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Abstract

There is an exponential growth in the energy consumption of cellular networks due

to the surge in data traffic, explosion of handheld and Internet-of-Things (IoT) de-

vices, development of data-hungry mobile applications, increasing support for new

and emerging use cases, the introduction of ultra-dense networks, and aerial base

stations (BSs). This will create the challenge of increased energy consumption

for next-generation cellular networks that is bound to escalate, if not properly

managed. This thesis seeks to address this challenge and make future cellular

networks more energy- and cost-efficient, and environmentally sustainable. To

achieve this, analytical methods, conventional approaches, and machine learning

solutions are utilized to develop novel optimization frameworks that can mini-

mize the energy consumption in heterogeneous cellular networks (HetNets) while

satisfying quality of service (QoS) constraints.

First, energy optimization in ultra-dense heterogeneous networks (UDHNs)

through cell switching and traffic offloading is studied. Though dynamic cell

switching is a common technique for reducing energy consumption in UDHNs,

most current methods are computationally demanding, making them unsuitable

for practical applications in UDHNs with a large number of BSs. As a result,

scalable and computationally efficient cell switching and traffic offloading frame-

works using Q-learning, a reinforcement learning algorithm, and artificial neural

networks (ANN), a supervised learning algorithm, is initially developed. How-

ever, these solutions are effective only in small- to medium-sized networks. Sub-

sequently, a lightweight cell switching scheme called Threshold-based Hybrid cEll

SwItching Scheme (THESIS), which combines the benefits of multi-level cluster-

ing (MLC) and exhaustive search (ES) algorithms is proposed. In addition, the

two components of the THESIS algorithm, k-means and ES, are used for bench-

marking. The performance evalaution reveals that THESIS algorithm is able to

find a good trade-off between optimal energy saving performance and computa-

tional complexity. Hence, it is suitable for cell switching purposes in real networks

with large dimension.

Second, the cell switching solution is extended to include spectrum leasing.
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Spectrum leasing involves leasing out unused spectrum for a fee (in this case,

those originally occupied by switched off BSs). A solution to enable mobile net-

work operators (MNOs) gain additional revenue from leasing dormant spectrum,

in addition to reducing energy consumption (electricity bills) via cell switching, is

proposed. In this direction, a network scenario comprising primary network (PN)

operators, who hold the spectrum license, and secondary network (SN) opera-

tors, who need to lease the spectrum is considered. Moreover, both non-delay-

tolerant (NDT), and delay-tolerant (DT) spectrum demand scenarios are also

considered. A cell switching and spectrum leasing framework based on the simu-

lated annealing (SA) algorithm is developed to maximize the revenue of the PN

while satisfying the QoS constraints. The simulation results reveal that the DT

spectrum demand is more beneficial to both PN and SN operators as it results in

19% increase in the revenue generated by the PN, while leading to a 21% surge

in the amount of spectrum that can be accessed by the SN.

Third, energy consumption has been identified as one of the major factors lim-

iting the adoption of unmanned ariel vehicles (UAVs) in cellular networks (e.g., for

providing additional offloading capacity during cell switching, and spectrum leas-

ing operations), hence, the quest for green UAV-based cellular communications.

To this end, a comprehensive survey on energy optimization techniques in UAV-

based cellular networks is conducted, which revealed that it is energy-inefficient

to continuously make UAV-BSs hover or fly to provide wireless coverage. Thus,

an alternative deployment scheme where UAV-BSs land on designated locations,

known as landing stations (LSs), is considered, and the appropriate separation dis-

tances (∆) between LSs and the optimal hovering position (OHP) are evaluated.

Mathematical frameworks using stochastic geometry are developed to model the

relationship between power consumption, coverage probability, throughput, and

∆. Numerical results reveal about 95% reduction in energy consumption, which

results in more than 20 times increase in the service time of UAV-BS when the LSs

are exploited compared to OHP. However, this energy reduction is obtained at

the expense of some degradation in coverage probability and throughput, which

can be compensated for by increasing the transmit power of the UAV-BS as ∆

increases. This leads to a slight increase in the energy consumption of UAV at

LS which is significantly lesser than that of the UAV at OHP.

In summary, this thesis presents scalable and computationally efficient energy

and revenue optimization frameworks for terrestrial and aerial cellular networks

that can be applied to large-scale networks, which are typical in next generation of

cellular networks. The proposed solutions would lead to a reduction in operating

cost, increased profitability, and the achievement of net-zero emission target.
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Chapter 1

Introduction

1.1 Research Overview

Cellular networks have been undergoing series of evolution from first genera-

tion (1G) to the present fifth generation (5G) networks. This is due to constant

increase in the number and type of connected devices, mobile subscribers as well

as the development of data-hungry applications, such as real-time video stream-

ing, online gaming, social networking, etc. [1]. As a result, there is a continuous

surge in data traffic. Moreover, with the inclusion and support for technologies

such Internet-of-Things (IoT) and machine-type communication, there is going

to be a significant escalation in traffic demands [2]. In addition, the need to

support new and emerging uses cases in industrial verticals, such as virtual and

augmented reality (VAR), vehicular communications, smart cities, etc. [3], it is

expected that further explosion in the traffic demands on cellular networks will

be witnessed. Accommodating this surge in data traffic and massive connectiv-

ity of devices is beyond the capacity of legacy fourth generation (4G) networks,

hence the evolution in cellular communications to the current 5G networks [4].

There are also ongoing research works towards the development of sixth genera-

tion (6G) networks as 5G may not be able to meet the stringent requirements of

some of the services that would be supported by cellular networks, including tac-

tile internet, remote surgery, industrial automation, self-driving cars, etc. These

requirements include ultra high data rates in terabits per second, latency in the

order of hundreds of microseconds, massive connections of billions of devices per

square kilometer, etc. [5–7].

Three major services have been proposed in 5G networks including enhanced

mobile broadband (eMBB), ultra-reliable and low-latency communications

(uRLLC) and massive machine type communications (mMTC) [1]. Of these three

services, the eMBB has been saddled with the responsibility of handling capacity

1
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enhancement and high data rate requirements of the network. To achieve en-

hanced capacity for eMBB, three techniques have been employed in 5G networks.

These techniques include: i) spectrum extension by exploiting the millimeter

wave (mm-wave) frequency band; ii) spectral efficiency using multiple-input-and-

multiple-output (MIMO) antennas and cognitive radio; and iii) network densi-

fication through the deployment of a large number of base stations (BSs) [8, 9].

Network densification, which involves the massive deployment of small base sta-

tions (SBSs) alongside few macro base stations (MBSs) based on frequency reuse,

is the most common and effective approach for capacity enhancement. Moreover,

spectrum extension using mm-wave frequency depends on network densification to

achieve its full potential, as the transmission range at high frequencies is greatly

attenuated, thereby resulting in a small coverage footprint, while spectral ef-

ficiency techniques are limited by the amount of spectrum available [1, 10, 11].

Network densification has the advantage of bringing the BSs closer to the users

thereby reducing the transmit power of user devices. It can also lead to a better

channel condition and a higher data rate transmission [12]. However, if not prop-

erly managed, the dense deployment of BSs would result in increasing the overall

energy consumption of the network [13]. Hence, since 5G networks are designed

to meet a thousand-fold capacity increase, a thousand-fold increase in energy ef-

ficiency (EE) needs to be achieved in order to match its energy consumption with

that of legacy networks [14].

The increase in energy consumption of cellular networks results in more green-

house gas emission and operating expenditure (OPEX) for mobile network op-

erators (MNOs). The information and communication technology (ICT) sector

contributes about 2% to the global CO2 emission worldwide with the cellular

networks contributing about 15% - 20% of this percentage. This value is ex-

pected to further increase with the escalation in data traffic demands [14, 15].

In addition, the energy bills of MNOs account for about 30% of their OPEX in

developed countries and up to 50% in developing countries [15,16]. Hence, reduc-

ing the energy consumption of cellular networks would result not only in reduced

CO2 emission but also less OPEX [17, 18]. The radio access network (RAN),

which is mainly made up of BSs, has been identified as the main source of energy

consumption in cellular networks with the BSs contributing about 80% [14, 17].

In addition, it has also been discovered that the BS still consumes about 50%-

60% of its full load energy consumption even when in idle state (i.e., zero traffic

load) [15]. Therefore, a paradigm shift in BS operation is needed to achieve a

significant reduction in the energy consumption of cellular networks.

From EE perspective, the traditional approach of keeping the BSs always on is
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not suitable for ultra-dense networks (UDNs) as many BSs would remain dormant

when not serving any user requests. Detailed studies [19–21] on cellular data

traffic pattern show that traffic demands exhibit spatial and temporal variation

across BSs at different times of the day due to user mobility and traffic usage

pattern. This makes the traffic load at various locations of the network vary from

no-load to full-load, thereby resulting in energy wastage during period of no or

low traffic demand [14,17].

Therefore, adapting network operation to variation in traffic load such that

BSs are only active when needed, rather than been always active, will result in

considerable energy savings. This can be achieved by cell switching where the BSs

with low or no traffic are switched off in other to conserve energy. Cell switching

operation is a cost-effective way of saving energy in cellular networks because it is

easy to implement and involves minimal infrastructural changes in networks [18].

The goal of cell switching operation is to ensure that the total energy consumed

by the network is proportional to the traffic demand. Moreover, the quality of

service (QoS), such as the throughput of users, must also be guaranteed through

various techniques, such as traffic offloading, user association, etc. Hence, a trade-

off between energy consumption and QoS requirements is often the main focus of

most energy optimisation objectives [22].

Even though from the EE perspective, cell switching is a very effective method

because it leads to energy conservation, however, from the spectral efficiency

perspective, it is ineffective as it results in spectrum under-utilisation. This is

because the spectrum that was originally occupied by the BSs that were turned off

during cell switching operation remain dormant during the periods of inactivity.

This dormant spectrum can be leased by major network operators who hold

the spectrum license to smaller network operators who require small amount

of spectrum and cannot afford to purchase the spectrum license for their data

transmission. This would not only lead to enhanced spectrum utilisation but also

generate additional revenue for the major network operators thereby enhancing

their profitability. Hence, cell switching can be combined with spectrum leasing

to provide enhanced benefit to MNOs in terms of reduced energy bills, additional

revenue generation, and environmental sustainability.

Another area where energy optimisation is greatly needed is unmanned aerial

vehicles (UAVs)-assisted wireless communication networks where BSs are mounted

on UAVs (also known as UAV-BSs) to provide connectivity. UAV-BSs are be-

ing envisioned as one of the technologies in 6G that enable ubiquitous three

Dimensional (3D) network coverage combined with terrestrial BSs due to their

flexibility, adaptability and ease of deployment. For this to be achieved, there
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is a need to carefully consider their energy consumption, as it poses a higher

challenge compared to that of terrestrial BSs [6, 7, 23]. This is to ensure that

their application in cellular networks does not further heighten the total energy

consumption of the network as the energy consumption due the mobility of the

UAV-BS is very significant compared to that of data transmission. Although var-

ious techniques have been devised to recharge the UAV-BS battery [24, 25], the

frequent movement of the UAV-BS to and from the charging stations might result

in service disruptions which could negatively impact the QoS of the network [26].

In addition, most of the energy optimisation techniques that have been devised

to reduce the energy consumption of the UAV-BS, including trajectory design,

optimal positioning, transmission scheduling, and power allocation, do not result

in significant reduction in energy consumption [24, 25]. Hence, there is a need

to develop more innovative energy-efficient deployment strategies that would re-

sult in more significant energy reduction in the UAV-BS, to enhance the battery

lifetime and maximise the service time of the UAV-BSs.

Moreover, the implementation of cell switching and spectrum leasing mech-

anisms as well as energy-efficient UAV deployment strategies in 5G and beyond

networks could be quite challenging. This is because the high density of BS de-

ployment and the dynamically changing environment increase the network com-

plexity, and the number of performance metrics that need to be considered in the

optimisation process. Hence, scalable and computationally efficient optimisation

frameworks comprising analytical, conventional and machine learning (ML) al-

gorithms need to be developed to handle the demands of these networks. This

would prevent service delays, minimise computational overhead, and other ser-

vice degradation, which could undermine the potentials of next generation cellular

networks.

1.2 Research Motivation

The constant expansion of cellular networks to accommodate the ever-increasing

service demands by the deployment of more BSs means that there would be more

demand for energy. The adoption of UAV-BSs in 6G networks for 3D ubiquitous

network coverage means higher energy consumption is also anticipated [27]. This

is accompanied by i) financial challenges in the form of increased OPEX, capital

expenditure (CAPEX) and reduced profit generations from increased energy bills;

ii) environmental challenges such as global warming and climate change and iii)

network challenges in the form of reduced QoS due to network congestion and

sudden network failures [14]. Hence, this research seeks to ensure i) business sus-
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tainability; ii) environmental sustainability; and iii) improved QoS during periods

of network congestion or sudden network failure. To achieve this, the motivations

of this research are discussed under the following headings.

1.2.1 Reduction in OPEX and CAPEX

For MNOs to continue providing network services to users, their business must be

profitable. The business can increase profit by serving more customers and reduc-

ing both CAPEX and OPEX. However, with the rising demand for data services

and enhanced QoS, the MNOs are constantly forced to improve their networks

services by upgrading existing software and hardware infrastructures, adopting

newer technologies, deploying more BSs, purchasing more spectrum bands, etc.,

which are very capital intensive. In addition, with the rising energy prices, and

energy consumption of cellular networks already accounting for up to 30% and

50% of OPEX in developed and developing or under-developed countries [15],

there is a need for more energy saving strategies to be developed in order to

reduce the OPEX. Furthermore, energy optimisation would help prolong the bat-

tery lifetime of UAV-BSs thereby enabling them to serve ground users for a longer

duration. This would lead to a reduction in the number of UAV-BSs that needs

to be deployed, thus resulting in reduced OPEX and CAPEX.

1.2.2 Environmental Sustainability

There is great a focus on environmental conservation from both the government

and cooperate organisation because of the adverse effects that greenhouse gas

emission is having on the environment, such as global warming and climate

change. The increase in greenhouse gas emission is because most of the energy

that is utilised in various sectors comprising the cellular communications industry

is generated from non-renewable energy sources, such as coal, gas, crude oil, etc.

The carbon footprint of the ICT industry is currently estimated to contribute

about 2%-5% to global CO2 emission [16], and is projected to reach about 14% in

2040 [28], with the cellular networks accounting for about 15% - 20% of the CO2

emission in the ICT industry [17]. The emission is anticipated to increase further

if appropriate measures are not taken. Hence, reducing the energy consumption

of cellular networks would result in lesser energy demands, which translates to

reduce carbon emission to the environment. This would enable MNOs to meet

the net zero1 emission targets. In addition, it would also lead to a reduction in

1This is the timeline agreed by the several nations at the climate change conference in
Glasgow, COP26 to decarbonise all the sectors of their economy by 2050.
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the carbon footprint of other sectors that are related to the cellular networks,

such as transportation, commerce, etc.

1.2.3 Revenue Maximisation

Apart from the fact that minimising energy consumption in cellular networks

results in lesser OPEX, it can also serve as a means of generating additional

revenue for MNOs. This additional revenue can be obtained by exploiting the

dormant or under-utilised spectrum that results from the cell switching operation,

via spectrum leasing. Spectrum leasing provides the mechanism whereby dormant

spectrum can be leased to third party network providers, such as IoT service

providers or small network operators for a fee [29], thereby enabling the MNOs

to generate monetary gains or additional profit. In addition, spectrum leasing

enables these small network operators who cannot afford to purchase the spectrum

license to access the spectral resources that they need for data transmission.

This is because the price of spectrum license could be as high as 37.8 million

according to the UK spectrum auction in 20182 which can only be afforded by a

few large MNOs. Hence, there is a need for cell switching to be accompanied by

spectrum leasing to enable small operators to access the little chunks of spectrum

for their data transmission which would result in enhanced spectrum utilisation,

and revenue generation for MNOs.

1.2.4 Improvement in QoS

Cellular networks are often prone to sudden surge in traffic demands due to events

involving large gathering of people, such as football matches, concerts, etc., which

makes the BSs in such area to be overburdened, thereby resulting in poor QoS in

the form of low data rate, call drops, etc. In addition, during periods of sudden

BS failure, users in that area would experience service denials or degradation in

their QoS as the surrounding BSs may not be able to cater for the demands of

users of the failed BS. These scenarios require quick deployment of additional

BSs to enhance the capacity of existing BS and also to take over the service of

the faulty BS. UAV-BSs are quite handy in such scenarios as they can be easily

deployed to provide back-up services required to enhance user throughput and

coverage. However, because UAV-BSs are battery powered and the amount of

energy that can be stored in their batteries is very limited, they can only oper-

ate for a short duration before their battery depletes [25, 30]. Therefore, energy

2https://www.ofcom.org.uk/data/assets/pdffile/0021/130737/Annexes-5-18-supporting-
information.pdf [accessed 27th January 2022].
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optimisation is needed in UAV-BSs to enable them provide cellular coverage for

longer periods, and thereby enhancing the QoS of ground users. Moreover, since

the UAV-BSs utilise more energy for hovering and flying compared to fixed BSs,

alternative energy-efficient deployment approaches need to be developed to sig-

nificantly reduce the energy consumption of UAV-BSs.

1.3 Research Objectives

The main objective of this research is to minimise the energy consumption of the

RAN of next generation cellular networks without violating the QoS (coverage

loss, throughput, and coverage probability) constraints. However, in the pursuit

of this primary objectives, the following research objectives are considered in this

thesis:

• Develop a scalable and computationally efficient cell switching and traffic

offloading framework, using both ML and meta-heuristic algorithms, for

energy optimisation in ultra-dense heterogeneous networks (UDHNs).

• Develop a revenue maximisation model to generate additional revenue for

MNOs, by taking advantage of the dormant spectrum resulting from the im-

plementation of cell switching operation in 5G heterogeneous networks (Het-

Nets), and leasing it to other smaller network operators. In addition to the

monetary savings that is obtained from the cell switching operation due to

reduced electricity bills.

• Investigate an alternative energy-efficient deployment technique for UAV-

BSs using the landing station (LS) concept, and develop mathematical

frameworks for determining suitable positions for the UAV LSs. This is

to ensure that additional offloading capacity can be provided by UAV-BSs

during cell switching, and spectrum leasing operations, in order to enhance

energy savings and revenue generation.

1.4 Research Contributions

The major contributions of this thesis are summarized and itemized below:

1. A lightweight cell switching scheme, also known as Threshold-based Hybrid

cEll swItching Scheme (THESIS), is proposed for energy optimisation in

UDHNs. The proposed method is computationally efficient and produces

results that are close to the optimal solution. It is scalable, that is, it can be
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applied to large scale networks where many SBSs are deployed without any

significant surge in the computational complexity. In addition, a benchmark

algorithm, known as multilevel clustering (MLC) purely based on k-means

algorithm, is developed for comparison with the proposed method.

2. A cell switching and spectrum leasing framework based on simulated an-

nealing (SA) algorithm is developed to determine the optimal policy that

maximises the revenue in 5G HetNets while respecting QoS constraints.

3. The feasibility of an alternative energy-efficient deployment scheme is exam-

ined where UAVs can be made to land on designated locations, also known

as LSs, is considered. Then, the impact of the separation distances be-

tween these LSs and the optimal hovering position (OHP) on the network

performance is evaluated. Specifically, mathematical frameworks are de-

veloped using stochastic geometry tools to model the relationship between

UAV power consumption, coverage probability, throughput, and separation

distance.

1.5 Thesis Organisation

The remaining part of this thesis is organised as follows:

In Chapter 2, the various types of BS deployments within the RAN are dis-

cussed, followed by the presentation of power consumption models for fixed BSs

and UAV-BSs. Then, an overview of the various energy optimisation algorithms

are briefly discussed. Finally, energy optimisation in fixed cellular networks, rev-

enue Maximisation in cellular networks, and energy optimisation in UAV-based

cellular networks were briefly discussed while highlighting the state-of-the-art,

and research gap analysis. Chapter 3 focuses on the development of a scalable

and computationally efficient cell switching algorithm to minimise the energy

consumption of a UDHN. In pursuit of this objective, two initial solutions are

developed using Q-learning and artificial neural networks (ANN), followed by a

hybrid cell switching framework comprising a combination of k-means clustering

algorithm and exhaustive search (ES) algorithm that is scalable and computa-

tionally efficient.

The main theme of Chapter 4 is on maximising the revenue of MNOs by ensur-

ing that the dormant spectrum resulting from cell switching operation are utilised

to generate additional revenue by leasing them to smaller network providers.

A system model comprising both primary network (PN) and secondary net-

work (SN) is considered. Then, a cell switching and spectrum leasing framework
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based on simulated annealing (SA) algorithm is developed to determine the max-

imum revenue that can be obtained by the PN. Afterwards, the results obtained

are presented and discussed. The need to develop an alternative energy-efficient

approach for UAV-BS deployment using the LS concept is first identified in Chap-

ter 5 with the aim of determining the optimal separation distance between the LS

and OHP that would not significantly degrade the QoS of the network. To achieve

this, the system model showing the UAV deployed in the OHP and a possible LS

position where the UAV can land to provide network service at a much-reduced

energy consumption is presented. Then, employing the tool of stochastic ge-

ometry, various mathematical expressions are derived to model the relationship

between the separation distance, power consumption, coverage probability, and

throughput of the UAV-BS. Finally, the derived models are evaluated numerically

and validated using Monte Carlo simulations. This thesis is concluded in Chapter

6 with a summary of the key contributions alongside recommendations for future

work.



Chapter 2

Literature Review

In this chapter, brief discussions on the various types of BS deployment within

the RAN is first presented. Then, the power consumption components and power

models for a BSs and UAV are presented. Afterwards, an overview of analytical,

conventional, and ML algorithms that are applied for energy optimisation in

cellular networks are presented with more detailed discussions on the specific

algorithms applied in this thesis. Finally, the major themes of this thesis including

energy optimisation in fixed cellular networks, revenue maximisation in cellular

networks, and energy optimisation in UAV-based cellular network are discussed

with a brief review of the state-of-the-art and research gap analysis in each area.

2.1 Types of Base Station Deployments

The RAN is the part of the cellular network that serves as an interface between

the various devices and the core network. Its core function is to provide radio

link between the mobile devices and the core network using BSs and backhaul

connections. The BS is the major component of the RAN. As previously stated

in Chapter 1, the RAN is the most energy consuming part of cellular networks,

contributing about 80% of the total energy consumption with the BSs accounting

for about 50% to 60% of the energy consumed in the RAN [15]. Therefore, since

the BS is the major contributor to the energy consumption of the RAN, most

of the energy optimisation techniques are mainly focused on reducing the energy

consumption of the BSs. As a result, the energy consumption of the BS is also the

main focus of this thesis. However, before going into discussions on the energy

consumption of the BS, the various kinds of BS deployments in the RAN are

considered.

There are various strategies for deploying BSs in the RAN which have evolved

from the homogeneous scenario, where only one type and a few number of BSs are

10
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deployed, through heterogeneous scenario to UDN scenario, where a large number

of different types of BS are deployed [9]. In addition, there is also a UAV-based

network deployment where the BSs are mounted on UAVs (also known as UAV-

BSs) to provide aerial network coverage and is one of the prospective technologies

for achieving 3D ubiquitous coverage in 6G networks [5,27]. A brief discussion on

each type of BS deployment in the RAN is presented in the following paragraphs.

Figure 2.1: A homogeneous network comprising only MBSs.

2.1.1 Homogeneous Networks

This type of cellular network deployment comprises only one type of BS, usually

MBSs, meaning that all BSs have similar characteristics, including transmission

power, coverage area, antenna radiation pattern, etc. They are normally deployed

in a uniform hexagonal grid within the network area. MBSs have a high trans-

mission power of between 5W and 40W and a very large transmission range of up

to 35 kilometers [31]. As a result, only a few of them are needed to provide cov-

erage in an urban or rural area. However, this deployment strategy has low area

spectral efficiency which leads to low data rate and is only suitable for voice calls

and low data rate services as was prevalent in 2G networks [32]. With the advent

of broadband services from 3G networks onward, and the increasing demand for

higher data rate and connection speed, improved capacity and coverage, as well as

for enhanced indoor coverage, it became clear that the homogeneous deployment

was no longer capable of meeting these requirements, hence the shift to heteroge-

neous networks [33]. Fig. 2.1 illustrates a homogeneous network comprising only

one type of BS, the MBS.
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2.1.2 Heterogeneous Networks

This type of network deployment comprises different types of BSs that are distin-

guished by their unique characteristics, including transmission power, range, size,

and varying applications in terms of outdoor or indoor usage. A heterogeneous

network (HetNet) comprising a few MBSs and different types of small BSs (SBSs)

is depicted in Fig. 2.2. The various types of BSs that make up a HetNet and their

various characteristics include [34–36]:

Figure 2.2: A heterogeneous network comprising MBS and small BSs including
remote RRH, micro, pico and femto BSs.

• Macro BS: This type of BSs have high transmit power ranging from 5W

to 40W, are very large in physical size and are usually deployed to provide

large coverage in urban or rural areas. The antennas of this type of BSs are

usually located on very high masts or on the roof top of very tall buildings.

They also help to provide umbrella coverage while the smaller BSs are

deployed to specific areas of the network such as hot spot zones or cell

edges for capacity enhancement.

• Remote radio head (RRH): This type of BS is deployed to achieve

coverage extension from a central BS, usually a MBS, to a remote location.

Fibre cables are used to establish connection between the RRH and MBS

in order to ensure proper coordination between both BSs. They are used
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for centralised network densification as opposed to the use of other types

of BSs such as pico and femto BSs that are used for distributed network

densification.

• Micro BS: These are medium range BSs that are deployed mainly at the

roof top. They usually have lesser transmission power compared to the

MBS typically in the range of 5W to 10W. They are deployed outdoors by

the network operators in a planned manner to provide coverage in hot spot

areas. They can be equipped with either omni-directional or directional

antennas. They can also be connected to the MBS to achieve inter-site

coordination.

• Pico BS: This type of BSs can be installed by mobile operators either

indoors or outdoors to provide coverage enhancement at hot spot areas by

offloading traffic from MBSs. The typical transmission power for pico BSs

is between 250mW and 2W for outdoors while that for indoor deployment is

100mW. The coverage range of pico BS is about 100m and they are usually

equipped with omni-directional antennas. They can also be connected to

MBS to achieve inter-site coordination.

• Femto BS: This type of BSs are deployed and installed by the users to

provide indoor coverage at homes, offices, etc., and also assist in offloading

traffic from MBSs. Their typical transmission power and range is about

100mW and 10m to 30m and they are also equipped with omni-directional

antennas. The can be connected to the network via any broadband connec-

tion available at the user premises such as coaxial cable or fibre. The can

also be interfaced with the MBS to ensure inter-site coordination.

2.1.3 Ultra-Dense Networks

Ultra-densification is a major theme of 5G and beyond networks because of the

explosive growth in traffic demands and the stringent QoS requirements resulting

from the diverse use cases employing cellular communications [1]. This would

enable the achievement of the high magnitude of capacity enhancement target in

5G and beyond networks. According to [37], UDNs have three main features: 1)

massive deployment of small BSs of equal or greater number than the number of

users in an area which would help improve spectral efficiency through enhanced

frequency reuse. These large number of small BSs are mostly deployed under

the MBS coverage to enhance network capacity and balance the network load via

traffic offloading from MBSs; 2) dense and multi-tier BS deployments that are
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interconnected to each other which might result in increased network complexity;

and 3) quick access and flexible handovers. The dense deployment and small BS

footprint would mean that the UE would have to switch connections regularly

from one BS to another for improved QoS. Hence, efficient handover mechanisms

must be put in place to ensure seamless connection during the handover. Despite

Figure 2.3: An ultra-dense network comprising a few MBSs and many
SBSs (RRH, micro, pico and femto BSs).

the numerous advantages of UDNs including capacity and coverage enhancement,

load balancing, and improved data rate and connection speed, there is also the

problem of increased energy consumption due to the increased deployment of

small BSs as well as energy wastage due to continuous operation of the BS even

when it is not serving any user request, which if not properly managed, would be

a major challenge in 5G and beyond networks [14]. An ultra-dense network that

is made up of a few MBSs and several SBSs is depicted in Fig. 2.3.

2.1.4 UAV-Based Networks

This is also known as aerial networks and comprises UAV-BSs. It is a very promis-

ing BS deployment approach for next generation cellular networks as it brings

a lot of flexibility, adaptability, and robustness to the wireless communication

networks. The UAV-BSs can be deployed: i) to provide emergency services dur-

ing partial or total network failure; ii) for coverage and capacity enhancement in
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already existing networks. In the following paragraphs, the main types of UAVs

and the two major categories of UAV-BS deployments for wireless communica-

tions are discussed.

Types of UAVs

UAVs, also known as drones, are of three main categories: i) fixed-wing; ii)

rotary-wing; and iii) hybrid UAVs [24].

i. Rotary-wing UAVs: They are designed to perform vertical take-offs and

landings. One of the main design features of rotary-wing UAVs is that they

can hover on a fixed and specified location, making them perfect candidates

to perform tasks like continuous cellular coverage and sensing [24]. However,

the power consumption of rotary-wing UAVs is higher, as they operate at

a low altitude with little mobility and their constant fight against gravity

results in more power consumption [24].

ii. Fixed-wing UAVs: These are another type of UAV that can glide through

the air and operate at higher altitude, making them more energy efficient

and capable of carrying heavier payloads [25]. However, fixed-wing UAVs

require a runway for landing and take-off and are more expensive than

rotary-wing UAVs [38].

iii. Hybrid UAVs: The limitations of both rotary- and fixed-wing UAVs led

to the emergence of this new type of UAV in terms of shape and aerody-

namics [39]. The fundamental design strategy behind the hybrid ones is

to combine the features of both rotary-, and fixed-wing UAVs for various

maneuvers and flights dynamics. These UAVs can perform vertical take-off

and landing (VTOL) in copter mode and shift to high-speed forward flight

in aeroplane mode [40].

Types of UAV-BSs Deployments

There is an ever-increasing application of UAVs in different aspects of wireless

communications. In each of these applications, wireless networks can comprise

standalone UAV-BSs, where only single or multiple UAV-BSs are deployed to

provide cellular coverage [41, 42], or UAV-assisted cellular networks, where both

UAV-BSs and fixed or terrestrial BSs are deployed together for enhanced network

coverage [43]. The two major types of UAV-BS deployments are illustrated in

Fig. 2.4, while brief discussions on each deployment type are presented in the

following paragraphs.
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Figure 2.4: Illustration of the two major types of UAV deployments: UAV
stand-alone deployment comprising single and multiple UAV networks, and UAV-
assisted cellular networks comprising both UAV-BSs and terrestrial BSs.

Standalone UAV-BS Deployments: Standalone UAV deployment involves

the deployment of single or multiple UAV-BS to provide network service in an

area without fixed cellular network coverage. Two major deployment scenarios

exists in this approach. The first scenario involves the deployment of a single

UAV-BS to provide a wireless network service in an area including harvesting

data from IoT networks, act as a relay to provide wireless service to users that

have been separated by large obstacles such as mountains and hills, etc. [44].

In the second scenario, multiple UAV-BSs are deployed in the form of a swarm

network to provide a complete wireless network service to a particular area, which

could be a dedicated network for an organisation, to provide wireless service in

rural areas without prior cellular network infrastructure, etc [45].

The major challenge with single UAV deployment is that when a fault occurs

in the UAV-BS, it could result in complete network failure. On the other hand,

in a multi-UAV-BS system, when a single UAV-BS fails, the system can be recon-

figured to provide a sub-optimal solution. However, this does not mean that the

use of multiple UAV-BSs does not have disadvantages, as the problem of proper

coordination among the multiple UAV-BSs deployed exists [46]. In summary,

choosing between a single UAV-BS or multiple UAV-BSs deployment depends on

the nature of the communication system that is being developed and the problem
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that the network would address.

UAV-BS Deployment with Fixed BSs (UAV-Assisted Cellular Net-

works): This involves the deployment of either single or multiple UAV-BSs on

top of existing fixed cellular network infrastructure (terrestrial BSs) to provide

enhanced capacity and coverage in different scenarios [47]. For example, during

major events, such as football matches and concerts, involving a large gathering

of people, the networks in such areas would be very congested, which could lead

to poor QoS. In such scenarios, UAV-BSs can be deployed to provide additional

capacity in order to reduce network congestion, and to enhance the data rate of

the users in hotspot regions and at the cell edges [43]. In addition, UAV-BSs can

help to provide communications with highly mobile user equipment (UE), thereby

preventing frequent handovers, which can negatively affect their QoS [48]. One of

the main advantages of deploying UAVs in existing cellular networks is that they

can change their locations depending on the network conditions, which helps in

increasing the QoS, restoring network at failed BS sites, achieving load balanc-

ing, offloading traffic from MBSs, and extending the coverage. Hence, UAV-BS

deployment in cellular networks is a key design consideration in future heteroge-

neous wireless networks that can enable various applications such as smart cities,

mobile computing, and autonomous vehicle networks, etc. [49].

The Role of UAVs in Wireless Networks

UAVs have been employed for various operations in both military and civilian

domains including object detection, location tracking, goods delivery, and in-

formation dissemination. Recently, they have also found several applications in

wireless communications because of their flexibility, adaptability, and easy de-

ployment. Some of these applications include: i) emergency services (pop-up

networks) [50, 51]; ii) data harvesting [52, 53]; iii) content caching and compu-

tation offloading [54, 55]; iv) load balancing [56, 57]; v) coverage extension or

relaying [58, 59]; vi) Capacity/throughput enhancement [60, 61]; vii) backhaul-

ing [62,63]; and viii) EE [47,64].

2.2 Power Consumption Models

Power consumption models are used to estimate the power consumed in a terres-

trial or aerial BS by quantifying the amount of power consumption in each of the

components that make up the BS. Therefore, in this section, brief discussions on

the various power consumption components of both types of BSs are presented.
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2.2.1 Power Consumption of a Fixed BS

In this section, the components responsible for power consumption in a fixed BS

are briefly highlighted, after which the power consumption model for a fixed BS

is presented and discussed.

Base Station Components

A BS is made up of several transceivers each serving one transmit/receive an-

tenna element. A transceiver comprises various components including power am-

plifier (PA), radio frequency (RF) unit, baseband (BB) unit, main power supply

unit, cooling system, and antenna interface. Each of these components are briefly

discussed in the following [65,66]:

• Power amplifier (PA): The PA accounts for most of the power consump-

tion in a BS, and its function is to improve the power level of the RF

signals received or transmitted from and through the antenna. However,

power amplifiers suffer from non-linearity and distortion, which tends to

reduce the amplifier’s efficiency, and hence, more advanced amplifier design

using techniques such as clipping and pre-distortion can be used to enhance

the efficiency and achieve linearity.

• Radio frequency (RF) unit: This unit is made up of a transmitter and

a receiver for signal transmission and reception. The architecture of the RF

unit varies depending on the type of BS. For macro and micro BSs, low-

intermediate frequency architectures are used while in pico and femto BSs,

zero-intermediate frequency architectures are utilised. The power consump-

tion of the RF unit is mostly affected by the bandwidth, signal-to-noise-and-

distortion ratio as well as the analog-to-digital conversion resolution.

• Baseband (BB) unit: This unit is responsible for digital signal processing

functionalities including modulation/demodulation, channel estimation and

equalization, filtering, etc., with each of this process contributing to the

power consumption in this unit.

