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Abstract

Some of the most important decisions we make over the course of our lives are

social in origin. Whether it is to decide to start a business with someone or choosing

a retiring home for a family member, these social decisions often have uncertain

outcomes. Recent research has begun to elucidate the neurocomputational princi‐

ples underlying social choices, however many questions about how we process and

navigate our uncertain social environments remain. In this thesis, we examine the

spatiotemporal neural characteristics of decisions based on social information on

an algorithmic (i.e. what mechanistic processes are involved) and an implementa‐

tional (i.e. which brain structures are involved) level and we assess whether social

choices are a part of the same decision‐making framework developed to describe

non‐social decisions.

We present three experiments ‐ a behavioural pilot study, a simultaneous elec‐

troencephalography and functional magnetic resonance imaging (EEG‐fMRI) exper‐

iment and a transcranial direct current stimulation (tDCS) study. We also outline

an experimental paradigm based on an economic game, which attempts to en‐

sure the fair comparison between social and non‐social choices by manipulating

the likelihood of a favourable outcome depending on the decision domain ‐ in‐

direct facial trustworthiness for social decisions and explicit reward probability

ranges for non‐social choices. As a result, we observed that social decisions dis‐

play similar behavioural trends to the ones typically seen across the non‐social

decision‐making literature. More importantly, however, we found that a drift dif‐

fusion model (DDM), which assumes the accumulation of relevant evidence to an

internal boundary (i.e. evidence accumulation process), was able to account for

these behavioural patterns and made comparable predictions across both domains,

suggesting that social choices may employ similar algorithmic considerations to the

ones at the basis of non‐social decisions.

To study the implementational specificities of social and non‐social choices,

we identified neural signatures of evidence accumulation (EA) in our EEG data and

used them to discern the neural site that gives rise to these dynamics. This al‐

lowed us to implicate the posterior medial‐frontal cortex (pMFC) as the potential

site for EA for both social and non‐social decisions. We also found that the so‐
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cial and non‐social information were initially encoded in distinct regions and that

the pMFC clusters co‐varied in a task‐dependent way with areas of the human val‐

uation system. Taken together, these results suggest that early representations

of the two types of uncertainty are encoded in domain‐specific areas and then

compared in a common human valuation system. Afterwards, the comparison in‐

formation is accumulated for the decision in the pMFC, thus showing the embodied

nature of the choice as this region is adjacent to the relevant motor cortex. We

also attempted to examine the mechanistic role of the pMFC in social choices even

further in a pre‐registered tDCS experiment. Although we were not able to collect

our intended sample size due to slow recruitment caused by the COVID‐19 pan‐

demic, we present preliminary results to illustrate the types of findings that could

be produced by this investigation. Our hierarchical DDM comparison suggested that

the pMFC might modulate the rate of EA in addition to determining the amount of

evidence necessary for a decision, however this notion was not supported by our

formal statistical analysis and we thus conclude that more evidence is needed to

establish the details of how social choices are implemented in the pMFC.

Overall, this thesis offers detailed insight into the spatiotemporal neural pro‐

cesses involved in social decision making. It further provides support in favour of a

universal decision‐making architecture and presents an example for the systematic

comparison across decision‐making domains.
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1 Chapter 1, General Introduction

1.1 A brief overview of the thesis

Our lives are often defined by social information. We rely on our social circles

to survive, we use social cues to understand who might pose a threat to us and we

adapt our actions to match our social surroundings (Ruff and Fehr, 2014). How‐

ever, this social information in not always perfect and how we interpret it may

on occasion be erroneous (Lee, 2008). Although social uncertainty plays an impor‐

tant role in our lives, there are still many unanswered questions relating to the

underlying neurocomputational mechanisms of how we process and navigate our

uncertain social environments. In contrast, the investigation of the basic neural

characteristics of how we process non‐social sources of information has been the

cornerstone of the non‐social decision‐making literature.

One potential reason for this discrepancy lies in the fact that the examination

of social decisions has historically focused on the uniquely social factors that might

influence these choices. Another possibility comes from the difficulty of defining

what social information is, since it may refer to information that is social in origin,

information that arises from social interaction or it may even refer to information

that requires the understanding and the consideration of social norms (Ruff and

Fehr, 2014). Finally, it has also been suggested that neural processes underlying

social choices are too difficult to examine since they involve amounts of uncer‐

tainty that are far greater than the uncertainty involved in non‐social decisions

(Lee, 2008). Regardless of the reason for the largely discrepant investigations of

social and non‐social choices in terms of their underlying neurocomputational pro‐

cesses, recent accounts (Lockwood et al., 2020; Ruff and Fehr, 2014) have show‐

cased the need for a detailed comparison between social and non‐social choices

to determine whether social decisions take part in a universal, domain‐general

‘common‐value’ schema or if they constitute a separate domain‐specific process

(i.e. the ‘social‐specific’ schema, Ruff and Fehr, 2014). Such a comparison needs

to span several levels in order to determine whether social choices are domain‐

specific. Specifically, it requires evidence demonstrating that it employs different

mechanistic computations (i.e. algorithmic level) or that it employs separate brain
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regions to carry out these computations (implementational level, Lockwood et al.,

2020).

The non‐social decision‐making literature has examined the neurocomputa‐

tional principles of non‐social choices across several domains (e.g. probabilistic,

perceptual, value‐based) and across the algorithmic and implementational levels.

This has allowed the definition of a common decision‐making process model (Rangel

et al., 2008; Rangel and Clithero, 2014) involving the early value encoding of the

relevant information, followed by the value comparison. Afterwards, the evidence

is accumulated until a decision is reached and an action is selected. Finally, the

outcomes of the choice are considered and the values for the alternatives are up‐

dated. The examination of this decision‐making process has benefited from the

use of computational modelling, which has provided a mechanistic account of the

algorithmic level involved in non‐social choices. Drift‐diffusion models (DDMs), in

which information proportional to the difference in value between the two op‐

tions is sequentially accumulated to a decision bound, have been widely employed

and have been able to account for many phenomena in the decision‐making liter‐

ature (Ratcliff, 1978; Ratcliff and McKoon, 2008). The neural plausibility of such

models has been established through the use of electroencephalography (EEG) ex‐

periments showing a gradual evidence accumulation (EA) activity arising from a

centroparietal cluster in a similar way as suggested by the DDM (e.g. Kelly and

O’Connell, 2013; O’Connell et al., 2012). The biological validity of these mod‐

els further means that they can be used to identify the brain sites and networks

responsible for the implementation of these algorithmic processes. Additionally,

the functional magnetic resonance imaging (fMRI) literature has been able to im‐

plicate a number of regions to the various stages of the decision‐making process.

Moreover, the combined use of modelling and fMRI has even elucidated the poten‐

tially embodied nature of choices, suggesting that decisions are implemented in

the same sensorimotor regions responsible for carrying out the outcome selection

(e.g. Gold and Shadlen, 2007).

In contrast, the social decision‐making literature has identified social cues like

facial trustworthiness, which may have a substantial role in determining the out‐

come of social choices (e.g. Rezlescu et al., 2012). The role of such cues has

primarily been investigated in the context of economic games, which allow for
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the investigation of the strategic decisions one makes, based on the contingen‐

cies between the players’ actions (Lee, 2008). In recent years there have been

attempts to use DDMs to explain these social phenomena and such models have

been successful in accounting for social choices (e.g. Hutcherson, Bushong, et al.,

2015). Similarly, recent neuroimaging experiments have been able to implicate a

similar network of regions as being involved in social choices as the one respon‐

sible for non‐social decisions (e.g. Fukuda et al., 2019). There have even been

some studies attempting to directly compare social and non‐social choices to show

that their valuation processes might rely on the same structures in the prefrontal

cortex (e.g. Behrens et al., 2008; Janowski et al., 2013). Therefore, the current

literature points to the possibility that at least the valuation stages of some social

decisions may be a part of a universal decision‐making framework.

Figure 1: Graphical representation of the experiments included in this thesis. The black panels

represent the three experiments included in this thesis ‐ the behavioural pilot (left), the main EEG‐fMRI

experiment (middle) and the tDCS study (right). The top level corresponds to the sessions involved in each

experiment, followed by the tasks involved in each session. Bellow them are the data types produced by each

session/task and on the bottom row we present the analyses associated with each data type. The analyses

are grouped into three sections and colour‐coded based on which experimental chapter they appear in. The

analyses in the first group (orange) will be presented in the first experimental chapter ‐ Chapter 2; the second

group (green) are presented in the second experimental chapter ‐ Chapter 3 and the final group (blue) are

presented in the third experimental chapter ‐ Chapter 4.

However, many questions remain unanswered, specifically regarding whether

such universal trends are preserved for social choices, which rely on a social cue

and whether these universal trends expand beyond the valuation stages of the
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decision‐making process. To address some of these questions we aimed to carry

out a detailed comparison between social and non‐social decisions. The first step

in achieving this involves an examination of their algorithmic computations. For

such an examination, it is necessary to ensure that the only differences between

the social and non‐social choices lie in the source of the uncertainty. To this end,

in Chapter 2, we used a social cue shown to lead to a wide range of behaviours

‐ facial trustworthiness ‐ and we varied it in the context of an economic game.

Specifically, we used an indirect trustworthiness measure defined as the perceived

likelihood of splitting an investment associated with a range of face displays. To

enable the non‐social uncertainty to vary along the same 0‐1 range, we used re‐

ward probability ranges linked to the likelihood of a favourable outcome. In order

to test the suitability of our paradigm, we ran a Pilot experiment (Fig. 1, left) and

found that the two decision domains were associated with similar behavioural pat‐

terns previously seen throughout the non‐social decision‐making literature (e.g.

Bogacz et al., 2006; Drugowitsch et al., 2012; Gold and Ding, 2013; Philiastides

and Ratcliff, 2013; Philiastides et al., 2006; Pisauro et al., 2017; Uchida et al.,

2006). These results highlighted the suitability of the paradigm to investigate the

underlying algorithmic levels of social and non‐social choices in our Main EEG‐fMRI

experiment (Fig. 1, middle). In the Main experiment, we once again found be‐

havioural similarities between the two domains that would enable the comparison

of their underlying computations. To this end, we used a DDM, which was able

to account for the behavioural patterns and made largely comparable predictions

across both decision types, consistent with the decision‐making process model de‐

fined in the non‐social domain. This chapter therefore demonstrated that our

paradigm facilitates a direct comparison between social and non‐social choices. It

also showed the similarity in the underlying algorithmic mechanisms employed by

the two decision types by suggesting that they both might employ accumulation‐

to‐bound processes.

Having observed algorithmic similarities between social and non‐social choices,

we turned to their implementational characteristics. To this end, in Chapter 3 we

used simultaneously acquired EEG‐fMRI data, which offer not only high temporal

information captured by the EEG and spatial specificity offered by the fMRI, but

their combination provides additional insight, which cannot be gained by either

modality alone (Philiastides et al., 2021). Specifically, this approach allows us
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to utilize the latent estimates of internal processing, which vary on a trial‐by‐

trial basis, captured by the EEG data in order to inform the fMRI analysis and thus

identify activations, which might not be elucidated through task‐dependant or be‐

havioural indices (e.g. Fouragnan et al., 2015). Initially, we performed a univari‐

ate analysis of the evokes EEG responses, by utilizing our DDM estimates to create

model‐predicted EA traces, which we found correlated with the EEG activity of

electrodes from the centroparietal cluster previously implicated in EA dynamics.

The electrodes associated with the highest correlations further showed difficulty‐

and speed‐related modulations across the two domains, which were further con‐

sistent with the domain‐general decision‐making process (e.g. Philiastides et al.,

2006). However, as the validity of the EEG estimates is integral for the identifi‐

cation of the source of the EA dynamics, we ultimately utilized the multidimen‐

tional nature of the EEG signal and used a multivariate approach to establish more

robust representations of the EA signal. These representations allowed us to im‐

plicate the posterior medial frontal cortex (pMFC) as the site for EA for both the

social and non‐social decisions. These activations were not associated with any of

the other task‐driven predictors. The task‐specific predictors instead highlighted

that the two sources of uncertainty were initially encoded in distinct regions and

we also observed commonly reported trends in the activations reflecting the dif‐

ficulty of the trials and the associated value computations (Clithero and Rangel,

2014; Domenech et al., 2018; Grinband et al., 2008; Monosov, 2017; Philiastides

and Sajda, 2007). To further investigate the implementational levels, we examined

which areas of the brain were co‐activated in a task‐dependant fashion with the

activations in the pMFC. We saw that for both the social and the non‐social trials,

the pMFC clusters co‐varied with areas of the human valuation system (Clithero

and Rangel, 2014; Domenech et al., 2018). Taken together, these results are once

again consistent with the general decision‐making process model, with early repre‐

sentations encoded in domain‐specific areas, which are compared in the common

human valuation system and then accumulated for decision in the pMFC, thus show‐

ing the embodied nature of the choice as this region is adjacent to the relevant

motor cortex.

In Chapter 4 we aimed to use anodal and cathodal transcranial direct cur‐

rent stimulation (tDCS, Fig. 1, right) in order to temporarily change (enhance

and diminish, respectively) the excitability of the pMFC during social choices in
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a pre‐registered experiment. Specifically, this stimulation method allowed us to

examine whether the pMFC is causally implicated in EA, thus further extending our

implementational understanding of the process. It also allowed us to examine the

algorithmic role this region has in EA by reconciling two conflicting views ‐ that the

pMFC is involved in modulating the amount of evidence necessary for a decision

(e.g. Forstmann et al., 2008) and that it reflects the efficiency of the evidence

readout, thus affecting the rate of EA (Pisauro et al., 2017). We also considered the

possibility that the pMFC is involved in both EA processes. To examine the relative

differences produced by the two stimulation types and study the functioning of the

pMFC, we used three hierarchical DDMs (hDDMs), which make fewer assumptions

about how the parameters are related to each other on a subject‐specific and on

a group level than traditional DDMs (Wiecki et al., 2013). The first hDDM allowed

the parameter modulating the amount of information necessary for a decision to

vary between the stimulation conditions; the second varied the rate of EA between

the stimulation sessions; the third allowed both parameters to vary between the

stimulation conditions. We were not able to collect the necessary sample size due

to slow recruitment caused by the pandemic, however we present preliminary re‐

sults to exemplify the type of results this experiment can produce. We found that

the combined model fit the data best, which causally implicated the pMFC as an

EA region and suggests that the pMFC has a complex algorithmic role, being re‐

sponsible for both monitoring how much evidence is needed for a decision, as well

as reflecting the rate at which this information is accumulated. These preliminary

results correspond to recent accounts demonstrating the embodied nature of de‐

cision making involving (pre)motor structures (like the pMFC) used to express the

relevant choice (Verdonck et al., 2021). Additionally, by examining the neurocom‐

putational function of this region exclusively in the social domain, we highlight the

potential of social decision‐making paradigms to be used to examine the underly‐

ing basic principles of decision making. Nevertheless, as the formal comparisons

for the model parameters across the stimulation conditions were not significant,

we conclude that more evidence is needed to establish the role of the pMFC in

social decision making.

Lastly, we consider some of the limitations of the studies presented in this the‐

sis and propose how they can be used to guide future research. The limitations

include the fact that a large portion of our results were reliant on the EEG sig‐
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nal, which due to its additive nature, may have contained information arising from

areas, not associated with EA and thus may have introduced biases in the data.

Nevertheless, our results were consistent with previous findings, however future

studies should aim to test the robustness of our results. We also note that in this

thesis we focused on one type of social choice ‐ choices based on social cues ‐

and thus it remains to be seen if the same neurocomputational principles would be

involved in other social domains. Similarly, it should be noted that the conclusions

we present only refer to choices made under time constraint and as such, further

research needs to establish if these similarities persist in the absence of such con‐

straints. Furthermore, our tDCS results were limited both by the fact that we did

not reach our intended sample size as well as by the limited number of models we

used in our model comparison. The models, however, were based on the existing

competing theories about the functioning of the pMFC and could be used to recon‐

cile these conflicting views. We also suggest that future research could investigate

whether the similarities observed in this thesis extend to the processes involved in

motivating social decisions, in learning from these decisions and how confidence

affects social choices. We also suggest that our design, which attempts to put

social and non‐social choices on equal footing may serve as a blueprint for future

investigations into the extent to which a universal decision‐making process exists

by investigating other types of decision making.

1.2 The main problem

From trivial decisions such as selecting the best‐flavoured bag of crisps, to the

more consequential decisions such as choosing who to marry, we rarely have com‐

plete information about our potential choices. Uncertainty is further added due to

the fact that there might be variability in the association between the decision and

the outcome (Lee, 2008). In other words, even if we make the same decision twice,

this might lead to different outcomes. This makes the neural systems involved in

the computation of uncertainty, as well as the ones that use this information to

ultimately arrive at a decision, key players in the decision‐making processes (Heek‐

eren et al., 2008; Lee, 2008). However, the sources of uncertainty can be diverse.

For instance, some decisions might be based on perceptual information (e.g. de‐
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termining whether you are seeing a car or a face on a foggy night, Ratcliff et al.,

2009), on preference (e.g. deciding which clothing item to buy, Philiastides and

Ratcliff, 2013) or on purely probabilistic factors (e.g. deciding whether to place

a bet, Zaghloul et al., 2009). In other situations, people might rely on social cues

to guide their choices (e.g. scrutinizing someone’s trustworthiness when consider‐

ing their advice, Ennew and Sekhon, 2007; Fouragnan et al., 2013). Even though

both social and non‐social factors can serve as cues for decision making, so far

there have not been many direct comparisons between the two decision domains.

Consequently, it is still largely unknown whether all the neurocomputational prin‐

ciples employed by decisions based on social information correspond to the ones

guiding non‐social choices. This leaves us with two possibilities for social decision

making (Ruff and Fehr, 2014). The first one is that it employs different neural

networks and processes than non‐social decisions (Adolphs, 2010). The second,

in accordance with standard economic utility models (Caplin and Glimcher, 2014;

Von Neumann and Morgenstern, 2007), suggests that the neurocomputational rules

governing both decision‐making types should be the same.

1.3 Difficulty in comparing social and non‐social choices

One of the main reasons why the degree of overlap between the neurocomputa‐

tional principles of social decisions and non‐social choices is unknown, comes from

the fact that they have largely been studied in isolation, with the two types of

decision making historically focusing of different objectives (Ruff and Fehr, 2014).

Specifically, the non‐social decision‐making literature has primarily concerned it‐

self with uncovering the processes behind the evaluation of the evidence available

for certain options and choosing the best alternative (Rilling and Sanfey, 2011).

The social domain, however, has prioritized the investigation of the neural un‐

derpinnings of uniquely social phenomena like altruism, cooperation and goods

distributions between self and others (Ruff and Fehr, 2014). While in recent years

research has begun to compare social and non‐social decisions in terms of their

algorithmic characteristics (e.g. Krajbich et al., 2015), their learning principles

(Behrens et al., 2008; Lockwood and Klein‐Flügge, 2021; Tarantola et al., 2017),

as well as the brain areas they employ (Harris et al., 2007; Janowski et al., 2013;
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Figure 2: Graphical representation of the two main theoretical schemas. The ‘common currency’

schema a) and the ‘social valuation’ schema b). The ‘common currency’ schema posits the existence of a

shared neural framework (shown in purple) responsible for the integration of all domain‐specific information

into a ‘common currency’ value. The activity in this shared circuit should therefore be the same for social (red)

and non‐social (blue) value computation, however the functional connectivity with other regions responsible

for domain‐specific processing should differ. The ‘social valuation’ schema, instead predicts the existence

of domain‐specific architectures. The valuation process involved in social value computation may follow the

same principle as the one involved in non‐social choices, however, they are implemented in separate brain

structures. Adapted from Ruff and Fehr (2014).

Konovalov et al., 2021), many questions remain, such as whether any common‐

alities extend to choices where the social uncertainty is determined by a social

cue as well as across all stages of the decision‐making process. As a consequence,

there are two options for the relationship between how we make decisions based

on social and non‐social uncertainty. The first option is described by the ‘com‐

mon currency’ schema (Fig. 2, a), which suggests domain‐specific early value

encoding, followed by the conversion to a ‘common currency’ within the same

domain‐universal structures. The second option ‐ the ‘social valuation’ schema ‐

instead suggests that all computations involved in social decision making are made

in domains‐specific regions, even though they may rely on the same mechanistic

principles (Fig. 2, b).

Another difficulty in establishing whether social choices are processed in the

same manner as non‐social ones stems from the fact there is no clear definition of

what social decision making is. According to one view (Ruff and Fehr, 2014), there

are three broad situations that qualify as social decision making. The first refers

to cases where the choice is based on social cues, which determine how we value
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others, their actions and how their actions affect us (e.g. deciding whether to

ask someone on a date). In the second set of social decisions, the outcome of the

decision affects someone other than ourselves (e.g. choosing which desert to order

for your sibling). And the final decision sub‐type refers to situations requiring the

consideration of one’s actions in the context of social norms (e.g. deciding how

to respond to an unfair offer). Given this wide variety of phenomena that qualify

under the umbrella term of social decision making it is often hard to draw a direct

comparison between social and non‐social choices due to some social scenarios not

generalizing to non‐social settings (e.g. learning from advice or from observing

others).

Some have even argued that the role of uncertainty in social decision making

is more variable since the behaviour of other individuals might change frequently

and thus is not comparable to the one encountered in non‐social decisions (Lee,

2008; Rilling et al., 2008; Sanfey, 2007; Suzuki and O’Doherty, 2020). Specifically,

since these behaviours are based on multiple hidden states (e.g. the other’s inten‐

tions, preferences, state of mind), they come with their own added uncertainty

and the optimal solutions are determined with higher difficulty. This also implies

that ultimately, the integrated value computation involved in social choices may

be considerably more complex than the one involved in non‐social choices. To this

end it has been proposed (FeldmanHall and Shenhav, 2019) that social situations

are prone to increased levels of uncertainty as these multiple uncertain factors

can even build on each other. FeldmanHall and Shenhav (2019) further argue that

unlike in non‐social situations, this uncertainty can be interpreted as a beneficial

feature of certain choices such as when exploring aspects of a social environment.

However, they also argue that in some situations, resolving social uncertainty may

also have negative consequences (e.g. by not considering the range of potential

outcomes, people may start to develop stereotypical beliefs about different popu‐

lations). While these points suggest that certain aspects of social decision making

may be associated with domain‐specific idiosyncrasies, it is also worthwhile to

highlight that a subset of non‐social choices ‐ value‐based choices, which involve

internal assessments of items ‐ may be associated with similarly complex consider‐

ations (Polanía et al., 2019). Specifically, it has been proposed that such choices

are a product of a complex inference process, which takes into consideration how

the values are structured in the environment. This process also attempts to maxi‐
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mize information in value representation to meet the demands imposed by limited

coding resources (we receive a lot more information than we can handle). It is

also conceivable that like in the social domain, uninformed reduction of uncer‐

tainty in value‐based choices could also lead to negative outcomes. For instance,

not considering the potential benefits or enjoyment of certain food groups may

lead a person to only consume their preferred food items and thus not get proper

nutrition. Examples like these therefore highlight that determining the degree of

the potential specificity of social decision‐making is not a trivial endeavour, how‐

ever it is still noteworthy that some of the seemingly different aspects of social

and non‐social decisions may not be as dissimilar as previously thought, especially

when we consider the appropriate domain‐specific subtypes.

Nonetheless, the challenges highlighted above may have contributed to the fact

that until recently not many studies have attempted to investigate the degree to

which social decisions share their underlying neural computations with non‐social

choices. Nevertheless, frameworks have begun to be put forward to address this

current knowledge gap. For instance, it has been proposed that social behaviours

may be explained through the same motivation framework developed from the

study of non‐social behaviours (Contreras‐Huerta et al., 2020). Similarly, it has

been suggested that Marr’s framework (Marr and Poggio, 1979) may offer an ex‐

haustive approach towards determining whether the mechanisms involved in social

choices are domain‐specific (Lockwood et al., 2020). This framework suggests that

the comparison could span three levels ‐ the computational level responsible for

the goal of the behaviour, the algorithmic level governing the mechanistic prin‐

ciples of the actions and the implementational level where social and non‐social

choices are compared based on the specific brain regions employed for behaviour.

Therefore, in order to determine whether a process is domain‐specific, it has to

be different at either the implementational and/or algorithmic level i.e. it has

to employ a different mechanism or it should involve separate brain sites. These

frameworks also highlight a key aspect of such a comparison, which is that in order

to robustly investigate the potential commonalities between social and non‐social

choices, proper controls need to be used to ensure that the two decision‐making

domains share all the same attributes apart from the source of the uncertainty. It is

also highlighted that to adequately investigate the implementational level of social

and non‐social decisions, correlational methods demonstrating simple associations
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are not enough and that stimulation methods are needed to examine whether the

involvement of a certain region is necessary for the identified processes. Similarly

careful considerations are needed to establish a potentially shared algorithmic

level and it has been proposed that the most robust candidate for this assessment

is the use of computational modelling (Lockwood et al., 2020).

1.4 Non‐social decision making ‐ approaches to studying non‐

social choices, computational models, neural correlates

As pointed out in the previous section, a crucial part of the investigation of

the potential universality of the decision‐making process is the selection of ap‐

propriate paradigms1. Some of the most commonly used paradigms to investigate

the perceptual decision‐making (PDM) field, where the uncertainty for the deci‐

sion comes from external sources, include discriminating between noisy percep‐

tual stimuli such as distorted images of cars and faces (e.g. Philiastides and Sajda,

2006; Ratcliff et al., 2009). The use of these paradigms has allowed researchers

to showcase that neural responses scale with the amount of available evidence for

either alternative. Other examples in this field include discriminating the direc‐

tion of a moving cloud of dots and the difficulty of the trials is established by the

percentage of dots moving in the same direction (e.g. Gherman and Philiastides,

2018). For value‐based choices (VBDM), where the uncertainty is guided by inter‐

nal assessments, a typical paradigm involves the choice between different food

items, which have previously been assessed for their subject‐specific preference

(e.g. Pisauro et al., 2017). Examples for probabilistic decisions include displaying

two card decks with different reward probabilities that are unknown to the partic‐

ipant and the participants’ goal is to identify the more favourable one by drawing

cards from the decks (Zaghloul et al., 2009). These paradigms have been invalu‐

able in examining the algorithmic and implementational levels of Marr’s framework

in non‐social decision making due to their use of simple stimuli that allow to ex‐

1Note that it is beyond the scope of this section to exhaustively summarize all existing liter‐

ature in the non‐social decision‐making domain. Instead, this section aims to provide a general

understanding of some of the relevant approaches and findings related to the neurocomputational

principles involved in decision making and to thus provide a benchmark for the discussion of social

choices later on.
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perimentally manipulate the available information to parametrically modulate the

difficulty of the trials and to vary the uncertainty across clearly defined ranges.

These paradigms have also facilitated the examination of the mechanism un‐

derlying non‐social decision making and have led to the development of a popular

understanding of the three main stages involved in these processes (Fig. 3, Rangel

et al., 2008; Rangel and Clithero, 2014) : 1) the assignment of value to the choice

alternatives, 2) the option comparison, EA and choice selection and 3) the value

updating following the revealed outcome. To illustrate these stages, we will con‐

sider examples from the PDM and VBDM domains, which make use of two different

sources of uncertainty ‐ externally and internally‐generated, respectively ‐ to high‐

light the similarities across the two domains. These two examples are presented

in the bottom two rows of Fig: 3 and showcase that regardless of the source of

uncertainty i.e. whether the person has to properly identify if a distorted image

shows a house or a face, or if they need to select whether they would enjoy an

apple more than an orange, value is assigned to the alternative to reflect the evi‐

dence in favour of the given options. Following the initial valuation stage, in both

examples, the alternatives are compared and the comparison information is accu‐

mulated until an internal boundary (corresponding to one of the two choice options)

is reached and a decision and the associated action are made. Finally, once the

outcome is known, the values associated with the two options are reevaluated, so

as to be used in future choices. These examples therefore highlight that the main

differences between these two domains (and it has been suggested that this is the

case with other non‐social domains, e.g. van Vugt et al., 2019) is the initial valua‐

tion stage and the information is subsequently used in the same way as described

above. These processes and the details of their algorithmic characteristics have

been elucidated primarily through the use of computational models, which have

given rise to mechanistic accounts of non‐social decision making at the different

levels of processing. These models allow the prediction of outcomes from a set

of options through algebraic calculations, which transform the option character‐

istics and produce a ranking of the possible choices based on their attractiveness

(Johnson and Ratcliff, 2014).

Some of the most widely‐used computational models have been process models,

which have been useful in providing an explanation for the underlying neurocompu‐
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Figure 3: Decision‐making process model and examples in the perceptual (PDM) and value‐based

(VBDM) domains. Decision making broadly involves processes spanning three levels (Rangel et al., 2008). 1)

First, value is assigned to the amount of information favouring an alternative. In the PDM example, where

uncertainty is externally‐generated, that corresponds to the evidence that a distorted image represents a

house (blue bar) or a face (orange bar). In the VBDM example, where uncertainty is internally‐generated,

value is assigned to the apple (blue bar) and the orange (orange bar) in correspondence with subjective

preference. 2) Then, these values are integrated and compared. Over time the comparison information is

accumulated (green line) until a decision is reached after crossing one of the boundaries mapped to the two

alternatives and an action is selected. In the PDM example, this comparison determines that it is more likely

that the distorted image is a house than a face and the house is selected. In the VBDM example the person

values the apple more highly than the orange and therefore chooses the apple. 3) Finally, the values for the

two options are updated based on the outcome. These values later inform future value assignment stages. In

the PDM example, the image was correctly identified as a house and the value of the house increases (purple

bar), whereas the one for the face decreases (yellow bar). Similarly, if the person enjoyed their apple, they

would update positively how they value apples (purple bar) and decrease their preference for oranges (yellow

bar).

tational characteristics of two‐alternative forced‐choice tasks by taking into con‐

sideration reaction times (RTs) and selected choices, thus offering detailed mecha‐

nistic accounts of the processes involved in decision making, described above (Fig.

3). They are especially popular since they make predictions about the underlying

neural computations and can be applied in both human neuroimaging studies and

animal work. These include drift diffusion models (DDMs), where information is

sequentially accumulated to a decision bound and the time taken for the accumu‐
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lation is reflected in the RTs (Ratcliff, 1978; Ratcliff and McKoon, 2008). At each

time point an accumulator moves towards one of two alternatives, mapped to the

two possible outcomes. The magnitude of this shift is modulated by the amount

of evidence processed at that moment in favour of either alternative. Once the

accumulator crosses a criterion bound, a decision is made (Bogacz et al., 2006).

Even though the most optimal strategy would be to always choose an option if the

evidence in its favour is higher than for the alternative, the process is accompanied

by noise and stochasticity leading to occasional errors (Rangel and Clithero, 2014).

This is often accounted for in the model with the inclusion of noise parameters.

