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Abstract

Coronary heart disease (CHD) is a major source of human mortality worldwide. Dynamic
Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used as a non-invasive
method to assess myocardial perfusion, which can be used to diagnose and detect myocardial
ischaemia. The main aim of this thesis is to develop novel robust statistical classification models
to detect the precise location of the ischaemia within the myocardium using DCE-MRI myocar-
dial perfusion data. Firstly, the myocardial blood flow (MBF), a critical parameter adopted to
quantify the degree of ischaemia within the myocardium, is estimated using semi-quantitative
or quantitative methods. The MBF map is used as the input training data for the classification
methods. Secondly, a Gaussian mixture model and its modifications, i.e. a mixture model incor-
porating spatial constraints, are applied to classify the myocardial tissues based on the MRI data.
Markov random field priors are introduced to represent the spatial prior information. Thirdly,
hierarchical Bayesian classification models are developed to combine the physiological model
or the MRI meta data with spatial or spatio-temporal prior information to classify the myocar-
dial tissues based on the MRI data. Furthermore, a polar projection method is developed to map
the myocardium image to an annulus. The thesis concludes with an outlook on future work
on how the methods developed in this PhD project can be extended to longitudinal analysis of
myocardial perfusion DCE-MRI.
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Chapter 1

Introduction

Coronary heart disease (CHD) is one of the most common sources of human death worldwide,
and 382,820 deaths in the US were caused by CHD in 2020 [7]. Inadequate blood supply to the
heart muscle will cause coronary heart disease. Dynamic Contrast-Enhanced Magnetic Reso-
nance Imaging (DCE-MRI) is widely used as a non-invasive method to assess the differences
in myocardial perfusion (microvascular or capillary blood flow) within the myocardium. The
signal changes within the myocardium during the first pass of a contrast agent bolus (bolus of
radio-opaque contrast media, gadolinium based) reflect the degree of the blood flow perfusion.
Therefore, myocardial ischaemia, i.e. inadequate blood supply to the myocardium, can be di-
agnosed or detected using the first pass of the myocardial perfusion DCE-MRI. There are many
methods aiming to analyze the myocardial perfusion DCE-MRI scans such as semi-quantitative
and quantitative methods [8]. Most of the methods focus on quantifying the myocardial blood
flow (MBF) and use the MBF estimates to detect the hypo-perfusion (ischaemia), i.e. inadequate
perfusion of blood flow.

The main aim of the study in this thesis is to develop robust classification methods based
on either original DCE-MRI data or estimated parameters, e.g. the MBF values. The statistical
classification methods used in this study can be categorised into two types, i.e. finite mix-
ture model and the hierarchical Bayesian model. The finite mixture model describes different
classes (or groups) using mixture distributions. For example, for a set of data that contains many
classes, the finite mixture model assumes different classes have different distributions, and it
aims to classify different data points into their corresponding classes. In this study, the Gaussian
mixture model [9], and its modifications, i.e. spatially variant finite mixture model [10] and
Markov random field constrained Gaussian mixture model [11], are applied to classify the my-
ocardial pixels within the myocardium images. The hierarchical Bayesian model is a statistical
model that has multiple layers. The parameters located in different layers are connected based
on dependence relationships. In this way, the perfusion parameters, e.g. the MBF and their
corresponding classes, can exist in the same model with dependence relationships. In this study,
MBF estimates based and data-based hierarchical Bayesian models are developed to classify the

1
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myocardial pixels using myocardial perfusion DCE-MRI.
The study in this thesis also includes a description of a polar projection method that aims to

lay the foundations for longitudinal analysis. This method can project any contoured myocardial
image to an annulus (large circle denotes epicardium and small circle denotes endocardium).
The projected annuluses have the same shape and size so that the images from different datasets
can be compared pixelwise.

The structure of the thesis is listed as follows:

• Chapter 2 presents the statistical tools used in this thesis.

• Chapter 3 provides the background information on heart physiology and myocardial per-
fusion DCE-MRI.

• Chapter 4 presents semi-quantitative and quantitative methods for the myocardial blood
flow.

• Chapter 5 introduces the applications of mixture models to myocardial perfusion DCE-
MRI.

• Chapter 6 provides a Fermi model based hierarchical Bayesian classification model using
myocardial perfusion DCE-MRI.

• Chapter 7 introduces a data-driven hierarchical Bayesian classification model based on
myocardial perfusion DCE-MRI.

• Chapter 8 presents a polar projection method that projects any myocardial image to an
annulus.

• Chapter 9 provides a summary of the thesis and the potential future work.



Chapter 2

Statistical Background

This chapter aims to outline different statistical methodologies from the literature that will be
applied in the study carried out in this thesis.

2.1 Bayesian statistics

Bayesian statistics is a theory based on the Bayesian interpretation of probability. Specifically, in
the Bayesian framework, the prior knowledge, e.g. previous experiment, affects the probability
of an event. The Bayesian statistics makes use of prior probabilities over parameters to infer the
probability. On the other hand, for the frequentist probability, the probability of an event is the
limit of its relative frequency in many experiments [12]. The Bayesian statistics is named after
Thomas Bayes, who introduced the Bayes’ theorem in 1763.

2.1.1 Bayes’ theorem

In statistics, Bayes’ theorem is used to describe the probability of an event based on prior knowl-
edge related to that event. The mathematical statement of Bayes’ theorem is:

P(A|B) = P(B|A)P(A)

P(B)
(2.1)

where A and B are events and P(B) ̸= 0.
In the Bayesian framework, Bayes’ theorem is used to update the probability of an event

when more inputs of knowledge or information are available. Specifically, for an unknown
parameter θ conditional on observed data y, its posterior distribution can be expressed as:

P(θ |y) = P(y|θ)P(θ)
P(y)

(2.2)

where P(θ) is called the prior distribution of θ and P(y) is named the marginal likelihood. The

3
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posterior distribution P(θ |y) is the distribution of θ given y, i.e. y is known. The prior distribu-
tion P(θ) is the distribution of the parameter θ before any data has been observed. Sometimes,
the prior distribution is hard to choose because no prior information about the parameter θ is
known. Therefore, some non-informative prior distributions, e.g. Jeffreys prior [13], are cho-
sen. The marginal likelihood is the distribution of the observed data y marginalised over the
parameter θ . According to the definition of marginal distribution, P(y) can be expressed as:

P(y) =
∫

P(θ ,y)dθ =
∫

P(θ)P(y|θ)dθ . (2.3)

θ is assumed to be continuous here. If θ is discrete, the integrals in equation (2.3) will be
changed to a summation. Since P(y) is the factor that is independent on the parameter θ , equa-
tion (2.2) can be expressed as a form omitting p(y):

P(θ |y) ∝ P(y|θ)P(θ). (2.4)

2.1.2 Prior distribution

In Bayesian statistical inference, a prior distribution of a parameter is the probability distribution
that represents the prior information before some added information, e.g. data, observations, is
taken into account. The parameters of the prior distributions are named hyperparameters. For
example, if a Gaussian distribution with mean µ and variance σ2 is the prior distribution θ , then
both µ and σ2 are hyperparameters of the prior distribution.

There are two ways to choose the prior distribution of a specific parameter, informative priors
and uninformative priors. If there are clear clues about the value of a parameter, informative
priors can be given based on the clues. For instance, if a statistical model is established to predict
the share price θ of a stock in the next year, then the average share price of this stock µ in this
year could be used to be the mean of a Gaussian distribution. This Gaussian distribution can be
chosen as the prior distribution of θ , and µ is the hyperparameter of the prior distribution. On
the other hand, if the prior information of a specific parameter is unknown, then uninformative
priors should be chosen. Meanwhile, if the parameter range is clear, e.g. θ > 0 or a > θ > b,
the choice of the prior distribution should be limited by the support of such distribution. For
example, if the parameter θ has upper bound b and lower bound a, the prior distribution of θ can
not be a Gaussian or Gamma distribution. A uniform distribution, truncated normal distribution
or 4-parameter beta distribution, on the other hand, could be chosen under this circumstance.

There is a concept about probability distributions called conjugate distributions. In the
Bayesian framework, if the posterior distribution P(θ |y) and the prior distribution P(θ) are in
the same probability distribution family, P(θ |y) and P(θ) are named conjugate distributions and
P(θ) is named conjugate prior for the likelihood function P(y|θ). The conjugate prior provides a
choice of prior distribution to give a closed-form expression for the posterior distribution. If the
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prior distribution is not conjugate to the likelihood function, the mathematical expression of the
posterior distribution might be analytically intractable. Numerical methods for the approxima-
tions of the posterior distribution might be introduced and the computational complexity would
increase. Table D.2 in Appendix D shows some likelihoods that have common probability dis-
tributions and their corresponding conjugate prior distributions.

2.1.3 Posterior predictive distribution

Predictive inference is the method to make inferences about an unknown observable quantity.
The marginal distribution of the unknown data y can be found in equation (2.3). P(y) is also
named as the prior predictive distribution. Let ỹ denote the unknown observable quantity and y

denote the observation. The posterior predictive distribution of ỹ is:

P(ỹ|y) =
∫

P(ỹ,θ |y)dθ

=
∫

P(ỹ|θ ,y)P(θ |y)dθ . (2.5)

Generally, the unknown observable quantity ỹ is assumed to be conditionally independent from
the observations y. Therefore, equation (2.5) can be simplified to

P(ỹ|y) =
∫

P(ỹ|θ)P(θ |y)dθ . (2.6)

2.1.4 Maximum a posteriori

A maximum a posteriori (MAP) probability estimate is used to estimate unknown parameters.
This estimate equals the mode of the posterior distribution of the unknown parameter. The MAP
mathematically corresponds to a penalised maximum likelihood (ML) estimation. Therefore,
MAP estimation can be seen as a regularization of the ML estimation.

Let θ denote the unknown parameter given observations y. Then, the likelihood function of
y is P(y|θ). The general ML estimate is:

θ̂MLE(y) = argmax
θ

P(y|θ). (2.7)

Now, given the prior distribution P(θ), the posterior distribution P(θ |y) is

P(θ |y) = P(y|θ)P(θ)∫
P(θ)P(y|θ)dθ

. (2.8)

The MAP estimates θ by finding the value of θ that maximizes the posterior distribution of θ .
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This can be mathematically expressed by:

θ̂MAP(y) = argmax
θ

P(θ |y) = argmax
θ

P(y|θ)P(θ)∫
P(θ)P(y|θ)dθ

. (2.9)

There are many ways to obtain the MAP estimate. If the mode of the posterior distribution
can be analytically derived, e.g. the mode of a Gaussian distribution is its mean µ , then the
MAP estimate can be given as the closed form of the mode. If the MAP solution is intractable,
numerical optimization methods, e.g. conjugate gradient method [14], or Newton’s method [15],
can be applied to search the local minima if first or second derivatives of the posterior distribution
are evaluated analytically or numerically. Moreover, simulated annealing methods can also be
used to obtain the global minimum [16]. In this study, an algorithm named iterated conditional
modes (ICM) has been applied to obtain the MAP given Markov random field priors [17]. The
details of the ICM algorithm can be found in Sections 2.2.4 and 5.4.

The limitation of the MAP estimate is that it is a point estimate of the mode of the posterior
distribution. It is an optimization method, whereas Bayesian methods usually concentrate on
drawing samples for the posterior distribution. In other words, the Bayesian methods regard a
parameter to be a random variable, not a fixed value. So, not the point estimate but the specific
distribution of a parameter is interesting in the Bayesian framework.

2.2 Hierarchical Bayesian models and graphical models

2.2.1 Introduction

For many statistical applications, multiple parameters are considered related or connected. There-
fore, the joint probability of these parameters should reveal their dependencies. For example,
there is a study related to the average age of people (the specific study can be found in [12]
(Chapter 5)). A person i from city j has age yi, j. So many people i = 1,2, ..,n from city j have
age {yi, j|i = 1,2, ...,n} (the set of yi, j given all i = 1,2, ...,n), and there are j = 1, ...,J cities.
Let θ j denote the average age of people in city j. It is reasonable to assume the average age of
people in all cities {1,2, ...,J}, {θ j| j = 1,2, ...,J}, follows a certain distribution controlled by
hyperparameters φ . In the Bayesian framework, θ j can therefore be considered as a sample of
the prior distribution P(θθθ |φ) which is controlled by hyperparmeters φ . This hierarchical struc-
ture can be expressed as a directed acyclic graph (DAG) (see Figure 2.1). A nice feature of the
hierarchical modelling is that the observations {yi, j|i = 1,2, ...,n} can quantify θ j though θ j is
not observed.

Some data is featured to have a “hierarchical structure” during the data collection. For the
hierarchical data, the simple non-hierarchical models are inappropriate for the data in practice
[12] (Chapter 5). For those simple non-hierarchical models, if the number of parameters is
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yi, j

θ j

φ

Figure 2.1: This DAG shows the dependencies of multiple parameters. The node yi, j denotes
the age of person i in city j. The node θ j denotes the average age of people in city j. The node
φ denotes the hyperparmeters of P(θ |φ).

small, they cannot fit large datasets accurately. On the other side, if the number of parameters
is big, they tend to “overfit” the data. However, the hierarchical models can use large numbers
of parameters and accurately fit the data. Meanwhile, a prior distribution can structure the
dependencies between parameters to avoid the “overfit” issue [12] (Chapter 5).

2.2.2 Statistical inference of hierarchical Bayesian models

For the hierarchical Bayesian model (HBM) example in Figure 2.1, an important property, ex-
changeability, holds. Specifically, the quantity θ j only depends on the data {yi, j|i = 1,2, ...,n},
and the parameters {θ j| j = 1,2, ...,J} have no ordering or grouping properties. The property
“symmetry” can be assumed for the parameters in their prior distribution. Let {π1,π2, ...,πJ}
denote any permutation of {1,2, ...,J}. The “symmetry” property can be mathematically ex-
pressed:

P(θ1,θ2, ...,θJ) = P(θπ1,θπ2, ...,θπJ). (2.10)

Therefore, let θθθ = {θ1,θ2, ...,θJ}, the simplest form of an exchangeable distribution has the
parameter θ j to be an independent sample from a prior (population) distribution:

P(θθθ |φ) =
J

∏
j=1

P(θ j|φ). (2.11)

A critical feature of an HBM is that an HBM contains one or more unobserved parameters
(latent variable). For the HBM in Figure 2.1, θ j is a latent variable. The quantities θθθ have their
own prior distribution P(φ). The joint prior distribution is:

P(θθθ ,φ) = P(φ)P(θθθ |φ). (2.12)

Given yyy = {yi, j|i = 1,2, ...,n; j = 1,2, ...,J}, the joint posterior distribution is

P(θθθ ,φ |yyy) ∝ P(θθθ ,φ)P(yyy|θθθ ,φ). (2.13)
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Since the distribution of the data P(yyy|θθθ ,φ) only depends on θθθ , the simplification

P(yyy|θθθ ,φ) = P(yyy|θθθ) (2.14)

holds. The term P(φ) is a part of the joint posterior distribution. This term, called hyperprior
distribution, is the prior distribution of the hyperparameter φ . Theoretically, the hyperparameters
of this hyperprior distribution could be either constants or hyperparameters [12].

There are three quantities that are analytically interesting, and the example in Figure 2.1 is
used to illustrate the derivation of these three quantities. The first quantity is the joint posterior
distribution which can be written as an unnormalised form:

P(φ ,θθθ |yyy) ∝ P(yyy|θθθ)P(θθθ |φ)P(φ). (2.15)

The three terms in equation (2.15) are the likelihood P(yyy|θθθ), the population (prior) distribution
P(θθθ |φ) and the hyperprior distribution P(φ).

The second quantity is the conditional posterior density P(θθθ |φ ,yyy). Since the observations
yyy are fixed values, this quantity is a function of φ . According to the exchangeability in equa-
tion (2.11), the conditional posterior density P(θ |φ ,y) can be expressed as:

P(θθθ |φ ,yyy) =
J

∏
j=1

P(θ j|φ ,{yi, j|i = 1,2, ...,n}). (2.16)

For each P(θ j|φ ,{yi, j|i = 1,2, ...,n}), it can be expressed as:

P(θ j|φ ,{yi, j|i = 1,2, ...,n}) ∝

(
n

∏
i=1

P(yi, j|θ j)

)
P(θ j|φ). (2.17)

This transformation is based on Bayes’ theorem in equation (2.1). If the prior distribution
P(θ j|φ) is a conjugate prior for the likelihood P(yi, j|θ j), the analytical form of the conditional
posterior density P(θθθ |φ ,yyy) will be given easily (the details of the conjugate prior can be found
in Section 2.1.2).

The third quantity is the marginal distribution of hyperparameters φ , P(φ |yyy). This quantity
can be calculated by a brute force way, that is, to integrate the joint posterior distribution over
θθθ :

P(φ |yyy) =
∫

P(θθθ ,φ |yyy)dθθθ . (2.18)

Moreover, the marginal distribution can be obtained algebraically using the conditional proba-
bility formula:

P(φ |yyy) = P(θθθ ,φ |yyy)
P(θθθ |φ ,yyy)

(2.19)

where the numerator is the joint posterior distribution in equation (2.15) and the denominator is
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the conditional posterior distribution in equation (2.16).
Now, for the simple HBM illustrated in this section, the drawing of simulations of the pa-

rameters from the joint posterior distribution can be implemented to quantify the uncertainty of
such parameters. It can be separated as three steps:

1. Draw the hyperparameters φ from its marginal posterior distribution P(φ |yyy) based on
equations (2.18) or (2.19).

2. Given φ , draw the parameter θθθ from its conditional posterior distribution P(θθθ |φ ,y) based
on equations (2.16) and (2.17).

3. Given θθθ , draw predictive values ỹyy from the posterior predictive distribution. The details
of the posterior predictive distribution can be found in Section 2.1.3

The example illustrated in this section is simple. Specifically, the number of parameters is
small, and the relationships between data, parameters and hyperparameters are straightforward.
However, the applications of the HBM in the real world are usually more challenging. There are
more parameters and the relationships between these parameters are usually complicated. The
complicated HBM can be described by a Bayesian network [18] which will be introduced in the
next section.

2.2.3 Directed acyclic graph

Generally, hierarchical Bayesian models can be solved or formulated purely by algebraic ma-
nipulation (see details in Section 2.2.2). However, diagrammatic representations of probability
distributions, named probabilistic graphical models, have many advantages to tackle compli-
cated hierarchical Bayesian models. The benefits of probabilistic graphical models are listed as
follows:

• They provide the visualization of the structure of the HBM. Moreover, the design and
motivation of the statistical models can be visually revealed.

• The properties of the HBM can be directly observed. Specifically, many properties, e.g.
conditional independence, can be inspected from the graph visually.

• Graphical manipulations can express complex computations. For example, the relation-
ships between different parameters for a complicated HBM can be expressed implicitly
using graphical language to avoid complicated mathematical expressions.

A probabilistic graphical model contains two types of elements, nodes (or vertices) and links
(or edges). The nodes denote random variables or observations, and the links denote the proba-
bilistic relationships between nodes. There are two types of links, i.e. directed and undirected.
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The difference between directed and undirected links is distinguished by their names. Specifi-
cally, the directed links have particular directionalities based on the direction of arrows, whereas
there is no such directionality for the undirected links. Directed graphs can be applied to express
causal relationships (dependencies) between random variables, and undirected graphs are usu-
ally applied to express soft constrains, e.g. spatial relationships, between random variables. An
HBM can be expressed as a directed acyclic graph (DAG). The “acyclic” denotes that it cannot
go back to itself through the directed links for any starting node.

Figure 2.1 is a very simple DAG. By application of the product rule of probability, the joint
distribution of it can be expressed as follows:

P(yi, j,θ j,φ) = P(yi, j|θ j,φ)P(θ j,φ). (2.20)

Since the observation yi, j only depends on θ j, it can be simplified as:

P(yi, j,θ j,φ) = P(yi, j|θ j)P(θ j,φ). (2.21)

By applying the product rule again, the joint distribution becomes:

P(yi, j,θ j,φ) = P(yi, j|θ j)P(θ j|φ)P(φ). (2.22)

Given Figure 2.1 and equation (2.22), the higher layer is dependent on the lower layer, and the
dependency can be expressed by a conditional distribution. Since the product rule can be applied
repeatedly, a general expression of a DAG shows as follows [18] (Chapter 8):

P(θθθ) =
K

∏
q=1

P(θq|paq) (2.23)

where K is the total number of nodes and paq is the set of parents of θq. For a DAG, if there is a
directed link from node A to node B, then node A is the parent of node B. In other words, node
B is the child of node A. Meanwhile, the child node is conditionally dependent on the parent
node. For example, in Figure 2.1, φ is the parent node of θ j and θ j is the child node of φ .

Figure 2.2 shows an example of a complicated HBM (DAG). According to equation (2.23),
the joint probability of this DAG is

P(A,B,C,D,E,F,G,H, I)=P(A|B,C)P(B|D,E,H)P(C|F)P(D|G,H)P(H|I)P(E)P(I). (2.24)

Conditional independence [19] is a vital concept in a probabilistic graphical model. The
judgement for two nodes, whether they are conditionally independent, will ultimately determine
the conditional posterior distribution of a given node. For any three random variables a, b and c,
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A
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D E F

G H

I

Figure 2.2: An example of a complex HBM (DAG). In this graph, the higher layers are con-
ditionally dependent on the lower layers. The circle nodes denote variables and the rectangle
nodes denote hyperparameters (G,F) or observations (A).

if
P(a|b,c) = P(a|c) (2.25)

is satisfied, then it is said that a is conditionally independent of b. Another form of the condi-
tional independence considers the joint distribution of a and b conditional on c, it gives

P(a,b|c) = P(a|b,c)P(b|c)

= P(a|c)P(b|c). (2.26)

It is worth mentioning that the conditional independence needs equations (2.25) or (2.26) holds
for every possible value of c.

Theoretically, applying the product rule of probability repeatedly, the conditional indepen-
dence property can be tested for any three nodes. However, it is pretty time-consuming in
practice if the graphical models are complicated. A general method to test the conditional inde-
pendence property is named d-separation where “d” indicates “directed”. We consider all paths
from node A to node B. A set of nodes C blocks the path from A to B if there is a node such that
either

• The arrows on the path at a node is either head-to-tail or tail-to-tail and this node is in the
set of C.

• The arrows on the path at a node is head-to-head and neither this node nor its children
nodes are in the set of C.

If all paths are blocked, A is d-separated to B by C, and A is conditionally independent of B given
C, see Section 8.2 in [18]. The definition of the three types of node can be seen in Figure 2.3. For
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Figure 2.3: The definition of the three types of nodes, head-to-head, head-to-tail and tail-to-tail.

a DAG, it can not only be represented by a factorization of a joint distribution into a product of
conditional distributions, but also represented by a set of conditional independence statements.
The d-separation theorem ensures these two forms are equivalent.

In a DAG, there is another concept named Markov blanket that is related to the conditional
independence property. If a DAG is very complicated, it will be inconvenient to judge whether
two nodes are conditionally independent given other nodes because all paths between two nodes
need to be considered . The Markov blanket can simplify this process. The Markov blanket for
a node contains its parents, children and co-parents. For example, in Figure 2.2, the parents of
node B are {D,E,H}. The child of node B is {A} and the co-parent of node B is {C}. The
probability of a selected target parameter conditional on all other parameters is given by the
probability of the target parameter conditional on its Markov blanket [18] (Chapter 8). The
Markov blanket of node A is the minimal set of nodes that can block node A from the whole
graph.

2.2.4 Markov random fields

In the previous section, the concept of directed acyclic graph was reviewed. The most important
property of a DAG is that it specifies a factorization of the joint distribution using a product of
local conditional distributions of a set of random variables. Moreover, the directed links in a
DAG define the dependencies between different nodes. There is another major type of graphical
model in which the links between nodes are undirected.

A Markov random field, also named as an undirected graphical model [18] (Chapter 8),
has a set of nodes with undirected links among them. The conditional independence property
for a Markov random field is relatively simple. Let A, B, and C denote three sets of nodes.
Considering all paths that connect nodes in A and B, if all paths contain one or more nodes in C,
then all paths are “blocked”, and the conditional independence

P(a|b,c) = P(a|c) (2.27)
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Figure 2.4: An example of a Markov random field.

holds. However, if at least one path from nodes in A to nodes in B is not blocked by nodes
in C, the conditional independence property is not satisfied. An alternative way to test the
conditional independence property is to remove all nodes in set C and all links connecting to
the nodes in C. If there exists at least one path from nodes in A to nodes in B, the conditional
independence property does not hold, and vice versa. The Markov blanket for a Markov random
field is rather simple. Specifically, the Markov blanket of node A is the set of all nodes that
are the neighbour of node A. Now, given the Markov blanket of the Markov random fields, the
expression of conditional independence can be updated using mathematical language. Let xi and
x j denote two nodes that are not connected by a link. Similar to equation (2.26), the conditional
independence can be expressed as follows:

P(xi,x j|x\{i, j}) = P(xi|x\{i, j})P(x j|x\{i, j}), (2.28)

where x\{i, j} indicates the set of all variables {xk} except xi and x j. This would lead to another
concept, a clique. A clique in a Markov random field is defined as a set of nodes with links
between all pairs of nodes. In other words, all nodes in a clique are connected. Furthermore, a
concept named “maximal clique” is a clique such that any node in the graph cannot be added in
this clique. If any node is included in a maximal clique, this clique will not be a clique anymore.
In other words, if an extra node is added in a maximal clique, there must be two nodes that are
not connected. Figure 2.4 shows an example of a Markov random field. In this figure, {A,B},
{A,C}, {B,C}, {B,D} and {A,B,C} are cliques. {B,D} and {A,B,C} are maximal cliques.

Let C denote a maximal clique and xC denote the sets of variables in C, the joint probability
distribution of a Markov random field can be expressed as a product of potential function ψC(xC)

of all maximal cliques in this graph:

P(x) =
1
Z ∏

C
ψC(xC) (2.29)

where Z is a normalization constant

Z = ∑
x

∏
C

ψC(xC). (2.30)
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Given a strictly positive constraint to the potential function ψC(xC), a precise relationship be-
tween factorization, i.e. equation (2.29), and conditional independence, i.e. equation (2.28)
can be made. Specifically, in [20], the Hammersley-Clifford theorem stated that the sets of dis-
tributions expressed by factorization and conditional independence are identical. Moreover, a
Markov random field is equivalent to a Gibbs distribution (Boltzmann distribution) [20], so that

ψC(xC) = exp(−E(xC)), (2.31)

where E(xC) is called energy function.
Generally, the first- and second-order neighbours of the Markov random fields {P(x)} in

equation (2.29) can be specified. However, these fields have undesirable large-scale properties
[17]. A scheme named “iterated conditional modes” (ICM) has been introduced to find the MAP
of Markov random fields in [17]. This method can be applied to process image denoising. For
this application, a hidden variable (pixel label) is usually introduced, and a Markov random field
prior is usually applied to the hidden variable. Specifically, let x = {x1,x2, ...,xn} denote the
hidden variable. Let y = {y1,y2, ...,yn} denote the observations. To apply the ICM algorithm,
two assumptions are made. Firstly, given the hidden variable x, the observations {y1,y2, ...,yn}
are conditionally independent and have same conditional density function f (yi|xi). Therefore,
the joint distribution can be described as follows:

P(y|x) =
n

∏
i=1

f (yi|xi). (2.32)

Secondly, the hidden x is a locally dependent Markov random field with Markov property. The
ICM algorithm tends to iteratively update the values of the hidden variable x to achieve the
local maximization of the conditional posterior distribution. Specifically, let x j

i denote the jth
iteration for element i. If there exists such a plausible choice of x j+1

i that given the observations
y and neighbours x\i, the conditional posterior distribution of P(xi|y,x\i) increases, the value of
x j+1

i will be updated to replace x j
i . Once this step has been through all elements i = 1,2, ...,n,

one cycle of iteration has been finished. After a fixed number of iterations is finished or the
convergence has been achieved, the current value of xi is the MAP estimate. Generally, the
initial value of x will be chosen as the maximum likelihood estimates given by P(y|x) without
considering the geometrical relationship among all elements i = 1,2, ...,n. The ICM algorithm
ensures the conditional posterior distribution P(xi|y,x\i) will never decrease and converge to a
local maximum.

The advantage of the ICM algorithm is that this method usually converges extremely rapidly
[17]. However, it has the same disadvantage: the estimates may get stuck in a local maximum,
with other “greedy” optimization algorithms, e.g. gradient descent.
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2.3 Markov chain Monte Carlo

2.3.1 Introduction

Markov Chain Monte Carlo (MCMC) is a general method to draw samples of a parameter θ

from its approximate posterior distribution and then modify those draws to better approximate
the target posterior distribution, P(θ |y). This method was originally introduced by [21,22]. The
MCMC sampling is done consecutively, and the distribution of the draw is dependent on its
previous draw. Therefore, all draws are from a Markov chain. A Markov chain is a sequence of
random variables {θ1,θ2, ...}. For any t, the distribution of θt given all θi (i < t) depends and
only depends on its previous variable θt−1. Therefore, the distribution of the drawn samples is
only dependent on the previous sample. It has been proved that for the MCMC sampling, the
approximate distribution improves at each step and converges to the target distribution under
fairly general regularity conditions called ergodicity [12].

In the applications of MCMC, independent sequences for different parameters are produced.
Specifically, the sequence θ 1,θ 2,θ 3, ... is generated from an initial value θ 0. For any t, θ t is
generated from a transition distribution Tt(θ

t |θ t−1) that is dependent on its previous value θ t−1.
The transition distribution Tt(θ

t |θ t−1) must satisfy that the generated Markov chain converges
to a unique stationary distribution, and this unique stationary distribution is the posterior distri-
bution P(θ |y).

Generally, the MCMC methods are applied when the samples of θ are impossible (or com-
putationally inefficient) to obtain directly from its posterior distribution P(θ |y). The MCMC
methods provide an iterative sampling scheme to draw samples from a distribution that approx-
imates the target posterior distribution P(θ |y).

Some general MCMC algorithms, e.g. Gibbs sampler, Metropolis-Hastings algorithm, are
reviewed in this section. Moreover, the efficiency and convergence of the MCMC methods are
also reviewed in this section. The applications of these methods will be displayed in Chapters 6
and 7.

2.3.2 Gibbs sampler

Gibbs sampler is an MCMC algorithm that is particularly useful for multidimensional sampling
problems when the conditional posterior distributions have been derived. Let θθθ = {θ1,θ2, ...,θd}
denote a vector of parameters. For each iteration of the sampling cycles, draw one particular
parameter θt from θθθ conditional on all other parameters in θθθ . Thus, there are d draws for one
iteration. This process can be express as follows:

1. Initialise θθθ = {θ 0
1 ,θ

0
2 , ...,θ

0
d }.

2. Draw θ t
j from its conditional posterior distribution P(θ t

j|θθθ
t−1
− j ,y) where θθθ

t−1
− j is all ele-

ments in θθθ except for θ j with values at their current draw and y are the observations.
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Mathematically, θθθ
t−1
− j can be expressed as:

θθθ
t−1
− j = {θ t

1,θ
t
2, ...,θ

t
j−1,θ

t−1
j+1,θ

t−1
j+2, ...,θ

t−1
d }. (2.33)

3. Let t = M where M is the length of the Markov chain. Discard the first n iterations. This
process is called burn-in.

The burn-in phase is important for the MCMC samplings. The reason of burn-in is that the
initial value θθθ = {θ 0

1 ,θ
0
2 , ...,θ

0
d } might not be in the target posterior distribution. As mentioned

in this section, the approximate distribution improves at each iteration and converges to the
target distribution. Therefore, when the burn-in number n is large enough, the rest of the samples
{(θ n+1

1 , ...,θ n+1
d ), ...,(θ M

1 , ...,θ M
d )} are approximately from the target distribution.

There is a strict rule for the applications of the Gibbs sampler. All conditional posterior
distributions for θθθ must be derived. Therefore, the choice of prior distributions P(θθθ) is vital. To
ensure the analytical forms of the conditional posterior distributions can be derived, conjugate
prior distributions (see details in Section 2.1.2) are usually adopted.

In an HBM (see Section 2.2.3), the conditional posterior distribution of a parameter from the
HBM can be derived by its Markov blankets. Therefore, the prior distributions can be chosen as
conjugate priors, which leads to simple simulations using the Gibbs sampler.

2.3.3 Metropolis and Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an algorithm family of MCMC methods. In this section,
both Metropolis and Metropolis-Hastings algorithms are reviewed.

The Metropolis algorithm adjusts random walk proposals with an acceptance or rejection
rule. The accepted samples converge to a specified target distribution. The algorithm proceeds
as follows:

1. Draw an initial value of θ0 from a starting distribution P0(θ). The starting distribution
could be the prior distribution of θ , and the initial value could be chosen as its point
estimation.

2. For t = 1,2, ...,

(a) Sample a parameter θ ∗ from a proposal distribution at time t, Qt(θ
∗|θ t−1). Qt(θ

∗|θ t−1)

is the probability of moving θ t−1 to θ ∗. For the Metropolis algorithm, the proposal
distribution must be symmetric, i.e. Qt(θa|θb) = Qt(θb|θa).

(b) Calculate the the ratio:

r =
P(θ ∗|y)

P(θ t−1|y)
. (2.34)
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(c) Update

θ
t =

{
θ
∗ with probabilitymin(r,1)

θ
t−1 otherwise.

(2.35)

3. Discard the first n iterations as burn-in.

The transition probability Tt(θ
t |θ t−1) is a product of the proposal distribution Qt(θ

∗|θ t−1) and
the acceptance distribution A(θ ∗|θ t−1). It can be expressed as follows:

Tt(θ
t |θ t−1) = Qt(θ

∗|θ t−1)A(θ ∗|θ t−1). (2.36)

Generally, when θ t = θ t−1, i.e. the proposal walk θ ∗ is rejected, it still counts one iteration in
the algorithm.

There are two steps to prove that the sequences generated by the Metropolis algorithm con-
verge to the target distributions. Firstly, each of generated sequences is proved to be a Markov
chain with a unique stationary distribution. Secondly, the stationary distribution equals the target
distribution. The proofs of both steps can be found in [12] (Section 11.2).

The Metropolis-Hastings algorithm is the generalization of the Metropolis algorithm. Specif-
ically, the symmetric condition for the proposal distribution Qt(θ

∗|θ t−1) is not required for the
Metropolis-Hastings algorithm. Moreover, to correct the asymmetry of the proposal distribution
Qt(θ

∗|θ t−1), the acceptance ratio in equation (2.34) is modified to

r =
P(θ ∗|y)Qt(θ

t−1|θ ∗)
P(θ t−1|y)Qt(θ ∗|θ t−1)

. (2.37)

Similarly, the proof that the sequences generated by the Metropolis-Hastings algorithm converge
to the target distributions can be found in [12] (Section 11.2).

Gibbs sampler can be viewed as a special case of the Metropolis-Hastings algorithm. Specif-
ically, the proposal sample θ t

j from its conditional posterior distribution P(θ t
j|θ

t−1
− j ,y) can be

viewed as one Metropolis-Hastings step with acceptance ratio 1. The proof can be found in [12]
(Section 11.3).

In some applications of MCMC simulations, not all closed forms of conditional posterior
distributions can be derived, but its corresponding approximations can be constructed. A mixture
scheme called Metropolis-within-Gibbs-sampler can therefore be used. Specifically, given the
order for sampling θ , the Gibbs sampling is implemented when the corresponding conditional
posterior distribution is derived. When the closed form of the conditional posterior distribution
is not derived, one single step of Metropolis-Hastings algorithm will be applied to draw the
sample. More details of the Metropolis-within-Gibbs-sampler can be found in [12] (Section
11.3), and [23] (Section 7.6.3).
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2.3.4 Convergence and efficiency for the MCMC methods

There are two challenges for the inference of the iterative simulation. Firstly, if the number of
iterations is insufficient, the simulations may not represent the target distribution. Even if the
simulations converge to the target distribution eventually, the simulations in the early stage still
reflect the starting distribution. This is the reason that the burn-in phase of the MCMC meth-
ods is necessary. Secondly, there are within-sequence correlations for the iterative simulation.
Generally, the inference for correlated simulations are less precise than for the same number of
independent simulations. The convergence and the efficiency of the MCMC methods should be
considered to tackle these two challenges.

Convergence monitoring of the MCMC samples is used to provide evidence of the generated
samples converging to the target distribution. Geweke’s test [24] and Gelman-Rubin statistic
[25] are used to diagnose the convergence of MCMC samples. It is worth mentioning that these
tests are necessary conditions for convergence but not sufficient conditions.

Geweke’s test compares the samples located in two different parts of the simulation chain.
Specifically, if the mean values of the samples in two different parts are similar, then the samples
in two different parts are assumed to be from the same distribution. Generally, the last half of
the chain and a small interval at the beginning of the chain are compared.

Let θi denote the the ith sample of the simulation chain where i = 1,2, ...,n. Two sets A =

{i,a0 ≤ i≤ a1} and B = {i,b0 ≤ i≤ b1} denote two different parts of the chain where 1≤ a0 ≤
a1 < b0 ≤ b1 ≤ n and a0,a1,b0,b1 are positive integer. The mean values of two sets are:

θ̄A =
1

a1−a0 +1 ∑
i∈A

θi (2.38)

and
θ̄B =

1
b1−b0 +1 ∑

i∈B
θi. (2.39)

The sample variances of two sets are:

s̄2
A =

1
a1−a0

∑
i∈A

(θi− θ̄A)
2 (2.40)

and
s̄2

B =
1

b1−b0
∑
i∈B

(θi− θ̄B)
2. (2.41)

If the simulation chain converges to the target distribution, then two different parts of the chain
are both from the same distribution. Therefore, the mean values for both parts should be the
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same, and Geweke’s statistic has an asymptotically standard Gaussian distribution. Specifically,

Z =
θ̄A− θ̄B√

s̄2
A + s̄2

B

→ N(0,1) n→ ∞ (2.42)

The value Z will decline to 0 when n→ ∞. Therefore, if Z is high, then we believe that more
iterations will help to improve the inference of the target distribution. More details of Geweke’s
test can be found in [24, 26].

For Gelman-Rubin statistic, let θi, j denote the the ith sample of the jth chain where i =

1,2, ...,n and j = 1,2, ...,m. The chain mean is defined as:

θ̄ j =
1
n

n

∑
i=1

θi, j (2.43)

and the grand mean is defined as:

θ̄ =
1
m

m

∑
j=1

θ̄ j. (2.44)

The between-chain variance B can be expressed as:

B =
n

m−1

m

∑
j=1

(θ̄ j− θ̄)2, (2.45)

and the within-chain variance W can be expressed as:

W =
1
m

m

∑
j=1

1
n−1

n

∑
i=1

(θi, j− θ̄ j)
2. (2.46)

The marginal posterior variance can be estimated as a weighted average of B and W :

ˆvar(θ |y) = n−1
n

W +
1
n

B. (2.47)

This quantity will overestimate the marginal posterior variance if the starting distribution is
overdispersed. However, it is unbiased under stationarity, i.e. the starting distribution equals the
target distribution.

A quantity named the potential scale reduction factor (PSRF) can be used to monitor the
convergence of the iterative simulations. Specifically, the PSRF can be estimated by:

R̂ =

√
ˆvar(θ |y)

W
. (2.48)

This quantity will decline to 1 when n→∞. Therefore, if the quantity R̂ is high, then we believe
that more iterations will help to improve the inference of the target distribution. More details of
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Gelman-Rubin statistic can be found in [12] (Section 11.4), and in [25].
The samples generated based on MCMC methods are inferior to the iid samples from the

posterior distribution because of the Markov property. Specifically, the Markov property causes
autocorrelation within samples, and therefore these samples are not independently distributed.
The effective sample size (ESS) for correlated simulation draws can be defined to consider the
statistical efficiency using the sample mean to estimate the posterior mean. In [12] (Section
11.5), the ESS is defined as

neff =
mn

1+2∑
∞
t=1 ρt

. (2.49)

where ρt is the autocorrelation of the sequence θ at lag t. To compute the ESS, the summation
of the autocorrelation should be calculated. However, even though the series may converge, it
is usually impossible to calculate it in practice because the sample correlation is too noisy when
the value of t is large. Therefore, an estimate of the ESS is measured by:

n̂eff =
mn

1+2∑
T
t=1 ρ̂t

. (2.50)

In this equation, T denotes the first odd positive integer for which ρ̂T+1+ ρ̂T+2 is negative. This
value is suggested in [12] (Section 11.5). ρ̂t is defined by:

ρ̂t = 1− Vt

2 ˆvar(θ |y)
(2.51)

where ˆvar(θ |y) can be found in equation (2.47) and

Vt =
1

m(n− t)

m

∑
j=1

n

∑
i=t+1

(θi, j−θi−t, j)
2. (2.52)

More details of the efficient sample size can be found in [12] (Section 11.5), and [27].

2.4 EM algorithm

2.4.1 Introduction

The expectation maximization (EM) algorithm is a general method for searching maximum
likelihood (ML) or maximum a posteriori (MAP) solutions for statistical models that have latent
variables [28, 29]. Typically, the ML or MAP solutions are obtained by taking the derivatives
of the likelihood function with respect to all the parameters and simultaneously solving the
equations. However, the closed form solution of the derivative of a statistical model with latent
variables does not exist. In this section, the general approach of EM algorithm is reviewed. The
application of it will be illustrated in Section 5.
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2.4.2 Decomposition of likelihood function

Let X denote the observations of a statistical model, and Z denote the latent variable of this
model. In other words, X denotes the incomplete data and {X ,Z} denote the complete data. θ

is a set of parameters to govern the joint distribution P(X ,Z|θ). The goal of the EM algorithm
is to maximize the likelihood function that is expressed as follows:

P(X |θ) = ∑
Z

P(X ,Z|θ). (2.53)

The latent variable is assumed to be discrete though the derivation is identical to the continuous
case with summation replaced by integration. The optimization of the incomplete likelihood
P(X |θ) is usually difficult, but the optimization of the complete likelihood P(X ,Z|θ) is available
in closed form for certain probability distributions (which are in the exponential family).

According to the product rule of probability, the log-likelihood of the joint distribution
P(X ,Z|θ) can be written as:

lnP(X ,Z|θ) = lnP(Z|X ,θ)+ lnP(X |θ). (2.54)

This equation can be finally rewritten to

lnP(X |θ) = L(q,θ)+KL(q||p) (2.55)

for any choice of q(Z). In equation (2.55),

L(q,θ) = ∑
Z

q(Z) ln
{

P(X ,Z|θ)
q(Z)

}
(2.56)

and
KL(q||p) =−∑

Z
q(Z) ln

{
P(Z|X ,θ)

q(Z)

}
. (2.57)

The derivation from equation (2.54) to equation (2.55) can be found in Appendix A.
It can be noticed that the term KL(q||p) is the Kullback–Leibler divergence between q(Z)

and P(Z|X ,θ) [30]. According to Gibbs’ inequality, the Kullback–Leibler divergence satisfies
KL(q||p)≥ 0 and the equality holds if and only if q(Z) = P(Z|X ,θ). Therefore, the term L(q,θ)

satisfies L(q,θ)≤ lnP(X |θ). In other words, L(q,θ) is a lower bound of lnP(X |θ).
The EM algorithm has two stages to iteratively find the optimization of the ML. The first

step is called “expectation (E) step”. In this step, given the fixed old value θold, the lower bound
L(q,θold) is pushed to the log likelihood with respect to q(Z). Since lnP(X |θold) does not depend
on q(Z), the maximization of L(q,θold) will happen when the equality of Kullback–Leibler di-
vergence holds. At this time, q(Z) equals to P(Z|X ,θ). The second step is called “maximization
(M) step”. In this step, given the fixed distribution q(Z), the lower bound L(q,θ) is maximised
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with respect to θ to generate the new value θnew. This will increase the lower bound L and
necessarily increase the corresponding log likelihood function lnP(X |θ). However, since q(Z)

is determined by the old value θold and it is kept fixed during the M step, q(Z) ≤ P(Z|X ,θnew)

holds, and hence the Kullback–Leibler divergence is non-negative. This will cause the increase
of the log likelihood function to be larger than the increase of the lower bound q. Specifically, if
we substitute q(Z) = P(Z|X ,θold) into equation (2.56), it turns to

L(q,θ) = ∑
Z

P(Z|X ,θold) lnP(X ,Z|θ)−∑
Z

P(Z|X ,θold) lnP(Z|X ,θold)

= Q(θ ,θold)+ constant (2.58)

where
Q(θ ,θold) = ∑

Z
P(Z|X ,θold) lnP(X ,Z|θ) (2.59)

is the expectation of the log likelihood function of θ with respect to the conditional distribution
of Z given X and old value θold. The constant in equation (2.58) is the negative entropy of
distribution q that is independent of θ . Therefore, the quantity that is maximised in the M
step is the expectation of the complete data log likelihood. For probability distributions in the
exponential family, the M-step has a closed form solution. The E-step pushes the lower bound
up so it becomes equal to the log likelihood. It is this combination of facts that is the source
of the improvement. Therefore, the iterative EM cycle will increase the log likelihood function
until the log likelihood does not change, and the estimates of θ that maximises the incomplete
data log likelihood will be found.