• Power supply unit: The unit comprises the main supply unit which

provides the alternating current (AC) needed to power the BS, which must

be converted to direct current (DC) as most BSs use DC to power their

components. In addition, there are also converters whose function is to

convert the DC to the levels required to power the different components of

the BS. These conversion process are usually associated with some losses

which reduces the EE of the BS.
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• Cooling system: The BS, particularly the MBS, requires an active cooling

system to keep the temperature under certain thresholds that is needed to

ensure the proper functionality of the certain components in the BS and to

prevent their breakdown due to excessive heating during their operation.

Smaller BSs, such as pico and femto BSs, do not require cooling system

due to their low energy consumption. The cooling system has been found

to contribute about 30% to the total power consumption of the BS [67],

hence significant energy saving can be achieved by reducing the energy

consumption due to cooling. However, the use of RRH with MBS obliterates

the need for an active cooling system as the power amplifiers can be cooled

by atmospheric air.

• Antenna interface: The antenna is a passive device whose function is to

convert electrical signals into electromagnetic signals and vice versa. The

antenna interface which is the connecting point between the antenna and

the PA introduces certain losses such as the feeder loss which also reduces

the power efficiency of the BS. This was more significant in traditional MBSs

were the antenna was in a different location from the PA, but with RRH,

where the PA is situated in the same location as the antenna, the feeder

loss is greatly reduced. For small BS, the feeder loss is considered to be

negligible.

Base Station Power Consumption Model

In order to quantify the power consumption of the mobile cellular networks,

power consumption models that can estimate the amount of energy consumed

by the various components and subsystems of the network are required. Since

the BS is the major power consumption component in the cellular network, most

research activities have been focused on developing accurate power consumption

models for the BS. Different BS power consumption models have been proposed

in [65,66,68–72].

The Energy-Aware Radio Technologies (EARTH) power consumption model is

the most widely applied one and it is able to capture the power consumption of

different BS types and sizes under different network scenarios. It is expressed

as [65]:

Pin = NTRX.

Pout

µPA.(1−ρfeed)
+ PRF + PBB

(1− ρDC)(1− ρMS)(1− ρcool)
(2.1)

where Pin is the power supplied to the BS, NTRX is the number of transmit/receive

antennas, Pout is the output power from each antenna, µPA is the power amplifier
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efficiency, PRF is the power consumption due to radio transmission, PBB is the

power consumption of the base band unit, ρfeed, ρDC, ρMS and ρcool are the feeder,

DC-DC power supply, main supply, and cooling losses, respectively.

However, the BS power consumption is usually approximated by linear mod-

els [65, 68, 69] because they are easy to apply and provide a near-accurate ap-

proximation of the actual power consumption of the BS [65]. The linear power

consumption model consists of two parts: the static (or load independent part)

and the dynamic (or load dependent part). The static power consumption does

not vary with traffic load and it comprises power consumption of the cooling sys-

tem, processing units, power supply unit while the dynamic power consumption

varies with traffic load and it comprises power consumed in the PA and RF unit.

The linear approximation of the EARTH’s BS power consumption model [65]

can be expressed as:

PBS = NTRX.

{
Po + ηPtx, if 0 < Ptx < Pmax

Ps, if Ptx = 0,
(2.2)

where PBS is the total power consumption of a BS, η, is the slope of the load

dependent power consumption, Po denotes the constant power consumption com-

ponent of the BS when in operation, Ps is the power consumed by the BS when in

sleep mode. Ptx and Pmax are the instantaneous and maximum transmit power of

the BS, respectively. Although, various BS power consumption models have been

proposed in the literature [70–72], the EARTH’s linear BS power consumption

model [65] is the most commonly applied because of its simplicity and easy adap-

tation to all types of BSs. As a result, it is adopted in this thesis for modelling

the power consumption of the BS.

2.2.2 Power Consumption of a UAV-BS

The power consumption of UAV-BS comprises two components: communication

or BS power consumption and Propulsion or UAV power consumption. The

power consumption model of the BS mounted on the UAV is the same as that

of the fixed BS. Therefore, since it has been considered in the previous section,

this section is dedicated to the discussions on the UAV power consumption. In

this regard, the basic components of the UAV are first highlighted, followed by

the presentation of the power consumption model of the UAV. Finally, a brief

discussion on the various power supply and charging mechanisms used to power

the UAVs during the course of their operation.
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UAV Components

UAV comprises of the following units or subsystems: the propulsion unit, moni-

toring and control unit, power supply unit, and the payload [26,73].

• Propulsion unit: This unit constitutes a major portion of the weight of

the UAV and is also the most energy consuming part of the UAV, comprising

the motor and propellers. It is responsible for ensuring the mobility of the

UAV by converting the electrical energy supplied by the UAV batteries into

mechanical energy. The most common type of motor used in miniature

UAVs is the brush-less DC motor because of its high efficiency, reliability,

and good torque [74].

• Monitoring and control unit: This unit comprises on-board flight con-

trol and mission-oriented sensors and processors that are responsible for

collecting and analysing of flight data, communicating with ground station,

executing navigation and control algorithms, and planning the missions of

the UAV. The communication modules that enable the UAV to commu-

nicate with the ground control unit is also part of this unit. The major

source of energy consumption in this unit is due to the processing of the

data received from the various sensors in order to make informed decision

regarding the UAV flight [73].

• Power supply unit: This unit consists of the power source responsible

for supplying electrical energy for powering the UAV and the payload, by

means of battery, grid power (for tethered drones), renewable energy (e.g.,

solar, wind, etc.) and fuel cells. In addition, there are also omni- and

uni-directional converters, which are responsible for controlling the flow of

power during the process of charging and utilisation of the UAV battery.

• Payload: The payload is the part of the UAV that is used to carry various

equipment and accessories, such as cameras and sensors for monitoring and

surveillance purposes. They are also used to carry BS in other to provide

cellular services. The size of the payload varies depending on the type of

the UAV and contributes to the total weight and how long each UAV can

fly. Hence, they are normally designed with maximum take off weight which

specifies the maximum weight that can be supported by the UAV for a given

flight duration [24].
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UAV Power Model

Various power consumption models have been proposed for both fixed-wing and

rotary-wing UAVs in the literature [75–79]. However, in this thesis, a rotary-wing

UAV is considered because of its ability to hover in a fixed position above the

ground. The power consumption model for rotary-wing UAVs proposed in [76] is

adopted.

The power consumption of the rotary-wing UAV due to propulsion can be

expressed as [76]:

P (V ) = Pc

1 +
3V 2

U2
tip

+ Pi

√
1 +

V 4

4v40
− V 2

2v20

+

1

2
d0ρrsAV

3 (2.3)

where Pc and Pi represent the blade profile and induced power, respectively. Utip,

vo, d0, rs, ρ, A and V represent the tip speed of the the rotor blade, mean motor

induced velocity during hovering, fuselage drag ratio, rotor solidity, air density,

rotor disc area and propulsion velocity, respectively.

To obtain the power consumption due to hovering, which is the case where

the UAV is stationary in the air, V = 0 is substituted into (2.3) which gives:

Phov = Pc + Pi, (2.4)

and then substituting the respective expressions for Pc and Pi from [76] into (2.4),

the full expression for power consumption due to hovering can be obtained as

follows:

Phov =
δc
8
ρrsAB

3
vR

3
r + (1 + κ)

W 2/3

√
2ρA

. (2.5)

where δc, Rr, Bv, k , W is the profile drag coefficient, rotor radius, blade angular

velocity, incremental correction factor for induced power, and aircraft weight,

respectively.

UAV Power Supply and Charging Mechanisms

Even though UAVs have found increasing application in wireless communications

because of their flexible deployment, easy adaptation, and cost-effectiveness [25],

there are some challenges that limit their full exploitation in wireless networks.

The most important of these challenges is power and energy consumption lim-

itation [24]. Miniature UAVs are usually powered with rechargeable batteries

for operations, while large UAVs are powered by using non-renewable resources,

such as fuel and gas, to provide more energy to the UAV for longer flight time.
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To maximise the flight duration and the service time of UAVs, various alterna-

tive sources of power supply and charging mechanisms have been developed and

tested. Some of the UAV sources of power supplies are battery [80,81], grid (teth-

ering) [82, 83], fuel cells [84, 85], renewable/energy harvesting sources including

solar, wind, RF, etc. [86, 87], and hybrid sources such as solar, battery and fuel

cell-battery [88–91]. As battery-powered UAVs are the most common means

of powering miniature UAVs, different battery charging/recharging mechanisms

have been developed including swapping [92, 93], laser beam charging [94] and

wireless powered charging systems [95,96].

2.3 Energy Optimisation Approaches

In this section, energy optimisation techniques for both fixed and UAV-based

cellular networks are broadly categorised under analytical, conventional and ML

techniques. Then, the specific methods under each category such stochastic ge-

ometry (analytical method), ES and SA (conventional methods), artificial neural

networks (ANN), k-means, and Q-learning (ML techniques) are discussed in more

detail.

2.3.1 Analytical Approaches

These methods employ mathematical tools to describe network entities, the inter-

actions among various network entities, and to the model network performance.

Normally, closed-form expressions are derived which describe the average perfor-

mance of the network from which certain design parameters of the network can be

optimised. One of the common analytical methods that are employed for energy

optimisation in wireless communication networks is stochastic geometry. In the

following paragraphs, discussions on stochastic geometry are presented as it is

one of the methods employed in this thesis for energy optimisation.

Stochastic geometry

Stochastic geometry enables a generalized model to be developed which approxi-

mates the average performance of the network over all realizations [97]. It employs

a particular kind of random distribution, known as point process (PP) to model

the distribution of network elements in a given location. After that, expres-

sions are derived which relates the network performance metrics such coverage

probability, ergodic capacity, EE, etc. to the network parameters that needs to

be optimised. These expressions enable network behaviour to be understood as
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well as their relationship with certain design variables or parameters. As a re-

sult of this information, network engineers would be able to analyse the various

trade-offs that can be accommodated within the network and make informed

decisions based on the different scenarios that would be encountered in practi-

cal networks [98]. The most common PP employed in stochastic geometric for

analyzing wireless network performance is the Poisson PP (PPP) because of its

flexibility and tractability and can be defined as:

Definition 1. A PP Φ = {xi; i = 1, 2, 3, ...} ∈ Rd is a PPP if and only if the

number of points inside any compact set B ⊂ Rd is a Poisson random variable,

and the numbers of points in disjoint sets are independent [98].

2.3.2 Conventional Approaches

Several conventional optimisation methods have been applied for energy optimi-

sation in fixed and UAV-based cellular networks in the literature. Therefore, in

this thesis, the conventional methods are grouped into three major categories,

namely: exact, heuristic, and meta-heuristic methods. In addition, the meta-

heuristic methods are further divided in three categories: Evolutionary-based,

swarm intelligence-based, and trajectory-based algorithms.

In the following paragraphs, the common conventional algorithms will be

briefly discussed. However, the specific methods that are applied for energy

optimisation in this thesis including ES and SA algorithms are discussed in more

details.

Exact Methods

Exact methods are guaranteed to always find the optimal solution to an optimi-

sation problem. However, these methods are inefficient, especially in operational

decision processes, due to the unacceptable solution times and their inability to

reach solutions in large-size problems in a reasonable time [99]. An example of

the exact method is the ES algorithm, and is briefly discussed in the following

paragraph because it is one of the methods applied for energy optimisation in

this thesis.

Exhaustive search algorithm: This algorithm tries all the possible combi-

nations of the solution in order to find to optimal solution [100]. As far as the

optimal solution concerned, the ES is always guaranteed to find the optimal so-

lution because it searches sequentially through all the possible combinations to

select the best solution. However, the main challenge with ES is the problem
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of combinatorial explosion, which results when the number of candidates in the

search space becomes very large. As such, ES becomes computationally burden-

some and infeasible to implement in realistic networks with a large dimension.

Hence, ES algorithm should be combined with other heuristic or ML algorithms

that can help reduce the search space in order to increase the speed of execution

and reduce the complexity of finding a near optimal solution. The pseudo-code

for ES algorithm is presented in Algorithm 1, where S is the set of all possible

solutions, so is the initial solution, s∗ is the solution that gives the maximum

energy saving, Et is the energy saving of the optimal solution, Mb is the number

of BSs in the network, and total row represents the total number of data samples

in a dataset.

Algorithm 1: Exhaustive search (ES)

1 Initialize number of BSs, Mb;
2 Function compute energy saving from action (S), Es ← f(S);
3 for row = 1, total row do
4 Initialize action so;
5 Output s∗ ← so, as action with Max energy saving;
6 for t = 1, 2Mb do
7 compute Et ← f(t) ;
8 if Et ≥ Es then
9 s∗ ← t ;

10 end

11 end
output: s∗

12 end

Heuristic Algorithms

Exact algorithms are developed in such a way that the optimal solution can be

achieved in a limited time. However, for some very difficult optimisation prob-

lems (e.g., NP-hard or global optimisation), this limited amount of time may

expand exponentially in relation to the problem sizes. Heuristics lack this guar-

antee and, as a result, often provide solutions that are less than optimum or

approximate solutions. Heuristic algorithms, on the other hand, frequently find

acceptable solutions in a reasonable amount of time. In addition, they are often

problem-dependent, that is, they are designed for a specific problem as energy

optimisation in cellular networks, UAV routing problems, etc. There are two

main heuristic approaches to solving hard optimisation problems. One of such

approaches is the constructive heuristics which develops solutions via iterations.
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It is called a constructive heuristic because it begins with an empty solution

and continues to expand on it until a complete solution is discovered [101]. The

other heuristic method is called improvement or local search heuristics. Improve-

ment heuristics start with a complete solution and then strives to improve on

the existing solution further by local searches. Examples of heuristic algorithms

are block coordinate descent (BCD), Dinkelbacks method, and successive convex

approximation (SCA), etc.

Meta-heuristic algorithms

A meta-heuristic, on the other hand, is a high-level problem-independent algo-

rithmic framework that offers a set of principles or techniques for the development

of heuristic optimisation algorithms. However, a specific definition is quite tricky,

and many scholars and practitioners use the terms heuristics and meta-heuristics

interchangeably. As a result, the word meta-heuristic may also refer to a problem-

specific implementation of a heuristic optimisation algorithm based on the rules

given in such a framework. Different from heuristic methods, a meta-heuristic

knows nothing about the problem it will be applied to as it can treat functions

as black boxes. For more information on meta-heuristic algorithms, the studies

in [102] can be examined. In the following paragraphs, meta-heuristic algorithms

will be examined in three categories.

i. Evolutionary-based algorithms: These are population based algorithms

that tries to mimic the concept of natural evolution. The mode of operation

of these algorithms is to first create a population of all possible solutions

and assign scores to each solution, depending on how good they are, using

a fitness function. Then, over time, the population evolves and better so-

lutions are identified [103, 104]. A common example of evolutionary-based

algorithms that is used for energy optimisation in cellular communications

network is the genetic algorithm (GA) [105–107].

ii. Swarm intelligence-based algorithms: These are algorithms that are

inspired from nature, based on the relationship between living organisms,

such as ants, birds, bees, etc [108]. In the algorithm implementation pro-

cess, a swarm is created comprising several entities that have limited intel-

ligence. These entities interact with each other using a specified principle,

with no central entity coordinating them, and overtime, a holistic intel-

ligence in achieved [109]. Common examples of swarm intelligence-based

algorithms that have been applied for energy optimisation in cellular net-

works includes particle swarm optimisation (PSO) [110–112] and ant colony



CHAPTER 2. LITERATURE REVIEW 27

optimisation (ACO) [113,114].

iii. Trajectory-Based Algorithms: These are algorithms that employ a sin-

gle agent that traces a trajectory while moving through the search space in

order to determine the global optimal solution. In the process, a better so-

lution is accepted while a solution that is not so good may be accepted with

a specific probability. Examples of trajectory-based algorithms that have

been applied for energy optimisation in cellular networks include SA and

variable neighbourhood search algorithm. However, SA algorithm would

be detailed in the following paragraphs because it is one of the methods

applied in this thesis. SA algorithm is considered in this thesis because

it has an inbuilt mechanism that makes it not to be easily trapped in the

local minimum like most heuristic algorithms [115]. In addition, its per-

formance closely approximates the optimal solution but with a significantly

lesser computational overhead. Moreover, it can be easily applied to the cell

switching and spectrum leasing problem that is considered in this thesis.

Simulated annealing algorithm (SA): This is a meta-heuristic algo-

rithm developed by Kirkpatrick et al. in 1983 to solve optimisation prob-

lems. The SA method is based on the analogy between the annealing pro-

cess in physical systems that minimises the energy state of the solids and

is applied to find the solution to many combinatorial optimisation prob-

lems [115]. The SA algorithm is a probability-based heuristic that deals with

the annealing process in solid materials with an analogical approach [116].

The working principle of annealing simulation is based on the process dur-

ing which a heated solid material cools down. It is applied to optimisation

problems by simulating the cooling process with the algorithm. It is used in

the optimisation of difficult problems such as scheduling, inventory control

and routing in the literature [117–120].

In addition, SA algorithm is one of the algorithms that has proven its

success in cellular and mobile network applications [117]. In this context,

it can be easily integrated into many problems has increased the popularity

of the algorithm. One of the most important features of the SA algorithm

is that it ensures that results which degrades the objective function values

are included in the solution process under certain conditions in order not

to be stuck at a local optimum. In other words, an improved objective

function value is always accepted, whereas moves that worsen the objective

values are accepted on a probabilistic basis. In basic SA algorithm, the
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criteria used to accept a worse objective function are the random number

generated between 0 and 1, the improvement in the objective function, and

the current temperature values. In the operation steps of the algorithm, as

the temperature of the system decreases, the possibility of accepting worse

results decreases. The probability of increase in the amplitude of the energy,

δE at temperature, T is presented in (2.6):

p(δ) = exp(− δE

KT
), (2.6)

where K is Boltzman constant.

Therefore, the starting temperature of the system must be high enough to

allow any feasible solution to be accepted. However, if the initial tempera-

ture is set too high, the search process will be random until the temperature

decreases to a certain level. Also, a stop criterion is required for the algo-

rithm. A certain ϱ value is determined as a stopping criterion in order

not to prolong the search process excessively. During the search process

the algorithm attempts to transform the current solution s into one of its

neighbors s′ selected at random. However, in the proposed algorithm, in-

stead of randomly selecting a neighborhood structure, each neighborhood

is applied in order. A similar approach is available in sequential variable

neighborhood search (VNS) algorithm [121]. The search area is expanded in

each iteration due to the small number of neighborhood types. The pseudo

code of the SA algorithm is shown in Algorithm 2, where s0 denotes the

initial solution, S is the set of possible solutions, T denotes temperature, φ

is the number of local search iterations for each temperature, u is a random

variable between 0 and 1, ϑ is the difference between a neighbor solution (s′)

and the current solution (s), s∗ is the optimal solution to the problem, and

ϱ is the temperature change counter.

2.3.3 Machine Learning Approaches

ML are a class of algorithms that have the ability to learn from datasets with-

out being explicitly programmed like conventional or heuristics algorithms [122].

They have been applied in various fields such as natural language processing and

computer vision and is now gaining wide acceptance in the field of wireless com-

munications for the following reasons [123–125]: Firstly, they are able to learn

hidden user behaviours or network characteristics form historical data that can-

not be analytically modelled. Secondly, unlike heuristic algorithms, they are able
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Algorithm 2: SA algorithm

1 Identify initial solution: s0 ∈ S;
2 Calculate objective function s0;
3 Define an initial temperature T > 0;
4 Set to zero temperature change counter ϱ = 0 ;
5 s = s0, f(s) = f(s0);
6 s∗ = s0, f(s∗) = f(s0);
7 define local search iteration number for each temperature (k);
8 repeat
9 n = φ;

10 repeat
11 generate neighbor solution s′;
12 ϑ = f(s′)− f(s);
13 if (ϑ ≤ 0) then
14 s = s′;
15 else
16 generate a random number from uniform distribution in the

0-1 range (u);

17 if
(
u < exp(− ϑ

T )
)
then

18 s = s′;
19 end
20 if (f(s′) < f(s∗)) then
21 s∗ = s′;
22 end

23 end
24 n = n− 1;

25 until n = 0;
26 ϱ = ϱ+ 1;
27 T = T (t);

28 until (to the stop if condition is meet);
29 s∗ is the heuristic solution of the problem

to adapt to changing network conditions in order to optimise the performance

of the network. Finally, they require very little or no human involvement in the

implementation process hence are a catalyst for achieving network automation

or self-organising networks. Generally, they can be classified according to the

amount and type of supervision they get during their training period. There are

six major categories of ML algorithms: supervised learning (ML), unsupervised

learning (UL), semi-supervised learning, deep learning (DL), reinforcement learn-

ing (RL), and federated learning (FL). However, only supervised, unsupervised

and RL methods are discussed in the following paragraphs because they are the

methods applied in this thesis for energy optimisation in cellular networks.
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Supervised Learning (SL)

In SL, the training set comprises both the input dataset and the desired out-

put, also referred to as labels. SL learns a function (a match between the input

data and the result data) by extracting information from the input data and the

labels that are fed into the machine [126]. SL problems are divided into two

main categories, which are regression and classification [127]. In regression prob-

lems, a continuous output is predicted; that is, the input variables are mapped

to a continuous output. Examples of regression SL methods are linear regres-

sion, ridge regression, step-wise regression, etc [128]. Regression is applied in

wireless networks for traffic prediction to enable proactive load balancing, and

resource allocation. It is also used for user location prediction to enable proac-

tive handover optimisation [129]. In classification problems, a categorical output

is predicted, that is, the input variables are mapped to different output classes,

which could be a binary class (comprising two classes) or multi-class (compris-

ing many classes). Logistic regression, näıve bayes classifier, k-nearest neighbor,

ANN and support vector machine are examples of SL classification methods [127].

Multi-classification finds application in wireless networks with regards to select-

ing the optimal sets of BSs to switch off in energy optimisation problems, and in

the identification of various kinds of attacks on the network [130].

In this thesis, ANN is the SL technique adopted because of its unique qualities

such as non-linearity, versatility and advanced learning capabilities [131, 132],

hence, it is briefly described in the following paragraphs.

Artificial neural networks (ANN): is a biologically inspired learning al-

gorithm that attempts to mimic the functioning of the neurons in the brain. A

typical structure of an ANN model is presented in Fig. 2.5. It consists of three ma-

jor layers including the input layer, hidden layer, and output layer [122,131,133].

Each layer comprises neurons which are connected to previous and subsequent

layer neurons. The neurons contains activating units which are triggered de-

pending on the input from the preceding layer neurons. The basic mathematical

expression for the neuron is given as:

hi = ι

 ML∑
i=1

xiwi + bi

, (2.7)

where ι(.) is the activation, xi is the input, wi is the weight vector, and bi is the

value of the bias associated with the layer and ML is the number of layers. The

essence of the activation function is to regulate the output from a neuron while
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the bias is meant to regulate the input to the activation function. There are

various kinds of activation functions that have been employed in the literature

including sigmoid, tanh, rectified linear unit (ReLU), softmax, etc [131,134].

Figure 2.5: A typical ANN model structure

The process of training the ANN involves both forward propagation and back-

ward propagation. In the former, the input data is exposed to different layers

of the ANN in sequential manner from input to output layer while in the latter,

the data passes from output to the input layers and is the process where the

various parameters of the network are learnt. During the forward pass, the dis-

crepancy between the real output value and the predicted value, which is often

referred to as the cost, is estimated using a utility function such as mean square

error (MSE), root MSE (RMSE), or cross entropy. The error obtained when the

utility function is estimated is propagated backwards to update the weights and

bias of each layer of the network using an optimisation algorithm such as gradient

descent. The number of hidden layers, neurons, utility function, activation func-

tion, and optimisation algorithm are collectively referred to as hyper-parameters

and determine the performance of the network [122,131,133].

Unsupervised Learning (UL)

UL algorithms work with a set of inputs. The input dataset for training does not

have a labeled output. For this reason, in UL, clustering, association, and pattern

discovery are performed over existing data. It has a working mechanism that is
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different from SL. The purpose of UL is to enable the identification of patterns

within the training datasets and categorize the input objects according to the

patterns defined by the system [135]. These algorithms are expected to develop

specific outputs from unstructured inputs by looking for unexplored relationships

between each instance or input object. UL algorithms can be classified into three

main groups: clustering, association analysis, and dimensionality reduction. k-

means, k-median, hierarchical clustering, and expectation maximisation are the

most common examples of clustering category [136, 137]. Apriori, Eclat and

FP-Growth are examples of association analysis models [138], while principal

component analysis (PCA) and linear discriminant analysis (LDA) are examples

of dimensionality reduction category [139].

The k-means algorithm is one of the most popular algorithms that is used

for clustering or partition dataset in the literature and is employed in the thesis

for clustering the traffic load of BSs. Therefore, the k-means algorithm is briefly

discussed in the following paragraph.

k-means: It is one of the most commonly used clustering algorithms because

it is simple to apply and guarantees convergence in such a way that all the input

samples fall into a specific cluster [140]. k-means is used in segmenting unlabelled

dataset into k clusters, where the number of clusters, k, also coincides with the

number of cluster centroids. k-means follows an iterative process when assigning

data points into different clusters [141]. Normally, a centroid is defined for each

cluster and the data points that are nearest to each cluster are associated with

it. Then, the centroids positions are updated by averaging the values of the

data points associated with them. By way of illustration, given a set of Mdt

data points in a dataset, σi = {σ1, σ2, . . . , σMdt
}, where σi represents the whole

dataset and σ1, σ2, . . . represents the individual data points in the dataset. The

process of applying k-means algorithm to partition the dataset into clusters and

determine the number of data points, Mdt,j in each cluster, γj, where γj denotes

the centroid of cluster j and j ∈ {1, 2, . . . , k} can be determined using the pseudo-

code in Algorithm 3 [132, 140]. The error in k-means clustering is evaluated by

computing the Euclidean distance between the data points and their associated

centroids according to [141]:

Dk−means(γj) =
∑
σi∈γj

∥σi − Λ∥2 , (2.8)

where the mean of cluster j is denoted by Λ.

One of the most critical aspects of clustering is determining the optimal num-
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Algorithm 3: k-means Algorithm

Data: k, data points {σ1, σ2, . . . , σMdt
}

Result: Number of clusters
1 Initialize by randomly selecting the centroids (γ1, γ2, ..., γk);
2 while cluster assignments change do
3 for each data point (σi) do
4 find the closest centroid, γj using:

argmin
j

D(σi, γj) (2.9)

5 end
6 for each cluster (j ∈ {1, 2, . . . , k}) do
7 let centroid γj be the mean of data points associated with γj

γj =
1

Mdt,j

∑
l

σl | {l = i ⇐⇒ σi ∈ γj} (2.10)

Go back to step 3
8 end

9 end

ber of clusters to split the dataset to. One of the popular methods for finding the

optimal number of clusters from a given dataset is the elbow method [142]. In

the elbow method, the optimal number of clusters is obtained by evaluating the

sum of the squares errors (SSE) between the data points in each cluster and the

centroid. The SSE values obtained are plotted against the k values. Then the

point of inflection of the curve is selected as the optimal number of clusters.

Reinforcement Learning (RL)

Although it is not completely different from SL and UL methods, RL imitates

human’s learning process. It shows how a system can perceive its environment

and learn to make the right decisions in order to reach its goal. It differs from

both SL and UL in that the agent is not given any prior knowledge of the en-

vironment, such as input data and output data, but gathers information about

the environment by interacting with the environment and learning to take the

right action in any given situation (for example, by repeated trial and error over

a period). This method is frequently used in fields such as robotics, game pro-

gramming, disease diagnosis, and factory automation [143,144]. There are a few

concepts associated with RL such as environment, agent, state, action and re-

ward function, policy, value function, and model, which are briefly discussed in

the following paragraphs [132,145,146].
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• Environment: The environment is anything within the agents surrounding

that can be observed. For example, in a cellular communication networks,

the environment constitutes the BSs, UEs, traffic load, channel condition,

etc.

• Agent: This is the main actor in the environment that takes actions. Con-

sidering a cellular network, the agent could be the MBS that tries to op-

timise the switching off/on pattern of the SBS to minimise its energy con-

sumption.

• Action: An action is normally selected and performed by the agent out

of a set of possible actions within the environment to maximise the reward

function. In a cellular network where it is assumed that the agent is the BS,

the action set could be all the possible combinations of BSs to switch off

in order minimise the energy consumption of the network. Hence, different

combinations of BSs are selected and the result reward function is evaluated.

• State: This describes the agents condition with respect to the action taken.

Still using the example of minimizing the energy consumption of network,

the state of the agent could be either sufficient or insufficient offloading

capacity, depending on the action taken.

• Reward function: This is the function that needs to be maximised by

the agents actions. From the point of view of optimisation, this is known

as the objective function. Depending on the kind of problem, the reward

function could also be converted to penalty function. In such instances, the

objective is to minimise instead of maximizing the reward function such as

in the case of energy minimisation.

• Policy: The policy determines the behaviour of the agent or how the agent

would act within an environment, i.e., it maps the agents states to the

required actions [130,146]

• Value function: Two kinds of values functions exists: the state value

function which evaluates the expected value when a state is visited while

the action value function evaluates the expected value of the action taken

by the agent in a given state.

• Model: It is used to depict the environment as well as study the effects

of agent’s actions on the environment. It must be noted that not all RL

algorithms require the model of the environment, some have model-free

execution mechanism.
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The basic structure of an RL model is illustrated in Fig. 2.6 [146].

Figure 2.6: Basic structure of RL

Common examples of RL algorithms include: Q-learning, state-action-reward-

state-action (SARSA), multi-armed bandit, actor-critic, etc [147]. However, Q-

learning is the RL algorithm that is applied in this thesis because it is model-free

and exhibits quick convergence compared to other RL algorithms [148]. Hence,

it is briefly discussed in the following paragraph.

Q-learning: Q-learning is one of the most popular RL algorithms, and has a

proven capability of working in dynamic environments [146, 149]. It is a model-

free RL algorithm, which means that the model of the environment is not required

before hand. Rather, it learns by a trial and error method through repeated inter-

action with the environment to gain experience needed to improve performance.

In addition, it is an off-policy algorithm, which means that the policy employed

during the model training process is different from that used in updating the

action value function. This property enables quick convergence to be achieved

in Q-learning [148]. The pseudo-code of Q-learning algorithm is presented in

Algorithm 4 [146].

The action value table is updated using the Q-learning equation:

Q(st, at) := Q(st, at) + ζ
[
Rt+1 + εmax

a
(Q(st+1, a))−Q(st, at)

]
, (2.11)

where Q(st, at) is the state-action value function, st and st+1 are the current and

next states, respectively. Rt+1 is the expected reward for the next step and at

is the taken action, where a is the set of all possible actions. ζ is a learning

rate and ε is a discount factor. Note that the max function in (2.11) should be
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Algorithm 4: Q-Learning pseudo-code

Input : Input
Output: Output

1 Initialize Q(st, at) := 0;
2 for every episode do
3 for each iteration do
4 Estimate the current state st;
5 Take an action at;
6 Evaluate reward Rt+1;
7 Update Q(st, at) using (2.11);
8 move to the next state st+1.

9 end

10 end

converted to min function to make the update policy suitable for a penalty-based

framework.

2.4 Energy Optimisation in Fixed Cellular Net-

works

In this section, various methods of energy saving in fixed cellular networks are

briefly presented. Afterwards, the cell switching approach is discussed with the

state-of-the-art and research gap analysis.

2.4.1 Energy Saving Techniques

Four major techniques have been proposed for energy saving in fixed or terrestrial

BSs including hardware design, planning and deployment strategies, and energy

harvesting techniques, network operation and managements [14]. Hence, in this

section, each of these techniques is briefly discussed, then the cell switching ap-

proach is considered in more details involving a brief review of the state-of-the-art,

and research gap analysis.

• Hardware Design: Energy saving based on hardware solutions includes

energy efficient designing of RF chain, and transmitter and receiver [150,

151]. More emphasis is placed on the redesign of the PA since it is the

most energy consuming part of the BS [152], thus a PA with high efficiency

would greatly enhance the EE of the network [153,154].

• Energy Harvesting: Energy harvesting for powering cellular networks

involves harnessing energy from the environment sources, such as solar,
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wind, etc. [155], and radio waves, that is, energy gotten from radio signals

transmitted in the air [156]. However, the use of renewable energy source to

power cellular network faces the challenge of the erratic or uncertainty in the

availability of these energy sources at every time of the day. Hence, these

energy sources have to use energy storage components such as batteries or

capacitors as a back up during periods they are not available [14].

• Network Planning and Deployment: This energy saving technique in-

volves planning the BS deployment in order to ensure that optimal number

of BSs, types of BSs, and type of antennas needed to provide the required

QoS are deployed. In this regard, two energy efficient network deploy-

ments approaches have been proposed including heterogeneous BSs, which

involves the deployment of different types of BSs, and massive multiple-

input-multiple-output (mMIMO), which involves the use of a large number

of antenna arrays in a BS.

• Network Operation and Management: These methods rely on the

spatio-temporal variation in the network traffic load to adjust certain net-

work parameters such as transmit power, bandwidth, etc., or switch of cer-

tain network components such as antennas, sectors, or the whole BS, in or-

der to save energy. In this regard, antenna muting [157], cell zooming [158],

adaptive sectorization [159], and cell switching techniques [17,22,160] have

been proposed.

Energy Saving Enablers

Several technologies and techniques have been designed to enhance the energy sav-

ing potentials in cellular networks. For fixed cellular network, these energy saving

enablers include: cloud radio access network (C-RAN) [18,161], control data sep-

arated architecture (CDSA) [162–164], caching [165–167], re-configurable intelli-

gent surfaces (RIS) [168–171] , device-to-device (D2D) communications [172–175],

and traffic offloading [176–180].

CDSA offers some inherent energy saving potentials because it enables under-

utilised SBSs to be easily switched off to save energy while their traffic load is

taken over by the MBS, thereby preventing coverage holes in the network [162,

163]. Hence, it is adopted as the HetNet architecture in this thesis and detailed

in the following paragraphs, followed by a discussion on cell switching, which is

a major approach that is applied for energy optimisation in this thesis.
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Control Data Separated Architecture (CDSA)

Energy saving technique based on cell switching in conventional cellular architec-

ture was challenging because it results in coverage holes because the area that

was originally covered by the switched off BS cannot be fully covered by neigh-

bouring BSs thereby leading to QoS degradation. In addition, it is not possible to

completely turn off the BS because certain parts of the BS must be on to quickly

respond to changes in network traffic thereby limiting the amount of energy saving

that can be achieved. This led to the introduction of CDSA [162].

Figure 2.7: CDSA showing CBS as well as active DBS serving user requests while
inactive DBSs are switched off to save energy.

In CDSA, the control plane is separated from the data plane. The function of

the control plane is for the provision of ubiquitous coverage, signalling between

users and network which is needed for data transmission to take place such as

radio resource control (RRC) connection establishment, scheduling information,

etc. This enables the provision of wide coverage at a low frequency to ensure

flexibility in connection and mobility. The data plane is responsible for high

capacity and data rate, and exploits high frequency. In addition, in this archi-

tecture, all the users are connected to the control BS (CBS) which in most cases

is the MBS while active users are simultaneously connected to both CBS and

the data BS (DBS). Hence, the DBS can be turned off when it is not connected

to any user. When the users become ready to start data transmission, the CBS

then chooses the best DBS and establishes connection between the DBS and the

users. Since the control plane provides continuous coverage with the help of a few
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CBSs while the data plane provides data plane through the DBS, the DBSs can

be adapted to the traffic load of the network without affecting the basic coverage

provided by the CBSs [162–164]. Fig. 2.7 illustrates the CDSA with an active

DBS and a CBS serving user requests while inactive DBSs are switched off to

save energy.