Another feature of these models is the inclusion of non‐decision components to ac‐

count for information encoding, memory access and response‐related movements.

One benefit of DDMs is that they can also reflect certain biases. For instance,

when participants are told to be either fast or accurate, small adjustments to the

model parameters such as the boundary can capture the relevant differences (Bo‐

gacz, Hu, et al., 2010). Furthermore, the parameters estimated through DDMs

have been able to account for how certain cognitive impairments occur as well as

how they change over time with age (Brosnan et al., 2020).

Nevertheless, although they have strong mechanistic explanatory power, DDMs

do not directly inform about how the proposed computational processes might be

implemented in the brain. And such a comparison with neural systems is vital for

the validation and creation of more robust models. The assessment of the biolog‐

ical validity of DDMs has necessitated the use of various tools to probe the spa‐

tiotemporal implementation of the decision‐making processes. Specifically, these

include tools with good temporal and spatial resolution such as electroencephalo‐

gram (EEG) and functional magnetic resonance imaging (fMRI), respectively, as

well as stimulation methods such as transcranial magnetic stimulation and tran‐

scranial electrical stimulation, which can be further divided into transcranial di‐

rect current stimulation (tDCS) and transcranial alternating current stimulation.

For instance, the EEG findings in this area, which benefit from high temporal res‐

olution on a millisecond scale, have further elucidated the algorithmic levels of

non‐social decision‐making temporal processing by suggesting that the amount of

evidence available on a given trial guides the accumulation rate, with low uncer‐

tainty leading to faster accumulation (e.g. Philiastides and Sajda, 2006; Ratcliff et

al., 2009). EEG experiments have also shown that at response, the neural activity,
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regardless of the domain of the decision, reaches a common boundary (Kelly and

O’Connell, 2013; O’Connell et al., 2012; Polanía et al., 2014). Thus, these studies

provide evidence in favour of the neural plausibility of the DDMs, which describe

a similar accumulation‐to bound mechanism to the one observed across these EEG

studies. This accumulating activity has also been consistently shown to arise from

a centroparietal cluster in a number of non‐social decision‐making subtypes: in

value‐based (Pisauro et al., 2017; Polanía et al., 2014), perceptual (Gherman and

Philiastides, 2015; Kelly and O’Connell, 2013) and even memory‐based decisions

(van Vugt et al., 2019).

Conversely, the synergy between modelling and fMRI data has been even more

apparent since the predictions from a model can be subsequently correlated with

the fMRI data in order to discover the neural network involved in the identified

computations (Busemeyer and Diederich, 2014). fMRI studies have highlighted the

consistency across the various non‐social decision domains in the early evidence

representation stages of the decision‐making process by demonstrating that the

activation in the relevant early visual processing areas (e.g. the parahippocampal

place area for houses) correlates with the amount of available evidence in favor of

either alternative (e.g. Heekeren et al., 2004; Philiastides et al., 2010; Philiastides

and Sajda, 2007). Similarly universal trends have been found during the other

stages of the decision‐making process within a wide network of regions, some of

which we will briefly presented here.

For instance, the activity in the dorsolateral prefrontal cortex (dlPFC) has been

found to correlate with a comparator operation that reflects the difference be‐

tween the evidence for the choice alternatives (Heekeren et al., 2004; Wan et

al., 2015). The medial prefrontal cortext (mPFC) has been associated with many

functions such as the processing of risk (Levy et al., 2010) and strategic choices

(Coricelli and Nagel, 2009). However, most consistently, the activity in the ventro‐

medial prefrontal cortex (vmPFC) has been shown to correlate with the probability

of receiving a reward, but also with the absolute difference between the activity

in the brain areas responsible for the processing of the two alternatives (e.g. Chib

et al., 2009; Lim et al., 2011). This therefore, implicates the vmPFC as actively

involved in the computation of value signals and shows that it does not simply re‐

flect the consequences of the choice. This has been shown to be especially true
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when that value is relevant to the decision (Grueschow et al., 2015). The stria‐

tum has been linked to the computations of risk (Levy et al., 2010), losses and

gains (Tom et al., 2007), reward probability and reward magnitude (Yacubian et

al., 2007) as well as in modulating learning (Fouragnan et al., 2015). The insula

has been implicated in the assessment of risk (Levy et al., 2010; Mohr et al., 2010)

as well as in the processing of feelings, empathy and uncertainty (Singer et al.,

2009). Specifically, it has been argued that this area is responsible for integrat‐

ing information into a general ‘subjective feeling state’ related to subject‐specific

levels of risk aversion and situational assessment (Singer et al., 2009). This region

has further been associated with uncertainty across different contexts, including

situations associated with threat and reward as well as choice selection and as‐

sociative learning under uncertainty (Morriss et al., 2019). The anterior cingulate

cortex (ACC) has been linked to the processing of value (Wan et al., 2015) and

uncertainty (Monosov, 2017; Paulus and Frank, 2006) and it has been argued that

it controls information‐seeking strategies under uncertainty (Monosov, 2020). An‐

other line of research has implicated the region in the processing of difficulty in

foraging tasks (Shenhav et al., 2016; Shenhav et al., 2014). The parietal cortex

has been linked to ambiguity (Bach et al., 2011; Huettel et al., 2006) and risk pro‐

cessing (Mohr et al., 2010) and has been shown to encode value (Wan et al., 2015).

The posterior cingulate cortex (PCC), specifically, has also been implicated in be‐

ing part of a common framework for value processing after the choice alternatives

are initially valued (Levy et al., 2010).

The non‐social decision‐making literature has also investigated the potential

embodied nature of choices, which puts forward the notion that the sensorimotor

areas responsible for carrying out the response are also where the decisions are im‐

plemented (Gold and Shadlen, 2007). For instance, it has been proposed that when

the response modality is unknown, evidence integration occurs in frontal areas, but

once the link between a response and the decision outcome is established, the rel‐

evant response areas receive the integrated information (Filimon et al., 2013).

Knowing this pairing in advance, however does not improve the integration strate‐

gies during the course of the decision‐making process (Tsetsos et al., 2015). This

may also be why frontal areas have been implicated in computing choice value and

comparison signals, whereas motor areas have been found to reflect the value of

the action and provide EA readout (Klein‐Flügge and Bestmann, 2012; Wunderlich
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et al., 2009). However, in most real‐life situation the association between the

decision and the outcome are known and it has been suggested that the involve‐

ment of the relevant motor system is engaged prior to the accumulation region

reaching its internal threshold (McBride et al., 2018). This is why it has been pro‐

posed that there may be a second motor‐preparation accumulation process, which

receives continuous input from the original accumulator until it reaches its own

threshold (Verdonck et al., 2021). Furthermore, the use of models that employ

the assumption that the action preparation is part of the decision‐making process,

leads to better fits and tends to explain the speed‐accuracy trade‐off better than

models, which do not make these assumptions (Lepora and Pezzulo, 2015). Recent

evidence has also identified (pre)motor structures, such as the posterior medial

frontal cortex (pMFC) as the site for EA for value‐based decision (Pisauro et al.,

2017), by associating its activity to the neural signal arising from a centroparietal

cluster, implicated in such accumulation‐to‐bound processing (e.g. O’Connell et

al., 2012). Similarly, there has been evidence linking the centroparietal activity

with a dorsal frontoparietal network (dFPN, which includes the pMFC) in percep‐

tual decision making (Brosnan et al., 2020) through the use of DDMs, EEG and

diffusion and resting‐state fMRI. This experiment also showed that the build‐up

rate (or drift rate) is associated with the connectivity between the structures of

the dFPN and with the speed of decisions. The higher the build‐up, the stronger

the connection and the faster the decisions. Finally, the animal literature has also

corroborated this view by showing that there are brain structures in the midbrain

(Ding and Gold, 2010), premotor regions (Cisek and Kalaska, 2005) and within the

dFPN (Ding and Gold, 2012) that display this type of EA activity. Changing the rules

of the decision‐making task leads to altered activity of several of those regions.

The timescales of their activation also suggests the necessity for communication

among these regions for successful choice selection and thus further demonstrates

the involvement of such (pre)motor areas in decision making.

As suggested by the previous paragraphs, the non‐social decision‐making liter‐

ature has not only defined a process model describing how decisions are made,

but has also managed to highlight the potential universality of the process across

the non‐social sutypes. The strongest evidence in favour of this notion comes from

studies, which have directly compared how decisions are made across the non‐

social domains. For instance, it has been shown that perceptual decisions based
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on somatosensory and visual information follow the same EA patterns (von Lautz

et al., 2019). Further similarities have been drawn between PDM and VBDM, for

which the literature has argued that they both necessitate stimulus disambigua‐

tion as well as item valuation across a common decision framework (Summerfield

and Tsetsos, 2012). The direct attempts to compare PDM and VBDM have shown

that the two decisions follow a similar accumulation‐to‐bound process (Pisauro et

al., 2017; Polanía et al., 2014). Even though the VBDM has also been associated

with accumulation patterns in the frontal region as well as with a fronto‐parietal

synchronization (absent in the PDM, Polanía et al., 2014), the parietal gamma

frequency oscillations displayed comparable evidence of accumulation for both

decision‐making types. This suggests that even though there might be some differ‐

ences with VBDM involving the activation of additional brain regions, VBDM and PDM

might share the same underlying mechanism (Polanía et al., 2014). Taken together

the above‐mentioned examples suggest that the non‐social decision‐making litera‐

ture has been able to find similarities between various subtypes of non‐social deci‐

sion making. Consequently, this has helped identify a common mechanism involved

in neural computation of non‐social evidence which relies on an accumulation‐to‐

bound processes.

In summary, the non‐social decision‐making literature has thoroughly investi‐

gated both the algorithmic and the implementational levels of the processes in‐

volved in non‐social choice selection. This has been made possible through the use

of carefully selected paradigms, which allow to manipulate crucial features related

to the decision‐making process, while avoiding potential confounds. This field has

largely benefited from the use of a variant of sequential sampling computational

models ‐ DDMs, which describe an accumulation‐to‐bound process as the basis for

decision making. These models have demonstrated that they are consistent with

observed neural signatures found in EEG data as well as with activations seen in

fMRI data. The parameters produced by these models have also been instrumental

in implicating a large network of cortical and subcortical regions in the process

of decision making and have allowed to demonstrate the embodied nature of this

process. Finally, these observations have been commonly found across non‐social

decision‐making domains pointing to the potential universality of the underlying

decision‐making mechanism.
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1.5 Social decisionmaking ‐ approaches to studying social choices

and their neural correlates

Historically, the literature investigating social decision making has primarily

focused on specific processes leading to social behaviour and less on the basic

decision‐making processes (Ruff and Fehr, 2014). Consequently, the decision‐

making aspect has often been used as a tool to investigate social behaviour. Never‐

theless, the social decision‐making literature has managed to highlight factors such

as trustworthiness that can influence social decisions (e.g. Rezlescu et al., 2012;

Wilson and Rule, 2016). Such experiments have uncovered that social choices of‐

ten depend on unmalleable features such as facial structure and that similar biases

are present in cross‐cultural settings (e.g. Xu et al., 2012) and clinical populations

(Hooper et al., 2019). It has also been suggested that these trustworthiness as‐

sociations are not coincidental and have been shown to correlate with hereditary

facial features (Lee et al., 2017). Furthermore, facial features (Stirrat and Perrett,

2010) and expressions (Reed et al., 2012) have been shown to predict altruistic be‐

haviours.

A common approach to studying social decisions has been to use game theory,

which examines the effects of incentives on decisions in strategic environments

(Houser and McCabe, 2014; Lee, 2008; Sanfey, 2007). The strategic element refers

to the observation that one player’s choice influences the other player’s opportu‐

nities and payoffs, and a crucial part of these games is the fact that both parties

need to be aware of these dependencies. This allows to study the relationship

between individual decisions and group‐level outcomes, which are linked through

clearly defined mechanisms. These mechanisms refer to the notion of a ‘game

tree’, which specifies who moves when, which movements are allowed, what in‐

formation is available to them at different stages and how other’s moves influence

the joint outcome.

Furthermore, game theory offers simple yet sophisticated tasks since they are

easy to implement and for participants to understand, but offer the investigation

of multiple social scenarios and social interaction (Rilling and Sanfey, 2011). They

have been useful in the investigation of many aspects of social decision making

such as reciprocal coordination, fairness, altruism/punishment and reciprocal ex‐
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Figure 4: Common economic games. a) Trust game: An Investor (Player 1) is allocated a certain sum

(e.g. 1 point), which they can ‘Keep’ or pass on to the Trustee (Player 2) for the chance to double their reward

(‘Play’). If the Investor chooses to ‘Keep’, the game ends. If they decided to ‘Play’, the sum is transferred

to the Trustee and multiplied (e.g. by 4). Then the Trustee decides whether to ‘Keep’ the augmented sum

or to ‘Split’ it equally between the two players. b) Prisoner’s Dilemma: Two prisoners (players) are offered

a bargain. They can either stay silent (i.e cooperate with the co‐player) or they can betray the co‐player

(defect). If both cooperate (leftmost panel), they will both have to serve 1 year in prison. If one of them

cooperates, but the other defects (middle two panels), the defector does not have to serve any jail time, but

the other has to serve 5 years in prison. Finally, if both defect (rightmost panel), they will each have to serve

3 years in prison. c) Ultimatim game: A Proposer (Player 1) is allocated a sum (e.g. 4 points), which they

have to distribute between themselves and the Responder (Player 2). The proposer can make a ‘Fair’ (each

receives 2 points) or ‘Unfair’ offer (they keep 3 points and the Responder receives 1 point). The Responder

can then ‘Accept’ the offer and the two players receive the amounts suggested by the Proposer, or they can

‘Reject’ the offer and neither player receives anything.
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change, which have been investigated with Trust games and Prisoner’s Dilemma

tasks (Fig. 4, a and b). A typical Trust game (Fig. 4, a, Berg et al., 1995) involves

two individuals – an Investor (Player 1) and a Trustee (Player 2). The Investor is al‐

located a certain endowment (e.g. 1 point), which they can either keep or offer to

the Trustee (‘Keep’ and ‘Play’ options, respectively). If the endowment is offered

to the Trustee, it is augmented (e.g. quadrupled). The Trustee then has the option

to keep the augmented endowment (e.g. 4 points, ‘Keep’ option) or to split it with

the Investor (e.g. each receiving 2 points, ‘Split’ option). A Prisoner’s Dilemma

task (Fig. 4, b, Rapoport et al., 1965) involves two individuals, each presented

with the same two options. They can either collaborate or defect. The collabo‐

ration of both players leads to the overall best outcome for the pair, whereas the

defection of both leads to the worst outcome for the pair. However, if one defects

and the other collaborates, the one who defects receives the best individual out‐

come, whereas the one who collaborated, receives the worst individual outcome.

Finally, another commonly used economic game is the Ultimatum game (Fig. 4, c,

Güth et al., 1982), which also involves a pair of players ‐ a Proposer (Player 1) and

a Responder (Player 2). The proposer is allocated an endowment and has to choose

how to split the endowment between the two players. They can make two types of

offers ‐ fair offers and unfair offers. Once the offer has been made, the Responder

can accept the offer, in which case the two players receive the suggested amounts

proposed by the Proposer. However, if the Responder rejects the proposal, neither

player receives anything.

These economic games can be divided based on the information available to

the player. For instance, in perfect information games each person knows every‐

thing about the payoff structure (Kuhn, 1950), whereas in incomplete information

games, like in a Trust game (Harsanyi, 1967, 1968), players do not have complete

information about their opponents/co‐players. The optimal strategies in economic

games can usually be defined by a form of Nash equilibrium where each player is

getting as much as they can, given the actions of the other players (Houser and Mc‐

Cabe, 2014). In Trust games, the Nash equilibrium is for Player 1 to always ‘Keep’,

since if they do not, they allow Player 2 to ‘Keep’. However, this optimal behaviour

is often not observed and both players often choose the other possibilities (Berg

et al., 1995; Camerer, 2003; Sanfey, 2007). Such tendencies towards cooperation

may arise because of evolutionary pressures of guilt as the decision whether or not
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to ‘Keep’ as Player 2 often depends on how guilty they feel (Houser and McCabe,

2014). However, the guilt‐state of Player 2 is unknown to Player 1. Consequently,

there is only one subgame perfect equilibrium (which treats each subnode as the

start of a separate game, each associated with its own Nash equilibrium), which is

for Player 1 to always ‘Play’ if they believe that at least half of the population are

high‐guilt individuals. Therefore, Trust games are not perfect information games

since there are 2 possibilities from the nature of Player 2.

More recently, such economic games have been combined with some of the

methodologies used by non‐social decision‐making investigations, including the use

of computational models (developed in non‐social contexts), which allow the in‐

vestigation of trial‐by‐trial changes as well as predicting future behaviour while

investigating the algorithmic underpinnings of social choices (e.g. Hackel and

Amodio, 2018). This has led to the suggestion that a DDM can account for al‐

truistic choices as the benefits for one’s self and those for others are weighed and

compared to guide a decision (Hutcherson, Bushong, et al., 2015; Tusche and Bas,

2021). Research has also shown that DDMs can account for biases in speeded and

time‐delayed social decisions (Chen and Krajbich, 2018). Specifically, prosocial

participants were more likely to make pro‐social decisions under time pressures

and would be more selfish when allowed to deliberate, while the opposite trend

was found for more competitive participants. Similar models have also been used

for decisions concerning others, such as when participants had to decide if they

wanted to delegate a choice between risky and safe options to themselves or a

group (Edelson et al., 2018). Specifically, it was shown that participants tended

to avoid responsibility and this tendency was attributed to a second‐order process,

whereupon people wanted to have high certainty when the outcome could affect

many other individuals. However, in an even more notable example it was shown

that a DDM using estimates from a food‐choice game could predict social decisions

made during economic games (Krajbich et al., 2015). This therefore shows the

potential for a shared underlying mechanism between social and non‐social value

computations. However, because the experiment did not use the same paradigms

for the social and the non‐social condition, it is still unclear whether these obser‐

vations would be preserved following a direct comparison of the two sources of

uncertainty.
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Interestingly, there has also been evidence to suggest that on the implementa‐

tional level, the underlying principles driving social choices may be similar to the

ones at the basis of non‐social ones (Lee, 2008). For instance, the same networks

often associated with reward processing ‐ striatum, insula, orbitofrontal cortex

are also activated during social judgments. Specifically, the striatum, which has

been linked to reward prediction error changes, correlates positively with coop‐

eration and negatively with the lack of reciprocation. Additionally, monetary and

social rewards have been found to produce the same type of activation within the

striatum (Izuma et al., 2008; Williams et al., 2020). Furthermore, the striatum’s

activity has been shown to track rewards relative to the winnings of the opponent.

Therefore its role depends on whether the behaviour is thought to be competitive

or cooperative. The anterior insula on the other hand, which has been linked to

risk and uncertainty, has been found to respond to unfair offers during an Ultima‐

tum game (Harlé et al., 2012). Similarly, there is evidence to suggest that the

same network composed of the insula, dmPFC and the PCC, which is involved in

the processing of risk with uncertain probabilities, is also active during strategic

social choices (Nagel et al., 2018).

There has also been evidence to suggest that mPFC is related to social pro‐

cessing. For instance, higher activations in the vmPFC, which have been linked to

value processing, have also been associated with trusting the co‐player in a Trust

game and has similarly been shown to track monetary rewards gained on the ba‐

sis of trust (Rilling and Sanfey, 2011). This region has also been shown to reflect

unfair offers proposed during an Ultimatum game (Grecucci et al., 2013) as part

of an intuitive, fast‐processing network responsible for norm violation monitoring,

whereas more deliberate, long‐term decisions about personal gains are processed

in the dorsal ACC (Feng et al., 2015). The vmPFC has also been linked to social and

affective processing as well as situational value (Lieberman et al., 2019) and self‐

referential processing (Gusnard et al., 2001). Perhaps even more importantly, the

literature on decisions made for one’s self vs the ones made for others has argued

that similar value computations are made in the vmPFC for non‐social choices (i.e.

self choices) and for social decisions (i.e. other decisions, e.g. Janowski et al.,

2013). Similar observations have been made in the context of learning on one’s

own vs learning based on observing others (Behrens et al., 2008) implicating a

conversion of domain‐specific information in the vmPFC. Furthermore, the poste‐
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rior subsections of the mPFC have also been related to personal traits, physical

characteristics and feelings (Jenkins and Mitchell, 2011). The dorsomedial pre‐

frontal cortex (dmPFC) has similarly been associated with social (Lieberman et al.,

2019) and self‐referential information (Gusnard et al., 2001) and the activity in

the anteromedial prefrontal cortex has been shown to relate to self and affective

processes (Lieberman et al., 2019).

The potential commonalities between social and non‐social choices can further

be highlighted by the literature comparing neurotypical populations with cohorts

who face challenges in processing social stimuli. For instance, it has been shown

that in individuals with Autism, both social and non‐social stimuli are associated

with decreased activity in ventral prefrontal cortex (Shafritz et al., 2015). How‐

ever, others have reported opposing EEG patterns arising between individuals with

autism and neurotypical participants for social decisions, but the same dynam‐

ics for non‐social stimuli (Gonzalez‐Gadea et al., 2016). Therefore, even though

there is some indication for the possible commonalities between social and non‐

social decision making, it is still unknown whether these common trends persist

across all types of social choices and whether the similarities are preserved for the

decision‐making stages beyond the ‘common value’ conversion.

The social decision‐making literature has also proposed regions, which may

be linked to the processing of uniquely social phenomena, especially during early

stages of value encoding. It has even been suggested that for decisions involved

in an Ultimatum game, value is computed in a 3‐stage process, whereby the co‐

player’s bonus is encoded in the right TPJ and left dlPFC, followed by the compu‐

tation of an effective value (i.e. the effective influence of the offer) in the right

anterior insula and the final decision value is ultimately computed in the mPFC

(Fukuda et al., 2019). Moreover, the amygdala has also been heavily implicated in

trust decisions based on facial trustworthiness, whereas the orbitofrontal cortex

has been shown to be involved in cooperation, and the TPJ has been associated with

the assessment of the co‐player’s trustworthiness (Rilling and Sanfey, 2011). It has

further been suggested that under negative affect, the activity of the TPJ during

trust decisions is decreased and its connectivity to areas responsible for emotional

processing such as the amygdala are disrupted (Engelmann et al., 2019). It has also

been shown that the suppression of the activity in the right TPJ leads to a decrease
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in the ability to infer the actions of others (Hill et al., 2017). Furthermore, there

is evidence to suggest that consensus decisions are based on considerations of per‐

sonal preference, group majority preference and an estimate of the persistence of

each choice, which are respectively encoded in the vmPFC, TPJ and intraparietal

sulcus, with the signal from these areas being integrated in the dorsal cingulate

cortex (Suzuki et al., 2015). The amygdala has also been implicated in tracking

the differences in money allocations between self and others and this effect has

been shown to be modulated by the administration of oxytocin (Liu et al., 2019).

Finally, the orbitofrontal grey matter volume has been associated with conformity

tendencies (Campbell‐Meiklejohn et al., 2012).

In summary, the social decision‐making literature has historically focused on

identifying the processes associated with uniquely social phenomena, but has re‐

cently attempted to address the potentially shared neurocomputational mecha‐

nisms across decision domains. This field has benefited from the use of economic

games to extensively examine social behaviours, which have highlighted the cen‐

tral role of facial features in driving trustworthiness assessments. The recent use

of computation models has demonstrated some of the potential common processes

involved in social and non‐social choices and these commonalities have even been

supported by studies exploring the implementational stages of social decision mak‐

ing. These studies have also demonstrated potentially domain‐specific activations

and processing, which may correspond to the early information processing stages

involved in non‐social decision making. However, in order to determine whether

the two types of decision making are truly based on a universal decision‐making

process, there is a need to also consider other types of social choices (such as

ones based on social cues) and directly compare them to non‐social decisions on

both their algorithmic and implementational levels and across their value process‐

ing and EA stages, while attempting to ensure that their uncertainty varies across

comparable scales.

1.6 Goals of the thesis

The literature presented above demonstrates that while recent efforts have be‐

gun to investigate if the spatiotemporal neural characteristics employed in social
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decision making correspond to the ones involved in non‐social choices (Behrens

et al., 2008; Harris et al., 2007; Janowski et al., 2013; Konovalov et al., 2021;

Krajbich et al., 2015; Tarantola et al., 2017), many questions remain unanswered.

The goal of this thesis therefore is to try to examine the neurocomputational mech‐

anisms of choices based on social uncertainty beyond the value‐computation stage

and to assess whether those might be a part of a universal decision‐making frame‐

work. Here we specifically examine social decisions, which are based on social

information ‐ facial trustworthiness. Conversely, the non‐social choices in this

investigation will not involve an uncertainty manipulation based on a social com‐

ponent, but will instead be based on probabilistic assessments. Specifically, the

social and the non‐social decisions will be evaluated in the context of an economic

game (i.e. the Trust game), where the outcome of the social choices will reflect

subject‐specific estimates of the likelihood of splitting an endowment for a set of

face displays. For the non‐social choices it will instead be determined by a range

of reward probabilities chosen from the full probability range, thus confining the

uncertainty for social and non‐social decisions to the same 0 to 1 probability scale.

Recent studies have highlighted the benefits of employing a multimodal ap‐

proach by means of simultaneous EEG‐fMRI to study the neurocomputational char‐

acteristics of non‐social decision making (e.g. Pisauro et al., 2017). This approach

allows us to benefit from the high temporal resolution provided by the EEG mea‐

sure and the spatial information provided by the fMRI, while gaining additional

information to what each modality can offer on its own (Philiastides et al., 2021).

Specifically, the combination of these imaging methods allows to exploit the inter‐

nally generated trial‐by‐trial temporal dynamics captured by the EEG signal and use

them to identify associated activations within the fMRI data, which in turn offers a

more precise understanding of the spatial distribution of the activity (Sajda et al.,

2011). Such EEG measures reflect latent states, which allow the identification of

activations, typically unidentifiable with standalone fMRI measures informed only

by the task‐specific manipulations or behavioural indices (e.g. Fouragnan et al.,

2015). Similarly, while modeling parameters have also been used to reflect such

internally‐generated states, they may be subject to misspecification, and very few

studied have attempted to use sampling models that provide more than a single es‐

timate of a mean and a standard deviation (Gluth et al., 2017; Turner et al., 2015).

Therefore, the variability occurring on a by‐trial basis is better captured through
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the EEG data and offers stronger explanatory power than alternative measures.

We used this multimodal approach while attempting to equalize the uncertainty

manipulations across the social and non‐domain presented in the context of a Trust

game. This allowed us to identify whether the two decision domains were associ‐

ated with ‘common currency’ computations in addition to universal evidence‐to‐

bound processing. This study will be presented over two chapters (Chapter 2 and

Chapter 3), with the first aiming to investigate the algorithmic characteristics of

the two decision domains by examining the behavioural data and computational

modelling results. The second chapter will focus on two types of EEG analyses, an

EEG‐informed fMRI examination and an interaction analysis, aiming to elucidate

the implementational characteristics of social and non‐social choices.

Specifically, the first experimental chapter (Chapter 2) examines whether the

universal decision‐making mechanism extends to social choices. It highlights the

behavioural similarities across the two domains and showcases that in economic

contexts both social and non‐social decisions are modulated by reward probabili‐

ties and that reaction times reflect the difficulty of the choices. We were able to

observe these trends across both a Pilot experiment (Fig. 1, left) as well as from

the Main EEG‐fMRI experiment (Fig. 1, middle). Considering that the evidence‐

to‐bound process has been strongly implicated across various non‐social decision‐

making domains (e.g. Polanía et al., 2014; Summerfield and Tsetsos, 2012), as

explained in the previous sections of this chapter, we examined whether the algo‐

rithmic characteristic of social choices follow a similar trend. We observed that a

DDM was equally well‐suited to explaining the behaviour in a social and a non‐social

context and that the parameter estimates produced for the two decision domains

were comparable, thus providing evidence in support of the notion that the two

might share the same algorithmic characteristics.

Having observed similarities between the social and non‐social algorithmic pro‐

cesses, we turned to examining the implementational characteristics of these

choices in the second experimental chapter (Chapter 3). Initially, we used our

modelling results to create model‐based predictions of the EA dynamics in the

two domains, which we found matched the activity captured by electrodes from

centroparietal cluster previously implicated in EA processing (Gherman and Phil‐

iastides, 2015; Kelly and O’Connell, 2013; Pisauro et al., 2017; Polanía et al.,
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2014; van Vugt et al., 2019) and we saw that the model‐EA closely corresponded

to the actual EEG signal, which reflected previously described difficulty and speed‐

related trends (e.g. Connolly et al., 2009; Law and Gold, 2008; Mazurek et al.,

2003; Roitman and Shadlen, 2002). However, since we would use the EEG signal

to identify the relevant neural site of EA, we needed to ensure the robustness of

the signal. To this end, we analysed the EEG data with a multivariate technique

aimed at maximizing the contribution of the relevant electrodes that capture the

process of EA. Having identified this robust measure of EA, we used it to establish

which brain areas corresponded to the trial‐by‐trial fluctuations in EA captured in

the EEG signal. The variability captured in the EEG for both social and non‐social

sources of uncertainty corresponded to activity in the pMFC, which has previously

been implicated in non‐social EA (Pisauro et al., 2017) as well as in modulating

the amount of evidence necessary for a decision (Forstmann et al., 2008). We

also found that across the two domains, the activity in this region co‐varied in a

task‐specific manner with regions of the human valuation system. Finally, we also

observed domain‐specific activations at the time of stimulus presentation. To‐

gether, these observations are consistent with a domain‐general decision‐making

process similar to the one described in Fig. 3, where domain‐specific information

is initially encoded in early domain‐relevant brain areas, then compared and con‐

verted into a ‘common currency’ in the human valuation system and accumulated

for decision in regions adjacent to the motor areas responsible for carrying out the

relevant choice action.

