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Abstract

This thesis studies weighted projective planes and their connection to threefold singu-

larities. In particular, we study the Veronese subring S~x of the ring S associated with

the weighted projective plane X for choices of ~x in the grading group L. We show that

there exists a projective, birational map T ~x → SpecS~x under mild restrictions on ~x. We

then show that when ~x = −~ω, the dualising element, this map is a blow-up. In the

toric setting, we show that in certain situations the singularities of S−~ω can be identified

with the familiar cyclic quotient singularities and the map T−~ω → SpecS−~ω is a weighted

blow-up. In particular, it is a crepant map. We also construct a tilting object on T−~ω in

this setting. Away from the toric setting, we are able to construct tilting objects in some

instances and we study some examples in depth to construct a full resolution and identify

noncommutative resolutions of these singularities.
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Chapter 1

Introduction

The study of algebraic surfaces has a long and rich history. Throughout the 19th cen-

tury surfaces were extensively studied and their basic properties described with an early

highlight being the discovery of the cubic and its 27 lines by Cayley and Salmon [Rei88].

A more precise, and powerful, method of studying surfaces was then developed by the

Italian school of geometry. The works of the likes of Segre, M. Noether and Veronese

paved the way, with Segre suggesting the best way to study surfaces was birationally. It

was Castelnuovo, a student of Segre, together with Enriques, who in 1914 finally gave us

the complete birational classification of algebraic surfaces [Gra99].

This thesis studies weighted projective surfaces, as defined by [HIMO]. These are a

modern-day variant on the above, which enshrine projective spaces with an additional

group structure. Whilst weighted projective lines are relatively well understood, the same

cannot be said for their higher dimensional cousins. This thesis develops a body of results

on the behaviour of weighted projective surfaces, and applies these results to 3-dimensional

algebraic geometry.

1.1 Weighted Projective Lines

In 1987 Geigle and Lenzing [GL87] introduced a new class of, what are now called, weighted

projective lines which are encoded by a commutative ring with defining equations of the

1
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form ±xa ± yb ± zc = 0. These equations also have a long and remarkable history, going

back to the work of Klein [Kle93] and Poincaré [Poi82]. Because of their long history, they

also appear frequently in other areas of study such as representation theory, invariant

theory, the McKay correspondence, singularities and more.

On one hand, weighted projective lines are interesting because they can be approached en-

tirely using representation theory, in particular via the canonical algebra of Ringel [Rin84].

On the other hand, as we will see in this thesis, studying them from a geometric viewpoint

produces fresh perspectives, and fruitful results. For example, the Serre functor [HIMO,

Thm 3.4(b)] plays a crucial role, and its properties subdivide weighted projective lines

into families, akin to standard geometric trichotomies of Fano, Calabi-Yau or anti-Fano.

In the simplest instances, known as the domestic case, weighted projective lines can be used

to produce the familiar, and well understood, ADE-surface singularities. The standard

Veronese subring trick of Lenzing is what moves from lines (dimension one) to surfaces

(dimension two) [Len11, §1.4]. This elementary, but powerful, construction leads to the

natural question: can more general singularities be produced and understood in this way?

Iyama and Wemyss [IW19] realised that the trick of Lenzing could be extended to more

general surface singularities. Not only can more general singularities S−~ω be produced,

but under very mild assumptions, a partial resolution of singularites T−~ω → SpecS−~ω can

also be naturally constructed. The beauty of this method is that all the singularities of

T−~ω lie on a single copy of P1 inside the partial resolution, as illustrated in the following

diagram.

P1

T−~ω S−~ω
(1.1.A)
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Chapter 4 of this thesis extends this partial resolution to higher dimensions. In turn, this

raises the question: what is the higher dimensional analogue of ADE-singularities?

1.2 A Generalisation of Weighted Projective Lines

Much more recently, the classical construction of Geigle-Lenzing weighted projective lines

was extended to dimension d ≥ 2 by Herschend, Iyama, Minamoto and Opperman [HIMO].

The details of these weighted projective spaces, namely how they are defined by a ring

S and grading group L with n weights (p1, . . . , pn), can be found in §2.2. As one would

expect, increasing dimension brings added complications, subtleties and many interesting

questions.

We first probe how the Iyama–Wemyss partial resolution T−~ω → SpecS−~ω generalises as

we raise the dimension. Conceptually, this is still constructed via the total space of the line

bundle O(~ω), but now controlling its properties is much harder. For any fixed dimension

d, the complexity largely goes with the number of weights (namely, n), and we outline

our main results in this direction in the next section (§1.3). Before doing this, we briefly

summarise two key cases.

1.2.1 The Toric Case

The easiest case is when n = 3, in which case the ring S−~ω turns out to yield a threefold

abelian quotient singularity (see §3.3). These are toric varieties, and so the methods of

toric geometry apply. Remarkably, we are able to not only identify the toric polytope,

we are also able to show that our partial resolution is, in fact, the Kawamata weighted

blow-up. Pictorially, the weighted blow-up can be viewed as the following toric subdivision
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where more details can be found in §4.4. The point is that, applied to the easiest case (n =

3), our construction recovers the Kawamata weighted blow-up, which is a fundamental

construction in threefold birational geometry. The power of our method is that it also

applies to many other cases, where toric methods do not apply.

1.2.2 The Non-Toric Setting

When the number of weights n ≥ 4, the singularities SpecS−~ω are no longer toric, so

we instead search for tilting objects to better understand the partial resolution. Tilting

objects allow us to fully control the homological algebra of SpecS−~ω. In particular, they

make it possible to study the geometry of T−~ω via the representation theory of noncom-

mutative resolutions (and their variants). This information is crucial when constructing

minimal models of the singularities SpecS−~ω.

We will construct tilting objects on T−~ω using the method of Toda-Uehara. In Chapter 5

we prove that the following list contains precisely all cases in which these tilting objects

occur.

• n = 4 and (p1, p2, p3, p4) = (2, 2, p3, p4).

• n = 4 and (p1, p2, p3, p4) = (2, 3, p3, p4) where p3, p4 ∈ {3, 4, 5}.

The same computation in dimension two gives precisely the ADE classification. Therefore

our result can be viewed as an ADE classification in dimension three. This suggests
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that there is a higher dimensional analogue of ADE singularities, from the viewpoint of

weighted projective spaces.

1.3 The Main Results

We now briefly summarise the results of this thesis, in more technical detail. Given the

weighted projective surface X and associated ring S from §2.2, consider the graded ring

S−~ω =
⊕

i∈Z S−i~ω.

1.3.1 The Morphism

The main results of this thesis are concerned with the 3-dimensional singularities S−~ω,

although many of the results hold in arbitrary dimension. The following Theorem (shown

in Chapter 4), which is one of the main results, constructs a partial resolution γ analogous

to that of the one in [IW19] for these threefold singularities.

Theorem 1.3.1. (4.3.21) If (S,L) is Fano then the morphism γ : T−~ω → SpecS−~ω is a

projective, birational morphism.

The Theorem is, in fact, much more general, but we restrict to the case S−~ω for this

introduction. We now highlight some of the keys steps in the proof of Theorem 1.3.1.

Using Čech cohomology, we prove the following strong vanishing results hold for weighted

projective surfaces, namely

H i(OT−~ω) =


⊕

j≥0 S−j~ω i = 0,⊕
j≥0(S~ω+j~ω)∗ i = 2,

0 else.

These imply that γ : T−~ω → SpecS−~ω satisfies Rγ∗OT−~ω = OS−~ω provided (S,L) is Fano.

To prove that γ is a projective, birational morphism takes more work. In Lemma 4.3.15

we find a particular ample bundle L on T−~ω, and a similar Cech cohomology calculation

gives
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H i(L) =


⊕

j≥0 Sj~ω+~c i = 0,⊕
j≥0(S~ω−j~ω−~c)

∗ i = 2,

0 else.

It follows that R1γ∗L = 0. Although a technical result, this is what allows us to check

that the right derived functor R1γ∗ preserves coherent sheaves, and thus that γ is proper.

In fact, leveraging [Gro67, II.5.5.3] we are able to then prove Theorem 1.3.1.

1.3.2 It’s a Blow-Up

As was mentioned earlier, in the toric setting we will prove that the map γ is a weighted

blow up; these weighted blow-ups are recalled in §3.4. To achieve this we establish the

following result which is shown to hold for any weighted projective space. The result is

new even for weighted projective lines studied in [IW19].

Theorem 1.3.2. (4.4.1) There is an isomorphism T−~ω ∼= Proj(I) where

I = OSpecS−~ω ⊕
⊕
n≥1

γ∗L
n.

Returning to the toric case, using the fact that S−~ω ∼= SG for some cyclic group G (by

3.3.1), a comparison between the open charts of Proj(I) and the open charts of the weighted

blow-up yields our next result.

Corollary 1.3.3. (4.4.4) For pairwise coprime pi, T
−~ω is a weighted blow-up of SpecSG.

1.3.3 Tilting and Full Resolutions

Chapter 5 deals with the existence of tilting bundles on T−~ω. The first method of con-

structing a tilting bundle is via pulling back the well known tilting bundle O⊕O(1)⊕O(2)

from P2 to a bundle V on T−~ω. In the toric setting (n = 3) we show in Corollary 5.1.5

that this bundle is indeed tilting on T−~ω. However, outside of the toric case this does not

hold.
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Corollary 1.3.4. (5.2.1) Let pi ≥ 2 for all i and n ≥ 4. The pullback V is not a tilting

object on T−~ω.

In this case, we must work harder to find a tilting bundle. We next investigate the powerful

method of Tuda–Uehara [TU10], and show that the only instances in which tilting bundles

of this kind exist are the following.

Lemma 1.3.5. (5.2.2, 5.2.4) When n = 4 there exists a tilting bundle constructed by the

method of Toda–Uehara [TU10] if and only if the following conditions are satisfied:

• (p1, p2, p3, p4) = (2, 2, p3, p4).

• (p1, p2, p3, p4) = (2, 3, p3, p4) where p3, p4 ∈ {3, 4, 5}.

This result is particularly interesting due to the fact that in [HIMO, Thm 3.64] a list is

given for the existence of noncommutative crepant resolutions of S−~ω and when n = 4 the

above list is precisely six cases short of the list in [HIMO].

We remark that it is sometimes possible to produce tilting bundles on T−~ω by pulling

back other natural tilting bundles, such as O ⊕ Ω1(1) ⊕ Ω2(2), from P2. However, and

interestingly, we are able to prove in Theorem 5.3.2 that this pullback produces a tilting

bundle only when a Toda–Uehara tilting bundle exists. This exhausts all known methods

of producing tilting objects on T−~ω.

We lastly focus on the problem of producing full resolutions of SpecS−~ω. In the case

of weighted projective lines, this is easy, since by (1.1.A) all singularities of T−~ω are

isolated and locally toric, so can be resolved by blowing up points. The higher dimensional

case is significantly more complicated: the singularities of T−~ω are no longer isolated,

and birational models are not unique. We illustrate this in two cases, namely weights

(2, 2, 2, 2n) and (3, 3, 3, 3), leaving details to Chapter 6.

In the case of (2, 2, 2, 2) we are able to recognise the singularities on T−~ω locally at each

point of the singular locus. In this instance the singularities are locally C2/Z2×C except

at the three ‘worst’ points where the singularities are locally Z2 × Z2 quotients. Since



CHAPTER 1. INTRODUCTION 8

each of these can be easily resolved locally, we can extend this result to construct a full

resolution of T−~ω as in Theorem 6.1.2.

However, the extension of this result even to the family (2, 2, 2, 2n) for n ∈ Z≥0 is far from

straightforward. We use the case (2, 2, 2, 6) as an example (see §6.2). We again analyse the

singularities on T−~ω locally and in this instance, while we can recognise the singularities,

the next ‘best’ steps towards a full resolution are not clear. Locally, the blow-up at points

of these singularities are not all smooth and it is not obvious what should be blown first

to construct a resolution.

The final example of interest is the case p = (3, 3, 3, 3). This case is particularly interesting

due to the existence of an NCCR for S−~ω [HIMO, Theorem 3.64] and yet, we have shown

that we have exhausted all obvious methods of constructing a tilting bundle on T−~ω in

this instance. Similarly to the (2, 2, 2, 2n) case, we can analyse the singularities locally

on the open charts covering T−~ω and recognise them as either C/Z3 × C or, at the three

‘worst‘ points, Z3×Z3 quotients. Again we are met with the problem of choice and cannot

conclusively say one resolution is a better choice than another.



Chapter 2

Preliminaries

This chapter introduces some well-known results which will be important in the work of this

thesis. Section 2.1 provides an overview of noncommutative crepant resolutions (NCCRs)

for general Gorenstein rings, by first introducing Cohen–Macaulay modules and crepant

resolutions, and then adapting them to the noncommutative setting. Then Section 2.2

introduces and illustrates the higher dimensional generalisation given in [HIMO] of Geigle–

Lenzing weighted projective lines. Noncommutative resolutions are then translated into

the language of weighted projective spaces in Section 2.2.4 and we give an overview of

what is known about their existence in this context. Much is known about the existence

of NCCRs for weighted projective lines, however much less is known for higher dimensions.

2.1 Noncommutative Crepant Resolutions

Traditionally, the geometry of a singular variety X is studied by resolving its singularities;

that is, finding a non-singular variety Y equipped with a proper, birational morphism

Y → X which is an isomorphism away from the singular locus. Noncommutative Crepant

Resolutions (NCCRs) were first introduced by Van den Bergh [VdB04] in 2004, in his

search for a noncommutative algebra from which the geometry of a singularity X = SpecR

can be extracted.

9
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2.1.1 Cohen–Macaulay Modules

Cohen–Macaulay modules are required for the purpose of introducing NCCRs, and so we

recall the main concepts here. The material in this section, and a more in-depth study

of Cohen–Macaulay rings, can be found in [BH93]. Details of their role in the setting of

weighted projective space can be found later, in §2.2.3.

If R is a commutative Noetherian ring, then the category of finitely generated right R-

modules will be denoted by modR. If (R,m) is further local, then the depth of a module

X ∈ modR is

depthX = min{i | ExtiR(R/m, X) 6= 0},

and the objects in the full subcategory

CMR = {X ∈ modR | depthX = dimR} ∪ {0}

are called (maximal) Cohen–Macaulay R-modules. Furthermore, if R is Gorenstein then

the above full subcategory can alternatively be defined as

CMR = {X ∈ modR | ExtiR(X,R) = 0 for all i > 0}.

If R is a commutative Noetherian ring which is non-local, then X ∈ modR is Cohen–

Macaulay if, for all prime ideals p in R, Xp ∈ CMRp. Further, the ring R is said to be

Cohen–Macaulay if it is Cohen–Macaulay as an R-module.

In some instances below the stable category of Cohen–Macaulay modules, CMR, will be

required. The objects are the same as in CMR, but the morphism spaces are

HomCMR(X, Y ) = HomR(X, Y )/P(X, Y )

where X, Y ∈ CMR and P(X, Y ) is the subspace of morphisms factoring through projR,

the full subcategory of modR containing the finitely generated projective right R-modules.
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2.1.2 Crepant Resolutions

The algebraic varieties in this thesis will always be over C, and can be assumed to be

normal with only Cohen–Macaulay singularities. If X is such a variety, it automatically

comes equipped with a canonical sheaf ωX . A proper morphism f : Y → X = SpecR is

called crepant if f ∗ωX = ωY . The term crepant plays on the fact that the discrepancy is

zero, and was first coined by Reid in [Rei83].

A scheme or variety X has rational singularities if there exists a proper, birational mor-

phism f : Y → X with Y regular such that Rf∗OY = OX . It is known that if a Gorenstein

variety has a crepant resolution then the singularities are rational [KM98, 5.10]. However,

the existence of rational singularities does not imply that there exists a crepant resolution,

as the following example illustrates.

Example 2.1.1. Quotient singularities over Cd/G always have rational singularities [Vie77,

Prop. 1]. When G ⊂ SL(d,C) and d = 2, these are precisely the Kleinian singularities,

and a crepant resolution always exists. For d = 3, the existence of a crepant resolution

was shown case-by-case in [IR96], [Ito95a], [Ito95b], [Mar97], [Roa94] and [Roa96], then

spectacularly in all cases via derived category methods in [BKR01]. However, when d ≥ 4

a crepant resolution does not necessarily exist. For example, the singularities C4/G, where

G ⊂ SL(4,C) is generated by the diagonal matrix

g =



ε 0 0 0

0 εr−1 0 0

0 0 εi 0

0 0 0 εr−i


and i > 0, r ≥ 2 ε is an r-th primitive root of unity, are Q-factorial terminal singularities

and therefore do not admit a crepant resolution [Rei02, 5.4].

To introduce noncommutative crepant resolutions requires the notion of reflexive modules.

Definition 2.1.2. Let R be a commutative ring, and M ∈ modR. Then M is called a
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reflexive module if the natural map M → M∗∗ = HomR(HomR(M,R), R) is an isomor-

phism.

Definition 2.1.3. [VdB04] Let R be a normal Gorenstein domain. A noncommutative

crepant resolution of R is an algebra Λ = EndR(M), where M is a reflexive module, such

that Λ is a maximal Cohen-Macaulay R-module and Λ has finite global dimension.

In analogy with the existence of crepant resolutions, Stafford and Van den Bergh [SVdB08]

showed that the existence of an NCCR for a Gorenstein, normal, affine domain R implies

that R has rational singularities. The term crepancy in NCCR refers to the property

Λ ∈ CMR, and is justified by the following results.

Theorem 2.1.4. [IW14b, 4.14] Let f : X → Y = SpecR be a projective, birational

map between normal Gorenstein domains of dimension d. If X is derived equivalent to

some ring Λ, then the morphism f is crepant if and only if Λ ∈ CMR. In this case

Λ ∼= EndR(M) for some reflexive R-module M .

Corollary 2.1.5. [IW14b, 4.15] Consider f : X → Y under the same conditions as

Theorem 2.1.4, and assume that X is smooth. If X is derived equivalent to some ring Λ,

then f is crepant if and only if Λ is an NCCR of R.