2.4.3 Modification and generalization of EM algorithm

The EM algorithm can also maximise the posterior distribution under the Bayesian framework.
Let P(θ) denote the prior distribution of θ . According to Bayes’ theorem in equation (2.2), the
posterior distribution P(θ |X) can be expressed as

P(θ |X) =
P(X |θ)P(θ)

P(X)
. (2.60)

By applying logarithm to both sides of the equation, and it turns to

lnP(θ |X) = lnP(X |θ)+ lnP(θ)− lnP(X). (2.61)

By substituting equation (2.55) into equation (2.61), it turns to

lnP(θ |X) = L(q,θ)+KL(q||p)+ lnP(θ)− lnP(X)

≥ L(q,θ)+ lnP(θ)− lnP(X) (2.62)
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where lnP(X) is a constant. The EM algorithm for the posterior distribution is to maximise
the right hand side of equation (2.62) with respect to q and θ . Since q is only dependent on
L(q,θ), the E step for the posterior distribution is exactly the same as the standard EM algorithm.
However, the M step for the posterior distribution is different. Specifically, for the posterior
distribution case, the maximization of Q(θ ,θold) with respect to θ for the standard EM algorithm
is modified to maximise Q(θ ,θold)+ lnP(θ) with respect to θ .

Loosely speaking, the EM algorithm overcomes a potential difficulty that the maximization
of the log likelihood function is intractable by separating the maximization into two steps, and
for each step, the maximization is easier to implement. However, the EM algorithm may be
less effective and less efficient if either or both E and M steps are intractable. This potential
less effectiveness leads to the modification of the EM algorithm. The generalised EM (GEM)
algorithm tends to fix the intractable issue for M step. The EM algorithm aims to maximise
L(q,θ) with respect to θ , but the GEM aims to search a proper update of θ to increase the
value of L(q,θ). The GEM can be applied using nonlinear optimization like conjugate gradients
algorithm [31]. Expectation conditional maximization (ECM) has been introduced to be another
form of GEM [32]. Similar to the modification to the M step, the generalization of E step has
been introduced in [33]. In this modification, partial optimization of L(q,θ) has been performed
with respect to q(Z) during the E step of the EM algorithm.

More details about the EM algorithm can be found in [18], Section 9.4. The applications of
the EM algorithm to the medical image processing can be found in Chapter 5.

2.5 Gaussian process

2.5.1 Introduction

In statistics, a Gaussian process is a stochastic process, and any finite collection of random vari-
ables of the Gaussian process is multivariate Gaussian distributed. In other words, the Gaussian
process can be viewed as an infinite-dimensional generalization of the Gaussian distribution. In
this section, the Gaussian process regression is reviewed, while the application of the Gaussian
process regression will be illustrated in Chapter 4. More details of the Gaussian process can be
found in [12] (Chapter 21), and [34].

2.5.2 Gaussian process regression

Let y denote the observation (dependent variable) and x denote the input (independent variable).
The regression analysis aims to reveal the underlying relationships between y and x. Gener-
ally, the observation y contains some unknown noise, and the regression can be mathematically
expressed as

y = f (x)+ ε (2.63)
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where the function f represents the relationship between y and x. If the mathematical expression
of the function f is known, e.g. simple linear model f (x) = ax+b, the regression analysis would
be the quantification and inference of the unknown parameter a and b. However, in reality,
the mathematical expression of f might be unknown, and therefore nonparametric regression
methods can be used. A Gaussian process can be assigned as the prior distribution of the function
f as a flexible nonparametric regression.

A Gaussian process can be written as

f ∼ GP(m,k) (2.64)

where m is the mean function and k is the kernel (co-variance) function. The Gaussian process
f ∼ GP(m,k) is a nonparametric model because the regression function f itself is an infinite
object. The mean function m denotes the initial guess of the function f , and therefore is usually
suggested as some convenient forms, e.g. linear model m(xxx) = xxxβ and constant m(xxx) = C

(see details in [12], Chapter 21). The function k represents the kernel function between the
process at any two points, x and x

′
. Specifically, given xxx = [x1,x2, ...,xn]

T and a n×n covariance
matrix K, the element (i, j) of the matrix can be expressed as k(xi,x j), and it is usually written
as a shorthand form k(x,x

′
). The kernel function controls the degrees of the smoothness and

fluctuation of the Gaussian process. The details of the kernel function of the Gaussian process
can be found in Section 2.5.3.

2.5.3 Kernel function

The choice of the kernel function of a Gaussian process prior will impose structural assumptions
like smoothness, fluctuation, periodicity. Since the summation and the product of Gaussian
processes are still Gaussian processes, their kernel functions can be easily combined. Some
commonly used kernel functions are reviewed in this section.

One of the most commonly used kernel functions is called the squared exponential covari-
ance function. Its mathematical expression is

k(x,x
′
) = τ

2 exp

(
−|x− x

′|2

l2

)
. (2.65)

where τ and l are unknown parameters, and |x− x
′ |2 is the squared Euclidean distance between

x and x
′
. In this kernel function, the parameter τ controls the magnitude of the function, and

the parameter l controls the smoothness of the function. Figure 2.5 shows the comparisons of
different values of hyperparameters in the kernel function. The controlling of the values of the
hyperparameters can be easily observed from these figures.

The hyperparameter l in equation (2.65) is invariant. This means that the degrees of the
smoothness in all directions are the same. The invariant property is named “isotropic”. In some
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(a) τ2 = 0.5, l2 = 1 (b) τ2 = 1, l2 = 0.5 (c) τ2 = 0.25, l2 = 0.25

Figure 2.5: Gaussian process priors given different values of hyperparameters. Panels (a) -
(c) show the Gaussian process priors with different values of hyperparameters given squared
exponential covariance function and 0 mean function.

high-dimensional cases, the isotropic Gaussian process is not ideal because it cannot character-
ize the regression surface efficiently. On the other hand, anisotropic Gaussian processes may
perform better for high-dimensional cases. For example, a modified squared exponential covari-
ance function,

k(x,x
′
) = τ

2 exp

(
−

P

∑
j=1

|x j− x
′
j|2

l2
j

)
(2.66)

is an anisotropic Gaussian process. The hyperparameter l j is a length scale parameter that con-
trols the smoothness of the Gaussian process prior in the direction of the jth predictor. Model
selections can be implemented to choose the values of the hyperparameters {l j} so that the
anisotropic smoothness in different directions can be adapted given the input data.

Many commonly used kernel functions have been introduced in [2] (Chapter 4). A brief
summary of these kernel functions can be found in Table D.1 in Appendix D.

2.5.4 Inference

Given the observed data, the Gaussian process prior of a function f can be updated to the poste-
rior. In practice, the infinitely dimensional Gaussian process posterior cannot be estimated, but
any finite subset of the realization of the function { f (xi)}n

i=1 is multivariate Gaussian distributed
given the observed data points {xi}n

i=1. Moreover, given newly observed points x̃, the posterior
predictive distribution at x̃ can be inferred. Firstly, the joint distribution for f and f ∗ given a
zero mean Gaussian process prior GP∼ (0,k) is[

f

f ∗

]
= N

(
0,

[
K(x,x)+σ2I K(x, x̃)

K(x̃,x) K(x̃, x̃)

])
(2.67)

where noise variance σ2 has been imposed to the diagonal of covariance of f because of the ε in
equation (2.63). According to standard Gaussian conditional expressions in [18], the posterior
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predictive distribution of f ∗ is
P( f ∗| f ) = N(µµµ,Σ) (2.68)

where
µµµ = K(x, x̃)(K(x,x)+σ

2I)−1 f (2.69)

and
Σ = K(x̃, x̃)−K(x, x̃)(K(x,x)+σ

2I)−1K(x̃,x). (2.70)

2.6 Model selection and cross-validation

2.6.1 Introduction

Model selection is the task to compare different candidate models given data. Although all
models are usually considered to have mismatches with the data in practice, it is necessary to
assess the accuracy of the prediction given different models and choose the one that is fit to
the data. Moreover, the model that is fitted to the data with the least mismatches might not
be favoured because the complexity of the model should also be considered. In other words,
the degree of the complexity (or the number of parameters) of a model should be penalised for
comparisons. Different information criteria are introduced to estimate the prediction error and
select the statistical model given the penalty of the number of parameters.

Generally, for fit models, the out-of-sample predictions are less accurate than the within-
sample predictions, and this phenomenon is called overfitting. Cross-validation is one type
of approach that assesses the prediction accuracy between different statistical models that are
generalised given independent data set. Typically, the cross-validation method can avoid the
overfitting issue, but it also has some drawbacks, e.g. computationally expensive.

In this section, some commonly used information criteria for model selection are reviewed.
Moreover, some cross-validation approaches are also reviewed.

2.6.2 Prediction accuracy assessment

Prediction accuracy is one way to evaluate the performances of different models. There are
many different ways to define the prediction accuracy of different models. Some generic scoring
functions and rules are reviewed here.

For point prediction, only a single value is predicted as the future observation. The functions
used to measure the point prediction are named scoring functions. The most commonly used
scoring function is called “mean squared error (MSE)”. Let {yi}n

i=1 denote the observation and
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θ denote the parameters of the model. The MSE can be expressed as

MSE =
1
n

n

∑
i=1

(yi−E(yi|θ))2 , (2.71)

or a weighted version

MSE =
1
n

n

∑
i=1

(yi−E(yi|θ))2

var(yi|θ)
, (2.72)

where E(·|·) and var(·|·) denote the conditional expectation and the conditional variance respec-
tively. In regression analysis, the MSE is sometimes referred to as the unbiased estimate of
error variance, which is calculated by the sum of squared errors (SSE) divided by the number of
degrees of freedom of the model. The SSE is expressed as

SSE =
n

∑
i=1

(yi− f (xi))
2 (2.73)

where xi is the independent variable and f is the regression function.
For probabilistic prediction, the probability of future events is given as the forecast. Specif-

ically, in contrast to the point prediction that predicts the future observation ỹ, the probabilistic
prediction aims to obtain the inferences of ỹ with the full analysis of the uncertainty. Scoring
rules are used to measure the probabilistic prediction [35]. The most commonly used scoring
rule is called logarithmic score [36]. Given the likelihood function p(y|θ), the logarithmic score
is log p(y|θ). Rather than the log-posterior, the log-likelihood is used for the prediction assess-
ment. The reason is that the fitness of the model to the data is used to assess the prediction
accuracy, but the introduction of the prior does not aim to improve the prediction accuracy.
More details about the logarithmic score can be found in [12] (Section 7.1) and [35].

The ideal measurement of the fitness of a model is the out-of-sample prediction given new
data that is noise free. Let f denote the true data-generation function, y denote the observed data
and ỹi denote a new point that is generated by f . The logarithmic score of the out-of-sample
prediction given ỹ is

logPpost(ỹi) = logEpost (P(ỹi|θ)) = log
∫

P(ỹi|θ)Ppost(θ)dθ (2.74)

where the subscript post denotes the probability or the expectation over the posterior distribution
of θ . Considering the true future data ỹ is usually hard to acquire, an alternative choice is the
expected out-of-sample log predictive density (elpd) that can be expressed as

elpd = E f
(
logPpost(ỹi)

)
=
∫ (

logPpost(ỹi)
)

f (ỹi)dỹi (2.75)

where f (ỹi) is the realization of the future data ỹ that is generated by f . In practice, the data
generation function f is usually unknown, and therefore the estimate of f will be inserted.
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However, this will lead to the overfitting issue. Given n number of new points, equation (2.75)
expands to expected log pointwise predictive density (elppd),

elppd =
n

∑
i=1

E f
(
logPpost(ỹi)

)
. (2.76)

Given the point estimate θ̂(y), the elpd in equation (2.75) can also be expressed as

elpd = E f
(
logP(ỹ|θ̂)

)
. (2.77)

In reality, the parameter θ is unknown, and the posterior distribution Ppost(θ) = P(θ |y) can be
used to calculate the log predictive density logP(y|θ). According to equation (2.74), the log
pointwise predictive density is expressed as

lppd = log
n

∏
i=1

Ppost(yi) =
n

∑
i=1

log
∫

P(yi|θ)Ppost(θ)dθ . (2.78)

Given s = 1,2, ...,S simulations of θ , the lppd can be approximately computed by

computed lppd =
n

∑
i=1

log

(
1
S

S

∑
s=1

P(yi|θ s)

)
(2.79)

when the number of simulation S is large enough such that the simulations can explore the whole
posterior distribution of θ .

2.6.3 Information criteria

Akaike information criterion (AIC)

Akaike information criterion is one type of Information criterion that is based on the point esti-
mate θ̂ , especially the maximum likelihood estimate (MLE) [37]. The out-of-sample prediction
accuracy of the AIC is defined by equation (2.77) with corrections based on the number of the
parameters. The correction is imposed to add the penalty based on the model complexity to
avoid the overfitting issue. Equation (2.77) can not be calculated directly, and therefore it is
estimated by the maximum log likelihood function logP(y|θ̂). The expression of the AIC is

AIC =−2logP(y|θ̂)+2k (2.80)

where k is the number of the parameters in the model. −2 is multiplied by the estimation of
the corrected elpd making this first term equivalent to the deviance in a general linear model
framework.

One disadvantage of the AIC is that the correction term k is inaccurate in some circum-
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stances, e.g. given informative prior distribution or the model having a hierarchical structure.
For informative priors, or the model having a hierarchical structure, the effective number of pa-
rameters is less than the nominal number of parameters. Therefore, the correction term k cannot
accurately reflect the penalty of the model complexity.

Bayesian information criterion (BIC)

Bayesian information criterion is a similar Information criterion to the AIC. This information
criterion is firstly published in [38]. The BIC introduces the sample size of the data n into the
penalty term, and therefore its expression is

BIC =−2logP(y|θ̂)+ k logn. (2.81)

Therefore, for a large set of data, the penalty of the model complexity will be increased dramat-
ically, and a simpler model is preferred. Different from other information criteria introduced
here, the BIC aims to approximate the marginal probability density of the data, P(y). On the
other hand, the other information criteria are motivated by an estimation of predictive fit.

Deviance information criterion (DIC)

Deviance information criterion [39] can be viewed as a Bayesian version of the AIC, which
is usually applied to select the model when the posterior distributions are approximately ob-
tained by the MCMC approaches. Two changes are made to equation (2.80) to form the DIC.
Firstly, the MLE θ̂ is replaced by the posterior mean θ̂Bayes = E(θ |y). Secondly, the number of
parameters k is replaced by a data-based bias correction. The predictive accuracy of the DIC is

ˆelpdDIC = logP(y|θ̂Bayes)−PDIC (2.82)

where
PDIC = 2

(
logP(y|θ̂Bayes)−Epost (logP(y|θ))

)
(2.83)

is the effective number of parameters. Given simulations θ s, s= 1,2, ...,S, PDIC can be calculated
by

computed PDIC = 2

(
logP(y|θ̂Bayes)−

1
S

S

∑
s=1

logP(y|θ s)

)
(2.84)

according to [40]. For a linear model given a uniform prior distribution, the effective number
of parameters PDIC degenerates to the number of parameters k and P(y|θ̂Bayes) = P(y|θ̂). This
makes the DIC equivalent to the AIC. Similarly, the value of DIC is the predictive accuracy
multiplied by −2 as follows

DIC =−2logP(y|θ̂Bayes)+2PDIC. (2.85)
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Watanabe-Akaike information criterion (WAIC)

Watanabe-Akaike information criterion [41] is an asymptotic Bayesian leave-one-out cross-
validation. In other words, Bayesian leave-one-out cross-validation converges asymptotically
to WAIC. Two WAIC correction methods are reviewed here to adjust the log point prediction in
equation (2.79).

The first method of the correction is similar to the structure of PDIC. Its mathematical ex-
pression is

PWAIC1 = 2
n

∑
i=1

(
logEpost(yi|θ)−Epost (logP(yi|θ))

)
. (2.86)

The expectation terms in equation (2.86) can be computed by approximations using averages
over the posterior samples θ s as follows:

computed PWAIC1 = 2
n

∑
i=1

(
log

(
1
S

S

∑
s=1

P(yi|θ s)

)
− 1

S

S

∑
s=1

logP(yi|θ s)

)
. (2.87)

The second method of the correction is based on the variance of the log predictive density over
n points. Specifically,

PWAIC2 =
v

∑
i=1

varpost(logP(yi|θ)) (2.88)

where the posterior variance of the log predictive density can be approximately calculated by

computed PWAIC2 =
n

∑
i=1

V S
s=1 (logP(yi|θ s)) (2.89)

where V S
s=1 denotes the sample variance,

V S
s=1(as) =

1
S−1

(as− ā)2. (2.90)

Therefore, the WAIC can be obtained by

ˆelppdwaic = lppd−PWAIC (2.91)

where lppd can be approximately acquired from equation (2.79) and PWAIC can be calculated
by either equation (2.87) or equation (2.89). Generally, PWAIC2 is suggested because it give a
closer results to leave-one-out cross-validation and the details can be found in Section 7.2, [12].
Similarly to other criteria, the value of WAIC is computed by ˆelppdwaic multipiled by −2.

Compared to the AIC and the DIC, the WAIC uses the posterior distribution of the parameters
θ instead of using the point estimation of the parameters θ . This property is favoured because
the WAIC evaluates the prediction accuracy that is used for new data. On the other hand, the
prediction accuracies obtained according to AIC and DIC is based on the plug-in predictive
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density. Therefore, in this study, the model selections in Chapters 6 and 7 are both based on
the values of the WAIC. BIC could also be applied for those two chapters. However, for the
consistency of the work, WAIC has been chosen to apply the model selection.

2.6.4 Cross-validation

Cross-validation [42] is a technique to use the training data to fit the model and use the testing
data to evaluate the prediction accuracy. It aims to assess the ability of a model to predict new
data that is not used in the training session. This technique can avoid the overfitting issue. How-
ever, cross-validation might be computationally expensive. The leave-one-out cross-validation
is an extreme case that fit the model n times.

In the Bayesian framework, the data are separated into two sets ytrain and ytest repeatedly. The
model firstly is fitted by the training set ytrain, and generates the posterior distribution P(θ |ytrain).
Then, the evaluation of the prediction accuracy using log predictive density is carried out based
on the testing set. This can be expressed as

logPtrain(ytest) = log
∫

Ppred(ytest|θ)P(θ |ytrain)dθ . (2.92)

Similar to the contents in Section 2.6.3, the log predictive density can be approximately com-
puted by

logPpred(ytest|θ) = log

(
1
S

S

∑
s=1

P(ytest|θ s)

)
. (2.93)

where θ s = θ 1,θ 2, ...,θ S are the S simulation draws of θ .
Leave-one-out cross-validation is specified here because leave-p-out cross-validation is rather

similar to it. For the case of leave-one-out cross-validation, the data is partitioned n times. For
each time, only one data point is put into the testing set, and other data points are put into the
training set. Therefore, n different inferences Ppost(−i), (Ppost(−i) denotes the inference given test
data (i) and training data (all data except for i)), are generated, and for each generated inference,
S simulations {θ s

−i}S
s=1 (the simulations given test data (i) and training data (all data except for

i)) are drawn. The Bayesian leave-one-out estimation for out-of-sample predictive fit is

lppdloo-cv =
n

∑
i=1

logPpost(−i)(yi), (2.94)

and it can be approximately computed by

ˆlppdloo-cv =
n

∑
i=1

log

(
1
S

S

∑
s=1

P(yi|θ s
−i)

)
. (2.95)

Since each prediction is calculated by n−1 data points, underestimation of the predictive fit is
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caused. If the number of data points n is large, the underestimation can be neglected. However,
if n is small, a first order bias correction can be adopted. The details of the bias correction can
be found in [12], Section 7.2.

The leave-p-out cross-validation partitions n data points into training set with n− p points
and testing set with p points. Cn

p times inferences are carried out overall.



Chapter 3

Myocardial Perfusion DCE-MRI

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used as a non-
invasive approach to assess coronary heart disease (CHD) [8]. It can obtain multiple images of
the region of interest (ROI) (e.g. left ventricular myocardium) before, during and after intra-
venous administration of exogenous MRI contrast agent (see Figure 3.7). The intravenously
injected contrast agent alters image signal intensity so that the hypo-perfused region can be de-
tected. Typically, three positions, i.e. apical, mid-cavity and basal slices, are acquired. The
images shown in Figure 3.7 are examples of T1-weighted myocardial perfusion DCE-MRI.
Gadolinium-based contrast agents (GBCA) shorten local T1 (spin-lattice or longitudinal) re-
laxation time in proportion to local GBCA tissue concentration. In this chapter, the background
information pertaining to myocardial perfusion DCE-MRI and basic heart physiology is re-
viewed.

3.1 Heart physiology and coronary heart disease

3.1.1 Cardiac anatomy

The human heart consists of four chambers, the right and left atria and the right and left ventricles
(see panel (a), Figure 3.1). The function of the heart can be described by two circulation systems,
i.e. systemic circulation and pulmonary circulation. For systemic circulation, the heart provides
oxygen-rich blood through the aorta from the left side of the heart to other organs of the human
body. For pulmonary circulation, the right side of the heart receives low oxygen blood from
the circulation system and pumps it into the lungs, where the blood receives oxygen and gives
off carbon dioxide. The left ventricle wall is thicker than the right ventricle wall because the
left side of the heart has a higher workload. More details of the heart physiology can be found
in [43].

Since the nutrients cannot diffuse through the heart quickly, the coronary arteries, the blood
vessels wrapping the heart, provide blood. The details of the coronary circulation are different

33
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(a) Diagram of a human heart (b) Coronary circulation

Figure 3.1: Diagram of human hearts. Panel (a)1 shows the major components of a human heart
which include four chambers, main blood vessels, the direction of blood flow, etc. Panel (b)2

shows the coronary arteries of a human heart.

between individuals, but the right coronary artery (RCA), left anterior descending (LAD) and
left circumflex (LCX) are the three main branches of the epicardial blood supply network (see
panel (b), Figure 3.1).

3.1.2 Coronary heart disease

Coronary heart disease (CHD) is a major cause of death all over the world [44]. 382,820 deaths
in the US were caused by CHD in 2020 [7] . Myocardial ischaemia (inadequate perfusion or
capillary blood flow) is implicated in many forms of CHD. In particular, impaired blood supply
to the myocardium occurs as a consequence of the narrowing of one or more coronary arteries.
The limited supply of blood causes hypoxia (reduced oxygen supply) in the myocardium, espe-
cially under stress (either physical or pharmacological). Chronic hypoxia causes the dramatic
reduction in cell function, and the patient may suffer angina pectoris. However, if the blood
supply to these cells has been re-established, they will recover. On the other side, complete
obstruction of the blood flow, e.g. thrombus formation on a vulnerable plaque, may cause my-
ocardial infarction (heart attack). The myocytes in the affected region will die and are replaced
by the non-contractile scar tissue. If the patient survives after the myocardial infarction, the
lesion can cause the heart to have an abnormal contractile function.

1The source of the image is from Wikipedia by user Wapcaplet, and the links is: https://en.wikipedia.
org/wiki/Heart#/media/File:Diagram_of_the_human_heart_(cropped).svg.

2The source of the image is from Wikipedia contributed by Patrick J. Lynch, and the links is: https://en.
wikipedia.org/wiki/Coronary_arteries#/media/File:Coronary_arteries.svg.

https://en.wikipedia.org/wiki/Heart#/media/File:Diagram_of_the_human_heart_(cropped).svg
https://en.wikipedia.org/wiki/Heart#/media/File:Diagram_of_the_human_heart_(cropped).svg
https://en.wikipedia.org/wiki/Coronary_arteries#/media/File:Coronary_arteries.svg
https://en.wikipedia.org/wiki/Coronary_arteries#/media/File:Coronary_arteries.svg
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Figure 3.2: Myocardial lesion in a LGE image. The source of the image is from the datasets of
the PhD program. The tissues inside the red line denote the myocardial lesion in a LGE image.

There are many medical therapies to prevent myocardial ischaemia. For example, lifestyle
changes, e.g. exercises, smoking cessation, diet improvements, can slow the progress of is-
chaemia [45]. Cholesterol lowering agents can decrease the probability of the generation of
blood clots [46]. Beta blockers can reduce oxygen demand and decrease hypoxia by lower-
ing heart rate [46]. Nitrates can increase blood supply by vasodilation (widening of the blood
vessels) [47].

Mechanical interventions, e.g. physically restoring the blood flow to the heart, can also
prevent myocardial ischaemia. Some surgical approaches are applied to patients who are at
a high risk of myocardial infarction. Percutaneous transluminal coronary angioplasty (PTCA)
involves insertion of a catheter into an artery in the arm or leg of the patient. Under X-ray
guidance, the catheter is moved to the stenotic site, and an inflated balloon is applied to squash
the plaque against the artery wall. To prevent restenosis after the PTCA, a stent is deployed
in the artery to keep the artery open. A coronary artery bypass graft (CABG) makes use of an
artery or vein from another part of the body to connect the aorta directly to the stenosis region.

It is beneficial to re-establish the blood supply to living but hypo-perfused tissues. However,
if the tissue is infarcted, i.e. non-viable, it does not help to restore the blood supply. Furthermore,
the risk imposed by the arterial catheterization procedure is small but significant. Therefore, it
is crucial to avoid unnecessary surgery. MRI can be used to assess the viability of myocardial
tissue. The lesion shows as a bright zone on late gadolinium enhanced (LGE) images (see
Figure 3.2). These images offer vital diagnostic information about whether or not the patient
will experience improvement after the restoration of blood supply [48].
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3.2 Myocardial perfusion DCE-MRI: artifacts

The myocardial perfusion DCE-MRI data can be affected by several different kinds of artifacts.
These artifacts could cause errors in the results of quantitative analysis. Generally, the artifacts
stem from two sources: the acquisition system and the patient. Both types of artifacts can cause
low quality imaging and further affect the accuracy of the quantitative analysis. In this section,
major artifacts and their corresponding remedies are introduced.

3.2.1 Surface coil inhomogeneity

Surface coils are applied to improve the quality of the MR images, i.e. to improve the signal-to-
noise ratio (SNR). However, since the sensitivity of the coils decreases as the distance from the
coils increases, the generated signals are distributed inhomogeneously [49, 50]. One straight-
forward method is to partially compensate for the inhomogeneity by putting two surface coils
on both sides of the body. For myocardial perfusion DCE-MRI, making use of adiabatic (B1-
insensitive) radio frequency (RF) inversion or saturation pulses, or composite pulses is the most
common method to solve the inhomogeneity [8]. After the acquisition of the images, baseline
correction can also be used to correct for inhomogeneity. Specifically, since the surface coil
inhomogeneity is spatially distributed within the myocardium for all time points, this inhomo-
geneity can be mapped out from the pre-contrast images. Therefore, the myocardial signals can
be normalised by the pre-contrast values, and the effect of surface coil inhomogeneity will be
reduced [8, 49].

3.2.2 Dark rim artifacts

The dark rim artifacts describe a phenomenon that pixels close to the endocardium boundary
exhibit extremely low signal intensities during the first pass of the contrast agent. These pixels
might be mistaken for hypo-perfusion and sub-endocardial defects. There are two main dif-
ferences between dark rim artifacts and genuine hypo-perfusion defects. Firstly, the dark rim
artifacts usually only last for a few heartbeats, but the genuine hypo-perfusion defects usually
show persistently low signal intensities [51]. Secondly, the dark rim artifacts can cause the sig-
nal intensities of the affected pixels to decrease below the baseline (pre-contrast) values [52].
There are multiple factors that contribute to the appearance of the dark rim artifacts, and the
most prominent amongst them are listed below:

• The truncation or the non-uniformity across k-space causes the distortion of point spread
function, which would cause signal variations adjacent to the boundaries showing bright
or dark bands [53]. This effect becomes more substantial when a higher dose of contrast
agent is used. Spatial smoothness methods, e.g. window function, are used to reduce the
effect of this factor [54].
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• The spill-over of signals from neighbouring pixels will also cause the dark rim artifacts
[53, 54]. Adding a spill-over term to the myocardium contrast enhancement model would
solve this problem [55].

• The motion of the object during the acquisition of the images will cause discontinuities in
k-space, and band effect occurs at the boundary of the tissues [56].

• The increase of magnetic field distortions around the boundaries of the tissues may also
cause the dark rim artifacts [52, 57].

3.2.3 Motion artifacts

During the acquisition of the myocardial perfusion DCE-MRI, the deformation or the displace-
ment of the heart causes motion artifacts. The two main causes of the deformation or the dis-
placement of the heart are cardiac motion and respiratory motion. The motion artifacts lead to
blurring, mis-registrations and deformation of the images, and further lead to inaccurate quanti-
tative analysis [58].

The cardiac motion is caused by the pumping action of the heart. Theoretically, this kind of
artifact can be eliminated by making use of electrocardiogram (ECG) to determine at what phase
of the cardiac cycle the heart images will be obtained [59]. Nevertheless, it is still possible that
the trigger time has been set wrongly, and the deformation or blurring of the heart is generated.

Respiratory motion artifacts are most common patient-related artifacts in myocardial perfu-
sion DCE-MRI. The effects of the respiratory motion have been studied in [60, 61]. Moreover,
the quantification of rigid and non-rigid motion of the heart caused by respiratory motion has
been studied in [62]. During the acquisition of myocardial perfusion DCE-MRI, the patients are
usually asked to hold their breath during the contrast wash-in phase to reduce the effect of the
respiratory motion. However, for a patient with cardiac heart disease, it is hard to hold the breath
for a long period of time. This may cause the deformation or blurring of the heart images.

The effects of all of the artifacts mentioned in this section should be minimised prior to
image processing. Some solutions are applied during the acquisition of the images, e.g. ask
patients to hold their breath, and some solutions are applied after the acquisition of the images,
e.g. normalisation of myocardial signals using baseline values. In Section 3.3, the contouring
method for the segmentation of the myocardium image will be introduced to reduce the effects
of artifacts further.

3.3 Myocardial perfusion DCE-MRI data

The artifacts that may affect myocardial perfusion DCE-MRI have been introduced in the previ-
ous section. In this section, a brief introduction to the myocardial perfusion DCE-MRI data and
the contouring method for the myocardium image are described.
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Table 3.1: The scan parameters of the myocardial perfusion DCE-MRI used in this study

.

TR (repetition time) 194.00ms
TE (echo time) 0.98ms

flip angle 8◦

TS (saturation time) 101.00ms
Matrix size 92×128 (reconstruct to 184×256)

Slice thickness 8mm
mean FOV (Field of view) 266.43mm × 371.54mm

FOV range 223mm - 359mm × 320mm - 500mm

3.3.1 Introduction of the data

The cardiac MRI exams were performed with a Siemens MAGNETOM Avanto (Erlangen, Ger-
many) 1.5-Tesla scanner with a 12-element phased array cardiac surface coil in Golden Jubilee
National Hospital, Glasgow, UK at 2011. The assessment of resting myocardial perfusion was
performed during intravenous administration of 0.075 mmol/kg of contrast agent (gadoterate
meglumine, Dotarem, Guebert S.A.).

In this study, the myocardial perfusion DCE-MRI data were obtained in 30 patients who
suffered myocardial infarction. For each patient, longitudinal data were acquired on day 1, day
2, day 7 and day 180 post myocardial infarction. Each DCE-MRI dataset was indexed by the
patient number {i}30

i=1 and the scan number { j}4
j=1. Three DCE-MRI datasets were not available

and their indexes are (i = 13, j = 1), (i = 16, j = 4) and (i = 22, j = 3). For each DCE-MRI
dataset, three slices, i.e. apical, mid-cavity and basal, have been acquired. For each slice, 21 -
60 dynamic frames were acquired. The structure of the data is illustrated in Figure 3.3. The scan
parameters are shown in Table 3.1.

Since the signal-to-noise ratio (SNR) for the mid-cavity slice is usually the highest, all anal-
yses in this study are applied to the mid-cavity slice. However, it is worth mentioning that all
methods used in this study are generic to all three slices. In specific, the methods introduced in
Chapter 5 are applied to a single image. The methods developed in Chapters 6 and 7 are applied
to a single DCE-MRI dataset.

3.3.2 Myocardium contouring

All data used in this thesis are pre-processed by manual contouring to define the left ventricle
(LV) myocardial wall. Specifically, for each DCE-MRI dataset, the endocardium and the epi-
cardium are manually drawn by the author under supervision of an expert using a cardiac image
analysis software (Mass 8.1, Medis, Leiden University, Leiden, The Netherlands). Figure 3.4
shows an example of the delineated LV myocardium. The green curve and the red curve de-
note the epicardial and the endocardial borders, respectively. The yellow square represents an
example region of the LV blood pool. The blue cross is a reference point chosen as the infe-
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Figure 3.3: The structure of the data used in this study is shown. Specifically, there are thirty
patients overall. For each patient, there are four DCE-MRI datasets. For each DCE-MRI dataset,
there are three slices. For each slice there are 21−60 dynamic frames.

rior insertion point, which is located at the junction of the right ventricle and the left ventricle
of the inferior. The region between the red curve and the green curve is the LV myocardium.
The five white lines and one blue line separate the myocardium into six regions (60 degrees for
each segment) which is the regional segmentation suggested in [4]. The blood pool ,i.e. rep-
resented by the yellow square ROI, is used to represent the arterial input of the blood supply
to the myocardium. The blue reference point is used to locate the relative position of the heart
and therefore ensures to subdivide the myocardium into circumferentially equidistant regions
suggested in [4].

In this study, the myocardium contouring was performed manually based on the maximum
enhancement (ME) image. Then, the contours are replicated to all images in the same DCE-
MRI dataset. Rigid translations are allowed to correct for motion artifacts (see Section 3.2.3)
during the acquisition of the images. In other words, the motions of the myocardium during
the acquisition of the images are assumed to be limited to rigid translation. However, in many
cases, non-rigid deformation and rotation can be observed. This limitation may cause inaccurate
analysis. However, if the contours are drawn separately within every dynamic frame, it is diffi-
cult to accurately contour the endocardium during the pre-contrast (baseline) phase. Figure 3.5
shows an example of the dynamic image frame acquired prior to the arrival of the contrast into
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Figure 3.4: Myocardial perfusion DCE-MRI contours. The green curve denotes the LV epicar-
dial border (including the septal wall). The red curve denotes the LV endocardial border. The
tissues inside the yellow square denote the LV blood pool sample, and the blue cross denotes the
reference point.

the LV cavity. It can be observed that the endocardial border is unclear, and it is hard to draw
contours based on this image. Moreover, for the dynamic image frame with non-rigid contours,
pixelwise analysis will be impossible. Although some projection methods, e.g. the method il-
lustrated in Chapter 8, can be applied to tackle this problem, there still will be some information
loss because the projection methods cannot reproduce all information (see details in Chapter 8).
Therefore, in this study, the contours are drawn using the ME image and rigid translations are
applied to compensate the motion artifacts.

Since the dark rim artifacts may cause errors in both quantitative and semi-quantitative anal-
ysis, they are avoided by excluding the dark rim region from the myocardium. Figure 3.6 shows
the dark rim regions in different points. The region inside the orange contours is a suspicious
dark rim region. It can be seen that the signal intensities in the dark rim region in panel (a) are
visually lower than the signal intensities of other myocardial pixels. However, the signal inten-
sity of the dark rim region in panel (b) are not visually lower than the signal intensity of other
myocardial pixels. Therefore, this region is excluded from the myocardium. Although this may
generate some losses to the myocardial tissues, and failure to detect some subtle subendocaridal
perfusion defects, this approach minimizes the probability of false positive findings.
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Figure 3.5: Myocardial perfusion DCE-MR image before the contrast agent flows into the heart.
This image is from the same DCE-MRI data as Figure 3.4.

3.4 Diagnosing coronary heart disease using myocardial per-
fusion DCE-MRI

The myocardial perfusion reserve (MPR) is a criterion to diagnose coronary heart diseases. The
MPR is the ratio of stress and resting myocardial blood flow (MBF) estimates.

MPR =
Stress MBF

Resting MBF
(3.1)

The MBF can be obtained by quantitative or semi-quantitative approaches, which will be ex-
plicitly illustrated in Chapter 4. The rationale for expressing perfusion measures using MPR
is based on the concept of coronary flow reserve (CFR). The ratio of stress and resting coro-
nary flow measures the ability of the coronary system to maintain adequate blood flow in the
presence of stenosis. Specifically, given stenosis in the coronary artery, the coronary circulation
will compensate for the increased resistance to blood flow by vasodilation, and this ability is
measured by the CFR. The MPR is an analogous measure to CFR and has been proved to be
effective evidence of a diagnosis of CHD [63–66].

The MBF is also a criterion to diagnose coronary heart disease. To quantitatively or semi-
quantitatively analyze the MBF, the time signal intensity curve (TIC) needs to be obtained.
A ROI, i.e. the myocardium, is drawn on each image of the dynamic series. For each pixel
located within the myocardium, its signal intensity can be plotted at each time point. In panel
(f), Figure 3.7, the TICs of two specific pixels are plotted. One located in the hypo-perfused
region, and the other located in the normal-perfused region, are plotted. The pixel from healthy
tissue has both a larger maximum value and higher growth rate (gradient or up-slope) of signal
intensity than the pixel from lesion during the first pass of the contrast agent, i.e. time 18 to
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Figure 3.6: Dark rim regions in different time points
Panel (a) shows the image when the LV is enhanced. Panel (b) shows the image when the

myocardium is enhanced. The pixels inside the orange contours are suspicious dark rim region.

37 in panel (f), Figure 3.7. Meanwhile, the TIC of a ROI located in the blood pool represents
the contrast agent passing through the ventricular blood pool (i.e. arterial input), and the TICs
for myocardial tissues represent the contrast agent remaining within the myocardium. For both
myocardial TIC and blood pool TIC, there are initial dynamic frames that are named “baseline”,
i.e. time 0 to 12 in panel (f), Figure 3.7. This segment indicates the baseline signal intensity
before the contrast agent reaches the ventricles. The models using TICs to estimate the MBF
quantitatively or semi-quantitatively are introduced in Chapter 4.

There are many different approaches to estimate the MBF. For semi-quantitative analysis,
up-slope [38, 67] and MPR [68–70] are usually applied to estimate the MBF. For quantitative
analysis, the Fermi-constrained method [71–73], the model independent method [74–76], the
tracer-kinetic modelling [77,78], the one compartment model [79,80] and the uptake model [81]
have all been used to estimate MBF. There are numerous studies reporting the results of the com-
parisons among these quantification or semi-quantification methods [64, 80, 82]. One study has
reported that different methods are not significantly different [80], but one study has reported
that different methods are significantly different under certain circumstances [82]. Specifically,
for the rest data, there are no differences between the four methods. But for the stress data,
the Fermi method significantly overestimate the MBF. The principal aim of this thesis was to
develop methods for classification of the results of MBF estimation, regardless of their nature
and particulars of implementation. The proposed classification methods are generalisable, and
can be applied to TIC data (with or without some form of calibration), and also to a variety of
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perfusion-related indices, such as up-slope, MPR and MBF. The classification algorithms re-
sult in a simple, dichotomous grouping of tissue elements into the healthy tissues group and
the lesions set. The proposed classification results are designed to be independent on the ab-
solute values of underlying signal intensities or derived TIC parameters, as long as their rela-
tive ranking between different pixels remains unchanged. In other words, even if a particular
quantification method will overestimates the MBF systemically, e.g. Fermi method [82], the
classification approaches can still generate correct results based on the systemically overesti-
mated MBF map, because the systematic overestimation issue happens to affects to all pixels.
Similarly, the non-linearity relationship between signal intensity and contrast concentration will
cause an overestimation issue (see details in Section 3.5), but it will little affect the classification
results.

Most applications of the methods mentioned in the last paragraph are region-based using
the American Heart Association (AHA) segmentation (see details in Section 3.6). However, the
definition of discrete myocardial segments is subject to operator bias, and there is an inevitable
loss of granularity caused by signal averaging. The pixel-based method overcomes this draw-
back fundamentally. Thus, methods for classification of the results of the existing quantification
and semi-quantification methods described in this thesis are designed to be performed on a pixel
level.

3.5 Signal intensity to contrast agent concentration

The gadolinium concentration in local tissue has a non-linear relationship with the correspond-
ing signal intensity when the contrast agent dose is high [83,84]. The degree of the non-linearity
depends on the dose and rate of the contrast agent injection. Specifically, when the dose is low,
e.g. 0.01 mmol/kg, the relationship between signal intensity and contrast concentration is ap-
proximately linear [84]. However, this low dose dramatically reduces the signal-to-noise ratio
(SNR) and the concentration-to-noise ratio (CNR). Since the myocardium has a lower concen-
tration compared with the arterial input function (AIF) in the LV blood pool, the signal changes
within the myocardium are highly affected by the noise. This causes inaccurate estimations of
the MBF. With the dose of contrast agent getting higher, the relationship between signal inten-
sity and contrast concentration turns to be significantly non-linear, and eventually, the blood
pool signal will be saturated. This will lead to an error of the peak signal intensity and therefore
cause a systematic overestimation of the MBF. However, this will not affect the relative distri-
butions between the signal intensity and the contrast concentration since the signal intensity is a
monotonously increasing function of contrast concentration over the relevant range of concen-
trations within the myocardial tissue. Therefore, the non-linearity issue will not cause errors
systemically when the analysis aims to detect the extent of the hypo-perfusion region, i.e. clas-
sification of pixels into healthy and lesion groups, which is based on the relative distributions of
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Figure 3.7: Myocardial perfusion DCE-MRI. Panels (a) - (e) show 5 steps of myocardial perfu-
sion with time. The signal intensity in right ventricle (RV), left ventricle (LV) and myocardium
(M) are enhanced over time. (f) shows DCE-MRI signal intensity S(t) before, during and after
administration of MRI contrast agent. The three curves represent signal intensity changes in
three regions of interest: LV blood pool, lesion and contralateral “healthy” tissue.
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Figure 3.8: The 17 segments and their corresponding main branches of the coronary artery
network. The source of this figure is from [4].

the MBF for all myocardial pixels.
All myocardial perfusion DCE-MRI datasets are obtained with the contrast dose 0.075

mmol/kg in this study. Local tissue concentration of the contrast agent at time t, C(t), is ap-
proximated by the difference between the post-contrast signal S(t) and the baseline signal S(0):

C(t)≈ ∆S(t) = S(t)−S(0). (3.2)

As a result of the non-linear relationship between C(t) and S(t) in equation (3.2), the MBF
values will be systematically overestimated. While, the assumption of the linearity will affect
the absolute values of MBF but will not affect their relative distribution if S(t) is a monotonously
increasing function over a relevant range of C(t) [85] (Chapter 2).