Having identified a candidate brain region responsible for EA across decision‐

making domains, in the final experimental chapter (Chapter 4) we aimed to pro‐

vide causal evidence for its involvement in the EA dynamics through the use of

stimulation methods in a pre‐registered experiment (Fig. 1, right). Specifically,

we used tDCS to alter the functioning of the region and to establish the mechanistic

function it might have in the social EA process. By focusing on the social choices,

we could potentially demonstrate the capability of the social decision‐making do‐

main to provide further insight into the universal decision‐making process. We

combined our stimulation method with the use of a hierarchical DDM (hDDM) to ex‐

amine changes to the latent variables in the model space, as any changes produced

by the stimulation itself may be too subtle to appear on the behavioural level. We

made use of the hierarchical version of the DDM as it makes fewer assumptions
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about the distribution of the parameters and therefore might be more sensitive

to the small changes produced by the stimulation (Kruschke, 2010; Wabersich and

Vandekerckhove, 2014; Wiecki et al., 2013). This allowed us to create models cor‐

responding to the current hypotheses about the potential function of this region

in the context of the evidence‐to‐bound process ‐ that it reflects the dynamics of

the EA process (Pisauro et al., 2017) or that it modulates the amount of evidence

needed for a decision (Forstmann et al., 2008). We also considered the possibility

that the pMFC is responsible for both processes. Due to especially low yield rates

caused by the pandemic, we were not able to collect the full sample size specified

in the pre‐registration, which is why we are only able to provide preliminary results

for this thesis. These results so far suggest that the role of this region may be to

govern multiple facets of EA, where it reflects both the EA dynamics and modu‐

lates the amount of evidence needed to make a decision. However, as the formal

analyses on the parameter estimates were not significant, we conclude that more

evidence is needed to determine the role of the pMFC in social decision making.
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2 Chapter 2, Experiment 1

2.1 Introduction

Imagine you are playing a game of poker. You can decide whether to place a

bet based on your hand and the associated likelihood that someone else on the

table may be holding a better combination of cards. Alternatively, you could make

your decision based on the social information produced by the other people as

they announce their choices. Both options come with some degree of uncertainty

‐ depending on the cards in your hand, your chances of winning may vary from

very favorable to highly unlikely. Similarly, your ability to correctly identify the

social signals unwillingly produced by the other players may vary between the

different players or from round to round. Currently, however, there are still many

unanswered questions about whether the uncertainty associated with the social

information is processed and used in the brain in the same way as the non‐social

uncertainty.

The first step in examining if such a universal decision‐making process exists,

is to study the algorithmic characteristics of the two domains. In other words,

it is necessary to investigate whether the neural computations involved in social

choices are the same as the ones employed by the non‐social decisions (Lockwood

et al., 2020). To this end, we used a DDM in order to examine whether social

choices rely on accumulation‐to‐bound computations like the ones implicated in

non‐social decisions (e.g. Kelly and O’Connell, 2013; O’Connell et al., 2012; Phil‐

iastides and Sajda, 2006; Polanía et al., 2014; Ratcliff et al., 2009). However,

before we investigate the similarities between the algorithmic processes involved

in social and non‐social choices, it is important to use a paradigm, which tries to

ensure that the only difference between the two decision domains is the source of

uncertainty i.e. social and non‐social (Lockwood et al., 2020). One of the difficul‐

ties in examining how similar social choices are to non‐social decisions comes from

finding ways of putting the social and non‐social uncertainty on equal footing i.e.

making sure that they vary along a comparable scale. Additionally, it is important

that this uncertainty is defined through objective measurements since measures

like Likert scales make use of arbitrary ranges and values. A convenient option for
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investigating the non‐social domain is to make use of probabilistic decision mak‐

ing, as the probability of receiving a reward is bound to an objective and easily

interpretable 0‐1 range. Therefore, to enable the fair comparison across the social

and non‐social domain, a similarly objective social equivalent is needed.

One potential option is to use a social feature, which is known to lead to a wide

range of perceptions and actions, and embed it in the context of an economic game

to define rules for obtaining a probabilistic reward distribution modulated by this

feature. One such candidate feature is facial trustworthiness, since it has been

shown that facial features and expressions reliably predict behaviour in economic

games (Mussel et al., 2013; Van’t Wout and Sanfey, 2008). Furthermore, these

trustworthiness behaviours are based on unmalleable facial features (Rezlescu et

al., 2012) and are preserved even when people are only shown a co‐player’s pic‐

ture and verbally assured that the co‐player’s behaviour is genuine (Tzieropoulos,

2013). Making such assurances is critical since the associated neural activity has

been shown to depend on the belief that one is playing against an actual human.

The importance of knowing whether these trustworthiness cues may be used to

inform future behaviour is further demonstrated by the observation that when

participants are allowed to choose their own avatars in a computer game, they

choose the more trustworthy ones and in return receive higher offers, however if

these avatars are allocated by someone else, the effects disappear (Tingley, 2014).

These trustworthiness‐based behaviours, however, are not incidental since facial

expressions signaling enjoyment have been linked to cooperation, whereas expres‐

sions of contempt have been associated with defection in a Prisoner’s Dilemma

(Fig. 2, b, Reed et al., 2012). Similarly, it has been shown that men with wider

faces are less likely to act cooperatively or favour mutual gain (Stirrat and Perrett,

2010). Additionally, people can reliably identify individuals who are less coopera‐

tive (Tognetti et al., 2013). There may be an evolutionary incentive behind these

phenomena as it would be advantageous to recognize people’s intentions and pre‐

dispositions based on their expressions and facial features. This is also why people

tend to remember untrustworthy people with trustworthy faces better than those

with untrustworthy faces (Suzuki and Suga, 2010) and why such judgments can be

made relatively quickly and reliably after only 100ms (De Neys et al., 2017) as

well as why these trends can be observed even in young children (Ewing et al.,

2015). Nevertheless, such judgments are not universal across cultures once one
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controls for facial attractiveness (Xu et al., 2012). Despite these effects not being

cross‐cultural, there is nevertheless real‐life evidence showing that trustworthi‐

ness judgments correlate with criminal sentence severity (Wilson and Rule, 2015,

2016).

These examples show that trustworthiness assessments are vital for social in‐

teractions and that they are governed by an automatic process, in which peo‐

ple engage regularly to inform their decisions. Consequently, we employed facial

trustworthiness as our social feature used to modulate the social uncertainty in our

comparison between social and non‐social choices. Specifically, we used a Trust

game, in which an Investor has to decide whether to pass their endowment on to

a Trustee for the chance to increase their rewards, with the outcome of that deci‐

sion depending on the likelihood that the Trustee would decide to cooperate so that

both parties can benefit from the interaction (Fig. 4, a, Berg et al., 1995). This

allowed us to express the facial trustworthiness as the likelihood associated with

the Trustee splitting the investment, thus ensuring that the social and non‐social

uncertainty can be measured and modulated along a comparable 0‐1 range.

It is noteworthy that previous examinations comparing social and non‐social

decision making have employed paradigms where the social aspect involves the

consideration of another person and the non‐social involves the consideration of

one’s self (e.g. Hutcherson, Bushong, et al., 2015; Janowski et al., 2013; Lockwood

et al., 2017; Tusche and Bas, 2021), which may be considered as being a more un‐

ambiguously social manipulation (as the benefactor of the choice is not always the

participant) and these experiments have also argued for social‐specific processing

(e.g. Lockwood et al., 2021). However, we highlight that the current paradigm

aimed to investigate whether the neurocomputational principles observed in these

previous investigations of social choices will still be present when using a differ‐

ent type of social choice ‐ where the social information is carried by a social cue.

We argue that it is important to also consider such alternative types of social deci‐

sions in order to investigate the degree to which social choices are domain‐specific.

We further highlight that this type of social cue was chosen in an attempt to di‐

rectly and fairly match the processes involved across the two decision types, as

by closely matching the two domains, we believe that any differences would be

more confidently attributed to the domain‐specific nature of the decision and not
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to differences in the types of considerations that form the basis of the decisions.

Specifically, it is conceivable that in self (non‐social) vs other (social) considera‐

tions, the social choice may involve the assessment of the non‐social aspects of

the decision (i.e. how the decision maker would appreciate the outcome of the

choice) in conjunction with second‐order social considerations (how well these

personal considerations map on to the other individual e.g. Edelson et al., 2018)

and therefore may not necessarily represent a one‐to‐one comparison between the

two domains. We further note that later in this thesis we report that the social

condition was associated with activations typically attributed to social cognition,

which would not have been the case if our paradigm did not successfully employ

social judgments. Moreover, the behavioural patterns which we will discuss in this

chapter are unlikely to have been evident if the social manipulations included in

the images was not successfully engaging the relevant social judgments. To this

end we believe that while the task outlined here may not be as overtly social as in

some previous investigations, it still employs social processing and would be able

to offer further insight into the degree of potential overlap between social and

non‐social decision making.

We initially ran a behavioural pilot experiment (henceforth Pilot, Fig. 1, left

panel) in order to validate our task and stimuli. Having done so, we were then able

to investigate whether social and non‐social decisions use the same neurocompu‐

tational principles in a simultaneous EEG‐fMRI study (henceforth Main experiment,

Fig. 1, middle panel), which consisted of 1) a behavioural session, 2) an online

rating session and 3) an EEG‐fMRI session. The behavioural sessions of the Main

experiment were used to identify participants, who would engage in the task and

were thus not formally analysed, apart from using the ratings to inform stimulus

selection. Similarly, the online rating task was only used for stimulus selection.

In the Pilot and all three sessions of the Main experiment we would show our par‐

ticipants a series of face displays, which they were told belonged to people, who

had previously taken part in a Trust game (Fig. 4, a) as Trustees and we asked our

participants to indicate the likelihood of splitting the investment associated with

each face display. We told them that the people whose faces they were viewing

actually participated in this game to ensure that our participants would later make

use of their trustworthiness judgments. In the Pilot and all sessions of the Main

experiment apart from the online rating session, we would then ask our partici‐
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pants to actually take part in a Trust game, where they were assigned the roles of

Investors and were presented with both social and non‐social trials, in which they

had to make the choice between a small, but safe reward and a larger but uncer‐

tain payoff. In the non‐social trials the outcome of the uncertain option would

be indicated by a range of reward probabilities. The reward probabilities in the

social trials would depend on the face displays and participants were told that the

outcome would reflect the decisions made by that individual, whereas in reality

the outcome was determined by the indirect trustworthiness rating.

These tasks allowed us to demonstrate the behavioural similarities between the

social and the non‐social domains, which highlighted that our paradigm enabled the

social and non‐social choices to be placed on equal footing, which facilitated the

examination of their algorithmic characteristics. We were also able to fit the data

to a DDM and showcase that the model fit the data well and reflected the main

trends seen in the behavioural data and that both decision types follow similar

evidence‐to‐bound computations, providing evidence in favour of them sharing the

same algorithmic principles.

2.2 Materials and Methods

2.2.1 Participants

We recruited 41 participants for the Pilot through the University of Glasgow

subject pool. Since facial perception may depend on one’s race and racial history

(e.g. Scott and Monesson, 2009), participants were chosen to be Caucasians, aged

18‐35 to match the available face stimuli (see below). All participants had normal

or corrected‐to‐normal vision and reported no history of psychiatric, neurological

or major medical problems, and were free of psychoactive medications at the time

of the study. 18 participants were removed (total n = 23) due to poor performance

consisting of either chance performance or displaying the same response pattern

regardless of the reward probability manipulation.

40 participants took part in the three sessions of the Main experiment involving

simulataneous EEG‐fMRI (Fig. 1, middle). They were selected based on the same
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criteria outlined for the Pilot. Two participants were removed from all analyses

due to poor behaviour during the EEG‐fMRI session (one had near chance perfor‐

mance across all levels of reward probability in the social context, whereas the

other had chosen to nearly always ‘Play’ across all levels of reward probability in

the non‐social context). For the multivariate EEG analysis, which aimed to increase

the contribution of the relevant sensor information (outlined in the next chapter)

seven participants were removed (total n = 31) due to poor (chance) discrimination

performance. All statistics presented in relation to the Main experiment reflect

the sample size from the multivariate EEG analysis. We note that originally for the

univariate EEG analysis on evoked responses on individual sensors we only removed

3 additional participants (total n = 35) due to discrepancies between the DDM pre‐

dictions and the behaviour, however, for consistency between the analyses, here

we are presenting the dataset based on the sample identified for the multivari‐

ate analysis and we note that the statistics for the univariate EEG analysis across

the two samples were consistent with each other. The study was approved by the

College of Science and Engineering Ethics Committee at the University of Glasgow

(300180147) and informed consent was obtained from all participants.

2.2.2 Stimulus creation and modulation

For the Pilot as well as the initial behavioural session (i.e. the first session

in the Main EEG‐fMRI experiment) we used 100 photorealistic face identities (56

female and 44 male images), which were selected from a database collected at

the Institute of Neuroscience and Psychology at the University of Glasgow. The

identities were chosen to be Caucasian, aged 18‐35. A reverse correlation (Ahu‐

mada Jr and Lovell, 1971) based on previous ratings of the trustworthiness of the

faces was used to identify features associated with higher trustworthiness scores.

Afterwards, these facial features were manipulated in all faces to create different

trustworthiness versions of each face using a Generative Face Grammar (Yu et al.,

2012). The collection of these images, as well as the reverse correlation proce‐

dure were not done by the author of this thesis. Instead, they were collected and

produced by researchers from the Schyns lab at the University of Glasgow. This

facial manipulation was done in order to produce stimuli that would be likely to fall

into a wide range of different trustworthiness categories i.e. highly trustworthy,
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Figure 5: Sample stimuli from a representative participant. Top row: Social stimuli at five different

subject‐specific indirect trustworthiness levels, corresponding to the reward probability levels employed for

the non‐social stimuli. Bottom row: Non‐social stimuli with five explicit reward probability levels superim‐

posed on a neutral face. The photo‐realistic face images were created using the procedure described in (Gill

et al., 2014) and presented in Stimulus creation and modulation.

Figure 6: Example of stimulus trustworthiness manipulation at 4 levels (trustworthiness levels from

left to right: 1, 7, 14, 20). Level 1 trustworthiness represents the lowest trustworthiness level, level 20

corresponds to the highest trustworthiness level.

highly untrustworthy and ones considered neither trustworthy nor untrustworthy.

20 trustworthiness versions were created for each face, ranging from the least (1)

to the most (20) trustworthy version of the face (Fig. 6). Only one version per face

identity was chosen. The face stimuli were allocated to 5 trustworthiness bands

based on their trustworthiness level, which corresponded to the likelihood of split‐
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ting the investment given a ‘Play’ choice (0‐0.2, 0.2‐0.4, 0.4‐0.6, 0.6‐0.8, 0.8‐1).

All images were visually inspected to ensure they convey the trustworthiness level

associated with the respective bands. For the non‐social condition 1 neutral face,

which was not included in the social condition, was used and 5 distorted images

containing reward probability ranges (as text) were displayed on top of the face

(Fig. 5, bottom row). These reward probability ranges were created using the R

package magick (version 2.0; R Core Team, 2018). The probability ranges were

blurred by convolving the images with a Laplacian with a width of 19 pixels. After‐

wards, Poisson noise was added and light‐gray pixels were removed. The non‐social

face stimuli were displayed in the same manner as the social ones.

For the rating task as part of the online rating session and the EEG‐fMRI session

(i.e. the second two sessions of the Main experiment), we instead used 150 pho‐

torealistic face images based on 131 face identities (made up of 61 male images

and 70 female images). 19 of the original face identity images were additionally

manipulated to create extra identities, so as to increase the image sample size,

which would eventually be used during the economic game as part of the EEG‐

fMRI session in the Main experiment. The same trustworthiness manipulation was

applied to the fabricated identities. Only one version per face identity (original

and fabricated) was chosen. Half of the additional 50 faces were chosen from the

highly trustworthy versions of the face identities and the other half ‐ from the

highly untrustworthy versions.

We used Presentation software (Neurobehavioral Systems Inc., Albany, CA) to

present the face displays as 300x400 pixel images centrally on a screen (frame rate

= 60 Hz) for the rating and economic game task in both the Pilot and the behavioural

session of the Main experiment. They were also presented in the same way dur‐

ing the economic game as part of the EEG‐fMRI session in the Main experiment.

However, during the Pilot and the behavioural session in the Main experiment, the

stimuli were shown on a monitor 80 cm away from the participant, whereas during

the EEG‐fMRI session of the Main experiment, the stimuli were presented centrally

via an LCD projector on a screen placed at the rear opening of the bore of the MRI

scanner and viewed through a mirror mounted on the head coil (distance to screen

= 95 cm). For the rating task during the online rating session and the EEG‐fMRI

session of the Main experiment, the face displays were presented centrally on the
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screen as 3x4 images that took up 30% of the height of the screen. They were

presented using the online functionality of PsychoPy3 (v3.0.7, Peirce, 2007).

2.2.3 Procedure for Pilot experiment

Figure 7: A variant of a Trust Game and procedure for EEG‐fMRI session. a) The participant (Investor)

receives 1 point, which they can either ‘Keep’ or ‘Play’ for the chance of winning 2 points. If they decide

to ‘Play’, the point is quadrupled and passed on to a Trustee, which can be social (red) or non‐social (blue).

The Trustee can either keep all 4 points (‘Keep’) or split them evenly with the participant (each receiving 2

points, ‘Split’). In the social trials the probability of winning is based on the subject‐specific trustworthiness

score associated with the current face display, while in the non‐social trials it is determined by the reward

probability range displayed on a face, neutral for trustworthiness. b) Social (S; red outline) and non‐social (NS;

blue‐outline) trials. Trials begin with a variable fixation cross screen (1‐4 s). Following the fixation screen

a stimulus is presented for up to 1.3 s, during which participants indicate their choice (‘Play’ or ‘Keep’).

Following the response, a fixation cross screen appears for the remainder of the 1.3 s.

The pilot experiment only involved a behavioural session, which was made up

of two tasks ‐ a rating task (based on 100 face identities) and an economic game

(Fig. 1, left). Both of these tasks were based on a version of a Trust game (Fig.

4, a). Specifically, this variant involved one‐shot Trust games between two players

‐ Investor (Player 1) and Trustee (Player 2). The Investor is allocated 1 point per
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trial and has two options. The first offers a small, but a certain reward by selecting

to keep the point for that trial, thus ending the trial (‘Keep’ option). The second

option presents a bigger, but more uncertain payoff (‘Play’ option). Specifically, if

the Investor chooses this option, they pass the point to the Trustee. At this stage,

the point is quadrupled, however it is up to the Trustee to determine how the four

points should be distributed. The Trustee is also presented with two options: they

either keep all four points for themselves, or they can split them evenly between

the two players.

For the rating task, participants were told that the face displays belong to indi‐

viduals who have previously taken part in an economic game (i.e. a Trust game like

the one described above) and who were assigned the roles of Trustees (i.e. Player

2) in that economic game. To make our cover story more realistic for our partici‐

pants, we took pictures of their own faces and told them that their face displays

and responses would be used for similar experiments in the future. In reality, we

would delete the pictures after each session. The goal of the participants during

the rating task was to assess the face identities’ trustworthiness by estimating the

likelihood of splitting the investment for each face display (on a 0‐1 scale). They

were also told that they would eventually play with these face displays and were

thus encouraged to use the rating task as an opportunity to familiarize themselves

with the faces. When the task was presented to the participants all mentions of

trustworthiness were avoided in order to sidestep the possibility of participants

developing unusual strategies in the game due to social desirability biases. Fur‐

thermore, by framing the rating task in such a manner, we ensured that their

subsequent decisions in the economic game would be based on the same economic

considerations as the ones that they would employ for the non‐social choices. This

was a key feature of the design since embedding the rating in the context of a Trust

game avoids the use of arbitrary explicit trustworthiness ratings (e.g. using Likert

scales) and ensures a direct mapping between social and non‐social choices. Fur‐

thermore, it has been suggested that such indirect trustworthiness measures may

yield more ecologically valid estimates than explicit ratings (Uleman and Kres‐

sel, 2013). During each trial, a red cursor would move (from left to right) along

a scale representing the likelihood of splitting the investment (Fig. 8, a). The

cursor moved continuously and looped around the scale. The speed of the cursor

was determined by the refresh rate of the monitor (60Hz) and moved 2 pixels to
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the left every 16.6 milliseconds. The initial position of the cursor changed on a

random basis. This was done in order to avoid any anchoring effects when the

participants gave their responses. Responses were given by pressing a button on a

Cedrus RB‐740 button box (Cedrus Corporation, 2019) when the position of the cur‐

sor reflected participants’ estimate of the likelihood that the person whose face

was displayed would split the investment.

Figure 8: The rating task in the Pilot and the Main experiment. In both versions of the rating task,

participants rated the face identities based on the perceived likelihood of splitting an investment in a Trust

game. a) In the Pilot and the behavioural session of the Main experiment participants were asked to press a

button once a continuously moving cursor was at the position reflecting their rating. b) The rating task in the

online rating session and the EEG‐fMRI session of the Main experiment required participants to indicate their

ratings by clicking on the corresponding section on the scale.

Following the rating task, the participants would take part in the previously

described game as the Investor (i.e. Player 1) in two conditions (social and non‐

social), each consisting of 250 trials (500 in total) presented in an interleaved

fashion. On each trial, participants would see a variable fixation cross (1.25s ‐

1.75s). Then they would be presented with a stimulus from either the social or

the non‐social condition and had to choose between the ‘Keep’ and the ‘Play’

option, however the outcome of the trial depended on the condition (Fig. 7, a).

In the social condition, participants were told that the probability of doubling the
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reward was determined by a randomly selected response from when the person

whose face display they were currently viewing played the game. In reality, the

reward probability was governed by the trustworthiness estimate each participant

gave during the rating task (divided into five different levels of reward probabilities

(given a ‘Play’ choice); 0–0.2, 0.2–0.4, 0.4‐0.6, 0.6–0.8 and 0.8–1). For the non‐

social condition, the distorted text reflected the 5 reward probability levels given

a ‘Play’ choice. The 5 bins in the two domains (social and non‐social) would also

reflect the difficulty of the choices as easy trials would correspond to the two

extreme bins (i.e. 0–0.2 and 0.8–1) as they contain strong information favouring

either a ‘Keep’ or a ‘Play’ choice, respectively; medium difficulty trials would

still favour either a ‘Keep’ or ‘Play’ response, but the uncertainty of the outcome

would be higher (0.2–0.4 and 0.6–0.8, respectively) and the difficult trials would be

associated with the highest uncertainty and as such would not favour one response

over the other (i.e. 0.4–0.6).

We placed a background face in the non‐social trials to equalize the perceptual

load across domains, to enable direct comparisons between the two domains and

as an attempt to guarantee that any potential differences seen between the con‐

ditions could not be attributed to bottom‐up processing of the stimuli. We also dis‐

torted the numbers presenting the reward probability ranges to parallel the early

encoding of the perceptual stimuli across domains in an effort to produce similar

RTs and non‐decision time estimates for the two domains. During the non‐social

trials, our participants were instructed to focus and make their choices based on

the numbers displayed on the stimuli. Taken together, these design characteristics

aimed to ensure that participants’ decisions in the economic task would be based

on the same economic considerations across the two domains. In other words,

participants would be basing their responses on the reward probability associated

with a ‘Play’ choice in both domains.

After participants made their choice (they were given up to 1.3 seconds to re‐

spond), they would be informed of the outcome of their decision via a feedback

screen (0.75s). Specifically, they would see their updated score, which would be

coloured based on their choice. If the participant chose to ‘Keep’ during that trial,

the score would be coloured in blue. If they chose to ‘Play’ and successfully dou‐

bled their points for the trial, the updated score would be presented in green,
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however, if they were unsuccessful, their score was shown in red. Finally, if they

did not manage to respond within the allocated 1.3 seconds, they would see a

screen informing them that they were too slow to respond. Furthermore, to mo‐

tivate participants to engage with the task, we told them that in addition to their

base rate payment (£6) they would receive a variable bonus (up to £4) based on the

points they accumulate during the experiment. Almost all participants received

£8.

2.2.4 Procedure for Main experiment

The Main experiment involved three sessions: 1) a behavioural session, 2) an

online rating session and 3) an EEG‐fMRI session (Fig. 1, middle panel). Initially

participants were invited to a behaviour session in order to identify individuals

who would engage with the task. The procedure for the behavioural session was

the exact same as the one described for the Pilot, however based on participant

feedback from the Pilot, we decreased the noise level in one of the text images

showcasing the reward probability range in the non‐social domain (the 0‐0.2 bin).

This new images was used in all subsequent versions of the economic game. To

encourage participants to engage with the task we once again offered them a

fixed rate (£6) and an additional payment (up to £4) based on their performance.

On average, the participants who were later included in the EEG‐fMRI multivariate

analysis (see Participants) received £8.03 ± 0.31.

If participants’ behaviour in the behavioural session showed that they under‐

stood the task by displaying a parametric modulation of their ‘Play’ choices as a

function of the Reward Probability bin, they would be invited to the EEG‐fMRI ses‐

sion. One day prior to the EEG‐fMRI session, participants would be sent a link to the

online rating session. The online rating session involved only the rating task, which

functioned in the same manner as the one used in the Pilot and the behavioural

session, but was implemented using the online functionality of PsychoPy3 (v3.0.7,

Peirce, 2007) and instead of a continuously moving cursor, participants were simply

asked to use their cursor and click on the corresponding location on the scale (Fig.

8, b). Additionally, during the Online rating session, participants were exposed to

150 face displays (see Stimulus creation and manipulation) in order to increase the
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stimulus sample size since following the Pilot we observed that participants were

more likely to cluster their ratings around the middle of the scale. To this end we

introduced the additional 50 faces, which were meant to encourage the selection

of more faces in the more extreme bins. One participant did not complete the

Online rating session due to software issues.

Finally, the EEG‐fMRI session also involved a rating task and an economic game.

The rating task was the same as the one in the online rating session. Following the

rating task, participants were prepared for the EEG‐fMRI recordings and entered

the scanner. Inside, they played a final round of the economic game (Fig. 7).

The trials were presented over 5 runs (100 trials each), lasting approximately 7

minutes (205 volumes). In each run we included a 30‐second break at the middle

and the end (i.e. after every 50 trials). During each trial, a jittered (1‐4s, mean =

2s) fixation cross would be followed by the presentation of the face stimulus (ei‐

ther social or non‐social). To further optimize the design (Henson, 2007) and thus

increase power and ensure maximal dissociability between the two sources of un‐

certainty (Mumford et al., 2015), a simulation was run to produce optimal stimulus

presentation and jitter lists. Based on the efficiency score of the hemodynamic re‐

sponse from 5000 simulated stimulus presentations and jitter lists, the top 40 lists

were chosen. In the social context, we assigned each of the face identities into

the five bins based on the subject‐specific ratings given on the day of the EEG‐fMRI

session. However, their ratings across all three rating tasks involved in the Main

experiment were used to identify face identities that received inconsistent scores

(more than two bins apart), which we removed from the experiment (on average,

10.807 face identities were removed). With the one problematic subject, the final

rating was considered twice as it was assumed that it would represent the trust‐

worthiness judgments better than the earlier rating. On average, there were 23,

34, 32, 36 and 14 face identities across the five reward probability bins, respec‐

tively. In the non‐social context, like in the behavioural sessions and the Pilots,

the reward probability was presented explicitly through a probability range dis‐

played on a face neutral for trustworthiness. For both conditions, participants had

1.3 seconds to respond and the stimulus remained on screen until the participants

made their choice. If the participant’s response was faster than 1.3 seconds, the

fixation cross was presented again to pad the remaining time up to 1.3 seconds,

so as to keep the run times consistent between participants. Participants were
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asked to use a 4‐button inline MR‐compatible response box (Cambridge Research

Systems, 2019) to make their responses. They were informed of their performance

only during the breaks following every 50 trials via a 30s feedback screen showing

how many points they gained in the last 50 trials. Participants were once again

told that they would receive a fixed and an additional variable payment based on

their performance (£16 base rate + up to £4). In reality all participants received

£20 for their participation.

2.2.5 Pilot data analysis

The analysis of the Pilot data involved the proportion of ‘Play’ choices and the

reaction times (RTs) gathered during the economic game. We aimed to analyse the

data using two generalized linear mixed models (GLMMs), as they allow more flexi‐

bility for specifying the random effect and can thus represent the inter‐participant

variability better than alternative methods (like repeatedmeasure ANOVAs, Baayen

et al., 2008). However due to convergence issues with the RT data, we used a lin‐

ear model for the RT analysis.

For the choice behaviour we were interested in establishing whether the prob‐

ability of a ‘Play’ choice was predicted by the Reward probability given a ‘Play’

choice. We aimed to specify a maximal model including all main effects and in‐

teractions of our two predictors: i.e. domain (social vs non‐social) and reward

probability given a ‘Play’ choices (0‐0.2, 0.2‐0.4, 0.4‐0.6, 0.6‐0.8, 0.8‐1). We also

introduced subject‐specific random slopes for the main effects and interactions

to maximally reflect our design and to decrease the likelihood of a type I error

(Barr et al., 2013). However, due to convergence issues we excluded the random

correlations. The Reward probability given a ‘Play’ response predictor was divided

into 4 predictor variables in order to account for the ordinal nature of the compar‐

ison and were backward difference coded (UCLA IDRE, 2011). For both analyses

(choice behaviour and RT) we used deviation coding for the domain predictor by

mean‐centering the dummy coding assigned to the two domains.
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logit(Play) = 0.247

+ 0.173 ∗ domain

+ 0.704 ∗RewardProbability1

+ 1.943 ∗RewardProbability2

+ 1.656 ∗RewardProbability3

+ 1.339 ∗RewardProbability4

− 0.767 ∗ domain : RewardProbability1

+ 1.959 ∗ domain : RewardProbability2

+ 0.795 ∗ domain : RewardProbability3

+ 0.559 ∗ domain : RewardProbability4

+ (1 + domain ∗RewardProbabilityAll||Subject)

(1)

For the analysis of RTs we asked if RTs can be predicted by the difficulty of

the trials (1: easy trials, i.e. 0‐0.2 and 0.8‐1, 2: mid, i.e. 0.2‐0.4 and 0.6‐0.8

and 3: difficult, i.e. 0.4‐0.6). The difficulty predictors were once again backward

difference coded and divided into 2 predictors.

RT = 692.733

+ 35.304 ∗ domain

+ 33.079 ∗Difficulty1

+ 27.369 ∗Difficulty2

+ 8.532 ∗ domain : Difficulty1

+ 26.143 ∗ domain : Difficulty2

(2)

To establish the significance of our main effects and interactions, we then

performed post‐hoc likelihood‐ratio chi square (LRχ2) model comparisons for the

choice behaviour GLMM, and F‐statistics test for the reaction times linear regres‐

sion, by comparing the full model (as defined above) to models, which exclude a

predictor (or a group of predictors) of interest. Here we are only reporting the
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results obtained from these model comparisons. Significant interactions were fur‐

ther decomposed into simple effects. This was achieved by creating two sets of

the data with dummy coded domain predictors. When assigning ‘0’ to the social

domain and rerunning the analysis, we obtain the simple effects for the social

condition. The same was done for the non‐social condition.

Both analyses were performed in R version 3.5.1 (2018‐07‐02) and the code was

developed using RStudio version 1.1.456. The results for the choice behaviour were

analysed using a binary mixed models logistic regression using the packages tidy‐

verse (version 1.2.1) and lme4 (version 1.1.18.1). The model family was specified

as binom(logit) in order to account for the binomial nature of the response and we

selected the bobyca optimizer. The same packages and a simple linear regression

model were used to analyse the RTs.

