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Abstract

The last decades have witnessed unexpected changes in life expectancy, low financial market

returns and surging inflation. Pension schemes all over theworld are facing a period of extreme

changes and challenges. Risk management in pension schemes is becoming highly complex

and tends to be amajor economic andfinancial topic. At the same time, stochastic optimization

methods have become important tools used in fields of economics, finance and life insurance.

This Ph.D. thesis is devoted to focusing on risk management and asset allocation for pension

schemes in a dynamic way. We intend to develop continuous-time stochastic optimization

models to tackle pension issues. Chapter 1 overviews pension schemes and risks and briefly

discusses the stochastic optimization methods.

Chapter 2 studies the longevity riskmanagement in a defined contribution pension scheme

that promises a minimum guarantee such that members are able to purchase lifetime annu-

ities upon retirement. To hedge the longevity risk, the scheme manager decides to invest in a

mortality-linked security that is available on the financial market, typically a longevity bond.

The manager’s compensation depends on the surplus between the scheme’s final wealth

and the minimum guarantee. The manager maximizes his expected utility from terminal

compensation by controlling the investment strategy. We transform the corresponding con-

strained optimal investment problem into a single investment portfolio optimization problem

by replicating future contributions from members and the minimum guarantee provided by

the scheme. We solve the resulting optimization problem using the dynamic programming

principle. Through a series of numerical studies, we show that longevity risk has an important

impact on investment performance. Our results add to the growing evidence supporting the

use of mortality-linked securities for efficient hedging of longevity risk.

Chapter 3 investigates the hedging performance of the longevity bond and the role of

the risk-sharing rule in a pension scheme. The scheme manager invests in a longevity

bond whose coupon payment is linked to a survival index to hedge the longevity risk. We

use stochastic affine processes to model the force of mortality and investigate longevity
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basis risk, which arises when the mortality behavior of the members and the longevity bond’s

reference population are not perfectly correlated. The problem is to maximize both member’s

and manager’s utilities by controlling the investment strategy and benefit withdrawals. By

applying the dynamic programming principle, we derive optimal solutions for the single-

and sub-population cases. Our numerical results show that the longevity bond acts as an

effective hedging instrument, even in the presence of longevity basis risk. Also, we find that

the risk-sharing rule is beneficial to both the member and the manager.

Chapter 4 turns to the situation where a DB scheme sponsor plans to wind up the scheme

via an insurance buy-out. The sponsor’s objective is to minimize the expected quadratic

deviation of the terminal scheme wealth from the buy-out cost by deciding the investment

strategy and winding up time. We derive the explicit solution to the combined stochastic

control and optimal stopping problem by solving the corresponding variational Hamilton-

Jacobi-Bellman inequality. Our analyses show that if the scheme wealth is initially lower

than the technical provisions, it is optimal to purchase the buy-out when the funding level

touches a threshold under specific financial and insurance markets conditions.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1
1.1 Pension scheme and risks . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research background and motivation . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Preliminaries: stochastic optimization methods . . . . . . . . . . . . . . . 6

1.4.1 Stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Stochastic optimal control theory . . . . . . . . . . . . . . . . . . 8
1.4.3 Optimal stopping theory . . . . . . . . . . . . . . . . . . . . . . . 10

2 Hedging longevity risk in Defined Contribution pension schemes 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 The utility maximization problem . . . . . . . . . . . . . . . . . . 23
2.3.2 Single investment portfolio optimization problem . . . . . . . . . . 26
2.3.3 The optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 The base scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix 2.A: Proof of Lemma 2.2.1 . . . . . . . . . . . . . . . . . . . . 44
Appendix 2.B: Proof of Proposition 2.3.1 . . . . . . . . . . . . . . . . . . 45
Appendix 2.C: Proof of Lemma 2.3.1 . . . . . . . . . . . . . . . . . . . . 46
Appendix 2.D: Proof of Proposition 2.3.3 . . . . . . . . . . . . . . . . . . 47

v



3 Sharing of longevity basis risk in pension schemes with income-drawdown guar-
antees 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 The stochastic force of mortality . . . . . . . . . . . . . . . . . . . 53
3.2.2 The financial market . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 The optimization problem . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Explicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Single-population model . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Sub-population model . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Single-population case . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Sub-population case . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix 3.A: Proof of Proposition 3.2.1 . . . . . . . . . . . . . . . . . . 81
Appendix 3.B: Proof of Proposition 3.3.1 . . . . . . . . . . . . . . . . . . 82
Appendix 3.C: Proof of Proposition 3.3.3 . . . . . . . . . . . . . . . . . . 84

4 Optimal winding up time and investment strategy in a Defined Benefit scheme 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 The markets and the scheme . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 The optimization problem . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3 The verification theorem . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 The optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 The analysis of the set U . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Legendre transform . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Explicit solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 A base scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Initial funding level . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.3 Mortality assumption . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.4 Financial market condition . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix 4.A: Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . 114
Appendix 4.B: Extended Applications . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117

vi



List of Figures

2.1 Average paths of optimal investment proportions; Y (t)/F (t), G(t)/F (t)

and D(t)/F (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Average paths of optimal investment proportions with γ = 2, 3, 4 and 5 . . 36
2.3 Average paths of optimal investment proportions with θλ = −0.06, −0.08,

−0.12 and −0.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Average paths of optimal investment proportions varying θλ . . . . . . . . 38
2.5 Average paths of optimal investment proportions varying TL . . . . . . . . 39
2.6 1

h1(t,t+TL)
and f1(t,t+TL)

f1(t,t+TB)
versus TL ; Average path of 1

F (t)
varying TL . . . . 39

2.7 Average paths of optimal investment proportions varying rc . . . . . . . . 41
2.8 Average paths of optimal investment proportions varying rw . . . . . . . . 42

3.4.1 3 simulation paths for the survival probability and cumulative distribution
function of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Average optimal investment strategies over 100 paths . . . . . . . . . . . . 70
3.4.3 Average benefit withdrawal proportion, withdrawal rate, wealth, and com-

pensation over 100 paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.4 Improvement for the benefit withdrawal and compensation by investing into

the longevity bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.5 Average improvements for benefit withdrawal and compensation by investing

into the longevity bond over 100 paths . . . . . . . . . . . . . . . . . . . . 73
3.4.6 Impact of θ1 on the optimal investment strategy . . . . . . . . . . . . . . . 74
3.4.7 Impact of θ1 on the benefit withdrawal and compensation improvements . . 75
3.4.8 Impact of φ on the benefit withdrawal and compensation . . . . . . . . . . 76
3.4.9 Survival probabilities for Population 1 and 2 . . . . . . . . . . . . . . . . 78
3.4.10Average optimal portfolio strategy and benefit withdrawal in sub-population

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.11Benefit and compensation improvement in sub-population case . . . . . . 79

4.3.1 The value function in Case 1 when (a) there is no restriction on risky
investment (b) short-selling is not allowed . . . . . . . . . . . . . . . . . . 104

4.3.2 The value function in Case 2 when (a) there is no restriction on risky
investment (b) short-selling is not allowed . . . . . . . . . . . . . . . . . . 106

vii



4.4.1 The distribution of the optimal winding up time . . . . . . . . . . . . . . 107
4.4.2 The dynamics of wealth level and funding level . . . . . . . . . . . . . . . 108
4.4.3 The dynamics of investment amount and investment proportion . . . . . . 108
4.4.4 The impact of the initial funding level on the winding up behavior . . . . . 109
4.4.5 The impact of initial funding level on the investment strategy . . . . . . . . 109
4.4.6 The impact of λ on the threshold value ỹ . . . . . . . . . . . . . . . . . . 110
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Chapter 1

Introduction

A pension is a retirement arrangement that provides an individual with retirement income.

The essence of pensions is to save while working such that individuals will have supple-

mental income to maintain the living standard or to cover unforeseen expenses in retirement.

Pension schemes provide an important economic function in society. Future development

and management of pension systems are clearly essential to society since it is a matter that

bears on the welfare of each and every pension scheme participant across the world. This

thesis is devoted to developing and analyzing stochastic optimization problems for the risk

management of pension schemes. More specifically, this thesis pays particular attention to

the hedging of mortality risk in pension schemes and Pension Risk Transfer.

1.1 Pension scheme and risks

A pension scheme is an organized mechanism to provide retired people with regular incomes

after retirement. There are two main types of pension schemes: Defined Benefit schemes

(hereafter DB schemes) and Defined Contribution schemes (hereafter DC schemes). One

main difference between DB and DC schemes is how risks and liabilities are treated. In

a DB scheme, the benefit payments are pre-defined and usually depend on the employee’s

final/mean salary and on the number of years of service. Generally, the sponsor pays flexible

contributions while the employee’s contribution rates are fixed. After retirement, benefits are

normally paid in the form of a lifetime annuity. Thus, the sponsor faces the risk of failure

to cover the liabilities, whereas the employee bears no risks. In a DC scheme, the sponsor’s

and/or the employee’s contribution rates are pre-determined, typically as a percentage of the
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employee’s salary. The benefits are generated by the accumulated contributions and depend

on the scheme’s investment performance. At retirement, DC scheme members have more

freedom over how they choose to take the benefits. Options available are, for example, taking

the money to purchase a lifetime annuity, choosing a flexible income-drawdown option (i.e.,

to withdraw money periodically with the remaining money staying in the pension pot), and

taking a lump sum (or lump sums). In this case, the employee bears all the risks rather than

the sponsor.

The large variety of pension scheme risks could be classified into two main categories:

financial risks and demographic risks. See Devolder et al. (2013). Apart from the risks in

the financial market (e.g., investment risk and interest rate risk), pension schemes are also

exposed to risks outside the financial market (i.e., the background risks). Typical background

risks include, for example, the labor income risk (i.e., the risk caused by uncertainties of the

member’s future salary), credit risk and inflation risk. One of the main demographic risks is

the longevity risk, i.e., the risk that the actual life expectancy may be longer than anticipated.

For a DB scheme, the sponsor needs to decide the investment strategy and adjust contribution

rates in order to maintain the fund in balance. Thus, it is clear that the sponsor faces risks

such as market risk, inflation risk and contribution rate risk. If the DB scheme pays benefits

in the form of annuities, then the sponsor’s liabilities increase if members’ life span increases

and longevity risk is crucial to the sponsor. On the contrary, the sponsor bears no risks in

a DC scheme since his only responsibility is to pay pre-defined contributions. However,

the member faces all financial risks (e.g., bad investment returns or significant inflation).

Moreover, the member faces the risk of outliving his pension and savings (i.e., longevity

risk).

1.2 Research background and motivation

Pension schemes’ risk management and asset allocation problems are popular research topics.

How do pension schemes optimally invest in the financial market? What are the efficient

ways to hedge pension risks? Are longevity securities efficient instruments to hedge some of

the pension scheme risks? Whether or not and when should a DB sponsor offload the risk and
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wind up the scheme? This thesis seeks to contribute to the literature by applying stochastic

methods to answer these questions. In what follows, we present a general overview of the

related literature and outline our motivation and contribution.

Over the last decades, DC schemes have become increasingly popular among sponsors,

and there has been a gradual shift from DB towards DC schemes in the occupational pension

systems. The asset allocation is crucial in DC schemes as members’ retirement benefits

depend heavily on schemes’ investment performance. The existing literature on optimal

portfolio selection problems in DC schemes using stochastic optimization methods is rich.

There are two broad optimization structures: utilitymaximization andmean-variance criteria.

Papers that maximized the expected utility from terminal wealth in DC schemes include, for

example, Gao (2008), Battocchio & Menoncin (2004) and Zhang & Ewald (2010). Gao

(2008) considered the stochastic interest rate and used the dual approach to solve the optimal

control problem. Battocchio & Menoncin (2004) studied the salary risk and the inflation

risk and solved the optimization problem by stochastic dynamic programming. Zhang &

Ewald (2010) applied the martingale method to solve the utility maximization problem with

inflation. Inflation-indexed bonds were used to hedge inflation risk. Mean-variance criteria

aim tomaximize the profit while minimizing the loss/risk. Previous studies onmean-variance

problems in DC schemes include, for example, Yao et al. (2013), He & Liang (2013a), He

& Liang (2013b), Vigna (2014) and He & Liang (2015). Nonetheless, these works supposed

that scheme members have full trust in the manager and do not take the attractiveness and

effectiveness of the scheme management into consideration.

DC schemes that provide a minimum guarantee on benefits can be more attractive to

employers. Boulier et al. (2001) and Deelstra et al. (2003) studied optimal asset allocation

problems with stochastic interest rate and minimum guarantees protections. Deelstra et al.

(2004) further studied the optimal design of minimum guarantee and used the martingale

approach. Han & Hung (2012) and Guan & Liang (2014) extended the model to include

stochastic inflation. However, these papers did not consider members’ stochastic mortality

behavior and ignored mortality risk. If scheme members’ life expectancy and actual survival

rate exceed expectations, then the value of the minimum guarantee will be higher than

anticipated. In other words, the scheme faces longevity risk. To fill this gap, we model the
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members’ force of mortality (also referred to as a mortality intensity) using stochastic affine

processes in Chapter 2. See Luciano & Vigna (2005), Menoncin (2009), Russo et al. (2011)

and Xu et al. (2020). Moreover, to hedge the longevity risk, we suppose that the scheme

manager decides to invest in a longevity bond. See Blake & Burrows (2001), Menoncin

(2008), De Kort & Vellekoop (2017) and Shen & Sherris (2018).

The population basis risk arises when there is a mismatch between the hedging instru-

ment’s underlying mortality experience and the hedging population’s mortality behavior. A

schememanager faces the longevity basis risk when a standardized longevity security (e.g., an

indexed-based longevity bond) is used for hedging. In the literature, Coughlan et al. (2011),

A. J. Cairns et al. (2014), De Rosa et al. (2017) argued that the presence of the population

basis risk may have a detrimental impact on the hedging effectiveness of the instrument.

Drawing from econometric literature, co-integration has been incorporated into mortality

modeling, see Njenga & Sherris (2011) and Darkiewicz & Hoedemakers (2004). In Wong

et al. (2014), the authors applied the co-integration technique to study the mean-variance

hedging of longevity risk for an insurance company with a longevity bond. They suggested

that co-integration is vital in longevity risk management. However, the impact of longevity

basis risk on the risk management and effectiveness of longevity bond has not been studied

in the literature on pension schemes. In Chapter 3, we study an optimal investment strategy

and benefit withdrawal problem in a pension scheme that provides an income-drawn policy.

To manage the scheme efficiently, we suppose the manager and members agree to share the

risks, and the objective is to maximize both sides’ utilities. Similar to Wong et al. (2014),

our stochastic mortality models are designed to allow the scheme members and the longevity

bond’s reference population to have different mortality behaviors.

DC schemes have become increasingly popular as they are less difficult and less costly

to maintain, and many employers have opted to shift from DB to DC schemes. Nonetheless,

some still retain their DB schemes, and many companies still face an important choice of

whether or not to de-risk by transferring their pension fund to another party. For example, via

an Insurance buy-in or buy-out, a company can transfer part or all of its risks to an insurer. A

buy-out also enables a scheme to wind up. A DB sponsor, who plans to purchase an insurance

buy-out and thus to wind up the scheme, has to decide when to purchase the buy-out and how
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to manage the scheme until the buy-out is purchased. As far as we know, this optimal buy-out

purchasing problem for DB schemes has not yet been studied in the literature. Chapter 4

intends to fill this gap and provide a new direction in modeling and tackling this problem.

We suppose that the scheme sponsor’s objective is to minimize the terminal solvency risk

by controlling the investment strategy and determining the insurance buy-out purchasing

time. Solvency risk in DB schemes are considered in papers such as Haberman et al. (2000),

Josa-Fombellida & Rincón-Zapatero (2004), Josa-Fombellida & Rincón-Zapatero (2010),

Hainaut & Deelstra (2011), Josa-Fombellida & Rincón-Zapatero (2012) and Hainaut (2014).

Drawing from the existing literature on optimal annuitization time for individual retirees, we

formulate our minimization problem as a combined stochastic control and optimal stopping

time problem. See Stabile (2006), Farhi & Panageas (2007), Milevsky & Young (2007),

Gerrard et al. (2012), Park & Jang (2014) and Park (2015).

This thesis contributes to the literature by developing new ideas and directions in tackling

the risk management of pension schemes from a theoretical point of view. Specifically,

Chapters 2 and 3 contribute to the literature by studying stochastic control problems for

pension schemes in the presence of longevity risk and longevity basis risk. Besides, the

two chapters investigate the hedging effectiveness of longevity bond. Chapter 4 extends the

current literature on DB schemes by developing and tackling an optimal insurance buy-out

purchasing problem.

1.3 Thesis outline

In Section 1.4, we present some methods and techniques used in the subsequent sections of

this thesis. Chapters 2 to 4 are three independent but related chapters focusing on the risk

management and asset allocation for pension schemes in a dynamic way. In a continuous-time

framework, we formulate and analyze various stochastic optimization models arising from

maximization and minimization problems.

In Chapter 2, we study an optimal control problem for a DC scheme that promises a

minimum guarantee on the purchase of lifetime annuities. The longevity risk arises since

the annuity price is unknown until the retirement time and depends on the members’ future
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longevity trend. An analog Cox-Ingersoll-Ross model is introduced to model the members’

mortality behavior. To hedge the longevity risk, the manager decides to invest in a mortality-

linked security that is available on the financial market. The manager receives a fraction of

the final surplus between the scheme wealth and the minimum guarantee as compensation

and aims to maximize his expected utility from terminal wealth.

In Chapter 3, we investigate the first-best principal-agent problem for a pension scheme,

where themanager and themember decide to share the underlying risk based on a risk-sharing

rule. We describe the mortality behaviors of the scheme members and the longevity bond’s

reference population using affine class models. In the case where the scheme members are a

sub-population of the longevity bond’s reference population, the hedging effectiveness of the

longevity bond is reduced due to the presence of longevity basis risk. At any instant of time,

the manager controls the investment strategy and benefit withdrawal rate. The objective is to

maximize both members’ and manager’s utilities, and the maximization problem is naturally

formulated as a stochastic optimal control problem.

Chapter 4 is devoted to finding the optimal timing of the insurance buy-out purchase for a

DB scheme. The DB scheme we considered is closed to new entrants, and all its members are

pensioners. Up until the buy-out is purchased, the sponsor pays surviving members benefits

and invests in the financial market. The sponsor’s objective is to minimize the solvency risk,

which is measured by the expected quadratic deviation of the terminal scheme wealth from

the buy-out cost, by deciding the investment and buy-out purchasing strategies. We formulate

the problem as a combined stochastic control and optimal stopping problem.

1.4 Preliminaries: stochastic optimization methods

When randomness is present, decision problems are often formulated as stochastic opti-

mization problems where decision makers wish to optimize (maximize or minimize) some

performance criteria in a dynamic way. Stochastic optimization methods have become es-

sential tools used in a wide range of fields and applications, such as computer science,

engineering and economics. There are discrete- and continuous-time stochastic optimization

problems. This thesis only investigates stochastic optimization problems for pension schemes
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in a continuous-time framework.

1.4.1 Stochastic calculus

This section presents certain definitions and results in stochastic calculus that will be used in

the following chapters. The concepts in this section were introduced in detail in many books;

see Duffie (2001), Shreve (2004), Pascucci (2011) and Oksendal (2013).

In the sequel, we denote by (Ω,F , {F(t)}t≥0,P) a filtered probability space.

Definition 1.4.1 (Stopping time). A random variable τ is a stopping time, if it takes values

in [0,+∞) and satisfies

{τ ≤ t} := {ω ∈ Ω : τ(ω) ≤ t} ∈ F(t), ∀ t ≥ 0.

Definition 1.4.2 (Itô process). LetW (t) be a Brownian motion on a filtered probability space

(Ω,F , {F(t)}t≥0,P). An Itô process is a stochastic process valued in R and has the form

dX(t) = X(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s), ∀ t ≥ 0,

whereX(0) is nonrandom and µ(s) and σ(s) are progressively measurable processes valued

in R s.t. ∫ t

0

|µ(s)|ds+

∫ t

0

|σ(s)|2ds <∞, ∀ t ≥ 0. (1.1)

Equation (1.1) is also referred to as a stochastic differential equation (SDE).