3.6 The AHA mapping

A standardised regional segmentation method for heart images has been proposed by the Amer-
ican Heart Association (AHA) Writing Group, and is commonly referred to as the AHA seg-
mentation model [4]. The AHA mapping is widely adopted in the cardiac imaging community.
Although the methods illustrated in this study are pixel-based and the AHA mapping is region-
based, it is still worth explaining this method because the rationale of the AHA mapping is also
relevant for the interpretation of the pixel-based segmentation.

Based on the AHA mapping, the myocardium of the DCE-MRI is divided into 17 segments.
The myocardium in the basal slice is separated into 6 segments and indexed as numbers 1−6. In
the mid-cavity, the myocardium is separated into 6 segments and indexed as numbers 7−12. In
the apical slice, the myocardium is separated into 4 segments and indexed as numbers 13−16.
The 17th segment is located in the apical cap. Figure 3.9 shows the details of the 17-segment
system. The source of Figure 3.9 is from [4].

The blood supply to the myocardium is delivered by three main branches, i.e. the right
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(a) 17-segment system overall (b) 17-segment system given different planes of the im-
ages

Figure 3.9: The AHA 17-segment system. Panel (a) shows the suggested nomenclature for
tomographic imaging of the heart and the relative positions for 17 segments. Panel (b) shows
the vertical long-axis, horizontal long-axis and short-axis planes. The names and locations for
different segments in basal, mid-cavity and apical slices are also marked in this panel. The
sources of panels (a) and (b) are from [4].

coronary artery (RCA), the left anterior descending (LAD) and the left circumflex (LCX), as
mentioned in Section 3.1.1. An important aspect of the AHA mapping method is that this
method can link the three main branches with the 17 segments. In other words, each segment
corresponds to one of the three main branches under the AHA mapping. Figure 3.8 shows the
details of the correspondences between 17 segments and the three main branches of the coronary
artery.

In the AHA mapping framework, the ischaemia of the myocardium can be diagnosed by
comparing the MBF values with a given threshold for different segments. Specifically, if the
MBF value of a segment is lower than a given threshold (defined by the clinician), the my-
ocardium in this segment is suspected to be affected by ischaemia. Moreover, if the hypo-
perfusion is visually observed, the AHA mapping method can be used to locate the position
of the hypo-perfusion area and identify the likely location of the stenosis within a particular
coronary artery.



Chapter 4

Quantitative Myocardial Blood Flow

Myocardial blood flow (MBF) is an important diagnostic indicator of coronary heart disease, as
described in Section 3.4. In this chapter, both semi-quantitative and quantitative methods for the
estimation of MBF are introduced. Furthermore, the time-intensity curve (TIC) is also described
in this chapter, as TIC is an essential component of these methods.

4.1 Time-intensity curve

A time-intensity scatter plot shows the variation of signal intensity (SI) for a specific pixel or a
specific region of interest (ROI, an average of a group of pixels) over time. Various methods can
be employed to fit the time-intensity points, and the fitted curve is referred to as TIC. Figure 4.1
shows the TICs fitted by different methods, i.e. polynomial regression, Gamma variate regres-
sion and Gaussian process regression, for a pixel in the myocardium and a group of pixels in the
LV blood pool. The details of these regressions will be introduced in Section 4.2.

For the pixels in both the LV blood pool and the myocardium, their SIs have a period when
the values remain low and fluctuate around the value we refer to as “baseline” (from time 0 to
time 15 in Figure 4.1). During this time, the contrast agent has not yet reached the ROI, e.g. LV
the blood pool and the myocardium. The baseline is critical because it represents the state of the
ROI before the arrival of contrast agent, and therefore it can be used to normalize the SI after
the contrast agent flows into the ROI. In this study, the baseline is measured by a least-squared
method given a biexponential function [86], in which the signal intensity S(t) is expressed as

S(t) =

C t ≤ t0

C+
p2 p3

p2− p1
×
(
e−p1t− e−p2t) t > t0

(4.1)

where C is the baseline and t0 is the end time point of the baseline. C, t0, p1, p2 and p3 can be
estimated by the least-square regression. The SSE in equation (2.73) is used to select the best
combination of the parameter estimates.

47
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Figure 4.1: Time-intensity curve (TIC) fitted by polynomial regression, Gamma variate regres-
sion and Gaussian process regression. The shadow area is the 95% confidence interval predicted
by the Gaussian process regression. The x-axis shows the time point of the SI. Only the first
pass phases of the curves have been fit.

Generally, the perfusion process in the blood pool can be separated into two phases. The
first phase is the pre-contrast phase, and the SIs fluctuate around the baseline. Next comes the
first-pass of the contrast agent through the blood pool. However, the data may also contain the
second-pass of the contrast agent through the blood pool. If the second-pass data is included for
some specific methods, e.g. Fermi-constrained deconvolution (see Section 4.3.3), poor fitting
and inaccurate estimations may occur. Therefore, it is necessary to detect the end time point
of the first-pass and discard the second-pass data. In this study, the end time point of the first-
pass is detected by up-slope values. The up-slope is the first derivative of the TIC. The end
time point of the first-pass is the time point that the first positive up-slope value appears after
the minimal negative up-slope appears. Specifically, the first positive up-slope time point after
the minimal negative up-slope time point represents the time that the SI stops decreasing and
it increases. This means the second-pass starts. Figure 4.2 shows an example of the end time
point detection. In panel (a), Figure 4.2, the S(t) from the blood pool is shown. The up-slope
in panel (b), Figure 4.2, is obtained in a simple way: the value of up-slope at time point i in
panel (b) is calculated by the differences of SI between time point i+1 and i in panel (a). There
are many more precise method to obtain the values of up-slope, e.g. moving average filter.
However, the sign of the up-slope is interested here, and therefore the simple proposed method
is enough to detect the sign of the up-slope. Visually, the minimal up-slope in panel (b) can be
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(a) time-intensity points (b) up-slope

Figure 4.2: time-intensity points and up-slope for the blood pool. Panel (a) shows time-intensity
points for the LV blood pool, and panel (b) shows the corresponding up-slope estimates. The
red line in panel (b) shows the value 0.

observed at time point 21. The first positive value of up-slope after the minimal up-slope time
is at time point 26. This means that the end time point of the first-pass is at time 26 in panel (a),
Figure 4.2. In practice, the value of up-slope can be more accurately estimated using curve fitting
method [87, 88]. However, to identify the end time point of the first-pass, the simple method
mentioned above is sufficient because not the value but the sign of the up-slope determines the
end time point of the first-pass.

Given both end time points of the baseline and the first-pass, the complete signal variation
of the first-pass of the contrast agent through the LV blood pool can be extracted from the
TIC. Semi-quantitative and quantitative analysis methods are based on analysis of TIC over this
limited time segment, and these methods will be explicitly illustrated in Sections 4.2 and 4.3.

4.2 Semi-quantitative analysis

Semi-quantitative analysis of myocardial perfusion has been applied to detect significant perfu-
sion defects using DCE-MRI [49,89]. This analysis is performed with the perfusion features that
are derived from the TIC (see Figure 4.1) or the time-signal points (see panel (a), Figure 4.2).
Some of the most commonly used perfusion features are listed. Figure 4.3 shows the example
data used in this chapter.

• Peak signal intensity (SIpeak, PSI) and contrast enhancement ratio (CER): the PSI is the
peak value of the TIC during the first pass of the contrast agent. Generally, this feature is
standardised by the baseline. Specifically, the standardised quantity can be expressed as

CER =
SIpeak−SIbaseline

SIbaseline
, (4.2)
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(a) Pre-contrast (b) RV enhancement

(c) LV enhancement (d) Myocardium enhancement (e) Wash out

Figure 4.3: Five stages, pre-contrast, right ventricle enhancement, left ventricle enhancement,
myocardium enhancement and wash out, of the myocardial perfusion DCE-MRI. All results
shown in Chapter 4 are obtained from this set of data. It is emphasised that all results in this
chapter are just examples for visualisation, and the methods proposed are generic to all myocar-
dial perfusion DCE-MRI data.

and it is named contrast enhancement ratio (CER) [90, 91] or peak contrast enhancement
(pSI) [92].

• Up-slope: the first derivative of the TIC during the initial increase of the signal intensity
for the ROI [65, 66]. It can be calculated by a “sliding window” method. Specifically,
given a time interval d, the straight line gradient calculated from t0 to td is recorded.
Then, repeat this procedure to time points t1 to t1+d . the index 0 represents the end time
point of the baseline. The maximum of the measured gradient is taken as the up-slope (see
Section 4.2, [85]). The up-slope can also be estimated by a fitted curve. In this study, the
estimations of up-slope using different regression methods are compared.

• Time to peak (Tpeak): the time from the end of baseline to the time achieving peak signal
intensity.

• Mean transit time (Tmean): the average time duration for a contrast agent to pass through
the ROI [93].

• Myocardial perfusion reserve index (MPRI): the MPRI is estimated as the ratio of up-
slopes for rest and stress myocardial perfusion DCE-MRI [49, 94]. The MPRI can be
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(a) CER (b) LGE

Figure 4.4: Contrast enhancement ratio. Panel (a) shows the CER maps in the myocardium, and
panel (b) shows the corresponding LGE image. The area inside the red curve in panel (b) shows
the myocardial defect visually.

utilised to detect significant coronary artery stenoses with high diagnostic accuracy [94].
In this study, only resting DCE-MRI datasets were available, and therefore MPRI could
not be estimated.

It is worth mentioning that the up-slope and MPRI are considered as the most critical semi-
quantitative features for coronary heart diseases detection. In this study, because of the limitation
of data (lack of stress data), the MPRI cannot be estimated. Therefore, the CER and up-slope
are explicitly illustrated in the latter sections.

4.2.1 Contrast enhancement ratio

Contrast enhancement ratio (CER) has been extracted from Gamma variate TIC fit to derive
a vital feature, mean transit time, Tmean, [93]. The mean transit time is highly related to the
myocardial blood flow F based on indicator-dilution theory [95]:

F =
V

Tmean
, (4.3)

where V is the distribution volume of the indicator (the contrast agent).
Figure 4.4 shows the CER map and its corresponding late gadolinium enhanced (LGE) im-

age. In this study, the LGE image is used to be a reference of the location of the myocardial
defect. From panel (b), Figure 4.4, the myocardial defect region can be visually observed in the
right bottom of the myocardium in the image (the region inside the red curve). However, in the
CER map, the CER values in the right bottom of the myocardium are not clearly lower than the
values in other regions. According to the visual inspection, the CER values cannot truly reflect
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Table 4.1: Sum of square error (SSE) for different orders of polynomial regression
0 order 1 order 2 order 3 order 4 order

Blood Pool 5125 4162 820 194 34
Myocardium 1602 97 81 53 52

the degree of hypo-perfusion in this DCE-MRI dataset.

4.2.2 Up-slope

The up-slope can be calculated using the “sliding window” method. It can also be obtained
by curve fitting [88]. Figure 4.1 shows the fitted TIC for the time-intensity points using three
different methods.

Gamma variate regression is a commonly used method to fit the blood pool and myocardial
signal intensity for the up-slope phase [87, 88]. Equation (4.4) shows the fitting formula:

S(t) =

0 t ≤ t0

A(t− t0)α exp
−(t− t0)

τ
t > t0

(4.4)

where t0 denotes the end time point of the baseline phase. A, α and τ are regression coefficients.
Generally, a least-squares fitting based on equation (4.4) is performed to approximate the shape
of TIC [88].

Polynomial regression has also been used to fit the TIC [83]. The polynomial regression can
be expressed as:

S(t) = β0 +β1t +β2t2 + · · ·+βntn t > t0. (4.5)

In this study, n= {0,1,2,3,4} have been applied to compare the performances between different
orders as summarised in Table 4.1. Sum of squared errors (SSE) (see Section 2.6) is used to
compare different orders of the polynomial regression. Specifically, the SSE in this circumstance
can be expressed as:

SSE =
m

∑
t=1

(S(t)−Sobs(t))2 (4.6)

where S(t) can be found in equation (4.5) and Sobs(t) is the observed signal intensity. Since the
4th order of polynomial regression performs the best with the least SSE, the 4th order polynomial
regression is chosen to compare with other regression models.

Gaussian process is a state of the art method to apply the regression (see details in Sec-
tions 2.5). The Gaussian process regression model is:

S(t) = f (t)+ εt (4.7)
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Table 4.2: Average sum of square errors (SSE) with leave-one-out cross-validation for different
methods

Polynomial Gamma Variate Gaussian Process
Blood Pool 34.3 86.4 25.7

Myocardium 53.5 92.6 59.0
Sum 87.8 179.0 84.7

where f (t)∼ GP(µ(·),k(·, ·′)) and εt ∼ N(0,γ2I). In this case, µ(·) = 0 and

k(t, t
′
) = τ

2 exp

(
−|t− t

′|2

l2

)
(4.8)

are chosen. γ2,τ2 and l2 are unknown parameters.
A leave-one-out cross-validation (see details in Section 2.6) is used to compare the Gamma

variate, Polynomial and Gaussian process regressions, and the results can be found in Table 4.2.
It can be seen that the Gaussian process regression outperforms among three methods because
it has the least SSE. All fitted curves are illustrated in Figure 4.1.

In this study, we also compare the values of up-slope generated by Gaussian process regres-
sion and the “sliding window” method. Figure 4.5 shows the comparisons between Gaussian
process regression and sliding window methods given different window lengths len. Based on
the visual inspection, the larger the window length len is, the smoother the up-slope estimations
are. However, the degree of the smoothness cannot directly infer the goodness of the estimation.
The LGE image is used as the reference of the location of the myocardial defect. According to
panel (b), Figure 4.4, the myocardial defect region visually occupies 60◦ of the myocardium in
the right bottom of the image (the region inside the red curve). This means that the up-slope
values in this region should be the lowest in the up-slope map. When len = 1, the up-slope map
is too noisy to find the lowest value region. When len = 2,3,4,5, the lowest value region has
different degrees of shrinkage (underestimation of the myocardial defect region). For the best
performance one, n = 5, the lowest value region visually occupies 30◦ of the myocardium. On
the other hand, the lowest value region for the up-slope map generated by the Gaussian process
regression is basically consistent with the myocardial defect region in the LGE image. This
qualitative justification shows that the up-slope map generated by Gaussian process regression
performs better than the up-slope map generated by the “sliding window” method in this DCE-
MRI dataset. However, the visual inspection is inaccurate and subjective, and quantification
methods such as classification models could be applied to compare these two methods. In fact,
in Chapters 5, 6 and 7, different classification models are applied to the myocardial perfusion
DCE-MRI data.
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(a) Gaussian process (b) Sliding window len=1 (c) Sliding window len=2

(d) Sliding window len=3 (e) Sliding window len=4 (f) Sliding window len=5

Figure 4.5: Up-slope estimations using different methods and parameters. Panel (a) shows the
estimated up-slope map using Gaussian process regression. Panels (b) - (f) show the estimated
up-slope maps using sliding window method given window length len = 1,2,3,4,5 respectively.

4.3 Quantitative analysis

4.3.1 Introduction

The methods for quantifying the myocardial blood flow (MBF) can be broadly separated into
two categories: model-based and model-independent [8]. The model-based methods focus on
specifying a functional model of the tissues. Specifically, the functional model tries to describe
how the tracer moves in the tissues. On the other hand, the model-independent methods do not
specify a functional model.

The model-independent methods are based on the central volume principle [96]. This prin-
ciple is originally derived from Fick’s principle [8]. After derivations of this principle, the MBF
can be obtained by deconvolution of an impulse response function. Many methods have been
introduced to solve this deconvolution problem. Specifically, in [71,72], a widely applied Fermi
deconvolution method has been reported. In 2002, a model-independent deconvolution method
was introduced in [74]. To extend the work in [74], hierarchical Bayesian modelling (HBM)
has been applied in [97] to reconstruct the arterial input function (AIF). In [98], the modelling
in [97] has been extended by importing spatio-temporal constraints using Gaussian Markov ran-
dom fields. An exponential function constrained deconvolution approach has been announced
in [75]. An autoregressive–moving-average (ARMA) constrained deconvolution method has
been described in [76] to expand the application of the exponential function constrained decon-
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volution approach in [75]. Moreover, a comparison of the robustness of deconvolution methods
has been published in [99].

The model-based methods are usually based on compartmental analysis [49]. This analysis
was originally derived by [86,100,101]. In [102], the standardization of quantities and symbols
for the model-based methods have been introduced. A full review of model-based methods have
been published in [77]. Bayesian approaches have been applied to the model-based methods
to improve the estimations of the tracer kinetic parameters. A hierarchical Bayesian model has
been developed to estimate kinetic parameters of DCE-MRI based on Gaussian Markov random
fields priors in [103]. A comparison between Bayesian approaches and non-linear regression
algorithms have been applied based on a tracer kinetic model [104]. A large-scale Bayesian
spatio-temporal regression method has been applied to quantify the MBF, which has used Gaus-
sian Markov random fields priors to express the spatio-temporal constraints in [105]. In [5], the
quantification of myocardial blood flow using a hierarchical Bayesian model has been reported
based on a two-compartment exchange model.

In [1], a detailed CHD detection meta-analysis for qualitative, semi-quantitative and quanti-
tative methods is performed, and sensitivity and specificity of the results obtained in individual
studies were reported. Table 4.3 summarizes different type of methods and their performances.
Information presented in Table 4.3 is based on [1] with additional entries denoted by a ⋆.

In the following section, Fermi-constrained deconvolution method will be described. A
comparison between Fermi method and a Fermi-based hierarchical Bayesian model will be il-
lustrated in Chapter 6.

4.3.2 Central volume principle

The central volume principle describes that the rate of a substance accumulation in tissues of
ROI can be calculated as the differences between concentrations of tracers flowing in and out of
the tissues multiplied by the flow rate:

dCmyo(t)
dt

= Fb ·
(
Cin(t)−Cout(t)

)
(4.9)

where Cin(t) and Cout(t) denote the arterial input and venous output of the contrast concentra-
tions respectively. Fb denotes the blow flow and Cmyo(t) denotes the contrast concentration in
the myocardium (ROI). Let h(t) represent the fraction of the tracer leaving the myocardium
(ROI) per unit time at time t [124], the contrast concentration of venous output Cout(t) can be
expressed as:

Cout(t) = h(t)∗Cin(t), (4.10)
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Table 4.3: Summary for qualitative, semi-quantitative and quantitative methods. Table originally
compiled in [1], with additional entries denoted by ⋆.

author Patient No. type of method sensitivity specificity stenosis
⋆Biglands et al. [106] 128 qualitative 0.81 0.86 ≥ 50%

Cury et al. [107] 46 qualitative 0.97 0.75 ≥ 70%
⋆Greenwood et al. [108] 752 qualitative 0.86 0.83 ≥ 70%

Ishida et al. [109] 104 qualitative 0.90 0.85 ≥ 70%
Kawase et al. [110] 50 qualitative 0.94 0.94 > 50%
Klem et al. [111] 92 qualitative 0.89 0.87 ≥ 70%
⋆Klem et al. [112] 136 qualitative 0.85 0.88 ≥ 70%

⋆Paetsch et al. [113] 79 qualitative 0.91 0.62 ≥ 50%
⋆Patel et al. [114] 30 qualitative 0.79 0.83 ≥ 50%
Pilz et al. [115] 171 qualitative 0.96 0.83 > 70%

Plein et al. [116] 68 qualitative 0.96 0.83 ≥ 70%
Sakuma et al. [117] 40 qualitative 0.81 0.68 > 70%

⋆Schwitter et al. [118] 42 qualitative 0.85 0.67 ≥ 50%
⋆Schwitter et al. [119] 533 qualitative 0.67 0.61 ≥ 50%

Takase et al. [120] 102 qualitative 0.93 0.85 > 50%
⋆Watkins et al. [121] 101 qualitative 0.91 0.94 ≥ 70%
⋆Wolff et al. [122] 75 qualitative 0.93 0.75 ≥ 70%

⋆Biglands et al. [80] 50 semi-quantitative 0.89 0.77 ≥ 70%
Doyle et al. [123] 184 semi-quantitative 0.57 0.78 ≥ 70%
Giang et al. [67] 44 semi-quantitative 0.93 0.75 ≥ 50%
⋆Huber et al. [64] 31 semi-quantitative 0.88 0.87 50%−70%*

Nagel et al. [65] 84 semi-quantitative 0.88 0.90 ≥ 75%
Plein et al. [69] 82 semi-quantitative 0.88 0.74 > 50%

Schwitter et al. [38] 47 semi-quantitative 0.86 0.70 ≥ 50%
⋆Biglands et al. [106] 128 Fermi (quantitative) 0.88 0.85 ≥ 50%
⋆Biglands et al. [80] 50 Fermi (quantitative) 0.94 0.87 ≥ 70%
⋆Biglands et al. [80] 50 OCM** (quantitative) 0.72 0.87 ≥ 70%
⋆Biglands et al. [80] 50 MID*** (quantitative) 0.83 0.77 ≥ 70%
⋆Costa et al. [63] 37 Fermi (quantitative) 0.85 0.49 ≥ 70%
⋆Huber et al. [64] 31 MID*** (quantitative) 0.77 0.86 50%−70%*

⋆Patel et al. [114] 30 Fermi (quantitative) 0.88 0.67 ≥ 50%
⋆Summarised by the author.
*Using fractional flow reserve (FFR).
**The abbreviation “OCM" denotes one-compartment model.
***The abbreviation “MID" denotes model-independent deconvolution.
The reference standard for myocardial ischemia is based on a quantitative coronary x-ray angiogram or single

photon emission computed tomography stenosis severity.
The table is ordered by the type of the method and the author name.
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where the symbol ∗ represents the convolution operation. By substituting equation (4.10) into
equation (4.9), we have

Cmyo(t) = R f (t)∗Cin(t) (4.11)

where R f (t) denotes the impulse response function, whose expression is given by

R f (t) = Fb−Fb

∫ t

0
h(s)ds. (4.12)

The derivation of equation (4.11) can be found in Appendix A. According to the definition of the
impulse response function R f (t) in equation (4.12), the MBF Fb can be calculated by substituting
t = 0 into equation (4.12)

R f (t = 0) = Fb. (4.13)

Moreover, the value of R f (t) decreases from its initial amplitude Fb with time because the prob-
ability that the contrast agent remains in the ROI decreases.

The estimates of contrast concentrations for the myocardium Cmyo(t) and the arterial in-
put Cin(t) can be acquired from the DCE-MRI series. Therefore, it is possible to solve equa-
tion (4.12) by applying deconvolution operation. However, a unique and universal form of R f (t)

does not exist, and its free-form inference is an “ill-posed” problem due to its intrinsic uniden-
tifiability [8]. Specifically, the brute force method of solving equation (4.11) using Fourier
transform would generate mathematically unstable and physiologically unrealistic results [8].

4.3.3 Fermi-constrained deconvolution

In order to estimate Fb, a widely-used function, Fermi function, is chosen for R f (t). It has
been firstly applied in a brain perfusion study by computed tomography [71]. Then, it has been
introduced to the myocardial perfusion DCE-MRI to estimate the MBF [72]. The analytical
form of the Fermi model is

R f (t) =
A

1+ e(t−ω)/λ
(4.14)

where A,ω,λ are shape parameters. In this study, the vector ΘΘΘ

ΘΘΘ = {A,ω,λ} (4.15)

is used to represent all three Fermi parameters. Given the form of impulse response function
R f (t), equation (4.11) can be solved by fitting the shape parameters in equation (4.14) using the
DCE-MRI series. Generally, least-squares fitting has been used to estimate the parameters in
equation (4.14) [5, 72]. Specifically, this method aims to minimise the cost function,

∑
t
(Cmyo(t|R f (t))−Cobs(t))2 (4.16)
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where Cmyo(t|R f (t)) is expressed as equation (4.11), and Cobs(t) is the observations of contrast
concentrations of the myocardium from DCE-MRI series. Once the shape parameters A,ω,λ

are determined by this method, the MBF can be estimated

R f (t = 0) =
A

1+ e−ω/λ
. (4.17)

However, the algorithm of this optimization method may get stuck in local minima. This issue
is not unique for the Fermi method but universal for many applications, e.g. tracer kinetic
model [5, 104].

4.3.4 Fermi-constrained deconvolution application

According to Sections 4.3.2 and 4.3.3, the theoretical part of the Fermi-constrained deconvolu-
tion method has been reviewed. However, in practice, the estimated MBF will be affected by
the numerical approximation significantly. In this section, the details of the application of the
Fermi-constrained deconvolution are discussed.

Deconvolution based on the first-pass interval

The Fermi deconvolution should be implemented during the first-pass phase. This means that
the data during the baseline phase and the second-pass phase must be discarded. Meanwhile, the
data should be standardised by the baseline. In other words, for the curves of the myocardium
and the blood pool, the starting points should be located around value 0. In fact, these principles
should be followed by all methods based on the central volume principle.

Figure 4.6 shows the comparisons of the MBF estimations between different selected time
interval for the first-pass phase. It is worth mentioning that the least-squared fitting method is
the same for both cases in Figure 4.6, and the only difference between panels (a) and (b) in
Figure 4.6 is the selected time interval for the first-pass phase. The location of the reference
of the myocardial defect region can be found in panel (b), Figure 4.4. The myocardial defect
region should be located at the right bottom of the myocardium in the image. For panel (a)
in Figure 4.6, though some pixels located at the right bottom endocardium are affected by the
blood pool and have high MBF values, the low MBF values region basically covers the same
region as the myocardial defect region in panel (b), Figure 4.4. On the other hand, for panel
(b) in Figure 4.6, many pixels in the left top of the myocardium in the image also have low
MBF values. However, in the corresponding LGE image in panel (b), Figure 4.4, no myocardial
defect can be observed in that area visually. This comparisons express the importance of the
selected time interval for the first-pass phase. Similarly, the visual inspection is inaccurate and
subjective. The methods illustrated in Chapter 5 could be applied to the MBF maps to detect the
hypo-perfusion region.



CHAPTER 4. QUANTITATIVE MYOCARDIAL BLOOD FLOW 59

(a) MBF based on accurate time interval (b) MBF based on inaccurate time interval

Figure 4.6: MBF estimations comparisons between different time interval usage. Panel (a)
shows the MBF estimations (standardised to range [0,1]) using the accurate time interval of the
first-pass data. Panel (b) shows the MBF estimations (standardised to range [0,1]) using the in-
accurate time interval of first-pass data. Specifically, the time interval used for the deconvolution
method contains part of baseline (2 points) and part of second-pass (5 points).

Interpolation to the TIC

Generally, the data obtained from the MR images contain a varying degree of noise. Moreover,
the artifacts mentioned in Section 3.2 also decrease the quality of the data. In practice, the fitted
smooth TIC can improve the performances of the deconvolution methods. There are many ways
to interpolate the time-intensity points. In this study, two types of interpolation are implemented
and compared.

The first type of interpolation method is to apply linear or cubic interpolation methods di-
rectly to the time-intensity data. However, this method has potential drawbacks. Direct interpo-
lation methods may fail to reduce the noise of the data and can even increase the noise of the
data. Specifically, the direct interpolation methods will generate many new points between the
outlier and normal point in the time domain. Since the outlier point is affected by high noise,
all newly generated points are affected by the noise too. In practice, this will make the out-
liers in the estimated MBF maps to be further away from the normal values. Figure 4.7 shows
the MBF estimation map using a cubic interpolation method to the TIC of the blood pool and
myocardium. Some pixels located at the edge of the epicardium have extremely high values.
Similarly, some pixels at the endocardium boundary also have very high values. Theoretically,
this is caused by the motion artifacts and artifacts generated by the manual contouring. These
abnormal values are far away from the normal range of MBF values and reduce the dynamic
range for the display of the MBF values of the remaining pixels. Therefore, visual inspection
and quantitative analysis of the maps affected by outliers can be very hard.

The second type of interpolation method is based on the fitted curve of the time-intensity
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Figure 4.7: MBF estimations using cubic interpolation to the TIC of the blood pool and the
myocardium.

Figure 4.8: MBF map using Gaussian process regression.

data. Specifically, any number of points can be extracted from the fitted curve. These extracted
points can be applied to implement the numerical deconvolution. In Section 4.2, the Gaussian
process regression has the lowest average SSE compared with polynomial and Gamma vari-
ate regressions. Therefore, in this section, the MBF map generated by the Gaussian process
regression is compared with the results in Figures 4.6.

Figure 4.8 shows the MBF estimations using Gaussian process regression. Compared with
panel (a) in Figure 4.6, the abnormally high MBF values at endocardium and epicardium dis-
appear in Figure 4.8. The hypo-perfusion region can be inspected visually, and this region is
the same as the myocardial defect region in panel (b), Figure 4.4. Therefore, the MBF map
generated using the Gaussian process fitted TIC is considered to have better performance than
the one generated without using interpolation method.
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4.4 Discussion and conclusion

In this chapter, the semi-quantitative and quantitative analysis methods have been reviewed. Be-
cause of the limitation of the data (no stress data), the experiments for some semi-quantitative
analysis methods, e.g. MPRI, cannot be implemented. However, all methods illustrated in Sec-
tion 4.2 can be directly applied to complete data. The major finding of the brief exploration
of the semi-quantitative methods in this study is that the Gaussian process regression outper-
forms some traditional methods, e.g. Gamma variate regression and sliding window method.
The Gaussian process regression has the lowest average SSE compared with Gamma variate
regression and polynomial regression. Moreover, the up-slope map generated by the Gaussian
process regression is more accurate than the one generated by the sliding window method based
on visual inspection based on the reference LGE image.

A typical quantitative analysis method, the Fermi-constrained deconvolution, has been re-
viewed. This method is based on the central volume principle. The numerical approximation has
been applied to obtain the estimation of the MBF. Two key factors have been discussed. First,
the start and end points of the deconvolution is critical. The start point can be calculated by a
parameter of a given piecewise function. The least-squared method has been applied to obtain
the estimations of the piecewise function. The end point is given by a specific point that has
the first positive gradient after the maximum negative (minimum) gradient. Second, the interpo-
lation of the TIC can improve the estimation of the MBF using the Fermi-constrained method.
Similarly, the MBF map generated by the Gaussian process fitted TIC outperforms the one using
the original data. A critical point is emphasised that all methods based on the central volume
principle are suitable to be applied using the numerical approximation.

There are also many potential improvements for the semi-quantitative and quantitative anal-
ysis. The comparisons between the parametric maps generated using the Gaussian process fitted
TIC and the one generated using original data points are visually inspected. The visual inspec-
tion has the drawback that it is inaccurate and subjective. Therefore, in Chapter 5, mixture
models are used to classify the myocardial tissues within the myocardium image based on dif-
ferent parametric maps. Moreover, the properties of the hypo-perfused tissues are different
from the normal-perfused tissues. This is an apparent hierarchical structure, and the hierarchical
Bayesian model introduced in Section 2.2 can be used. The details of the hierarchical Bayesian
model application based on the Fermi-constrained method is introduced in Chapter 6.



Chapter 5

Mixture Models for Myocardial Perfusion
DCE-MRI

5.1 Introduction

For medical images analysis, mixture models are usually applied to classify different tissues.
Specifically, the observed variables (pixel signals) and latent variables (pixel status) can be
modelled as a joint distribution that is more tractable [18] (Chapter 9). Gaussian mixture model
(GMM) is a general method to apply segmentation and classification of medical images, e.g.
DCE-MRI [125, 126], positron emission tomography (PET) [127, 128], ultrasound [129, 130].
However, the standard Gaussian mixture model classification cannot make use of spatial infor-
mation, which is usually adopted for image segmentation and classification. Therefore, many
spatial constrained GMM methods have been introduced to improve the pixel classification, such
as spatially variant finite mixture model (SVFMM) [10, 131], Markov random field constrained
Gaussian mixture model (GMM-MRF) [11, 132, 133], and other spatial constrained finite mix-
ture models [134–136].

In this chapter, Gaussian mixture models (GMM) are applied to classify the DCE-MRI my-
ocardial perfusion images using an expectation-maximization (EM) algorithm. Moreover, the
spatial constrained mixture models, SVFMM and GMM-MRF, are also applied to improve the
GMM classification method.

5.2 Gaussian mixture model classification

In practice, the distributions of some sets of data have more than one dominant clump. In
this way, a simple distribution cannot capture the structure of data, but linear combinations
of many simple distributions, e.g. Gaussian distribution, are able to capture the structure of
data. Therefore, finite mixture models [137, 138] are introduced to formulate such probabilistic
models. In this section, the most general one, the Gaussian mixture model, and its applications
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on pixel classification are reviewed.

5.2.1 Statistical model

The Gaussian mixture model can be mathematically expressed by:

P(xxx) =
K

∑
j=1

π jN(xxx|µµµ j,Σ j), (5.1)

where K is the total number of clusters, N(xxx|µµµ j,Σ j) is the multivariate Gaussian distribution of
xxx with mean µµµ j and covariance matrix Σ j. π j is the mixing coefficient which will be explicitly
illustrated later. Let kkk = {k1,k2, ...,kK} denote a vector with dimension K which satisfies that
one element k j = 1 and others kp̸= j = 0. kkk has a 1-of-K representation, e.g. [18] (chapter 9). In
this way, k j can be straightforwardly inferred that k j ∈ {0,1} and ∑ j k j = 1. Therefore, there
are K states of kkk and it depends on which element is equal to 1. The variable kkk is a latent
variable to indicate which Gaussian distribution xxx belongs to. In other words, a joint distribution
P(xxx,kkk) is defined as a marginal distribution P(kkk) and conditional distribution P(xxx|kkk) where P(kkk)

is specified by the mixing coefficients π j by:

P(k j = 1) = π j (5.2)

where {π j} must satisfy
0≤ π j ≤ 1 (5.3)

and
K

∑
j=1

π j = 1. (5.4)

Since the random variables kkk have a 1-of-K representation, the marginal probability of kkk can be
expressed as follow:

P(kkk) =
K

∏
j=1

π
k j
j . (5.5)

Once the latent variable k j is given, i.e. the data xxx follows the jth Gaussian distribution, the
conditional distribution P(xxx|k j) can be expressed as:

P(xxx|k j = 1) = N(xxx|µµµ j,Σ j). (5.6)

Similarly, kkk has a 1-of-K representation, the conditional distribution can be written as:

P(xxx|kkk) =
K

∏
j=1

N(xxx|µµµ j,Σ j)
k j . (5.7)
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The marginal distribution P(xxx) can be written as:

P(xxx) = ∑
kkk

P(xxx,kkk) = ∑
kkk

P(kkk)P(xxx|kkk). (5.8)

By substituting equations (5.5) and (5.7) into equation (5.8), equation (5.8) turns to be equation
(5.1). The derivation of this equation can be found in Appendix A.

In the Bayesian framework, the posterior distribution P(kkk|xxx) plays an important role in the
statistical inference. Generally, γ(k j) denotes P(k j = 1|xxx), and its expression can be inferred by
Bayes’ theorem (2.1):

γ(k j)≡ P(k j = 1|xxx) =
P(k j = 1)P(xxx|k j = 1)

P(xxx)

=
π jN(xxx|µµµ j,Σ j)

∑
K
p=1 πpN(xxx|µµµ p,Σp)

. (5.9)

5.2.2 Statistical inference and EM algorithm

Let {xxx1,xxx2, ...,xxxN} be the set of observations. Gaussian mixtures with K components are used
to model this set of data. An N ×D matrix XXX is used to represent this set of data, XXX =

[xxxT
1 ,xxx

T
2 , ...,xxx

T
N ]. D is the dimension of the input data xxx. The dataset XXX is assumed to be i.i.d.

According to equation (5.1), the likelihood function is:

P(XXX |πππ,MMM,ΣΣΣ) =
N

∏
n=1

K

∑
j=1

π jN(xxxn|µµµ j,Σ j) (5.10)

where πππ = {π1,π2, ...,πK}, MMM = {µµµ1,µµµ2, ...,µµµK} and ΣΣΣ = {Σ1,Σ2, ...,ΣK}. Therefore, the log-
likelihood function can be expressed as:

lnP(XXX |πππ,MMM,ΣΣΣ) =
N

∑
n=1

ln

(
K

∑
j=1

πkN(xxxn|µµµ j,Σ j)

)
. (5.11)

Maximum likelihood estimation (MLE) is the most straightforward method to estimate the un-
known parameters πππ,MMM and ΣΣΣ because the MLE has the properties of consistency1, asymptotical
unbiasedness2 and asymptotical efficiency3. However, the maximization of the log-likelihood
function of Gaussian mixtures is an ill-posed problem [18] (chapter 9). The most widely applied
method to this problem is called expectation-maximization (EM) algorithm (see [28, 29] and
Section 2.4 in this thesis).

To maximize the log-likelihood in equation (5.11), the derivatives of lnP(XXX |πππ,MMM,ΣΣΣ) with

1The MLE converges in probability to the value of the parameter.
2The expected value of the MLE converges to the value of the parameter.
3The MLE asymptotically achieves the Cramér–Rao lower bound.
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respect to the mean µµµ j are set to be 0:

0 =−
N

∑
n=1

π jN(xxxn|µµµ j,Σ j)

∑
K
p=1 πpN(xxxn|µµµ p,Σp)

Σ j(xxxn−µµµ j) (5.12)

where the term
π jN(xxxn|µµµ j,Σ j)

∑
K
p=1 πpN(xxxn|µµµ p,Σp)

is exactly the posterior distribution in equation (5.9). Based

on the assumption that Σ j is nonsingular, both sides of equation (5.12) multiply Σ
−1
j , and this

equation turns to be:

µµµ j =
∑

N
n=1 γ(kn j)xxxn

∑
N
n=1 γ(kn j)

(5.13)

where

γ(kn j) =
π jN(xxxn|µµµ j,Σ j)

∑
K
p=1 πpN(xxxn|µµµ p,Σp)

. (5.14)

It is emphasised that equation (5.13) is intractable, because the terms on the right depends on
the term on the left. In other words, the term γ(kn j) depends on all parameters (i.e. π j, µµµ j and
Σ j). The essential idea of the EM algorithm is to decouple the parameters on the left of (5.14)
from those on the right of (5.14). Those on the right, the so-called “old" parameters, are used
to compute the weighting parameters on the left, which are then used to compute the “new"
parameters, as shown below. This leads to tractable equations, which as opposed to (5.14) have
to be iterated though. Let

N j =
N

∑
n=1

γ(kn j). (5.15)

The term N j can be interpreted as the effective number of points set in the cluster k [18] (Chapter
9). Similarly, the derivatives of lnP(XXX |πππ,MMM,ΣΣΣ) with respect to the covariance matrix Σ j is set
to be 0. The solution of Σ j is:

Σ j =
1

N j

N

∑
n=1

γ(kn j)(xxxn−µµµ j)(xxxn−µµµ j)
T . (5.16)

Similarly, equation (5.16) is also intractable. Finally, the maximization of the log-likelihood
lnP(XXX |πππ,MMM,ΣΣΣ) with respect to π j can be obtained using a Lagrange multiplier. Since ∑

K
j=1 π j =

1, the maximization can be achieved by maximising the following quantity:

lnP(XXX |πππ,MMM,ΣΣΣ)+λ

(
K

∑
j=1

π j−1

)
. (5.17)

Similarly, set the derivatives of the quantity in equation (5.17) with respect π j to be 0. The
solution of π j is:

π j =
N j

N
. (5.18)
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The derivation of this solution can be found in Appendix A. Similarly, equation (5.18) is in-
tractable.

Now, the EM algorithm can be used to maximize the likelihood function with respect to the
parameters of the Gaussian mixture model. Specifically, in the E step, given the old values of
parameters π j, µµµ j and Σ j, the value of γ(kn j) is computed by equation (5.14). Then, in the M
step, the new values of parameters π j, µµµ j and Σ j are re-estimated using equations (5.13), (5.16)
and (5.18) given the computed value γ(kn j) in E step. Each step of the EM algorithm increases
the log-likelihood, equation (5.11), and that the algorithm is guaranteed to converge to a zero-
gradient point of the log-likelihood. This is a local optimum of the log-likelihood or, in rare
cases, a saddle point. The detail of the algorithm is illustrated in Algorithm 1.

Algorithm 1: EM algorithm for Gaussian mixture model
Data: XXX = [xxxT

1 ,xxx
T
2 , ...,xxx

T
N ]

Output: Parameters πππ,MMM,ΣΣΣ
Set initial values of πππ,MMM,ΣΣΣ and evaluate the log-likelihood according to
equation (5.11);

for k← 1 to K do
E step: for n← 1 to N do

Calculate the quantity γ(kn j) according to equation (5.14) using old values of
µµµ j, Σ j and π j;

end
M step: Re-estimate new parameters µµµ j, Σ j and π j based on equation (5.13),
equation (5.16) and equation (5.18) given γ(kn j) calculated in E step;

end
Evaluate the log-likelihood based on equation (5.11) and check the convergence of all
parameters. If the convergence criterion is not satisfied, repeat both E and M steps
until the convergence criterion is satisfied;

5.2.3 Applications of Gaussian mixture model on myocardial perfusion
DCE-MRI

Gaussian mixture models can be applied to the data of myocardial perfusion DCE-MRI. Specif-
ically, the GMM can be used on both original signals and some features derived by semi-
quantitative analysis (see Section 4.2) and quantitative analysis (see Section 4.3). Generally,
the features derived by semi-quantitative analysis and quantitative analysis are able to reveal the
degree of hypo-perfusion. Classification methods are applied to these features to separate them
into different groups.

In this section, the GMM classification method is applied to several features derived by semi-
quantitative analysis and quantitative analysis. Meanwhile, statistical inferences and results
analysis are also introduced in this section. The GMM classification is implemented by a build-
in Python package “sklearn.mixture.GaussianMixture”. The number of clusters is set to “2”,
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(a) CER→ up-slope (b) CER→MBF (c) up-slope→MBF

Figure 5.1: Pairwise scatter plots for CER, up-slope and MBF.

Table 5.1: Pearson correlation coefficients for CER, up-slope and MBF
CER up-slope MBF

CER 1 0.10 0.27
up-slope 0.10 1 0.90

MBF 0.27 0.90 1

which means there are only two groups, ‘hypo-perfused’ (or lesion) and ‘normal-perfused’ (or
healthy). The covariance type is set ‘full’, which means that the covariance matrices for different
clusters are unconstrained and different. The initial values (means and precisions) are given by
“kmeans” algorithm [139]. Figure 4.3 shows the myocardial perfusion DCE-MRI data used in
this section.

In Chapter 4, the CER, up-slope and MBF maps are explicitly discussed. A naive threshold
is used to distinguish the hypo-perfusion and normal-perfusion regions. This threshold is given
by the intuition of the user, which means it is not robust. This disadvantage can be solved by ap-
plying the classification methods such as the GMM classification because the EM algorithm for
the GMM can iteratively choose the means of different groups with the maximum log likelihood.

Figure 5.1 shows the pairwise scatter plots for CER, up-slope and MBF. Table 5.1 shows
the Pearson correlation coefficients for the pairwise parameters. The CER values are linearly
unrelated to both up-slope and MBF values according to these quantities. However, the up-
slope and MBF values are highly linearly related with the correlation coefficient value 0.90.
Meanwhile, according to panel (c) in Figure 5.1, most points are located around a straight line.
Therefore, a further linear model regression is worth exploring the relationships between the
up-slope and MBF. This simple linear model can be expressed as:

y = ax+b (5.19)

where y is the MBF and x is the up-slope. Figure 5.2 shows the fitted simple linear model given
the values of up-slope and MBF. Least-squared fitting is used to fit this model and the estimations
of coefficients are a = 0.198 and b = 0.089. The R2 is 0.81. This means the goodness of fit of
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Figure 5.2: Simple linear model fitted by the values of up-slope and MBF. The blue points
indicate the input data and the red line indicate the fitted simple linear model.

