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ABSTRACT 

Agroforestry, the practice of growing crops beneath a canopy of shade trees, is 

common in tropical regions, and has the potential to provide habitat for wildlife whilst 

maintaining agricultural production. However, the increasing demand for commodity 

crops is driving intensification of agriculture in the tropics, which results in the 

conversion of agroforestry systems into monocultures. This conversion to monocultures 

drives declines in biodiversity in these habitats, which may in turn cause a drop-off in 

yields due to loss of ecosystem services. However, the effects of agricultural 

management on animal communities and the downstream effects on productivity are 

poorly understood, especially in the Afrotropics. 

This project aimed to study the influence of farm management on wildlife 

communities, and the potential implications for productivity, in African cocoa 

agroforestry. My research was based on data of bird and arthropod communities in 28 

cocoa farms in southern Cameroon. The study farms varied in their shade cover (a 

proxy for management intensity), from 20% to 100% cover. In these farms we surveyed 

arthropods using visual surveys, sweep-netting and malaise traps, and birds using mist-

netting and acoustic recorders. I investigated trends in bird and arthropod community 

composition using several statistical methods, including data integration, hierarchical 

modelling and community modelling.  

My results show that the shade cover of farms had a strong influence on animal 

community composition. Shady (low-intensity) cocoa farms supported higher densities 

of vulnerable rainforest bird species such as ant-followers and forest specialists. Shady 

farms also contained higher densities of potential pollinators and natural enemies, and 

lower densities of pest insects. I investigated the interplay between shade management 

and interspecific interactions, and found that both these factors were important in 

shaping communities in these complex agricultural habitats. 

Overall, my results indicate that low-intensity management of agroforestry may be 

beneficial for both biodiversity conservation and productivity, as it favours populations 

of vulnerable species and ecosystem services providers, whilst reducing pest burdens. 

These findings shed light on the risks associated to the current push towards 

intensification of agriculture in the tropics.  
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Chapter 1 | General introduction 

Land sparing vs land sharing in a changing world 

Human population will continue to increase in the following decades, likely reaching 

10 billion by 2050 (United Nations, 2019). This increase in population will require 

raising overall food production by approximately 60% (Alexandratos & Bruinsma, 

2012). At the same time, the destruction and degradation of natural habitats must be 

slowed in order to avoid (or, by now) minimise, the irreversible consequences of 

climate breakdown and biodiversity crisis (Pettorelli et al., 2021). There is therefore an 

urgent need for strategies that will allow increased food production whilst reducing 

damage to biodiversity (Tscharntke et al., 2012). Mostly, strategies fall under the two 

categories of land sparing and land sharing (Tscharntke et al., 2012). Land sparing 

implies maximising crop yields through agricultural intensification to minimise the 

amount of land required, therefore allowing more land to be set aside for biodiversity 

conservation. Land sharing involves low-intensity agricultural management to 

encourage biodiversity in agroecosystems whilst simultaneously maintaining 

productivity (Tscharntke et al., 2012).  

 

The land sparing vs land sharing dilemma has been discussed in the scientific literature 

extensively, with empirical evidence supporting both sides. For instance, Gockowski & 

Sonwa (2011) show that, had intensified technology, developed in the 1960s, been 

utilized in Côte d’Ivoire, Ghana, Nigeria and Cameroon, over 21,000 km2 (equivalent 

to the size of Belgium) of deforestation and forest degradation could have been avoided 

as well as the release of nearly 1.4 billion t of CO2. On the other hand, an extensive 

study from Indonesia shows that there is no relationship between yields and 

biodiversity in agricultural landscapes, implying that increasing productivity should not 

require agricultural intensification and consequent loss of biodiversity (Clough et al., 

2011). 

 

The question of land sparing vs land sharing is especially relevant in the Earth’s 

tropical regions, which include some of the areas of highest wildlife diversity and 

poorest human populations (Laurance et al., 2014). These regions are where human 

populations are expected to increase most steeply, putting increasing pressure on 

natural resources (Laurance et al., 2014; Tscharntke et al., 2012). Currently, food 

production in the tropics consists mostly of low-input small-scale subsistence 
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agriculture carried out by farmers living well below the poverty line (Tscharntke et al., 

2012). Whilst a land sparing approach could theoretically be effective in the tropics 

(Phalan et al., 2011), in practice, lack of start-up capital (both personal and public), 

limitations in infrastructure (e.g., poor roads) and reduced access to technology make 

intensifying agriculture in these areas a complex process (Laurance et al., 2014; 

Tscharntke et al., 2012; Vaast & Somarriba, 2014). Given these restrictions, large scale 

land sparing is unlikely to be achievable in most cases, at least in the foreseeable future. 

Land sharing, which would combine the conservation of valuable tropical wildlife with 

food production and is inexpensive to establish, is a more achievable trajectory. 

 

Agroforestry as a land-sharing approach 

A prime example of a land-sharing agricultural system is agroforestry, the practice of 

planting crops under a canopy of shade trees (Tscharntke et al., 2011). Crops 

commonly grown in agroforestry include cocoa, coffee and vanilla. Agroforestry offers 

an opportunity to achieve both biodiversity conservation and agricultural productivity 

(Clough et al., 2011); its vegetatively diverse forest-like structure makes agroforestry a 

suitable habitat for many rainforest species, and these in turn can facilitate low-input 

agricultural productivity by provision of ecosystem services such as pollination, soil 

nutrient cycling and pest control (Maas et al., 2016; Rice & Greenberg, 2000; Toledo-

Hernández et al., 2021; Tscharntke et al., 2011). 

 

Cocoa is one of the main crops grown in agroforestry. It is native to the Neotropics but 

is cultivated also in the Afrotropics and Southeast Asia (Clough et al., 2009). Cocoa 

trees produce pods containing beans which are then dried, fermented, and used to make 

chocolate and derivates. Worldwide, the major producers of cocoa beans are Côte 

d’Ivoire, Ghana, Indonesia, Ecuador and Cameroon (Clough et al., 2009). 

 

The management-biodiversity-yield triangle 

Cocoa can be grown under a wide range of conditions, from shady low-intensity 

agroforestry to full sun monocultures (Rice & Greenberg, 2000; Tscharntke et al., 

2011). In the former, cocoa trees are usually planted under a thinned canopy of existing 

native rainforest trees, or under a canopy of native and non-native trees planted by 

farmers (for instance fruit trees, trees planted for timber, or trees with other functions 

such as medicinal; Rice & Greenberg, 2000). In the latter, the rainforest is clear cut and 
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then cocoa trees are planted in full sun. This wide range of conditions under which 

cocoa can be grown (0 – 100% shade cover) results in very different biotic and abiotic 

conditions within the farms (Andres et al., 2016; Ofori-Frimpong et al., 2007; 

Schneidewind et al., 2018). 

 

The degree of shade cover in a farm drives a cascade of down-stream effects, such as 

light transmittance, soil biochemistry and humidity (Andres et al., 2016; Niether et al., 

2018; Schneidewind et al., 2018). These abiotic conditions in turn influence the biotic 

community, for instance, low light transmittance through tree canopy results in reduced 

growth of understorey plants (Niether et al., 2018). Though other management 

variables also affect farm biodiversity (e.g., trimming of understorey, application of 

chemicals), shade cover remains the major factor shaping communities in cocoa 

agroforestry (Niether et al., 2018; Sanderson et al., 2022; Tscharntke et al., 2011). 

 

Additionally, farm shade management may influence agricultural yields, both directly 

(e.g., low light transmittance may decrease photosynthesis rate in cocoa trees; Beer et 

al., 1998) and indirectly (e.g., high humidity favours breeding habitats for pollinators, 

which in turn facilitate fruit set; Toledo-Hernández et al., 2021). We are therefore faced 

with a three-way relationship between farm management, biodiversity and yield (Fig. 

1). Given the current trajectory of increased food demand and dwindling biodiversity, 

understanding this relationship and identifying scenarios that combine viable outputs of 

yield and biodiversity (land sharing), should be a top priority for agroforestry research 

and policy (Niether et al., 2020). However, there are still many important gaps in our 

understanding of this complex relationship.  
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Figure 1. Agroforestry management influences both yield and biodiversity directly, 

and biodiversity in turn affects yields through the provision of ecosystem services and 

disservices. 

Knowledge gaps 

I identified three major gaps in our knowledge that hinder our understanding of the 

management-biodiversity-yield relationship in African cocoa. These gaps vary in their 

extent and generality; in some cases what is missing is detailed information on a 

specific system, whilst in other cases it is a general framework that captures a large-

scale process. This combination of detailed information on a specific system with an 

overarching theoretical framework is the basis of current ecological knowledge, as well 

as the driving theme of this thesis. 

 

1. The effect of cocoa farm management on biodiversity in the Afrotropics  

Existing research into the effects of cocoa farm management on biodiversity is 

extensive but geographically biased. Whilst in the Neotropics and South-East Asia 

there have been studies covering a wide range of taxa in cocoa farms, in Africa there is 

a much smaller volume of studies overall (Bennett et al., 2021; De Beenhouwer et al., 

2013), and these are almost exclusively focussed on plants and invertebrates. To my 

knowledge, there are only 2 studies that investigate the effects of farm management on 

vertebrate fauna in African cocoa (Table 1). The African studies that do exist show a 

general trend of increasing biodiversity with more shade cover in farms, which agrees 

with research from the other continents (Blaser et al., 2018; Sanderson et al., 2022; 

Table 1). Additionally, several studies report higher abundance of pest arthropods in 
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sunny farms compared to shady ones (Babin et al., 2010; Bisseleua et al., 2013; Table 

1). However, there is clearly a need for studies that include vertebrate taxa, in order to 

understand how farm management influences whole-system biodiversity in the 

Afrotropics (Bennett et al., 2021; De Beenhouwer et al., 2013). 

 

2. Accounting for observation processes when assessing animal populations in cocoa 

agroforestry  

Aside from the geographical bias, existing studies into the relationship between 

management and biodiversity in cocoa are often compromised by methodological bias. 

In the vast majority of cases, researchers conduct field counts of different animal 

groups and then attempt to explain these raw data with management covariates. Though 

the resulting trends form an essential basis for our understanding, this approach is not 

without issues: in a diverse structurally complex system like agroforestry, surveying 

animals is complicated (low visibility, high variation in habitat characteristics), and 

consequently the count data collected may not be representative of the community 

composition present (Banks-Leite et al., 2014; Kery et al., 2005). In these complex 

habitats where detection is guaranteed to be imperfect, it can be important to account 

for detectability and its associated biases (Banks-Leite et al., 2014). Not doing so may 

mask trends or create false trends when exploring correlations with management 

covariates, especially when the covariates expected to influence abundance (e.g., 

vegetation density) may well influence detection (Rodrigues & Prado, 2018). 

Therefore, there is an additional need for studies that investigate the effects of 

management on fauna applying robust statistical methods that account for varying 

detection. 

 

3. The interplay between management and interspecific interactions in cocoa farms  

An additional limitation in the common methodological approach to understanding 

management-biodiversity relationships is that studies tend to examine taxa separately, 

attempting to explain trends in the abundance of each taxon with management 

covariates. This approach assumes independence between taxa. In a complex habitat 

there are undoubtedly many links between species, including predation, competition 

and mutualism, and therefore modelling species separately may overlook important 

ecological processes (Janssen & Rijn, 2021; Kawatsu et al., 2021; Ovaskainen & 

Abrego, 2020; Thorson & Barnett, 2017; Tylianakis et al., 2007; Yodzis, 1998). An 
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important development in agroforestry research would be to model the influence of 

management on animal groups whilst considering interspecific relationships.  

 

4. The implications of animal community composition for productivity 

Aside from understanding the effects of management on biodiversity, to complete the 

full picture (Fig. 1), we then need to establish the links with productivity. As mentioned 

previously, management will influence yield both directly and through biodiversity and 

so there is a need for a holistic approach to investigate these trends. Until now however, 

research has tended to address the management-biodiversity-yield issue by assessing 

sets of correlations. For instance, Blaser et al. (2018) examine correlations between 

shade cover and yield, animal abundance, and other ecosystem characteristics (e.g., 

carbon sequestration) and from these draw conclusions about trade-offs between 

productivity, biodiversity and climate resilience in African cocoa. Whilst the trade-offs 

presented in this study make sense intuitively and may well be robust to 

methodological changes, the underlying assumption that these groups react to shade 

cover independently of each other may overlook ecological processes that could change 

the shape of the resulting trade-offs (Tylianakis et al., 2007; Yodzis, 1998).  

 

Overall, there is a need for a holistic approach that captures management, biodiversity 

and yield and the interlinking relationships, that would allow us to identify win-win 

(and lose-lose) scenarios (Niether et al., 2020). However, these methodological 

innovations come at a cost; complex community models are data-greedy, and have in 

the past proven challenging to parameterise (let-alone statistically fit) to field data 

(Ellner et al., 2002; Yodzis, 1998). In this thesis, I attempt to address the knowledge 

gaps presented above. Much of the work concerns methodological advances, because 

whilst my ultimate aim was to understand the ecology of tropical agroecosystems, it 

was necessary to develop suitable tools that allowed me to infer the underlying 

complex processes from spatially and temporally constrained, imperfect and 

taxonomically incomplete data. Such data limitations are pervasive in all community 

studies, so these methodological advances are beneficial for ecosystem management 

more broadly. 
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Table 1. Studies investigating the effect of cocoa farm management on wildlife communities in Africa. I excluded review papers and papers that do not 

explicitly examine cocoa management covariates (e.g., comparison of cocoa with forest, or land-use gradient that includes a few cocoa plots). 

Authors Year Taxa Location Main findings 

Kone et al 2014 Ants Côte d’Ivoire Ant species richness decreased with increasing management intensity 

Tadu et al 2014 Ants Cameroon 

Populations of the most abundant arboreal species, Oecophylla longinoda, Tetramorium 

aculeatum, Crematogaster spp., Camponotus spp., were generally aggregated in plantations. 

Highest densities of O. longinoda were sheltered by cocoa trees in the sunniest areas of plots. 

On the other hand, Crematogaster species were usually strongly aggregated in the most 

shaded areas.  

Bisseleua 

et al 
2013 

Ants, wasps, 

spiders and 

insect pests 

Cameroon 
Abundance of spiders and wasps and ant species richness increased with increasing shade 

cover. Abundance of pest insects decreased with increasing shade. 

Sanderson 

et al 
2022 Birds Sierra Leone 

Forest-dependent species and Yellow-casqued hornbill (endangered) were more common in 

abandoned than actively managed farms. A significant interaction indicated that forest-

dependent species richness increased with increasing canopy cover when surrounding forest 

cover was low, but not when forest cover in landscape was high. 
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Blaser et 

al 
2018 

Birds, ants 

and frogs 
Ghana 

Agroforests supported higher levels of species diversity than monocultures. Ants and 

amphibians showed a positive effect of shade trees but no significant relationship with shade-

tree cover, suggesting that these taxa benefit from the simple inclusion of shade trees, 

irrespective of the level of shade cover 

Babin et 

al 
2010 

Brown 

capsid 

(Sahlbergella 

singularis) 

Cameroon Brown capsid populations were aggregated in patches with high light transmittance 

Akesse-

Ransford 

et al 

2021 Insects Ghana 
Insect abundance and diversity were generally higher in organic farms compared to 

conventional farms 

Gidoin et 

al 
2014 Mirids Cameroon 

Mirid density decreased when a minimum number of randomly distributed forest trees were 

present compared with the aggregated distribution of forest trees, or when forest tree density 

was low. Moreover, a decrease in mirid density was also related to decreased availability of 

sensitive tissue, independently of the effect of forest tree structure.  

Felicitas 

et al 
2018 Termites Cameroon 

Termite species richness decreased significantly from the heavy shaded cocoa agroforests (44 

species) to the full sun (11 species). Both the richness of termite pests and marketable yield 

followed a quadratic curve and were found to be lowest and highest in plots with shade cover 

above 40%.  
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Djuideu 

et al 
2020 Termites Cameroon 

Complete shade removal or very heavy shade on very old cocoa trees were responsible of the 

invasion of termites with negative effect on marketable yield. Some tree species, specifically 

fruit tree species may act as termite attractants and reservoirs by facilitating the building of 

galleries on cocoa trees. The relationship between yield and the infestation of termites was 

weak in unshaded systems and very strong under shaded systems. 
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Thesis structure and contribution 

In Chapter 2 (published in Journal of Applied Ecology: Jarrett, Smith, et al., 2021), I 

addressed the limited understanding of the effects of cocoa farm management on 

vertebrate communities by analysing a historical dataset of bird mist-net captures from 

forest sites and cocoa farms across Cameroon. First, I compared bird diversity and 

community composition between primary forest and cocoa farms, and then I 

investigated the effect of farm shade cover and surrounding forest cover on bird 

community composition. Whilst I was limited in the types of analyses I could conduct 

with these data because they were not collected in a standardised fashion (and 

corresponding effort data were not always possible to find), the extent of the dataset 

and its novelty in terms of geographical coverage resulted in new insight into trends in 

vertebrate communities in African agroforestry. 

One of the limitations I encountered in Chapter 2 was that I was not able to examine 

bird population sizes directly, but rather a proxy for abundance (mist-net captures). 

According to the literature, and to my experience during fieldwork, bird mist-net 

captures can be a biased index of population size as the habitat in which mist-nets are 

placed influences detectability (Banks-Leite et al., 2014; Rodrigues & Prado, 2018). In 

Chapter 3 (accepted in Ecology: Jarrett et al., 2022), I tackled this issue by developing a 

model to estimate bird population size that integrated mist-netting and acoustic data. 

This method can produce accurate estimates of abundance in scenarios where the same 

environmental covariates influence detectability and population size. I applied this 

model to our data from African cocoa to understand the effect of shade management on 

the population size of different bird guilds. 

 

Continuing with my overarching aim of better understanding the management-

biodiversity-yield relationship in African cocoa, I focussed on arthropod communities 

in Chapter 4. Arthropods are highly important in cocoa agriculture, providing 

ecosystems services such as pollination and pest control (Akesse-Ransford et al., 2021; 

Sperber et al., 2004; Toledo-Hernández et al., 2021). Additionally, many arthropod 

groups are of interest to conservation, such as ecosystem engineers like army ants, dung 

beetles and termites (Felicitas et al., 2018; Peters et al., 2011; Santos-Heredia et al., 

2018). However, several arthropod taxa are pests in cocoa farms, causing severe yield 

losses of up to 40% (Wessel & Quist-Wessel, 2015). In this chapter, I developed a 
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method to estimate population size of the arthropod community in cocoa farms, and 

investigated how different groups responded to farm shade cover. 

 

In Chapter 5, I brought together the observation models for birds and insects developed 

in Chapters 3 and 4: I combined them with a process model that described the dynamics 

of the bird-arthropod community in cocoa farms. The framework I developed corrects 

for detection issues (via observation models), considers interactions between species, 

and considers the effect of shade cover on species’ growth. I then assessed the potential 

outcomes of different shade-induced community compositions in terms of diversity 

conservation and productivity. I therefore provide a novel and holistic framework to 

assess trade-offs between biodiversity and productivity in these complex ecosystems.  

 

Study system 

This thesis is built upon field data collected over 3 years in 28 cocoa farms in 

Cameroon (Fig. 2). Cameroon is the fifth largest producer of cocoa beans Worldwide, 

yet is unique in that the majority of cocoa farming in the country consists in low-

intensity agroforests (Rice & Greenberg, 2000). This contrasts with, for instance, Côte 

d’Ivoire, where fast expansion of highly intensified cocoa plantations has demolished 

the country’s rainforest (Barima et al., 2016). Cameroon, whose large expanse of 

rainforest contains some of the highest levels of wildlife diversity in the World (Fisher 

& Christopher, 2007), is at risk of following a similar trajectory to Côte d’Ivoire unless 

there is a movement towards incentivising low-intensity agroforests. The current 

recommendation from agricultural policy in general is to intensify cocoa agriculture in 

the region (Clough et al., 2009; Ordway et al., 2017). This will undoubtedly result in 

strong losses of biodiversity, and the increase in yield is by no means guaranteed 

(Clough et al., 2011). The risk is that decisions on management are based on an 

incomplete picture of these agricultural systems, giving mis-leading expectations about 

productivity and biodiversity outcomes. 
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Figure 2. Cocoa farms in southern Cameroon surveyed for birds and arthropods during 

2018-2020. 

 

Figure 3. Distribution of shade cover amongst surveyed cocoa farms (n = 28).  

The study farms for this thesis were on a gradient of shade cover, ranging from 

intensified cocoa farms with ~20% shade cover, to low-intensity agroforests with 

~100% cover (Figs. 2 – 3). We visited these farms in January-February and August-

September 2018 – 2020, and during each of these visits we surveyed birds and 

arthropods. Throughout this thesis, my goal has been to explain patterns in these data 

using robust statistical techniques that were able to represent the complexity of the 
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system. In doing so, I hope to improve our understanding of animal communities in 

African agroforestry and contribute to the knowledge of how to manage these systems 

to achieve viable compromises between biodiversity conservation and productivity. 
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Chapter 2 | Bird communities in African cocoa 

agroforestry are diverse but lack specialised 

insectivores 

This chapter has been published in: Jarrett, C., Smith, T.B., Claire, T.T.R., Ferreira, 

D.F., Tchoumbou, M., Elikwo, M.N.F., Wolfe, J., Brzeski, K., Welch, A.J., Hanna, R. 

and Powell, L.L., (2020). Bird communities in African cocoa agroforestry are diverse 

but lack specialized insectivores. Journal of Applied Ecology, 58 (6), 1237-1247   

https://doi.org/10.1111/1365-2664.13864 (Appendix 11). 

 

ABSTRACT 

Forests are being converted to agriculture throughout the Afrotropics, driving declines 

in sensitive rainforest taxa such as understory birds. The ongoing expansion of cocoa 

agriculture, a common small-scale farming commodity, has contributed to the loss of 

eighty percent rainforest cover in some African countries. African cocoa farms may 

provide habitat for biodiversity, yet little is known about their suitability for vertebrate 

fauna, or the effect of farm management on animal communities. Here, I report the first 

in-depth investigation into avian diversity and community composition in African 

cocoa, by assembling a dataset of 9566 individual birds caught across 83 sites over 30 

years in Southern Cameroon. I compared bird diversity in mature forest and cocoa 

using measures of alpha, beta and gamma diversity, and I investigated the effect of 

cocoa farm shade and forest cover on bird communities. Gamma diversity was higher 

in cocoa than forest, though alpha diversity was similar, indicating a higher 

dissimilarity (beta diversity) between cocoa farms. Cocoa farms differed from forest in 

community composition, with a distinctive decrease in relative abundance of 

insectivores, forest specialists and ant-followers and an increase in frugivores. Within 

cocoa farms, I found that farms with high shade cover in forested landscapes resulted in 

higher relative abundance and richness of sensitive forest species; shady farms 

contained up to 5 times the proportion of forest specialists than sunny farms. Sunny 

African cocoa farms were less able to support sensitive bird guilds compared with 

shaded farms in forested landscapes. My findings support the notion that certain 

ecological and dietary guilds, such as ant-followers and forest specialists are 

https://doi.org/10.1111/1365-2664.13864
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disproportionately affected by land-use change. In light of the current push to increase 

cocoa production in sub-Saharan Africa, my results provide policymakers opportunities 

for more wildlife-friendly cocoa schemes that maximize avian diversity.  

 

INTRODUCTION 

Agricultural expansion is the main cause of terrestrial biodiversity loss worldwide 

(Newbold et al., 2015). The tropics, particularly sub-Saharan Africa, have the highest 

risk of biodiversity loss due to limited coverage of protected areas, low conservation 

spending and high agricultural growth (Kehoe et al., 2017). With agricultural demands 

projected to double in the next decades (Tscharntke et al., 2012), there is an urgent 

need for strategies that will combine agricultural production and biodiversity 

conservation. Trade-offs exist between agricultural production and biodiversity 

conservation, yet these aims need not be mutually exclusive: high-yield food 

production and high-biodiversity are able to co-exist in tropical smallholder 

agroforestry systems, in which agricultural crops are grown among shade trees (Clough 

et al., 2011; Perfecto & Vandermeer, 2010; Priess et al., 2007).  

 

Cocoa is the fastest expanding export-oriented crop in the Afrotropics (Ordway et al., 

2017), driven by a booming market in Europe (Squicciarini & Swinnen, 2016). Cocoa 

cultivation has caused mass deforestation in countries such as Côte d’Ivoire, where it is 

now grown industrially in full sun monocultures because of lack of forest land 

(Maclean, 2017). In other countries such as  Cameroon, the 5th top exporter of cocoa 

worldwide, it is grown in a less intensive manner, usually under a thick forest canopy 

(Rice & Greenberg, 2000). Though short-term yields may be higher in full sun 

plantations, there is some evidence to indicate that shaded cocoa farms have a longer 

productive lifespan and suffer lower pest burdens, making long-term yields comparable 

(Tscharntke et al., 2011). The Government of Cameroon aims to triple cocoa 

production by 2035 (Ordway et al., 2017), which may lead to clearing of forested land 

for monocultures and conversion of shade-grown cocoa to sun monocultures (Andres et 

al., 2016; Schroth & Harvey, 2007).  

 

Cocoa agroforestry systems often maintain a high diversity of rainforest shade trees, 

that may resemble the rainforest they replaced (Bisseleua et al., 2013; Sonwa et al., 

2007). Partly due to this, several studies have suggested that cocoa agroforestry 

systems contain considerably higher biodiversity than intensive cocoa plantations 



28 

 

(Bhagwat et al., 2008; Bisseleua et al., 2009; Tscharntke et al., 2011; Vergara & 

Badano, 2009). However, most studies on cocoa are from the Neotropics and South-

East Asia. In their meta-analysis, De Beenhouwer et al. (2013) highlight a lack of 

research on the capacity of African cocoa agroecosystems to maintain biodiversity. 

Specifically, we know little regarding vertebrate communities, and how they are 

affected by farm management practices (Schroth & Harvey, 2007; Sekercioglu, 2012). 

The notable exception is Sanderson et al (2022), who surveyed birds in African cocoa 

farms and found that forest-dependent species were more common in abandoned than 

actively managed farms, and that forest-dependent species richness increased with 

increasing canopy cover when surrounding forest cover was low, but not when forest 

cover in landscape was high. Waltert et al. (2005) and Kupsch et al. (2019), who 

surveyed birds across a gradient of land-use intensification which included some cocoa 

plots, found that although species richness did not decrease with increasing habitat 

modification, community composition was significantly affected, with a decrease in 

abundance of large-bodied frugivores and terrestrial insectivores.  

 

Factors affecting animal diversity in cocoa agroforestry systems occur at two spatial 

scales: farm level (0.25 – 5 Ha) and landscape level. Within the farm, management 

actions such as shade tree removal and pruning will affect an animal community. In the 

Neotropics, farms with dense, structurally diverse vegetation have been shown to 

support a higher diversity of birds (Cassano et al., 2009), ants (Philpott et al., 2006) and 

amphibians (Deheuvels et al., 2014). At a landscape-scale, animals are affected by 

habitat connectivity as has been shown in Brazil where farms in forested areas support 

higher diversity of birds, bats and frogs than farms in disturbed non-forested landscapes 

(Cassano et al., 2009; Faria et al., 2006).  

 

Birds are good indicators of habitat quality (Kupsch et al., 2019), with groups such as 

insectivores showing high sensitivity to habitat degradation (Karp et al., 2011; Powell 

et al., 2015; Stratford & Stouffer, 2013; Tchoumbou et al., 2020; Wolfe et al., 2015). In 

the tropics, many bird species depend strictly on microhabitats often only present in 

pristine forest (forest specialists; Stratford & Stouffer, 2013). Here I focus attention on 

two additional sensitive guilds of birds: ant-followers and mixed-flock species. Ant-

followers are birds that pursue army ants, consuming the invertebrates flushed by the 

swarm (Peters & Okalo, 2009). Ant-followers are vulnerable to habitat degradation, 

and they are often the first guild to disappear with habitat conversion (Peters et al., 
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2008; Peters & Okalo, 2009). Also sensitive to habitat disturbance are mixed-species 

flocks, assemblages of birds of different species that move through the forest together 

foraging (Cordeiro et al., 2015).  

 

In this study, I investigated the diversity of ecological bird guilds in African cocoa 

farms using a dataset collected over 30 years of bird mist-net captures across Southern 

Cameroon and Equatorial Guinea. I contrasted avian diversity and community 

composition patterns between forest and cocoa across varying shade and forest cover. 

Specifically, I asked the following questions: (1) Are bird communities in cocoa farms 

less diverse than in the forest? (2) Is bird community composition different between 

forest and cocoa? (3) How do shade and forest cover influence bird communities in 

cocoa farms? 

 

METHODS 

Bird mist-net captures 

I considered bird mist-net captures from Cameroonian cocoa farms and mature forest, 

and from one mature forest site in Equatorial Guinea, between 1990 and 2020 (Fig. 4; 

Appendix 1). These data were collected for a range of projects, and therefore did not 

have a standardized methodology or sampling effort. However, the similarities in the 

overall approach made the data comparable: at each site, 12 to 20 12 x 3 m mist-nets 

(30 mm mesh) were set up for 6-11 hrs per day (~6:30 to 12.30-17:30; Jarrett, Powell, 

et al., 2021; Smith et al., 2005). Nets were set up either in a straight transect or in two 

smaller transects. The number of sampling days per site varied (Appendix 1). I used 

two methods to account for this unstandardized sampling effort: 1) For diversity 

analyses, I sampled a standardized number of captures and sites (n = 25 sites per habitat 

type, n = 30 captures per site) and 2) For community composition analyses I considered 

only relative abundance and species richness of foraging guilds, calculated for each 

sampling unit by dividing the number of captures or species of each foraging guild by 

total captures or species. 
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Figure 4. Map of all mature forest (white) and cocoa (black) sample sites across 

Southern Cameroon and Northern Equatorial Guinea (Appendix 1). The base map 

shows eMODIS Normalised Difference Vegetation Index (NDVI; October 2018), as an 

indicator of vegetative land cover (accessed from https://earlywarning.usgs.gov/). 