2.4.2 Cell Switching

This can also be referred to as BS sleeping or BS off/on approach. This energy

saving approach takes advantage of the spatio-temporal variations in the traffic

load of the network to dynamically switch off under-utilised BSs when they are

not serving any user or serving very few user requests [22,160,181]. It is normally

accompanied with traffic offloading which is the process where the traffic demand

of users originally provided by the BSs that are to be turned off are transferred

to the neighbouring BSs in the same or higher tier in order to maintain the

QoS of the users that were originally associated with the sleeping BSs [177].

The cell switching implementation enables the BSs to be operated in an on-

demand manner rather than always on which enables the energy consumption

of the BSs to scale with the traffic load, thus enhancing its EE and preventing

energy wastage during periods of inactivity or very low usage [182]. The cell

switching approach is a very effective approach as it results in significant reduction

in energy consumption compared to other approaches such as antenna muting,

sectorization, and cell zooming. In addition, it requires minimal changes to the

network configuration and it is also cost effective to implement [14,183].

2.4.3 State-of-the-art on Cell Switching

Dynamic cell switching techniques are the most commonly employed methods for

optimising energy consumption in cellular networks because they are the cheapest

to implement and require minimal changes to the network architecture [14, 22,

183]. There are various approaches in the literature for the implementation of

cell switching in UDHN in order to minimise its energy optimisation. Here, a

brief review of the state-of-the-art for energy optimisation in cellular networks is

presented.

The authors in [184] proposed a load-aware SBS switching off/on mechanism

the power consumption in UDNs. The proposed approach considered the follow-

ing:

• the effect of the neighbouring SBSs load on the switching process,
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• the switching energy cost involved in changing the user connection from

sleeping to active SBSs.

To solve these problems, two heuristic algorithms were proposed. First, a central-

ized user association algorithm was developed to minimise the switching energy

cost by ensuring that more users are connected to SBSs that have lower likelihood

of being turned off. Then, a heuristic SBS switching algorithm that considers the

effect of the neighbouring cell load was developed to determine the optimal SBSs

switching strategy that would minimise the total power consumption of the net-

work. The results obtained showed that the proposed approach leads to more

energy savings compared to other heuristic approaches that do not consider the

above two factors.

A neural network approach to cell switching was proposed in [185] to deter-

mine the optimal cell switching strategy that would result in minimal energy

consumption in a HetNet. To achieve this objective, two factors were consid-

ered: i) how to determine the specific periods when the SBSs is to be turned

off; and ii) the optimal combinations of SBSs that need to be turned off during

these periods. Hence, two solution procedures were developed using two neural

network architectures; i) dense neural network (DNN); and ii) recurrent neural

networks (RNN). The first consists of a two-step solution where the DNN is used

to predict the short-term traffic loads of the SBSs to determine when some SBSs

can be turned off, after which the optimal switching pattern is analytically de-

rived. The second solution employs RNN and performs both traffic predictions

and determination of the optimal switching strategy at the same time. Numerical

results reveal excellent performance in terms of energy savings and QoS.

The work in [186] investigated the problem of energy-delay trade-off in 5G

HetNets with multilevel BS sleeping. They considered a scenario where there

is a constraint on the maximum sleeping duration of the BSs due to periodic

transmission of synchronization signals (SS). As a result, different levels of sleep

mode were considered while satisfying the QoS constraints. In addition, the effect

of co-channel interference was taken into consideration during the BSs sleep mode

operation. A distributed Q-learning algorithm was developed to adapt the sleep

mode level to the level of activity in the BSs. Performance evaluation reveals that

more energy saving can be obtained when delay-tolerant users are considered.

A more comprehensive review of the state-of-the-art on cell switching is found

in Section 3.2.
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2.4.4 Research Gap Analysis

The major challenge with cell switching is that it involves a combinatorial problem

which requires the selection of the optimal set of BSs to switch off out of a

possible combination of BSs; it is NP hard, that is, it is difficult to solve, it takes

a reasonable amount of time to solve, and cannot easily be solved using standard

methods. In addition, the complexity of this problem increases exponentially with

the number of BSs deployed in the network [22]. Even though various state-of-art

cell switching techniques have been proposed in literature including conventional

and ML approaches, however, most of these approaches have their own challenges

and limitations.

Conventional approaches such as heuristic algorithms have the advantage of

providing a sub-optimal cell switching solution with less computational over-

head. However, the challenge with heuristic algorithms is that they are hard-

coded, have poor generalization ability and as such are not able adapt to the

dynamically changing network environment envisioned in 5G and beyond UDNs.

Moreover, since the network conditions change dynamically, there is a need for

repeated application of the solution each time there is a change in the condition

of the network, thereby resulting in huge time and computational overhead. Most

times, before these computations are completed and the decision implemented,

the network condition would have changed, thereby leading to sub-optimal results

which would negatively affect the QoS of the network [123,124]. Hence, they are

not suitable for energy optimisation in 5G UDHNs as they could result in poor

network performance.

ML approaches have the advantage of being able to learn hidden user be-

haviours or network characteristics from historical data that cannot be analyti-

cally modelled. Unlike heuristic algorithms, they are able to adapt to changing

network conditions in order to optimise the performance of the network [123–125].

However, they also have their own challenges. For example, RL-based cell switch-

ing approaches, such as Q-learning, usually use tables (Q-tables) to store the

learnt state-action values (Q-values). Hence, there is a Q-table entry for every

action taken by the agent in the network environment. This approach is only

feasible when the network dimension is small or medium. However, when the

network dimension becomes very large, as obtained in 5G UDNs, it would be-

come computationally burdensome to learn the Q-table, as the number of states

or actions would greatly increase. In addition, a large memory would also be re-

quired to store the learnt Q values. As a result, it is not feasible to use Q-learning

for cell switching operation in UDNs [146]. Moreover, the training process of cell

switching methods that employ ANN and DRL algorithms involve a very large
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computation overhead, which makes them unsuitable for real-time network oper-

ation.

Considering the various challenges of the diverse set of methods proposed

in literature as well as the increase in size and complexity of next generation

cellular networks, there is a need for more research work to be carried out in

order to develop scalable and computationally efficient cell switching algorithms

that are suitable for 5G and beyond UDN. Therefore, in Chapter 3 of this thesis,

a contribution to this research direction is made by developing a hybrid algorithm

for energy optimisation.

2.5 Revenue Maximisation in Cellular Networks

In this section, an approach for generating additional revenue for MNOs by ex-

ploiting the vacant spectrum that is made available from the cell switching process

and leasing it to other network operator for IoT applications, smart grid, etc. is

discussed. The state-of-the art on cell switching and spectrum leasing alongside

research gap analysis are also presented.

2.5.1 Limitations of Cell Switching

Although cell switching is a very effective method for minimizing the energy

consumption of cellular networks, it also results in spectrum under-utilisation

as the spectrum that was originally occupied by the BSs that are turned off

remains dormant during periods of their inactivity. This dormant spectrum can

be exploited to serve other applications through spectrum leasing and by doing

so the spectrum can be properly utilised while generating additional revenue to

the MNOs [187].

2.5.2 Spectrum Leasing

Spectrum leasing is the process where spectrum licensed holders and users (also

known as primary network (PNs) or primary users (PUs)) lease their spectrum

to unlicensed networks or users (also known as secondary networks (SNs) or sec-

ondary users (SUs)) for certain benefits which could be: i) for monetary gains;

2) for enhanced throughput; and 3) to minimise the power consumption of the

PUs [29]. The first case is of interest in this thesis. By spectrum leasing, the

dormant spectrum from cell switching operation can be exploited by SN opera-

tors who require a smaller amount of spectrum for their data transmission and
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cannot afford to purchase a spectrum license like the PN operators. This is be-

cause spectrum is normally auctioned by the telecommunication regulatory body

in each country (e.g., Office of Communications (Ofcom) in the UK) at a very

expensive rate. Hence, spectrum leasing results in enhanced spectrum utilisation

and additional revenue to the PN operators, since it has been observed that the

licensed spectrum is not always fully utilised most of the time [188]. The spec-

trum purchased by the SN from the PN can be used to provide data services

which are delay tolerant (DT) such as meter readings, health information from

wearables, etc., and do not require real-time data transmission. It can also be

used to provide non-delay tolerant (NDT) services such as location and traffic

update services, voice calls, etc., which require real-time data transmission for

quick decision making. Therefore, the PN operator can gain revenue both from

energy cost savings due to dynamic cell switching and from leasing the dormant

spectrum of the BSs that are turned off to the SN.

2.5.3 State-of-the-art on Cell Switching and Spectrum Leas-

ing

Various approaches to spectrum leasing have been proposed in the literature [189].

A few of these techniques are briefly discussed in the following paragraphs. The

authors in [190] considered the problem of the spectrum leasing and spectrum

allocation to obtain the best leasing price and PU-SU pair while improving the

spectral efficiency of both users. To achieve this objective, the problem was

broken down into three parts:

• How to pair the PUs with the SUs?

• How to determine the best spectrum leasing price?

• How to properly allocate the spectrum to the SUs?

The pairing problem was modelled as a marriage between PUs and SUs and

solved using matching theory while Stackelberg game was applied to find the

best spectrum leasing price as well as the spectrum allocation policy. The results

obtained reveal that the best spectrum leasing price, spectrum allocation strategy

and paring between PUs and SUs was achieved, while enhancing the spectral

efficiency of the network.

The work in [191] investigated the possibility of leasing certain parts of TV

white spaces know as high priority channel (HPC) to small cognitive radio wireless

network operator for IoT applications. Their goal was to reduce the HPC leasing
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cost while satisfying varying QoS requirements of IoT applications. The following

steps were considered: i) queuing data packets of delay tolerant IoT applications

until when there is free TV white space; ii) compressing the size of data packets

thereby transmitting data with reduced quality; and iii) how to determine the

minimum spectrum leasing cost for NDT IoT applications. To solve this problem,

an ANN-based online solution was proposed to determine the optimal HPC cost

while respecting QoS constraint which closely approximates the offline solution

proposed in [192].

Regarding cell switching and spectrum leasing, the authors in [193] considered

a cognitive cellular network architecture comprising both PNs and SNs. On one

hand, the PN wants to reduce its energy consumption by turning off some BSs

while ensuring that its QoS is maintained by offloading affected users to the SN

and paying a roaming fee. On the other hand, the SN on its part, wants to

maximise its throughput by leasing the spectrum of the PN for a price. Their

objective was to ensure the collaboration of both networks while optimising the

utilities function of both networks. The utility for the PN is its outage probability

and profit while that of the SN is maximizing its user sum-rate and profit. A

heuristic algorithm was developed to determine the optimal set of BSs to switch

off, as well as the optimal resource allocated to the SN while respecting the

constraints of both networks. The work in [194] is similar to that in [193] except

that in addition to energy saving, reduction of CO2 emission was also considered.

2.5.4 Research Gap Analysis

Although there are many works in literature on spectrum leasing, very few con-

sider the combination of cell switching and spectrum leasing [193, 194]. The few

that consider cell switching and spectrum leasing fail to consider certain network

deployment scenarios and pricing policies which makes their work simplistic and

not suitable for next generation cellular networks. Specifically, a homogeneous

network deployment was considered whereas next generation networks are mainly

HetNets and UDNs. By considering HetNets deployment scenario, the PN can

avoid roaming charges by offloading the traffic of switched off SBSs to the MBS

rather than the SN BSs as considered in previous works. As such, the PN does

not need to depend on the SN for energy saving during the cell switching process

as this would lead to additional charges, which would limit the amount of revenue

that can be generated from spectrum leasing. Also, a more realistic pricing policy

that considers the effects on spectrum and electricity demand on the spectrum

and electricity prices needs to be considered in the pricing policy as it is a better

representation of what is obtainable in real systems.
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All these factors necessitate the extension of existing works using more realistic

network deployment scenarios, and pricing models that are more realistic, and

relevant to next generation networks. The consideration of these factors also

introduces new complexities to the cell switching and spectrum leasing problem.

Moreover, by considering a HetNet with vertical traffic offloading to the MBS

instead of a homogeneous networks with horizontal traffic offloading to the SN

BS as in [193,194], the decision of which set of SBSs to switch off and lease their

spectrum to the SN becomes more complex. This is because, in CDSA, only

one MBS provides umbrella coverage for a group of SBSs, and they must offload

their traffic to it before they can be turned off. However, in the homogeneous

network with horizontal traffic offloading that was considered in previous works,

the BSs individually decides the SN to offload their traffic load and lease or

share their spectrum with before going into sleep mode. Hence, the decision

regarding which set of SBSs to switch off before leasing their spectrum to the

SN is more challenging in the HetNet with CDSA scenario compared to that

considered considered in previous work. Therefore, a new solutions needs to be

developed to address this challenge, and the new solution is presented in Chapter

4 of this thesis.

2.6 Energy Optimisation in UAV-based Cellular

Networks

In this section, various methods of energy saving in UAV-based cellular networks

are briefly highlighted. Then, the UAV positioning approach alongside the state-

of-the-art and research gap analysis are discussed.

2.6.1 Energy Saving Techniques

Similar to fixed cellular networks, four major techniques for energy saving in

UAV-based cellular networks also exist [24, 25]. Thus, in this section, each of

these techniques are highlighted, then energy efficient UAV positioning including

the state-of-the-art and research gap analysis are discussed since it is one of the

methods considered in this thesis.

• Hardware Design: Energy saving based on hardware solutions involves

energy efficient design of UAV motors [26, 74, 77] and more efficient design

of the body of the UAV to enable it to easily overcome air resistance [195].
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• Energy Harvesting: Even though energy harvesting does not directly

translate to energy savings in UAVs, it would enable the UAVs to operate

for a longer period of time when combined with other energy sources such

as battery. For example, solar PVs can be mounted on the UAVs to enable

them to harvest the energy needed to sustain their flight from the sun during

periods of high solar radiation, and then switch to battery during periods

of no sunlight because of the fluctuations in renewable energy sources [90].

Moreover, these type of energy sources are environmentally friendly as they

do produce greenhouse gas emissions.

• Network Operation and Management: One of the ways of minimizing

energy consumption via network operation is through transmission schedul-

ing [196, 197]. Another approach is through power allocation and control

where the the total transmit power of the UAV-BS is minimised while en-

suring the QoS of users are maintained [198].

• Network Planning and Deployment: This involves planning the paths

or designing the trajectories that the UAVs would fly in order to minimise

energy consumption while serving ground user requests within a given re-

gion [48,75,76]. It also involves finding the optimal position that the UAVs

need to hover, for the case where the UAV is to be stationed in a particular

location, to serve ground users with minimal energy consumption [199,200].

Energy Saving Enablers

For UAV-based cellular networks, the energy saving enabling technologies include:

RIS [201–206], mobile edge computing (MEC) [207–210], network slicing/network

function virtualization [211–213], cooperative communications [214–217], and en-

ergy harvesting technologies [216,218–220].

Since energy efficient UAV positioning is one of the methods considered in

this thesis, it is discussed in more details in the following paragraphs.

2.6.2 UAV Positioning

This involves the determination of the optimal position and altitude that the

UAV-BSs need to be placed for the case where the UAV-BSs is deployed in a

stationary position in order to serve ground users with the minimal energy con-

sumption. For the case where the UAV-BS has to fly but stop at certain points

along it routes to provide coverage, optimal positioning entails finding the op-

timal hovering locations along the UAV-BS path that would result in minimum
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energy consumption. In this regards, a few works have considered different UAV

placement techniques by varying the altitude, coverage radius, tilt angle, etc., of

the UAV-BSs for enhanced EE [199,200,221].

2.6.3 State-of-the-art on Energy Efficient UAV Position-

ing

There are many works in the literature related to energy optimisation in the UAV-

based cellular networks [24, 222]. As regarding UAV positioning for minimizing

energy consumption in UAV-based cellular networks, a brief review of the state-

of-the-art is presented in the following paragraphs with the goal of highlighting

the various categories of existing works.

The authors in [221] proposed an energy-efficient 3D positioning strategy for

UAV-BSs to minimise the UAV-BS’s energy consumption. The following factors

were considered:

• both communication energy (energy required for data processing and trans-

mission) and propulsion energy (energy required for hovering the UAV-BS).

• directional antennas whose tilt angle can be adjusted.

The gradient descent algorithm was applied to determine the tilt angle and min-

imum altitude that would optimise the total energy consumption of the network

while improving the coverage and the throughput. The results obtained revealed

that a significant amount of energy savings can be obtained compared to other

methods that did not consider antenna tilting.

The work in [223] considered the problem of determining the optimal UAV-

BS hovering locations along the UAV-BS flight path that would maximise the

EE such that the UAV battery life can be extended while enhancing network

throughput. To achieve this objective, the UAV was made to fly through a

defined path with designated hovering points. At each designated hovering point,

the distance between each UAV-BS and ground user was obtained in order to

calculate the SNRs, which were then applied to determine the power allocation

for each ground user and the UAV-BS. Then, the power allocation and UAV-BS

locations are used to derive the maximum EE metric. The above procedure is

applied to all designated hovering points and the hovering point that gives the

maximum EE value is selected as the optimal. The performance evaluation of

the proposed method reveals that a considerable enhancement in EE is achieved

with a reduction in the throughput.
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Recently, an alternative deployment approach where the UAV can be made

to land in some designated locations, known as landing stations (LSs), such as

surrounding tall buildings, lamp stands or specially designed platform has been

proposed in [224], wherein the authors utilised the LSs to maximise the service

time of a UAV-BS and sum-rate of the network. The authors in [225] performed

a capacity comparison between hovering and landed mm-wave UAV-BSs in order

to enable the selection of the preferred deployment option.

A more detailed review of the state-of-the-art on energy efficient UAV posi-

tioning can be found in section 5.2 while a comprehensive review of the energy

optimisation techniques in UAV-based cellular networks from conventional to ML

approaches along with energy saving enablers and open research challenges has

been provided in [226], as part of the research outputs of this thesis.

2.6.4 Research Gap Analysis

Although the use of UAVs for wireless communications has attracted much re-

search attention, most applications of UAVs for wireless communication provi-

sioning are not feasible as researchers fail to consider some vital aspects of their

deployment, especially the energy requirements of both the UAV and communi-

cation system. This is because the huge energy consumption overhead involved

in flying or hovering UAVs makes them less appealing for green wireless commu-

nications [24]. Moreover, the various approaches proposed to reduce the energy

consumption of the UAV including optimal placement, trajectory optimisation,

transmission scheduling and resource allocation do not result in significant energy

reduction, as most of these works consider the UAV to be flying or hovering while

serving user demands.

Even though the LS concept was introduced in [224], certain aspects of its

deployments have not been considered yet. For example, an in-depth analysis

of the suitable locations within the network where these LSs can be located as

well as its impact on the various network performances metrics such as energy

consumption, coverage probability, and throughput is yet to be investigated in

the literature. The LS has a huge energy saving potential because it eliminates

the energy consumption due to constant hovering or flying the UAV-BS over the

service area. Hence, in Chapter 5 of this thesis, an in-depth evaluation of the LS

concept with respect to energy consumption, coverage probability and throughput

is carried in order to ascertain its viability for green wireless communications.
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2.7 Summary

In this chapter, various types of BS deployment within the RAN including ho-

mogeneous, heterogeneous, ultra-dense, and UAV-based networks were first dis-

cussed because of the major contribution of BSs to the energy consumption cellu-

lar networks. Then, the power consumption components of fixed and UAV-BS as

well as the power models for quantifying the power consumption of both types of

BSs were presented. Afterwards, three main categories of energy optimisation al-

gorithms including analytical, conventional approaches and ML approaches were

briefly discussed. Finally, energy optimisation in both fixed and UAV-based cel-

lular networks, and revenue Maximisation in cellular networks were discussed

including a review of the state-of-the-art on cell switching, cell switching and

spectrum leasing and energy efficient UAV positioning approaches alongside re-

search gap analysis.



Chapter 3

Cell Switching in UDHNs

3.1 Introduction

The proliferation of mobile phones, increasing use-cases of IoT devices, and the

development of advanced mobile applications which are demanding in terms of

bandwidth and latency, have led to increase in the demand for mobile services.

This has made MNOs to continually increase their capacity through the deploy-

ment of more BSs, thereby resulting in increased energy consumption [227]. In

addition, the introduction of network densification to cater for the expected 1000

times increase in capacity of 5G network compared to legacy networks would

further heighten the energy consumption of the network [183,228,229]. From an

economic and environmental perspective, the aforementioned surge in capacity of

5G and beyond networks must not be done at the expense of huge energy con-

sumption overhead. This is because increased energy consumption would result

in more operational expenditure in the form of increased electricity bills as well

as environmental degradation due to increased CO2 emission, as the energy used

to power the BSs is mainly obtained from fossil fuels [14, 230]. Even though cell

switching has been identified as a major approach to energy savings in UDN, the

development of suitable optimisation frameworks that has been quite challenging.

This is because the scale and complexity of the next generation networks requires

that scalable and computationally efficient solution to be developed.

The pursuit of the development of a scalable and computationally efficient cell

switching solution began with the use of RL algorithm, which is very effective

in making decisions out of a wide range of options and have been successfully

applied in other fields, such as robotics, games, etc [231, 232]. This is because

they can adapt to changing environments through learning and then decide the

action that would yield the best desired performance. In this regard, the few

related works that have employed RL for cell switching in HetNets were first

50
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considered. The authors in [177,233] had proposed the use of Q-learning for cell

switching and traffic offloading in HetNets. It was observed that these works did

not consider CDSA but rather adopted the conventional architecture. In addition,

they only considered horizontal traffic offloading; which is the case where the SBS

transfers its traffic to neighboring SBSs before switching off. Furthermore, they

did not consider the increase in the transmission power of the SBSs due to traffic

offloading when estimating the power consumption of the network. The challenge

with horizontal traffic offloading1 is that the neighbouring BSs may not be close

enough or have sufficient capacity to accommodate the traffic of the BSs that are

switched off, thereby resulting in QoS degradation. Also, since the neighbouring

BSs have to increase their transmit power to accommodate the traffic of switched

off BSs, this leads to increased energy consumption in the network.

Hence, improving on their work, an RL-based cell switching scheme using

Q-learning is proposed that employs vertical traffic offloading, which is the case

where the traffic load of the BSs to be turned off are transferred to the MBS, a

higher tier BS, in a HetNet with CDSA during periods of low traffic load before

turning them off in order to maintain QoS of the network. In addition, the

increase in energy consumption of the MBS due to offloaded traffic as well as

the amount of radio resources in the MBS is considered in order to develop an

efficient switching mechanism. This is to ensure that the MBS can accommodate

all the traffic load of the SBSs that are to be turned off before switching them

off. However, Q-learning use tables to store the learnt state-action values which

becomes extremely difficult to learn and requires a very large memory to store

the learnt table when the state or action becomes very large [146]. Hence, it is

only suitable for small to medium sizes networks but is not feasible for UDNs

with massive number of SBSs.

Afterwards, an ANN-based cell switching framework was developed. ANN are

known as universal approximators because they are able to find the relationships

between complex non-linear functions and are also known for their excellent gen-

eralization ability [234], hence they have found numerous applications in the field

of wireless communications [123]. In addition, ANN models can be trained offline

and then plugged into the network in order to enhance real-time decision making

1By adopting HetNet with CDSA and vertical traffic offloading in this work rather the
conventional HetNet and horizontal traffic offloading, the decision of which set of SBSs to
switch off is more challenging. This is because in vertical traffic offloading, the MBS has to
decide which combination of SBSs, out of all the possible combination of SBSs, to switch off
in order to save energy while considering its ability to accommodate the traffic of the switched
off SBSs. However, for horizontal traffic offloading, considered in previous works, each SBS can
decide which neighbouring SBS to offload its traffic load to, which makes the cell switching
decision easier to arrive at.
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by reducing the network delays [123]. A few research works have been carried

out regarding the application of ANN for cell switching purposes [185, 235, 236].

However, these previous works only consider simplistic network scenarios where

very few SBSs are deployed, hence, such solutions may not be suitable when net-

work dimension becomes very large and complexity increases. In addition, only

one type of SBS was considered in the aforementioned works which is not the

case in a real network where different types of SBS (RRH, micro, pico, and femto

cell) are deployed, thus making their considered scenarios unrealistic.

Therefore, ANN is exploited to determine the optimal cell switching strategy

in a UDN. Specifically, an ANN-based cell switching framework is developed,

which is referred to as offline-trained online cell switching (OTOcell), to learn

the optimal switching strategy for the SBSs in a UDN. The developed model is

computationally efficient since the training is done offline, after which the trained

model is implemented in the network for real-time decision making. This is par-

ticularly important for UDNs, where the MBSs are already over-burdened with

signalling and computational operations, in which case, adding a cell switch-

ing algorithm on top of these would make their workload more severe. Various

types and numbers of SBSs are considered to validate the robustness and scala-

bility of the proposed solution. However, the proposed ANN-based cell switching

framework depends on a heuristic algorithm to determine the optimal switching

pattern which it utilises as dataset to train the ANN model. Hence, any error in

the training dataset would propagate through the ANN model, thereby resulting

in a more sub-optimal result. Although the model can be trained online before

applying for real-time cell switching, as the network size increases, the model

training becomes increasingly difficult and would require more time and compu-

tation resources. Since the model has to be updated frequently for enhanced cell

switching, the ANN-based cell switching would not be suitable for cell switching

in large scale networks such as UDNs. Therefore, there is a need for a scalable

and computationally efficient solution to be developed, that can be applied to

both small and large scale networks.

As far as optimal cell switching solutions are concerned, the ES, also known

as the brute-force algorithm always guarantees to find the optimal result because

it sequentially searches all the possible combination of SBSs and selects the best

combination to switch off [237]. However, the computational complexity of the

algorithm increases exponentially as the numbers of SBSs increases, although

it is computationally efficient and generates the optimal results very fast when

the number of SBSs are few. An alternative approach could be obtained by

compromising slightly on the optimality of ES while achieving a solution that is
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both scalable and of reduced complexity by first clustering the SBSs into smaller

groups to reduce the search space by clustering using k-means algorithm, and

then applying ES to each cluster separately in order to determine the set of SBSs

to switch off per time.

Finally, a cell switching framework known as Threshold-based Hybrid cEll

swItching Scheme (THESIS) that combines unsupervised ML scheme and ES al-

gorithm for energy optimisation in UDHN is proposed. The proposed method

combines the advantages of unsupervised learning in terms of scalability and low

complexity and ES algorithm in terms of optimality, to produce a cell switch-

ing strategy that is more computationally efficient but sub-optimal to the ES

solution. In other words, the proposed approach tries to find a good trade-off

between the performance and computational complexity, such that the compu-

tational complexity is significantly reduced without compromising much on the

performance. In addition, the proposed framework can be applied even when the

number of SBSs deployed in the network becomes very large, making it scalable

and eliminating the limit of network size while applying the algorithm. This

makes THESIS more applicable and feasible for the next generations of cellu-

lar communication networks, where the number of BSs are expected to be a lot

higher than the legacy networks through the concept of network densification.

3.2 Related Works

There are various approaches in the literature for the implementation of cell

switching in UDHN to minimise its energy optimisation. They can broadly be

classified into analytical, heuristic and ML approaches.

As regards analytical approaches for cell switching, the authors in [238] pro-

posed an analytical model to determine the number of SBSs that can be switched

off with vertical traffic offloading was proposed using two sleeping schemes (ran-

dom and repulsive scheme). In the random scheme, the SBSs have equal proba-

bility of being turned off while in the repulsive scheme, only the SBSs closest to

the MBS are turned off. The authors in [239] proposed a SBS switching scheme

to minimise the energy consumption in a HetNet based on stochastic geometry.

For heuristic methods, the work in [240] considered the joint optimisation of

the area spectral efficiency (ASE) and EE of a two-tier UDHN. A firefly algorithm

was developed to determine the optimal system parameters that would jointly

optimise the ASE and EE of the network. The authors in [241] proposed an

energy efficient traffic offloading framework for a HetNet based on queuing theory.

A heuristic based traffic offloading algorithm was developed to maximise the EE
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of the network while ensuring that the stability of the queues is maintained.

Three heuristic algorithms were proposed in [242] for the Maximisation of the

EE of a dense HetNet without compromising the QoS of users. In [243] the

authors considered the problem of SBS power control and user association in

HetNets and proposed a heuristic algorithm to determine the switching pattern

of redundant SBSs during periods of low traffic. In [244], the authors proposed

an SBS switching mechanism based on particle swarm optimisation to minimise

the energy consumption of a HetNet without violating QoS constraints. An SBS

switching mechanism for EE optimisation in HetNet using genetic algorithm was

proposed in [245] while respecting QoS constraints. A novel SBS wake up scheme

was developed in [246], where the SBSs offload their traffic to MBS before entering

into sleep mode while an optimal number of SBSs are woken up to accommodate

the increase in traffic load during peak traffic periods.

The authors in [184] considered the problem of user association and dynamic

SBSs switching in order to minimise the energy consumption in UDNs while con-

sidering the switching energy cost. Two heuristic algorithms were proposed: the

first is a centralized user association algorithm for minimizing the switching cost

while the second is an enhanced heuristic for further reduction in the energy con-

sumption of the network. A cooperative energy optimisation scheme for 5G UDNs

using graph theory was proposed in [247]. The network was first represented as

a graph after which the graph theory is employed to determine the switching

off/on pattern of the SBSs in the network. The work in [248] proposed an EE op-

timisation scheme for a two-tier HetNet via BS switching and traffic offloading.

A distributed algorithm based on message-passing was developed to minimise

the over-all power consumption of the network while maximizing the sum rate.

In [249], the problem of power minimisation in cached-enabled BSs was investi-

gated while considering the limitation in radio resources and BS storage capacity.

Three heuristic algorithms were developed to determine the sub-optimal band-

width and user association strategy as well as to minimise the power consumption

of the network.

Regarding Q-learning methods, the work in [250] considered the problem of

energy consumption and CO2 emission of a HetNet deployment in a smart city

context. A Q-learning-based cell switching framework was proposed to reduce the

energy consumption and CO2 emission levels of the network. In [251], a mobil-

ity management based energy optimisation framework for HetNets was proposed

using both supervised and Q-learning algorithms. The proposed framework uses

supervised learning alongside historical dataset of bus passengers passing through

the HetNet to predict the traffic loads of the BSs while Q-learning was used to
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determine the cell switching and traffic offloading strategy that would minimise

both the energy consumption and CO2 emission level. The work in [186] investi-

gated the trade-off between energy consumption and delay in a HetNet where the

sleep mode of the SBSs can be adjusted to different levels for the purpose of en-

ergy saving while ensuring that the QoS is maintained. A distributed Q-learning

algorithm was developed to adapt the sleep level of the SBSs to their activity

level while considering co-channel interference. The author in [252, 253] apply

Q-learning algorithm for adaptive sleep mode management in order to optimise

energy consumption of BSs in 5G homogeneous network deployment. In [177],

centralized and decentralized Q-learning algorithm was developed to optimise

the traffic offloading and SBS switch off process. A transfer actor-critic (TACT)

model to optimise the dynamic switching off/on of SBSs in order to match traffic

load with energy consumption in a HetNet was developed in [233].

A location-aware BS sleeping strategy that jointly optimises the trade-off be-

tween energy consumption and delay in a 5G HetNet was introduced in [254].

A Q-learning algorithm which considers the location and velocity of the users in

determining the sleep mode level of the BS was developed to maximise the en-

ergy delay trade-off of the network. In [255], the authors proposed a cell switching

mechanism using fuzzy Q-learning in order to maximise the EE of a HetNet with-

out compromising the QoS. In addition, to avoid coverage holes when some BSs

are switched off, a D2D communication mechanism was also incorporated into

the sleeping mechanism. The authors in [256] proposed a dynamic framework

for adjusting the load and energy consumption of the SBSs in a HetNet. The

framework uses Q-learning to learn the optimal offloading policy required to turn

off the redundant SBSs in the HetNet while balancing the load of the remaining

SBSs. A wake-up strategy for BSs with hybrid energy supplies was proposed

in [257]. A fuzzy-logic algorithm which considers the solar energy of the BS as

well as the traffic demand of the network was developed to determine the optimal

wake-up strategy.

In [258], an online learning framework was proposed to jointly optimise the

energy consumption and interference of a HetNet. The problem was first mod-

elled as a contextual bandit problem and than a Bayesian response estimation

and threshold search (BRETS) algorithm was developed to control the off/on

status of the SBSs while maintaining the QoS. The authors in [259] introduced a

learning policy for EE optimisation in HetNets by dynamically turning off/on the

SBSs in order to adapt them to the traffic demand at different times of the day.

The first modelled the network traffic as a Markov decision process (MDP) and

developed modified upper confidence bound algorithm using restless multi-armed
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bandit for learning the optimal switching policy. The authors in [237] developed

a RL based cell switching framework using SARSA algorithm with value function

approximation to determine the optimal switching policy that would minimise

the energy consumption in an ultra dense network while ensuring that the QoS

of the network is maintained.

Considering ANN and deep RL methods, the authors in [235], proposed an

ANN algorithm to determine the switching pattern that maximises the EE of

the network while ensuring that the minimum bit rate requirements of the users

is satisfied. The authors in [185] applied ANN for traffic prediction and cell

switching decision with two different ANN architectures. The authors in in [260]

proposed an ANN based cell switching framework for energy optimisation in UDN

was proposed. The proposed framework is able to determine the optimal switch-

ing strategy that would result in minimum energy consumption without violating

the QoS of the network. The authors in [261] proposed an online context-aware

power optimisation scheme for SBSs in a cache-enabled HetNet. The energy

minimisation problem was first modelled as a multi-armed bandit problem then

a Bayesian neural network was used to determine the optimal switching pattern

that would optimise the energy consumption of the network. A deep RL and

traffic prediction framework was designed in [262] for determining the sleeping

strategy in a RAN. Their approach uses geographic and semantic spatial-temporal

network (GS-STN) for traffic forecasting while the BS sleeping problem was for-

mulated as an MDP and solved using actor-critic RL.

The authors in [263] proposed an energy-aware traffic offloading scheme for

EE optimisation in HetNets. In the proposed scheme, the traffic demand of

the network was first predicted using deep neural networks after which the traffic

offloading strategy was obtained using deep Q-networks. The work in [264] devel-

oped a deep RL framework for energy optimisation in a RAN using the dynamic

cell switching approach. A double deep Q-learning network was developed to de-

termine the optimal sleeping strategy that will minimise the energy consumption

of the network while ensuring that the QoS of the network is maintained. The

authors in [265], developed a dynamic BS sleeping strategy, known as DeepNap.

The proposed method employs deep Q-networks to learn the optimal sleeping

policies of the BSs.

For clustering-based cell switching approaches, a cluster-based femto BSs

switching scheme to maximise the EE of a HetNet was developed in [266], wherein

semi-definite programming based correlation clustering algorithm was used to de-

termine the cluster with minimum EE as well as the number of femto BSs to

switch off within the cluster while considering load balancing and probability of
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outage. Similarly, in [267], a cluster-based cell switching scheme for EE optimi-

sation in ultra dense SBS network was proposed while considering the user QoS

and inter-cell interference. The EE problem was first formulated using stochastic

geometry, then k-means algorithm was used to partition the dense SBSs into clus-

ters. In addition, a sorting algorithm based heuristic, was developed to determine

the number of SBSs to switch off in each cluster. The authors in [268] proposed

cluster-based sleeping strategy to minimise the power consumption and interfer-

ence in dense HetNets using clustering algorithm. In their proposed method, the

SBSs are clustered based on their interference level, after which the clusters with

large interference values are selected. Then, a binary particle swarm optimisa-

tion algorithm is applied to each of the selected clusters to determine the sleeping

strategy.