(a) CER (b) up-slope (c) MBF

Figure 5.3: Panels (a) - (c) show the parametric maps of CER, up-slope and MBF. The values of
background pixels are set to black, which can be ignored.

this simple linear model is high, especially when there are more than 750 points.
This result is consistent with the results in Chapter 4. The hypo-perfusion can be detected

by the MBF and up-slope values. On the other hand, the CER is not able to detect the hypo-
perfusion region because it lacks information on the growth speed of the TIC. Moreover, a new
finding is that the linear relationship between the up-slope and MBF is very high in this case.
This can be visually observed from panels (b) and (c), Figure 5.3.

Figure 5.3 shows the parametric maps of CER, up-slope and MBF. According to the quanti-
ties in Table 5.1, the values of up-slope and MBF are highly related. This can also be observed
from the parametric maps. The right bottom of the rings in panels (b) and (c) are dark, indicating
the lesion’s location.

Figure 5.4 shows the classification maps of CER, up-slope and MBF based on the parametric
maps. Panel (a) in Figure 5.4 shows the GMM classification using the CER map. Similar to the
conclusions in Section 4.2, the CER map cannot detect the hypo-perfusion region. Panel (b) and
(c) shows the GMM classification maps based on up-slope and MBF maps. According to the
reference LGE image in panel (b), Figure 4.4, the hypo-perfusion region is located in the inferior
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(a) CER classification (b) up-slope classification (c) MBF classification

Figure 5.4: Panels (a) - (c) show the classification maps of CER, up-slope and MBF. The yellow
segments indicate healthy tissues. The dark green segments indicate lesion tissues. The black
pixels indicate the background.

of the myocardium. The up-slope classification map overestimate the hypo-perfusion region,
and the MBF classification map accurately estimates the hypo-perfusion region with a few small
and implausible segments. Although the linear relationship between the up-slope and MBF
values are high, the classification maps are quite different. This phenomenon is explainable.
The linear relationship between up-slope and MBF values shows that the relative distributions
of up-slope and MBF values are similar. However, the threshold values between hypo-perfusion
and normal perfusion pixels for up-slope and MBF values are different. Figure 5.5 shows the
different thresholds based on MBF and up-slope values, and this figure explains the different
performances between MBF based and up-slope based classification maps. Moreover, the up-
slope map is obtained using the information of the myocardial pixels (see Section 4.2), and the
MBF map is obtained using the information of the myocardial pixels and blood pool pixels. The
MBF map outperforms the up-slope map because of more information usage.

For panels (b) and (c) in Figure 5.4, the classification maps either have an unclear boundary
between healthy tissues and lesions or have some single and small isolated segments. However,
the boundary between lesion and healthy tissues should be clear if the noise of the myocardial
perfusion DCE-MRI is low. The reason is that any specific heart wall segment is dominantly
perfused by one main coronary artery, and the narrowing or blockage of that coronary artery will
cause a reduced blood supply to this segment. There are three main arteries supplying blood to
the myocardium (see details in Section 3.1.1), and therefore either single and small isolated
segments or unclear boundaries are physiologically unrealistic, i.e. one large lesion is more
likely than many isolated small lesions in myocardium [131]. The unclear boundary and single
and small isolated segments are caused by the limitation of GMM classification. Specifically,
the GMM classification method classifies the pixels in images based on their values, and it does
not make use of the spatial relations among pixels. Figure 5.6 shows the histograms and kernel
density estimates of the values of CER, up-slope and MBF, respectively. The two different
groups, healthy tissues and lesions, have a clear threshold on the values of parameters. In other
words, if the value of a pixel is larger than this threshold, this pixel is labelled as healthy tissue
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(a) GMM classification based on MBF values (b) GMM classification based on up-slope values

Figure 5.5: GMM classification based on MBF and up-slope values. Panels (a) and (b) show
the classification scatter plots between up-slope and MBF values based on MBF and up-slope
values respectively. The yellow points indicate the points in the hypo-perfusion class and the
blue points indicate the points in the normal-perfusion class.

(a) CER histogram and KDE (b) up-slope histogram and KDE (c) MBF histogram and KDE

Figure 5.6: Panels (a) - (c) show the histograms and kernel density estimates of CER, up-slope
and MBF.

and vice versa. Therefore, the GMM classification method cannot avoid unclear boundaries and
single and small isolated segments issues if the parametric map is noisy.

Now, the reason of the generation of the single and small isolated segments is clear. The ar-
tifacts (information loss and errors generation during the manual contouring and motion correc-
tion) cause the low SNRs. Then the low SNRs cause inaccurate parameter estimations. Finally,
The inaccurate estimations of parameters cause inaccurate classification, i.e. unclear boundary
and single and small isolated segments. To address this issue, some methods can be adopted.
Specifically,

• Improve the methods of parameter estimation to reduce the effects of the low SNRs.

• Improve the classification method to avoid unclear boundaries and single and small iso-
lated segments.
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(a) scatter plot (b) classification map

Figure 5.7: GMM application to multiple parameters (up-slope and MBF). Panel (a) shows the
scatter plot between the values of up-slope and MBF. The yellow points indicate the points in
the lesion class and the blue points indicate the points in the healthy class. Panel (b) shows the
classification map using GMM based on multiple parameters. The yellow segments indicate
healthy tissues. The dark green segments indicate lesion tissues. The black pixels indicate the
background.

Either or both methods can improve the classification results. A straightforward implementation
is to introduce spatial information during the phase of parameter estimation and the phase of
classification. The specific solutions are explicitly illustrated in Sections 5.3, 5.4 and Chapters 6
and 7.

The applications of the GMM classification method in this section are based on a single
parameter. A potential extension is to apply the GMM method to multiple parameters. The
parameter CER is discarded because it cannot accurately delineate the hypo-perfusion region in
panel (a), Figure 5.4. Therefore, the GMM is fitted using the up-slope and MBF as inputs. Since
the TIC is normalised by the baseline, the noise is assumed to be from the same distribution
for all pixels in the myocardium. Therefore, the covariance matrix is set to be “tied”, which
means that both groups (lesion and healthy groups) share the same general covariance matrix.
Figure 5.7 shows the results that are obtained by the GMM model fitted using the up-slope
and MBF. The classification map in panel (b), Figure 5.7 is a mixture of panels (b) and (c) in
Figure 5.4. Given the ground truth in panel (b), Figure 4.4, the classification map in panel (b),
Figure 5.7 is not as accurate as the MBF classification map. The reason is that the parameter
up-slope negatively affects the final result. Specifically, the estimations of the up-slope only
make use of the SI of the pixels within myocardium, and the estimations of the MBF use the SI
of pixels within both myocardium and LV blood pool.
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5.3 Spatially variant finite mixture modelling of myocardial
perfusion DCE-MRI

5.3.1 Introduction

In Section 5.2, Gaussian mixture model classification to myocardial perfusion DCE-MRI has
been introduced. This application has also addressed the unclear boundary and single and small
isolated segments issues. One possible solution to these issues is to improve the Gaussian mix-
ture model classification method by importing neighbourhood information.

The spatially variant finite mixture model (SVFMM) is an extension of the Gaussian mixture
model. Both models use finite mixtures to describe the data with a mixed distributions structure.
However, the SVFMM improves the GMM by combining signal intensities (or other parameters)
with neighbourhood information and therefore obtaining more realistic classification maps. The
SVFMM method is applied to the original signals in this section. However, it is just an example
of the application. In fact, this method can be directly applied to other parametric maps, e.g.
the up-slope and MBF, with the replacement from signal intensity to the target parameters. It is
worth clarifying that the proposed method has not been applied to other parametric maps for the
reason that this method was developed in the early stage of the PhD program.

The content in this section has been published in [131]:
Yalei Yang, Hao Gao, Colin Berry, Aleksandra Radjenovic and Dirk Husmeier. Quantification

of Myocardial Perfusion Lesions using Spatially Variant Finite Mixture Modelling of DCE-MRI.

Proceedings of the International Conference on Statistics: Theory and Applications (ICSTA)

(2019).

5.3.2 Statistical model

Let xi denote the signal intensity (or other parameter) at the ith pixel of an MR image (i =
1, ...,N), where N is the total number of pixels in this image. K = 2 clusters, “lesion” and
“healthy tissue”, are assumed. Parameters π i

j = P( j|xi) denote the prior probabilities of the ith

pixel belonging to the jth cluster ( j = 1,2), and they have to satisfy the constrains that 0≤ π i
j ≤ 1

and π i
1 +π i

2 = 1. Let πππ j denote the vector for cluster j, which is πππ j = {π1
j ,π

2
j , ...,π

N
j }, and let

ΠΠΠ denote the set of probability vectors ΠΠΠ = {πππ1,πππ2}. Similarly, ΘΘΘ = {θθθ 1,θθθ 2} denotes the set
of component parameters, which are the parameters of the corresponding mixture components.
The probability density function for each observation xi is

f (xi|ΠΠΠ,ΘΘΘ) = π
i
1φ(xi|θθθ 1)+π

i
2φ(xi|θθθ 2) (5.20)

where φ(xi|θθθ j) is a Gaussian distribution with parameters θθθ j = {µ j,σ
2
j }. The parameter µ j is

the mean of the jth Gaussian component and σ2
j is its variance. Let x = {x1,x2, . . . ,xN} denote
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the full data, i.e. the set of all pixel intensities of the MR image. The log-likelihood function of
the data is given by

l(ΘΘΘ|x,ΠΠΠ) =
N

∑
i=1

log[π i
1φ(xi|θθθ 1)+π

i
2φ(xi|θθθ 2)]. (5.21)

As mentioned in Section 5.2, the maximization of this so-called ‘incomplete’ log-likelihood
function has no closed-form solution, due to the summation terms inside the logarithm. A
standard procedure, therefore, is to apply the EM algorithm by incorporation of latent variables
[28]. To be specific, we include an unobserved binary latent variable ki

j [18], which indicates
which component the ith pixel belongs to, and define the probability function

f (xi,ki
j|ΠΠΠ,ΘΘΘ) = (π i

1φ(xi|θθθ 1))
ki

1× (π i
2φ(xi|θθθ 2))

ki
2 (5.22)

where the ki
j are subject to the constraints that ki

j ∈ {0,1} and ki
1 + ki

2 = 1. This implies that
any pixel i can only be represented by one Gaussian component. Given the set of binary latent
variables ki

j, we have the complete log-likelihood function

l(ΘΘΘ|x,ΠΠΠ,K) =
N

∑
i=1

[
ki

1

(
log(π i

1)+ logφ(xi|θθθ 1)
)
+ ki

2

(
log(π i

2)+ logφ(xi|θθθ 2)
)]

(5.23)

where K = {k1,k2} and kj = {k1
j ,k

2
j , ...,k

N
j }. By substituting ki

2 = 1− ki
1 and π i

2 = 1−π i
1, we

can maximize equation (5.23) for given latent variables K. To reduce the number of single and
small isolated segments mentioned in Section 5.2, the prior knowledge, adjacent pixels are more
likely to have the same label, is introduced. In the SVFMM, this prior knowledge is translated
to that the prior probabilities ΠΠΠ of spatially related pixels are similar. Specifically, the prior
distribution over the parameter ΠΠΠ [10] [133] [140] is introduced to take the spatial information
into account. This prior distribution is a Markov random field prior following Gibbs function:

P(ΠΠΠ) =
1
C

exp(−U(ΠΠΠ)) (5.24)

where

U(ΠΠΠ) = β

N

∑
i=1

VNi(ΠΠΠ) (5.25)

and C is a normalizing constant to ensure the integral over P(ΠΠΠ) is 1. The so-called potential
function U(ΠΠΠ) depends on a regularization parameter β > 0. Each term in the sum, VNi(ΠΠΠ), is
a function of {πm

j } which contains the neighbourhood information of the ith pixel and is defined
as

VNi(ΠΠΠ) = ∑
m∈Ni

g(ui,m) (5.26)

where Ni is the set of neighbourhood pixels of the ith pixel (set to the 4 nearest neighbours in
the present work) and ui,m is the distance between two mixing coefficients π i

j and πm
j . Here we
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use the squared Euclidean distance suggested in [141].

ui,m =
2

∑
j=1

(π i
j−π

m
j )

2. (5.27)

The function g(u) must be non-negative and monotonically increasing [10] [133] [140]. Stan-
dard choices are g(u) = (1 + u−1)−1 [140] or g(u) = u [10]. For the work reported in this
section, we have used g(u) = u. Therefore, the posterior distribution given “complete” data
{xxx,KKK}, P(ΘΘΘ,ΠΠΠ|x,KKK) is:

P(ΘΘΘ,ΠΠΠ|x,KKK) =
P(x,KKK|ΘΘΘ,ΠΠΠ)P(ΠΠΠ)

P(x,KKK)
∝ P(x,KKK|ΘΘΘ,ΠΠΠ)P(ΠΠΠ) (5.28)

where P(x,KKK|ΘΘΘ,ΠΠΠ) can be found in equation (5.22) and P(ΠΠΠ) can be found in equation (5.24).

5.3.3 EM algorithm for the SVFMM

Similar to the EM algorithm for Gaussian mixture model in Section 5.2.2, the EM algorithm can
also be used for the SVFMM. In the Expectation step, the expected value of the latent variables
K is calculated as

γ
i
j = E(ki

j|xi,π i
j,θθθ j) =

2

∑
j=1

ki
j f (ki

j|xi,π i
j,θθθ j)

= 1× f (ki
j = 1|xi,π i

j,θθθ j)+0× f (ki
j = 0|xi,π i

j,θθθ j) j = 1,2

=
π i

jφ(x
i|θθθ j)

π i
1φ(xi|θθθ 1)+(1−π i

1)φ(x
i|θθθ 2)

. j = 1,2 (5.29)

The Maximization step is different from EM algorithm for the Gaussian mixture model. Instead
of maximizing the expected complete log-likelihood function, the SVFMM method maximizes
the expected posterior of ΘΘΘ and ΠΠΠ, which can be computed by

E[P(ΘΘΘ,ΠΠΠ|x,KKK)] = E

[
P(x,KKK|ΘΘΘ,ΠΠΠ)P(ΠΠΠ)

P(x,KKK)

]
∝ E[P(x,KKK|ΘΘΘ,ΠΠΠ)P(ΠΠΠ)]. (5.30)

It is equivalent to maximize E[P(ΘΘΘ,ΠΠΠ|x,KKK)] by maximizing the logarithm of E[P(x,KKK|ΘΘΘ,ΠΠΠ)P(ΠΠΠ)],
which is

QMAP(ΠΠΠ,ΘΘΘ) = log(
N

∏
i=1

f (xi,γ i
j|ΠΠΠ,ΘΘΘ)P(ΠΠΠ))

∝

N

∑
i=1

2

∑
j=1

γ
i
j[log(π i

j)+ log(φ(xi|θ i
j))]−β

N

∑
i=1

∑
m∈Ni

g(ui,m). (5.31)
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To maximize this function with respect to ΠΠΠ and ΘΘΘ, it is straightforward to calculate the corre-
sponding partial derivatives and setting them to 0:

∂QMAP

∂ µ j
=

N

∑
i=1

γ
i
j×

xi−µ1

2σ2
j

= 0 (5.32)

and

µ1 =
∑

N
i=1 γ i

1xi

∑
N
i=1 γ i

1
and µ2 =

∑
N
i=1 γ i

2xi

∑
N
i=1 γ i

2
. (5.33)

Similarly,
∂QMAP

∂σ2
j

=
N

∑
i=1

γ
i
j(−

1
2σ2

j
+

(xi−µ j)
2

2σ2
j

) = 0 (5.34)

and

σ
2
1 =

∑
N
i=1 γ i

1(x
i−µ1)

2

∑
N
i=1 γ i

1
and σ

2
2 =

∑
N
i=1 γ i

2(x
i−µ2)

2

∑
N
i=1 γ i

2
. (5.35)

For the parameters ΠΠΠ, only π i
1 is under consideration because of the constraint π i

2 = 1− π i
1.

Substituting π i
2 = 1−π i

1 and γ i
2 = 1− γ i

1 into equation (5.31), it turns to be

QMAP(π
i
1) ∝ γ

i
1 logπ

i
1 +(1− γ

i
1) log(1−π

i
1)−β ∑

m∈Ni

2

∑
j=1

(π i
j−π

m
j )

2 (5.36)

and
∂QMAP

∂π i
1

=
γ i

1
π i

1
−

1− γ i
1

1−π i
1
−4β ∑

m∈Ni

(π i
1−π

m
1 ) = 0. (5.37)

Since both π i
1 ̸= 0 and 1−π i

1 ̸= 0, multiplying π i
1(1−π i

1) on both sides of equation (5.37)

h(π i
1) = 4βM(π i

1)
3−4β ( ∑

m∈Ni

[πm
1 +1])(π i

1)
2 +[(4β ∑

m∈Ni

π
m
1 )−1]π i

1 + γ
i
1 = 0 (5.38)

where M is the size of the neighbourhood (M = 4 in the present work). The mixing parameters
π i

2 can be calculated by
π

i
2 = 1−π

i
1. (5.39)

Since h(π i
1)→ γ i

1 > 0 when π i
1→ 0 and h(π i

1)→ γ i
1−1 < 0 when π i

1→ 1, there must be at least
one root located in the interval (0,1), and this root is the target value of π i

1. In this study, the
numerical solution of equation (5.38) can be obtained using a line search in the interval (0,1).
Note that for β = 0, the SVFMM reduces to the standard GMM. This means that the GMM is
a special case of the SVFMM. The details of the EM algorithm for the SVFMM is shown in
Algorithm 2.
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Algorithm 2: EM algorithm for SVFMM
Data: xxx = {x1,x2, ...,xN}
Output: Parameters ΠΠΠ,ΘΘΘ
Set initial values of ΠΠΠ,ΘΘΘ. Define a fixed value for the regularization parameter β . ;
for j← 1 to K do

E step: for i← 1 to N do
Calculate the quantity γ i

j according to equation (5.29) ;
end
M step: Re-estimate parameters µ1, µ2, σ2

1 , σ2
2 , π i

1, π i
2 using equation (5.33),

equation (5.35), equation (5.38) and equation (5.39) given γ i
j calculated in E step;

end
Evaluate QMAP using equation (5.31) and check for convergence. If the convergence
criterion, i.e. |QMAPOLD−QMAPNEW|< ξ , where ξ is a given positive small value, is
not satisfied, return to E step;

5.3.4 Application of SVFMM on myocardial perfusion DCE-MRI

In this section, the proposed SVFMM method has been applied on both clinical and synthetic
data. Gaussian mixture model classification method (see Section 5.2) has been used to be the
benchmark. The original images (The ME image at time point 35) of the myocardial perfusion
DCE-MRI are used as the clinical data. The results generated by the original image at the time of
myocardium enhanced stage from a patient has been shown in this section. It is worth mention-
ing that though the original image has been used as an example for the SVFMM classification
method, other parameters such as “peak signal intensity” and “MBF” are also applicable for the
proposed SVFMM method by swapping signal intensity of a pixel to “peak signal intensity” or
“MBF” of that pixel.

The synthetic data is used to validate the algorithm illustrated in Algorithm 2, and they are
designed so as to mimic the clinical data. Specifically, the shape and the size of the synthetic
myocardium is designed to be the same as for the clinical data. The whole myocardium ring
is divided into two parts. The top half is designed to be "healthy tissue" and the bottom half is
designed to be "lesion tissue". The signal intensity of the "healthy tissue" group is sampled from
N(µh,σ

2
h ), and the signal intensity of the "lesion group" is sampled from N(µl,σ

2
l ). The choice

of parameters µh,µl,σ
2
h ,σ

2
l is empirical. To be specific, they are chosen according to the GMM

results: µh and σ2
h have been set to the mean and variance of the "healthy tissue" groups from the

GMM clustering results; similarly µl and σ2
l have been obtained from the "lesion tissue" group.

This design of the synthetic data mimics the same SNR (signal-to-noise ratio) as for the clinical
data. The number of wrongly segmented pixels using the GMM is positively correlated with the
SNR value. Therefore, the performance of the GMM method for the synthetic data reflects the
SNR for the clinical data.

Figure 5.8 shows the evolution of the log-posterior as a function of the number of EM cycles
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(a) clinical data

(b) synthetic data

Figure 5.8: Evolution of the log-posterior for clinical (top panel) and synthetic (bottom panel)
data during the optimization procedure. The horizontal axis shows the number of EM cycles.

for different choices of the regularization parameter β . It can be seen that the rate of convergence
depends on β , with increasing values of β leading to a slower convergence. The regularization
parameter β denotes the weight of the neighbourhood information usage. Specifically, larger
β means higher usage of neighbourhood information. For the extreme case, β = 0, the usage
of neighbourhood information is 0 and the SVFMM method degenerates to the GMM method.
Therefore, the regularization parameter β not only controls the weight of the usage of neigh-
bourhood information, but also controls the computational complexity of the EM algorithm for
the SVFMM method.

Figure 5.9 shows a comparison of the classification results “healthy tissue” versus “lesion”
between GMM and SVFMM, for different values of β . The blue areas are labelled as "lesion
tissue" and the yellow areas are labelled as "healthy tissue". The original MR image in the
bottom right of panel (a) shows that there is a large shadow area located in the right bottom of
the ring. However, the SNR is poor. Therefore, it is challenging to determine the lesion visually.
Our results demonstrate that the segmentation obtained with the SVFMM is different from that
obtained with the GMM. As mentioned in Section 5.2.3, the GMM classification method has the
unrealistic unclear boundary and single and small isolated segments issues. These issues also
exist here because of the low SNR of the original image. Therefore, the number of isolated pixels
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(a) clinical data (b) synthetic data

Figure 5.9: The comparison of lesion detection of clinical and synthetic data. Panel (a) shows
results for the clinical data, while panel (b) was obtained from the synthetic data. The blue areas
are labelled as "lesion tissue" and the yellow areas are labelled as "healthy tissue". The centre
bottom image in panel (a) is the segmented MRI myocardium grey map and the right bottom
image in panel (a) is the original MRI left ventricle grey map. These two images are used to
show the original source data.

is used as a performance criterion for the clinical data because of the pathology of coronary
heart diseases illustrated in Section 5.2.3. For the synthetic data, on the other hand, the gold
standard is known, as the location and size of the lesion are designed. Therefore, the number
of misclassified pixels has been used as the performance criterion. There are fewer isolated
pixels when applying the SVFMM method (for all values of β ) to the clinical data. For the
synthetic data, SVFMM leads to fewer misclassifications of pixels than GMM. This means that
the SVFMM method indeed improves the classification in terms of the number of isolated pixels.
Table 5.2 summarizes the numbers of isolated pixels for the clinical data and wrongly segmented
(i.e. misclassified) pixels for the synthetic data. When β = 20, the number of isolated and
misclassified pixels is the lowest. It can be seen that the results of β = 50 are not as good as the
results of β = 20. The reason could be that the convergence for the case of β = 50 is slow, and
the EM stops when the log-likelihood have not achieved maximum. Overall, the The SVFMM
has fewer than half the number of isolated pixels than the GMM method for clinical data, and
only about 1

5 times the number of misclassified pixels than the GMM method for synthetic
data. One possible reason that the proposed method performed better in the synthetic data than
the clinical data is that the clinical data has spatially related noise and the synthetic data has
white noise. The spatially related noise will generate jointly isolated misclassified pixels and
the proposed method cannot deal with it.

By taking the neighbourhood information into account, the total number of isolated pix-
els decreases substantially in the clinical data, and the number of misclassified pixels in the
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Table 5.2: Number of isolated pixels for the clinical data and misclassified pixels for the syn-
thetic data.

clinical data synthetic data
SVFMM β = 50 27 12
SVFMM β = 20 25 10
SVFMM β = 5 32 11
SVFMM β = 1 44 14

SVFMM β = 0.5 47 14
SVFMM β = 0.2 49 33

GMM 59 55

synthetic data also decreases dramatically. However, there are still some isolated pixels, and the
performance on the synthetic data appears to be noticeably better than on the clinical data. There
are two main reasons for this trend. Firstly, some pixels are located close to the endocardium
and the epicardium (i.e. the inner and outer boundaries of the ring). In Figure 5.9 panel (a), in
the centre bottom of the rings, some pixels are labelled as "healthy" but surrounded by "lesion".
The reason is that these pixels are close to the blood pool. In DCE-MRI, the blood signal in-
creases (bright, hyperintense in the grey-scale) and the zone of impaired perfusion appears dark
(hypointense) due to a relative lack of contrast agent mixed in blood. The hypointense zone spa-
tially depicts the zone of impaired perfusion. Those pixels that are affected by blood will appear
in the extreme bright range of the grey scale, and the segmentation will be affected accordingly.
This effect has not been simulated in the synthetic data and constitutes the main reason why the
SVFMM algorithm works better for the synthetic than the clinical data. Since the contouring has
been implemented manually, the blood affection cannot be avoided ideally. Secondly, some iso-
lated pixels are located in some areas whose SNR is very low. A consequence of this low SNR
value is that too many adjacent pixels get jointly misclassified, and the correction mechanism
based on neighbourhood information, on which SVFMM is based, breaks down.

In conclusion, compared to GMM classification method, although the SVFMM classifica-
tion method is capable to reduce the number of unrealistic single and small isolated segments,
it cannot eliminate all unrealistic single and small isolated segments. One reason is that the
SVFMM imports the neighbourhood information to the mixing coefficients π i. This is an in-
direct way to introduce the neighbourhood information. A more directed method is that the
neighbourhood information is imported to the latent variable, the label KKK, and use an iterative
algorithm to remove all isolated segments. A further method is to use morphological operations
to find the largest connected segment. Moreover, if the SNR of a certain image is very low (or
the contouring of the myocardium is inaccurate), the number and the size of the jointly misclas-
sified segments will be high. The SVFMM method is not reliable to tackle this kind of high
complexity situation.
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5.4 Markov random field constrained Gaussian mixture model
classification

5.4.1 Introduction

In the previous Section 5.3, a spatial modification of the GMM method, SVFMM, has been
introduced to classify the myocardial perfusion DCE-MRI. In practice, the SVFMM method
cannot remove all isolated pixels. Therefore, in this section, a Markov random field constrained
Gaussian mixture model (GMM-MRF) has been introduced to improve it. An iterative algo-
rithm, iterated conditional modes (ICM), has been applied to obtain the maximum a posteriori
probability (MAP) estimate.

The content in this section has been accepted to publish in the International Conference on
Statistics: Theory and Applications (ICSTA) (2022):
Yalei Yang, Hao Gao, Colin Berry, Aleksandra Radjenovic and Dirk Husmeier. Myocardial

Perfusion Classification Using A Markov Random Field Constrained Gaussian Mixture Model.

5.4.2 Statistical model

Let xi represent the signal intensity (or MBF, up-slope) of pixel i of an image (or a parametric
map) where i = 1,2, ...,N and N is the number of pixels in this image. Any pixel i in this image
has either “healthy” or “ lesion” label. The pixel with the healthy label has the value k = 0, and
on the other hand, the pixel with the lesion label has the value k = 1. The first assumption of this
model is that all pixels that have healthy labels are from one Gaussian distribution with mean µ0

and variance σ2
0 . Similarly, all pixels that have lesion labels are formed by Gaussian distribution

with mean µ1 and variance σ2
1 . Therefore, the statistical model can be expressed as:

P(xi|µµµ,σσσ2,ki) =
ki√

2πσ1
exp

(
−(xi−µ1)

2

2σ2
1

)
+

1− ki√
2πσ0

exp

(
−(xi−µ0)

2

2σ2
0

)
(5.40)

where µµµ = {µ0,µ1}, σσσ2 = {σ2
0 ,σ

2
1}. Specifically, when a pixel i is in the healthy group and

ki = 0, its probability distribution is

P(xi|µµµ,σσσ2,ki = 0) =
1√

2πσ0
exp

(
−(xi−µ0)

2

2σ2
0

)
. (5.41)

On the other hand, if a pixel is the in the lesion group, its probability distribution has a similar
form to equation (5.41) with replacements of the parameters from µ0 and σ2

0 to µ1 and σ2
1 . The

advantage of this modelling is that given the label ki of pixel i, the conditional distribution of xi
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is very simple. Let X = {x1,x2, ...,xN}, the joint probability distribution of X is

P(X |µµµ,σσσ2,K) =
N

∏
i=1

P(xi|µµµ,σσσ2,ki) (5.42)

where K = {k1,k2, ...,kN}. Because of the sum in equation (5.40), the log likelihood function
of equation (5.42) is intractable. However, if the label K is known, the conditional likelihood
function of equation (5.42) is surprisingly simple. Specifically, given a known K = K

′
, the

conditional negative log likelihood function can be expressed as

− logP(X |µµµ,σσσ2,K = K
′
) ∝ N0 logσ0 +N1 logσ1 +

N0

∑
m=1

(xm−µ0)
2

2σ2
0

+
N1

∑
n=1

(xn−µ1)
2

2σ2
1

(5.43)

where N0 is the number of pixels that are labelled as healthy and N1 is the number of pixels that
are labelled as lesions.

As mentioned in Section 5.3, the myocardial lesion pixels are assumed to be connected spa-
tially because the blood supplement to the myocardium is from three main arteries (see details
in Section 3.1.1). Similar to the SVFMM, the spatial information is also introduced using the
Markov random field priors in this study (see details in Section 2.2.4). Specifically, the Markov
random field prior for label ki can be expressed as

P(ki|k−i) =
1
Q

exp(−U(ki|k−i)) (5.44)

where k−i denotes the set of all other labels except ki. Specifically, k−i = {k j} j ̸=i. Q is a
normalization constant of the prior distribution P(ki|k−i). The function U is usually called the
energy function [142]. Since only the neighbours of pixel i is considered to affect the value of
ki, the energy function U is defined as

U(ki|k−i) =
1
T ∑

i∼ j
u(ki|k j) (5.45)

where i∼ j represents all pixels j that are the neighbours of pixel i and T is the weight parameter.
In this study, the neighbours of pixel i is defined in Figure 5.10, and therefore u is defined as

u(ki|k j) =


−
(

1
2

)o−1

ki = k j,(
1
2

)o−1

ki ̸= k j

(5.46)

where o is the degree of order for the neighbours. For instance, if pixel j is the first order
neighbour of pixel i, o= 1, and if j is the second order neighbour, o= 2. In this work, o∈ {1,2}.
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Figure 5.10: This figure shows pixel i and its neighbours.
The four pixels marked by yellow triangles are the first order neighbours. The eight pixels
marked by green triangles are the second order neighbours. Four nearest neighbours are

applied in this thesis because the myocardial wall is usually very thin. Therefore, the first order
and the second order neighbours are enough in this work.

According to Bayes theorem in equation (2.4), the posterior distribution of ki is

P(ki|xi,µµµ,σσσ
2,k−i) ∝ P(xi|ki,µµµ,σσσ

2)P(ki|k−i) (5.47)

and the posterior distribution of K is

P(K|X ,µµµ,σσσ2,K−) =
N

∏
i=1

P(xi|ki,µµµ,σσσ
2)P(ki|k−i) (5.48)

where K− is the set of the neighbouring labels, K− = {{k j}i∼ j}N
i=1. This posterior distribution

is intractable because of the sum in equation (5.40). However, an algorithm called iterated
conditional modes (ICM) (see details in Sections 2.1.4 and 2.2.4) can be applied to find the
Maximum a posteriori (MAP) of equation (5.48).

5.4.3 ICM algorithm

In Section 2.2.4, the ICM algorithm has been briefly reviewed. Two assumptions are satisfied in
this case. Firstly, the observations X are conditionally independent given the labels K. Secondly,
the labels K are locally dependent Markov random fields with Markov property. Therefore, the
ICM algorithm can be applied in this case.

The negative logarithm of posterior distribution in equation (5.47) can be expressed as

− logP(ki|xi,µµµ,σσσ
2,k−i) ∝


logσ0 +

(xi−µ0)
2

2σ2
0

+
1
T ∑

i∼ j
u(ki|k j) ki = 0,

logσ1 +
(xi−µ1)

2

2σ2
1

+
1
T ∑

i∼ j
u(ki|k j) ki = 1.

(5.49)
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This expression shows that given the value of ki, its conditional posterior distribution is easy to
obtain. Moreover, given K = K

′
, the negative logarithm of conditional posterior distribution of

K can be expressed as

− logP(K = K
′
|X ,µµµ,σσσ2,K−) ∝ N0 logσ0 +N1 logσ1 +

N0

∑
m=1

(xm−µ0)
2

2σ2
0

+
N1

∑
n=1

(xn−µ1)
2

2σ2
1

+
1
T

N

∑
i=1

∑
i∼ j

u(ki|k j). (5.50)

The MAP estimation is the estimation that maximizes the posterior distribution or equivalently
minimizes the negative logarithm of the posterior distribution. Although the negative logarithm
of the posterior distribution is intractable, the simple form of the negative logarithm of condi-
tional posterior distribution can be used to infer the MAP estimation using the ICM algorithm.
Different from the methods illustrated in Sections 5.2 and 5.3, the MAP is obtained by the ICM
algorithm in this section. Specifically, the MAP is obtained by iteratively updating the values of
K to search the local minimum of equation (5.50). This also shows the disadvantage of the ICM
algorithm. Since the algorithm is greedy, i.e. the updates will never move to lower posterior di-
rections, the results are highly dependent on the initial values and may get stuck in local minima.
In this case, multiple initial values are generated to deal with this issue. The difference between
the EM algorithm and the ICM algorithm has been summarised in [143]. The EM algorithm
aims to maximize the parameter θ (µµµ and σσσ2 in our case) by iteratively proceeding:

1. θ ∗ = argmaxθ E[logP(θ ,k,x)]γ(k)

2. γ(k) = P(k|θ ∗,x).

On the other hand, the ICM algorithm aims to maximize the parameter θ and the hidden param-
eter k by iteratively proceeding:

1. θ ∗ = argmaxθ P(k∗,θ ,x)

2. k∗ = argmaxk P(k,θ ∗,x).

Furthermore, the choice of the algorithm is considered as a trade-off between computational
efficiency and accuracy [143]. In this study, we choose the ICM algorithm for the GMM-MRF
because it has been initially adopted in [17] and the ICM algorithm is more computationally
efficient. In fact, it is equivalent to the coordinate descent algorithm [144].

Moreover, the conditional posterior distributions for µµµ and σσσ2 are also simple. Since the
prior distribution of ki is independent on µµµ and σσσ2, the estimations of µµµ and σσσ2 can be obtained
using the log conditional likelihood function. Specifically, taking derivatives with respect to µµµ
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and σσσ2 to equation (5.43) to solve the maximum likelihood estimates (MLE), we have

µ̂0 =
1

N0

N0

∑
m=1

xm (5.51)

and

σ̂
2
0 =

1
N0

N0

∑
m=1

(
xm−

1
N0

N0

∑
m=1

xm

)2

. (5.52)

Similarly, we have

µ̂1 =
1

N1

N1

∑
n=1

xn (5.53)

and

σ̂
2
1 =

1
N1

N1

∑
n=1

(
xn−

1
N1

N1

∑
n=1

xn

)2

. (5.54)

Given the expression of the conditional posterior distribution and the MLE of the parameters,
the details of MAP estimation using ICM algorithm can be found in algorithm 3.

5.4.4 Application of Markov random field constrained Gaussian mixture
model

In this section, the GMM-MRF has been applied to both the original data and the parametric
map to detect the hypo-perfusion region. The clinical data used in this section is the same as the
data used in Section 5.2.

Figure 5.11 shows the maximum enhancement (ME) image, its corresponding GMM classi-
fication map and the LGE image of this DCE-MRI dataset. The ME image is the myocardium
image obtained when the myocardium enhancement reaches the maximum. The single or small
clusters mentioned in Section 5.2 exist in panel (b), Figure 5.11. The classification map shown
in panel (b), Figure 5.11 is used to compare with the classification map generated by the GMM-
MRF method. The LGE image shown in panel (c), Figure 5.11 is used to be the reference of the
location of the myocardial defect. The GMM-MRF method introduced in this section aims to
remove the small or single clusters in panel (b), Figure 5.11.

It can be noticed that there is a weight parameter T in equation (5.45). This parameter con-
trols the strength of the neighbourhood information. In this study, three values, T = 0.1,1,10,
are tested (larger values of T represent weaker spatial neighbourhood information). Figure 5.12
shows the classification maps generated by the GMM-MRF method using different weight pa-
rameters T . Larger values of T represent weaker spatial neighbourhood information. It can be
seen that the single or small clusters are not completely removed from panel (c), Figure 5.12.
However, the single or small clusters are completely eliminated from panels (a) and (b). Thus,
when the weight of neighbourhood information is too small (or the value of T is too big), the
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Algorithm 3: ICM algorithm for the Markov random field constrained Gaussian mix-
ture model

Data: X = {x1,x2, ...,xN}
Output: K = {k1,k2, ...,kN}
Generate initial values of K. The initial values can be fast obtained using simple
methods,e.g. k-means [145] or GMM (see Sections 5.2). To avoid the local minima
issue, multiple initial values can be generated;

Given K, estimate µµµ and σσσ2 using equations (5.51), (5.53), (5.52) and (5.54);
Given K, µµµ and σσσ2, calculate global negative logarithm posterior Gold using
equation (5.50). Let Gnew = Gold−0.001 to enter the while loop;

while Gnew < Gold do
Update Gold using Gnew;
for i← 1 to N do

Given Kold, calculate µµµold and (σσσ2)old using equations (5.51), (5.53), (5.52) and
(5.54);

Calculate old local negative logarithm posterior Lold
i for pixel i using

equation (5.49);
Give a new knew

i = |kold
i −1|;

Calculate new µµµnew and (σσσ2)new using equations (5.51), (5.53), (5.52) and
(5.54);

Given new knew
i , µµµnew and (σσσ2)new, calculate new local negative logarithm

posterior Lnew
i for pixel i using equation (5.49);

If Lnew
i < Lold

i , update old kold
i using new knew

i .
end
Given K, calculate µµµ and σσσ2 using equations (5.51), (5.53), (5.52) and (5.54);
Given K, µµµ and σσσ2, calculate global negative logarithm posterior Gnew using
equation (5.50);

end
When the while loop stops, the values of K is the estimated MAP.
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(a) ME (b) GMM

(c) LGE

Figure 5.11: Panel (a) shows the ME image. Panel (b) shows the GMM classification map based
on the ME image. The yellow pixels indicate the healthy tissues. The green pixels indicate the
lesion tissues and the black pixels indicate the background (non-myocardium). Panel (c) shows
the LGE image of this DCE-MRI dataset. the region inside the red curve shows the myocardial
defect visually.

GMM-MRF method cannot remove all single or small clusters. The selection of the weight
parameter is based on two criteria. Specifically, the first criterion is that the classified lesion is
located in one connected space. This criterion is applied because of prior information that single
and small isolated segments are physiologically unrealistic as described in Section 5.2. Further-
more, three main arteries supply blood to the myocardium and the myocardial defect is caused
when one or more arteries are narrowed. Therefore, the myocardial defect is highly likely shown
in a big continuous region because every two control regions of the main arteries are adjacent
for the mid-cavity slice (see Figure 3.8). The limitation is that this method fails when there are
two disconnected myocardial defects. This happens rarely but possibly. The second criterion
is less prioritised than the first one. If there are multiple choices of the weight parameter that
can generate the classification map that the classified lesion is located in one connected space,
the parameter is selected by the negative conditional log likelihood. The negative conditional
log likelihood can be calculated by equation (5.43). Therefore, the weight parameter is selected
when the classification map has the classified lesion located in one connected space and has the
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(a) T = 0.1 (b) T = 1 (c) T = 10

Figure 5.12: The GMM-MRF classifications to the original signals using different weight param-
eters. Panels (a-c) show the classification map using GMM-MRF method given T = 0.1,1,10
respectively. Larger values of T represent weaker spatial neighbourhood information. The yel-
low pixels indicate the healthy group. The green pixels indicate the lesion group and the black
pixels indicate the background (non-myocardium).

minimum negative conditional log likelihood. Figure 5.13 shows the evolution of the negative
conditional log likelihood given different weight parameters. When T = 10, the classified lesion
regions are not located in a connected space. So this parameter is not selected. For the rest of
parameter values, the case that T = 1 has the minimum negative conditional log likelihood, so
it is considered to be the most appropriate one. It can also be noticed that though the negative
conditional log likelihood is different for the cases T = 0.1 and T = 1, the classification differ-
ences are rather small, i.e. the labels for a few pixels in the boundary between healthy tissues
and lesions are different. This shows the robustness of the GMM-MRF method.

From Figure 5.13, the GMM-MRF method reaches convergence very fast. Specifically, even
for the most complex one T = 0.1, it only takes ten iterations to converge. This is a significant
advantage of this algorithm. As a comparison, it takes about 500 iterations to reach the conver-
gence for the SVFMM method illustrated in Section 5.3 when β = 50. Overall, it takes about 1
minute to run the GMM-MRF and more than 10 minutes to run the SVFMM.

The GMM-MRF method has also been applied to the MBF map in this study. Figure 5.14
shows the MBF estimation map and its corresponding GMM classification map. Many single or
small clusters exist in panel (b), Figure 5.14. Similarly, the GMM-MRF method with three dif-
ferent weight parameters T = 0.1,1,10 are applied to panel (a) in Figure 5.14, and Figure 5.15
shows the corresponding classification results. When T = 10, the number of single or small
clusters has been reduced. However, since the usage of the neighbourhood information is not
sufficient, there are still some single or small clusters. On the other hand, when T = 0.1 and
T = 1, the classification results are exactly the same (this can be validated by Figure 5.16). This
shows the robustness of the GMM-MRF method. Similar to the original signals example, the
negative conditional log likelihood can be used to select the weight parameter. Although the
classification results are the same for these two weight parameters, the model selection phase
is still necessary. For example, the convergence speed for different parameters might be differ-
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Figure 5.13: The negative conditional log likelihood evolution for different weight parameters
based on original signals.

ent, and the fast one is preferred. Figure 5.16 shows the evolution of the negative conditional
log likelihood for the MBF map. Surprisingly, the negative log likelihood decreases using the
GMM-MRF method. This means that the initial value generated by the GMM using the EM
algorithm gets stuck in a local minimum. Comparably, the convergence of the GMM-MRF for
this case are also very fast. When T = 0.1 and T = 1, the algorithms stop at the same position,
and the case, T = 0.1, is faster (2 iterations) and selected.

The GMM-MRF method converges very fast because the choice of the initial value is rel-
atively close to the convergent state. Comparing panel (b) in Figure 5.14 and panel (a) in Fig-
ure 5.15, the main lesion cluster that is located at the right bottom of the myocardium in the
image stays the same. All changes are to the single and small clusters.

Similar to the SVFMM method, the GMM-MRF method can also degenerate to the GMM.
Specifically, when the weight parameter T approaches to infinity, the GMM-MRF changes to
the GMM. In other words, the GMM method is a special case of the GMM-MRF method.

In conclusion, in this case, the GMM-MRF method can remove all single and small clus-
ters given an appropriate weight parameter. This weight parameter can be selected based on
two criteria. The first and the highest priority one is whether the classified lesion is located in
one connected space. If multiple weight parameters can achieve this goal, they can be further
selected by the negative conditional log likelihood and the convergence speed. Compared with
the SVFMM method, the GMM-MRF method has a faster convergence speed. Moreover, the
SVFMM cannot eliminate all single and small clusters, but the GMM-MRF, on the other hand,
is able to remove all single and small clusters.

A disadvantage of the GMM-MRF method is that this method is highly dependent on the
accuracy of the estimation method. In fact, all methods illustrated in this chapter have the same
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(a) MBF (b) GMM

Figure 5.14: The MBF estimation map and its corresponding GMM classification map. In panel
(b), the yellow pixels indicate the healthy tissues. The green pixels indicate the lesion tissues
and the black pixels indicate the background (non-myocardium).