When dimY ≥ 4, having a crepant resolution does not imply the existence of an NCCR as

a derived equivalence between X and some Λ does not necessarily occur (see e.g. [IW14b,

Theorem 4.20]). Likewise, the existence of an NCCR does not imply the existence of a

crepant resolution, since the quotient singularity 1
2
(1, 1, 1, 1) admits an NCCR [VdB04,

1.1], however by Example 2.1.1, it does not admit a crepant resolution.

2.2 Geigle–Lenzing Weighted Projective Space

This section introduces Geigle–Lenzing weighted projective lines and also their extension

to higher dimensions. Weighted projective lines were first introduced in [GL87], and the

substance of this section is a summary of [HIMO].



CHAPTER 2. PRELIMINARIES 13

2.2.1 Geigle–Lenzing Complete Intersections

The following definitions hold for an arbitrary field k. For any choice of positive integers

p1, . . . , pn and any choice of linear forms `1, . . . , `n ∈ k[t0, . . . , td] that define pairwise

distinct points λ1, . . . , λn in Pd, set p := (p1, . . . , pn), λ := (λ1, . . . , λn) and consider

Sp,λ = S :=
k[t0, . . . , td, x1, . . . , xn]

(xpii − `i(t0, . . . , td) | 1 ≤ i ≤ n)
.

The algebra S depends on p and λ as well as the linear forms `i but we usually suppress

this from the notation. By construction, S is graded by the abelian group defined by

generators and relations

L = 〈~x1, . . . , ~xn,~c〉/〈pi~xi − ~c | 1 ≤ i ≤ n〉

via deg xi = ~xi and deg ti = ~c. Observe that if pi = 1, then ~xi = ~c in L and xi = `i in S.

Therefore xi can be eliminated in the quotient, and so it makes sense to assume that all

pi ≥ 2, which we do from now on.

By [HIMO, 2.1(a)], the elements of L can be written in normal form as follows

~x =
n∑
i=1

ai~xi + a~c (2.2.A)

where 0 ≤ ai < pi and a ∈ Z. It will often be the case that the choice of ~x is restricted to

the subset L+, defined as follows.

Definition 2.2.1. ~x ∈ L is in L+ if, when written in normal form (2.2.A), a ≥ 0.

Remark 2.2.2. For elements ~x, ~y ∈ L, we will write ~x ≤ ~y if 0 ≤ ~y− ~x, or equivalently if

~y − ~x ∈ L+.

Remark 2.2.3. [HIMO, 2.1.(b)] The group L is a rank one abelian group which is torsion

free if and only if p1, . . . , pn are pairwise coprime.

The pair (S,L) is called a Geigle-Lenzing complete intersection if the linear forms are

in general position, that is, any set of at most d + 1 of the linear forms `i is linearly
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independent. In this case, as explained in [HIMO, Observation 2.3] it can be assumed

that

`i(t0, . . . , td) =

 ti−1 1 ≤ i ≤ min{d+ 1, n},∑d
j=0 λijtj min{d+ 1, n} < i ≤ n.

We then obtain the relations tj = x
pj+1

j+1 and S has the form

S =

 k[tn, . . . , td, x1, . . . , xn] 1 ≤ n ≤ d+ 1,

k[x1, . . . , xn]/(xpii −
∑d

j=0 λijx
pj+1

j+1 | d+ 2 ≤ i ≤ n) d+ 2 ≤ n.

When n = d+ 2, after rescaling if necessary,

S ∼=
k[x1, . . . , xn]

xpnn − (xp11 + xp22 + · · ·+ x
pd+1

d+1 )
.

Veronese subrings of S will have a key role in the work of this thesis. Given any ~y ∈ L,

the corresponding Veronese subalgebra is defined to be

S~y =
⊕
i∈Z

Si~y,

where Si~y is the i~y-graded piece of S. The following results, that describe the graded

pieces of S, will be pivotal in understanding Veronese subrings.

Lemma 2.2.4. [HIMO, 2.5, 2.1(c)] For ~x =
∑n

i=1 ai~xi + a~c ∈ L+ the following hold

1. S~x = (
∏n

i=1 x
ai
i )Sa~c,

2. S~x+m~c = S~x · Sm~c for all m ≥ 0.

3. The graded piece S~x is non-zero if and only if ~x ∈ L+.

Write modL S for the category of L-graded finitely generated S-modules. For the purpose

of understanding certain calculations later, such as those involving Čech cohomology, we

require the notion of regular sequences. This is a general concept, given here in the context

of Geigle–Lenzing complete intersections.
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Definition 2.2.5. [HIMO, Definition 2.6] Let (a1, . . . , al) be a sequence of homogeneous

elements in S, whose degrees are in L+ \ {0}. For M ∈ modL S, (a1, . . . , al) is an M-

regular sequence if the multiplication map

ai : M/M(a1, . . . , ai−1)→M/M(a1, . . . , ai−1)

is injective for all 1 ≤ i ≤ l.

The following regular sequence will be vital in Chapter 4.

Lemma 2.2.6. [HIMO, Lemma 2.7] The sequence (t0, . . . , td) is an S-regular sequence.

Proposition 2.2.7. [HIMO, Prop. 2.8(a)] The ring S is a complete intersection and

dimS = d+ 1.

Equipped with this regular sequence the following implication is well known.

Proposition 2.2.8. [HIMO, Prop. 2.8] S is a Gorenstein ring.

It is then easy to extract the dualising element of (S,L).

Definition 2.2.9. The dualising element ~ω of (S,L) is defined to be

~ω = (n− d− 1)~c−
n∑
i=1

~xi.

Geigle–Lenzing complete intersections are divided into three natural classes: Fano, anti-

Fano and Calabi-Yau. For this, consider the unique homomorphism δ : L → Q such that

δ(~xi) = 1
pi

and δ(~c) = 1.

Definition 2.2.10. A Geigle–Lenzing complete intersection (S,L) is Fano (respectively,

Calabi-Yau, anti-Fano) when δ(~ω) < 0 (respectively, δ(~ω) = 0, δ(~ω) > 0).

This trichotomy is motivated by the ampleness [HIMO, Cor. 4.13] of the automorphisms

(~ω) and (−~ω) on the coherent sheaves of the stack X defined in the next subsection. In

the case of weighted projective lines, d = 1, the classes Fano, Calabi-Yau and anti-Fano

correspond to the domestic, tubular and wild representation types respectively [GL87,

5.4.1-5.4.3].
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2.2.2 Weighted Projective Space

The d-dimensional weighted projective space associated to a Geigle–Lenzing complete

intersection (S,L) is defined as

X := [(SpecS \ 0)/ SpecCL],

where CL is the group algebra of L and 0 is the (maximal) augmentation ideal of S. The

above definition is made using stack notation. However, the language is not so important

in this instance, since the work of this thesis focuses entirely on coherent sheaves on X,

which are defined to be the quotient category

cohX = qgrLS = modLS/modL
0S,

where modL
0 S is the full (Serre) subcategory of finite dimensional L-graded S-modules.

The coarse moduli space of X is

X := (SpecS \ 0)/ SpecCL.

It is well known that X ∼= Pd. Indeed, for the case d = 2, it is clear that the open cover

U0∪U1∪U2 = (SpecS)\{0}, where Ui = SpecSti , induces an open cover X = X0∪X1∪X2

with Xi := Spec(Sti)0, where (Sti)0 is the degree zero part of Sti . It can be checked that

(St0)0 = C[t1/t0, t2/t0], and similarly for the other charts. From this, it is clear that

X ∼= P2. Similar things happen for d ≥ 2.

2.2.3 L-Graded Cohen–Macaulay Modules

This section considers Cohen–Macaulay modules, as defined in §2.1, in the context of

Geigle–Lenzing complete intersections.

Let (S,L) be a Geigle–Lenzing complete intersection The category of i-dimensional L-

graded Cohen–Macaulay modules is defined to be
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CML
i S = {X ∈ modLS | ExtjS(X,S) = 0 for all j 6= d+ 1− i}.

The maximal L-graded Cohen–Macaulay modules are the case i = d+ 1, and are denoted

CMLS := CML
d+1S.

The stable category CMLS of L-graded CM-modules has the same objects as CMLS, and

the morphism spaces are

HomCML S(X, Y ) = HomL
S(X, Y )/P(X, Y )

where P(X, Y ) is the subspace of morphisms X → Y that factor through projLS.

Since the Veronese S−~ω, which is Z-graded, is largely the focus of this thesis we will

also require some of its basic properties. The following is an L-graded version of Goto–

Watanabe’s results on Veronese subrings [GW78]. Assuming that (S,L) is not Calabi-Yau

(which is true of all examples in this thesis) we have the following results.

Theorem 2.2.11. [HIMO, 3.56, 3.57] The ring S−~ω is Z-graded of dimension d+ 1.

As such, the category of Z-graded maximal CM modules is

CMZS−~ω := {X ∈ modZS−~ω | ExtiS−~ω(X,S−~ω) = 0 for all i 6= 0}.

Remark 2.2.12. As observed in [HIMO, above 3.57], see also [BH93, Ex. 1.2.26], the

functor

(−)−~ω : modLS → modZS−~ω

M 7→M−~ω =
⊕
i∈Z

M−i~ω

restricts to a functor CML S → CMZ S−~ω.
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2.2.4 Noncommutative Crepant Resolutions of S−~ω

The general concept of a noncommutative crepant resolution was outlined in Section 2.1.

This section contains a review of what is known about the existence of NCCRs for weighted

projective spaces, their relationship to cluster tilting and other various properties.

Definition 2.2.13. A full subcategory C of an abelian or exact category A is d-cluster

tilting if it is functorially finite (see [HIMO, 1.12]) and furthermore

C = {a ∈ A | Exti(a,C) = 0 for 0 < i < d}

= {a ∈ A | Exti(C, a) = 0 for 0 < i < d}.

It is known that d-cluster tilting subcategories are strongly related to d-tilting objects.

Tilting objects will be seen in action in Chapter 5.

Definition 2.2.14. An object U in CMLS is tilting if Hom(U,U [i]) = 0 for all i 6= 0

and CMLS = thick(U). A tilting object U ∈ CMLS is d-tilting if EndL
S(U) has global

dimension at most d.

By [HIMO, 6.11] the latter condition is equivalent to the global dimension being precisely d.

The link between d-tilting and d-cluster tilting is provided by d-Cohen-Macaulay finiteness.

Definition 2.2.15. [HIMO, 3.49] A complete intersection (S,L) is d-Cohen–Macaulay

finite if there exists a d-cluster tilting subcategory of CML S such that there are only finitely

many isomorphism classes of indecomposable objects up to degree shift.

Theorem 2.2.16. [HIMO, Theorem 3.53] If CMLS has a d-tilting object, then (S,L) is

d-CM finite.

Furthermore, d-CM finiteness is linked to the existence of NCCRs of the Veronese subring

by the following result.

Theorem 2.2.17. [HIMO, Theorem 3.59] If (S,L) is d-CM finite, then S−~ω has an

NCCR.
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These results lead to the following open question.

Question 2.2.18. How are the following conditions related to each other?

1. (S,L) is Fano in the sense of 2.2.10.

2. (S,L) is d-CM finite.

3. S−~ω has an NCCR.

4. CMLS has a d-tilting object.

The follow connections are known through the results referenced above and others found

in [HIMO].

NCCR⇐ d-CM finite⇐ d-tilting object⇒ Fano

When d = 2, the example in [HIMO, Example 3.40] demonstrates that the above impli-

cations are not all if and only if statements. It is possible for (S,L) to be Fano without

the existence of a 2-tilting object. The precise restrictions required to obtain if and only

if statements are unknown. There are families which are known to have d-tilting objects

listed in [HIMO, 3.64], but the exclusivity of this list is not proven.

For the remainder of this thesis we will assume that d = 2, unless stated otherwise.



Chapter 3

The Toric Case

This chapter considers the simplest class of weighted projective planes (S,L), where n =

3 and p1, p2 and p3 are pairwise coprime. We show that the associated 3-dimensional

Veronese subrings S−~ω are toric varieties. In fact, they are cyclic quotient singularities.

In this instance we can use toric geometry to understand and resolve SpecS−~ω.

Before this, a brief overview of toric varieties is given, which includes 2-dimensional exam-

ples, and we also describe two very different methods of constructing partial resolutions

of 3-dimensional cyclic singularities.

3.1 An Introduction to Toric Varieties

A detailed introduction to toric varieties can be found in [Ful93]. Here we provide a brief

summary of the results needed in order to understand toric weighted projective planes.

To define a toric variety requires a lattice L ∼= Zn and dual lattice M = Hom(L,Z). Let σ

be a cone in L. Then the dual cone σ∨ is the set of vectors in M⊗R which are nonnegative

on σ. A cone σ in L⊗R is said to be a strongly convex polyhedral cone if it has a vertex

at the origin and is generated by finitely many vectors.

A fan Σ is a collection of strongly convex polyhedral cones in L satisfying the following

conditions:

20
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• every face of a cone in Σ is also a cone in Σ,

• the intersection of two cones in Σ is a face of each cone.

A toric variety is constructed from a lattice L and a fan Σ. First, consider the commutative

semigroup

Sσ := σ∨ ∩M = {u ∈M : (u, v) ≥ 0 for all v ∈ σ},

with corresponding finitely generated commutative C-algebra C[Sσ]. Then the affine toric

variety Uσ is defined to be

Uσ := Spec(C[Sσ]).

The toric variety UΣ associated to the fan Σ = {σi}i∈I is given by the disjoint union of

varieties Uσi and gluing along the intersection Uσi∩σj for each i, j ∈ I.

Many interesting varieties are toric, and as we will see in the next section, this includes

the well-known cyclic and abelian quotient singularities.

3.2 Cyclic Quotient Singularities

We observe that cyclic quotient singularities are toric varieties by following the set up and

notation described in [Rei87]. Let r > 1 and choose integers 0 ≤ ai < r for i = 1, . . . , n.

Let G ⊂ GL(n,C) be generated by the diagonal matrix

g =



εa1 0 · · · 0

0 εa2 0
...

... 0
. . . 0

0 · · · 0 εan


,

where ε is an r-th root of unity. Let M̄ ∼= Zn be the lattice of Laurent monomials in

x1, . . . , xn and L̄ the dual lattice with generators e1, . . . , en. Take the overlattice

L = L̄+ Z · 1

r
(a1, . . . , an),
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where r ∈ N and 0 ≤ ai < r for each i = 1, . . . , n. Let M ⊂ M̄ be the sublattice dual to

L. Then a monomial xm ∈ M if and only if it is invariant under the action of the group

G. We assume that gcd(r, a1, . . . , âj, . . . , an) = 1, where aj is removed for any choice of j.

Then, for σ = 〈e1, . . . , en〉 ∈ LR,

Uσ = Spec(C[σ∨ ∩M ]) = SpecC[x1, . . . , xn]G = Cn/G,

is a cyclic quotient singularity of type 1
r
(a1, . . . , an). We define the unit box as

� = {(r1, . . . , rn) ∈ Rn | 0 ≤ ri < 1}.

Since every g ∈ G has a representative in �, when drawing the toric picture for σ we can

simply focus on L ∩� (see Figure 3.1).

3.2.1 Hirzebruch–Jung Continued Fractions

Since cyclic quotient singularities are toric, this section unpacks how to draw these when

G ⊂ GL(2,C), which can be reduced to studying the case 1
r
(1, a) where r and a are

coprime. The cone 〈e1, e2〉 is then the positive quadrant, and this can be drawn easily.

The cyclic quotient singularity of type 1
31

(1, 11) will be the running example in this section

and the unit box of the lattice Z2 + Z · 1
31

(1, 11) is drawn in Figure 3.1.

0 1
0

1

Figure 3.1: The singularity of type 1
31

(1, 11)
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In order to calculate the resolution we need to look at the convex hull of the lattice. The

points forming the convex hull of lattice points in Figure 3.1 are determined by expanding

the fraction r/a as a Hirzebruch–Jung continued fraction, namely

r

a
= α1 −

1

α2 − 1
···− 1

αm

= [α1, . . . , αm],

with all αi ≥ 2. To calculate the points lying on the convex hull, set v0 = (0, 1), v1 = 1
r
(1, a)

and

vi+1 = αivi − vi−1

for i = 1, . . . ,m. The resolution is the subdivision of the quadrant generated by the rays

v0, . . . , vm+1.

Returning to the running example, the Hirzebruch-Jung continued fraction for 31/11 is

31

11
= 3− 2

11
= 3− 1

6− 1
2

= [3, 6, 2].

Therefore the points generating the convex hull are v0 = (0, 1), v1 = 1
31

(1, 11) and

v2 = 3
1

31
(1, 11)− (0, 1) =

1

31
(3, 2),

v3 = 6
1

31
(3, 2)− 1

31
(1, 11) =

1

31
(17, 1),

v4 = 2
1

31
− 1

31
(3, 2) = (1, 0).

Plotting the rays from the origin through these points gives the resolution depicted in

Figure 3.2.

3.2.2 Three Dimensional Cyclic Quotient Singularities

The above method of resolving two dimensional cycle quotient singularities can be ex-

tended to three dimensions. It was first shown by Nakamura [Nak01] that a crepant

resolution of all cyclic quotient singularities C3/G exists, and can be realised as the G-

Hilbert scheme G-Hilb C3. Craw and Reid [CR02] then constructed a visually pleasing



CHAPTER 3. THE TORIC CASE 24

0 1
0

1

Figure 3.2: The resolution of 1
31

(1, 11)

method, using toric geometry, to easily compute G-Hilb C3 for cyclic quotient singularities.

In this section we give a brief overview of their construction.

Let A ⊂ SL(3,C) be the cyclic group generated by an element of the form 1
r
(a1, a2, a3),

and define L as before. To study the singularities pictorially we take a slice ∆ of the unit

box in R3 where

∆ :=
{

(r1, r2, r3) ∈ � |
∑

ri = 1
}
.