Despite the fact that various approaches for cell switching have been proposed

in the literature as discussed in the preceding paragraphs, these approaches have

their own challenges that necessitates the development of novel cell switching

solutions. Though heuristic approaches to cell switching have less computation

cost, the often produce sub-optimal results. Moreover, they have poor generaliza-

tion ability which makes them unable to adapt to dynamically changing network

environment. ML approaches have the advantage of been able to learn the hidden

patterns in the network from historical data and are also able to adapt to dy-

namically changing network conditions unlike heuristic algorithms. However, ML

approaches such as Q-learning use tables to store the learnt state-action values,

which limits their application when the network dimension becomes very large.

This is because the size of the state-action value table increases as the network

dimension increases, which makes it computationally burdensome to learn and

would also require a large memory to store the learnt table. Other ML methods

such as ANN and DRL are very computationally demanding to train and as such

would not be suitable for application in UDNs. In addition, those that are based

on clustering, though computationally efficient, produce very sub-optimal results

which could limit the performance of the network.

To tackle these challenges, a lightweight cell switching scheme also known as

THESIS for energy optimisation in UDHNs is proposed. The developed approach

combines the benefits of MLC and ES algorithm to produce a solution whose

optimality is close to that of the ES (which is guaranteed to be optimal), but

is computationally more efficient than ES. As a result, it can be applied for cell

switching in real networks even when their dimension is large. The performance

evaluation shows that THESIS significantly reduces the energy consumption of

the UDHN and can reduce the complexity of finding a near-optimal solution from
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exponential to polynomial complexity.

3.3 Contributions

1. Development of a Q-learning framework for cell switching and traffic of-

floading in HetNets with CDSA while considering the amount of resources

in the MBS and incremental power consumption on the MBS due to traffic

offloading from sleeping SBSs.

2. Development of an ANN-based cell switching framework, which is referred

to as offline-trained online cell switching (OTOcell), to learn the optimal

switching strategy for the SBSs in a UDN while considering different types

of SBSs.

3. Development of a hybrid cell switching framework to minimise the power

consumption of a UDHN with the following objectives:

• THESIS, a scalable cell switching approach based on an unsupervised

ML algorithm (k-means) and ES algorithms is developed for energy

optimisation in UDHN. The proposed method is computationally effi-

cient and produces results that are close to the optimal solution. It can

also be applied to large scale networks where many SBSs are deployed.

• A benchmark algorithm purely based on k-means algorithm is devel-

oped for comparison with the proposed method.

• The quantity of CO2 savings that can be obtained when the proposed

cell switching approach is implemented is also evaluated.

• A complexity comparison of the proposed algorithms with the bench-

mark algorithm is carried out in order to ascertain the computational

efficiency of the proposed method.

• Finally, in order to capture the real life dynamics of the network, the

performance of the proposed method is evaluated through extensive

simulations using traffic data obtained from a real network and com-

pared with other benchmark methods.

In the remaining parts of this chapter, each of the proposed cell switching

optimisation frameworks is detailed from the system model, problem formula-

tion, performance evaluation, results and discussions starting from the Q-learning

framework, followed by ANN-based framework and finally THESIS.
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3.4 Q-learning Assisted Energy-Aware Cell Switch-

ing and Traffic Offloading in HetNets

3.4.1 System Model

MBS

𝑥

𝑦
𝑧

SBS

SBS

SBS

Figure 3.1: Network model comprising a MBS and three SBSs in HetNet deploy-
ment with CDSA (Note that this is a simplified system model of the HetNet with
CDSA. other details of the CDSA are captured in the simulations).

A two-tier HetNet consisting of a MBS and three SBSs as shown in Fig. 3.1,

with CDSA where the MBSs and SBSs operate in dedicated frequency bands is

considered. The MBS is responsible for providing coverage, signalling as well as

low data rate services while the SBSs provide high capacity in hotspot locations

and are linked to the MBS using the backhaul. SBSs are switched off during low

traffic load periods and their traffic offloaded to their associated MBS provided

there is enough radio resources in the MBS to accommodate the offloaded traffic

load.

Power Consumption Model of HetNet

The Earth model [65] for determining the total power consumption of a BS as

expressed in (2.2) is adopted.

A network consisting of BSs (both MBS and SBSs) is assumed with each

having limited number of resource blocks (RBs). Both MBS and SBSs have the

same number of RBs. The load profile of each BS considered to be the proportion

of RBs occupied per minute over a 24 hour period. Hence, for a BS having (MF)

total number of RBs with (Mo) number of RBs occupied per minute, the load

(τi) of the BS per minute as well as the relation between τi, Ptx and Pmax can be

expressed as [65,269]:
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τi =
Mo

MF

=
Ptx

Pmax

. (3.1)

Ptx = τi.Pmax, (3.2)

where i = {1, 2, 3, ...,T}, and i is in minutes.

Combining (2.2) and (3.2) and assuming that Ps is zero when the BS is in

sleep mode, the total power consumption of a MBS can be expressed as:

Pm = Pm
o + ηmτ

m
i Pm

max, (3.3)

where Pm denotes the total power consumption of a MBS, Pm
o denotes the con-

stant power consumption component of the BS when the BS is in operation, ηm

is the load dependent component of power consumption of the MBS, τmi is the

load of the MBS per minute.

The total power consumption of a SBS is given as:

P j
s = P s

o + ηsτ
s
i P

s
max, (3.4)

where P j
s denotes the total power consumption of a SBSs, j = {1, 2, 3, ...Mb}, is

the number of SBSs, P s
o denotes the constant power consumption component of

SBS in active mode, ηs is the load dependent component of power consumption

of the SBS, τ si is the load of the a SBS at every minute.

The total power consumption of the HetNet is the sum of the power con-

sumption of the MBS and all the SBSs under its coverage. It can be written as:

PHetNet = Pm +

Mb∑
j=1

P j
s , (3.5)

where PHetNet, Pm and P j
s is the total power consumption of the HetNet, the

power consumption of the MBS as well as that of the j-th SBS respectively.

3.4.2 Problem Formulation

The aim is to determine the optimal strategy to switch off lightly loaded SBSs

during low traffic periods that will minimise the total power consumption of

the HetNet while considering the availability of radio resources and increase in

transmit power of the MBS due to traffic offloading as constraints. Therefore,
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the optimisation problem can be formulated as:

min
ω∈Ω

P
(
ω
)

s.t.
∑

Noff
s <

(
NT

m −NU
m

)
,∑

P j
s-off > ∆Pm,

(3.6)

where Ω is the set of all possible SBS switching strategies. P
(
ω
)
is the expected

power consumption of the HetNet using any switching strategy ω. The first con-

straint is the radio resource constraint2, which implies that the number of RBs

required to offload the traffic of sleeping SBSs,
∑

Noff
s must be less than the

available number of RBs in the MBS, where NT
m and NU

m are the total number

of RBs and utilised RBs in the MBS respectively. The second constraint is the

dynamic power (power consumption due to transmission) constraint which im-

plies that the power consumption gain
∑

P j
s-off obtained by switching off SBSs

must be greater than the increase in power consumption in the MBS, ∆Pm as

a result of additional load from sleeping SBSs. A RL-based SBS switching and

traffic offloading mechanism is developed in the next session to optimise energy

consumption in the HetNet.

3.4.3 Proposed Q-learning Based Cell Switching Frame-

work

A RL-based cell switching framework is proposed to implement the SBS switch-

ing operation. RL is a risk and reward kind of learning whereby the agent (or

MBS) gets information from the environment and then tries to take action and is

rewarded or penalized depending on whether the action taken is right or wrong.

RL is applied in this work due to its suitability to handle this kind of tasks that

involve making decisions out of a wide-range of options [270]. As an illustration

in our study, the MBS interacts with the network environment, obtains informa-

tion about the traffic loads levels of the SBSs through its backhaul connection

with them and then decides which combination of SBSs to switch off per time.

Hence, RL is able to cope with the requirement for solving this kind of problem

because it can adapt to changing environment through learning and then decide

the action that would yield the best desired performance.

In this work, Q-learning algorithm [146] is adopted. Q-learning is one of the

2In this work, it is assumed that once there is sufficient RBs at the MBS for traffic offloading,
the QoS requirements of the users would be satisfied. However, in real networks, other factors
such as the user distance from the MBS as well as the channel condition must also be considered.
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most popular reinforcement algorithms, and has a proven capability of working

in dynamic environments [149]. There are six main components in Q-learning:

(i) agent, (ii) environment, (iii) action, (iv) state, (v) reward/penalty, and (vi)

action-value table. Agent takes actions by interacting with a given environment

in order to maximise the reward or minimise the penalty. After each action that

the agent takes, resulting state and reward/penalty are evaluated. Then, the

action-value table, which stores the rewards/penalties for all the possible actions

and states, are updated according to (2.11).

Q-learning is an off-policy method, meaning that it follows different policies

in determining the next action and updating the action-value table. The policy

guides the agent in deciding the next action to take and also helps in updating

action-value table. In addition, the policy can be stochastic, i.e., based on a

given distribution (e.g., ϵ-greedy) or deterministic, i.e., based on some predefined

or fixed values (e.g., µ policy). Although ϵ-greedy3 is the base policy, π pol-

icy, where ϵ > 0, is followed in selecting the next action, while µ policy, where

ϵ = 0, is followed in updating the action-value table. Moreover, Q-learning is a

model-free approach, where the agent does not have a prior knowledge about the

environment; instead it interacts with the environment by taking actions.

The motivation for using Q-learning in this work stems from the fact that as

a model free learning algorithm [146], it is suitable for application in dynamic

environments whose statistics continually change, such as the traffic loads of

BSs in a HetNet, and it has low computational overhead compared to other cell

switching heuristic algorithms which mainly employ ES techniques. Hence, it can

lead to a more robust and scalable implementation of BS switching even when the

network size is large. It has also been proven to converge to the optimal solution

most of the time [271].

In designing the SBS switching mechanism, the goal is to find the best switch-

ing strategy i.e., select the best set of SBSs to switch off out of all possible set of

SBSs. This is known as the optimal policy in RL. A simple HetNet deployment

scenario is assumed as a representative case comprising 1 MBS and 3 SBSs which

can later be generalized with more BSs. The environment is the traffic loads lev-

els of the SBSs. The state is related to the optimisation constraint which is the

availability of the radio resources in the MBS for traffic offloading. Two states,

3ϵ-greedy is one of the policies that can be used by a Q-learning agent to learn the optimal
decision during the training phase. This policy selects the action having the highest state-action
value with a probability 1− ϵ ∈ [0, 1] and a random action with probability ϵ.
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δ1 and δ2, are then described as follows:δ1, Cm < Col,

δ2, Cm ⩾ Col,
(3.7)

where Cm is the maximum amount of radio resources available at the MBS and Col

is the amount of radio resources required for the traffic load of the sleeping SBSs

to be offloaded to the MBS. The first state is when the radio resource constraint is

not satisfied and the second state is when the radio resource constraint is satisfied.

The penalty function4, ℜ, is designed to be the total power consumption of the

network as in (3.5):

ℜ(a) = PHetNet(Pm, P
j
s ). (3.8)

The penalty function guides the agent (in this case the MBS) in deciding the

set of SBSs to switch per time. It takes as inputs the power consumption of the

MBS and that of all active SBSs and outputs the total power consumption of the

HetNet. So, essentially, the penalty is the total power consumption of the HetNet.

The goal of the agent is to take actions with lesser penalty, in order to achieve

the aim of this work which is energy minimisation. So actions that encourage

lesser power consumption (lower value of the penalty function) are encouraged,

while those that lead to more power consumption (higher value of the penalty

function) are discouraged. There are eight possible action sets that the agent can

take. These actions correspond to each policy, that is, the set of SBSs that can

be switched off at a given time instant.

The proposed Q-learning framework is deployed at the local controller, located

at the MBS, since the MBS is saddled with the responsibility of controlling the

off/on status of the SBSs under its coverage in the CDSA. The SBSs communi-

cate their traffic load information periodically to the MBS via dedicated control

channel, then the Q-learning algorithm takes the traffic load information of the

SBSs and MBS, alongside the power consumption parameters of the BSs, and

decides which set of SBSs to turn off. The Q-learning algorithm is provided in

Algorithm 5, where χ is the window size for resetting the action-value table.

4The penalty function in the proposed Q-learning framework is the total power consumption
of the HetNet. It comprises the power consumption of the MBS and that of all the SBSs under
it coverage. It is related to the RBs in Table 3.1 because the amount of RBs occupied in the
BS constitutes the load of the BS which ultimately affects the total power consumption of the
BS.
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Algorithm 5: Proposed Q-Learning Algorithm

Input : Traffic loads of MBS and SBSs
Output: SBSs to be switched off

1 Initialize Q(s, a) := 0;
2 for every episode do
3 if episode ≡ 0 (mod χ) then
4 Initialize Q(s, a) := 0;
5 end
6 for iterations do
7 Determine the current state using (3.7);
8 Take an action;
9 Calculate penalties through (3.8);

10 Go to the next state;
11 Update the action-value table with (2.11).

12 end

13 end

3.4.4 Performance Evaluation

In this section, the performance of the proposed Q-learning based cell switching

algorithm is evaluated. The network parameters used for the simulation were

obtained from [65] and are listed in Table 3.1. The learning rate, ζ, is set to

Table 3.1: Simulation parameters for Q-learning based cell switching

Parameter Value

Bandwidth 20MHz
Number of RBs per MBS 100
Number of RBs per SBS 100
Pm
max, P

s
max 20 W, 6.3 W

Pm
c , P s

c 130 W, 6.3 W
ηm, ηs 4.7, 2.6
Number of iterations 100

0.1 while the discount factor, ε, is set to 0.9 [149]. The simulation environment

comprises a MBS and three SBSs. A scenario where horizontal offloading among

the SBSs is not possible as their footprints do not overlap is considered. As

such, vertical offloading from SBSs to MBS is considered in this work. Also the

MBS controls the switching off/on operation of the SBSs under its coverage. The

network is monitored over a 24 hour period with 1 minute resolution, meaning

that the switching operation is performed every minute. A comparison of energy

consumption of the HetNet with and without Q-learning at different BSs traffic

load is carried out. With no Q-learning, no switching mechanism is implemented,
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hence all the BSs are active irrespective of their traffic load level. Then, the energy

consumption gain achieved by implementing the proposed Q-learning based cell

switching algorithm is quantified.

The load of the SBSs, τs, are generated using a uniform random distribution

and can be depicted as τs ∈ [0,ms], where ms is the normalized maximum load

level of the SBSs. Similarly, a uniformly distributed5 random traffic load of the

MBS, τm, is also generated using τm ∈ [0,mm], where mm is the normalized

maximum load level of the MBS. For each simulation, mm is specified while the

load of the SBSs are continually varied. The energy consumption of the HetNet
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Figure 3.2: Total HetNet energy consumption with and without Q-learning where
NL represents energy consumption withoutQ-learning whileQL represents energy
consumption with Q-learning and mm is the normalized maximum load of the
MBS. ζ = 0.1 and χ = 50.

with and without learning is depicted in Fig. 3.2. It can be be observed that there

is a significant reduction in the total power consumption of the HetNet with the

application of the developed Q-learning-based cell switching algorithm. This is

because Q-learning is able to select the optimal set of SBSs to be switched off per

time thereby enabling the HetNet to operate with minimal energy consumption.

Fig. 3.2 also shows that the energy consumption of the HetNet increases as the

traffic load of the SBSs increases. With increasing the traffic load on the SBSs,

the opportunity for offloading the traffic to the MBS reduces due to availability of

limited resources, therefore more SBSs have to be left in active mode in order to

5This is a simplified traffic model that is used in this preliminary work to show the varying
nature of the traffic load of the network. However, the traffic load of real networks follow a
trend that is similar to a normal distribution over a whole day, as the network traffic is lowest
at the morning and night periods, while it peaks towards the afternoon period [20].
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sustain the increased network traffic load. As a result, the HetNet has to operate

at a higher energy consumption rate when the traffic load increases. Also from

Fig. 3.2, the lower the value of mm, the lesser the energy consumption since there

will be provision to switch off more SBSs but higher mm values results in higher

energy consumption. Please note that mm and ms are the maximum values that

the traffic loads of the MBS and SBSs can get to. However, during simulations,

the values of the traffic load of the MBS and SBSs are continually varied. For

example, mm = 1 and ms = 100%, means that the normalized traffic load of

the MBS can vary from 0 to 1 and that of the SBS can vary from 10% to 100%

respectively, during the simulation. It does not mean that the value of mm is fixed

at 1 or that of ms is fixed at 100% throughout the simulation. This explains the

discrepancy between the value of the energy consumption with NL and QL when

mm = 1 and ms = 100%, as the Q-learning algorithm still has opportunity to

switch off some SBSs, since the traffic loads of the MBS and SBSs still fluctuates

at these values of mm and ms.
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Figure 3.3: Energy consumption gain with Q-learning (i.e. percentage reduction
in HetNet energy consumption with Q-learning). ζ = 0.1 and χ = 50. Note that
while the shaded areas in the figure show the confidence levels (minimums and
maximums of 100 runs) of the findings, the straight lines with markers represent
the averages of the runs.

Fig. 3.3 presents the gain in energy consumption as well as the confidence

levels of the results obtained when Q-learning is implemented. Since the findings

in Fig. 3.3 are obtained using the results of Fig. 3.2, the confidence levels are

only presented in Fig. 3.3 for the sake of simplicity of the presentation. The

energy consumption gain is the percentage reduction in energy consumption of
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Figure 3.4: Performance impacts of learning rate, ζ and the window size for
resetting the action-value table, χ, on Q-learning convergence. The maximum
traffic loads for both MBS and SBSs (mm and ms) are set to 0.5. The results are
the averages of 100 runs.

the HetNet due to the application of the proposed framework. Similar to the

observation in Fig. 3.2, the power consumption gain reduces with increasing the

SBS load, as the probability of switching off SBSs reduces with increasing traffic

load. Fig. 3.3 also shows that higher energy consumption gain is obtained with

lesser mm values but the gain decreases as the value of mm increases because more

switching opportunities exits when the maximum load of the MBS is low. The

simulation results reveals that an energy consumption gain of up to 50% can be

achieved with the proposed Q-learning framework.

The experimental proof of convergence of the proposed Q-learning algorithm

and the impact of ζ, and χ, for initializing the action-value table are shown

in Fig. 3.4. The main idea of initializing the action-value table with w is to

decrease the computational expense of Q-learning implementation. Ideally, the

action-value table should be initialized once at the beginning of the implementa-

tion, and kept the same until the end in order to reduce the computational cost.

When building the action-value table, environment learning takes some time in

the beginning; however, once the environment is learnt, minor changes in the

built action-value table would be enough for Q-learning to adapt itself to new

conditions. Nonetheless, this is only the case for gradually changing environ-

ments, where Q-learning adapts itself easily. Since the traffic loads of the MBS

and SBSs are determined in a random manner, it results in abrupt changes in the

environment of interest, making the built action-value table no more valid, as the

experienced environment might be significantly different from the learnt one.

Initializing the action-value table at every episode could be an approach for
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this kind of abruptly changing environments; however, it comes with the expense

of computational burden, since it makes Q-learning learn the environment at each

episode. Thus, instead of initializing the action value-table at each episode, it

could be initialized at every χ episodes in order to save from the computational

cost. However, there is a trade-off between the performance of Q-learning and

the computational cost, making the selection of proper ζ and χ quite critical.

There are two main takeaways that can be inferred from Fig. 3.4: 1) Compar-

ing Fig. 3.4a and Fig. 3.4b, smaller χ values give better results in terms of the

performance ofQ-learning, as the action-value table learnt just after the initializa-

tion is not valid for upcoming episodes due to abrupt changes in the environment,

resulting in performance degradation. 2) Fig. 3.4a reveals that having smaller ζ

value is better given that Q-learning starts focusing on the new observations more

with decreasing ζ. Therefore, in this work, χ and ζ are selected as 50 and 0.1,

respectively.

3.4.5 Limitations

Q-learning algorithm can be used for real-time cell switching as it has the ability

to adapt to changing network traffic condition to learn the optimal cell switching

strategy that will lead to minimum energy consumption in the network. However,

its implementation involves learning a Q-table entries for every state-action pair.

For large networks involving many BSs, the number of actions for any given state

becomes very large and very computationally demanding as a huge Q-table has

to be learnt. In addition, a very large memory is needed to store the learnt Q-

table [146]. As a result, this solution can only be applied to small or medium

size networks. Another attempt to develop a solution that can be applied to

large scale networks by handling the challenges associated with Q-learning-based

cell switching scheme is considered. In this regard, an ANN-based cell switching

framework is developed because of the capability of ANN algorithm to serve as

a universal approximator and its ability to be trained offline and implemented

online.
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Figure 3.5: A UDN comprising a MBS and different types of SBSs

3.5 Load-Aware Cell Switching in Ultra-Dense

Networks: An Artificial Neural Network Ap-

proach

3.5.1 System Model

A heterogeneous UDN, with CDSA, comprising both MBS and SBSs is consid-

ered. Four types of SBSs (RRH, micro, pico, and femto cell) are considered in the

work. The MBS—which encompasses the footprints of the SBSs—is constantly

kept on, and also orchestrates the switching operation of the SBSs via its back-

haul connection to them. The SBSs, on the other hand, can be turned off/on

based on their traffic load and are responsible for handling high data traffic de-

mands. Vertical traffic offloading is considered, such that the traffic load of the

SBSs that are switched OFF are offloaded to the MBS to ensure that the QoS of

the offloaded users are maintained.

Power Consumption Model

The power consumption model of a BS proposed in [65] and previously defined

in (2.2) is adopted.

The total power consumption of the UDN comprises the power consumption

of the MBS and that of all the SBSs deployed under its coverage. This can be

expressed as:

Ptot = Pm +

Mb∑
j=1

Ps,j, (3.9)

where Ptot, Pm and Ps,j are UDN’s total, MBS’s, and j-th SBS’s power consump-
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tion, respectively.

3.5.2 Problem Formulation

The aim of this research is to select the optimal combination of SBSs to switch

off, during periods of low or no traffic in order to minimise the total power con-

sumption of a UDN while ensuring that the QoS of the users originally connected

to the switched off SBSs are maintained by the MBS.

Hence, the optimisation objective6 can be defined as:

min
ω∈Ω

Ptot (ω)

s.t. τ̂m ≤ 1.
(3.10)

where ω is the selected SBS switching policy, while Ω is the set of all the possible

SBS switching combinations. PT (ω) is the expected power consumption of the

network with ω switching policy. τ̂m is the traffic load of MBS after the offloading

is complete, and is given as

τ̂m = τm +

Mb∑
j=1

τs,jΓj, (3.11)

where τm and τs,n are the original traffic demands (i.e., before offloading) of MBS

and j-th SBS, respectively, and Mb is the total number of SBSs in the network.

Γj is a control parameter, which is responsible for offloading the traffic load of

only the switched OFF SBSs, such that

Γj =

{
1, if SBSj is OFF

0, if SBSj is ON,
(3.12)

where SBSj is the j-th SBS.

The constraint in (3.10) is to ensure that there must be sufficient capacity in

the MBS to accommodate both the original traffic demand of the MBS, τMBS,

and the total traffic demand of all the SBSs that are switched OFF in order to

maintain the QoS.

6Please note that only the most important constraint, which is the availability of offloading
capacity at the MBS, has be included in (3.10) to avoid repetition. However, all the other
constraints in (3.6) also apply here. All these constraints alongside the need to select the optimal
combination of SBSs to switch off per time out of all the possible combinations, necessitates
the use of ML in this work.
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3.5.3 Proposed ANN-Based Cell Switching Framework

Most of the cell switching solutions developed using heuristic approaches, such as

ES or genetic algorithm, are not suitable for real-time implementation, particu-

larly in networks with large dimensions because they are usually computationally

demanding. As a result, before these algorithms decide which set of SBSs to

switch off/on and execute the decision, the network state would have changed7,

thereby leading to sub-optimal switching decision and delays.

However, these heuristic approaches can be combined with ANN to accelerate

the computation of the optimal cell switching strategy. The proposed frame-

work is built upon two basic observations: 1) cell switching can be considered to

be a problem of deciding the mapping between the traffic demand and optimal

switching pattern; 2) ANN are popularly referred as universal function approxi-

mators, implying that they can learn the mapping between almost any input and

output [234].

Based on these observations, an offline-trained online cell switching (OTOcell)

framework is proposed to determine the optimal switching strategy that maps the

traffic demand of the BSs to the optimal cell switching pattern. The proposed

OTOcell framework is summarized in Fig. 3.6. The traffic loads of the MBS

and all the SBSs associated with it are collected and stored in the Traffic Load

Database. The traffic loads are then passed to the Training Dataset Generator

which consists of the ES algorithm, and Input/Output Mapper. The ES algorithm

uses the optimisation function in (3.10) to decide the optimal set of SBSs to

switch off/on per time while the Input/Output Mapper prepares the training

dataset—which includes the traffic loads, and optimal switching combinations.

The training dataset is then transferred to the Offline Model Generator for ANN

model training, validation and testing.

The justification for using the proposed framework is twofold: 1) once the

ANN model is fully trained8, the optimal cell switching pattern can be obtained

in real-time, that is, whenever the network status changes, without resorting to

7In this work, the dynamics of the network environment is captured by the traffic model
and the distribution of the SBSs employed. However, since this is this a preliminary work, a
random traffic and a few SBSs are considered. The main work in 3.6 considers many SBSs and
a real network traffic model [272].

8The mechanism behind the training process of the proposed ANN model is that it has to
be exposed to sufficient data from the network over a long period, such that the environmental
dynamics of the network would have been fully learnt by the model. Hence, even though it is
trained offline, and implemented online, it would still be able to perform effectively well in the
real network due to the periodic and repetitive nature of network traffic [20]. However, there is
also room for model update, a situation where a copy of the model is retrained and parameters
fine tuned periodically with new data generated by the network in order to enable it to be able
to capture recent occurring network conditions that was not previously captured in the original
dataset it was trained with.
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Figure 3.6: Overview of the proposed OTOcell framework.

computing the optimisation objective afresh; 2) both training dataset generation

and the ANN training stage, which are the computationally intensive processes,

can be done offline, thus enabling the trained model to be implemented for real-

time cell switching without additional computational overhead and delays to the

network.

The ANN model utilised is a feed-forward architecture comprising one input

layer, three hidden layers (HLs), and one output layer (OL). The number of

neurons in the input layer is determined by the input features of the training

dataset (number of SBSs and MBS), the number of neurons in the HL are selected

empirically by trying different combinations, and the OL neurons is given by 2Mb ,

where Mb is the number of SBSs. The activation function for the HL neurons

is rectified linear unit (ReLU) while that of the output neurons is softmax. The

activation function is a set of rules that determines whether a neuron would be

activated or not when it receives an input. ReLU activation function can receive

any real value as input, but is activated only when the value of the input is greater

than 0. Its superior training performance makes it a preferred choice over other

activation functions at the HL neurons. Softmax activation function maps input

to a set of probabilities, as such they are used in multi-classification problems

consisting of more than one output classes [273].

The function of the ANN is to learn the mapping between the SBS traffic de-

mands and the optimal switching pattern through training. The training process

involves adjusting the ANN parameters, using gradient-descent algorithms, such
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Table 3.2: Parameters for the developed ANN model

Parameter Scenario 1 Scenario 2

HLs, Neuron size 3, 128 X 128 X 128 3, 128 X 128 X128
OL neuron size 16 4096
Learning rate 0.0001 0.001
Batch size 30 50
Epochs 1000 1000
HL activation function ReLU
OL activation function Softmax
Loss function Categorical-crossentropy
optimiser Adam

that the difference (error) between the expected output (i.e., predicted output)

and the actual output (label) is as close to zero as possible. This error is usually

estimated using a loss function and in this case, the categorical cross-entropy

function is employed. The trained cell switching model is then transferred to

the Real-time Switching Policy Maker for real-time SBS switching.

3.5.4 Performance Evaluation

Simulation Scenario and Data-Set Generation

Two simulation scenarios, Scenario-A and Scenario-B, with different number of

SBSs are considered to test the performance of the proposed model on varying

network sizes. Both scenarios consists of 1 MBS, but Scenario-A has 4 SBSs (1

of each type of SBBS), while Scenario-B has 12 SBSs (2 RRH, 3 micro, 4 pico,

and 3 femto cells)9. The traffic load of both MBS and SBSs are generated using

uniform random distribution model, such that τm ∈ [0,mm] and τs ∈ [0,ms] where

mm,ms are the maximum normalized loads of the MBS and SBSs, respectively.

In Scenario-A, BS switching pattern were generated for 7 days with one-minute

resolution using ES amounting to about 10,000 observations, while Scenario-B

was for 35 days10 resulting in about 50,000 observations. For the remaining

simulation parameters, the values in [65] are adopted.

ANN Training and Testing

For Scenario-A, two datasets—each comprising about 10,000 traffic load samples

of the BSs and their corresponding optimal switching patterns—were used for

9The number of each type of SBS was selected randomly.
10More dataset is generated in Scenario-B because the increase in network dimension and

complexity makes the training process more difficult.
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training and testing the proposed model. For Scenario-B, one dataset compris-

ing about 50,000 traffic load samples and their corresponding optimal switching

patterns was utilised, out of which 80% was used for training and 20% for test-

ing. The training of the model in both scenarios is carried out using the Adam

optimisation algorithm [274]. Table 3.2 summarizes the parameters of both mod-

els. Upon successful training of both models in each scenario, the trained models

are then applied to the test dataset in order to evaluate the performance of the

trained models.

Results and Discussions

Figs. 3.7a and 3.7b present a comparison of the total power consumption of the

UDN, for both scenarios of OTOcell versus two benchmark approaches: 1) All-

ON, which is the conventional approach where no switching is implemented, that

is, all the SBSs and MBS are constantly kept on; and 2) ES approach, which

tries to find the best switching policy by considering all the possible switching

combinations and selecting the one that results in the least power consumption

while the constraint in (3.10) is satisfied. The ES approach is guaranteed to

always return the optimal policy, and hence the goal of any switching technique

is to produce the closest approximation of this approach.

In Fig. 3.7a, it can be observed that the performance of the proposed OTOcell

is the same as that of ES most of the time but shows slight variations at some time

instances due to wrong cell switching prediction from the OTOcell. Compared

to the All-ON, it can be observed that the OTOcell shows a reduction in power

consumption, however, it was observed that due to the few number of SBSs11 the

reduction in power consumption is not significant most of the time as the SBSs

have fewer opportunities to sleep.

In Fig. 3.7b, where the number of SBSs is increased from 4 to 12, the OTOcell

shows a slightly lesser performance compared to that of Fig. 3.7a as the deviation

from the optimal ES is more pronounced. This can be traced to the fact that

the network dimensions and complexity is increased in Scenario-B compared to

Scenario-A, and as a result the OTOcell is prone to more prediction errors. How-

ever, compared to the All-ON method, the proposed method shows a significant

reduction in power consumption at all time instances owing to the fact the num-

ber of SBSs has tripled, hence there are more opportunities to switch OFF more

SBSs.

11The results presented here are the preliminary work that led to the main work in section
3.6. That is why a few number of SBSs and a random traffic model was considered. In the
main work, up to 120 SBSs and a real traffic model are considered.
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Figure 3.7: Power consumption comparison between OTOcell and benchmarks
when Mb = 4 and Mb = 12.

The QoS metric considered in this work is the coverage loss (CL). It is defined
as the measure of the percentage of available traffic load that is lost due to the

cell switching operation [185]. It is evaluated by finding the difference between

the total traffic load supported by the network before and after cell switching

and traffic offloading. The target is for CL = 0%, which implies that there is

no traffic loss and as such, the QoS of the network is not violated. However,

due to prediction errors, the value of CL may be slightly higher than 0%. Hence,

the evaluation of the proposed framework is also carried out using the coverage

loss metric to ascertain the impact of the OTOcell framework on the QoS of the

network.

When both the proposed and benchmark methods are evaluated using the

coverage loss metric for 4 SBSs, the value of CL = 0%, which means that the

QoS of the network is not violated by the proposed method. However, when the

numbers of SBSs increases to 12, the value of CL is about 0.3%. This can be

traced to inappropriate switch off/on decisions due to wrong predictions from

the proposed framework occasioned by the increase in network dimension and

complexity which makes it more difficult to accurately train the ANN model.

Hence, the QoS of the network is slightly reduced when the network dimension

increases, but the overall effect on the network is very minimal.

3.5.5 Limitations

The proposed ANN-based cell switching approach is computationally efficient be-

cause it can be trained offline before online implementation, thereby reducing the

computational burden of the MBS which serves as the CBS, that is already been
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saddled with signalling functionalities. However, as the network size increases,

the computational overhead required for offline training becomes very high. Also,

since the model requires periodic update in order to enhance its prediction ac-

curacy, a huge computational complexity, which increases with the size of the

network, is involved in implementing this method. There is also the problem of

error propagation as the training dataset is normally obtained from a heuristic

algorithm whose output may not be optimal. As a result, this method would

only be suitable for small to medium size networks with few BS deployments.

Therefore, as next generation cellular networks involves network densification

and ultra-densification comprising large deployment of BSs, there is a need to de-

velop a cell switching framework that can be implemented online, is scalable, has

lesser computational complexity and does not depend on training dataset from a

heuristic algorithm. This led to the development of THESIS which is presented

in the following section.

3.6 A Lightweight Cell Switching and Traffic

Offloading Scheme for Energy Optimisation

in Ultra-Dense Heterogeneous Networks

3.6.1 System Model

MBS

𝑥

𝑦
𝑧

Femto BS

Micro BS

RRH

Pico BS

Macro base station serving as a control

base station

Small cell base stations (micro, RRH, 

pico, femto) serving as data base

stations

Figure 3.8: A UDHN with one MC comprising a MBS and different types of
SBSs (RRH, micro, pico and femto BS).

A UDHN comprising multiple macro cells (MCs) is considered. Each MC

consists of a MBS, and a large number of SBSs each have different capacities

and power consumption profiles. The UDHN employs CDSA such that the MBSs
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serve as the control BSs and are responsible for signalling, low data rate trans-

mission and de (activation) of SBSs under their coverage. The SBSs, on the

other hand, serve as data BSs, are deployed in areas with high traffic intensity

for capacity enhancement and high data rate transmission. In addition, vertical

traffic offloading is considered such that the SBSs with little or no traffic load

can be turned off, and the traffic originally associated with them is transferred

to the MBSs. This is to ensure that the QoS of the network is not violated. In

this work, it is assumed that before cell switching is implemented, all the traffic

demands from the users are supported by the network, meaning that the UDHN

always has sufficient radio resources12 for the users. In other words, because the

UDHN is designed in terms of radio resources, when all the SBSs are on, all the

users are guaranteed sufficient resources, but this cannot be guaranteed with cell

switching. The QoS metric considered in this work is the CL, which is a mea-

sure of the percentage of traffic load that is lost due to the implementation of

cell switching. Hence, for the QoS of the network to be maintained, CL must be

equal to 0%, and this occurs when the total traffic load supported by the network

before and after cell switching is implemented is the same. The network model

is presented in Fig. 3.8.

