As part of 

this work, chapters examined the genetics of Alzheimer’s disease dementia in 

the context of overall health (i.e., biomarkers) and brain health, brain 

correlates of a well-established CVD risk factor (LpA), and cardiometabolic 

comorbidity. This thesis also considered demographic variables when looking at 

conditions, specific biomarkers and genetic risks for both cardiovascular disease 

and dementia. The overall results of this thesis found consistent evidence that 

measures of cardiometabolic health were associated with worse brain health 

measures compared to healthy individuals, including microstructural integrity 

and hippocampal volumes. The findings of this thesis have contributed to 

understanding the role of cardiometabolic health in brain health. Specifically, 
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chapter 4 found that blood LpA and PGR of elevated LpA was associated with 

worse brain MRI phenotypes. Chapter 5 found that genetic risk of AD, which 

implicated cardiometabolic variants, was associated with worse brain MRI in 

healthy adults before any cognitive symptoms were evident. Chapter 6 found 

cystatin C was associated with elevated genetic risk for AD and found evidence 

for the mediating role of sex in genetic risk of AD and circulating blood 

biomarkers. Chapter 7 summarised the key findings of the research from this 

thesis and outlined the key strengths and limitations of analyses. The limitations 

section considered potential analyses and variables that were not considered in 

this thesis, and areas for future work have been discussed. 
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