This contains all the lattice points corresponding to the generating elements of G since

they take the form 1
m

(a1, a2, a3) where a1 + a2 + a3 = m. The slice ∆ has three vertices

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). When generating the toric picture of the

resolution G-Hilb C3, we first think of it as three surface singularities taking a different

ei as the origin each time. We construct the Newton polygons of each ∆ \ ei as the

convex hull as in §3.2.1 and concatenate these to form the triangle illustrated in Figure

3.3 (see [CR02, §2.5] for more details).

Consider the group G = 1
31

(15, 10, 16). Then the three surface singularities to consider are

the following, listed with their with Hirzebruch-Jung continued fractions.
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1

31
(15, 10) ∼ 1

31
(1, 11) = [3, 6, 2],

1

31
(15, 6) ∼ 1

31
(1, 19) = [2, 3, 4, 2],

1

31
(10, 6) ∼ 1

31
(1, 13) = [3, 2, 3, 3].

The resolution of L \ e3 has already been constructed in the previous section. Following

the same procedure the resolutions for L \ e1 and L \ e2 are pictured below.

0 1
0

1

Resolution of L/e2

0 1
0

1

Resolution of L/e1

Concatinating the three resolutions gives the following picture

e1

e2 e3

Figure 3.3: The fan of 1
31

(15, 10, 6) after initial analysis

Continuing with Craw and Reid’s method [CR02, §2] of constructing G-Hilb C3, step 2

gives the solid lines in Figure 3.4. Each of the rays from each corner is labelled with
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the associated integer αi from the Hirzebruch-Jung continued fractions. These rays are

extended, and when two rays meet, whichever has a higher number attached to it continues

on, losing one in strength and the other ray stops. Step 3 produces the dotted lines, which

are the regular tessellation of the remaining regular triangles. This results in the fan of

G-Hilb C3.

6
3

2

5

4

3

2
24

3

2

3

2

3
2

3

3

2

2

3

2

e1

e2 e3

Figure 3.4: The fan of 1
31

(15, 10, 6)-Hilb C3

3.3 Toric Weighted Projective Planes

Recall, for any (S,L) with d = 2, the Veronese subring S−~ω from §2.2. We will show

that under certain constraints (n = 3 and p1, p2, p3 are pairwise coprime) this ring is a

cyclic quotient singularity and we explicitly identify the group based on the numerical

information contained within L. We then use toric geometry to study SpecS−~ω.

Lemma 3.3.1. Let p = (p1, p2, p3), with p1, p2, p3 pairwise coprime and −~ω = ~x1+~x2+~x3.

Then

S−~ω ∼= C[x1, x2, x3]G,

where G = 1
m

(a1, a2, a3) with m = p2p3 + p1p3 + p1p2, a1 = p2p3, a2 = p1p3 and a3 = p1p2.

Proof. Let ϕ be the canonical isomorphism ϕ : S → C[y1, y2, y3] given by xi 7→ yi. We will
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show that this induces a map

ϕ̄ : S−~ω → C[y1, y2, y3]G,

and that it is an isomorphism. Let xl11 x
l2
2 x

l3
3 ∈ S−~ω, and recall −~ω = ~x1 + ~x2 + ~x3. Now

there exists l ∈ Z such that

l1~x1 + l2~x2 + l3~x3 = l(~x1 + ~x2 + ~x3)

⇐⇒ p1p2p3(l1~x1 + l2~x2 + l3~x3) = p1p2p3(l(~x1 + ~x2 + ~x3))

⇐⇒ (l1p2p3 + l2p1p3 + l3p1p2)~c = l(p2p3 + p1p3 + p1p2)~c.

Since the pi are pairwise coprime, Remark 2.2.3 implies that L is torsion free, and so the

above is equivalent to the condition

(l1p2p3 + l2p1p3 + l3p1p2) = l(p2p3 + p1p3 + p1p2).

The above shows that if xl11 x
l2
2 x

l3
3 ∈ S−~ω then ϕ(xl11 x

l2
2 x

l3
3 ) ∈ C[y1, y2, y3]G, and so there is

a well defined map

ϕ̄ : S−~ω → C[y1, y2, y3]G

which is automatically injective because it is the restriction of ϕ to S−~ω.

Let ya11 y
a2
2 y

a3
3 ∈ C[x1, x2, x3]G. Since

a1p2p3 + a2p1p3 + a3p1p2 = m(p2p3 + p1p3 + p1p2),

for some m ∈ Z, we have xa11 x
a2
2 x

a3
3 ∈ S−~ω and ϕ(xa11 x

a2
2 x

a3
3 ) = ya11 y

a2
2 y

a3
3 . This implies

that ϕ is a surjective map, and hence an isomorphism.

Remark 3.3.2. Conceptually, 3.3.1 holds because L is cyclic generated by 1
p1p2p3

~c and

therefore L/Z~ω ' Z/mZ.

Under the restriction of Lemma 3.3.1, the previous sections imply that G-Hilb C3 is
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a resolution of SpecS−~ω. In Chapter 4 a variety T−~ω will be introduced in complete

generality and it will be shown that T−~ω is a partial resolution of SpecS−~ω. This result

leads to the natural question: does the projective morphism G-Hilb C3 → SpecS−~ω factor

through T−~ω? Answering this will require weighted blow-ups, which are introduced next.

3.4 Weighted Blow-up

In this section we recall the weighted blow-up of [KM92, §10]. Let X = C3/G with

G = 1
r
(a1, a2, a3) where r, a1, a2, a3 > 0. Recall the overlattice L = L̄ + Z · e and cone

σ = 〈e1, e2, e3〉, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and e = 1
r
(a1, a2, a3),

as defined in §3.2. The cone σ can be decomposed into the union of three polyhedral

cones σ = σ1 ∪ σ2 ∪ σ3, with σi = 〈ej, ek, e〉 where j, k 6= i. The weighted blow-up

πσ : Bσ(X)→ X is a proper birational morphism corresponding to the cone decomposition

of C(X) = Q+e1 + Q+e2 + Q+e3 by Ci =
∑

j 6=iQ+ej + Q+e for i = 1, 2, 3 and their

intersections [KM92, 10.3]. The variety Bσ(X) is covered by the open sets

Ui = C3/Gi, (3.4.A)

where G1 = 1
a1

(r,−a2,−a3), G2 = 1
a2

(−a1, r,−a3) and G1 = 1
a3

(−a1,−a2, r).

Referring back to the running example in this chapter, Figure 3.5 illustrates the weighted

blow-up in the case 1
31

(15, 10, 6). The construction described in this section will be used

in §4.4 to prove that T−~ω is a weighted blow-up of SpecS−~ω.

3.4.1 The Non-coprime Case

A final question to consider when d = 2 and n = 3 is whether there are (p1, p2, p3) which

are not pairwise coprime for which SpecS−~ω is still toric. It is expected that SpecS−~ω is

still an abelian quotient singularity C3/G with G ∼= Za×Zb where ab = p1p2 +p1p3 +p2p3.

However, the action of the group is not obvious except in the smallest examples.
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e1

e2 e3

Figure 3.5: Weighted blow-up of 1
31

(15, 10, 6)

Example 3.4.1. Let p = (2, 2, 2). To understand this example we first identify the partial

resolution of SpecS−~ω as a toric variety and, more specifically, as a weighted blow-up.

Then it is easy to see what SpecS−~ω is. The open charts are:

V0 =
(
C
[
x1, x2, x3, x

−1
1 , t

])
0

= C
[
x2

2

x2
1

,
x2

3

x2
1

, x1x2x3t, x
6
1t

2

]
,

V1 =
(
C
[
x1, x2, x3, x

−1
2 , t

])
0

= C
[
x2

1

x2
2

,
x2

3

x2
2

, x1x2x3t, x
6
2t

2

]
,

V2 =
(
C
[
x1, x2, x3, x

−1
3 , t

])
0

= C
[
x2

1

x2
3

,
x2

2

x2
3

, x1x2x3t, x
6
3t

2

]
.

Notice that

V0
∼= V1

∼= V2
∼=

C[x, y, z, w]

w2 = xyz
∼= C[X, Y, Z]G

where G = Z2 × Z2 which is generated by

g =


−1 0 0

0 −1 0

0 0 1

 and h =


1 0 0

0 −1 0

0 0 −1

 .

This gives the presentation for the toric fan considered as a toric variety. It is possible,

in this example, to deduce that SpecS−~ω is isomorphic to C3/G , where G ∼= Z2 × Z6 is

generated by
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g′ =


ε4 0 0

0 ε 0

0 0 ε

 and h′ =


−1 0 0

0 1 0

0 0 −1


with ε a 6-th primitive root of unity. The fan in Figure 3.6 shows the weighted blow-up

described as a toric variety.

e1

e2 e3

Figure 3.6: The weighted blow-up for Z2 × Z6



Chapter 4

A Partial Resolution of Singularities

This section generalises results in [IW19, §3] in order to show that for certain choices of ~x

and associated weighted projective planes, there exists a canonical partial resolution γ of

the singularities of SpecS~x. This is constructed using the total space stack associated to

a line bundle on the weighted projective plane. This results in the coarse moduli space of

the total space giving a partial resolution of SpecS~x.

4.1 General Results about the Ring S~x

Let d = 2 and p = (p1, . . . , pn) where each pi ≥ 2. Recall that for ~x ∈ L, S~x :=
⊕

i∈Z Si~x.

The following properties of the rings S~x and SN~x =
⊕

i∈N Si~x are needed to construct the

morphism γ in §4.3.

Lemma 4.1.1. For any ~x ∈ L,

1. If ~x ∈ L is not torsion then S~x is a Noetherian C-algebra with dimS~x = 3 and S is

a finitely generated S~x-module.

2. Make the ring S[t] L-graded with deg t = −~x. Then the ring (S[t])0
∼= SN~x is a

normal domain.

3. Suppose −i~x /∈ L+ for all i > 0. Then S~x = SN~x is a Noetherian normal domain.

31
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Proof. 1. Recall that dimS = d+ 1 by Proposition 2.2.7. Since ~x is not torsion and L

has rank one, ~xZ ⊆ L has finite index. Therefore, S is a finitely generated S~x-module

and dimS~x = dimS.

2. By definition, (S[t])0 =
⊕

i≥0 Si~xt
i ∼= SN~x. By [HIMO, Theorem 2.22] the ring S

is an L-factorial L-domain (see [HIMO, Definition 2.19]) and S[t] is an L-factorial

L-domain by [IW19, Prop. 2.2(4)]. Therefore S[t] is a normal domain and conse-

quentially (S[t])0 is also a normal domain by [IW19, Prop. 2.2(2)].

3. Since −i~x /∈ L+ for any i > 0, ~x is not torsion by definition. Therefore, by Lemma

2.2.4(3), S~x = SN~x and the rest follows from (1) and (2).

4.2 The Total Space

Weighted projective lines are intimately linked with two dimensional singularities. This

was first realised by Geigle and Lenzing who produced the familiar ADE singularities via

weighted projective lines [GL87]. Iyama and Wemyss [IW19] observed that this corre-

spondence could be realised geometrically by using the total space of a line bundle on the

weighted projective line. Therefore, if weighted projective lines are used to study surface

singularities then we expect weighted projective surfaces to be useful in studying singular

threefolds. In this chapter it is shown that the total space of a line bundle can also be

used for weighted projective planes (d = 2). To construct the total space, choose ~x ∈ L

and let

T~x = Tot(O(−~x)) := [((SpecS \ 0)× SpecC[t])/ SpecCL],

where t has weight −~x in L. Projection onto the first factor defines a morphism of stacks

q : T~x → X. Denote the coarse moduli space of T~x by T ~x and the quotient map T~x → T ~x
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by g. The space T ~x has an open cover

T ~x = V0 ∪ V1 ∪ V2,

where Vi := Spec(Sti [t])0. Now, Vi maps to the plane Spec(Sti)0 = Xi ⊂ X ∼= P2 (the

coarse moduli space of X §2.2.2), therefore there exists a map p : T ~x → X ∼= P2. This

results in the following commutative diagram

T~x X

T ~x X ∼= P2.

g f

q

p

(4.2.A)

The remainder of the chapter is devoted to constructing a projective, birational morphism

γ : T ~x → SpecS~x and showing that T ~x is a partial resolution of SpecS~x. The singularities

on T ~x are often milder. This motivates constructing a resolution of singularities for T ~x to

then obtain a full resolution of SpecS~x, by composition with γ.

To illustrate T−~ω in an example, consider the toric case d = 2, n = 3 of §3, with

(p1, p2, p3) = (2, 3, 5). Then, by the above, T−~ω is covered by three open charts V0, V1, V2

where Vi = SpecBi and Bi = (Sti [t])0. Now

B2 = C

[
x2

1

x5
3

,
x3

2

x5
3

, x1x2x3t, x
2
2x

7
3t

2, x1x
13
3 t

3, x2x
19
3 t

4, x31
3 t

6

]
⊆ C[x1, x2, x3, x

−1
3 , t].

It can be shown that B2
∼= C[x, y, z]G2 where G2 = 1

6
(3, 2, 1) and, similarly, it can be shown

that B0
∼= C[x, y, z]G0 and B1

∼= C[x, y, z]G1 where G0
∼= 1

15
(1, 5, 9) and G1

∼= 1
10

(5, 1, 4).

Then the subdivision of the slice ∆ of the unit box centered on the point 1
31

(15, 10, 6) gives

the toric picture for the partial resolution T−~ω. Now, recall the weighted blow up of C3/G

where G = 1
31

(15, 10, 6) from §3.4 and notice that the subdivision of T−~ω is precisely the

weighted blow up. We will prove that this holds in some generality in §4.4.
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4.3 Constructing the Morphism

In order to construct γ, it is important to understand the global sections of certain line

bundles on T ~x. This is done via Čech cohomology calculations.

We denote the twist of a module as follows.

Definition 4.3.1. Let M be an L-graded S~x-module. The twist M(~y) of M by ~y ∈ L is

defined to be

M(~y) =
⊕
~z∈L

M~z+~y.

In particular, S(~y)~x = (S~x)(~y) =
⊕

i∈Z Si~x+~y.

Proposition 4.3.2. For any ~x ∈ L,

H i(OT~x) =


⊕

j≥0 Sj~x i = 0,⊕
j≥0(S~ω−j~x)

∗ i = 2,

0 else.

Therefore there is a canonical morphism γ : T ~x → SpecSN~x.

Proof. The Čech cohomology of H i(OT~x) is calculated via the open cover {V0, V1, V2}.

Now, H0(Vi,OT~x) = (Sti [t])0 for i = 0, 1, 2; H0(Vi ∩ Vj,OT~x) = (Stitj [t])0 for i 6= j and

i, j ∈ {0, 1, 2}; and H0(V0 ∩ V1 ∩ V2,OT~x) = (St0t1t2 [t])0. Therefore the resulting complex

0→ (St0 [t])0 ⊕ (St1 [t])0 ⊕ (St2 [t])0
f−→ (St0t1 [t])0 ⊕ (St1t2 [t])0 ⊕ (St0t2 [t])0

g−→ (St0t1t2 [t])0 → 0

(4.3.A)

has cohomology H i(OT~x) with i ≥ 0. Thus H i(OT~x) = 0 for any i ≥ 3. Let a be the ideal

St0 + St1 + St2 of S. Then the local cohomologies H i
a of S are the cohomologies of the

Čech complex

0→ S → St0 ⊕ St1 ⊕ St2 → St0t1 ⊕ St1t2 ⊕ St0t2 → St0t1t2 → 0 (4.3.B)

by [BS13, Theorem 5.1.20]. Since t0, t1, t2 is a S-sequence by Lemma 2.2.6, it follows
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that H0
a (S) = H1

a (S) = H2
a (S) = 0 by [BS13, Theorem 6.2.7]. This results in the exact

sequence

0→ (S[t])0 →(St0 [t])0 ⊕ (St1 [t])0 ⊕ (St2 [t])0
f−→ (St0t1 [t])0 ⊕ (St1t2 [t])0 ⊕ (St0t2 [t])0

g−→

(St0t1t2 [t])0 → (H3
a (S)⊗C C[t])0 → 0.

Therefore, by exactness, H1(OT~x) = 0 and comparing this with (4.3.A) shows that

H0(OT~x) ∼= (S[t])0 =
⊕
j≥0

Sj~x and H2(OT~x) ∼= (H3
a (S)⊗C C[t])0 =

⊕
j≥0

H3
a (S)j~x.

Now, m =
√
a is a maximal ideal of S, and S(~ω) is the L-graded canonical module of S.

Therefore, by L-graded local duality [BS13, §14.4.1],

H3
a (S)j~x = H3

m(S)j~x ∼= (HomS(S, S(~ω))−j~x)
∗ = (S~ω−j~x)

∗.

Classically, to contract the zero section of the total space of a line bundle, whilst maintain-

ing projective birationality, you require negativity of the line bundle in T~x = Tot(O(−~x)),

so there must be some kind of positivity required for the choice of ~x. Consider the following

group homomorphism

δ : L→ Q

defined by ~c 7→ 1 and ~xi 7→ 1
pi

. By considering the normal form on L (2.2.A) it is clear

that δ(L+) ⊂ Q≥0 and ~x is torsion if and only if δ(~x) = 0. The element ~z in L \ L+ is

maximal if for any ~y ∈ L \ L+ we have ~y ≤ ~z. Then it is clear that in normal form

~z =
∑n

i=1(pi − 1)~xi − ~c = ~ω + 2~c. Using this, we deduce:

Lemma 4.3.3. For ~x ∈ L the following hold.

1. −i~x /∈ L+ for all i > 0 if and only if δ(~x) > 0.

2. ~ω − i~x /∈ L+ for all i ≥ 0 implies that δ(~x) ≥ 0.
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Proof. The proof is analogous to the result for weighted projective lines given in [IW19,

Lemma 3.4].

Then Lemma 4.3.3 motivates the following definition.

Definition 4.3.4. The geometrically positive elements of L are

GPos(L) := {~x ∈ L | ~x is not torsion, and ~ω − j~x /∈ L+ for all j ≥ 0}.

As in the case of weighted projective lines, the following result holds.

Proposition 4.3.5. Consider ~x ∈ L.