Theorem 1.4.1 (Itô formula). Let X(t), t ≥ 0, be an Itô process as defined in Definition

1.4.2, and let f(t, x) ∈ C1,2([0,+∞)×R). Then, for all t ≥ 0, Y (t) = f(t, x) is also an Itô

process and we have

dY (t) =ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t),

where dX(t)dX(t) is computed according to the rules

dtdt = dtdW (t) = dW (t)dt = 0, dW (t)dW (t) = dt.
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The Itô formula is an Itô integral version of the chain rule and is very useful in stochastic

analysis. The Itô formula can also be applied to multivariate stochastic processes. For

example, let f(t, x, y) ∈ C1,2,2([0,+∞)× R2), the two-dimensional Itô formula is

df(t,X, Y ) =ftdt+ fxdX + fydY +
1

2
fxxdXdX + fxydXdY +

1

2
fyydY dY.

1.4.2 Stochastic optimal control theory

Choosing an optimal decision among all possible ones, at any given point of time, to attain

some future expectation is the general topic of stochastic control theory. The stochastic

control theory has been developed and applied to deal with stochastic optimization problems

emerging from mathematical finance. This section collects minimal basic results concerning

the control theory that will be used in the subsequent chapters. The results and rigorous proof

can be found in books such as Yong & Zhou (1999), Fleming & Soner (2006), Pham (2009)

and Oksendal (2013).

We present a one-dimensional stochastic optimal control problem in a finite time horizon.

Consider the state process X(t) on a filtered probability space (Ω,F , {F(t)}t≥0,P) that is

governed by a SDE:

dX(t) = µ(t,X(t), u(t))dt+ σ(t,X(t), u(t))dW (t), X(0) = x ∈ R,

where {u(t)}t≥0 is the control process. We introduce an objective function (performance

criterion):

J(t, x;u) = Et,x
[ ∫ T

t

f(s,X(s), u(s))ds+ g(T,X(T ))
]
,

where f and g are continuous functions. The problem is to maximize (or minimize) this

objective function J by controlling u. The value function of the optimization problem is

V (t, x) = sup
u
J(t, x;u), ∀ (t, x) ∈ [0, T ]× R.

There are threemain approaches to solving this problem: dynamic programming principle

(DPP), Pontryagin optimality principle and convex duality martingale method. In this thesis,

we adopt DPP approach. The central concept of DPP is that it is not necessary to optimize
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the control all at once in the entire time horizon. Instead, one can break the time horizon

down into small subintervals and optimize over each interval individually.

Theorem 1.4.2 (Dynamic Programming Principle). Let (t, x) ∈ [0, T ]× R, then we have

V (t, x) = sup
u

Et,x
[ ∫ τ

t

f(s,X(s), u(s))ds+ V (τ,X(τ))
]
,

for any stopping time τ valued in [0, T ].

The DPP approach involves the following steps:

• Apply the DPP and obtain a non-linear partial differential equation, which is called the

Hamilton-Jacobi-Bellman (HJB) equation.

• Obtain a (smooth) candidate solution to the value function by solving the HJB equation.

• Show that the candidate solution is the value function via a verification theorem.

• One obtains the optimal feedback control as a byproduct of the verification theorem.

Theorem 1.4.3 (Verification theorem). Let v(t, x) be a function in C1,2([0, T ] × R) and

v(T, x) = g(T, x) such that

vt(t, x) + sup
u

[
Auv(t, x) + f(t, x, u)

]
= 0, ∀ (t, x) ∈ [0, T ]× R,

where

Auv(t, x) = µ(t, x, u)vx(t, x) +
1

2
σ2(t, x, u)vxx(t, x).

Then, we have

v(t, x) = V (t, x), on [0, T ]× R.

The optimal control u∗ is a measurable function such that

sup
u

[
Auv(t, x) + f(t, x, u)

]
= Au∗v(t, x) + f(t, x, u∗),

i.e.,

u∗(t, x) ∈ arg max
u

[
Auv(t, x) + f(t, x, u)

]
.
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1.4.3 Optimal stopping theory

The optimal stopping theory is one of the advanced aspects of the stochastic control theory.

Optimal stopping problems arise when the time of a particular action is random and controlled

by the decision maker in order to optimize some objective. Problems of this type were largely

studied in the areas of, for instance, statistics, operations research, and mathematical finance

(in particular, American options and real options). The interested readers are referred to the

monograph Peskir & Shiryaev (2006) for additional materials on the optimal stopping theory.

We also refer to the books Pham (2009) and Oksendal (2013) for applications in finance.

We describe a one-dimensional infinite horizon optimal stopping problem. For any t ≥ 0,

consider the state process X(t) on a filtered probability space (Ω,F , {F(t)}t≥0,P) without

control:

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), X(0) = x ∈ R.

An optimal stopping problem is given as

V (x) = sup
τ

E
[ ∫ τ

0

e−βtf(X(t))dt+ e−βτg(X(τ))
]
, ∀ x ∈ R.

The DPP in this case is: for a fixed x ∈ R,

V (x) = sup
τ

E
[ ∫ τ∧θ

0

e−βtf(X(t))dt+ e−βτg(X(τ))1τ<θ + e−βθV (X(θ))1θ≤τ

]
,

for any stopping time θ valued in [0,∞]. By applying DPP and Itô formula, we expect the

value function V (x) satisfies the following variational HJB inequality (HJBVI):

max{Av(x) + f(x)− βv(x), g(x)− v(x)} = 0, ∀ x ∈ R, (1.2)

where

Av(x) = µ(x)vx(x) +
1

2
σ2(x)vxx(x).

We introduce the open set

C := {x ∈ R : V (x) > g(x)}.
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C is called the continuation region. As long as x ∈ C, it is optimal to let the diffusion continue.

The HJBVI (1.2) means that AV (x) + f(x) − βV (x) = 0 is satisfied within region C. On

the free boundary ∂C of the continuation region, the value-matching and smooth-pasting

conditions are V (x) = g(x) and V ′(x) = g′(x). The optimal stopping time τ ∗ is the first

exist time of the continuation region C, i.e., τ ∗ := inf{t ≥ 0 : V (X(t)) = g(X(t))}. When

the smoothness assumption of v(x) is not satisfied on the free boundary ∂C, other techniques

must be applied, see Peskir & Shiryaev (2006).
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Chapter 2

Hedging longevity risk in Defined Contri-
bution pension schemes

2.1 Introduction

Pension schemes provide an important economic function in the society. They provide people

with regular incomes after retirement from the productive labor workforce and incentivize

sustainable consumption over a life time. With regards to benefit and contribution policies,

there are two main categories of pension schemes: defined benefit schemes (DB schemes)

and defined contribution schemes (DC schemes). In a DB scheme, pension benefits to be

paid by the scheme after retirement are pre-defined. In this case, scheme members only need

to pay contributions regularly and bear no investment risk. The scheme sponsor bears the

risk of bad investment performance and may fail to deliver the benefits. In a DC scheme,

the amount of contributions payable by scheme members is pre-determined rather than the

benefit payments. The benefits depend on the size of the accumulated contributions and the

scheme’s investment performance, and are uncertain until the retirement time. The sponsor

bears no risk as its only responsibility is to pay the contributions, while the employees face

risks originating from the market. Historically, pension schemes were dominated by PAYGO

DB schemes. Over the last decades, however, DC schemes have become increasingly popular,

a consequence of dealing with financial sustainability issues of DB schemes, especially in

the presence of population aging.

In this chapter, we focus our attention on DC schemes and study the optimal investment

strategy for DC schemes from a theoretical point of view. In a DC scheme, members’ benefits
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rely heavily on the scheme’s investment performance. Therefore, it is crucial to study the

optimal portfolio selection problem in order that the scheme will deliver satisfactory benefits

at retirement. Gao (2008) used the dual approach to solve the optimal asset allocation problem

for a DC scheme in a market with stochastic interest rates. Battocchio & Menoncin (2004)

studied the optimal asset allocation problem for a DC pension plan manager who maximize

expected exponential utility of final wealth considering salary and inflation risk. However,

Gao (2008) and Battocchio&Menoncin (2004) supposed that schememembers have full trust

in the manager and do not take the attractiveness and effectiveness of the schememanagement

into consideration. Classically, DC schemes do not guarantee any minimum benefits, leaving

its members exposed to the risk of receiving insufficient benefits after retirement. DC

schemes that do provide a minimum guarantee on the benefits however can also be more

attractive to employers. Boulier et al. (2001) studied the optimal investment problem for a

DC scheme in a framework with stochastic interest rates where a downside protection for

the member’s benefits is provided. They obtained the optimal investment strategy which

maximizes the expected terminal utility from the surplus between the scheme’s final wealth

and the downside guarantee by applying the dynamic programming principle. Deelstra et al.

(2003) extended their model to the case where the contribution process is stochastic. They

modeled themanager’s remuneration as an increasing concave function of the surplus between

the scheme’s terminal wealth and the minimum guarantee. The martingale method is used

to find the optimal investment strategy that maximizes the manager’s expected utility from

remuneration. Han&Hung (2012) further developed themodel to consider inflation and labor

income risks. They introduced a minimum guarantee on the purchase of an inflation-indexed

annuity at retirement. To hedge the inflation risk, they included an inflation-indexed bond

in the investment portfolio. Nonetheless, these papers did not take the members’ stochastic

mortality behavior into consideration and ignored the mortality risk. To fill this gap, we

consider a DC scheme in which the scheme manager allocates the wealth in various assets in

order to achieve the level needed to buy lifetime annuities upon retirement of the members.

The annuities act as the minimum guarantee and the price depends on the members’ expected

remaining lifetime and future risk-free interest rate. Furthermore, this work incorporates

stochastic interest rate and force of mortality.
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According to Cocco & Gomes (2012), the average life expectancy of a 65-year-old US

(UK) male increases by 1.2 (1.5) years per decade. Consequently, a DB scheme for those

populations in the US for example would have needed 29% more wealth in 2007 than in

1970. The increases in life expectancy in the UK are largely responsible for the underfunding

of pay-as-you-go state pensions, defined benefit company pensions, and state-sponsored

pension plans. Biffis & Blake (2014) mentioned that the estimate of the global amount of

annuity- and pension-related longevity risk exposure amounts to $15 trillion. However, most

articles studying optimal portfolio strategies for DC schemes focus on the financial risks (for

example, interest rate risk, inflation risk) and leave longevity risk aside. Those studies that take

longevity risk into account, mainly focus on optimal asset allocation problems for DB pension

schemes, using time-varying but deterministic forces of mortality to implement longevity risk

into their models. This ignores that the force of mortality can itself vary stochastically and be

exposed to shocks. In this chapter, we study an optimal portfolio problem for a DC scheme

within the framework of a stochastic force of mortality as well as stochastic interest rates.

Force of mortality, or the instantaneous rate of mortality, is often used within the context

of survival analysis in actuarial science. Classical work, including De Moivre (1725) and

Gompertz (1825), has studied deterministic force of mortality models. However, more recent

research onmortality risk modeling considers discrete-time and continuous-timemodels with

stochastic force of mortality. It is straightforward to model the force of mortality in a discrete-

time setting since the mortality data are usually reported annually. Lee & Carter (1992) were

among the earliest to model and estimate the force of mortality using time series methods.

Other discrete-time models include, for example, the CBD model and Renshaw-Haberman

cohort model (A. J. Cairns et al. (2006); Renshaw & Haberman (2006)). Some studies, such

as Milevsky & Promislow (2001) and Dahl (2004), found similarities in the methodology

between interest rates and force of mortality; for example, that both are positive and have a

term structure. Thus, drawing from the interest rate modeling literature, diffusion processes

and jump processes are now used to study the impact of the force of mortality. In particular,

affine mortality models are popular and are studied in work such as Dahl (2004), Biffis &

Millossovich (2006), Luciano & Vigna (2005) and Russo et al. (2011). In this chapter, we

assume that the evolution of the mortality rate of all the scheme members can be described
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by the same continuous-time stochastic process. We follow Menoncin (2009) and describe

the force of mortality using an affine model which is an analog of the Cox-Ingersoll-Ross

(CIR) process. The considered pension scheme is attractive to members as it provides a

minimum guarantee on purchasing lifetime annuities upon retirement. The longevity risk

arises as the value of the minimum guarantee depends on members’ actual survival rate

and expected remaining lifetime and is uncertain until retirement time. Besides, future

contribution payments depend on members’ actual survival rate. To hedge the scheme’s

longevity risk, the manager decides to invest in a longevity security.

Proposed by Blake & Burrows (2001), a longevity bond provides coupon payment based

on the number of survivors in a chosen reference population. Therefore, investment in a

longevity bond not only provides an efficient way to hedge the longevity risk, but also allows

diversification of investment portfolios. Menoncin (2008) studied an optimal consumption

and investment problem for an investor with a stochastic time of death. He maximized the

investor’s inter-temporal consumption until the time of death and used a rolling longevity

bond to hedge against the investor’s longevity risk. De Kort & Vellekoop (2017) modeled

the force of mortality using the CIR process which guarantees the mortality rates to be non-

negative. They argued that although there is no liquid market for such longevity bonds, it

is not practical to put the market price of longevity risk at zero. Instead, they assumed a

time-varying market price of longevity risk which is proportional to the square root of the

mortality rate. Cocco & Gomes (2012) studied the optimal consumption and investment

problem in a life-cycle model. By calibrating to US historical data and current projections,

they showed considerable uncertainty with respect to future improvements in mortality rates.

They also suggested that longevity linked securities can help in longevity risk management.

Menoncin & Regis (2017) studied the optimal consumption and investment problem for

an individual investor to hedge his longevity risk before retirement. They showed that the

optimal proportion that should be invested in longevity bonds is higher than for other assets.

In this chapter, we consider a financial market that consists of three risky assets: a stock, a

rolling bond and a rolling longevity bond. Our results show that the longevity bond provides

an efficient way to hedge the longevity risk. Our main contribution is in extending the

work of Boulier et al. (2001), Gao (2008) and Menoncin & Regis (2017), to investigate the
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optimal portfolio allocation for DC schemes while hedging the longevity risk. The pension

scheme promises that the scheme’s wealth level must be sufficient in order to allow members

buying lifetime annuities at retirement, in this way providing a minimum guarantee. The

scheme is exposed to longevity risk as the value of the minimum guarantee will be higher

than anticipated if members’ life expectancy and actual survival rate exceed expectations.

At retirement time, the manager receives a fixed fraction of the surplus between the scheme

wealth and the minimum guarantee as remuneration. The aim is to maximize his expected

utility from remuneration by controlling the investment strategy. To hedge the longevity

risk, a rolling longevity bond as introduced in Menoncin (2008) is added to the investment

portfolio. Our results show that the longevity risk plays an important role in the pension

scheme’s risk management and reveals that the longevity bond can not only offer an efficient

way to hedge future longevity risk, but also provide attractive risk premiums.

The rest of this chapter is organized as follows. In Section 2.2, we present themathematical

framework of the problem and introduce the risky assets considered in the financial market

model. In Section 2.3.1, we first formulate the constrained optimization problem in which

the manager maximize his utility of terminal wealth. We identify different components of the

investment portfolio and reformulate the portfolio selection problem as a single investment

portfolio optimization problem in Section 2.3.2. We derive the analytical solution for the

optimal investment strategy by using the dynamic programming principle in Section 2.3.3.

Section 2.4 discusses several numerical studies including sensitivity analyses with respect to

different model parameters, which reveal the significance of introducing a rolling longevity

bond in the investment portfolio.

2.2 Model

Let (Ω,F , {F(t)}t≥0,P) be a filtered probability space satisfying the usual conditions on an

infinite time horizon T = [0,∞). P is the physical (observable) probability measure and

F(t) signifies the information available to the investor at time t. On this probability space,

we consider a frictionless financial market consisting of a stock, a rolling bond and a rolling

longevity bond. For practical pricing of zero-coupon and longevity bonds, we consider a
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stochastic risk-free interest rate r(t) and a stochastic force of mortality λ(t). Furthermore,

we denote a three-dimensional standard Brownian motion under P by
{
W (t) | t ∈ T

}
={[

W1(t),W2(t),W3(t)
]′ | t ∈ T }.We assume that r(t) is described by a CIR process:

dr(t) = (ar − brr(t))dt+ σr
√
r(t)dW1(t), r(0) = r0,

where ar, br and σr are positive constants. We further assume that the Feller condition

2ar > σ2
r is satisfied so that, for any t ∈ T , r(t) > 0 almost surely under P.

As stated earlier in Section 2.1, affine models are popular when modeling the stochastic

force of mortality. Luciano & Vigna (2005) described the force of mortality (also referred

to a mortality intensity) through affine models and calibrated the models using observed and

projected UK mortality tables. They claimed that affine processes with a deterministic part

which increases exponentially could describe the evolution of force of mortality properly.

Russo et al. (2011) calibrated three different affine stochastic mortality models using term

assurance premiums of three Italian insurance companies, and proposed that such affine

models can be used for pricing mortality-linked securities. Thus, in the same spirit, we

assume that λ(t) evolves as

dλ(t) = (aλ(t)− bλλ(t)) dt+ σλ
√
λ(t)dW2(t), λ(0) = λ0, (2.1)

where aλ(t) is a deterministic function, bλ and σλ are positive constants. We restrict the

mortality model parameters to satisfy the condition 2aλ(t) > σ2
λ, to ensure the strict positivity

of λ(t). The analytical tractability of the affine model allows us to price mortality-linked

securities using the arbitrage-free pricing framework that has been developed for interest-rate

derivatives.

The initial value of the mortality intensity λ0 is calculated according to the deterministic

Gompertz-Makeham law and is given by

λ0 = φ+
1

b
e
t0−m
b , (2.2)

where t0,m, φ and b are constants. As argued in Menoncin (2009), we require that the

expected value of λ(t) equals to the corresponding deterministic Gompertz-Makeham force

of mortality to ensure at any time t, λ(t) has a reasonable value. To achieve this, we require
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that aλ(t) is of the following form

aλ(t) = bλ

(
φ+

(
1

bλb
+ 1

)
1

b
e
t−m
b

)
.

The force of mortality is used as a tool to study the instantaneous survival rate of a

population. If we denote by p(t) the fraction of a population that survives from time 0 to t,

then p(t) measures the cumulative survival rate which coincides with the survival probability.

Since the force of mortality measures the instantaneous rate of mortality, we can write

dp(t)

p(t)
= −λ(t)dt, p(0) = 1.

Given information up to time t ∈ T , the (conditional) expected survival probability from t

to s > t is given by (see Menoncin (2008, Section 2.2))

E
[
p(s)

p(t)

∣∣∣∣ F(t)

]
= E

[
e−

∫ s
t λ(u)du

∣∣∣∣ F(t)

]
.

To discuss the prices of tradable financial risky assets in the market, we first introduce a

risk-neutral pricing measure P̃ by the following Radon-Nikodym derivative

dP̃

dP
= Z(t) = exp

(
−
∫ t

0

Θ(s)′dW (s)− 1

2

∫ t

0

|Θ(s)|2ds

)
.

In the above {Θ(t) | t ∈ T } =
{[
θ1(t), θ2(t), θ3(t)

]′ ∣∣ t ∈ T } is an R3-valued, F-adapted

process such that Z(t) is a martingale and E[Z(t)] = 1. Here, we denote by E[·] the

expectation operator under P. By Girsanov’s theorem,

W̃ (t) = W (t) +

∫ t

0

Θ(s)ds

is a three-dimensional standard Brownian motion under P̃. We use the notation
{
W̃ (t) |

t ∈ T
}

=
{[
W̃1(t), W̃2(t), W̃3(t)

]′ ∣∣ t ∈ T }. The introduction of a risk-neutral measure

also allows us to motivate the idea of market price of risk or risk-premium through Θ(t) in

our financial market framework. Since we use square root processes to model the stochastic

interest rate r(t) and force of mortality λ(t), the Novikov’s condition for measure change is

not necessarily satisfied. It is known that Novikov’s condition is sufficient to guarantee Z(t)

is a martingale under P. However, it is not a necessary condition. Later, we show in Lemma

2.2.1 that Z(t) is a martingale even if Novikov’s condition is not imposed.
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The first financial asset in the market is a representative stock. We suppose that the stock

price process S(t) under P evolves as

dS(t)

S(t)
= (r(t) + θrσ

r
Sr(t) + θSσS) dt+ σrS

√
r(t)dW1(t) + σSdW3(t), S(0) = S0,

where σS, σrS, θr, θS are constants. Here, we have assumed that the market prices of interest

rate risk and stock price risk are θ1(t) = θr
√
r(t) and θ3(t) = θS , respectively. The

instantaneous covariance between the stock price and risk-free interest rate is captured by

σrS
√
r(t). The market price of stock price risk and different volatility coefficients could be

stochastic and take many different forms. However, as we mainly focus on the interest rate

risk and longevity risk rather than investment risk, it is reasonable to suppose that they are

constants.