Power Consumption of the UDHN

The total power consumption of the UDHN consists of the power consumption

of the MBSs and that of the SBSs. The power consumption of the jth BS in the

ith MC at time t, P i,j
t , is given as [65,72]:

P i,j
t (τ i,jt ) = Po + τ i,jt ηPtx, (3.13)

where Po is the constant circuit power consumption, τ i,jt represents the instan-

taneous traffic load of the jth BS in the ith MC, η is the load dependent power

consumption component and Ptx is the transmission power of the BS. The value

of Po, η, and Ptx depends on the type of BS (i.e., MBS, RRH, micro, pico and

femto BS).

Therefore, considering a UDHN with multiple MCs, where the MCs are in-

dexed by i, the total power consumption of the UDHN at time t, Ptot,t, can be

12In this work, it is assumed that the availability of sufficient resources or bandwidth at
the MBS is enough to ensure that all offloaded users from switched off SBSs are adequately
accommodated. However, in real networks, this might not be the case as other factors such as
the channel condition, and user location or mobility must also be considered. This is one of the
limitations of this current work that should be properly investigated in future works.
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expressed as:

Ptot,t (τ
i,j
t ) =

Mm∑
i=1

Mb∑
j=1

P i,j
t (τ i,jt ), (3.14)

where P i,1
t denotes the power consumption of the MBS in the ith MC. Mm and Mb

denote the number of MCs within the UDHN and the number of BSs (including

an MBS and SBSs) within an MC, respectively.

3.6.2 Problem Formulation

A certain duration of time (T ) is considered such that T is partitioned into

different time slots (in mins) of equal duration d (in mins). Then, an index vector

t is defined which stores the time slots in sequential order and can be expressed

as t = [1, 2, ...,MT ], where MT is the number of time slots and is written as

MT = T/d. The BSs in each MC are represented by Bi,j with Bi,1 denoting the

MBS. A scenario where the UDHN can decide to switch off/on some SBSs during

periods of low traffic in order to minimise the energy consumption of the network

is also considered. The goal is to determine the optimal switching strategy (i.e.,

the optimal set of SBSs to turn off/on) in each time slot that would result in

minimal energy consumption in the UDHN.

Therefore, the total power consumption of the UDHN (accumulated over all

the time slots) when cell switch off/on is considered can be expressed as:

Ptot (τ
i,j
t ,Γi,j

t ) =

MT∑
t=1

Mm∑
i=1

Mb∑
j=0

[Γi,j
t P i,j

t (τ i,jt ) + (1− Γi,j
t )P i,j

s ], (3.15)

where P i,j
s denotes the sleep mode power consumption of the BS (i.e., power

consumption when switched off) and Γi,j
t represents the off/on state of the jth BS

in the ith MC at time t i,e.,

Γi,j
t =

{
1, if Bi,j is ON

0, if Bi,j is OFF
(3.16)

Since the MBS is constantly active, Γi,1
t = 1, ∀t.

The optimisation objective is to minimise the total power consumption of the

UDHN while ensuring that the QoS13 of the network is maintained. Therefore,

13The QoS is evaluated using the coverage loss metric, which is defined as the measure of the
percentage of traffic load that is lost due to cell switching operation. Hence, for the QoS of the
network to be maintained, the total traffic demand supported by network before and after cell
switching must be the same, that is the first constraint (3.18). For that to happen, there must
be sufficient radio resources or bandwidth at the MBS to accommodate the offloaded traffic of



CHAPTER 3. CELL SWITCHING IN UDHNS 79

the power minimisation objective function can be expressed as:

min.
Γi,j
t

Ptot(τ
i,j
t ,Γi,j

t ), (3.17)

s.t. Υi = T̂ i, ∀i, j, (3.18)

τ̂ i,1t ≤ τ i,1m , (3.19)

Γi,j
t ∈ {0, 1}. (3.20)

The constraint (3.18) is to ensure that the traffic demand that is supported

by the UDHN before and after cell switching and traffic offloading is the same,

where Υi is the total traffic demand that was served by the UDHN before cell

switching (i.e., when no traffic offloading was implemented) and T̂ i is the total

traffic demand that is served by the UDHN after cell switching and traffic offload-

ing. The second constraint given in (3.19) is to ensure that the maximum traffic

demand that the MBS can support is not exceeded when offloading the traffic

of the SBSs that would be switched off to the MBS, where τ i,1m is the maximum

traffic demand that the MBS can serve. The third constraint (3.20) denotes the

off/on status of jth SBS in ith MC as defined in (3.16).

3.6.3 Proposed Hybrid Cell Switching Framework (THE-

SIS)

The aim of this work is to determine the optimal online policy for switching

off/on the SBSs of the UDHN without compromising the QoS of the network.

Popular heuristic approaches such as the ES algorithm, even though always finds

the optimal policy, due to huge computational complexity when the number of

SBSs deployed becomes very large, are not suitable for this kind of problem. It is

only suitable for application in networks with a few SBSs as the optimal results

in such cases are quicker to compute with the ES algorithm. Considering the

limitation of applying the ES algorithm, particularly when the network size is

very large, a lightweight cell switching scheme known as THESIS is proposed,

which combines k-means clustering and ES algorithms for energy optimisation in

UDHN. Before going into details about the proposed approach, for the sake of

keeping the discussion easy to follow, the developed benchmark scheme known

as multi-level clustering (MLC) is first introduced, which is purely based on the

k-means clustering algorithm. Therefore, in the following subsections, discussions

on the foundations of cell clustering is first carried out, followed by the benchmark

the sleeping SBSs, that is the second constraint (3.19).
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MLC and the proposed approach, respectively.

Cell Clustering

The basis for developing both the benchmark and proposed cell switching algo-

rithm is to cluster the SBSs with similar traffic loads and decide which cluster(s)

or set of SBSs within a cluster can be switched off to minimise the total energy

consumption of the UDHN. To cluster the SBSs, an unsupervised learning al-

gorithm known as the k-means algorithm is applied. However, the number of

clusters must be determined in advance, before finding the members of each clus-

ter. Thus, the number of clusters becomes a hyper-parameter for the k-means

algorithm. One approach to choosing the optimal number of clusters is to use

the elbow method14 [142]. Hence, in the following subsection, a brief discussion

on k-means algorithm followed by the elbow method is presented.

k-means Algorithm

The k-means algorithm is one of the clustering algorithms that is used to split

an unlabelled dataset into k clusters, C = {C1, C2, . . . , Ck} , where the optimal

number of clusters, k, also represents the number of cluster centroids and Ck

denotes the kth cluster. The number of clusters is usually determined before hand

using the elbow method (which would be elaborated in the following paragraphs).

Hence, given the traffic loads of the SBSs in each MC of the UDHN, τ i,jt , and the

optimal number of clusters, k to partition τ i,jt , the task of the k-means algorithm

is to minimise the intra-cluster distance between similar traffic loads and the

centroid (mean) of each cluster. The objective function of k-means algorithm,

J(k, τ i,jt ,Λ), can be expressed as [275,276]:

min
Λ

J(k, τ i,jt ,Λ) =
k∑

m=1

∑
τ i,jt ∈Ck

∥τi,j − Λ∥2 , (3.21)

where Λ is the mean or center of the cluster Ck.

Selection of Optimal Number of Clusters (Elbow Method)

One of the most critical aspects of clustering is determining the optimal number

of clusters to split the dataset. This is because the performance of the cluster-

based cell switching algorithm depends on selecting the optimal number of clusters

14In order to partition a given dataset into clusters, the optimal number of clusters must
first be determined. Hence, elbow method is a common algorithm that is used to determine
the optimal number of clusters that should be used by the k-means algorithm to partition any
given dataset.
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to group the SBSs in the UDHN. The elbow method provides a suitable way of

finding the optimal number of clusters from a given dataset. In the elbow method,

the optimal number of clusters can be obtained by first evaluating the sum of the

squares errors (SSE) between the data points in each cluster and the centroid to

obtain k values. The SSE can be expressed as [142]:

SSE =
k∑

g=1

(X − ck)
2 , (3.22)

where k is the number of clusters, X is the data points in a certain cluster, and ck

is the centroid of that cluster. Then the SSE is plotted against the k values. The

value of k where the SSE curve forms an elbow before flattening out is selected

as the optimal number of clusters to partition the data points in the dataset.

Multi-level Clustering Based Cell Switching scheme

The MLC algorithm performs repeated clustering, and re-clustering15 of the SBSs

deployed within the coverage area of the MBS according to their traffic loads and

attempts to offload the traffic load of the SBSs in the lightly loaded cluster to

the MBS. Then the total power consumption of the UDHN after offloading the

traffic of the cluster(s) to the MBS is determined. Finally, the cluster(s) which

results in the least power consumption in the UDHN is selected as the optimal

cluster(s). The pseudo-code of the MLC algorithm is presented in Algorithm 6,

where Copt is the optimal number of clusters(s) to switch, Esmin
is the minimum

energy by switching off cluster(s), ν is a table containing all clusters, Ex is the

energy saved a cluster is switched off, τ i,xt and τ i,1t are the traffic load of any given

cluster, and that of the MBS respectively. The description of the algorithm is

described as follows.

The elbow method is used to determine the optimum number of clusters.

Based on the optimal number of clusters, the k-means algorithm is applied to

perform the first level of SBS clustering according to their traffic loads. After

that, the aggregate traffic load of each cluster (τ i,xt ) is computed and compared

to the available radio resources at the MBS in order to determine the number

of clusters that can be switched off. Then, the energy-saving of the network

is computed after offloading the traffic of each of the selected cluster(s) to the

MBS. The remaining clusters whose aggregated traffic load exceeds the maximum

15The process of clustering and re-clustering is part of the internal working mechanism of
the algorithm, and this occurs repeatedly until the optimal number of cluster(s) that should be
switched off is determined. However, the actual implementation of the decision of the algorithm
on the network takes places every 10 minutes.
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Algorithm 6: MLC

input : Traffic loads of MBS and SBSs
1 Initialize optimum number of cluster(s) to switch off, Copt ← None;
2 Initialize minimum energy saved by switching off cluster(s) x, Esmin

= 0;
3 Perform optimised k-means clustering with elbow-method to determine

the optimal number of clusters, k;
4 Initialize the table, ν, containing the clusters and the traffic loads of the

SBSs;
5 for x ∈ k do

6 if τ i,xt + τ i,1t ≤ 1 then
7 Ex = Energy saved by switching off cluster x;
8 Remove cluster x from ν;
9 if Ex ≥ Esmin then

10 Copt ← x;
11 Esmin

← Ex

12 end

13 end

14 end
15 if there is any cluster left in ν then
16 Recursively return to step 3 by re-clustering each cluster left in ν;
17 else

output: Copt

18 end

traffic demand that can be served by the MBS (τ i,1m = 1 (normalized)) are further

divided into smaller clusters by repeating the preceding steps until only a single

SBS is left whose traffic demand exceeds that of the MBS or all the SBSs have

been exhausted and there are no more SBSs left. Finally, the energy-saving of

the UDHN is computed after the various levels of clustering and traffic offloading

have been carried out. The energy-saving values obtained are then ranked in

descending order, and the one with the highest energy saving is selected as the

optimal cluster/sub-cluster, and all the SBSs in that cluster are switched off.

Threshold-based Hybrid Cell Switching Scheme

Even though the MLC method can be applied for cell switching when the network

dimension is very large, however, it produces results that are very sub-optimal

compared to the ES algorithm. It should be noted that the goal of any sub-

optimal algorithm is to produce a result that closely approximates the ES solu-

tion. As a result, the optimality of the MLC method is improved by developing

the THESIS algorithm, which combines the advantages of MLC in terms of scala-

bility (i.e., its applicability when the number of SBSs in the network becomes very
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large) and that of the ES algorithm in terms of optimality, to produce a solution

that is close to the optimal result. In addition, the proposed THESIS is scalable

and very computationally efficient compared to the ES method. The pseudo-code

of the THESIS is presented in Algorithm 7, where Bth is the maximum number

of BSs that can be in a cluster, BScal is the best combination of SBSs to switch

off in each cluster, BSopt is the optimal SBS combination to switch off, EBSopt is

the energy saved in of the network when the optimal set of BS is switched off.

The procedure for the implementation of the algorithm is illustrated in Fig. 3.9,

and described as follows.

Algorithm 7: THESIS

input : Traffic loads of MBS and SBSs
1 Initialize Bth as the maximum number of BSs in the cluster.;
2 Initialize optimal SBS combination to switch off, BSopt ← None;
3 Initialize minimum energy saved by switching off SBSs, Esmin

= 0;
4 Perform optimised k-means clustering with elbow-method to search

optimal k-cluster.;
5 Initialize the table, ν, containing the clusters and the traffic load of the

SBSs;
6 for x ∈ k do
7 if |kx| ≤ Bth then
8 Run ES search and obtain the best combination of SBSs to switch

off (BScal) and their respective power consumption EBSopt ;
9 if Esmin ≤ EBSopt then

10 BSopt ← BScal;
11 Esmin

← EBSopt ;
12 Remove cluster kx from ν;

13 end

14 end

15 end
16 if there is any cluster left in ν then
17 Recursively return to step 3 by re-clustering individual cluster left in

ν;

18 else
output: BSopt

19 end

The proposed cell switching and traffic offloading procedure can be divided in

three phases:

• Initialization phase: In this phase, the SBSs and the MBS send their

traffic load information to the local controller. Then, based on their traffic

load information, the local controller does the initial partitioning of the
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SBSs in the MC into different clusters using both elbow method (3.22) and

k-means clustering (3.21).

• Decision phase: The decision phase is where the local controller de-

cides which set of SBSs to switch off per time. It does this by evaluating

each cluster and comparing the number of SBSs in them to the threshold

value (Bth
16). For the clusters where the number of SBSs is less than Bth,

ES algorithm is applied to them in order to obtain the set of SBSs to switch

off that would result in maximum energy saving in the network while re-

specting the QoS constraints. The clusters with number of SBSs greater

than Bth are further partitioned to smaller clusters with number of SBSs is

less than or equal to Bth, then ES is applied to each of the clusters. Then,

the sets of SBSs that can be switched off in each cluster that would result

in maximum energy saving in the network while satisfying QoS constraints

are obtained. Finally, the maximum energy saving values obtained from

the different sets of SBSs are ranked in descending order, and the one with

the highest energy saving is selected as the optimal set of SBSs to switch

off.

• Execution phase: This is the phase where the decision taken regarding the

optimal set of SBSs to switch off17 is implemented. Before the switching off

operation is executed, the local controlled first ensures that all the concerned

SBSs offload their traffic to the MBS, after which they are then switched

off.

The difference between the proposed THESIS and MLC is that MLC repeat-

edly clusters the SBSs and tries to find the cluster(s) to switch off based on the

one that satisfies the constraints and yields the maximum energy saving. On the

other hand, THESIS goes a step further by searching within the clusters to select

the set of SBSs that meet the constraints and give a maximum energy saving.

This ability of THESIS to search within the clusters enables it to discriminate

between the different types of SBSs (in terms of capacity and power consumption

profile) when selecting the set of SBSs to switch off within the clusters while the

MLC does not have this capability. Thus giving THESIS an advantage over the

MLC.

16The value of Bth was determined experimentally by trying different values and selecting
the one that results in least computation or simulation time.

17The power consumption due to switching off and on has not been taken into consideration
in this work, as the emphasis of this work is on developing a computationally efficient and
scalable algorithm for cell switching in UDHNs. Future work would consider the effect of the
power consumption due switching off and on of the BSs on the amount of energy savings that
can be obtained in the network.
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Figure 3.9: Proposed Cell switching and traffic offloading implementation proce-
dure.

3.6.4 Performance Evaluation

In this Section, the performance of the proposed scheme is evaluated using various

metrics and compared with other benchmark algorithms. In addition, the com-

plexity comparison of the proposed and benchmark methods is also carried out.

The proposed THESIS can be applied to any network irrespective of the network

dimension in terms of number of MCs involved. It should be noted that since the

UDHN comprises many MCs, each consisting of one MBS and several SBSs, the

proposed framework is implemented at the MBS of each MC as it is responsible

for controlling the operations of the SBSs within the MCs. Hence, only one MC

in the UDHN18 is considered since the results obtained can be applied to all other

MCS in the network. The hardware used for this simulation is a DELL XPS 7590

laptop computer, with the following specifications: Intel core i7-9750H processor

@ 2.6 GHz(12 CPUs), ∼ 2.6GHz, 32GB of RAM, Windows 10 64bit OS and 1

18Please not that the heterogeneity in this work arises from the use of different types of BSs,
MBS, RRH, micro, pico and femto cells, each having different power consumption parameters
as can be seen in Table 3.3.
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TB SSD of disk space. Spyder version 4.0.1, which runs Python version 3.7, is

used as a software. To work with Spyder, the development environment chosen

was Anaconda, which is a free complete suite popular for Python development as

well as development of other languages. The parameters used for the simulations

are presented in Table 1.

Traffic Data and Simulation Parameters

To compute the total power consumption of the UDHN using (3.15), the traffic

load of the MBS and SBSs are required. The call detail record (CDR) of the city

of Milan that was made available by Telecom Italia [272] is used as the dataset

for this simulation. The dataset has the city of Milan divided into 10000 square

grids, with each grid having an area of 235 × 235 square meters. The call, text

message and internet activities performed in each grid were recorded with a 10

minutes resolution for two months (November-December 2013). Even though the

activity levels of the dataset are unit-less and no information regarding how the

dataset was processed was provided, it was assumed that the CDR of each grid

is their traffic load as they represent the amount of network resources utilised

by the users within each grid for each time slot. However, in the course of data

processing, only the internet activity level was considered as the traffic load for

the BSs since the 5G networks being investigated are mainly internet protocol

based. The combination of the internet activity level of two randomly selected

grids was used to denote the traffic load of the MBS, while that of a single grid

was considered for each of the SBSs. The traffic loads were then normalized with

respect to the amount of radio resources of each of the SBSs in the UDHN (i.e.

RRH, micro, pico and femto SBSs).

Performance Metrics

• Power Consumption: This is the instantaneous power consumption of

the UDHN during the simulation time for each method based on (3.15).

This metric enables us to carefully evaluate the performance of each ap-

proach as it reflects the instantaneous changes in power consumption of the

network at different times of the day.

• Energy Saved: This metric is used to quantify the total amount of en-

ergy (in Joules) that is saved over the whole simulation time (24 hours).

The energy saved for the proposed and benchmark approaches are obtained

by comparing the presented methods with the case where all the BSs (both

MBS and SBSs) are always on (it will be referred to as all-always-on(AAO)
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Table 3.3: Simulation parameters for THESIS

Parameter Value

Bandwidth of MBS 20MHz
Bandwidth of SBSs 15MHz, 10MHz, 5MHz, 3MHz
Number of RBs per MBS 100
Number of RBs per SBSs 75, 50, 25, 15
Ptx (MBS) (W) 20
Ptx (RRH, micro, pico, femto) (W) 20, 6.3, 0.13, 0.05
Po (MBS) (W) 130
Po (RRH, micro, pico, femto) (W) 84, 56, 6.8, 4.8
η (MBS, RRH, micro, pico, femto) 4.7, 2.8, 2.6, 4.0, 8.0
P s
BSi,j

(RRH, micro, pico, femto)(W) 56, 39, 4.3, 2.9

Bth 12
ξ 0.2556

hereafter), such that the energy consumption of the presented methods and

AAO are determined, and the difference between the presented method and

AAO are individually calculated as their energy saved.

• Carbon Emission: One of the benefits of energy optimisation is that it

ensures the reduction of the carbon foot print of the network. The car-

bon emission level of the network can be obtained from the total energy

consumption with the help of the CO2 conversion factor (ξ). The CO2

emission (ECO2) associated with the energy consumption of the UDHN (Eu)

can be expressed as [250]:

ECO2 = ξ

T∑
t=1

Eu,t. (3.23)

• Coverage Loss (CL): The effect that both the proposed and benchmark

methods have on the QoS of the network after their implementation is

evaluated using this metric. The coverage loss is defined as a measure of

the total traffic load of the network that is lost due to the implementation

of cell switching [185]. In calculating CL, the percentage difference in the

total traffic load of the network before and after cell switching is obtained.

This can be expressed as:

CL =
Υi − T̂ i

Υi
× 100%, (3.24)

where Υi is the total traffic load of the UDHN before cell switching and
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traffic offloading while T̂ i is the total traffic load of the UDHN after cell

switching and traffic offloading.

Benchmarks

1. ES: This method yields optimum results and is always guaranteed to find

the best switching pattern from all possible combinations of SBSs switch-

ing patterns. It also considers the amount of radio resources at the MBs

when determining the best switching option such that the maximum traffic

demand that the network can serve is not exceeded. Hence, the QoS of the

network is always guaranteed when this method is applied. The goal of any

cell switching algorithm is to closely approximate this approach.

2. MLC: This scheme has been described in detail in Section 3.6.3. It employs

only k-means algorithm to determine the optimal number of clusters to

switch off per time in order to minimise the total power consumption of the

UDHN. This method involves much lesser computation overhead compared

to ES, respects the QoS constraints as ES, and can be applied even when the

network dimension is very large. However, Its performance is sub-optimal

compared to the ES approach.

3. AAO: In this approach, no cell switching is implemented, and as such,

all the SBSs are continuously left on. There is also no need for traffic

offloading in this method because none of the SBSs are turned off. This

method ensures that the QoS of the network is always maintained, but there

is no energy saving in this approach since the SBSs are always kept on.

Since the goal of this paper is to find a suitable trade-off between optimality and

computational complexity, ES and MLC algorithms have been selected as bench-

marks19 in this work. ES algorithm is selected as one of the benchmarks as a

representative of an optimal algorithm because it has been proven in various as-

pects of wireless communications [19,277,278] to always find the optimal solution.

Although it is optimal and accurate, its complexity is very high and increases ex-

ponentially as the network size increases. On the other hand, MLC algorithm is

selected as another benchmark, which is a representative for low-complexity solu-

tions and have been applied in many wireless network research areas [266–268] to

find computationally efficient and scalable solutions. However, the performance

of these solutions are usually far from optimal. Moreover, AAO is also used as a

19These two benchmarks have been chosen in this work because other closely related solutions
existing in the literature fall under one of these category. Moreover, they can also be easily
applied to the problem at hand, without encountering many complications.
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benchmark because it helps to quantify the amount of energy and CO2 savings

that can be obtained when the cell switching methods are implemented.

It should be noted that tabular RL approaches such as Q-learning, multi-

armed bandit, and deep RL approaches such as deep and double-deep Q-networks

that are known for intelligent decision making have not been considered as bench-

marks in this work. This is because, as pointed out in Sections I and II, it is

computationally demanding to learn the state-action table, and a large memory

is required to store the learned state-action table when the network dimension is

very large, as considered in this work. It is also very computationally demanding

to train deep RL models [123,146] as such, they cannot be applied for online cell

switching operation considered in this work. The goal of this work is to develop

a solution that closely approximates the optimal solution. Therefore, since ES is

always guaranteed to produce the optimal result, it is selected as the principal

benchmark in this work. The MLC algorithm which is used as a benchmark was

inspired by one of the closely related works in the literature [268]. However, most

times, it is very challenging use closely related works as benchmarks because even

though the problems may look similar, each has their own peculiarities and would

entail going through a rigorous process before one can apply them to the problem

at hand.

Results and Discussions

Fig. 3.10a presents a comparison of the instantaneous power consumption of the

proposed and benchmark methods over a 24 hour-period for 20 SBSs. The first

thing that can be observed from Fig. 3.10a is that the pattern of power consump-

tion of both the proposed and benchmark methods follow that of the traffic load

of the network throughout the day, such that it is low when the traffic load is low

and high when the traffic load is high. The reason for this is that there are more

opportunities to switch off many SBSs when the traffic load is low than when it

is high, hence the discrepancies in power consumption values at different times of

the day. Second, the power consumption of AAO is higher than both the proposed

THESIS and benchmark methods because no BS switching is performed in this

method which means that all the SBSs are constantly kept on. Third, the power

consumption of the ES method is the lowest of all the methods, including the

proposed method, because it searches sequentially through all the possible SBS

switching combinations to select the option that leads to least energy consump-

tion in the network at each time slot. However, this approach usually involves

a huge computation overhead, making it only applicable to networks where the

number of SBSs are few.
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Figure 3.10: Instantaneous power consumption over a 24 hrs period for 20 and
60 SBSs.

Fourth, it can be observed that the performance of the proposed THESIS

method is very close (with 0.4% difference) to that of the ES method when the

network traffic is high, but the margin becomes wider (with 3.5% difference) when

the network traffic is low. The reason for the higher performance difference when

the network traffic load is low than when it is high is because during the periods

of low traffic, even though there are more opportunities to switch off more SBSs,

because the THESIS first partitions the SBSs into clusters before applying the

ES to each cluster, the size of the search space is reduced. Hence, it has lesser

opportunity to explore in order to determine the best switching combination that

would result in lower power consumption in the network. On the other hand,

during periods of high traffic load, the performance of the proposed method and

the ES are much closer because there are very few opportunities to switch off the

SBSs, therefore the higher search space of the ES does not give it much advantage

over the proposed method. However, the time complexity of the proposed method

and ES is analyzed in Section 3.6.4, it will be clear that the compromise in

performance is greatly compensated with the complexity and scalability.

Fifth, it can be observed that apart from AAO, where no SBS is switched off,

the performance of other methods exceeds that of MLC. This can be traced to the

fact that MLC considers only the traffic loads of the SBSs when clustering and

offloading the traffic of sleeping SBSs to the MBS, without considering that there

are different types of SBSs (with different capacity and power consumption pro-

files), and as such it might just be preferable to switch off a few SBSs with higher

power consumption than many SBSs with low power consumption. It can also be

observed that the performance of the MLC closely follows that of the proposed

THESIS, particularly during periods of high network traffic, however, THESIS
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is able to outperform MLC more during periods of low traffic load because, in

addition to clustering the SBSs according to their traffic load, ES is also applied

to each cluster which enables it to discriminate among the different types of SBSs

in order to select the best combinations of SBSs that would result in lesser power

consumption in the network compared to the MLC approach. However, during

periods of high traffic load in the network, the difference in power consumption

between both methods is not significant because there are very few opportunities

to switch off SBSs and lesser opportunities to search within the clusters. Hence,

their performance becomes very close during such periods.

Fig. 3.10b shows the power consumption of the UDHN when 60 SBSs are

deployed. It should be noted that ES algorithm is not considered in this scenario

due to the huge computation overhead involved as well as limitations in the com-

puting capacity of the device that was utilised. It can be observed that the trend

of the power consumption when the proposed THESIS and benchmark methods

are applied in Fig. 3.10b follows the traffic load of the network as obtained in

Fig. 3.10a except that the magnitude of power consumption of the network is

much higher in Fig. 3.10b because more SBSs are deployed in this scenario com-

pared to the previous one. This finding is also quite intuitive since the total power

consumption of the network (Ptot) is the cumulative sum of the power consump-

tion of all the BSs involved in the networks, as seen in (3.14), and thus once the

network dimension rises, the total power consumption also increases. The power

consumption of AAO is also higher in this scenario compared to all other methods

because no SBSs is turned off but are all left on to serve user demands. The per-

formance of MLC also follows that of the proposed THESIS in this scenario, with

THESIS performing much better than MLC during periods of low traffic. This is

due to the superior ability of THESIS to determine the best set of SBSs from the

various clusters to switch off that would result in lesser power consumption in the

network rather than trying to switch off a whole cluster without considering the

types of SBSs in the cluster as this affects the magnitude of power consumption

that can be obtained.

Fig. 3.11 presents the total energy saved over a 24-hour period when the

proposed and benchmark methods are applied for different number of SBS de-

ployment. The first thing that can be observed from Fig. 3.11 is that the total

energy saved in the network increases as the number of SBSs deployed increases.

This is due to the fact that with more SBS deployment, there are more opportu-

nities to switch off many SBSs, which leads to more energy saving. It can also be

observed that the ES method gives the highest energy saving of all of the methods

applied. However, it is accompanied by a very high computation overhead, and
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Figure 3.11: Energy saved in the UDHN for different number of SBSs over a 24
hrs period.

hence it cannot be applied in real networks with very large dimensions. As a

result, the simulation had to be stopped at 20 SBSs due to the limitations of the

device that was utilised to handle such computation complexity.

The magnitude of the energy saved in the network when the proposed THESIS

is applied also increases as the number of SBSs deployed increases. It can also be

observed that the energy saved increases with high magnitude as the number of

SBSs increases until when the number of SBSs reaches 60, afterwards the differ-

ence in energy saving between successive SBS deployments becomes smaller and

almost constant. The rationale behind this is that even though there are more

opportunities to switch off more SBSs as the number of SBSs increases, due to

limited amount of radio resources at the MBS, the difference in the amount of

SBSs that can be switched off is not much after 60 SBSs. The energy saving per-

formance of THESIS is quite lesser than that of ES because of the wider search

space that is available for searching for the optimal solution in ES compared to

THESIS, however, the much lesser computation overhead involved in former com-

pared to the latter makes it a more preferable for practical network deployment

comprising many SBSs.

The energy saving of MLC method also increases with the number of SBS

deployment, however, its energy saving seems to flatten out faster than THESIS

approach. The inability of MLC to discriminate between the different types of

SBSs when clustering the SBSs accounts for its lesser performance compared

to the proposed method while the limitation in the amount of radio resources
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Figure 3.12: Quantity of CO2 saved for different number of SBSs over a 24 hour
period.

needed for offloading the traffic of the SBSs at the MBS accounts for the lesser

difference in energy saving in MLC method after 60 SBSs similar to what is

observed in THESIS method. Finally, it can be observed that the difference

in the energy saving between the THESIS and MLC also increases with higher

magnitude as the number of SBSs increases until about 60 SBSs when it becomes

almost constant. The reason is that there are more opportunities to switch off

more SBSs as the number of SBSs increases which accounts for more energy

saving in both THESIS and MLC while THESIS is able to discriminate among

the different types of SBSs when making a cell switching decision thus making it

produce higher energy saving compared to MLC. However, the almost constant

energy saving difference observed after about 60 SBS is due to insufficient radio

resources at the MBS to accommodate more traffic from the SBSs before turning

them off.

Fig. 3.12 presents the quantity of CO2 saving that is obtained when the pro-

posed and benchmark methods are applied to the UDHN with different number

of SBSs. Note that the CO2 saving up to 20 SBSs is shown here so as to study

the relative performance of the all the algorithms since the ES approach can-

not be applied beyond this number of SBSs due to computation complexity. It

is important for us to quantify the amount of CO2 savings because one of the

goals of the proposed cell switching algorithm is to ensure that the carbon foot

print or quantity of CO2 emission associated with the UDHN is greatly reduced

by reducing the amount of energy consumption of the network as most of the
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energy used to power the BSs are obtained from fossil fuels. Thus, a reduction

in the energy consumption of the network leads to a reduction in amount of

energy demanded which translates in lesser CO2 emission thereby resulting in

environmental conservation and prevention of global warming [14,279].

From Fig. 3.12, it can be observed that the quantity of CO2 saving increases

as the number of SBSs increases because there are more opportunities to switch

off more SBSs, which translates to greater CO2 saving. The ES algorithm gives

the highest CO2 saving but as already observed previously, it computational

complexity limits its application in large scale networks such as UDHN. The CO2

saving of the proposed THESIS algorithm is about 18% lesser than that of ES due

to the better switching ability of ES, however its computation efficiency makes

it more suitable for application in real network even when their dimension is

very large. The MLC approach produces the least CO2 savings because of its

sub-optimal performance compared to the proposed method even though it is

most computationally efficient, its very sub-optimal performance does not make

it suitable for application in large networks.

The CL metric has been considered as a measure of the QoS of the network

in order to ensure that the constraint in (3.18) and (3.19) are maintained. The

QoS of the network is maintained by ensuring that the total traffic demand that

is served by the network before and after cell switching is performed remains

constant by offloading the traffic of the SBSs that are to be switched off to the

MBS and ensuring that the maximum traffic demand that can be served by the

MBS is not exceeded during traffic offloading. A coverage loss of 0% is obtained

when both the proposed THESIS and the benchmark methods applied. This

means that THESIS and the benchmark methods are able to ensure that the

QoS of the UDHN is not violated. THESIS is carefully designed such that it

checks whether a given combination of SBSs in each cluster can be offloaded

to the MBS before proceeding to switch them off. A similar approach is also

employed in the ES approach in order to ensure that the capacity of the MBS is

not exceeded. For the MLC approach, the aggregate traffic of each cluster is also

compared with the available radio resources at the MBS to see whether it can

accommodate it before turning off the cluster(s).

Complexity

One of the ways of evaluating the complexity of an algorithm is to determine its

time complexity, that is, the simulation run time or time taken for the simulation

to be complete [280]. Fig. 3.13 presents the time complexity comparison between

the proposed THESIS approach and the benchmark methods. From Fig. 3.13, it
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Figure 3.13: Time complexity: total time taken to complete the simulation for
different number of SBSs. Note: Two time axis are used in this figure for the
purpose of clarity, else both times mean the same thing.

can be observed that with ES algorithm, when the number of SBSs are few (i.e.,

less than 16), the time complexity is very low, but from 16 SBSs and above,

there is an exponential rise in the computational complexity. This is because

the number of search spaces increases exponentially with every increment in the

number of SBSs. Therefore, even though ES is always guaranteed to give the

optimal switching strategy, due to its huge computational overhead, it is not

feasible to apply it for cell switching in UDHN comprising large number of SBSs.

The time complexity of the MLC algorithm can be observed to increase gradu-

ally and almost linearly. The complexity of MLC is very low because the number

of clusters formed do not greatly increase as the number of SBSs increases, hence

lesser time is required to select which cluster to switch off. Though the MLC is

the most computationally efficient method, it is the least optimal approach and

may not lead to much energy saving in the UDHN when applied. The time com-

plexity of THESIS is also quite low when the number of SBSs are less than 20,

but afterwards, its time complexity begins to increase with a higher magnitude

compared to the MLC. Overall, THESIS exhibits a polynomial time complex-

ity which is because in addition to clustering, it also involves searching for the

optimal combination of SBSs to switch off in each cluster. However, with the

introduction of Bth, which limits the number of SBSs in the clusters where ES

would be applied, the number of search spaces is reduced. The time complexity

of THESIS is much lesser than that of ES and slightly higher than that of MLC

but its energy saving performance is much closer to the optimal solution than the

MLC.
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In Summary, comparing the energy saving performance of the algorithms in

Fig. 3.11 and the complexity in Fig. 3.13, it can be observed that the energy

and CO2 saving performance of THESIS is 31% higher but 95%20 more compu-

tationally complex than MLC while on the other hand, it is 30% less optimal

but has a computation complexity that is significantly lesser than that of ES21.

These values prove that the developed algorithm does not compromise on the

performance much while reducing the complexity, making it more applicable and

feasible for the next generations of cellular communication networks, where the

number of BSs are expected to be a lot higher than the legacy networks through

the concept of network densification.

3.7 Conclusion

In this chapter, the need for the development of a scalable and computationally

efficient cell switching framework for next generation cellular networks was em-

phasized because of the increasing size and complex of these networks. Then

attempts at developing computationally efficient and scalable models using Q-

learning and ANN were first discussed followed by discussions on THESIS, the

hybrid cell switching model which enabled the actualization of this objective.