1. If 0 6= ~x ∈ L+, then ~x ∈ GPos(L).

2. The following are equivalent:

(a) ~x ∈ GPos(L),

(b) −i~x /∈ L+ for all i > 0, and ~ω − j~x /∈ L+ for all j ≥ 0,

(c) SN~x = S~x and Rtγ∗OT~x = 0 for all t > 0.

Proof. The proof is analogous to the proof of [IW19, Prop. 3.6].

Recall from Definition 2.2.10 that (S,L) is Fano when δ(~ω) < 0.

Lemma 4.3.6. −~ω ∈ GPos(L) if and only if (S,L) is Fano.

Proof. By definition, if −~ω ∈ GPos(L) then ~ω+ j~ω /∈ L+ for all j ≥ 0. Therefore i~ω /∈ L+

for all i ≥ 1. By Lemma 4.3.3(1) this holds if and only if δ(−~ω) > 0. Since (S,L) is Fano

if and only if δ(−~ω) > 0, the result follows.

A full list of when (S,L) is Fano for d = 2 can be found in [HIMO, Ex. 2.15].

Corollary 4.3.7. For ~x ∈ GPos(L), there exists a canonical morphism

γ : T ~x → SpecS~x

such that Rγ∗OT~x = OS~x.
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It can be checked that the appropriate analogue of Proposition 4.3.2 holds for arbitrary

d. Specifically,

Corollary 4.3.8. For any d and any ~x ∈ L,

H i(OT~x) =


⊕

j≥0 Sj~x i = 0,⊕
j≥0(S~ω−j~x)

∗ i = d,

0 else.

Therefore there is a canonical morphism γ : T ~x → SpecSN~x.

The goal of the remainder of this chapter is to show that γ is projective and birational.

For this we require an ample bundle on T ~x.

Definition 4.3.9. An invertible sheaf G on a Noetherian scheme X is ample if for every

coherent sheaf F on X, there exists a positive integer n (depending on F) such that for

every N ≥ n, the sheaf F ⊗ GN is generated by its global sections.

The following result about ampleness will be used throughout.

Proposition 4.3.10. [Har77, Prop. II.7.5] Let G be an invertible sheaf on a Noetherian

scheme X. Then the following are equivalent:

1. G is ample,

2. Gm is ample for all m > 0,

3. Gm is ample for some m > 0.

Over the course of proving the main result it will be shown that γ is of finite type.

Definition 4.3.11. A morphism of schemes f : X → Y is locally of finite type if there

exists a covering of Y by affine open subsets Vi = SpecBi such that for each i, f−1(Vi)

can be covered by affine open subsets Uij = SpecAij, where each Aij is a finitely generated

Bi-algebra. The morphism f is of finite type if in addition each f−1(Vi) can be covered by

a finite number of Uij.
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In order to show that γ is of finite type, one first establishes that γ is quasi-compact.

Definition 4.3.12. A morphism f : X → Y is quasi-compact if f−1(V ) is quasi-compact

for every quasi-compact open V ⊆ Y .

Then, by using the following result, f can be shown to be of finite type.

Proposition 4.3.13. [Gro67, I.6.6.3] A morphism f is of finite type if f is locally of

finite type and quasi-compact.

Finally, recall the following definition.

Definition 4.3.14. Let f : X → Y be a quasi-compact morphism, G an invertible OX-

module. We say G is f -relatively ample if there exists an open affine cover (Uα) of Y such

that for every α, G|f−1(Uα) is ample.

With these tools in hand, we can show that the first key result holds.

Proposition 4.3.15. For ~x ∈ GPos(L) the following hold.

1. γ is a finite type morphism between Noetherian schemes.

2. L := p∗O(1) is an ample bundle on T ~x.

3. L is γ-relatively ample.

Proof.

1. T ~x is covered by three affine charts given by Noetherian rings. Therefore T ~x is

Noetherian. By Lemma 4.1.1(1), S~x is Noetherian and hence so too is SpecS~x. The

morphism γ is quasi-compact since T ~x is quasi-compact and SpecS~x is affine. Let

s : SpecS~x → SpecC be the structure morphism. Then the composition s ◦ γ is of

finite type and hence, by [Har77, II.Ex.3.13(f)], γ is of finite type.

2. O(1) is ample on P2 and hence relatively ample with respect to the structure mor-

phism P2 → SpecC. The morphism p is affine, therefore the pullback p∗O(1) is

ample relative to the composition T ~x → P → SpecC by [Gro67, Prop. II.5.1.12].

Since this is the structure morphism for T ~x, p∗O(1) is ample on T ~x.
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3. Since SpecS~x is affine this follows from 2.

Using a similar method to the proof of Proposition 4.3.2, the cohomology of L can be

calculated as follows.

Lemma 4.3.16. For any ~x ∈ L,

H i(L) =


⊕

j≥0 Sj~x+~c i = 0,⊕
j≥0(S~ω−j~x−~c)

∗ i = 2,

0 else.

In particular, R1γ∗L = 0.

Proof. Use Čech cohomology and proceed as in 4.3.2. Since H0(Vi,L) = (Sti [t])~c for i =

0, 1, 2, we haveH0(Vi∩Vj,L) = (Stitj [t])~c for i 6= j and i, j ∈ {0, 1, 2} andH0(V0∩V1∩V2,L)

equals (St0t1t2 [t])~c. Then the complex

0→ (St0 [t])~c ⊕ (St1 [t])~c ⊕ (St2 [t])~c
f−→ (St0t1 [t])~c ⊕ (St1t2 [t])~c ⊕ (St0t2 [t])~c

g−→ (St0t1t2 [t])~c → 0

(4.3.C)

has cohomology H i(L) for i ≥ 0. Thus H i(L) = 0 for any i ≥ 3. Once again, let

a = St0 + St1 + St2. Then the local cohomologies H i
a of S are the cohomologies of the

Čech complex (4.3.B) as in Proposition 4.3.2. Then we have the following exact sequence

0→ (S[t])~c → (St0 [t])~c ⊕ (St1 [t])~c ⊕ (St2 [t])~c
f−→ (St0t1 [t])~c ⊕ (St1t2 [t])~c ⊕ (St0t2 [t])~c

g−→

(St0t1t2 [t])~c → (H3
a (S)⊗C C[t])~c → 0.

Therefore, by exactness, H1(L) = R1γ∗L = 0 and by comparing this with (4.3.C) the

following isomorphisms are obtained:

H0(L) ∼= (S[t])~c =
⊕
j≥0

Sj~x+~c and H2(L) ∼= (H3
a (S)⊗C C[t])~c =

⊕
j≥0

H3
a (S)j~x+~c.
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Recall that
√
a = m is a maximal ideal of S and S(~ω) is the L-graded canonical module

of S. Therefore the L-graded local duality theorem holds and

H3
a (S)j~x+~c = H3

m(S)j~x+~c
∼= (HomS(S, S(~ω))−j~x−~c)

∗ = (S~ω−j~x−~c)
∗.

Lemma 4.3.17. Suppose ~x ∈ GPos(L). Then

1. γ∗g∗q
∗OX(~y) =

⊕
i≥0 Si~x+~y for all ~y ∈ L.

2. γ∗L
n =

⊕
i≥0 Si~x+n~c where n ∈ Z.

Proof. 1. We have that

γ∗g∗q
∗OX(~y) = H0(P2, p∗g∗q

∗OX(~y)) = H0(P2, f∗q∗q
∗OX(~y)).

Then by the projection formula (see [AU15, Theorem 1.2] and [IW19, Theorem

3.9(1)]) q∗q
∗(OX(~y)) =

⊕
i≥0 OX(i~x+ ~y), and so the above equals

⊕
i≥0

H0(P2, f∗OX(i~x+ ~y)) =
⊕
i≥0

H0(X,OX(i~x+ ~y)) =
⊕
i≥0

Si~x+~y.

2. Recall that L = p∗O(1). By induction assume that Ln = p∗O(n) for n ≥ 1. Then

Ln+1 = L⊗ Ln

= p∗OX(1)⊗ p∗OX(n)

= p∗(OX(1)⊗ OX(n))

= p∗OX(n+ 1).
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Hence for any n > 0, Ln = p∗OX(n). Now, consider the negative case

L−1 = HomT~x(L,OT~x)

= HomT~x(p
∗OX(1), p∗OX)

= p∗HomX(OX(1),OX)

= p∗OX(−1).

By induction, assume that L−n = p∗OX(−n). Then

L−(n+1) = HomT~x(L⊗ Ln,OT~x)

= HomT~x(L,Hom(Ln,OT~x))

= HomT~x(L,L
−n)

= HomT~x(p
∗OX(1), p∗OX(−n))

= p∗HomX(OX(1),OX(−n))

= p∗OX(−(n− 1)).

Thus for any n > 0, L−n = p∗OX(−n). Then, by the projection formula g∗g
∗L = L,

we have that

γ∗L
n = γ∗g∗g

∗Ln = γ∗g∗g
∗p∗OP2(n) = γ∗g∗q

∗f ∗OP2(n) = γ∗g∗q
∗OX(n~c).

Then, part (1) implies that γ∗L
n =

⊕
i≥0 Si~x+n~c for all n ∈ Z \ {0}. This is finitely

generated over S~x by [IW19, Theorem 4.2]. Finally, the case n = 0 follows from the

fact that Rγ∗OT~x = OS~x by Corollary 4.3.7.

The key to showing that γ is proper is the fact that γ∗ and R1γ∗ preserve coherent sheaves.

The following lemmas will provide the tools needed to show this.

Lemma 4.3.18. For all n ≥ 0 and ~x ∈ GPos(L), R2γ∗L
n = 0.
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Proof. By definition, if ~x ∈ GPos(L) then S~ω−j~x = 0 for all j ≥ 0. Therefore it follows

from Lemma 4.3.5(2c) that R2γ∗OT−~ω = 0. Pulling back via p the well-known Koszul

complex [Bae88, Section 2.5] on P2 and twisting by L−1 gives the exact sequence

0→ L−2 → (L−1)⊕3 → O⊕3 → L→ 0. (4.3.D)

Splicing provides the short exact sequence

0→ K→ O⊕3 → L→ 0.

This results in the following long exact sequence by the push forward of γ,

· · · → R2γ∗K→ (R2γ∗OT−~ω)⊕3 → R2γ∗L→ 0.

Since R2γ∗OT−~ω = 0, we deduce that R2γ∗L = 0. By induction, assume that for n− 1 the

sheaf R2γ∗L
n−1 equals 0. Twisting (4.3.D) produces the long exact sequence

· · · → R2γ∗K
′ → R2γ∗L

n−1 → R2γ∗L
n → 0.

The result then follows since R2γ∗L
n−1 = 0 gives R2γ∗L

n = 0.

Now we consider negative powers of L.

Lemma 4.3.19. For ~x ∈ GPos(L), R1γ∗L
−n and R2γ∗L

−n are finitely generated S~x-

modules for all n ≥ 0.

Proof. Corollary 4.3.7 shows that Rγ∗OT~x = OS~x . Therefore R1γ∗L
−n and R2γ∗L

−n are

finitely generated S~x-modules if n = 0. Twisting (4.3.D) by L gives an exact sequence

0→ L−1 → O⊕3 → L⊕3 → L2 → 0.
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Splicing the sequence produces the following short exact sequences

0→ L−1 → O⊕3 → K1 → 0 (4.3.E)

and

0→ K1 → L⊕3 → L2 → 0. (4.3.F)

Then pushing down (4.3.E) gives the exact sequence

0→ γ∗L
−1 → (S~x)⊕3 → γ∗(K1)→ R1γ∗L

−1 → 0→

R1γ∗K1 → R2γ∗L
−1 → 0→ R2γ∗K1 → 0.

Therefore R2γ∗K1 = 0 and R1γ∗K1
∼= R2γ∗L

−1. Now, push forward (4.3.F) and use

Lemma 4.3.16 to obtain the exact sequence

0→ γ∗K1 → γ∗L
⊕3 → γ∗L

2 → R1γ∗K1 → 0.

Since both γ∗L
⊕3 and γ∗L

2 are finitely generated by Lemma 4.3.17, it follows that both

γ∗K1 and R1γ∗K1
∼= R2γ∗L

−1 are finitely generated. Thus, in the first sequence the first

three terms are finitely generated and therefore R1γ∗L
−1 is also finitely generated. Thus,

both R1γ∗L
−1 and R2γ∗L

−1 are finitely generated. Twisting (4.3.E) and (4.3.F) gives the

following short exact sequences

0→ L−2 → (L−1)⊕3 → K2 → 0 (4.3.G)

and

0→ K2 → O⊕3 → L→ 0. (4.3.H)
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Pushing forward (4.3.G) gives

0→ γ∗L
−2 → γ∗(L

−1)⊕3 → γ∗K2 → R1γ∗L
−2 → R1γ∗(L

−1)⊕3 →

R1γ∗K2 → R2γ∗L
−2 → R2γ∗(L

−1)⊕3 → R2γ∗K2 → 0

and pushing forward (4.3.H) gives

0→ γ∗K2 → (S~x)⊕3 → γ∗L→ R1γ∗K2 → 0.

The second sequence shows that γ∗K2 and R1γ∗K2 are finitely generated. Thus, in the

first sequence all but possibly the fourth and seventh term are finitely generated, hence

R1γ∗L
−2 and R2γ∗L

−2 are also finitely generated. Now, proceeding by induction, we

assume that R1γ∗L
−i and R2γ∗L

−i are finitely generated for i = n− 1, n− 2, n− 3. Then

consider the twisted sequence

0→ L−n → (L−(n−1))⊕3 → (L−(n−2))⊕3 → L−(n−3) → 0.

Splicing gives

0→ L−n → (L−(n−1))⊕3 → K3 → 0 (4.3.I)

and

0→ K3 → (L−(n−2))⊕3 → L−(n−3) → 0. (4.3.J)

The pushforward of (4.3.I) is

0→ γ∗L
−n → (γ∗L

−(n−1))⊕3 → γ∗K3 → R1γ∗L
−n → (R1γ∗L

−(n−1))⊕3 →

R1γ∗K3 → R2γ∗L
−n → (R2γ∗L

−(n−1))⊕3 → R2γ∗K3 → 0
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and the pushforward of (4.3.J) is

0→ γ∗K3 → (γ∗L
−(n−2))⊕3 → γ∗L

−(n−3) → R1γ∗K3 → (R1γ∗L
−(n−2))⊕3 →

R1γ∗L
−(n−3) → R2γ∗K3 → (R2γ∗L

−(n−2))⊕3 → R2γ∗L
−(n−3) → 0.

The second sequence shows that γ∗K3 and R1γ∗K3 are finitely generated. In the first

sequence the first, second, third, fifth, sixth and eighth are finitely generated. Thus,

R1γ∗L
−n and R2γ∗L

−n are also finitely generated.

Finally, equipped with the finite generation properties shown above it can be determined

that γ is projective.

Theorem 4.3.20. For ~x ∈ GPos(L), γ : T ~x → SpecS~x is a projective morphism.

Proof. If γ∗ and R1γ∗ preserve coherent sheaves, then γ is proper [Ryd]. Let F ∈ cohT ~x.

Since L is ample, by Proposition 4.3.15(2), there exists some n ≥ 0 such that F ⊗ Ln is

generated by its global sections. Then for some N > 0 there exists a surjection O⊕N �

F ⊗ Ln and hence a surjection (L−n)⊕N � F. Pushing down gives the following exact

sequence, where K is the kernel,

0→ γ∗K→ γ∗(L
−n)⊕N → γ∗F → R1γ∗K→ R1γ∗(L

−n)⊕N

→ R1γ∗F → R2γ∗K→ R2γ∗(L
−n)⊕N → R2γ∗F → 0.

Since γ∗L
−n, R1γ∗L

−n and R2γ∗L
−n are finitely generated by Lemmas 4.3.17(2) and

4.3.19, they are also coherent by [Har77, II.5.4]. Then, from exactness, R2γ∗F must be

coherent and therefore R2γ∗K is also coherent since F is arbitrary. Now, R1γ∗(L
−n)⊕N is

also coherent and therefore R1γ∗F is also coherent. Again, since F is arbitrary, it follows

that R1γ∗K is also coherent. Finally, since γ∗L
−n is coherent, γ∗F must also be coherent.

Thus γ∗F and R1γ∗F are coherent, and γ is proper.

Since SpecS~x is separated, L is relatively ample by Proposition 4.3.15(3), and γ is quasi-

compact, it follows that γ is projective by [Gro67, Cor. II.5.5.3].
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Theorem 4.3.21. For ~x ∈ GPos(L), γ : T ~x → SpecS~x is a projective, birational mor-

phism.

Proof. Since S~x is a domain by 4.1.1(3), SpecS~x is an integral scheme. Each Vi ⊂ T ~x is

integral and by inspection, T ~x is connected and therefore integral. Then, γ is birational if

it induces an isomorphism of local rings over the generic points of T ~x and SpecS~x [GW10,

9.33]. Let R = (St0 [t])0 and recall that S~x ∼= (S[t])0, with (S[t])0 ⊆ R. Therefore, if the

inclusion map

f : (S[t])0 → R,

induces an isomorphism on fields of fractions then γ is birational. Certainly, f induces

a map f ′ : F → G between the field of fractions F of (S[t])0 and the field of fractions G

of R. Since f ′ is a map between fields, ker(f ′) = {0} as the map is clearly non-zero. It

suffices to show that all generators in C[V0] are in the image of f ′. Let z ∈ C[V0]. Then

z =
xl11 st

l

xk1
,

where s = xl22 . . . x
ln
n ∈ S for some l1, . . . , ln, l, k ∈ N≥0 such that l1~x1+· · ·+ln~xn = l~x+k~x1.

Now, xp1t
q ∈ (S[t])0 for some p, q ∈ N>0, therefore if k ≤ p

z =
xl11 st

l

xk1
=
xl11 st

l

xk1

xp−k1 tq

xp−k1 tq
=
xl1+p−k

1 stl+q

xp1t
q

.