For the pricing of a zero-coupon bondB(t, TB) which pays one unit of currency at a fixed

maturity time TB, we first introduce a money market account R(t) via

dR(t)

R(t)
= r(t)dt, R(0) = 1.

The risk-neutral pricing formula then gives

B(t, TB) = Ẽ

[
R(t)

R(TB)

∣∣∣∣∣ F(t)

]
= Ẽ

[
e−

∫ TB
t r(u)du

∣∣∣∣ F(t)

]
,

where Ẽ[·] is the expectation operator under the measure P̃. As the interest rate r(t) follows

an affine model, we can solve for the bond price as

B(t, TB) = ef0(t,TB)−f1(t,TB)r(t), (2.3)

where

f0(t, TB) =
2ar
σ2
r

log

(
2ηre

1
2

(b̃r+ηr)(TB−t)

(b̃r + ηr)(eηr(TB−t) − 1) + 2ηr

)
,

f1(t, TB) =
2(eηr(TB−t) − 1)

(b̃r + ηr)(eηr(TB−t) − 1) + 2ηr
,

ηr =

√
b̃2
r + 2σ2

r , b̃r = br + θrσr.

This results can be found in several sources, for example, Brigo & Mercurio (2006, Section

3.2.3), Cuchiero (2006, Section 3.1.2). The dynamics of B(t, TB) under P is given as

dB(t, TB)

B(t, TB)
=
(
r(t) + θr

√
r(t)σB(t, TB)

)
dt+ σB(t, TB)dW1(t),
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where we denote σB(t, TB) = −f1(t, TB)σr
√
r(t).

As argued in Boulier et al. (2001), it is more convenient to use a single bond with a rolling

maturity that can dynamically replicate any bond in the market. To do so, we introduce a

rolling bond B(t) with a constant time to maturity TB by specifying its dynamics as

dB(t)

B(t)
=
(
r(t) + θr

√
r(t)σB(t, t+ TB)

)
dt+ σB(t, t+ TB)dW1(t). (2.4)

The zero-coupon bond B(t, TB) is then replicable using cash and the rolling bond B(t) via

dB(t, TB)

B(t, TB)
=

(
1− σB(t, TB)

σB(t, t+ TB)

)
dR(t)

R(t)
+

σB(t, TB)

σB(t, t+ TB)

dB(t)

B(t)
.

This equation also shows that the rolling bond can be dynamically replicated by using a

self-financing strategy investing in the zero coupon bond and the money market account, and

hence the introduction of the rolling bond via equation (2.4) does not create any arbitrage.

In consequence, the use of rolling bond is equivalent to using a fixed maturity zero-coupon

bond in the market.

The third and final asset in the market is a zero-coupon longevity bond, which is primarily

used to hedge the longevity risk. A longevity bond is a financial security paying, at the

expiration date, an amount equal to the fraction of survivors from time 0 to the maturity

time in a reference population. The reference population can be a large number of similar

individuals, e.g. same age, whose mortality behavior could be described by the process λ(t).

Let TL be the fixed maturity time, the payoff of the zero-coupon longevity bond is p(TL).

Suppose that the market price of longevity risk is θ2(t) = θλ
√
λ(t), then the arbitrage-free

price L(t, TL) of a zero-coupon longevity bond with fixed maturity time TL is given as

L(t, TL) = Ẽ
[
R(t)

R(TL)
p(TL)

∣∣∣∣ F(t)

]
= e−

∫ t
0 λ(u)duẼ

[
e−

∫ TL
t (r(u)+λ(u))du

∣∣∣∣ F(t)

]
.

Due to the affine nature of r(t) and λ(t) and their independence, the longevity bond price can

be expressed in the following form

L(t, TL) =e−
∫ t
0 λ(u)duN(t, TL), (2.5)
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where

N(t, TL) = ef0(t,TL)−f1(t,TL)r(t)+h0(t,TL)−h1(t,TL)λ(t),

h1(t, TL) =
2(eηλ(TL−t) − 1)

(b̃λ + ηλ)(eηλ(TL−t) − 1) + 2ηλ
,

h0(t, TL) = −
∫ TL

t

aλ(u)h1(u, TL)du,

ηλ =

√
b̃2
λ + 2σ2

λ, b̃λ = bλ + θλσλ.

By denoting σrL(t, TL) = −f1(t, TL)σr
√
r(t) and σλL(t, TL) = −h1(t, TL)σλ

√
λ(t), the

evolution of L(t, TL) is then described as

dL(t, TL)

L(t, TL)
=
(
r(t) + θr

√
r(t)σrL(t, TL) + θλ

√
λ(t)σλL(t, TL)

)
dt

+ σrL(t, TL)dW1(t) + σλL(t, TL)dW2(t).

In the same manner as for the zero-coupon bond, we consider a rolling longevity bond

L(t) with a constant time to maturity TL whose price process under P is given as

dL(t)

L(t)
=
(
r(t) + θr

√
r(t)σrL(t, t+ TL) + θλ

√
λ(t)σλL(t, t+ TL)

)
dt (2.6)

+ σrL(t, t+ TL)dW1(t) + σλL(t, t+ TL)dW2(t).

We see that the rolling longevity bond correlates with interest rate r(t) as well as force of

mortality λ(t). In fact, zero-coupon longevity bonds with any fixedmaturity can be replicated

using rolling bond, rolling longevity bond and cash

dL(t, TL)

L(t, TL)
= n0(t)

dR(t)

R(t)
+ nB(t)

dB(t)

B(t)
+ nL(t)

dL(t)

L(t)
,

where

nB(t) =
σrL(t, TL)

σB(t, t+ TB)
− nL(t)

σrL(t, t+ TL)

σB(t, t+ TB)
,

nL(t) =
σλL(t, TL)

σλL(t, t+ TL)
, n0(t) = 1− nB(t)− nL(t).

As before, the latter also shows that the creation of the rolling longevity bond does not

lead to any arbitrage. It is common in the literature in fact to use rolling bonds: Han &

Hung (2012) introduced a rolling indexed bond to hedge the inflation risk for a DC scheme.
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Menoncin (2008) used a rolling longevity bond to transfer an individual’s longevity risk. In

principle, the problems considered in this chapter could also be solved using a fixed term

maturity zero-coupon longevity bond and a fixed term zero-coupon bond. However, the use of

rolling longevity bond and rolling bond simplifies the calculations in Section 2.3 significantly.

Moreover, our specific choices for the market prices of risks θr
√
r(t) and θλ

√
λ(t) maintain

the affine form of our models (see, for example, Duffee (2002)).

Next, we show that theRadon-NikodymderivativeZ(t) is amartingale and the risk-neutral

measure P is well-defined.

Lemma 2.2.1. For any t ∈ T , the stochastic exponential process

Z(t) = exp

(
−
∫ t

0

Θ(s)′dW (s)− 1

2

∫ t

0

|Θ(s)|2ds

)
is a P-martingale and E[Z(t)] = 1.

See Appendix 2.A for the proof.

For any t, TB, TL ∈ T , we describe the risky asset prices in the form of a vector:
dB(t)
B(t)

dL(t)
L(t)

dS(t)
S(t)

 = (r(t)1 +M(t)) dt+ Σ(t)′dW (t), (2.7)

where

M(t) =


θr
√
r(t)σB(t, t+ TB)

θr
√
r(t)σrL(t, t+ TL) + θλ

√
λ(t)σλL(t, t+ TL)

θrσ
r
Sr(t) + θSσS

 ,

Σ(t)′ =


σB(t, t+ TB) 0 0

σrL(t, t+ TL) σλL(t, t+ TL) 0

σrS
√
r(t) 0 σS

 .
For ease of presentation, we also use the notation z(t) = [r(t), λ(t)]′ whose dynamics is

given as

dz(t) = µ(t, z(t))dt+ ξ(t, z(t))′dW (t), z(0) = [r0, λ0]′, (2.8)
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where

µ(t, z(t)) =

 ar − brr(t)

aλ(t)− bλλ(t)

 , ξ(t, z(t))′ =

 σr
√
r(t) 0 0

0 σλ
√
λ(t) 0

 .

2.3 Main results

In this chapter, we assume the scheme members are identical individuals, i.e., same age,

gender, wage, etc. Moreover, we model the members’ mortality behavior using the stochastic

force of mortality λ(t) as given in (2.1). We consider a financial agent who is the manager of

the scheme. The members continuously contribute to the pension scheme during the accumu-

lation phase and delegate the scheme’s management to the agent. That is to say, the manager

is responsible for the investment. In return, the scheme promises a minimum guarantee at

retirement in the form of lifetime annuities to its members. The scheme manager receives a

fraction of the surplus between the scheme’s final wealth and the minimum guarantee as his

one-off remuneration. We follow Merton (1969) and suppose the manager aims to maximize

his expected utility of terminal wealth.

2.3.1 The utility maximization problem

We assume that each surviving member contributes a constant fraction rc of his instantaneous

wage w(t) before retirement. Previous studies, such as Han & Hung (2012) and Guan &

Liang (2014), model the wage (or, contribution) as a stochastic process to study the optimal

asset allocation problem for DC schemes. To simplify our calculations, the instantaneous

wage in this chapter is assumed to be constant, that is, for any t ∈ [0, T ], w(t) = w. Thus,

the contribution c(t) = rcw(t) = rcw = c is also constant. We note that our following

analysis is also applicable when w(t) and c(t) are treated as independent stochastic processes

or deterministic functions. Suppose there are n ≥ 1 members in the scheme at the initial

time of the management. At time t ∈ T , np(t) members have survived. In the case

where a member dies before retirement time, we assume that he stops paying contribution

immediately and his heirs receive nothing. For any t ∈ [0, T ], the scheme manager invests

the amounts αS(t), αB(t) and αL(t) of money in stock, rolling bond and rolling longevity
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bond, respectively. It then follows that the amount of money invested in the money market is

α0(t) = F (t)− αB(t)− αL(t)− αS(t), where F (t) denotes the scheme’s wealth level. The

dynamics of F (t) is given as

dF (t) =
(
r(t)F (t) + cnp(t) + α(t)′M(t)

)
dt+ α(t)′Σ(t)′dW (t), F (0) = F0, (2.9)

where
{
α(t)

∣∣ t ∈ [0, T ]
}

=
{

[αB(t), αL(t), αS(t)]′
∣∣ t ∈ [0, T ]

}
denotes the investment in

risky assets.

At retirement time T , the scheme manager promises that the pension wealth F (T ) must

exceed the lifetime annuities’ price, this acts as minimum guarantee G(T ). Moreover, the

manager’s remuneration will be positive only if F (T )−G(T ) > 0. Such minimum guarantee

was also previously considered in works such as Boulier et al. (2001), Deelstra et al. (2003),

Han & Hung (2012) and Guan & Liang (2014). Here, we extend this work to the case

where the death time is uncertain and the force of mortality is stochastic. To compute the

price of the lifetime annuity, we first need to decide the level of installments that the annuity

delivers. Typically, the wage replacement ratio rw, the percentage of retirement income

to pre-retirement income, is a good estimate of the income needed to maintain the living

standard in retirement. We set the instantaneous installment of the annuity to be π = rww, so

that the lifetime annuity provides sufficient retirement income for subsistence. By denoting

a(T ) as the price of a lifetime annuity at retirement time T , we have

a(T ) =Ẽ
[∫ ∞

T

π
R(T )

R(s)

p(s)

p(T )
ds

∣∣∣∣ F(T )

]
.

Here, we have assumed that the annuity provider models the mortality behavior of members

using λ(t). The minimum guarantee is met in purchasing lifetime annuities for surviving

members at retirement time T . Therefore, its value at T is given as

G(T ) = np(T )a(T ) = nẼ
[∫ ∞

T

π
R(T )

R(s)
p(s)ds

∣∣∣∣ F(T )

]
.

At the terminal time of the scheme management, we suppose the manager receives a fraction

β of the surplus between the fund level and the minimum guarantee, i.e., β
(
F (T )−G(T )

)+

,

as remuneration. Here, β is a positive constant and is less than 1. Deelstra et al. (2003) used

a similar assumption on the manager’s remuneration. We assume that the manager aims to

24



maximize his expected utility of terminal wealth. Thus, for a given investment strategy α,

the manager’s objective function for the utility maximization problem is

J(t, f, z;α) = E
[
U

(
β
(
F (T )−G(T )

)+
) ∣∣∣∣ F(t)

]
, 0 < t ≤ T,

where U : R+ → R+ is a utility function, F (t) = f > 0 and z(t) = z.

Hyperbolic absolute risk aversion (HARA) identifies a class of utility functions which

is most commonly used. Constant relative risk aversion (CRRA), constant absolute risk

aversion (CARA), and quadratic utility are all HARA type utility functions which have been

used frequently in the past. For instance, Gao (2008) and Boulier et al. (2001) used CRRA

utility function to study optimal asset allocation problems for DC schemes. Battocchio &

Menoncin (2004) and A. Cairns (2000a) adopted CARA and quadratic utilities, respectively.

In this chapter, we use CRRA in the form of

U(x) =
x1−γ

1− γ
, (2.10)

where γ > 0 and γ 6= 1. In the case when γ = 1, U(x) = ln x is the log-utility function.

Our choice of CRRA utility function is motivated by

• Pension schemes usually manage a large amount of money. With an increasing or

decreasing relative risk aversion, the fraction of wealth invested in risky assets is

affected by the total level of wealth. However, the CRRA utility function shows

constant relative risk aversion and in conclusion the investment strategy is not affected

by scale. Also, the risk-aversion coefficient γ allows us to investigate the impact of the

manager’s risk aversion on the optimal investment strategy.

• Our optimization problem is analytically tractable when using CRRA utility. For other

types of utility functions, we would lose analytical tractability and the ability to make

precise qualitative statements, even if we were to numerically solve the optimization

problem using our approach.

We formulate the scheme manager’s utility maximization problem as

sup
α∈A

E

[
(β (F (T )−G(T )))1−γ

1− γ

∣∣∣∣∣ F(t)

]
such that F (T ) ≥ G(T ) a.s..
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Since β is a positive constant, the optimization problem is equivalent to

sup
α∈A

E

[
(F (T )−G(T ))1−γ

1− γ

∣∣∣∣∣ F(t)

]
such that F (T ) ≥ G(T ) a.s.. (2.11)

In the above, the setA denotes the set of all admissible strategies which are defined as below.

Definition 2.3.1. A portfolio strategy {α(t) ∈ R3 | t ∈ [0, T ]} is called admissible if α(t) is

progressively measurable with respect to F and E
[∫ T

0
|α(t)|2dt

]
<∞.

In our setting, scheme members continuously contribute to the scheme during the ac-

cumulation phase. The term cnp(t)dt in (2.9) reveals that the wealth process F (t) is not

self-financing. Besides, at the retirement time T , there is a minimum guarantee G(T ) to be

met. This means that the proposed problem (3.12) is not a classical Merton type optimal

investment problem. To solve this non-self-financing constrained problem, we convert it

into a self-financing investment portfolio optimization problem by introducing an auxiliary

surplus process. We then solve the transformed problem using the dynamic programming

principle.

2.3.2 Single investment portfolio optimization problem

Inspired by Boulier et al. (2001), we split the scheme’s wealth into two parts: one part is

the future contributions to be paid by living members and the other part is a self-financing

portfolio. For any t ∈ [0, T ], denoting byD(t) the present value of future contributions until

retirement time T , we can write

D(t) = Ẽ

[∫ T

t

cnp(s)
R(t)

R(s)
ds

∣∣∣∣∣ F(t)

]
. (2.12)

D(t) can be viewed as a coupon-paying bond that pays a continuous coupon at rate cnp(t)

until time T . Thus, D(t) can be replicated by investing in the rolling bond, rolling longevity

bond and money market.

Proposition 2.3.1. For any t ∈ [0, T ], D(t) in (2.12) can be replicated as

dD(t) =
(
r(t)D(t)− cnp(t) + αD(t)′M(t)

)
dt+ αD(t)′Σ(t)′dW (t), (2.13)
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where

αD(t) =


αDB (t)

αDL (t)

0

 =


cn

∫ T
t L(t,s)f1(t,s)ds

f1(t,t+TB)
− f1(t,t+TL)

f1(t,t+TB)

cn
∫ T
t L(t,s)h1(t,s)ds

h1(t,t+TL)

cn
∫ T
t L(t,s)h1(t,s)ds

h1(t,t+TL)

0

 (2.14)

is the investment in risky assets. The holding in the money market is αD0 (t) = D(t)−αDB (t)−

αDL (t).

See Appendix 2.B for the proof.

Our next step is to construct a replicating portfolio for G(T ). At time t ∈ [0, T ], the

present value of G(T ) is given by

G(t) =Ẽ

[
G(T )

R(t)

R(T )

∣∣∣∣∣ F(t)

]
. (2.15)

Similar to replicatingD(t), we show in the following proposition that G(t) can be replicated

by investing in the bond, longevity bond and money market.

Proposition 2.3.2. For any t ∈ [0, T ], G(t) in (2.15) can be replicated as

dG(t) =
(
r(t)G(t) + αG(t)′M(t)

)
dt+ αG(t)′Σ(t)′dW (t) (2.16)

where

αG(t) =


αGB(t)

αGL (t)

0

 =


πn

∫∞
T L(t,s)f1(t,s)ds

f1(t,t+TB)
− f1(t,t+TL)

f1(t,t+TB)

πn
∫∞
T L(t,s)f1(t,s)ds

h1(t,t+TB)

πn
∫∞
T L(t,s)f1(t,s)ds

h1(t,t+TB)

0

 (2.17)

is the investment in risky assets. The holding in the money market is αG0 (t) = G(t)−αGB(t)−

αGL (t).

The proof is similar to Proposition 2.3.1 and is omitted here for the sake of brevity.

Finally, we construct an auxiliary process Y (t) = F (t) + D(t) − G(t). At retirement

time T , from (2.12), we see that D(T ) = 0 and we have Y (T ) = F (T ) − G(T ). That is,

Y (T ) is the surplus of the terminal scheme wealth over the minimum guarantee. From (2.9),

(2.13) and (2.16), we obtain the following equation

dY (t) =dF (t) + dD(t)− dG(t) (2.18)

=
(
r(t)Y (t) + αY (t)′M(t)

)
dt+ αY (t)′Σ(t)′dW (t)
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where

αY (t) = α(t) + αD(t)− αG(t). (2.19)

Thus, our simplified portfolio optimization problem is given as

sup
αY ∈A

E

[
Y (T )1−γ

1− γ

∣∣∣∣∣ F(t)

]
such that Y (T ) ≥ 0 a.s.. (2.20)

Lemma 2.3.1. For any t ∈ [0, T ], if αY (t) ∈ A , then α(t) ∈ A , and the optimization

problems (3.12) and (2.20) are equivalent.

See Appendix 2.C for the proof.

We see that the wealth process (2.18) is self-financing. Once we are able to solve (2.20)

and obtain the unique optimal control αY ?(t), we can use (2.14), (2.17) and (2.19) to obtain

α?(t). We require that Y (0) = F (0) + D(0) − G(0) > 0 and suppose that Y (t) does not

become negative before time T . If Y (t) hits zero, it stays there and no further investment

takes place. Moreover, we assume that the manager is under the supervision of a regulator

and choose the investment strategy as such that Y (T ) = F (T )−G(T ) ≥ 0 almost surely.

2.3.3 The optimal solution

We define the value function of our simplified problem (2.20) as

V (t, y, z) := sup
αY ∈A

E
[
Y (T )1−γ

1− γ

]
,

with terminal condition V (T, y, z) = Y (T )1−γ

1−γ . We assume that V (t, y, z) ∈ C1,2,2,2([0,

T ] × R3
+). Then, by following the usual dynamic programming principle (see, for example,

Pham (2009, Chapter 3)), V satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

0 = Vt(t, y, z) + sup
αY ∈R3

AαY V (t, y, z) (2.21)

where

AαY V =

[
Vy(ry + αY

′
M) + µ′Vz +

1

2
tr(ξ′ξVzz) +

1

2
αY
′
Σ′ΣαY Vyy + αY

′
Σ′ξVyz

]
.

28



Vt, Vy, Vyy, Vz, Vzz and Vyz are the first and second order partial derivatives with respect

to t, y, z. In particular, Vz = [Vr, Vλ]
′, Vyz = [Vyr, Vyλ]

′ and Vzz =
[
[Vrr, Vλr]

′ , [Vrλ, Vλλ]
′].

Solving the first order condition on αY , we obtain the unique investment strategy as

αY
?