2.2.6 Choice probability calculations for the EEG‐fMRI session from the Main

experiment

To assess the similarity between the probabilities of ‘Play’ choices across the

social and non‐social contexts during the EEG‐fMRI session, we used a conventional

likelihood‐ratio test implemented using MATLAB version 2018b. This test aimed to

assess whether a single common distribution can account for the data better than

two separate distributions for the social and non‐social decisions. Specifically, we

examined whether a single sigmoid curve (Weibull function) would fit the combined

social and non‐social choice data across the five reward probability levels as well as

two separate curves (Philiastides and Sajda, 2006). We performed this separately

for each participant by fitting the best single Weibull function jointly to the two

data sets in addition to the individual fits. The likelihoods (L) obtained from this

procedure were transformed using the following equation:

λ = −2ln
1
N

∑N
i=1 Li(data | joined curve)

1
N

∑N
i=1 Li(data | individual curves)

(3)

where N represents the number of participants and λ is distributed as χ2 with

two degrees of freedom (Hoel et al., 1971). If λ exceeds the criterion value (for

p = 0.05), we concluded that a single function fits the data as well as two separate
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domain‐specific functions.

2.2.7 Single‐trial regressions for EEG‐fMRI session from the Main experiment

We examined the relationship between the reward probability (i.e. indirect

trustworthiness bins and pure probability levels in the social and non‐social con‐

texts, respectively) and the probability of playing (1: ‘Play’, 0: ‘Keep’) on indi‐

vidual trials (Fig. 10, a) with a single‐trial logistic regression analysis (separately

for each participant and for each of the social and non‐social trials):

Pplay = [1 + e−(β0+β1×y(reward probability))]−1 (4)

We also investigated the link between task difficulty (i.e. 1: easy (reward

probabilities 0‐0.2 and 0.8‐1), 2: medium (reward probabilities 0.2‐0.4 and 0.6‐

0.8), 3: difficult (reward probabilities 0.4‐0.6)) and RTs on individual trials (Fig.

10, b) with a single‐trial regression analysis (separately for each participant and

for each of the social and non‐social trials):

RT = β0 + β1 × (difficulty level) (5)

In both cases we assessed whether the regression coefficients across partici‐

pants (β1 values in Eqs. 4 and 5) came from a distribution with a mean different

from zero (using separate t‐tests). All single trial regression were performed using

using MATLAB version 2018b.

2.2.8 Drift diffusion model

We used a version of a DDM, which involved a special case of the leaky com‐

peting accumulator model (Ornstein–Uhlenbeck process) to model EA based on the

behavioral data from the EEG‐fMRI experiment, following procedures described in

Pisauro et al. (2017) and Polanía et al. (2014):
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EA(t+ 1) = EA(t) + (λEA(t) + k(evidence)dt+N(0, σ)) + bias(evidence = 0) (6)

The decision thresholds for ‘Play’ and ‘Keep’ choices were assigned to +1 and –

1, respectively, with positive drift rates linked to reward probability levels favoring

‘Play’ choices, whereas negative drift rates were associated with reward probabil‐

ities favoring ‘Keep’ choices. To this end, in Eq. 6 the evidence corresponds to a

transformed version of the original five reward probability levels, centered around

zero (i.e. ‐0.5, ‐0.25, 0, 0.25, 0.5).

The free parameter k modulates the evidence input, λ signifies the accelera‐

tion to threshold and N(0, σ) is a Gaussian noise term with standard deviation σ.

We re‐calculated the EA on a time increment dt = 0.001s and we examined the

model choice once |EA| > boundary. We used a non‐decision time free paramater

(nDT) to account for early visual encoding and motor preparation. This nDT es‐

timate was included into the total RT. For trials corresponding to the indecision

point (i.e. 0 evidence, where the evidence does not favour ‘Keeping’ or ‘Playing’)

we included an additional free parameter, bias, to capture inter‐individual biases

towards either ‘Play’ or ‘Keep’ choices. The RTs were split based on the choice

(‘Keep’ or ‘Play’), and we flipped the sign for the ‘Keep’ trials, so that all ‘Keep’

trials received a negative sign and then recombined the RTs into a single distribu‐

tion (Voss et al., 2004). We then compared this RT distribution and participants’

choice probabilities to those generated by the model. For a given set of parame‐

ter estimates, we estimated the log likelihood (LL) of the data using the following

formula:

LL ∼
5∑

evidence=1

log(KS(RT evidence
data , RT evidence

model ))

+
5∑

evidence=1

log(exp(−(
Pplayevidencedata − Pplayevidencemodel

0.01
)2))

(7)

We used KS(p, q) to estimate the probability that our distributions are equal,

based on the Kolmogorov–Smirnov test (via the ktest2 function in MATLAB). Pplay

corresponds to the fraction of ‘Play’ choices for each of the five evidence levels.
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We used a two‐step process to fit the model. We first ran the fmincon MATLAB

function 20 times to obtain an initial estimate of subject‐specific parameters and

selected the parameters associated with the smallest LL for the next step. We

then ran a grid search fitting procedure for each participant using a fine‐grained

parameter space around the estimates generated in the previous step. Choices

and RT distributions were created for each possible combination of the four free

parameters from 5000 simulated decision traces per decision domain.

2.3 Behavioural and Modelling results

2.3.1 Comparable behaviour for social and non‐social trials from the Pilot

study

We ran a Pilot to examine the suitability of our paradigm for comparing social

and non‐social decision making. We also used it as an opportunity to validate our

choice of stimuli. We ran a GLMM to assess the effects of domain and reward proba‐

bility given a ‘Play’ response on the choice behaviour. This analysis demonstrated

that there was no significant difference between the social and the non‐social

‘Play’ choices (LRχ2(1) = 0.7, p = 0.403), which would be consistent with the notion

of a common underlying decision‐making mechanism. There was an overall signif‐

icant effect of reward probability (LRχ2(4) = 138.981, p < 0.001) demonstrating

that the probability of a ‘Play’ response increased with the probability of a reward

given a ‘Play’ choice. There was also a significant interaction between the reward

probability and the condition LRχ2(4) = 39.019, p < 0.001. The significant inter‐

action was further decomposed to examine whether the reward probability had a

significant effect for both decision domains. This was indeed the case for both the

social (LRχ2(4) = 118.97, p < 0.001) and the non‐social trials (LRχ2(4) = 117.905, p <

0.001). Therefore, for both social and non‐social choices, the probability of ‘Play‐

ing’ increased as the reward probability given a ‘Play’ choice increased, showing

that both the social and non‐social domain follow the same trends, even though

there was a significant difference in the strength of these effects as suggested

by the significant interaction. The fact that we see this parametric modulation

in the social condition and the fact that there were not many inconsistently rated
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Figure 9: Pilot Choice and reaction time (RT) results. a) Participants’ average Play responses for the

social (red) and non‐social (blue) condition. The probability of ‘Play’ choices increased as the probability of

a reward given a ‘Play’ response increased (P(payoff|play)). b) Participants’ average RTs for the social (red)

and non‐social (blue) condition. RTs were the highest when there was no strong evidence for or against ‘Play’

decisions for both conditions. Average individual behaviour is presented in grey circles

faces removed (on average, 10.807 face identities were removed) suggests that our

social manipulations captured through the initial ratings were successful in iden‐

tifying the social processing associated with these decisions and that participants

reliably used the trustworthiness information embedded in these images.

We also investigated the effects of domain and difficulty on the RTs using a

linear regression. This RT analysis demonstrated that there was a significant (albeit

small = 34.516 ms) main effect of domain (F(1, 11377) = 135.28, p < 0.001), with the

social responses (676.344 ± 95.752 ms) being on average faster than the non‐social

ones (710.861 ± 85.227 ms). There was also a significant main effect of difficulty

(F(2,11377) = 114.4 , p < 0.001). Their interaction, was also significant (F(2, 11377)

= 8.807, p < 0.001). Therefore, we further decomposed the interaction to examine
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whether difficulty had a significant effect on the RTs in both decision domains. We

found a significant effect of difficulty on the social (F(1, 11377) = 32.304, p <

0.001) and non‐social domain (F(1, 11377) = 90.854, p < 0.001). This suggests that

although this effect might have differed in strength between the two domains,

both RTs were influenced by the difficulty of the trials.

2.3.2 Comparable behaviour for social and non‐social trials from EEG‐fMRI ex‐

periment

Figure 10: EEG‐fMRI behavioural Choice and reaction time (RT) results. Social and non‐social behavioral

responses (red and blue circles) versus modelling performance of a drift diffusion model (black crosses) for

proportion of ‘Play’ choices (a) and RTs (b). ‘Play’ responses increased with probability of reward given a

‘Play’ choice (P(payoff|play)) and RTs were the highest when there was no strong evidence for or against

‘Play’ decisions. Participant‐specific behavior is presented in grey circles.

There was a positive correlation between the participants’ fraction of ‘Play’

choices and the reward probability for both the social and non‐social trials (social:

t(30) = 17.769, p < 0.001; non‐social: t(30) = 4.086, p < 0.001). This suggests

that participants selected the riskier option more frequently when the likelihood
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of receiving the higher payoff was also higher (Fig. 10, a). Crucially, we found that

the choice behavior was comparable between the social and non‐social trials, since

a likelihood‐ratio test (see Material and Methods) showed that a single sigmoid

function fit the fraction of ‘Play’ choices (jointly across both conditions) as well

as two separate functions (λ(30) = 0.551, p = 0.759).

We found an inverted ‘V’ relationship between the mean RTs and the reward

probability bins for both the social and non‐social trials (Fig. 10, b), reflecting a

positive relationship with task difficulty (social: t(30) = 10.024, p < 0.001; non‐

social: t(30) = 10.692, p < 0.001). Specifically, the longest RTs were linked to

the most difficult trials (reward probabilities 0.4–0.6), whereas the shortest RTs

were associated with the easiest trials (reward probabilities 0–0.2 and 0.8–1) and

intermediate RTs corresponded to medium difficulty trials (reward probabilities

0.4–0.6 and 0.6–0.8). Overall there was a small (41.637 ms), albeit significant

difference between the social and non‐social RTs (t(30) = ‐3.274, p = 0.003), with

social trials (MS = 677.864ms, SDS = 86.479 ms) being on average faster than

non‐social ones (MNS = 719.502ms, SDNS = 91.287 ms).

2.3.3 Comparable modelling output

We found that the model‐derived choice behaviour and RTs were highly corre‐

lated with the actual observed behaviour: social – fraction ‘Play’ Choice: r = 0.945,

t(154) = 36.464, p < 0.001, RT: r = 0.754; t(154) = 15.154, p < 0.001; non‐social ‐

fraction ‘Play’ Choice: r = 0.968, t(154) = 94.196, p < 0.001, RT: r = 0.765; t(154) =

14.461, p< 0.001. Therefore, our modelling results were able to reflect the trends

observed in our behavioural dataset in that the models would parametrically in‐

crease their proportion of ‘Play’ choices with the increase in reward probability

and similarly, the times for decision would increase with the difficulty of the trials

(Fig. 10). Consequently, the model was able to reflect the main manipulations of

the design across the two decision‐making domains, thus justifying features of the

modeling procedure such as the parametric modulation of the drift rate parameter.

The mean parameter estimates for the social context were: (λ: 5.774 ± 2.357,

k: 3.206 ± 1.555, σ: 0.02 ± 0.01, bias: ‐0.00004 ± 0.0004, nDT : 0.336 ± 0.09

and the mean parameter estimates for non‐social context were: (λ: 5.277 ± 2.37,
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k: 2.611 ± 1.355, σ: 0.011 ± 0.006, bias: ‐0.00002 ± 0.0006, nDT ; 0.304 ± 0.089.

Most parameters did not differ significantly between the two decision domains (λ:

t(30) = ‐1.3, p = 0.203, bias: t(30) = 0.26, p = 0.8, k: t(30) = ‐1.349, p = 0.188,

nDT : t(30) = ‐1.363, p = 0.183), thus suggesting high degrees of similarity between

the social and the non‐social choice behaviour. There was nonetheless a small but

significant difference in the noise term (σ: t(30) = ‐4.244, p < 0.001). This minor

difference may be attributed to additional internal variability when processing the

facial trustworthiness in the social context due to the larger number of stimuli

compared to identifying the numbers in the non‐social trials.

2.4 Discussion

Determining whether or not social choices use the same underlying neurocom‐

putational mechanism as non‐social decisions could offer a deeper understanding

of human decision making and behaviour as a whole. So far, however, there have

been few direct comparisons between the two where the social uncertainty is de‐

termined by a social cue, which examine decision‐making processes beyond the

value comparison stages and where the social and non‐social uncertainty explic‐

itly vary along comparable scales. Establishing whether the two domains share a

common underlying mechanism would require the consideration of several levels

of functioning, the most consequential of which are the algorithmic and the imple‐

mentational levels (Lockwood et al., 2020). Therefore the aim of this chapter was

to provide an initial examination of the algorithmic level used in the two decision

domains. To this end, participants were asked to make economic decisions based

either on an explicitly disclosed probability range or an indirect trustworthiness

rating in a Pilot experiment and in the Main EEG‐fMRI study. In this chapter we

examined the behavioural similarities between social and non‐social choices from

the Pilot and the Main experiment and used a DDM to showcase the potentially

shared computational principles between the two domains.

Behaviourally, the choice selection presents two pieces of evidence showcasing

the similarities across the social and non‐social decisions. The first one is the sim‐

ilarity across the two conditions in terms of ‘Play’ choices, demonstrated by the

lack of a significant main effect in the Pilot. Even though there was a significant
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interaction in the Pilot, both simple effects were significant, showcasing that the

social and non‐social ‘Play’ choices showed a common trend of scaling positively

with reward probability. Additionally, for the data from the Main experiment we

aimed to determine whether a single choice behaviour distribution can account

for the data and we saw that a single sigmoid function fit the data as well as two

separate functions. The second way in which our choice data highlights the similar

trends associated with social and non‐social choices is that the proportion of ‘Play’

choices increased with the probability of a reward given a ‘Play’ choice. This was

demonstrated by the significant main and simple effects of P(payoff|Play) in the

Pilot, whereas in the Main experiment it was shown by the positive correlation be‐

tween P(payoff|Play) and proportion of ‘Play’ choices as well as by the significant

effect in the logistic regression. This demonstrates that both conditions follow

a trend, consistently seen in non‐social experiments where the probability of se‐

lecting one of the alternatives scales with the available evidence for that choice

(e.g. Bogacz et al., 2006; Gold and Ding, 2013; Philiastides and Sajda, 2006; Rat‐

cliff et al., 2009). We highlight that for the social condition, we determined the

reward probabilities based on the participant‐specific ratings. On potential issue

with this approach would be if these ratings were highly inconsistent, which would

signify that the behavioural responses would not be associated with our indirect

trustworthiness ratings. However we removed any displays with unreliable ratings

and on average there was only a small number of faces that were removed (10.807

out of 150 displays). Furthermore, as we observed a parametric modulation of

Play behaviour reflective of the ratings, this signifies that the remaining ratings

were reliable and were reflective or the social processing that participants would

engage in in this condition. Therefore, these results indicate that our paradigm

was successful in modulating behavioural difference at the different levels of re‐

ward probability. Moreover, these comparable choices suggest that we might be

able to make a direct comparison for the algorithmic process investigation with

our modeling procedure.

In terms of the RTs, in both the Pilot and the Main experiment there was a small,

but significant effect of domain. Nevertheless, the overall trends seen in the social

and non‐social reaction times were similar and consistent with previous literature.

Specifically, both the social and non‐social trials were associated with an inverted

‘V’ pattern, where trials in the middle probability range (0.4‐0.6), where there
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is no strong evidence indicating which choice option (‘Play’ or ‘Keep’) is the most

beneficial one (thus making them more difficult), were associated with the longest

reaction times. Conversely, the trials with the strongest evidence in favour of

‘Keeping’ (0‐0.2) and ‘Playing’ (0.8‐1, thus making them easier), were associated

with the shortest reaction times. These observations were further supported by a

significant main effect of difficulty in the Pilot as well as in the Main experiment.

Such trends have been observed extensively in the behavioural results in previous

PDM and VBDM literature (e.g. Drugowitsch et al., 2012; Philiastides and Ratcliff,

2013; Philiastides and Sajda, 2006; Pisauro et al., 2017; Ratcliff et al., 2009; Uchida

et al., 2006, which have argued that the amount of available decision information

(i.e. the choice uncertainty) ultimately affects the decision (Urai et al., 2017).

However, in addition to examining the purely behavioural responses, we were

also able to fit the data from the Main experiment to a DDM in order to offer

a mechanistic account of social and non‐social choice selection. Therefore, this

allowed us to go beyond the simple observation that the behavioural tendencies

are shared among social and non‐social decisions and instead describes the pro‐

cesses and computations necessary to drive choices within the two domains. We

observed that we could fit such sequential sampling DDMs to both the social and

non‐social behaviour and we could show that the models gave rise to the same

trends seen in the behaviour. This suggests that the underlying mechanistic steps

that make up the DDM might correspond to the ones employed by the decision‐

makers. Furthermore, we saw that most of the estimated parameters did not

differ significantly between the two domains. These results indicate that our par‐

ticipants were utilizing the domain‐specific uncertainty in a comparable way to

drive both their social and non‐social decisions. This observation corresponds to

the decision‐making process model highlighted in the Introduction chapter (Fig. 3,

Rangel et al., 2008; Rangel and Clithero, 2014), which suggests that the only dif‐

ferences between decision‐making domains should be the initial appraisal of the

domain‐specific information, but that the subsequent processing steps should be

shared across domains. These modeling results therefore give credence to the no‐

tion that this decision‐making process, which might stand at the basis of various

non‐social decisions making domains (e.g. Krajbich and Rangel, 2011; Nunez et al.,

2017; Philiastides and Ratcliff, 2013; Pisauro et al., 2017), might also reflect the

algorithmic characteristics of social choices. We do note that there was a differ‐
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ence in the noise parameter (σ), however considering how for the social condition

we included a larger number of stimuli per bin it may not be surprising that there

might have been some minimal, but significant additional variability in the social

EA process. Nevertheless, these results provide mechanistic evidence for the in‐

vestigation of whether social decisions are a part of a universal decision‐making

process by suggesting that that social and non‐social choices potentially share the

same algorithmic computations.

While our paradigm was largely successful in that it led to prototypical results

seen throughout the non‐social domain, it is also worth highlighting that there

were some participants who were removed due to inconsistent behaviour, which

suggests that not everyone engaged with the task in a way that we expected. It is

possible that these participants were not motivated to engage in the task as they

would receive the base payment rate regardless of their performance. It is also

possible that some of the participants might have been exposed to similar stimuli

in previous experiments and therefore did not believe the cover story about the

faces belonging to people who have taken part in a Trust game. Some of the re‐

moved participants also shared that they would respond based on a pattern (e.g.

1 ’Play’ response, followed by 2 ’Keep’ responses), which suggests that they ei‐

ther ignored the cover story and the explanation of the rules or that they were not

convinced that these rules actually reflected the likelihood of the outcome. While

it might have been possible to show more explicit evidence in favour of the fact

that unlike those individuals, the participants included in the final sample believed

the cover story through the use of a questionnaire, we also highlight that such a

post‐experiment questionnaire might have suffered from social desirability biases.

A further issue with such a post‐task examination would be the fact that more of

our participants could have then guessed the true nature of the experiment and

thus revealed it to other potential participants. While we fully debriefed partic‐

ipants, who wanted to know more about the experiment, many opted out of this

option and the ones we did debrief, we asked not pass this information on to oth‐

ers. However it is conceivable that they did not follow these instructions, which

may be why some participants might not have believed the manipulation and thus

responded in unexpected ways. Regardless of the reason for the inconsistent be‐

haviour displayed by some participants, we highlight that some of those included

in the final sample would unpromptedly express that they ’hated’ some of the
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faces and that they thought that others were ’nice’ to them. Furthermore, some

participants would refuse having their faces be used in future experiments, which

suggests that they believed that the faces they were seeing could have come from

a previous study. We also take the behavioural patterns seen in the social condi‐

tion to suggest that the indirect trustworthiness judgments were indeed used to

inform the social choices. Moreover, the fMRI results presented in the next chap‐

ter, showing that the social trials were linked to activations strongly associated

with social processing can be seen as further evidence for the notion that partic‐

ipants were extracting relevant social information from the face displays. Based

on these pieces of information, we believe that the participants included in our

final sample accepted our cover story and interpreted the social stimuli in a social

way.

To summarise, this chapter aimed to investigate whether the algorithmic pro‐

cesses involved in social choices might be the same as the ones regularly linked to

non‐social decisions. To this end, we developed a paradigm, which aimed to vary

the social and non‐social uncertainty across comparable scales and to thus enable

a fair comparison between the two decision domains. The observed behavioural

similarities between the social and non‐social choices indicated that our paradigm

was suitable for the direct comparison of the two sources of uncertainty. Conse‐

quently, this allowed us to elucidate the algorithmic properties associated with

social and non‐social choices through our modelling procedure. Specifically, our

results suggested that the two decision domains might rely on accumulation‐to‐

bound computations consistent with the decision‐making process model described

in the previous chapter and therefore provide mechanistic evidence supporting

the notion that social choices might use the same neurocomputational principles

as non‐social decisions.
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3 Chapter 3, Experiment 2

3.1 Introduction

The outcomes of our decisions are rarely certain and the source of this uncer‐

tainty can vary ‐ for some choices we may rely on the known probabilities associ‐

ated with the choice alternatives, or we may use social information to guide our

decisions. Recent research has begun to investigate and compare the neurocom‐

putational principles of these two types of decision making (e.g. Janowski et al.,

2013; Levy and Glimcher, 2012). However, there are still unanswered questions

about the extent to which we process and use social and non‐social uncertainty

in the same way to guide our decisions and if these mechanisms are implemented

within the same neural network.

In recent years, the examination of a potentially universal decision‐making pro‐

cess has become more prevalent with studies demonstrating at least a partial over‐

lap in value computations for social and non‐social choices (e.g. Behrens et al.,

2008; Janowski et al., 2013; Levy and Glimcher, 2012). Such observations have

given rise to the notion of a ‘common currency’ implemented in the brain, where

domain‐specific information is transformed into a universal signal used for decision

making (Ruff and Fehr, 2014). However, whether the exact same structures are in‐

volved in this process remains unknown since in many of these examples, the social

and non‐social choices are examined in separate experiments or their uncertainty

is not explicitly equalized. Moreover, there is little literature focusing on whether

the social and non‐social information is subsequently utilized in the same man‐

ner and whether the same neural framework is used to implement the decision

processes. In the previous chapter we investigated the algorithmic similarities

between social and non‐social choices and highlighted the common behavioural

trends, prototypical of the ones seen throughout the non‐social decision‐making

literature. We also suggested that the computations involved in these choices can

be explained through a DDM and that the parameters used in these computations

are mostly consistent between the two domains. These results provide evidence in

favour of the notion that social choices may rely on the same algorithmic consid‐

erations as non‐social decisions since our paradigm explicitly attempted to allow
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only the source of the uncertainty to vary between the two domains.

In this chapter we aim to continue the investigation of the potential similarities

between the social and non‐social choices by focusing on their implementational

characteristics to investigate whether they share a common underlying mechanism

for integrating and accumulating relevant decision evidence. We aim to achieve

this by examining the spatiotemporal characteristics of social and non‐social deci‐

sions using simultaneous EEG‐fMRI recordings (e.g. Pisauro et al., 2017). Previous

studies have used EEG to investigate the temporal characteristics that underlie

non‐social decision making (e.g. Philiastides et al., 2014) and fMRI has been used

to implicate certain brain regions in the process (e.g. Heekeren et al., 2004).

However, the combination of the two modalities in a simultaneous EEG‐fMRI ex‐

periment not only takes advantage of the benefits associated with each modality

on its own, but their synergy allows us to obtain further insight into the underlying

processes of the two decision‐making domains (Sui et al., 2012). There are two

main ways in which this synergy can be achieved. The first is to use them equally in

a symmetric approach, which often uses machine learning techniques to combine

the multimodal information into a common feature space in order to investigate

the shared state‐dependant processes that give rise to the EEG and fMRI observa‐

tions (e.g. Valdes‐Sosa et al., 2009). The second way of combining the multimodal

information is through the asymmetric approach, where one of the modalities is

used to inform the investigation of the other modality (Philiastides et al., 2021).

Therefore one may use the trial‐by‐trial variability in the EEG amplitude as a pre‐

dictor in a general linear model (GLM) analyses of the fMRI signal, or take advantage

of the localization information provided by the fMRI data to inform the source lo‐

calization of the EEG data. The EEG‐informed fMRI analysis is the more common of

the asymmetric approaches and it relies on identifying latent endogenous features

of interest within the EEG information to explain the variance in the fMRI data with

the assumption that the neural substrate that gives rise to the variation in the EEG

signal also modulates the activity captured by the fMRI. This often leads to the im‐

plication of brain regions, the contribution of which would have been overlooked

by standard unimodal methods (e.g. Fouragnan et al., 2015). Even though some

fMRI studies use model‐derived predictors to examine similar latent processes, very

few go beyond the utilization of a simple mean and standard deviation estimate

(Gluth et al., 2017; Turner et al., 2015) and these predictors can be influenced by
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model misspecifications. Therefore, the trial‐by‐trial variability recorded from an

endogenous source offers stronger explanatory power than alternative measures.

To this end in this chapter we benefited from our simultaneously acquired EEG‐fMRI

recordings and employed an asymmetric approach where we used the trial‐by‐trial

variability captured by the EEG to inform our fMRI analysis.

Initially, we utilized the insight gained from our DDM to construct model‐derived

estimates of the EA dynamics associated with the social and non‐social choices to

identify neural signatures of EA through a univariate analysis of the evoked EEG re‐

sponses (e.g. Pisauro et al., 2017). However, since the reliability of the EEG signal

is crucial for the EEG‐informed fMRI analysis, we then took advantage of the multi‐

dimentional nature of the EEG signal, which enables the use of multivariate decod‐

ing methodologies to extract more reliable neural signatures by exploiting the full

spatiotemporal data structure to investigate how informative the observed brain

patterns are in describing the processes guiding decision making (Haynes, 2011).

Specifically, the EEG data contains multi‐channel noisy information, however, the

information from some of these channels is more relevant for the investigated

phenomenon than others and neighbouring channels may carry complementary in‐

formation, which is often not taken into consideration in univariate EEG analyses.

Therefore, by spatially integrating this information, we were able to increase the

relevant signal‐to‐noise ratio and thus produce more robust single‐trial estimates

(Parra et al., 2005). Such advanced quantitative techniques enabled a deeper

understanding of the underlying mechanisms of social and non‐social choices and

allowed us to reliably explore the degree of overlap of neural networks guided by

the two sources of uncertainty.

To this end, here we present a simultaneous EEG‐fMRI experiment, during which

participants made choices between small but certain rewards and larger but uncer‐

tain payoffs in interleaved social and non‐social trials. In the non‐social trials the

outcome of the uncertain option was determined by explicit probability ranges,

whereas in the social trials the outcome was dependant on subject‐specific trust‐

worthiness judgments (see Procedure for rating tasks and economic game tasks

from Chapter 2). Both our EEG analyses uncovered build‐up activity reflecting

EA dynamics, which corresponded to the decision difficulty in our task. We then

used the trial‐by‐trial variability captured in the slopes we identified following our
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multivariate EEG analysis to create parametric fMRI predictors. This allowed us

to implicate a region in the posterior‐medial frontal cortex (pMFC) as the site for

EA for social and non‐social choices. We further showed that there was a task‐

dependant co‐activation between the activity in the pMFC and areas in the human

valuation network across both contexts. We also found domain‐specific activations

associated with early decision evidence encoding for each context. These results,

therefore suggest that the relevant domain‐specific information is converted into

a ‘common currency’ in the human valuation system and accumulated for decision

in the pMFC in a domain‐general decision‐making network.

3.2 Methods

3.2.1 Participants, Stimuli and Procedure

The participants, stimuli and procedures referred to within this chapter are the

same as the ones described in Chapter 2.

3.2.2 EEG data acquisition

We collected the data using an MR‐compatible EEG amplifier system (Brain

Products, Germany), which we continuously recorded at 5000 Hz using Brain Vi‐

sion Recorder software (Brain Products, Germany), based on the setup described

in Gherman and Philiastides (2018). Specifically, we used a hardware 0.016‐250 Hz

band‐pass to filter the data online. We used 64 Ag/AgCl scalp electrodes placed

according to the 10 – 20 system. The reference electrode was built in between elec‐

trodes Fpz and Fz and the ground was located between electrodes Pz and Oz. To

ensure subject safety, each electrode had in‐line 10 kOhm surface‐mount resistors

and all leads were additionally bundled and twisted along their entire length. We

ensured that the input impedance for each electrode was lowered to < 50 kOhm

(25 KOhm average across participants). We synchronized the acquisition of EEG

and MRI data (Syncbox, Brain Products, Germany) and we recorded the MR‐scanner

triggers separately for the subsequent offline removal of MR gradient artifacts.

We also lengthened the scanner pulses to 50 µs via an in‐house pulse stretcher
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to facilitate the recording of the scanner triggers. We recorded the experimental

event codes and participants’ responses with the EEG data through the Brain Vision

Recorder software. We also ensured that we positioned subjects inside the scanner

so that electrodes Fp1 and Fp2 were aligned with the isocentre of the MR scanner.

Finally, we secured the cabling connecting to the EEG amplifiers at the back of the

bore by taping them to a cantilever beam to minimize scanner vibration artifacts.

3.2.3 EEG data preprocessing

The EEG data preprocessing and analysis were done using MATLAB 2018b (Math‐

works, Natick, MA), following the procedures outlined in Pisauro et al. (2017) and

Gherman and Philiastides (2018). Due to the magnetic induction on the EEG leads,

the EEG signal recorded inside an MR scanner is contaminated with MR gradient

and ballistocardiogram (BCG) artifacts. To remove the gradient artifacts, we con‐

structed average artifact templates from sets of 70 consecutive functional volumes

(centered on each volume of interest). We then subtracted the templates from the

EEG signal for each functional volume of the dataset, which we were able to do

because of the consistency of the artifacts over time (Allen et al., 2000). Any

residual spike artifacts were removed by applying a 12 ms median filter. We also

applied a 0.5 – 20 Hz band‐pass filter to remove slow DC drifts and higher frequency

noise. The data was also downsampled to 1000 Hz.

To remove eye blinks we asked our participants to blink repeatedly while there

was a central fixation cross on screen. The timings of these events were recorded,

which allowed us to use a principal component analysis to identify linear compo‐

nents associated with eye‐blinks, which we subsequently removed from the broad‐

band EEG data collected during the main task (Parra et al., 2005).