Since xp1t
q ∈ (S[t])0, it follows that xl1+p−k

1 stl+q ∈ (S[t])0. Likewise, if k > p then, there

exists N > 0 such that k < Np and we have that

z =
xl11 st

l

xk1
=
xl11 st

l

xk1

xNp−k1 tNq

xNp−k1 tNq
=
xl1+Np−k

1 stl+Nq

xNp1 tNq
.

Clearly (xp1t
q)N ∈ (S[t])0. Therefore, it follows that xl1+Np−k

1 stl+Nq ∈ (S[t])0. Thus,

G ⊆ Im(f ′) = F and we have an isomorphism.

Remark 4.3.22. Another approach to obtain the result in 4.3.21 would be to consider the

N~c-Veronese S ′ := S[t]N~c and try to identify T ~x with ProjS ′ by using the natural inclusion
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S ′ ↪→ S[t]. Since (S ′ti)0 = (S[t]~cti)0 there would be a canoical morphism q : ProjS ′ → T ~x if

S ′ were a finitely generated S[t]0-algebra. However, we have not been able to verify this.

If, moreover, we were able to show that S ′m~c ⊆ S ′SN~c
+ ⊂ S ′+S for m � 0 then this would

further show that q is an isomorphism.

4.4 T ~x is a Blow-up of S~x

It has been shown that γ is a projective, birational morphism so, by [Gro67, II.8.8], γ is

a blow-up. The next result makes this statement explicit.

Theorem 4.4.1. For all ~x ∈ GPos(L), T ~x ∼= Proj(I) where

I = OSpecS~x ⊕
⊕
n≥1

γ∗L
n

and L = p∗O(1) as defined in Proposition 4.3.15(2).

Proof. Since γ is separated and quasi-compact, I is a quasi-coherent OS~ω -module by

[Gro67, Cor I.9.2.2.a]. Then there exists a canonical homomorphism [Gro67, II.8.8.1]

of graded OT~x-algebras

τ : γ∗(I)→
⊕
n≥0

Ln,

such that in degree ≥ 1 this agrees with the adjunction

σ : γ∗(γ∗(L
n))→ Ln,

and in degree zero is the identity. Then, since L is γ-ample by Proposition 4.3.15(3), there

exists a SpecS~x-morphism

r = rL,τ : T ~x → P = Proj(I)

which is everywhere defined (i.e. regular). It is a dominant open immersion such that
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r∗(OP (n)) = Ln for all n ∈ Z.

Since T ~x is proper over SpecS~x and L is quasi-coherent, r is necessarily proper by [Gro67,

II.5.4.4]. Recall that T ~x is Noetherian by Proposition 4.3.15(1) and γ is projective by

Theorem 4.3.20. Then, since r is a proper dominant closed immersion which is necessarily

closed, T ~x ∼= P by [Gro67, II.8.8.3].

Now we return to the setting of Chapter 3. Recall that S = C[x1, x2, x3], where the weights

p1, p2, p3 are chosen to be pairwise coprime. The dualising element ~ω equals −~x1−~x2−~x3,

and the L-grading is a Z-grading since L ∼= Z. Recall from Lemma 3.3.1 the isomorphism

S−~ω ∼= C[y1, y2, y3]G,

where G = 1
m

(a1, a2, a3), a1 = p2p3, a2 = p1p3, a3 = p1p2 and m = a1 + a2 + a3. Here

monomials of weight −n~ω are exactly the weight nm monomials.

We make C[z1, z2, z3, t] into a Z-graded polynomial ring by defining deg zi = ai and deg t =

−m. Then the following map zi 7→ yi and t 7→ 1 is an isomorphism

C[z1, z2, z3, t]
C∗ ∼−→ C[y1, y2, y3]G.

The ring C[z1, z2, z3, t] is the direct sum of its Z-graded pieces C[z1, z2, z3, t]k for k ∈ Z.

Theorem 4.4.2. Let p := (p1, p2, p3) where p1, p2, p3 are pairwise coprime. The following

N-graded isomorphism of algebras holds

I = OSpecS~ω

⊕⊕
n≥1

γ∗L
n ∼=

⊕
n≥0

S(n~c)−~ω ∼= ⊕n≥0C[z1, z2, z3, t]nb,

where b = p1p2p3.

Proof. Recall that γ∗L
n =

⊕
i≥0 Si~ω+n~c = S(n~c)~ω by Lemma 4.3.17(2), and OSpecS−~ω =
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S−~ω = S(0~c)−~ω by Proposition 4.3.2. Therefore,

I ∼=
⊕
n≥0

S(n~c)−~ω.

Consider the canonical isomorphism ϕ : S → C[z1, z2, z3], given by xi 7→ zi. We show that

this induces a map

ϕ̄ : S(n~c)−~ω → C[z1, z2, z3, t]nb

for any n ∈ Z≥0. Consider xl11 x
l2
2 x

l3
3 ∈ S(n~c)−~ω. Then there exists l ≥ 0 such that

xl11 x
l2
2 x

l3
3 ∈ S−l~ω+n~c. Thus

l1~x1 + l2~x2 + l3~x3 = l(~x1 + ~x2 + ~x3) + n~c

⇐⇒ b(l1~x1 + l2~x2 + l3~x3) = b(l(~x1 + ~x2 + ~x3) + n~c)

⇐⇒ (l1p2p3 + l2p1p3 + l3p1p2)~c = (l(p2p3 + p1p3 + p1p2)~c+ nb~c)

⇐⇒ l1p2p3 + l2p1p3 + l3p1p2 = l(p2p3 + p1p3 + p1p2) + nb

⇐⇒ l1a1 + l2a2 + l3a3 = lm+ nb.

Now, consider zj11 z
j2
2 z

j3
3 t

j ∈ C[z1, z2, z3, t]nb. Then

j1a1 + j2a2 + j3a3 − jm = nb.

Therefore, define the map ϕ̄n : S(n~c)−~ω → C[z1, z2, z3, t]nb given by xl11 x
l2
2 x

l3
3 7→ zl11 z

l2
2 z

l3
3 t

l

where

l =
l1a1 + l2a2 + l3a3 − nb

m
.

Note that ϕ̄ is surjective since, for any zj11 z
j2
2 z

j3
3 t

j ∈ C[z1, z2, z3, t]nb, we have

j1a1 + j2a2 + j3a3 = jm+ nb,

and hence xj11 x
j2
2 x

j3
3 ∈ S−j~ω+n~c, with ϕ̄n(xj11 x

j2
2 x

j3
3 ) = zj11 z

j2
2 z

j3
3 t

j.
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The inverse can be explicitly constructed. The map ϕ̄−1
n sends zl11 z

l2
2 z

l3
3 t

l to xl11 x
l2
2 x

l3
3 . This

shows that ϕ̄n is a bijection. We have constructed an isomorphism between each individual

summand. Now put this all together to get the full isomorphism: ϕ̄ = ⊕n≥0ϕ̄n. This is

clearly linear. Let x = xl11 x
l2
2 x

l3
3 ∈ S(i~c)−~ω, y = xk11 x

k2
2 x

k3
3 ∈ S(j~c)−~ω and define

l =
l1a1 + l2a2 + l3a3 − ib

m
and k =

k1a1 + k2a2 + k3a3 − jb
m

.

Then

ϕ̄i(x)ϕ̄j(y) = zl11 z
l2
2 z

l3
3 t

lzk11 z
k2
2 z

k3
3 t

k

= zl1+k1
1 zl2+k2

2 zl3+k3
3 tl+k.

Note that

l + k =
(l1 + k1)a1 + (l2 + k2)a2 + (l3 + k3)a3 − (i+ j)b

m

therefore zl1+k1
1 zl2+k2

2 zl3+k3
3 tl+k ∈ C[z1, z2, z3, t](i+j)b and hence

ϕ̄i(x)ϕ̄j(y) = ϕ̄i+j(x
l1+k1
1 xl2+k2

2 xl3+k3
3 )

= ϕ̄i+j(x
l1
1 x

l2
2 x

l3
3 x

k1
1 x

k2
2 x

k3
3 )

= ϕ̄i+j(xy).

Therefore ϕ̄ is an algebra map.

Corollary 4.4.3. Let p := (p1, p2, p3) where p1, p2, p3 are pairwise coprime. Then

Proj(I) ∼= Proj
(
⊕n≥0 C[z1, z2, z3, t]nb

) ∼= Proj
(
⊕n≥0 C[z1, z2, z3, t]n

)
.

Proof. The first isomorphism is immediate from Theorem 4.4.2. The second follows from

the result of Grothendieck [Gro67, II.2.4.7] which states that for a graded ring R = ⊕i≥0Ri,



CHAPTER 4. A PARTIAL RESOLUTION OF SINGULARITIES 51

ProjR ∼= ProjR(d),

where R(d) = ⊕i≥0Rid.

Finally, recall from §3.2 that abelian quotient singularities are toric varieties. Via this

interpretation of SpecS−~ω, we will now prove that γ is a weighted blow-up as defined in

§3.4. Let M̄ ∼= Z3 be the lattice of Laurent monomials in x1, x2, x3 and L̄ the dual lattice

with generators e1, e2, e3. Then, take the overlattice

L = L̄+ Z · 1

m
(a1, a2, a3).

Let M ⊂ M̄ be the sublattice of invariant monomials as defined in Section 3.2.

Corollary 4.4.4. Let p := (p1, p2, p3) where p1, p2, p3 are pairwise coprime. Then T−~ω is

the weighted blow-up of C[x1, x2, x3]G at 1
m

(a1, a2, a3).

Proof. By Theorem 4.4.1, T−~ω ∼= Proj(I). Recall that the weighted blow-up of SpecC[x1, x2, x3]G

at 1
m

(a1, a2, a3) is covered by three open sets (3.4.A)

Ui = C3/Gi,

where Gi = 1
ai

(−a1, . . . ,m, . . . ,−an) and m is in the i-th position. In toric language, the

weighted blow up is the subdivision of the fan through 1
m

(a1, a2, a3). This can be seen in

Figure 4.1.

The triangle without ei as a corner corresponds to Ui. Therefore, let σ1 = 〈e2, e3, e〉 where

e = 1
m

(a1, a2, a3). Then U1 = SpecC[σ∨1 ∩M ]. A monomial xα1x
β
2x

γ
3 belongs to σ∨1 ∩M if

and only if

(α, β, γ) · (0, 1, 0) ≥ 0, (4.4.A)

(α, β, γ) · (0, 0, 1) ≥ 0, (4.4.B)
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e

e1

e2 e3

Figure 4.1: The subdivision of C[x1, x2, x3]G by the weighted blow-up at 1
m

(a1, a2, a3)

(α, β, γ) · 1

m
(a1, a2, a3) ≥ 0. (4.4.C)

Now, the open charts on T−~ω are as follows

Spec Ūi = C[z1, z2, z3, t, z
−1
i ]C

∗

for each i ∈ {1, 2, 3}. A monomial zα1
1 zα2

2 zα3
3 tl is in C[Ūi] if and only if

a1α1 + a2α2 + a3α3 − lm = 0, (4.4.D)

⇐⇒ a1α1 + a2α2 + a3α3

m
= l ≥ 0, (4.4.E)

and αj ≥ 0 for j 6= i. This inequality corresponds on the nose to the inequalities (4.4.A),

(4.4.B) and (4.4.C) under the morphism zi 7→ xi and t 7→ 1. Finally, we check that

Ui ∩ Uj ∼= Ūi ∩ Ūj. By symmetry, we need only check if this holds for i = 1 and j = 2.

Then,

U1 ∩ U2 = SpecC[(σ1 ∩ σ2)∨ ∩M ].

Therefore the monomial xα1x
β
2x

γ
3 belongs to (σ1 ∩ σ2)∨ ∩M if and only if

(α, β, γ) · 1

m
(a1, a2, a3) ≥ 0 (4.4.F)
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and

(α, β, γ) · (0, 0, 1) ≥ 0. (4.4.G)

Now,

C[Ū1 ∩ Ū2] = C[z1, z2, z3, t, z
−1
1 , z−1

2 ]C
∗
,

and a monomial zα1
1 zα2

2 zα3
3 tl is in C[Ū1 ∩ Ū2] if and only if

a1α1 + a2α2 + a3α3 − lm = 0 (4.4.H)

and

α3 ≥ 0. (4.4.I)

Thus, again by the usual map, an isomorphism

U1 ∩ U2
∼−→ Ū1 ∩ Ū2

can be constructed since inequalities (4.4.F) and (4.4.H); and (4.4.I) and (4.4.G) are

equivalent.



Chapter 5

Tilting

This chapter investigates the existence of tilting objects on T~x and T ~x. The construction of

such tilting objects will allow us to show that γ is a crepant map under certain restrictions.

5.1 Tilting for ~x ∈ L+

We recall the following definition.

Definition 5.1.1. [TU10, Def. 3.1] Let V be a vector bundle on a variety (or stack) X:

1. V is said to be pretilting if Homi
X(V,V) = 0 for any i 6= 0.

2. V is called a generator of D−(X) if the vanishing RHomX(V,K) = 0 for K ∈ D−(X)

implies K = 0.

We say that V is a tilting bundle if it is pre-tilting and a generator.

When ~x ∈ L+ we will construct a tilting bundle on T ~x by pulling back the following known

tilting objects from P2 and X. As notation, set [0, 2~c] = {~x ∈ L | 0 ≤ ~x ≤ 2~c}.

Theorem 5.1.2. Set E :=
⊕

~y∈[0,2~c] O(~y) ∈ cohX and V := O ⊕ O(1) ⊕ O(2) ∈ cohP2.

Then the following statements hold.

1. V is a tilting bundle on P2.

2. E is a tilting bundle on X.

54
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Proof. We have (1) from [Bei78] and (2) from [HIMO, 5.2].

The following proposition will be required to control the pullbacks of the bundle in The-

orem 5.1.4.

Proposition 5.1.3. [HIMO, 4.5] For all ~x, ~y ∈ L and i ∈ Z, we have that

ExtiX(O(~x),O(~y)) =


S~y−~x i = 0,

(S~x−~y+~ω)∗ i = 2,

0 else.

With this in hand, it can be shown that the pullback of E is a tilting object on T~x

under certain restrictions. In what follows, we use the alternative characterisation of

a tilting bundle T , where naive generation is replaced by the condition that whenever

x ∈ D(QcohT~x) satisfies Hom(T, x[i]) = 0 for all i, then x = 0 (see e.g. [TU10, Def. 3.1]).

Theorem 5.1.4. Let 0 6= ~x ∈ L+, then q∗E is a tilting object on T~x.

Proof. We first check that q∗E is a generator, following the argument of [AU15, Lemma

4.1]. Let Hom(q∗E,M [i]) = 0 for some M ∈ D(QcohT~x) and all i ∈ Z. Then, by

adjunction, Hom(E, q∗M [i]) = 0 for all i ∈ Z. Since E is a generator in X, this implies that

q∗M = 0. Exactly as is stated in the proof of [AU15, Lemma 4.1], the fact that q is affine

then implies that M = 0. Hence q∗E is a generator of D(cohT~x). Now for Ext vanishing,

note that q∗OT~x =
⊕

k≥0 OX(k~x) see e.g. [IW19, Thm 3.13] and [AU15, Lemma 4.1].

ExtiT~x(q
∗E, q∗E) ∼= ExtiX(E, q∗q

∗E) (by adjunction)

∼= ExtiX(E,E⊗ q∗OT~x) (by projection formula [Har77, Ex. II.5.1(d)])

∼= ExtiX(E,
⊕
k≥0

E⊗ OX(k~x)) (since q∗OT~x =
⊕

k≥0 OX(k~x))

∼=
⊕
k≥0

ExtiX(E,E⊗ OX(k~x))

∼=
⊕
k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c]

ExtiX(OX(~y),OX(~z + k~x))
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In the first line we have again used the fact that q is affine. Now using Proposition 5.1.3,

⊕
k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c]

ExtiX(O(~y),O(~z+k~x)) =


⊕

k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c] S~z+k~x−~y i = 0,⊕

k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c](S~y−~z−k~x+~ω)∗ i = 2,

0 else.

By Remark 2.2.4(3), it is enough to consider the choice of k, ~y, ~z resulting in the most

positive choice for ~y − ~z − k~x+ ~ω and check if this is in L+. This occurs when k = 0 = ~z

and ~y = 2~c, so we have ~ω + 2~c = (n − 3)~c −
∑n

i=1 xi + 2~c = (n − 1)~c −
∑n

i=1 xi /∈ L+.

Therefore, the Ext groups vanish for all i ≥ 1.

Using the above, a tilting object on the partial resolution T ~x exists whenever ~x ∈ L+.

Corollary 5.1.5. Let 0 6= ~x ∈ L+, then p∗V is a tilting object on T ~x.

Proof. The generation argument follows the same argument as in Theorem 5.1.4. For Ext

vanishing a similar method as above is also used. Let F := OX ⊕ OX(~c)⊕ OX(2~c).

ExtiT~x(p
∗V, p∗V) ∼= ExtiT~x(p

∗V, g∗OT~x ⊗T~x p∗V) (since g∗OT~x = OT~x)

∼= ExtiT~x(p
∗V, g∗(OT~x ⊗T~x g∗p∗V) (by the projection formula)

∼= ExtiT~x(p
∗V, g∗g

∗p∗V)

∼= ExtiT~x(g
∗p∗V, g∗p∗V) (by adjunction)

∼= ExtiT~x(q
∗f ∗V, q∗f ∗V) (by commutativity of 4.2.A)

∼= ExtiT~x(q
∗F, q∗F)

Now, F is a summand of E, therefore the Ext groups vanish for i ≥ 1.

Thus, we see that in certain cases, which includes the toric setting of Chapter 3, there

always exists a tilting bundle on T ~x.
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5.2 Tilting with Four Weights

Much of our interest is in the case T−~ω → SpecS−~ω. But when n ≥ 4 we know that

−~ω /∈ L+ and and so the above section does not apply. In fact, the results of §5.1 cannot

be extended to this setting.

Proposition 5.2.1. Let n ≥ 4 and pi ≥ 2 for all i. Then q∗E is not a tilting object on

T−~ω and p∗V is not a tilting object on T−~ω.