= − Vy
Vyy

(Σ′Σ)−1M − 1

Vyy
Σ−1ξVyz. (2.22)

Substituting (2.22) in (2.21), we obtain

0 =Vt + Vyry −
1

2

Vy
2

Vyy
M ′(Σ′Σ)−1M − Vy

Vyy
M ′Σ−1ξVyz + µ′Vz (2.23)

+
1

2
tr(ξ′ξVzz)−

1

2

1

Vyy
Vyz
′ξ′ξVyz.

Once we solve for the value function V (t, y, z) in (2.23), we can obtain the optimal control

αY
?
(t). The following proposition provides the explicit optimal investment strategy for the

transformed problem (2.20).

Proposition 2.3.3. For any t ∈ [0, T ] and risk-aversion parameter

γ > max

{
2σ2

r + σ2
rθ

2
r + 2brθrσr

(br + θrσr)2 + 2σ2
r

,
2bλθλσλ + σ2

λθ
2
λ

(bλ + θλσλ)2

}
(2.24)

under the financial market setting (2.7)–(2.8), the optimal solution to (2.20) is given as

αY
?
(t) =


αYB

?
(t)

αYL
?
(t)

αYS
?
(t)

 =


θSσ

r
S−θrσS−σSσrA1(t,T )

σSσrf1(t,t+TB)
+ f1(t,t+TL)

f1(t,t+TB)
θλ+σλA2(t,T )
σλh1(t,t+TL)

− θλ+σλA2(t,T )
σλh1(t,t+TL)

θS
σS

 Y (t)

γ

where 
A1(t, T ) =

a11a12 exp(−
√

∆1(T−t))−a11a12

a12 exp(−
√

∆1(T−t))−a11
,

∆1 = b2
r + γ−1

γ
(2σ2

r + θ2
rσ

2
r + 2brθrσr) ,

a11,12 = (γ−1)θrσr+brγ±γ
√

∆1

σ2
r

,
A2(t, T ) =

a21a22 exp(−
√

∆2(T−t))−a21a22

a22 exp(−
√

∆2(T−t))−a21
,

∆2 = b2
λ + γ−1

γ
(2bλθλσλ + θ2

λσ
2
λ),

a21,22 = (γ−1)θλσλ+bλγ±γ
√

∆2

σ2
λ

,

A0(t, T ) =

∫ T

t

(
arA1(s, T ) + aλ(s)A2(s, T ) +

1− γ
2γ

θ2
S

)
ds.
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We include the proof in Appendix 2.D.

Next, we show that Y ?(T ) (obtained using αY ?(t)) is always positive and verify the

admissibility of the optimal control αY ?(t).

Remark 2.3.1. For any t ∈ [0, T ], let α̃Y (t) = αY (t)
Y (t)

, we have

dY (t) =
(
r(t) + α̃Y (t)′M(t)

)
Y (t)dt+ α̃Y (t)′Σ(t)′Y (t)dW (t).

According to Proposition 2.3.3, we see that the optimal α̃Y ?(t) is a vector of continuous

(deterministic) functions. Thus, E
[∫ T

0
|α̃Y ?(t)|2dt

]
< +∞, Y ?(t) admits a unique solution

and is bounded over [0, T ]. Thereafter, we have E
[∫ T

0
|αY ?(t)|2dt

]
< +∞ and αY ?(t) ∈ A .

Besides, we have

Y ?(T )

Y (0)
=exp

(∫ T

0

(
r(u) + α̃Y

?

(u)′M(u)− 1

2
α̃Y

?

(u)′Σ(u)′Σ(u)α̃Y
?

(u)
)
du
)

× exp
(∫ T

0

α̃Y
?

(u)′Σ(u)′dW (u)
)
.

From the above proposition, we observe a proportional relationship between αYS
?
(t) and

Y (t) for constant θS , σS and γ. Namely, the optimal stock weight α
Y
S
?
(t)

Y (t)
always stays the same

throughout the investment horizon. This is similar to the classical Merton portfolio problem

where the optimal portfolio weight on the risky asset is constant over time. The convention

is that the constant market price of risk causes no change in the investment behavior. We

also find that the optimal investment in the longevity bond αYL
?
(t) is actually taken from the

investment in the bond αYB
?
(t) proportionally by a factor of− f1(t,t+TL)

f1(t,t+TB)
. From (2.3) and (2.5),

we see that f1(t, t + TB) and f1(t, t + TL) are the duration of the rolling bond and rolling

longevity bond, respectively. Since the duration is always positive, − f1(t,t+TL)
f1(t,t+TB)

is negative.

We conclude that there is a negative relationship between the optimal investments in bond

and longevity bond. Besides, if the maturities of the rolling bond and the rolling longevity

bond are the same (that is, TB = TL), we have f1(t, t + TL) = f1(t, t + TB) and αYL
?
(t)

is fully deduced from αYB
?
(t). For any t < T , h1(t, t + TL) stays constant and A2(t, T )

is negative and increases with t. Thus, it is easy to deduce that the optimal investment

proportion in longevity bond αYL
?
(t)

Y (t)
is decreasing over time. While, the behavior of optimal

proportions invested in bond and money market are not clear. Also, it is clear that the greater

the manager’s risk-aversion, the lower the portfolio weights on the longevity bond and stock.
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Lemma 2.3.1 shows that Problem (3.12) and (2.20) are equivalent. According to (2.14),

(2.17), (2.19) and Proposition 2.3.3, we obtain the solution to the initial problem (3.12) by

straightforward calculations.

Proposition 2.3.4. For any t ∈ [0, T ], under condition (2.24) and the financial market setting

(2.7)–(2.8), the optimal solution to (3.12) is given as

α?B(t) =
θSσ

r
S − θrσS − σSσrA1(t, T )

γσSσrf1(t, t+ TB)
Y (t)−

cn
∫ T
t
L(t, s)f1(t, s)ds

f1(t, t+ TB)

+
πn
∫∞
T
L(t, s)f1(t, s)ds

f1(t, t+ TB)
− f1(t, t+ TL)

f1(t, t+ TB)
α?L(t),

α?L(t) =− θλ + σλA2(t, T )

γσλh1(t, t+ TL)
Y (t)−

cn
∫ T
t
L(t, s)h1(t, s)ds

h1(t, t+ TL)
+
πn
∫∞
T
L(t, s)h1(t, s)ds

h1(t, t+ TL)
,

α?S(t) =
θS
γσS

Y (t), α?0(t) = F (t)− α?B(t)− α?L(t)− α?S(t).

We find that the optimal amount invested in the stock does not depend directly on the

fund’s wealth F (t) but on the process Y (t). Besides, the optimal stock weight α
?
S(t)

F (t)
does not

keep constant any more and depends on the ratio Y (t)
F (t)

. From the drift terms of F (t) and Y (t)

in (2.9) and (2.18), we deduce that F (t) is expected to increase with t faster than Y (t). Thus,

we conclude that the optimal stock weight falls over time. Similar to the result in Proposition

2.3.3, the optimal investments in bond and longevity bond correlate negatively. We can not

easily infer from the solution how the optimal weights in bond and longevity bond change over

time. Section 2.4 shows the results of numerical simulations which allows us to observe the

optimal investment strategy dynamically. It is not straightforward to detect, from the optimal

solution, how the risk-aversion coefficient γ, contribution rate rc and wage replacement ratio

rw affect the optimal strategy. We provide a numerical analysis and comparative statics on

these parameters in the following section.

2.4 Numerical applications

We first provide a base scenario to visualize the optimal proportions invested in risky assets

and money market. Then, sensitivity analyses are provided to study the impact of model

parameters on the optimal investment strategy. In what follows, we denote by wB(t), wL(t),
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wS(t) andw0(t) the investment proportions in rolling bond, rolling longevity bond, stock and

money market, respectively.

2.4.1 The base scenario

The values of the parameters for the base scenario are given in Table 2.1. We do not use real

market data but most of these parameter values are taken fromMenoncin & Regis (2017) and

Han & Hung (2012) and represent a consensus of the current literature. Here, we assume

that there exists a rolling bond and a rolling longevity bond with constant maturity time (in

years) TB = 10 and TL = 10, respectively. As the longevity bond is supposed to be issued

based on the mortality index of an older population, we assume that the market consists of a

rolling longevity bond whose underlying is the survival index of the 40-year-old population.

The longevity risk tends to be largely ignored in very early ages. Hence, we suppose that

the scheme manager considers to add the longevity bond to the investment portfolio after

the scheme members reach the age of 40, that is, the initial age (in years) is t0 = 40. λ0

given in (2.2) is computed by using the parameters given in Table 2.1. The retirement age

is chosen as 65 years old, in other words the retirement time is T = 25 years. θλ is the

parameter of the market price of longevity risk. It not easy to infer upon the value of θλ as

longevity bonds are traded over the counter (OTC) and not through an exchange. In our base

scenario, we use θλ = −0.10. At time 0, the rolling bond offers a risk premium of about

0.01370 and the longevity bond provides a total risk premium of around 0.01372. The stock

offers a total risk premium of around 0.01670. In this setting, the longevity risk premium

is far less than the interest rate and stock risk premia. Later, we provide optimal investment

strategies for different scenarios with different values of θλ. Without loss of generality, we

normalize the size of membership of the fund to n = 1. Pension contribution rates differ

widely among schemes and countries. According to HMRC (2018), in the UK, there is a

limit on the amount of tax-free pension savings that an individual can pay into his pension

account in each tax year. However, there is no cap on the contribution rate. As stated in

DWP (2021), the Department for Work and Pensions requires that the minimum contribution

rate for DC schemes is 8%, which is UK legislation. We first consider rc = 0.15 then give
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a sensitivity analysis on the contribution rate. OECD (2019) shows that the net replacement

rates vary across a large range from around 30% to 90% or more in OECD countries. The

average net replacement rates of an average earner from mandatory schemes is 59%. Since

in the proposed scheme contributions are not returned to dead members, it is natural to set a

replacement ratio that is above average. In our base scenario, we adopt rw = 0.75. We set the

instantaneous wage as w = 15, thus the instantaneous contribution and annuity installment

are c = 2.25 and π = 11.25, respectively. We suppose the initial scheme wealth is F0 = 20

and the manager’s risk aversion coefficient is γ = 2.5.

Table 2.1: Values of parameters in the base scenario

Interest rate Mortality Stock

r0 = 0.0621328 b = 12.9374 σS = 0.14926
ar = 0.0056210 φ = 0.0009944 σrS = −0.0046306
br = 0.0904668 m = 86.4515 θS = 0.1108301
σr = 0.0543625 bλ = 0.5610000
θr = −0.5590635 σλ = 0.0352

We obtain 1000 simulated paths and present the average paths of optimal investment

proportions in the left plot in Figure 2.1. The right plot in Figure 2.1 displays the average path

of Y (t)
F (t)

, G(t)
F (t)

and D(t)
F (t)

. As discussed in Section 2.3.3, we see that the ratio Y (t)
F (t)

and the optimal

stock weight w?S(t) decline over time. The optimal weight in cash is initially negative and is

increasing over time. In the beginning, the short position in the money market reveals that the

scheme manager borrows money and invests in risky assets to obtain risk premia. It implies

that the manager takes an aggressive approach to quickly increase the pension scheme’s

wealth to a high level in the early stage. The reduction in the total proportion invested in

risky assets shows that, when closer to retirement, the manager becomes more conservative

and shifts the scheme’s wealth to safer assets. Throughout the whole management period,

the optimal bond weight is declining. The optimal weight in the longevity bond rises first

and drops slightly in the last few years. Besides, we see that the sum of bond and longevity

bond weights declines over time. Furthermore, the right plot of Figure 2.1 shows that the

ratios of future contributions D(t) and minimum guarantee G(t) to the scheme wealth F (t)

are both decreasing, and D(t)
F (t)

drops faster than G(t)
F (t)

. These observations reveal that, when
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approaching retirement, the need for interest rate hedging becomes lower while the need

to hedge against longevity risk is still significant. Consequently, the manager cuts down

the total proportion of wealth invested in the bond and longevity bond while increasing the

longevity bond’s weight. Moreover, the longevity bond dominates the portfolio in the late

period of management. Generally, our base scenario implies that the longevity bond is an

important element in the investment portfolio and provides an efficient way to hedge against

both interest rate and longevity risks.
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Figure 2.1: Average paths of optimal investment proportions; Y (t)/F (t), G(t)/F (t) and
D(t)/F (t)

2.4.2 Sensitivity analysis

In Section 2.3.3, we give some comments on the impact of model parameters on the optimal

investment strategy. This section provides various scenarios to investigate the impact of

model parameters numerically. We are interested in the following parameters: risk aversion

coefficient (γ), market price of longevity risk parameter (θλ), maturity of rolling longevity

bond (TL), contribution rate (rc) and wage replacement ratio (rw). Other factors such as

the market prices of interest rate risk and stock risk may also affect the optimal investment

strategy sufficiently. Nonetheless, we do not look into those factors as the focus of our study

is on hedging longevity risk.

Risk-aversion

In the context of the CRRA utility function (2.10), γ measures the manager’s relative risk-

aversion. The higher γ, the more risk-averse the scheme’s manager. The four plots in Figure
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2.2 show the average paths of optimal investment proportions with risk-aversion coefficient

γ equal to 2, 3, 4 and 5, respectively. Comparing the plots in Figure 2.1 and 2.2, we

observe that the higher (or lower) the risk-aversion coefficient γ, the higher (or lower) the

investment proportions in bond and cash. Whereas, the investment proportions in longevity

bond and stock decrease with γ. The bond is used to hedge the interest rate risk only while

the longevity bond provides a hedge against interest rate risk as well as longevity risk. A

risk-averse investor tends to avoid relatively higher risk and prefers investments with lower

risk but higher guaranteed returns. Although stock and longevity bond provide higher risk

premiums, a scheme manager with a high risk-aversion coefficient prefers to invest more in

safer assets, i.e., bond and cash. The different strategies in these cases can also be explained

by the optimal solution in Proposition 2.3.4. The optimal investment proportions in bond

and longevity bond are negatively correlated. In particular, if we set TB = TL = 10 we

have − f1(t,t+TL)
f1(t,t+TB)

= −1. This implies that the investment in longevity bond is fully taken

from the investment in the bond. Since the longevity bond weight decreases with γ, the bond

weight increases accordingly. This behavior occurs as the bond is a safer asset compared

to the longevity bond. It is surprising that the optimal bond weight can become negative

in the late period of investment, meanwhile the holding in the money market is positive.

This indicates that the manager chooses to short sell bonds when approaching the retirement

time. Gao (2008) and Han & Hung (2012) also had similar findings. They showed that the

pension portfolio would shift from investments into risky assets to the money market. The

convention is that the bond guarantees a fixed amount of money at maturity. In the beginning,

the weight put on the bond is relatively high and is declining when moving closer to T (the

retirement time). It also implies that the need to hedge interest rate risk becomes lower

when approaching T . The bottom right plot in Figure 2.2 reveals that the longevity bond

suppresses other assets in the late management period even for a highly risk-averse investor.

Moreover, the longevity bond weight rises to around 50% by the end. Further, we find that

the optimal weight for the longevity bond is almost always higher than for the stock, in all

scenarios. Overall, we conclude that, even though highly risk-averse managers invest less

in the longevity bond, the latter is always an important element in the scheme’s investment

portfolio.
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Figure 2.2: Average paths of optimal investment proportions with γ = 2, 3, 4 and 5

Market price of longevity risk

The rolling bond provides an interest rate risk premium of −f1(t, t + TB)σrθrr(t). As the

rolling longevity bond has the same maturity time as the rolling bond, it offers the same

premium on interest rate risk. Besides, the longevity bond provides a longevity risk premium

of −h1(t, t + TL)σλθλλ(t). The stock offers an interest rate risk premium of σrSθrr(t) and

a stock risk premium of θSσS . Clearly, θr and θS affect the optimal strategy. However,

we are more interested in the impact of the longevity risk premium and therefore focus

on the parameter θλ. From (2.6), we learn that the longevity risk premium offered by the

rolling longevity bond increases with −θλ. Figure 2.3 shows the average optimal strategies

for θλ = −0.06, −0.08, −0.12 and −0.14. At initial time, the corresponding longevity risk

premium for these choices are 1.1749×10−5, 1.5684×10−5, 2.3584×10−5 and 2.7549×10−5,

respectively. In all these cases, the longevity risk premium is much smaller than the interest

rate risk and stock risk premia. In general, we observe that the optimal weight for the longevity

bond increases with −θλ while the optimal bond weight decreases with −θλ. The optimal

proportions invested in stock and money market do not change much when θλ changes.

Besides, the higher −θλ the more the longevity bond suppresses other assets. This behavior
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is consistent with conventional thinking that the higher the risk premium the more attractive

the asset is. The top left plot in Figure 2.3 indicates that even in the case where the longevity

risk premium is very low, the longevity bond dominates the portfolio over the last 8 years. It

reveals that the longevity bond is an efficient instrument to hedge the longevity risk. When

θλ = −0.08,−0.12 and −0.14, we observe short positions in the rolling bond in the late

management period. It indicates that the need to hedge against interest rate risk becomes

lower when approaching the retirement time, while, the need to hedge against uncertain

changes in mortality rate is still very significant.
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Figure 2.3: Average paths of optimal investment proportions with θλ = −0.06,−0.08,−0.12
and −0.14

We provide Figure 2.4 to take a closer look at the impact of θλ on the optimal investment

strategies. Again, we find that the higher the longevity risk premium (that is, the lower the

θλ), the higher the portfolio weight for the longevity bond. The interpretation is that with

other parameters unchanged, a lower θλ increases the longevity risk premium but does not

increase the uncertainty in the longevity bond value. Thus, it makes the longevity bond more

attractive for investment. The opposite reaction of bond weight and longevity bond weight

against θλ is explained in the discussion of Proposition 2.3.4. It is not a surprise that the

optimal weight for the stock is barely affected by θλ. The reason can be inferred from the
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optimal solution and the fact that the portfolio’s weight for the stock is θS
σSγ

Y (t)
F (t)

. θS
σSγ

does

not depend on θλ and Y (t)
F (t)

is only slightly affected by θλ. Besides, the weight for cash is

not sensitive to θλ. This is because the changes in bond and longevity bond weights offset

each other, and the total proportion in risky assets is not sensitive to θλ. In summary, we

conclude that the longevity bond is an important element in the pension scheme’s investment

portfolio and hedges the scheme’s longevity risk efficiently. Even when the longevity bond

provides a relatively low longevity risk premium, it is optimal to invest a large proportion of

the scheme’s wealth into the latter, especially during the late management period.
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Figure 2.4: Average paths of optimal investment proportions varying θλ

Maturity of the rolling longevity bond

For the previous numerical scenarios, we assumed that TB = TL = 10 and therefore f1(t, t+

TB) = f1(t, t + TL). Now, we investigate the optimal strategy when TL equals to 5, 15,

20 and 25. We provide Figure 2.5 to look into the impact of TL on the optimal weights for

the risky asset separately. Generally, we observe that the longer the rolling longevity bond’s

maturity, the lower the investment proportions in bond and longevity bond, while more weight

is shifted into cash. The optimal stock weight does not change much when TL increases.

We conclude from Proposition 2.3.4, that at any time t the optimal stock weight depends on
Y (t)
F (t)

. Accordingly, there is numerical evidence that Y (t)
F (t)

is not very sensitive to TL. From

the top right plot in Figure 2.5, we observe that wL shows an obvious decline when TL rises

from 5 to 10. No distinguishable change in wL is observed when TL takes the values 15, 20

and 25. Intuitively, longer maturity times result in more uncertainty in the rolling longevity

bonds. For a risk-averse investor, it is therefore better to have less portfolio weight attached
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to a longevity bond with a longer maturity. Figure 2.6 shows that 1
h1(t,t+TL)

is decreasing

with TL and 1
F (t)

does not change much when TL changes. According to Proposition 2.3.4,

this results in the decline of longevity bond’s weights. At first, 1
h1(t,t+TL)

drops dramatically

when TL increases and later on changes only slightly. Thereafter, we observe that the optimal

longevity bond weight decreases with TL but is not sensitive to longer maturities.
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Figure 2.5: Average paths of optimal investment proportions varying TL
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varying TL

Compared to wL, wB reacts stronger to changes in TL. This is apparent from the optimal

solution as the changes inwL are scaled up by the factor− f1(t,t+TL)
f1(t,t+TB)

. The left plot in Figure 2.6

shows that f1(t,t+TL)
f1(t,t+TB)

increases with TL. Therefore, the optimal weight for the bond decreases

significantly with TL due to decreasing− f1(t,t+TL)
f1(t,t+TB)

wL(t). The optimal investment proportion

in the bond becomes negative during the later years except for the case when TL = 5. This is

because the longevity bond hedges longevity risk as well as interest rate risk. When nearing
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retirement, the need to hedge interest rate risk reduces while the longevity risk is still high.