 I excluded individual birds that were not identified to species level, except for the 

commonly caught genera Criniger, Phyllastrephus and Terpsiphone. The resulting 

database consisted of 9566 birds captured across 83 sites (26 forest and 57 cocoa; Fig. 

4; Appendix 1 & 2). I used the Handbook of the Birds of the World (del Hoyo et al., 

2019) to classify each species according to its primary food type, its foraging guild and 

whether it was a forest specialist. Species could belong to more than one category (e.g., 

insectivorous and forest specialist; Appendix 2). I assessed the conservation status of 

each species using the IUCN Red List (IUCN, 2020) and I determined species that were 

geographically restricted to the Congo Basin by consulting distribution maps in 

Handbook of the Birds of the World (del Hoyo et al., 2019; Appendix 2). 

 

I considered sampling sites independent if they were separated by at least 500 m, those 

separated by less were pooled. The mature forest sites were at least 1 km from forest 

edge, had a closed canopy and were considered largely undisturbed by logging activity. 

Sites were classified into three regions: south, ecotone and west, corresponding to 

distinct ecoregions in Cameroon (Tamungang et al., 2014). I assigned each sampling 

https://earlywarning.usgs.gov/
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visit to a season, either wet or dry, according to rainfall patterns of the corresponding 

region (Molua, 2006). 

 

Quantifying diversity 

I quantified diversity using Reeve et al.'s (2016) framework implemented in the 

package rdiversity (Mitchell et al., 2020), which measures components of alpha, beta 

and gamma diversity over a continuum of viewpoint parameters, q (for details see 

Allen et al., 2019; Kirkpatrick et al., 2018; Kumar Sarker et al., 2019). The value of q 

determines the relative importance attributed to species of differing rarity, giving less 

importance to rare species as q increases (Appendix 3). Here, I used q = 0, 1, 2 and ∞ 

as they align with commonly used diversity metrics (species richness, Shannon entropy, 

Simpson diversity and Berger Parker diversity). The framework considers a 

metacommunity composed of multiple subcommunities, each containing a number of 

species (Appendix 3). From the framework I calculated: metacommunity gamma 

diversity, subcommunity gamma diversity, subcommunity alpha diversity and 

representativeness of subcommunities within the metacommunity (a type of beta 

diversity; Appendix 3). Representativeness takes a value between 0 and 1; it is smallest 

when species present in each subcommunity are not present elsewhere in the 

metacommunity, and largest when all species in the metacommunity are present in the 

subcommunity (Appendix 3; Reeve et al. 2016).  

 

I standardized number of sites (n = 25 per habitat type) and number of captures (n = 30 

per site) for beta and gamma diversity measures. For alpha diversity, I standardized 

number of captures per site (n = 30) but included all sites, as this measure was 

calculated for each site in isolation and therefore was not affected by the number of 

sites. I then repeated each analysis 50 times. I excluded any sites below the capture 

threshold. I chose this number of individuals as it allowed us to maximize the number 

of captures while preserving the greatest number of sites. Diversity measures displayed 

in the results section are an average across the iterations. To improve robustness of my 

results for subcommunity alpha, I interpolated to 30 captures and extrapolated to 200 

captures using the package iNEXT (Hsieh et al., 2016). I conducted all analyses in R 

version 3.6.3 (R Core Team, 2020). 
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Shade and forest cover measurements 

I investigated the effects of forest cover on birds in a subset of cocoa farms (n = 28; 

Fig. 2) for which I had canopy measurements. I considered the following spatial scales 

of forest cover: cover of the farm itself (~1.5 Ha; henceforth shade cover) and mean 

forest cover in a 1.4, 2.5 and 4 km radius surrounding the farm (henceforth forest 

cover). Shade cover was an indication of how intensely the farm was managed; 

traditional or shade farms preserved a mostly intact forest canopy, whilst in intensive or 

full-sun farms, shade trees were cut exposing cocoa trees to sunlight. Forest cover was 

a measure of how degraded the landscape was surrounding the farm.  

 

To measure shade cover, I took photographs at 10 locations in each farm, spaced out by 

24 m and at minimum 50 m from farm edge. I took photographs using a camera with a 

fish-eye lens on an extendable pole (5 m). Using the software ImageJ (Schneider et al., 

2012), I converted the photographs to black and white, and then calculated the 

percentage of black (vegetation) in each photograph. The shade cover value used was a 

mean of the 10 pictures (Fig. 3).  

 

To measure forest cover I used the percent tree cover layer of the MODIS Vegetation 

Continuous Fields (MOD44B; Townshend et al. 2011), which is published yearly and 

has a resolution of 250 m. I downloaded the MOD44B layer corresponding to 2018 

(birds were captured 2017-2020). In QGIS 2.18.23 (QGIS Development Team, 2018) I 

created a 1.4, 2.5 and 4 km radius buffer around each farm and extracted the mean 

percentage tree cover from the pixels within the buffer. Shade cover measurements 

ranged from 19.6% in the most intensively managed farm to 98.7% in the least, and 

forest cover ranged from 9.0% in an urbanized area to 65.8% in a farm adjacent to a 

forest reserve.  

 

To assess scale-dependency in bird responses to forest cover, I used buffers of three 

different sizes (1.4, 2.5, 4 km radii) centered on each of the 28 sampling sites. Ideally, I 

would use information on home range or dispersal distance of some of the commonly 

captured species to determine which spatial scales to use. However, for African 

rainforest birds these data are lacking, and I therefore selected the buffers based on the 

following information: 
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- 1.4 km radius: Peters et al. (2011) investigated the effect of forest cover at a 

range of spatial scales on the army ant Dorylus wilverthi in western Kenya, and 

found the 1.4 km radius to best predict ant abundance. Army ants are a keystone 

species in African rainforests, and their abundance drives the presence of ant-

following and forest specialist bird species (Peters et al., 2011; Peters & Okalo, 

2009). 

- 2.5 km radius: Carrara et al. (2015) and Morante-Filho et al. (2015) found that 

rainforest birds in the Neotropics responded to forest cover at this spatial scale. 

Additionally, Jackson & Fahrig (2012) found that population abundance was 

best predicted by forest cover at a radius of 4-9 times the median dispersal 

distance of a species. Given that rainforest birds (especially insectivores and 

understory species) have relatively small dispersal distances (e.g., <400m; 

Powell et al., 2015), a radius of 2.5 km meets this rule of thumb. 

- 4 km radius: this is the maximum scale used in Peters et al. (2011). 

Data analysis 

I used Generalized Linear Mixed Models (GLMMs) with a binomial distribution to 

investigate the differences in bird community between forest and cocoa, and to 

investigate the effect of shade and forest cover on bird community composition in the 

subset of 28 farms for which I had canopy cover data. I grouped visits to a site in the 

same season and year into one sample unit. I used relative abundance and relative 

species richness as response variables to allow for varying sample size. For the 

comparison between cocoa and forest, full models contained an interaction term 

between season and habitat (forest or cocoa), a fixed effect for region and random 

factors for site and year. For the cocoa shade and forest cover analyses, full models 

contained fixed effects for shade cover, forest cover and season, and random effects for 

site and year. I performed backwards model selection using Likelihood Ratio Tests on 

fully nested models (LRTs, cut-off probability P>0.05), until reaching a minimal 

adequate model. 

 

Forest cover values across spatial scales were highly correlated (Spearman’s correlation 

coefficient 0.86 – 0.95), and therefore I conducted separate analyses for each scale. I 

used LRTs for backwards selection of minimal adequate models, and in the cases 

where forest cover was retained in minimal adequate models, I compared final models 
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using Akaike’s information criterion corrected for small samples (AICc; cut-off 

AICc<2). I used AICc for this final step rather than LRTs because models were not 

nested. 

 

I used minimal adequate models to estimate coefficients; I report estimates and 95% 

confidence intervals. All GLMMs were ran using the package glmmTMB (Brooks et 

al., 2017) in R.   

 

RESULTS 

Bird diversity in cocoa plantations and mature forest  

Metacommunity gamma diversity was higher in cocoa than in forest, though the 

difference became smaller at increasing values of q (Fig. 5a). At q = 0, gamma 

diversity in cocoa was 90.0 and in forest 71.0, and at q = 2 it was 12.8 in cocoa and 

11.5 in forest. Subcommunity alpha diversity was similar between cocoa and forest 

across all values of q; after 30 captures at q = 0 cocoa reached 12.4 species and forest 

reached 12.2 species (Fig. 5b). I found similar results after extrapolating to 200 

captures: at q = 0 cocoa plots contained 28.9 species  (95% CI = 17.3, 40.5) and forest 

26.8 (95% CI = 20.2, 33.2). Subcommunity gamma diversity was higher in cocoa than 

forest at low values of q, but became similar as q increased (Fig. 5c). At q = 0, 

subcommunity gamma in cocoa was 136.7 and in forest 100.2. Subcommunity 

representativeness was consistently lower in cocoa than in forest over all values of q; at 

q = 0 representativeness in cocoa was 0.61 and in forest 0.64 (Fig. 5d).  
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Figure 5. Measures of diversity in cocoa and mature forest sites across varying values 

of q: (a) Metacommunity gamma, (b) Subcommunity alpha, (c) Subcommunity gamma 

and (d) Subcommunity representativeness (a type of beta diversity; see Reeve et al., 

2016; Appendix 3). Measures of gamma and beta diversity were calculated over n = 25 

sites per habitat type and n = 30 captures per site, and alpha diversity was calculated for 

n = 30 captures per site. Shaded areas represent 95% confidence intervals derived from 

the 50 iterations of the analyses. 

Community composition in cocoa plantations and mature forest 

Bird communities in cocoa and forest differed in their composition (Fig. 6, Table 2, 

Appendix 4). Habitat was a significant variable in explaining the relative abundance of 

insectivores, forest specialists, ant-followers and mixed-flock species; these groups 

constituted a smaller proportion of all captures in cocoa farms than in forest. The 

largest effect size was for forest specialists, that made up 25% of captures in forest and 

3% in cocoa. Frugivores constituted a larger proportion of total captures in cocoa farms 

than in forest, and occurred in higher relative abundance in the wet season.  

 

Relative species richness of insectivores, ant-followers, mixed-flock species and forest 

specialists was significantly higher in forest than cocoa (Table 2, Appendix 4). Relative 

species richness of frugivores and nectarivores was higher in cocoa farms. For mixed-

flock species and forest specialists, the effect of season on relative species richness 
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depended on habitat; these groups made up a larger fraction of all captures in the wet 

season (compared with the dry season) in cocoa, but the opposite was true in the forest. 

 

Species of conservation concern 

All species captured were classed as ‘Least Concern’ according to the IUCN Red List, 

with the exception of Blue-moustached Bee-eater (Merops mentalis), listed as ‘Near 

Threatened’ and caught in mature forest (IUCN, 2020; Appendix 2). Congo Basin 

restricted birds occurred at higher relative abundance in forest than in cocoa; in forest 

they constituted 17% of captures (95% CI = 14.5, 20.1) and in cocoa 8% (95% CI = 

6.5, 9.0; Appendix 4). Proportional species richness of Congo Basin restricted birds 

was also higher in forest compared with cocoa; they made up 19% of species in forest 

(95% CI = 16.9, 21.7) and 13% in cocoa (95% CI = 11.4, 14.5; Appendix 4). 

 

Effect of farm shade on bird communities 

Effects of shade cover on bird abundance varied between guilds (Fig. 6, Appendix 4). 

The only guild that decreased in relative abundance with increasing shade cover was 

frugivores, from 32% in full-sun farms to 24% in the most shaded farms. Ant-followers 

increased in relative abundance with shade cover; they constituted 0.2% of captures in 

sunny farms and 2% in shady farms. Forest specialists increased in relative abundance 

also with shade cover; shady farms had 5 times the relative abundance of forest 

specialists than full-sun farms. Mixed-flock species increased from 37% in full-sun 

farms to 55% in shady farms. Shade cover did not have an effect on the relative 

abundance of insectivores or nectarivores, or on the relative species richness of guilds. 
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Figure 6. Relative abundance of foraging guilds in full-sun cocoa (20% shade cover), 

shady cocoa (90% shade cover) and mature forest. Shaded bars and error bars represent 

the fitted values and 95% confidence intervals from the minimal adequate models.  Top 

photograph: (c) photo by Bea Maas - used with permission. 

Effect of forest cover on bird communities 

Model selection was consistent across scales, i.e., forest cover was either retained for 

all three scales or dropped. After selection, forest cover remained in models predicting 

the abundance and species richness of ant-followers and forest specialists. In every 

case, models including forest cover at 2.5 or 4 km radii were better at explaining 

abundance and species richness of these guilds, compared with the model containing 

forest cover at 1.4 km radius (Table 3). Though in some case the difference in AICc 

between the 4 km model and the 2.5 km one was < 2, I chose to present results for the 4 

km radius because it was overall the better predictor of ant-follower and forest 

specialist relative abundance and richness. 
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Table 2. Relative abundance and species richness of feeding guilds in cocoa and mature forest as predicted by minimal adequate models.   

  
Cocoa Forest   Dry Wet 

Type of 

analysis 

Response guild 

Estimate Lower Upper Estimate Lower Upper   Estimate Lower Upper Estimate Lower Upper 

Abundance 
              

 

Insectivores 0.2a 0.19 0.23 0.32 0.28 0.36 
       

Forest specialistsb 0.03 0.02 0.04 0.25 0.18 0.32 
 

0.04 0.03 0.06 0.06 0.04 0.08 

Nectarivoresc 0.18 0.16 0.21 0.15 0.13 0.18 
       

Mixed-flock species 0.49 0.40 0.58 0.70 0.56 0.82 
       

Frugivores 0.28 0.25 0.31 0.19 0.17 0.22 
 

0.24 0.21 0.27 0.27 0.25 0.30 

Ant-followers 0.03 0.02 0.04 0.24 0.18 0.31 
       

Species 

Richness 
 

             

 

Insectivores 0.30 0.29 0.33 0.41 0.38 0.43 
       

Nectarivores 0.18 0.16 0.21 0.15 0.13 0.18 
       

Frugivores 0.22 0.20 0.24 0.11 0.09 0.13 
       

Ant-followers 0.11 0.10 0.13 0.26 0.23 0.29 
                      

    Cocoa   Forest 

    Dry Wet   Dry Wet 

    Estimate Lower Upper Estimate Lower Upper   Estimate Lower Upper Estimate Lower Upper 
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Species 

Richness 
              

 
Mixed-flock speciesd 0.31 0.28 0.34 0.34 0.32 0.37 

 
0.44 0.40 0.49 0.41 0.38 0.45 

  Forest specialists 0.08 0.05 0.11 0.11 0.08 0.16   0.31 0.24 0.39 0.29 0.24 0.35 

aValues displayed are the fitted values and 95% CIs predicted by the minimal adequate models. Where only habitat had a significant effect, there are two fitted values. 

bIn cases where both habitat and season had a significant effect on relative abundance, there are four fitted values. 

cHabitat was not significant in the model predicting relative abundance of nectarivores 

dFor mixed-flock and forest specialist species richness, the interaction between habitat and season was retained in the minimal adequate model. 
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Table 3. After backwards selection, candidate models to explain abundance and species 

richness of ant-followers and forest specialists. 

Response variable Explanatory variables AICc ∆AICc 

Ant-follower abundance  
  

 Shade cover + Forest cover 4 km 99.88 0.00 

 

Shade cover + Forest cover 2.5 

km 101.72 1.84 

 

Shade cover + Forest cover 1.4 

km 112.70 12.82 

Forest specialist 

abundance    

 Shade cover + Forest cover 4 km 149.00 0.00 

 

Shade cover + Forest cover 2.5 

km 150.84 1.84 

 

Shade cover + Forest cover 1.4 

km 159.36 10.36 

Ant-follower species richness   

 Forest cover 4 km 159.57 0.00 

 Forest cover 2.5 km 162.40 2.83 

 Forest cover 1.4 km 165.66 6.09 

Forest specialist species richness   

 Forest cover 2.5 km 128.23 0.00 

 Forest cover 4 km 128.44 0.21 

 Forest cover 1.4 km 135.97 7.74 

        

 

Ant-followers increased in relative abundance and species richness with forest cover (Fig. 

7); their relative abundance increased from 0.1% to 6% with increasing forest cover, and 

their relative species richness increased from 5% in farms with low forest cover to 18% in 

farms with high forest cover. Forest specialists increased in relative abundance and species 

richness with forest cover (Fig. 7); their relative abundance increased from 0.7% in farms 

with minimum forest cover to 7% in farms with high forest cover, and their species 

richness increased from 1% at low forest cover to 19% at high forest cover. Forest cover 

did not significantly influence the relative abundance or species richness of insectivores, 

frugivores, nectarivores or mixed-flock species. 
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Figure 7. Effect of landscape forest cover (4 km radius) on the relative abundance of 

foraging guilds. The line indicates the effect size predicted by the minimal adequate model 

and the shading corresponds to the 95% CIs. The asterisks indicate statistical significance. 

The point represents the relative abundance of the corresponding foraging guild in mature 

forest, with associated CIs. The dots correspond to the raw data.  

DISCUSSION 

My study is the first to specifically examine African cocoa farms as habitat for birds. I 

found that sensitive guilds such as forest specialists and ant-followers represented a larger 

proportion of the community in shady farms compared with full-sun farms, and that these 

groups occurred at higher relative abundance in farms with high forest cover. In the current 

climate of agricultural intensification, my findings highlight the potential for farmland to 

be managed in favor of avian communities, and I provide further evidence of the 

importance of maintaining forested areas in the landscape. 

 

I found that the cocoa-farms bird assemblage comprised more species than the forest 

assemblage. This could possibly be due to the variability of habitat characteristics in cocoa 

farms, which can range from full-sun scrubby plantations to shaded farms that are 

structurally similar to the forest (Sonwa et al., 2007; Tscharntke et al., 2011). Indeed, the 

lower representativeness of cocoa farms indicates that they were more dissimilar between 
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each other compared with forest sites. These findings support Solar et al. (2015), who 

report increased beta diversity between secondary forest sites than between undisturbed 

forest sites. The authors argue that the higher between-site beta diversity of disturbed 

forests may attenuate species loss at a larger scale. However, though cocoa farms may 

contain more species that are rare across the metacommunity, these are likely not forest- or 

range-restricted species (Appendix 2). Indeed, there is an overall trend towards increasing 

generalist species in disturbed forest landscapes (Rutt et al., 2019). Therefore, whilst cocoa 

farms may play a role in the conservation of certain bird guilds, we must also prioritize 

protection of undisturbed primary forests that provide habitat for specialized species that 

do not frequently occur in modified habitats (Stratford & Stouffer, 2013; Tscharntke et al., 

2011). 

 

My results support Waltert et al. (2005), who found that species richness in Afrotropical 

forest did not differ between mature and agroforest. However, other studies showed 

different patterns. For example, Reitsma et al. (2001) found lower alpha and gamma 

diversity of birds in Costa Rican forest compared with managed cocoa, yet De Beenhouwer 

et al. (2013) found an 11% decrease in bird species richness from forest to agroforestry. 

Importantly, the diversity patterns I observed were affected by the q value. At higher 

values of q, gamma diversity became similar between forest and cocoa, indicating that both 

habitats contained a similar number of abundant species. Clear examples in forest were 

Fire-crested Alethe (Alethe castanea) and Yellow-lored Bristlebill (Bleda notatus), two 

forest specialist species, that made up a considerable fraction of the community in almost 

all forest sites. My results demonstrate how conclusions about diversity can change 

depending on the measurement parameters. I argue that using a range of metrics and q 

values gives more detailed and useful information about a community’s diversity. 

 

The broad differences in community composition that I found between cocoa farms and 

forest are consistent with literature from across the tropics. The shift from forest to cocoa 

results in a decrease in insectivores, forest specialists and ant-followers and an increase in 

frugivores and nectarivores in the Neotropics (Faria et al., 2006; Rice & Greenberg, 2000) 

and Asia (Maas et al., 2016; Marsden et al., 2006). My findings contribute to a growing 

recognition that species loss in forested systems is linked to certain ecological guilds. 

Throughout tropical realms, distantly related species have evolutionarily converged on 

similar behaviors, such as ant-following and participating in mixed-species flocks, which 

reduce their resiliency to forest loss and habitat degradation (Powell et al., 2015).  
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I found that the community composition of birds in cocoa farms was significantly affected 

by shade and forest cover, with an increased relative abundance of forest specialists, ant-

followers and mixed-flock species in shaded farms with high forest cover. Forest 

specialists are closely tied to vegetation structure (Powell et al., 2015; Stratford & Stouffer, 

2013), especially with the understory, which is entirely removed in intensive cocoa 

plantations (Kessler et al., 2005). Additionally, habitat amount (e.g. proportion of forest in 

landscape) is important in determining bird abundance and richness, and this effect may be 

more pronounced in understory or forest specialist species (Carrara et al., 2015; De 

Camargo et al., 2018), explaining the increased relative abundance and diversity of these 

taxa with forest cover. Given the current rate of land-use change, forest birds are under 

severe threat and will likely undergo rapid species loss (Maas et al., 2009; Powell et al., 

2015; Sekercioglu, 2012).  

 

Ant-follower abundance is driven by the abundance of swarm-raiding army ants (Peters et 

al., 2008; Peters & Okalo, 2009). Ants are affected by farm management: Bisseleua et al. 

(2009) found that ant species richness was significantly higher in structurally diverse, low-

intensity cocoa systems compared with intensive systems. Additionally, ants are affected 

by landscape-level processes, as their sensitivity to temperature limits their ability to move 

between habitat patches (Rizali et al., 2013). Therefore, shaded farms in forested 

landscapes likely contain a community of ants like that in the forest, in turn supporting the 

ant-following bird population. Mixed-flocks have hardly been studied in the Afrotropics 

(but see Péron & Crochet 2009; Cordeiro et al. 2015), but literature from other regions 

suggests that this guild is sensitive to disturbance (Goodale et al., 2015; Tien et al., 2005). 

Mixed-flock frequency and attendance seems to increase with vegetation density and 

structure, perhaps due to increased prey availability, reduced exposure to predators, and 

protection from climatic conditions (Tien et al., 2005). 

 

Contrary to expectations, I found no effect of shade or forest cover on relative abundance 

or richness of insectivorous birds. This could be driven by species such as the Chestnut 

Wattle-eye (Platysteira castanea) and the Paradise Flycatcher (Terpsiphone sp.), which 

occurred in relatively high abundances in most cocoa farms. Indeed, studies such as 

Waltert et al. (2005) and Sekercioglu (2012) suggest that small-bodied insectivores 

respond less to land-use change compared with large-bodied insectivores. From a human 
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perspective, the presence of these small insectivores in cocoa farms could be beneficial due 

to their role in agricultural pest control (Karp et al., 2013; Maas et al., 2016).  

 

In this study I was able to see general trends in bird communities in forest and cocoa 

through mist-net capture data. However, given the variable sampling effort, I was only able 

to consider relative abundance, which may not be representative of absolute abundance. 

Additionally, the abundance of species’ can be a misleading indicator of habitat quality as 

human-modified habitats can act as population sinks or ecological traps (Johnson, 2007; 

Robertson & Hutto, 2006).  Future studies in Afrotropical cocoa should consider 

demographic and morphological data to help establish the value of agroforestry systems as 

buffer habitat and wildlife corridors (Jarrett, Powell, et al., 2021; Schroth et al., 2004).  

 

My study provides strong evidence that African cocoa plantations can be of value for 

conserving avian diversity. However, plantations need appropriate management if habitat 

is to be provided for forest bird communities. Low-intensity shaded cocoa not only 

provides habitat for forest birds and other vulnerable taxa, but can also produce high yields 

and farmer income, comparable to more intensive systems, thanks to lower pest burdens, 

longer productive lifespan of trees, and lower input costs (Armengot et al., 2016; Clough et 

al., 2011; Tscharntke et al., 2011). This dual function of cocoa agroforestry systems aligns 

with a land-sharing perspective, in which agriculture is managed at low-intensity and in 

favor of biodiversity. However, my results also demonstrate that even the shadiest cocoa 

farms are not equivalent to forest, and therefore I argue that within a land-sharing scenario 

there must be areas of forest preserved on the landscape. In conclusion, to prevent extreme 

deforestation and biodiversity loss in one of the world’s diversity hotspots, policymakers 

should actively encourage ecologically sustainable agricultural practices such as shaded 

cocoa agroforestry that employs science-based management.  
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Chapter 3 | Integration of mark-recapture and 

acoustic detections for unbiased population 

estimation in animal communities 

This chapter has been accepted for publication: Jarrett, C., Haydon, D.T., Morales, J.M., 

Ferreira, D.F., Forzi, F.A., Welch, A.J., Powell, L.L. and Matthiopoulos, J., (accepted). 

Integration of mark-recapture and acoustic detections for unbiased population estimation in 

animal communities. Ecology. 

 

ABSTRACT 

Abundance estimation methods that combine several types of data are becoming 

increasingly common because they yield more accurate and precise parameter estimates 

and predictions than are possible from a single data source. These beneficial effects result 

from increasing sample size (through data pooling) and complementarity between different 

data types. Here, I test whether integrating mark-recapture data with passive acoustic 

detections into a joint likelihood improves estimates of population size in a multi-guild 

community. I compared the integrated model to a mark-recapture-only model using 

simulated data first and then using a dataset of mist-net captures and acoustic recordings 

from an Afrotropical agroforest bird community. The integrated model with simulated data 

improved accuracy and precision of estimated population size and detection parameters. 

When applied to field data, the integrated model was able to produce, for each bird guild, 

ecologically plausible estimates of population size and detection parameters, with more 

precision compared with the mark-recapture model. Overall, my results show that adding 

acoustic data to mark-recapture analyses improves estimates of population size. With the 

increasing availability of acoustic recording devices, this data collection technique could 

readily be added to routine field protocols, leading to a cost-efficient improvement of 

traditional mark-recapture population estimation. 

 

INTRODUCTION 

Evaluating trends in species abundance is central to questions of single species and whole 

ecosystem conservation. Hence, estimating the size of populations remains as critical as it 
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is challenging. At the heart of the issue is that ecological sampling of organisms is rarely 

exhaustive, and therefore to estimate population size we need to also estimate probabilities 

of detection (Dorazio, 2014). Detectability may vary according to a wide range of 

variables, such as weather conditions or observer skill level. To help deal with imprecision 

and bias in data collection, there has been an upsurge in methods that combine different 

data sources to generate accurate and more precise estimates of species distribution and 

density (Fithian et al., 2015; Koshkina et al., 2017; Peel et al., 2019; Williams et al., 2017).  

 

The concept of data integration (combining data types) relies heavily on complementarities 

between data sources. In general, different methods of data collection will suffer from 

different detection biases; for instance, it may be more likely that a species is detected by 

citizen science programs in areas with high human population density (Johnston et al., 

2020), and it may be easier to detect animals on visual surveys in open compared to 

forested habitats (Rodrigues & Prado, 2018). Data integration helps deal with these biases, 

because shared biological parameters are estimated simultaneously from multiple data 

types that are not equally vulnerable to the same problems (Miller et al., 2019). Thus far, 

integrated models have largely focused on spatially explicit landscape-level models of 

species distribution, often generated using large online datasets. Whether data integration 

methods will be effective in estimating abundance of species in smaller-scale field-

generated datasets is less clear (Isaac et al., 2020). 

 

Mark-recapture has been employed for population estimation across a broad range of taxa 

including birds, mammals and fish (Schwarz & Seber, 1999). While mark-recapture 

analyses can provide robust estimates of population size, they can also suffer from biases, 

for instance when environmental covariates affect both detectability and population size 

(Banks-Leite et al., 2014; Oyster et al., 2018). Data integration methods can mitigate these 

problems and estimate the contributions of the different determinants of abundance and 

detection. In the case of mark-recapture, we could expect a benefit of combining these data 

with another type of data, ideally one collected using a method whose detectability is not 

influenced by the same variables.  

 

Acoustic data could provide this opportunity. Acoustic recordings are usually collected 

using automated devices that are easy to operate, require low levels of effort (installation, 

collection, and storage), and can generate a wealth of data (Bradfer-Lawrence et al., 2020). 

However, abundance estimation from acoustics alone, though feasible, can be complicated 
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due to either double-counting (overestimation) or saturation (underestimation) effects 

(Dawson & Efford, 2009; Doser et al., 2021). Additionally, to estimate abundance from 

acoustic data it is often necessary to know species’ vocalization rates, which is typically 

not feasible. Combining mark-recapture with acoustics could result in improved estimates, 

partly because the factors affecting detectability of each method are different (Dawson & 

Efford, 2009). In a practical sense, simultaneously collecting both mark-recapture and 

acoustic data in the field is very achievable; mark-recapture protocols are already 

widespread, and adding an automatic recording unit to these systems is logistically simple 

and inexpensive (Whytock & Christie, 2017).  

 

A recent study by Doser et al. (2021) combined acoustic data with point counts to estimate 

the abundance of a bird species and found that the integrated model improved accuracy and 

precision of results. Here, I build on the ideas of Doser et al. (2021) and take the next 

natural steps, from point counts to mark-recapture data (as is common in e.g., bird surveys) 

and from single species to whole communities. My modelling framework integrates mark-

recapture data and count data from acoustic recordings to estimate population size of a 

multi-guild community. This method is widely applicable to any animal community for 

which mark-recapture and acoustic data are available. My aim was to assess whether the 

addition of acoustic data to mark-recapture models improved accuracy and precision of 

population size estimates, and to illustrate the application of the method to a dataset of bird 

communities in African agro-ecosystems.  

 

METHODS 

Model overview & assumptions 

My model integrates mark-recapture and acoustic data into a joint likelihood, to estimate 

population size (𝑁). My focus was on exploring the trade-offs and complementarities of 

the joint analysis of these two common data types, and I wished to isolate these issues from 

the wider problems of population change and emigration. Therefore, I assumed throughout 

that population size remained constant during each sampling period.  