Proof. We do a check for Ext vanishing as in Theorem 5.1.4, where it was shown that

Ext2
T~x(q

∗E, q∗E) =
⊕
k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c]

Ext2
X(O(~y),O(~z + k~x)) =

⊕
k≥0

⊕
~y∈[0,2~c]

⊕
~z∈[0,2~c]

(S~y−~z−k~x+~ω)∗.

Consider the summand (S2~c+2~ω)∗ which is identified by ~y = 2~c, ~z = 0 and k = 1 for

~x = −~ω. Then

2~c+ 2~ω = −2
n∑
i=1

~xi + 2(n− 3)~c+ 2~c =
n∑
i=1

(pi − 2)~xi + (n− 4)~c ∈ L+.

By Remark 2.2.4(3), it follows that the summand (S2~c+2~ω)∗ 6= 0, and so q∗E is not tilting

on T−~ω. By the proof of Theorem 5.1.4 and Corollary 5.1.5, it is also known that

Ext2
T−~ω(p∗V, p∗V) ∼=

⊕
k≥0

⊕
~y∈{0,~c,2~c}

⊕
~z∈{0,~c,2~c}

ExtiX(O(~y),O(~z − k~ω)).

Again, (S2~c+2~ω)∗ is a summand of Ext2
T−~ω(p∗V, p∗V) and so p∗V is not tilting on T−~ω.

Of course, the above does not imply that there does not exist some tilting bundle on T−~ω,

just that the obvious candidate is not tilting. In fact, the existence of a tilting object for

some cases can be seen in the following result.

Proposition 5.2.2. If the following conditions are satisfied then there exists a tilting

bundle on T−~ω.

• n = 4 and (p1, p2, p3, p4) = (2, 2, p3, p4).
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• n = 4 and (p1, p2, p3, p4) = (2, 3, p3, p4) where p3, p4 ∈ {3, 4, 5}.

Proof. The result of Toda and Uehara [TU10, Theorem 6.1] states that if R2γ∗L
−1 = 0

for some ample globally generated line bundle L then there exists a tilting bundle T−~ω.

By Proposition 4.3.15(2), L = p∗O(1) is ample and, by construction, is globally generated.

We now proceed by checking R2γ∗L
−1 = 0.

R2γ∗L
−1 = R2γ∗Hom(L,OT−~ω)

∼= Ext2
T−~ω(L,O)

= Ext2
T−~ω(p∗O(1), p∗O)

∼= Ext2
T−~ω(q∗O(~c), q∗O) (by the same logic as 5.1.5.)

∼= Ext2
X(O(~c), q∗q

∗O) (by adjunction)

∼=
⊕
k≥0

Ext2
X(O(~c),O(−k~ω))

=
⊕
k≥0

(S~c+k~ω+~ω)∗. (by 5.1.3)

Let (p1, p2, p3, p4) = (2, 2, p3, p4). We check for non-zero summands by looking at the even

and odd cases for k. Suppose k = 2m, then

(k + 1)~ω + ~c = (2m+ 1)(−
4∑
i=1

~xi + ~c) + ~c

= −2m~c− ~x1 − ~x2 − (2m+ 1)(~x3 + ~x4) + (2m+ 2)~c

= ~x1 + ~x2 − 2~c− (2m+ 1)(~x3 + ~x4) + 2~c

= ~x1 + ~x2 − (2m+ 1)(~x3 + ~x4) /∈ L+.

Now, suppose k = 2m+ 1, then

(k + 1)~ω + ~c = (2m+ 2)(−
4∑
i=1

~xi + ~c) + ~c

= −(2m+ 2)~c− (2m+ 2)(~x3 + ~x4) + (2m+ 2)~c

= −(2m+ 2)(~x3 + ~x4) /∈ L+.



CHAPTER 5. TILTING 59

Therefore R2γ∗L
−1 = 0.

Next, let (p1, p2, p3, p4) = (2, 3, 3, 3). Consider k = (6m + i), for i ∈ {0, 1, 2, 3, 4, 5}, and

m ≥ 0. Then,

k = 6m (6m+ 1)~ω + ~c = (6m+ 1)(−
4∑
i=1

~xi + ~c) + ~c

= −3m~c− 2m(3~c)−
4∑
i=1

~xi + (6m+ 2)~c

= −
4∑
i=1

~xi + (2− 3m)~c /∈ L+

k = 6m+ 1 (6m+ 2)~ω + ~c = (6m+ 2)(−
4∑
i=1

~xi + ~c) + ~c

= −(3m+ 1)~c− 2m(3~c)−
4∑
i=2

~xi + (6m+ 3)~c

= −
4∑
i=2

~xi + (2− 3m)~c /∈ L+

k = 6m+ 2 (6m+ 3)~ω + ~c = (6m+ 3)(−
4∑
i=1

~xi + ~c) + ~c

= −(3m+ 1)~c− (2m+ 1)(3~c)− ~x1 + (6m+ 4)~c

= −~x1 − 3m~c /∈ L+

k = 6m+ 3 (6m+ 4)~ω + ~c = (6m+ 4)(−
4∑
i=1

~xi + ~c) + ~c

= −(3m+ 2)~c−)2m+ 1)(3~c)−
4∑
i=2

~xi + (6m+ 5)~c

= −
4∑
i=2

~xi − 3m~c /∈ L+

k = 6m+ 4 (6m+ 5)~ω + ~c = (6m+ 5)(−
4∑
i=1

~xi + ~c) + ~c

= −(3m+ 2)~c− (2m+ 1)(3~c)− ~x1 − 2
4∑
i=2

~xi + (6m+ 6)~c

= −~x1 − 2
4∑
i=2

~xi + (1− 3m)~c /∈ L+
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k = 6m+ 5 (6m+ 6)~ω + ~c = (6m+ 6)(−
4∑
i=1

~xi + ~c) + ~c

= −3(m+ 1)~c− 2(m+ 1)(3~c) + (6m+ 7)~c

= −(3m+ 2)~c /∈ L+

Therefore R2γ∗L
−1 = 0 in this case too. The other cases can be calculated in a similar

fashion.

Unfortunately, as we show below, using L and [TU10] to construct tilting bundles on T−~ω

does not work in many cases.

Proposition 5.2.3. In the following cases R2γ∗L
−1 6= 0.

1. (p1, p2, p3, p4) where pi ≥ 3 for all i,

2. (2, p2, p3, p4) and p2, p3, p4 ≥ 4,

3. (2, 3, p3, p4) and p3, p4 ≥ 6.

Proof. From the proof of Theorem 5.2.2, we have R2γ∗L
−1 =

⊕
k≥0(S~c+k~ω+~ω)∗. We now

show that there exists a nonzero summand R2γ∗L
−1 in each of the above cases by using

the fact that if ~x ∈ L+ then S~x 6= 0 by Lemma 2.2.4(3).

1. We consider the summand (S~c+3~ω)∗ and check if ~c+ 3~ω ∈ L+. We have

~c+ 3~ω = 4~c− 3
4∑
i=1

~xi

=
4∑
i=1

(pi − 3)~xi

If pi ≥ 3 for all i, then ~c+ 3~ω ∈ L+.
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2. We consider the summand (S~c+4~ω)∗ and check if ~c+ 4~ω ∈ L+. We have

~c+ 4~ω = 5~c− 4
4∑
i=1

~xi

= 5~c− (2~c+ 4~x2 + 4~x3 + 4~x4)

= −(4~x2 + 4~x3 + 4~x4) + 3~c

= (p2 − 4)~x2 + (p3 − 4)~x3 + (p4 − 4)~x4.

Clearly, if p2, p3, p4 ≥ 4, then ~c+ 6~ω ∈ L+.

3. We consider the summand (S~c+6~ω)∗ and check if ~c+ 6~ω ∈ L+. We have

~c+ 6~ω = 7~c− 6
4∑
i=1

~xi

= 7~c− (3~c+ 2~c+ 6~x3 + 6~x4)

= −(6~x3 + 6~x4) + 2~c

= (p3 − 6)~x3 + (p4 − 6)~x4.

Clearly, if p3, p4 ≥ 6, then ~c+ 6~ω ∈ L+.

The following summarises Proposition 5.2.2 and 5.2.3.

Theorem 5.2.4. For L = p∗O(1) and n = 4, R2γ∗L
−1 = 0 if and only if (p1, p2, p3, p4)

is one of the choices in Proposition 5.2.2.

To use the method of [TU10, Section 4] to explicitly construct a tilting bundle also requires

knowledge of R2γ∗L
−2, which is considered in the following result.

Lemma 5.2.5. For the cases where a Toda-Uehara tilting object exists we have
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Weights R2γ∗L
−2

[2, 2, p3, p4] where p3, p4 ∈ Z>0

⊕b p3
2
c

i=1 (S2~c+2i~ω)∗

[2, 3, 3, p4] where p4 ∈ {3, 4, 5} (S2~ω+2~c)
∗ ⊕ (S3~ω+2~c)

∗

[2, 3, 4, p4] where p4 ∈ {4, 5} (S2~ω+2~c)
∗ ⊕ (S3~ω+2~c)

∗ ⊕ (S4~ω+2~c)
∗

[2, 3, 5, 5] (S2~ω+2~c)
∗ ⊕ (S3~ω+2~c)

∗ ⊕ (S4~ω+2~c)
∗ ⊕ (S5~ω+2~c)

∗

Proof. By the same method as in the proof of Theorem 5.2.2 R2γ∗L
−2 =

⊕
k≥0(S2~c+(k+1)~ω)∗.

We claim that most of the summands are zero since, (S2~c+(k+1)~ω)∗ = 0 if and only if

2~c+ (k + 1)~ω /∈ L+.

Consider the first case [2, 2, 2, 2]. We check for k = 2m and k = 2m+ 1 where m ≥ 0:

k = 2m 2~c+ (2m+ 1)~ω = 2~c+ (2m+ 1)(−
4∑
i=1

~xi + ~c)

= 2~c− (2m+ 1)
4∑
i=1

~xi + (2m+ 1)~c

= (2m+ 3)~c− 4m~c−
4∑
i=1

~xi

= (3− 2m)~c−
4∑
i=1

~xi

= −(2m− 1)~c+
4∑
i=1

~xi /∈ L+

and

k = 2m+ 1 2~c+ (2m+ 2)~ω = 2~c+ (2m+ 2)(−
4∑
i=1

~xi + ~c)

= (2m+ 4)~c− (2m+ 2)
4∑
i=1

~xi

= (2m+ 4)~c− 4(m+ 1)~c

= −(2m)~c.

Therefore the only summand in L+ is when k = 1 i.e. R2γ∗L
−2 = (S2~c+2~ω)∗.

The other cases are calculated in a similar manner.
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Theorem 5.2.6. In the following cases

• n = 4 and (p1, p2, p3, p4) = (2, 2, p3, p4),

• n = 4 and (p1, p2, p3, p4) = (2, 3, p3, p4) where p3, p4 ∈ {3, 4, 5},

Riγ∗L
−j = 0 holds for j ≥ 0 if i = 1 or i ≥ 3.

Proof. Consider i > 2 and any j. Using the same logic as the proof of Proposition 5.2.2,

Riγ∗L
−j ∼=

⊕
k≥0

ExtiX(O(j~c),O(−k~ω)) = 0. (by 5.1.3)

Similarly, for i = 1 and any j,

R1γ∗L
−j ∼=

⊕
k≥0

Ext1
X(O(j~c),O(−k~ω)) = 0. (by 5.1.3)

We now explain, following [TU10], how to construct the tilting bundle on T−~ω in the cases

considered in Theorem 5.2.6. The construction is iterative, beginning at 0, and constructs

vector bundles Ek for k ∈ {0, 1, 2}. Set E0 = O. Denote EndT−~ω(Ek−1) = Ak−1 and define

the following functors

Φk−1(−) = RHomX(Ek−1,−) : D(X) −→ D(Ak−1),

Ψk−1(−) = −⊗Ak−1
Ek−1 : D−(Ak−1) −→ D−(X).

For a complex K of coherent sheaves, define τ≤pK(= τ<p+1K) and τ>pK(= τ≥p+1K) to be

the good truncations, namely

(τ≤pK)n =


Kn n < p

Ker dp n = p

0 n > p
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and

(τ>pK)n =


0 n < p

Im dp n = p

Kn n > p,

where dp : Kp → Kp+1 is the differential. Similarly, denote by σ≤pK(= σ<p+1K) and

σ>pK(= σ≥p+1K) to be the brutal truncations, namely

(σ≤pK)n =


Kn n ≤ p

0 n > p

and

(σ>pK)n =


0 n ≤ p

Kn n > p.

Then for any j ∈ Z the following distinguished triangles exist:

τ≤pK→ K→ τ>pK→ τ≤pK[1]

σ>pK→ K→ σ≤pK→ σ>pK[1].

Construct a Ak−1 free resolution of Φk−1(L−k) and denote it by Pk−1. This results in the

triangle of [TU10, (8)], namely

Ψk−1(σ≥1(Pk−1))→ L−k → Nk−1 → Ψk−1(σ≥1(Pk−1)[1]).

where Ψk−1(Nk−1) ∼= σ<1(Pk−1). For the cases listed in Theorem 5.2.6, since by Theorem

5.2.4, Φ0(L−1) = RHom(O,L−1) = Rγ∗L
−1 has cohomology only in deg 0, σ≥1(P0) = 0

so Ψ0(σ≥1(P0)) = 0 and hence N0 = L−1. We set E1 = E0 ⊕ N0 = O ⊕ L−1. We interate

one more time to obtain the tilting bundle E2 = E0 ⊕ N0 ⊕ N1 = O ⊕ L−1 ⊕ N1 where

N1 ∈ Db(T−~ω) sits in a triangle
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Ψ1(σ≥1(P1))→ L−2 → N1 → Ψ1(σ≥1(P1)[1]).

Since Ψ1(σ≥1(P1)) is a perfect complex [TU10, Below (13)], so is N1. It follows from [TU10,

4.3] that N1 is a vector bundle and E2 is a tilting bundle on T−~ω.

5.3 Another Natural Bundle

In this chapter we have seen that to find a tilting bundle for the cases in Proposition

5.2.3 we cannot use the pullback of O⊕O(1)⊕O(2) from P2. We have also seen that the

method used by Toda-Uehara [TU10] is insufficient in this case. It is well known that P2

has another tilting bundle, namely O⊕Ω1(1)⊕Ω2(2) and so following [BLVdB10] another

approach to constructing a tilting bundle on T−~ω would be to pull this back. However, as

we show in this section, this does not provide any new examples.

Lemma 5.3.1. [Har77, II.8.13] There is a short exact sequence of sheaves on P2

0→ ΩP2 → OP2(−1)⊕3 → OP2 → 0.

Recall that Ω2 = OP2(−3) [Har77, III.7.1] and hence Ω2(2) = O(−1). Therefore, for

O⊕Ω1(1)⊕Ω2(2) to pullback to give a tilting bundle on T−~ω requires p∗Ω1(1) to exhibit

certain vanishing properties. We will manipulate exact sequences to show that the relevant

Ext groups do not vanish.

Theorem 5.3.2. Let K = p∗Ω1(1). Then Ext1
T−~ω(K,O) = R1γ∗K

∗ = 0 if and only if

(p1, p2, p3, p4) is one of those listed in Theorem 5.2.4.

Proof. Consider the Koszul complex on P2, namely

0→ O(−2)→ O(−1)⊕3 → O⊕3 → O(1)→ 0.

Splicing gives an exact sequence
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0→ Ker→ O⊕3 → O(1)→ 0.

Therefore, by shifting this sequence, we see from Theorem 5.3.1 that Ker = Ω1(1). Pulling

back this sequence to T−~ω results in an exact sequence

0→ K→ O⊕3 → L→ 0.

Taking the dual gives exact sequence

0→ L−1 → O⊕3 → K∗ → 0.

Pushing down gives the long exact sequence

0→ γ∗L
−1 → (S−~ω)⊕3 → γ∗K

∗ → R1γ∗L
−1 → 0→ R1γ∗K

∗ → R2γ∗L
−1 → 0

since R1γ∗S
−~ω = 0 by Proposition 4.3.2. Therefore R2γ∗L

−1 ∼= R1γ∗K
∗. The statement

now follows from Theorem 5.2.4.

5.4 A Crepant Map

In the previous section we have considered the existence of tilting bundles on T−~ω, and

implicitly, the existence of modifying algebras for SpecS−~ω. In this final section we con-

sider commutative crepant resolutions. It seems that constructing a crepant resolution of

SpecS−~ω is very tricky in general. In the toric setting we are able to show that γ is a

crepant map when ~x = −~ω in two very different ways.

Lemma 5.4.1. Let 0 6= ~x ∈ L+, then there is an isomorphism EndT~x(p
∗V) ∼= EndS~x(γ∗p

∗V).

Proof. We note that γ is a projective birational morphism by Theorem 4.3.21 and S~x is

normal by Lemma 4.1.1(3). The vector bundle p∗V is of finite rank and generated by global

sections, and Ext1(p∗V, p∗V) = 0 by Corollary 5.1.5. Therefore it follows from [DW19, 4.3]

that EndT~x(p
∗V) ∼= EndS~x(γ∗p

∗V).
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Lemma 5.4.2. Let ~x =
∑3

j=1 aj~xj + b~c where a1, a2, a3 > 0 and b ≥ 0. Then S(a~c)~x =⊕
i≥0 Si~x+a~c for a ∈ {−2,−1, 0, 1, 2}.

Proof. In general, S(a~c)~x =
⊕

i∈Z Si~x+a~c. Consider i = −1. Then

−~x+ a~c = −(
3∑
j=1

aj~xj + b~c) + a~c =
n∑
j=1

(pj − aj)~xj + (a− b− 3)~c.

We have −~x+ a~c ∈ L+ if and only if

a− b− 3 ≥ 0

a ≥ 3 + b ≥ 3.

Therefore −~x+a~c /∈ L+ for a ≤ 2. Since we are simply taking away multiples of ~x for i > 1,

−i~x+a~c is not in L+ for a ≤ 2, and so the sum S(a~c)~x =
⊕

i∈Z Si~x+a~c =
⊕

i∈Z≥0
Si~x+a~c.