(a) T = 0.1 (b) T = 1 (c) T = 10

Figure 5.15: The GMM-MRF classifications to the MBF map using different weight parame-
ters. Panels (a-c) show the classification map using GMM-MRF method given T = 0.1,1,10
respectively. The yellow pixels indicate the healthy group. The green pixels indicate the lesion
group and the black pixels indicate the background (non-myocardium).

disadvantage. If the estimations of the features, e.g. the MBF and up-slope, are inaccurate, the
methods introduced in this chapter might fail. Precisely, if the input parametric maps have the
quality like panel (b) in Figure 4.6 or Figure 4.7, neither classification method can accurately
predict the position of the hypo-perfusion region. The solution of this problem will be introduced
in the conclusion and discussion section of this chapter, and other methods will be introduced in
Chapter 6.

5.4.5 A temporal expansion of the GMM-MRF method

In the previous sections, the GMM-MRF has been introduced to make use of the spatial infor-
mation to improve the classification results. In fact, this method can also introduce temporal
information using the Markov random field priors. Especially, the original signals of the my-
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Figure 5.16: The negative conditional log likelihood evolution for different weight parameters
based on the MBF map.

ocardial perfusion DCE-MRI is a series of images. Therefore, for any given pixel, its temporal
neighbours, i.e. the same pixel at the adjacent time point, should also affect the label of the
given pixel. Figure 5.17 shows the spatio-temporal neighbours of a given pixel.

The Markov random field priors for the spatio-temporal neighbours can be defined as an ex-
tension of the Markov random field priors for the spatial neighbours. Specifically, the expression
of the Markov random field priors is

P(ki|k−i) =
1
Q

exp(−U(ki|k−i)−V (ki|k−i)) (5.55)

where k−i denotes the set of labels of spatio-temporal neighbours of pixel i. Q is a normal-
ization constant of the prior distribution. The energy function U(ki|k−i) is defined the same as
equation (5.45). The energy function V (ki|k−i) is defined as follows

V (ki|k−i) =
1
T0

∑
i∼l

v(ki|kl) (5.56)

where i∼ l represents the temporal neighbours l for pixel i and T0 is the weight parameter. The
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Figure 5.17: The spatio-temporal neighbours of a given pixel i.

definition of v(ki|kl) is similar to u(ki|k j). Specifically, we have

v(ki|kl) =


−
(

1
2

)o−1

ki = kl,(
1
2

)o−1

ki ̸= kl.

(5.57)

Therefore, the local log conditional posterior turns to

− logP(ki|xi,µµµ,σσσ
2,k−i) ∝


logσ0 +

(xi−µ0)
2

2σ2
0

+
1
T ∑
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1
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logσ1 +
(xi−µ1)

2

2σ2
1

+
1
T ∑

i∼ j
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1
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∑
i∼l

v(ki|kl) ki = 1

(5.58)
and the global log conditional posterior for image t turns to

− logP(K = K
′
|X ,µµµ,σσσ2,K−) ∝ N0 logσ0 +N1 logσ1 +

N0

∑
m=1

(xm−µ0)
2

2σ2
0

+
N1

∑
n=1

(xn−µ1)
2

2σ2
1

+
1
T

N

∑
i=1

∑
i∼ j

u(ki|k j)+
1
T0

N

∑
i=1

∑
i∼ j

v(ki|kl). (5.59)

Since this expansion introduces a new dimension t, the global log conditional posterior for a
serial images t = 1,2, ...,M can be defined as

−
M

∑
t=1

P(Kt = K
′
t |Xt ,µµµ t ,σσσ

2
t ,K

−
t ) (5.60)
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where the subscript t denotes the time index of the image. The ICM algorithm for the spatio-
temporal GMM-MRF can be found in algorithm 4.

Algorithm 4: ICM algorithm for the spatio-temporal Markov random field constrained
Gaussian mixture model

Data: X = {x1,x2, ...,xN}
Output: K = {k1,k2, ...,kN}
Generate initial values of {Kt}. The initial values can be fast obtained using simple
methods,e.g. k-means [145] or GMM (see Sections 5.2). To avoid the local minima
issue, multiple initial values can be generated ;

Given {Kt}, estimate {µµµ t} and {σσσ2
t } using equations (5.51), (5.53), (5.52) and (5.54);

Given {Kt}, µµµ t and σσσ2
t , calculate global negative logarithm posterior Gold using

equation (5.60). Let Gnew = Gold−0.001 to enter the while loop;
while Gnew < Gold do

Update Gold using Gnew;
for t← 1 to M do

for i← 1 to N do
Given Kold

t , calculate µµµold
t and (σσσ2

t )
old using equations (5.51), (5.53), (5.52)

and (5.54);
Calculate old local negative logarithm posterior Lold

i,t for pixel i image t using
equation (5.58);

Give a new knew
i,t = |kold

i,t −1|;
Calculate new µµµnew

t and (σσσ2
t )

new using equations (5.51), (5.53), (5.52) and
(5.54);

Given new knew
i,t , µµµnew

t and (σσσ2
t )

new, calculate new local negative logarithm
posterior Lnew

i,t for pixel i image t using equation (5.58);
If Lnew

i,t < Lold
i,t , update old kold

i,t to new knew
i,t .

end
end
Given {Kt}, calculate {µµµ t} and {σσσ2

t } using equations (5.51), (5.53), (5.52) and
(5.54);

Given {Kt}, {µµµ t} and {σσσ2
t }, calculate global negative logarithm posterior Gnew

using equation (5.60);
end
When the while loop stops, the values of {Kt} is the estimated MAP for all images.

A problem of this spatio-temporal GMM-MRF method is that multiple classification maps
are generated based on dynamic frames. However, the classification results should be consistent
for all dynamic frames. Therefore, in this study, we use the average value of the classifica-
tion maps to generate the final classification map, and use value 0.5 as the threshold of the
hypo-perfusion and normal perfusion regions. Figure 5.18 shows the average values of the clas-
sification maps and the final classification map given T = 1 and T0 = 1. The input images and
their corresponding classification maps can be found in Figure 5.19 and 5.20.

Compared with the classification map in panel (b) Figure 5.12, the classification map in
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(a) Average values (b) Classification map

Figure 5.18: The average values of the classification maps and the final classification map.
Panel (a) shows the average values of the multiple classification maps. Panel (b) shows the
final classification map given threshold 0.5. The yellow pixels indicate the healthy tissues.
The green pixels indicate the lesion tissues and the black pixels indicate the background (non-
myocardium).

panel(b) Figure 5.18 does not change a lot. According to the visual inspection to panel (c),
Figure 5.11, both spatial GMM-MRF and spatio-temporal GMM-MRF overestimate the hypo-
perfusion region. On the other hand, the classification map based on the MBF map accurately
predicts the position of the hypo-perfusion region. This is caused by the limitation of the original
signals. For the spatial GMM-MRF method, the maximum enhancement image is used to clas-
sify the myocardial pixels. Similar to the CER map in Chapter 4, the maximum enhancement
image cannot make use of the growth speed of the signals. It can only quantify the amplitude
of the signal. Therefore, if the spatially correlated noise exists in the original signals, e.g. all
pixels located on the right side have lower signals than the pixels located on the left side, the
spatial GMM-MRF method will be invalid. Similarly, although the spatio-temporal GMM-MRF
method uses temporal neighbourhood information, this method still cannot overcome the spa-
tially correlated noise issue. Specifically, each classification map for the spatio-temporal GMM-
MRF method is based on the image with spatially correlated noise, and thus all classification
maps are affected by it. On the other hand, the MBF estimation methods standardise the image
with the baseline and therefore reduces the spatially correlated noise.

5.5 Discussion and conclusion

In this chapter, three classification methods, i.e. the GMM, SVFMM and GMM-MRF, have been
applied to the myocardial perfusion DCE-MRI original signals and parametric maps. These
methods aim to detect the hypo-perfusion region using either original signals or the parametric
maps developed using the methods illustrated in Chapter 4.
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Figure 5.19: The input images for the spatio-temporal GMM-MRF methods.

The GMM classification method and its application to myocardial perfusion DCE-MRI are
introduced in Section 5.2. The GMM method is fitted by the EM algorithm (see details in
Section 2.4). Because the GMM classification method only takes the values of the signals or the
parameters into account, some unrealistic single and small clusters appear in the classification
map. This will happen more frequently when the SNR of the image is low (in practice, when
the SNR is lower than 3, the SNR can be called low), or the parameter estimation method is
inaccurate. Therefore, the neighbourhood information is introduced to reduce these unrealistic
clusters using SVFMM and GMM-MRF methods.

In Section 5.3, the SVFMM classification method is introduced and applied to the original
signals of the myocardial perfusion DCE-MRI. The SVFMM method is also fitted by the EM
algorithm. It has been tested on both synthetic and clinical data. The number of single or small
clusters pixels is used to quantify the performance of the SVFMM method for the clinical data.
Moreover, the number of misclassified pixels is used to quantify the performance of the syn-
thetic data. According to the quantification results, the SVFMM method dramatically decreases
the number of single or small clusters. However, although large weight parameter for the neigh-
bourhood information is given to the SVFMM, the single or small clusters still cannot be entirely
removed. The reason is that the SVFMM indirectly introduces the neighbourhood information,
i.e. to the probability of the label. Therefore, the GMM-MRF method is developed to introduce
the neighbourhood information in a direct way, i.e. to the label.

In Section 5.4, the GMM-MRF method has been developed to detect the hypo-perfusion
region using either original signals or the parametric map. The GMM-MRF method is fitted
by the ICM algorithm, a greedy algorithm to search the MAP. Like the SVFMM method, the
GMM-MRF method aims to eliminate the single and small clusters. For both cases, i.e. original
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Figure 5.20: The corresponding classification maps for the input images in Figure 5.19.

signals and MBF map, the GMM-MRF method entirely removes all single and small clusters.
Moreover, compared with the EM algorithm for the SVFMM, the ICM algorithm for the GMM-
MRF is relatively faster. Generally, it takes about 1 minute to achieve convergence. On the other
hand, it takes around 10 minutes to reach the convergence for the EM fitted SVFMM. However,
for both spatial GMM-MRF and spatio-temporal GMM-MRF methods, their applications to the
original signals overestimate the hypo-perfusion region. This is caused by the limitation of the
original signals.

The limitation of the mixture models is that these methods are highly dependent on the
quality of the data and the accuracy of the estimation methods. Precisely, if the input parametric
maps have the quality like panel (b) in Figure 4.6 or Figure 4.7, neither classification method
can accurately predict the position of the hypo-perfusion region. In other words, the detection
of the hypo-perfusion region is separated into two phases. Firstly, the parametric map, e.g.
the MBF map, is obtained using an independent method. Secondly, the classification map is
obtained based on the MBF map. This is a single direct affection from the MBF map to the
classification map. However, the classification map should also affect the MBF map because
the healthy tissues are reasonable to have high MBF, and the lesion tissues reasonably have
low MBF. Suppose a method can iteratively improve the MBF map using the classification
map and improves the classification map using the MBF map, though the initial MBF map
is not accurately estimated. In that case, it can be corrected finally because of the iterative
improvements. This logic chain is also valid for the original signals because the classification
map can reduce the noise of the original signal data. Therefore, in Chapter 6, a hierarchical
Bayesian model is introduced to combine the MBF estimation method and the classification
method. Moreover, in Chapter 7, a hierarchical Bayesian model is introduced to combine the
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signal denoise (denoise from the original images) method and the classification method.



Chapter 6

Classification of Myocardial Blood Flow
Based on DCE-MRI Using Hierarchical
Bayesian Models

6.1 Introduction

In previous chapters, MBF estimations (see Chapter 4) and pixel classifications (see Chapter 5)
have been introduced. Generally, the pixel classification approaches can be applied to the para-
metric maps, e.g. MBF maps, or the original images to generate classification maps. In other
words, the classification maps are generated from the parametric maps, but the generation of
parametric maps is free from the classification information. However, the effects of classification
information to the parametric maps should not be neglected. Specifically, the lesion segments
generally correspond to low MBF and the healthy segments correspond to high MBF. Therefore,
a Fermi method (see Section 4.3.3) based hierarchical Bayesian model has been developed to
integrate the process of parameter estimations and classifications in this chapter.

Hierarchical Bayesian modelling (HBM) has been extensively reviewed in Section 2.2.3. Hi-
erarchical Bayesian models (HBMs) have been applied in a broad and diverse range of research
and development areas, including healthcare medicine (see [146]), transportation networks (see
[147]), clinical trials (see [148]), water resources (see [149]) and economics (see [150]). More-
over, HBMs have been applied widely in medical imaging, e.g. DCE-MRI. A HBM method has
been developed to estimate kinetic parameters of DCE-MRI based on Gaussian Markov random
fields priors in [103]. [151] introduced a HBM method to model the concentration time curve
(CTC) based on a standard compartment model (see [152]) where a traditional nonlinear regres-
sion model was used for comparison. [153] illustrated an application of [151] to evaluate treat-
ment response of squamous cell carcinoma. Of particular interest in the context of the present
chapter are recent applications of HBMs to myocardial perfusion modelling. [97] modelled the
non-linear attenuation of arterial input functions (AIF) and used HBMs to reconstruct AIFs

97
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from magnetic resonance signal intensities in the myocardium. [98] extended the modelling
in [97] by importing spatio-temporal constrains to the B-spline model using Gaussian Markov
random fields. [105] illustrated an HBM method to analyze the myocardial perfusion DCE-
MRI. In this method, a large-scale Bayesian spatio-temporal regression method was applied to
model the data. Similarly, Gaussian Markov random fields priors were introduced to express
the spatio-temporal constrains. [5] used HBMs to infer the parameters of tracer-kinetic models
from contrast-enhanced magnetic resonance (MR) images. They further combined HBMs with
Markov random fields to include prior knowledge on the physiological ranges of the model pa-
rameters and to integrate additional information on the physiological neighbourhood of a target
voxel. The commonality of all these applications is that the models adopt hierarchical structures
to incorporate potentially complex interactions and dependencies between their variables, and
use state-of-the-art Markov chain Monte Carlo sampling techniques to address the analytical
intractability of inference.

The work in this chapter aims to provide an automated identification of areas of hypo-
perfused myocardium. To this end, we combine a myocardial perfusion model with a novel
HBM and a Markov random fields (MRF) prior. The latter acts on discrete labels that we asso-
ciate with the pixels of an MRI scan, to assign them to two distinct clusters: lesion versus healthy

tissue. Loosely speaking, this clustering process can be viewed as a two-layered model, where
the first (observed) layer represents the signal intensity (proportional to contrast agent concen-
tration) and the second (hidden) layer contains the class labels (see [154]). A Markov random
fields prior is used to provide context information, so that class assignment is not only based on
a pixel’s own signal intensity, but also takes spatial information from neighbouring pixels into
account. As we will demonstrate, this is essential for noise reduction, good generalization and
robust classification, i.e. obtaining classification patterns that are unaffected by random noise
injections.

The content in this chapter has been published in Journal of the Royal Statistical Society:
Series C at 12th May 2022 [155]:
Yalei Yang, Hao Gao, Colin Berry, David Carrick, Aleksandra Radjenovic and Dirk Husmeier.

Classification of Myocardial Blood Flow Based on Dynamic Contrast Enhanced Magnetic Res-

onance Imaging Using Hierarchical Bayesian Models.

6.2 Statistical method

6.2.1 Application of Markov random fields prior

The Markov random field priors has been applied in Chapter 5. Similarly, the Markov random
field priors are also applied in this chapter to bring the neighbourhood information to decrease
the unrealistic spurious singleton clusters.
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Let ki ∈ {0,1} denote the label of pixel i. When ki = 0, this pixel is marked as ‘healthy
tissue’. When ki = 1, this pixel is marked as ‘lesion’. The Markov random field of the label ki

is:
P(ki|k−i) =

1
Q

exp(−U(ki|k−i)) (6.1)

where Q is a normalization constant to ensure that P(ki|k−i) is normalised and sums to 1, k−i is
the set of all other labels except ki, k−i = {k j} j ̸=i, and

U(ki|k−i) =
1

Tki
∑
i∼m

u(ki|km), (6.2)

in which Tki is a weight parameter, i∼ m means pixel i and pixel m are neighbouring pixels and
u(ki|km) is a local potential function, which we define to be

u(ki|km) =


−
(

1
2

)o−1

ki = km,(
1
2

)o−1

ki ̸= km

(6.3)

where ‘o’ indicates the neighbouring degree of order. In this work, we will use up to second
order neighbourhoods, o ∈ {1,2}. The definition of spatial pixel cliques (pixel i and its neigh-
bours) can be found in Figure 5.10. Increasing the neighbourhood of a pixel in the Markov
random field to third order was found to lead to a substantial increase in the computational com-
plexity, by about 100%. The restriction to second order is motivated by the fact that in nearly
all our images, the thickness of the myocardium wall does not exceed 5 pixels. A third-order
neighbourhood could potentially straddle the myocardium wall and combine regions on either
side of it, which is an undesirable effect. The main justification for our restriction to second
order, however, is our empirical finding that increasing the neighbourhood from second to third
order was not found to make many difference in practice. Figure 6.1 shows a comparison be-
tween segmentations obtained with a 2nd-order and a 3rd-order neighbourhood, leading to very
similar results visually.

For the Fermi parameters ΘΘΘi = {Ai,ωi,λi} (see Section 4.3.3), its Markov random fields
prior P(ΘΘΘi|ΘΘΘ−i,ki,k−i) is defined by

P(ΘΘΘi|ΘΘΘ−i,ki,k−i) =
1
Q

exp(−U(ΘΘΘi|ΘΘΘ−i,ki,k−i)) (6.4)

where
U(ΘΘΘi|ΘΘΘ−i,ki,k−i) =

1
TFermi

∑
i∼m

νi,m|Fb(ΘΘΘi)−Fb(ΘΘΘm)|. (6.5)

and
Fb(ΘΘΘi) = R f (t = 0) =

Ai

1+ e−ωi/λi
. (6.6)
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(a) 2 orders (b) 3 orders

Figure 6.1: A comparison between the segmentations obtained with a 2nd-order (left panel) and
a 3rd-order (right panel) neighbourhood for a pixel in the Markov random field prior.

Note that the dependence of the right-hand side of equation (6.5) on ki and k−i is via equa-
tion (6.7). In equation (6.5), TFermi is a weight parameter, and i∼m indicates that pixels i and m

are neighbouring pixels, which are defined in Figure 5.10. The parameter family {νi,m} is used
to guarantee edge-preserving properties, i.e. to prevent smoothing over edges that are indicative
of tissue boundaries (e.g. delineating the area of a lesion); see [5] and [156] for details. When
two adjacent pixels are in different categories, the parameters {νi,m} give the model the flexi-
bility to switch off the interaction between the pixels and ensure they are not going to influence
each other in the MBF. To be specific, in this work, νi,m is defined by

νi,m =

{
0 ki ̸= km

1 ki = km.
(6.7)

6.2.2 Hierarchical Bayesian model (HBM)

Figures 6.2 and 6.3 show the HBM model using DAGs. The descriptions of the parameters
in Figures 6.2 and 6.3 can be found in Table 6.1. The structure of the HBM model reflects
the three-layer causal relationships of the data-generating process. Specifically, the observed
data is dependent on the contrast agent and its concentration, as described by the Fermi model
(see Section 4.3.3), and the effect of the contrast agent is dependent on the status label. The
rationality of the former dependence is from the central volume principle (see, e.g. [96]) and
the Fermi model (see, e.g. [72]), and the rationality of the latter dependence follows from the
physiological fact that the MBFs of healthy tissues and lesions are different (see, e.g. [157]).
Moreover, both Fermi parameters and the status label are dependent on their neighbours using
Markov random field priors (see Section 2.2.4) to introduce the spatial information. The details
of the nodes in Figures 6.2 and 6.2 will be illustrated in Section 6.2.3.
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yi(t)

ΘΘΘi σ2
i

ΓΓΓ ΘΘΘ−i α∗,β ∗

ΓΓΓ
∗∗ ki

k−i

Figure 6.2: The structure of the hierarchical Bayesian model proposed in the work. We assume
that the impulse response function is a Fermi function (see Section 4.3.3). The parameter groups
are defined below equation (6.12). In this graph, the higher layers are conditionally dependent
on the lower layers. The circle nodes denote variables and the rectangle nodes denote fixed
values or observations. The explanations of parameters in this Figure can be found in Table 6.1.

Table 6.1: Overview of the HBM model parameters
Parameter Description

yi(t) Observed contrast concentration for pixel i at time t
Ai, ωi, λi Fermi parameters for pixel i

σ2
i Variance of the iid Gaussian noise for pixel i

A−i, ω−i, λ−i Fermi parameters of the neighbours of pixel i
µAi , µωi , µλi Means of the prior distributions of the Fermi parameters for pixel i
σ2

Ai
, σ2

ωi
, σ2

λi
Variances of the prior distributions of the Fermi parameters for pixel i

ki Label of pixel i
k−i Labels of the neighbours of pixel i

∗ and ∗∗ The symbols with ∗ and ∗∗ are hyperparameters

6.2.3 Novel statistical model

Let yi(t) denote the observed contrast agent concentration of an image where i is a positive
integer (i = 1,2, ...,N) and t is a non-negative integer (t = 0,1, ...,M−1). N is the total number
of pixels in this image, M is the total number of time stamps of the data. For each pixel, ki

denotes the group of this pixel. In this case, we assume that there are two groups, healthy
tissue and lesion. The proposed method can be easily to expand to more groups. However, two
groups are more suitable for the data used in this study. Therefore, ki = 0 when the ith pixel
is in the healthy group and ki = 1 when the ith pixel is in the lesion group. We assume the
observed contrast concentration yi(t) is Gaussian distributed with mean C(t|ΘΘΘi) and variance
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Figure 6.3: The hierarchical Bayesian model with all parameters shown. This figure is an
extension of Figure 6.2 in which all parameters are shown individually. This inevitably leads
to a more cluttered diagram, which has the advantage, though, that the conditional probabilities
required for the Gibbs sampling scheme of Section 6.2.4 can directly be read off the graph based
on its Markov blanket (see Section 2.2.3). The explanations of parameters in this Figure can be
found in Table 6.1.

σ2
i . Therefore, the expression of yi(t) is

yi(t) =C(t|ΘΘΘi)+ εi (6.8)

where C(t|ΘΘΘi) is the model calculated contrast agent concentration. Note that the notation
C(t|ΘΘΘi) means the same as Cmyo(t) in equation (4.11), but we have made the dependence on
the Fermi parameter vector ΘΘΘi explicit in the conditioning argument. εi ∼ N(0,σ2

i ) is assumed
to be iid additive Gaussian noise (see [158] and [133]). We will test in our simulation studies
how critical this distributional assumption is for the ultimate purpose of this study (automatic
lesion detection). The parameters ΘΘΘi are the Fermi parameters defined in equation (4.15). Ac-
cording to the central volume principle (see [96]) in Section 4.3.3, the expression of contrast
agent concentration C(t|ΘΘΘi) can be found in equation (4.11), which we rewrite to make the
dependence on the Fermi parameters, defined in equation (4.15), explicit in our notation:

C(t|ΘΘΘi) = R f (t,ΘΘΘi)∗Cin(t) (6.9)

where R f (t,ΘΘΘi) can be found in equation (4.14). The new modified notation makes the depen-
dence on the Fermi parameter vector ΘΘΘi explicit in the argument. The term Cin(t) in equation
(6.9) can be directly acquired from data. Specifically, the input contrast concentration Cin(t) can
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be extracted from the blood pool signal. Firstly, the blood pool in the images can be visually
observed. Then, a 3×3 square is used to record the same blood pool area in all images. Finally,
the average value of signal intensities in the square is calculated to be the blood pool signal and
use equation 3.2 to transfer the signal values to the concentration values. We now make the
dependence on the model parameters explicit in our notation. Since we assume the noise εi to
be iid Gaussian distributed, we have

P(yi(t)|ΘΘΘi,σ
2
i ) =

1√
2πσi

exp

(
−(yi(t)−C(t|ΘΘΘi))

2

2σ2
i

)
. (6.10)

We assume that the parameters ΘΘΘi are independent of time t. The quantities ΘΘΘi are related to the
patient’s physiology and pathophysiology, which will change with time (e.g. as a consequence
of treatment). However, these changes are slow, typically happening in the order of weeks
or months. Our MRI time series, on the other hand, are acquired within a minute, that is,
several orders of magnitude below. It is therefore justified to assume that for the duration of
the measurement modelled in our study, the parameters ΘΘΘi can be taken as constant. For yyyi =

{yi(t = 0),yi(t = 1), ...,yi(t = M−1)}, the conditional density function P(yyyi|ΘΘΘi,σ
2
i ) is

P(yyyi|ΘΘΘi,σ
2
i ) =

M−1

∏
t=0

P(yi(t)|ΘΘΘi,σ
2
i )

∝ exp

(
M−1

∑
t=0

−(yi(t)−C(t|ΘΘΘi))
2

2σ2
i

)
σ
−M
i . (6.11)

As we have discussed in Section 2.2.3, according to the factorization rule, the joint distribu-
tions of a DAG is the product of conditional distributions determined by the respective parent
nodes. Given the structure in Figure 6.2, the joint distribution is

P(yyyi,ΘΘΘi,σ
2
i ,ΓΓΓ,ΘΘΘ−i,α

∗,β ∗,ΓΓΓ∗∗,ki,k−i) =P(yyyi|ΘΘΘi,σ
2
i )P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i)

P(σ2
i |α∗,β ∗)P(ΓΓΓ|ΓΓΓ∗∗,ki)

P(ki|k−i)P(ΘΘΘ−i)P(k−i) (6.12)

where ΘΘΘi = {Ai,ωi,λi}, ΘΘΘ−i = {A−i,ω−i,λ−i}, ΓΓΓ = {ΓA,Γω ,Γλ} and ΓA = {µA,ki,σ
2
A,ki
},

Γω = {µω,ki,σ
2
ω,ki
}, Γλ = {µλ ,ki,σ

2
λ ,ki
}, ΓΓΓ

∗∗ = {µ∗∗,σ2
∗∗,α

∗∗,β ∗∗}. The joint probability distri-
bution in equation (6.12) has combined two classes of probabilistic graphical models: directed
probabilistic graphical models, also called Bayesian networks (see Section 2.2.3), and undi-
rected graphical models, also called Markov random fields (see Section 2.2.4). Both modelling
paradigms can be integrated into the generalised concept of a partially directed acyclic graph-
ical model, also called a chain event graph or just a chain graph; see e.g. [159] or the recent
monograph by [160]. This combination of a Bayesian network with a Markov random field
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is the natural approach for the present problem. The directed acyclic graph (DAG) structure
of the Bayesian network represents the causal relationships of the data-generating process, as
explained in the previous section. Spatial neighbourhood relations, on the other hand, lack a
natural DAG structure, and an undirected graph, i.e. a Markov random field is a more natural
representation. Our model can thus be interpreted as a particular instance of a chain graph, one
in which the directed and undirected graph structures are clearly separated, and this separation
simplifies the inference compared to the more general inference schemes discussed in [160].

We now explain each term on the right-hand side of equation (6.12). The likelihood
P(yyyi|ΘΘΘi,σ

2
i ) can be found in equation (6.11). P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) is the prior distribution of

the Fermi parameter vector ΘΘΘi, which combines explicit priors for the three parameter groups
with the Markov random field prior of equation (6.4):

P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) ∝N(log(Ai)|µA,ki,σ
2
A,ki

)N(log(ωi)|µω,ki,σ
2
ω,ki

)

N(log(λi)|µλ ,ki,σ
2
λ ,ki

)P(ΘΘΘi|ΘΘΘ−i,ki,k−i). (6.13)

N(log(Ai)|µA,ki,σ
2
A,ki

), N(log(ωi)|µω,ki,σ
2
ω,ki

), N(log(λi)|µλ ,ki,σ
2
λ ,ki

) are Gaussian prior distri-
butions. Pathologically, the values of MBF for healthy tissues and lesions are different. Since
all Fermi parameters are non-negative, we assume the logarithms of the Fermi parameters are
Gaussian distributed conditional on the labels ki. We have also tried Gamma distributions as an
alternative, and include the results in Appendix B.1. The difference in the results obtained with
a log-Gaussian versus a Gamma prior was found to be minor, which suggests that the choice of
functional family for the prior distributions on the Fermi parameters ΘΘΘi is not critical, as long as
the distributions are consistent with the positivity constraint of the Fermi parameters, i.e. have
positive support. For N(log(Ai)|µA,ki,σ

2
A,ki

), we have:

N(log(Ai)|µA,ki,σ
2
A,ki

) =
1√

2πσA,ki

exp

(
−(log(Ai)−µA,ki)

2

2σ2
A,ki

)
. (6.14)

with ki ∈ {0,1}. For ωi and λi, the definitions are similar. P(ΘΘΘi|ΘΘΘ−i,ki,k−i) is the Markov
random field prior, defined in equations (6.4) and (6.5). We choose a vague inverse gamma
distribution for the observational noise variance σ2

i ,

P(σ2
i |α∗,β ∗) = IG(σ2

i |α∗ = 0.1,β ∗ = 0.1), (6.15)

due to its conjugacy. P(ΓΓΓ|ΓΓΓ∗∗,ki) is the prior distribution for hyperparameter vector ΓΓΓ. It can be
written as

P(ΓΓΓ|ΓΓΓ∗∗,ki) ∝ P(µA,ki,µω,ki,µλ ,ki|µ∗∗,σ
2
∗∗)P(σ

2
A,ki

,σ2
ω,ki

,σ2
λ ,ki
|α∗∗,β ∗∗) (6.16)
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where

P(µA,ki=ψ ,µω,ki=ψ ,µλ ,ki=ψ |µ∗∗,σ2
∗∗) ∝N(µA,ki=ψ |µ∗∗,σ2

∗∗)N(µω,ki=ψ |µ∗∗,σ2
∗∗)

N(µλ ,ki=ψ |µ∗∗,σ2
∗∗) (6.17)

and

P(σ2
A,ki=ψ ,σ

2
ω,ki=ψ ,σ

2
λ ,ki=ψ

|α∗∗,β ∗∗) ∝IG(σ2
A,ki=ψ |α∗∗,β ∗∗)IG(σ2

ω,ki=ψ |α∗∗,β ∗∗)

IG(σ2
λ ,ki=ψ

|α∗∗,β ∗∗) (6.18)

with ψ ∈ {0,1}. {µ∗∗ = 0,σ2
∗∗ = 10,α∗∗ = 0.1,β ∗∗ = 0.1} are uninformative hyperparameters.

P(ki|k−i), another term in equation (6.12), is the Markov random field prior of label ki, which
can be found in equations (6.1–6.3). P(ΘΘΘ−i) and P(k−i) in equation (6.12) are the marginal
distributions of ΘΘΘ−i and k−i. While these expressions are intractable, they do not enter the
Gibbs sampling scheme for posterior inference, to be discussed in the Section 6.2.4.

6.2.4 Posterior inference

We now derive a Gibbs sampling scheme for posterior inference. In a DAG (the HBM model
in Figure 6.3), the probability of a selected target parameter conditional on all other parame-
ters is given by the probability of the target parameter conditional on its Markov blanket (see
2.2.3). Therefore, the relevant conditional probabilities can immediately be read off the graph
in Figure 6.3 in Section 6.2.2.

For the parameter vector ΘΘΘi = {Ai,ωi,λi}, according to Figure 6.2, its parents nodes are
ΘΘΘ−i, ΓΓΓ, ki and k−i. Its child node is yi(t) and its co-parent node is σ2

i . Therefore, its conditional
posterior distribution is:

P(ΘΘΘi|yyyi,σ
2
i ,ΓΓΓ,ΘΘΘ−i,ki,k−i) ∝ P(yyyi|ΘΘΘi,σ

2
i )P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) (6.19)

where P(yyyi|ΘΘΘi,σ
2
i ) can be found in equation (6.11) and P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) can be found in

equation (6.13). Note that P(yyyi|ΘΘΘi,σ
2
i ) depends on C(t|ΘΘΘi); see equation (6.11). C(t|ΘΘΘi) is

defined by a convolution integral – equation (6.9) – which is analytically intractable. Hence, the
conditional posterior distribution of ΘΘΘi in equation (6.19) is analytically intractable.

According to Figure 6.2, the parent, child and co-parent nodes of σ2
i are α∗,β ∗, yi(t) and

ΘΘΘi. The conditional distribution of the observational noise variance σ2
i ,

P(σ2
i |yyyi,ΘΘΘi,α

∗,β ∗) ∝ P(yyyi|ΘΘΘi,σ
2
i )P(σ

2
i |α∗,β ∗) (6.20)
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is obtained by combining the likelihood for pixel i,

P(yyyi|ΘΘΘi,σ
2
i ) ∝ σ

−M
i exp

(
−∑

M−1
t=0 (yi(t)−C(t|ΘΘΘi))

2

2σ2
i

)
(6.21)

with the conjugate prior for P(σ2
i |α∗,β ∗) from equation (6.15) to give

P(σ2
i |yyyi,ΘΘΘi,α

∗,β ∗) = IG

(
M
2
+α

∗,
∑

M−1
t=0 (yi(t)−C(t|ΘΘΘi)

2)

2
+β

∗

)
(6.22)

where α∗ = β ∗ = 0.1, from Section 6.2.3.
According to Figure 6.2, the parent, children and co-parent nodes of ki are k−i, ΘΘΘi, ΓΓΓ, ΓΓΓ

∗∗

and ΘΘΘ−i. Its conditional posterior distribution is given by

P(ki|ΘΘΘi,ΘΘΘ−i,ΓΓΓ,ΓΓΓ
∗∗,k−i) ∝ P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i)P(ΓΓΓ|ΓΓΓ∗∗,ki)P(ki|k−i). (6.23)

P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) can be found in equation (6.13); P(ΓΓΓ|ΓΓΓ∗∗,ki) can be found in equation
(6.16), and P(ki|k−i) is the Markov random field prior for binary parameters, and its expression
can be found in equations (6.1–6.3). The conditional posterior distribution of ki is a Bernoulli
distribution because ki ∈ {0,1}. Specifically, when ki = 0, we have

q ∝P(ki = 0|ΘΘΘi,ΘΘΘ−i,ΓΓΓ,ΓΓΓ
∗∗,k−i)

∝N(log(Ai)|µA,ki=0,σ
2
A,ki=0)N(log(ωi)|µω,ki=0,σ

2
ω,ki=0)N(log(λi)|µλ ,ki=0,σ

2
λ ,ki=0)

exp

(
− 1

TFermi
∑
i∼m

νi,m|Fb(ΘΘΘi)−Fb(ΘΘΘm)|

)
N(µA,ki=0|µ∗∗,σ2

∗∗)

N(µω,ki=0|µ∗∗,σ2
∗∗)N(µλ ,ki=0|µ∗∗,σ2

∗∗)IG(σ2
A,ki=0|α∗∗,β ∗∗)IG(σ2

ω,ki=0|α∗∗,β ∗∗)

IG(σ2
λ ,ki=0|α

∗∗,β ∗∗)exp

(
− 1

Tki
∑
i∼m

u(ki|km)

)
. (6.24)

Note that the term νi,m depends on the label ki given equation (6.7). Similarly, when ki = 1, we
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have

p ∝P(ki = 1|ΘΘΘi,ΘΘΘ−i,ΓΓΓ,ΓΓΓ
∗∗,k−i)

∝N(log(Ai)|µA,ki=1,σ
2
A,ki=1)N(log(ωi)|µω,ki=1,σ

2
ω,ki=1)N(log(λi)|µλ ,ki=1,σ

2
λ ,ki=1)

exp

(
− 1

TFermi
∑
i∼m

νi,m|Fb(ΘΘΘi)−Fb(ΘΘΘm)|

)
N(µA,ki=1|µ∗∗,σ2

∗∗)

N(µω,ki=1|µ∗∗,σ2
∗∗)N(µλ ,ki=1|µ∗∗,σ2

∗∗)IG(σ2
A,ki=1|α∗∗,β ∗∗)IG(σ2

ω,ki=1|α∗∗,β ∗∗)

IG(σ2
λ ,ki=1|α

∗∗,β ∗∗)exp

(
− 1

Tki
∑
i∼m

u(ki|km)

)
. (6.25)

In this way, the conditional posterior distribution for label ki is

P(ki|ΘΘΘi,ΘΘΘ−i,ΓΓΓ,ΓΓΓ
∗∗,k−i) =

(
p

p+q

)ki
(

q
p+q

)1−ki

. (6.26)

According to Figure 6.3, the parent nodes, child node and co-parents nodes of µA,ki and σ2
A,ki

are {µ∗∗,σ2
∗∗}, {α∗∗,β ∗∗}, ki, Ai, A−i and k−i. Therefore, the conditional posterior distributions

are given by

P(µA,ki=ψ |{Ai,A−i}i|ki=ψ ,µ∗∗,σ
2
∗∗,σ

2
A,ki=ψ ,k−i)

∝ N(µA,ki=ψ |µ∗∗,σ2
∗∗) ∏

i|ki=ψ

N(log(Ai)|µA,ki=ψ ,σ
2
A,ki=ψ) (6.27)

and

P(σ2
A,ki=ψ |{Ai,A−i}i|ki=ψ ,α

∗∗,β ∗∗,µA,ki=ψ ,k−i)

∝ IG(σ2
A,ki=ψ |α∗∗,β ∗∗) ∏

i|ki=ψ

N(log(Ai)|µA,ki=ψ ,σ
2
A,ki=ψ) (6.28)

where ψ ∈ {0,1} is the binary lesion indicator. As seen from equation (6.13), the term that
includes the dependence on the neighbourhood, A−i and k−i, does not depend on µA,ki and
σ2

A,ki
. Therefore the terms A−i and k−i drop out. By simplifying equation (6.27), the conditional

posterior distribution for µA,ki=ψ is

P(µA,ki=ψ |{Ai}i|ki=ψ ,σ
2
A,ki=ψ ,µ∗∗,σ

2
∗∗) = N

(
C
B
,
D
B

)
. (6.29)

where B = σ2
A,ki=ψ

+∑i|ki=ψ σ2
∗∗, C = σ2

A,ki=ψ
µ∗∗+σ2

∗∗∑i|ki=ψ log(Ai) and D = σ2
∗∗σ

2
A,ki=ψ

. By
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simplifying equation (6.28), the conditional posterior distribution for σ2
A,ki=ψ

is

P(σ2
A,ki=ψ |{Ai}i|ki=ψ ,α

∗∗,β ∗∗,µA,ki=ψ)

∝ IG

(
∑i|ki=ψ 1

2
+α

∗∗,
∑i|i=ψ(log(Ai)−µA,ki=ψ)

2

2
+β

∗∗

)
. (6.30)

The conditional posterior distributions for {µω,ki=ψ ,σ
2
ω,ki=ψ

,µλ ,ki=ψ ,σ
2
λ ,ki=ψ

} can be derived
similarly.

In the Bayesian statistics framework, samples from the conditional posterior distributions of
ΘΘΘi, σ2

i , ki, and ΓΓΓ can be approximately obtained with MCMC methods. In this work, the con-
ditional posterior distribution of ΘΘΘi is analytically intractable because of the convolution form
in equation (6.9). Therefore, we adopt a Metropolis-Hastings-within-Gibbs sampling scheme to
sample the parameters. To be specific, ΘΘΘi is sampled with the Metropolis-Hastings algorithm
based on adapted Gaussian proposals distributions. The acceptance rate is controlled within the
range of (0.23,0.44), which has been suggested from [12]. All other parameters will be sam-
pled directly from their conditional posterior distributions by Gibbs sampling. The details of our
sampling method can be found in algorithm 5.

Algorithm 5: Metropolis-Hastings within Gibbs sampling for MBF classification
Input: Hyperparameters α∗, β ∗, ΓΓΓ

∗∗

Output: Fermi parameters ΘΘΘi and label ki
Data: yyyi = {yi(t)} where i = 1,2, ...,N t = 0,1, ...,M−1
Draw initial values of ΓΓΓ from their prior distributions in equation (6.16);
for i← 1 to N do

Obtain initial values of ΘΘΘi using ‘Least-Squares Fitting’ based on equations (4.11),
(4.14) and (4.16);

end
for i← 1 to N do

Obtain initial values of ki, using EM algorithm (Gaussian mixture model) (see
Section 5.2);

end
for p← 1 to M0 (The number of MCMC samples) do

for i← 1 to N do
Given α∗, β ∗, ΘΘΘi, and yyyi draw σ2

i from the inverse gamma distribution based on
equation (6.22);

Given σ2
i , ΓΓΓ, ki, k−i, ΘΘΘ−i and yyyi(t), draw ΘΘΘi using random walk

Metropolis-Hastings based on equation (6.19);
Given ΘΘΘi, ΘΘΘ−i, ΓΓΓ

∗ and k−i, draw ki from Bernoulli distribution (the parameter ki
is either 0 or 1) based on equation (6.26);

end
Given {ki}, {ΘΘΘi}, ΓΓΓ

∗∗, draw ΓΓΓ based on equations (6.29) and (6.30);
end
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6.3 Data and results

6.3.1 Clinical data

The myocardial perfusion DCE-MRI data (short-axis mid-cavity slice) from four patients (2
male, age range 56-60) were analyzed in this work. They are chosen randomly to show some
example results for the proposed method. In the following analysis, we choose one patient to
illustrate our method as an example. (56 year old male, scan acquired 2.7 days after percutaneous
coronary intervention, with left anterior descending artery myocardial infarction). The results
obtained in the remaining three datasets are presented in Appendix C.1. The performances of
the results shown in the Appendix is quite similar to the results shown in the main pages. The
conclusion obtained from the data shown in the main pages can be extended to the data shown
in the Appendix. The general data information can be found in Section 3.3.

6.3.2 Synthetic data

Since it is challenging to obtain the ground truth of the size and location of the lesion in clinical
data, we also use synthetic data to test our method. Two assumptions are made. Firstly, the
noise for data generation is assumed to be either Gaussian or Rician noise. Due to the Central
Limit Theorem, Gaussian noise is the most general and widely applied form of noise, while
Rician noise is often assumed for MRI data due to the underlying physical characteristics (see
e.g. [161]). Note that by generating data subject to Rician noise, we test the robustness of
our method (which assumes Gaussian noise, as discussed in Section 6.2.3 ) with respect to
model mis-specification. Secondly, the change of signal intensity for each pixel is a double
exponential function, as explained below; see Equation (6.31) for the temporal variation of
indicator concentration in the peripheral compartment (see [162]), which mimics the change of
signal intensity of each pixel.

The synthetic data are designed to emulate the clinical data we have used in this work: 46
images (the same number as for the clinical data), i.e. the number of frames in one subject’s
mid-cavity slice, are simulated to mimic the acquired DCE-MRI data. The first 12 images are
pre-contrast images, and the remaining 34 images are contrast enhanced images. We discard the
first 12 images. The first image of the remaining 34 images corresponds to time point t = 0. We
assume that there is one lesion, which is located in the anteroseptal region of the myocardium.
The other pixels in the myocardium mimic healthy tissue with normal blood perfusion. For the
pre-contrast image, the signal intensities for all pixels are drawn from a Gaussian distribution:
N(10,1). These values have been chosen to ensure that, at this stage, all signal intensities are
designed to be low. For the contrast enhanced images, the modelling of the signal intensities is
more complex. We use a double exponential curve to mimic the change of signal intensity with
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Figure 6.4: The process of generating realistic synthetic data based on real clinical data. See
Section 6.3.2 for more detailed explanations.

time, which is given by the following equation:

s(t) =
p2 p3

(p2− p1)
× (e−p1t− e−p2t). (6.31)

We use different parameters for healthy tissue and lesions. For lesion pixels, the parameters are
set to p1 = 0.02, p2 = 0.3, p3 = 20, while for healthy tissue pixels, the parameters are set to
p1 = 0.01, p2 = 0.4, p3 = 25. These values are chosen empirically to mimic our clinical data.
The process to obtain these values can be found in Figure 6.4. For Gaussian noise, the signal
intensity in the contrast enhancement stage is s(t)+N(10,σ2

∗ ). The variance of the noise σ2
∗ is

chosen to be 2 or 2.5, corresponding to SNRs of 4.1 and 3.72, respectively. For Rician noise,
we use the Rayleigh distribution to generate the noise; see [161] for details. The value σ2

∗ is
chosen as 1.8 with an SNR of 2.91. The choices of SNR here aim to emphasise the challenge
of the work, and therefore high SNR examples are not simulated. Again, all these values have
been selected so as to mimic our clinical data.