The removal of BCG artifacts is more challenging as they share frequency con‐

tent with the EEG. To avoid loss of signal power in the EEG, for the univariate EEG

analysis we only removed the two highest participant‐specific BCG components

using principal component analysis. For the multivariate approach, we instead

created datasets with different number of principal components removed (up to

5). We determined the number of optimal principal components for each partici‐

pant by maximizing classification performance along the task‐relevant dimension
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(see below) using cross validation (average number of BCG components across par‐

ticipants: 2.447 ± 1.969). These BCG principal components were identified after

low‐pass filtering at 4Hz (i.e. to extract the signal within the frequency range

where BCG artifacts are typically observed) and then removed by using the sensor

weightings corresponding to the relevant components and projecting them onto

the broadband data and subtracting them out. Finally, we baseline corrected the

data based on the 100 ms prior to the onset of the stimulus.

3.2.4 Univariate analysis of EEG data

To identify potential signatures of EA dynamics in our EEG signal, we performed

a univariate analysis of the EEG evoked responses, similar to the one described in

Pisauro et al. (2017). The social and non‐social trials from 400 ms time windows

preceding the response were averaged to create subject‐ and electrode‐specific

response‐locked EEG traces. Trials with amplitudes higher than 2 standard devi‐

ations were removed. These 400 ms were further adjusted based on correlations

with model‐derived EA traces created based on subject‐specific parameter esti‐

mates from our DDM analysis (see Chapter 2). This adjustment involved temporally

shifting the 400 ms time window up to 200 ms further away from the response to ac‐

count for motor preparation. This resulted in the identification of subject‐specific

best electrodes, which reflect accumulation‐like activity. The robustness of the

selected electrodes was tested by performing a permutation procedure. Specif‐

ically, for each trial we randomly assigned electrode labels across our data set.

We performed this procedure 100 times. This allowed us to create a distribution

of maximum correlation values, which are then compared to the original corre‐

lation value. If the original value was not within the top 5% of the distribution,

then the participant would not be considered for the remainder of the analysis.

All participants’ best context‐specific electrodes passed the permutation test (p <

0.05).
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3.2.5 Regressions for Univariate EEG analysis

We examined the relationship between the model‐derived EA traces and the

subject‐specific averaged best‐electrode traces with a linear regression analysis

(separately for each domain) in order to test if the EAmodel in the form of a single

vector containing the time series of the last 400 ms of the model‐derived EA traces

from each participant would predictEAEEG i.e. a single vector containing the time

series from all the time‐shifted 400 ms windows of subject‐specific best electrode

EEG activity:

EAEEG = β0 + β1 × (EAmodel) (8)

We also explored the effects of trial difficulty and trial duration by selecting

the easy trials (reward probability 0‐0.2 and 0.8‐1) and the difficult trials (reward

probability 0.4‐0.6) as well as splitting the data with a median split into short and

long trials. We then used simple linear regressions (separately for each domain),

where EEGdata was the subject‐specific time series based on the final 200 ms of

the 400 ms window (since this window reflects the biggest differences across condi‐

tions) and EAinterval was a monotonically increasing vector that matched the size of

this 200 ms time window. We performed these regressions to estimate the subject‐

specific and domain‐specific slopes associated with each of these categories (easy,

hard, short, long):

EAinterval = β0 + β1 × (EEGdata) (9)

We then assessed whether the regression coefficients across participants (β1

values in Eq. 9) for the easy/difficult and the short/long comparisons differed sig‐

nificantly (using separate paired t‐tests). These comparisons were done separately

for the two domains and using MATLAB, version 2018b.

78



3.2.6 Multivatiate analysis of EEG data

Here, we were interested in identifying robust representations of activity re‐

lated to EA in the EEG data. To this end we followed the procedures described in

Diaz et al. (2017), Franzen et al. (2020) and Gherman and Philiastides (2018) to

perform a single‐trial multivariate discriminant analysis (Parra et al., 2005; Sajda

et al., 2009) to discriminate between easy (i.e. reward probabilities 0–0.2 and 0.8–

1) and difficult trials (reward probabilities 0.4–0.6) in stimulus‐locked EEG data.

To examine the potential universality of this process we initially performed this

analysis by collapsing across both social and non‐social trials. We predicted that

the existence of such an accumulating activity would be associated with a build‐up

rate proportional to the decision difficulty. In turn, this would be reflected in a

gradual increase in the discriminator’s performance as the traces for easy and dif‐

ficult trials diverge over time in stimulus‐locked data (Fig. 12, a). We did not use

the medium difficulty trials (i.e. reward probabilities 0.2–0.4 and 0.6–0.8) in this

discrimination process (i.e. they acted as “unseen” data), to more convincingly

test for a full parametric effect on the build‐up rate associated with the different

decision difficulty levels (see below).

Specifically, this procedure allowed us to identify an optimal combination of

EEG sensor linear weights (i.e., a spatial filter w). We then applied these sensor

weightings to the EEG data (x(t)), thus producing a one‐dimensional projection

(i.e., a discriminant component y(t)) that discriminates between the two difficulty

levels:

y(t) = wTx(t) =
D∑
i=1

wixi(t) (10)

D corresponds to the number of channels with an index i, and T denotes the

transpose of the matrix. This method allowed us to identify w for short (60 ms)

overlapping time windows, all centred on 20 ms‐interval time points, between ‐

100 and 800 ms relative to the stimulus presentation for each subject and time

window separately. By doing so, we integrated information spatially across the

multidimensional sensor space, which allows us to increase signal‐to‐noise ratio,

while still preserving the trial‐by‐trial variability in the relevant discriminating
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component. Moreover, when we apply spatial filters (w’s) obtained in this way to

individual trials, we create a measurement of the discriminant component ampli‐

tude for that trial, which can be used as a neural stand‐in for the relevant decision

activity.

We estimated the optimal discriminating spatial weighting vector w via a reg‐

ularized Fisher discriminant analysis as described in Philiastides et al. (2014):

w = Sc(m2 − m1), where the estimated mean of the difficulty level i is denoted

as mi and Sc = 1/2(S1 + S2) represents the estimated common co‐variance matrix

(i.e., the average of the empirical co‐variance matrices for the two difficulty lev‐

els, Si = 1/(n− 1)
∑n

j=1(xj −mi)(xj −mi)
T , n = number of trials). As suggested by

Philiastides et al. (2014), we replaced the co‐variance matrices for the two dif‐

ficulty levels with regularized versions of these matrices to counteract potential

estimations errors: S̃i = (1 − λ)Si + λνI, with λ ∈ [0, 1] being the regularization

term and ν the average eigenvalue of the original Si (i.e., trace(Si)/D, with D cor‐

responding to the dimensionality of our EEG space). It should be noted that λ = 0

gives an unregularized estimation and λ = 1 corresponds to spherical co‐variance

matrices. Here, we optimized λ for each participant using leave‐one‐trial‐out cross

validation with the following λ values ∈ [0, 0.01, 0.02, 0.04, 0.08, 0.16], (λ mean

± SD: 0.067 ± 0.072).

We then computed area under a receiver operating characteristic (ROC) curve

(i.e., the Az value), using a leave‐one‐trial‐out cross‐validation procedure like the

ones described in Diaz et al. (2017), Franzen et al. (2020) and Gherman and Phil‐

iastides (2018), in order to quantify the performance of the discriminator (Duda,

Hart, et al., 2006). Specifically, for every iteration we obtained out‐of‐sample

discriminant component amplitudes (y(t)) by using N‐1 trials to estimate a spatial

filter (w), which we then applied to the remaining trials. These out‐of‐sample

amplitudes were then used to compute the Az. It should be noted that as this pro‐

cedure aimed to allow us to identify endogenous representations of EA, for a small

number of participants (n= 4), where there were Az peaks with similar amplitudes,

we identified the peak with the spatial distribution most consistent with previous

accounts of EA. As per Diaz et al. (2017), Franzen et al. (2020) and Gherman

and Philiastides (2018), instead of assuming an Az = 0.5 as chance performance,

we determined participant‐specific Az significance thresholds through a bootstrap
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analysis whereby we randomized trial labels and used another leave‐one‐trial‐out

test. We repeated this randomisation procedure 500 times (at 100 ms after the

presentation of the stimulus as this procedure has been shown to produce com‐

parable Az value outputs along the full time window (e.g. Franzen et al., 2020))

and obtained a probability distribution for Az, which we used as a reference to

estimate the Az value leading to a significance level of p < 0.05.

Like in Gherman and Philiastides (2018), we then aimed to produce the full

temporal profile of the relevant discriminating components (y(t)) by applying the

spatial filter w of the window associated with the highest discrimination perfor‐

mance (i.e. we projected the data through the ‘spatial filters’ leading to the

most reliable discrimination) to the entire stimulus‐locked window (‐100 to 800 ms

post‐stimulus). We performed this separately for each of the social and non‐social

domains as well as the three difficulty conditions (easy, medium and difficult; Fig.

12, c). We then z‐scored the time courses of these discriminating components

separately for each participant and for each of the social and non‐social domains.

We were then able to investigate the gradual build‐up of EA activity leading

up to the point of peak discrimination and to extract the corresponding single‐

trial build‐up rates, which we then used in subsequent analyses. These build‐up

rates (or slopes) were computed through a linear regression based on the data

between the onset and peak time of the accumulating activity, which we derived

on a participant‐specific basis (see Gherman and Philiastides, 2015). Specifically,

we identified when the discriminating activity began to rise monotonically after

an initial dip in the stimulus‐locked data following any early evoked responses

(onset time mean± SD: 363.097± 97.046 for social trials and 376.161ms± 107.155

for non‐social trials) and we similarly pinpointed when the accumulation activity

reached its peak.

Similar to Franzen et al. (2020), we were able to compute scalp topographies

reflecting the relevant discriminating components due to the linearity of our model

from Eq. 10 through a forward model:

a =
Xy
yTy

(11)
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For convenience, here we present the EEG data X and discriminating compo‐

nents y in matrix and vector notation, respectively. Equation (11) showcases the

electrical coupling between the discriminating component y and the EEG activity

in X. Specifically, strong coupling is linked to low attenuation of the component

and can be displayed as the intensity of vector a. We estimated forward models of

the discriminating activity separately for social and non‐social trials (Fig. 12, b).

3.2.7 Single‐trial regression and correlation for multivariate EEG analysis

We aimed to establish whether the EEG signal we would use to identify the site

of EA truly reflected the process of EA leading up to the decision. To this end, we

predicted that the slopes we identified through our multivariate EEG analysis as

reflective of the EA buildup rate (i.e. y(t)) should correlate with our DDM drift rate

estimates (Pisauro et al., 2017; Polanía et al., 2014), which were obtained by fitting

the model on participants’ fraction of ‘Play’ choices and RTs in the previous chapter

(Fig. 10). However, since the ‘Keep’ and ‘Play’ responses were mapped to +1 and

–1, respectively (see section on DDM from Chapter 2 for details) and thus positive

drift rates corresponded to ‘Play’ and negative drift rates reflected ‘Keep’ choices,

we flipped the sign of the EEG slopes in the two reward probability levels, which

support ‘Keep’ choices to match the DDM sign convention (i.e. P (payoff |play) =

{0− 0.2, 0.2− 0.4}).

Additionally, we explored the association between the rate of EA from the neu‐

ral data (i.e. the slopes) and behavioral performance with a single‐trial logistic

regression analysis. To this end, we used the trial‐specific estimates of the EEG

slopes of the EA signal (i.e. y(t)) to predict the probability of playing (1: ‘Play’, 0:

‘Keep’) on individual trials (Fig. 13, c and d). Once again, this analysis was per‐

formed separately for each participant and for each of the social and non‐social

trials:

Pplay = [1 + e−(β0+β1×y(buildup rate))]−1 (12)

In this regression analysis we assessed whether the coefficients across partic‐

ipants (β1 values in Eq. 12) came from a distribution with a mean different from
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zero (using separate t‐tests).

3.2.8 fMRI data acquisition

For the (f)MRI acquisition, we used a Siemens 3‐Tesla TIM Trio MRI scanner

(Siemens, Erlangen, Germany) with an 12‐channel head coil, following the setup

described in Gherman and Philiastides (2018). The functional volumes were ac‐

quired with a T2*‐weighted gradient echo with an echo‐planar imaging sequence

(32 interleaved slices, gap: 0.3 mm, voxel size: 3 x 3 x 3 mm, matrix size: 70 x

70, FOV: 210 mm, TE: 30 ms, TR: 2000 ms, flip angle: 80◦). We recorded 5 ex‐

perimental runs, each consisting of 205 whole‐brain volumes. We then acquired

phase and magnitude field maps (3 x 3 x 3 mm voxels, 32 axial slices, TR=488 ms,

short TE=4.92 ms, long TE=7.38 ms) to correct for distortion of the acquired EPI

images. Finally, we took a high‐resolution anatomical volume using a T1‐weighted

sequence (192 slices, gap: 0.5 mm, voxel size: 1 x 1 x 1 mm, matrix size: 256 x

256, FOV: 256 mm, TE: 2300 ms, TR: 2.96 ms, flip angle: 9◦), which we used as an

anatomical reference for the functional scans.

3.2.9 fMRI data preprocessing

We removed the first 5 volumes per run to guarantee a steady‐state fMRI and

we used only the remaining 200 volumes for the analysis, which were preprocessed

in a similar way as in Pisauro et al. (2017). Specifically, we employed FMRIB’s

Software Library (Functional MRI of the Brain, Oxford, UK) to perform head‐related

motion correction, slice‐timing correction, high‐pass filtering (>100s), and spatial

smoothing (with a Gaussian kernel of 5 mm full‐width at half maximum). The

motion correction preprocessing step produced motion parameters which we then

included as regressors of no interest in the general linear model (GLM) analysis

(see fMRI analysis below). We used the Brain Extraction tool (BET) to perform

brain extraction of the structural and functional images. The echo‐planar imaging

data for each participant was transformed into the subject‐specific high‐resolution

space using a BBR (boundary‐based registration) algorithm. The images were then

registered to standard space (Montreal Neurological Institute, MNI) using FMRIB’s
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Non‐linear Image Registration Tool with a resolution warp of 10 mm and 12 degrees

of freedom. Finally, to correct for signal loss and geometric distortions due to B0

field inhomogeneities, B0 unwarping was used for 29 out of 31 participants. Field

map images were not acquired for the remaining 2 participants.

3.2.10 fMRI data analysis

We used the FEAT module in FSL to perform a whole‐brain statistical analysis

of the functional data using a multilevel approach within the framework of a GLM

(Smith et al., 2004), like in Gherman and Philiastides (2018) and Pisauro et al.

(2017):

Y = xβ + ϵ = β1X1 + β2X2 + ...+ βNXN + ϵ (13)

Y corresponds to a voxel’s time series (with T time samples). X is a T × N

design matrix, the columns of which correspond to the GLM regressors (described

below) convolved with a double‐γ canonical hemodynamic response function. The

regression coefficients are represented by β ‐ a N × 1 column vector and the

residual error terms ‐ by ϵ ‐ a T× 1 column vector. The first‐level analysis examined

each participant’s individual runs, which were then combined using a second‐level

analysis (fixed effects). At the third level of the analysis, we examined group‐level

effects using a mixed‐effects model (FLAME 1), treating participants as a random

effect. We also used FMRIB’s improved linear model with local autocorrelation to

carry out the time‐series statistical analysis (Woolrich et al., 2005).

In our GLM we included 4 regressors of interest per each of the social and

non‐social domain (i.e. a total of 8 regressors). Specifically, for each domain we

included 1) an EEG‐informed regressor with a parametric amplitude modulation

based on the trial‐by‐trial fluctuations in the EA rate (i.e. trial‐wise slopes in

y(t)), 2) a parametric regressor with individual trial RTs amplitude modulation, 3)

a parametric regressor with individual trial task difficulty amplitude modulation

(‐1: difficult, 0: medium, 1: easy) and 4) an unmodulated regressor (i.e. all

amplitudes set to 1) to account for any additional variance in the data (Fig. 14, a).

We modelled all regressor events as boxcar functions and set their duration to 100
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ms. We aligned the first two regressors to the time of response and the last two ‐

to the onset of stimulus presentation. We also used the unmodulated regressors to

compute standard contrast and conjunction maps between social and non‐social

trials. Finally, we added the motion correction parameters obtained from fMRI

preprocessing (three rotations and three translations) as additional co‐variates of

no interest.

It is noteworthy that the EEG‐derived EA slopes reflect key information of the

underlying processes, which cannot be substituted by simply relying on individ‐

ual RTs. This is due to the decision and motor‐planning stages being subject to

inter‐trial variability as shown consistently in previous modelling and experimen‐

tal studies (Philiastides et al., 2014; Ratcliff et al., 2009; Verdonck et al., 2021)

and further demonstrated here by the fact that the RTs and the slopes were not

highly correlated (social: r = ‐0.297, non‐social: r = ‐0.333). Therefore, the RTs did

not present redundant information or pose a major confounding factor and we thus

included separate RT predictors in our fMRI analysis to absorb additional non‐EA

activity (for each of the social and non‐social domains separately).

Furthermore, the addition of EEG‐informed predictors in our design allowed us

to capitalize on using actual neural signals reflecting latent variability in infor‐

mation processing that might be overlooked when relying on simple behavioral or

model‐derived indices (see Gherman and Philiastides, 2018; Pisauro et al., 2017;

Sajda et al., 2009). For instance, very few studies have included single‐trial param‐

eter estimates (Gluth et al., 2017; Turner et al., 2015) with most relying on mean

estimates of the relevant decision variables derived from computational models.

Here, instead, we employ the rate of EA on individual trials from the slope of the

accumulating activity we identified in the EEG data, thus allowing us to account

for true endogenous variability in EA and avoid issues related to model estimation

or misspecification when deriving build‐up rates solely from behavioural fits.

Importantly, we would expect that trials with lower EA rates (which would take

longer to reach the relevant decision boundary) to have larger areas (energy) under

the accumulation curve (Basten et al., 2010; Hare et al., 2011; Liu and Pleskac,

2011; Pisauro et al., 2017). Therefore, the site of EA should appear to be more

hemodynamically active when trials have longer integration times (Fig. 14, b).
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This should result in a negative relationship between our EEG‐informed EA slope

predictor and the BOLD response in the EA site (Hare et al., 2011; Liu and Pleskac,

2011; Mulder et al., 2014).

3.2.11 fMRI analysis resampling procedure

We determined a reliable significance threshold for the fMRI data by correct‐

ing for multiple comparisons via a resampling procedure, which examines a priori

statistics of the trial‐wise variability in the parametrically adjusted regressors (i.e.

regressors 1–3 above) in a way that trades off cluster size and maximum voxel Z‐

score. We ran this procedure following the procedures outlined in Fouragnan et

al. (2015) and Gherman and Philiastides (2018). Specifically, for each iteration of

the resampling procedure we maintained the onset and duration of the regressors,

however, we shuffled their amplitude values across trials, runs and participants.

The resulting regressors for each participant were therefore different since they

were made up of a random sequence of regressor amplitude events. We repeated

this procedure 100 times across all 3 analysis levels (run, participant, and group).

This allowed us to estimate a joint threshold for the cluster size and Z‐score based

on the cluster outputs per shuffled regressor. We did so by constructing a null

distribution for this joint threshold based on the size of all clusters larger than 10

voxels and with Z‐scores larger than |2.57| (i.e. considering both positive and neg‐

ative correlations) across all shuffled regressors. We discovered that the largest

5% of cluster sizes exceeded 88 voxels. We then used this value as a corrected

threshold for our statistical maps, which we then applied to the clusters observed

in the original data (that is, Z=±2.57, minimum cluster size of 88 voxels, corrected

at p=0.05).

3.2.12 Psychophysiological interaction analysis

We then aimed to investigate the functional connectivity between the pMFC,

which we found to correlate with the trial‐by‐trial variability in our EEG‐informed

regressor and the rest of the brain. To this end we conducted a psychophysio‐

logical interaction (PPI) analysis like in Pisauro et al. (2017). We first extracted
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time‐series data from the group‐level activation clusters in the pMFC (seed), sep‐

arately for each of the social and non‐social contexts. This involved identifying

the relevant pMFC clusters that were situated within the supplementary motor

area (SMA) and were most consistent with previous reports of EA‐related activity

in this region (Pisauro et al., 2017). We then back‐projected these clusters from

the group (standard) space into the individual participant’s EPI (functional) space

(by applying the inverse transformations estimated during the main registration

procedure). We then used the average time‐series data from the back‐projected

voxels, which displayed activations in the direction of the predicted EA profile as

the physiological regressor in our PPI analysis.

If any brain regions showcase a task‐dependant co‐activation with the pMFC,

then the coupling between these regions should be stronger while the process of

EA unfolds and it should also reflect the difficulty of the decision. To this end,

we constructed our psychological regressor as a parametric boxcar regressor, the

amplitude of which corresponded to the difficulty (1 = difficult, 2 = medium, 3 =

easy) and the duration of which reflected the RT of each trial. Since easier tri‐

als decrease integration times and correspondingly the overall integrated activity

(that is, area under the accumulation curve; Fig. 14, b), We predicted that the

relevant coupling would be negative. We finally used the threshold derived from

the resampling procedure described above to correct the resulting fMRI statistical

maps.

3.3 EEG and fMRI results

3.3.1 Univariate single‐trial EEG analysis highlighting comparable EA dynamics

in social and non‐social trials

A correlation analysis was run for each participant, which allowed us to iden‐

tify the subject‐ and context‐specific best electrodes with the highest correlations

with the subject‐specific EA traces (mean non‐social r = 0.962±0.027; mean so‐

cial r = 0.962±0.025, Fig. 11, a). No significant difference in the slopes of the

best electrodes was observed between the social and non‐social conditions t(30) =

0.901, p = 0.375 and all participants’ best electrodes passed the permutation test
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Figure 11: Response‐locked univariate EEG results. a) Mapping between the average activity captured

by the best‐electrodes and the predicted EA activity, demonstrating the similarity between the social and

non‐social traces as well as the fit between the actual and the predicted data. The model EA traces were

normalized by dividing by themaximum value of the subject‐specific EA trace. The baseline was then corrected

by removing the first sample from the 400 ms window. The baseline for the EEG data was offset based on the

first 50 ms of the 400 ms subject‐specific window. We then scaled the EEG activity to correspond to the EA

activity. b) Correlation maps displaying the average correlation between the electrode‐specific EEG traces

and the EA traces. c) Activity from participants’ best electrodes divided into easy and hard trials. Trials were

considered ‘easy’ if they contained strong evidence for or against a certain choice (i.e. reward probabilities

0–0.2 and 0.8–1). Trials were considered ‘hard’ if they came from the middle reward probability band (i.e.

0.4–0.6). d) Activity from participants’ best electrodes for fast and slow trials (defined through a median RT

split).

(p<0.05). Furthermore, a regression analysis between the subject‐specific model‐

derived EA traces and the EEG EA traces from the subject‐specific best electrodes

demonstrated that model EA traces were able to predict the EEG traces (social r =

0.919±0.003; t(12398) = 251.429, p <0.001; non‐social r = 0.933±0.002; t(12398) =

307.687, p <0.001).
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To further investigate the EEG signal, the traces were divided into long and short

trials (based on a median split, Fig. 11, d). Simple linear regressions based on the

last 200 ms of the subject‐specific time windows, which is where the differences

in the slopes appear to be the most prominent, indicated that the shorter RT trials

were associated with significantly steeper slopes (social t(30) = ‐5.59, p < 0.001;

non‐social t(30) = ‐3.514, p = 0.001). This is consistent with the accumulation‐to‐

bound framework, where for choices with higher drift rates, the time to reach the

decision boundary would be shorter. These trends were found in both the social and

non‐social domains. Additionally, easier trials were associated with significantly

steeper slopes than the slopes seen in the difficult trials in both domains (Fig. 11, c)

(again based on the final 200ms of the subject‐specific time windows; social t(30) =

3.058, p = 0.001; non‐social t(30) = 2.856, p = 0.008). These results are therefore

consistent with the EA framework as with easier trials, where the evidence in

favour of a certain choice is the strongest, the accumulation process would be

easier, the drift rates should be higher and the slopes would be steeper.

Finally, the group topographies reflecting the correlation between the EEG ac‐

tivity and the EA traces was not only comparable between the social and the non‐

social condition (r = 0.962, p < 0.001), but it also mirrored the previously seen cen‐

troparietal cluster consistent with the P300 phenomenon and evidence‐to‐bound

processing (Fig. 11, b, e.g. Herding et al., 2019; O’Connell et al., 2012; Pisauro

et al., 2017; Polanía et al., 2014).

3.3.2 Multivariate single‐trial EEG analysis highlighting comparable EA dynam‐

ics in social and non‐social trials

Here, we took advantage of the high temporal resolution of the EEG data to

identify robust signals exhibiting a gradual build‐up of activity consistent with EA

dynamics (e.g. Gherman and Philiastides, 2018; Pisauro et al., 2017; Polanía et al.,

2014). If such signals exist, we should be able to find reliable ramp‐like activity

with a build‐up rate proportional to the decision difficulty. To test this hypothesis,

we used a single‐trial multivariate linear classifier (e.g. Gherman and Philiastides,

2018; Parra et al., 2005; Sajda et al., 2009) to discriminate between easy vs. dif‐

ficult trials (see Materials and Methods). By focusing on the two extreme difficulty
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Figure 12: Linear discriminant analysis results. a) Theoretical EA build‐up rates for easy (yellow) and

difficult (green) trials (top) and predicted classifier performance (Az) based on the differences in the rate

of EA. b) Average discrimination performance (using a leave‐one‐out cross validation procedure) for easy and

difficult trials across participants and histogram of subject‐specific times of maximum discrimination (top).

The dashed line represents the the average Az value leading to a significance level of p = 0.5, which was derived

through a bootstrap test. The standard errors of the mean are shown with thinner black lines. Insets: Average

scalp topographies (forward models) of the discriminating activity at subject‐specific peak discrimination

times for the social (red outline) and non‐social (blue outline) trials. c) Stimulus‐locked average temporal

profile of the discriminating activity after applying the subject‐specific classification weights estimated at

peak discrimination times for the three levels of decision difficulty for social (red) and non‐social trials (blue).

Insets: subject‐specific EA onset times for social (red) and non‐social trials (blue). d) EA onset‐locked average

temporal profile of the discriminating activity, for the three levels of decision difficulty for social (red) and

non‐social trials (blue).

trials (easy and hard), we aimed to facilitate the discrimination process, tasked

with identifying the sensor weightings that reflect the process of EA. We found that

the classifier’s performance (Az) increased systematically over time, reflecting the

potential divergence in the build‐up rates associated with easy and difficult trials

(Fig. 12, b). On average, the classifier’s performance started increasing 400 ms

after stimulus presentation (i.e. after early encoding of the relevant evidence)

and reached its peak several hundred milliseconds later.

The spatial distribution of this discriminating activity (i.e. forward model; see

Material and Methods) from participant‐specific windows at the time of maximum

discrimination between easy and difficult trials (Fig. 12, b, top) revealed compa‐

rable centroparietal topographies across social and non‐social contexts (r = 0.896,
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p < 0.01; Fig. 12, b, inset). These similarities point towards a common neural gen‐

erator across the two contexts, consistent with clusters reported previously across

the non‐social domain (e.g. Herding et al., 2019; Kelly and O’Connell, 2013; Phil‐

iastides et al., 2014).

Having identified the participant‐specific spatial weights from the time window

of maximum discrimination, we applied them to an extended stimulus‐locked time

window, separately for social and non‐social trials, to formally characterize the

temporal profile of the discriminating activity (i.e. y(t)) for each condition sepa‐

rately. This was also done for the medium difficulty trials (i.e., the “unseen’’ data)

by subjecting the relevant data through the same neural generators responsible for

the original discrimination.

This resulted in a gradual build‐up of activity akin to a process of EA in both

social and non‐social trials (Fig. 12, c; top: social, bottom: non‐social). Like

the classifier performance, the neural activity began to rise around 400 ms after

stimulus presentation in both the social and non‐social trials, with the build‐up rate

reflecting the decision difficulty. Importantly, the build‐up rate from the medium

difficulty trials appeared between the two extreme conditions used to train the

classifier, establishing a fully parametric effect across the three difficulty levels

(F(2, 90)=16.88, p<0.001 for the social condition, F(2, 90) = 26.76, p < 0.001 for

the non‐social condition, post‐hoc t‐tests, all p < 0.001).

Finally, we identified participant‐specific EA onset times as the time point at

which the discriminating activity began to rise monotonically after an initial dip

in activity following any early evoked responses present in the data (Fig. 12, c;

insets). Since we observed some inter‐individual variability in these onset times,

we predicted that by re‐aligning the relevant signals to the participant‐specific EA

onset times we would see a more pronounced depiction of the underlying process

of EA at the population level, which was indeed the case (Fig. 12, d; top: social,

bottom: non‐social).
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Figure 13: Examining the link between EA dynamics and behaviour. a), b) Positive correlation between

subject‐specific EA slopes (y(t)), i.e. build‐up rate) for each of the five levels of P (payoff |play) and DDM

estimates of drift rate for both the social a) and non‐social b) contexts. We normalized the EEG‐derived EA

signal y(t) used to derive the EA slopes per trial to factor out effects unrelated to the EA processing (e.g.

attentional drifts). Black circles represent group averages. c), d) Positive correlation between EA slopes and

the probability of playing (Eq. 7) for both the social c) and non‐social d) contexts. For visualization purposes

we divided the EA slopes into five bins. The black curves were created by fitting Eq. 7 to individual trials.

Examining the link between EA dynamics and behaviour

Considering the importance of using a robust representation of the EA dynamics

in our EEG‐informed fMRI analysis, we aimed to further establish that our EEG

signals from the multivariate EEG analysis reveal the process of EA. To this end

we carried out two additional analyses to examine whether these signals reflect

our participants’ behavioral performance. We predicted that the build‐up rate

of these signals should correlate with drift rate estimates obtained from a DDM

(Pisauro et al., 2017; Polanía et al., 2014) fit on participants’ fraction of ‘Play’

choices and RTs (Fig. 10, see details in Chapter 2). We found robust correlations
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between the slopes of the EEG and drift rates, across both social (Fig. 13, a; r =

0.653, p < 0.001) and non‐social trials (Fig. 13, b; r = 0.709, p < 0.001). Note that

we flipped the sign of the EEG slopes in the two reward probability levels which

support ‘Keep’ choices (i.e. P (payoff |play) = {0− 0.2, 0.2− 0.4}) to align them to

the EA slopes (see Methods).

We also used a logistic regression where the EA slopes directly predicted the

probability of ‘Playing’ on individual trials (once again flipping the sign of the EEG

slopes in the two lowest reward probability levels supporting ‘Keep’ choices). We

expected that easy choices (both ‘Keep’ and ‘Play’) would be linked to high neg‐

ative and high positive EA rates, respectively. We also predicted that medium

difficulty trials would be associated with intermediate magnitude slopes and that

difficult trials would be reflected by slopes near zero. Indeed, the EEG slopes

significantly predicted the eventual probability of ‘Playing’ for both the social

(Fig. 13, c; t(30) = 7.582, p < 0.001) and non‐social trials (Fig. 13, d; t(30) =

8.173, p < 0.001).