 

Determinants of population size 

Throughout these analyses, I considered animal communities made up of several 

subgroups. I use the term ‘guilds’ to describe taxonomic groups, which may be species but 



48 

 

could also be functional groups, families, etc. I considered site as the discrete area covered 

by the sampling radius of our mist-nets, and therefore the population size at site j is the 

number of animals whose home ranges overlap with this area. Importantly, I assumed that 

the detection radius of the acoustic recorder/s was the same or smaller than the mist-net 

sampling radius, so that the number of individuals detectable by acoustic recorders was 

proportional (but not necessarily equal) to the number of individuals detectable by mist-

nets. I assumed that the population size (𝑁𝑖𝑗) of guild i at site j was Poisson distributed (but 

my method is easily adapted to other distributions) with expected number of animals per 

site 𝐷𝑖𝑗. 

𝑁𝑖𝑗  ~ Poisson(𝐷𝑖𝑗) (3.1) 

𝐷𝑖𝑗 was modelled as a log-linear function  

log(𝐷𝑖𝑗) = ∑ 𝜈𝑖𝑞𝑋𝑗𝑞
𝑄𝑓

𝑞=0  (3.2) 

The linear predictor comprised 𝑄𝑓 covariates, 𝑋𝑗𝑞, affecting population size, and their 

respective regression coefficients 𝜈𝑖𝑞, where q refers to the qth covariate (the intercept 

(𝜈𝑖0) was included by setting 𝑋𝑗0 = 1). 

 

Mark-recapture  

Instead of dividing each survey event into arbitrary discrete time-periods as is commonly 

done in mark-recapture studies (Schofield et al., 2018), I modelled the capture history of 

every animal as a Homogeneous Poisson process (HPP) in continuous time. The HPP had a 

rate of 𝑟𝑖𝑗 captures per unit time (Xi et al., 2007), and the time period over which sampling 

occurred was 𝑇𝑗. The HPP process implies that the waiting time to first capture of an 

individual k of guild i at site j (ckij) follows an exponential distribution with mean 1/𝑟𝑖𝑗 

𝑐𝑘𝑖𝑗~ Exponential(𝑟𝑖𝑗) (3.3) 

By definition, if 𝑐𝑘𝑖𝑗 > 𝑇𝑗 the animal was not detected. The probability of detection is then 

𝑃(𝑐𝑘𝑖𝑗 < 𝑇𝑗) =  1 − exp (−𝑟𝑖𝑗𝑇𝑗). Therefore, the total number of first captures 𝑛𝑖𝑗 for the 

ith guild at the jth site was 

𝑛𝑖𝑗  ~ Binomial(𝑁𝑖𝑗, 1 − exp (−𝑟𝑖𝑗𝑇𝑗) ) (3.4) 
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After the animal was caught once, the total number of recaptures (𝑦𝑘𝑖𝑗) in the remaining 

time (conditional on 𝑐𝑘𝑖𝑗 < 𝑇𝑗) was a Poisson variate given by 

𝑦𝑘𝑖𝑗 ~ Poisson(𝑟𝑖𝑗(𝑇𝑗 − 𝑐𝑘𝑖𝑗)) (3.5) 

Capture rate, 𝑟𝑖𝑗, was modelled as a log-linear function  

log (𝑟𝑖𝑗) = ∑ 𝜌𝑖𝑞
𝑄ℎ
𝑞=0 𝑊𝑗𝑞 (3.6) 

comprising 𝑄ℎ covariates, 𝑊𝑗𝑞, and their respective regression coefficients 𝜌𝑖𝑞, with q 

referring to the qth covariate and where 𝜌𝑖0 is the intercept. This mark-recapture model 

assumes that capture rate did not vary between individuals of same guild, did not decline 

with consecutive captures, and marks were not lost. Additionally, I assumed instantaneous 

sampling (i.e., individuals were immediately available for sampling after capture). 

 

Acoustics 

I assumed that it was not possible to identify individuals from acoustic data (but see 

Dawson & Efford, 2009). Additionally, non-automated counting of vocalizations over a 

whole community from acoustic recordings would require large amounts of processing 

time. Therefore, to simplify data extraction, I considered a set of 𝐿𝑗  discrete listening 

periods each lasting M time units, during which guilds may be heard and thus recorded as 

present. I modelled vocalizations as a HPP in continuous time with rate 𝜆𝑖𝑗𝑁𝑖𝑗 per unit 

time, where 𝜆𝑖𝑗 was a site/guild-specific per-capita vocalization detection rate. The 

probability that at least one vocalization was recorded in any given listening period was the 

probability that the time to the first vocalization was less than M. I modelled the total 

number of detections 𝑎𝑖𝑗 over 𝐿𝑗 listening periods as 

𝑎𝑖𝑗 ~ Binomial(𝐿𝑗, 1 −  exp (𝜆𝑖𝑗𝑁𝑖𝑗𝑀) ) (3.7) 

Vocalization rate, 𝜆𝑖𝑗, was modelled as a log-linear function 

log (𝜆𝑖𝑗) = ∑ 𝜓𝑖𝑞
𝑄𝑟
𝑞=0 𝐺𝑗𝑞 (3.8) 

comprising 𝑄𝑟 covariates, 𝐺𝑗𝑞, and their respective regression coefficients 𝜓𝑖𝑞, with q 

referring to the qth covariate, and 𝜓𝑖0 the intercept. 
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I assumed that the probability of capturing an individual bird was independent of the 

probability of it being detected by the acoustic recorder, and consequently the mark-

recapture and acoustic models were independent, both conditional on the true latent 

population size 𝑁𝑖𝑗 (Miller et al., 2019). I fit my models using Bayesian inference with the 

JAGS 4.3.0 software (Plummer, 2017) executed using the runjags package (Denwood, 

2016) in the R statistical computing environment (R Core Team, 2020). For each model, I 

ran three chains of 100,000 iterations with a burn-in period of 5,000 iterations. Model 

convergence was assessed by visually inspecting chains and with the Gelman-Rubin R-hat 

diagnostic, with convergence presumed when R-hat < 1.1. 

 

Simulation study 

To assess whether the integrated model produced more accurate and precise estimates 

compared with single-dataset models, I compared it with a model that used just mark-

recapture data (Equations 3.1-3.6). I applied each model to simulated data from 20 sites 

each assumed to contain 3 guilds (labelled A, B and C), and to have been visited twice. 

This represents a minimally realistic design for a mark-recapture study, given the number 

of guilds and parameters involved. I included several environmental covariates: the first 

was a site-specific covariate that affected both population size and capture rate (Equations 

3.2 & 3.6). I added this covariate because previous models have encountered identifiability 

issues when retrieving covariates that affect both population size and detectability (Fithian 

et al., 2015; Simmonds et al., 2020). The second covariate affecting population size was 

shared across guilds and sites but varied with visit (Equation 3.2). I generated data using 

the model statements above and used the same priors for both models (see Table 4 for 

parameter values and priors). At each site, capture period 𝑇𝑗  was set to 6 hrs, and I assumed 

20 listening periods (𝐿𝑗) each lasting 0.03 hours (2 mins; M). For both models I examined 

accuracy and precision by recording the mean and 95% Bayesian credible intervals (BCIs; 

calculated for the highest posterior density intervals) from each posterior.  

 

Effort analysis 

I investigated the effect of sampling effort (both in mist-netting and acoustic recording) on 

model performance. Using the same population size and detection parameters as in the 

simulation study, I generated data corresponding to a range of 1 – 30 sampling hours (at 

intervals of 5 hrs) both for mist-netting and acoustic recordings. For mist-netting, the effort 
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hours corresponded to the hours during which mist-nets are open. For acoustic recording, 

as processing the recordings can be time-consuming, I assumed that for every 1hr of 

recording I would need 2hrs of processing (this is a conservative estimate, our experience 

is more in the range of 1.4hrs of processing per recording hour). In other words, the actual 

field sampling hours used in the effort analysis were 1 – 30 for mist-netting and 1 – 10 for 

acoustic recording. I generated data for 36 combinations of these values and fit the 

integrated model to the resulting datasets. For each combination of values, I ran the model 

with three chains of 5,000 iterations with a burn-in period of 5,000 iterations and a 

thinning rate of 10. 

 

I evaluated the results in terms of accuracy and precision: I examined accuracy by 

calculating the % bias of the posterior mean (i.e., 100 × (Estimated mean-True mean)/True 

mean) and I considered precision as the coefficient of variation (i.e., SD/Mean) of the 

posterior distribution. I used the coefficient of variation (CV) to measure precision (rather 

than BCIs as above) to make the measures comparable across different scenarios. 

 

Model verification 

To understand the sensitivity of the integrated model to variation in the main data 

generating parameters (linear predictors for capture and vocalization rate 𝜌𝑖0 and 𝜓𝑖0), I 

simulated 121 combinations of parameters 𝜌𝑖0 and 𝜓𝑖0 ranging from -8 to -2 and -3.9 to 2 

respectively, corresponding to rates in the range ~0 and 0.14 per capita captures per hour, 

and 0.02 and 8 detected vocalizations per hour. From each parameter combination I 

simulated 100 datasets, resulting in a total 12100 datasets. For this analysis, I used a 

simplified version of the simulation, looking at one site containing one guild, removing the 

covariates affecting N, 𝜌10 and 𝜓10. I set the underlying population size N to be 50 in every 

case. For model fitting I set normally distributed priors N(0, 4.5) and N(-5, 4.5) for 𝜌10 and 

𝜓10 respectively (mean and SD), and N(4.4, 4.5) for 𝜈10. For each combination of 

parameters, I ran the model with three chains of 5,000 iterations with a burn-in period of 

5,000 iterations and a thinning rate of 10. I evaluated the results in terms of accuracy and 

precision: I calculated accuracy as a percentage (as above) and I considered precision as 

the CV. 
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Case study 

Field methods 

Mist-netting and acoustic data were collected from birds in 28 cocoa farms and 4 primary 

forest sites in Cameroon over 4 years (2017 – 2020; Fig. 2). Each of the 32 sites was 

visited between 2 and 6 times, in two different seasons. Sites were separated by at least 500 

m and farms were at least 1.5 ha.  Mature forest plots were in the Dja Faunal Reserve (3.19 

N 12.81 E) and were at least 1 km from forest edge, had a closed canopy and no logging 

activity. Sites had varying canopy cover, which I predicted could influence both capture 

rate and population size (Fig. 3). In cocoa farms, canopy cover is an indication of farm 

management; more intensively managed farms tend to have open canopies, whilst 

traditional agroforest farms have closed canopies. 

 

At each site 20 12 x 3 m mist-nets (30 mm mesh) were set up, placed in a “T”, “L” or “+” 

layout to fit the site boundaries (for farms). They were opened for 6 hrs (~6.20 am to 12.20 

pm; 𝑇𝑗 = 6), during which captured individuals were identified, ringed and then released. 

The Handbook of the Birds of the World (del Hoyo et al., 2019) was used to classify each 

species according to its primary food type, resulting in 6 mutually exclusive categories: 

insectivores, frugivores, nectarivores, ant-followers, granivores and other (including 

carnivores and piscivores; Jarrett, Smith, et al., 2021). Though the categorization of species 

into guilds may mask some variability between species, it also makes parameter estimation 

a lot more feasible given the low number of captures for some species. I excluded any 

birds caught outside the 6hr sampling period. I considered recaptures as birds caught more 

than once during the same visit, but I excluded recaptures caught within 20 mins of release 

as this could indicate birds that flew straight back into nets due to disorientation or stress. 

 

On the same day as the mist-netting, one automatic recording unit (ARU; Song Meter 

SM4, Wildlife Acoustics) was set up approximately at the center of mist-net transect, and 

programmed to record 6.30-6.40 am and 7.30-7.40 am. Due to the short time window over 

which acoustic data were extracted, I did not expect vocalization rate to vary temporally 

(as would be commonly expected if recordings covered e.g., whole day). The 20 min 

period was then divided into 1 min intervals (𝐿𝑗 = 20, M = 0.03; Equation 3.7), during 

which each species was recorded either as present (when a call was heard) or absent. The 

acoustic data processing was done manually by one listener. The use of intervals was to 

facilitate data extraction from continuous recordings. I clumped species into the same 6 
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guilds applied to mist-net captures, and I excluded from the dataset any species that had 

never been caught in mist-nets (e.g., canopy species).  

 

To measure canopy cover, photographs were taken at 10 locations in each site 

(corresponding to the center of every second mist-net), spaced out by 24 m and at 

minimum 50 m from farm edge. Photographs were taken using a camera with a fish-eye 

lens on an extendable pole (5 m) in order to extend above the cocoa trees growing in the 

understory. Using the software ImageJ (Schneider et al., 2012), I converted the 

photographs to black and white, and then calculated the percentage of black (vegetation) in 

each photograph. The shade cover value used was a mean of the 10 pictures. Sites were on 

a gradient of canopy cover, with values ranging from 19.6% to 100% (Fig. 3). 

 

Model structure 

Population size of each of the 6 bird groups at each sampling event z was modelled with a 

guild-specific intercept (𝜈𝑖0) and two covariates (𝑄𝑓 = 2): a guild-specific effect of canopy 

cover (continuous variable, centered and standardized) on population size (𝜈𝑖1𝑋𝑗1) and a 

seasonal categorical covariate shared between guilds (𝜈2𝑋𝑧2, where 𝑋𝑧2 = 1 if Dry and 0 

otherwise; Equation 3.10).  

𝑁𝑖𝑗𝑧 ~ Poisson(𝐷𝑖𝑗𝑧) (3.9) 

 log (𝐷𝑖𝑗𝑧) = 𝜈𝑖0 +  𝜈𝑖1𝑋𝑗1 + 𝜈2𝑋𝑧2 (3.10) 

I modelled total captures for each sampling unit as in Equation 3.4 and individual bird 

capture histories with Equation 3.5. I considered capture rate 𝑟𝑖𝑗 to be guild-specific and to 

vary between sites according to canopy cover (𝑄ℎ = 1; Equation 3.11), and I considered 

vocalization detection rate to be guild-specific but not influenced by detection covariates 

(𝑄𝑟 = 0; Equation 3.12).  

log(𝑟𝑖𝑗) = 𝜌𝑖0 +  𝜌1𝑊𝑗1 (3.11) 

log(𝜆𝑖) = 𝜓𝑖0  (3.12) 

I modelled number of vocalizations with Equation 3.7. 
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Priors used for model fitting were normally distributed (Appendix 6). To compare the 

performance of integrated vs single-dataset models, I fit a model that used only mark-

recapture data. For both models I recorded parameter estimates and BCIs to assess 

posterior precision of one method relative to another. 

 

RESULTS 

Simulation study 

The results from testing my model on simulated mark-recapture and acoustic data 

demonstrated that overall, the integrated model more accurately estimated all relevant 

parameters: capture rates, vocalization rates, detection covariate and covariates affecting 

population size (Fig. 8; Table 4). Compared with the mark-recapture model, the estimates 

of population size from the integrated model were more accurate and precise (Appendix 5). 

The simulation also confirmed that the parameter estimates from the integrated model were 

more accurate and more precise (Fig. 8; Table 4). The single-dataset mark-recapture model 

estimated with low precision the coefficients corresponding to the covariate that affected 

both population size and capture rate (𝜈1 and 𝜌1). For these two coefficients, the integrated 

model was >2 times more precise than the mark-recapture model (Fig. 8).  
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Figure 8. Mean of posterior distribution (and 95% BCIs) for population size and detection 

parameters from mark-recapture only model and integrated model under simulation.  Only 

the integrated model (with acoustic data) calculated vocalization rates. The triangles 

represent the simulation values. For parameter definitions see Table 4. 
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Table 4. For each parameter in model: true value used to simulate data, prior (standard deviation), and mean (95% Bayesian Credible Intervals) of 

parameter estimates from model with only mark-recapture data and integrated model. The distribution of the priors was normal, in every case. See 

Equations 3.1-3.8 for further details. 

Parameter Description 
Simulation 

value 
Prior (SD) Capture-recapture Integrated 

νA0 Intercept of linear predictor of population size for species A 5.00 6.00 (0.82) 4.85 (4.26, 5.52) 4.88 (4.55, 5.25) 

νB0 Intercept of linear predictor of population size for species B 3.00 6.00 (0.82) 3.36 (2.61, 4.21) 3.34 (2.72, 3.94) 

νC0 Intercept of linear predictor of population size for species C 4.50 6.00 (0.82) 4.77 (3.94, 5.65) 4.86 (4.04, 5.70) 

ν1 Effect of site-level covariate Xj1 on population size 0.01 0.00 (1.00) 0.01 (0, 0.02) 0.01 (0.01, 0.01) 

ν2 Effects of visit-level covariate X2 on population size 0.15 0.00 (0.20) 0.11 (-0.01, 0.23) 0.11 (0.01, 0.21) 

ρA0 Intercept of linear predictor of capture rate for species A -4.00 0.00 (3.16) -3.82 (-4.49, -3.22) -3.86 (-4.23, -3.5) 

ρB0 Intercept of linear predictor of capture rate for species B -3.50 0.00 (3.16) -3.75 (-4.64, -2.98) -3.75 (-4.43, -3.10) 

ρC0 Intercept of linear predictor of capture rate for species C -4.80 0.00 (3.16) -5.04 (-5.95, -4.19) -5.13 (-5.99, -4.28) 

ρ1 Effect of site-level covariate Wj1 on capture rate -0.01 0.00 (1.00) -0.01 (-0.02, 0) -0.01 (-0.02, -0.01) 

ΨA0 Intercept of linear predictor of vocalization rate for species A -7.00 -5.00 (2.00)  -6.9 (-7.26, -6.56) 

ΨB0 Intercept of linear predictor of vocalization rate for species B -5.00 -5.00 (2.00)  -5.35 (-5.98, -4.74) 

ΨC0 Intercept of linear predictor of vocalization rate for species C -6.00 -5.00 (2.00)  -6.38 (-7.24, -5.56) 
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Effort analysis 

Accuracy was highest at >20 mist-netting hrs, with little effect of listening effort. 

However, at <10 mist-netting hours, increasing listening effort improved accuracy (Fig. 9). 

A similar trend was true for precision (Fig. 9). Models with <5 mist-netting hours 

consistently failed to converge, and models with <10 mist-netting hours converged only 

when there were more than 5 listening hours (Fig. 9). 

 

 

Figure 9. Accuracy (a) and precision (b) of posterior distributions for bird population size 

(𝑁) across different effort scenarios, and model convergence across those same scenarios. I 

calculated accuracy (labelled ‘diff.’) of the posterior mean as 100 × (𝑀𝑒𝑎𝑛 −

𝑇𝑟𝑢𝑡ℎ)/𝑇𝑟𝑢𝑡ℎ), and I considered precision as the coefficient of variation (CV) of the 

posterior distribution. I considered that a model achieved convergence if the Gelman-

Rubin R-hat diagnostic for all model parameters was <1.1. 

 

Model verification 

Accuracy in the mean of the posterior distributions for N, 𝜌0 and 𝜓0 was affected by the 

parameter values given to 𝜌0 and 𝜓0 in the simulation. The mean of the posterior 

distributions deviated from the given value by a maximum of -47.3%, 24.9%, and 25.3% 

for N, 𝜌10 and 𝜓10 respectively (Fig. 10a-c). Accuracy in the mean of the posterior 

distribution for N increased with increasing values of 𝜌10 and 𝜓10, more steeply with the 

former. N was consistently underestimated, likely due to the priors for the detection rate 

parameters; these were centered around 0, and an overestimation of 𝜌10 and 𝜓10 would 

result in an underestimation of population size. The ability of the model to retrieve 

parameter 𝜌10 remained relatively similar across the range of parameter values, whilst the 

accuracy in the estimation of 𝜓10 decreased at high values of 𝜓10. Both parameters were 

consistently overestimated when at low values, likely due to the influence of their priors 

(centered at 0). 
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In terms of precision, the CV of the posterior distributions of N, 𝜌10 and 𝜓10 had maximum 

values of 0.68, 0.37 and 0.49, respectively (Fig. 10d-f). Precision in the estimate for N was 

lowest when both 𝜌10 and 𝜓10 were small, and a similar pattern was true for the estimation 

of 𝜌10. For 𝜓10, precision was consistently high until approximately -3.5, after which it 

decreased. All parameter combinations resulted in model convergence. 

 

 

Figure 10. Accuracy (a – c) and precision (d – f) of posterior distributions for bird 

population size (𝑁), capture rate (𝜌10) and vocalisation detection rate (𝜓10) from 1150 

simulations generated using varying values for 𝜌10 and 𝜓10, with N = 50, and replicated 10 

times. I calculated accuracy (labelled ‘diff.’) of the posterior mean as 100 × (𝑀𝑒𝑎𝑛 −

𝑇𝑟𝑢𝑡ℎ)/𝑇𝑟𝑢𝑡ℎ), and I considered precision as the coefficient of variation (CV) of the 

posterior distribution. 

 

Case study 

I fit my integrated and single-dataset models to mist-netting and acoustic data from 

Cameroonian cocoa farms and forest sites. Compared with the mark-recapture only model, 

the integrated model produced more precise estimates for model parameters and population 

size (Fig. 11; Appendix 6). The integrated model estimated with ~1.5 times more precision 

parameters 𝜈𝑖1, which quantify the effect of canopy on population size of each guild. 

Estimated population sizes of bird guilds were 165 – 233 for frugivores, 67 – 102 for 

insectivores, 133 – 143 for nectarivores, 3 – 13 for ant-followers, 20 – 41 for granivores 

and 67 – 83 for other. The effect of canopy cover on abundance was different between 

groups (Fig. 11); frugivores, insectivores and granivores decreased with increasing canopy 
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cover, whilst ant-followers showed the opposite trend. Nectarivores and other birds were 

largely unaffected by canopy cover (Fig. 11). Abundance was ~1.3 times higher in the dry 

season compared with the wet season. Capture rate decreased with increasing canopy cover 

and vocalization detection rate ranged from 0.003 in nectarivores to 0.02 in granivores. 

 

 

Figure 11. Population size (mean and 95% BCIs) of bird guilds with canopy cover in 

Cameroonian cocoa farms and forest in the dry season, estimated from both mark-

recapture model and integrated model. The guild ‘other’ was excluded from plots for the 

purpose of visual clarity.  

 

DISCUSSION 

The improved accuracy and precision of parameter estimates resulting from my integrated 

model compared with the simpler model match previous findings using different types of 

data (Doser et al., 2021; Fithian et al., 2015; Koshkina et al., 2017; Pacifici et al., 2017; 

Peel et al., 2019). However, the superior performance of integrated models should not be 

taken for granted, especially in scenarios like my own, where sample sizes are relatively 
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small and there is overlap between detection and environmental covariates (Simmonds et 

al., 2020). Simmonds et al. (2020) found that when combining simulated presence-only 

(PO) and presence-absence (PA) data, an integrated model only outperformed a simple 

model (just PA) beyond a certain sample size threshold. Additionally, they found that the 

PA-only model was more accurate in predicting an environmental covariate if that 

covariate also influenced detection probability (Simmonds et al., 2020). In contrast, also 

using simulated PA and PO data, Peel et al. (2019) found little influence of sample size on 

accuracy or precision of the estimates from an integrated model. Overall, it appears that the 

effectiveness of integrated models at estimating parameters is variable and dependent on 

specific characteristics of the data used.  

 

Doser et al.’s (2021) recent study deftly integrated point counts and acoustic surveys to 

estimate the abundance of a single bird species. They found that the integrated model 

produced more accurate and precise results compared with single-dataset models. Aside 

from the key difference in data types used (count vs mark-recapture) and the single- vs 

multi-guild element, there were several additional differences between my approach and 

that of Doser et al. (2021). First, my model allows for covariates that are specific to each 

sampling instance, and therefore does not assume that populations stay constant between 

visits. Second, my formulation in continuous time allows for more flexibility in sampling 

intervals and covariates. Third, the processing of acoustic data was undertaken differently 

(semi-automatic clustering algorithm vs manual identification), resulting in potential false 

positives in Doser et al.’s (2021) study but not in mine. Finally, Doser et al. (2021) did not 

include covariates that simultaneously affected detectability and population size. I 

conjecture that mark-recapture data may provide a significant advantage when it comes to 

estimating population size given these confounding covariates. 

 

When applied to a real-life scenario of bird populations, my integrated model produced 

relatively precise and ecologically plausible estimates. The estimated population size for 

the different feeding guilds were consistent with other studies from the tropics (Newmark, 

2006), and the relative abundance of each guild matched previous knowledge from the 

system (Jarrett, Smith, et al., 2021). The largest difference between the integrated and 

mark-recapture models was in the population size estimate for granivores, likely because 

granivores were not commonly caught in mist-nets, yet had high vocalization rates, and 

therefore acoustic data for this species were rich.  
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The integrated model benefitted from borrowed strength between species, both in the 

observation and process components. In my observation model, species shared the effect of 

canopy cover on capture rates, and in the process model species shared a seasonal trend. 

This is a small example of strength borrowing in a multi-species framework – an approach 

carried out at much greater depth by Ovaskainen & Abrego (2020) amongst others. An 

additional benefit of my integrated model is that it provides potentially valuable 

information on species’ vocalization rates. 

 

To test the effectiveness of integrating data I wished to remove the additional confounding 

factors of demographic processes. I therefore assumed that the population remained closed 

within each sampling period. Given the small sampling intervals used in the survey (6hrs), 

this assumption is reasonable, but a natural extension of my model would be to consider 

longer sampling periods over which demographic processes occur. Additional extensions 

to this model could consider longitudinal effects such as capture shyness, which can be a 

common phenomenon in active trapping methods such as mist-netting (Marques et al., 

2013), and daily fluctuations in bird activity (especially vocalization). Despite these 

simplifying assumptions, my model provides a practical and expandable way to improve 

estimates of population size for small-scale field studies. In general, adding an acoustic 

recording protocol to field surveys requires low effort and is relatively inexpensive 

(Bradfer-Lawrence et al., 2020; Whytock & Christie, 2017). The addition of acoustic data 

may be especially beneficial when mark-recapture effort is limited (e.g., small number of 

visits) or when capture rates are low. While identification of species from acoustic 

recordings can be a time-consuming bottle-neck, the increase in popularity of acoustic 

methods is resulting in more and more tools that help with this process (Darras et al., 

2020).  

 

In conclusion, the combination of acoustic and mark-recapture data offers an opportunity 

for more accurate and precise estimates of population size. This method can be applied to 

any taxa for which these data types are available, including birds, bats, cetaceans, and 

amphibians. To achieve accurate estimates of population size, we should move towards a 

modelling approach that accounts for possible biases and makes the most of available data. 
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Chapter 4 | Fewer pests and more ecosystem 

service arthropods in shady African cocoa farms: 

Insights from a data integration study 

 

ABSTRACT 

Agricultural intensification is leading to conversion of cocoa agroforestry to monocultures 

across the tropics. Arthropod communities in cocoa agroforestry provide a range of 

ecosystem services and dis-services. Arthropod pests (e.g., Mirids and mealybugs) can 

cause major damage to crops, whilst pollinators and natural enemies (species that consume 

pests) have the potential to enhance agricultural yields. Understanding how intensification 

of cocoa farms affects different arthropod groups is therefore important in maximising the 

abundance of beneficial arthropod groups and reducing pest burdens. However, little is 

known about the influences of agricultural intensification on tropical arthropod 

communities, especially in Africa, in which ~70% of the world’s cocoa is produced. 

Additionally, most research on arthropod communities considers data from different 

sampling methods separately, as proxies of abundance; whilst these proxies can be 

informative, estimating true abundance enables meaningful comparison between arthropod 

taxa, and therefore the study of community dynamics. Additionally, combining the data 

from the different methods would increase precision (due to larger pooled sample size). 

Here, I develop a Bayesian hierarchical model that integrates data from three common 

arthropod survey techniques to estimate population size of arthropod orders, and to 

investigate how arthropod community composition responds to farm shade cover (a proxy 

for management intensity). My results show that eight of eleven arthropod taxa responded 

to farm shade cover; importantly, brown capsid (primary pest of cocoa), Coleoptera pests 

and Hemiptera pests increased with increasing management intensity, whilst Araneae 

(natural enemies) and Diptera (potential pollinators) were more abundant in shady farms. 

My study provides novel insight into management-induced changes in arthropod 

communities in African agroforestry, and establishes a method to estimate population size 

of arthropod taxa. My findings shed light on the risks associated with the current push 

towards high-intensity cocoa farming in Africa. 
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INTRODUCTION 

In agroecosystems, effective management requires detailed knowledge of arthropod 

communities, including the population sizes of pests (Deutsch et al., 2018), the time of 

year at which pest populations peak (Mahob et al., 2011), and how they are influenced by 

environmental covariates (Babin et al., 2010; Bisseleua et al., 2009; Janssen & Rijn, 2021). 

This requirement is even more important when economic resources are limited, for 

instance in tropical regions where most agricultural production is carried out by small-scale 

farmers living below the poverty line (Niether et al., 2020; Tscharntke et al., 2012). 

Currently, farmers are being encouraged to intensify agriculture on the basis that it will 

increase their yields; however, in the absence of expensive chemical inputs, intensified 

farms may quickly experience increases in arthropod pests, leading to long-term yield 

declines (Ordway et al., 2017; Tscharntke et al., 2011). Thus, identifying the optimal 

approach to sustainable management requires better understanding of the effect of 

agricultural intensification on arthropod communities (Janssen & Rijn, 2021; Niether et al., 

2020).  

 

One aspect of optimising management for improved yields is understanding how to 

enhance natural provision of ecosystem services (Bisseleua et al., 2013; Toledo-Hernández 

et al., 2021). Certain arthropod groups provide essential ecosystem services, such as 

pollination, which have the potential to greatly increase yields (Toledo-Hernández et al., 

2020).  Understanding how management influences both beneficial arthropod groups and 

pests is therefore essential to achieve a desirable balance between potential services and 

dis-services in agroecosystems. 