The negative position in the bond offsets the interest rate risk hedge provided by the longevity

bond. Even though a negative position in the bond can be observed, the sum of the weights

for longevity bond and bond are always positive as shown in the bottom left plot in Figure 2.5.

In addition, we observe that the longer the longevity bond’s maturity, the sooner the longevity

bond dominates the portfolio. Overall, longer maturity times may lessen the attractiveness

of longevity bonds. Even though, longer maturity times might be detrimental to investment

appeal, longevity bond’s always play an important role in the DC scheme’s risk management,

dominating the portfolio during late management period.

Contribution rate

The minimum requirement for contribution rates for DC schemes in the UK is 8%, see DWP

(2013) and OECD (2019), but keeping aside tax consideration there is in principle no upper

limit on contribution rates. In this section we studie the four cases when the contribution rate

is 10%, 20%, 30% and 40% respectively. In Figure 2.7, we show the optimal proportions with

contribution rate rc equals to 0.10, 0.20, 0.30 and 0.40. That is, the instantaneous contribution

c equals to 1.5, 3, 4.5 and 6. In general, we observe that the higher the contribution rate, the

higher the total weight in risky assets while the lower the weight in cash. The intuition behind

this observation is that the higher the contribution rate, the higher the present value of the

scheme’s future income. A high present value of the future income incentives the manager

to increase the total investment into risky assets. Since there is guaranteed future income,

the manager would like to take more risk and earn a higher risk premiums. Nonetheless, the

manager invests less into the longevity bond when the contribution rate is higher. Although

the manager reduces the investment into the longevity bond, it remains an important element

in his investment portfolio.

From Proposition 2.3.4, the optimal stock weight depends on Y (t)
F (t)

. At any time t, we have

Y (t) = F (t) +D(t)−G(t). A higher contribution paid into the scheme results in a greater

present value of future contributions D(t). Besides, the wealth level F (t) and the present

value of theminimumguaranteeG(t) does not depend on the contribution rate. Consequently,
Y (t)
F (t)

and the optimal investment proportion in the stock increase with rc. When closer to
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Figure 2.7: Average paths of optimal investment proportions varying rc

the retirement time, the optimal stock weight is less sensitive to rc. The interpretation is

that the wealth process F (t) increases over time as there is continuous contribution paid into

the scheme. Besides, the scheme receives investment returns. The expected value of future

contributions D(t) decreases over time and eventually reaches zero at T . Therefore, Y (t)
F (t)

drops over time and the impact of rc on optimal stock weight reduces. From the optimal

solution, the optimal investment proportion in the longevity bond at any time t is

w?L(t) =wYL
?
(t)
Y (t)

F (t)
− wDL (t)

D(t)

F (t)
+ wGL (t)

G(t)

F (t)
(2.25)

where

wYL
?
(t) = − θλ + σλA2(t, T )

γσλh1(t, t+ TL)
, wDL (t) =

∫ T
t
L(t, s)h1(t, s)ds

h1(t, t+ TL)
∫ T
t
L(t, s)ds

,

wGL (t) =

∫∞
T
L(t, s)h1(t, s)ds

h1(t, t+ TL)
∫∞
T
L(t, s)ds

.

For a fixed t, it is clear that Y (t) and D(t) increase when rc rises. However, wYL
?
(t) and

wDL (t) do not depend on the contribution rate. It is difficult to see from (2.25) how w?L(t)

changes with rc. From the numerical results, we observe that a higher rc leads to a lower

weight in longevity bond andw?L(t) becomes less sensitive to rc in later periods. We infer that

the second term in (2.25) decreases faster and the first term increases slower when rc rises.

Thus, w?L(t) declines with rc. When approaching T , the movements in the two terms offset

each other gradually. Consequently, insensitivity is observed. Analyzing w?B(t) in the same

way, we find that the optimal bond weight increases with the contribution rate and is less

sensitive to rc in later periods. We also find that, when approaching T , both the proportions

of the wealth invested into risky asset and cash are less sensitive to the contribution rate.
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Generally, our numerical results imply that the longevity bond always dominates other assets

during the late period, the higher the contribution rate the lower its portfolio weight.

Wage replacement ratio

The wage replacement ratio is a good tool when estimating retirement income needs. A high

wage replacement ratio implies that a high fraction of the pre-retirement income is needed to

maintain living standard in retirement. OECD (2019) reveals that the net replacement ratio

varies from 30% to 90% among OECD countries. Accordingly, we set rw equal to 0.30, 0.50,

0.70 and 0.90 to test the impact of wage replacement ratio.
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Figure 2.8: Average paths of optimal investment proportions varying rw

In Figure 2.8, we look into the effect of rw on the optimal weights in bond, longevity bond,

stock and cash separately. It is clear that the higher the wage replacement ratio, the higher the

annuity installments π and the higher the guaranteeG(t). While the wealth process F (t) and

the discounted future contributionsD(t) do not depend on the wage replacement ratio. Thus,
Y (t)
F (t)

= F (t)+D(t)−G(t)
F (t)

declines with rw. From Proposition 2.3.4, we see that the optimal stock

weight increases with Y (t)
F (t)

, thus the optimal stockweight decreases with the wage replacement

ratio. Similar to the analyses in Section 2.4.2, it is not clear from the optimal solution how

the weights in bond, longevity bond and cash react when the wage replacement ratio changes.

Our numerical results show that the optimal weights in bond and cash are less responsive

to changes in the wage replacement ratio. It is optimal to increase the fraction of wealth

invested into the longevity bond when the wage replacement ratio is high. Intuitively, a high

wage replacement ratio implies that the members require high annuity installments (or, the

minimum guarantee) and the scheme is exposed to greater longevity risk. As a consequence,
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the scheme manager invests a large proportion of the scheme’s wealth into the longevity bond

to hedge the longevity risk.

2.5 Conclusion

We studied the optimal investment problem underlying the management of a DC pension

scheme in a framework where both interest rate risk and longevity risk are considered. Our

theoretical results and subsequent numerical studies showed evidence that the longevity bond

plays an important role in DC scheme’s risk management. We observed that the more

risk-averse the scheme manager, the lower the proportion of investment into the longevity

bond. However, even for a highly risk-averse manager, we showed that it is still optimal

to invest a significant proportion of the scheme’s wealth into the longevity bond. Also,

compared with the investment ratio’s of the other risky assets, the investment proportion

for the longevity bond is shown to be relatively high even in the case where the longevity

risk premium is relatively low. Moreover, we observed that longer maturity times could

reduce attractiveness of longevity bonds, however even longevity bonds with longer maturity

dominate the other assets in the investment portfolio during the later periods of the scheme.

Although the manager reduces investment into longevity bonds when the contribution rate is

high, the longevity bond remains an important element of the investment portfolio. Further,

we observed that high wage replacement ratios incentivize the scheme manager to invest

a higher proportion of wealth into the longevity bond. We conclude that longevity bonds

play an important role for DC pension schemes, in particular at times when mortality risk is

increased. They are very attractive to pension schemes and there is genuine potential in the

development of mortality-linked derivatives and exchanges for longevity bonds.

Further research: in this work, we have assumed that the longevity bond’s reference

population and the scheme members have the same mortality behavior. However, population

basis risk arises when there is a mismatch between the hedging instrument’s underlying

mortality experience and the hedging population’s mortality behavior. We investigate the

impact of longevity basis risk on the asset allocation and longevity risk hedge in Chapter 3.
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Appendices

Appendix 2.A: Proof of Lemma 2.2.1

Proof. First, we show that there exists h0 > 0 such that for any ν ∈ T the statement holds

for t ∈ [ν, ν + h0]. For t ∈ [ν, ν + h0], suppose
√
C0 = (θr, θλ, θS)+, denote by

ϕ1(t) = e−(C0+ 1
2
σ2
r)(t−ν), ϕ2(t) = e−(C0+ 1

2
σ2
λ)(t−ν), ϕ3(t) = e−C0(t−ν),

and let

Φ1(t) = θ2
r + ϕ′1(t)− brϕ1(t) +

1

2
ϕ2

1(t)σ2
r ,

Φ2(t) = θ2
λ + ϕ′2(t)− bλϕ2(t) +

1

2
ϕ2

2(t)σ2
r ,

Φ3(t) = ϕ′3(t).

Then,

Φ1(t) ≤ C0 −
(
C0 +

1

2
σ2
r

)
ϕ1(t)− brϕ1(t) +

1

2
σ2
rϕ

2
1(t),

Φ2(t) ≤ C0 −
(
C0 +

1

2
σ2
λ

)
ϕ2(t)− bλϕ2(t) +

1

2
σ2
λϕ

2
2(t),

Φ3(t) ≤ −C0ϕ3(t).

As t → ν, the right-hand sides of the above inequalities go to −br < 0, −bλ < 0 and

−C0 < 0, respectively. Thus, for all t ∈ [ν, ν + h0], there exists h0 > 0 such that Φ1(t) < 0,

Φ2(t) < 0 and Φ3(t) < 0.

Next, denote by

Γ(t) = exp

{∫ t

ν

(θ2
rr(u) + θ2

λλ(u) + θ2
S)du+ Φ1(t)r(t) + Φ2(t)λ(t) + Φ3(t)

}
.

Applying Itô’s formula, we have

dΓ(s)

Γ(s)
=arϕ1(s)ds+ aλ(s)ϕ1(s)ds+ Φ1(s)r(s)ds+ Φ2(s)λ(s)ds+ Φ3(s)ds

+ σr
√
r(s)ϕ1(s)dW1(s) + σλ

√
λ(s)ϕ2(s)dW2(s).
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Then, we obtain

E[Γ(t) | F(ν)] =E

[
exp
{∫ t

ν

(
arϕ1(s) + aλ(s)ϕ1(s) + Φ1(s)r(s) + Φ2(s)λ(s) + Φ3(s)

)
ds

− 1

2

∫ t

ν

(
σ2
rr(s)ϕ

2
1(s) + σ2

λλ(s)ϕ2
2(s)

)
ds+

∫ t

ν

σr
√
r(s)ϕ1(s)dW1(s)

+

∫ t

ν

σλ
√
λ(s)ϕ2(s)dW2(s)

} ∣∣∣∣ F(ν)

]

≤E
[
exp
{∫ t

ν

(
arϕ1(s) + aλ(s)ϕ1(s)

)
ds
} ∣∣∣∣ F(ν)

]
<∞.

Therefore, for t ∈ [ν, ν + h0], the Novikov condition

E
[
exp

{∫ t

ν

(θ2
rr(u) + θ2

λλ(u) + θ2
S)du

} ∣∣∣∣ F(ν)

]
≤ E[Γ(t) | F(ν)] <∞

is satisfied and

Z(t)

Z(ν)
= exp

(
−
∫ t

ν

Θ(s)′dW (s)− 1

2

∫ t

ν

|Θ(s)|2ds

)
is a martingale.

Next, consider a partition 0 = t0 < t1 < · · · < ti < · · · < tN = t ∈ T , such that

supi |ti+1 − ti| < h0. Then, for s ∈ [ti, ti+1], Z(s)
Z(ti)

is a martingale and E[Z(ti+1)/Z(ti) |

F(ti)] = 1. Hence,

E[Z(t)] = E

[
N−1∏
i=0

Z(ti+1)

Z(ti)

]
= E

[
Z(t1)

Z(t0)

Z(t2)

Z(t1)
· · ·E

[ Z(tN)

Z(tN−1)

∣∣∣F(tN−1)
]]

= 1.

Thus, Z(t) is a martingale and E[Z(t)] = 1. See also Shirakawa (2002, Theorem 3.2)).

Appendix 2.B: Proof of Proposition 2.3.1

Proof. At ant time t ∈ [0, T ], by interchanging the order of integration, we can rewrite (2.12)

as

D(t) =

∫ T

t

cne−
∫ t
0 λ(u)duẼ

[
e−

∫ s
t λ(u)due−

∫ s
t r(u)du

∣∣∣∣∣ F(t)

]
ds = cn

∫ T

t

L(t, s)ds.

From Leibniz’ integral rule, we get

dD(t)

dt
= cn

(
0− L(t, t) +

∫ T

t

dL(t, s)

dt
ds

)
.
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Then, we obtain

dD(t) =− cnp(t)dt+ cn

∫ T

t

L(t, s)
dL(t, s)

L(t, s)
ds (2.26)

=− cnp(t)dt+ r(t)D(t)dt+ cn

∫ T

t

L(t, s)σrL(t, s)ds
(

dW1(t) + θr
√
r(t)dt

)
+ cn

∫ T

t

L(t, s)σλL(t, s)ds
(

dW2(t) + θλ
√
λ(t)dt

)
.

Comparing the coefficients in (2.4) and (2.26), we obtain the holdings in rolling longevity

bond, rolling bond and money market:

αDL (t) =
cn
∫ T
t
L(t, s)σλL(t, s)ds

σλL(t, t+ TL)
=
cn
∫ T
t
L(t, s)h1(t, s)ds

h1(t, t+ TL)
,

αDB (t) =
cn
∫ T
t
L(t, s)σrL(t, s)ds− αDL (t)σrL(t, t+ TL)

σrL(t, t+ TB)

=
cn
∫ T
t
L(t, s)f1(t, s)ds

f1(t, t+ TB)
− αDL (t)

f1(t, t+ TL)

f1(t, t+ TB)
,

αD0 (t) = D(t)− αDB (t)− αDL (t).

Appendix 2.C: Proof of Lemma 2.3.1

Proof. It is clear from (2.19) that we need to verify the admissibility condition for the deter-

ministic functions αD(t) and αG(t).Now for any fixed t ∈ [0, T ] and any s ∈ [T,∞), f1(t, s),

h1(t, s) and L(t, s) are continuous functions. It is easy to see that E
[∫ T

0
|αD(t)|2dt

]
< +∞.

Since r(t) > 0, λ(t) > 0, f1(t, s) ≥ 0, h1(t, s) ≥ 0 and h0(t, s) ≤ 0, we have

L(t, s) ≤ ef0(t,s) =

(
2ηre

1
2

(b̃r+ηr)(s−t)

(b̃r + ηr)eηr(s−t) + (ηr − b̃r)

) 2ar
σ2
r

.

Let

f̃(t, s) =

(
2ηre

1
2

(b̃r+ηr)(s−t)

(b̃r + ηr)eηr(s−t)

) 2ar
σ2
r

=

(
2ηre

− 1
2

(b̃r−ηr)t

b̃r + ηr

) 2ar
σ2
r

e
ar(b̃r−ηr)

σ2
r

s
,

we have

f̃(t, s) > ef0(t,s) ≥ L(t, s) > 0 on [T,∞).
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Given ηr > 0, b̃r > 0, b̃r − ηr < 0 and 2ar
σ2
r
> 1, it is easy to see that

∫∞
T
f̃(t, s)ds is a

constant. Moreover,
∫∞
T
L(t, s)ds is convergent. Since f1(t, s) is a monotonically increasing

function and is bounded on [T,∞), Abel’s test shows that
∫∞
T
f1(t, s)L(t, s)ds is convergent.

Similarly,
∫∞
T
h1(t, s)L(t, s)ds also converges. Thus, E

[∫ T
0
|αG(t)|2dt

]
< +∞.

Therefore, if E
[∫ T

0
|αY (t)|2dt

]
< +∞, then E

[∫ T
0
|α(t)|2dt

]
< +∞. This means

that if αY (t) ∈ A , then α(t) ∈ A . We have D(T ) = 0, thus if Y (T ) ≥ 0 a.s., then

F (T ) − G(T ) ≥ 0 a.s.. Furthermore, since F (t) = Y (t) − D(t) + G(t) and (2.19) holds,

αY
?
(t) leads to the optimal strategy α?(t) which concludes the argument.

Appendix 2.D: Proof of Proposition 2.3.3

Proof. For any t ∈ [0, T ], let g(t, z) be a function of t and z(t). We make a sophisticated

guess that the solution of the second order non-linear partial differential equation (2.23) is of

the following form

V (t, y, z) =
y1−γ

1− γ
g(t, z), (2.27)

with terminal condition g(T, z) = 1. Substituting (2.27) in (2.23) leads to

0 =gt + (1− γ)rg +
1− γ

2γ
M ′(Σ′Σ)−1Mg +

1− γ
γ

M ′Σ−1ξgz + µ′gz (2.28)

+
1

2
tr(ξ′ξgzz) +

1− γ
2γg

gz
′ξ′ξgz.

We further guess that g(t, z) is of the following form

g(t, z) = eA0(t,T )+A(t,T )z(t) = eA0(t,T )+A1(t,T )r(t)+A2(t,T )λ(t) (2.29)

with terminal conditionsA0(T, T ) = 0,A1(T, T ) = 0 andA2(T, T ) = 0. Substituting (2.29)

in (2.28), we have

0 = (A′0 + A′1r + A′2λ) + (1− γ)r +
1− γ

2γ

(
θ2
rr + θ2

λλ+ θ2
S

)
+ (ar − brr)A1

+
1− γ
γ

(θrσrrA1 + θλσλλA2) + (aλ − bλλ)A2 +
1

2γ

(
σ2
rrA

2
1 + σ2

λλA
2
2

)
.
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By collecting the r(t) and λ(t) terms above, we obtain the following three ODEs:

0 = A′1(s, T ) +
(1− γ)(2γ + θ2

r)

2γ
+

(1− γ)θrσr − brγ
γ

A1(s, T ) +
σ2
r

2γ
A2

1(s, T ),

0 = A′2(s, T ) +
(1− γ)θ2

λ

2γ
+

(1− γ)θλσλ − bλγ
γ

A2(s, T ) +
σ2
λ

2γ
A2(s, T )2,

0 = A′0(s, T ) +
1− γ

2γ
θ2
S + arA1(s, T ) + aλ(s)A2.

Under the conditions ∆1 > 0 and ∆2 > 0, the solutions A0(t, T ), A1(t, T ) and A2(t, T ) are

given in Proposition 2.3.3. The first order condition (2.22) then becomes

αY
?

=
1

γ
(Σ′Σ)−1My +

1

γ
Σ−1ξAy

=


σλLσSθr

√
r−σrLσSθλ

√
λ−σλLσ

r
SθS
√
r

σBσSσ
λ
L

+ σr
√
r

σB
A1 −

σrLσλ
√
λ

σBσ
λ
L
A2

θλ
√
λ

σλL
+ σλ

√
λ

σλL
A2

θS
σS

 yγ .
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Chapter 3

Sharing of longevity basis risk in pension
schemeswith income-drawdownguarantees

3.1 Introduction

Pension schemes are exposed to a wide range of risks such as investment risk, interest rate

risk, inflation risk and longevity risk. Among these, longevity risk is becoming a significant

challenge to pension schemes. Longevity risk is the risk that the actual life expectancy

may be higher than anticipated. It is a positive trend for society that people’s average life

expectancy is increasing over the last decades. However, pension schemes are suffering from

losses caused by the unexpected increasing benefit outgo accompanied by the longevity trend.

Cocco &Gomes (2012) shows that the average life expectancy of 65-year-old US (UK) males

increases by 1.2 (1.5) years per decade. As a consequence, a defined benefit scheme (DB

scheme) for those populations would have needed 29% more wealth in 2007 than in 1970.

Instead of a classical DB or DC scheme, this chapter considers a pension scheme which

provides an income-drawdown option to its members in the decumulation phase.1 The

decumulation phase refers to the period after the retirement of pension scheme members.

The drawdown option gives the member the right to withdraw money periodically from the

scheme until death time, while keeping the remaining amount in the pension scheme. The

management of the scheme starts from the member’s retirement time and ends until the the

member passes away. Thus, the investment period can last for decades. Due to the long

investment horizon, the scheme may face significant interest rate risk and inflation risk.

1The pension scheme considered in this chapter is similar to a classical tontine pension plan.
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However, the main focus of this chapter is on hedging the longevity risk. We assume the

risk-free interest rate to be constant and do not consider inflation risk. In other words, we only

consider investment risk and longevity risk. The scheme manager invests in a representative

stock to gain investment returns, and he is exposed to investment risk. The length of the

decumulation period is increasing due to the member’s growing life expectancy. One way to

reduce the pension scheme’s unexpected loss caused by its exposure to longevity risk is to

gain a better understanding of the future mortality evolution. Another way is to seek some

financial instruments to transfer the longevity risk to the financial market.