THESIS is scalable and is able to—without much loss in optimality—produce

a solution that has much lesser computation complexity compared to optimal

ES algorithm and can be applied to a network where a large number of SBSs

are deployed. A benchmark cell switching scheme using MLC was also devel-

oped which though is more computationally efficient than the proposed method,

has a poorer performance with respect to energy and CO2 savings compared to

THESIS. Overall, the performance of THESIS algorithm shows that it is able to

find a good trade-off between optimality in terms of the amount of energy and

CO2 reduction that can be achieved and complexity in terms of the computation

overhead required to find the optimal solution. This is very important because

with the massive deployment of SBSs in next generation networks, achieving en-

ergy efficient communication via real-time cell switching decision would be very

20Even though the complexity of THESIS seems significant compared to that of MLC, it can
be seen from Fig. 3.11 that MLC produces a very sub-optimal result compared to ES, which
makes it inapplicable for cell switching in UDHNs. The increase in the complexity of THESIS,
is the trade-off that is incurred for having a performance that is close to that of the optimal
ES algorithm, though with significantly lesser complexity. Hence, the suitability of THESIS
for cell switching in UDHNs. However, since the complexity of the proposed solution increases
with the number of SBSs deployed in each MC, the size of the network that it can be applied
to would depend on the latency requirements of the network.

21These values are the averages of the values for different number of SBSs, and obtained from
Fig. 3.11 and Fig. 3.13.
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challenging for both heuristic and ML algorithms because of the dynamic net-

work condition and the huge computational complexity involved. Although many

works in the literature have tackled the cell switching problem, the main issue is

always scalability, which will be more severe with the next generations of cellular

communications networks. Therefore, with the implementation of the proposed

solution (THESIS), the cell switching concept will be able to play its role in

making wireless networks more energy efficient—considering the stringent EE re-

quirements of 5G and beyond networks, it would become more obvious how this

is crucial in such networks.



Chapter 4

Revenue Maximisation in 5G

HetNets

4.1 Introduction

The demand for capacity improvement in order to achieve enhanced data trans-

mission is a constant challenge facing MNOs. This is due to increase in the

number of connected devices, increasing use of data hungry applications, such as

online gaming and multimedia services, as well as other emerging use cases includ-

ing virtual and augmented reality, driver-less cars, etc [281]. In addition, with the

proliferation of IoT devices where virtually everything is connected to the Inter-

net, the demand for more capacity would further escalate [282]. One of the ways

of achieving capacity improvement is to opportunistically exploit the dormant

spectrum resulting from the cell switching operation through spectrum leasing,

in order to generate additional revenue for the MNOs while ensuring efficient

spectrum utilisation. By so doing, both energy saving and revenue generation

can be achieved in one goal. This would result in a joint optimisation problem

involving energy consumption minimisation and revenue maximisation. Hence,

the goal of this work is to obtain both energy saving and additional revenue via

cell switching and spectrum leasing.

Various techniques for implementing dynamic cell switching in cellular net-

works have been proposed in the literature [237,239,243–245,248,250,260]. These

methods comprise analytical, heuristic and ML-based approaches. Similar optimi-

sation techniques have also been proposed for spectrum leasing [191,265,283–286].

However, very few research works have considered both cell switching and spec-

trum leasing for maximizing the revenue of the PN [193,194], even though only a

homogeneous network deployment scenario as well as a fixed electricity and spec-

trum pricing policy were considered, thereby making their work quite simplistic.

98
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In order to fill in the above-mentioned gaps in the literature, two different per-

spectives should be taken into consideration. First, the cell switching and spec-

trum leasing problems should be considered together in order to have a holistic

view. Therefore, in this work, the cell switching and spectrum leasing concepts

are combined to produce a joint optimisation problem. To do this, the energy

saving via cell switching is converted to its monetary representative, that is, the

reduction in the energy bills, such that the energy saving, and revenue can be com-

bined. This enables us to model the joint optimisation problem in a way that a

single objective function can be designed, since the outputs of both energy saving

and spectrum leasing are monetary. Second, such holistic view should be tested

in a more realistic and complex scenario to verify its applicability and feasibility.

For this purpose, a HetNet scenario with different types of SBSs is considered.

Moreover, in addition to classical fixed pricing policy, a dynamic pricing policy

for both electricity and spectrum is also adopted. These two components of the

considered scenario (i.e., diverse set of SBSs and dynamic pricing policy) make

it not only more realistic but also more challenging, given that each type of SBS

has different characteristics and the overall system becomes quite dynamic (e.g.,

the loads of BSs and the prices of electricity and spectrum change at each time

slot).

The solution to this problem is non-trivial as it involves trying different options

out of a large set of possibilities. The optimal solution is the ES approach because

it tries all the possible options before selecting the best one; however, it results

in a huge computational overhead especially when the number of SBSs deployed

in the network becomes very large.

4.2 Related Works

Dynamic cell switching techniques are the most commonly employed methods for

optimising energy consumption in cellular networks because they are the cheapest

to implement and require minimal changes to network architecture [14]. These

techniques result in significant energy savings compared to other methods such

as cell zooming, bandwidth adaptation, sectorization, etc [22, 183]. For the sake

of completeness, a few cell switching approaches are presented here since a more

comprehensive state-of-the-art has been presented in section 3.2.

The authors in [239] proposed a SBS switching scheme to minimise the energy

consumption in a HetNet based on stochastic geometry. In [243] the authors

considered the problem of SBS power control and user association in HetNets and

proposed a heuristic algorithm to determine the switching pattern of redundant
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SBSs during periods of low traffic. In [248], a user association and cell switching

algorithm based on belief propagation was developed to maximise the EE of a

HetNet by switching off BSs with few users while transferring serving users to

neighbouring BSs. In [244], the authors proposed an SBS switching mechanism

based on particle swarm optimisation to minimise the energy consumption of

a HetNet without violating QoS constraints. An SBS switching mechanism for

EE optimisation in HetNet using genetic algorithm was proposed in [245] while

respecting QoS constraints.

The authors in [250] proposed a RL-based cell switching approach to optimise

the EE as well as the CO2 emission in a HetNet. A cell switching and traffic

offloading scheme for energy optimisation in ultra-dense network using artificial

neural network was proposed in [260]. The authors in [237] developed a scalable

RL based cell switching framework using SARSA algorithm with value function

approximation to determine the optimal switching policy that would minimise

the energy consumption in an ultra dense network while ensuring that the QoS

of the network is maintained.

Even though dynamic cell switching results in significant energy savings, it

also results in spectrum under-utilisation as the spectrum that was originally al-

located to the SBSs that are switched off remain dormant when they are inactive.

These dormant spectrum can be exploited via spectrum leasing operations.

There are three major reasons for performing spectrum leasing [29]: i) For

monetary gains, ii) to maximise transmission rates, and iii) to reduce the energy

consumption of PUs. In the first case, the PN leases some of its spectrum to

the SN at a cost in order to generate additional revenue. In the second case,

the PN shares some of its spectrum to the SN in exchange for assistance in data

transmission, thereby enhancing the data rates of the PUs. In the third case, the

SUs act as a relay to the PUs thereby reducing the transmission distance between

the PUs and the BSs which leads to energy savings in the PUs. In this thesis,

the first case where spectrum leasing is employed for monetary gains in order to

maximise the revenue of the MNOs is the focus.

In this regard, various research works using techniques such as game theory,

matching theory, and ML techniques, etc., have been proposed [191, 265, 283–

288]. The authors in [283] proposed a traffic-adaptive spectrum leasing scheme

whereby the SUs are able to negotiate the duration of channel leasing with the

PUs in order to ensure their continual utilisation of the leased channel for the

complete transmission of the data in their buffer. To achieve this objective,

the average utilities of both the PN and SN were first formulated, after which a

spectrum leasing agreement that is beneficial to both parties was developed using
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Stackelberg game model.

The work in [265] proposed a joint optimisation scheme for spectrum leasing

and spectrum allocation using both Stackelberg game and matching theory. The

proposed approach is able to determine the best price for leasing the spectrum

as well as the best PU-SU pair while enhancing the spectral efficiency of the PUs

and SUs. In [284], the authors considered a spectrum leasing problem between

MNOs and mobile virtual network operators (MVNOs) using matching theory in

order to maximise the utilities of both parties in terms of spectrum leasing cost

and bandwidth allocation. Their goal is to find a suitable pairing between the

MNOs and MVNOs that would maximise the revenue of the MNOs as well as the

bandwidth allocated to the MVNOs. The work in [191] considered the problem

of spectrum leasing optimisation for CRN transmission over TV white spaces. A

neural network based solution was proposed to determine the optimal transmis-

sion policy that would result in minimal spectrum leasing cost while considering

the QoS of the CRN. The authors in [287] considered the spectrum leasing prob-

lem involving two sellers (PNs) with the aim of determining the optimal spectrum

to lease to the SNs that would result in maximum revenue to both sellers. The

problem was modelled as a non-cooperative game then a closed form expression

of the Nash equilibrium that would maximise the spectrum leasing revenue of

both sellers was derived.

In [288], the authors proposed a pricing-based spectrum leasing scheme in

order to optimise the performance of both PUs and SUs while providing mone-

tary profit to the PU. The problem was formulated as a non-cooperative game

and some learning schemes were proposed to determine the optimal action of

the SUs that would optimise the utilities of both parties. The works in [285]

and [286] considered the problem of resource allocation and spectrum leasing in

CRNs where the PUs lease part of their spectrum to the SUs in exchange for

data transmission assistance from the SUs as well energy saving for the PUs. A

resource optimisation model for the CRN to minimise the power consumption of

the PUs, while considering the uncertainty of the communication environment

was proposed. In addition, a distributed resource allocation algorithm was devel-

oped to determine the optimal resource allocation to the SUs that would result

in energy saving for the PUs while guaranteeing the QoS of both PU and SUs.

In [289], an adaptive spectrum leasing with channel aggregation for CRN was

considered where the amount of spectrum that the PUs can lease to SUs varies

with the number of active transmissions as well as the amount of buffered data.

In addition, SUs with spectrum priority are allowed to utilise multiple channels

for data transmission. A leasing algorithm was developed to adjust the amount
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of spectrum to be leased while satisfying the requirement of both PUs and SUs.

Joint cell switching and spectrum leasing has been considered in [193] and [194]

to maximise the profit of both PN and SN as well as to minimise the energy

consumption of PN. The authors in [193] considered a CRN comprising both PN

and SN where the PN aims to reduce its energy consumption by turning off some

BSs and transferring the users to the SN to maintain their QoS. In addition,

the PN obtains revenue by leasing the free spectrum to the SN while the SN

also gains revenue from the PN by charging a roaming price. A sub-optimal

heuristic algorithm was developed to optimise the energy consumption of the

PN by determining the set of BSs to switch off. The work in [194] is similar

to [193], however, its aim is to maximise the profit of both the PN and SN while

considering the CO2 emission and QoS.

In this paper, a cell switching and spectrum leasing framework is developed

for revenue Maximisation in a HetNet. Different from previous works in [193]

and [194] where a homogeneous network was considered for the PN, a HetNet

with different types of SBSs is considered for the PN, which makes this work more

realistic. In addition, traffic offloading from the PN SBSs that are switched off

to the SN SBSs was not considered as in previous works, since this would lead to

additional expenses on the part of the PN in the form of roaming charges. Rather,

vertical traffic offloading where the traffic load of PN SBSs that are switched

off are offloaded to the MBS to maintain their QoS is considered, in order to

maximise the profit of the PN. Furthermore, a fixed pricing policy was considered

in the previous works while in this work, both fixed and dynamic electricity and

spectrum pricing policies as well as DT and NDT spectrum demand scenarios are

considered. This is because both pricing policies and spectrum demand scenarios

are a better representation of what is obtainable in real systems.

4.2.1 Contributions

In this work, a cell switching and spectrum leasing framework is proposed to

maximise the revenue of the PN. The proposed algorithm can learn the optimal

cell switching and spectrum leasing policy that would result in maximum revenue

for the PN while ensuring that the QoS of the PN is maintained. The proposed

framework is implemented locally at each MBS since they are responsible for

controlling the SBSs under their coverage. The following are the contributions of

this work:

• The energy saving due to cell switching is first converted to the monetary

domain (e.g., the reduction in the electricity bills) in order to produce a joint
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optimisation problem with a single optimisation objective, where both the

energy saving and revenue from spectrum leasing are in the same domain

(e.g., monetary domain), which makes it possible for them to be combined.

• The problem is formulated as a binary integer programming problem and

a cell switching and spectrum leasing framework is developed using the SA

algorithm to determine the optimal policy that maximises the revenue of

the PN while ensuring that the QoS is maintained.

• A HetNet comprising four different types of SBSs is considered, which makes

the network scenario more complex and realistic compared to the previous

works that considered only homogeneous scenario.

• Two electricity and spectrum pricing policies: 1) fixed and 2) dynamic

policy are considered, in order to study the effects of constant and varying

electricity and spectrum prices on the maximum revenue of the PN, as both

could be the cases faced in real systems. For the dynamic pricing policy,

both DT and NDT spectrum demand scenarios are also investigated.

• Roaming charges incurred in previous works are avoided by ensuring that

only vertical traffic offloading between SBSs that are switched off and the

MBS of the PN is considered, in order to minimise additional expenses and

maintain the QoS of the network.

• In addition to the ES algorithm, two benchmark solutions are also developed

for comparison with the proposed framework.

• A complexity comparison of the proposed method with that of the ES is

carried out to highlight the advantage of the proposed framework.

• Finally, in order to capture the realistic behaviour of the network, the per-

formance of the proposed framework is evaluated using real data comprising

call detail records (CDR) of Milan city via extensive simulations, and the

result obtained is compared with benchmarks.

4.3 System Model

Two types of networks are considered: First, the PN is a HetNet with CDSA [162]

comprising multiple MCs. Each MC consists of one MBS and several SBSs.

The MBSs serve as control BSs, provide constant coverage and low data rate

transmission. The SBSs are deployed within the coverage of the MBSs and serve
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as data BSs to provide high data rate transmissions in hot spot zones. The

communication between MBS and SBSs are carried out in the control channels,

which are separated from the data channels. Four types of SBSs—RRH, micro,

pico and femto—are considered. Second, a SN is also assumed to operate in the

same coverage area and the HetNet allows this SN to lease some unused spectrum

whenever PN SBSs are put to sleep.

In this context, the SN BSs periodically communicates their spectrum demand

information to the MBS through a dedicated control channel. Similarly, the traffic

load information of the SBSs is also periodically communication to the MBS

through a dedicated control channel. The MBS then decides which set of SBSs to

switch off in order to maximise the revenue of the PN based on the available radio

resources in the MBS, the traffic loads of the SBSs, and the spectrum demanded

by the SN’s BSs without violating the QoS of the PN. This can be maintained

by ensuring that the traffic load of the SBSs that are switched off are transferred

to the MBS.

In this work, it is assumed that the traffic load of all users can be sustained

by the network before cell switching and spectrum leasing is implemented, which

means that the network has enough radio resources to support all user traffic

demands. However, when cell switching and spectrum leasing is implemented,

there is no guarantee that the network would always have sufficient resources

to handle the traffic load of all users any more. Hence, the QoS is defined as

the capacity of the network to sustain the traffic load of all the users after cell

switching and spectrum leasing operation. This is referred to as coverage loss

in [185].

Due to the CDSA employed, all the MCs are assumed to have similar de-

ployment characteristics except for the number and composition of SBSs. In

addition, they also function in a decentralized manner, with the MBS responsible

for controlling the operations of all the SBSs in each MC. Hence, in this work,

only one MC comprising 12 SBSs is considered, four of each type of SBSs, as a

representation of other MCs within the network. Each PN SBS, has a SN BS

associated with it, bringing the total number of SN BSs considered to 12. The

network model is presented in Fig. 4.1.

4.3.1 Power Consumption of HetNet

The BS power consumption model in [65,72] is adopted for estimating the power

consumption of the BSs in the HetNet1 The total power consumption of the

1Please not that the heterogeneity in this work arises from the use of different types of BSs,
MBS, RRH, micro, pico and femto cells, each having different power consumption parameters
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Figure 4.1: The PN comprises a HetNet deployment of MBS and various types
of SBSs and the SN comprises SN BSs.

HetNet comprises sum of the power consumption of the MBS and that of all the

SBSs under its coverage. The instantaneous power consumption of a BS, PBS,t,

at time t can be expressed as:

PBS,t (τt) = Po + τtηPtx, (4.1)

where Po is the constant circuit power consumption, τt is the instantaneous traffic

load of any BS at time t, η is the load dependent power consumption component

and Ptx is the transmission power of the BS. It should be noted that the value of

Po, η, and Ptx is different for each type of BS (i.e., MBS, RRH, micro, pico, and

femto).

As such, the instantaneous total power consumption of the HetNet, PHN,t, at

time t can be expressed as:

PHN,t (τ
i,j
t ) =

Mm∑
i=1

Mb∑
j=1

P i,j
BS,t(τ

i,j
t ), (4.2)

where P i,j
BS, and τ i,jt denotes the power consumption and traffic load of the jth BS

in the ith MC respectively, and PBSi,1 represents power consumption of the MBS

in the ith MC. Mm and Mb are the number of MCs within the HetNet and the

number of BSs (including an MBS and SBSs) within an MC, respectively.

4.3.2 Pricing Policy:

Two kinds of pricing policies are considered for both the electricity and spectrum:

as can be seen in Table 4.1.
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Fixed Pricing Policy: The unit cost of electricity as well as that of the spec-

trum remains constant throughout the day, irrespective of the fluctuations in

energy or spectrum demand.

Dynamic Pricing Policy: The electricity and spectrum price varies according

to the amount of electricity and spectrum demanded at different times of the

day. The dynamic pricing model for electricity was adapted from [290], where

the instantaneous electricity prices were obtained by multiplying the fixed price

by a variable factor to indicate changes in the prices at different times of the day.

For the dynamic spectrum price, it is assumed that the spectrum prices follow the

traffic demand pattern of the PN. However, these values are scaled with the fixed

spectrum price such that: CRB,t = m.CRB,F, where m is a time variable function

that changes with the instantaneous traffic load, τt, i.e., m = f(τt), CRB,t and

CRB,F are the dynamic and fixed spectrum price (i.e., cost per RB), respectively.

According to 3GPP [291], a RB is equivalent to 12 successive subcarriers, thus

taking one subcarrier to be 15kHz, one RB is considered to be 180kHz. The

dynamic electricity and spectrum pricing policies are presented in Fig. 4.2.
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Figure 4.2: Dynamic electricity and spectrum pricing policy (normalized) for
every 10 minutes over a 24 hours period.

Under the dynamic spectrum pricing policy, two types of spectrum demand

scenarios are considered:

• Non-Delay Tolerant (NDT): This scenario deals with applications such

as location updates, voice calls, etc., that require real-time data transmis-

sion and cannot tolerate delay because of the sensitivity of the information
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and its requirement for quick decision making. For such applications, the

SN has to demand for the spectrum as soon as the need for data transmis-

sion arises, irrespective of the spectrum price.

• Delay Tolerant (DT): There are some other applications such as meter

readings, feedback from wearables, etc., whose information may not be

needed for real-time decision making and hence can tolerate some level

of delay in data transmission. In these scenarios, the SN can decide to

accumulate their service demands until the periods of the day where the

spectrum price is cheapest, before transmission to save cost. In this work,

the cheapest period is statistically decided only once and then the traffic is

adjusted accordingly.

4.4 Problem Formulation

A specific time period T (in mins) is considered and it is then divided into equal

time slots (in mins) with a duration of d (in mins). Then, an index vector t is

defined that stores the time slots in an order, such that t = [1, 2, ...,MT ], where

MT is the number of time slots and is given by MT = T/d. The BSs of the PN are

represented by Bi,j
P while that of the SN by Bi,j

S . The problem is viewed from the

PN perspective and formulate the revenue Maximisation problem by considering

the revenue obtained from the combination of cell switching and spectrum leasing.

Since the PN obtains its power supply from the grid, it can decide to turn off

some SBSs during periods of low traffic to reduce their energy cost (i.e., gain

some revenue from energy saving) and also lease the dormant spectrum to the

SN in order to gain additional revenue.

Revenue from Cell Switching

The overall power consumption—the summation of the power consumption of all

the BSs over all the time slots—when no cell switching is implemented (i.e., when

all the BSs are on), Pon, can be expressed as:

Pon =

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

P i,j
BS,t(τ

i,j
t ). (4.3)

The overall power consumption—the summation of the power consumption of all

the BSs over all the time slots—when cell switching is implemented (i.e., when
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some BSs are turned off), Pcs, is given by:

Pcs =

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

[Γi,j
t P i,j

BS,t(τ
i,j
t ) + (1− Γi,j

t )P i,j
BS,s], (4.4)

where P i,j
BS,s is the power consumption of the BS when it is switched off (i.e., sleep

mode power consumption of the BSs) Γi,j
t denotes the off/on status of the (i, j)th

BS at time t, i,e.,

Γi,j
t =

{
1, if Bi,j

P is on

0, if Bi,j
P is off,

(4.5)

Since the MBS is always on, Γi,1
t = 1, ∀t.

Please note that the switch off period in this work lasts for 10 mins, as this period

coincides with the regularity with which the network traffic data [272] that is used

for this simulation was collected.

Then, the overall power saving due to cell switching, Psv can be expressed as:

Psv = Pon − Pcs. (4.6)

Therefore, the revenue due to energy saving, RE, can be expressed as:

RE =

MT∑
t=1

Psv,t
T

MT

Ce,t, (4.7)

where Ce,t is the cost of electricity at time t, and Psv,t is the energy saving at time

t.

Revenue from Spectrum Leasing

The revenue due to spectrum leasing, (Rl), can be expressed as:

Rl =

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

(1− Γi,j
t )min(Ψi,j

S,t,Ψ
i,j
D,t)CRB,t (4.8)

where Ψi,j
S,t denotes the amount of spectrum (number of RBs) supplied by Bi,j

P ,

Ψi,j
D,t denotes the amount of spectrum demanded by Ψi,j

S,t from Bi,j
P and CRB,t is

the unit cost of spectrum (i.e., price per RB) at time t.

Bi,j
P and Bi,j

S are assumed to have the same capacity, which implies that Ψi,j
D,t ≤
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Ψi,j
S,t. Therefore, (4.8) can be simplified as:

Rl =

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

(1− Γi,j
t )Ψi,j

D,tCRB,t. (4.9)

Total Revenue

The total revenue of the PN, RT can be expressed as:

RT = RE +Rl, (4.10)

and substituting (4.7) and (4.9) in (4.10), RT becomes:

RT =

MT∑
t=1

Psv,t
T

MT

Ce,t +

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

(1− Γi,j
t )Ψi,j

D,tCRB,t

=

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

(1− Γi,j
t )Ψi,j

D,tCRB,t + Psv,t
T

MT

Ce,t.

(4.11)

Replacing (4.7) with (4.3) and (4.4) and simplifying (4.11), the closed form ex-

pression for the total revenue is obtained and can be expressed as:

RT =

MT∑
t=1

Mm∑
i=1

Mb∑
j=1

(1− Γi,j
t )

[ MT∑
t=1

(P i,j
BS,t − P i,j

BS,s)
T

MT

Ce,t +Ψi,j
D,tCRB,t

]
.

(4.12)

4.4.1 Optimisation Objective

The revenue maximisation objective function is the joint optimisation of the rev-

enue2 due to cell switching and spectrum leasing and can be expressed as:

max.
Γi,j
t

RT(τ
i,j,Γi,j

t ), (4.13)

s.t. Υi = T̂ i, ∀i, j, (4.14)

τ̂ i,1 ≤ τ i,1m , ∀i, (4.15)

Γi,j
t ∈ {0, 1}, ∀i, j. (4.16)

2Even though the optimisation function is about revenue, the optimisation parameter is the
switching variable Γi,j

t , because the amount of revenue that can be generated from the cell
switching and spectrum leasing operation is dependent on Γi,j

t , as can be seen in (4.12).
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The constraints of (4.13) are explained in the following. The traffic demand, Υi,

when all the BSs in the MC i are on (i.e., before traffic offloading) is computed

as,

Υi =

Mb∑
j=1

τ i,j, ∀i. (4.17)

To ensure that there is no coverage loss (i.e., the QoS of the network is main-

tained), the traffic load supported by the MC before and after the cell switching

and spectrum leasing operation is performed must be the same (4.14), (assuming

other factors, such as channel conditions, user location, etc., remain constant).

For this to happen, the traffic load of any SBS that is switched off must be

transferred to the MBS. Therefore, the actual traffic load of the MBS during the

offloading process, denoted by τ̂ i,1 is equal to,

τ̂ i,1 = τ i,1 +

Mb∑
j=2

τ i,j(1− Γi,j
t ), ∀i. (4.18)

The traffic demand of the MC after traffic offloading, T̂ i can be expressed as,

T̂ i = τ̂ i,1 +

Mb∑
j=2

τ i,jΓi,j
t , ∀i. (4.19)

Therefore, (4.17) must be equal to (4.19) to satisfy the constraint in (4.14). How-

ever, for constraint (4.14) to be effective, another constraint needs to introduced,

to ensure that there is sufficient radio resources or offloading capacity in the MBS

before any cell switching and spectrum leasing operation can be performed. By

so doing, the maximum offloading capacity of the MBS would never be exceeded,

as this would result in the degradation of the QoS of the network. That is, let

τ i,1m denote the maximum traffic that MBS can serve in any time slot t. Then,

the additional constraint is as obtained in (4.15).

The problem in (4.13) is a combinatorial problem which involves deciding the

optimal set of SBSs to turn off out of all the possible combinations of SBSs, and

then leasing their spectrum to the SN BSs in order to maximise the revenue of the

PN. It is a NP hard problem, and as such, it is very difficult and time consuming to

solve. In addition, its complexity increases exponentially with increasing numbers

of SBSs, and it cannot easily be solved using standard methods [22]. Even though

the optimal solution can be obtained using ES algorithm, however, due to the

computational complexity involved in implementing ES, it cannot be used for

cell switching and spectrum leasing in UDNs. Hence, a less complex heuristic is

adopted which considers a lesser search space and can give a sub-optimal solution
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with reduced computational complexity (lesser search spaces compared to ES).

4.5 Proposed Framework

The aim of this work is to determine the optimal cell switching and spectrum

leasing strategy that would maximise the revenue of the PN without compro-

mising the QoS of the network. Although ES always finds the optimal policy, it

is computationally complex to implement because it has to sequentially search

through all the possible cell switching and spectrum leasing combinations before

deciding the optimal solution. As a result, in this research, the SA algorithm

is employed which has lesser complexity since it involves lesser search spaces in

finding the optimal solution. SA is preferred to other heuristic algorithms in

this work because it is not easily trapped in the local minima [115] and it is

also computationally efficient. In addition, it is easy to apply it to this problem

and closely approximates the optimal solution. However, this algorithm is not

always guaranteed to produce the optimal result as is the case with ES. In this

regard, albeit being sub-optimal, through extensive simulations, it is proven that

the developed SA algorithm based solution produces almost the same results as

the ES algorithm—especially when the network sizes are reasonable—with much

less computational complexity, providing a promising trade-off between the per-

formance and complexity.

4.5.1 SA Algorithm for Cell Switching and Spectrum Leas-

ing

To control the switching off/on of SBSs, it is necessary to determine the param-

eters of the algorithm in the first place. Then the objective function value of

randomly generated initial solution s is calculated with (4.13). In this way, the

revenues are obtained according to the energy saved from turning off some SBSs

in the PN (4.7) and spectrum leased to the SN (4.9). During the search pro-

cess, the algorithm attempts to transform the current solution s into one of its

randomly selected new solution s′. However, in the developed algorithm, instead

of randomly selecting a neighborhood structure, each neighborhood is applied in

an order as in sequential variable neighborhood search (VNS) algorithm [121].

The search area is also expanded in each iteration due to the small number of

neighborhood types.

Note that only feasible solutions which guarantee (4.14) and (4.15) are con-

sidered in the proposed SA algorithm. To ensure this, a feasibility check is per-
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formed first in each of the neighborhood solution produced. With the applied

neighborhood structure, several temporal solutions can be produced until a fea-

sible solution is obtained. If the revenue of the obtained solution with the new

neighborhood structure, s′, is higher than the current solution s, the new solution

is unconditionally accepted. If the revenue of the neighborhood solution is less

than the existing solution, the probability of accepting the neighborhood solution

is calculated as:

p = exp

− RT(s
′)−RT(s)

T

. (4.20)

After the local search process (after k iteration), the temperature is decreased

according to the formula T = T − υ, where υ is the temperature reduction

parameter.

Feasibility Check

In order for a solution to be evaluated within the algorithm, a preliminary check

is performed to determine whether it is feasible or not. For this reason, the

transferred traffic loads of SBSs that are switched off in the s solution should not

exceed the normalized capacity of the MBS (4.15). The pseudo code for feasibility

check is shown in Algorithm 9.

Algorithm 8: Feasibility check

1 MBS traffic load = τ i,1;
2 for i in s′ do
3 if (s′(i) = 0) then

4 calculate the transferred traffic load
∑

j=2 τ
i,j(1− Γi,j

t );

5 τ̂ i,1 = τ i,1 +
∑Mb

j=2 τ
i,j(1− Γi,j

t );

6 if τ̂ i,1 ≤ 1 then
7 s′ is feasible
8 else
9 s′ is not feasible

10 end

11 end

12 end

Solution Representation

The proposed SA algorithm has a representation scheme specially designed for

the cell switching and spectrum leasing problem. It has a binary representation

depending on whether the SBSs are off or on.
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Initial Solution

In the SA algorithm, the initial solution, which is the first feasible solution at the

beginning of the iterations in the SA algorithm, is generated randomly or with

certain methodical approaches such as nearest neighbor heuristics [120]. Simple

heuristic methods are considered to decrease the solution time and increase the

quality of the solution in some NP-hard problems. However, in this work, the

initial solution is generated randomly, and not with any constructive heuristic

method, to prevent the initial solution from being trapped in a particular local

optimum within the search space due to the inefficiency of the heuristic method

applied.

Neighborhood Structures

The proposed SA algorithm has three different neighborhood structures, seeking

for better results from different aspects in each iteration. The SA algorithm also

has nested iterations. The primary iteration is associated with temperature drop.

Each temperature level represents one iteration and performs a global search in

the search space. In addition, there are local search iterations in which neighbor-

hood structures are applied sequentially at each temperature level. Neighborhood

structures are named as 1-reserve, 2-reserve and swap, and they are frequently

used in applications such as vehicle routing problems, travelling salesman prob-

lems (TSP), and location problems [117, 118]. In the neighborhood of 1-reserve,

a random cell is chosen from the solution state s and the selected cell’s index is

denoted by j. If the value of s(j) is 1, this value is changed to 0 and vice versa for

the case where the value of s(j) is 0. In the 2-reserve neighborhood, this process

is performed for two different cells, while in the swap neighborhood, the values

of two randomly selected cells are replaced with each other.

In addition to the neighborhood structures, the shaking tool is also used for

diversification before each temperature change in the algorithm. After the local

search procedure at certain temperature, the bit representation (i.e., 0 and 1

values) are changed randomly to search in different spaces. This action is to

prevent the algorithm from being stuck at a local optimum. The demonstration

of the implementation of neighborhood structures is shown in the Fig. 4.3.

Parameter Settings

SA algorithm begins with five parameters: T , TF , φ, υp and K. T and TF are the

initial and final temperatures, respectively. The initial temperature must be high

enough to allow the acceptance of any feasible solution. If the initial temperature
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1 0 0 1 1 0 0 1
1-reserve

1 1 0 1 1 0 0 1
2-reserve

1 1 1 1 0 0 0 1
swap

1 0 1 1 0 1 0 1
shaking

0 1 0 1 0 0 0 0

Figure 4.3: Illustration of the different types of neighborhood structures. The
topmost bar shows the initial status of the SBSs, followed by the implementation
of the three neighbourhood structures while the last bar represents the shaking
operation.

is too high, the probability of generating random solutions among feasible solu-

tions at the beginning of the algorithm is higher. On the other hand, if the initial

temperature is too low, the probability of getting stuck at the local optimum of

the algorithm increases. The final temperature of the algorithm is set to avoid

spending too much time in reaching the optimum. φ is defined as the number

of iterations of the local search procedure at each temperature, while υp is the

temperature reduction parameter. It refers to the amount by which the temper-

ature will be decayed at the end of each iteration. K is Boltzmann constant and

is used in calculating the probability of accepting or rejecting worse solutions. If

the new objective function value is worse than current best solution, it will gen-

erate u, which is a random variable between 0 and 1. Then, the obtained solution

will be accepted if the criterion represented in (4.20) is satisfied. Except for this

situation, an improved objective function value is always accepted. Different SA

algorithm design parameters that are frequently used in the literature [117, 118]

were considered and the ones that led to the best results during the preliminary

tests were chosen. The best SA parameter combination is T = 1, υp = 0.01,

TF = 0.01, φ = 10Mb, where Mb indicates the total number of SBSs in the PN.

The pseudo code for the developed SA based cell switching and spectrum leasing

framework is presented in Algorithm 9.

4.5.2 Complexity Comparison between SA and ES

An ES algorithm performs a complete space search of all the possible configura-

tions until the optimum configuration is found. This may be suitable for functions

of few variables, but considering the cell switching and spectrum leasing prob-

lem, it would result in exponential computational complexity of O(2N). Due to
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Algorithm 9: SA algorithm for cell switching and spectrum leasing

1 Randomly generate an initial solution: s0 ∈ S
2 while s0 is infeasible; do Randomly generate an initial solution: s0 ∈ S;
3 Calculate revenue of s0
4 Define an initial temperature T > 0
5 Define temperature reduction function, υp and
6 s = s0, s

∗ = s0, f(s) = f(s0), f(s
∗) = f(s0);

7 Define local search iteration number for each temperature (φ)
8 while T > 0.01 do
9 n = φ;

10 while (n>0) do
11 generate (1-reserve) neighbor solution s′

12 while (s′ is infeasible) do
13 generate (1-reserve) neighbor solution s′

14 ϑ = f(s′)− f(s);
15 if (ϑ ≤ 0) then s = s′;
16 else
17 generate a random number from uniform distribution in the 0-1

range (u)
18 if

(
u < exp(− ϑ

T )
)
; then s = s′;

19 if (f(s′) < f(s∗)); then s∗ = s′;

20 end
21 generate (2-reserve) neighbor solution s′

22 while (s′ is infeasible) do
23 generate (2-reserve) neighbor solution s′

24 ϑ = f(s′)− f(s);
25 if τ i,1 ≤ 1 then s = s′;
26 else
27 generate a random number from uniform distribution in the 0-1

range (u)
28 if

(
u < exp(− ϑ

T )
)
; then s = s′;

29 if (f(s′) < f(s∗)); then s∗ = s′;

30 end
31 generate (swap) neighbor solution s′

32 while (s′ is infeasible) do
33 generate (swap) neighbor solution s′

34 ϑ = f(s′)− f(s);
35 if (ϑ ≤ 0); then s = s′;
36 else
37 generate a random number from uniform distribution in the 0-1

range (u) if
(
u < exp(− ϑ

T )
)
; then s = s′;

38 if (f(s′) < f(s∗)); then s∗ = s′;

39 end
40 n = n− 1;

41 end
42 T = T − υp
43 apply (shaking) procedures to s∗, s = s∗

44 end
45 s∗ is the heuristic solution of the problem

the computational complexity of problems like this and other NP-hard problems,

many optimisation heuristics have been developed in order to obtain optimal or

approximate optimal solutions. In addition, the solution times of heuristic ap-
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proaches are incomparably low compared to algorithms that try all possible sce-

narios. Because, not all feasible solution combinations are considered in heuristic

approaches. Heuristic approaches work with the best solution-oriented search and

they focus on specific regions in the search space. Therefore, the computational

cost of heuristic approaches are very low compared to ES, especially in large-scale

cell switching problems. One widely used technique is the SA algorithm, which

enables the introduction of a degree of stochasticity, potentially shifting from an

optimal to a sub-optimal solution, in an attempt to reduce the complexity, escape

local minima, and converge to a value closer to the global optimum.
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Figure 4.4: Time complexity comparison between ES and SA.