 

Agroforestry, the practice of growing crops under a canopy of shade trees, is a common 

form of food production in tropical regions, in part because agroforestry systems are 

relatively cheap to establish, requiring just the thinning of existing rainforest and planting 

of crops beneath the canopy (Clough et al., 2009; Tscharntke et al., 2012). A prime 

example of an agroforestry-grown crop is cocoa, the fastest expanding export-oriented crop 

in the Afro-tropics (Ordway et al., 2017). Though cocoa is traditionally grown under shady 

conditions, recently there has been a noticeable shift towards more intensively managed 

monocultures, in which cocoa trees are planted in clear-cut patches of land (Armengot et 

al., 2016; Tscharntke et al., 2011). This expansion and intensification of cocoa agriculture 

has led to massive deforestation in countries such as Côte d’Ivoire (Barima et al., 2016; 
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Maclean, 2017). While there is evidence supporting the increase in yields in sunny farms 

compared to their shady counterparts (Bisseleua et al., 2013), there is also evidence that 

shaded cocoa farms have a longer productive lifespan and suffer lower pest burdens, 

making long-term yields comparable (Ahenkorah et al., 1974, 1987; Niether et al., 2020; 

Tscharntke et al., 2011). However, most of the research into cocoa management and its 

relationship to biodiversity and productivity comes from the Neotropics and South East 

Asia (Bisseleua et al., 2013), and the African cocoa belt comprises different common 

management practices as well as a different arthropod community (Bagny et al., 2018; 

Bisseleua et al., 2013). 

 

In Africa, the main cocoa pests are the brown capsid Sahlbergella singularis (Hemiptera: 

Miridae; Bagny Beilhe et al., 2018), as well as other Hemipteran groups such as 

Mealybugs (Hemiptera: Pseudococcidae spp.) and Mosquito capsids (Hemiptera: 

Afropeltis spp.). These pests are still among the most important factors limiting cocoa 

production, causing annual crop losses of about 25 to 40% (Wessel & Quist-Wessel, 2015).  

Hemipteran bugs tend to occur at higher abundances in sunnier farms, though evidence 

supporting this is still limited (Bagny Beilhe, Babin, et al., 2018). While pests decrease 

agricultural productivity, several arthropod groups provide ecosystem services in cocoa 

farms, such as pollination and pest suppression. There is still very limited information 

available on cocoa pollinators in Africa, but in Indonesia, pollination is thought to be 

accomplished by small Dipterans (Toledo-Hernández et al., 2021). The effect of shade 

cover on potential pollinators of cocoa is still largely unknown, especially in the 

Afrotropics (Toledo-Hernández et al., 2021). Natural enemies such as ants and spiders may 

provide pest suppression in cocoa agroforestry, and there is some indications that these 

groups show a preference for shadier farms (Bisseleua et al., 2017).  

 

One major limitation in our current understanding of arthropod communities is that it is 

almost entirely based on relative measures of abundance, rather than absolute population 

sizes (Didham et al., 2020). Until now, arthropod surveys commonly involve different 

methods to target different groups, and then interpret the resulting data as proxies to 

investigate trends within groups across time or space (Didham et al., 2020; Montgomery et 

al., 2021). This approach has two main limitations: first, using data from each survey type 

independently results in smaller effective sample sizes, thus reducing the potential 

precision of results for a given level of survey effort (Kindsvater et al., 2018). Second, this 

approach does not involve estimating detection probabilities, and results in proxies for 
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abundance for each group that are not corrected for detectability and therefore not directly 

comparable between taxa. The use of proxies rather than absolute abundances limits the 

applications of these data; of special importance is the study of arthropod community 

dynamics, which requires data on population size comparable between taxa (Curtsdotter et 

al., 2019). Studying community dynamics is the most effective method to understand the 

mechanisms driving arthropod community composition and the implications in terms of 

ecosystem services (Curtsdotter et al., 2019; Janssen & Rijn, 2021; Kawatsu et al., 2021; 

Tipping et al., 2016). In these complex systems containing diverse arthropod taxa, which 

play varying roles in the provision of ecosystem services or dis-services, and interact 

between each other (predation, competition, parasitism), the cascading effects of 

management on communities can be complex and hard to predict without a fully 

parametrised community model (Janssen & Rijn, 2021). Lack of information on arthropod 

group population size could lead to ineffective management due to targeting unimportant 

groups (Janssen & Rijn, 2021), targeting important groups at the wrong time of year 

(Mahob et al., 2011), or missing opportunities for natural enhancement of yields via 

arthropod-provided ecosystem services (Janssen & Rijn, 2021; Niether et al., 2020; 

Tscharntke et al., 2011). 

 

Estimating insect population sizes is challenging, and rarely confronted. The main 

challenge is that Insecta is a mega-diverse class made up of species with contrasting 

characteristics, behaviours, and life-history strategies, and consequently survey methods 

used in the field tend to be biased towards specific groups or characteristics (Didham et al., 

2020; Montgomery et al., 2021). Active visual surveys have broad taxonomic coverage 

(Montgomery et al., 2021) but are more labour-intensive and expertise-demanding 

compared with passive methods. Commonly surveys favour the latter, perhaps because it 

allows for more spatial and temporal replicates (Montgomery et al., 2021); passive 

trapping mostly just involves deployment and collection, and can be done in many sites 

simultaneously, whilst active surveys require personnel consistently on the ground.  

 

An appealing solution to the problem of insect population size estimation is data 

integration, which consists of combining different data sources to generate parameter 

estimates that are typically more robust than any one method alone (Jarrett et al., 2022). 

This technique has been used to estimate species’ abundance and distribution from patchy 

and biased data, for instance citizen science records or museum specimens, in combination 

with higher-quality data such as surveys (Koshkina et al., 2017; Miller et al., 2019; Peel et 
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al., 2019). Integrating different data types can provide improved estimates of abundance 

for two main reasons: first, combining different data types compensates for their respective 

biases, because shared biological parameters are estimated jointly (Miller et al., 2019). 

Second, combining these data types results in an increase in the effective sample size (data 

pooling), thus providing more statistical power (Kindsvater et al., 2018; Matthiopoulos et 

al., 2022). Data integration methods are especially appealing when applied to arthropods, 

because they could allow the combination of a small amount of high-quality data (from 

active visual surveys) with a larger amount of lower quality data (from passive trapping), 

thus optimising field effort investment. However, until now, these methods have not been 

applied to arthropod sampling data. 

 

Here, I combine data from three methods (malaise traps, sweep-netting and visual surveys) 

to estimate the population sizes of arthropods groups. I chose these specific methods for 

several reasons.  First, they broadly represent the three main categories of sampling 

techniques: passive trapping (e.g., pan traps, light traps, malaise traps), active trapping 

(e.g., beating sheet, sweep-netting) and visual surveys. Second, these three methods are 

complementary in terms of target groups and effort: malaise traps are most effective at 

sampling flying insects and require low effort in the field but higher processing effort, 

whilst sweep-netting and visual surveys are most effective for stationary insects and 

require higher effort in the field (Montgomery et al., 2021).  

 

I applied the data integration technique to data collected in Afrotropical cocoa agroforestry 

systems on a gradient of shade cover. In cocoa agroforestry, shade cover is an indication of 

shade tree farm management; more intensively managed (‘sunny’) farms tend to have open 

canopies, whilst traditional (‘shady’) agroforests have closed canopies (Tscharntke et al., 

2011). Using data collected across this gradient, I aimed to 1) generate comparable 

estimates of population size across the arthropod community; and 2) investigate the effect 

of shade management on arthropod groups with a focus on pests. 

 

METHODS 

Field sites 

We conducted arthropod surveys in 28 cocoa farms in Southern Cameroon (Fig. 2). Farms 

were separated by more than 500 m and were at least 1.5 ha in size. The shade cover in our 
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farms ranged from 20% to 100%, and was measured following Jarrett, Smith, et al (2021; 

Fig. 3). 

We surveyed arthropods in these farms over 4 visits in Jan-Feb and Aug-Sept 2019-2020. 

Not all sites were visited in all field campaigns, so the number of visits per site ranged 

from 2 to 4. In Southern Cameroon, rainfall follows a bimodal seasonal pattern with the 

main dry season spanning November to February, followed by a rainy season from March 

to June, a short dry season in July, and a second rainy season from August to October 

(Molua, 2006). Our visits captured both the dry season (Jan-Feb) and the rainy season 

(Aug-Sept), allowing us to assess the effect of rainfall seasonality on arthropod 

populations.  

 

Insect surveys 

We used 3 different sampling methods to survey arthropods: sweep netting, malaise traps, 

and visual surveys (summarised in Fig. 12). For all observations of a given survey type, the 

observer was the same researcher.  

 

During each visit, the observer conducted two sweep netting sessions, one at dawn (~6:30) 

and one at dusk (~18:30). Each session consisted of walking a 240 m transect through the 

farm, sweeping the vegetation at chest height once every 6 m, alternating left and right 

(total 40 sweeps per session). Transects always crossed the centre of the farm and avoided 

edges. At the end of the session, the observer would transfer the contents of the sweep net 

to a plastic bag containing a wad of cotton wool soaked in 50% ETOH. Once the 

arthropods had stopped moving, the observer removed them from the bag and counted the 

number of individuals from each arthropod order. For the analyses, I considered the sum of 

the morning and evening counts. The evening before the dawn sweep netting session, we 

set up 2 malaise traps at each farm. They were placed at least 20m from the farm boundary 

and were separated by a minimum of 50m. The malaise traps were unbaited, with the 

collection jars containing 50% ETOH. The traps were left standing for 24hrs, so that they 

were collecting at the same time as the sweep netting occurred. At the end of the 24hrs we 

collected the traps, and identified and counted the specimens in the collecting jars to order 

level. 

 

We carried out two different types of visual surveys: full tree surveys and pest counts 

(henceforth ‘visual surveys’ refers to both, ‘tree surveys’ refers to the former and ‘pest 
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counts’ to the latter). Within 2 weeks (mean = 8 days) of the sweep-netting and malaise 

trapping, we conducted the tree surveys. Whilst sweep netting and malaise traps were used 

at each visit to each farm, tree surveys were conducted in a sub-sample of farms, due to 

effort constraints. The tree surveys consisted of a 25 min survey of all arthropods found in 

a specific cocoa tree (Ferreira et al., n.d.). In each of the 8 farms in which the full tree 

surveys were conducted, we chose two cocoa trees that were ~3 m high and of the same 

age and type. The 25 mins were divided into five 5-minute periods, one of which was 

dedicated to the tree trunk, and each of the other four dedicated to one quarter of the crown 

(following Ferreira et al., n.d.). The observer used a ladder to reach the higher parts of the 

crown, and stopped the watch when the count or identification was not instantaneous.  

 

The pest counts (conducted in same 24 hr period as sweep-netting and malaise traps) 

adopted similar methodology to the tree surveys, but with several important distinctions. 

First, the pest counts disregarded other arthropods. We considered as pests any arthropods 

found visibly damaging cocoa trees, whether it be the pods themselves or the leaves, shoots 

or trunks. This distinction possibly results in an overestimation of the number of pests, as 

some individuals observed actively damaging cocoa (and consequently counted as pests) 

may have been opportunistically feeding but do not cause significant damage to the crop. 

We settled on this broad definition of pest because identification to species level in the 

field requires a high level of expertise and increases handling time considerably. 

Additionally, though the main pests of cocoa in Africa are well known (e.g., brown 

capsid), other secondary pests are less well documented (Bagny et al., 2018). Second, the 

observer did not utilise a ladder and therefore only observed the trunk of the tree or any 

branches at or below eye-level; this trade-off streamlined count survey logistics (many 

more trees could be surveyed) whilst covering a search area containing most cocoa pods 

(and pests) in our farms (Romero Vergel et al., 2022). Rather than focussing on just one 

tree, the observer undertook a 40 min walk through the farm stopping at each tree on-route 

to identify and count any pest arthropods. The number of trees visited was approximately 

50. Whenever the identification or count of arthropods was not instantaneous (e.g., if there 

was a large group of individuals, or if the observer needed to consult a reference book), the 

observer would stop the watch, and then re-start it once they re-commenced surveying. The 

pest counts were conducted at dawn, because brown capsids become less active during the 

sunniest hours of the day (Bagny Beilhe, Babin, et al., 2018). 
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To simplify the analyses, I grouped arthropods into the following 11 taxa: Araneae, 

Blattodea, brown capsid (primary pest of cocoa), Coleoptera non-pest, Coleoptera pest, 

Diptera, Hemiptera non-pest, Hemiptera pest, Hymenoptera, Lepidoptera non-pest and 

Lepidoptera pest (Table 5). These groupings represent the orders most captured across 

trapping methods.  

 

 

Figure 12. Summary of sampling methods used in the field. Created with diagrams.net. 

 

Table 5. Taxa considered in the model, and taxonomic coverage of each survey method. 

Sweet-nets, malaise traps and tree surveys did not distinguish pests and non-pests, and 

therefore considered the sum of both, whilst pest counts only considered pests. 

Taxa 

Surveyed by sweep-

netting and malaise 

traps (subscript j*) 

Surveyed by tree 

surveys 

(subscript j*) 

Surveyed by pest 

counts (subscript 

p) 

Araneae Araneae Araneae   

Blattodea Blattodea Blattodea   

Coleoptera non-pest 
Coleoptera Coleoptera 

  

Coleoptera pest Coleoptera pest 

Diptera Diptera Diptera   

Hemiptera non-pest Hemiptera Hemiptera   
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Hemiptera pest Hemiptera pest 

Hymenoptera Hymenoptera Hymenoptera   

Lepidoptera non-pest 
Lepidoptera Lepidoptera 

  

Lepidoptera pest Lepidoptera pest 

Brown capsid   Brown capsid Brown capsid 

 

Modelling framework 

My model integrated count data from the three different survey techniques into a joint 

likelihood to estimate population size.  

 

Determinants of population size 

I considered an arthropod community made up of the 11 taxa listed above (Table 5). My 

estimates of population size were at the spatial scale of one cocoa tree: 𝑁𝑗𝑖𝑣 refers to the 

population size of each taxon j at site i and visit v per cocoa tree. I modelled population 

size from a Poisson-Gamma (i.e., Negative Binomial) process with rate 𝜆𝑗𝑖𝑣 and a scale 

parameter ℎ𝑗  (Greene, 2008).  

𝑁𝑗𝑖𝑣~ NB(𝜆𝑗𝑖𝑣, ℎ𝑗) (4.1) 

ℎ𝑗~Gamma(𝜃𝑗 , 𝜑𝑗) (4.2) 

I used a Poisson-Gamma distribution to allow for overdispersion resulting from stochastic 

variation in species population sizes. I set uninformative priors on ℎ𝑗 , Gamma distributed 

with shape 𝜃𝑗 = 0.0001 and rate 𝜑𝑗 = 0.0001 (truncated at 0.1 to avoid infinite values). 𝜆𝑗𝑖𝑣 

was modelled as a log-linear function with a guild-specific intercept (𝛾𝑗0) and two covariates: 

a guild-specific effect of shade cover (continuous variable, centered and standardized) on 

population size (𝑐𝑎𝑛𝑜𝑝𝑦𝑖) and a guild-specific seasonal categorical covariate (𝑠𝑒𝑎𝑠𝑜𝑛𝑣, 

where 𝑠𝑒𝑎𝑠𝑜𝑛𝑣 = 1 if Dry and 0 otherwise; Equation 4.3).  

log(𝜆𝑗𝑖𝑣) = 𝛾𝑗0 + 𝛾𝑗1𝑐𝑎𝑛𝑜𝑝𝑦𝑖 + 𝛾𝑗2𝑠𝑒𝑎𝑠𝑜𝑛𝑣  (4.3) 

Observation component 

During each visit, separated by at least 5 months, I sampled the arthropod community 

using sweep-netting, malaise traps, tree surveys and pest counts, as discussed above. I 
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assumed that the different survey methods functioned independently, so that the probability 

of being detected by one method did not influence the probability of being detected by the 

other methods. I assumed that the population of each taxon available for detection by 

method m was proportional (but not necessarily equal) to 𝑁𝑗𝑖𝑣 (Miller et al., 2019).  

 

Sweep netting, malaise traps and tree surveys did not distinguish between pests and non-

pests. Therefore, groups Hemiptera, Coleoptera and Lepidoptera included both pests and 

non-pest individuals (henceforth, I use subscript 𝑗∗ to represent 𝑛𝑜𝑛𝑝𝑒𝑠𝑡𝑗 + 𝑝𝑒𝑠𝑡𝑗; Table 

1). I modelled the number of individuals found of each taxon by each method m (𝑐𝑚𝑗∗𝑖𝑣) 

from a Poisson-Gamma distribution with a mean of 𝜇𝑚𝑗∗𝑖𝑣 and a scale parameter 𝑑𝑚𝑗∗𝑖𝑣. The 

mean 𝜇𝑚𝑗∗𝑖𝑣 was given by population size 𝑁𝑗∗𝑖𝑣 multiplied by a taxon- and method-specific 

per-capita capture rate exp(𝛽𝑚𝑗∗) . 

𝑐𝑚𝑗∗𝑖𝑣~ NB(𝜇𝑚𝑗∗𝑖𝑣, 𝑑𝑚𝑗∗𝑖𝑣) (4.4) 

𝑑𝑚𝑗∗𝑖𝑣~ Gamma(𝜓𝑚𝑗∗ , 𝜓𝑚𝑗∗) (4.5) 

𝜇𝑚𝑗∗𝑖𝑣 = 𝑁𝑗𝑖𝑣exp (𝛽𝑚𝑗∗) (4.6) 

My model is similar to the Poisson version of an N-mixture model (Kéry & Royle, 2020; 

Royle, 2004), except that N-mixture models assume that population size N remains fixed 

between survey events, and therefore each survey is a replicated count with the same 

underlying population size. In my model, N did not remain fixed between survey events 

(i.e., visits), but was proportional between methods. In other words, I assumed that each 

method was surveying the same latent population. 

 

To ensure that the magnitude of the scale parameter did not dilute all the signal in the data, 

I implemented a shrinkage tendency towards Poisson dispersion by setting the following 

prior for 𝜓𝑚𝑗∗. 

𝜓𝑚𝑗∗ = max(10000 − 𝜓𝑚𝑗∗
∗ , 1000) where 𝜓𝑚𝑗∗

∗ ~Exponential (
1

200
) (4.7) 

I set normally distributed priors for capture rates 𝛽𝑚𝑗∗, parametrised according to knowledge 

of the groups best targeted by each method, as well as the overall capture efficiency of each 

method (Montgomery et al., 2021). For sweep netting, I set priors of mean = -1, SD = 2 for 

all groups except Diptera and Lepidoptera, that comprise mostly flying forms and therefore 
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can avoid sweep nets more easily. For these flying groups I centred priors around -2 (SD = 

2). For malaise traps I set priors with mean = -1 and SD = 2 for all groups except Diptera 

and Lepidoptera, which are the groups best captured by this method. For these, I centred 

priors around 1.2 (SD = 2). I considered visual survey capture rate to be the highest, with a 

mean of -0.2 (SD = 0.1) for all groups. For visual surveys I assumed a high capture rate, and 

this essentially calibrated the capture rates of the other methods. While visual surveys were 

only conducted on a subset of farms, they enabled us to calibrate capture rates for sweep 

netting and malaise traps. 

 

The pest counts sampled only pests, and therefore only considered the subset of groups (𝑝) 

that contained this type (Table 5). I modelled the pest count data for each visit (𝑐4𝑝𝑖𝑣) from 

a Negative binomial distribution with a mean of 𝜇4𝑝𝑖𝑣 and a scale parameter 𝑑4𝑝𝑖𝑣. The mean 

𝜇4𝑝𝑖𝑣 was given by population size 𝑁𝑝𝑖𝑣 multiplied by a group-specific per-capita capture 

rate. Per unit area, the capture rates for pest counts were considered the same as the capture 

rates for tree surveys for the corresponding groups. However, as the pest counts covered a 

different surface area compared with the tree surveys (for tree surveys 1 entire tree, for pest 

counts a fraction of 50 trees), I scaled the capture rates 𝛽𝑗3 by a parameter 𝑎 which 

represented the ratio of surface area covered by both methods.  

𝑐4𝑝𝑖𝑣~ NB(𝜇4𝑝𝑖𝑣, 𝑑4𝑝𝑖𝑣) (4.8) 

𝑑4𝑝𝑖𝑣~ Gamma(𝜓4𝑝,  𝜓4𝑝) (4.9) 

𝜇4𝑝𝑖𝑣 = 𝑁𝑝𝑖𝑣exp (
𝛽𝑗3

𝑎
)  (4.10) 

I set the same prior for 𝜓4𝑝 as described for 𝜓𝑗𝑚. 

 

Analyses 

I fit the integrated model to the field data and evaluated precision of the posteriors using 

Bayesian Credible Intervals (BCIs). I performed model validation by generating simulated 

data with known parameters, fitting the integrated model and then comparing simulated 

and estimated parameters (Appendix 7). 

 

I fit all models using Bayesian inference with the JAGS 4.3.0 software (Plummer, 2017) 

executed using the runjags package (Denwood, 2016) in the R statistical computing 
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environment (R Core Team, 2020). I ran each model for 50,000 iterations, with 10,000 

burn-in iterations, and convergence was assessed visually by monitoring trace plots and 

with the Gelman-Rubin R-hat diagnostic, with convergence presumed when R-hat < 1.1. 

 

RESULTS 

Estimates of population size 

Under simulation, the integrated model was able to accurately estimate model parameters 

relating to detection rates and population size (Appendix 7). When fit to data from the 

field, the integrated model was able to estimate ecologically plausible population sizes for 

each arthropod group (Figs. 13 – 14).  The arthropod community in cocoa trees was 

dominated in abundance by Hymenoptera, followed by non-pest Hemiptera. The least 

abundant group was Brown capsid, with mean population sizes of 1.6 individuals per tree 

(95% CIs = 0.52, 3.4). 

 

Effects of management & season 

My model detected significant effects of shade cover on the population size of eight out of 

eleven arthropod groups (Figs. 13 & 15). Araneae, Blattodea and Diptera increased with 

increasing shade cover, with populations in shady farms estimated to be approximately 

double the size of populations in sunny farms. Population size of brown capsids was 4 

times higher in sunny farms compared to shady farms. Coleoptera and Hemiptera 

decreased in population size with increasing shade cover, with approximately 2x the 

number of Hemipteran and Coleopteran pest individuals in sunny farms compared to shady 

ones. 

 

Season had a significant effect on five out of nine groups (Figs. 14 – 15): Diptera and 

brown capsid were more abundant in the rainy season, with brown capsids doubling in 

population size from the wet season to the dry season. Hemiptera were significantly more 

abundant in the dry season than the wet season, and a similar trend was true for 

Hymenoptera. 
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Figure 13. Effect of canopy cover (%) on population size of different arthropod groups. 

Points are mean of posteriors for population size at each site & visit, and the line is the 

coefficient describing the effect of canopy cover on population size, as estimated by model 

(parameter 𝛾𝑗1). Asterisks indicate that the 95% BCIs of the posterior did not overlap 0.  
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Figure 14. Effect of season (dry or wet) on population size of different arthropod groups. 

Asterisks indicate that the 95% BCIs of the posterior of parameter 𝛾𝑗2 (coefficient for the 

effect of season on population size) did not overlap 0. 

 

 

Figure 15. Arthropod community composition in cocoa trees under four different 

scenarios: full-sun farm (20% canopy) in the dry and wet season, and shade farm (90% 

canopy) in the dry and wet season. Proportional community composition predicted from 

model. 

 

DISCUSSION 

I used integrated analysis of data from several common arthropod survey techniques, to 

estimate the population size of arthropod taxa in cocoa agroforestry systems. I investigated 

the effect of shade cover and season on these groups, finding that 8/11 groups showed 

significant variation in population size with shade cover and 5/11 showed a seasonal effect.  

 

I found that arthropod communities in cocoa farms were dominated by Hymenoptera, 

which matches findings from similar tropical habitats (Dial et al., 2006). Hymenoptera is 

one of the largest insect orders, encompassing sawflies, bees, ants, and wasps, with a wide 

range of life-history strategies including eusocial living, parasitism, predation and 

herbivory (Goulet & Huber, 1993). Some Hymenoptera species in the Afrotropics are 

considered keystone species, for instance Dorylus ants that swarm the forest floor and 
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surrounding vegetation, generating resources for a range of vertebrate and invertebrate 

species (Peters et al., 2011). In agroforestry, ants predate on pest insects (Bisseleua et al., 

2013, 2017), as well as play a role as potential pollinators (Toledo-Hernández et al., 2021). 

Many parasitic wasps are natural enemies of pests (Bisseleua et al., 2013; Sperber et al., 

2004). However, there is also some evidence showing that certain ant groups can damage 

cocoa crops by acting as mechanical vectors of disease (Bisseleua et al., 2017). I found no 

effect of shade cover on Hymenoptera abundance, possibly because the order is so diverse 

that different groups react differently to shade cover (e.g., Peters et al., 2011), resulting in 

an overall net-zero effect. I found a significant seasonal effect on Hymenoptera 

populations, with higher abundances in the dry season. This seasonal trend may be driven 

by flying Hymenoptera, that can show a preference for dryer conditions in the Afrotropics 

(Hopkins et al., 2019). 

 

Hemiptera were the second most common order in cocoa farms. Though most Hemiptera 

are herbivorous, the degree of damage they cause crops is extremely variable (Yede et al., 

2012). Mealybugs (Hemiptera: Pscuedococcidae), for instance, can occur at high 

abundances in cocoa farms and are responsible for spreading cocoa swollen shoot virus 

(CSSV) in the Afrotropics (Bagny Beilhe, Babin, et al., 2018). Overall, I found that there 

were ~6 times more non-pest hemipterans than pests. These may feed on other vegetation 

in cocoa farms such as shade trees or understorey vegetation. I found a negative trend of 

Hemipterans with increasing shade, indicating that sunnier farms would have higher 

burdens of hemipteran pests. This finding agrees with Ahenkorah et al. (1974, 1987), who 

report that sunny farms in the Afrotropics have shorter productive life-spans due to 

increasing pest burdens. Additionally, I found that Hemipterans were more abundant in the 

dry season. This may be due to climatic conditions, or it may be a result of population 

growth during the main fruiting season of cocoa (fruiting Sept-Dec, dry season Nov-Feb;  

Akesse-Ransford et al., 2021; Yede et al., 2012). 

 

I investigated populations of brown capsids (a Hemipteran) at the species level, as this 

species is considered the primary pest of cocoa in Africa. I found that brown capsids occur 

at very low densities, averaging 1.6 individuals per tree. This estimate is similar to 

previous estimates of 2.1 individuals per tree (Babin et al., 2010) and <1 individual per tree 

(Bisseleua et al., 2011). Additionally, I found a significant decrease in capsid abundance 

with increasing shade cover, in accordance with Babin et al. (2010) and Bagny et al. 
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(2018). This trend indicates the risks incurred in the current push towards more intensified 

cocoa production in Africa (Armengot et al., 2016).  

 

Similar to Hemiptera, I found an increase in Coleoptera abundance with decreasing shade 

cover. This order consists of mostly herbivorous species, though many species also feed on 

debris or predate other invertebrates (Santos-Heredia et al., 2018). In Indonesia, 

herbivorous coleoptera showed a preference for sunny open habitats, possibly due to lower 

predation rates (Klein et al., 2002). Similar to Hemiptera, I found ~5 times more non-pest 

Coleopterans compared to pests. In general, this group is not considered a major pest of 

cocoa in Africa, but in the Neotropics and Asia, weevils (Coleoptera: Curculionidae) and 

Ambrosia beetles of the genus Xyleborus cause damage to cocoa (Bagny et al., 2018).  

Lepidoptera, in contrast, showed no change in abundance with shade cover. This may be 

because Lepidoptera covers wide-ranging life-histories, from herbivorous caterpillars that 

are main cocoa pests in Indonesia (e.g., Conopomorpha cramerella; Maas et 2013) to 

nectarivorous adult butterflies and nocturnal moths (Schroth et al., 2004). Whilst 

caterpillars may benefit from lower predation in sunny farms (similar to Coleoptera), adult 

butterflies may show a preference for increased vegetation (and hence flower) diversity in 

shadier farms (Cassano et al., 2009; Schroth et al., 2004). 

 

My results showed that Diptera, Blattodea and Araneae increased in abundance with 

increasing shade cover. Both Diptera and Blattodea prefer dark, damp habitats, which are 

likely more common in shady low-intensity farms (Sonwa et al., 2019; Toledo-Hernández 

et al., 2021). Diptera also showed a strong seasonal trend, with higher abundances in the 

rainy season. This phenomenon is well known in the tropics; for instance, mosquitoes 

carrying malaria tend to peak in the rainy season (Ngowo et al., 2017). Small midges 

known as ceratopogonids (Diptera) are widely acknowledged as the most common cocoa 

pollinators (Mortimer et al., 2017), but it is likely that other taxa play a role in pollination 

as well (Toledo-Hernández et al., 2021). Most information on pollinators in cocoa is based 

on assessing flower visitors, and whilst some taxa that visit cocoa flowers are likely to 

pollinate, others may not. The true identity of cocoa pollinators is therefore widely 

unknown. My findings indicate that, if Dipterans indeed play a role in cocoa pollination in 

Africa, then shadier farms would have higher availability of pollinators. However, to 

definitively test this we would need further knowledge on the identity of pollinators (rather 

than flower visitors) in African cocoa.  
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Araneae may also be attracted to the dark and damp microhabitats offered by shady farms 

(Bisseleua et al., 2013; Sonwa et al., 2019), or their preference could be related to the 

availability of prey. Araneae may well prey on Diptera, which occur more commonly in 

shady farms, as well as on Hemiptera and other pest groups (Bisseleua et al., 2013); the 

lower abundances of pests in shaded farms could in part be due to higher predation 

pressures (Ferreira et al., n.d.). 