We also tested whether the trial‐by‐trial changes in the EEG slopes may simply

reflect fluctuations in attention (as it varies over the course of the experiment).

To this end, we ran a linear serial autoregression model predicting the EEG‐derived

EA slope in the current trial from the slopes from the previous four trials, individ‐

ually for all participants. This analysis, however only accounted for a very small

portion of the overall variance in the EEG slopes (social: R2 = 0.02, non‐social: R2

= 0.019), indicating the negligible serial autocorrelation in slopes between neigh‐

bouring trials.

3.3.3 pMFC reflects domain‐general EA and shows functional connectivity with

regions of the human valuation system

Both EEG analyses described above revealed the comparable EA dynamics in so‐

cial and non‐social choices, which may indicate that they share a common neural

generator. To further examine the existence of a common EA site, we constructed

EEG‐informed fMRI predictors by taking advantage of the endogenous trial‐by‐trial

variability in the slope of EA activity, which we derived through our multivari‐

ate EEG analysis (Fig. 14, a) and accounted for task‐specific additional variance
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Figure 14: EEG‐informed fMRI analysis. a) Our fMRI GLM model contained two parametric boxcar

regressors at the time of response reflecting the trial‐by‐trial variability in the EA slope (separately for the

social and non‐social condition). We accounted for the variance associated with other task‐related processes

by introducing 3 additional regressors per decision domain (6 in total): UNMOD ‐ unmodulated boxcar regressors

at the onset of the stimuli (amplitude set to 1) , DIFF ‐ parametric boxcar regressors of task difficulty (‐1: hard,

0: mid, 1: easy) at stimulus onset, and RT – parametric boxcar regressors with trial‐by‐trial RT modulations at

the time of response. The duration of all regressors was set to 100 ms. b) Example EA activity with different

slopes shown via coloured arrows. When these EA traces are convolved with a hemodynamic response function

(HRF) we should see that longer integration times (larger gray areas under EA traces) would produce higher

predicted fMRI activity. Correspondingly, we would expect higher predicted fMRI activity for shallower than

for steeper EA slopes. c) In line with the predictions from b) we saw a negative association between the

EEG‐informed fMRI predictors of the EA slopes and the activity in the posterior medial‐frontal cortex (pMFC)

for both social and non‐social trials. d) The activity in the pMFC co‐varied in a task‐dependant fashion with

regions of the human valuation system i.e. clusters in the medial prefrontal cortex and the posterior cingualte

cortex. All clusters shown correspond to mixed‐effects activations that survived a |Z| > 2.57 threshold and

a cluster‐size correction (P < 0.05) using a resampling procedure (minimum cluster size = 88 voxels; see

Materials and Methods). A complete lists of activations is available in Tables 1 and 2. vmPFC: ventromedial

profrontal cortex; dmPFC: dorsomedial prefrontal cortex; vPCC: ventral posterior cingualte cortext. The

theoretical panels are partially adapted from Pisauro et al. (2017).
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Table 1: List of brain activations associated with the social and non‐social EEG predictors.

by including RT, task‐difficulty and unmodulated predictors for both decision do‐

mains (Fig. 14, a). It should be noted that even though the RTs were not highly

correlated with our EA slopes as the decision and motor‐planning stages are as‐

sociated with inter‐trial variability (Philiastides et al., 2014; Ratcliff et al., 2009;

Verdonck et al., 2021), we still included them as nuisance predictors. Importantly,

we would expect the accumulator region(s) to show a negative association with our

EEG‐informed predictors (Hare et al., 2011; Liu and Pleskac, 2011; Mulder et al.,

2014), given that trials with lower EA rates have larger areas under the accumula‐

tion curve as they take longer to reach the decision boundary (Basten et al., 2010;

Hare et al., 2011; Liu and Pleskac, 2011, Fig. 14, b). We found a region in the pos‐

terior medial frontal cortex (pMFC), consistent with previous observations (Pisauro

et al., 2017) that satisfied this negative correlation criterion (Fig. 14, c) in both

social and non‐social domains, thus being in accordance with the notion of a uni‐

versal EA neural framework. We observed that the social choices cluster was more

posterior compared to non‐social choices cluster, however, there were no domain‐
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specific activations surviving the direct EA slope predictor contrast between the

two domains.

We then aimed to test whether the pMFC was coupled in a task‐dependent way

with brain regions encoding the relevant decision evidence. We were also inter‐

ested in establishing whether such a coupling would highlight domain‐general or

domain‐specific neural representations of the decision evidence. This involved

running separate PPI analyses for each of the social and non‐social trials, using the

domain‐specific pMFC clusters as seeds and the trial‐specific task difficulty as the

psychological predictor (see Materials and Methods). Once again, we predicted

that the relevant task‐specific co‐activating regions should show a negative rela‐

tionship with the pMFC, since easier trials should lead to shorter integration times

and thus to a decreased overall integrated activity under the EA trace (Fig. 14, b).

Through this PPI analysis we found that the pMFC coupled negatively (by task

difficulty) with regions of the valuation system (posterior cingulate cortex (PCC)

as well as in dorso‐ and ventro‐medial prefrontal cortex (dmPFC/vmPFC)) for both

decision domains (Fig. 15). These regions along the medial wall of the brain have

consistently been implicated in converting value signals into a ‘common neural

currency’ subsequently used in EA (Pearson et al., 2014; Piva et al., 2019; Rangel

and Hare, 2010) and recent resting state connectivity reports have highlighted

their negative relationship with the pMFC (Neubert et al., 2015). Similar to the

EA clusters, the social activations were situated more posterior relative to the

non‐social ones, consistent with previous reports about the organization within

the prefrontal cortex (Chib et al., 2009; Clithero and Rangel, 2014; Smith et al.,

2010). However, once again, there were no domain‐specific activations surviving

the direct contrast between social and non‐social PPI predictors. These findings

therefore support the notion that relevant decision evidence may be converted

into a ‘common currency’ in the human valuation system and then accumulated in

the pMFC to reach a decision.

3.3.4 Difficulty and early domain‐specific processing

In our experiment, the task difficulty was determined as a function of the re‐

ward probability following a ‘Play’ choice, with easy trials corresponding to reward
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Table 2: List of brain activations associated with the social and non‐social PPI analyses.

probability bins with strong evidence in favour of an alternative (both ‘Keep’ and

‘Play’, i.e. 0‐0.2 and 0.8‐1), medium difficulty trials associated with reward prob‐

ability bins favouring an alternative, but not as strongly as the easy trials (i.e. 0.2‐

0.4 and 0.6‐0.8) and difficult trials with ambiguous reward probabilities, which do

not clearly favour either alternative (i.e. 0.4‐0.6). Therefore, the task difficulty

predictor should correlate positively (i.e. easy > difficult) with areas responsible

for encoding choice value. It should also correlate negatively (i.e. difficult > easy)

with regions of the attentional network linked to the processing of task demands.

Indeed, the conjunction of the two task difficulty regressors revealed positive cor‐

relations with regions of the valuation system such as the vmPFC, ventral stria‐
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Figure 15: Task difficulty and domain‐specific fMRI activations. a) Activations showing greater BOLD

response for easy (E) than difficult (D) trials (yellow) and those exhibiting higher response for difficult com‐

pared to easy trials (green). These activations arise from the conjunction of the two task difficulty regressors

(DIFF) for social and non‐social trials in Fig. 14, a). b) Activations showing greater BOLD response for social

(S) than non‐social (NS) trials (red) and those exhibiting higher response for non‐social compared to social

trials (blue). These activations arise from the contrast of the two unmodulated regressors (UNMOD) in Fig. 14,

a). All clusters represent mixed‐effects activations that survived |Z| > 2.57 and that were cluster‐corrected

(P < 0.05) using a resampling procedure with a minimum cluster size of 88 voxels (see Materials and Meth‐

ods). The complete list of activations is shown in Tables 3 and 4. vlPFC: ventrolateral prefrontal cortex;

Amy: amygdala; FFA: fusiform face area; TPJ: temporoparietal junction; IPS: intraparietal sulcus; vmPFC:

ventromedial prefrontal cortex; vSTR: ventral striatum; MTG: medial temporal gyrus; dPCC: dorsal posterior

cingulate cortex; dlPFC: dorsolateral prefrontal cortex; ACC: anterior cingulate cortex; aINS: anterior insula.

tum and the PCC (Clithero and Rangel, 2014; Domenech et al., 2018, Fig. 15, a).

Conversely, regions previously implicated in the encoding of uncertainty and at‐

tentional control such as the anterior cingulate cortex, lateral prefrontal cortex

and anterior insula (Grinband et al., 2008; Monosov, 2017; Philiastides and Sajda,

2007) displayed a negative correlations with our difficulty regressors (Fig. 15, a).

The fact that we could identify these prototypical results from across the decision‐

making literature demonstrates the validity of our fMRI analysis design and suggests

that it offers a reliable account of the relevant experimental manipulations.

We further examined the contrast between the unmodulated predictors for the

social vs. non‐social trials to identify brain areas responsible for the processing of

early domain‐specific representations (i.e. prior to their conversion to a ‘common

currency’, Fig. 14, a). The regions showing higher activations during the social tri‐

als were the right fusiform gyrus, right amygdala and right ventrolateral prefrontal

cortex, which all belong to the so‐called ‘face network’ (Skelly and Decety, 2012)
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Table 3: List of brain activations associated with the Difficulty predictors.
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as well as the right temporoparietal junction (TPJ, Fig. 15, b). These findings

suggest that the social trials required the processing of facial features necessary

for mentalizing and examining the opponent’s intentions, respectively (Cerniglia

et al., 2019). We also found that the lateral intraparietal cortex bilaterally, as well

as the left dorsolateral preforntal cortex (dlPFC, Fig. 15, b), which have been pre‐

viously implicated in encoding risk and reward probabilities in non‐social contexts

(Burke and Tobler, 2011; Daw et al., 2006; Smith et al., 2009) displayed stronger

activations for non‐social trials. We argue that these patterns showcase that our

paradigm was successful in capturing social and non‐social processing as we would

not expect to see these domain‐specific differences if our participants did not rely

on social information in the social trials and if the non‐social trials were not asso‐

ciated with reward probability considerations. These results, combined with the

trends seen in the behavioural results and the observation that in the social con‐

dition only a small number of inconsistent faces was removed (on average 10.807

face display removed, with on average 23, 34, 32, 36 and 14 faces per bin, respec‐

tively) suggests that our paradigm was largely successful in capturing the social

and non‐social variability involved in these decisions.

3.4 Discussion

Establishing whether social decisions employ the same universal decision‐making

mechanism involved in non‐social choices could offer deeper insight into human

behaviour. However, despite recent attempts to investigate whether the two

decision‐making domains employ the same processes across the various decision‐

making levels, many questions still remain. The previous chapter highlighted the

potential algorithmic similarities between social and non‐social choices. In this

chapter, we aimed to further explore their implementational underpinnings and

used simultaneous EEG‐fMRI to examine whether the spatiotemporal neural char‐

acteristics involved in social choices correspond to the ones underlying non‐social

decisions.

To this end, we initially aimed to uncover signatures of EA dynamics through a

univariate analysis of the EEG evoked responses. As a result, we used our model

estimates from the previous chapter to create model‐derived EA traces, which
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Table 4: List of brain activations associated with the Unmodulated predictors.

we compared to our EEG data. This comparison revealed group topographies,

which were not only comparable between the social and the non‐social condi‐

tion, but they also reflected the previously seen centroparietal cluster observed in

VBDM (Pisauro et al., 2017), PDM (Gherman and Philiastides, 2015; Mostert et al.,

2015; O’Connell et al., 2012; Philiastides et al., 2014; Twomey et al., 2016) and in

memory‐based choices (van Vugt et al., 2019). It has also been shown that positive

amplitudes recorded from these electrode sites are associated with the subjective

impression of the available evidence and that this signal seems to be linked to con‐

fidence and (pre)motor choice‐specific signals (Herding et al., 2019), thus showing

the relevance of this cluster to EA dynamics. Interestingly, the observation that

the two topographies were highly correlated also provided an early indication as

to the possibility that these signals might arise from the same cortical source.

The model‐derived EA traces also allowed us to identify subject‐specific best

electrodes, which we then examined to further investigate these signature of EA.

Firstly, we established that there was no significant difference between the social

and non‐social average best electrode traces. Furthermore, slopes across both do‐
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mains reflected the speed and the difficulty of the trial ‐ with shorter reaction

times and easier trials being linked to steeper slopes than longer reaction times

and more difficult trials ‐ which have been benchmark observations in a number of

decision‐making studies (e.g. Connolly et al., 2009; Law and Gold, 2008; Mazurek

et al., 2003; Roitman and Shadlen, 2002). These trends are once again consistent

with the decision‐making process model from the Introduction (Fig. 3). There‐

fore, these EEG results demonstrate that our data was able to capture signs of EA

and even offer evidence in favour of a universal decision‐making mechanism. Fur‐

thermore, by identifying these EA dynamics through correlations with our model

predictions, these EEG results provide a neural validation of our modeling by sug‐

gesting that it was able to reflect the same neural computations that gave rise to

these evoked responses.

Although our model‐informed EEG analysis was successful in demonstrating that

EA dynamics were captured in our EEG data, we needed to ensure that we obtain

a robust representation of these dynamics in order to utilize them to uncover the

site of EA. We therefore took advantage of the multidimensional nature of our EEG

signal and we spatially integrated this information to increase the relevant signal‐

to‐noise ratio and thus produce more robust single‐trial estimates of EA (Parra et

al., 2005). This procedure gave rise to even more convincing representations of

the trends seen in the univariate EEG analysis, with more localized centropari‐

etal clusters, which were still comparable between the two domains, and even

more pronounced parametric effects of our difficulty modulation across both the

social and non‐social choices. To further validate these signals we demonstrated

that the EA slopes we derived from this multivariate EEG analysis corresponded

to the drift‐rate estimates from our modelling and that they were able to predict

our participants’ choice behaviour. Having validated these slopes we then used

them as internally‐generated indices of EA and utilized their trial‐wise variability

to identify a region in the pMFC as responsible for this process across both choice

contexts, thus providing empirical evidence in favour of a common domain‐general

integration of evidence for the decision occurring in the pMFC.

This finding ‐ that social and non‐social choices share an EA site ‐ is not only

in favour of the ‘common currency’ schema, but also provides an extension to

this framework. Specifically, the ‘common currency’ schema typically examines
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whether the motivational processes for social and non‐social choices are imple‐

mented in the same regions, with different connectivity patterns for the social

and non‐social trials, and it often focuses exclusively on considering the value pro‐

cessing stages of decision making (Ruff and Fehr, 2014). Here we show evidence

that the commonalities between social and non‐social decisions extend to the em‐

bodiment of the choice since the EA processing was contained within the same

pMFC structure, which encompasses pre‐motor areas, even though the social clus‐

ter was more posterior than the non‐social cluster. However, since there were no

significant clusters associated with the direct contrast of these two activations,

we suggest that the two decision domains were largely processed the same way in

this region.

These results are therefore in accordance with views postulating that when de‐

cisions are made under time pressure, they are embodied in the same sensorimotor

areas responsible for carrying out the choice ‐ a notion which has found support

through a number of neuroimaging studies (e.g. Donner et al., 2009; Filimon et

al., 2013). Specifically, such (pre)motor areas have been shown to reflect the

updating of the relevant information (Kolling et al., 2016) and inactivating these

areas has been found to lead to major behavioural impairments in simple discrim‐

ination tasks (Peixoto et al., 2021; Wu et al., 2020). Additionally, a recent resting

state MRI experiment linked the centroparietal activity with the dorsal frontopari‐

etal network where the pMFC is located (Brosnan et al., 2020). Specifically, it

suggested that the centroparietal build up rate is associated with the connectiv‐

ity between the structures of this network and with the speed of decisions. In

other words, the higher the build up, the stronger the connection and the faster

the decisions. These studies linking (pre)motor areas to EA dynamics have led to

the development of computational accounts proposing that (pre)motor areas are

responsible for an active ‘motor accumulation’, which receives integrated infor‐

mation from non‐embodied regions and proceeds to transfer this information to

the relevant motor system once its internal threshold is reached (Steinemann et

al., 2018; Verdonck et al., 2021).

We also found further implementational evidence in favour of the ‘common cur‐

rency’ schema through our PPI analysis which showed task‐specific co‐activation

between the pMFC and areas of the human valuation system along the medial wall
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‐ specifically, the vm/dmPFC and the PCC, all of which have previously been im‐

plicated in value processing both in the social (Fehr and Krajbich, 2014; Gusnard

et al., 2001; Heatherton et al., 2006; Lee and Seo, 2016; Mar, 2011; Suzuki and

O’Doherty, 2020) and the non‐social domain (Coricelli and Nagel, 2009; Grueschow

et al., 2015; Nagel et al., 2018). We nevertheless found a degree of anterior‐

posterior dissociation linked to the prefrontal activations, consistent with recent

findings (Kolling et al., 2021). Specifically, we found that the social activations

were more posterior (Ferrari et al., 2016; Jenkins and Mitchell, 2011; Lieberman

et al., 2019) relative to the non‐social cluster (Chib et al., 2009; Clithero and

Rangel, 2014; Smith et al., 2010). However, since the direct contrast between

the two PPI activations did not show any significant clusters, this suggests that the

two decision domains were processed in a largely comparable way within these

structures.

Further in accordance with the ‘common currency’ schema, which suggests that

the domain‐specific information is converted into a ‘common currency’ (Hutcher‐

son, Montaser‐Kouhsari, et al., 2015; Lim et al., 2013; Ruff and Fehr, 2014) as well

as a recent review, which suggests that complex social choices involve value com‐

putations from various social sources ultimately converted into a common value

signal along the medial wall of the prefrontal cortex (Suzuki and O’Doherty, 2020),

we found domain‐specific activations at the time of stimulus presentation. Specif‐

ically, the social trials were associated with activations in the ‘face network’ i.e.

the FFA, the amygdala and vlPFC (most of which displayed a right lateralization),

all of which have been implicated in face identification and processing (Garvert

et al., 2014; Vuilleumier et al., 2004). These trials were also linked to activ‐

ity in the right TPJ, which has been shown to be involved in social cognition and

mentalizing, which require the extraction of the relevant information carried by

the opponent/co‐player’s face (Morishima et al., 2012; Van Overwalle, 2009). On

the other hand, for the non‐social trials, which required the consideration of the

likelihood of receiving a reward, presented explicitly during the task, we saw ac‐

tivations in the lateral intraparietal cortex which has been shown to reflect pure

reward probabilities both in humans (Daw et al., 2006; Wu et al., 2015) and in

primates (Burke and Tobler, 2011; Sugrue et al., 2004).

This experiment also offered prototypical results seen across the non‐social
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decision‐making literature, thus demonstrating the validity of our task since it

successfully produced the desired behavioural and neural responses we were in‐

terested in. These results also justified our choice of analysis, as they were able

to uncover these well‐known neural patterns. For instance, in relation to our diffi‐

culty manipulation we found that the easy trials were linked to areas, which have

typically been associated with value encoding and risk assessments, such as the

striatum (Yacubian et al., 2007), mPFC and the PCC (Levy et al., 2010). We also

found that the more difficult choices were associated with brain areas typically

linked to uncertainty, in keeping with a recent view suggesting that the choice

uncertainty affects decisions (Urai et al., 2017). These areas included the ACC,

which has been shown to respond to unknown vs known probabilities (Hayden et

al., 2011), the dlPFC which is known to respond to stress (Bogdanov and Schwabe,

2016) as well as the insula, which has been shown to be associated with the as‐

sessment of risk (Levy et al., 2010; Mohr et al., 2010), feelings, empathy and

uncertainty (Singer et al., 2009).

Finally, in addition to providing initial evidence in favour of a shared mecha‐

nism for social and non‐social choices spanning multiple decision‐making levels,

this experiment fits in with the wider literature suggesting the potential univer‐

sality of decision making as stipulated by standard economic utility models (Caplin

and Glimcher, 2014; Von Neumann and Morgenstern, 2007). Specifically, within the

non‐social domain it has shown that VBDM follow the same integrative mechanisms

as PDM (Krajbich et al., 2010; Mormann et al., 2010) demonstrated by the fact that

they show similar centroparietal clusters (Pisauro et al., 2017) and that parietal

gamma frequencies capture similar aspects of EA across VBDM and PDM (Polanía et

al., 2014). Therefore, even though there has not been a direct comparison inves‐

tigating the implementational levels between these two non‐social sub‐domains,

these studies provide initial evidence suggesting that they might share the same al‐

gorithmic processes. As a result, our current results provide an additional piece of

evidence supporting the potential existence of a universal decision‐making process

across its valuation and EA stages.

In summary, in this chapter we aimed to elucidate the fundamental implemen‐

tational processes involved in decision making. Specifically, we found that the

social and non‐social information, encoded in domain‐specific areas, is then con‐
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verted into a ‘common currency’ in the value circuit along the medial wall of the

human brain. This information is then accumulated in the pMFC ‐ a pre‐motor

structure adjacent to the relevant motor area ‐ for both decision domains. These

results therefore extend the scope of the ‘common currency’ schema and demon‐

strate that the commonalities between domains go beyond the valuation stages of

decision making by specifically highlighting the potential embodied nature of the

process. Overall, these findings offer detailed implementational insight into the

omnipresent strategic choices involved in every day life.
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4 Chapter 4, Experiment 2

4.1 Introduction

In the last two chapters we investigated whether the neurocomputational prin‐

ciples of choices made based on social information match the ones identified within

the non‐social decision‐making literature. We found evidence suggesting that the

two might share common algorithmic principles (i.e. the mechanistic principles in‐

volved in these choices) and that they might also be implemented within the same

general brain structures, thus providing support in favour of a universal decision‐

making mechanism across decision‐making domains. In the previous chapter we in‐

dicated the key role the pMFC might play in the implementation of social choices.

However, these results were only correlational in nature. Therefore, they were

only suggesting that the activity in the pMFC corresponds to the endogenous activ‐

ity reflective of an EA process. In order to thoroughly investigate the role of the

pMFC, stimulation methods are needed to establish the causal role of the regions in

the identified process. While continuing to compare social and non‐social choices

in this investigation might have allowed us to examine the degree of similarity

between the social and non‐social decision processing even further by studying

whether the pMFC is causally involved in both process, here we focused instead on

a different aspect of this investigation. Specifically, we still aimed to offer further

implementational understanding of the function of the pMFC by causally implicat‐

ing it in EA, but we also strived to offer further algorithmic insight by asking which

aspect of the EA dynamics this region is involved in. In order to maximise our ca‐

pabilities of answering these questions we opted to increase the number of trials,

but we also wanted to avoid including more experimental sessions than would be

conceivable that our participants would agree to take part in. To this end, we

had to focus on one domain and we chose to examine social decision making in

order to demonstrated the capacity of this domain to offer further insight into ba‐

sic neurocomputational principles of decision making, which typically are initially

investigated in non‐social choices.

The results from the previous chapter suggest that the pMFC (a region of the

cortex extending from the SMA to the mid‐cingulate cortex) reflects the rate of
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EA ‐ the drift rate at which a stochastic accumulator integrates information until

it reaches one of the two boundaries that correspond to the choice alternatives.

We implicated the pMFC in this process by demonstrating that its activity matched

the slopes we identified from the EEG signal reflective of these EA dynamics. This

notion is consistent with recent EEG‐fMRI work demonstrating that the activity in

the pMFC might represent the full temporal dynamics of the process of EA itself

(Pisauro et al., 2017). However, one of the main structures making up the pMFC ‐

the SMA ‐ has previously been thought to be responsible for boundary adjustments.

In other words, in the context of the general accumulation‐to‐bound framework, it

has been suggested that this region modulates the amount of information needed

to make a choice (Bogacz, Wagenmakers, et al., 2010; Forstmann et al., 2008).

This view has emerged from literature varying the goal of the task by making par‐

ticipants either focus on making speedy or accurate choices. This speed‐accuracy

trade‐off literature has shown that when tasked to make accurate choices, peo‐

ple take longer, which in computational models is reflected in increased boundary

separation. Conversely, when people make quick responses, the distance between

the boundaries is reduced and therefore an erroneous choice is more likely to oc‐

cur. To establish whether the pMFC simply reflects the rate of EA, modulates the

boundary separation or if it is involved in both processes, here we used transcra‐

nial direct current stimulation (tDCS) in a pre‐registered experiment to target the

pMFC and provide causal evidence for the functioning of this brain region in EA.

tDCS is a widely used neurostimulation method, which non‐invasively and tem‐

porarily changes the excitability of a brain region (anodal ‐ increases; cathodal ‐

decreases excitability) to examine its function and relation to behaviour (Nitsche

et al., 2008). This stimulation method has garnered some scepticism regarding its

efficacy with regards to the unreliability of some of the published effects (Hor‐

vath et al., 2015, but also see Antal et al., 2015) and because of the frequent

violations of underlying anatomical consistency assumptions (Kim et al., 2014).

Nevertheless, tDCS remains popular since the inconsistent results might partially

be attributed to the variability in design (Horvath et al., 2015), choice of partici‐

pants (Berryhill et al., 2014) and the inconsistent protocols (Wiethoff et al., 2014).

Furthermore, tDCS has been successfully used to investigate social decision making

before. For example, it has been employed to investigate if brain stimulation to

the right lateral prefrontal cortex would lead to changes in social norm compliance
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in both voluntary and sanction‐induced scenarios (Ruff et al., 2013). The neural

stimulation led to changes in both types of compliance, however it affected them

differently ‐ anodal tDCS led to greater compliance in sanction‐induced scenar‐

ios, whereas the cathodal stimulation led to greater compliance in the voluntary

scenario. Even though the stimulation changed the rate of compliance, it did not

alter the understanding of the social norms, nor that of the sanctions. This study

therefore demonstrated the usefulness of using a combination of anodal and catho‐

dal stimulation to examine social choices and shows that the comparison between

these stimulation methods may be used to uncover the exact functioning of the

pMFC.

Specifically, here we used anodal and cathodal tDCS stimulation (Fig. 1, right)

to test three main hypotheses: 1) the pMFC reflects the rate of EA, 2) the pMFC

reflects boundary adjustments and 3) the pMFC governs multiple EA processes,

whereby it reflects EA dynamics as well as boundary adjustment (Fig. 16). This

was achieved by fitting the behavioural performance of our participants to a hi‐

erarchical DDM (hDDM; Wabersich and Vandekerckhove, 2014) and examining the

effects of the stimulation through our hDDM parameters. Even though we also in‐

vestigated the effects of the stimulation on behavioural indices (Proportion ‘Play’

choices, RT data), this experiment primarily made use of the hDDM’s latent vari‐

ables derived by considering both choice and RT data together. This joint consider‐

ation of both behavioural indices in model space offers a more sensitive measure of

subtle changes in behaviour, and the model definitions also provide a mechanistic

understanding of the changes induced by the stimulation.

We first examined the hypothesis most in line with the observations from the

previous chapter and recent literature (Pisauro et al., 2017) ‐ that the pMFC mod‐

ulates the rate of EA (Fig. 16 left). If this hypothesis is correct, the cathodal

stimulation should interfere with EA dynamics and would make the decision pro‐

cess noisier. This should be reflected in lower drift rates and/or higher drift rate

variability (e.g. Polanía et al., 2015) as specified by a DDM. As participants might

already be performing optimally, the anodal stimulation might not have any fa‐

cilitatory effects and thus may not result in any parameter changes. However, if

this condition reduces the noise in the process, we may still observe that it re‐

duces drift rate variability. Nevertheless, we should observe a relative difference

109



Figure 16: Graphical representation of the Drift rate, Boundary and Combined hypotheses for the

function of the pMFC. The figure shows three ways in which the anodal (pink) and cathodal (turquoise) stim‐

ulation might affect the pMFC. The left panel illustrates an example in which the two stimulation conditions

are associated with differences in drift rate, with the cathodal stimulation being linked to a lower drift rate

than the anodal condition. The middle panel illustrates an example in which the two stimulation methods

lead to variability in the boundary parameter, with the anodal condition being linked to a lower boundary

than the cathodal condition. Finally, the right panel illustrates the possibility that the stimulation might lead

to changes in the drift rate as well as to the boundary separation.

in the drift rate and/or drift rate variability parameter estimates of the two stim‐

ulation conditions with the anodal stimulation being associated with higher drift

rates or less drift rate variability compared to the cathodal condition. We also

considered whether the pMFC is responsible for threshold adjustments (Fig. 16,

middle, e.g. Bogacz, Wagenmakers, et al., 2010; Forstmann et al., 2008). This

hypothesis posits that the anodal stimulation should lead to lower boundary sepa‐

ration and the cathodal stimulation should produce higher threshold values in the

hDDM. Finally, we examined the possibility that the pMFC is responsible for both

EA and boundary adjustment (Fig. 16, right). Therefore, we would expect to see

changes in both the drift rate/drift rate variability and the boundary parameters

across the stimulation sessions as detailed above.

It is worthwhile noting that our hypotheses refer to the relative differences

between the anodal and cathodal conditions as we are not including a sham condi‐

tion. Nonetheless, these differences are still able to elucidate the functioning of

the pMFC in social choices and allow us to provide a mechanistic account for this

process by demonstrating that changes to the excitability of the region might lead

to changes in the underlying computations as evidenced by the changed param‐

eters. Our preliminary model comparison results were most consistent with the
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third hypothesis implicating the pMFC as an accumulator region by suggesting that

it reflects both the rate of accumulation, but also adjusts the boundary separation

based on how much information is needed for a decision. However, the formal

comparisons of the parameters across stimulation sessions were not significant,

suggesting that more evidence may be needed to elucidate the role of this region

in social decision making.

4.2 Materials and Methods

This experiment, its hypotheses and methods have been pre‐registered:

(https://osf.io/y4jsk)

4.2.1 Sample size and participants

We calculated the sample size (45 typical individuals) by referring to a previous

experiment, which used a DDM to asses the functioning of a brain area in decision

making using stimulation methods (Philiastides et al., 2011). Since the experiment

on which we are basing our sample size used transcranial magnetic stimulation, we

penalized their achieved effect size by 0.1, as we would expect tDCS to produce

smaller effects (Priori et al., 2009). We thus calculated the necessary sample size

using the following parameters: effect size = 0.455, alpha = 0.05, power = 0.9.

However, due to low yield rates during the pandemic, it was not possible to reach

this sample size. Therefore, the results included in this chapter only serve as an

illustration of the possible conclusions that could be drawn once the full sample

size is achieved. However, these conclusions should be considered with caution as

the trends outlined in this chapter may change once the full dataset is collected.