However, the time complexity of heuristic algorithms such as the SA algo-

rithm3 cannot be easily determined because such algorithms do not guarantee

to find the global optimal solution within a certain time limit. Instead, deter-

mining the total simulation run time of the algorithm can give us an idea of the

computational complexity of the algorithm.

Fig. 4.4 shows the simulation run time comparison between ES and the pro-

posed SA algorithm. It can be clearly seen that the simulation run time of the

ES algorithm is very small when the number of SBSs are less than 16. However,

a huge leap is noticed in simulation time when the number of SBSs is increased

from 16 to 20 because the number of search spaces of the ES increases exponen-

tially with the number of SBSs. This accounts for the very wide difference in

the simulation time that is observed when the number of SBSs are increased to

20 compared to when they were 16. It should be noted that the simulation is

3Since the convergence time of the SA algorithm increases with the number of BSs, the
application of the proposed solution is limited by the amount of latency that can be tolerated
by the network, so that the performance of the network is not negatively affected.
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stopped at 20 SBSs for the ES algorithm because of the limitation of the com-

puter, as it would take days to complete the simulation when the number of SBSs

are increased to 24. The simulation time of the SA algorithm is also very low

until about 20 SBS when it starts to increases with higher magnitudes. But this is

much lesser than the magnitude of simulation time increase that is observed with

the ES algorithm. The SA algorithm exhibits a polynomial order of computation

complexity because it does not have to consider all the search spaces like the ES

algorithm in order to determine the optimal cell switching and spectrum leasing

strategy.

ES algorithm searches all the neighborhood solutions regardless of whether

a solution vector yields worse results in terms of the objective function. This

situation causes an unnecessary computational cost increase in the algorithm.

However, SA does not check every solution in the entire solution space. While

doing a local search in a solution space, it looks at the solution regions adjacent

to the best solution. This is because the global optimum is likely to be close to

the local best solutions. As a result, SA’s superiority over ES algorithm in terms

of computational complexity is due to its solution search strategy. Hence, the

ES algorithm is only suitable for for small networks with few SBSs while the SA

algorithm can be applied even when number of SBSs are very many.

4.6 Performance Evaluation

The proposed cell switching and spectrum leasing framework can be implemented

in any network regardless of the network size in terms of the number of MBSs

involved. Since the framework is implemented independently at each MBS, which

is responsible for controlling all the SBSs under its coverage, the simulations are

conducted for a single MBS with multiple SBSs for the sake of brevity. Hence,

only one framework needs to be developed which can be implemented in all the

other MBS-SBSs configuration throughout the network. The system configura-

tion comprises the hardware, which is a HP-TXH0CCYBD0HV desktop com-

puter and has the following specifications: The processor is Intel core i7-8700

@ 3.2 GHz, RAM of 16 GB, with Windows 10 Enterprise operating system and

475 GB hard disk capacity. The software employed is the Spyder version 4.0.1

which runs Python version 3.7. The development environment that is utilised is

Anaconda because it has a complete suite for Python development as well as that

of other high-level languages. The PN, SN, and SA algorithm parameters used

in the simulations are presented in Table 4.1.

4Please note that every PN SBS has a SN BS of the same type associated with it.
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Table 4.1: Simulation parameters for revenue maximisation in 5G HetNets

Parameter Value

Bandwidth of MBS (MHz) 20
Bandwidth of SBSs, SN-BSs4(RRH, micro, pico, femto)(MHz) 15, 10, 5, 3
Number of RBs per MBS 100
Number of RBs per SBSs, SN-BSs(RRH, micro, pico, femto) 75, 50, 25, 15
Ptx (MBS, RRH, micro, pico, femto) (W) 20, 20, 6.3, 0.13, 0.05
Po (MBS, RRH, micro, pico, femto) (W) 130, 84, 56, 6.8, 4.8
η (MBS, RRH, micro, pico, femto) 4.7, 2.8, 2.6, 4.0, 8.0
P i,j
BS,s (RRH, micro, pico, femto) (W) 56, 39, 4.3, 2.9

Initial temperature, T 1
Final temperature, TF 0.01
Fixed spectrum price (per RB) 5 £0.13
Fixed electricity price (per kWhr)6 £0.1293
Number of PN MBS, SBSs 1, 12
Number of SN BSs 12

4.6.1 Dataset and Pre-processing

To compute the total revenue of the HetNet using (4.12), the traffic demand of

each BS in the PN (τ) and SN (Ψ) is required. The call detail record (CDR)

dataset of the city of Milan, Italy that was made available by Telecom Italia [272]

is leveraged. In the dataset, Milan city was divided into 10,000 square grids

with each having an area of 235×235 square meters. In addition, the call, short-

message and Internet activities that were carried out in each grid was recorded

every 10 minutes over a period of two months (November-December 2013). Al-

though the activity levels contained in the dataset are without unit and no ad-

ditional information was provided regarding how the dataset was processed, a

decision was made to interpret the CDR of each grid as the traffic loads as they

signify the amount of interaction between the users and the mobile network within

the grid in each time slot. However, during the data processing stage of this work,

only the Internet activity level was considered as the traffic load for the PN since

it was the most significant part of the dataset and also considering the fact that

5G networks would be mainly Internet based. The Internet activity level of two

grids were selected at random to represent the traffic load of the MBS while that

of one grid was chosen for each SBS. Then, the traffic loads were normalized

separately according to the capacity of each type of SBS. It is assumed that the

traffic demand of each BS in the SN is a fraction of the traffic demand of the

SBSs in the PN such that Ψ = βτ where β is a variable between 0 and 1 (β was

chosen to be 0.7 in this work). The traffic demand of the SN is shifted so that its

5The fixed spectrum price is obtained from https://www.ofcom.org.uk/data/assets/pdffile
/0021/130737/Annexes-5-18-supporting-information.pdf [accessed 10 Jan. 2021].

6The fixed price of electricity is acquired from https://www.businesselectricityprices.org.uk/
corporate/ [accessed 10 Jan. 2021].
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maximum traffic demand coincides with the period of the day when the spectrum

leasing price is minimum in order to depict the DT case while for the NDT case,

the traffic demand remains intact.

4.6.2 Benchmarks

The performance of the proposed method is compared with three benchmark

methods namely: ES, A-type, and D-type algorithms, which are briefly described

in the following paragraphs.

Exhaustive search (ES): This method sequentially considers all the possi-

ble cell switching and spectrum leasing combinations in order to determine the

optimal off/on switching policy that would result in maximum revenue to the

PN while ensuring that the QoS of the network is maintained. Therefore, this

method is guaranteed to always find the optimal policy without violating the QoS

of the network. However, the computational complexity involved in sequentially

searching through all the possible combinations makes it unsuitable for online

implementation. The goal of any other algorithm is to closely approximate the

policy obtained from this approach, hence, it is suitable as a benchmark for this

problem.

Sorting-based Algorithms Two additional benchmark algorithms are devel-

oped using the sorting approach which is named A-type and and D-type heuristic

respectively. These benchmarks were derived from the work in [292]. In the D-

type heuristic, a utility function, N , which is the difference between the traffic

demand of the SN BSs and that of the PN BSs, i.e., N = Ψ− τ is first evaluated.

This utility function N is important because the goal is not only to switch off the

SBSs with low traffic demand, but also those whose associated SN BS has a high

spectrum demand. It is necessary to satisfy both conditions if the revenue of the

PN is maximised because both of them affects the total revenue (4.10) that can be

generated by the PN. In addition, since the total revenue of the PN is dependent

on the amount of revenue that can be obtained from energy savings and spectrum

leasing, thus, higher values of N would result in greater revenue generation due

to higher contributions from both components. On the other hand, lower values

of N might result in lesser revenue generation due to smaller contribution either

from the energy savings or spectrum leasing. After evaluating N , the SBSs are

arranged in descending order according to the value of N . Then, the traffic load

of the SBSs are sequential offloaded to the MBS until the capacity of the MBS

is reached. The procedure for implementing A-type heuristic is similar to that of
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D-type except that in A-type, the SBSs are sorted in ascending order according

to N .

4.6.3 Performance Metrics

The metrics that would be used in evaluating the performance of the proposed

and benchmark methods are briefly discussed in this section.

Total Revenue: The goal of this work is to determine the maximum revenue

that can be obtained by the PN over a given period of time, T . As described in

Section IV, this is obtained by combining the revenue due to energy saving from

cell switching and the revenue obtained from leasing the spectrum to the SN. The

total revenue of the network can be obtained from (4.13).

CL: The effect of the proposed framework on the QoS of the network is evaluated

using the coverage loss metric. Here, CL is considered to be the percentage differ-

ence in total traffic demand that is served by the PN before and after cell switching

and spectrum leasing is implemented. This can be expressed as in (3.24).

4.6.4 Results and Discussions

Fig. 4.5a shows the hourly total revenue obtained by the PN following the fixed

electricity and spectrum pricing policy with NDT spectrum demand using the

proposed and benchmark methods. In addition, the traffic load of the PN MBS,

τ i,1, is also presented. The first thing that can be observed from Fig. 4.5a is that

the revenue obtained from all methods follows a trend that is opposite of that of

the traffic demanded of the PN. This is so because during the periods of the day

where the PN traffic is low, more SBSs can be switched off which translates to

more revenue generation from energy savings and spectrum leasing. The opposite

is the case when the traffic of the PN is high. Second, the SA algorithm follows

ES almost exactly, since it is able to employ its mechanisms such as feasibility

check and neighbourhood structures to determine the optimal cell switching and

spectrum leasing pattern, but with much lesser complexity.

Third, both the A-Type and D-type heuristic solutions never outperform ES

and SA algorithms because they also respect the constraint of not exceeding the

MBS capacity. Even though they both respect the MBS capacity in order to

maintain the QoS of the network, they utility, N , used in determining which BSs

to switch off only considers the difference in traffic demand between the PN and

SN, but is not able to distinguish between the various types of BSs present. In
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Figure 4.5: The revenue obtained from fixed, and dynamic pricing policy (DT
and NDT spectrum demand) for 12 SBSs over a period of 24 hours. (a) The left
y-axis is the total revenue obtained from fixed pricing policy with NDT while the
right y-axis is the traffic load of the PN MBS. (b) Total revenue from dynamic
pricing policy with NDT. (c) The left y-axis is the total revenue from dynamic
pricing policy with DT while the right y-axis is the spectrum demand of the SN.
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this work, the PN and SN BSs have different capacities and power consumption,

as a result, switching off a SBS with higher capacity and power consumption and

leasing its spectrum to the SN would result in higher revenue than switching off

one with a lower capacity. This limitation accounts for the lesser revenue obtained

from both the A-type and D-type heuristics.

Another interesting point to discuss about the observations in Fig. 4.5a is that

the D-type heuristic mostly outperforms the A-type heuristic because it switches

off the SBS with highest utility, N , values first and this helps in the generation of

more revenue compared to A-type which does the opposite. However, this perfor-

mance difference is mostly observable during the times of low traffic as there are

more options and the higher utility is able to find a better solution. For the time

when the network traffic is high, they start performing alike, since the number

of cell switching and spectrum leasing options becomes very low. Overall, the

performance difference between the D-type and A-type solutions is not large, as

the former outperforms the latter with a minimum of 1% and a maximum of 29%.

The last observation worth discussing is that the SA solution mainly outperforms

both A-type and D-type solutions (by about 90% and 65% respectively) during

periods of high traffic. The reason for this is that the number of cell switching and

spectrum leasing options becomes very few during this period, thereby making it

very difficult for them to find the best solution while the SA solution is carefully

designed to be able to perform excellently well even in such periods.

This is because the SA algorithm can search in different regions of the so-

lution space. This is due to the diversification feature provided by the shaking

procedure. SA performs a local search at each temperature level and arrives at

the best solution (or approximate best) in a specified region of the solution space.

Then the shaking procedure is applied with temperature drop. Thus, in the next

iterations, it compares the local best solutions in different regions of the solution

space with the current best solution and searches up to the termination criterion.

However, heuristic methods such as A-type and D-type operate fixed (usually one

or more feature-dependent utility functions) rules. This causes heuristic meth-

ods to get caught in the local best solution trap. In addition, the SA algorithm

includes different neighborhood search strategies. These strategies provide more

flexibility in local search and for this they determine the probabilistic acceptance

criteria according to the temperature level.

Fig. 4.5b presents the total revenue obtained every hour by the PN when

the dynamic pricing policy with NDT spectrum demand is considered using the

proposed and benchmark methods. In the dynamic pricing policy, the prices of

both electricity and spectrum vary at different times of the day depending on the
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amount of spectrum or electricity demanded. Similar to what was observed in

Fig. 4.5a, the pattern of the total revenue over the whole day is the inverse of the

traffic profile of the PN. Moreover, the revenue is generally scaled down compared

to Fig. 4.5a, and this is more noticeable during periods of low traffic. This is be-

cause a dynamic pricing policy is used, where the PN sometimes needs to lease the

spectrum for less and at those times it also earns less from energy savings because

the prices are lower. The D-type heuristic also slightly outperforms the A-type

heuristics with almost the same percentage (1% to 29%) as in Fig. 4.5a, due to

the fact that higher utility values are considered first during cell switching which

helps in greater revenue generation in the former compared to the latter. The

aforementioned confirms the previous argument on why the performance of the

two benchmark algorithms are similar. The proposed SA algorithm also greatly

outperforms the A-type and D-type algorithms with a similar percentage (90%

and 65% respectively) as in Fig. 4.5a mostly during the period of high traffic in

the PN because there are lesser cell switching and spectrum leasing options which

make it difficult for the benchmark solutions to make the optimum decisions.

Another important point to note is that although the D-type solution offers

better results than A-type, these two algorithms have similar working mechanisms

as can be seen in Fig. 5a and Fig. 5b. The D-type sorts the SBSs in descending

order of the value of the utility, N , in order to determine the ones turn off and

lease their spectrum to the SN while the D-type type does the opposite. Heuristic

approaches such as A-Type and D-Type do not guarantee an optimal solution.

However, the solutions found by such algorithms may converge to the optimal or

approximate optimal. Heuristic algorithms have a probability of being optimal if

the local search region is close to the global optimum in the solution space. This

is also the case at 24hr. The results of the numerical experiments demonstrate

that the proposed A-type and D-type benchmark methods obtain near optimal

solutions at 24 hr. Another reason for this may be that there are not many

feasible solution alternatives in the solution space at this period. In Fig. 5a, at

the 24th hr, the results of the D-type, A-type, SA and ES algorithms are £320,
£347, £369, and £369, respectively. Similarly, in Fig. 5b, the revenue values

of £304, £329, £350, and £350 are obtained with D-type, A-type, SA and ES

algorithms, respectively. However, it should be noted that benchmark methods

still could not obtain the optimal solution. In cases where the problem size is

small, it is natural for heuristic algorithms to reach optimal results. On the other

hand, the larger the problem size, the less likely it is for them to converge to the

optimal solution.

Fig. 4.5c presents the total revenue obtained by the PN when dynamic pricing
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policy with DT spectrum demand is considered. In this case, the SN decides to

delay its data transmission to periods when the spectrum price is low (which

also coincides with period of low traffic demand in the PN) so that they can

access more spectrum at a cheaper rate. It can be observed that there is an

overall increase in the total revenue obtained by the PN in Fig. 4.5c, compared

to Fig. 4.5a and Fig. 4.5b: the total revenue obtained from the proposed SA

framework is about 19% and 16% higher than that obtained in the Fig. 4.5a and

Fig. 4.5b, also it is evidenced by the peak value of the revenue of Fig. 4.5c being

about £183 and £123 higher than that in Fig. 4.5a and Fig. 4.5b respectively.

This is because in dynamic pricing policy with DT spectrum demand, the SN can

lease more spectrum as the periods of low traffic in the PN matches the period of

high spectrum demand by the SN although the prices are lower. This statement

is validated by comparing the traffic demand of the PN in Fig. 4.5a with the

DT spectrum demand in Fig. 4.5c; i.e., periods of lowest traffic demand in the

PN (e.g., in the first quarter of the day where the traffic load is 14%) coincides

with periods of highest spectrum demand from the SN (about 28%) so that even

though the spectrum prices are lower at these times as seen in Fig. 4.2, the large

amount of spectrum demanded by the SN causes the total revenue in this scenario

to be highest.

The performance difference between the D-type and A-type heuristics is more

significant in the dynamic pricing policy with DT spectrum demand scenario

compared to both the fixed and dynamic pricing policy with NDT scenarios in

Fig. 4.5a and Fig. 4.5b with values ranging from 5.3% to 86%. The reason for

the wider performance gap is that the NDT spectrum demand is responsible for

preventing the D-type heuristic from significantly outperforming A-type heuristic.

This phenomenon originates from the fact that in the fixed and dynamic pricing

policy with NDT spectrum demand, the trend of the SN traffic demand follows

the PN traffic demand, hence the margin in the values of N is smaller in both

cases compared to the dynamic pricing policy with DT spectrum demand, thus

accounting for the lesser total revenue results of A-type and D-type heuristics

in the previous scenarios. On the other hand, for the dynamic pricing policy

with DT spectrum demand (Fig. 4.5c), since the traffic demand of the SN is

the inverse of the traffic load of the PN, the difference in the values of N at

different time slots is higher and since D-type gives preference to SBSs with

higher N during cell switching and spectrum leasing, more revenue is generated

by the D-type compared to A-type, hence the reason for the wider margin in

the revenue generated in the former compared to the latter. In addition, the SA

algorithm greatly outperforms the A-type and D-type benchmarks in terms of
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revenue generation by a maximum of 124% and 95% respectively, during periods

of high traffic demand in the PN. These values are 34% and 31% higher than its

performance against the two benchmarks in both the fixed and dynamic pricing

with NDT spectrum demand in Fig. 4.5a and Fig. 4.5b respectively. The reason

is that the SA algorithm is able to take advantage of the available options to

switch off SBSs during period of high traffic which coincides with low spectrum

demand by the SN in order to generate much higher revenue than the A-type and

D-type algorithms.

It can also be observed that the results of D-type and A-type methods are

almost the same in a few instances with the A-type even slightly surpassing that

of the D-type at some points. For the NDT cases (with both fixed and dynamic

pricing policies), Fig. 4.5a and Fig. 4.5b, this occurs when both the data traffic

of the PN and the spectrum demand of the SN are high. This is due to the fact

that the difference in the values of the utility in this period is very small, thus,

there is very little revenue from spectrum leasing as the SN is not able to access

spectrum due to lack of dormant spectrum from the PN. Also, very little revenue

can be obtained from energy saving since only very few SBSs can be turned off

due to very high traffic load in the PN.

For the DT case with dynamic pricing policy, Fig. 4.5c, the similarity in the

results of both the D-type and A-type heuristics occurs at 16hr-21hr, when the

traffic demand of the PN is very high and the spectrum demand of the SN is

very low. At these periods, both benchmarks begin to function alike because

even though there is a large difference in the value of the utility function, there

is very little opportunity to switch off the SBSs due to high traffic in the PN.

Hence, there is an insignificant difference in the performance of both benchmarks

as relatively less revenue can be obtained during this period. The traffic load of

the PN is also high at 8hr-10hr, even though it is not as high as that of 16hr-21hr.

However, the spectrum demand of the SN is quite high at 8hr-10hr but very low

at 16hr-21hr. As a result, the D-type solution clearly outperforms the A-type

solution at 8hr-10hr because it switches off SBSs with the highest utility first,

which makes it able to take advantage of the available spectrum (due to not so

high traffic in the PN) to generate higher revenue than the A-type solution which

switches off the SBSs with lowest utility first.

Fig. 4.6a shows the total amount spent by the SN for spectrum purchase as

well as the total quantity of spectrum obtained for a 24 hours period using the

proposed SA-based framework and ES while Fig. 4.6b shows the unit cost of the

spectrum (i.e., price per RB) for both DT and NDT spectrum demand using both

algorithms. From Fig. 4.6a it can be seen that the total amount expended by
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Figure 4.6: Total expenditure and quantity of spectrum purchased by SN and
the average unit cost of the spectrum for 12 SBSs.

the SN on spectrum purchase as well as the quantity of spectrum purchased are

significantly higher in DT than in the NDT scenario with a percentage difference

of 19% and 21% respectively. The rationale behind this is that most of the periods

when the electricity and spectrum prices are low are also the periods when the

traffic loads of the MBS and SBSs are low. As such, more SBSs can be turned off

in order to ensure that more spectrum is available for SN to purchase during these

periods. Although more spectrum is available to the SN for both DT and NDT

spectrum leasing scenarios with the dynamic pricing polices during periods of low

traffic load in the PN, the difference in the volume of spectrum demanded in both

cases is what accounts for the difference in the amount expended on spectrum

purchase in Fig. 4.6a.

In the DT case, the data to be transmitted is delayed until when the spectrum
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and electricity prices are low, which means that the SN is able to take advantage of

more spectrum available in order to offer more data services to it users. However,

for the NDT case, even though more spectrum is available during periods of low

prices, the spectrum demanded by the SN during this period is also low, so lesser

revenue is generated and fewer data services can be offered in this scenario. For

example, in the first quarter of the day where the traffic load of the PN is the

lowest (about 14%), the revenue generated by the dynamic pricing policy with DT

spectrum demand is 47% higher than that obtained from the dynamic spectrum

demand with NDT spectrum demand because more spectrum is available for

leasing as well as a corresponding high spectrum demand from the SN. However,

the availability of more spectrum does not correspond with high spectrum demand

in the NDT case thereby leading to a lesser revenue generation. Fig. 4.6a also

reveals that the total expenditure and quantity of spectrum purchased using SA

algorithm is almost the same as that of ES algorithm which validates the excellent

performance of the SA algorithm earlier discussed under Fig. 4.5a, Fig. 4.5b and

Fig. 4.5c.

The purchase of more spectrum by the SN in the DT case compared to the

NDT case means that the SN incurs more expenses during DT data transmission

compared to NDT data transmission. Therefore, the DT case is more beneficial

to the PN because it results in more total revenue. It is also beneficial to the

SN because it pays less for a unit of spectrum even though its total expenditures

increase. Hence, where possible (for suitable applications), it can be concluded

that the shift in the SN traffic demand would be recommended. However, the

kind of shift in the data transmission time of the SN does not have to be imple-

mented in exactly the same way as in this work, instead, depending on the type

of application, the latency requirements are evaluated and the appropriate shift

in the traffic is implemented accordingly, making the DT spectrum demand quite

flexible and dynamic. Although this traffic shift may not always coincide with

the cheapest time but to a cheaper time. In summary, DT spectrum demand

will make the business of both PNs and SNs more sustainable because it is more

profitable for both parties.

A major constraint in this work is to ensure that the QoS of the network is

maintained (i.e., CL = 0) by ensuring that traffic served by the network remains

constant even when some SBSs are switched off. The PN is supposed to respect

the capacity constraints of the MBS before switching off any SBS. From the

simulations, it can be observed that both the proposed and benchmark solutions

are able to maintain the QoS of the PN by ensuring that the total traffic load of

the network before and after cell switch and spectrum leasing is the same. The SA
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algorithm uses the feasibility check in Algorithm 9 to ensure that only solutions

that do not exceed the capacity of the MBS are considered. The ES algorithm

follows similar procedure by guaranteeing that solutions that exceeds the MBS

capacity are excluded when selecting the optimal cell switching and spectrum

leasing strategy. Both the A-type and D-type algorithms are implemented in such

a way that the traffic load of the SBSs are offloaded sequentially (in ascending

and descending order respectively) and once the offloading capacity of the MBS

is attained, no further SBS is turned off. By so doing, they both guarantee

that CL = 0. It is also worthy of note that irrespective of the pricing model

used for electricity and spectrum (fixed or dynamic) and the type of spectrum

demanded by the SN (DT or NDT), the coverage loss of the PN remains the same.

This is because both the proposed and benchmark algorithms take the constraint

in (4.14) into consideration thereby ensuring that the QoS of the network is not

violated.

In this study, SA, which is one of the meta-heuristic algorithms, is applied to

solve the cell switching and spectrum leasing problem. Meta-heuristic algorithms

such as SA may differ from each other in terms of various prominent features.

In other words, these methods have various advantages and disadvantages. Al-

though the SA algorithm is one of the most important meta-heuristic algorithms,

it is insufficient when compared to modern meta-heuristic algorithms in terms of

some features such as convergence speed and parallel computation. Thus, the SA

algorithm can be hybridized with different meta-heuristics in order to perform

parallel computation. In addition, the SA algorithm is a no memory class algo-

rithm that offers a single solution. Memory-based meta-heuristic algorithms such

as genetic algorithm, particle swarm optimisation can be applied to the current

problem to present a comparative performance test study. As another option, an

adaptive algorithmic structure can be presented to improve the performance of

the SA algorithm.

4.7 Conclusion

In this Chapter, the problem of revenue Maximisation through cell switching

and spectrum leasing was considered in order to optimise the revenue of the PN.

An optimisation framework based on SA algorithm was proposed to determine

the optimal cell switching and spectrum leasing strategy that would result in

maximum revenue for the PN while ensuring that the QoS of the network is

maintained. Both fixed and dynamic pricing policy were considered for electricity

and spectrum leasing. Under the dynamic pricing policy, both DT and NDT
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spectrum demand scenarios were considered in order to determine the effect of

these policies on the revenue of the PN and the amount of service demands that

can be met by the SN. The simulation results show that the PN can obtain more

revenue using the dynamic pricing policy with DT spectrum demand. Moreover,

in the DT spectrum demand scenario, the SN can lease more spectrum from the

PN at a reduced average unit price which enables it to serve more data services.

Thus making this scenario more profitable to the SN. Overall, the performance of

the proposed method is almost the same as that of the ES algorithm with lesser

time complexity.



Chapter 5

Energy-Efficient UAV Positioning

5.1 Introduction

UAV-BSs have been envisioned to play a significant role in 5G and beyond net-

works, including emergency communication [41], coverage and capacity enhance-

ment, etc [293]. They have also been considered as a potential solution for en-

hancing energy savings in terrestrial cellular networks. This is because they can

be easily deployed to provide additional traffic offloading capacity to the MBSs,

during cell switching operation, as well as additional capacity for delay and rate

sensitive users [64]. UAV-BSs can also be employed to enhance the offloading

capacity of the PN, thereby making more spectrum available for SN to lease, dur-

ing cell switching and spectrum leasing operation. This would result in increased

revenue generation for the PN while enhancing the QoS of the SN. However, for

UAV-BSs to be exploited for providing additional capacity, their application must

not result in a significant increase in the total energy consumption of the network.

There are already concerns about the energy consumption of UAV-BSs because,

in addition to the energy consumed for signal processing and data transmission,

there is also the energy consumption due to mobility, which is most significant

component of their energy consumption [24]. Hence, there is a need to devise

effective techniques to significantly reduce the energy consumption due to UAV

mobility, else its application for improved energy savings, revenue generation, and

other wireless network enhancement initiatives would be abortive.

To enhance the adoption of battery-powered UAVs, particularly miniature

UAVs such as rotary-wing UAVs, in various domains of wireless communications,

several charging mechanisms have been proposed, including battery swapping,

solar charging, wireless power transfer, etc, [26]. In addition, techniques such

as transmission scheduling, power allocation, trajectory design, etc., have been

proposed to optimise the energy consumption of such systems [24]. Despite ad-

130
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vancements in battery technology and energy consumption optimisation, it is still

not realistic to make UAV-BSs hover or fly for the provisioning of wireless cov-

erage over a long duration. This is because recharging the UAV’s batteries is

not very effective, as they have to be done very frequently due to their limited

energy storage capacity, which would lead to huge running costs and might ad-

versely affect the performance of the network [26]. Despite all the energy saving

approaches, the overall energy consumption of the UAV-BS is still high due to

the power required to fly or hover the UAV. In addition, the effect of the use of

UAV-BSs on the the total energy consumption of the network due to its utilisa-

tion for cell switching and traffic offloading has not been taken into consideration

in [64]. Hence, there is a need to come up with alternative solutions that would

not only help to provide additional radio resources for traffic offloading during

cell switching and spectrum leasing operations, but would also ensure that the

overall energy consumption of the network is not greatly increased in the process.

A more suitable approach to achieving green wireless networks with UAV-

BSs is to reconsider their planning and deployment strategies. In this regard,

UAV-BSs can be made to land on some designated spots such as on top of tall

buildings or specially designed platforms, also known as landing stations (LSs). It

might be argued that this approach is similar to a fixed BS deployment, however

this approach is quite different from installing a fixed BS at the LS because the

flexibility of the UAV-BS is still maintained, as the UAV-BS only needs to stay at

a LS to serve user demands for a specific time and can be redeployed to another

location subsequently to meet varying network demands. This is not possible with

fixed BSs, thus making the LS more robust and adaptable for wireless network

applications.

Accordingly, the authors in [294] introduced a new design of wireless multihop

network where they assumed that the BSs can be placed in their optimal locations

using UAVs in order to maintain the mesh network. In [224], LSs were utilised

to maximise the service time of a UAV-BS and sum-rate of the network. The

authors in [225] performed a capacity comparison between hovering and landed

mm-wave UAV-BSs in order to enable the selection of the preferred deployment

option. However, in the previous works [224,225,294], the optimal locations of the

LSs were assumed, while other works on optimal UAV placement without LS [24]

consider the UAV-BSs to be constantly hovering to serve user demands, thereby

consuming a huge amount of energy. To the best of my knowledge, there are no in-

depth studies evaluating the LS positioning vis-a-vis various network performance

metrics such as energy consumption, throughput and coverage probability, which

makes this work timely and relevant.
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Therefore, in this chapter, stochastic geometry tools are leveraged to anal-

yse the trade-offs in terms of coverage probability and throughput that can be

tolerated when LSs are exploited for UAV-BS deployment to achieve significant

reduction in energy consumption. This would assist network operators in find-

ing suitable locations within the network to position the LSs and facilitate the

development of new use cases for UAVs in wireless networks. This work is the

first attempt at investigating the LS concept from the perspective of determining

the suitable locations where they can be positioned within the network to min-

imise the energy consumption of UAV-BSs while providing the required network

performance.

The main focus of this work is on scenarios where the UAV-BS is deployed

to provide back-up services such as ensuring service continuity during sudden

breakdown of a fixed BS infrastructure or providing capacity enhancement during

sudden surge in traffic demand. In such cases, installing a fixed BS at each LS

is not necessary, as the UAV-BS only needs to stay temporarily at one LS before

moving to another in response to changing network demand. It is assumed that it

is not always possible to coincide an LS and the optimal hovering position (OHP)

due to the unavailability of suitable LS at the OHP. By employing the LS concept,

additional capacity can be provided for both cell switching and spectrum leasing

operations, which would lead to enhanced energy saving and revenue generation,

without the concern that the overall energy consumption of the network would

be increased due to the adoption of UAV-BSs.

5.2 Related Works

Various approaches have been proposed in the literature for energy-efficient UAV

positioning. The positioning strategies involve optimising the location, the alti-

tude, and the radius of coverage of the UAV-BS to maximise EE while ensuring

QoS of the ground users. Here, a review of the conventional and ML algorithms

that have been used for optimal positioning or placement of the UAV-BSs in order

to minimise their energy consumption is presented.

Regarding conventional methods, the authors in [295] considered the prob-

lem of energy efficient 3D-placement of a UAV-BS for coverage Maximisation.

The problem was first modeled as a circle placement problem and a heuristic

algorithm was used to determine the optimal 3D location that maximises the

coverage area while minimizing the transmit power. The work in [296] investi-

gated the cost and energy optimisation of a UAV-based communication network

while considering both the communication and propulsion energy consumption.
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In this regard, a multi-level circle parking (MCP) algorithm was developed to

determine the optimal 3D-hovering positions of the UAVs that maximises both

the uplink and downlink global EE of the network. In addition, the result of

the optimal hovering positions obtained were used to determine the number of

UAV-BSs and flight parameters required to minimise the total system cost. The

authors in [297] proposed a deployment decision mechanism for optimising the

number and locations of UAV-BSs in a UAV-assisted vehicular network to max-

imise the communication coverage and minimise the energy consumption of the

UAV-BSs. The proposed mechanism employs circle packing theory to determine

the optimal positions of the UAV-BSs while an energy optimisation model was

developed to minimise the power consumption of the UAV-BSs.

The authors in [298] developed an analytic solution to determine the optimal

altitude for a UAV-BS whereby the transmit power needed to provide coverage to

a specific area is minimised. In [223], an EE Maximisation approach was proposed

for a UAV-BS relay system to extend the battery life while maintaining network

throughput. In the proposed approach, the hovering position, where the UAV-

BS expends the least energy is considered to be the optimal UAV-BS location,

is determined via mathematical analysis after which the power allocation was

also optimised alongside. The work in [299] considered the optimal positioning

of a UAV-BS in order to maximise its EE with the altitude and minimum user

data rate being constraints. The EE problem was formulated as a monotonic

fractional optimisation problem and solved using polyblock outer approximation

algorithm. Two UAV location optimisation algorithms were proposed in [300]

to minimise the transmit power of the UAV-BS. The first algorithm assumes

equal power allocation while the second algorithm is based on successive convex

approximation (SCA) and does not assume equal power allocation.

The authors in [301] proposed a UAV-BS positioning algorithm based on

Coulomb’s law to maximise the EE of the UAV-BSs while considering interference

between UAV-BSs and user requirements. An energy-aware 3D deployment algo-

rithm based on Lagrangian and sub-gradient projection for optimal placement of

the UAV-BSs was proposed in [302]. In [303], the authors developed a framework

for optimising the energy consumption of individual UAV-BSs in a multiple UAV-

BSs network while carrying out location specific tasks. The proposed framework

uses order-K Markov predictor to estimate the task locations to enable proactive

deployment of UAV-BSs and minimise their energy consumption. In addition, a

heuristic algorithm was developed to place the UAV-BSs in their right locations

as well as assign their respective tasks to them. The authors in [304] investigated

the optimal 3D-placement of a UAV-BS with tilting antenna to provide sufficient



CHAPTER 5. ENERGY-EFFICIENT UAV POSITIONING 134

coverage for ground users while utilizing minimum energy consumption. A gra-

dient descent algorithm was then proposed to find the optimal altitude of the

UAV-BSs.

The authors in [221] considered the importance of on-board circuit power

consumption of the UAVs while addressing the problem of their optimal 3D

placement in order to maximise the network lifetime. Then, using an analyti-

cal approach, the optimal hovering altitude of the UAV-BSs with respect to their

coverage radius was derived to determine the coverage and on-board circuit power

parameters that result in minimum power consumption. The work in [305] con-

sidered the energy efficient placement of UAV-BSs for data collection from ground

users based on NOMA. A heuristic algorithm was proposed to determinate the

optimal hovering height of the UAV-BS that maximises the EE of the network.

The authors in [306] proposed a joint 3D location and transmit power optimisa-

tion scheme for UAV-based relay networks to maximise the sum-rate of users. A

heuristic algorithm based on alternating descent and SCA was developed to solve

the optimisation problem.

The authors in [307] proposed a joint optimisation scheme for both the 3D

placement and pathloss factor with the aim of achieving maximum energy effi-

cient coverage. A heuristic algorithm was developed to find the optimal UAV

placement and compensation factor that maximises the energy efficient coverage.