 

Integrating data from the different survey types in this study allowed us to correct for the 

detection biases of each method and achieve precise population size estimates for a broad 

range of arthropod groups. My approach provides several advantages: first, estimating 

population size of key groups, such as pests, opens opportunities for quantification of 

services and dis-services to crops, which cannot be estimated with proxies of abundance 

(Deutsch et al., 2018). Second, my estimates of population size are comparable across taxa, 

allowing future studies to investigate community dynamics, and thus make long-term 

predictions about the influence of management on arthropod communities (Janssen & Rijn, 

2021). Finally, my estimates of the effect of shade cover on abundance are likely more 

precise because of the increased sample sizes created by pooling data across survey 

methods (Kindsvater et al., 2018; Matthiopoulos et al., 2022).  

 

The main limitation to my data integration approach is that the population size estimation 

depends considerably on having a subset of data from a ‘gold-standard’ sampling approach 

with high detectability (in my case, the visual surveys). Without these data the model 

would be unable to distinguish population size from capture rates. Consequently, 

inaccuracy in population size estimates could result from over-estimating the capture 

probability of the gold standard method. Additional limitations include the level of 

taxonomic aggregation; whilst grouping species to order level facilitates model estimation, 

it may also obscure intra-order variability in effects of management.  

 

In conclusion, I found that lower intensity cocoa agroforestry in the Afro-tropics benefits 

from lower pest burdens, and higher abundance of potential pollinators and natural 

enemies. This shift in community composition with management may lead to rapidly 

declining yields in intensive cocoa farms, an important issue when considering the general 

trend towards intensification of cocoa agriculture in Africa (Ordway et al., 2017; 

Tscharntke et al., 2011). My analyses provided a method to generate comparable estimates 

of population size across taxa, the first step towards being able to study community 
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dynamics of arthropods in cocoa farms. Assessing the community dynamics of arthropods 

will provide a mechanistically-explicit holistic view of the effects of management on the 

provision of ecosystem services and dis-services. I encourage future in-depth studies of 

each of these arthropod groups and their associated services and dis-services. My results 

suggest that intensification of cocoa agriculture, wide-spread in the Afrotropics, may be an 

unsustainable trajectory leading towards a crash in productivity induced by increasing pest 

burdens and loss of ecosystem services (Clough et al., 2009; Tscharntke et al., 2011).  
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Chapter 5 | States of communities in a complex 

agricultural setting: implications for conservation 

and productivity 

 

ABSTRACT 

Human populations and demand for commodity crops in tropical regions will continue to 

increase steeply in the following decades, putting increasing pressure on the natural 

resources of some of the world’s biodiversity hotspots. In these areas, we need solutions 

that allow increased food production without demolishing habitats for biodiversity. 

Agroforestry systems may offer this opportunity, providing habitat for rainforest fauna 

whilst producing high and sustainable agricultural yields. Ideally, agroforestry could be 

managed to achieve a desirable combination of biodiversity conservation and productivity; 

however, the influence of management on biodiversity and its implications for agricultural 

productivity are poorly understood. The main issue with understanding the relationship 

between biodiversity and productivity is the complexity of the system; in agroforestry, 

animal taxa provide both services (e.g., pollination) and dis-services (e.g., crop 

consumption by pests), interact with each other (e.g., birds predate pests) and may respond 

differently to management. Therefore, a specific management strategy may result in 

unpredictable cascading effects on the community, with consequences for the diversity and 

potential productivity of the system. Here, I developed a mechanistic community model of 

an agroforestry animal community that allowed us to investigate community dynamics and 

estimate community equilibrium states. I tested the model under simulation and found that 

it was able to retrieve community states, species interaction and growth parameters with 

high accuracy and precision. I then fit the model to data on birds and arthropods collected 

in African cocoa agroforestry to demonstrate how community states changed with shade 

cover (a proxy for management intensity). Communities in shady (low intensity) farms 

tended towards states with higher diversity of arthropods, higher biomass of potential 

pollinators and lower biomass of pests. Sunny (intensively managed) farms had a higher 

biomass of pests and higher total biomass of birds (driven by abundant habitat generalists). 

Additionally, I found that equilibrium biomasses of taxa were strongly dependent on both 

agroforestry shade cover and the other taxa in the community, emphasising the importance 

of direct and indirect effects in community dynamics. My results suggest that animal 
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communities in shady farms may be beneficial both for diversity and productivity. 

Although such apparent win-win management strategies may not apply everywhere, and 

may not hold if crop yields are explicitly examined, my work nevertheless provides a 

novel, holistic framework with which to assess community dynamics in complex habitats 

and understand the outcomes in terms of biodiversity conservation and productivity. 

 

INTRODUCTION 

Low intensity small-holder agriculture is the main agricultural practice in the tropics, 

which constitute some of the world’s economically-poorest but biodiversity-richest regions 

(Tscharntke et al., 2012). In these areas, farmers commonly live on <£1/day, surrounded 

by some of the highest levels of wildlife diversity on Earth (Tscharntke et al., 2012). 

Agroforestry, the practice of growing crops under a canopy of shade trees, is a key 

example of low-intensity agriculture that offers opportunities for both agricultural 

productivity and biodiversity conservation (Clough et al., 2011; Tscharntke et al., 2011). 

However, it is yet unclear how to manage these small-holder systems to achieve viable 

combinations of agricultural yields and biodiversity conservation.  

 

Wildlife-friendly agriculture is more important now than ever, given the current push 

towards intensifying cultivation (Tscharntke et al., 2012). The growing demand for 

commodity crops is pressurising policymakers into encouraging agricultural expansion and 

intensification (Ordway et al., 2017). Intensification of agroforestry means the removal of 

shade trees which exchanges floristically diverse agroforestry systems for monocultures 

(Clough et al., 2009; Tscharntke et al., 2011). This intensification results in community 

changes, loss of biodiversity and abundance declines (Cassano et al., 2009; De 

Beenhouwer et al., 2013; Jarrett, Smith, et al., 2021). Changes in wildlife communities 

could also lead to unexpected loss of agricultural productivity, for instance due to 

reductions in animal groups that provide ecosystem services, such as pollination and pest 

control (Ferreira et al., n.d.; Maas et al., 2013, 2016). 

 

Understanding the trade-offs and synergies between biodiversity and productivity is a 

complex matter, and one that has rarely been approached from a community-wide 

perspective (but see Karp & Daily, 2014; Kean et al., 2003; Kross et al., 2011). Animal 

communities in agroforestry are diverse and contain species that influence productivity and 

biodiversity conservation outputs in different ways, both direct and indirect (Bagny et al., 
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2018; Maas et al., 2013; Toledo-Hernández et al., 2021). Therefore, different community 

compositions result in different outcomes for productivity and biodiversity conservation in 

agroforestry. For instance, a community dominated by pest insects with low numbers of 

predators would likely result in low productivity (and possibly low conservation value as 

well), whilst communities with high densities of rare species would result in high 

conservation value. Ideally, agroforestry would be managed to optimise a combination of 

desirable outcomes. However, because each taxon can respond differently to habitat 

management, creating a potential cascade of direct and indirect effects of management on 

the whole food-web, these responses of communities to agroforestry management are hard 

to predict. 

 

Previous research into the effect of agroforestry management on biodiversity or 

productivity has mostly focussed on establishing correlations between the observed 

abundance of different groups and management covariates (Blaser et al., 2018; Clough et 

al., 2011). This approach has several important limitations: first, it assumes that the 

communities observed are at equilibrium, and consequently that observed changes in 

abundance with management reflect instantaneous changes in community composition. In 

reality, we are observing a transient state of the system, which may be very different from 

the equilibrium state (Hastings et al., 2018). Linked to this, these correlative analyses 

commonly assume that species respond to management independently from each other. In 

other words, a correlation is established between the observed density of a species and 

management covariates, without accounting for the fact that the densities of other species 

present may be as important, or even more important, in determining community states 

(Gotelli & Ellison, 2006; Janssen & Rijn, 2021; Kawatsu et al., 2021; Tylianakis et al., 

2007). 

 

One consequence of considering species independently is that we do not gain any 

information on the mechanisms driving their (trophic, competitive etc.) relationships 

(Gotelli & Ellison, 2006). Whilst we may observe a change in a species’ density with 

management, we cannot determine whether this change is due to a direct effect of 

management on the species’ carrying capacity (e.g., limitation in breeding sites) or due to 

an indirect effect such as an increase in predator densities (Barbosa et al., 2017; Gotelli & 

Ellison, 2006; Kawatsu et al., 2021; Vial et al., 2011). Our limited understanding of 

mechanisms could hinder the potential for manipulating a system to achieve a desired state. 

For instance, if we knew that the factor limiting a certain ecosystem service provider is 
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nesting sites, then we could provide additional nesting sites to boost populations (García et 

al., 2021).  

 

The common issue with mechanistic community models is that they involve many 

parameters, and are consequently hard to fit to short-term field study data (Burt et al., 

2018; Curtsdotter et al., 2019; Kawatsu et al., 2021). Community models are typically 

believed to require long time-series of data on ecological communities in order to 

distinguish the noise (demographic stochasticity) from the parameters governing the 

composition of communities (Ellner et al., 2002; Yodzis, 1998). However, all forms of 

dynamical models (i.e., both difference and differential equation models) focus on rates of 

change, not absolute abundances. Information on rates of change does not necessarily 

require long time-series, just paired (successive) observations (Ives et al., 2003). Here, I 

wanted to investigate the potential of fitting complex mechanistic community models to 

short time-series by exploiting a space for time substitution; I considered paired 

observations from a range of sites with shared parameters, so that community composition 

at time t depended only on community composition at time t-1. This experimental design is 

a lot more common in ecological studies, making my modelling framework applicable to 

many field datasets. 

 

I tackle the issue of understanding complex community dynamics by building a modelling 

framework, based on concepts from traditional community ecology, formulated as a series 

of GLMs, and thus directly fitted using Bayesian methods to imperfect community data 

collected from agroforestry sites. My model incorporates data and priors on species’ 

abundances, their diets, and considers rates of change in the density of each species as a 

function of environmental covariates (including management strategies). Therefore, my 

models considered global-system dynamics, taking into account direct and indirect effects 

of management and species on each other. I focussed on the insectivore-insect food-web in 

agroforestry for several reasons: first, insectivores, especially avian insectivores, are 

common in agroforestry (Jarrett, Smith, et al., 2021; Jarrett et al., 2022) and can play an 

important role in pest control (Maas et al., 2016). Second, insectivores are vulnerable to 

habitat degradation and consequently should be a priority for conservation in these 

landscapes (Jarrett, Smith, et al., 2021; Powell et al., 2015). Insects are a widespread group 

in agroforestry, and can be beneficial (pollination, pest control) but also, extremely 

damaging to crops, causing crop losses of up to 40% (Akesse-Ransford et al., 2021; 

Bisseleua et al., 2013; Wessel & Quist-Wessel, 2015). The insectivore-insect food-web is 
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therefore central to agroforestry, and a good exemplar of the broader research area into 

productivity-conservation relationships. 

 

I fit my community model first to simulated data and then to data collected in African 

cocoa agroforestry. With the simulation, I aimed to assess whether the model could 

retrieve relevant parameters and predict current and future community compositions 

accurately. With the field data, I aimed to a) estimate community states from field data, b) 

investigate the effects of management on equilibrium densities of each taxon and c) 

evaluate the different management-induced states in terms of their 

productivity/biodiversity outputs. 

 

METHODS 

Conceptual background 

I assumed that communities of species fluctuate around a given (potentially unobserved) 

equilibrium state (Fig. 16). I use the term ‘species’ to describe taxonomic groups, which 

may be species but could also be functional groups, families, etc. I define state as the 

vector of the abundances of all species at a given point in time 𝑵𝑡 = {𝑁𝑡1, … , 𝑁𝑡𝑖 , … , 𝑁𝑡𝐼 }, 

where I is the total number of species, including those that happen to have a zero density in 

any particular system. Community state-space has as many dimensions as the number of 

species in the community, and in this I-dimensional state-space, any particular community 

composition (a given state) is represented by a single point. While equilibria cannot be 

assumed to be observed in the data (Fig. 16), they are latent states towards which a system 

will tend, so they are the objective of my estimation. 

 

 My framework considers community states as a function of species’ intrinsic growth, 

environmental conditions and interactions between species. Community dynamics occur in 

continuous time, but were observed in discrete time, with ‘snapshots’ taken at given 

timepoints (Fig. 16). Observations of the community captured a state of transience around 

the equilibrium (Fig. 16). Given replicated observations of different transient states, we 

should be able to differentiate the noise (demographic stochasticity), from the true 

parameters governing the equilibrium states. Commonly these replicated observations take 

the form of time-series data (Ellner et al., 2002). However, long time-series data on 

ecological communities are hard to acquire. More commonly, field studies are carried out 

over short time periods across replicated sites. I wanted to test whether I could successfully 
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fit a community model to data collected following this common type of experimental 

design. Therefore, my model was designed to fit a set of paired time-points (time t and 

t+1), and these pairs could come from different locations characterised by different 

environmental and management regimes, but were assumed to be governed by shared 

parameters. 

 

 

Figure 16. Theoretical background to my community model: I assume that the biomass of 

each species fluctuates around an equilibrium (solid black line), and this equilibrium 

density is determined by species’ intrinsic growth rates (which are a function of 

environmental covariates) and inter and intraspecific interactions. When we observe 

species abundances, we see a snapshot of these transient densities (dashed blue line), but 

observation is inevitably made with error (represented by pink strips). 

 

General model structure 

My model was based on a discrete-time Lotka-Volterra community model with I 

potentially interacting species. I modelled biomass of each species (a continuous variable) 

but sought to keep the properties of a typical loglinear model (appropriate for abundances), 

so I used a Normal approximation of the Poisson, in which the variance was equal to the 

mean (in Equation 5.1, 𝜎𝑡𝑖 =  √𝜆𝑡𝑖). The mean was written a function of biomass at the 

previous time-step and the exponential of a linear predictor 𝐿𝑡𝑖, representing per-capita rate 

of change for each species at a given time.  

𝑁𝑡+1𝑖 ~ Normal(𝜆𝑡𝑖,   𝜎𝑡𝑖) (5.1) 

𝜆𝑡𝑖 =  𝑁𝑡𝑖 exp(𝐿𝑡𝑖) (5.2) 
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The per-capita rate of change 𝐿𝑡𝑖 was written as a linear predictor, with an intercept 𝑏𝑖 

interpreted as the log of the species-specific intrinsic growth rate (i.e., rate of change in the 

absence of all other species, whether predators or prey), and the sum of the effects of all 

interactions between species.  

𝐿𝑡𝑖 =  𝑏𝑖 + (∑ 𝑎𝑖𝑗𝑁𝑡𝑗)𝐼
𝑗=1  (5.3) 

The coefficients 𝑎𝑖𝑗 quantified the effect of the abundance of species j on the per-capita 

population growth rate of species i. Intraspecific effects (e.g., density dependence) were 

captured by 𝑎𝑖𝑖. I assumed a Holling Type I functional response between predators and 

prey. Commonly used extensions of linear predictors in regressions (e.g., quadratic terms) 

could be used here, to represent non-linear functional responses or prey switching 

(Asseburg et al., 2006) and Allee effects (Lindmark et al., 2019), but this was not done 

here, keeping the model to its more parsimonious form. 

 

In these coupled equations, the equilibrium state was given when exp(𝐿𝑡𝑖) = 1 for all i, 

and therefore 𝑏𝑖 + ∑ 𝑎𝑖𝑗𝑁𝑡𝑗
𝐽
𝑗=1 = 0 for all i. The equilibrium state could be found by 

multiplying the inverse of the 𝐀 matrix (containing 𝑎𝑖𝑗 elements) by the vector of growth 

rates 𝐛 (containing 𝑏𝑖 elements; Appendix 8).  

𝐍∗ = −𝐀−𝟏𝐛 (5.4) 

Environmental covariates 

I considered that the intrinsic growth rate (𝑏𝑖) of species i could be influenced by 

environmental covariates. 

𝑏𝑖 = ∑ 𝜈𝑖𝑞𝑋𝑞
𝑄
𝑞=0  (5.5) 

The linear predictor comprised 𝑄 covariates, 𝑋𝑞, affecting growth rate, and their respective 

regression coefficients 𝜈𝑖𝑞, where q refers to the qth covariate (the intercept 𝜈𝑖0 was 

included by setting 𝑋0 = 1). 

 

Including the effect of environmental covariates on 𝑏𝑖 resulted in a b vector whose 

elements were functions of these covariates. Consequently, equilibrium densities as 

calculated in Equation 5.4 changed linearly with environmental covariates. 
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Simulation study  

Data generation 

My simulated study system consisted of 30 sites with varying environmental conditions. In 

these sites I simulated communities of 18 species in two trophic levels: predators (6 

species) and prey (12 species). The dynamics of these communities were driven by an 

interaction matrix (A) which was shared across sites, and species-specific growth rates (b) 

that varied according to spatial and temporal environmental covariates. The parameters 

contained within b and A determined the equilibrium state of each community, which 

could differ between sites according to their respective covariates.  

 

I started by assigning equilibrium biomasses for each species corresponding to a baseline 

of environmental covariates. The values of these equilibrium biomasses were not central to 

this exercise, but nevertheless I based them on my biological intuition of the system. I 

assigned baseline intrinsic growth rates 𝜈𝑖0 by assuming positive growth rates for prey and 

negative for predators (Table 6). In the absence of all other species the exponential of 

negative growth rates would result in a per-capita rate of change of exp(𝐿𝑡𝑖) < 1, whilst a 

positive growth rate would result in exp(𝐿𝑡𝑖) > 1. I considered intrinsic growth rates as a 

function of two covariates: one site-level covariate and one temporally varying covariate 

(Table 6), so that intrinsic growth rate of species i at each site f and timepoint t was 

modelled as: 

𝑏𝑖𝑓𝑡 = 𝜈𝑖0 + 𝜈𝑖1𝑋1𝑓 + 𝜈𝑖2𝑋2𝑡 (5.6) 

I modelled regression coefficients as normally distributed (Table 6). 

 

I then parametrised the A matrix as follows: first, all interspecific interaction terms other 

than those relating to predator prey relationships were assumed to be 0; second, the terms 

describing the effect of prey on predator were generated assuming a Holling type I 

functional response, where 𝑎𝑖𝑗 was modelled as gamma distributed (Table 6). To reflect 

natural variation in trophic connectivity between species, I randomly set some interaction 

terms to 0, by multiplying each 𝑎𝑖𝑗 term by a Bernoulli trial with probability 𝑝 = 0.6, so 

that 29 out of 72 (12 prey x 6 predators) possible prey-predator interactions were 0. Third, 

the terms describing the effect of predator on prey, were calculated as 𝑎𝑗𝑖 = −𝑎𝑖𝑗/𝜀𝑖, 

where 𝜀𝑖 was a trophic efficiency term (I set 𝜀𝑖 =  0.5; Table 6). Consequently, the effect 
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of predator on prey was larger than the effect of prey on predator. Finally, I calculated the 

diagonals of the A matrix (𝑎𝑖𝑖 terms) by solving Equation 5.3 for the system equilibrium 

point (Table 6), so that 

𝑎𝑖𝑖 =  −(𝜈𝑖0 + ∑ 𝑎𝑖𝑗𝑗≠𝑖 𝑁𝑗
∗)/𝑁𝑖

∗ (5.7) 

With this parametrisation, I generated data for biomass 𝑁𝑡𝑖 over the 30 sites and 4 

timepoints using Equations 5.1 – 5.3. 

 

Table 6. Description of parameters used in simulation, including distribution or formula 

used to generate data and prior given to model. For gamma distributions, the parameters 

presented are shape and rate, for normal distributions they are mean and SD. 

Parameter Description Simulated from Prior 

νprey0 Intercept of linear predictor of 

intrinsic growth rate for prey groups 

Γ(9,6) Γ(44,22) 

νpredator0 Intercept of linear predictor of 

intrinsic growth rate for predator 

groups 

- Γ(25,8) - Γ(25,17) 

νi1 Effect of site-level covariate on 

intrinsic growth rate 

N(0,0.1) N(0,0.5) 

νi2 Effect of visit-level covariate on 

intrinsic growth rate 

N(0,0.2) N(0,0.5) 

apredator,prey Interaction coefficient for prey on 

predator 

-aprey,predator ε Γ(0.25,25) 

aprey,predator Interaction coefficient for predator 

on prey 

- Γ(1,100) -apredator,prey/ε 

ai,i Density dependence coefficient Equation 5.7 Γ(0.25,25) 

ε Energy efficiency of predators 0.5 Γ(100,200) 

 

Model fitting 

I fit the model to these generated data by running 3 chains for 500,000 iterations (50,000 

sample x 10 thinning rate), with an adaptation period of 2,000 iterations and a burn-in of 

20,000. The model took 3.3 hrs to run using 3 cores for each of the parallel chains. I 

assessed model convergence by visually inspecting chains and with the Gelman-Rubin R-
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hat diagnostic, with convergence presumed when R-hat < 1.1. Once the model finished 

running, I sampled the parameters by taking 1,000 random draws from their posteriors. 

These parameter draws were used to calculate N* (Equation 5.4), and I then compared 

estimated parameters and N* with true simulation values. I used the mean and 95% 

credible intervals (CIs) of these draws to assess model accuracy and precision. 

 

Application to cocoa agroforestry  

Data collection 

I applied my model to field data collected in 28 Cameroonian cocoa farms during Jan-Feb 

and Aug-Sept 2019-2020 (Fig. 2). The farms were on a gradient of shade cover, ranging 

from 19% to 100% (Fig. 3). Each farm was visited 2-4 times, and on each occasion, we 

surveyed birds and arthropods. Based on our field data, I determined the main groups that 

formed the bird-arthropod food-web in these cocoa farms (Fig. 17). For birds, 60% of all 

insectivorous individuals captured belonged to one of 5 genera, or belonged to a guild of 

forest specialists (Jarrett, Smith, et al., 2021). The genera Camaroptera, Hylia, Platysteira 

(Wattle-eyes) and Terpsiphone (Paradise flycatchers) are small passerine birds, some 

species of which are sensitive to habitat degradation (Appendix 2 & 9; Jarrett, Smith, et al., 

2021). Ispidina is a genus of small insectivorous kingfishers, considered habitat generalists 

(Jarrett, Smith, et al., 2021; Naidoo, 2004). I classified arthropods as either ‘pests’ or ‘non-

pests’ and then grouped them by order, except for brown capsid (Sahlbergella singularis), 

the primary pest of cocoa in Africa (Bagny et al., 2018), which was included at species 

level. I aggregated species into the groups described to limit the number of parameters 

estimated by the model; this clustering may generate more noise in the results, but it is a 

practical course of action for complex field datasets like the one described here. 
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Figure 17. Structure of cocoa farm bird-arthropod food-web: two trophic levels 

representing insectivorous birds (predators) and arthropods (prey). 

Birds: The bird dataset used for the model was identical to that of Chapter 3 and Jarrett et 

al. (2022), and consisted in bird mist-net captures and simultaneously collected acoustic 

recordings from Cameroonian cocoa farms from Jan-Feb and Aug-Sept 2019 – 2020. All 

birds caught and recorded were identified to species level and weighed, to allow 

conversion to biomass. 

 

Arthropods: The arthropod dataset used for the model was identical to that of Chapter 4. It 

included count data for arthropods collected using three common survey methods: sweep-

netting, malaise traps and visual surveys. Arthropods were identified to order level, except 

for brown capsid (Sahlbergella singularis), the primary pest of cocoa in Africa which was 

identified to species level. 

 

Covariate data: the 28 cocoa farms sampled were on a gradient of shade cover. The method 

for quantifying shade is described in Jarrett, Smith, et al. (2021). Shade cover was 

measured as a percentage. 

 

Observation models 

Birds: I modelled bird population size by integrating mist-net captures and acoustic 

recordings into a joint likelihood, as in Chapter 3 and Jarrett et al. (2022). This model 

assumes that there was an underlying population of birds at each site, which was sampled 

by both methods. Therefore, the mark-recapture model for mist-net data and the acoustic 

model were both conditional on the latent population size. 
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I made the following modifications to the Jarrett et al. (2022) model: 1) The grouping of 

species was different, as I wanted finer taxonomic resolution on population size estimates. 

In this study, I was interested in the following bird groups: Camaroptera, Hylia, Ispidina, 

Platysteira, Terpsiphone and forest birds (Fig. 17). For the observation model, I used the 

whole dataset in order to maximise sample sizes for shared parameter estimation. 

Consequently, I ran the observation model with the entire dataset but then distinguished the 

subset of groups targeted in the process model. I assumed an equal mist-net capture rate for 

Camaroptera, Hylia, Ispidina, Platysteira and Terpsiphone as they all consist in small, 

morphologically similar genera. I allowed for distinct vocalisation rates between these 

genera. 2) The process model was distinct, as explained below. 

 

Arthropods: I modelled arthropod population sizes by integrating data from three common 

survey techniques, as in Chapter 4. The observation model used here was identical to the 

one presented in Chapter 4, but the process model was distinct (see below). 

 

I ran both the observation models with 3 chains for 20,000 iterations (plus 10,000 burn-in). 

I then calculated the mean of the MCMC chains for each model state (bird or arthropod 

population size at farm f and timepoint t). I converted population size to biomass by 

correcting for body mass and effective area sampled. For birds, I calculated average body 

mass for each taxon from field data. For arthropods, I assumed a mean body mass of 0.01 g 

across taxa (Byrne et al., 1988; Hancock & Legg, 2012). These biomass data were then 

provided as data to the process model. 

 

Process model parametrisation 

I modelled community dynamics of birds and arthropods in cocoa as described in 

equations 5.1 – 5.5. The number of interacting taxa (I) was 18 (Fig. 17).  

 

I modelled growth rate of each taxon i as a function of shade cover at each farm f and the 

season during which timepoint t fell (Equation 5.8; categorical variable: 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 = 0 for 

dry season and 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 = 1 for wet season). I constrained growth rates of arthropods to 

be positive numbers and growth rates of birds to be negative (Table 7). Parameters 

describing the effects of covariates on growth rates were given normally distributed priors 

centred around 0 (Table 7). 

𝑏𝑖𝑓𝑡 = 𝜈𝑖0 + 𝜈𝑖1𝑐𝑎𝑛𝑜𝑝𝑦𝑓 + 𝜈𝑖2𝑠𝑒𝑎𝑠𝑜𝑛𝑡 (5.8) 
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For the inter-specific interaction parameters, I assumed no direct competition, so that all 

within-trophic-level parameters were set to 0. That left 72 potential predator-prey 

interaction parameters (12 prey x 6 predators); of these, I set 12 to 0 based on evidence 

from diet metabarcoding data from birds, that indicated no trophic links between certain 

bird genera and insect orders (Powell et al., 2022 unpublished data; Appendix 10: Figure 

S1). I modelled the remaining consumption parameters 𝑎𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟,𝑝𝑟𝑒𝑦 as Gamma variates, 

assuming the effect of prey on predator growth rate was positive. I forced 𝑎𝑝𝑟𝑒𝑦,𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 to 

be negative and scaled with an energy efficiency coefficient (Table 7), to represent the 

negative effect of predators on the growth rate of prey, and the process of energy exchange 

from prey to predator. 

 

Modelling community dynamics in discrete time can be complicated by the lack of 

instantaneous feedback loops and instabilities caused by the implicit time-lags in the 

discrete time formulation (Caswell & Neubert, 2006). This can cause explosive model 

behaviour and consequently, difficulty with fitting the model to data. Whilst our data were 

collected approximately every six months (Jan-Feb and Aug-Sept), I fit the model to 

monthly time-steps to avoid such difficulties. Although it is possible for state-space models 

to impute multiple intermediate states between two endpoints (Dunn et al., 2022), in a 

system with multiple species, this becomes computationally prohibitive. Therefore, I 

imputed monthly time-steps from each pair of six-monthly data points using linear 

interpolations. My treatment of missing data was just one possible solution, but more 

suitable options could be available with sufficient computational power.  
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Table 7. Description of parameters estimated by field data model, including model priors and the justification for prior distribution 

Parameter Description Prior Justification of prior 

νprey0 Intercept of linear predictor of intrinsic growth rate for prey groups Γ(25,16.6) Doubling time of arthropod population 10 - 30 days1 

νpredator0 Intercept of linear predictor of intrinsic growth rate for predator groups -Γ(17.2,4.2) Half-time for bird population ranging 2 - 10 days2 

νi1 Effect of canopy on intrinsic growth rate N(0,0.5) 
 

νi2 Effect of season on intrinsic growth rate N(0,0.5) 
 

apredator,prey Interaction coefficient for prey on predator Γ(1,20) Bird energy requirements ~4.2kJ/g, insect energy 

content ~6.75 kJ/g wet matter, insect water content 

0.7, bird energy efficiency 0.75, approximate number 

of insect groups consumed = 7, aprey,predator = 

consumption / N*prey, apredator,prey = aprey,predator*energy 

efficiency3 

aprey,predator Interaction coefficient for predator on prey -aprey,predator/ε 
 

ai,i Density dependence coefficient Γ(1,20) 
 

ε Energy efficiency of predators Γ(36,120) Bird energy efficiency 0.754 

1νprey0 = log(2)/(doubling time [days] / 30) 
  

2νpredator0 = log(0.5)/(half-time [days] / 30) 
  

3(Gibb, 1957; Nyffeler et al., 2018) 
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Implications for diversity and productivity 

To assess the conservation value of different community states, I considered total biomass 

and Shannon diversity of arthropods (excluding pests) and birds. I excluded pests from this 

calculation to avoid ‘rewarding’ community states containing diverse pest communities. 

The Shannon index measures the uncertainty associated with predicting the taxon-identity 

of a single individual in a sampling process; it therefore considers both richness and 

evenness of taxa. The Shannon index is expressed as: 

𝐻𝑆ℎ𝑎𝑛𝑛𝑜𝑛 =  ∑ 𝑝𝑖
𝐼
𝑗=1 log 𝑝𝑖 (5.9) 

Where 𝑝𝑖 is the relative biomass of the ith taxon in a population of S taxa.  

 

To assess the potential value of community states for productivity, I considered total 

biomass of pests and potential pollinators (Dipterans; Mortimer et al., 2017). 