The force of mortality, which represents the instantaneous rate of mortality at a certain

time, is useful when studying mortality behavior. The literature on the stochastic force of

mortality models is rich. In the papers of, for example, Lee & Carter (1992), A. J. Cairns

et al. (2006) and Renshaw & Haberman (2006), the authors modeled the stochastic force

of mortality in discrete-time settings. In a continuous-time framework, Luciano & Vigna

(2005) modeled the force of mortality by affine processes and calibrated the models to the

observed and projected UK mortality tables. They claimed that the affine process with a

deterministic part that increases exponentially could describe the force of mortality properly.

Affine mortality models are also used in Menoncin (2009), Blackburn & Sherris (2013),

Gudkov et al. (2019) and Xu et al. (2020). In this chapter, we apply analog Ornstein-

Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes to model the force of mortality of

certain populations.

The market for longevity risk transfers has been developing, and mortality-linked finan-

cial instruments have been proposed in the literature. Blake & Burrows (2001) introduced a

survivor bond which provides coupon payments based on the number of survivors in a cho-

sen reference population. Under a continuous-time stochastic force of mortality framework,

Menoncin (2008) studied the optimal consumption and investment strategy for an individual

investor using the longevity bond to hedge the investor’s longevity risk. He argued that the

longevity bond plays a crucial role in the individual’s longevity risk management. Other

papers that used the longevity bond include, for instance, De Kort & Vellekoop (2017),

Menoncin & Regis (2017) and Shen & Sherris (2018). On the one hand, longevity deriva-

tives may attract capital market investors since they provide diversification benefits. On
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the other hand, investors may require standardized products such as index-based longevity

derivatives. The reason is that longevity risk hedgers are likely to have more information

on the mortality experience of the hedging population than capital market investors, which

could result in information asymmetry. However, the population basis risk, which refers to the

mismatch between the hedging instrument’s underlying mortality experience and the hedging

population’s mortality behavior, arises when an index-based longevity derivative is used for

hedging. Besides, the presence of the population basis risk may have a detrimental impact

on the hedging effectiveness of the instrument. See Coughlan et al. (2011), A. J. Cairns et

al. (2014), De Rosa et al. (2017). To deal with the longevity basis risk, Wong et al. (2014)

applied the co-integration technique to study the mean-variance hedging of longevity risk for

an insurance company with a longevity bond. They suggested that co-integration is vital in

longevity risk management. In this chapter, we introduce a rolling zero-coupon longevity

bond to hedge the scheme member’s longevity exposure. We first consider the case where

the reference population of the longevity bond coincides with the scheme members. Then,

we assume that the scheme members are a sub-population of the reference population. In

this sub-population case, the force of mortality of the longevity bond reference population

correlates imperfectly with the pension members’ force of mortality.

Within a continuous-time framework, this chapter aims to determine the optimal invest-

ment and benefit withdrawal strategy in a pension scheme that provides an income-drawdown

policy in the decumulation phase. After retirement, the member continuously withdraws

money from the pension scheme until death. Upon death, a deterministic proportion of the

member’s pension account balance is given to the manager as compensation. By incorpo-

rating a risk-sharing rule, the manager considers both the scheme member’s benefit and his

own profit. The problem is naturally formulated as a stochastic optimal control problem. In

the literature, the stochastic control problems in pension schemes (or problems for individual

retirees) are normally based on two broad optimization structures. One type of optimization

problem uses Mean-Variance criteria. See Gerrard et al. (2012), He & Liang (2013a), Vigna

(2014), He&Liang (2015) andWong et al. (2017). The other type of optimal control problem

maximizes the expected utility. See Gao (2008), Menoncin (2008), Zhang & Ewald (2010),

Han & Hung (2012), Z. Liang & Ma (2015) and Shen & Sherris (2018). In this chapter, we
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suppose that the objective is to maximize both the member’s utility from benefit withdrawals

and the manager’s utility from compensation.

By applying the dynamic programming principle, we first solve the optimization problem

under general assumptions. Then, we derive explicit solutions for the single- and sub-

population cases. Numerical studies on single-population and sub-population OU models

are conducted to investigate the optimal portfolio strategy and optimal benefit withdrawal rate

dynamically. Comparative studies are provided to analyze the performance of the longevity

risk hedge. We also implement a sensitivity analysis to look into the impact of the market

price of risk and the risk-sharing rule parameter. Our results show that with the absence

of longevity basis risk, the longevity bond provides an efficient longevity risk hedge when

the membership shows a longevity trend. When the membership is a sub-population of the

longevity bond reference population, the presence of the longevity basis risk may weaken

the longevity bond’s hedging performance. However, it still provides a way to hedge the

longevity risk and offers a risk premium. We also establish that an equal-risk-sharing rule

is beneficial to both the member and the manager in the long run. This chapter contributes

to the literature by studying a stochastic optimal control problem for pension schemes in

the presence of longevity risk and longevity basis risk. Our optimal control problem also

incorporates a risk-sharing rule parameter which defines the agreement on how to share the

risk between the members and the manager such that both parties benefit in the long run.

The rest of this chapter is organized as follows. Section 3.2 introduces the mathematical

framework of the problem and derives the optimal solution in the general case. Explicit

solutions under single-population and sub-population models are given in Section 3.3. In

Section 3.4, numerical simulations are carried out to investigate the optimal portfolio strategy

and benefit withdrawal. A comparison and sensitivity analysis is conducted to discuss the

role of the longevity bond and the impact of model parameters on the optimal solutions.

Section 3.5 concludes this chapter.
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3.2 Mathematical Framework

There is a rich literature on optimal control problems for pension schemes with deterministic

mortality behavior of the populations. However, given the fluctuations in the mortality

behavior over time, it is more practical to use stochastic mortality rates. In Section 3.2.1, we

model the forces of mortality using continuous-time stochastic processes. Then, in Section

3.2.2, we introduce risky assets that define the financial market, including a mortality-linked

security, i.e., a zero-coupon longevity bond, and a stock. Section 3.2.3 studies the individual

member’s wealth process and describes the optimization problem. The general optimal

solution is derived by applying the dynamic programming principle.

3.2.1 The stochastic force of mortality

We consider an infinite time horizon T = [0,∞) where time 0 represents the retirement

time for all populations. Let {W (t) | t ∈ T } = {(W1(t), ...,Wn(t),WS(t))′ | t ∈ T } denote

an (n + 1)-dimensional standard Brownian motion on a complete filtered probability space

(Ω,F , {F(t)}t≥0,P). Here, n denotes the number of populations andP denotes the physical

measure where we observe the longevity behaviors of the populations, and the financial

market.

For i = 1, . . . n, let λi(t) denote the force of mortality (also called mortality intensity)

of the i-th population at time t. For notational simplicity, we denote by {λ(t) | t ∈ T } =

{(λ1(t), ..., λn(t))′ | t ∈ T }, the vector of forces of mortalities and assume that it evolves as

dλ(t) = B(t, λ)dt+ Σ(t, λ)′dW (t), (3.1)

where

B(t, λ) =


κ1(t, λ)

...

κn(t, λ)

 , Σ(t, λ)′ =


σ11(t, λ1) · · · σ1n(t, λn) 0

... . . . ... ...

σn1(t, λ1) · · · σnn(t, λn) 0

 .
For any i, j = 1, . . . , n, κi(t, λ) and σij(t, λj) are assumed to be continuous functions. In

Section 3.3, we will specify the affine class models we use for λ(t) by defining B(t, λ) and

Σ(t, λ)′.
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We can use the force of mortality to study the instantaneous survival rate of a population.

Denote by pi(t) the fraction of the ith population that survives from time 0 to t, it measures

the cumulative survival rate which coincides with the survival probability for a member of

population i. pi(t) and λi(t) are related through the following relation:

dpi(t)

pi(t)
= −λi(t)dt, pi(0) = 1.

Given alive at time t, the probability for a member of population i to be still alive at time s is

given by

Et
[
pi(s)

pi(t)

]
= Et

[
e−

∫ s
t λi(u)du

]
.

3.2.2 The financial market

We consider a frictionless financial market consisting of a stock and a rolling zero-coupon

longevity bond. The money market account is denoted by R(t),

dR(t)

R(t)
= rdt, R(0) = 1,

where r denotes the constant risk-free interest rate. In this chapter we consider a constant

risk-free rate of interest as our focus is to understand the impact of longevity and investment

risk in a pension scheme. Our analysis can also be performed in the presence of a stochastic

interest rate.

The price of a financial derivative, under a risk-neutral pricing measure Q, is the dis-

counted expected value of its future payoff. We thus introduce an equivalent risk-neutral

probability measure Q by the following Radon-Nikodym derivative

dQ

dP
= Z(T ) = exp

(
−
∫ T

0

θ(t, λ)′dW (t)− 1

2

∫ T

0

‖θ(t, λ)‖2dt

)
,

where {θ(t, λ) | t ∈ T } = {(θ1(t, λ1), · · · , θn(t, λn), θS)′ | t ∈ T } is an Rn-valued,

F-adapted process such that Z(t) is a martingale and E[Z] = 1. θ(t, λ) is called the

vector of market prices of risks and measures the additional amount of investment re-

turn when risk increases by one unit. By the Girsanov’s theorem, {WQ(t) | t ∈ T } =

{(WQ
1 (t), ...,WQ

n (t),WQ
S (t))′ | t ∈ T } is an (n+ 1)-dimensional standard Brownian motion
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under Q such that

WQ(t) = W (t) +

∫ t

0

θ(s, λ)ds. (3.2)

The stock price process {S(t) | t ∈ T } is given as

dS(t)

S(t)
= (r + σSθS) dt+ σSdWS(t), S(0) = S0,

where σs denotes the constant stock price volatility. The risk premium of the stock is θSσS .

In the literature, several types of mortality-linked securities are proposed to hedge the

longevity risk. The values of these securities depend on the mortality index for some given

populations: the higher the survival rate, the more valuable the securities. We suppose

there is a zero-coupon longevity bond traded on the financial market, i.e., a financial security

paying, at the expiration date T , a face amount which is equal to the fraction of survivors

from time 0 to T within a reference population. There may be multiple longevity bonds based

on different reference populations in the market. However, as an illustration of the use of

longevity bond, we only consider one longevity bond in this chapter.

Let the ith population be the reference population of the zero-coupon longevity bond

which pays pi(T ) at maturity. The arbitrage-free price of the longevity bond at time t is given

as

L(t, T ) = EQt
[
R(T )

R(t)
pi(T )

]
= EQt

[
e−r(T−t)−

∫ T
0 λi(u)du

]
,

where EQt [·] is the conditional expectation operator under the probability measure Q. Using

(3.2), the dynamics of λ(t) under Q is given as:

dλ(t) =
(
B(t, λ)− Σ(t, λ)′θ(t, λ)

)
dt+ Σ(t, λ)′dWQ(t).

Let h(t, T, λi) = EQt [e−
∫ T
t λi(u)du] and D(t) = e−

∫ t
0 λi(u)du, we note that D(t)h(t, s, λi) is a

martingale under Q. Applying Itô’s formula and setting the dt term equal to zero, we obtain

λi(t)h(t, s, λi) =ht(t, s, λi) + hλi(t, s, λi)
(
B(t, λ)− Σ(t, λ)′θ(t, λ)

)
(3.3)

+
1

2
tr (Σ′(t, λ)Σ(t, λ)hλiλi(t, s, λi)) ,

where we denote the corresponding partial derivatives of h(t, s, λi) as ht(t, s, λi), hλi(t, s, λi)

and hλiλi(t, s, λi).
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Using (3.2) and (3.3) and applying Itô’s formula to L(t, T ) = e−r(T−t)D(t)h(t, T, λi)

gives

dL(t, T )

L(t, T )
=
(
r + σL(t, T )θ(t, λ)

)
dt+ σL(t, T )dW (t),

where σL(t, T ) =
e−r(T−t)D(t)hλi (t,T,λi)Σ(t,λ)′

L(t,T )
.

By taking inspiration from the arguments in Boulier et al. (2001) on rolling zero-coupon

bonds, we introduce a rolling zero-coupon longevity bond L(t) (with a little abuse of notation)

with constant time to maturity T . The use of a rolling zero-coupon longevity bond in our

set-up simplifies the calculations. The dynamics of L(t) under P is given as

dL(t)

L(t)
=
(
r + σL(t, t+ T )θ(t, λ)

)
dt+ σL(t, t+ T )dW (t).

From the above, we can see thatL(t) provides a longevity risk premium of σL(t, t+T )θ(t, λ).

Any zero-coupon longevity bondL(t, T ) can be replicated by using the rolling longevity bond

L(t) and cash. The following equation shows the relationship between L(t, T ) and L(t)

dL(t, T )

L(t, T )
=

(
1− σL(t, T )

σL(t, t+ T )

)
dR(t)

R(t)
+

σL(t, T )

σL(t, t+ T )

dL(t)

L(t)
.

The latter also shows that the introduction of the rolling bond does not change the market.

The original zero-coupon longevity bond can be recreated from a self-financing trading

strategy that involves the rolling bond and vice versa the rolling bond can be created from a

self-financing trading strategy that involves the original zero-coupon longevity bond, which

means the market remains arbitrage-free.

3.2.3 The optimization problem

In this chapter, we study the optimal benefit withdrawal rate and investment strategy in the

decumulation phase for a pension scheme that provides an income-drawdown option. The

option allows the scheme member to withdraw money periodically from his pension account

until death. While, the balance of the accumulated pension is invested in the financial market

to gain investment returns. We suppose that the member does not have a bequest motive.

Upon death, a fraction π ∈ (0, 1] of the member’s pension balance is delivered to the scheme
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manager as compensation. 2 While the remaining fraction 1 − π of the balance stays in

the scheme’s fund pool. Suppose the j-th population represents the scheme members, then

we use λj(t) to describe the mortality behavior of a representative scheme member. Let

Y (t) denote the member’s accumulated pension and β(t) denote the amount of the member’s

benefit withdrawal. In addition, αS(t), αL(t) and α0(t) denote the investments in stock,

rolling longevity bond and money market, respectively.

To study the dynamics of the wealth process Y (t), we employ a similar method as used

in He & Liang (2013a) and He & Liang (2013b) by first looking at the discrete-time changes

in Y (t). For any t ∈ T and small positive number ∆, let µ(t, t + ∆) denote the rate of

investment return. Then, we have

µ(t, t+ ∆)Y (t) =
S(t+ ∆)− S(t)

S(t)
αS(t) +

L(t+ ∆)− L(t)

L(t)
αL(t)

+
R(t+ ∆)−R(t)

R(t)
α0(t).

Similar to He & Liang (2013a), the change of the individual member’s pension level Y (t)

in the time interval (t, t + ∆) is affected by three factors: the investment return, the benefit

withdrawal and the survival credit. Hence, we have

Y (t+ ∆) =
[
Y (t) + µ(t, t+ ∆)Y (t)− β(t)∆− q(t, t+ ∆)πY (t)

]
(3.4)

× 1

1− q(t, t+ ∆)
,

where q(t, t + ∆) is the probability that the scheme member who is alive at time t will die

in the following ∆ time period. The last coefficient in (3.4) means that the total fund assets,

at time t + ∆, will be equally distributed into each surviving member’s pension account. In

other words, the surviving member receives a survival credit.

Taylor series approximation gives

q(t, t+ ∆) = 1− pj(t+ ∆)

pj(t)
= 1− e−

∫ t+∆
t λj(u)du = λj(t)∆ + o(∆),

1

1− q(t, t+ ∆)
= e

∫ t+∆
t λj(u)du = 1 + λj(t)∆ + o(∆), as ∆→ 0.

Moreover, it is easy to see that

q(t, t+ ∆)∆ = o(∆), µ(t, t+ ∆)∆ = o(∆), ∆2 = o(∆),

2This is similar to Yaari (1964) and Yaari (1965) and not uncommon today, e.g. reverse mortgages.
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as ∆→ 0. Thereafter, we have

Y (t+ ∆) = Y (t) + µ(t, t+ ∆)Y (t)− β(t)∆ + (1− π)λj(t)Y (t)∆ + o(∆) (3.5)

Next, we deduce the continuous version of the dynamics of Y (t). Taking ∆→ 0, we have

µ(t, t+ ∆)Y (t)→dS(t)

S(t)
αS(t) +

dL(t)

L(t)
αL(t) +

dR(t)

R(t)
α0(t).

It then follows from (3.5) that

dY (t) =
[
rY (t) + αS(t)σSθS + αL(t)σL(t, t+ T )θ(t, λ) + (1− π)λj(t)Y (t)− β(t)

]
dt

+ αS(t)σSdWS(t) + αL(t)σL(t, t+ T )dW (t),

where we use the fact that α0(t) = Y (t)− αS(t)− αL(t).

At any time, the pension schememanager decides the benefits withdrawal rate β(t) and the

investment strategy (αS(t), αL(t)). A fraction of the member’s pension balance is paid to the

manager as compensation, at the stochastic time of death. We suppose that the member and

the manager decide to share the investment risk and longevity risk based on a risk-sharing

rule. Moreover, the manager works not only for his own benefit but also for the benefit

of the scheme member. This is also known as first-best principal-agent problem. More

specifically, we consider an optimization problem which combines the manager’s and the

member’s utilities. Denote by τ the member’s stochastic time of death, the objective function

is given as

J(t, Y, λ;αS, αL, β) = Et
[ ∫ τ

t

e−r(s−t)UP (β(s))ds+ φe−r(τ−t)UA(πY (τ))
]

= Et
[ ∫ ∞

t

e−
∫ s
t (r+λj(u))du

(
UP (β(s)) + φλj(s)UA(πY (s))

)
ds
]
,

where UP (·) and UA(·) denote the utility functions of the principal (member) and the agent

(manager). The non-negative constant φ can be viewed as a parameter that determines the

risk-sharing rule between the principal and the agent. The case φ = 0 corresponds to the

situation when the manager works only for the sake of the member. In this case, the objective

is to maximize the member’s running utility from benefit withdrawals while the manager pays

no attention to his own utility. The case 0 < φ < 1 prioritizes the member’s utility. When

φ = 1, the objective function puts equal importance on member’s and manager’s utility.
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To specify the optimization problem and to facilitate analytic solutions, we set UP (·) and

UA(·) as log utility functions:

UA(x) = ln x, UP (x) = ln x, ∀x > 0.

Remark 3.2.1. The log utility function belongs to the Constant relative risk aversion (CRRA)

utility functions. Pension schemes are, in general, large companies that determine investment

strategies more or less in a scaling way. The feature of CRRA function makes the invest-

ment strategies unaffected by scale. Moreover, past papers show that a log utility function

outperforms other utility functions in the long run. Since the management period of pension

schemes is long, we consider log utility functions. Also, log utility function has the advantage

of leading to closed-form solutions.

Besides, upon death, we assume that the total amount of the member’s remaining pension

is paid to the manager, i.e., π = 1. The wealth process is now

dY (t) =
[
rY (t) + αS(t)σSθS + αL(t)σL(t, t+ T )θ(t, λ)− β(t)

]
dt (3.6)

+ αS(t)σSdWS(t) + αL(t)σL(t, t+ T )dW (t).

Then, the optimization problem is defined as
sup

αS ,αL,β
Et
[ ∫∞

t
e−

∫ s
t (r+λj(u))du

(
ln(β(s)) + φλj(s) ln(Y (s))

)
ds
]

s.t. (3.1) and (3.6) hold.
(3.7)

This optimal control problem can be solved by applying the dynamic programming principle,

and the general solution is provided by the following proposition.

Proposition 3.2.1. The solution to the optimization problem (3.7) is

β∗(t)

Y (t)
=

1

G(t, λ)
,

α∗S(t)

Y (t)
=
θS
σS
,

α∗L(t)

Y (t)
=

σL(t, t+ T )θ(t, λ)

σL(t, t+ T )σL(t, t+ T )′
+
Gλ(t, λ)Σ(t, λ)′σL(t, t+ T )′

σL(t, t+ T )σL(t, t+ T )′
1

G(t, λ)
,

where

G(t, λ) =

∫ ∞
t

(
φEt

[
λj(s)e

−
∫ s
t λj(u)du

]
+ Et

[
e−

∫ s
t λj(u)du

])
er(s−t)ds.
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Proof. The proof is given in Appendix 3.A.

We learn from the optimal solution that the optimal portfolio weight in the stock equals
θs
σs

and keeps constant over time. This is similar to the classical Merton portfolio problem

where the optimal weight on the risky asset is constant. The intuition behind this is that the

constant value of the market price of stock risk causes no change in the investment strategy.

However, it is not clear from the solution how the longevity bond investment and benefit

withdrawal changes over time.