6.3.3 Alternative models for comparison

We have compared the performance of the HBM model proposed in this chapter with two al-
ternative models for estimating the MBF. The first alternative model predicts signal intensities
independently according to the Fermi model, as defined in equation (4.14), without taking any
neighbourhood information of the image pixels into account. The parameters are estimated by
minimizing the residual sum-of-squares score between measured and predicted signals, defined
in equation (4.16). We refer to this model as the Fermi model. The second alternative model
is a simplified HBM model where no explicit discrete labels for lesion indication are included.
This model is similar to the model proposed in [5]. The only difference is that we have replaced
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the authors’ MBF model with the Fermi model of equation (4.14), for the reasons that our clin-
ical datasets are limited to first-pass of the contrast agent through the vasculature, with very
restricted coverage of the extravasation. This is why we chose to implement the Fermi model,
as opposed to compartmental modelling approaches (see [80]). We emphasize, though, that the
method we propose can work, in principle, with any model of R f (t), and the choice of the Fermi
model is not critical to our approach. We refer to this model as the HBM model without labels.
The model parameters are sampled from the posterior distribution with MCMC, using the same
sampling scheme as described in [5].

We have also included a comparison with two alternative classification methods, for assign-
ing pixels to the classes ‘healthy tissue’ versus ‘lesion’. The first alternative scheme is a standard
Gaussian mixture model, whose parameters are estimated in a maximum likelihood sense us-
ing the Expectation Maximization (EM) algorithm (see Section 5.2). We refer to the combined
scheme as the GMM based on Fermi method. The second alternative classification method is
an extension of the method just described with a morphological noise removal correction called
the “opening and closing operation"; see ( [163]) for details. We refer to this method as GMM

+ O&C.

6.3.4 Model selection and convergence diagnostics

The parameters of our model are sampled from the posterior distribution using the sampling
algorithm described in Section 6.2.4. The exceptions are hyperparameters Tki and TFermi defined
in equation (6.2) and (6.5). These hyperparameters define the strength of the neighbourhood
influence in the Markov random field. They could in principle be sampled from the posterior
distribution using MCMC methods, along with the other parameters. However, this would cause
a considerable increase in the computational complexity, because convergence and mixing of
lower-level hyperparameters tends to be happening at much lower rates than for higher-level pa-
rameters; see e.g. [164] for more details. For clinical decision making, excessive computational
costs need to be avoided. We have therefore chosen 3 discrete values for these parameters, with
equidistant intervals on a log10 scale. These values were obtained from pilot studies where the
influence of the neighbourhood information in the Markov random field was explored. We then
treat the selection of these parameters as a model selection problem, using the Watanabe infor-
mation criterion (WAIC) introduced in [41] (see also in Section 2.6.3). This score, which can be
directly computed from the MCMC trajectories, is asymptotically equivalent to Bayesian leave-
one-out cross-validation, with lower values indicating models that are preferred by the data. The
advantage is that we can now run MCMC simulations for different values of Tki and TFermi in
parallel, and then select the parameters with the lowest WAIC scores. This leads to substan-
tial computational savings compared to directly sampling these parameters from the posterior
distribution with MCMC.

To assess the convergence of the MCMC simulations described in Section 6.2.4, we com-
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(a) Ground truth (b) Fermi model (c) HBM without label (d) Proposed HBM

Figure 6.5: MBF estimations for synthetic data. These figures show four examples of the esti-
mated MBF (rescaled within [0,1]) for the synthetic data with additive i.i.d. Gaussian noise of
standard deviation 2.5 . The pixels inside and outside of the ring (myocardium) are background.
Panel (a) shows the ground truth we designed. Panel (b) shows the MBF estimations using
Fermi model fitted by least-squares. Panel (c) shows the MBF estimations using a method akin
to [5]. Panel (d) shows the MBF estimations using the method proposed in the present work.
For further details on the alternative methods used here, see Section 6.3.3.

puted the Geweke statistic (see e.g. [24]) directly from the MCMC trajectories, taking Z-scores
in the range of (−1,1) as absence of evidence for insufficient convergence.

6.3.5 Results for synthetic data

We randomly generated 10 independent instantiations of the synthetic data, described in Sec-
tion 6.3.2, to increase the reliability of our performance assessment. Figure 6.5 shows an exam-
ple of the estimated MBF for the synthetic data. For each data set, we calculated the relative
errors of the MBF estimations, EMBF, as follows:

EMBF =
1

Ntotal

Ntotal

∑
i=1

|F i
est−F i

truth|
F i

truth
(6.32)

where Ntotal is the total number of pixels, F i
est is the estimated MBF for the ith pixel and F i

truth is
the ground truth of the MBF for the ith pixel. Lower values of EMBF are indicative of better per-
formance. A comparison of the proposed HBM model with the two alternative methods for MBF
estimation described in Section 6.3.3 is shown in Table 6.2. This table confirms quantitatively
the qualitative impression already obtained from Figure 6.5: our method clearly outperforms
the Fermi model, and performs slightly better than the HBM without labels. The reason for the
performance improvement over the Fermi model is the inclusion of spatial context information
via the Markov random field prior. The slight performance improvement over the HBM without

labels demonstrates the edge-preserving properties afforded by the labels.
Figure 6.6 shows an example of automated tissue classification (lesion versus healthy tissue).

We computed the marginal posterior probability of the pixel labels from the MCMC trajectories
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(a) Ground truth (b) GMM based on Fermi (c) GMM + O&C (d) Proposed HBM

Figure 6.6: MBF classifications for synthetic data. These figures show four examples of the
classification (posterior probability of the label) based on the MBF for the synthetic data with
additive i.i.d. Gaussian noise of standard deviation 2.5. The pixels inside and outside of the ring
(myocardium) are background. Panel (a) shows the ground truth we designed. Panel (b) shows
the tissue classification using the Gaussian mixture model. Panel (c) shows the results based
on GMM classification combined with the opening and closing method, which is a standard
de-noising imaging processing technique. Panel (d) shows the MBF classification using the
method proposed in the present work. For further details on the alternative methods used here,
see Section 6.3.3.

as

P̂(ki = 1|D) =
1

M0

M0

∑
p=1

kp
i (6.33)

where M0 is the length of the Markov chain, kp
i is the pth sample of label ki and D denotes the set

of all sampling values of ki. Recall that ki = 1 indicates that the ith pixel is in a lesion, whereas
ki = 0 indicates that the pixel lies in a healthy region. We also apply a decision threshold of
0.5 for automatic binary pixel classification. Compared with the posterior probability maps, the
advantage of the binary pixel map is that it can provide a certain decision for the classification.
Its disadvantage is that it does not contain the uncertainty quantification for the map. We com-
pare the classification obtained with the new proposed HBM method with, firstly, the ground
truth and, secondly, with the two alternative pixel classification schemes summarised in the final
paragraph of Section 6.3.3. The figure suggests that the classification obtained with the pro-
posed HBM is in very good agreement with the ground truth. The proposed HBM also clearly
outperforms the GMM based on Fermi method. This is mainly due to the Markov random field
prior, which achieves a substantial noise reduction. The opening and closing method, GMM +

O&C, discussed in Section 6.3.3, also achieves a considerable noise reduction (see panel c in
Figure 6.6). However, this noise reduction is not as reliable as the one achieved with our HBM
model (panel d). In particular, the opening and closing method still leads to a spurious lesion,
which is avoided by the proposed HBM.

To follow the visual inspection up with quantitative analysis, we did two things, both ex-
ploiting the fact that we have the ground truth labels. First, we used the estimated posterior
probabilities of the pixel class labels to assign each pixel to one of the two classes (0 versus 1),
based on a decision threshold of 0.5 (i.e. pixels with posterior probability above 0.5 are assigned
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Table 6.2: The average relative errors of the MBF estimations
SNR/sd*(Gaussian) SNR/sd(Rician)
4.1/2 3.27/2.5 2.91/1.8

Fermi model 0.09 0.12 0.24
HBM without label 0.04 0.04 0.19

Proposed HBM 0.03 0.04 0.18
*The abbreviation “sd" in the table stands for standard deviation of the

Gaussian or Rician noise, and “SNR" means signal-to-noise ratio. The
results are averages over 10 independent data instantiations.

Table 6.3: The average number of misclassified pixels
SNR/sd*(Gaussian) SNR/sd(Rician)
4.1/2 3.27/2.5 2.91/1.8

GMM based on Fermi 64.0 234.4 183.4
GMM + O&C 17.2 42.0 36.6

Proposed HBM 2.9 4 3.5
*The abbreviation “sd" in the table stands for standard deviation of the

Gaussian or Rician noise, and “SNR" means signal-to-noise ratio. The re-
sults are averages over 10 independent data instantiations.

to class 1, otherwise they’re assigned to class 0). This crisp assignment does not take posterior
uncertainty into consideration, i.e. the posterior probabilities 0.51 and 0.99 are both mapped to
the same class. To account for the different degrees of uncertainty, we therefore also computed
the cross-entropy between the true labels and the predicted posterior probabilities. The results
are shown in Tables 6.3 (misclassification) and 6.4 (cross-entropy), and clearly demonstrate that
the proposed HBM outperforms the two alternative methods on both scores.

6.3.6 Results for clinical data

In this section, we discuss the application of the proposed method to the clinical data described
in Section 6.3.1. We start with a discussion of our MCMC convergence diagnostics, and then
continue with model selection, marginal posterior distribution analysis, MBF visualisation and

Table 6.4: Cross entropy between true labels and predicted posterior probabilities
SNR/sd*(Gaussian) SNR/sd(Rician)
4.1/2 3.27/2.5 2.91/1.8

GMM based on Fermi 2.35 8.6 6.73
GMM + O&C 0.5 1.42 1.23

Proposed HBM 0.11 0.15 0.13
*The abbreviation “sd" in the table stands for standard deviation of the

Gaussian or Rician noise, and “SNR" means signal-to-noise ratio. The re-
sults are averages over 10 independent data instantiations.



CHAPTER 6. CLASSIFICATION OF MBF USING FERMI BASED HBM 115

(a) TFermi = 1,Tki = 0.1 (b) TFermi = 10,Tki = 0.1

(c) TFermi = 10,Tki = 0.01 (d) TFermi = 100,Tki = 0.01

Figure 6.7: The traceplots and marginal posterior distributions estimated from the MCMC sam-
ples with a kernel density estimator of the MBF. This kernel density estimator used a Gaussian
kernel and the bandwidth was selected according to Scott’s rule (see details from [6]). Four
typical pixels have been chosen (940 pixels overall). They are the lowest estimation (No. 399),
the highest estimation (No. 16), the highest Sum Square Error (No. 187) and the lowest Sum
Square Error (No. 767). The trace plots exclude the burn-in.

automated pixel classification.

MCMC convergence

Recall that our MCMC sampling algorithm is described in Algorithm 5. Figure 6.7 shows MBF
traceplots for 4 typical pixels. The MCMC acceptance ratios were controlled within the range
(0.23,0.44), which has been suggested to give the best mixing and convergence (see [12]). The
traceplots show the exploration of the MBF samples for each pixel.

The traceplots for the MBF estimations of the four typical pixels look reasonable, with no
trends to indicate insufficient convergence. As a more objective and quantitative convergence
measure, we have computed the Geweke’s statistic (see [24]). The results are shown in Fig-
ure 6.8, based on four independent MCMC simulations. Since the Geweke statistic stays con-
sistently within the uncritical range (−1,1), there is no significant evidence for lack of conver-
gence.
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(a) TFermi = 1,Tki = 0.1 (b) TFermi = 10,Tki = 0.1 (c) TFermi = 10,Tki = 0.01 (d) TFermi = 100,Tki = 0.01

Figure 6.8: The Geweke test of the MBF samples. These figures show the Geweke test applied to
the MBF samples for four specific pixels: the highest MBF (No. 16), the lowest MBF (No. 399),
the highest SSE (No. 187) and the lowest SSE (No. 767). Two red horizontal lines indicate the
upper and lower limits of the Z-score. If all values are within these limits, there is no significant
evidence that the Markov chain is not converged.

Table 6.5: Watanabe-Akaike information criterion (WAIC). Lower values show better perfor-
mance.

WAIC Tki

TFermi

0.01 0.1 1
1 107506 107437 107441
10 107566 107617 107602
100 107715 107539 107884

Figure 6.7 also shows the marginal posterior distribution of the MBF, which we obtained
from the MCMC trajectories with a standard kernel density estimator. This provides a natural
way to quantify the MBF estimation uncertainty inherent in the data.

Model selection

The Markov random field prior, introduced in Section 2.2.4, depends on two hyperparameters,
Tki and TFermi; see equations (6.2) and (6.5). Rather than sampling them from the posterior
distribution, we adopted a model selection approach: we ran the MCMC simulations for various
fixed values of Tki and TFermi, and selected the best combination with WAIC; see Section 2.6.3
for details. The results are shown in Table 6.5, from which the best parameter combination can
be obtained.

Marginal posterior distribution analysis

The posterior distributions are particularly interesting in comparison with the corresponding
prior distributions. For illustration, we have randomly selected a pixel (i = 399) in the MR im-
age, and estimated the posterior distributions for the associated parameters Ai, µAi and σ2

i . The
reason we choose these three parameters is that they are representative of the other parameters.
ωi and λi are related to Ai, as these are all Fermi parameters. σ2

Ai
is related to µAi; both are hyper-

parameters of the prior distribution of Ai. Panels (a) - (c), Figure 6.9 show a comparison of the
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(a) A399 (b) µA399 (c) σ2
399 (d) Fermi parameters A399,

ω399, λ399 and variance σ2
399

Figure 6.9: Panels (a) - (c) show a comparison between prior and marginal posterior distribu-
tions for parameters Ai, µAi and σ2

i associated with a randomly selected pixel i = 399. Panel (d)
shows violin plots of the standardised marginal posterior distributions for Fermi parameters Ai,
ωi, λi and variance σ2

i given a randomly selected pixel i = 399.

corresponding prior and posterior distributions. From the strong collapse of the posterior, whose
effective support has shrunk considerably compared to that of the prior, we learn that the data are
highly informative for estimating these parameters. Model developers interested in interpreting
the model parameters can learn about their degree of practical identifiability from these plots.
Panel (d), Figure 6.9 shows violin plots of the marginal posterior distributions of Fermi param-
eters Ai, ωi, λi and variance σ2

i given a randomly selected pixel i = 399. These plots allow a
quantification of the intrinsic posterior estimation uncertainty. In addition, they can be inspected
for various patterns in the posterior distributions. For instance, the marginal posterior distribu-
tions of the parameters Ai, λi and ωi are symmetric and bell-shaped, consistent with a Gaussian
distribution. The marginal posterior distribution of σ2

i , on the other hand, is skewed with a long
upper tail. This is consistent with the prior distribution (log normal or gamma distribution) and
suggests that despite the fact that the data are highly informative about this parameter, with a
strong collapse of the posterior distribution, as discussed above, the functional form of the prior
is maintained.

MBF visualisation

Figure 6.10 shows the estimation of the MBF with different alternative models: the traditional
Fermi model fitted with least-squares (see Section 6.3.3), and the proposed HBM model with
different values for the hyperparameters Tki and TFermi. The greyscale in the plots indicates the
degree of hypo-perfusion, with darker greyscales indicating more severe hypo-perfusion. All
predictions suggest that there is a severely hypo-perfused area on the left of each ring, and
a slightly hypo-perfused area at the bottom. However, the HBM models predict a smoother
contrast than the Fermi model, and the boundaries between hypo-perfused areas (indicative of
lesions) and normally perfused areas (indicative of healthy tissue) are clearer. The best esti-
mation of the MBF, based on our model selection scheme with WAIC, is shown in panel (b).
However, the differences between the MBF estimations for different hyperparameters are fairly
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(a) Fermi model (b) TFermi = 1,Tki = 0.1 (c) TFermi = 10,Tki = 0.1

(d) TFermi = 10,Tki = 0.01 (e) TFermi = 100,Tki = 0.01

Figure 6.10: This figure shows, for different locations in the myocardium, the estimated MBF
(rescaled within [0,1]), represented by different greyscales. Background pixels are shown in
black. The different panels show the results for different models. Panel (a): traditional Fermi
model, as described in Section 6.3.3. Panels (b-e): proposed HBM model with different hyper-
parameter values.

minor, indicating a certain degree of robustness of the proposed HBM model with respect to a
variation in the hyperparameters

Automated pixel classification

Figure 6.10 shows estimations of the MBF. This still requires manual inspection and interpre-
tation. What we need for clinical decision support is automated classification of pixels and
regions as healthy versus diseased, so as to automatically detect lesions. To this end, we com-
pute the posterior probabilities of the labels from the MCMC trajectories using equation (6.33).
Hence, a high posterior probability close to 1 is indicative of healthy tissue, whereas a value
close to 0 indicates a lesion. Figure 6.11 shows the posterior probability of the class label for
different models and different settings of the hyperparameters Tki and TFermi. The figure shows
a crisp separation into regions with a high posterior probability of being a lesion (shown in dark
green), and regions with a high posterior probability of being healthy (shown in yellow). There
is only a small “uncertain" region with posterior probabilities in the order of 0.5, which we have
enlarged in panel (f). For automatic pixel classification, we have to threshold these posterior
probabilities: classify a pixel i as lesion if P̂(ki = 0|D) ≥ 1− τ; classify a pixel i as healthy
tissue if P̂(ki = 0|D) ≤ τ; and classify a pixel i as uncertain if τ < P̂(ki = 0|D) < 1− τ . To
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(a) GMM based on Fermi model (b) TFermi = 1,Tki = 0.1 (c) TFermi = 10,Tki = 0.1

(d) TFermi = 10,Tki = 0.01 (e) TFermi = 100,Tki = 0.01 (f) Uncertain region in Panel (e)

Figure 6.11: Posterior probabilities for myocardial tissue classification. The figure shows the
pixel-wise myocardial tissue posterior probability for lesions versus healthy tissue. Dark green
indicates a high posterior probability that the corresponding pixel belongs to a lesion; yellow in-
dicates a high posterior probability that the corresponding pixel belongs to healthy tissue. There
is a small “uncertain" region with posterior probabilities in the order of 0.5, which we have en-
larged in panel (f). The black colour marks the background of the myocardial ring. The different
panels show the results for different models. Panel (a): traditional Fermi model combined with
a Gaussian mixture model, as described in Section 6.3.3. Panels (b-e): proposed HBM model
with different hyperparameters. Panel (f): the uncertain region in Panel (e), enlarged.

investigate the effect of this threshold, we have chosen the hyperparameters with the best WAIC
score (Tki = 0.1 and TFermi = 1) and repeated the classification for three different settings of the
threshold τ: τ ∈ {0.025,0.05,0.1}. The results are shown in Figure 6.12, which demonstrates
that the classification labels are not affected by the variation of the threshold. This is in line with
Figure 6.11, which shows that most pixels have posterior probabilities close to 1 or 0 and are
therefore not affected by the particular choice of threshold.

Figure 6.11 shows the posterior probabilities for both the GMM based on the traditional
Fermi model (as described in Section 6.3.3), and the proposed HBM model with various set-
tings of the hyperparameters Tki and TFermi. Note that the traditional method in Figure 6.11
panel (a) shows a fragmented structure, with various small and singleton lesions embedded in
healthy tissue. This is physiologically unrealistic. Left ventricular myocardium is supplied
by three major epicardial arteries, and any impairment in blood delivery is expected to affect
consecutive regions of tissue (vascular territories), and not isolated small patches as shown in
Figure 6.11(a). Interestingly, the physiologically unrealistic fragmentation and the prediction of
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(a) τ = 0.025 (b) τ = 0.05 (c) τ = 0.1

Figure 6.12: Automatic pixel classification. The figure shows the classification of pixels into the
three classes lesion(red), healthy tissue (white) and uncertain (orange), by putting the posterior
probabilities of Figure 6.11 (b) through the thresholding scheme described in the main text, for
three different values of the threshold parameter τ .

spurious singleton clusters are suppressed with our HBM model, irrespective of the hyperparam-
eter settings. This is shown in Figure 6.11 panels (b-e). This finding does not only demonstrate
that the inclusion of spatial context information via the Markov random field prior achieves
physiologically more realistic cluster assignments, but also demonstrates that the classification
results show reasonable robustness with respect to a variation of the hyperparameters. Different
values of the hyperparameters do not affect the location of the detected lesion much. Again, the
best classification map can be found with our model selection scheme based on WAIC, shown
in Table 6.5, which corresponds to panel Figure 6.11(b).

We have run an additional simulation study to focus on the interactions between the param-
eter and label uncertainties. We have chosen three pixels in distinct characteristic positions of
the myocardium: the centre of the healthy tissue, the centre of the lesion, and the edge between
healthy tissue and lesion. We set the Fermi parameters to their 10% and 90% posterior quantiles,
as obtained from our previous MCMC simulations. All other parameters (including the Fermi
parameters associated with the other pixels) were kept fixed. We ran 1 MCMC simulation with
1000 Gibbs sampling steps given different quantiles of Fermi parameters (specific pixel). We
selected two combinations of Fermi parameters that represent the lowest MBF and the highest
MBF respectively. The results can be found in Figure 6.13. It can be seen that the labels of the
pixel inside the healthy tissue (marked by a blue circle) and the lesion (marked by a green circle)
do not change and are invariant with respect to changing the quantiles of the Fermi parameters.
However, the pixel near the boundary between the healthy tissue and the lesion (marked by a
yellow circle), is affected by the quantiles of the Fermi parameters, with different quantiles lead-
ing to different labels. To explain this behaviour, note that the effect of the Markov random field
prior on an individual target pixel is strong when the surrounding pixels have the same label,
leading to low transition probabilities into different labels for the target pixel. A target pixel
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(a) healthy low MBF (b) healthy high MBF (c) lesion low MBF

(d) lesion high MBF (e) boundary low MBF (f) boundary high MBF

Figure 6.13: The classification maps given fixed parameters. Panels (a) - (f) show the classifica-
tion results given fixed parameters (10% and 90% quantiles of the Fermi parameters) in different
locations (healthy region, lesion region, boundary region) of the myocardium successively. The
white pixels indicate healthy tissue and the red pixels indicate lesions. The pixels inside the blue
circles (healthy tissue), green circles (lesion) and yellow circles (boundary) have fixed Fermi
parameters (10% and 90% quantiles).

near a boundary, on the other hand, is surrounded by pixels with different labels, whose influ-
ence effectively cancels out in the Markov random field. Consequently, the Fermi parameters
now have a significant effect on the target pixel’s label.

6.4 Discussion and conclusion

In this chapter, we have introduced a hierarchical Bayesian model with a Markov random field
prior to classify myocardial tissues based on the MBF. This method systematically combines
signal intensities from raw magnetic resonance images with spatial context information related
to the individual image pixels to achieve physiologically more realistic myocardial tissue classi-
fication. Traditionally, least-squares fitting has been (and is still widely being) used to estimate
MBF using the Fermi model, and we have used it as a benchmark for the MBF estimation in
the present work. Our work is methodologically related to, and has been inspired by, the HBM
model of myocardial perfusion MRI proposed in Scannell’s work [5]. However, this study does
not address the problem of automatic myocardial tissue classification, and we have found in
general that this topic has only been addressed scarcely in the current cardio-physiological mod-
elling literature. For that reason, we have used a standard and widely applied statistical model
as a further benchmark for tissue classification from MBF data: the Gaussian mixture model,
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with parameter estimation using the Expectation Maximisation (EM) algorithm. The proposed
SVFMM and GMM-MRF methods are not compared here because a final comparisons for all
methods will be present in Chapter 7.

A comparison with these two traditional methods has revealed three advantages of the pro-
posed hierarchical Bayesian modelling framework. Firstly, it can generate a clearer, smoother
and more realistic MBF map by taking physiological context information into account. Sec-
ondly, our inference method properly quantifies the uncertainty in both the MBF as well as
the latent label assignment on which the myocardial tissue classification is based. Thirdly, the
method exploits the relationship between the MBF estimation and the latent pixel labels for
automatic myocardial tissue classification. This achieves automation (which is essential for
clinical applications) at improved estimation and classification accuracy, paving the way to a
future clinical decision support system.

The principal bottleneck of the proposed method for clinical applications is the high compu-
tational cost of the MCMC simulations. In our work, a single MCMC iteration took in the order
of 2 seconds, leading to run times of about 5.5 hours for a typical MCMC chain length of 10,000
iterations (using the following hardware: Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz pro-
cessor with 64GB memory). A potential solution is parallel processing to reduce these run times.
This will exploit the fact that all relevant computations are invariant with respect to a permutation
of the order in which the pixel is processed, and all pixel-related operations can be carried out in
parallel rather than sequentially. A consequent improvement over CPU-based simulations would
be the porting of our code to GPU platforms. In this way, the expected run time could be re-
duced to 1/10 according to [154]. While MCMC is intrinsically sequential, there are alternative
sampling methods that can better exploit the scope for parallelisation, most notably sequential
Monte Carlo (SMC) and adaptive multiple importance sampling (AMIS), which in combination
with GPU architectures could significantly reduce the run times (see [165] and [166]). Another
approach is to replace sampling based Bayesian inference with modal or distributional approxi-
mations, using the Laplace approximation, variational inference or expectation propagation; see
details in [12] (Chapter 13).

A further limitation is related to the physical model used for quantifying the MBF. The MBF
is approximated by the Fermi model, which depends on three shape parameters {A,ω,λ}. For
modelling the dependence on other kinetic parameters, like fractional plasma volume and frac-
tional interstitial volume, more complex models need to be employed. However, as we have
already mentioned before, the hierarchical Bayesian modelling framework we have proposed is
agnostic to the specific form of the physical model employed. To paraphrase this: if a more com-
plex physical model is employed, it can just take the place of the Fermi model in the proposed
hierarchical Bayesian model, and all its parameters can be estimated methodologically the same
way as proposed here for the Fermi model (exploiting the information-sharing capacity and un-
certainty quantification of the hierarchical Bayesian model and its spatial Markov random field
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prior). To be more specific, if a model satisfies the central volume principle in equation (4.9)
and its structure of impulse response function R f (t) is given, this model can be put into the hier-
archical structure presented in this work by replacing the Fermi parameters A,ω,λ in Figure 6.3
with the parameters in its impulse response function R f (t). In particular, the classification of the
myocardial tissue for automatic detection of lesions will proceed in the same way as described
here, while potentially benefitting from the richer structure of more advanced physical models.

Finally, there is scope for future improvement related to the choice of the prior distribution.
In the present work, we have used vague prior distributions for the hyperparameters for Fermi
parameters, i.e. the parameters ΓΓΓ in Figure 6.2. This is a consequence of an intrinsic limitation of
the Fermi model: while widely used in the literature, it depends on empirical shape parameters
that lack any clear physical interpretation. However, for more advanced and realistic physical
models, e.g. the tracer-kinetic models (see [77] and [78]), whose parameters have bio-physical
and physiological interpretability, methods of cardio-physiological knowledge elicitation can
be adopted to derive more informative prior distributions that have the potential to boost the
predictive and diagnostic performance of the proposed methodology.



Chapter 7

Automatic Lesion Detection in Myocardial
Perfusion DCE-MRI using Hierarchical
Bayesian Models with Spatio-Temporal
Markov Random Fields

7.1 Introduction

In Chapter 6, the hierarchical Bayesian modelling of myocardial perfusion DCE-MRI based on
physiological models has been introduced. The performance of this method is highly dependent
on the performance of the physiological model. Therefore, if the physiological model cannot
correctly estimate the myocardial blood flow, the method illustrated in Chapter 6 is at risk of
failure. To this end, a data-driven approach can avoid making use of physiological models and
generate accurate classification maps.

In the chapter, we apply and evaluate a novel hierarchical Bayesian model (HBM) combined
with spatio-temporal Markov random field (MRF) priors to the DCE-MRI myocardial perfusion
data. We aim to classify the myocardial tissues into two categories, healthy tissue and lesion by
using iteratively denoised images. Specifically, given the original images, the proposed method
firstly generates an initial classification map. Then, based on the generated classification map,
it generates denoised images. The proposed method repeats this procedure until it converges.
Spatio-temporal Markov random field priors (see details in Section 2.2.4) are used to introduce
the spatio-temporal information for each pixel. We have derived a posterior inference scheme
for the parameters in the HBM model, using a MCMC (see details in Section 2.3) variant (Gibbs
sampling) to approximately draw samples of the parameters from their posterior distribution.
For an adequate trade-off between accuracy and computational efficiency, the hyperparameters
are selected using model selection techniques based on the Watanabe Akaike information cri-
terion (WAIC) (see details in Section 2.6.3). The proposed method is tested on both synthetic
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data and clinical DCE-MRI scans, and the results are compared with two established methods: a
Gaussian mixture model (GMM) classification method (see Section 5.2) and GMM based open-
ing and closing operations [163, 167]. While the effectiveness of our classification method is
demonstrated using raw DCE-MRI myocardial data, its formulation is applicable to any form of
calibrated (transformed) datasets, where blood pool signal is used to derive absolute values of
MBF [168].

7.2 Data

7.2.1 Clinical data

The myocardial perfusion DCE-MRI data (short-axis mid-cavity slice) from three patients
(DCE-MRI datasets 1-3) were analyzed in this work. For one set of data (DCE-MRI dataset 1),
we show all results (model selection, MCMC convergence test, classification maps and gener-
ated denoised MR images) in Section 7.5. For two extra sets of data, we only show classification
maps and generated denoised MR images to emphasize the robustness of the proposed method.
The general data information can be found in Section 3.3.

7.2.2 Synthetic data

The synthetic data was designed to mimic clinically observed lesion. A double exponential
curve was used to model the signal intensity with time, e.g. see details in [162] (Chapter 2):

s(t) =
p2 p3

(p2− p1)
× (e−p1t− e−p2t). (7.1)

Rician noise is usually assumed for MR images according to the work in [161]. In this way,
the synthetic data was generated based on equation (7.1) by adding Rician noise with different
scales. Specifically, we used different variances of Rayleigh distribution (a special case of Rician
distribution) to design the degrees of noise. The variance values are 12 (very low noise), 22 (low
noise), 32 (high noise) and 42 (very high noise). Figure 7.1 shows the maximum enhanced (ME)
images with different noise variances. The ME images are the images at the time that the signals
are enhanced to the maximum values.

In the proposed work, we have designed the synthetic images with different lesion sizes
to test the proposed method and carried out a comparative evaluation with various alternative
benchmark methods. Specifically, there were three sizes of lesions in the myocardium. A small
lesion spanned 60◦, a medium-size lesion spanned 120◦, and a large lesion spanned 180◦ cir-
cumferentially. There were a total of 12 combinations based on different lesion sizes and values
of noise variance. For each combination, 10 separate sets of synthetic images were designed
to improve the robustness of our evaluation and reduce the effect of potential outliers. The
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(a) Var 12 (b) Var 22 (c) Var 32 (d) Var 42

Figure 7.1: The noise added maximum enhanced images. Panels (a) - (d) show the noise added
ME images with noise variance 12, 22, 32 and 42 respectively.

generations of these synthetic data can be found in Figure 7.2.
The parameters in equation (7.1) for healthy tissues and lesions are given based on empirical

experiences. To be specific, we use equation (7.1) to fit a model to the clinical DCE-MRI data
(serial 1) by least-squares estimation to obtain the values of the parameters. In detail, the values
of parameters in equation (7.1) are set to p1 = 0.01, p2 = 0.4, p3 = 25 for the healthy tissues.
For the lesions, the parameters are set to p1 = 0.02, p2 = 0.3, p3 = 20.

7.3 Method

7.3.1 Spatio-temporal information

Spatial methods have been widely applied for quantitative assessment of myocardial perfusion
DCE-MRI [5, 105, 169, 170]. Moreover, the method introduced in Chapter 6 has also made use
of spatial methods. We also introduce temporal information because the myocardial perfusion
DCE-MRI data are time-series images. The signal intensity for a pixel at different times are
related, which is illustrated in Figure 3.7. Specifically, there are three stages for the change
of signals of myocardial pixels. In the beginning, the signal stays relatively low because the
contrast agent has not flown into the myocardium. Then, it increases steadily because the con-
trast agent is flowing into the myocardium. Finally, it firstly decreases slightly and then keeps
this value because the contrast agent is washed out from the myocardium. Therefore, we intro-
duce spatio-temporal information to the DCE-MR SI images using Markov random field priors,
which are explicitly described in Section 7.3.3.

Similarly, the proposed method illustrated in this chapter also introduces Markov random
fields to the label. This aims to solve the issues of unclear boundary and single isolated segments.
The details can be found in Sections 5.2 and 5.3.
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(a) Ground truth 60◦ (b) Ground truth 120◦ (c) Ground truth 180◦

(d) ME 60◦ (e) ME 120◦ (f) ME 180◦

Figure 7.2: The simulations of synthetic data. Panels (a) - (c) show the design of lesions with
60◦, 120◦ and 180◦ respectively. The dark blue region in these images denote the lesion. (d) -
(f) show the maximum enhanced (ME) images for each size of lesion.

7.3.2 Hierarchical Bayesian model

Let yi(t) denote the logarithm of the signal intensity of an MR image pixel (i= 1,2, ...,N) at time
point t (t = 1,2, ...,M), where N is the number of pixels and M is the number of time points.
ki ∈ {0,1} is defined as the state (healthy and lesion) for the ith pixel.

In this work, a hierarchical Bayesian model was used to classify the tissues based on myocar-
dial perfusion DCE-MRI. This model can be found in Figure 7.3. The structure of the HBM re-
veals the three-layer causal relationships between parameters. Specifically, the observed signals
are dependent on the true signals, and the true signals dependent on spatial-temporal neighbours
and the labels. Table 7.1 shows the description of the parameters in Figure 7.3, and Figure 7.3
explicitly illustrates the relationships between the parameters in this HBM model. According to
the factorization rule, which is specified in Section 2.2.3, the joint distribution for this hierar-
chical Bayesian model is the product of conditional distributions determined by their respective
parent nodes. In this way, the joint distribution is:

P
(
yi(t),ψ i(t),σ2,ψ i(t + j),ψ−i(t),aki(t + j),bki(t + j),µki(t),σ2

ki(t),ΓΓΓ,ki,k−i)
=P
(
ψ

i(t)|ψ i(t + j),ψ−i(t),aki(t + j),bki(t + j),µki(t),σ2
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Table 7.1: Descriptions of the parameters for the HBM model
Parameter Description

yi(t) the logarithm (log) of the observed signal for pixel i at time t
ψ i(t) the log of the true signal for pixel i at time t
σ2 the variance of the iid Gaussian noise
ki the label for pixel i

k−i the labels for the neighbours of pixel i
ψ−i(t) the log of the true signals for the neighbours of pixel i at time t

ψ i(t + j) the log of the true signals for pixel i at time t + j
aki(t + j) autoregressive parameter (constant) for ψ i(t)and ψ i(t + j)
bki(t + j) autoregressive parameter (coefficient) for ψ i(t)and ψ i(t + j)

µki(t) mean for the true signals conditional on the label at time t
σ2

ki(t) variance for the true signals conditional on the label at time t
∗ and ∗∗ the symbols with ∗ and ∗∗ are hyperparameters

where ΓΓΓ = {µ∗,σ2
∗ ,α∗,β∗,µ∗∗,σ

2
∗∗,α∗∗,β∗∗} is a vector containing all hyperparameters. All

nodes in Figure 7.3 are illustrated in detail in this chapter. The logarithm of signal intensity yi(t)

is assumed to be Gaussian distributed with mean ψ i(t) and variance σ2, which can be written
as:

P
(
yi(t)|ψ i(t),σ2)= 1√

2πσ
exp

(
−
(
yi(t)−ψ i(t)

)2

2σ2

)
(7.3)

where ψ i(t) indicates the true signal intensity of pixel i at time t. σ2 is assumed to be the variance
of the iid Gaussian noise. The Rician noise will be further simulated in the synthetic data to
test how critical the Gaussian assumption is. α∗∗ = 0.1 and β∗∗ = 0.1 are fairly uninformative
hyperparameters for variance σ2. In this way, the prior distribution for σ2, which is conjugate,
is

P(σ2|α∗∗,β∗∗) =
β

α∗∗∗∗
Γ(α∗∗)

(σ2)−α∗∗−1 exp
(
− β∗∗

σ2

)
. (7.4)

The myocardial blood flows for healthy tissues and lesions are different. Moreover, the myocar-
dial blood flows are positively correlated with the signal intensities for myocardial tissues. In
this way, ψ i(t) is conditionally dependent on the label ki. Specifically, the probability density of
ψ i(t) conditional on the label ki is

P
(

ψ
i(t)|µφ (t),σ2

φ (t)
)
=

1√
2πσφ (t)

exp

(
−
(
ψ i(t)−µφ (t)

)2

2σ2
φ
(t)

)
(7.5)

with φ ∈ {0,1}. µφ (t) and σ2
φ
(t) are the simple forms of µki=φ (t) and σ2

ki=φ
(t). Let ψψψφ (t) =

{ψ i(t)}i|ki=φ , we have:

P
(

ψψψφ (t)|µφ (t),σ2
φ (t)

)
=
(

2πσ
2
φ (t)

)−Nφ

2 exp

(
−∑i|ki=φ

(
ψ i(t)−µφ (t)

)2

2σ2
φ
(t)

)
(7.6)



CHAPTER 7. DATA-DRIVEN CLASSIFICATION USING HBM 129

Figure 7.3: This figure shows the structure of the hierarchical Bayesian model proposed in
this work. The circle nodes denote variables and the rectangle nodes denote fixed values. The
descriptions of the parameters in this Figure can be found in Table 7.1.

with φ ∈ {0,1}. Nφ is the number of pixels which satisfy label ki = φ . In a nutshell, all pixels in
the myocardium are separated in two categories, healthy group and lesion group. The pixels in
different groups have different means and standard deviations. µ∗ = 0, σ2

∗ = 10, α∗ = 0.1 and
β∗ = 0.1 are fairly uninformative hyperparameters for µki(t) and σ2

ki(t). In this way, the prior
distributions for µki(t) and σ2

ki(t), which are conjugate, are

P
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2

2σ2
∗

)
(7.7)

and

P
(
σ

2
ki(t)|α∗,β∗

)
=

β
α∗∗

Γ(α∗)

(
σ

2
ki(t)

)−α∗−1
exp
(
− β∗

σ2
ki(t)

)
. (7.8)

For the true signal ψ i(t), we applied its spatial neighbours ψ−i(t) using Markov random fields.
We also introduced the temporal neighbours of ψ i(t), ψ i(t + j), using Markov random fields.
Similarly, the label ki was also assumed to be conditional on its spatial neighbours k−i. The
definitions of ψ−i(t), ψ i(t + j) and k−i are explicitly illustrated in Section 7.3.3.
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7.3.3 Markov random fields

Markov random fields for labels

A Markov random field method was used to introduce the spatial neighbourhood information
in this work. According to the Hammersley-Clifford theorem, a Markov random field can be
written as a Gibbs distribution (see detials in Section 2.2.4),

P(ki|k−i) =
1
Q

exp
(
−U(ki|k−i)

)
(7.9)

where Q is a normalization constant to ensure the integral of P(ki|k−i) is 1. k−i is the set of all
other labels excluding ki, k−i = {km}m ̸=i. We defined U(ki|k−i) to be:

U(ki|k−i) =
1
T ∑

i∼m
u(ki|km), (7.10)

where T is a weight parameter. i∼m denotes the spatial neighbours of pixel i. The definition of
u(ki|km) is

u(ki|km) =


−
(

1
2

)o−1

ki = km,(
1
2

)o−1

ki ̸= km

(7.11)

where o indicates the degree of neighbouring. Figure 5.17 shows the definitions of spatial and
temporal neighbours in this work. We chose o = 1 in this work because it is computationally
cheaper than higher degrees, e.g. o = 2. However, our method provides a straightforward mech-
anism for extension to higher degrees. In Chapter 6, o = 2 has been applied. The reason we
applied o = 1 in this case is that o = 1 was tested and found to produce similar results to o = 2,
and o = 1 is much computationally cheaper than o = 2.

Markov random fields for true signals

As mentioned in Section 7.3.1, we introduced spatial Markov random fields to the true signal
ψ i(t). A Markov random field can be written as a Gibbs distribution, we therefore have:

P
(
ψ

i(t)|ψ−i(t),ki,k−i)= 1
Qps

exp
(
−U(ψ i(t)|ψ−i(t),ki,k−i)

)
(7.12)

where Qps is a normalization constant. ψ−i(t) is the set of all other true signals excluding ψ i(t),
ψ−i(t) = {ψm(t)}m ̸=i. We defined U

(
ψ i(t)|ψ−i(t),ki,k−i) to be:

U
(
ψ

i(t)|ψ−i(t),ki,k−i)= 1
Tps

∑
i∼m

νi,m
(
ψ

i(t)−ψ
m(t)

)2
(7.13)
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where Tps is a weight parameter and νi,m is the edge-preservation parameter defined by

νi,m =

{
0 ki ̸= km(t)

1 ki = km(t).
(7.14)

The edge-preservation parameter νi,m is used to prevent the smoothing effect of the neighbour-
hood information extend beyond the boundaries of different tissues, i.e. healthy tissues and
lesions [5, 156].

In the proposed method, we used an auto-regressive model to describe the relationship for
the true signals between different times. j is a non-zero integer to indicate the neighbouring time
points. To be specific, the Markov random fields prior given temporal neighbour ψ i(t + j) is

P
(
ψ

i(t)|ψ i(t + j),aki(t + j),bki(t + j)
)
=

1
Qpt

exp
(
−U(ψ i(t)|ψ i(t + j),aki(t + j),bki(t + j))

)
(7.15)

where

U
(
ψ

i(t)|ψ i(t + j),aki(t + j),bki(t + j)
)
=

1
Tpt

∑
t∼ j

(
ψ

i(t)−
q

∑
p=0

bp
ki(t + j)ψ i(t + j)−aki(t + j))

)2

(7.16)

where Qpt is a normalization constant. Tpt is a weight parameter and bki(t + j) = {b0
ki(t +

j), ...,bq
ki(t + j)}. In our work, we assumed that the auto-regressive parameters, bki(t + j) and

aki(t + j) are dependent on the label ki. This is physiologically realistic. For myocardial perfu-
sion MRI data, the lesion tissues are hypoperfused and the healthy tissues are normally perfused.
This means that not only are the signal intensities for the lesion pixels lower than for the healthy
tissues, but also the growth rate of the signal intensities for the lesion pixels are lower than for
the healthy tissues. In our work, we chose j = −1 and q = 0. Given q = 0 and j = −1, Gaus-
sian prior distributions are assumed for both b0

ki(t− 1) and aki(t− 1) with fairly uninformative
hyperparameters µ∗∗ = 0 and σ2

∗∗ = 10. Specifically, the prior distributions for b0
ki(t − 1) and

aki(t−1), which are conjugate, are

P
(
b0

ki(t−1)|µ∗∗,σ2
∗∗
)
=

1√
2πσ∗∗

exp
(−(b0

ki(t−1)−µ∗∗)
2

2σ2
∗∗

)
(7.17)

and

P
(
aki(t−1)|µ∗∗,σ2

∗∗
)
=

1√
2πσ∗∗

exp
(
−(aki(t−1)−µ∗∗)

2

2σ2
∗∗

)
. (7.18)
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7.3.4 Posterior inference

In this section, the posterior inference for ψ i(t), µki(t), σ2
ki(t), σ2, aki(t + j), bki(t + j) and ki is

illustrated. The hierarchical Bayesian model in Figure 7.3 is a directed acyclic graph (DAG). As
illustrated in Section 2.2.3, in a DAG, the probability of a selected parameter conditional on all
other parameters is given by the probability of this parameter conditional on its Markov blanket.
Now, we will derive the conditional posterior distributions for all of these parameters, and these
conditional posterior distributions can be used for Gibbs sampling.