Lemma 5.4.3. Let ~x =
∑3

j=1 aj~xj + b~c where a1, a2, a3 > 0 and b ≥ 0, then

EndS~x(γ∗p
∗V) ∼=


S~x S(~c)~x S(2~c)~x

S(−~c)~x S~x S(~c)~x

S(−2~c)~x S(−~c)~x S~x

 .

Proof. We have that

γ∗p
∗V = γ∗p

∗(O⊕ O(1)⊕ O(2)) = γ∗(O⊕ L⊕ L2),

and so, by Lemmas 4.3.17(2) and 5.4.2, γ∗p
∗V = S~x ⊕ S(~c)~x ⊕ S(2~c)~x. Therefore

EndS~x(γ∗p
∗V) ∼= EndS~x(S

~x ⊕ S(~c)~x ⊕ S(2~c)~x) ∼=


S~x S(~c)~x S(2~c)~x

S(−~c)~x S~x S(~c)~x

S(−2~c)~x S(−~c)~x S~x


since HomS~x(S(~y)~x, S(~z)~x) = HomL

S(S(~y), S(~z))~x = S(~z − ~y)~x by [IW19, Lemma 4.6].
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Corollary 5.4.4. In the toric setting (n = 3), EndS−~ω(γ∗p
∗V) ∈ CMS−~ω.

Proof. By Theorem 2.2.11 S−~ω is Gorenstein and, necessarily, Cohen-Macaulay. Since

n = 3, −~ω = Σ3
i=1xi ∈ L+, so we may use Lemma 5.4.3. Further, since S−~ω ∈ CMS−~ω,

the twists S(−2~c)−~ω, S(−~c)−~ω, S(~c)−~ω and S(2~c)−~ω are also Cohen-Macaulay, by e.g.

Remark 2.2.12.

Corollary 5.4.5. In the toric setting (n = 3), T−~ω → SpecS−~ω is crepant.

Proof. Since p∗V is tilting on T−~ω by 5.1.5, by Theorem 2.1.4 we just need to check that

EndT−~ω(p∗V) ∈ CMS−~ω. But, by Lemma 5.4.1 this is equivalent to EndS−~ω(γ∗p
∗V) ∈

CMS−~ω, which holds by Corollary 5.4.4 above.

The benefit of Corollary 5.4.5 is that it holds in the case n = 3 without further restrictions.

If we are further to insist on the conditions of §3.4, namely (p1, p2, p3) are pairwise coprime,

then we know from §4.4 that T−~ω → SpecS−~ω is also a weighted blow-up. In this more

restrictive setting this gives an alternative method of showing the T−~ω → SpecS−~ω is

crepant, as then we can simply show that the weighted blow-up is crepant.

Corollary 5.4.6. When n = 3 and (p1, p2, p3) are pairwise coprime, then T−~ω → SpecS−~ω

is crepant.

Proof. As observed above, T−~ω → SpecS−~ω is the weighted blow-up at 1
m

(a1, a2, a3) and

this is the subdivision of the toric fan by the simplicial ray 1
m

(a1, a2, a3). Therefore γ is

crepant by [DHZ01, Prop. 2.4].



Chapter 6

Towards Full Resolutions

This chapter investigates some examples of the partial resolution constructed in Chapter

4, and in some instances extends this to a full resolution of SpecS−~ω. Along the way, we

illustrate the complexity of the problem of resolving the singularities of T−~ω in general.

6.1 A Resolution of S−~ω when p = (2, 2, 2, 2)

In this section we will find a full resolution of SpecS−~ω when p = (2, 2, 2, 2) by blowing

up the singular locus of T−~ω. Recall that, in this setting, S can be written in the form

S =
C[x1, x2, x3, x4]

x2
1 + x2

2 + x2
3 = x2

4

and that S−~ω =
⊕

i∈Z S−i~ω where ~ω = ~c − ~x1 − ~x2 − ~x3 − ~x4 is the dualizing element.

We begin by finding all generators of the ring S−~ω. The following table calculates the

multiples of −~ω, and lists all monomials of the corresponding weight:

−~ω ~x1 + ~x2 + ~x3 + ~x4 − ~c -

−2~ω 2(~x1 + ~x2 + ~x3 + ~x4 − ~c) = 2~c x4
1, x

4
2, x

4
3, x

4
4, x

2
1x

2
2, x

2
1x

2
3, x

2
1x

2
4, ..., x

2
3x

2
4

−3~ω ~x1 + ~x2 + ~x3 + ~x4 + ~c x3
1x2x3x4, x1x

3
2x3x4, x1x2x

3
3x4, x1x2x3x

3
4

69
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We claim that these are all generators. Indeed, S−2~ω = S2~c and S−3~ω = S~x1+~x2+~x3+~x4+~c =

x1x2x3x4S~c by Lemma 2.2.4, so for i ∈ N it follows that

S−2i~ω = S2~c · · ·S2~c (i copies of S2~c)

S−(2i+1)~ω = S~x1+~x2+~x3+~x4+(2i−1)~c = x1x2x3x4S~c · S2~c · · ·S2~c (i− 1 copies of S2~c).

It is thus clear that everything in S−~ω is generated by elements in S2~c and x1x2x3x4S~c.

Furthermore, using the relation x2
1 + x2

2 + x2
3 = x2

4 we may ignore x4
4, and likewise

x1x2x3x
3
4 = x1x2x3x4(x2

4) = x1x2x3x4(x2
1 + x2

2 + x2
3) = x3

1x2x3x4 + x1x
3
2x3x4 + x1x2x

3
3x4,

so we may ignore x1x2x3x
3
4. We conclude that S−~ω is generated by the set

{x4
1, x

4
2, x

4
3, x

2
1x

2
2, x

2
1x

2
3, x

2
2x

2
3, x

3
1x2x3x4, x1x

3
2x3x4, x1x2x

3
3x4}.

Whilst it is possible to write the defining relations, we refrain from doing so as this will

not be needed to understand T−~ω. In comparison with the later example in §6.3, the key

point here is that S−~ω is not a hypersurface.

Using the generators, the open charts on T−~ω can easily be calculated, and are Spec of

the following rings:

V0 =
(
C
[
x1, x2, x3, x4, x

−1
1 , t

])
0

= C
[
x2

2

x2
1

,
x2

3

x2
1

,
x2x3x4t

x1

, x4
1t

2

]
,

V1 =
(
C
[
x1, x2, x3, x4, x

−1
2 , t

])
0

= C
[
x2

1

x2
2

,
x2

3

x2
2

,
x1x3x4t

x2

, x4
2t

2

]
,

V2 =
(
C
[
x1, x2, x3, x4, x

−1
3 , t

])
0

= C
[
x2

1

x2
3

,
x2

2

x2
3

,
x1x2x4t

x3

, x4
3t

2

]
.

To present each abstractly, by symmetry we need only consider V0. Set x =
x22
x21

, y =
x23
x21

,

z = x4
1t

2 and u = x−1
1 x2x3x4t. Then the defining relation of S yields

u2 = xyz(x+ y + 1),
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and there is an isomorphism

V0
∼=

C[u, x, y, z]

u2 = xyz(x+ y + 1)
=: R.

We now blow up R along the (reduced) singular locus, which in this example is given by

the ideal I = (u, yz(2x+ y+ 1), xz(2y+ x+ 1), xy(x+ y+ 1)). It follows that the singular

locus of SpecR has the following irreducible components

u = z = x+ y + 1 = 0, (6.1.A)

u = z = y = 0, (6.1.B)

u = z = x = 0, (6.1.C)

u = y + 1 = x = 0, (6.1.D)

u = y = x+ 1 = 0, (6.1.E)

u = y = x = 0. (6.1.F)

Ignoring the condition u = 0, since this always holds, we visualise the above as follows

x

y

z

B

C

D E

F

A

We will next prove that the singularity transverse to the singular locus is generically an

A1 surface singularity. This will be the case at all points, except the three ‘worst’ points

where (Zariski) locally the space is Spec of the ring N := C[U,X,Y,Z]
U2=XY Z

, which is the coordinate

ring of the Z2 × Z2 threefold quotient singularity.
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Proposition 6.1.1. Let R = C[u,x,y,z]
u2=xyz(x+y+1)

and N = C[U,X,Y,Z]
U2=XY Z

. Then the following hold:

1. R(0,0,0,0)
∼= R(0,−1,0,0)

∼= R(0,0,−1,0)
∼= N(0,0,0,0).

2. At all other singular points SpecR is locally isomorphic to C× C2/Z2.

Proof. 1. We first argue that R(0,0,0,0)
∼= N(0,0,0,0). After localising R at the origin,

(0, 0, 0, 0), x+ y + 1 is a unit. We first construct a map φ : N → R sending

U 7→ u,X 7→ x, Y 7→ y, Z 7→ z(x+ y + 1).

Composing this with the canonical map R ↪→ R(0,0,0,0) gives a map N → R(0,0,0,0)

given by n 7→ φ(n)
1
. We have that φ−1((u, x, y, z)) = (U,X, Y, Z) since φ(n) is invert-

ible in R(0,0,0,0) if and only if φ(n) ∈ R \ (u, x, y, z), this implies that we get a map

φ′ : N(0,0,0,0) → R(0,0,0,0) given by

r

s
7→ φ(r)

φ(s)
.

Conversely, consider the morphism ϕ : R→ N(0,0,0,0) sending

u 7→ U, x 7→ X, y 7→ Y, z 7→ Z

X + Y + 1
.

Again, this induces a map R(0,0,0,0) → N(0,0,0,0). Composing ϕ′ ◦ φ′ we have

ϕ′ ◦ φ′
(
r

s

)
=
ϕ ◦ φ(r)

ϕ ◦ φ(s)
(6.1.G)

Since ϕ ◦ φ(Z) = ϕ(z(x + y + 1)) = Z and ϕ ◦ φ is clearly the identity on U,X, Y

it follows from (6.1.G) that ϕ′ ◦ φ′ = id. Similarly φ′ ◦ ϕ′ = id and hence R(0,0,0,0)
∼=

N(0,0,0,0).

The cases (0,−1, 0, 0) and (0, 0,−1, 0) are symmetric, so we only consider the former
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in which case x is a unit in R(0,−1,0,0). This is similar to before: define φ : N → R by

U 7→ u,X 7→ xz, Y 7→ y, Z 7→ (x+ y + 1)

and proceed as before to construct an isomorphism R(0,−1,0,0)
∼= N(0,0,0,0).

2. Finally, consider a point on the singular locus away from these three ‘worst’ points.

To illustrate this, choose (0, 1, 0, 0). Then localising R at this point, both x and

x+ y + 1 are units and

R(0,1,0,0)
∼=

(
C[U,X, Y, Z]

U2 = Y Z

)
(0,1,0,0)

.

This illustrates that at any point of the singular locus, away from the three ‘worst’

points, SpecR is Zariski locally isomorphic to C× C2/Z2.

We blow up the reduced singular locus, namely the ideal I = (u, yz(2x + y + 1), xz(2y +

x+ 1), xy(x+ y + 1)), to obtain a birational morphism

X
f−→ SpecR.

Proposition 6.1.2. The morphism f is a resolution of singularities. In particular, X is

smooth.

The proof of Proposition 6.1.2 requires the following result. Let m C R be a maximal

ideal, and consider the following pullback diagram

X ′ X

SpecRm SpecR,

φ

g f

h

where X ′ is the fiber product X ×SpecR SpecRm. Here g is the blow up of Im since blow

ups are preserved under flat base change [Liu02, Lemma 3.48].
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Lemma 6.1.3. The closed points of X ′ are in bijection, via φ, with f−1(m) ⊆ X. For

each closed point x ∈ X ′, the stalks OX′,x and OX,φ(x) are isomorphic.

Proof. By [Sta18, Tag 01JS] X ′ admits an affine open cover of the form {Wi ×SpecR

SpecRm} with each Wi affine. Since the statement of the lemma is local on X ′, we

may assume that X ′ = W ×SpecR SpecRm, where W = SpecA for some R-algebra A.

Since W , SpecR and SpecRm are affine, X ′ = Spec(A⊗R Rm) by [Sta18, Tag 01JQ]. Let

ϕ : = R→ A be the (co)morphism corresponding to f : W → SpecR. Let S = ϕ(R \m),

which is a multiplicatively closed set of A (possibly containing zero). We claim that there

is an isomorphism

A[S−1]
∼−→ A⊗R Rm.

If s = ϕ(r) ∈ S then r−1 ∈ Rm, and thus

(s⊗ 1)(1⊗ r−1) = s⊗ r−1 = 1⊗ rr−1 = 1⊗ 1.

This means that the map A→ A⊗RRm, given by a 7→ a⊗ 1, extends to a map A[S−1]→

A⊗RRm. This latter map is an isomorphism, since the inverse A⊗RRm → A[S−1] is given

by

a⊗ br−1 7→ aϕ(b)ϕ(r)−1.

It follows that the maximal ideals of A⊗RRm are the maximal ideals n of A not intersecting

S. Let n be one such maximal ideal. Since S = ϕ(R \m), we have

S ∩ n = ∅ ⇐⇒ ϕ−1(n) ⊆ m

⇐⇒ ϕ−1(n) = m

⇐⇒ f(n) = m.

Thus, n ∈ f−1(m). Finally, if x ∈ X ′ corresponds to such a maximal ideal n C A, then

https://stacks.math.columbia.edu/tag/01JS
https://stacks.math.columbia.edu/tag/01JQ
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S ∩ n = ∅ implies that S ⊆ A \ n. Consequently,

OX,φ(x) = An = A[S−1]nS−1
∼−→ (A⊗R Rm)(n⊗Rm) = OX′,x.

Therefore, we can prove Proposition 6.1.2 if we can show that, for each maximal ideal of

R, the pullback X ′ → SpecRm is a resolution of singularities.

Proof of Proposition 6.1.2. As explained earlier, the singular locus has 3 worst points,

which locally look like

N =
C[U,X, Y, Z]

U2 = XY Z
,

and the remainder of the singular locus is generically a transverse A1 singularity. Now,

as shown in Lemma A.1.1, the blow-up of N at the reduced singular locus (u, xy, yz, xz)

equals the toric subdivision of the C3/(Z2 × Z2) singularity

and this toric variety is smooth. It is well known, and easily verified, that blowing up an

A1 singularity at the singular locus also resolves it. Thus, applying Lemma 6.1.3, we can

form the commutative diagram

Y Y ′ ∼= X ′ X

SpecN SpecNm′
∼= SpecRm SpecR.

g f

h

Since g is a resolution of singularities, we deduce that f is a resolution in a neighbourhood

of each of these points. By a similar diagram in general, we deduce that X is smooth.
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6.2 The Family (2, 2, 2, 2n)

Parts of the above analysis extend to the family p = (2, 2, 2, 2n). However, in this more

general family, singularities of the form C3/(Z2 × Z2n) appear in T−~ω. Recall that −~ω =

~x1 + ~x2 + ~x3 + ~x4 − ~c and

S =
C[x1, x2, x3, x4]

x2
1 + x2

2 + x2
3 = x2n

4

.

Theorem 6.2.1. For p = (2, 2, 2, 2n), the 3 open charts covering T−~ω are each isomorphic

to the complete intersection

Spec

(
C[u, v, x, y, z]

(u2 = xyv, vn = z(x+ y + 1))

)
.

Proof. We proceed as in §6.1 by first considering all multiples of −~ω and then finding the

associated generators of S−~ω. The following table calculates the multiples of −~ω and lists

all the monomials of the corresponding weight:

−~ω ~x1 + ~x2 + ~x3 + ~x4 − ~c -

−2~ω 2(~x1 + ~x2 + ~x3 + ~x4 − ~c) = 2~x4 + ~c x2
1x

2
4, x

2
2x

2
4, x

2
3x

2
4, x

2+2n
4

−3~ω ~x1 + ~x2 + ~x3 + 3~x4 x1x2x3x
3
4

...
...

...

−2n~ω 2n(~x1 + ~x2 + ~x3 + ~x4 + ~c) = (n+ 1)~c x2n+2
1 , x2n+2

2 , x2n+2
3

−(2n+ 1)~ω x1 + x2 + x3 + x4 + n~c x2a+1
1 x2b+1

2 x2c+1
3 x2nd+1

4

Here a+ b+ c+ d = n and a, b, c, d ∈ Z≥0. Using the generators in the third column, the

open charts for T−~ω are Spec of the following rings

V0 =
(
C
[
x1, x2, x3, x4, x

−1
1 , t

])
0

= C
[
x2

2

x2
1

,
x2

3

x2
1

,
x2x3x4t

x1

, x2
1x

2
4t

2, x2n+2
1 t2n

]
,

V1 =
(
C
[
x1, x2, x3, x4, x

−1
2 , t

])
0

= C
[
x2

1

x2
2

,
x2

3

x2
2

,
x1x3x4t

x2

, x2
2x

2
4t

2, x2n+2
2 t2n

]
,

V2 =
(
C
[
x1, x2, x3, x4, x

−1
3 , t

])
0

= C
[
x2

1

x2
3

,
x2

2

x2
3

,
x1x2x4t

x3

, x2
3x

2
4t

2, x2n+2
3 t2n

]
.

By symmetry, we need only consider V0. Let x =
x22
x21

, y =
x23
x21

, z = x2n+2
1 t2n, u = x−1

1 x2x3x4t
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and v = x2
1x

2
4t

2. Then

vn = z(x+ y + 1) and u2 = xyv

and further, since they are both three dimensional domains, there is an isomorphism

V0
∼=

C[u, v, x, y, z]

(u2 = xyv, vn = z(x+ y + 1))
.