3.3 Explicit solutions

In the literature, for example Luciano & Vigna (2005) and Wong et al. (2014), several

continuous-time stochastic models for force of mortality have been studied, including OU

processes, CIR processes and Feller processes. In this section, we follow Menoncin (2009)

and use affine models which are analogs to OU and CIR processes to model the stochastic

force of mortality. In Section 3.2, population i refers to the individuals constituting the

reference population of the longevity bond’s survival index. Population j refers to the

scheme members. In this section, we provide explicit solutions to the optimal control

problem proposed in Section 3.2 for the single-population and sub-population cases. For the

single-population case, we assume that the reference population and the members’ population

are the same. That is, we set n = 1 and λi(t) = λj(t) = λ1(t). For the sub-population case,

we suppose the two populations are different and set n = 2. We assume that the longevity

bond’s underlying index is a large public survival index and the scheme members are a proper

sub-population of the longevity bond reference population with different force of mortality.

The latter case is very common. For example, we could regard the total public workforce in

a country as a reference population, and teachers at public schools as a sub-population of the

reference population who have access to membership in a dedicated pension fund for public

school teachers. A report by the Society of Actuaries (SOA) reveals that teachers show a

significantly different longevity pattern when compared with public sector employees who

have other types of jobs. See SOA (2019).
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3.3.1 Single-population model

Suppose that the reference population of the longevity bond happens to be the scheme

members’ population. We expect that the investment in the longevity bond can hedge the

scheme’s longevity risk effectively, since the uncertainty in the longevity bond value correlates

with the member’s longevity risk perfectly. Now, equation (3.1) becomes

dλ1(t) = κ(t, λ1)dt+ σ1(t, λ1)dW1(t). (3.8)

Following Menoncin (2009), we require that the expected value of λ1(t) equals to the

Gompertz-Makeham force of mortality:

E[λ1(t)] = ν1 +
1

∆1

e
t−m1

∆1

where ν1, ∆1 andm1 are constants. Specifically,m1 is the modal value of remaining life span

after retirement. Suppose the retirement age is t0, then t0 +m1 is the mode of life expectancy.

The condition above is met if

κ1(t, λ1) = a1(t)− b1λ1(t),

where

a1(t) = b1ν1 +
1 + b1∆1

∆2
1

e
t−m1

∆1 .

To construct analog OU and CIR processes for λ1(t), we make some assumptions on the

diffusion term σ1(t, λ1) and market price of longevity risk θ1(t, λ1).

• OU setting: We assume that σ1(t, λ1) := σ1 > 0 and θ1(t, λ1) := θ1 ≤ 0 are

constants. Then, the dynamics of L(t) is given as

dL(t)

L(t)
=
(
r + σL(t, t+ T )θ1

)
dt+ σL(t, t+ T )dW1(t), (3.9)

where

σL(t, s) = −A1(t, s)σ1, A1(t, s) =
1− e−b1(s−t)

b1

.
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• CIR setting: We assume that σ1(t, λ1) := σ1

√
λ1(t) and θ1(t, λ1) := θ1

√
λ1(t).

Suppose that σ1 > 0 and θ1 ≤ 0 are constants and σ2
1 < 2a1(t) s.t. the Feller condition

is satisfied. Then, the dynamics of L(t) is given as

dL(t)

L(t)
=
(
r + σL(t, t+ T )θ1

√
λ1(t)

)
dt+ σL(t, t+ T )dW1(t), (3.10)

where

σL(t, s) = −Â1(t, s)σ1

√
λ1(t),

Â1(t, s) =
2(eη(s−t) − 1)

(b1 − σ1θ1 + η)(eη(s−t) − 1) + 2η
,

η =
√

(b1 − σ1θ1)2 + 2σ2
1.

Once the process λ1(t) is specified, we give the wealth process as

dY (t) =
[
rY (t) + αS(t)σSθS + αL(t)σL(t, t+ T )θ1(t, λ1)− β(t)

]
dt (3.11)

+ αS(t)σSdWS(t) + αL(t)σL(t, t+ T )dW1(t).

The optimization problem is now
sup

αS ,αL,β
Et
[ ∫∞

t
e−

∫ s
t (r+λ1(u))du

(
ln(β(s)) + φλ1(s) ln(Y (s))

)
ds
]

s.t. (3.8) and (3.11) hold.
(3.12)

Proposition 3.3.1. Within the OU setting, the solution to the single-population optimization

problem (3.12) is given as

β∗(t)

Y (t)
=

1

G(t, λ1)
,

α∗S(t)

Y (t)
=
θS
σS
,

α∗L(t)

Y (t)
=

1

σL(t, t+ T )

(
θ1 +

Gλ1(t, λ1)

G(t, λ1)
σ1

)
,

where

G(t, λ1) =

∫ ∞
t

e−r(s−t)hP(t, s, λ1)
(
φM(t, s, λ1) + 1

)
ds,

hP(t, s, λ1) = eA
P
0 (t,s)−A1(t,s)λ1(t),

M(t, s, λ1) = λ1(t)e−b1(s−t) +
(
b1ν1 −

σ2
1

b1

)
(s− t) +

1 + b1∆1

∆1

(
e
s−m1

∆1 − e
t−m1

∆1

)
+
σ2

1

b1

A1(t, s),

AP0 (t, s) =

(
1

2

σ2
1

b2
1

− ν1

)
(s− t)−

(
e
s−m1

∆1 − e
t−m1

∆1

)
− 1

4

σ2
1

b1

A1
2(t, s)

+

(
ν1 −

1

2

σ2
1

b2
1

+
1

∆1

e
t−m1

∆1

)
A1(t, s).
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Proof. The proof is provided in Appendix 3.B.

Proposition 3.3.2. Within the CIR setting, the solution to the single-population optimization

problem (3.12) is given as

β∗(t)

Y (t)
=

1

G(t, λ1)
,

α∗S(t)

Y (t)
=
θS
σS
,

α∗L(t)

Y (t)
=

√
λ1(t)

σL(t, t+ T )

(
θ1 +

Gλ1(t, λ1)

G(t, λ1)
σ1

)
,

where

G(t, λ1) =

∫ ∞
t

e−r(s−t)ĥP(t, s, λ1)
(
φM̂(t, s, λ1) + 1

)
ds,

ĥP(t, s, λ1) = eÂ
P
0 (t,s)−ÂP1 (t,s)λ1(t), ηP =

√
b2

1 + 2σ2
1,

M̂(t, s, λ1) = λ1(t)m(t, s)e−b1(s−t) +

∫ s

t

a1(u)m(u, s)e−b1(s−u)du,

m(t, s) = (2ηP)
− 4b1σ

2
1

ηP(ηP
2−b21)

(
(ηP + b1)(eη

P(s−t) − 1) + 2ηP
)− 2σ2

1
ηP(ηP+b1) ×(

(ηP − b1)(eη
P(s−t) − 1) + 2ηP

) 2σ2
1

ηP(ηP−b1)
,

ÂP1 (t, s) =
2(eη

P(s−t) − 1)

(b1 + ηP)(eηP(s−t) − 1) + 2ηP
, ÂP0 (t, s) = −

∫ s

t

a1(u)ÂP1 (u, s)du.

Proof. The proof of the above result is analog to the proof of Proposition 3.3.1 and we omit

it here.

As observed in Proposition 3.2.1, the optimal portfolio weight in the stock within the

OU and CIR settings are the same and constant over time, while the dynamic behavior of

the longevity bond investment and benefit withdrawal are more complex. Later in Section

3.4.1, we perform numerical simulations to investigate the optimal investment strategy and

benefit withdrawal rate dynamically, under the single-population OU setting. We see that

the higher the market price of stock risk, the higher the investment proportion in the stock.

It is easy to see that σL(t, t + T ) is negative, thus the lower the θ1 (the higher the value of

the market price of longevity risk) the higher the portfolio weight in the longevity bond. We

learn from Proposition 3.3.1 and 3.3.2 that the functions h(t, s, λ1) andM(t, s, λ1) are always

positive. Therefore, we deduce that the higher the risk-sharing rule parameter φ the lower

the proportion of the wealth withdrawn (i.e., β(t)/Y (t)). However, it is not clear how the
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benefit withdrawal rate β(t) reacts when φ changes. In Section 3.4.1, we provide a sensitivity

analysis to study the impact of φ on the benefit withdrawal rate.

3.3.2 Sub-population model

Based on different mortality indices and maturity times, there may be different longevity

bonds in the market. It may be interesting to study our problem in a market setting with

multiple longevity bonds. However, we only consider one longevity bond in our framework

as our main focus is on longevity risk hedging. In this section, we study the case where the

longevity bond’s reference population is different from the pension members’ population.

More specifically, we set n = 2 and denote the index population of the longevity bond by

Population 1, and use Population 2 to denote the scheme members’ population. In practice,

the reference population of the longevity bond tends to be large and could be much larger

than the pension schemes’ client pools. Therefore, we assume that the pension members are

a sub-population of the index population. The sub-population assumption is also used in

Coughlan et al. (2011) and A. J. Cairns et al. (2014).

Under this sub-population assumption (see, Wong et al. (2014)), we suppose that (3.1)

takes the following form:

dλ(t) = B(t, λ)dt+ Σ(t, λ)′dW (t), (3.13)

where

B(t, λ) =

 a1(t)− b1λ1(t)

a2(t)− b21λ1(t)− b22λ2(t)

 , Σ(t, λ) =


σ1(t, λ1) σ21(t, λ1)

0 σ22(t, λ2)

0 0

 .
In the above, b1, b21 and b22 are constant numbers and

a2(t) = b21ν1 + b22ν2 +
b21

∆1

e
t−m1

∆1 +
b22

∆2

(
1 +

1

b22∆2

)
e
t−m2

∆2 ,

where ν2 are ∆2 constants. The terms t0 +m2 and t0 +m2 are modal values of life expectancy

of Population 1 and Population 2, respectively. In the following, we specify the volatility

vector Σ(t, λ)′.
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• OU setting: Suppose that

Σ(t, λ)′ :=

 σ1 0 0

σ21 σ22 0

 , θ(t, λ)′ :=

[
θ1 θ2 θS

]
,

where σ1, σ21 and σ22 are positive constants, while θ1, θ2 and θS are non-positive

constants. Then, the dynamics of L(t) is given in (3.9).

• CIR setting: Suppose that

Σ(t, λ)′ :=

 σ1

√
λ1(t) 0 0

σ21

√
λ1(t) σ22

√
λ2(t) 0

 ,
θ(t, λ)′ :=

[
θ1

√
λ1(t) θ2

√
λ2(t) θS

]
,

where σ1, σ21 and σ22 are positive constants, while θ1, θ2 and θS are non-positive

constants. Then, the dynamics of L(t) is given in (3.10).

Once the processes λ1(t) and λ2(t) are specified, we obtain the wealth process as

dY (t) =
[
rY (t) + αS(t)σSθS + αL(t)σL(t, t+ T )θ1(t, λ1)− β(t)

]
dt (3.14)

+ αS(t)σSdWS(t) + αL(t)σL(t, t+ T )dW (t).

The optimization problem is now
sup

αS ,αL,β
Et
[ ∫∞

t
e−

∫ s
t (r+λ2(u))du

(
ln(β(s)) + φλ2(s) ln(Y (s))

)
ds
]

s.t. (3.13) and (3.14) hold.
(3.15)

In this sub-population model, there are two state variables. Moreover, the state variable

λ2(t) correlates with the state variable λ1(t). This increases the difficulty of solving the

optimization problem. In this case, an analytical solution may not always be available. In

the following, we provide Proposition 3.3.3 and 3.3.4 for the solutions to the sub-population

optimization problem within the OU and CIR settings, respectively.

Proposition 3.3.3. Within the OU setting, the solution to the sub-population optimization

problem (3.15) is given as

β∗(t)

Y (t)
=

1

G(t, λ1, λ2)
,

α∗S(t)

Y (t)
=
θS
σS
,

α∗L(t)

Y (t)
=

1

σL(t, t+ T )

(
θ1 +

Gλ1(t, λ1, λ2)

G(t, λ1, λ2)
σ1 +

Gλ2(t, λ1, λ2)

G(t, λ1, λ2)
σ21

)
,
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where

G(t, λ1, λ2) =

∫ ∞
t

e−r(s−t)f(t, s, λ1, λ2)
(
φM(t, s, λ1, λ2) + 1

)
ds.

The functions f(t, s, λ1, λ2) andM(t, s, λ1, λ2) are given by (3.22) and (3.23).

Proof. The proof is given in Appendix 3.C.

Proposition 3.3.4. Within the CIR setting, the solution to the sub-population optimization

problem (3.15) is given as

β∗(t)

Y (t)
=

1

G(t, λ1, λ2)
,

α∗S(t)

Y (t)
=
θS
σS
,

α∗L(t)

Y (t)
=

√
λ1(t)

σL(t, t+ T )

(
θ1 +

Gλ1(t, λ1, λ2)

G(t, λ1, λ2)
σ1 +

Gλ1(t, λ1, λ2)

G(t, λ1, λ2)
σ21

)
,

where

G(t, λ1, λ2) =

∫ ∞
t

e−r(s−t)f̂(t, s, λ1, λ2)
(
φM̂(t, s, λ1, λ2) + 1

)
ds,

f̂(t, s, λ1, λ2) = eĈ0(t,s)−Ĉ1(t,s)λ1(t)−Ĉ2(t,s)λ2(t),

Ĉ2(t, s) =
2(eξ(s−t) − 1)

(b1 + ξ)(eξ(s−t) − 1) + 2ξ
, ξ =

√
b2

22 + 2σ2
22.

The functions Ĉ0(t, s), Ĉ1(t, s), M̂(t, s, λ1, λ2) and N̂(t, s, λ1) satisfy

0 = −∂Ĉ0

∂t
+ a1Ĉ1 + a2Ĉ2, (3.16)

0 = −∂Ĉ1

∂t
+ b1Ĉ1 + b21Ĉ2 +

1

2
σ2

1Ĉ
2
1 +

1

2
σ2

21Ĉ
2
2 + σ1σ21Ĉ1Ĉ2,

0 = −∂N̂
∂t

+ a1 −
(
b1 + σ2

1Ĉ1 + σ1σ21Ĉ2

)
N̂ ,

0 = −∂M̂
∂t

+ a2 −
(
b21 + σ1σ21Ĉ1 + σ2

21Ĉ2

)
N̂ −

(
b22 + σ2

22Ĉ2

)
M̂,

with boundary conditions Ĉ0(s, s) = 0, Ĉ1(s, s) = 0, M̂(t, t, λ1, λ2) = 0 and N̂(t, t, λ1) = 0.

Proof. The Picard-Lindelöf theorem ensures the existence of unique solutions to the ODEs

in (3.16). The rest of the proof is similar to the proof of Proposition 3.3.3 and is omitted

here, except that some of the ODEs do not have explicit solutions.
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From Proposition 3.3.3 and 3.3.4, we see that the optimal portfolio weight attached to

the stock remains the same as in the single-population case. The OU case has an analytical

solution; however, the CIR case does not. In Section 3.4, we conduct a numerical study to

assess the hedging effect of the longevity bond within the sub-population OU setting.

3.4 Numerical applications

This section provides numerical simulations for the single- and sub-population cases using

the results from Proposition 3.3.1 and 3.3.3. A numerical study involving CIR models is not

presented here as the results here are qualitatively not different to the OU case. We observe

the dynamics of the survival probability and look into the impact of the mortality behavior

on the optimal strategy. We investigate and assess the hedging performance of the longevity

bond in the pension scheme’s risk management and provide a sensitivity analysis on the

market price of longevity risk. We also look into the effect of the risk-sharing rule between

the member and the manager.

Table 3.4.1: Values of parameters for optimization problem.

Population 1 Population 2 Market Others
ν1 = 0.0009944 ν2 = 0.0009944 r = 0.04 T = 35
∆1 = 11.4000 ∆2 = 12.9374 θ1 = −0.0005 Y0 = 100
m1 = 21.4515 m2 = 24.18 θS = 0.05 ∆ = 1/10
b1 = 0.5610 b21 = 0.0028 σS = 0.15 φ = 0.8
σ1 = 0.0035 b22 = 0.6500 TL = 20 t0 = 65

σ21 = 0.0040
σ22 = 0.0050

Table 3.4.1 shows the values of parameters in our numerical examples. We choose t0 = 65

as the retirement age. The time interval ∆ = 1/10 means that we observe the mortality rates

10 times a year. Most of the values of the mortality model parameters are as considered

in other works (e.g. Menoncin & Regis (2017) and Milevsky (2001)). The maturity of the

rolling longevity bond is set as TL = 20. The values of other financial market parameters are

meant to be representative.
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3.4.1 Single-population case

In the single-population case, we assume that the schememembers happen to be the reference

population of the longevity bond. The manager invests into the longevity bond to hedge the

scheme’s longevity exposure. The pension scheme’s management starts from the retirement

time and ends until members pass away. According to the Gompertz-Makeham law of

mortality, less than 5% of the population are likely to survive until 100 years old given that

they are alive at 65 years old. Thus, we conduct numerical simulations with a 35-year time

horizon (i.e., T = 35).

Figure 3.4.1 shows three simulated paths/scenarios to illustrate the dynamic mortality

behavior of the member. We see that the survival probability p1(t) decreases with time. In

the bottom-left plot, we observe that for all three paths, the member’s survival probability is

less than 5% at 100 years old. This indicates that it is reasonable to set T = 35. Suppose the

Gompertz-Makeham mortality law describes the average trend of the member’s mortality.

We learn from the plots in Figure 3.4.1 that the survival probability of the simulated path 1

is always higher than average. On the contrary, the survival probability of path 2 is lower

than expected. Path 3 does not show any particular trend. The bottom-right plot in Figure

3.4.1 draws the probability density function fτ (t) of the stochastic time of death τ . We see

from the plot that fτ (t) peaks at t = 21.5 approximately. That is, the age of 86.5. This is

consistent with our model settings and choice of parameter values: t0 +m1 = 86.4515 in our

model is the modal value of life span of the member. The probability density function fτ (t)

of the stochastic time of death τ conditional on the paths of λ1(u) is given by

fτ (t) = λ1(t)e−
∫ t
0 λ1(u)du.

Taking the differential we obtain

dfτ (t) = e−
∫ t
0 λ1(u)du

(
a1(u)− b1λ1(t)− λ1(t)2

)
dt+ e−

∫ t
0 λ1(u)duσ1dW1(t).

Since e−
∫ t
0 λ1(u)du decreases with time, the diffusion term decreases with time as well. Thus,

the simulated paths are more volatile at the beginning while becoming smoother towards the

end.

Generally, our observations imply that:
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• path 1 shows a prominent longevity trend;

• path 2 on average has a lower survival rate;

• path 3 does not show any particular trend;

• For all three paths, the mode of life span is around 86 years old.
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Figure 3.4.1: 3 simulation paths for the survival probability and cumulative distribution
function of τ

The base scenario

In this section, we give a base scenario and investigate the optimal benefit withdrawal rate

and investment strategy. Besides this, we observe the member’s pension level and manager’s

compensation dynamically. We suppose that the manager prioritizes the member’s utility and

set the risk-sharing rule parameter as φ = 0.8. Figure 3.4.2 shows the average investment

strategy over 100 simulation paths. We observe that the portfolio weight in the longevity bond

drops over time. As the member gets older, the exposure to the longevity risk reduces, and

the need for longevity protection decreases. Accordingly, the manager reduces the portfolio

weight in the longevity bond. The flat line which shows the investment proportion in the
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stock is a direct result from the optimal solutions in Proposition 3.3.1: the portfolio weight

in the stock keeps constant and equals θS
σS
. This constant investment strategy coincides with

the result in the classical Merton portfolio problem. The interpretation is that the constant

value of market price of risk causes no change in the manager’s investment behavior. The

proportion of the portfolio in the money market is α0(t)
Y (t)

= 1 − αL(t)
Y (t)
− αS(t)

Y (t)
. We see that

the portfolio weight in the money market is negative at first and then increases over time.