The Markov blanket for ψ i(t) is {yi(t), ψ i(t+ j), aki(t+ j), bki(t+ j), ki, ψ−i(t), k−i, µki(t),
σ2

ki(t), σ2}. In this way, its conditional posterior distribution is

P
(
ψ

i(t)|yi(t),ψ i(t + j),aki(t + j),bki(t + j),ki,ψ−i(t),k−i,µki(t),σ2
ki(t),σ2)

∝P
(
yi(t)|ψ i(t),σ2)P

(
ψ

i(t)|µki(t),σ2
ki(t)

)
P
(
ψ

i(t)|ψ−i(t),ki,k−i)
P
(
ψ

i(t)|ψ i(t + j),aki(t + j),bki(t + j)
)
. (7.19)

where P(yi(t)|ψ i(t),σ2) can be found in equation (7.3). Given ki = φ with φ ∈ {0,1},
P(ψ i(t)|µki=φ (t),σ

2
ki=φ

(t)) can be found in equation (7.5). P(ψ i(t)|ψ−i(t),ki,k−i) can be found
in equations (7.12)-(7.14) and P(ψ i(t)|ψ−i(t),aki(t + j),bki(t + j)) can be found in equations
(7.15)-(7.16). By substituting these equations into equation (7.19), we have:

P
(
ψ

i(t)|yi(t),ψ i(t + j),aki(t + j),bki(t + j),ki,ψ−i(t),k−i,µki(t),σ2
ki(t),σ2)

∝ exp
(
−A× (ψ i(t))2 +2B×ψ i(t)

2C

)
(7.20)

where
A = σ

2
φ (t)TpsTpt +σ

2TpsTpt +2σ
2
σ

2
φ (t)Tpt ∑

i∼m
νi,m +2σ

2
σ

2
phi(t)Tps, (7.21)

B = σ
2
φ (t)TpsTptyi(t)+σ

2TpsTptµφ (t)+2σ
2
σ

2
φ (t)Tpt ∑

i∼m
νi,mψ

m(t)

+2σ
2
σ

2
φ (t)Tps

(
b0

φ (t−1)ψ i(t−1)+aφ (t−1)
)

(7.22)

and
C = σ

2
σ

2
φ (t)TpsTpt (7.23)

with φ ∈ {0,1}, q = 0 and j =−1. aφ (t−1) and b0
φ
(t−1) are the simple forms of aki=φ (t−1)

and b0
ki=φ

(t−1). Therefore, the conditional posterior distribution for the true signal ψ i(t) is

P
(
ψ

i(t)|yi(t),ψ i(t + j),aki(t + j),bki(t + j),ki,ψ−i(t),k−i,µki(t),σ2
ki(t),σ2)

= N
(

B
A
,
C
A

)
(7.24)
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with φ ∈ {0,1}, q = 0 and j =−1.
The Markov blanket for the parameter µki(t) is {µ∗,σ

2
∗ , ψ i(t), σ2

ki(t), ki, ψ−i(t), ψ i(t + j),
k−i, aki(t + j), bki(t + j)}. According to equation (7.19), the parameter µki(t) is independent of
ψ−i(t), ψ i(t + j), k−i, aki(t + j) and bki(t + j). Therefore, its conditional posterior distribution
is

P
(

µφ (t)|{ψ i(t)}i|ki=φ ,σ
2
φ (t),µ∗,σ

2
∗ ,ψ

−i(t),ψ i(t + j),k−i,aki(t + j),bki(t + j)
)

∝ P
(

ψψψφ (t)|µφ (t),σ2
φ (t)

)
P
(
µki(t)|µ∗,σ2

∗
)

(7.25)

with φ ∈ {0,1}. P(ψψψφ (t)|µφ (t),σ2
φ
(t)) can be found in equation (7.6). P(µki(t)|µ∗,σ2

∗ ) can be
found in equation (7.7). Since we choose a conjugate prior for µki(t), its conditional posterior
distribution is

P
(

µφ (t)|{ψ i(t)}i|ki=φ ,σ
2
φ (t),µ∗,σ

2
∗

)
=

N
((

1
σ2
∗
+

Nφ

σ2
φ
(t)

)−1(
µ∗
σ2
∗
+

∑i|ki=φ ψ i(t)

σ2
φ
(t)

)
,

(
1

σ2
∗
+

Nφ

σ2
φ
(t)

)−1)
(7.26)

with φ ∈ {0,1}.
The Markov blanket for the parameter σ2

ki(t) is {α∗,β∗, ψ i(t), µki(t), ki, ψ−i(t), ψ i(t +

j), k−i, aki(t + j), bki(t + j)}. Similarly, according to equation (7.19), the parameter σ2
ki(t)

is independent of ψ−i(t), ψ i(t + j), k−i, aki(t + j) and bki(t + j). In this way, its conditional
posterior distribution is

P
(

σ
2
φ (t)|{ψ i(t)}i|ki=φ ,µφ (t),α∗,β∗,ψ−i(t),ψ i(t + j),k−i,aki(t + j),bki(t + j)

)
∝ P

(
ψψψφ (t)|µφ (t),σ2

φ (t)
)

P
(
σ

2
ki(t)|α∗,β∗

)
(7.27)

with φ ∈ {0,1}. P
(

ψψψφ (t)|µφ (t),σ2
φ
(t)
)

can be found in equation (7.6). Meanwhile,

P
(
σ2

ki(t)|α∗,β∗
)

can be found in equation (7.8). Similarly, we choose a conjugate prior for
σ2

ki(t), i.e. an inverse-gamma (IG) distribution IG(α∗,β∗), so that its conditional posterior dis-
tribution is

P
(

σ
2
ki(t)|{ψ i(t)}i|ki=φ ,µφ (t),α∗,β∗

)
= IG

(
α∗+

Nφ

2
,β∗+

∑i|ki=φ (ψ
i(t)−µφ (t))2

2

)
(7.28)

with φ ∈ {0,1}.
The Markov blanket for the parameter σ2 is {yi(t), ψ i(t), α∗∗, β∗∗}. Its conditional posterior

distribution is

P
(
σ

2|{yi(t)}i,t ,{ψ i(t)}i,t ,α∗∗,β∗∗
)

∝

N

∏
i=1

M

∏
t=1

P
(
yi(t)|ψ i(t),σ2)P

(
σ

2|α∗∗,β∗∗
)

(7.29)



CHAPTER 7. DATA-DRIVEN CLASSIFICATION USING HBM 134

where P(yi(t)|ψ i(t),σ2) can be found in equation (7.3) and P(σ2|α∗∗,β∗∗) can be found in
equation (7.4). Since we choose a conjugate prior for σ2, its conditional posterior distribution is

P
(
σ

2|{yi(t)}i,t ,{ψ i(t)}i,t ,α∗∗,β∗∗
)

=IG
(

α∗∗+
N
2
,β∗∗+

∑
N
i=1 ∑

M
t=1
(
yi(t)−ψ i(t)

)2

2

)
. (7.30)

The Markov blanket for the parameter aki(t + j) is {ψ i(t), ψ i(t + j), bki(t + j), µ∗∗, σ2
∗∗, ki,

ψ−i(t), k−i, µki(t), σ2
ki(t)}. According to equation (7.19), aki(t + j) is independent of ψ−i(t),

k−i, µki(t) and σ2
ki(t). Therefore, its conditional posterior distribution is

P
(

aφ (t + j)|{ψ i(t),ψ i(t + j)}i|ki=φ ,bφ (t + j),µ∗∗,σ2
∗∗,ψ

−i(t),k−i,µki(t),σ2
ki(t)

)
∝ ∏

i|ki=φ

P(ψ i(t)|ψ i(t + j),aki(t + j),bki(t + j))P(aki(t + j)|µ∗∗,σ2
∗∗) (7.31)

where P
(
ψ i(t)|ψ i(t + j),aki(t + j),bki(t + j)

)
can be found in equations (7.15) and (7.16).

P
(
aki(t + j)|µ∗∗,σ2

∗∗
)

can be found in equation (7.18). Given j = −1 and q = 0, the condi-
tional posterior distribution for aφ (t−1) is

P
(

aφ (t−1)|{ψ i(t)}i|ki=φ ,{ψ i(t−1)}i|ki=φ ,b
0
φ (t−1),µ∗∗,σ2

∗∗

)
= N(D,E) (7.32)

where

D =

(
1

σ2
∗∗

+
2Nφ

Tpt

)−1
µ∗∗

σ2
∗∗

+
2∑i|ki=φ

(
ψ i(t)−b0

ki=φ
(t−1)ψ i(t−1)

)
Tpt

 (7.33)

and

E =

(
1

σ2
∗∗

+
2Nφ

Tpt(t−1)

)−1

(7.34)

with φ ∈ {0,1}.
The Markov blanket for bki(t + j) is {ψ i(t), ψ i(t + j), aki(t + j), µ∗∗, σ2

∗∗, ki, ψ−i(t), k−i,
µki(t), σ2

ki(t)}. According to equation (7.19), bki(t + j) is independent of ψ−i(t), k−i, µki(t) and
σ2

ki(t). Therefore, its conditional posterior distribution is

P
(

bφ (t + j)|{ψ i(t),ψ i(t + j)}i|ki=φ ,aφ (t + j),µ∗∗,σ2
∗∗,ψ

−i(t),k−i,µki(t),σ2
ki(t)

)
∝ ∏

i|ki=φ

P
(
ψ

i(t)|ψ i(t + j),aki(t + j),bki(t + j)
)

P
(
bki(t + j)|µ∗∗,σ2

∗∗
)

(7.35)

where P
(
ψ i(t)|ψ i(t + j),aki(t + j),bki(t + j)

)
can be found in equations (7.15) and (7.16).

Given j = −1 and q = 0, P
(
b0

ki(t + j)|µ∗∗,σ2
∗∗
)

can be found in equation (7.17). Therefore,
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the explicit form of the conditional posterior distribution for b0
ki=φ

(t−1) is

P
(

b0
φ (t−1)|{ψ i(t)}i|ki=φ ,{ψ i(t−1)}i|ki=φ ,aφ (t−1),µ∗∗,σ2

∗∗

)
= N

(
B
′

A′
,
C
′

A′

)
(7.36)

where
A
′
= Tpt +2σ

2
∗∗ ∑

i|ki=φ

(
ψ

i(t−1)
)2

(7.37)

B
′
= µ∗∗Tpt +2σ

2
∗∗ ∑

i|ki=φ

ψ
i (

ψ
i(t)−aki(t−1)

)
(7.38)

and
C
′
= σ

2
∗∗Tpt (7.39)

The Markov blanket for ki is {ψ i(t), ψ i(t + j), aki(t + j), bki(t + j), µki(t), σ2
ki(t), k−i,

ψ−i(t), µ∗, σ2
∗ , µ∗∗, σ2

∗∗, α∗, β∗}. According to equations (7.7), (7.8), (7.17) and (7.18), ki

is independent of parameters µ∗, σ2
∗ , µ∗∗, σ2

∗∗, α∗, β∗. In this way, its conditional posterior
distribution is

P
(

ki = φ |k−i,{ψ i(t),µφ (t),σ2
φ (t),ψ

−i(t),ψ i(t + j),aki(t + j),bki(t + j)}t
)

∝P(ki|k−i)
M

∏
t=1

P
(

ψ
i(t)|µφ (t),σ2

φ (t)
)

P
(
ψ

i(t)|ψ−i(t),ki,k−i)
M

∏
t=1

P
(
ψ

i(t)|ψ i(t + j),aki(t + j),bki(t + j)
)

(7.40)

where P(ki|k−i) can be found in equations (7.9)-(7.11). Meanwhile, P
(

ψ i(t)|µφ (t),σ2
φ
(t)
)

can
be found in equation (7.5). P

(
ψ i(t)|ψ−i(t),ki,k−i) can be found in equations (7.12)-(7.14).

P
(
ψ i(t)|ψ i(t + j),aki(t + j),bki(t + j)

)
can be found in equations (7.15) and (7.16). Since ki

can only be either 0 or 1, we set it to be a Bernoulli distribution conditional on its Markov
blanket. Given j =−1 and q = 0, when ki = 0, we have

q ∝P
(
ki = 0|k−i,{ψ i(t),µki(t),σ2

ki(t),ψ−i(t),ψ i(t + j),aki(t + j),bki(t + j)}t
)

∝exp

(
− 1

T ∑
i∼m

u
(
ki|km))exp

(
−

M

∑
t=1

(
ψ i(t)−µki(t)

)2

2σ2
ki(t)

)

exp

(
−

M

∑
t=1

1
Tps

∑
i∼m

νi,m
(
ψ

i(t)−ψ
m(t)

)2
)

exp

(
−

M

∑
t=1

1
Tpt

(
ψ

i(t)−b0
ki(t−1)ψ i(t−1)−aki(t−1)

)2
)
. (7.41)
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Similarly, given j =−1 and q = 0, when ki = 1, we have

p ∝P
(
ki = 1|k−i,{ψ i(t),µki(t),σ2

ki(t),ψ−i(t),ψ i(t + j),aki(t + j),bki(t + j)}t
)

∝exp

(
− 1

T ∑
i∼m

u
(
ki|km))exp

(
−

M

∑
t=1

(
ψ i(t)−µki(t)

)2

2σ2
ki(t)

)

exp

(
−

M

∑
t=1

1
Tps

∑
i∼m

νi,m
(
ψ

i(t)−ψ
m(t)

)2
)

exp

(
−

M

∑
t=1

1
Tpt

(
ψ

i(t)−b0
ki(t−1)ψ i(t−1)−aki(t−1)

)2
)
. (7.42)

Therefore, the explicit conditional posterior distribution for ki is

P(ki|k−i,{ψ i(t),µki(t),σ2
ki(t),ψ−i(t),ψ i(t + j),aki(t + j),bki(t + j)}t) =(

p
p+q

)ki(
q

p+q

)1−ki

. (7.43)

The conditional posterior distributions of ψ i(t), µki(t), σ2
ki(t), σ2, aki(t + j), bki(t + j) and

ki has been derived in this section, and these conditional posterior distributions will be used for
MCMC simulations.

7.3.5 MCMC simulations

In the present work, we applied the proposed HBM method to both clinical and synthetic data.
In practice, the samples of the HBM parameters can be approximately drawn using an MCMC
method, the Gibbs sampling method, from their posterior distributions. Specifically, we have
already derived the conditional posterior distributions of all HBM parameters in Section 7.3.4,
which is used in the Gibbs sampling scheme described in detail in Algorithm 6.

7.4 Benchmark methods

Similar to Chapter 6, we used two alternative methods as the benchmark methods in this work.
The first benchmark method is the Gaussian mixture model classification method (see Sec-
tion 5.2). As mentioned in Section 5.2, this classification method is susceptible to spurious
singleton clusters. Therefore, we further used an image processing approach called the “opening
and closing operations” [163], as another benchmark method. The opening and closing oper-
ations aim to improve the GMM classification results by reducing spurious singleton clusters.
This approach applies mathematical morphology (erosion and dilation) to reduce the occurrence
of spurious clusters. Both closing and opening operations are derived from the fundamental
operations called “erosion” and “dilation”. In general, the opening operation can remove small
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Algorithm 6: Gibbs sampling for myocardial perfusion DCE-MRI classification
Input: Hyperparameters α∗, β∗, α∗∗, β∗∗, µ∗, σ2

∗ , µ∗∗, σ2
∗∗, T , Tps, Tpt

Output: {ψ i(t)}i,t , {µki(t)}t , {σ2
ki(t)}t , σ2, {aki(t + j)}t , {bki(t + j)}t and {ki}i

Data: {yi(t)}i,t where i = 1,2, ...,N and t = 1,2, ...,M
Set the initial values of ψ i(t) to be yi(t); set the initial value of σ2 to be 1;
for i← 1 to N do

Based on image at tm (the time that the signals achieve to peak values), obtain initial
values of ki, using the EM algorithm (Gaussian mixture model) (see details from
section 9 in [18]);

end
for t← 1 to M do

Given ki and ψ i(t), obtain the initial values of µki(t) and σ2
ki(t) based on maximum

likelihood estimation (MLE);
Given ki and ψ i(t), obtain the initial values of aki(t + j) and bki(t + j) using
least-squares fitting;

end
for p← 1 to M0 (The number of MCMC samples) do

for t← 1 to M do
for i← 1 to N do

Given yi(t), ψ i(t + j), aki(t + j), bki(t + j), µki(t), σ2
ki(t), ki, k−i, ψ−i(t), Tps,

Tpt and σ2, draw ψ i(t) based on equation (7.24);
end
Given {ψ i(t)}i, σ2

ki(t), {ki}i, µ∗ and σ2
∗ , draw µki(t) based on equation (7.26);

Given {ψ i(t)}i, µki(t), {ki}i, α∗ and β∗, draw σ2
ki(t) based on equation (7.28);

Given {ψ i(t)}i, {ψ i(t + j)}i, bki(t + j), Tpt, ki, µ∗∗ and σ2
∗∗, draw aki(t + j)

based on equation (7.32);
Given {ψ i(t)}i, {ψ i(t + j)}i, aki(t + j), Tpt, ki, µ∗∗ and σ2

∗∗, draw bki(t + j)
based on equation (7.36);

end
for i← 1 to N do

Given {ψ i(t)}t , {µki(t)}t , {σ2
ki(t)}t , k−i, {ψ−i(t)}t , {ψ i(t + j)}t , {aki(t + j)}t ,

{bki(t + j)}t , T , Tps and Tpt, draw ki based on equation (7.43);
end
Given {yi(t)}i,t , {ψ i(t)}i,t , α∗∗ and β∗∗, draw σ2 based on equation (7.30);

end
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Table 7.2: Descriptions of the benchmark methods
Abbreviation of methods Description
GMM Gaussian mixture model classifica-

tion
GMMC GMM based closing operation with

kernel size 2 × 2
GMMC&O GMM based closing and opening

operation with kernel size 2 × 2
GMMmax

C&O the result of GMMC&O which keeps
the largest lesion

lesion clusters inside healthy tissues and the closing operation can remove small healthy clusters
inside lesions. Since the GMM with opening and closing operations (GMMC&O) usually cannot
remove spurious medium-sized clusters, we also applied an approach where we only kept the
largest lesion region as in [171], named as “GMMmax

C&O” (see Table 7.2). We found that when
noise is strong, GMMmax

C&O is more successful than GMMC&O for removing spurious clusters.
The description of these benchmark methods can be found in Table 7.2. The kernel size for the
opening and closing operators was chosen as 2 × 2 in the present work for the reason that it can
produce the closest classification result to the ground truth. In Figure 7.6, it can be observed
that the performances with kernel size 2×2 is better than the performances with kernel size 3×3
(less misclassified pixels).. Thus, we have used the best (the closest to the ground truth) alter-
native approach to compare with the proposed method, thereby giving the alternative schemes a
competitive advantage over our method.

7.5 Results

7.5.1 Results for synthetic data

Visual inspection

Figure 7.4 shows the classification results for the synthetic examples based on different methods.
The descriptions of the benchmark methods can be found in Table 7.2. We show the case that the
noise is very high (noise variance 42). According to Figure 7.4, none of the methods except for
the method proposed in the present work manage to reproduce the ground truth. The GMM clas-
sification method predicts many spurious small clusters. “GMMC”, “GMMC&O”, “GMMmax

C&O”
(see Table 7.2) reduce the noise to some degree. However, all these methods either misclassify
some lesion pixels in the healthy region, or misclassify some healthy pixels in the lesion region.
Generally, in all benchmark methods, the method “GMMmax

C&O” achieves the closest results to
the ground truth. However, it still misclassifies some healthy pixels in the lesion region in Fig-
ure 7.4(k) and misclassifies some lesion pixels in the healthy region in Figure 7.4(e). Moreover,
in Figure 7.4(q), the boundaries between the healthy region and the lesion region are misclassi-



CHAPTER 7. DATA-DRIVEN CLASSIFICATION USING HBM 139

(a) Truth (b) GMM (c) GMMC (d) GMMC&O (e) GMMmax
C&O (f) HBM

(g) Truth (h) GMM (i) GMMC (j) GMMC&O (k) GMMmax
C&O (l) HBM

(m) Truth (n) GMM (o) GMMC (p) GMMC&O (q) GMMmax
C&O (r) HBM

Figure 7.4: Lesion delineation for the synthetic data. These figures show lesion delineations for
the synthetic examples with additive i.i.d. Rician noise with signal-to-noise (SNR) 1.4 (noise
variance 42). The pixels inside and outside of the ring (myocardium) are background. The three
rows denote the classification results for 60◦, 120◦ and 180◦ respectively. Panels (a), (g) and (m)
show the ground truth. Panels (b) - (e), (h) - (k) and (n) - (q) show the lesion delineation using
alternative methods, which are explicitly explained in Section 7.4 and Table 7.2. Panels (f), (l)
and (r) show the lesion delineation using the proposed HBM.

fied. On the other hand, the HBM method proposed in the present work successfully reproduces
the ground truth with only very few misclassified pixels located in the boundary between healthy
tissues and the lesion for all three lesion size cases. Therefore, a visual inspection clearly reveals
that the results generated with the proposed HBM method are the closest to the ground truth and
outperform all alternative benchmark methods included in our comparative evaluation study.

Prediction accuracy

To quantify the classification accuracy, we first counted the number of misclassified pixels, and
then calculated the cross-entropy between the ground truth labels and the predicted posterior
probabilities (see equation (7.44)).

H(pi,qi) =−∑
i
[pi log(qi)+(1− pi) log(1−qi)]. (7.44)

In equation (7.44), the subscript i indicates the pixel index, pi ∈ {0,1} indicates the true label
given the ground truth and qi indicates the predicted posterior probabilities. Similar to the work
in Chapter 6, the reason we used the cross-entropy as an alternative quantitative criterion, in
addition to the misclassification rate, is to assess if the methods can properly deal with uncer-
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(a) Misclassified numbers (b) Cross-entropy

Figure 7.5: 3D plots for the numbers of misclassified pixels and cross-entropy. These figures
show the 3D plots for the numbers of misclassified pixels (in (a)) and cross-entropy (in (b)).
They are the visualizations of Tables 7.3 and 7.4. Lines are used to link the points with different
noise variances to show the trends of their changes.

tainty quantification, i.e. correctly predict the uncertainty of their predictions. This shifts the
focus from the classification label to the posterior probability of finding a pixel in a given class.
For example, predicting the posterior probability of a pixel to be lesion to be 0.51 indicates a
considerably lower level of confidence than predicting a posterior probability of, say, 0.99. This
difference is duly captured by the cross-entropy, but not the misclassification rate, which would
not distinguish between the above two scenarios.

Tables 7.3, 7.4 and Figure 7.5 show the average misclassified pixels and cross-entropy based
on different methods for the synthetic examples. When the noise is very low (noise variance
12), all methods reproduce the ground truth. For other degrees of noise, the performance for
the proposed HBM method is consistently the best and outperforms all competing methods. A
standard t-test confirms that this difference, and hence the performance improvement achieved
with the proposed HBM, is significant. It is worth mentioning that the results for 120◦ and for
180◦ are similar. For these two sizes, when the noise is low (noise variance 22), the methods
“GMMmax

C&O” and “GMMC&O”, (see Table 7.2), have slightly lower prediction accuracies than
the proposed HBM method. However, when the noise is getting higher, their prediction accu-
racies are getting lower. This means that the methods “GMMmax

C&O” and “GMMC&O” are very
sensitive to the degree of the noise. For the 60◦, all methods perform similarly when the noise
is low (noise variance 22). However, the prediction accuracies for all competing methods de-
crease dramatically when the noise is high (noise variance 32) and very high (noise variance 42).
The prediction accuracy for the proposed HBM method is much higher than for all competing
methods.

Note that all methods included in our comparative evaluation depend on various regularisa-
tion parameters. As we will demonstrate below, one of the advantages of the proposed HBM
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Table 7.3: The average number of misclassified pixels for the synthetic data

60◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.0 2.1 440.0 438.1

GMMC 0.0 2.0 246.9 241.6
GMMC&O 0.0 2.3 317.4 310.6
GMMmax

C&O 0.0 2.3 139.2 106.3
HBM 0.0 2.0 15.0 14.7

120◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.0 5.9 95.4 216.3

GMMC 0.0 7.9 25.6 122.0
GMMC&O 0.0 2.6 13.3 65.7
GMMmax

C&O 0.0 2.6 6.5 58.9
HBM 0.0 0.7 4.6 17.8

180◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.0 5.8 70.3 200.7

GMMC 0.0 6.6 37.6 118.0
GMMC&O 0.0 0.3 7.4 92.0
GMMmax

C&O 0.0 0.3 5.8 56.1
HBM 0.0 0.0 2.8 10.4

method is that these regularisation parameters can be set objectively, based on the available data
and established statistical information criteria. This is a substantial advantage over the alter-
native benchmark methods included in our comparative evaluation, where these regularisation
parameters are “user-defined," meaning that they have to be set by the user based on intuition,
experience, and less objective criteria. Specifically, the order and kernel size for the opening and
closing operations affect the classification results significantly. We test the performances of the
opening and closing operations with different orders and kernel sizes (see Tables 7.5) using the
synthetic data at different noise scales. Figure 7.6 and Table 7.5 show the classification results
for different orders and kernel sizes of the closing and opening operations. The classification
results for them are quite different. Without the input of extra information (the ground truth),
the order and kernel size for the opening and closing operations are difficult to choose, which
would be methodologically inconsistent. The values of the hyperparameters also affect the clas-
sification results for the proposed HBM method. However, as mentioned above, these values
can be selected based on established information criteria, e.g. Watanabe Akaike information
criterion (WAIC). This selection process is thus less subjective and more reproducible than for
the alternative methods, and less reliant on the user’s experience and intuition.
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Table 7.4: Cross-entropy between true labels and predicted posterior probabilities for the syn-
thetic data (smaller values mean better results)

60◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.00 0.07 16.15 16.08

GMMC 0.00 0.05 9.06 8.87
GMMC&O 0.00 0.08 11.65 11.40
GMMmax

C&O 0.00 0.08 5.11 3.90
HBM 0.00 0.05 0.44 0.44

120◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.00 0.22 3.50 7.94

GMMC 0.00 0.29 0.93 4.48
GMMC&O 0.00 0.10 0.49 2.41
GMMmax

C&O 0.00 0.10 0.24 2.16
HBM 0.00 0.00 0.05 0.39

180◦
VAR/SNR (Rician noise)

12/22.9 22/5.7 32/2.5 42/1.4
GMM 0.00 0.21 2.58 7.37

GMMC 0.00 0.24 1.38 4.33
GMMC&O 0.00 0.01 0.27 3.38
GMMmax

C&O 0.00 0.01 0.21 2.06
HBM 0.00 0.00 0.10 0.38

Table 7.5: The descriptions of opening and closing operations with different orders and kernel
sizes in Figure 7.6

Abbreviation in Figure 7.6 Description
C2 only closing with kernel 2 × 2

CO2 closing with kernel 2 × 2 and opening with kernel 2 × 2
CO3 closing with kernel 3 × 3 and opening with kernel 3 × 3
OC2 opening with kernel 2 × 2 and closing with kernel 2 × 2

Denoised image generations

We finally focus on the challenges of image noise reduction and filtering. An additional benefit
of the proposed HBM method is that it can, to some extent, filter out the noise and generate
denoised images from their original noisy counterparts. Figure 7.7 shows the ME SI images
for the synthetic data. Since the added noise to the ground truth is very high, the lesion pattern
is very hard to distinguish based on the noise-corrupted images. After applying the proposed
HBM method in the present work, the noise is visually reduced. For the generated images, the
lesion pattern is distinguishable and very close to the ground truth.
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(a) GMM(Var42) (b) C2(Var42) (c) CO2(Var42) (d) CO3(Var42) (e) OC2(Var42)

(f) GMM(Var3.52) (g) C2(Var3.52) (h) CO2(Var3.52) (i) CO3(Var3.52) (j) OC2(Var3.52)

(k) GMM(Var32) (l) C2(Var32) (m) CO2(Var32) (n) CO3(Var32) (o) OC2(Var32)

Figure 7.6: Closing and opening operations segmentation results for different noise scales.
These figures show the classification results by GMM based closing and opening operations
for different noise scales. The first, second and third row show the results corresponding to
noise variance 42, 3.52 and 32. Panels (a), (f) and (k) show the GMM classification results. The
descriptions for the other panel names can be found in Table 7.5. These results show the incon-
sistency of the closing and opening operations.

7.5.2 Results for clinical data

Model selection

In the proposed HBM method, there are three user-defined hyperparameters T , Tps and Tpt, which
can be found in equations (7.10), (7.13) and (7.16). Firstly, we used WAIC values to explore the
best combination of the hyperparameters. In principle, they could be sampled from the posterior
distribution with MCMC techniques, along with the other parameters. However, this would lead
to a substantial increase in the computational complexity, given that convergence and mixing of
hyperparameters tends to be happening at much lower rates than for parameters; see e.g. [164].
For clinical decision making, excessive computational costs need to be avoided, and we also
want to better exploit parallel computing resources for computational cost reduction. This can be
achieved by computing advanced information criteria, like WAIC, for a set of candidate values in
parallel, using high-performance computer clusters, and then selecting the results corresponding
to those hyperparameters that have obtained the lowest WAIC score. In our work, we have
processed Algorithm 6 separately for different combinations of the hyperparameters on different
processors. Table 7.6 shows the WAIC values for different combinations of the hyperparameters.
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(a) Ground truth (60◦) (b) Noise added (60◦) (c) HBM generated (60◦)

(d) Ground truth (120◦) (e) Noise added (120◦) (f) HBM generated (120◦)

(g) Ground truth (180◦) (h) Noise added (180◦) (i) HBM generated (180◦)

Figure 7.7: Maximum enhanced images. These figures show the SI images at the ME time for
the synthetic data. Three rows show the images for 60◦, 120◦ and 180◦ respectively. Panels (a),
(d) and (g) show the ground truth ME images. Panels (b), (e) and (h) show the noisy images
after adding Rician noise. Panels (c), (f) and (i) show the reconstructed noise-reduced images
using the proposed HBM method.
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Table 7.6: Watanabe-Akaike information criterion (WAIC)
T = 0.01 Tpt

Tps

1 10 100
0.1 79113 12665 10009
1 83785 45537 38527
10 91290 98814 97253

T = 0.1 Tpt

Tps

1 10 100
0.1 78886 12859 9675
1 84172 45588 38348
10 91637 98895 97444

T = 1 Tpt

Tps

1 10 100
0.1 79277 13615 9990
1 84004 45778 38321
10 91879 98732 97750

We find that the combination T = 0.1, Tps = 0.1 and Tpt = 100 achieves the lowest (i.e. best)
WAIC value, and these hyperparameter settings were subsequently used for all our simulations
(including the synthetic data).

Convergence test

All parameters were sampled from their posterior distributions using Gibbs sampling according
to Algorithm 6. Figure 7.8 inspects the convergence of the parameter σ2. The reason we chose
this parameter to assess the convergence of the Gibbs sampling is that it can reveal the uncer-
tainty of differences between observed and generated signals. The traceplot and kernel density
plot for the MCMC samples look reasonable, without any signs of insufficient convergence.
We also use Geweke’s test [24] to test for convergence. If the Geweke scores consistently stay
within the range (-1,1), there is no significant evidence for insufficient convergence. Therefore,
given Figure 7.8, there is no significant evidence that the parameter σ2 has not converged. We
also repeat the convergence explorations for other parameters (ψ i(t), µki(t), ...). There is no
significant evidence for lack of convergence here either.

Classification results and denoised image generations

Figure 7.9 shows the classification results for the clinical data based on three methods, GMM,
“GMMC&O” (see Table 7.2) and the proposed HBM. There are some small and singleton healthy
clusters located inside of the myocardium lesion for the GMM result. As mentioned in Sec-
tion 5.2, this phenomenon is physiologically unrealistic. Small and singleton healthy clusters
are reduced but not removed by the method “GMMC&O” (see Table 7.2). However, these small
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(a) Kernal density of the posterior distribution (b) Traceplot of the posterior distribution

(c) Geweke test

Figure 7.8: MCMC convergence. These figures inspect the convergence of the MCMC simu-
lation for varaince σ2. (a) shows the kernel density plot of the MCMC samples for parameter
σ2 after burn-in. (b) shows the traceplot of the MCMC samples for parameter σ2 after burn-in.
(c) shows Geweke scores based on the MCMC samples of σ2. The red horizontal lines show
the value 1 and -1. If the Geweke scores are within the range (−1,1), there is no significant
evidence that this parameter has not converged.

and singleton lesion clusters are successfully removed by the proposed HBM method after in-
troducing the spatio-temporal context information (details in Figure 7.9(c)). This means that the
proposed HBM method improves the classification results.

Figure 7.10 shows the comparison between original and generated images. The noise of
the original image is reduced significantly after applying the method proposed in this work.
Moreover, the boundary between the hypo-perfused area and the normal-perfused area is clearer
as a result of the edge-preservation property mentioned in Section 7.3.3. These results indicate
that the proposed HBM method successfully reduces noise from the original images and hence,
generates the noise reduced images.

Figure 7.11 shows the results for two extra sets of data. As mentioned in Section 7.2.1,
only classification maps and generated denoised images are shown for these two sets of data.
These results are used to emphasize the validation of the proposed HBM method. The unre-
alistic small and singleton clusters cannot be avoided by the benchmark methods, GMM and
“GMMC&O” (see Table 7.2). However, the unrealistic small and singleton clusters are removed
by the proposed HBM method. Thus, the proposed HBM method shows robustness based on
the results using different sets of data.

The comparisons among all methods in the thesis have been carried out. However, since
different chapters and sections are submitted as scientific papers, the comparisons are not been
presented in each chapter/section. Therefore, the overall comparisons are presented at the end
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(a) GMM (b) GMMC&O (c) HBM

Figure 7.9: Classifications of clinical data. These figures show the classifications of the clinical
data by three methods. The black areas inside and outside of the myocardium ring indicate the
background. The yellow pixels indicate the healthy tissue and the dark green pixels indicate the
lesions. Panel (a) shows the classification given by GMM. Panel (b) shows the classification
given by “GMMC&O” (see Table 7.2). Panel (c) shows the classification given by the proposed
HBM method.

Table 7.7: The comparisons of different methods
GMM SVFMM GMM-MRF Fermi HBM Data HBM

misclassified rate at SNR = 4 11% 6% 5% 1% 0%
misclassified rate at SNR = 3 32% 24% 13% 2% 1%

Computation time 1 second 10 minutes 1 minute 2 hours 1 hour

of this chapter to give the reader an overview of these methods. The specific comparisons can
be found in Table 7.7. The GMM is very fast because it is applied by build-in package and other
methods are applied by the codes writen by the author. In general, the methods with higher accu-
racy are computationally slow, and the methods with lower accuracy are computationally faster.
Different methods provide the information of the balance between computational efficiency and
accuracy.

7.6 Discussion and conclusion

In this chapter, we have proposed a classification approach based on a hierarchical Bayesian
model (HBM) with a spatio-temporal Markov random field (MRF) prior for automatic lesion
detection in myocardial perfusion DCE-MRI scans. This method is a fully data driven ap-
proach, meaning that all parameters and hyperparameters can be consistently inferred from the
data, without need for any heuristic user-defined tuning parameters. Two alternative established
methods, the Gaussian mixture model (GMM) and the Gaussian mixture model with opening
and closing operations, have been applied for comparison, using both synthetic and clinical
data. For the former, the ground truth is known. This allowed us to compute two objective
quantitative criteria, the number of misclassified pixels and the cross-entropy between true and
predicted labels. Both quantitative criteria demonstrate that the proposed HBM clearly outper-
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(a) Original image (b) Generated image

Figure 7.10: Signal comparison between original image and generated image. These figures
show the comparison between original image and generated image. Panel (a) shows the original
signal intensity map of the maximum enhanced image. Panel (b) shows the generated signal
intensity map of the maximum enhanced image.

forms the established alternative methods used for comparison, which we further corroborated
with a standard statistical hypothesis test.

For the clinical data, we evaluated the performance of the methods based on the physiological
insight that the blockage of a blood vessel affects extended connected regions of the myocardial
tissue, and that large numbers of tiny unconnected lesions are unrealistic. We therefore used the
number of spurious singleton clusters as a performance criterion, with larger numbers being in
increasing disagreement with our physiological insight. This criterion can be visually observed
from the classification results and we found that the proposed HBM clearly outperformed the
alternative established methods according to this performance measure, systematically avoiding
singleton clusters and leading to predictions that are physiologically more plausible.

The proposed HBM was also found to succeed in generating denoised magnetic resonance
(MR) images. For the synthetic data, where the ground truth is known, the generated denoised
MR images tend to be much closer to the ground truth than the original noisy MR images. While
the lesion patterns for the original noisy MR images are hard to distinguish visually, the lesion
patterns for the generated MR images are clearly distinguishable and the boundaries between
lesions and healthy tissues are easy to discern. For the clinical data, too, the generated MR
images show clearer evidence of noise reduction and crisper boundaries between lesions and
healthy tissues.

For inference, we have sampled the parameters from the posterior distribution with Gibbs
sampling, while the lower level hyperparameters were selected based on an advanced informa-
tion criterion (WAIC), which can be directly computed from the Gibbs samples. The motivation
for this combined approach over a full sampling scheme is faster mixing and convergence and
the facilitation of the exploitation of parallel computer clusters (see further below).
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(a) Original image (b) Generated image (c) GMM (d) GMMC&O (e) Proposed HBM

(f) Original image (g) Generated image (h) GMM (i) GMMC&O (j) Proposed HBM

Figure 7.11: Classification results and generated denoised images for two more sets of data.
These figures show classification and generation results for two different data sets. Panels
(a) - (e) show the maximum enhanced original image, generated maximum enhanced image,
GMM classification, “GMMC&O” (see Table 7.2) and proposed HBM classification for case 1
respectively. Panels (f) - (j) show the maximum enhanced original image, generated maximum
enhanced image, GMM classification, “GMMC&O” (see Table 7.2) and proposed HBM classifi-
cation for case 2 respectively.

In summary, there are four main advantages of the proposed HBM over the alternative estab-
lished methods. Firstly, the prediction accuracy of the proposed HBM is significantly better than
for the alternative established methods, based on the two performance criteria of classification
error and cross-entropy. Secondly, as opposed to the alternative established methods – GMM
and GMM with closing and opening operations – the proposed HBM succeeds in generating
denoised images. Thirdly, the proposed HBM is more robust and consistent than the competing
alternative methods, in that it does not depend on any subjective user-defined tuning parameters;
rather, all parameters and hyperparameters are inferred from the data. Fourthly, our Bayesian
inference scheme for the proposed HBM automatically provides uncertainty quantification for
both generated signals and class labels. This is a substantial advantage over the two alterna-
tive established classification methods (GMM and GMM with closing and opening operations),
which are optimisation-based methods without any uncertainty quantification.

The main disadvantage of the proposed HBM is its higher computational complexity. The
two methods used for comparison are computationally cheap: it typically takes less than a
minute to obtain the results. The Gibbs sampling simulations for our HBM, on the other hand,
are computationally expensive. We typically required about 3000 Gibbs sampling steps to reach
an acceptable level of convergence, based on the Geweke convergence test, which was equivalent
to a computational costs of about one hour on the hardware we were using (Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz processor with 64GB memory).

To reduce the computational complexity, we can draw on parallelisation: both the pixel-level
computations on which the Gibbs sampling scheme is based and the WAIC computations for
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hyperparameter selection can easily be run in parallel. While for the present proof-of-concept
study this parallelisation has not been implemented yet, it is conceptually straightforward and
can be expected to lead to a substantial reduction in the computational costs.

The proposed method is aimed at addressing one of the two essential components of myocar-
dial perfusion assessment, namely identification of the lesion’s spatial extent (i.e. its presence,
location and size). To address the remaining component (lesion severity), absolute MBF values
also need to be extracted from raw DCE-MRI datasets. Without any loss of generality, the form
of our method could be applied to calibrated DCE-MRI data, and thus enable comprehensive
and robust assessment of myocardial perfusion in the future.



Chapter 8

Polar Projection of Myocardial Perfusion
DCE-MRI

8.1 Introduction

The longitudinal analysis of myocardial perfusion derived from the DCE-MRI is important be-
cause the nature of changes of myocardial microcirculation after infarction is of crucial impor-
tance clinically, as this has direct impact on morbidity and mortality. The AHA mapping (see
details in Section 3.6) provides a way to apply regional longitudinal analysis because myocar-
dial wall can be segmented into 17 regions, or 6 regions within a single mid-ventricular slice.
The myocardial perfusion estimates of the six regions can be quantified using average values.
Many MBF estimation methods have been based on the AHA mapping approach [169,172–174].
However, the definition of discrete myocardial segments is subject to operator bias, and there is
an inevitable loss of granularity caused by signal averaging.

An alternative approach to the longitudinal analysis is pixelwise analysis. Specifically, lon-
gitudinal comparisons between different DCE-MRI datasets can be carried out pixel-by-pixel,
which would solve the operator bias and signal averaging issues. However, the shape and size of
the myocardial tissues from different DCE-MRI datasets (see details in Chapter 3) are different.
Therefore, a registration procedure will be needed to establish a pixelwise correspondence to
compare different DCE-MRI datasets, for example, by applying some specifically standardised
process to the dataset.

In this chapter, a standardisation approach based on a polar projection has been introduced
to project contoured myocardium to a standardised annulus. This projection method is based on
linear interpolation to deform the myocardium in the image, and it will be applied to different
parametric maps illustrated in Chapters 4 and 5. The proposed method can be used in a variety of
settings: to overlay different sequences obtained within the same MRI exam, to overlay different
parameter maps acquired within different MRI exams, and also to combine images or maps from
different subjects into standardised atlases.

151
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Figure 8.1: The manual contouring of the myocardium. The green curve denotes the epicardium.
The red curve denotes the endocardium. The tissues inside the yellow square denote the LV
blood pool samples, and the blue cross denotes the reference point. Five white lines and one blue
line that link the endocardium and epicardium separate the myocardium to six AHA segments
[4].

8.2 Method

8.2.1 Overview

The segmented myocardium used in this chapter are obtained manually from the DCE-MRI, see
Section 3.3. The critical elements for delineating the myocardium include “endocardial con-
tour”, “epicardial contour” and “reference point”. Figure 8.1 shows the manual contour of the
myocardium. From this figure, all critical elements related to the delineation of the myocardium
can be observed. The green curve denotes the epicardium. The red curve denotes the endo-
cardium. The tissues inside the yellow square denote the LV blood pool, and the blue cross
denotes the reference point (the inferior insertion point located at the junction of the right ven-
tricle and the left ventricle). This point is used to locate the relative position of the myocardium.
Five white lines and one blue line separate the myocardium into six segments based on the
AHA mapping (see Section 3.6). The area located between the green and red curves are the
myocardium. The projection approach proposed in this chapter aims to project any contoured
myocardium to a standardised annulus.

This projection process can be roughly divided into two steps:

1. Project the myocardium to a rectangle. It is a transformation from the Cartesian coordinate
system to a polar coordinate system. Specifically, the center of mass of the blood pool
in the original image is the pole in the projected rectangle. The row of the rectangle
represents the polar axis in the polar coordinate system and the column of the rectangle
represents the angle in the polar coordinate system. The correspondence of the original



CHAPTER 8. POLAR PROJECTION OF MYOCARDIAL PERFUSION DCE-MRI 153

Figure 8.2: The correspondence between the original image and the projected rectangle. The
green and red lines in the projected rectangle represent the epicardium and the endocardium in
the original image. The signals inside the shaded orange circle will be projected to the rectangle.

image and the projected rectangle can be found in Figure 8.2. The signals inside the
shaded orange circle will be projected to the rectangle.