 

RESULTS 

Simulation study 

The model estimated all relevant parameters with high accuracy and precision (Fig. 18).
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Figure 18. Correlation between parameter value used in simulation and parameter 

estimates from model. Parameter posteriors are represented using the median and 95% CIs 

of 1000 random draws from MCMC chains. 

 

When I used parameter posteriors to estimate equilibrium biomasses of species, the 

retrieved biomasses were an accurate representation of the simulation biomasses (Fig. 19). 

In 17 out of 18 groups the effect of the site-level covariate on equilibrium biomasses was 

predicted accurately (exception was ‘Prey 9’; Fig. 19), and in 17 out of 18 groups the effect 

of  the visit-level covariate was predicted correctly (exception was ‘Predator 4’; Fig. 19). 

 

 

Figure 19. Effect of site-level covariate and visit-level covariate on true equilibrium 

biomasses (triangles) and equilibrium biomasses estimated from model predictions (lines 

and error shading). Equilibrium biomasses were calculated from 1000 random draws from 

parameter posteriors, and summarised using the mean and 95% CIs. 

 

Application to cocoa agroforestry 

Parameter estimates 

Parameters relating to groups’ growth rates and interactions are presented in Figure 20. 

Intrinsic growth rates of arthropod groups ranged from 0.36 in Hymenopterans to 1.37 in 

Coleopteran pests, which is equivalent to a population doubling time in the range of 15 to 
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55 days. The intrinsic growth rates of birds ranged from -0.43 for forest birds to -0.14 for 

Ispidina, which is equivalent to a population half-life of 50 to 140 days. 

 

The effect of season and shade cover on growth rates varied between taxa (Fig. 20). Forest 

birds showed a positive trend between growth rate and shade cover, whilst brown capsid, 

Hemiptera, Lepidoptera, Camaroptera, Hylia and Ispidina showed a negative trend. For 

season, forest birds had higher growth rates in the wet season, whilst Hymenoptera and 

Lepidoptera had higher growth rates in the dry season. 

 

Interaction parameters ranged from -0.32 to 0.27, with the highest values associated to the 

interaction between bird taxa and pest arthropods, as well as density dependence 

parameters in certain arthropod taxa (Fig. 20). The 𝑎𝑖𝑗 parameters represent consumption 

scaled by density; for consumption per se see Appendix 10 (Figure S2). 

 

 

Figure 20. Growth rate and interaction parameters estimated by model. Parameter 

posteriors were summarised using the mean and 95% CIs of 1000 random draws from 

MCMC chains. 



97 

 

Estimating equilibrium states 

I estimated equilibrium biomass for each taxon at each site and season using Equation 5.4 

(Fig. 21). The groups that occurred at highest equilibrium biomass were Hemipterans, 

Hymenopterans and the bird genus Ispidina, and those with lowest biomass were 

Lepidopteran pests, Coleopteran pests and Terpsiphone. The trend in biomass with shade 

cover and season varied between groups (Fig. 21): Araneae, Blattodea, Coleopteran pest, 

Diptera, Hemipteran pest, Platysteira and Terpsiphone had higher equilibrium biomass in 

shadier farms, whilst the opposite was true for the remaining groups.  

 

 

Figure 21. Effect of shade cover and season on equilibrium biomass of each group 

estimated from model parameters.  

 

Implications for conservation and productivity 

I evaluated the different community states estimated from model parameters in terms of 

their diversity and potential effect on productivity. I found that the total biomass of 

arthropods was not affected by shade cover, whilst the biomass of birds decreased with 

increasing shade cover from 52 kg/km2 to 33kg/km2 (Fig. 22). Shannon diversity of 

arthropods showed an increase at shade cover values above 60%, whilst Shannon diversity 

of birds was largely unaffected by shade cover (Fig. 22). 
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The biomass of pest groups was highest (7.5 kg/km2) in sunny farms, and lowest (2.5 

kg/km2) at 85% shade cover, whilst the biomass of potential pollinators showed a linear 

increase with increasing shade cover (Fig. 23). 

 

 

Figure 22. Effect of shade cover on equilibrium biomass and Shannon diversity of 

arthropods (excluding pests) and birds. 

 

 

Figure 23. Effect of shade cover on equilibrium biomass of pests and potential pollinators. 
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DISCUSSION 

I developed a modelling framework to investigate the dynamics of complex communities. 

Under simulation, my model was able to retrieve the underlying parameters with high 

accuracy and precision, and to estimate resulting community equilibrium states. When fit 

to field data from African cocoa agroforestry, the model showed important changes in 

community states with management, revealing that shady farms may favour arthropod 

diversity and pollinator abundance, whilst reducing pest biomass.  

 

Simulation study 

The accurate estimation of equilibrium densities is a complicated task because it requires 

accurate estimation of all parameters in the b vector and the A matrix (Equation 5.4). Then, 

there is an additional complication because equilibrium densities of species are estimated 

not directly from the parameters in the A matrix but the inverse of these. Each parameter in 

A-1 is a function of all the elements in the A matrix, not just the aij term. Consequently, 

small inaccuracies in estimated parameters in the A matrix could result in large changes in 

the inverse, and thus large differences in equilibrium densities estimated (Bender et al., 

1984). 

 

This difficulty was partly illustrated in my simulation results, where the estimated 

equilibrium densities of ‘Prey 9’ showed an opposite trend with shade cover to the 

simulation values. In the simulation, Prey 9 had a negative coefficient for the effect of 

shade cover on growth rate, yet its equilibrium densities increased with shade, indicating 

that the effect of interactions with other species outweighed the effect of shade on growth 

rate. The model estimated the direction of the effect of shade on growth rate correctly 

(negative), but then estimated equilibrium densities to decrease with shade cover, 

indicating a weaker influence of species interactions on equilibrium density. This is just 

one example of how small inaccuracies in parameter estimates can change results 

significantly.  

 

The overall high accuracy of the model estimates under simulation was probably helped by 

two factors: first, the data were generated using the same process model the parameters 

were estimated with, therefore assuming that I had perfect knowledge of the food-web and 

specified it correctly (e.g., which species interact with each other). Second, the simulation 

assumed that I observed species densities perfectly. These two aspects of the simulation 
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model are a simplification of reality, but are useful for testing the model under ideal 

conditions. Another simplifying assumption made in the simulation is that the effect of 

covariates on growth rates is a deterministic process with no noise, whilst it is likely that 

there are other factors plus stochasticity influencing these growth rates. 

 

Application to cocoa agroforestry 

When fit to field data, estimated parameters in general matched my biological 

expectations. Arthropod growth rates indicated population doubling times of 15-55 days, 

which is within the ranges documented by previous studies (Babin, 2009). The effect of 

shade cover on growth rates was negative for groups such as Hemiptera and Lepidoptera, 

matching previous findings (Ahenkorah et al., 1974, 1987). Bird groups had significantly 

higher growth rates than expected; a population half-life of 50 – 140 days seems unlikely 

for small predators with rapid metabolism. However, the effect of shade cover on bird 

groups matched biological intuition: growth rates were higher in shady farms for forest 

birds, whilst the opposite was true Camaroptera, Hylia and Ispidina, which contain habitat 

generalist species (Jarrett, Smith, et al., 2021; Naidoo, 2004).  

 

Importantly, the direction of the effect of shade on growth rates did not always match the 

trend in equilibrium densities with shade cover. For instance, forest birds had a positive 

coefficient for the effect of shade on growth rate, but their equilibrium densities decreased 

with increasing shade cover. In contrast, Hemiptera pests had a negative coefficient for the 

effect of shade on growth rates, yet their equilibrium densities increased with increasing 

shade. These apparent discrepancies can be explained by effects of other species in the 

community (Duchardt et al., 2021; Kawatsu et al., 2021; Strauss, 1991): whilst forest birds 

may have higher growth rates in shady farms, there may not be enough prey to support 

them, and consequently the population equilibrium is lower. This process could indicate an 

ecological trap, whereby forest birds are attracted to shady farms due to the apparently 

favourable habitat, but then do not encounter sufficient prey for populations to persist 

(Robertson & Hutto, 2006). These findings reflect the power of my modelling framework: 

they demonstrate using modest amounts of field data that species’ equilibrium densities 

depend both on the effect of habitat on the species itself but also on the populations of 

other species in the community, and that the relative influence of these two processes may 

vary between species. 
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Equally importantly, my results show that a) raw data from the field may not accurately 

represent transient densities unless corrected for detectability, and b) trends between 

transient densities and management may not reflect trends in equilibrium densities with 

management (Fig. 16). The first became clear when examining the differences between 

raw bird and arthropod counts and estimated densities (Chapt. 3, Chapt. 4). The second 

could be seen when comparing the trends in estimated densities with management (Chapt. 

3, Chapt. 4) and the trends in equilibrium densities with management. These discrepancies 

likely occur because the estimated transient states are fluctuating around an unobserved 

equilibrium point, but estimating that equilibrium point requires considering the 

community as a whole. For instance, the transient densities of forest birds estimated 

showed a positive trend with shade cover (Jarrett, Smith, et al., 2021), whilst equilibrium 

densities showed the opposite trend. Presumably, high densities of forest birds observed in 

shady farms in the field reflect peaks in large fluctuations around an overall lower 

equilibrium point. My results indicate that directly interpreting correlations between field 

counts and management may be misleading: first, correcting for detection processes is 

important, and second, trends between transient densities and management may not reflect 

similar trends in equilibrium densities. 

 

I assessed the diversity of communities in our farms and their potential value for 

agricultural productivity. My results indicate that increased shade cover may benefit 

arthropod diversity but result in lower bird biomass. The higher diversity of arthropods in 

shady farms may be associated to the microclimatic conditions created by shade trees, 

including increased humidity and reduced temperature fluctuations (Outhwaite et al., 2022; 

Tscharntke et al., 2011). The more diverse plant community found in shady farms may also 

offer improved resources, both in terms of food and microhabitats for arthropods 

(Outhwaite et al., 2022; Tscharntke et al., 2011). In contrast, the diversity of birds was not 

affected by shade cover, perhaps because the small insectivores considered in this study are 

largely generalist taxa (Jarrett, Smith, et al., 2021; Naidoo, 2004). The higher biomass of 

birds in sunny farms was mostly driven by the most abundant genus, Ispidina, which 

favours open habitat instead of closed-canopy forest (Naidoo, 2004). In terms of potential 

contribution to productivity, my results indicate that shady farms may be preferable as they 

contain higher biomass of potential pollinators (Dipterans) and lower biomass of pests. 

Higher biomass of Dipterans in shady farms may be due to their preference for humid 

environments for breeding (Bos & Sporn, 2012; Toledo-Hernández et al., 2021). In 

contrast, the increase in pest abundance with management intensity may be a result of 
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reduced competition or predation from other arthropods (Akesse-Ransford et al., 2021; 

Rice & Greenberg, 2000). 

 

My model did not explicitly examine agricultural yield, but rather, used pest and potential 

pollinator population densities as an indication of productivity outcomes. This means that, 

whilst I can discuss the potential contribution of wildlife community states to productivity, 

I cannot fully evaluate productivity. To do this, I would need to explicitly include 

agricultural crops into the model, and account for their own intrinsic changes with 

management. For instance, it could be that whilst brown capsids are more abundant in 

sunny farms, the intrinsic growth rate of crops is also higher, therefore still achieving 

higher yields than in the shade (Phalan et al., 2011). Adding crops into my community 

model is the next natural step in fully evaluating the implications of community states. 

 

Other extensions to this model would be to include more types of species interactions (e.g., 

pollination, or predation between arthropod groups), as well as additional predators (e.g., 

insectivorous bats). Structural features such as non-linear functional responses, prey 

switching and Allee effects could be explored using common extensions of linear 

predictors (Asseburg et al., 2006; Lindmark et al., 2019). My intention was to test this 

model on a simplified scenario to minimise the number of parameters required, and 

therefore I clustered most species into higher taxonomic groups. More exploration is 

needed to investigate how data sufficiency compares with level of taxonomic aggregation. 

The less data there are, the more aggregated a model may need to be and the more noise 

the results will contain. Hierarchical modelling (where particular parameter values can be 

assumed to be shared to different degrees between species) might be a useful way to 

automate this without a-priori decisions about clumping. Whether our existing dataset 

would support a more complex food-web remains to be tested. 

 

Here, I presented a novel method for investigating population dynamics of complex 

communities. My method revealed that several commonly made assumptions may not hold 

in these complex multispecies communities: first, it is essential to account for varying 

detectability in densities of species observed in the field. Second, trends in species 

densities with environmental covariates may not correspond to trends in equilibrium 

densities. And third, equilibrium densities of a species are significantly influenced by other 

species in the community; in some cases, the influence of other species may ‘flip’ the 

effect of environmental covariates. Applying my method to data from wildlife 
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communities in agroforestry revealed that wildlife communities in shadier farms are 

important both for biodiversity conservation and for productivity. This win-win in low-

intensity agroforestry is promising for a land-sharing scenario, and sheds light on the 

dangers of pursuing intensified agriculture in an era of biodiversity crisis. 
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Chapter 6 | Tropical agroforestry: a natural lab for 

studying community ecology? 

Throughout this thesis, my aim has been to better understand animal communities in 

tropical agroforestry, including how they interact with management. I have addressed this 

issue using several methodologies, and as a result I have learned both about the ecology of 

these complex systems but also about the limitations and potential of different methods in 

studying community ecology. Here, I will discuss my main findings, both ecological and 

methodological, and consider their implications for the future of agroforestry research. 

 

Agroforestry contains animal communities important for both conservation and 

agricultural productivity 

Agroforestry systems are discrete habitat patches in which agricultural crops are planted 

beneath a canopy of shade trees (Tscharntke et al., 2011). The spatial scale of these 

systems makes them relevant to organisms such as birds, mammals and insects, and they 

are commonly maintained throughout time in relatively stable conditions (Perfecto & 

Vandermeer, 2008; Schroth & Harvey, 2007; Tscharntke et al., 2011). The ubiquity of 

agroforestry systems in the tropics (covering 12 million hectares worldwide; FAOSTAT, 

2020) make them of interest for biodiversity conservation; in tropical regions, where 

human populations continue to expand, we need solutions that will allow food production 

whilst simultaneously providing habitat for wildlife (Bennett et al., 2021; Tscharntke et al., 

2012). However, certain wildlife groups, such as Mirid bugs (Hemiptera: Miridae), some 

moth larvae (cocoa pod borer Conopomorpha cramerella, cocoa fruit borer Carmenta 

theobromae), and mealybugs (Hemiptera: Pseudococcidae), can cause severe damage to 

crops in agroforestry (Bagny Beilhe, Babin, et al., 2018; Wessel & Quist-Wessel, 2015). 

Therefore, the dynamics of the species contained in tropical agroforestry are highly 

relevant both for biodiversity conservation and agricultural productivity (Clough et al., 

2011).  

 

Animal communities in agroforestry have been widely studied, both from a conservation 

perspective and to better understand provision of ecosystem services and dis-services 

(Bennett et al., 2021; Bisseleua et al., 2013; Toledo-Hernández et al., 2021). The focus of 

these studies is often on how to manage these systems in order to benefit certain animal 
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groups, such as rainforest birds (Bennett et al., 2021), ants (Delabie et al., 2007) or bats 

(Faria et al., 2006). However, the majority of these studies focus on agroforestry systems in 

the Neotropics and south-east Asia, with the Afrotropics being poorly represented (Bennett 

et al., 2021; De Beenhouwer et al., 2013). I aimed to contribute to correcting this 

geographical bias in Chapter 2 and the resulting publication (Jarrett, Smith, et al., 2021), 

where I assessed the effect of conversion to agroforestry and agroforestry management on 

bird communities in African cocoa farms. I found that the composition and diversity of 

bird communities in primary forest were different from those in cocoa farms. The 

implications of this finding are that, however much agroforestry is managed to favour 

biodiversity, it will still not act as a substitute for primary forest, and thus, it is necessary to 

conserve areas of forest to protect the most vulnerable forest-dependent groups (Stratford 

& Stouffer, 2013). 

 

Most noticeably, ant-followers (insectivores that forage on the forest floor following ant 

swarms) and forest specialists that combined constituted >40% of the bird community in 

primary forest, in shaded cocoa constituted ~7% of the community, and in sunny farms just  

~1%. These findings indicate that intensification of cocoa agriculture and conversion to 

monocultures are damaging to rainforest bird populations (Maas et al., 2009; Sanderson et 

al., 2022; Şekercioglu et al., 2019; Waltert et al., 2005). From a conservation perspective, 

my results suggest that incentivising shady agroforestry (perhaps through appropriate 

subsidization) so that farmers who maintain shade in their farms and consequently 

contribute to rainforest bird conservation, could receive higher returns for their crops 

(Bisseleua et al., 2009). 

 

Surveying animals in agroforestry is complex 

Whilst Chapter 2 provided insights into the effect of management on bird communities in 

cocoa agroforestry, I could only assess relative community composition using mist-net 

captures as a proxy for abundance, because the dataset was compiled from many different 

projects and was not collected following a standardised methodology. Mist-nets, whilst one 

of the most common tools for surveying birds, tend to have varying capture probability 

depending on the characteristics of the surrounding habitat, and therefore data on captures 

may be biased by habitat characteristics (Rodrigues & Prado, 2018). In agroforestry 

especially, where vegetation structure is extremely variable (Tscharntke et al., 2011), we 

would expect differing capture rates from mist-nets. Indeed, this range of habitat 
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characteristics common to agroforestry, coupled with the high diversity of species present, 

poses a general challenge when surveying animals in these habitats. For birds and bats, 

mist-nets may be influenced by vegetation density (Rodrigues & Prado, 2018), for 

arthropods, the varying ecology of species makes surveying the whole community 

complicated (Montgomery et al., 2021), and for terrestrial mammals, detection by camera 

traps may be biased by vegetation structure (Banks-Leite et al., 2014). This general 

challenge of assessing community composition in complex habitats led me to consider 

methods of statistical adjustments that would allow unbiased estimation of population size. 

 

Data integration as a solution to estimating population size in complex habitats 

In Chapter 3, I aimed to assess the effect of agricultural management on bird communities, 

but this time estimating bird population size. For this, I developed a model that combined 

mark-recapture and acoustic count data, correcting for vegetation-structure-driven biases in 

mist-net data. Estimating population size allowed me to establish that, for instance, ant-

followers (vulnerable rainforest taxa) occurred at population sizes of ~1 individual per 

cocoa farm, meaning that if the whole landscape was converted to agriculture these groups 

would be at risk of local extinction. The integrated model estimated with more precision 

the effect of shade cover on bird guilds compared with a mark-recapture only model, 

because shade cover influenced both population size and detectability. Also, of five guilds 

that I considered in both Chapter 2 and 3, only two showed a trend with shade cover in 

Chapter 2, but by using the more sensitive methods of Chapter 3 this number rose to four. 

These findings demonstrate the potential of data integration to improve estimates of 

abundance, and emphasise the importance of accounting for detectability when considering 

communities in complex habitats (Banks-Leite et al., 2014; Rodrigues & Prado, 2018). 

 

In Chapter 4, data integration permitted me to investigate the effect of management on 

arthropod communities. Arthropods are important in agroforestry because they play roles 

in providing ecosystem services to the crops, causing damage to crops, and serving as food 

to the bird community (Bagny Beilhe, Babin, et al., 2018; Maas et al., 2016; Toledo-

Hernández et al., 2021).  However, they are notoriously hard to sample due to their diverse 

life-histories and morphologies (Montgomery et al., 2021). In this chapter I integrated data 

from different methods to achieve precise estimates of population size of different 

arthropod taxa. I found that shady farms had lower population densities of pests, including 
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brown capsid, the primary pest of cocoa in Africa, and higher densities of natural enemies 

& potential pollinators. 

 

Chapter 4, as well as its preceding chapter, confirmed that data integration is an effective 

solution to improve precision of population size estimates from field data, and also to 

correct for sampling biases (Miller et al., 2019; Zipkin et al., 2019). Data integration for 

population size estimation is becoming more wide-spread, and yet the majority of studies 

on animal communities still tend to consider different data sources separately, hence losing 

precision due to smaller sample sizes, and missing an opportunity for correcting sampling 

biases (Kindsvater et al., 2018). The findings from my thesis show that estimating 

population size from modest field datasets is not only feasible, but also provides 

opportunities for types of analyses not possible with abundance proxies. 

 

Transient population densities can reveal the mechanisms driving community dynamics 

My main motivation to develop these methods to estimate population size was to make 

progress towards a predator-prey type community model of animal communities in cocoa 

agroforests. A model of this type would allow me to investigate dynamics of complex 

communities in agroforests, considering effects of environmental covariates as well as the 

trophic, competitive and indirect interactions between species. Importantly, these models 

distinguish transient community states from equilibrium states: when we observe 

communities, we see them at some (transient) point in state-space, but this may only be a 

temporary position from which communities will move (Pimm, 1982). A globally stable 

equilibrium state of a community is the region of state-space towards which it travels 

unless otherwise perturbed (Pimm, 1982). This type of community model, though 

extensively described and explored theoretically (Pimm, 1982), has rarely been 

parameterized from field data (and never from tropical agroforest data), due to the assumed 

requirement of a long time-series of data on populations (Ellner et al., 2002; Yodzis, 1998). 

In the fifth chapter of this thesis, I exploited the existing rich theoretical knowledge of 

community dynamics and coupled it with more modern approaches to field data, such as 

data integration and observation modelling. Ultimately, my aim was to understand the 

underlying states of communities in agroforestry, and how these related to biodiversity 

conservation and agricultural productivity. 
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The method I developed allowed me to accurately estimate parameters for growth rates and 

species interactions, and from these estimate equilibrium states of communities under 

different environmental conditions. The power of this approach was that it revealed the 

mechanisms driving the community dynamics in our farms. My findings demonstrate how 

both environmental covariates and interspecific interactions can be important drivers of 

community dynamics, and that the relative influence of these two forces may vary 

according to the species or environment. My results also showed that transient densities 

surveyed in the field may show different trends with environmental covariates compared 

with equilibrium densities. This finding shed light on the issues with assuming equilibrium 

when sampling animal communities. 

 

Methodological advances help apply traditional community ecology to complex systems 

Mechanistic community models, such as the one I developed in Chapter 5, are rarely 

parameterized from field data because of the requirement for large amounts of data that 

allow the estimation of many parameters (Yodzis, 1998). However, several recent 

methodological advances may make this task increasingly feasible. First, as mentioned 

previously, data integration provides the opportunity to exploit the available data to its full 

potential (Kindsvater et al., 2018; Miller et al., 2019). Second, the increasingly widespread 

use of hierarchical modelling facilitates estimation of population size by explicitly 

considering factors influencing detectability (Kéry & Royle, 2020). In terms of model 

parametrisation, the task may be greatly facilitated by increasingly common molecular 

techniques of diet analyses, which can reveal with high accuracy the prey species 

consumed by predators, thus giving detailed information on linkages between species 

(Hoenig et al., 2022). All these tools may result in a resurgence of community models as 

practical tools to assess the dynamics of complex communities, such as those in 

agroforestry. The work presented in my final chapter constitutes a first step towards this 

application, providing proof-of-concept and considerations for further developments. 

 

Estimating community states is useful to assess implications of management in agro-

ecosystems 

In my fifth chapter, I found that community states in African cocoa farms varied with 

shade cover; in shady farms, communities contained higher diversity of arthropods, higher 

biomass of dipterans (potential pollinators), and lower biomass of pests, compared with 

sunny farms. These findings indicate that animal communities in shady farms are diverse 
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and have the potential to contribute to agricultural productivity through increased 

pollination and reduced pest burdens. Importantly, whilst I recognise non-equilibrium 

dynamics in my data, I have based my management investigation around equilibria. This 

makes my results relating to management both more accurate (because they are not biased 

by the equilibrium assumption) and more cost-effective (because they allow the natural 

inertia of systems to be exploited). 

 

The challenges of studying community ecology in agroforestry  

Despite the promising potential of community models to unravel the dynamics of species 

in agroforestry, this system is challenging due to its complexity and our limited 

understanding of its functioning, especially in the Afrotropics. First, the composition of 

animal communities is still poorly understood: for instance, during our work we 

encountered issues with arthropod identification (many tropical African arthropods are still 

undescribed; Goulet & Huber, 1993) and even bird identification (several disputed species 

e.g., Terpsiphone sp; Fabre et al., 2012). Then, information on interactions between species 

in tropical agroforestry is extremely limited; for instance, whilst the diets of temperate 

species such as Parus sp. are described in detail by many sources (Jarrett et al., 2020), the 

diets of Afrotropical birds are mostly unknown in the academic literature. Finally, the 

provision of ecosystem services and dis-services, and their influence of agricultural 

productivity in African agroforestry is poorly understood (De Beenhouwer et al., 2013). 

 

In general, an easier trajectory could have been to develop my community model on a 

simpler better-known system, where parameters, food-web structure, and other 

assumptions could have been much better informed. An example of this could be 

Mediterranean vineyards or apple orchards (Charbonnier et al., 2021; García et al., 2021). 

In these systems, the species present are well studied, pests are monitored, and predator 

diets are known. Developing the model in this habitat would be a simpler task and still 

serve as proof-of-concept, and once this was accomplished, the framework could be 

extended to systems with more unknowns. 

 

The process of developing the analyses methods presented in this thesis has taught me 

several lessons about the ideal design of data collection for community ecology research. 

Most noticeably, the issue of estimating densities of species from field counts was a 

challenging one, and one that could have perhaps been simplified with different field 
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methods. If I was to repeat this type of study, I would choose my field protocols in order to 

optimise the precision of density estimates; for birds for instance, this would probably 

involve a more rigorous mark-recapture study design, coupled with acoustic recording. For 

arthropods, I would probably carry out more extensive visual surveys, perhaps with some 

calibration exercises in a lab environment. I would additionally attempt finer taxonomic 

resolution of counts, and importantly, species-level identification of pest insects. An 

increased precision in the density estimates would result in increased precision also in the 

parameters and states estimated by the community model. 

 

Critically, the analyses of this project would have been facilitated by field data collected at 

smaller intervals, for instance monthly. Arguably, one year of monthly sampling would 

have been better suited than several years of 6-monthly sampling. Of course, time and 

budget limitations often end up dictating these decisions.  

 

Overall, our understanding of communities in agroforestry could be greatly improved by 

collecting data that: a) encompasses entire communities and rather than single species (or 

specific taxa), b) allows population size estimation, c) investigates connections between 

species (trophic interactions, competition, parasitism), d) quantifies environmental 

covariates that are likely to influence species. Ideally, these data collection protocols 

should be conducted year-round and at regular intervals. If long-term data collection is not 

possible, then relevant spatial replication may be a useful alternative. 

 

Conclusion 

Despite some limitations, this thesis provides an in-depth study of animal communities in 

agroforestry, with important advances both in our ecological understanding of the system, 

but also in the tools available to study it. My findings shed light on the many benefits of 

shaded agroforestry, including higher abundances of pollinators and natural enemies, and 

lower abundances of pests. Importantly, my investigations consider the equilibria of 

communities; this is a novel contribution and one with the potential to provide accurate and 

cost-effective management recommendations to combine high biodiversity and 

productivity in agro-ecosystems. I provide tools to correct for sampling bias in these 

complex habitats, as well as to estimate density of species and investigate the dynamics of 

communities. Future agroforestry research could benefit from a community ecology 

approach to fully understand the potential of agroforestry as a land-sharing solution.  
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Appendices 

Appendix 1: Chapter 2 sampling sites 

Table S1. List of sampling sites for birds in cocoa and mature forest. 

Site 

ID 
Habitat Captures Latitude Longitude 

No. 