As a result, for this experiment we collected data from only 24 participants. Two

of these participants were excluded as they did not meet the criterion that their

behavioural performance during the anodal condition should represent a sigmoid

showing a parametric effect on the behaviour reflective of the ratings (See exclu‐

sion criteria bellow). We also note that one of our exclusion criteria included the

removal of participants with higher nDT estimates in the anodal condition than the
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last 100 trials from the training session. This was true for 2 participants, however

as these differences were very small (i.e. 0.027 and 0.007s) and given the already

limited number of participants, for the purposes of this thesis we are retaining

their data. Therefore, the analysis included in this chapter is based on a sample

of 22 (Collected between 02/06/2022 and 22/02/2022; analysis completion date:

08/03/2022).

Participants were recruited through the University of Glasgow subject pool and

through word of mouth. We invited both male and female, right‐handed, Caucasian

participants (to avoid biases in facial perception e.g. Scott and Monesson, 2009)

aged 18‐35, with no neurological conditions, no tDCS contraindications and with

normal/corrected to normal vision to take part in the experiment. We originally

used a fixed payment rate of £30 for the participation in the experiment, but

due to issues with recruitment, we increased our payment rate to £40. However,

participants were originally told that they would receive £9 per tDCS session for

their participation and up to an additional £9 based on their performance (i.e.

up to between £18‐£36 in total). For the increased rate, we told them that they

would receive £18 per tDCS session and up to £5 based on their performance (i.e.

up to between £36 and £46). We did not tell our participants about the fixed rate

in order to encourage them to engage with the task.

The experiment included the following exclusion criteria:

Presence of tDCS contraindications (Rossi et al., 2009); Low tolerance for the

tDCS stimulation, which requires the termination of a session; absence of a sig‐

moid curve after visually inspecting the online behavioural data or all responses

falling within less than 0.3 of each other; absence of a sigmoid curve after visual

inspection of the anodal condition; participants not paying attention as evidenced

by increased nDT estimates during the anodal condition relative to the last 100

trials of the training block, as the longer early sensory processing might be indi‐

cating reduced top‐down influences of attention; highly inconsistent ratings (>50

items rated more than 1.5 bins apart, calculated as follows: if one of the 2 ratings

falls within the two extreme bins (0‐0.3 or 0.7‐1), the 1.5 bin critical difference

would be set to 0.35 and if not, it will be set to 0.2; Insufficient ratings in a re‐

ward probability bin (i.e. 0 faces in a bin following the removal of inconsistent
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ratings); Different baselines across the two conditions determined by whether a

single sigmoid curve based on the combined choice behaviour across the two ses‐

sions explains the data as well as two separate curves.

4.2.2 Stimuli

The stimuli included in this experiment are the same 150 photorealistic face

displays based on 131 face identities with 19 artificially generated faces as the

ones used in the online rating session and the EEG‐fMRI session as part of the Main

EEG‐fMRI experiment, however, in this experiment only the social displays were

used.

4.2.3 Procedure for online pre‐tests

Participants who applied for the experiment were sent a link to an online rating

task and a shortened version of the economic game (100 trials, Fig. 1, right). We

did this in order to ensure that the participants we invited for the tDCS sessions

understood and were willing to engage with the task in that their behaviour re‐

flected their ratings. The rating task was the same as the one employed during

the online rating session from the Main EEG‐fMRI experiment. Participants saw the

150 face displays, which were presented centrally on a screen as 3x4 images that

took up 30% of the height of the screen using the online functionality of PsychoPy3

(v2020.1, Peirce, 2007, Fig. 8, b). Underneath each face identity was a scale

ranging from 0‐100%. Participants were once again told that the face identities

belonged to individuals who took part in a previous experiment investigating so‐

cial attitudes, whereupon they were asked to participate in a version of the Trust

game as Trustees (Berg et al., 1995, Fig. 4, a). The goal of the participants was

to select a likelihood (in percent) that the person whose face display they were

viewing would return half of an investment (2 points) that was given to them by

selecting the section of the scale that corresponds to the perceived likelihood of

splitting.

The online version of the economic game involved 100 trials of a Trust game,

which worked that same way as in the previous experiment, but without the non‐
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social trials and without a variable fixation cross. Specifically, during each trial, a

fixation cross (1.25s) was followed by the presentation of a face stimulus centrally

on the screen, which was displayed in the same way as in the rating task described

above. On each trial participants had the option between keeping a point (‘Keep’)

or playing (‘Play’) to double their profit. They would receive 1 point if they chose

the ‘Keep’ option. Conversely, if they selected the ‘Play’ option, the probability

of doubling the reward (P(reward|Play)) was guided by the likelihood estimate

each participant gave during the rating task for each face identity. Participants

were, however, once again told that the outcome depended on trials selected at

random from when the individual whose face they were viewing played the game.

The stimulus remained on screen until the participant made a response or for a

maximum of 1.3 seconds. Since the online task was done remotely, participants

were asked to use the arrow keys on their machine to make their responses. Finally,

a feedback screen would show their accumulated score after every trial for 0.75 +

1.3 ‐ response seconds.

Only participants with satisfactory behavioural performance (see exclusion cri‐

teria) were invited to the first tDCS session. One day before the first session par‐

ticipants were sent the online task again, which allowed us to identify stimuli with

inconsistent ratings (more than 1.5 bins apart), which were subsequently removed.

Following the second online task, the face stimuli were also divided into 2 sets ‐

one for each session. This was done to avoid possible learning effects carrying over

from one session to the next.

4.2.4 Procedure for lab sessions

At the start of each tDCS session we would place the electrode over the pMFC

on the participant’s head (See tDCS setup). This was done in order to give the

participants a chance to get used to having an electrode attached to their scalp,

so as to minimize new experiences during the tDCS stimulation. Each tDCS session

consisted of two parts ‐ a training segment and a main tDCS segment. We presented

both using PsychoPy3 (v2020.1.3, Peirce, 2007), with the face displays shown as 3x4

images that took up 30% of the height of the screen (refresh rate = 60Hz). At the

start of the training segment, participants were shown 5 screens summarizing how
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they rated the stimuli that would be presented during that session (grouped into 5

categories: highly unlikely/somewhat unlikely/ambiguous/somewhat likely/highly

likely to split an investment). These 5 categories reflected the face rating bins:

0‐0.3, 0.3‐0.433, 0.433‐0.566, 0.566‐0.7, 0.7‐1. We changed the bin sizes for this

experiment in an attempt to equalize the number of faces across bins. On average,

per session there were 16, 14, 10, 16, 10 unique face identities across the five

reward probability bins, respectively and on average we would remove 16.8 out

of the 150 faces across both sessions. Following the summary pages, participants

took part in the training segment, in which they played a Trust game similar to

the economic game they played online (400 trials, separated into 4 blocks ‐ 100

trials per block, with 4 short 24.6‐second breaks after each block). However, they

would not receive a feedback screen following every trial and instead they would

only see a fixation cross padding up until the 1.3 s mark. This was done in order

to minimize the overall run time of the task and to keep the total duration length

maximally consistent across participants. We included the training segment to

ensure performance stabilisation and to minimize additional learning effects or

changes in choice strategy for the main tDCS segment. The number of trials in

the training segment is based on the data from the EEG‐fMRI session from the

Main experiment presented in the previous chapter. Specifically, we found that

after fitting a Weibull function to the proportion of ‘Play’ choices as a function of

perceived trustworthiness in the subject‐specific social choices, the slope of the

sigmoid stabilized on average after 170 trials. We then increased the number of

trials to 400 to enable all participants’ slopes to stabilize.

Following the training session, we would place the second electrode on the par‐

ticipant’s cheek ‐ to give them an opportunity to take a break from the task. Par‐

ticipants would then receive one of the tDCS stimulation conditions (either anodal

or cathodal ‐ the allocation of which was counterbalanced across participants) and

participate in the main tDCS segment. The main segment was virtually identical to

the training, but it had a longer duration of 30 minutes (648 trials). This included

6 blocks ‐ 108 trials each, with 6 short 24.6‐second breaks after each block. The

tDCS stimulation would be active during the first 20 minutes of the main tDCS seg‐

ment. However, participants were not told that the stimulation would end at that

time and that they would continue performing the economic task for the remaining

10 minutes.
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We chose this mixed approach (which includes a stimulation and a no stimu‐

lation period), firstly, due to the inconsistent accounts regarding the tDCS after‐

effects duration, with some accounts claiming they last up to several hours after

minimal stimulation (Nitsche et al., 2008), others showing peak effects occurring

10 (Carlsen et al., 2015) or 20 (Bender et al., 2017) minutes after the end of the

stimulation and some proposing that the tDCS effects do not persist past the end

of the stimulation (Tremblay et al., 2016). Secondly, this approach is further justi‐

fied by the inconsistent literature regarding whether the stimulation should occur

exclusively prior to the task (e.g. Bender et al., 2017; Carlsen et al., 2015) or

whether it should be active (‘on’) during the task (e.g. Greinacher et al., 2019).

Consequently, our main analysis focused on trials starting after the first 10 minutes

of the stimulation in order to minimize the effects of unexpected tDCS sensations

at the start of the stimulation, which may be distracting to our participants, and

to also allow for enough time for the tDCS effects to arise. The potential sensation

effects are also why this experiment does not include a sham condition, since it has

been suggested that participants can reliably detect when the stimulation is ‘on’

(Greinacher et al., 2019). Finally, our choice of stimulation duration was governed

by accounts suggesting that stimulation lengths exceeding 20 minutes could result

in the opposite effect than what is anticipated (Monte‐Silva et al., 2013).

During the breaks, participants were asked three questions related to the stim‐

ulation sensation. Specifically, we asked them: “Is the stimulation on?”, “Are you

experiencing any tingling sensation?” and “Are you experiencing any burning sen‐

sation?”. The first question required a ‘yes’ or ‘no’ answer given by the left or the

right arrow key, respectively. The other two questions required a rating from (1)

‘Not at all’ to (5) ‘Very strongly’, given by the respective number key. These tDCS‐

related questions were also presented during the training so that the participants

could familiarize themselves with the questions, the response buttons and how

long they had to give their answers. At the end of the breaks ‐ after responding to

the three tDCS questions, participants would see their aggregated score (both in

the training and main tDCS segments).

Following the first session, participants would be invited for a second session

no earlier than 48h following the first one (5.909 days on average). During the

second tDCS session, participants were shown their rating summaries for the face
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identities they would encounter during the second session. They would then partic‐

ipate in the training segment and would subsequently receive the other stimulation

condition, while performing the main economic segment for a final time. Every‐

thing apart from the stimulation condition was kept identical between stimulation

sessions. Following the end of the second stimulation session participants were

also asked in which session they thought they performed better in order to get

an indication whether they could accurately perceive the effects of the anodal vs

the cathodal stimulation. They were also allowed to indicate that they could not

perceive any differences between the two sessions.

4.2.5 tDCS setup

This experiment involved anodal and cathodal tDCS stimulation +/‐ 2 mA. We

selected the electrode placement based on a SimNIBS simulation (Fig. 17), in which

we aimed to optimize the current intensity going through the region, while keeping

the pMFC electrode close to the pMFC. In the anodal condition we would place the

active electrode (circular, 3.4 cm diameter) between Cz and CP1 from the 10‐20

international electrode placement to target the region identified by (Pisauro et

al., 2017) and the EEG‐fMRI experiment presented in the previous chapter. The

return electrode (circular, 4.5 cm diameter) would be placed on the right cheek,

on the intersection of a line going between the lower tip on the right ear and the

nose, and FT8 and FT10 on the 10‐20 international system. We would switch the

active‐passive allocation of the electrodes for the cathodal condition. We kept the

stimulation ‘on’ during the first 20 minutes of the task. This included a 30‐second

ramp up at the start and end of the stimulation (19 minutes of full activity). We

would space the two sessions out by a minimum of 48h and we counterbalanced

the stimulation types over the two sessions across participants.

4.2.6 Hierarchical DDMs specifications

Our behavioural data consisted of RTs and choice behaviour (probability of a

‘Play’ choice, i.e. (P(Play|choice))) measured during the two stimulation sessions.

The probability of a ‘Play’ choice is determined for each reward probability given
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Figure 17: fMRI activations from the pMFC for social choices and SimNIBS output. This graphic presents

the set up used for the anodal condition, with the active electrode presented in red and the return electrode

presented in blue.

‘Play’ bin (P(reward|Play)): very unlikely (0‐0.3), somewhat unlikely (0.3‐0.433),

ambiguous (0.433‐0.566), somewhat likely (0.566‐0.7) and very unlikely (0.7‐1) to

split an investment, and per subject. Therefore, we calculated a P(Play) from the

20 minutes of interest based on the data from the 10th minute of the stimulation

until the end of the economic task.

We used conventional χ2 tests based on the last 200 trials of the two training

segments to determine which participants would be eligible for the main analysis.

Specifically, we examined whether a single Weibull function would fit the combined

data from both sessions as well as using separate curves for each session in order

to assess if there were any baseline differences between the two sessions. We

performed these χ2 test on individual subject data in a similar way as in the chapter

2, but instead of basing the λ calculation on the average values, we calculated

them per participant, to establish whether there were behavioural differences in

the anodal and cathodal ‘Play’ choices. All collected participants, satisfied this

criterion (mean λ = 0.978, p = 0.623).

Since tDCS is associated with small effects and has often led to unreliable be‐

havioural results (Horvath et al., 2015; Priori et al., 2009), our main analysis fo‐

cused on the parameter effects seen in the model space as these differences might
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Figure 18: Graphical representation of hDDM parameters. Round white nodes represent continuous

random variables (nDT = non‐decision time; B = boundary; sDR = drift rate variability; mDR = mean drift

rate; DR = drift rate). The gray node (Y ) represents the observed behaviour (RTs and choice behaviour).

Parameters are modeled as random variables produced through means (mu) and variances (si). The rect‐

angular plates signify that the random variables included in the plate are allowed to vary according to the

stimulation condition. The colours on the plates denote the different models (yellow ‐ variable boundary;

green ‐ variable drift rate/drift rate variability; orange ‐ combined model with variable boundary and drift

rate/drift rate variability). The dashed lines on the plates represent the three control analyses, where the

nDT is allowed to vary between the anodal condition of the main tDCS segment and the associated training

segment according to the original three main models. The dashed nodes and lines signify that originally we

allowed the sDR to vary as a continuous random variable with a mean = Sdr.mu and a variance = Sdr.si,

However due to convergence issues, we fixed sDR = 0.25 across both conditions and for all participants. p =

participant, c = condition, r = reward probability bin, i = trial
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be more sensitive to the subtle changes produced by the stimulation, since we are

taking advantage of the joint choice‐RT space. We fit the behavioural data from

the last 20 minutes of the main economic game to three DDM families (Fig. 18),

based on our pre‐specified hypotheses (Fig. 16) using a hierarchical DDM (hDDM)

implemented through the JAGS wiener module, via the R‐package ‘rjags’ (version

4.10) interface in a similar fashion to Franzen et al. (2020). hDDMs assume the

same stochastic accumulation‐to‐bound process as traditional DDMs and similarly

produce estimates of internal components of processing. However, unlike most

traditional DDMs, which either predict that subject‐specific parameters are en‐

tirely independent from each other (by fitting the data to individual subjects) or

that the parameters are the same across subjects (by fitting only to the group),

the hierarchical framework simultaneously estimates parameters on an individual

and on a group level i.e. at different hierarchical levels (Wiecki et al., 2013). This

hDDM allows the specification of a drift rate (rate/slope of EA), boundary (thresh‐

old for decision), bias towards an alternative (starting point) and non‐decision time

(nDT). The specified parameters are adjusted through Markov chain Monte Carlo

(MCMC) sampling so as to maximize the summed log‐likelihood of the choice be‐

haviour and RTs, provided by the Wiener first‐passage time distribution. Such a

hierarchical Bayesian framework for DDM parameter estimation involves updating

the prior distributions for the model parameters based on likelihood of the data

given the model, which ultimately produces a posterior distribution (Kruschke,

2010; Wabersich and Vandekerckhove, 2014; Wiecki et al., 2013). One major ben‐

efit of the Bayesian hDDM is its flexibility in allowing the specification of additional

variables to feed into the main model parameters, thus facilitating a more com‐

plete mechanistic view of the decision‐making process. Furthermore, the posterior

distributions can be directly used to assess the quality of the parameter estimation

and more stable parameter estimates for individual participants can be estimated

since all observerations are assumed to be drawn from a group (Wiecki et al.,

2013).

The first of the three model families (Fig. 16 and Fig. 18) aimed to address

the variable drift rate hypothesis and thus allowed the drift rate (mDR) and/or

drift rate variability (sDR) to vary with the stimulation conditions. For this model

we kept the boundary parameter (B) fixed across stimulation conditions. The sec‐

ond model family reflected the boundary adjustment hypothesis, which involved
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us varying B according to the stimulation condition. Here, mDR and sDR did

not vary per stimulation condition. The final model family combined the previ‐

ous two and we allowed B, mDR and sDR to vary across stimulation conditions.

Across all three model families (Fig. 18), mDR and sDR varied with respect to the

probability of reward given a ‘Play’ choice. We drew the parameters’ means and

variance from non‐informative uniform distributions (Mdr.mu ∼ U(‐5.00, 5.00),

Mdr.si ∼ U(0.0001, 3.00); Sdr.mu ∼ U(0.0100, 7.00); Sdr.si ∼ U(0.0001, 1); B.mu

∼ U(0.0100, 3.00); B.si ∼ U(0.0001, 2.00); nDT.mu ∼ U(0.0100, 0.70); nDT.si

∼ U(0.0001, 0.25)) and we fixed the starting point to 0.5. Due to convergence

issues (i.e. R̂ > 1.05) we had to use a fixed parameter for sDR = 0.25. We chose

these values based on models run on the simultaneous EEG‐fMRI dataset. We then

created the parameter estimates by drawing from normal distributions with these

estimates serving as means and by converting the variances into standard devi‐

ations. For all three models, we followed the procedure outlined in Franzen et

al. (2020) and used 5 Markov chains, each consisting of 5500 samples (created

using the ‘coda’ R package (version 0.19‐1)). Following standard, MCMC proto‐

cols (Wabersich and Vandekerckhove, 2014), we treated the first 500 samples as

‘burn‐in’ since these early samples may be influenced by the starting value and

we thus discarded them. Furthermore, since neighbouring samples are likely to be

highly correlated, we additionally subsampled (‘thinned’) our data by a factor of

50. We based our subsequent parameter estimations and analyses on the remaining

samples.

To assess the convergence of our chains, we used the Gelman Rubin Rhat (R̂)

statistic, which assesses within‐ and between‐chain variance. We concluded that

the traces converged if the R̂ < 1.05. This was true for all parameters after we

fixed the sDR parameter. We also performed formal model comparisons in order

to arbitrate between the different hypotheses using the deviance information cri‐

terion (DIC), which is widely used to assess model fits and for model comparisons,

because it takes into consideration both the goodness‐of‐fit of the model and its

complexity (Spiegelhalter et al., 2002). The better performing models with the

highest likelihood and least degrees of freedom are associated with the lowest DIC

values.

For the winning model, we directly tested for differences between the relevant
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parameter(s) using a paired t‐test between the anodal and cathodal conditions.

Since our design does not include a sham condition, the stimulation effects we

observed were only relative and without a clear indication of whether one condition

drives the effect more than the other. Nevertheless, these relative differences

were sufficient to provide a mechanistic account of the pMFC. However, since our

formal statistical analysis was not significant, we conclude that more evidence is

needed in order to determine the role of the pMFC in EA.

4.2.7 Control analyses: Learning effects, attention

We additionally wanted to examine potential learning effects by comparing

participants’ choice behaviour (P(Play|choice)) from the first session versus the

second session. Given that we counterbalanced the session order across partici‐

pants and that we included extensive training, we did not expect to observe any

significant effects following this control analysis. To this end, we used linear re‐

gressions like the ones described for the Choice probability calculations section in

Chapter 2. We ran these regressions separately for the first and the second stim‐

ulation session as well as for each participant. We further fitted the main three

models, but allowed the parameters to vary depending on the session number to

further investigate potential differences arising in the parameter space.

To avoid the possibility that the observed effects are due to changes in atten‐

tion, which would potentially result in longer early processing during low attention

sessions, we also considered models with variable nDTs and investigated potential

changes between the anodal stimulation segment and the last 100 trials from the

associated training segment. Specifically, we might expect the cathodal condi‐

tion to cause the participants to perform worse, however if the choice behaviour

is worse during the anodal condition, it might signal that participants were not

paying attention, which should also be reflected in bigger nDT estimates.

4.2.8 Exploratory analyses: temporal, RT/choice data and sensation effects

In addition to our main analysis, for which we specified a time window during

the last 20 minutes of the main tDCS segment, we also ran the same three sets
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of hDDMs (as described above) after adjusting the analysis window, both in terms

of its onset relative to the start of the main tDCS segment as well as in regards

to its duration. The aim of these additional analyses was to investigate potential

differences between the sessions during three additional time windows, for which

we included trials from: 1) the full duration of the economic game (30 minutes),

2) the stimulation section of the tDCS segment (first 20 minutes) and 3) after the

end of the stimulation (last 10 minutes).

While our main analysis focused on the latent DDM variables, we also examined

potential relative differences between the two stimulation sessions, by relying on

the formally tested behavioural data (choice behaviour and RTs) using linear re‐

gressions akin to the ones described in the Choice probability calculations section

in Chapter 2. We ran these regressions separately for the anodal and the cathodal

stimulation conditions as well as for each participant. We also performed conven‐

tional χ2 tests between the anodal and cathodal trials from the main analysis win‐

dow to assess whether a single Weibull function would fit the combined data from

both sessions as well as using separate curves for each session. These tests based

on the purely behavioural measurements were done in order to examine whether

the trends emerging from the modelling were also observable on the behavioural

level.

We also compared the responses to the sensation questionnaires between the

anodal and cathodal conditions to assess whether there were differences in the

duration or the severity of the tDCS‐related sensations. We specifically examined

whether the strength and the duration of these sensations, or the beliefs regard‐

ing whether the session involved anodal or cathodal stimulation had any effect on

the model parameters. In relation to the duration of the tDCS‐related sensations,

we examined whether the total number of blocks during which the participants

thought the stimulation was ‘on’ differed between the two sessions. In regards

to the sensation severity, we averaged the severity scores for the tingling and

burning sensations per participant separately for the two sensation types and then

averaged those values in order to get an aggregate measure of the sensation sever‐

ity for each participant. We then compared these averaged values between the

two sessions (anodal and cathodal). We also considered differences in the dura‐

tion and severity of the tDCS‐related sensations arising during the first half of the
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main economic game, while the stimulation was still ‘on’, and the second part of

the stimulation, during most of which the stimulation was switched off (the stim‐

ulation was still ‘on’ during only the first block of the second half). Finally, we

examined the modeling parameters from the winning main model in relation to how

the participants assessed their own performance. In other words, we rearranged

the estimated parameters in accordance with the sessions in which the participants

thought they performed better and the ones in which they thought they performed

worse. We investigated both the boundary and drift rate parameters in relation to

these ‘better’ and ‘worse’ categories. Since 8 participants could not perceive any

differences in their own performance, we randomly labeled one of their stimula‐

tion sessions as the ‘better’ one. We performed this assignment procedure 1000

times, while running paired t‐tests based on the ‘better’ vs ‘worse’ sessions and

we took note of the associated t‐values. We then calculated the average t‐values

for the boundary and the drift rate parameters and the associated p‐values.

We also planned to assess cases in which the behaviour during the training ses‐

sions was inconsistent. We planned to do so in two ways ‐ the first one was to

directly correct the behavioural output, by re‐adjusting the RTs and choice be‐

haviour in the second session. This readjustment would be based on the differ‐

ences found during the final 200 trials of the training between the two stimulation

sessions. This would have been achieved by subtracting the value of the mean RT

and choice difference per bin between the two sessions. The second version of

this readjustment was meant to take place directly on the parameter space, by

adjusting the parameters themselves by the mean difference per bin in the esti‐

mates. All other aspects of the analyses would have been kept the same. However,

we did not perform these additional analyses as there were no participants with

inconsistent training segment performance.

4.3 Modelling and additional results

4.3.1 Modelling results

Our main analysis focused on examining potential differences in the DDM space,

since these latent variables may be more sensitive to subtle changes produced by
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Figure 19: Modelling results. a) Subject‐specific boundary parameter estimates raincloud plots for the

anodal (pink) and cathodal (turquoise) conditions showing slightly lowered boundary estimates for the anodal

condition. b) Subject‐specific drift rate parameter estimates raincloud plots per reward probability bin for

the anodal and cathodal conditions, showing that on average the anodal condition was associated with slightly

higher drift rates. c) Subject‐specific nDT parameter estimates raincloud plot, showing that the nDTs were

very closely distributed in the 0.28‐0.4 range. d) Histogram of the observed RT distributions (‘Keep’ choices

were assigned negative RTs) and hDDM model fits (orange line) demonstrating that the model fit our data well.

In all raincloud plots each participant estimate is presented as a horizontal line. The black circle shows the

median value and the thicker line shows the interquartile range and the thinner line shows the 95% data range.

The shaded area shows the density distribution of the estimates.

the stimulation by taking advantage of the combined choice‐RT space. We there‐

fore employed three different hypothesis‐driven hierarchical variants of the tra‐

ditional DDM, which has been consistently used to examine rapid decision making

and offers mechanistic insight into the underlying processes (Ratcliff and McKoon,

2008; Wiecki et al., 2013).

Traditional hDDMs employ a number of parameters (drift rate, boundary sep‐

aration, nDT and choice bias) to describe task performance. By obtaining such

hDDM parameter estimates for both the anondal and cathodal stimulation condi‐

tion we were able to identify the internal changes produced by the stimulation

conditions and consequently establish the role of the stimulated region (pMFC) in
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social decision making.

We specifically created three model families based on predictions for the func‐

tioning of the pMFC (Fig. 16 and 18). The first one exclusively varied the drift

rate parameter while keeping the boundary constant across conditions to examine

the variable drift rate account postulating that the activity in the pMFC reflects

the rate of EA. The second model kept the drift rate constant across stimulation

conditions, but varied the boundary separation so as to allow us to examine the

boundary adjustment hypothesis, which suggests that the role of the pMFC is to

determine the amount of information needed for a choice. Finally, we combined

both models by varying both the drift rate and the boundary parameters across

stimulation conditions in order to examine the possibility that the pMFC may be

an accumulator region reflecting both the rate of EA and the necessary amount of

information needed for the choice. For all of these models we allowed the drift

rate to vary with the reward probability given a ‘Play’ choice. We initially allowed

the drift rate variability to vary as well, but due to convergence issues, we fixed

it to 0.25 (see Methods).

We used the DIC to arbitrate between these models and we established that

the best‐fitting model was the one, which allowed for both the boundary and the

drift rate to vary across stimulation conditions (DIC Boundary: ‐10763, Drift rate:

‐11384, Combined: ‐11760). The fact that the model that best explains the data,

shows the necessity to draw the boundary and drift rate parameters from separate

distributions, suggests that varying only one of these parameters is not enough to

capture the variability in the trial‐wise choice‐RT data. We found that on average,

the anodal condition was associated with higher drift rates (by 0.191) and lower

boundary parameters (by 0.003). This therefore suggests that the anodal condi‐

tion, which is meant to increase the excitability of the underlying region made the

information integration clearer, leading to higher drift rates. Additionally, since

the read‐out was less ambiguous, the boundary was also lowered since less evi‐

dence was needed to make a choice. These results, therefore suggest that the

pMFC might be causally implicated in both reflecting the rate of EA and adjusting

the boundary separation in correspondence with the amount of information nec‐

essary for a decision. We also formally examined the differences between the pa‐

rameters using paired t‐tests, however we did not find significant effects between
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the boundary parameters across the two stimulation sessions (t(21) = ‐0.053, p =

0.958), and similarly there was no significant difference between the drift rate pa‐

rameters (t(109) = 1.786, p = 0.077). These results therefore suggest that although

the best performing model allowed for both parameters to vary between stimula‐

tion conditions, there was not a significant difference between these parameter

estimates, potentially due to the limited sample size presented in this thesis as

opposed to the calculated necessary samples size (achieved effect size: 0.011 and

power = 0.05 for boundary test; achieved effect size: 0.17 and power = 0.425 for

drift rate test).

4.3.2 Exploratory and Control results

Figure 20: Behavioural results. Across the two stimulation sessions (anodal ‐ pink, cathodal ‐ turquoise)

we observed typical and comparable behaviour. a) Specifically, we saw that the P(Play|Reward Probability)

increased as the reward probability increased. b) Although not fully symmetrical, we saw a general difficulty

effect in the RTs with easy trials, where the reward probability was strongly in favour of a choice option

(‘Play’ or ‘Keep’), were associated with shorter reaction times than more difficult trials, where the reward

probability was not clearly favouring a choice.
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In addition to our main analysis aiming to investigate differences between the

model parameters produced by the two stimulation conditions, we also performed

a number of control and exploratory analyses in order to assess whether such dif‐

ferences exist even on the purely behavioural level, to examine whether our data

was consistent with previously seen trends within the decision‐making literature

and to account for the effects of attention, learning, analysis window and tDCS‐

related sensations. On the purely behavioural level, we saw that participants’

‘Play’ behaviour for both the anodal and cathodal sessions reflected the reward

probability given a ‘Play’ choice (Anodal: t(21) = ‐14.5, p < 0.001; Cathodal: t(21)

= ‐12.303, p < 0.001). Specifically, we found that they selected the riskier option

more frequently as the likelihood of receiving the higher payoff increased. As we

see this parametric modulation and considering that across the 2 sessions we only

removed a small portion of the 150 faces (16.8) per participant and on average, per

session there were 16, 14, 10, 16, 10 unique face identities across the five reward

probability bins, respectively, we consider this to be evidence that the ratings we

were using as indirect trustworthiness measures were largely consistent and cap‐

tured relevant social information displayed in our social stimuli. We also observed

that these probabilities did not differ significantly between the two stimulation

conditions (t(21) = 1.488, p = 0.14). We additionally used a likelihood‐ratio test

(see Chapter 2, Choice probability calculation) fit to each participant separately

to show that a single sigmoid function fit the fraction of ‘Play’ choices (jointly

across both stimulation conditions) as well as two separate functions for the an‐

odal and the cathodal condition (average λ(21) = 1.023, p = 0.6). We also found

similar RT trends to what we observed in Chapter 2. They once again were mostly

consistent with an inverted ‘V’ relationship with reward probability reflective of

the difficulty of the trial (Anodal: t(21) = 3.948, p <0.001; Cathodal: t(21) = 6.056,

p < 0.001) and those did not differ significantly between the two stimulation ses‐

sions (RT : t(21) = 0.121, p = 0.904). We therefore observed that the RTs were

longer for more difficult trials where there is no strong evidence to indicate the

appropriate choice (‘Play’ or ‘Keep’). These results suggest that as we predicted,

although the behavioural data managed to reflect typical trends seen across the

decision‐making literature, they did not reflect the effects of our stimulation ma‐

nipulation, potentially due to the typically small effects produced by tDCS, which

are often not identifiable through simple behavioural tests (Horvath et al., 2015;
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Priori et al., 2009).