We now restrict to the case p = (2, 2, 2, 6) to illustrate the complexity of the general

situation. In this case, as can be verified by Singular [DGPS22], the reduced singular locus

is given by the ideal (u, yv, xv, v3 − z(x+ y + 1), yz(y + 1), xyz, xz(x+ 1), xy(x+ y + 1)),

which splits into the following irreducible components

u = v = z = x+ y + 1 = 0, (6.2.A)

u = v = z = y = 0, (6.2.B)

u = v = z = x = 0, (6.2.C)

u = v = y + 1 = x = 0, (6.2.D)

u = v = y = x+ 1 = 0, (6.2.E)

u = y = x = v3 − z = 0. (6.2.F)

We analyse a generic point on each one in turn:

1. First we have points of the form (0, 0, a,−a − 1, 0) such that a 6= 0,−1. Then x

is a unit and y is a unit. Therefore v = u2

xy
and v3 = z(x + y + 1) so locally the

space is isomorphic to the hypersurface u6

x3y3
= z(x + y + 1) which we recognise as

the C× (C2/Z6).

2. Next we have points (0, 0, a, 0, 0), where a 6= 0,−1. Then x is a unit and x + y + 1

is a unit. So u2

x
= yv and v3

x+y+1
= z. This is locally a C × (C2/Z2) singularity. At

a = −1, x+ y+ 1 is no longer a unit and we get the C3/(Z2×Z6) singularity acting

as in 3.4.1.
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3. Now consider the case (0, 0,−1, 0, a), where a 6= 0. Then x and z are units. So

u2

x
= yv and v3

z
= x+ y + 1, which we recognise as the C× (C2/Z2) singularity.

4. Finally we choose a point (0, a, 0, 0, a3) where a 6= 0. In this case v and z are units.

Then u2

v
= xy and v3

z
= x+ y + 1 which is the C× (C2/Z2) singularity.

5. At the origin, x+y+1 is a unit and v3

x+y+1
= z so this is the C3/(Z2×Z2) singularity

singularity acting as in 3.4.1.

Thus we observe that locally the singularities are C× (C2/Z2) or C× (C2/Z6) along the

lines of the singular locus. Then at the three ‘worst’ points (where the lines meet) the

singularity is C3/(Z2 × Z2) at the origin or C3/(Z2 × Z6) at the other two points. Whilst

we know the blow-up of C3/(Z2 × Z2) at the reduced singular locus is smooth, this is not

the case for the blow-up of C3/(Z2 × Z6) at the reduced singular locus. This blow-up is

covered by four open charts where three are not smooth. So we need to perform additional

blow-ups in order to construct a full resolution. It is not clear what should be blown-up

to further resolve the singularities.

6.3 When We Do Not Have Toda-Uehera Tilting

By Corollary 5.2.3, p = (3, 3, 3, 3) is the simplest instance where the Toda-Uehara tilting

bundle does not exist on T−~ω. Nonetheless, as we show below, the ring S−~ω has a partic-

ularly nice presentation. We show that it is a hypersurface in C4. The graded pieces of

S−~ω are built as follows
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−~ω ~x1 + ~x2 + ~x3 + ~x4 − ~c -

−2~ω 2(~x1 + ~x2 + ~x3 + ~x4 − ~c) -

−3~ω ~c x3
1, x

3
2, x

3
3, x

3
4

−4~ω ~x1 + ~x2 + ~x3 + ~x4 x1x2x3x4

...
...

...

−3n~ω n~c x3a′′
1 x3b′′

2 x3c′′
3 x3d′′

4

−(3n+ 1)~ω x1 + x2 + x3 + x4 + (n− 1)~c x3a+1
1 x3b+1

2 x3c+1
3 x3d+1

4

−(3n+ 2)~ω 2(x1 + x2 + x3 + x4) + (n− 2)~c x3a′+2
1 x3b′+2

2 x3c′+2
3 x3d′+2

4

where a′′ + b′′ + c′′ + d′′ = n, a+ b+ c+ d = n− 1 and a′ + b′ + c′ + d′ = n− 2. It follows

that S−~ω is generated by x1x2x3x4, x3
1, x3

2, x3
3 and x3

4. Set U = x1x2x3x4, X = x3
1, Y = x3

2

and Z = x3
4. Then the defining relation of S gives U3 = XY Z(X + Y + 1) and so

S−~ω ∼=
C[U,X, Y, Z]

U3 = XY Z(X + Y + Z)
.

Note, in comparison to the [2, 2, 2, 2] case considered earlier, it is rather surprising that

now S−~ω is a hypersurface. In a very similar way to before, the three open charts for T−~ω

are Spec of the following rings:

V0 =
(
C
[
x1, x2, x3, x4, x

−1
1 , t

])
0

= C
[
x3

2

x3
1

,
x3

3

x3
1

,
x2x3x4

x2
1

t, x3
1t

3

]
,

V1 =
(
C
[
x1, x2, x3, x4, x

−1
2 , t

])
0

= C
[
x3

1

x3
2

,
x3

3

x3
2

,
x1x3x4

x2
2

t, x3
2t

3

]
,

V2 =
(
C
[
x1, x2, x3, x4, x

−1
3 , t

])
0

= C
[
x3

2

x3
3

,
x3

1

x3
3

,
x1x2x4

x2
3

t, x3
3t

3

]
.

By symmetry, we need only consider V0. Let
x32
x31

= x,
x33
x31

= y, x3
1t

3 = z and x−2
1 x2x3x4t = u.

Then u3 = x−6
1 x3

2x
3
3x

3
4t

3 = xyz(x+ y + 1) and so

V0
∼=

C[u, x, y, z]

u3 = xyz(x+ y + 1)
.

To understand the singularities on V0, we proceed as in §6.2. In this case, the reduced

singular locus is (u2, yz(2x+ y+ 1), xz(2y+ x+ 1), xy(x+ y+ 1)) which has the following
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irreducible components

u = z = x+ y + 1 = 0, (6.3.A)

u = z = y = 0, (6.3.B)

u = z = x = 0, (6.3.C)

u = y + 1 = x = 0, (6.3.D)

u = y = x+ 1 = 0, (6.3.E)

u = y = x = 0. (6.3.F)

We can view this pictorially as we did in the case (2, 2, 2, 2) by ignoring u = 0

x

y

z

B

C

D E

F

A

Analysing each irreducible component in turn we observe the following,

1. For points of the form (0, 0,−1, a), where a 6= 0, we have that y and z are units and

u3

yz
= x(x + y + 1). We recognise this as the C × (C2/Z3) singularity. When a = 0

only y is a unit and the singularity is C3/(Z3 × Z3).

2. By symmetry, we observe that at points of the form (0,−1, 0, a) we also have the

C× (C2/Z3) singularity except where a = 0 then the singularity is C3/(Z3 × Z3).

3. At the origin, x + y + 1 is a unit and u3

x+y+1
= xyz which is the C3/(Z3 × Z3)

singularity.



CHAPTER 6. TOWARDS FULL RESOLUTIONS 81

Continuing in this way, we observe that away from the three ‘worst’ points the singularities

are locally C× (C2/Z3) and at the ‘worst’ points the singularity is C3/(Z3 × Z3). Again,

we now have a choice of possible resolutions.



Appendix A

Blow-Ups and Local NCCRs

This Appendix is a local analysis of the three-dimensional Z2×Z2 singularity, its blow-up

at the singular locus, and a NCCR. Parts of this analysis are then applied to find local

NCCRs on T−~ω for particular tuples of p.

Consider the skew group ring C[X, Y, Z]#G for G = Z2 × Z2, which is by definition the

vector space C[X, Y, Z]⊗C CG with multiplication (f1⊗ g1)(f2⊗ g2) = (f1 · g2(f2))⊗ g1g2.

We begin by calculating the McKay quiver associated to this group action.

Definition A.0.1. For a given finite group G acting on C3 = V, the McKay quiver is the

quiver with vertices corresponding to the isomorphism classes of irreducible representations

of G and the number of arrows from ρi to ρj given by

dim HomCG(ρi, ρj ⊗ V ).

The quiver can be constructed from the character table of the group G.

Example A.0.2. Consider G = Z2 × Z2 with presentation 〈a, b | a2 = b2 = (ab)2 = e〉.

Then G has four irreducible characters with corresponding character table

82



APPENDIX A. BLOW-UPS AND LOCAL NCCRS 83

e a b ab

χ0 1 1 1 1

χ1 1 -1 1 -1

χ2 1 -1 -1 1

χ3 1 1 -1 -1

From above we can see that

ρ0 ⊗ V ∼= ρ1 ⊕ ρ2 ⊕ ρ3,

which gives the following arrows in the McKay quiver.

ρ1 ρ2

ρ0 ρ3.

Similarly,

ρ1 ⊗ V ∼= ρ0 ⊕ ρ2 ⊕ ρ3

ρ2 ⊗ V ∼= ρ0 ⊕ ρ1 ⊕ ρ3

ρ3 ⊗ V ∼= ρ0 ⊕ ρ1 ⊕ ρ2,

and so the McKay quiver of G is then

ρ1 ρ2

ρ0 ρ3

Y

X
Z

Y

XZX

Y

Z

Z

Y

X

Adding in the the relations XY = Y X, XZ = ZX and Y Z = ZY , whenever that makes

sense, gives a presentation of the skew group ring [CMT07, Remark 2.7] which is known

to be a NCCR of C[X, Y, Z]G as explained in [VdB04, Example 1.1].

Lemma A.0.3. The skew group ring C[X, Y, Z]#G, where G = Z2 × Z2, is isomorphic

to EndR(M) where M = R⊕ (u, x)⊕ (u, y)⊕ (u, z), and R = C[x,y,z,u]
u2=xyz

.
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Proof. We first identify the R-module M1 of all paths ρ0 → ρ1 with the R-module (u, x).

ρ1 ρ2

ρ0 ρ3

Y

X
Z

Y

XZX

Y

Z

Z

Y

X

Certainly, X and Y Z are paths from ρ0 and ρ1. We claim that X and Y Z generate M1

(up to cycles). Any other path ρ0 → ρ1 must pass through ρ2 or ρ3. If it passes through

ρ2 there is one path which is not X and does not obviously contain cycles, namely the red

path

ρ1 ρ2

ρ0 ρ3

Y

X
Z

Y

XZX

Y

Z

Z

Y

X

However ZXZ = ZZX = Z2X, which is X multiplied by a cycle. Similarly, for the case

where ρ0 → ρ1 passes through ρ3. There is only one choice which does not contain cycles,

and is not Y Z = ZY , namely

ρ1 ρ2

ρ0 ρ3

Y

X
Z

Y

XZX

Y

Z

Z

Y

X

However Y XY = Y Y X = Y 2(X) and we see that this map is generated by a multiple of

X. Therefore X and Y Z generate M1 as claimed. We note that M1 is isomorphic to the

ideal (u, x) since X(X, Y Z) = (X2, XY Z) = (x, u). The proofs that the module of paths

ρ0 → ρ2 is isomorphic to(u, z), and the module of paths ρ1 → ρ3 is (u, y) are similar. Now,

by Auslander [Aus62]

C[X, Y, Z]#G ∼= EndC[X,Y,Z]G

( ⊕
ρ∈IrrG

(C[X, Y, Z]⊗ ρ)G

)



APPENDIX A. BLOW-UPS AND LOCAL NCCRS 85

which, by our previous computations, can be identified with EndR
(
R ⊕ (u, x) ⊕ (u, y) ⊕

(u, z)
)
.

Corollary A.0.4. EndR(M) is an NCCR of R = C[u,x,y,z]
u2=xyz

.

Proof. This follows from Lemma A.0.3, together with the fact that C[X, Y, Z]#G is an

NCCR [VdB04, Example 1.1].

A.1 A Blow-up

Now, we consider the blow-up of R = C[u,x,y,z]
u2=xyz

along the reduced singular locus.

Lemma A.1.1. The blow up of SpecR along I := (xy, yz, xz, u) is a projective birational

morphism

X → SpecR,

where X is smooth.

Proof. The blow-up X is covered by 4 open charts, the first of these is

U1 = SpecC[x1, y1, y2, y3]/(y1y2y3 − x1) ∼= SpecC[y1, y2, y3]

with map to base via (y1, y2, y3) ∈ U1 7→ (u = y1y2y3, x = y2y3, y = y1y3, z = y1y2). We

also have

U2 = SpecC[x3, x4, y0, y3]/(x3y
2
0 − y3) ∼= SpecC[x3, x4, y0]

with map to the base by (x3, x4, y0) 7→ (x3x4y0, x4x3y
2
0, x3, x4). Charts U3 and U4 are

symmetric to U2.

We now investigate what the preimage of the singular locus on each of these four charts

looks like. Note that the singular locus is the union of the three lines {(0, λ, 0, 0)},

{(0, 0, λ, 0)} and {0, 0, 0, λ)}.
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For the chart U1, above the origin we have that y1y2y3 = 0, y2y3 = 0, y1y3 = 0 and y1y2 = 0

which is the union of three lines (y1, 0, 0), (0, y2, 0), (0, 0, y3).

Above (0, λ, 0, 0) we have λ = y2y3 and y1 = 0 giving the curve {(0, y2, y3) | y2y3 = λ}. By

symmetry we have {(y1, 0, y3) | y1y3 = λ} and {(y1, y2, 0) | y1y2 = λ} above (0, 0, λ, 0) and

(0, 0, 0, λ) respectively.

By computing the preimage of the singular locus on U2 we will then know what is hap-

pening on U3 and U4 by symmetry. Above the origin, we have x3 = x4 = 0 and there is

a choice for y0. Above (0, λ, 0, 0) lies nothing, above (0, 0, λ, 0) x4 = 0, x3 = λ and y0 is

varying. Finally, above (0, 0, 0, λ) we have x4 = λ, x3 = 0 and y0 varying. Therefore, we

have the following picture

U1 U2 U3 U4

(0, 0, 0, 0) 3 lines line line line

(0, λ, 0, 0) line - line line

(0, 0, λ, 0) line line - line

(0, 0, 0, λ) line line line -

We now consider what is happening above the origin and glue the charts together. First we

consider U1 ∩ U2. We have y1y2y3 = x3x4y0, y2y3 = x3x4y
2
0, y1y3 = x3, and y1y2 = x4. By

simple manipulation we see that x3x4y0 = y1y2y3 = y2x3 and hence y2 = x4y0. Similarly,

y3 = x3y0. Finally,

y1y2y3 = x3x4y0

⇐⇒ y1(x3x4y
2
0) = x3x4y0

⇐⇒ y1 = y−1
0 .

Therefore we glue via

(y1, 0, 0)↔ (0, 0, y−1
1 ).
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By symmetry we can also state the glue on U1 ∩ U3 and U1 ∩ U4 as

(0, y2, 0)↔ (0, 0, y−1
2 )

and

(0, 0, y3)↔ (0, 0, y−1
3 )

respectively. We can now visualise the exceptional local of the blow-up in the following

picture.

U1

U2

U3 U4

A.2 Local NCCRs on T−~ω

In several cases considered in §6, the singularity u2 = xyz(x + y + 1) appeared as one of

the open sets of an affine covering of T−~ω. In this subsection, we briefly justify that this

singularity also has a local NCCR. The reason that this is a non-trivial statement that

does not follow directly from the results of §A.1 is because of the gluing: it is not a prori

clear that the local NCCRs can glue to a global NCCR of this singularity. This is similar

to the problem of constructing a tilting bundle on T−~ω, which we considered in §5.

Lemma A.2.1. Fix R = C[u,x,y,z]
u2=xyz(x+y+1)

. Let M = R⊕(u, x)⊕(u, y)⊕(u, z)⊕(u, x+y+1).

Then EndR(M) is an NCCR of R.

Proof. We consider the completion of M at every closed point in the singular locus of

SpecR; the singular locus is has been described in 6.1. First, at the origin P = (u, x, y, z)

we have

M̂P = R̂P ⊕ (̂u, x)P ⊕ (̂u, y)P ⊕ (̂u, z)P ⊕ ̂(u, x+ y + 1)P .
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Since at the origin x+y+1 is a unit, this is isomorphic to R̂⊕2
P ⊕ (̂u, x)P ⊕ (̂u, y)P ⊕ (̂u, z)P

which is known to give an NCCR by Lemma A.0.4.

Let P = (0, a, 0, 0), where a 6= −1, 0. Then x and x+ y + 1 are units and hence

M̂P = R̂⊕3 ⊕ (̂u, y)P ⊕ (̂u, z)P .

Now, on the completion

z

u
(u, y) =

1

u
(uz, yz) =

1

u
(uz, u2) = (z, u).

Therefore after the completion, (u, y) ∼= (u, z), and

M̂P = R̂⊕3 ⊕ (̂u, y)
⊕2

P .

Therefore, M̂P gives an NCCR by Lemma A.0.4.

Suppose a = −1. Then x is a unit and

M̂P = R̂⊕2 ⊕ (̂u, y)P ⊕ (̂u, z)P ⊕ ̂(u, x+ y + 1)P

which we know gives an NCCR by Lemma A.0.4. By symmetry, it is also easy to see

completing at (0, 0, a, 0) gives an NCCR. Now consider (0,−1, 0, a). Then x is a unit and

z is a unit. Therefore,

M̂P = R̂P ⊕ R̂P ⊕ (̂u, y)P ⊕ R̂P ⊕ ̂(u, x+ y + 1)P

= R̂⊕3
P ⊕ (̂u, y)

⊕2

P ,
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since

(u, x+ y + 1) =
1

u
(u2, u(x+ y + 1)) =

1

u
(y(x+ y + 1), u(x+ y + 1)) =

x+ y + 1

u
(y, u).

This gives an NCCR by Lemma A.0.4. By symmetry (0, 0,−1, a) also gives an NCCR.

Next, consider (0, 0, 0, a) with a 6= 0. Then z and x+ y + 1 are units and

M̂P = R̂P ⊕ (̂u, x)P ⊕ (̂u, y)P ⊕ R̂P ⊕ R̂P

= R̂⊕3
P ⊕ (̂u, x)P ⊕ (̂u, y)P

= R̂⊕3
P ⊕ (̂u, x)

⊕2

P .

Finally, at (0, a,−1− a, 0) where a 6= 0,−1, then x and y are units and

M̂P = R̂⊕3 ⊕ (̂u, z)P ⊕ ̂(u, x+ y + 1P

= R̂⊕3 ⊕ ̂(u, z)⊕2.

Then since M̂P is an NCCR for all maximal ideals P , then globally M gives an NCCR

by [IW14a, Cor. 5.5].
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