Sampling 

Days* 

Sampling 

Years 
Region 

1 cocoa 290 3.47207 11.26735 3 2019-2020 South 

2 cocoa 262 2.73968 11.23124 9 2006 South 

3 cocoa 48 4.83992 9.45138 2 2017-2018 West 

4 cocoa 91 4.83352 9.45303 2 2017-2018 West 

5 cocoa 45 4.56451 11.16261 2 2017-2018 Ecotone 

6 cocoa 143 5.56455 14.09011 6 1990, 1995 Ecotone 

7 cocoa 84 3.00444 12.34778 3 2005 South 

8 cocoa 93 4.97334 9.46334 2 2017-2018 West 

9 cocoa 81 4.76749 9.47407 2 2017-2018 West 

10 cocoa 56 4.76727 9.48378 2 2017-2018 West 

11 cocoa 116 4.79418 9.48258 2 2017-2018 West 

12 cocoa 140 3.90672 12.51043 5 2017-2020 South 

13 cocoa 30 3.91195 12.50733 4 2017-2019 South 

14 cocoa 100 4.04347 12.70014 4 2017-2019 South 

15 cocoa 87 3.57199 11.33040 3 2019-2020 South 

16 cocoa 44 4.08369 12.68218 4 2017-2019 South 

17 cocoa 94 3.89624 11.71760 3 2019-2020 South 

18 cocoa 156 3.90349 11.71650 3 2019-2020 South 

19 cocoa 53 5.08295 9.41241 2 2017-2018 West 

20 cocoa 64 5.07988 9.40237 2 2017-2018 West 

21 cocoa 275 3.54058 12.84585 18 
1999, 2009, 

2014 
South 

22 cocoa 60 4.45000 11.55000 2 1997 Ecotone 

23 cocoa 72 3.35773 12.73720 3 2019-2020 South 

24 cocoa 42 2.35693 11.37630 2 2006 South 

25 cocoa 45 2.35964 11.38080 2 2006 South 

26 cocoa 54 2.57866 11.03326 2 2006 South 

27 cocoa 78 2.58369 11.02485 2 2006 South 

28 cocoa 58 3.26333 11.79228 2 2006 South 

29 cocoa 60 3.27026 11.79395 2 2006 South 

30 cocoa 57 4.76667 10.83333 3 1997 Ecotone 

31 cocoa 132 3.86398 12.43288 5 2017-2020 South 

32 cocoa 72 3.86365 12.42673 4 2017-2019 South 

33 cocoa 44 3.59393 11.33310 2 2019 South 

34 cocoa 66 3.58884 11.32920 3 2019-2020 South 

35 cocoa 28 4.25548 11.24738 2 2006 Ecotone 

36 cocoa 58 4.24970 11.23558 2 2006 Ecotone 
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37 cocoa 107 4.07666 11.55443 4 2006 South 

38 cocoa 217 3.86694 13.31611 9 
1990, 1993, 

2005 
South 

39 cocoa 160 4.16678 11.55236 8 1997, 2010 Ecotone 

40 cocoa 54 3.45469 11.25530 2 2019 South 

41 cocoa 37 3.98575 12.43751 2 2019 South 

42 cocoa 125 3.97200 12.45021 3 2019-2020 South 

43 cocoa 134 3.38741 12.74300 3 2019-2020 South 

44 cocoa 71 4.03817 10.57422 3 2000 South 

45 cocoa 40 4.06842 10.56138 2 2000 West 

46 cocoa 104 3.39001 12.74920 3 2019-2020 South 

47 cocoa 71 3.38308 12.74530 3 2019-2020 South 

48 cocoa 51 3.58430 11.32460 2 2019 South 

49 cocoa 41 4.55887 11.09055 2 2017-2018 Ecotone 

50 cocoa 64 2.97893 11.12102 1 2020 South 

51 cocoa 44 2.79648 11.18457 1 2020 South 

52 cocoa 37 2.82250 11.16628 1 2020 South 

53 cocoa 54 2.88723 11.20725 1 2020 South 

54 cocoa 57 3.01429 11.11771 1 2020 South 

55 cocoa 43 2.98922 11.11367 1 2020 South 

56 cocoa 64 2.83045 11.15124 1 2020 South 

57 cocoa 28 2.77107 11.21139 1 2020 South 

58 
mature 

forest 
113 3.42500 10.77675 6 2005, 2007 South 

59 
mature 

forest 
7 3.47278 12.78396 1 2009 South 

60 
mature 

forest 
239 2.65472 13.47111 10 1993, 2005 South 

61 
mature 

forest 
197 3.19056 12.81167 23 

1995-1996, 

1999 
South 

62 
mature 

forest 
49 3.18853 12.80192 6 2017 South 

63 
mature 

forest 
311 5.15745 9.33401 17 2016 West 

64 
mature 

forest 
316 5.17541 9.34544 12 2016 West 

65 
mature 

forest 
386 5.19040 9.34578 17 2016 West 

66 
mature 

forest 
384 5.17543 9.45589 14 2016 West 

67 
mature 

forest 
70 3.19444 12.81630 2 2019 South 

68 
mature 

forest 
74 2.96972 11.37531 3 2005 South 

69 
mature 

forest 
107 4.31900 10.33000 8 2013, 2015 West 

70 
mature 

forest 
160 3.52778 12.82455 4 2010 South 

71 
mature 

forest 
124 2.31043 15.75552 3 1993 South 

72 
mature 

forest 
39 3.18352 12.81350 2 2019 South 
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73 
mature 

forest 
103 4.45639 9.00917 5 2005, 2007 West 

74 
mature 

forest 
166 3.50058 10.03951 5 2005, 2007 South 

75 
mature 

forest 
209 3.51756 10.00914 6 2006-2007 South 

76 
mature 

forest 
112 2.33714 10.19378 7 2005, 2007 South 

77 
mature 

forest 
77 2.98072 12.40264 3 2005 South 

78 
mature 

forest 
56 3.19443 12.80950 2 2019 South 

79 
mature 

forest 
106 2.62351 14.01054 4 2007 South 

80 
mature 

forest 
826 1.61475 10.87810 27 

2014, 2016-

2017 
South 

81 
mature 

forest 
53 3.19138 12.82040 2 2019 South 

82 
mature 

forest 
81 3.43250 13.59417 5 2005 South 

83 
mature 

forest 
320 2.65861 13.39694 14 

1990, 1993, 

2005 
South 

        

* One sampling day represented 4-6 hrs of mist-netting, between dawn (~6:30) to 12.30-17:00. 

At each site, we opened 12 - 20 mist-nets (12 m long x 3 m high, 30 mm mesh) 

Appendix 2: Chapter 2 captures 

Table S2. Species captured in Cameroonian and Equato-Guinean cocoa and mature forest 

sites, with characteristics used for analyses and the proportion of total captures they 

represented. The proportion of captures was calculated by dividing the number of captures 

for each species by the total captures in each habitat type (4778 in cocoa and 4788 in 

mature forest). Abbreviations: 'Y' = yes, 'N' = no, 'R' = rare, 'O' = occasional, 'F' = frequent, 

'U' = unknown. 
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Accipiter 

castanilius Carnivore Y LC N N Y 0.0008 0.0000 

Accipiter 

erythropus Carnivore N LC N N N 0.0006 0.0000 

Accipiter 

toussenelii Carnivore N LC N N N 0.0010 0.0004 

Acrocephalus 

rufescens Insectivore N LC N N N 0.0000 0.0002 

Agelastes niger Insectivore Y LC N N Y 0.0000 0.0002 

Alcedo 

quadribrachys Piscivore N LC N N N 0.0000 0.0021 
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Alethe castanea Insectivore Y LC O F Y 0.0111 0.0940 

Anthreptes 

rectirostris Insectivore N LC F N N 0.0004 0.0000 

Anthreptes 

seimundi Nectarivore N LC F N N 0.0015 0.0000 

Apalis binotata Insectivore Y LC N N N 0.0002 0.0002 

Apalis 

rufogularis Insectivore Y LC F N Y 0.0002 0.0000 

Apaloderma 

aequatoriale Insectivore Y LC N N Y 0.0000 0.0006 

Atimastillas 

flavicollis Frugivore N LC F O N 0.0008 0.0000 

Atronanus 

fuliginosus Insectivore Y LC N N N 0.0002 0.0000 

Baeopogon 

indicator Frugivore N LC O O Y 0.0010 0.0002 

Bathmocercus 

rufus Insectivore Y LC N O N 0.0000 0.0008 

Batis minima Insectivore Y LC U U N 0.0002 0.0000 

Bleda notatus Insectivore Y LC F F Y 0.0048 0.0827 

Bleda 

syndactylus Insectivore Y LC F F Y 0.0031 0.0286 

Buccanodon 

duchaillui Frugivore N LC O N Y 0.0006 0.0013 

Butorides 

striata Piscivore N LC N N N 0.0000 0.0002 

Bycanistes 

albotibialis Frugivore Y LC N N Y 0.0013 0.0008 

Bycanistes 

fistulator Frugivore N LC N N Y 0.0002 0.0002 

Calyptocichla 

serina Frugivore N LC O N Y 0.0000 0.0038 

Camaroptera 

brachyura Insectivore N LC N N N 0.0293 0.0008 

Camaroptera 

chloronota Insectivore N LC O O N 0.0094 0.0019 

Camaroptera 

superciliaris Insectivore N LC N N Y 0.0015 0.0004 

Campethera 

cailliautii Insectivore N LC N N N 0.0002 0.0000 

Campethera 

caroli Insectivore N LC F N Y 0.0040 0.0013 

Campethera 

nivosa Insectivore N LC F N N 0.0004 0.0054 

Centropus 

monachus Insectivore N LC N N N 0.0002 0.0000 

Ceratogymna 

atrata Frugivore N LC N N Y 0.0002 0.0004 

Ceuthmochares 

aereus Insectivore N LC N N Y 0.0002 0.0000 

Chalcomitra 

rubescens Nectarivore Y LC N N N 0.0006 0.0000 

Chamaetylas 

poliocephala Insectivore N LC F F Y 0.0000 0.0386 

Chlorocichla 

falkensteini Frugivore Y LC O N N 0.0025 0.0000 
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Chlorocichla 

simplex Frugivore N LC O N N 0.0059 0.0000 

Chloropicus 

fuscescens Insectivore N LC F N N 0.0004 0.0000 

Chloropicus 

gabonensis Insectivore Y LC N N N 0.0000 0.0004 

Chrysococcyx 

caprius Insectivore N LC N N N 0.0013 0.0000 

Cinnyris batesi Nectarivore Y LC F N Y 0.0002 0.0002 

Cinnyris 

chloropygius Nectarivore N LC N N N 0.0109 0.0010 

Cinnyris 

coccinigastrus Nectarivore N LC N N N 0.0002 0.0000 

Cinnyris 

johannae Insectivore N LC N N N 0.0002 0.0000 

Cinnyris 

minullus Nectarivore N LC F N N 0.0077 0.0004 

Cinnyris 

superbus Nectarivore N LC N N N 0.0021 0.0000 

Cinnyris 

venustus Nectarivore N LC F N N 0.0004 0.0000 

Cisticola 

erythrops Insectivore N LC N N N 0.0006 0.0000 

Clytospiza 

monteiri Granivore Y LC N N N 0.0004 0.0000 

Colius striatus Frugivore N LC N N N 0.0000 0.0002 

Columba 

larvata Granivore N LC N N N 0.0000 0.0002 

Columba 

unicincta Granivore N LC N N Y 0.0002 0.0000 

Corythornis 

leucogaster Piscivore N LC N N Y 0.0021 0.0192 

Cossypha 

cyanocampter Insectivore N LC N N Y 0.0000 0.0004 

Cossypha 

natalensis Insectivore N LC N N Y 0.0008 0.0002 

Cossypha 

niveicapilla Insectivore N LC N N N 0.0006 0.0000 

Cossypha 

polioptera Insectivore N LC N N Y 0.0002 0.0000 

Criniger 

barbatus Insectivore N LC F O Y 0.0002 0.0000 

Criniger 

chloronotus Insectivore Y LC F F Y 0.0000 0.0092 

Criniger sp Insectivore N LC F O Y 0.0042 0.0115 

Cuculus gularis Insectivore N LC N N N 0.0002 0.0000 

Cyanomitra 

cyanolaema Nectarivore N LC N N N 0.0019 0.0008 

Cyanomitra 

olivacea Nectarivore N LC F N N 0.2131 0.1487 

Cyanomitra 

verticalis Nectarivore N LC N N N 0.0036 0.0000 

Deleornis 

fraseri Nectarivore N LC F N N 0.0019 0.0038 

Dendropicos  

elliotii Insectivore Y LC F N Y 0.0000 0.0002 
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Dicrurus 

atripennis Insectivore N LC F N Y 0.0002 0.0025 

Dicrurus 

modestus Insectivore N LC N N N 0.0004 0.0004 

Dicrurus 

sharpei Insectivore N LC F N N 0.0002 0.0002 

Dryoscopus 

sabini Insectivore N LC N N N 0.0002 0.0000 

Dryoscopus 

senegalensis Insectivore Y LC N N N 0.0006 0.0000 

Elminia 

albiventris Insectivore Y LC O N Y 0.0000 0.0002 

Elminia 

longicauda Insectivore N LC N N N 0.0006 0.0000 

Elminia 

nigromitrata Insectivore N LC O N Y 0.0006 0.0107 

Eremomela 

badiceps Insectivore N LC N N N 0.0023 0.0000 

Erythrocercus 

mccallii Insectivore N LC F N N 0.0008 0.0000 

Estrilda astrild Granivore N LC N N N 0.0023 0.0000 

Estrilda 

atricapilla Granivore Y LC N N N 0.0006 0.0000 

Estrilda 

melpoda Granivore N LC N N N 0.0013 0.0004 

Estrilda 

nonnula Granivore Y LC N N N 0.0013 0.0002 

Euplectes 

hordeaceus Granivore N LC N N N 0.0008 0.0000 

Eurillas 

ansorgei Frugivore N LC O N Y 0.0002 0.0004 

Eurillas 

curvirostris Frugivore N LC F N N 0.0071 0.0025 

Eurillas gracilis Frugivore N LC O N N 0.0048 0.0004 

Eurillas 

latirostris Frugivore N LC R N N 0.1078 0.1855 

Eurillas virens Frugivore N LC R N N 0.1762 0.0466 

Fraseria 

caerulescens Insectivore N LC O N N 0.0002 0.0000 

Fraseria 

cinerascens Insectivore N LC N N Y 0.0004 0.0010 

Fraseria 

griseigularis Insectivore N LC F N N 0.0000 0.0004 

Fraseria 

tessmanni Insectivore N LC N N N 0.0008 0.0000 

Gelochelidon 

nilotica Insectivore N LC N N N 0.0000 0.0002 

Geokichla 

camaronensis Insectivore Y LC N N Y 0.0000 0.0021 

Geokichla 

princei Insectivore N LC O O Y 0.0000 0.0002 

Glaucidium 

sjostedti Insectivore Y LC N N Y 0.0000 0.0010 

Gymnobucco 

bonapartei Frugivore Y LC N N N 0.0080 0.0000 



137 

 

Gymnobucco 

calvus Frugivore N LC N N N 0.0002 0.0000 

Gymnobucco 

peli Frugivore N LC N N N 0.0002 0.0000 

Halcyon badia Insectivore N LC N N N 0.0004 0.0008 

Halcyon 

leucocephala Insectivore N LC N N N 0.0004 0.0000 

Halcyon 

malimbica Insectivore N LC N N N 0.0015 0.0006 

Halcyon 

senegalensis Insectivore N LC N N N 0.0006 0.0002 

Hedydipna 

collaris Nectarivore N LC F N N 0.0027 0.0008 

Horizocerus 

albocristatus Frugivore N LC F O Y 0.0004 0.0000 

Hylia prasina Insectivore N LC F N N 0.0186 0.0134 

Illadopsis 

cleaveri Insectivore N LC F N N 0.0006 0.0123 

Illadopsis 

fulvescens Insectivore N LC F N N 0.0008 0.0090 

Illadopsis 

puveli Insectivore N LC F N N 0.0006 0.0000 

Illadopsis 

rufipennis Insectivore N LC F N N 0.0008 0.0159 

Indicator 

conirostris Insectivore N LC N N Y 0.0004 0.0002 

Indicator exilis Insectivore N LC N N N 0.0033 0.0002 

Indicator 

maculatus Insectivore N LC N N N 0.0004 0.0088 

Indicator minor Insectivore N LC N N N 0.0000 0.0010 

Indicator 

willcocksi Insectivore N LC R N N 0.0010 0.0000 

Ispidina 

lecontei Insectivore N LC O O N 0.0048 0.0038 

Ispidina picta Insectivore N LC N O N 0.0414 0.0021 

Ixonotus 

guttatus Frugivore N LC N N N 0.0004 0.0000 

Lanius 

mackinnoni Insectivore Y LC N N N 0.0004 0.0000 

Lophoceros 

fasciatus Frugivore Y LC N N N 0.0002 0.0000 

Macrosphenus 

concolor Insectivore N LC F N Y 0.0000 0.0002 

Macrosphenus 

flavicans Insectivore Y LC F N Y 0.0002 0.0004 

Malaconotus 

cruentus Frugivore N LC N N N 0.0002 0.0000 

Malimbus 

malimbicus Insectivore N LC F N N 0.0002 0.0006 

Malimbus 

nitens Insectivore N LC F N N 0.0006 0.0010 

Malimbus 

racheliae Insectivore Y LC F N Y 0.0000 0.0002 

Mandingoa 

nitidula Granivore N LC N N N 0.0096 0.0002 
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Megabyas 

flammulatus Insectivore N LC N N N 0.0004 0.0000 

Melignomon 

zenkeri Insectivore N LC N N N 0.0002 0.0002 

Melocichla 

mentalis Insectivore N LC N N N 0.0002 0.0000 

Merops 

albicollis Insectivore N LC N N N 0.0002 0.0000 

Merops 

mentalis Insectivore N NT N N N 0.0000 0.0004 

Merops 

muelleri Insectivore Y LC N N N 0.0002 0.0004 

Muscicapa 

comitata Insectivore N LC N N N 0.0013 0.0002 

Muscicapa 

epulata Insectivore N LC N N N 0.0004 0.0000 

Muscicapa 

sethsmithi Insectivore Y LC N N N 0.0015 0.0006 

Neocossyphus 

poensis Insectivore N LC O F N 0.0025 0.0180 

Neocossyphus 

rufus Insectivore N LC O F Y 0.0002 0.0031 

Nicator chloris Insectivore N LC O N N 0.0021 0.0013 

Nicator vireo Insectivore Y LC N N N 0.0017 0.0013 

Nigrita bicolor Granivore N LC F N N 0.0013 0.0010 

Nigrita 

canicapillus Granivore N LC F N N 0.0006 0.0002 

Nigrita 

fusconotus Insectivore N LC F N N 0.0008 0.0000 

Nigrita 

luteifrons Frugivore Y LC F N N 0.0004 0.0000 

Oriolus 

nigripennis Insectivore N LC O N N 0.0002 0.0000 

Parmoptila 

woodhousei Insectivore Y LC F N N 0.0031 0.0031 

Passer griseus Granivore N LC N N N 0.0042 0.0008 

Peliperdix 

lathami Insectivore N LC N N Y 0.0000 0.0006 

Phyllastrephus 

albigularis Insectivore N LC F N Y 0.0038 0.0036 

Phyllastrephus 

poensis Insectivore Y LC F N Y 0.0000 0.0010 

Phyllastrephus 

scandens Insectivore N LC F N N 0.0002 0.0000 

Phyllastrephus 

sp Insectivore N LC F N Y 0.0025 0.0439 

Phylloscopus 

sibilatrix Insectivore N LC N N N 0.0031 0.0000 

Phylloscopus 

trochilus Insectivore N LC N N N 0.0000 0.0002 

Platysteira 

blissetti Insectivore N LC F N N 0.0015 0.0000 

Platysteira 

castanea Insectivore Y LC F N N 0.0306 0.0086 

Platysteira 

chalybea Insectivore Y LC O N Y 0.0015 0.0000 
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Platysteira 

concreta Insectivore N LC F N Y 0.0000 0.0079 

Platysteira 

cyanea Insectivore N LC N N N 0.0059 0.0000 

Platysteira 

tonsa Insectivore Y LC F N Y 0.0015 0.0000 

Ploceus 

aurantius Insectivore N LC F N N 0.0002 0.0000 

Ploceus bicolor Insectivore N LC F N N 0.0006 0.0000 

Ploceus 

cucullatus Granivore N LC F N N 0.0071 0.0038 

Ploceus luteolus Insectivore N LC F N N 0.0000 0.0002 

Ploceus 

nigerrimus Insectivore Y LC F N N 0.0031 0.0006 

Ploceus 

nigricollis Insectivore N LC F N N 0.0029 0.0000 

Pogoniulus 

atroflavus Frugivore N LC N N N 0.0107 0.0006 

Pogoniulus 

bilineatus Frugivore N LC O N N 0.0065 0.0006 

Pogoniulus 

chrysoconus Frugivore N LC N N N 0.0002 0.0000 

Pogoniulus 

scolopaceus Frugivore N LC R N N 0.0080 0.0006 

Pogoniulus 

subsulphureus Frugivore N LC N N N 0.0023 0.0000 

Prinia bairdii Insectivore Y LC N N N 0.0027 0.0006 

Prinia subflava Insectivore N LC N N N 0.0004 0.0000 

Prodotiscus 

insignis Insectivore N LC O N N 0.0002 0.0004 

Psalidoprocne 

nitens Insectivore N LC N N N 0.0000 0.0002 

Psalidoprocne 

pristoptera Insectivore N LC N N N 0.0006 0.0000 

Pycnonotus 

barbatus Frugivore N LC N N N 0.0222 0.0004 

Pyrenestes 

ostrinus Granivore N LC N N N 0.0015 0.0004 

Sarothrura 

pulchra Insectivore N LC N N N 0.0002 0.0000 

Schistolais 

leucopogon Insectivore Y LC N N N 0.0013 0.0000 

Sheppardia 

bocagei Insectivore Y LC O O N 0.0000 0.0004 

Sheppardia 

cyornithopsis Insectivore N LC O O N 0.0000 0.0113 

Smithornis 

capensis Insectivore N LC O N N 0.0008 0.0000 

Smithornis 

rufolateralis Insectivore N LC R N N 0.0006 0.0008 

Smithornis 

sharpei Insectivore Y LC N N Y 0.0002 0.0000 

Spermestes 

bicolor Granivore N LC N N N 0.0069 0.0002 

Spermestes 

cucullata Granivore N LC N N N 0.0046 0.0000 
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Spermestes 

fringilloides Granivore N LC N N N 0.0019 0.0000 

Spermophaga 

haematina Granivore N LC O N N 0.0163 0.0132 

Stelgidillas 

gracilirostris Frugivore N LC O N N 0.0002 0.0113 

Stiphrornis 

erythrothorax Insectivore N LC O O Y 0.0031 0.0391 

Stizorhina 

fraseri Insectivore Y LC O O N 0.0025 0.0023 

Strix woodfordii Carnivore N LC N N N 0.0002 0.0000 

Sylvietta denti Insectivore N LC F N N 0.0002 0.0000 

Sylvietta virens Frugivore N LC R N N 0.0044 0.0006 

Tchagra 

australis Insectivore N LC F N N 0.0008 0.0000 

Terpsiphone 

batesi Insectivore Y LC F N N 0.0015 0.0000 

Terpsiphone 

rufiventer Insectivore N LC F N N 0.0061 0.0119 

Terpsiphone sp Insectivore N LC F N N 0.0213 0.0021 

Terpsiphone 

viridis Insectivore N LC F N N 0.0023 0.0000 

Thescelocichla 

leucopleura Frugivore N LC R O N 0.0008 0.0002 

Tockus 

erythrorhynchus Frugivore N LC N N N 0.0002 0.0000 

Trachyphonus 

purpuratus Frugivore Y LC N N N 0.0002 0.0002 

Tricholaema 

hirsuta Frugivore N LC O N Y 0.0004 0.0004 

Trochocercus 

nitens Insectivore N LC F O N 0.0004 0.0044 

Turdus pelios Insectivore N LC N O N 0.0021 0.0000 

Turtur afer Granivore N LC N N N 0.0130 0.0002 

Turtur brehmeri Granivore N LC N N N 0.0002 0.0044 

Turtur 

tympanistra Granivore N LC N N N 0.0182 0.0006 

Verreauxia 

africana Insectivore Y LC O N Y 0.0019 0.0025 

Vidua macroura Granivore N LC N N N 0.0000 0.0002 

Zosterops 

senegalensis Insectivore N LC F N N 0.0002 0.0000 

* For analyses, I included species classed as 

'frequent' and 'occasional' in the mixed-species flock 

category     
† For analyses, I included species classed as 

'frequent' and 'occasional' in the ant-

follower category      
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Appendix 3: Diversity measures 

For partitioning biodiversity, I used Rényi's generalized relative entropy (Rényi, 1961), an 

extension of Hill (1973), Jost (2007) and Leinster and Cobbold's (2012) notions of 

ecosystem diversity. Implemented in Reeve et al.'s (2016) framework, it measures 

components of alpha, beta and gamma diversity over a continuum of viewpoint parameters, 

q, with decreasing emphasis on rare species as q increases (Hill, 1973). The viewpoint 

parameter q focuses on rarity at a different scale for alpha, beta and gamma diversities: for 

alpha, the emphasis is on species that are locally rare in the subcommunity, for gamma, 

those that are globally rare in the metacommunity, and for beta diversity the species that 

are relatively rare at the subcommunity level compared to the metacommunity. Calculating 

diversity over a range of q values allows us to investigate evenness; for instance if a 

community shows high alpha diversity at q = 0 but then a steep decline as q increases, then 

it is uneven, likely dominated by a small number of abundant species alongside many rare 

species.  

The Reeve et al. (2016) framework considers a metacommunity composed of multiple 

subcommunities, each containing a number of species. Power means (or generalized 

means) are used to calculate these diversity measures (and many others), and are indicated 

by the letter M with the order of the power mean (1 − 𝑞) in subscript (Reeve et al., 2016). 

Power means can be weighted; a 1 − 𝑞  order power mean of 𝑢 =  𝑢1, … , 𝑢𝑛 weighted by 

𝑤 =  𝑤1, … , 𝑤𝑛 is written as 𝑀1−𝑞(𝑤, 𝑢). In the Reeve et al. (2016) framework, power 

means are weighted by the relative size of the subcommunity (for metacommunity metrics) 

or the relative abundance of species in a subcommunity (for subcommunity metrics). 

However, in my analyses I used a standardised number of captures for each site, and 

therefore the weighting by subcommunity size becomes obsolete.  

In a given metacommunity, there are S species of relative abundance 𝑝 = (𝑝1, … , 𝑝𝑆), 

partitioned into N distinct subcommunities. P is the relative abundance of the S species in 

N subcommunities such that ∑ 𝑖 ∑ 𝑗 𝑃𝑖𝑗 = 1 and 𝑃𝑖𝑗 is the relative abundance of species i in 

subcommunity j. For a given subcommunity j, 𝑃.𝑗 is a matrix describing the relative 

abundance of each species. Considering all subcommunities yields 𝑝 =  ∑ 𝑃.𝑗𝑗 , the relative 

abundance of species in the metacommunity as a whole. 

From the Reeve et al. (2016) framework I calculated the following measures (Appendix 

S2): 
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a) Metacommunity gamma: effective number of species in a metacommunity, 

calculated as 𝐺 
𝑞 =  M1−𝑞( 𝛾𝑗 

𝑞 ), where 𝛾𝑗 
𝑞  denotes gamma diversity of 

subcommunity j  (see below).  

b) Subcommunity gamma: contribution per subcommunity to metacommunity 

diversity, calculated as 𝛾𝑗 
𝑞 =  𝑀1−𝑞(𝑃.𝑗 , 𝑝−1) 

c) Subcommunity alpha: effective number of species in subcommunity j in isolation, 

calculated as 𝛼𝑗 = 𝑀1−𝑞(𝑃.𝑗 , (𝑃.𝑗 )𝑖
−1) 

𝑞 , where (𝑃.𝑗 )𝑖
−1 is the relative abundance of 

each species in the subcommunity as a fraction of the metacommunity. 

d) Representativeness (beta diversity): measure how representative, or typical, a 

subcommuity is of the metacommunity, calculated as 𝜌𝑗 =  𝑀1−𝑞 (𝑃.𝑗 ,
𝑝𝑖

(𝑃.𝑗)
𝑖

) 
𝑞  
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Table S3. Diversity measures used to compare bird communities in cocoa and forest plots, from Reeve et al. (2016). For metacommunity-level metrics I 

present here the mean and 95% confidence intervals (CIs) derived from the 50 iterations of the analyses. For subcommunity-level metrics, I calculated the 

mean and CIs for each subcommunity across the 50 iterations, and present here the aggregated values for each habitat type. 

     
Results     

Metric Level Partitioning Definition Formula q = 0 q = 1 q = 2 q = ∞ Habitat 

Gamma 

diversity 

Metacommunity Separate 

metacommunity 

for cocoa and 

forest 

Effective number of 

species in 

metacommunity 

qG = M1-q (qϒj)  * 90.0 {83.6, 

96.4} 

27.4 {24.7, 

30.0} 

12.8 {11.1, 

14.6} 

1.0 {1.0, 1.0} Cocoa 

71.0 {64.8, 

77.2} 

22.3 {20.2, 

24.4} 

11.5 {9.9, 13.1} 1.0 {1.0, 1.0} Forest 

Gamma 

diversity 

Subcommunity The 

metacommunity 

comprises all 

sites 

Contribution per 

individual to 

metacommunity 

diversity 

qϒj= M1-q(P.j, p-1)   136.7 {115.5, 

157.8} 

36.0 {28.5, 

43.4} 

13.2 {11.5, 

15.0} 

5.0 {4.9, 5.1} Cocoa 

100.2 {83.6, 

116.9} 

30.4 {26.6, 

34.2} 

13.5 {12.3, 

14.6} 

4.9 {4.8, 5.0} Forest 

Alpha 

diversity 

Subcommunity The 

metacommunity 

comprises all 

sites 

Effective number of 

species in 

subcommunity j in 

isolation 

qαj = M1-q(P.j,(P.j)i
-1) 12.4 {10.2, 

14.5} 

9.0 {7.1, 11.0} 6.8 {5.1, 8.6} 1.0 {1.0, 1.0} Cocoa 

12.2 {10.7, 

13.7} 

9.3 {7.7, 10.8} 7.3 {6.0. 8.6} 1.0 {1.0, 1.0} Forest 

Beta 

diversity 

Subcommunity Separate 

metacommunity 

for cocoa and 

forest 

Representativeness 

of subcommunity j 

qρj= M1-q(P.j, pi/(P.j)i) 0.61 {0.59, 

0.63} 

0.39 {0.36, 

0.42} 

0.23 {0.21, 

0.25} 

0.05 {0.04, 

0.06} 

Cocoa 

0.64 {0.62, 

0.66} 

0.45 {0.42, 

0.48} 

0.30 {0.27, 

0.33} 

0.09 {0.06, 

0.11} 

Forest 
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Weighted power means are used to calculate many diversity metrics: a 1-q  order power mean of u= u1,…,un weighted by w= w1,…,wn is written as M(1-q) (w,u). The relative 

abundance of S species in a single population is given by the vector p = (p1,. .., pS), where pi is the relative abundance of the ith species. P is the relative abundance of the S species 

in the N subcommunities such that ∑i∑jPij = 1 and Pij is the relative abundance of species i in subcommunity j. 
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Appendix 4: Chapter 2 model output 

Table S4. Output of minimum adequate models, after elimination of non-significant 

factors, investigating bird community composition in cocoa farms and mature forest, and 

effect of shade and forest cover on bird communities. 