We also investigated potential learning effects in relation to the session number

and found similar behavioural trends across the two sessions. Once again, partic‐

ipants’ ‘Play’ choices increased with the reward probability for both the first and

the second session (First: t(21) = ‐13.227, p < 0.001, Second: t(21) = ‐13.246, p <

0.001). There was also no significant difference between the two (t(21) = 1.552, p

= 0.124). The RT trends were preserved between the first and the second sessions

(First: t(21) = 5.479, p < 0.001; Second: t(21) = 4.019, p = 0.001) with no significant

difference dependant on the session number (t(21) = ‐0.696, p = 0.488). We also

examined the effects of session number on the parameter space. We ran the same

three main models as the ones in our main analysis, but this time we allowed the

boundary and drift rate parameters to vary depending on the session number. Once

again, the best‐performing model was the one where both the boundary and the

drift rate were allowed to vary (DIC Boundary: ‐10723; Drift rate: ‐11284; Com‐

bined: ‐11695). We then proceeded to perform formal t‐tests between the two

sets of parameters and found no significant differences: Boundary t(21) = 0.525; p

= 0.605), Drift rate t(109)= 1.513, p = 0.133). These results therefore suggest that

any difference observed in this experiment were likely not driven by the session

number.

Furthermore, to investigate the effects of the stimulation sensations, we com‐

pared the number of times a participant said that they believed the stimulation

was ‘on’ across the two sessions. We found no significant differences between the

anodal and cathodal conditions (t(21) = ‐0.591, p = 0.561). We similarly looked

at the severity of the sensations by first averaging their ratings for the tingling

and burning sensations separately and then averaging those two values per par‐

ticipant. Here, however, we did find a significant difference (t(21) = ‐2.17, p =

0.042), with the cathodal condition being associated with slightly higher severity

scores (by 0.326) even though on average the impedance was slightly lower, but

not significantly so, during the cathodal condition (Anodal: 3.568 kΩ, Cathodal:

3.355 kΩ, t(21) = 1.305, p = 0.206). We also found a significant difference in the

duration of the tDCS duration estimations during the first and second half of the

main segment after aggregating across the two stimulation sessions (t(43) = 2.466,

p = 0.018) with the first half being associated with a higher number of ‘Yes’ re‐
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sponses. We also found that the difference in the duration between the first and

second half of the main segment did not differ significantly between the two stimu‐

lation conditions (t(21) = ‐0.271, p = 0.789). We also found a significant difference

between the first and second half of the trials in regards to the sensation severity

after collapsing between stimulation sessions (t(43) = 8.997, p < 0.001), with the

average sensations in the first half being stronger than the ones in the second half

by 0.765. Once again the differences between the first and second half did not

differ significantly between the stimulation sessions (t(21) = ‐1.7986, p = 0.087).

These results suggest that participants were able to identify when the stimulation

was ‘on’, in accordance with previous literature (Greinacher et al., 2019).

To further investigate potential effects related to participants’ beliefs about

the stimulation condition, we took the boundary and drift rate estimates from the

winning model in our main analysis and regrouped them based on participants’ be‐

liefs into a session in which they thought they performed ‘better’ and a session in

which they believed they performed ‘worse’. As 8 participants could not perceive

any difference between the two sessions, we assigned their ‘better’ and ‘worse’

sessions randomly 1000 times and redid a t‐test for each permutation. This allowed

us to calculate an average t‐value for the boundary and drift rate differences be‐

tween the ‘better’ and ‘worse’ session. We found no difference in the boundary

parameters t(21) = 0.669, p = 0.511 or the drift rate parameters t(109) = 1.598, p

= 0.113. We also note that only 6 participants replied that they performed better

in the anodal condition, which was meant to increase the excitability of the pMFC

and thus the signal read‐out and make our participants perform better. There‐

fore, the differences between the stimulation sessions were likely not caused by

participants’ beliefs about their performance.

To investigate the effect of attention we ran all three main hDDMs on the data

from the anodal tDCS segment (once again based on the last 20 minutes of the

task) as well as on the last 100 trials of the training prior to the anodal segment.

In these models we also allowed the nDT parameter to vary between the two seg‐

ments (training, anodal). We did so under the assumption that if participants were

not paying attention to the task, their initial stimulus encoding might take longer.

As outlined in the Sample size and participants subsection, we also intended to

use this analysis to identify and remove participants who were likely not paying
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attention (as evidenced by their nDT estimates). We found two participants with

higher nDTs during the anodal segment, however as these differences were very

small (0.027 and 0.007s) and considering the already limited samples size, we re‐

tained the data from these participants for the purposes of this thesis. We once

again compared the three models and found that the combined model explained

the data the best (DIC Boundary: ‐7911, Drift rate: ‐8070, Combined: ‐8114). We

then formally compared the nDT parameters between the training and the anodal

condition with paired t‐test and found a significant difference (t(21) = ‐5.255, p <

0.001). Although there was a significant effect, we saw that the nDTs were longer

in the training than in the anodal condition (by 0.043), suggesting that our par‐

ticipants might have paid more attention during the anodal segment than in the

associated training segment. However, we also note that it is also possible that

these results might be indicating that participants were not as engaged during the

training or that there might have been residual subtle learning effects occurring

towards the end of the training segment.

Finally, we varied the windows of our analysis in order to establish the robust‐

ness of our results. We selected three additional windows: across the full main

economic game (30 min), during the whole stimulation (first 20 min) and following

the stimulation (last 10 min). We reran the three main analysis models during these

three windows and found that the results were consistent with our main analysis:

full duration (DIC Boundary: ‐15680; Drift rate: ‐16583, Combined: ‐17069), during

stimulation (DIC Boundary: ‐11157; Drift rate: ‐11618, Combined: ‐11963), post‐

stimulation (DIC Boundary: ‐5731; Drift rate: ‐6068 , Combined: ‐6361). These

results showed that across these windows, the winning model was the combined

model allowing for both the boundary and the drift rate to vary across stimula‐

tion conditions, thus demonstrating that our main findings were not biased by our

choice of analysis window. Once again, across all windows, the boundary and the

drift rate parameter did not show any significant differences.

4.4 Discussion

The previous two chapters demonstrated that social choices might use the same

algorithmic and implementational mechanisms employed by non‐social decisions.
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Specifically, we showed that similar to non‐social choices, social information is en‐

coded in domain‐specific regions, converted into a ‘common currency’ in the hu‐

man valuation system and then integrated according to an accumulation‐to‐bound

process in the pMFC. In this chapter we aimed to establish a causal and mechanistic

role of the pMFC in social decision making by using anodal and cathodal stimulation

to enhance and diminish (respectively) the activity in the region. Specifically, we

aimed to understand whether the pMFC is involved in reflecting the rate of EA as

suggested by a recent account (Pisauro et al., 2017) or if it is involved in bound‐

ary adjustments as suggested by the literature investigating the speed‐accuracy

trade‐off (Bogacz, Wagenmakers, et al., 2010; Forstmann et al., 2008). We also

considered the possibility that under time constraints, the pMFC regulates both

the rate of EA as well as the amount of information necessary for a decision.

Our model comparison results were consistent with the third hypothesis ‐ that

the pMFC may act as an accumulator region reflecting both the changes to the rate

of EA as well as the amount of information needed for a decision. This observation

could have implications for the embodied nature of social choices since the anodal

condition, which is meant to increase the excitability of the pMFC (relative to the

cathodal condition) was linked to higher drift rates and a lower boundary. This

could signify that the increased excitability enhanced the decision signal, which

also led to a decreased need to deliberate on the decision outcome. Such observa‐

tions would, therefore, implicate the pMFC in reflecting the read‐out quality of the

decision signal in addition to modulating how much of this information is needed

prior to committing to a decision.

It is noteworthy however, that the formal comparisons between the boundary

and drift rate parameters across stimulation conditions were not significant. This

may be attributed to the fact that the tDCS literature has historically been highly

inconstant with some of the main assumptions at the basis of this experiment ‐ that

the anodal stimulation is meant to increase excitability in the stimulated region

and the cathodal is meant to decrease excitability ‐ having been contested (e.g.

Moliadze et al., 2018). Moreover, while the simulated effect of the tDCS (Fig.

17) was spatially dispersed and could have accounted for potential heterogeneity

in participant‐specific anatomical features, it is conceivable that the anatomy of

some participants may not have been consistent with the tDCS stimulation. Ad‐
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ditionally, as the placebo effects associated with tDCS have recently been placed

at the forefront of tDCS research (e.g. Brunoni et al., 2014; Greinacher et al.,

2019), it is also important to note that the cathodal stimulation was rated as more

strongly associated with negative tDCS sensations. Therefore, it is conceivable that

the effects we observe here may have been caused by these sensations and it may

not be possible to resolve what the source of these differences is. Our preliminary

results nevertheless showed that the stimulation session order did not affect the

boundary and drift rate parameters and we also found that these parameters were

likely not affected by participants’ beliefs about their own performance. Taken

together these results suggest that more research is needed in order to determine

the true function of the pMFC in social decision making. However, considering how

this experiment aimed to optimise the setup by including a stimulation simulation,

a more informed analysis window and by avoiding the often easily discernible sham

condition (Brunoni et al., 2014; Greinacher et al., 2019), it is possible that some

of the uncertainty about the potentially meaningfulness of the current results may

be resolved with the collection of the full sample size. Consequently, the rest of

this discussion section will explore the potential contributions that this experiment

could offer for the examination of the role of the pMFC in social decision making

once the full dataset is collected.

Specifically, the role of this pre‐motor region and one of its main sub‐regions

‐ the SMA ‐ has primarily been investigated under the framework of the speed‐

accuracy trade‐off. Consequently, these boundary effects have only been investi‐

gated when the task requires major changes to the participants’ goal ‐ from focus‐

ing on accurate to speedy choices (Bogacz, Wagenmakers, et al., 2010; Forstmann

et al., 2008). Therefore, here, we offered to extend our current understanding

of these boundary modulations by examining if they are still as prominent when

participants are not required to consider the nature of their responses. This ex‐

periment may also offer additional insight in relation to recent computational ac‐

counts, which propose the existence of a ‘motor accumulator’ (Verdonck et al.,

2021). Specifically, this view proposes that the motor accumulator receives in‐

formation from a non‐embodied accumulator region and proceeds to transfer this

information to the motor system once it reaches its own threshold. This is consis‐

tent with observation showing that when the responses are known, the relevant

(pre)motor areas are active, but when they are not, the accumulation activity is
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primarily reserved to the frontal cortex (Filimon et al., 2013). Therefore, given

that the location of the pMFC is adjacent to the relevant motor area responsible

for the execution of the choice, as well as the observation that motor preparation

partially overlaps with EA, which seems to be reflected in this region, the pMFC

may act as a motor accumulator by adjusting the rate of EA and the boundary sep‐

aration, at least in the scenarios involving the use of the motor cortex to perform

the outcome of the choice.

Moreover, examining decision embodiment within the context of the social do‐

main may have repercussions for the decision‐making literature as a whole, espe‐

cially after having shown evidence in favour of the notion of a universal decision‐

making process in the previous two chapters. Specifically, this experiment show‐

cases the potential for paradigms examining social phenomena to offer further

mechanistic insight into the universal decision‐making processes by providing a

range of new potential paradigms defined though the game‐theory framework.

Another key aspect of the experiment presented in this chapter is the com‐

bined use of tDCS and modelling. Specifically, relying on simple behavioural mea‐

surements may not be sufficient for the investigation of the processes underlying

decision making (Horvath et al., 2015; Priori et al., 2009). Instead by relying on

parameters derived through a hDDM we offered to elucidate the underlying mecha‐

nisms that are responsible for social decisions and to provide potential explanations

for the role of the pMFC in this process. These latent variables are more appro‐

priate for the investigation of the functioning of the pMFC since they combine the

available behavioural output in a joint choice‐RT space in such a way so as to de‐

tect more subtle changes in behaviour. Furthermore, by using a hierarchical model

instead of a traditional DDM, we offer a more robust representation of the under‐

lying process since we do not assume that our participant’s parameters are fully

independent, nor do we assume that they do not differ at all. Thus this approach

allows the parameters to vary between participants while maintaining that they

arise from a common across‐participant distribution (Wiecki et al., 2013). More‐

over, by using a stimulation method, we attempt to provide causal evidence for

the involvement of this region in social decision making by showing that changes

to its excitability directly result in changes in the EA processing. Additionally, the

stimulation setup we chose ‐ in which we both increased and decreased the ex‐
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citability in the pMFC, without relying on a sham condition (which has been shown

to be correctly identifiable by participants e.g. Greinacher et al., 2019) ‐ allows

us to alter the functioning of this region in such as way so as to be maximally

informative about the underlying processes by examining the relative differences

between the two conditions.

Consequently, even though previous attempts to use tDCS to study the role of

the SMA in decision making have not managed to find meaningful findings (e.g.

de Hollander et al., 2016) and the fact that our preliminary results were not able

to find any significant differences associated with the two stimulation conditions,

our experiment may still offer mechanistic insight for the role of the pMFC in social

decision making once the full dataset is collected. This is due to the fact that this

experiment holds an advantage over previous examinations of the SMA using tDCS

due to the choice of modelling procedure, which may be more sensitive to subtle

changes in behaviour, in addition to our more informed electrode placement (Fig.

17), targeting the region more reliably.

In summary, here we offered preliminary results, which were not able to pro‐

vide a strong account for the role of the pMFC in social decision making potentially

due to the insufficient sample size. Nevertheless, this experiment has the potential

to offer further insight into the embodied nature of decision making by involving

(pre)motor structures used to express the relevant choice. To this end, we used

models, which make fewer assumptions about the distribution from which the pa‐

rameters were drawn and which are more sensitive to minor changes in behaviour.

Furthermore, our use of stimulation methods could allow us to causally implicate

the pMFC in the process of EA and potentially demonstrate the key role of this

region in social decision making. Finally, by examining the neurocomputational

function of this region in the social domain, we highlight the potential of social

decision‐making paradigms to be used to examine the underlying basis principles

of decision making.
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5 Chapter 5, General Discussion

5.1 Key findings

Social choices are an ever‐present part of our lives. From the inconsequen‐

tial choices about whether to trust the salesperson when they say that a piece of

clothing looks great on us, to the potentially life‐altering decision about whether to

marry someone, social decisions require the careful consideration of the options

we have available. In the introduction of this thesis, we highlighted that until

recently the investigation of such social decisions has primarily focused on their

uniquely social qualities and to a lesser extent on their basic neurocomputational

mechanisms (Ruff and Fehr, 2014). Conversely, the non‐social decision‐making do‐

main has historically put a emphasis on examining these basic principles and has

highlighted several key stages in the decision‐making process ‐ value encoding,

value comparison, EA, action selection and value updating (Fig. 3, Rangel et al.,

2008) ‐ and has identified the accumulation‐to‐bound mechanism as a key driver

for these decisions (Kelly and O’Connell, 2013; O’Connell et al., 2012; Polanía et

al., 2014). Recent work has proposed that social and non‐social value may be pro‐

cessed within the same neural structures (e.g. Janowski et al., 2013; Lockwood et

al., 2016) or in adjacent sub‐areas (Harris et al., 2007) and that common processes

may be involved in social and non‐social choices (Krajbich et al., 2015). However,

often times the social and non‐social uncertainty are not explicitly put on equal

footing (e.g. Harris et al., 2007; Janowski et al., 2013) and the data is sometimes

collected across different samples/studies (e.g. Krajbich et al., 2015; Tarantola

et al., 2017). Similarly, most of this research has focused on scenarios in which the

social/non‐social aspect arises not from the source of uncertainty, but from varying

the outcome receiver (e.g. Lockwood et al., 2016) as well as on the value com‐

putation stages of decision making. Therefore, more research is needed in order

to determine whether social and non‐social value are processed in a comparable

way in a ‘common currency’ framework (Ruff and Fehr, 2014) and whether any po‐

tential similarities extend across other stages of the decision‐making process such

as whether social choices are embodied in the same way as non‐social decisions.

Recently, a new framework (Lockwood et al., 2020) has been developed for the

systematic comparison of social and non‐social choices based on Marr’s framework
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(Marr and Poggio, 1979), which presents the necessary steps to establish whether

a process is social‐specific or universal. This framework calls for the comparison

across both the algorithmic and implementational levels and advocates for the

use of computational modelling and stimulation methods. To this end, this thesis

aimed to provide some insight into the specificity of social decision‐making pro‐

cesses based on social cues, whether they are governed by the same mechanisms

as non‐social choices and to investigate the potentially embodied nature of these

choices.

In Chapters 2 and 3 we aimed to compare social and non‐social choices across

the algorithmic and implementational levels (respectively). Specifically, we de‐

veloped an experimental design, which aimed to enable the social and non‐social

uncertainty to vary across comparable scales by embedding the two decisions in

the context of a Trust game. The social uncertainty was determined by extracting

indirect subject‐specific trustworthiness judgments that reflect the likelihood of

splitting a reward. These trustworthiness judgments were matched to the explicit

probabilities of a reward that reflected the non‐social uncertainty. In Chapter

2, we saw behavioural and modelling results, which showed that both social and

non‐social conditions were associated with trends typically observed within the

non‐social literature (e.g. Bogacz et al., 2006; Gold and Ding, 2013; Philiastides

and Sajda, 2006; Ratcliff et al., 2009) in that the probability of ‘Playing’ positively

correlated with reward probability given a ‘Play’ choice and that the RTs reflected

the difficulty of the trial with more difficult trials leading to longer RTs. We also

found that both the social and the non‐social choices could be modelled with a

DDM and that they follow an ‘accumulation‐to‐bound’ process. Additionally, we

observed that the parameters associated with these two conditions were largely

comparable. Therefore, the results from Chapter 2 suggest that our paradigm

might have been successful in putting the social and non‐social uncertainty on the

same scale and that the two decision domains might share a common algorithmic

mechanism.

We then aimed to investigate whether social and non‐social choices rely on the

same brain structures to carry out their decision‐making computations. To this

end we first aimed to identify neural signatures of EA in our EEG data by using

our model predictions to examine whether such EA dynamics occur in our EEG
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signal. We found that the model‐predicted EA traces corresponded to EEG activity

arising from a centroparietal cluster consistently associated with EA dynamics (e.g.

Gherman and Philiastides, 2018; Kelly and O’Connell, 2013; Pisauro et al., 2017)

and that the dynamics of the electrodes with the highest correlations with the

model traces showed typical difficulty and speed modulations (e.g. Connolly et

al., 2009; Law and Gold, 2008; Mazurek et al., 2003; Roitman and Shadlen, 2002),

thus suggesting that our EEG signal managed to capture EA dynamics. However,

since our EEG‐informed fMRI analysis relied on the accurate representation of the

EA dynamics, we used a multivariate analysis to increase the signal‐to‐noise ratio

of the relevant signal. Specifically, we used a single‐trial LDA based on the easy vs

difficult trials to produce a discriminator reflective of EA. We then projected our

EEG data through this discriminator to examine the full temporal dynamics of this

process and identified single‐trial slopes reflective of the trial‐by‐trial variability

in EA. We were able to validate these slopes by showing that they correlated with

our drift rate estimates from our modelling procedure and that they were able

to predict the choice behaviour of our participants. We then used these slopes

as endogenous predictors of EA in our EEG‐informed fMRI analysis and implicated

the pMFC as the potential site for EA for both social and non‐social choices. An

additional PPI analysis showed that the activity in the pMFC co‐varied in a task‐

dependant manner with regions of the human valuation system consistent with the

notion that domain‐specific information is converted into a ‘common currency’ in

these value‐processing regions and then accumulated for a decision in the pMFC ‐ a

region adjacent to the motor region responsible for carrying out the decision ‐ thus

showing the potentially embodied nature of both social and non‐social choices.

In Chapter 4 we specifically focused on social choices in order to further inves‐

tigate the role of the pMFC by varying the excitability of the region through anodal

and cathodal tDCS stimulation. We only managed to produce preliminary results

due to slow recruitment during the pandemic, which point to the pMFC having

a function beyond merely being responsible for modulating the rate of EA or for

boundary adjustments, but that it might reflect both EA processes. This is con‐

sistent with recent views proposing the existence of a second motor accumulator,

which triggers responses once its internal boundary is reached (Verdonck et al.,

2021). However, as the formal statistical analysis on the drift rate and boundary

parameters was not significant, we note that additional evidence is needed in or‐
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der to causally implicate the pMFC in social decision making and to establish its

exact algorithmic mechanism.

5.2 Limitations and future directions

Despite this thesis offering a detailed examination of the spatiotemporal neural

characteristics of social decision making, this work has limitations, which need to

be acknowledged. The first limitation relates to the fact that throughout this thesis

we have only considered one type of social decision i.e. choices based on a social

cue. As we highlighted in the Introduction section of this thesis, there are other

types of social decisions (Ruff and Fehr, 2014), which need to be examined in or‐

der to determine if our observations about the universality of the decision‐making

process extend to other social decision‐making domains. Furthermore, as some of

the other subtypes of social decision‐making (such as making decisions on someone

else’s behalf), may have a more overt social component, it may be beneficial to

examine whether the degree of social involvement may also be associated with the

strength of potential domain‐specific processing. Similarly, throughout this the‐

sis we have exclusively examined choices occurring under time constraints and as

highlighted by the literature examining the trade‐off between making speedy and

accurate choices (Bogacz, Wagenmakers, et al., 2010; Forstmann et al., 2008),

changing the conditions under which the decision is made, can lead to changes in

how these choices are made. Therefore, once again, it is important for future re‐

search to examine whether the consistencies between social and non‐social choices

would be preserved once the goal of the decision is changed.

Furthermore, the main results presented in this thesis come from the simulta‐

neous EEG‐fMRI experiment (i.e. the Main experiment), which later informed our

tDCS investigation. This approach has multiple benefits such as the opportunity

to exploit the high temporal resolution of the EEG signal while providing concrete

implementational information about where in the brain information is integrated

to guide a choice. However, we relied on the EEG measurement to inform our

fMRI analysis in order to identify the site of EA and due to the additive nature of

recording electrical signals from the surface of the scalp, these signals may have

contained information arising from other brain areas, impeding the identification
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of the true relevant signal. Consequently, our EEG predictors may have been in‐

fluenced by factors unrelated to the process of EA on a trial‐by‐trial basis. While

we used methods to ensure the robustness of the relevant signals, which identi‐

fied a structure that has been previously implicated in decision making (Pisauro

et al., 2017), future research will need to validate our current findings and test

their soundness and could potentially also explore the oscillatory phenomena as‐

sociated with these choices in addition to the broadband signal examined in this

thesis (e.g. Polanía et al., 2014).

Even though our tDCS experiment was carefully designed to include a more in‐

formed analysis window and stimulation setup, a further limitation of this thesis

stems from the fact that the tDCS literature has been associated with certain in‐

consistencies about what kinds of effects the stimulation might have on cognition,

which may explain why our formal statistical analysis did not lead to significant

results. Additionally, some of the stimulation by‐products, such as differences in

the perceived stimulation sensations, might make it impossible to attribute be‐

havioural or modelling changes to stimulation‐driven neural changes. Further‐

more, to avoid adding further experimental sessions to the experiment, we did

not include an initial anatomical scan and while our tDCS setup allowed for some

underlying anatomical inconsistencies between our participants, it is possible that

the anatomical characteristics of some of them might not have allowed for the

stimulation to lead to any cognitive changes, thus providing another potential ex‐

planation for the non‐significant results. However, it is also conceivable the the

collection of the full sample size may reduce some of the uncertainty associated

with these potential pitfalls. Another limitation associated with our tDCS experi‐

ment relates to the fact that our conclusion were further limited by the models we

considered. Specifically, it is conceivable that another model exists, which may

provide a better explanation for the functioning of the pMFC. Nevertheless, the

models we included were governed by the existing literature and offer to recon‐

cile the existing discrepant views regarding the role of the pMFC in EA.

Despite these limitations, this thesis offers detailed insight about whether so‐

cial decision making is domain‐specific or if it falls within a universal decision‐

making framework, by providing support for the latter option. However, there are

still aspect of the decision‐making process, which have not been addressed and it
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remains to be uncovered whether the similarities between social and non‐social

choices are preserved across these other facets of decision making, such as the

potential shared motivational aspects between social and non‐social behaviours.

Specifically, it is conceivable that since social goal‐oriented actions are effort‐

ful, deciding whether to engage in them might be subject to the same effort and

motivation‐based considerations as non‐social actions and might be governed by

the same neural substrates. However, recent accounts argue otherwise and have

suggested that such effort‐based computations may be associated with domain‐

specific processing (Contreras‐Huerta et al., 2020; Lockwood et al., 2017). For

instance, recently it has been suggested that the anterior cingulate gyrus uniquely

encodes effort costs for prosocial actions, whereas other areas such as the ven‐

tral tegmental area and the ventral insua have been linked to self‐related effort

processing Lockwood et al., 2021. Such observations offer further insight into the

degree of overlap between social and non‐social decisions by suggesting that the

motivational processes may be domain‐specific and this would have implications

for the notion of a domain‐general decision‐making process. However, future re‐

search may aim to elucidate whether some circumstances may drive more com‐

parable processing across domains, such as when other types of social decisions

are involved and to thus establish whether the differences between social and

non‐social motivation are categorical or if there is a potential continuum. Never‐

theless, determining the extent of the shared motivational processing across the

social and non‐social domains may enable a deeper understanding of states like

apathy marked by reduced goal‐driven behaviours.

Another vital aspect of decision making, which has been heavily investigated

in recent years (e.g. Gherman and Philiastides, 2015, 2018), is the role of confi‐

dence. It has been shown that when there is no explicit feedback in relation to

performance, confidence (i.e. the internal belief that the selected choices will

be correct) modulates how much information is needed for a choice to be made,

thus affecting the boundary separation for the decision (Desender, Boldt, Verguts,

et al., 2018). Moreover, it has been suggested that these confidence judgments

arise from the same EA processes (Gherman and Philiastides, 2015) observed in the

experiments outlined in this thesis. It has also been shown that they involve the

human valuation system, with the vmPFC in particular (Gherman and Philiastides,

2018) as well as the dmPFC when considering the reliability of social information
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(De Martino et al., 2017), both of which were also implicated in the Main EEG‐fMRI

experiment presented here. Additionally, it has been suggested that confidence

predicts information‐seeking tendencies (Desender, Boldt, and Yeung, 2018) and

that it affects when we seek out social information (Toelch et al., 2014). Since

confidence has been shown to be involved in social choices and it relies on brain

regions, which are also implicated in these social decisions, it is important to ex‐

amine how confidence emerges and affects the decision‐making processes across

the decision‐making domains in addition to comparing its effects on information‐

seeking strategies across different decision types.

The examination of the potentially universal decision‐making mechanism would

also be incomplete without investigating how social and non‐social values are up‐

dated over multiple decisions and whether these learning processes are imple‐

mented in the same way in the brain. To this end, recent proposals have been

made as to how to study learning in social situations (Lockwood and Klein‐Flügge,

2021). The importance of this decision‐making stage is highlighted by the fact that

learning has been shown to affect the decision‐selection stage itself and not early

value encoding (Diaz et al., 2017). Specifically, in the non‐social domain, a meta

analysis of fMRI experiments investigating the neural mechanisms underlying the

prediction error signal ‐ the signal that reflects the difference between what was

expected and what occurred, which drives how we update our values and beliefs

‐ has elucidated how two learning valence systems are involved in how we make

decisions (Fouragnan et al., 2018). The first one processes negative outcomes and

is associated with areas responsible for alertness and switching behaviour such as

the midcingulate cortex, the thalamus and the dorsolateral prefrontal cortex. The

second one preferentially responds to positive outcomes and is linked to higher

activation in reward‐processing areas like the ventral striatum and vmPFC. Addi‐

tionally, a third network has also been suggested to be responsible for encoding

surprise, the processing of which overlaps temporally with the valence signals and

which is associated with activations in the anterior cingulate cortex, anterior insula

and dorsal striatum (Fouragnan et al., 2017). These findings therefore demonstrate

the importance of understanding the mechanisms at play when we make choices,

however considering the evidence from this thesis it is also important to consider

their generalizability to other decision‐making domains.
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Recently, a number of studies have investigated the application of reinforce‐

ment learning models, developed in the non‐social domain (e.g. Rescorla, 2008;

Sutton and Barto, 1998), to social scenarios and have demonstrated the key role

of the mPFC in these processes (e.g. Diaconescu et al., 2017; Lockwood et al.,

2016; Lockwood and Wittmann, 2018; Wittmann et al., 2016). There have also

been studies, which have demonstrated that in most aspects, social and non‐social

learning are the same, however unlike non‐social choices, social decision are af‐

fected by additional social information such as knowing the popularity of a certain

option (Tarantola et al., 2017). Others have also shown that the ventral stria‐

tum reflects reward‐prediction errors for both social and non‐social choices (e.g.

Behrens et al., 2008; Lockwood et al., 2016). Such observations support the notion

of a universal decision‐making mechanism, however in order to robustly determine

if learning is the same across the two domains further investigations may be needed

as these effects are often exclusively studied in self‐other choices and therefore

it remains unknown whether these observation are preserved for other types of

social choices.

Finally, the design used in our experiments provides a blueprint for further in‐

vestigations of the ‘common currency’ schema by considering other types of deci‐

sion making, for instance in decisions based on linguistic (such as in lexical decision

tasks, e.g. Wagenmakers et al., 2004) or multimodal information (e.g. Franzen et

al., 2020). It also offers a way to investigate the mechanisms involved in neuro‐

divergent processing. For instance, it has been shown that adults who score high

on the autistic quotient do not show any impairments when it comes to forming

trustworthiness judgments (Hooper et al., 2019). However, they do display a lack

of association between their responses in economic games. This suggests that they

do not make use of these judgments as part of their strategy while participating in

economic games. Therefore, by employing a design similar to the one used in this

thesis it may be possible to examine the exact algorithmic and implementational

differences that occur between people on the autistic spectrum and neurotypical

individuals.
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5.3 Conclusion

In this thesis we offered an examination of the spatiotemporal characteristics

of decision based on social information in three studies. For this examination, we

compared social choices to non‐social decisions to establish whether they share

the same neurocomputational underpinnings and we attempted to provide causal

evidence for the involvement of the pMFC in social choices. We found evidence

suggesting that social decisions employ comparable algorithmic and implementa‐

tional processes to the ones used in non‐social choices and that both might rely on

accumulation‐to‐bound processes embedded in the pMFC. We further showcase a

tDCS experiment, which has the potential to elucidate whether the pMFC reflects

the continuous changes in EA dynamics, whether it determines the optimal amount

of information necessary for a decision or if it reflects both EA processes. These

experiments offer detailed insight into a potentially universal decision‐making ar‐

chitecture and provide an example for the systematic comparison across decision‐

making domains.
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