An optimal UAV placement framework that aims to find the optimal UAV lo-

cations required to minimise the total energy consumption of the network while

providing a target coverage was introduced in [308]. Both centralized and local-

ized heuristic algorithms were developed to determine the optimal UAV locations

for both static and mobile users. The authors in [309] considered the joint op-

timisation of the transmission power and location of UAV-BS in a relay NOMA

network to minimise the power consumption of the network. A double loop iter-

ative algorithm was developed to solve the joint optimisation problem. In [310],

the optimal 3D placement for UAVs serving as relays in IoT communications was

considered in order to minimise the transmission power of the UAVs while consid-

ering the outage probability of the IoT devices. A 3D placement algorithm based

on PSO was developed to minimise the transmitted power in both air-to-ground

and ground-to-air links.

The case of energy efficient UAV placements in indoor environments for emer-

gency wireless coverage was considered in [311]. Both iterative and ES algorithms

were developed to determine the optimal position of the UAV in order to minimise

the transmission power. Similarly, the authors in [312] investigated the optimal

positioning of a UAV-BS for seamless IoT connectivity in an indoor environment
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comprising multiple users at random locations in order to minimise the transmit

power of the UAV-BS. An energy efficient low complexity heuristic algorithm was

developed to solve the optimal UAV placement problem. The authors in [313]

proposed a UAV-BS deployment and scheduling mechanism to ensure optimal

placement and effective management of UAV-BS operations while minimizing

the energy consumption and ensuring maximum coverage. To achieve these ob-

jectives, heuristic algorithms were proposed to ensure the UAVs are placed in the

right locations as well as manage their battery recharging cycle.

The authors in [314] investigate EE Maximisation in UAV-assisted NOMA

based network via joint optimisation of UAV placement and power allocation

while considering QoS constraints. The joint optimisation problem was mod-

eled as a non-linear fractional problem, then an alternating algorithm based on

nested Dinkelbach structure was proposed to find the optimal solution. The work

in [315] studied the joint optimisation of the UAV location and transmit power

in a NOMA-based UAV network while considering the decoding order. The joint

optimisation problem was first divided into two sub-problems after which an iter-

ative algorithm was proposed to solve the optimisation problem alternately. The

authors in [316] proposed an energy efficient transmission mechanism for UAV-

enabled mmWave communication system with NOMA by jointly optimising the

UAV position, power allocation, and precoding in order to maximise user cover-

age and minimise the energy consumption of the UAVs. Due to the complexity of

the optimisation problem, it was first divided into three sub-problems and three

heuristic algorithms were designed to solve each problem in an iterative manner.

With respect to ML methods, the authors in [317] proposed a proactive power

control and positioning framework for UAV-BSs to minimise interference and

enhance EE in multi-UAV systems. The proposed framework comprises both

offline and online phases. In the former, a supervised learning algorithm (random

forest) leverages historical data to build a mobility prediction model while in the

latter, the predicted user positions are exploited to proactively determine the

sleep/wake status of the UAV-BSs while an unsupervised ML algorithm (k-means)

is employed to update UAV-BSs positions and regulate the power consumption.

An energy efficient multi-UAV deployment framework was proposed in [318] in

order to maximise user coverage probability. An ellipse clustering algorithm was

developed to determine the optimal hovering altitude of the UAV that would

result in minimal transmit power while maintaining QoS constraints.

A predictive on-demand ML-based UAV deployment for minimizing both

the communication and propulsion energy consumption was introduced in [319].

In this regard, a ML framework was developed which uses Gaussian mixture
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model (GMM) and weighted expectation Maximisation (WEM) algorithm to fore-

cast the network traffic congestion areas. Then, k-means algorithm was used to

partition the service area of each UAV after which a gradient based algorithm was

developed to determine the optimal location of the UAVs that results in minimum

energy consumption. The authors in [320] considered the problem of reducing the

energy consumption required to provide coverage in a multiple UAV network. In

pursuit of this objective, a coverage model based on actor-critic RL algorithm

was developed to enhance the cooperation of the UAVs in order to provide the

energy efficient coverage.

However, most of the energy-efficient UAV positioning techniques considered

in the preceding paragraphs require the UAV to be in constant hovering position

in order to serve user requests. This greatly limits the amount of energy savings

that can be obtained as the UAV consumes a significant amount of energy during

hovering [24,25].

Hence, alternative UAV positioning approaches need to be developed which

can reduce the hovering time of the UAV-BSs in order to further enhance the

energy saving obtained from these energy optimisation techniques. To address

this issue, the concept of LS was introduced in [224] such that the UAVs can

land on some designated locations such as roof top of tall buildings, lamp post

or some specially designed platforms which can also be equipped with charging

pods, rather than having to hover continuously to serve user request and expend

so much energy, which is a major challenge for battery limited UAVs. This also

resulted in service time and sum-rate Maximisation.

In this regard, the authors in [225] performed a capacity comparison between

landed and hovering UAV with the aim of determining which approach will be

suitable for adoption. Their finding reveals that the choice of a suitable deploy-

ment option depends on certain factors including the number of UAVs deployed,

the distance between the charging stations and service area, and capacity of the

UAV battery. The work in [321] proposed a deep Q-learning approach for op-

timising UAV trajectories using the LS concept where the UAVs do not have

to continuously fly along the trajectory but can land at some locations along

its path in order to minimise energy consumption while meeting user demands.

More research works need to be done in this direction to determine the optimal

locations where UAVs can land along their trajectory and the optimal separation

distances between the UAV OHP and the suitable LSs, in order to improve the

amount of energy savings while respecting the QoS constraints.

Therefore, in this work, the feasibility of an alternative energy-efficient UAV

positioning approach based on the LS concept is considered using stochastic ge-
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ometry tools.

5.2.1 Contributions

This work investigates the impact of the separation distances between the LSs

and the OHP on the coverage probability, throughput, and energy consumption

of the UAV-BS. The following are the contributions of this work:

• Closed form expressions using stochastic geometry tools are derived to

model the relationship between UAV power consumption, coverage proba-

bility, throughput and separation distance.

• The minimum transmit power required to maintain the same QoS at the

LS as that of the OHP is derived, and the implication on the power con-

sumption of the UAV-BS is analysed.

• A comparison of the UAV-BS battery lifetime using the LS approach with

that of the OHP approach is performed to highlight the advantage of the

LS method.

• The three categories of frequency bands employed in 5G; sub-1 GHz, mid-

band, and mm-wave are considered to investigate the impact of the LS

position on the coverage and throughput of the network.

• Numerical analysis are carried out using Monte Carlo simulations to validate

the derived analytical models.

5.3 System Model

A 3D UAV network in cylindrical coordinate (r, θ, z) as shown in Fig 5.1 is con-

sidered. The UAV altitude is assumed to be constant (h), and the coverage area

radius is denoted as R. The UEs are distributed following a homogeneous Poisson

point process (PPP) Φu in a 2D plane with density, ϕu. The 2D UE distribution

can be denoted by Su =
⋃

x∈Φu
B(O,R), where B(O,R) is a 2D circular area with

the radius R centered at O. The distance between the optimal hovering position,

O, and the LS is denoted by ∆, f(v,∆)2 = v2 + ∆2 − 2v∆cos θ. A single UAV

deployment scenario is considered and it is assumed that the whole area is served

by only the UAV, hence, the interference is assumed to be negligible.
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Figure 5.1: An illustration of the 3D UAV-BS network.

The channel model consists of the large-scale path loss and Rayleigh fad-

ing component1. For a typical UE, its received power from the UAV-BS is

PDoHiR
−α
i , where P is the transmit power, Hi ∼ exp(µ) is the channel gain

and µ is the noise spectral density, α > 2 is the path loss exponent, Ri is the

distance between the LS and the ith UE, and Do is the path loss at reference

distance. For simplicity and without loss of generality, it is assumed that the

OHP for deploying UAV-BS is located at the origin O → (0, 0, h), and O′ is the

projection of O to 2D plane. However, one of the methods proposed in the lit-

erature [24] can be used to determine the OHP, but that is not the focus of this

work. ∆ is the distance between the OHP and the LS. The parameter v is the

distance from O′ to a typical UE, while θ is the angle formed by the projection of

the LS to the 2D plane and the UE. Additionally, it is assumed that the UAV-BS

is equipped with an omnidirectional antenna and that each UE can receive the

UAV-BS’s signal equally in all directions.

5.3.1 UAV-BS Power Consumption

The power consumption of the UAV-BS has two parts: hovering and communi-

cation.

• Power consumption due to hovering of the UAV is [76]:

Phov =
δc
8
ρrsAB

3
VR

3
r + (1 + κ)

W 2/3

√
2ρA

. (5.1)

• Power consumption due to communication is [72]:

1Rayleigh fading channel is mainly employed when there is a probability that there would be
no dominant line of sight component. However, this channel is utilised in this proof of concept
work because there is a possibility of having non-line of sight between the UAV-BS and the
UE, even though the non-line of sight component has not been investigated in this initial work.
Future work would consider both line of sight components, the presence of obstacles as well as
the scenario where many UAV-BSs are deployed.
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Pcom = Po + τtηP. (5.2)

The total power consumption of the UAV-BS, Ptotal can be expressed as the sum

of the power consumption due to hovering and that due to communication and

is given by:
Ptotal = Phov + Pcom. (5.3)

The parameters in (5.1) and (5.2) are defined in Table 5.1.

5.4 Coverage Probability, Transmit Power, and

Throughput Analysis

In this section, closed form expressions for finding the coverage probability, min-

imum transmit power required to maintain the same coverage probability at the

OHP using the LS, and the throughput are derived using stochastic geometry.

The results obtained from these closed form expressions are then compared with

those obtained using simulations in section 5.5 in order to ascertain their validity.

5.4.1 Coverage Probability Analysis

It is assumed that the UAV network does not receive interference from other BSs.

Thus, the coverage probability can be expressed as:

Pc = P(SNR > λ), (5.4)

where Pc is probability that SNRi > λ over the entire circular area with radius

R centered at the origin, O.

For a given distance Ri from the UAV position to UE, the SNR is given as

SNRi =
Do

(
R0

Ri

)α

· (Hi)
2 · P

N
, (5.5)

where Ri =
√
h2 +∆2 + v2 − 2∆v cos θ and N is the system noise.

Lemma 1. The downlink coverage probability of the UAV network with the UAVs

located at the LSs is given by

Pc =
1

2πR

∫ R

0

∫ 2π

0

exp

−λN
D0P

×
[√

h2 + v2 +∆2 − 2∆v cos θ

R0

]α dθdv.

(5.6)
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Proof. Inserting (5.5) into (5.4), Pc becomes

Pc = P

Do

(
R0

Ri

)α

· (Hi)
2 · P

N
> λ


= P

[
|Hi|2 >

λN

D0P

(
Ri

R0

)α]
= Eri

[
P
[
|Hi|2 >

λN

D0p

(
Ri

R0

)α]]
= Eri

[
exp

[
λN

D0p

(
Ri

R0

)α]]
(5.7)

The coverage probability is obtained over B(O,R) that is defined over 0 ≤
v ≤ R and 0 ≤ θ ≤ 2π. Note that from Fig. 5.1 Ri can be expressed as Ri =√
h2 +∆2 + v2 − 2∆v cos θ. By substituting Ri into (5.7) and applying integral,

the closed-form expression of coverage probability in (5.6) can be obtained.

5.4.2 Transmit Power Analysis

As the value of ∆ increases, the UAV-BS needs to adjust its transmit power in

order to maintain the same coverage probability as that of the OHP. To achieve

this target, Pc[R] = Pc [R +∆].

Lemma 2. The minimum transmit power, Pls, required by the UAV-BS at the LS

to maintain the same coverage reliability Pc at the cell edge as the OHP is given

by

Pls = P

[
1 +

∆

R

]α
. (5.8)

Proof. See Appendix A.

Substituting Pls for P in (5.2), the total power consumption due to commu-

nication of the UAV-BS becomes:

Pcom = Po + τtηP = Po + τtηP

[
1 +

∆

R

]α
. (5.9)

5.4.3 Throughput Analysis

The average throughput can be expressed as Tp = BR/ log 2 where B is the

overall bandwidth of the channel and R is the average spectral efficiency in

nats/sec/Hz.

Lemma 3. Average spectral efficiency of a typical UE in the UAV network with

the UAVs located at the LSs is given by
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R =
1

2πR

∫ R

0

∫ 2π

0

∫ ∞

0

exp
(
−βα/2

)
×Q×

(
et − 1

)
dtdθdv (5.10)

where β = (h2 +∆2 + v2 − 2v∆cos θ) and Q = N
D0P
·R−α

0 .

Proof. See Appendix B.

Table 5.1: UAV-BS power consumption parameters [72,76]

Symbol Meaning Value

δc Profile drag coefficient 0.012
ρ Air density 1.225 kg/m3

rs Rotor solidity 0.4255
Rr Rotor radius 0.2286 m
A Rotor disc area 0.1642 m2

Bv Blade angular velocity 942.5 rad/s

κ
Incremental correction factor
for induced power

0.1

W Aircraft weight 161.5 Newton
Po Circuit power 56 W
η Amplifier efficiency 2.6
τt Normalized traffic load 1
P Transmit power 38 dBm

5.5 Results and Discussions

In this Section, the performance of the UAV-BS when deployed at OHP (i.e.,

∆ = 0) is compared to when deployed at LS and the trade-offs in power con-

sumption, coverage probability and throughput with variations in ∆ values are

quantified. The analytic formulations are validated in Section 5.4 using Monte

Carlo simulations.

The simulations were carried out for the three categories of frequencies used

in the 5G network, namely: sub-1 GHz (750 MHz) with 5 MHz bandwidth, mid-

band (3.5 GHz) with 100 MHz bandwidth, and millimetre-wave (mm-wave) (28

GHz) with 1 GHz bandwidth in order to investigate the effect of the LS positioning

on the coverage and throughput performance. The number of UEs is set to 300,

α = 3, h is assumed to be 20 m, µ = −174 dBm/Hz, small-scale fading is taken

into account, and an omnidirectional antenna is considered. The area of interest

is considered to be a circle with radius R = 3000 m, while the UAV-BS is assumed

to have maximum coverage radii of 200 m, 2000 m and 3000 m for mm-wave, mid-

band and sub-1 GHz bands, respectively. The UAV considered in the simulation
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Figure 5.2: The coverage probability and average throughput at 28 GHz, for
different values of ∆ (m) and λ (dB).
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Figure 5.3: The coverage probability and average throughput at 3.5 GHz, for
different values of ∆ (m) and λ (dB).

is the Aurelia X8 [322], with battery capacity and voltage of 24000 mAh and

22.2 V respectively. The parameters used for both OHP and LS are presented in

Table 5.1.

Table 5.2: Power consumption comparison of the two types of UAV-BS deploy-
ments

Deployment
Type

Pcom

(W)
Phov

(W)
Ptotal

(W)
Battery life
time (mins)

OHP 72.38 1335.50 1407.80 22.70
LS 72.38 0.00 72.38 445.65

The power consumption analysis of OHP and LS scenarios with fixed UAV-BS

transmit power is shown in Table 5.2. Table 5.2 clearly indicates that LS can help
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Figure 5.4: The coverage probability and average throughput at 750 MHz, for
different values of ∆ (m) and λ (dB).

increase the battery life time by about 20 times that of OHP. While exploiting

LSs for UAV-BS deployment could be ideal for energy conservation, the LS might

not be at the OHP which could affect network performance in terms of coverage

probability and throughput.

The coverage probability at various frequency bands is obtained as shown in

Fig. 5.2a, Fig. 5.3a, and Fig. 5.4a, with analytical and simulation results denoted

by lines and markers, respectively. It can be seen that the simulation results

closely match the analytical curves. Whereas, Fig. 5.2b, Fig. 5.3b, and Fig. 5.4b

evaluate throughput as a function of ∆ for different values of λ. In Fig. 5.2a, a

very little difference in coverage probability can be observed when the value of

∆ is less than 40 m for 28 GHz frequency. However, the difference in coverage

probability becomes significant as ∆ exceeds 40 m from the OHP. From the

throughput perspective, Fig. 5.2b shows there is an exponential decay in the

network throughput as the value of ∆ increases. This means that moving the

UAV-BS away from the OHP would significantly impact system throughput at

28 GHz frequency regardless of the distance of the LS from OHP.

The same analysis is conducted at 3.5 GHz, as shown in Figs. 5.3a and 5.3b

for coverage probability and throughput, respectively. A similar trend in the cov-

erage probability and throughput as in Figs. 5.2a and 5.2b is also observed here.

However, the value of ∆ where only a slight change in the coverage probability

is observed increased from 40 m to 400 m while the throughput is less affected

by the shift from the OHP at this frequency compared to the 28 GHz frequency.

This means that at this frequency band, the LS can be located at a greater dis-

tance from the OHP. Figs. 5.4a and 5.4b illustrate the coverage probability and
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throughput results for the 750 MHz frequency. Fig. 5.4a reveals that the coverage

probability at this frequency is least affected by the movement of the UAV-BS

away from the OHP. Hence, when the value of ∆ is 600 m, the change in coverage

probability is very little. The throughput is also least affected at this frequency

as a linear decay in the slope of throughput curves is observed as the value of

∆ increases for different SNR thresholds. This means that the UAV-BS can be

moved farthest away from the OHP without much impact on the performance of

the network at this band.

The difference in performance at these frequency bands can be traced to their

propagation characteristics. Mm-wave frequency (28 GHz) have a small prop-

agation distance as such are easily affected by slight movement from the OHP.

The 3.5 GHz and 750 MHz frequencies have longer propagation distances, and

hence they can tolerate larger values of ∆ without much reduction in the network

performance.
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Figure 5.5: Total power consumption comparison of the UAV-BS at LS with
different values of ∆ and the total power consumption of the UAV-BS at OHP.
Note that the QoS is maintained despite changes in ∆ values for UAV-BS at LS.

Finally, as it may not always be possible to locate the LS at the OHP, a

suitable position could be at a distance, ∆ from the OHP. Hence, the impact on

the total power consumption of the UAV-BS due to the increase in ∆ is explored,

while maintaining the same QoS as provided at the OHP. In this regard, the

minimum transmit power (Pls) that would be required to maintain the same

coverage probability at the cell edge as that of OHP using the LS was first derived

in (5.8). Eq. (5.8) clearly demonstrates that as ∆ increases, the transmit power

increases, and that would drive the increase in the total power consumption of
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the UAV-BS. In Fig. 5.5, the impact of ∆ on the total power consumption of

the UAV-BS with LS in comparison to the total power consumption of the UAV-

BS with OHP is illustrated. From Fig. 5.5, it can be clearly observed that the

total power consumption of the UAV-BS with LS increases as ∆ increases. This

increase in the total power consumption is driven by the transmit power increase

to maintain the QoS. However, with the increase in the value of ∆ from 0 to 400

m, the total power consumption of the UAV-BS with LS at 400 m is still about

one-third that of the UAV-BS with OHP.

However, it must be noted that even though it is possible to continue increas-

ing the transmit power in order to maintain the QoS, the extent to which the

transmit power can be increased is limited by restriction put in place by regula-

tory bodies and this ultimately limits the maximum distance that the LS can be

situated from the OHP in real network deployments.

5.6 Conclusion

In this Chapter, the effect of utilising LSs on UAV energy consumption, cov-

erage probability and throughput performance was investigated. A closed-form

expression for each metric was first derived and validated using Monte Carlo sim-

ulations. Analytical and simulation results revealed that the distance between

the LS and the OHP is inversely related to both the coverage probability and

system throughput. However, the magnitude of performance reduction depends

on the transmission frequency utilised. It was shown that the performance of

the network can be maintained with the LS approach as in the OHP approach

by adjusting the transmit power of the UAV-BS. Therefore, network providers

can significantly reduce the energy consumption involved in exploiting UAVs for

wireless communications by first examining the service requirements of users and

the frequency band involved, then the analytical solutions developed in this work

can be used to determine the best locations for the LSs as well as the transmit

power offset required to maintain the QoS of the UEs.



Chapter 6

Conclusions and Future Research

Directions

The contributions of this thesis are summarised in this chapter. In addition, the

opportunities for the extension of this research work are also identified.

6.1 Thesis Summary

In this section, a chapter-by-chapter summary alongside major contributions and

implications of the research work carried out in this thesis are presented.

In Chapter 1, an overview of the research works carried out in this thesis was

presented. The major energy consumers in cellular networks, which are UDNs

and UAV-BSs, were identified. In addition, the research motivations including:

• reduction in OPEX and CAPEX,

• reduction in greenhouse gas emissions,

• generation of additional revenue for MNOs,

• improvement in the QoS of the network,

were discussed. Furthermore, the main objectives and contributions of this thesis

were also highlighted.

In Chapter 2, different BS deployments in the RAN, including homogeneous,

heterogeneous, ultra-dense and UAV-based network were first highlighted. Af-

terwards, an overview of analytical, conventional and ML algorithms for energy

optimisation in cellular networks was presented . Then, energy optimisation in

both fixed and UAV-based cellular networks, and revenue Maximisation in cel-

lular networks were considered including a review of the state-of-the-art on cell

146



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCHDIRECTIONS 147

switching, cell switching and spectrum leasing, and energy efficient UAV posi-

tioning while identifying and analysing the research gaps. The major take-away

from Chapter 2 are itemised as follows:

• The RAN, which mainly comprises various types of BS deployments, is the

major source of energy consumption in mobile cellular networks. Thus,

minimising the energy consumption of the BSs would result in significant

reductions in the total energy consumption of the mobile cellular networks.

• The cell switching approach is one of the most effective techniques for min-

imising energy consumption in cellular networks because it ensure that the

total energy consumption is proportional to the total traffic load of the net-

work, such that the network is only available when needed (or on-demand)

rather than being always available (or always-on). This helps to prevent

energy wastage during periods of under-utilisation or inactivity. In addi-

tion, it involves minimal changes to network configuration and it requires

less monetary cost to implement.

• To preserve the QoS of the users originally connected to BSs that are

switched off, both CDSA and traffic offloading are required. The func-

tional separation of the control and data plane, as well as the duplication of

coverage of the SBSs by the MBSs in the CDSA makes it easy to offload the

traffic of SBSs to MBSs before switching them off. This in turn prevents

coverage holes and degradation in the QoS of users originally associated

with sleeping BSs.

• Although cell switching leads to energy savings, it also results in the under-

utilisation of spectrum of BSs that are turned off in order to minimise the

energy consumption of the network. Hence, spectrum leasing where the

holders of spectrum license lease it for a fee has been considered to be a

suitable approach for enhanced spectrum utilisation but most importantly,

generating addition revenue for MNOs.

• Even though UAVs have found diverse applications in wireless communica-

tion networks, including emergency pop-up networks, backhauling, traffic

offloading, etc., due to their flexibility, easy deployment and adaptability,

the limited battery capacity seems to undermine the versatility of their

application. Despite numerous attempts at developing various recharging

mechanisms (e.g., swapping, laser charging, tethering, etc.) and energy

optimisation techniques (e.g., optimal positioning, trajectory optimisation,

etc.), they do not lead to significant energy reduction, as the energy spent on
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flying or hovering the BS is very significant. Hence, an alternative energy-

efficient deployment solution using the LS concept, where the UAVs can

land in designated location within the network instead of flying or hovering

continuously, could help prolong the battery lifetime and also maximise the

UAV-BSs service time.

In the Chapter 3, the need to develop a scalable and computationally efficient

cell switching framework for energy optimisation in UDNs was emphasised, due

to the limitations of most state-of-the-art methods. Two energy optimisation

frameworks based on Q-learning and ANN were first presented. The Q-learning

algorithm has a limitation known as ‘curse of dimensionality’ [146]. This occurs

because it uses tables to store the learnt state-action values, which means that

a huge table needs to be learnt when the state or actions becomes very large,

thereby leading to a huge computational overhead and large memory requirement.

ANN models are very difficult and computationally demanding to train when the

number of input variables becomes very large. As a result of the aforementioned

limitations, the results obtained from both solutions revealed that they are only

suitable for small to medium sized networks, as the would operate well with low

complexity in such networks. However, they are infeasible for large scale networks

such as UDNs, hence the need to develop a new energy optimisation framework.

In this regard, a hybrid cell switching framework known as THESIS, which

combines the advantages of both ES (which is guaranteed to always produce

the optimal cell switching strategy but with huge computation overhead) and k-

means algorithm (which is very computationally efficient but very sub-optimal)

was developed to produce a suitable trade-off between complexity and accuracy

in order to enable its application in UDN. In addition, a MLC algorithm, which

is purely based on k-means is also developed as a benchmark to represent the

upper bound for computational complexity because of its high computational

efficiency. Furthermore, ES algorithm was considered as another benchmark, to

depict the upper bound for optimality because it always guarantees to find the

optimal solution. The performance evaluation reveals that one hand, THESIS

can find a good trade-off between ES and MLC as it is 30% less optimal than

ES but has computational complexity that is significantly lesser than that of ES.

On the other hand, its is about 31% more optimal than MLC but about 95% less

computationally efficient.

With network densification been employed in 5G and beyond networks, rising

energy prices and the need for environmental sustainability, the proposed cell

switching and traffic offloading framework can be implemented in both existing

and future networks to help MNOs scale their energy consumption with capacity
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utilisation, irrespective of network size, thereby resulting in energy conservation,

cost effectiveness, and achievement of net zero emission.

Seeing that MNOs need to continuously make profit in order to keep their

business going, it is important that more creative avenues for generating income

be developed in order to enhance the profitability of the business. As a result,

in Chapter 4, the challenge of the spectrum under-utilisation due to the pres-

ence of dormant spectrum after cell switching operation was considered. To solve

this problem, a revenue maximisation model was developed to take advantage of

these dormant spectrum by leasing them to smaller network operators in order to

generate additional revenue for MNOs. To achieve this goal, a cell switching and

spectrum leasing framework based on SA algorithm was proposed to determine

the optimal cell switching and spectrum leasing strategy that would result in max-

imum revenue to the MNO. Two spectrum and electricity pricing policies and two

spectrum demand scenarios (DT and NDT spectrum demand) were considered.

It was observed that the DT spectrum demand resulted in 19% more revenue for

the PN, who are the spectrum license holders, than the NDT spectrum demand.

In addition, it also enables the SN to access 21% more spectrum during periods

of low traffic demand in the PN, since more BSs can be switched off at this time,

thereby making more spectrum available for the accumulated data demands of

the SN. Also, the unit cost of spectrum during DT spectrum demand is about

2% lesser than that of NDT spectrum demand as the spectrum cost is normally

lesser during off peak periods due to the reduced real-time demand.

The additional revenue generated by the MNOs from cell switching and spec-

trum leasing can help offset part of the cost of the purchase of spectrum license.

In addition, diverse IoT applications would also benefit from the proposed cell

switching and spectrum leasing framework as small network operators that offer

IoT services would be able to access the amount of spectrum needed for their

non-delay tolerant data transmission, thereby facilitating massive IoT adoption.

In Chapter 5, the feasibility of an alternative energy-efficient UAV deployment

solution using the LS concept was proposed since the comprehensive survey on

energy consumption in UAV-based cellular network in Chapter II showed that

most of the energy optimisation approaches proposed in literature do not lead to

significant energy savings. This is due to the predominant energy consumption

of the UAV due to hovering which greatly affects the battery life time of the

UAV. Hence, leveraging stochastic geometry tools, mathematical expressions were

derived to model the relationship between the separation distances and the OHP

and LS positions, the power consumption, throughput, and coverage probability.

These mathematical models were validated using simulations involving different
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frequency bands utilised in 5G including sub 6 GHz, midband, and mm-wave

frequencies. It was observed that the energy consumption with LS is 95% less

than that of OHP and can help prolong the battery lifetime by up to 7 hours

more than that of OHP. In addition, the simulations results also show that as the

separation distance from the OHP increases, both the throughput and coverage

probability decrease. However, the coverage probability and throughput with LS

can still be maintained as that of OHP, though with some increase is the transmit

power, which is still significantly lesser than the energy consumed by hovering

the UAV-BS at the optimal position. However, this is depends on how much

transmit power increase is allowable by telecommunication regulatory bodies.

Energy optimisation in UAVs would help reduce CAPEX and OPEX as lesser

of UAV-BSs would need to be deployed, fewer cases of network interruptions

would occur given that the need to replaced UAVs with depleted batteries would

greatly reduce, thereby resulting in enhanced network performance. Hence, net-

work engineers can make provision for incorporating LSs during their network

planning stages, particularly in areas where sudden traffic surges may occur such

as in stadia, concert centres, city centres, etc., to enable easy deployment of

UAV,s to the locations where additional resources are required due to increased

capacity demands. This is because the LS help reduce the energy consumption

of the UAV-BS, thereby increasing the battery life and prolonging the period of

service delivery.

6.2 Future Research Directions

In this section, the future research directions that could lead to improvement in

the performance of the various optimisation frameworks proposed in this thesis

are presented.

1. Energy optimisation in fixed cellular networks via cell switching and traffic

offloading:

• The amount of energy savings that can be achieved using cell switch-

ing approach is greatly affected by the amount of radio resources at

the MBS, as this is required for traffic offloading in order to preserve

the QoS of the users. The offloading capacity can be enhanced by re-

placing or augmenting the MBSs with UAV-BSs. Therefore, the effect

of the UAV-BSs deployment in existing cellular networks alongside

cell switching needs to be investigated to quantify its energy saving

potential.
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• There is also the possibility of adjusting the transmit power of the

remaining BSs after cell switching is implemented to further enhance

energy optimisation via optimal power allocation. Hence, the joint

optimisation of cell switching and power allocation is another research

area that can be exploited to improve the energy saving capabilities of

cell switching technique.

• Recently, RIS have be exploited for cellular network optimisation be-

cause of their low energy consumption. This is possible because RIS

are passive devices that do not have amplifiers, which is the major

source of consumption in cellular BSs. An area of further research

could be to consider a mixed deployment of RIS and SBSs is what

can be know as RIS-assisted cell switching, such that the traffic of

switched off SBSs can be redirected to RIS to further optimise energy

consumption.

• Another area that needs to be considered is the holistic power con-

sumption of the network involving the optimisation of both the power

consumption of the BSs and user devices. As cell switching involves

offloading users originally connected to switched off BSs to neighbour-

ing or higher tier BSs, this is normally associated with increase in the

transmission power of the users devices which negatively impacts their

battery life. Therefore, a consideration of the power consumption of

both BSs and user devices during cell switching in order to optimise

the overall energy consumption of the network needs to be carried out.

• In order to improve the scalability, computational efficiency and pri-

vacy of users during cell switching implementation, federated ML can

be exploited whereby the learning can be performed in a decentralized

manner at each SBSs and only the trained model is shared with the

MBS for final decision making to facilitate the cell switching decision

making process.

• The effect of the power consumed during the switching on and off of

the BSs in the UDHN on the amount of energy savings that can be

obtained by the proposed solution should also be investigated.

• The effect of the users’ channel condition, location, and mobility on

their ability to access sufficient radio resources from the MBS in order

to ensure that their QoS is maintained during cell switching and traffic

offloading should also be considered.

2. Revenue maximisation in cellular networks via cell switching and spectrum
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leasing:

• Even though the spectrum leasing scenario considered in this research

involved a one-to-one mapping of the SN-BS to a PN-BS, however,

there are scenarios where more than one SN operators would be com-

peting for the spectrum of the PN in an area. In such a situation,

there is a need to determine which SN operator to lease the spectrum

or the possibility of sharing the spectrum among the SNs, in order to

satisfy their spectrum demands.

• The proposed cell switching and spectrum leasing model may not be

too applicable for NDT spectrum demand scenarios as the spectrum

may be demanded for critical communication during periods where

there is no dormant spectrum or insufficient spectrum. In such situa-

tions, UAVs can be deployed to provide not just additional offloading

capacity, as previously discussed under cell switching, but additional

spectrum for NDT spectrum demand as well as enhanced revenue for

the PN. Thus, UAV-assisted cell switching and spectrum leasing need

to be investigated.

• There is also the need for the development of more advanced algo-

rithms for cell switching and spectrum leasing using other heuristics,

such as matching theory, for cases where the available spectrum needs

to be shared with multiple users. Also advanced ML and DL architec-

tures can also be exploited to develop more efficient cell switching and

spectrum leasing models.

3. Energy optimisation in UAV-based cellular networks via energy efficient

UAV positioning:

• A more detailed study of the LS concept by considering the presence

of obstacles as well as multiple UAV deployments is required to fully

appreciate the importance of the LS, as this would introduce some

interference which would affect the power consumption of the network

and other network performance metrics.

• The combination of the LS concept and other energy optimisation

techniques such as trajectory optimisation and transmission scheduling

also needs to be investigated to ascertain the combined effect on the

energy consumption of the network.

• In addition, the LS concept can also be combined with cell switching

and traffic offloading in fixed cellular networks, to improve the energy
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saving potential of UAV-assisted cellular networks.

• In place of SBSs, RIS, which are low power consuming devices can also

be mounted on UAVs to further reduce the energy consumption of the

UAV, thereby increasing their battery life and service time of UAVs.

• The impact of THz frequency band on the position of the LSs also need

to be investigated. This is because THz frequency presents a unique

propagation characteristics that would affect the location of the LSs.

• The derivation of more tractable mathematical models to examine the

throughput and coverage probability of the UAV-BS when the LS is

utilised should be considered.



Appendix A

Proof of Lemma 2

The coverage probability at cell edge with the aim of meeting the minimum

coverage probability of the hovering scenario is given by:

P̄c[R] = exp

[
−λN
D0P

[
R

R0

]α]
(6.1)

The minimum transmit power required in LS scenario to maintain the same

coverage probability as the hovering scenario is Pc[R] = P̄c(R +∆)

exp

[
−λN
D0P

[
R

R0

]α]
= exp

[
−λN
D0Pls

[
R +∆

R0

]α]
(6.2)

let K = λN
D0Rα

0

exp

[
−K

P
Rα

]
= exp

[
−K

Pls

[R +∆]α
]

(6.3)

Hence Pls = P
[
R+∆
R

]α
= P

[
1 + ∆

R

]α
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Appendix B

Proof of Lemma 3

Following [98], the average spectral efficiency can be expressed in terms of the

coverage probability as

R ≜ Ex [ESNR[ln(1 + SNR(x))]]

=

∫
ESNR[ln(1 + SNR(x))]f(x)dx

(6.4)

Given that E[x] =
∫∞
0

P (x > x]dx for x > 0

ESNR[ln(1 + SNR(x))) =

∫ ∞

0

P [ln (1 + SNR (x) > t] dt

=

∫ ∞

0

P
[
SNR(x) > et − 1

]
dt

(6.5)

where SNR =
D0

(
R0
Ri

)α

[Hi|2·P
N

from (5.5) and given Q = N
D0P
·R−α

0 , hi = |Hi|2 and
Ri = x then SNR = hkx

−α

Q
. Note that x is expressed as

√
h2 +∆2 + v2 − 2∆v cos θ

ESNR[ln(1 + SNR(x))] =

∫ ∞

0

P
[
hk > xαQ

(
et − 1

)]
dt (6.6)

In addition the probability of random variable hi can be presented as

P [hk > xαQ (et − 1)] = exp [−xαQ (et − 1)] :

ESNR[ln(1 + SNR(x))] =

∫ ∞

0

exp
(
−xαQ

(
et − 1

))
dt, (6.7)

R ≜ Ex [ESNR[ln(1 + SNR(x))]] . (6.8)

By substituting (6.7) into (6.8) and integrating over the whole area we obtain the

average spectral efficiency expression in (5.10).
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