Response variable Explanatory 

variable 

Estimate Std.Error t value p value 

Insectivore abundance  
    

 Intercept -1.34 0.07 -18.74 <2E-16 

 Habitata 0.58 0.1 5.75 1.02E-08 

Frugivore abundance  
    

 Intercept -1.02 0.09 -11.78 <2E-16 

 Habitat -0.49 0.1 -5.06 4.23E-07 

 Seasonb 0.17 0.07 2.45 1.40E-02 

Nectarivore abundance      

 Intercept -1.6 0.08 -19 <2E-16 

Ant-follower abundance      

 Intercept -4.1 0.23 -18.1 <2E-16 
 Habitat 2.81 0.3 9.46 <2E-16 

Mixed-flock abundance      

 Intercept -0.87 0.06 -13.12 <2E-16 
 Habitat 0.48 0.07 6.55 5.76E-11 

Forest specialist 

abundance 
     

 Intercept -3.68 0.19 -19.73 <2E-16 
 Habitat 2.41 0.24 9.85 <2E-16 
 Season 0.28 0.11 2.5 1.00E-02 

Endemic abundance      

 Intercept -2.48 0.09 -27.69 <2E-16 
 Habitat 0.94 0.14 6.61 3.98E-11 

Insectivore species 

richness 
 

    

 Intercept -0.82 0.05 -17.84 <2E-16 

 Habitat 0.45 0.07 6.24 4.29E-10 

Frugivore species 

richness 
 

    

 Intercept -1.24 0.05 -23.19 <2E-16 

 Habitat -0.83 0.12 -7.14 8.86E-13 

Nectarivore species 

richness 
     

 Intercept -1.98 0.07 -27.19 <2E-16 
 

Habitat -0.56 0.15 -3.81 0.0001 

Ant-follower species 

richness      

 Intercept -2.02 0.07 -27.26 <2E-16 

 Habitat 0.97 0.1 9.61 <2E-16 
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Mixed-flock species 

richness 
     

 Intercept -0.81 0.06 -12.51 <2E-16 
 Habitat 0.57 0.11 5.17 2.34E-07 
 Season 0.15 0.09 1.64 7.00E-02 
 Habitat:Season -0.26 0.14 -1.86 6.00E-02 

Forest specialist species 

richness 
     

 Intercept -2.5 0.23 -10.99 <2E-16 
 Habitat 1.68 0.23 7.29 3.05E-13 
 Season 0.46 0.2 2.29 2.00E-02 
 Habitat:Season -0.52 0.27 -1.95 5.00E-02 

Endemic species 

richness 
     

 Intercept -1.91 0.07 -27.03 <2E-16 
 Habitat 0.48 0.11 4.51 6.43E-06 

            

Insectivore abundance  
    

 Intercept -1.54 0.21 -7.29 3.12E-13 

Frugivore abundance  
    

 Intercept -0.67 0.2 -3.32 9.00E-04 

 Shade cover -0.0045 0.002 -2.189 2.80E-02 

Nectarivore abundance      

 Intercept -1.32 0.1 -13.71 <2E-16 

Ant-follower abundance      

 Intercept -10.71 1.37 -7.82 5.44E-15 
 Shade cover 0.07 0.01 5.36 8.31E-08 
 Forest cover 0.04 0.01 3.03 2.00E-03 

Mixed-flock abundance  
    

 Intercept -1.18 0.15 -7.88 3.32E-15 
 Shade cover 0.006 0.002 2.84 4.40E-03 

Forest specialist 

abundance 
     

 Intercept -7.42 0.74 -10.03 <2E-16 
 Shade cover 0.04 0.008 5.48 4.18E-08 
 Forest cover 0.02 0.008 2.75 6.00E-03 

Insectivore species 

richness 
 

    

 Intercept -1.15 0.07 -15.87 <2E-16 

Frugivore species 

richness 
 

    

 Intercept -1.16 0.07 -15.9 <2E-16 

Nectarivore species 

richness 
     

 Intercept -1.89 0.1 -19.21 <2E-16 

Ant-follower species 

richness 
     

 Intercept -3.05 0.29 -10.74 <2E-16 
 Forest cover 0.02 0.006 3.43 5.90E-04 
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Mixed-flock species 

richness 
     

 Intercept -0.82 0.062 -12.72 <2E-16 

Forest specialist species 

richness 
     

 Intercept -4.93 0.5 -10 <2E-16 
 Forest cover 0.05 0.01 5.15 2.57E-07 
aReference level for 

habitat is cocoa.           
bReference level for 

season is dry.      
 

Appendix 5: Chapter 3 simulation results 

Table S5. Mean (95% Bayesian Credible Intervals) for population size estimations from 

mark-recapture model and integrated model, and true value used in simulation. Parameter 

names are formulated as Nijz, corresponding to abundance of species i in farm j and visit z. 

Parameter 
Simulation 

value 
Mark-recapture Integrated 

N[A,1,1] 301 302 (186, 440) 284 (192, 384) 

N[A,2,1] 176 164 (97, 237) 162 (105, 221) 

N[A,3,1] 212 198 (131, 270) 193 (130, 259) 

N[A,4,1] 287 272 (170, 382) 259 (175, 350) 

N[A,5,1] 214 206 (139, 282) 202 (134, 271) 

N[A,6,1] 298 288 (176, 408) 272 (182, 366) 

N[A,7,1] 202 180 (113, 252) 180 (121, 245) 

N[A,8,1] 236 201 (131, 271) 200 (136, 267) 

N[A,9,1] 348 328 (189, 483) 306 (208, 415) 

N[A,10,1] 325 309 (191, 447) 288 (196, 390) 

N[A,11,1] 335 336 (191, 498) 311 (213, 424) 

N[A,12,1] 324 332 (190, 490) 308 (208, 418) 

N[A,13,1] 203 178 (111, 250) 177 (117, 240) 

N[A,14,1] 361 356 (191, 535) 328 (222, 445) 

N[A,15,1] 188 145 (79, 222) 145 (93, 198) 

N[A,16,1] 289 307 (183, 449) 286 (195, 391) 

N[A,17,1] 167 165 (101, 240) 167 (110, 226) 

N[A,18,1] 184 172 (106, 245) 171 (112, 233) 

N[A,19,1] 291 295 (181, 420) 279 (191, 377) 

N[A,20,1] 254 227 (152, 306) 219 (150, 296) 

N[B,1,1] 54 67 (23, 120) 68 (28, 112) 

N[B,2,1] 32 39 (15, 65) 39 (15, 65) 

N[B,3,1] 21 43 (16, 73) 41 (16, 73) 

N[B,4,1] 37 60 (22, 107) 60 (27, 104) 

N[B,5,1] 28 45 (17, 78) 44 (16, 76) 

N[B,6,1] 28 63 (22, 113) 58 (22, 102) 

N[B,7,1] 39 39 (14, 68) 39 (13, 68) 
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N[B,8,1] 27 44 (18, 75) 42 (17, 74) 

N[B,9,1] 47 76 (29, 137) 70 (30, 118) 

N[B,10,1] 52 67 (23, 121) 65 (26, 110) 

N[B,11,1] 49 76 (27, 138) 72 (31, 121) 

N[B,12,1] 54 73 (27, 135) 67 (28, 117) 

N[B,13,1] 27 39 (13, 66) 41 (16, 70) 

N[B,14,1] 35 78 (25, 145) 73 (30, 124) 

N[B,15,1] 18 30 (9, 55) 30 (11, 55) 

N[B,16,1] 42 72 (27, 128) 69 (29, 115) 

N[B,17,1] 15 36 (13, 62) 35 (14, 63) 

N[B,18,1] 26 41 (17, 69) 39 (15, 68) 

N[B,19,1] 34 64 (24, 117) 60 (23, 104) 

N[B,20,1] 32 50 (21, 87) 52 (21, 87) 

N[C,1,1] 166 369 (65, 830) 294 (77, 604) 

N[C,2,1] 119 201 (51, 433) 177 (48, 355) 

N[C,3,1] 121 233 (54, 504) 198 (52, 405) 

N[C,4,1] 192 340 (65, 750) 277 (76, 560) 

N[C,5,1] 153 255 (63, 549) 219 (63, 438) 

N[C,6,1] 152 356 (67, 793) 284 (74, 580) 

N[C,7,1] 117 220 (53, 474) 188 (48, 383) 

N[C,8,1] 109 237 (59, 511) 203 (55, 410) 

N[C,9,1] 203 403 (69, 906) 318 (89, 656) 

N[C,10,1] 183 374 (62, 832) 295 (78, 606) 

N[C,11,1] 215 417 (75, 933) 329 (90, 665) 

N[C,12,1] 208 407 (64, 910) 319 (82, 652) 

N[C,13,1] 123 214 (53, 463) 187 (52, 377) 

N[C,14,1] 185 435 (69, 984) 337 (88, 689) 

N[C,15,1] 89 171 (40, 372) 152 (41, 308) 

N[C,16,1] 208 382 (70, 859) 305 (87, 624) 

N[C,17,1] 101 198 (49, 425) 169 (41, 345) 

N[C,18,1] 105 218 (52, 461) 188 (56, 383) 

N[C,19,1] 201 360 (61, 804) 292 (77, 591) 

N[C,20,1] 147 276 (64, 605) 231 (65, 469) 

N[A,1,2] 369 334 (202, 478) 314 (213, 427) 

N[A,2,2] 195 189 (119, 272) 190 (126, 255) 

N[A,3,2] 253 220 (149, 301) 219 (151, 294) 

N[A,4,2] 302 307 (197, 427) 294 (202, 396) 

N[A,5,2] 271 231 (155, 312) 227 (152, 304) 

N[A,6,2] 336 323 (204, 456) 308 (213, 416) 

N[A,7,2] 207 197 (126, 277) 196 (131, 267) 

N[A,8,2] 226 223 (150, 305) 220 (150, 294) 

N[A,9,2] 380 365 (213, 537) 341 (231, 461) 

N[A,10,2] 323 335 (201, 481) 313 (211, 425) 

N[A,11,2] 399 370 (216, 553) 349 (236, 473) 

N[A,12,2] 360 362 (207, 534) 338 (227, 460) 

N[A,13,2] 217 200 (127, 280) 197 (130, 264) 

N[A,14,2] 417 393 (217, 596) 363 (241, 491) 
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N[A,15,2] 186 161 (89, 247) 160 (104, 220) 

N[A,16,2] 390 352 (214, 505) 332 (227, 446) 

N[A,17,2] 204 183 (109, 263) 183 (125, 251) 

N[A,18,2] 244 208 (137, 290) 209 (143, 277) 

N[A,19,2] 291 326 (204, 465) 307 (205, 413) 

N[A,20,2] 284 258 (175, 344) 249 (173, 335) 

N[B,1,2] 55 75 (26, 135) 74 (32, 125) 

N[B,2,2] 26 38 (13, 68) 37 (12, 67) 

N[B,3,2] 28 50 (21, 84) 51 (21, 86) 

N[B,4,2] 51 67 (25, 120) 66 (27, 113) 

N[B,5,2] 43 53 (23, 90) 54 (22, 90) 

N[B,6,2] 36 73 (28, 130) 69 (27, 117) 

N[B,7,2] 32 46 (18, 78) 45 (18, 78) 

N[B,8,2] 43 48 (19, 82) 47 (19, 82) 

N[B,9,2] 51 84 (30, 150) 82 (35, 135) 

N[B,10,2] 48 76 (28, 137) 72 (29, 122) 

N[B,11,2] 54 82 (27, 152) 73 (26, 126) 

N[B,12,2] 53 81 (27, 150) 79 (36, 136) 

N[B,13,2] 34 44 (17, 75) 46 (18, 78) 

N[B,14,2] 60 91 (32, 166) 86 (39, 145) 

N[B,15,2] 26 36 (12, 63) 36 (14, 63) 

N[B,16,2] 66 78 (29, 141) 76 (32, 127) 

N[B,17,2] 35 39 (12, 67) 39 (14, 69) 

N[B,18,2] 25 47 (19, 77) 47 (21, 80) 

N[B,19,2] 50 72 (25, 129) 66 (25, 115) 

N[B,20,2] 29 56 (23, 96) 54 (21, 93) 

N[C,1,2] 232 420 (81, 940) 339 (95, 689) 

N[C,2,2] 130 225 (58, 486) 193 (53, 395) 

N[C,3,2] 164 260 (61, 566) 222 (58, 456) 

N[C,4,2] 191 381 (73, 842) 309 (87, 634) 

N[C,5,2] 157 282 (70, 611) 238 (68, 489) 

N[C,6,2] 205 400 (79, 889) 324 (86, 658) 

N[C,7,2] 137 245 (61, 533) 210 (54, 430) 

N[C,8,2] 149 266 (68, 576) 225 (63, 460) 

N[C,9,2] 207 451 (74, 1015) 356 (101, 736) 

N[C,10,2] 208 421 (81, 945) 336 (93, 687) 

N[C,11,2] 201 460 (80, 1039) 365 (100, 746) 

N[C,12,2] 219 455 (84, 1029) 358 (98, 734) 

N[C,13,2] 149 242 (62, 520) 209 (62, 429) 

N[C,14,2] 265 488 (79, 1105) 377 (98, 774) 

N[C,15,2] 109 188 (39, 408) 163 (38, 339) 

N[C,16,2] 247 434 (82, 962) 344 (97, 702) 

N[C,17,2] 118 221 (55, 477) 190 (50, 390) 

N[C,18,2] 147 240 (59, 517) 207 (59, 425) 

N[C,19,2] 206 408 (76, 900) 329 (94, 669) 

N[C,20,2] 161 310 (70, 674) 259 (72, 527) 
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Appendix 6: Chapter 3 real data parameters 

Table S6. Parameters in model of population size of birds in Cameroonian cocoa farms 

and forest. For each parameter: prior (standard deviation) and mean (95% Bayesian 

Credible Intervals) of parameter estimates from model with only mark-recapture data and 

integrated model. The distribution of the priors was normal, in every case. See Equations 

3.1-3.12 for further details. 

Parameter Description 
Prior 

(SD) 

Mark-

recapture 
Integrated 

νinsectivore0 

Intercept of linear predictor of 

population size for insectivores 

6.00 

(0.82) 

4.44 (4.17, 

4.72) 

4.36 (4.11, 

4.62) 

νfrugivore0 

Intercept of linear predictor of 

population size for frugivores 

6.00 

(0.82) 

5.25 (4.91, 

5.59) 

5.22 (4.91, 

5.52) 

νnectarivore0 

Intercept of linear predictor of 

population size for nectarivores 

6.00 

(0.82) 

4.94 (4.62, 

5.28) 

4.92 (4.6, 

5.24) 

νgranivore0 

Intercept of linear predictor of 

population size for granivores 

6.00 

(0.82) 

4.64 (3.83, 

5.48) 

3.24 (2.83, 

3.67) 

νant-follower0 

Intercept of linear predictor of 

population size for ant-followers 

6.00 

(0.82) 3 (2.17, 3.89) 

2.08 (1.78, 

2.38) 

νother0 

Intercept of linear predictor of 

population size for others 

6.00 

(0.82) 

5.28 (3.98, 

6.54) 

4.35 (2.55, 

5.84) 

νinsectivore1 

Effect of canopy on population size 

of insectivores 

0.00 

(0.10) 

-0.26 (-0.36, 

-0.17) 

-0.15 (-0.2, -

0.09) 

νfrugivore1 

Effect of canopy on population size 

of frugivores 

0.00 

(0.10) 

-0.23 (-0.32, 

-0.14) 

-0.12 (-0.17, 

-0.06) 

νnectarivore1 

Effect of canopy on population size 

of nectarivores 

0.00 

(0.10) 0 (-0.1, 0.09) 

0.02 (-0.04, 

0.09) 

νgranivore1 

Effect of canopy on population size 

of granivores 

0.00 

(0.10) 

-0.48 (-0.6, -

0.35) 

-0.24 (-0.32, 

-0.16) 

νant-follower1 

Effect of canopy on population size 

of ant-followers 

0.00 

(0.10) 

0.66 (0.51, 

0.82) 

0.48 (0.35, 

0.61) 

νother1 

Effect of canopy on population size 

of others 

0.00 

(0.10) 

0.03 (-0.16, 

0.22) 

0.07 (-0.1, 

0.24) 

ν2 Effect of season on population size 

0.00 

(0.20) 

-0.17 (-0.25, 

-0.1) 

-0.23 (-0.29, 

-0.17) 

ρinsectivore0 

Intercept of linear predictor of 

capture rate for insectivores 

0.00 

(3.16) 

-4.3 (-4.58, -

4.03) 

-4.18 (-4.44, 

-3.94) 

ρfrugivore0 

Intercept of linear predictor of 

capture rate for frugivores 

0.00 

(3.16) 

-4.73 (-5.07, 

-4.39) 

-4.66 (-4.96, 

-4.36) 

ρnectarivore0 

Intercept of linear predictor of 

capture rate for nectarivores 

0.00 

(3.16) 

-4.57 (-4.9, -

4.23) 

-4.53 (-4.85, 

-4.22) 

ρgranivore0 

Intercept of linear predictor of 

capture rate for granivores 

0.00 

(3.16) 

-5.88 (-6.68, 

-5.03) 

-4.42 (-4.84, 

-4.02) 

ρant-follower0 

Intercept of linear predictor of 

capture rate for ant-followers 

0.00 

(3.16) 

-4.35 (-5.3, -

3.53) 

-3.32 (-3.64, 

-3.01) 

ρother0 

Intercept of linear predictor of 

capture rate for others 

0.00 

(3.16) 

-9.68 (-11.16, 

-8.16) 

-8.74 (-10.44, 

-6.84) 

ρ1 

Effect of canopy cover on capture 

rate 

0.00 

(0.10) 

-0.17 (-0.25, 

-0.08) 

-0.25 (-0.3, -

0.2) 
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Ψinsectivore0 

Intercept of linear predictor of 

vocalisation rate for insectivores 

-5.00 

(2.00)   

-4.42 (-4.7, -

4.16) 

Ψfrugivore0 

Intercept of linear predictor of 

vocalisation rate for frugivores 

-5.00 

(2.00)   

-4.97 (-5.28, 

-4.67) 

Ψnectarivore0 

Intercept of linear predictor of 

vocalisation rate for nectarivores 

-5.00 

(2.00)   

-5.9 (-6.23, -

5.57) 

Ψgranivore0 

Intercept of linear predictor of 

vocalisation rate for granivores 

-5.00 

(2.00)   

-3.79 (-4.25, 

-3.37) 

Ψant-follower0 

Intercept of linear predictor of 

vocalisation rate for ant-followers 

-5.00 

(2.00)   

-3.96 (-4.28, 

-3.64) 

Ψothers0 

Intercept of linear predictor of 

vocalisation rate for others 

-5.00 

(2.00)   

-8.23 (-9.83, 

-6.48) 

 

Appendix 7: Arthropod observation model 

simulation 

METHODS 

I generated data corresponding to an insect community made up of 7 groups, 3 of which 

contained pest and non-pest species. The community was sampled during 20 visits using 

sweep-netting, malaise traps and visual surveys. I assumed that visual surveys had a 

capture rate across taxa, whilst the capture rate of sweep-netting and malaise traps was 

higher for some taxa than others (for parameter details see Table S7). Using equations 4.1 

– 4.10, I generated count data from Poisson-Gamma distributions for each of the methods 

(Table S7). I then fit the model to these data and evaluated accuracy and precision by 

comparing the mean and Bayesian Credible Intervals (BCIs) from each parameter posterior 

with the simulation value (Table S7). 

RESULTS 

Model estimates of population size and capture rate parameters are presented in Table S7. 

For every parameter, 95% BCIs of posterior overlapped the true value used in simulation. 

Precision of parameter estimates was high; for instance, in 6 out of 7 groups BCIs for 

parameter 𝛾𝑗1 (effect of shade cover on population size) did not overlap 0, thus giving an 

informative representation of this coefficient. 
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Table S7. Parameters used in model, with value assigned in simulation, prior and model 

estimate (summarised with mean and 95% BCIs of posterior). 
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γ10 

Intercept of linear predictor for 

population size of non-pest taxa 1 4.4 N(5, 3.2) 4.3 (4.1, 4.5) 

γ20 

Intercept of linear predictor for 

population size of non-pest taxa 2 4.8 N(5, 3.2) 4.6 (4.4, 4.8) 

γ30 

Intercept of linear predictor for 

population size of non-pest taxa 3 4.1 N(5, 3.2) 3.9 (3.7, 4.2) 

γ40 

Intercept of linear predictor for 

population size of non-pest taxa 4 2.9 N(5, 3.2) 2.9 (2.7, 3.1) 

γ50 

Intercept of linear predictor for 

population size of non-pest taxa 5 3.8 N(5, 3.2) 3.8 (3.4, 4.2) 

γ60 

Intercept of linear predictor for 

population size of non-pest taxa 6 3.6 N(5, 3.2) 3.6 (3.4, 3.8) 

γ70 

Intercept of linear predictor for 

population size of non-pest taxa 7 1.4 N(5, 3.2) 1.6 (1.3, 1.8) 

γ80 

Intercept of linear predictor for 

population size of pest taxa 1 2.0 N(5, 3.2) 2.1 (1.9, 2.4) 

γ90 

Intercept of linear predictor for 

population size of pest taxa 2 3.4 N(5, 3.2) 3.4 (3.2, 3.6) 

γ100 

Intercept of linear predictor for 

population size of pest taxa 3 3.6 N(5, 3.2) 3.6 (3.4, 3.8) 

γ11 

Coefficient for effect of shade cover 

on population size of non-pest taxa 1 0.1 N(0, 0.2) 0.1 (0.1, 0.2) 

γ21 

Coefficient for effect of shade cover 

on population size of non-pest taxa 2 -0.2 N(0, 0.2) -0.2 (-0.3, -0.2) 

γ31 

Coefficient for effect of shade cover 

on population size of non-pest taxa 3 -0.2 N(0, 0.2) -0.2 (-0.3, -0.2) 

γ41 

Coefficient for effect of shade cover 

on population size of non-pest taxa 4 0.1 N(0, 0.2) 0.1 (0.1, 0.2) 

γ51 

Coefficient for effect of shade cover 

on population size of non-pest taxa 5 -0.3 N(0, 0.2) -0.3 (-0.3, -0.2) 

γ61 

Coefficient for effect of shade cover 

on population size of non-pest taxa 6 0.2 N(0, 0.2) 0.2 (0.1, 0.3) 

γ71 

Coefficient for effect of shade cover 

on population size of non-pest taxa 7 0.1 N(0, 0.2) 0.1 (-0.1, 0.2) 

γ81 

Coefficient for effect of shade cover 

on population size of pest taxa 1 0.0 N(0, 0.2) -0.1 (-0.2, 0.1) 

γ91 

Coefficient for effect of shade cover 

on population size of pest taxa 2 -0.2 N(0, 0.2) -0.2 (-0.3, -0.2) 

γ101 

Coefficient for effect of shade cover 

on population size of pest taxa 3 -0.3 N(0, 0.2) -0.3 (-0.3, -0.2) 

γ12 

Coefficient for effect of season on 

population size of non-pest taxa 1 0.1 N(0, 0.2) 0 (-0.1, 0.1) 

γ22 

Coefficient for effect of season on 

population size of non-pest taxa 2 -0.4 N(0, 0.2) -0.3 (-0.4, -0.2) 

γ32 

Coefficient for effect of season on 

population size of non-pest taxa 3 -0.2 N(0, 0.2) -0.1 (-0.2, 0) 

γ42 

Coefficient for effect of season on 

population size of non-pest taxa 4 0.1 N(0, 0.2) 0.1 (0, 0.2) 
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γ52 

Coefficient for effect of season on 

population size of non-pest taxa 5 0.2 N(0, 0.2) 0.2 (0.1, 0.3) 

γ62 

Coefficient for effect of season on 

population size of non-pest taxa 6 0.0 N(0, 0.2) 0 (-0.2, 0.2) 

γ72 

Coefficient for effect of season on 

population size of non-pest taxa 7 0.3 N(0, 0.2) 0.1 (-0.1, 0.3) 

γ82 

Coefficient for effect of season on 

population size of pest taxa 1 0.2 N(0, 0.2) 0 (-0.2, 0.2) 

γ92 

Coefficient for effect of season on 

population size of pest taxa 2 -0.2 N(0, 0.2) -0.1 (-0.2, 0) 

γ102 

Coefficient for effect of season on 

population size of pest taxa 3 0.2 N(0, 0.2) 0.2 (0.1, 0.3) 

β11 

Capture rate of survey method 1 on 

taxa 1 -1.6 N(-1, 2) -1.4 (-1.6, -1.2) 

β12 

Capture rate of survey method 1 on 

taxa 2 -1.0 N(-1, 2) -0.9 (-1.1, -0.7) 

β13 

Capture rate of survey method 1 on 

taxa 3 -0.2 N(-1, 2) -0.2 (-0.4, -0.1) 

β14 

Capture rate of survey method 1 on 

taxa 4 -1.9 N(-2, 2) -1.9 (-2.2, -1.7) 

β15 

Capture rate of survey method 1 on 

taxa 5 -1.4 N(-1, 2) -1.3 (-1.5, -1.1) 

β16 

Capture rate of survey method 1 on 

taxa 6 -1.5 N(-2, 2) -1.4 (-1.6, -1.2) 

β17 

Capture rate of survey method 1 on 

taxa 7 -2.8 N(-1, 2) -2.8 (-3.3, -2.4) 

β21 

Capture rate of survey method 2 on 

taxa 1 -1.5 N(-1, 2) -1.4 (-1.5, -1.2) 

β22 

Capture rate of survey method 2 on 

taxa 2 -1.0 N(-1, 2) -0.9 (-1.1, -0.7) 

β23 

Capture rate of survey method 2 on 

taxa 3 -0.8 N(-1, 2) -0.9 (-1.1, -0.7) 

β24 

Capture rate of survey method 2 on 

taxa 4 0.9 N(1.2, 2) 0.9 (0.7, 1.1) 

β25 

Capture rate of survey method 2 on 

taxa 5 -1.6 N(-1, 2) -1.7 (-1.9, -1.5) 

β26 

Capture rate of survey method 2 on 

taxa 6 -1.0 N(-2, 2) -0.9 (-1.1, -0.8) 

β27 

Capture rate of survey method 2 on 

taxa 7 1.2 N(1.2, 2) 1.2 (1.0, 1.4) 

β31 

Capture rate of survey method 3 on 

taxa 1 -0.3 N(-0.2, 0.1) -0.2 (-0.4, 0) 

β32 

Capture rate of survey method 3 on 

taxa 2 -0.3 N(-0.2, 0.1) -0.2 (-0.4, 0) 

β33 

Capture rate of survey method 3 on 

taxa 3 -0.1 N(-0.2, 0.1) -0.2 (-0.4, 0) 

β34 

Capture rate of survey method 3 on 

taxa 4 -0.2 N(-0.2, 0.1) -0.2 (-0.3, 0) 

β35 

Capture rate of survey method 3 on 

taxa 5 -0.2 N(-0.2, 0.1) -0.2 (-0.4, 0) 

β36 

Capture rate of survey method 3 on 

taxa 6 -0.3 N(-0.2, 0.1) -0.2 (-0.4, -0.1) 

β37 

Capture rate of survey method 3 on 

taxa 7 -0.2 N(-0.2, 0.1) -0.2 (-0.3, 0) 
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Appendix 8: Equilibrium point calculation 

Equations 5.1 – 5.3 can be re-written as 

𝑁𝑡+1𝑖 = 𝑁𝑡𝑖exp(𝑏𝑖 + (∑ 𝑎𝑖𝑗𝑁𝑡𝑗)𝐽
𝑗=1 )   

For the system to be at equilibrium, exp(𝑏𝑖 + (∑ 𝑎𝑖𝑗𝑁𝑡𝑗)𝐽
𝑗=1 = 1 for all i, and therefore 

𝑏𝑖 + (∑ 𝑎𝑖𝑗𝑁𝑡𝑗)𝐽
𝑗=1 = 0 for all i. Therefore, the internal equilibrium point is given by 

𝐛 =  −𝐀𝐍∗ 

𝐍∗ = −𝐀−𝟏𝐛 

Appendix 9: Taxonomic grouping for community 

model 

Table S8. Total number of captures of each species considered in community model, and 

grouping applied to species. 

Group Species Captures 

Forest specialist Alethe castanea 34 

Forest specialist Bleda notatus 43 

Forest specialist Bleda syndactylus 12 

Forest specialist Campethera caroli 10 

Forest specialist Chamaetylas poliocephala 3 

Forest specialist Criniger calurus 2 

Forest specialist Criniger sp 13 

Forest specialist Neocossyphus poensis 9 

Forest specialist Neocossyphus rufus 1 

Forest specialist Phyllastrephus albigularis 2 

Forest specialist Phyllastrephus sp 7 

Forest specialist Stiphrornis erythrothorax 17 

Forest specialist Stizorhina fraseri 5 

Forest specialist Trochocercus nitens 1 

Forest specialist Verreauxia africana 3 

Camaroptera Camaroptera brachyura 95 

Camaroptera Camaroptera chloronota 14 

Camaroptera Camaroptera superciliaris 1 

Hylia Hylia prasina 42 

Ispidina Ispidina lecontei 4 

Ispidina Ispidina picta 155 

Platysteira Dyaphorophyia castanea 49 

Platysteira Dyaphorophyia tonsa 1 

Platysteira Platysteira cyanea 7 
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Terpsiphone Terpsiphone batesi 8 

Terpsiphone Terpsiphone rufiventer 23 

Terpsiphone Terpsiphone sp 13 

Terpsiphone Terpsiphone viridis 13 

 

Appendix 10: Trophic connections 

 

Figure S1. Data on bird diets from faecal diet metabarcoding (Powell et al., unpublished 

data). Numbers on y-axis indicate sample size (number of faecal samples from distinct 

individuals analysed). Colour intensity indicates the proportion of individuals whose faecal 

sample contained a given prey taxa. An ‘X’ indicates that no individuals contained that 

prey taxa in their diets. 
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Figure S2. Per-capita consumption (kg/km2/month) by predators of prey taxa. estimated by 

model. Per-capita consumption was calculated by multiplying the 𝑎𝑝𝑟𝑒𝑦,𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 terms 

estimated by model by the mean equilibrium biomasses of species. 

Appendix 11: Publication of Chapter 2 

Published manuscript presenting work from Chapter 2 of this thesis. 

Original citation: 

Jarrett, C., Smith, T. B., Claire, T.T.R., Ferreira, D.F., Tchoumbou, M., Elikwo, M.N.F., 

Wolfe, J., Brzeski, K., Welch, A.J., Hanna, R. and Powell, L.L., (2020). Bird communities 

in African cocoa agroforestry are diverse but lack specialized insectivores. Journal of 

Applied Ecology, 58 (6), 1237-1247. 
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