2. Project the rectangle to an annulus. It is a transformation from the polar coordinate system
to the Cartesian coordinate system. The correspondence of the projected rectangle and the
projected annulus can be found in Figure 8.3.

8.2.2 Step 1: the myocardium to the rectangle projection

The first step of the projection process is to project the myocardium from the original image
to a rectangle. Specifically, the proposed projection method projects all signals inside a circle
with centre O (the center of mass of blood pool) and radius r (the line segment between O

and the reference point) to a rectangle (see Figure 8.2). Linear interpolations and trigonometric
functions are used in this step. In specific:

1. Link the centre of mass O of the blood pool in the original image and the reference point.
This line segment is defined as the 0-degree. This line segment is shown as a purple line
in panel (a), Figure 8.2.

2. Define the move step d, i.e. the degree of clockwise move for the line segment from 0-
degree. The move step controls one dimension of the standard rectangle. Specifically, if
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Figure 8.3: The correspondence between the projected rectangle and projected annulus. The
green and red lines in panels (a) and (b) represent the epicardium and the endocardium in the
original image. R1 and R2 are the projected radiuses of the epicardium and endocardium re-
spectively.

the move step is defined as d = 4 degrees, then there will be 360/4 = 90 line segments
every 4 degrees clockwise, and accordingly 90 rows for the rectangle.

3. Calculate the coordinates of the end points for each line segment. The length of the line
segment linking the centre of mass and the reference point is defined as r, and therefore
the whole myocardial wall is included in the defined circle with radius r. By clockwise
moving the 0-degrees line segment according to the move step, calculate the coordinates
of the end point of each line segment. Particularly, the end point for the 0-degree line
segment is the reference point.

4. Define the number of interpolation points for the line segment to be l. For each line
segment, calculate the coordinates of these points by:

xi = x0 + i∗ xl−1− x0

l−1
(8.1)
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and
yi = y0 + i∗ yl−1− y0

l−1
(8.2)

where i∈ {0,1,2, ..., l−1} is the index of the points. The coordinate of the center of mass
is (x0,y0) and the coordinate of the end point is (xl−1,yl−1). Establish two coordinate
matrices (x-axis and y-axis). For the x-axis matrix, its first row contains the x-axis co-
ordinates of points in 0 degrees radius. Its second row contains the x-axis coordinates of
points in d degree radius and so on. The design of the y-axis matrix is similar. Both co-
ordinate matrices have size 360

d × l. These two coordinate matrices represent the location
correspondence between the pixel in the original image and the projected rectangle.

5. Calculate the projected values of the rectangle in panel (b), Figure 8.2 based on the coordi-
nate matrices. Specifically, the value of the pixel in the projected rectangle is the same as
its corresponding pixel in the original image, and the correspondence between two images
is defined in the previous step. For any pixel in the projected rectangle, the x-axis and
y-axis coordinates of its corresponding pixel in the original image (panel (a), Figure 8.2)
can be divided to integer part xint, yint and decimal part xdec, ydec. In other words, its coor-
dinate is (xint+xdec,yint+ydec) where 0≤ xdec ≤ 1 and 0≤ ydec ≤ 1. Therefore, The value
of any pixel in the projected rectangle can be calculated by the values of the vertices of a
square showing in Figure 8.4. The four vertices of the square have coordinates (xint,yint),
(xint +1,yint), (xint,yint +1), and (xint +1,yint +1) respectively. Let s1,s2,s3 and s4 be the
values of the four vertices respectively. The value for the pixel in the projected rectangle
sp can be calculated as follows:

sp =s1× (1− xdec)× (1− ydec)+ s2× xdec× (1− ydec)

+ s3× (1− xdec)× ydec + s4× xdec× ydec. (8.3)

In this way, the shaded orange region in panel (a), Figure 8.2 can be projected to a
rectangle. However, the endocardium and epicardium are not straight line in the rectangle
(see Figure 8.5). Two further steps need to be implemented to modify the curves of the
endocardium and epicardium to straight lines.

6. Find the interpolation points that are closest to the endocardium and epicardium. For each
line segment, there are 360/d points, and there will be one point that is closest to the
endocardium (if coincidentally two points have the same distance, pick the point closer to
the center of mass of the blood pool). Similarly, there will be one point that is closest to
the epicardium (if coincidentally two points have the same distance, pick the point further
to the center of mass of the blood pool). These two points are shown in Figure 8.6. The
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Figure 8.4: The four blue circles located at the vertices of the square denote four adjacent pixels
in the original image. The blue circle inside the square denotes the corresponding pixel in the
original image. The values in the brackets denote the coordinates of the pixels.

distance between two points is defined by two-dimensional Euclidean distance:

d(p,q) =
√
(px−qx)2 +(py−qy)2. (8.4)

Once the number of interpolation points l is big enough, the distances between the endo-
cardium or epicardium points and the interpolation points will be small enough. The value
of l will be tested in the subsequent section.

7. For each radius, use the two chosen points (point A and B in Figure 8.6) as the new start
and end points. Define a new interpolation number m, and use linear interpolation to re-
generate the row of the value matrix. In fact. it is the projection from Figure 8.5 to panel
(b), Figure 8.2. The newly generated matrix with size 360

d ×m represents the rectangle
with red and green sides in panel (b), Figure 8.2.

The processes shown above introduced the first step of the projection process, i.e. project the
myocardium to a rectangle. This method makes use of linear interpolation to transform a circle
(shaded orange region in panel (a), Figure 8.2) into a rectangle. Moreover, the myocardium
region in the circle is standardised to a rectangle (the region between red and green lines in
panel (b), Figure 8.2).

8.2.3 Step 2: the rectangle to annulus projection

The second step of the projection process is to project the rectangle to an annulus. This step has
been divided as follows:

1. Define the 0 degrees radius in the annulus. Define the radius of the larger circle to be R1

and the smaller circle to be R2. Define the center of mass of the annulus to be (x
′
0,y

′
0).

Specifically, in this study, x
′
0 = y

′
0 =

R1
2 . The superscript ′ denotes the coordinates in the

annulus. The
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Figure 8.5: The contours of endocardium and epicardium in the rectangle.

2. For each pixel i in the annulus, its location coordinate can be described by the polar
coordinate system. For example, the ith pixel is located at (x

′
i,y
′
i). The first dimension

of the polar coordinate system is the distance between this pixel and the centre of mass.
This distance can be calculated as:

d(0, i) =
√
(x′0− x′i)2 +(y′0− y′i)2. (8.5)

The second dimension of the polar coordinate system is the angle a(0, i) between the
0 degrees radius and the line segment that is linking the center of mass and the given
pixel. a(0, i) can be calculated from inverse trigonometric functions. If d(0, i) > R1 or
d(0, i) < R2, the value of pixel i is set as the background value. If R2 ≤ d(0, i) ≤ R1,
the value for pixel i under the polar coordinate system with coordinate (d(0, i),a(0, i)) in
the annulus is exactly the same as the value for pixel i

′′
under the Cartesian coordinate

system with coordinate (d(0, i),a(0, i)) in the rectangle. For both d(0, i) and a(0, i), their
values might not correspond to the specific pixels in the rectangle. However, they can be
calculated using the interpolation method described in Figure 8.4 and equation (8.3).

Now, the complete process for the myocardium projection has been introduced. Since the
type of the image is not restricted, theoretically, all types of the images, e.g. the original image,
the up-slope map, the MBF map, etc., can be applied by this approach once the three elements
(endocardium contour, epicardium contour and reference point) are given.
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Figure 8.6: The blue circles indicate the interpolation points in the line segment. The red circles
indicate the endocardium contour, and the green circles indicate the epicardium contour. Point
A is closest to the endocardium and point B is closest to the epicardium.

8.3 Application of myocardium projection to DCE-MRI

In this section, the myocardium projection approach has been applied to the original image and
three parametric maps, CER, up-slope, MBF and their corresponding GMM classification maps
(see details in Section 5.2.3). Moreover, since the purpose of the proposed projection method
is to compare longitudinal data, an additional DCE-MRI dataset obtained from the same patient
will also be used in this section.

Firstly, the values of the parameter l have been tested. Given different values of l, the
distances between the chosen points in the interpolation line segment and their closest contour
points are used to quantify the information lose. In other words, the shorter the distance between
point A and its closest endocardium point is, the less the information lose. This principle is the
same for point B and its closest epicardium point. Since the density of the endocardium and
epicardium points will also affect the distances, the numbers of endocardium and epicardium
points will be extra variables to quantify the distances. The distance between two adjacent
pixels in the image is 1, and when l = 30, the distance between two interpolation points is
around 1. Table 8.1 shows the average distances between the chosen points in the interpolation
line segment and their closest contour points given different values of l or different numbers
of endocardium and epicardium points. Therefore, even for the most crude case, l = 30, the
distance is rather small. Moreover, when l is larger than 360, the improvement is negligible.
However, when the number of interpolation points is too big, the computational complexity
will also be high especially when the models are also complex, e.g. the models illustrated in
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Table 8.1: The average distances between the chosen points and contour points
number of contour points: 199/271* number of contour points: 1990/2710**

l = 30 0.307 0.262
l = 36 0.257 0.213
l = 60 0.192 0.132
l = 90 0.158 0.086

l = 360 0.127 0.026
l = 900 0.124 0.016

* 199/271 means that the endocardium contains 199 points and the epicardium contains 271
points.
** 1990/2710 means that the endocardium contains 1990 points and the epicardium contains
2710 points.

(a) Origin (b) Rectangle (c) Annulus

Figure 8.7: Polar projection of the maximum enhancement image. Panels (a) - (c) show the
maximum enhancement image, its rectangle projection and its annulus projection respectively.
The red and green lines represent the endocardium and epicardium in different images respec-
tively. The blue lines in panels (a) and (c) indicate the line segment linked by the center of mass
and the reference point.

Chapters 6 and 7. Therefore, two suggested parameters setting are l = 90, d = 4 and m = 30;
l = 360, d = 1 and m = 120 for the reason that the projected rectangle is a square and the
rectangle of the myocardium occupies 1/3 of the square in area.

Figure 8.7 shows the maximum enhancement image and its corresponding rectangle and
annulus projections. The projection parameters are set to: d = 4, l = 90, m = 30, R1 = 90 and
R2 = 60. All pixels inside the red curve in panel (a), Figure 8.7 have been projected to the
rectangle in panel (b) and the annulus in panel (c) using the method illustrated in Section 8.2.
Firstly, all patterns shown in panel (a) can be observed in the same relative position in panel (c).
For example, the hypo-perfusion region (the low SI region which is dark in the image) is located
in the right bottom of the myocardium in the image in panel (a), and this can also be observed
in panel (c) in the same relative position.

A further application of the polar projection method is to project the parametric maps of the
myocardium to annuluses. Figures 8.8 and 8.9 show the comparisons for different parametric
maps between original and projected maps. The values of projection parameters introduced in
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(a) Original CER (b) Original Up-slope (c) Original MBF

(d) Projected PSI (e) Projected Up-slope (f) Projected MBF

Figure 8.8: Comparisons of different parametric maps between original and projected maps.
Panels (a) - (c) show the original parametric maps of the CER, up-slope and MBF respectively.
Panels (d) - (f) show the projected annulus for these three parameters. The blue lines indicate
the line segment linked by the center of mass and the reference point. The values of background
pixels are set to −1, which can avoid any potential conflicts since these parameters are all non-
negative.

Section 8.2 are set to: d = 4, l = 90, m = 30, R1 = 90 and R2 = 60.
The first advantage of the myocardium projection is that the quantification analysis will be

easier in a standard shape than in an irregular shape. Since three main blood vessels provide the
blood to the myocardium, 120◦ of the myocardium corresponds to one main vessel. Therefore,
it is more accurate to quantify the hypo-perfused region based on the angle than other elements,
e.g. the area. Specifically, the standard segmentation in [4] also makes use of the angle to
quantify the proportion of the hypo-perfused region. However, it is complex to use the angle
to quantify it in an irregular shape. On the other hand, it is easy to make use of the area to
quantify the hypo-perfused region, but the quantification is inaccurate. The reason is that the
myocardial wall in an irregular shape has different thicknesses in different positions. For ex-
ample, Figure 8.9, panel (c) shows the classification map using the GMM classification method
(see Section 5.2) based on the MBF maps. Suppose we use the proportion of hypo-perfused
area to estimate the proportion of the hypo-perfusion region. In that case, the result will be
underestimated because the myocardial wall in the hypo-perfusion region is thinner than the
myocardial wall in the normal-perfused region. However, for the projected GMM map in panel
(f), Figure 8.9, the proportion of the hypo-perfused area can accurately estimate the proportion
of the hypo-perfused region because the thickness of the myocardial wall has been standardised
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(a) Original CER (b) Original Up-slope (c) Original MBF

(d) Projected PSI (e) Projected Up-slope (f) Projected MBF

Figure 8.9: Comparisons of classification maps of different parameters between original and
projected maps. Panels (a) - (c) show the original classification maps of the CER, up-slope and
MBF respectively. Panels (d) - (f) show the projected annulus for these classification maps. The
blue lines indicate the line segment linked by the center of mass and the reference point. The
yellow segments indicate healthy tissues. The dark green segments indicate lesion tissues and
the black pixels indicate the background.

in different positions. Moreover, given the coordinates of any two points, the angle is much
easier to be obtained in a regular annulus than in an irregular shape.

The second advantage of the myocardium projection is that different DCE-MRI datasets
can be compared pixelwise, which can be further used in longitudinal time series analysis, re-
gression analysis and statistical predictions, and these statistical analyses will improve disease
diagnosis. Figure 8.10 show longitudinal comparisons of MBF classification maps from one
patient. According to panels (a) and (b) in Figure 8.10, only qualitative comparisons, e.g. the
hypo-perfused area (marked as dark green) is enlarged, can be applied. However, since the sizes
of the myocardium are different, the relative position of the newly added lesion area is diffi-
cult to quantify. Panels (c) and (d) in Figure 8.10 show the projected GMM classification maps
based on MBF values. Since the shape and size of the projected maps are always consistent,
quantitative analysis, e.g. the relative position of the newly added lesion area, can be easily
obtained.

It should be noticed that the longitudinal comparisons for MBF maps are not included in
this section. The reason is that the MBF estimations from different DCE-MRI datasets are not
calibrated. It is illustrated that the estimated values of the MBF in this study are systematically
overestimated (see Section 3.5) though the relative distribution is not affected. Therefore, we
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(a) Original GMM 1 (b) Original GMM 2 (c) Projected GMM 1 (d) Projected GMM 2

Figure 8.10: Longitudinal comparisons for MBF classification maps. Panels (a) and (b) show
the original classification maps for DCE-MRI datasets 1 and 2. Panels (c) and (d) show the
projected classification maps for DCE-MRI datasets 1 and 2.

only compare the classification maps longitudinally. To further compare the estimated MBF
maps, the calibration of the MBF values should be applied.

8.4 Discussion and conclusion

The proposed projection method aims to project any contoured myocardial map to a standard
annulus. It is emphasised that this method can not only be applied to myocardial perfusion im-
ages, but also be applied to any type of myocardial images such as LGE images. The projected
map is a visualisation of the AHA mapping. In clinical practice, is is easier for the clinicians
to find the specific segments of the myocardium, e.g. anterior, anteroseptal, inferoseptal, in-
ferior, inferolateral and anterolateral, and further to find the corresponding main branches of
the narrowed coronary artery. For example, given panel (f), Figure 8.9, the clinician can easily
conclude that the hypo-perfusion region of the specific heart is in inferior and its corresponding
narrowed coronary artery branch is RCA.

In the near future, the proposed projection method will be applied to longitudinal datasets. It
provides an easier comparison between different sets of data for the same patient. Theoretically,
given the projected classification maps for different sets of the data, the trend of the changes
of the classification maps can be inferred, and therefore the trend of the hypo-perfusion region
of the patient’s heart can be inferred. In clinical practice, the clinician can therefore justify
the condition of the patient’s heart longitudinally, and make clinical decisions based on the
longitudinal classification maps.

In conclusion, the proposed projection approach provides an opportunity to apply pixelwise
longitudinal analysis. It also makes the justification based on the area and angle consistent.
Therefore the straightforward approach (the area based) can be used to replace the complex
approach (the angle based). However, there are also some limitations to this approach. The
application of linear interpolation generates some intermediate values. For example, the GMM
classification maps only contain two different values, i.e. 0 for lesion and 1 for healthy tissue (see
Figure 8.9, panel (a)). However, after applying the projection approach, some values between 0



CHAPTER 8. POLAR PROJECTION OF MYOCARDIAL PERFUSION DCE-MRI 163

and 1 are interpolated. Moreover, the application of linear interpolation loses information. For
example, the thickness of the myocardial wall will also provide some useful information, but this
information is removed during the standardization process. Although the primary information,
e.g. the spatial distributions of values, is preserved during the projection, the projection still
cannot fully preserve all information. Some information is lost because of the nature of the
interpolation. This problem can be alleviated by using large values of interpolation numbers l

(see Table 8.1).



Chapter 9

Future Work, Discussion and Conclusion

9.1 Future work

9.1.1 Longitudinal analysis

Most studies proposed in this thesis aim to apply analysis to a single frame or a series of dynamic
frames of the myocardial perfusion DCE-MRI data. However, the most valuable part of the
data used in this study is its longitudinal structure (see details in Chapter 3.3). Scaling up the
approaches in this thesis to capture longitudinal aspects of data could be the focus of future
work. The author has carried out some preparatory work specified in this section.

In Chapter 8, a polar projection method that can project any myocardium to an annulus
has been introduced. This is the first step for the pixelwise longitudinal analysis. The next
pre-process work is to calibrate different DCE-MRI datasets. Firstly, the non-linearity between
the SI and the contrast concentration should be reviewed. In Chapter 3.5, it is mentioned that
the high dose of contrast agent will cause the non-linearity between the SI and the contrast
concentration. Moreover, the blood pool SI will be saturated. The blood pool saturation can
be observed from Figure 9.1. There is a plateau of the SI from time point 11 to time point 17.
This phenomenon is called blood pool saturation, and it will cause a dramatic overestimation
of the MBF. If the analysis is proceeded based on a single DCE-MRI dataset, the relative MBF
estimates for different pixels will not be severely affected because the estimates are obtained
using the same blood pool SI. However, for different DCE-MRI datasets, the degrees of the
blood pool saturation will be different, and moreover, the underestimations of the MBF will be
different. Therefore, the MBF estimates for different DCE-MRI datasets cannot be compared
directly without calibrations.

There are many either simple or complex methods to calibrate the MBF estimates. The sim-
plest method standardises the MBF estimates to “reasonable” values. The word “reasonable”
means the value is physiologically normal. For example, the MBF for a healthy rest heart is
commonly around 1 mL/min/mL [85]. Therefore, the maximal MBF estimates can be stan-

164
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Figure 9.1: Blood pool SI.

dardised to 1 mL/min/mL for different DCE-MRI datasets. However, this method can only be
applied to the patient whose heart still has normal function parts. If a patient’s heart does not
have normal function parts, e.g. the maximal MBF for this heart is only 0.8 mL/min/mL, this
calibration method will cause systematical bias. There are also some complex methods to fix
the blood pool saturation issue. One method is to eliminate the plateau of the SI using up-slope
replacement. Specifically, the up-slope of the curve can reflect the growth speed of the SI be-
fore the SI reaches the saturated SI value, e.g. 60 in Figure 9.1. Therefore, a TIC without the
saturation plateau can be generated by replacing the up-slope in the saturated region (time point
14 - 20 in Figure 9.1) by the up-slope in increasing (time point 10 - 14 in Figure 9.1) and de-
creasing (time point 20 - 25 in Figure 9.1) regions. Figure 9.2 shows a diagram of the up-slope
replacement. A vital part of this method is the uncertainty of the generation. Specifically, the
up-slope values are within a range in the increasing and decreasing regions. Different choices of
the up-slope values will generate different results. The uncertainty of the up-slope replacement
will cause uncertainty in the MBF estimation and it is worth applying the sensitivity analysis of
the up-slope replacement.

Both the polar projection and blood pool SI calibration lead to the longitudinal analysis of the
myocardial perfusion DCE-MRI. The longitudinal analysis aims to predict the heart conditions
based on the longitudinal data. This analysis can be justified by two types of approaches, i.e.
classification and estimation.

The classification analysis aims to determine the area of the hypo-perfusion region for longi-
tudinal data. This can be incorporated by the results from the previous work. In Chapters 6 and
7, model-driven and data-driven methods are introduced to classify the pixels in the myocardium
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Figure 9.2: Generation of Blood pool TIC without saturation plateau. The blue line shows
the TIC of a pixel from myocardium. The orange line shows the TIC of blood pool that has
saturation plateau. The green line shows the TIC of blood pool without saturation plateau using
up-slope replacement.

into two different groups, i.e. healthy group and the lesion group. The classification results can
be used for the classification analysis. A straightforward method can be applied by comparing
the proportion of the lesion pixels between different serials of the same patient. For instance,
there are 30% pixels in the lesion group for patient A, dataset 1 (day 1), and 35% pixels in the
lesion group for patient A, dataset 2 (day 2). It is believed that the heart condition of patient A
is getting worse. This example is used to describe the classification analysis. This procedure
can be carried out by more complex, but more accurate methods. In [175], a support vector ma-
chine (SVM) method is applied to classify the brain MRI for Alzheimer patients to implement
the longitudinal analysis. Hierarchical classification is applied in [176] to process longitudinal
analysis of Alzheimer patients. For multiple sclerosis patients, a Bayesian classification method
is applied to the longitudinal data in [177].

The estimation analysis aims to quantify the degree of hypo-perfusion of the myocardium
using MBF estimates for longitudinal data. The methods illustrated in Chapters 4 and 6 can be
used to estimate the MBF firstly. Then, the MBF estimates of pixels from different serials can
be the input data of some time-series methods. The final target of the estimation analysis is to
predict the MBF values given the longitudinal data. Autoregressive–moving-average (ARMA)
model [178] is a general method to analyze time series data. A Gaussian process can also be
applied to proceed with the longitudinal time series analysis [179].

Generally speaking, an advantage of the classification analysis is that the blood pool SI
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Figure 9.3: A flow chart for the statistical emulation for PINNs.

calibration is not strictly necessary for it. The reason is that the classification map is based on
the relative MBF values, which are generated by the same saturated blood pool SI. In other
words, although the blood pool saturation will overestimate the MBF values, the degrees of the
overestimation are the same for all pixels. On the other hand, the classification analysis cannot
quantify the degree of hypo-perfusion. For example, for the same patient, if the proportions
of the lesion are the same for DCE-MRI dataset 1 and DCE-MRI dataset 2, the classification
analysis will justify that the patient is neither getting better nor getting worse. However, the
estimation analysis can detect the values of the MBF for different DCE-MRI datasets. If the
estimated MBF values are getting higher from dataset 1 to dataset 2, the estimation analysis will
justify that the patient is getting better. Moreover, the absolute values will help for longitudinal
comparisons because the relative values for different sets of data cannot be comparied directly.

9.1.2 Statistical emulation for PINNs using myocardial perfusion DCE-
MRI

In Chapter 4, a traditional MBF quantification method, the Fermi method, has been reviewed.
In recent years, deep learning methods have been introduced to quantify the MBF [180, 181].
Potential future work is to make use of the most recent method to quantify the key perfusion pa-
rameter, the MBF. Moreover, some mathematical models are applied to derive the MBF [182].
The combination of DCE-MRI and mathematical modelling may improve the diagnosis of a
wide range of cardiovascular pathologies. Specifically, a fast data-driven method for quantify-
ing key physiological parameters, e.g., MBF, using myocardial perfusion DCE-MRI combined
with mathematical modelling of the human cardiovascular system can be developed. Gener-
ally, the key physiological parameters are formed as partial differential equations (PDE) in both
mathematical models [182] and DCE-MRI tracer-kinetic models [183]. A data-driven method
named physics-informed neural networks (PINNs) [184] has been developed to solve PDEs,
and it has been applied to myocardial perfusion DCE-MRI [181, 185]. However, the training
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of data-driven methods are usually computationally complex, and time-consuming [181]. Sta-
tistical emulation for PINNs is a potential method to tackle the computationally complex and
time-consuming issue [186]. Therefore, the potential future work aims to develop statistical
emulation of PINNs that will realise the combination of mathematical modelling and DCE-MRI
tracer-kinetic modelling of key physiological parameters using myocardial perfusion DCE-MRI.
A flow chart shown in Figure 9.3 describes the process of this method.

9.2 Discussion and conclusion

The main target of the work in this thesis is to detect the hypo-perfusion region using classi-
fication methods from myocardial perfusion DCE-MRI data. Traditionally, qualitative, semi-
quantitative and quantitative methods are used to diagnose stenosis (which is shown as hypo-
perfusion in the myocardial perfusion DCE-MRI). The main contribution of the work in this
thesis is to design classification methods to the semi-quantitative and quantitative derived pa-
rameters to obtain the classification map of the myocardial tissues in the image. The most bene-
ficial aspect of the work is that it can clearly delineate the boundary between the healthy tissues
and the lesions without any need for operator input. Given an MBF map of the myocardium
image, different operators may delineate different boundaries of the healthy tissues and the le-
sions because manual image contouring is highly user-dependent. However, the classification
methods can distinguish different groups based on the mean value and the covariance matrix of
the input data. Moreover, customised prior information can be incorporated by introducing prior
distributions under the Bayesian statistical framework. Specifically, in this study, spatial and
temporal information is usually introduced for physiological reasons. The study in this thesis
also initiates the longitudinal analysis of the myocardial perfusion DCE-MRI. Specifically, the
classification maps of the longitudinal data can be used as the input of some longitudinal models.

Starting from the background information in Chapters 2 and 3, the statistical tools and basic
concepts of the heart physiology and myocardial perfusion DCE-MRI have been reviewed. In
Chapter 4, semi-quantitative and quantitative analysis of the myocardial perfusion parameters,
e.g. the up-slope, the MBF, are first applied. These parameters are used to reflect the degree
of ischaemia. Moreover, once the estimates of these parameters are obtained, they can also be
employed as the input of the classification models. In the same chapter, the regressions of TIC
using different methods are also introduced and compared. The smooth TIC generated by the
regression methods improves both semi-quantitative and quantitative estimation of parameters.
In Chapter 5, three classification methods, i.e. GMM, SVFMM and GMM-MRF, are applied to
either original images or parametric maps generated in Chapter 4. The GMM method is a general
application of a Gaussian mixture model. There are unrealistic single and small clusters shown
in the classification maps. To fix this issue, the SVFMM has been applied to introduce spatial
information. However, because the spatial information is introduced by an indirect way, not all
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single and small clusters can be removed. The GMM-MRF method, on the other hand, makes
use of the Markov random field prior to introduce the spatial (or spatio-temporal) information
directly to the label of the pixel, and it is tested to remove all unrealistic single and small clusters.
By comparing all three methods, the GMM-MRF method performs the best (removing all single
and small clusters). The limitation of the classification methods is that it is highly dependent
on the quantified parametric maps generated in Chapter 4. The classification methods may fail
(when the SNR is lower than 3) if the parametric maps are too noisy or incorrect. The core
issue is that the estimation phase in Chapter 4 and the classification phase in Chapter 5 are
causal related. Specifically, the classification maps are dependent on the parametric maps, but
the parametric maps are independent of the classification map. However, they should interact
with each other. To this end, in Chapters 6 and 7, hierarchical Bayesian models are used to
combine the estimation phase and the classification phase.

In Chapter 6, a hierarchical Bayesian model with a Markov random field prior has been intro-
duced. The Fermi-deconvolution method has been incorporated in the hierarchical model to esti-
mate the MBF. Overall, this method aims to estimate the MBF while classifying the MBF. Since
the Fermi parameters and the label parameter are connected by directed links, their posterior dis-
tributions interact with each other. Moreover, an MCMC sampling method has been applied to
draw parameters from their corresponding target posterior distributions. Model selections based
on WAIC values are carried out to compare different hyperparameters. The comparisons of the
proposed method and the GMM classification method have been implemented based on both
clinical and synthetic data, and the proposed hierarchical Bayesian model is tested to outper-
form the benchmark GMM method. The main limitation of the hierarchical Bayesian model is
that it is computationally expensive. Further modification can be focused on the parallelisation
of the MCMC samplings.

In Chapter 7, a hierarchical Bayesian model with spatio-temporal Markov random field pri-
ors has been introduced. Different from the method illustrated in Chapter 6, the proposed method
in this chapter is an entirely data-driven method. Expressly, the method illustrated in Chapter 6
is incorporated with the Fermi model that is used to estimate the MBF. However, the proposed
method in this chapter only makes use of the original data to generate the classification map.
Moreover, spatio-temporal Markov random field priors have been applied to generate denoised
images. An MCMC sampling method is used to draw samples of label parameters and true
SI from their posterior distributions. Model selections have been applied to compare different
hyperparameters using the WAIC values. Two benchmark methods, i.e. GMM classification
method, closing and opening operation, have been used to compare with the proposed hierar-
chical Bayesian model using both clinical and synthetic data. The clinical and synthetic data
results indicate that the proposed hierarchical Bayesian model has the best performance with the
least classification errors. The comparisons of all proposed methods are applied. In general, the
methods with higher accuracy are computationally slow, and the methods with lower accuracy
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are computationally faster. Therefore, different methods can be chosen based on the aims of the
analysis.

In Chapter 8, a polar projection method has been introduced to project any myocardium to
an annulus. This method aims to provide a way to implement pixelwise comparisons between
different myocardium images. Specifically, given the myocardium images from different DCE-
MRI datasets, the shapes and sizes of the myocardium for different serials are different, and
therefore pixelwise analysis cannot be applied without first perfoming non-rigid transformation.
The polar projection method can project different myocardium images to annuluses with the
same shape and size. The work in this chapter is the preparatory work of the longitudinal analysis
that is the most critical future work stemming from this thesis.



Appendix A

Derivation of the equation

A.1 The derivation of equation 2.55

According to equation 2.54, we have

lnP(X ,Z|θ) = lnP(Z|X ,θ)+ lnP(X |θ). (A.1)

We move the term lnP(Z|X ,θ) to the left hand side of the equation, and we have

lnP(X |θ) = lnP(X ,Z|θ)− lnP(Z|X ,θ). (A.2)

Since q(Z) is a density function, we have

∑
Z

q(Z) = 1. (A.3)

We can multiply by q(Z) and then sum over Z to both sides of equation A.2, and we have

lnP(X |θ) = ∑
Z

q(Z) lnP(X ,Z|θ)−∑
Z

q(Z) lnP(Z|X ,θ). (A.4)

Then we add and subtract ∑Z q(Z) lnq(Z) to the right hand side of equation A.4, it turns to be

lnP(X |θ) = ∑
Z

q(Z) lnP(X ,Z|θ)−∑
Z

q(Z) lnq(Z)−

(
∑
Z

q(Z) lnP(Z|X ,θ)−∑
Z

q(Z) lnq(Z)

)
. (A.5)

Finally, we have got

lnP(X |θ) = ∑
Z

q(Z) ln
{

P(X ,Z|θ)
q(Z)

}
−∑

Z
q(Z) ln

{
P(Z|X ,θ)

q(Z)

}
. (A.6)
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A.2 The derivation of equation 4.11

According to equation 4.9, we have

Cmyo(t) = Fb

∫ t

0
[Cin(s)−Cout(s)]ds. (A.7)

After substituting equation 4.10 into equation A.7, we have

Cmyo(t) = Fb

∫ t

0
[Cin(s)−Cin(s)∗h(t)]ds (A.8)

Cmyo(t) = Fb

∫ t

0
Cin(s)∗ [δ (s)−h(s)]ds (A.9)

Cmyo(t) = Fb

(
Cin(t)∗

[∫ t

0
δ (s)ds−

∫ t

0
h(s)ds

])
(A.10)

Cmyo(t) = Fb

(
Cin(t)∗

[
1−

∫ t

0
h(s)ds

])
. (A.11)

We define the impulse response function R f (t) as:

R f (t) = Fb

[
1−

∫ t

0
h(s)ds

]
. (A.12)

Therefore, equation 4.9 becomes

Cmyo(t) = R f (t)∗Cin(t) (A.13)

The derivation from equation A.8 to equation A.9 is based on

f (s)∗δ (s) = f (s), (A.14)

and the derivation from equation A.9 to equation A.10 is based on∫ t

0
f (s)∗g(s)ds = f (t)∗G(t). (A.15)

where G is the primitive function of g.
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A.3 The derivation of equation 5.8

By substituting equations 5.5 and 5.7 into equation 5.8, equation 5.8 becomes:

P(xxx) = ∑
kkk

K

∏
j=1

π
k j
j

K

∏
j=1

N(xxx|µµµ j,ΣΣΣ j)
k j (A.16)

= ∑
kkk

K

∏
j=1

(
π jN

(
xxx|µµµ j,ΣΣΣ j

))k j
(A.17)

Since kkk have a 1-of-K representation, given the value j, k j = 1 and kp̸= j = 0.

P(xxx) = ∑
kkk

(
π1N(xxx|µµµ1,ΣΣΣ1)

k1 · ... ·πKN(xxx|µµµK,ΣΣΣK)
kK
)

(A.18)

= (π1N(xxx|µµµ1,ΣΣΣ1) ·1 · ... ·1)+ ...+(1 · ... ·1 ·πKN(xxx|µµµK,ΣΣΣK)) (A.19)

=
K

∑
j=1

π jN(xxx|µµµ j,ΣΣΣ j) (A.20)

which is exactly the same as equation 5.1.

A.4 The derivation of equation 5.18

Set the derivatives of the quantity in equation 5.17 with respect π j to be 0. The equation turns to
be:

0 =
N

∑
n=1

N(xxxn|µµµ j,Σ j)

∑p πpN(xxxn|µµµ p,Σp)
+λ . (A.21)

Since ∑
K
j=1 π j = 1, both sides of equation A.21 multiply π j and sum over j would not change

the equation:

0 =
K

∑
j=1

N

∑
n=1

π jN(xxxn|µµµ j,Σ j)

∑p πpN(xxxn|µµµ p,Σp)
+

K

∑
j=1

π jλ (A.22)

0 = N +λ (A.23)

λ =−N (A.24)

Substitute λ =−N into equation A.21 and multiply π j on both sides:

0 =
N

∑
n=1

π jN(xxxn|µµµ j,Σ j)

∑p πpN(xxxn|µµµ p,Σp)
−Nπ j (A.25)

π j =
N j

N
(A.26)



Appendix B

Alternative solutions

B.1 Alternative Gamma priors for Fermi parameters

In Section 6.2.3, log-Gaussian priors are used for the logarithm of parameters ΘΘΘi. There is an
alternative selection. We can use Gamma distributions as their prior distributions. To be specific,
for the term P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i), we have:

P(ΘΘΘi|ΘΘΘ−i,ΓΓΓ,ki,k−i) ∝Γ(Ai|αA,ki,βA,ki)Γ(ωi|αω,ki,βω,ki)

Γ(λi|αλ ,ki,βλ ,ki)P(ΘΘΘi|ΘΘΘ−i,ki,k−i). (B.1)

Now, we derive the conditional posterior distributions for the hyperparameters ΓΓΓ =

{αA,ki,βA,ki,αω,ki,βω,ki,αλ ,ki,βλ ,ki}. P(ΓΓΓ|α∗∗,β ∗∗) is the prior distribution for hyperparame-
ters ΓΓΓ where we let (α∗∗ = 0.01,β ∗∗ = 0.01). In this way, P(αA,ki,βA,ki|α∗∗,β ∗∗) is:

P(αA,ki,βA,ki|α∗∗,β ∗∗) = Γ(αA,ki|α∗∗,β ∗∗)Γ(βA,ki|α∗∗,β ∗∗). (B.2)

The prior distributions for other hyperparameters can be set similarly. P(ΓΓΓ|α∗∗,β ∗∗) is the
product of all of them because all these hyperparameters are independent. The conditional
distribution of αA,ki,βA,ki is given by

P(αA,ki=ψ ,βA,ki=ψ |{Ai,A−i}i|ki=ψ ,k
i = ψ,α∗∗,β ∗∗)

= P
(

αA,ki=ψ ,βA,ki=ψ |α∗∗,β ∗∗
)

∏
i|ki=ψ

Γ

(
Ai|αA,ki=ψ ,βA,ki=ψ

)
(B.3)

where ψ ∈ {0,1} is the binary lesion indicator, and P(αA,ki=ψ ,βA,ki=ψ |α∗∗,β ∗∗) can be found in
equation (B.2). The conditional posterior distributions for {αω,ki=ψ ,βω,ki=ψ ,αλ ,ki=ψ ,βλ ,ki=ψ}
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(a) log-Gaussian prior (b) Gamma prior

Figure B.1: MBF Comparisons between different priors. These figures show the estimations of
the MBF (rescaled within [0,1]) between different prior distributions for Fermi parameters. The
greyscale denotes the value of MBF. The pixels inside and outside of the ring (myocardium) are
background. Panel (a) shows the estimations using log-Gaussian priors based HBM. Panel (b)
shows the estimations using Gamma priors based HBM.

can be derived similarly. For βA,ki=ψ , its conditional posterior distribution is:

P(βA,ki=ψ |{Ai}i|ki=ψ ,αA,ki=ψ ,α
∗∗,β ∗∗,ki = ψ) (B.4)

= Γ

(
α
∗∗+ ∑

i|ki=ψ

αA,ki=ψ ,β
∗∗+ ∑

i|ki=ψ

Ai

)
.

For αA,ki=ψ , the samples from its conjugate prior cannot be sampled directly. In this way, a
Gamma prior is used for it and Metropolis-Hastings algorithm will be used in the sampling
scheme.

Figures (B.1) and (B.2) show the comparisons using the Gamma prior and Gaussian prior
given Tki = 0.1 and TFermi = 1. The difference in the results obtained with a log-Gaussian versus
a Gamma prior was found to be minor, which suggests that the choice of functional family for
the prior distributions on the Fermi parameters ΘΘΘi is not critical, as long as the distributions are
consistent with the positivity constraint of the Fermi parameters, i.e. have positive support.
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(a) log-Gaussian prior (b) Gamma prior

Figure B.2: Classification comparisons between different priors. The figure shows the pixel-
wise myocardial tissue classification between different prior distributions for Fermi parameters.
The yellow region indicates healthy tissues and dark green region indicates lesions. The blue
colour marks the background of the myocardial ring. The class assignments are based on the
estimated posterior class probabilities, as explained in the main text. Panel (a) shows the classi-
fication using log-Gaussian priors based HBM. Panel (b) shows the classification using Gamma
priors based HBM.



Appendix C

Extra results

C.1 Extra results for Fermi based HBM

In this section, we show the comparisons of our Fermi based HBM method and alternative mod-
els based on 3 sets of DCE-MRI myocardial perfusion data. According to the model selection
result in the main page, the values of hyperparameters are chosen to be Tki = 0.1 and TFermi = 1.
Figures (C.1), (C.2) and (C.3) show the comparisons of the MBF estimations between the Fermi
model and the HBM method proposed in this work. The performances of the comparisons are
consistent with the results in Chapter 6. Figures (C.4), (C.5) and (C.6) show the comparisons
of the classifications bewtween the GMM based on Fermi and the HBM method proposed in
Chapter 6. The performances of the comparisons are consistent with the results in Chapter 6.
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(a) Fermi model (b) proposed HBM

Figure C.1: MBF estimations for DCE-MRI dataset 25. These figures show the estimations of
the MBF (rescaled within [0,1]). The greyscale denotes the value of MBF. The pixels inside and
outside of the ring (myocardium) are background. Panel (a) shows the Fermi model fitted by
least-squares. Panel (b) shows the MBF estimations using the HBM illustrated in this thesis.

(a) Fermi model (b) proposed HBM

Figure C.2: MBF estimations for DCE-MRI dataset 26. These figures show the estimations of
the MBF (rescaled within [0,1]). The greyscale denotes the value of MBF. The pixels inside and
outside of the ring (myocardium) are background. Panel (a) shows the Fermi model fitted by
least-squares. Panel (b) shows the MBF estimations using the HBM illustrated in this thesis.
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(a) Fermi model (b) proposed HBM

Figure C.3: MBF estimations for DCE-MRI dataset 27. These figures show the estimations of
the MBF (rescaled within [0,1]). The greyscale denotes the value of MBF. The pixels inside and
outside of the ring (myocardium) are background. Panel (a) shows the Fermi model fitted by
least-squares. Panel (b) shows the MBF estimations using the HBM illustrated in this thesis.

(a) GMM based on Fermi model (b) proposed HBM

Figure C.4: The classifications for DCE-MRI dataset 25. The figure shows the pixel-wise my-
ocardial tissue classification into the three classes lesion (dark green), healthy (yellow) and un-
certain (light green). The blue colour marks the background of the myocardial ring. The class
assignments are based on the estimated posterior class probabilities, as explained in the main
text. Panel (a) shows the classification based on Fermi estimated MBF using Gaussian Mixture
Model. Panel (b) shows the classification result based on the HBM illustrated in this work.
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(a) GMM based on Fermi model (b) proposed HBM

Figure C.5: The classifications for DCE-MRI dataset 26. The figure shows the pixel-wise my-
ocardial tissue classification into the three classes lesion (dark green), healthy (yellow) and un-
certain (light green). The blue colour marks the background of the myocardial ring. The class
assignments are based on the estimated posterior class probabilities, as explained in the main
text. Panel (a) shows the classification based on Fermi estimated MBF using Gaussian Mixture
Model. Panel (b) shows the classification result based on the HBM illustrated in this work.

(a) GMM based on Fermi model (b) proposed HBM

Figure C.6: The classifications for DCE-MRI dataset 27. The figure shows the pixel-wise my-
ocardial tissue classification into the three classes lesion (dark green), healthy (yellow) and un-
certain (light green). The blue colour marks the background of the myocardial ring. The class
assignments are based on the estimated posterior class probabilities, as explained in the main
text. Panel (a) shows the classification based on Fermi estimated MBF using Gaussian Mixture
Model. Panel (b) shows the classification result based on the HBM illustrated in this work.
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Extra tables

Table D.1: Commonly used kernel functions reviewed in Chapter 4, [2]

.

kernel function expression
Constant σ2

0
Linear ∑

D
d=1 σ2

d xdx
′
d

polynomial (xxx · xxx′+σ2
0 )

p

squared exponential exp(− r2

2l2 )

Matern 1
2ν−1Γ(ν)

(√
2ν

l r
)ν

Kν

(√
2ν

l r
)

exponential exp(− r
l )

γ-exponential exp
(
−
( r

l

)γ
)

rational quadratic (1+ r2

2αl2 )
−α

neural network sin−1( 2x̃⊺Σx̃
′

√
(1+2x̃⊺Σx̃)(1+2x̃′⊺Σx̃′)

)

The r in the table denotes |x− x
′|. All other symbols

represent hyperparameters of the kernel function.
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Table D.2: Likelihoods that has common probability distributions and their conjugate prior distributions [3]
likelihood model parameters conjugate prior prior hyperparameters posterior hyperparameters
Binomial p Beta α ,β α +∑

n
i=1 xi, β +∑

n
i=1 Ni−∑

n
i=1 xi

Normal (σ2 known) µ Normal µ0, σ2
0

1
1

σ2
0
+ n

σ2

(
µ0
σ2

0
+ ∑

n
i=1 xi
σ2

)
,
(

1
σ2

0
+ n

σ2

)−1

Normal (µ known) σ2 Inverse Gamma α , β α + n
2 , β + ∑

n
i=1(xi−µ)2

2
Exponential λ Gamma α , β α +n, β +∑

n
i=1 xi

Gamma (α known) β Gamma α0, β0 α0 +nα , β0 +∑
n
i=1 xi

Gamma (β known) α ∝
aα−1β αc

Γ(α)b a, b, c a+∏
n
i=1 xi, b+n, c+n
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