The negative position in the initial years indicates that the manager borrows money from the

money market to invest into the risky assets to gain risk premiums and increase the wealth

level. As αS(t)
Y (t)

keeps constant, and αL(t)
Y (t)

decreases over time, the manager puts more weight

into the money market. With the passage of time, the manager becomes more conservative

to avoid unexpected losses. Overall, the longevity bond dominates the investment portfolio

throughout the investment horizon. Even when members reach the age of 100, the manager

puts around 50% of the portfolio in the longevity bond, indicating that the longevity bond

could provide not only longevity protection but also a considerable risk premium.
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Figure 3.4.2: Average optimal investment strategies over 100 paths

To obtain general results, we present the average of 100 simulation paths of the optimal

benefit withdrawal proportion β∗(t)
Y (t)

and rate β∗(t), the wealth level Y (t) and the manager’s

compensation c(t) = λ1(t)Y (t). From the top-left plot in Figure 3.4.3, we see that the

optimal proportion of the wealth withdrawn by the member increases over time. Meanwhile,

in the top-right plot, we observe that the optimal benefit withdrawal rate reduces over time.

This phenomenon is explained by the declining wealth level shown in the bottom-left plot.

Although the manager invests in the financial market, the average wealth level is decreasing

throughout the time horizon due to the continuous benefit withdrawals and compensation
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payments. The wealth level declines faster while the benefit withdrawal proportion rises

slower, thus the optimal benefit withdrawal rate drops over time. The average compensation

received by the manager shows an interesting trend - it increases at first, peaks at around

the 19th year and then drops rapidly. The reason is that, in the first 19 years, the wealth

level is high while the instantaneous rate of mortality (i.e., the force of mortality λ1(t)) rises

over time. Thus, the manager’s compensation increases. However, in the later years, the

pension balance reduces to low levels. Although the instantaneous mortality rate increases,

the manager’s compensation drops.
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Figure 3.4.3: Average benefit withdrawal proportion, withdrawal rate, wealth, and compen-
sation over 100 paths

Comparison analysis

To test the hedging performance of the longevity bond, we look at the results for the case

when the manager does not include the longevity bond in the investment portfolio. Without

the investment in the longevity bond, the optimal benefit withdrawal proportion β∗(t)
Y (t)

=

1
G(t,λ1)

, and the optimal portfolio weight in the stock α∗s(t)
Y (t)

= θS
σS
, are the same as given in

Proposition 3.3.1. The portfolio weight in the money market equals 1 − α∗S(t)

Y (t)
and keeps

constant over time. Let β1(t) (c1(t)) and β2(t) (c1(t)) denote the benefit withdrawal rate

(compensation) without and with investment in the longevity bond, respectively. Figure 3.4.4

shows the benefit withdrawal and compensation improvement by investing in the longevity
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bond. It shows that, for path 1, investing in the longevity bond always results in higher

benefit withdrawals and compensations. For path 3, investing in the longevity bond in

general increases both the member’s benefit withdrawal rate and the manager’s compensation.

Although, during some short period, the longevity bond investment decreases the withdrawals

and compensations. However, for path 2, investment in the longevity bond seems to cut

down both benefit withdrawals and compensations. As discussed earlier (see Figure 3.4.1),

the survival probability on path 2 is overall lower than the Gompertz-Makeham survival

probability. It implies that the member tends to live shorter than expected. Likewise, Figure

3.4.1 suggests that for path 2, the random age of death is more likely to be younger compared

to the other paths - path 1 or path 3. As a result, the member does not face the longevity

risk and investing in the longevity bond actually loses money rather than making gains. As

it is a global trend that people’s average life expectancy is increasing, we argue that pension

schemes will benefit from longevity bond investment as mirrored by the situation in path 1

and 3. To support our claim, we show that the average improvements of benefit withdrawal

rate and compensation over 100 simulated paths in Figure 3.4.5. As shown, there are small

improvements in the first few years, but overall the improvements are significant over most

of the investment period. This indicates that investing in the longevity bonds increases both

the member’s benefit withdrawal and the manager’s compensation, and that it is beneficial to

both the member and the manager.
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Sensitivity analysis

We are interested in the impact of the market price of risk on the pension scheme’s risk

management. It is difficult to determine the market price of longevity risk due to the absence

of longevity bonds in themarket. We examine a number of values of θ1 to give an illustration of

the effects of the market price of longevity risk on the optimal strategy, the benefit withdrawal

and themanager’s compensation. In our base scenario, θ1 is set as−5×10−4 and the longevity

risk premium offered by the longevity bond is θ1σL = 4.4563 × 10−6. Compared with the

stock’s risk premium (θSσS = 7.5 × 10−3), the longevity risk premium is small. We show

that the optimal investment strategies in the cases where θ1 = 0,−1.5×10−3 and−3×10−3.

A large absolute value of θ1 indicates a high risk premium offered by the longevity bond. In

addition, larger risk premiums should lead to more investment in the longevity bond. Figure

3.4.6 shows the investment strategies with different values of θ1. We can see that when the

manager does not add the longevity bond to his portfolio, the optimal investment proportions

in the stock and money market keep constant over time. The investment in the longevity bond

does not affect the portfolio weight in the stock, however it affects the investment in the money

market. The top-right plot shows that even in the case when the longevity bond offers no

risk premium (i.e., θ1 = 0), the optimal proportion invested in the longevity bond is always
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higher than 40%. It illustrates that the longevity bond provides a good way to hedge the

scheme’s longevity risk. As shown in Figure 3.4.6, as the longevity risk premium decreases

(i.e., lower θ1), more portfolio weight is put on the longevity bond. In the bottom-right plot,

θ1 = −0.0030 and the longevity risk premium equals to 2.6738×10−5 which is again far less

than the stock’s risk premium. This implies that the manager continuously borrows money

from the money market in order to invest in risky assets throughout the whole time horizon.

The intuition is that the longevity bond not only provides a longevity risk hedge, but also

provides an attractive risk premium.
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Figure 3.4.6: Impact of θ1 on the optimal investment strategy

Figure 3.4.7 shows the improvements for benefit withdrawal and compensation when

investing in longevity bonds. As shown for path 1, a high market price of longevity risk leads

to high improvements in both manager’s compensation andmember’s benefit withdrawal rate.

As discussed in Section 3.4.1, investing in the longevity bond sometimes decreases the benefit

withdrawal rate and compensation and thus causes a ‘loss’. Here by ‘loss’, we mean loss in

the member’s benefit and the manager’s compensation as the improvements by investing in

the longevity bond are negative. Nevertheless, we observe from the plots in Figure 3.4.7 that

a smaller θ1 reduces this loss.
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Figure 3.4.7: Impact of θ1 on the benefit withdrawal and compensation improvements

We now investigate the impact of the risk-sharing parameter φ on the benefit withdrawal

rate and manager compensation. As stated before, φ defines the agreement between the

manager and the member on how to share the risk. A high value of φ implies that more

weight is put on the manager’s utility. When φ = 0, the manager works on behalf of the

member and only cares about the member’s benefit. This case corresponds to no risk-sharing.

When 0 < φ < 1, more emphasis is put on the member’s benefit. In the case where φ = 1,

the manager treats his own profit and member’s benefit equally which corresponds to the case

of equal risk-sharing. We test the cases when φ takes values 0, 0.5 and 1. The case with

φ = 0 is chosen as the reference case. Figure 3.4.8 shows the improvement rates on benefit

withdrawal and compensation (i.e., βφ(t)−βφ=0(t)

βφ=0(t)
and cφ(t)−cφ=0(t)

cφ=0(t)
). As shown in the right plot,

the higher the value of φ, the higher the improvement in compensation. Compared to the

case φ = 0, the equal risk-sharing rule agreement improves the manager’s compensation by

more than 20% at the end of the time horizon. For the benefit withdrawal, a higher value of φ

leads to higher withdrawals in the last 10 years of the period, but reduces the withdrawals in

the early part of the period. To illustrate the impact of φ, we calculate the average discounted

values of benefit withdrawals and compensations over 100 simulated paths. We find that

compared to the case φ = 0, φ = 1 increases the discounted benefit withdrawal by 4.71% and

the discounted compensation by 12.82%. Thus, both the manager and the member benefit
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from sharing the risk equally.
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Figure 3.4.8: Impact of φ on the benefit withdrawal and compensation

The previous discussions can be summarized as follows. The longevity bond offers an

efficient way to hedge the longevity risk. It is optimal to attach large portfolio weights to it,

even in the case where it provides no risk premium, i.e., θ1 = 0. Moreover, both member

and manager benefit from investment in the longevity bond. The higher the longevity risk

premium, the more portfolio weight is put on the longevity bond, and the more the manager

and member benefit from investing in it. Finally, an equal risk-sharing rule is the most

beneficial to both member and manager.

3.4.2 Sub-population case

On the one hand, a pension scheme faces longevity risk caused by its members’ extended life

span. On the other hand, a pension scheme faces longevity basis risk if the mortality behav-

ior of the scheme members is imperfectly correlated with the longevity bond’s underlying

mortality index. In practice, pension schemes face longevity basis risk as it is difficult to find

a longevity bond in the market that is based exactly on the scheme members. Therefore, the

sub-population model may be more practical compared to the single-population model. In

this section, we assume that the longevity bond is based on a large population and the scheme

members are a sub-population of this large population. Also, the forces of mortalities of the

two populations are related. Furthermore, we assume that the expected life expectancy of

the scheme members is higher than the longevity bond reference population. If it is lower,

there might be no need to invest in the longevity bond. This section investigates the optimal
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strategy and the hedging performance of the longevity bond in the presence of longevity basis

risk.

The base scenario

The values of parameters used in this section are provided in Table 3.4.1. For i = 1, 2,mi is

themode of remaining life span of the i-th population. m2 is set to be greater thanm1 implying

that the expected age of death of the member in Population 2 is higher than the longevity

bond reference population in Population 1. Again, we present three simulation paths in this

section to observe the two populations’ mortality behavior. Figure 3.4.9 shows the survival

probabilities for Population 1 and Population 2. As expected, the average survival probability

of Population 1 is lower than Population 2. The plots below illustrate the following:

• Population 1

– path 1 has no particular trend;

– path 2 has a higher survival probability than expected;

– path 3 shows shorter life expectancy.

• Population 2:

– path 1 displays a lower survival probability in the first half of the time horizon;

– path 2 & 3 on average show longevity trend.

Figure 3.4.10 shows the optimal investment strategy and benefit withdrawal in the sub-

population case. The optimal strategy is similar to the single-population case:

• the longevity bond dominates the portfolio;

• the portfolio weight attach to the longevity bond decreases over time while the holding

in the money market increases;

• the optimal investment proportion in the stock keeps constant;

• the percentage of the wealth withdrawn by the member increases with time.
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Figure 3.4.9: Survival probabilities for Population 1 and 2

We learn from the optimal strategy that the longevity bond plays an essential role in the

pension scheme’s risk management. It is optimal to invest large proportions of the wealth in

it.
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Figure 3.4.10: Average optimal portfolio strategy and benefit withdrawal in sub-population
case

Comparison analysis

In Section 3.4.1, we show that in the single-population case, both themanager and themember

benefit from investing in the longevity bond. Now, we conduct a comparison study in the
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sub-population case to see whether the use of the longevity bond is still efficient. For the

simulated path 1, Figure 3.4.11 shows that investing in the longevity bond in general increases

the member’s benefit withdrawal and manager’s compensation. For path 2, the member and

the manager benefit from investing in the longevity bond in the late 20-year time period,

although the member’s pension suffers from some loss in the early years. In the scenario of

path 3, neither the manager nor the member take advantage of longevity bond investment. To

find out the reason for these phenomenon, we check the simulated survival probabilities. We

learn from the plots on the bottom in Figure 3.4.9 that for path 3, the member in Population 2

lives much longer than anticipated. Whereas, the survival probability of the longevity bond

reference population (Population 1) on path 3 is lower. In this situation, the member suffers

from severe longevity risk. In this case, the longevity bond can not provide an efficient

longevity risk hedge because the reference population displays shorter life expectancy. Since

we assume the members are a sub-population of the longevity bond reference population,

the members should have a similar mortality trend with the reference population, although

with slightly different behavior. We believe that investing in the longevity bond can still be

beneficial to both sides - manager and member - in the two population case.
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Figure 3.4.11: Benefit and compensation improvement in sub-population case

Overall, we conclude that the longevity bond provides a powerful tool to hedge the

longevity risk in the sub-population case. However, due to the presence of longevity basis

risk, the hedging performance is less effective than in the single-population case. A scenario

with multiple longevity bonds in the market may show different results and is worthy of an

independent future study. A sensitivity analysis focusing on the market price of longevity

risk and the risk-sharing rule in the sub-population case deliver results which are similar to
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the single-population case.

3.5 Conclusion

We have studied the optimal portfolio strategy and benefit withdrawal rate for a pension

scheme with an income-drawdown policy in the decumulation phase in the presence of a

stochastic force of mortality, both for a reference and sub-population. The optimal solutions

for the single- and sub-population cases are obtained by applying the dynamic programming

principle. They are explicit solutions for for the OU case and semi-analytic solutions for the

CIR case. Our numerical study shows that the longevity bond can be used efficiently to hedge

the longevity risk, and both member and manager benefit from the longevity bond investment.

Moreover, both member and manager benefit from an agreement on the risk-sharing rule in

the long run.

Further research: One challenge that discourages hedgers from using standardized

mortality-linked instruments is the population basis risk. This chapter provides mathematical

evidence supporting the use of longevity bond for efficient longevity risk hedge without and

with longevity basis risk. The problem with multiple longevity bonds issued with regard to

different reference populations is a potential topic which we will explore in a future study. We

believe that the development of a longevity market is required to provide a solution to capital

markets for longevity risk hedging. Further research may also include the use of various

types of mortality-linked securities, such as forward contracts and swaps. The pricing of

longevity securities is also an interesting further research topic.
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Appendices

Appendix 3.A: Proof of Proposition 3.2.1

Proof. The corresponding value function V (t, y, λ) of the optimization problem (3.7) is given

by

V (t, y, λ) = sup
αS ,αL,β

Et
[ ∫ ∞

t

e−
∫ s
t (r+λj(u))du

(
ln(β(s)) + φλj(s) ln(Y (s))

)
ds
]
.

Using the Dynamic Programming Principle (DPP), we obtain the following HJB equation

0 = Vt(t, y, λ) + φλj ln y − (r + λj)V (t, y, λ) + sup
αS ,αL,β

[
ln(β) +AαS ,αL,βV (t, y, λ)

]
,

where

AαS ,αL,βV (t, y, λ) =Vy [ry + αSσSθS + αLσLθ − β] + VλB +
1

2
tr (Σ′ΣVλλ)

+
1

2

(
α2
Sσ

2
S + α2

LσLσ
′
L

)
Vyy + αLVyλΣ

′σ′L.

We write V := V (t, y, λ) and denote the corresponding partial derivatives of V as Vt, Vy,

Vλ, Vyy, Vλλ and Vyλ for notational simplicity.

Solving the first order conditions on β(t), αS(t) and αL(t) gives

β∗(t) =
1

Vy
, α∗S(t) = − θSVy

σSVyy
, α∗L(t) = − Vy

Vyy

σLθ

σLσ′L
− 1

Vyy

VyλΣ
′σ′L

σLσ′L
. (3.17)

Substituting (3.17) into the HJB equation leads to

0 =Vt + φλj ln y − (r + λj)V − ln (Vy) + ryVy − 1 + VλB +
1

2
tr (Σ′ΣVλλ) (3.18)

− 1

2
θ2
S

V 2
y

Vyy
− 1

2

V 2
y

Vyy

(σLθ)
2

σLσ′L
− Vy
Vyy

VyλΣ
′σ′LσLθ

σLσ′L
− 1

2

1

Vyy

(VyλΣ
′σ′L)2

σLσ′L
.

We make a sophisticated guess that the solution to the PDE (3.18) is of the following form

V (t, y, λ) = G(t, λ) ln y +H(t, λ),

with boundary conditions

lim
t→∞

V (t, y, λ) = 0, lim
t→∞

G(t, λ) = 0, lim
t→∞

H(t, λ) = 0.
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The PDE (3.18) now becomes

0 =Gt ln y +Ht + φλj ln y − (r + λj)(G ln y +H)− lnG+ ln y + rG− 1

+ (Gλ ln y +Hλ)B +
1

2
tr (Σ′Σ (Gλλ ln y +Hλλ)) +

1

2
θ2
SG+

1

2

(σLθ)
2

σLσ′L
G

+
GλΣ

′σ′LσLθ

σLσ′L
+

1

2

1

G

(GλΣ
′σL)2

σLσ′L
,

where we write the corresponding partial derivatives of G and H as Gt, Ht, Gλ, Hλ, Gλλ

and Hλλ.

Separating the ln y terms and we get two ODEs

0 =Gt − (r + λj)G+GλB +
1

2
tr (Σ′ΣGλλ) + φλj + 1, (3.19)

0 =Ht − (r + λj)H − lnG+ rG− 1 +HλB +
1

2
tr (Σ′ΣHλλ) +

1

2
θ2
SG

+
1

2

(σLθ)
2

σLσ′L
G+

GλΣ
′σ′LσLθ

σLσ′L
+

1

2

(GλΣ
′σL)2

GσLσ′L
.

We only need G(t, λ) to get the optimal solutions, so we solve the ODE for G(λ) (3.19) and

obtain

G(t, λ) = Et
[∫ ∞

t

(φλj(s) + 1)e−
∫ s
t (r+λj(u))duds

]
.

Substituting G(t, λ) into (3.17) gives the optimal solutions in Proposition 3.2.1.

Appendix 3.B: Proof of Proposition 3.3.1

Proof. We first provide the calculations for AP0 (t, s). Within the OU setting, we denote

by hP(t, s, λ1) = Et
[
e−

∫ s
t λ1(u)du

]
and D(t) = e−

∫ t
0 λ1(u)du. Applying Itô’s formula to

D(t)hP(t, s, λ1) and setting the dt term equal to 0, we obtain

λ1h
P = hPt + hPλ1

(a1 − b1λ1) +
1

2
σ2

1h
P
λ1λ1

. (3.20)

As λ1(t) follows an affine class model, we make a sophisticated guess that hP(t, s, λ1) has

the following form

hP(t, s, λ1) = eA
P
0 (t,s)−AP1 (t,s)λ1(t),
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with terminal conditions hP(s, s, λ1) = 1, AP0 (s, s) = 0 and AP1 (s, s) = 0. Differentiating

h(t, λ1) and plugging into (3.20) leads to two ODEs

0 =
dAP0 (t, s)

dt
− a1A

P
1 (t, s) +

1

2
σ2

1A
P
1 (t, s)

2
,

0 = −dAP1 (t, s)

dt
+ b1A

P
1 (t, s)− 1.

Solving these ODEs gives AP0 (t, s) and AP1 (t, s) = A1(t, s) in Proposition 3.3.1.

Next, we present the derivation of G(t, λ1). According to Proposition 3.2.1, we have

G(t, λ1) =

∫ ∞
t

e−r(s−t)
(
φEt

[
λ1(s)e−

∫ s
t λ1(u)du

]
+ hP(t, s, λ1)

)
ds.

To solve Et
[
λ1(s)e−

∫ s
t λ1(u)du

]
, we denote by

Z̃(t) =
Et
[
e−

∫ s
0 λ1(u)du

]
E
[
e−

∫ s
0 λ1(u)du

] .
Then, we have

Z̃(t) = D(t)
hP(t, s, λ1)

hP(0, s, λ1)
, Et

[
λ1(s)e−

∫ s
t λ1(u)du

]
= Et

[
λ1(s)

Z̃(s)

Z̃(t)

]
hP(t, s, λ1).

Let Et
[
λ1(s) Z̃(s)

Z̃(t)

]
= Ẽt[λ1(s)], where Ẽ[·] denotes the expectation under the measure P̃

which is an equivalent measure to P which is defined below. Applying Itô’s formula to Z̃(t)

gives

dZ̃(t) =
hP(t, s, λ1)

hP(0, s, λ1)
dD(t) +

D(t)

hP(0, s, λ1)
dhP(t, s, λ1)

=− λ1(t)Z̃(t)dt+
D(t)

hP(0, s, λ1)

(
hPt + hPλ1

(a1 − b1λ1) +
1

2
σ2

1h
P
λ1λ1

)
dt

+
D(t)

hP(0, s, λ1)
hPλ1

σ1dW1(t)

=− σ1A1(t, s)Z̃(t)dW1(t),

where we use (3.20). Now, we can define P̃ through Z̃(s)

dP̃

dP
= Z̃(s) = exp

(
−
∫ s

0

σ1A1(u, s)dW1(u)− 1

2

∫ s

0

σ2
1A

2
1(u, s)du

)
,

and we have

dW̃1(u) = dW1(u) + σ1A1(u, s)du,

dλ1(u) =
(
a1(u)− b1λ1(u)− σ2

1A1(u, s)
)

du+ σ1dW̃1(u).
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Taking expectation under P̃ leads to

dẼt[λ1(u)]

du
= a1(u)− σ2

1A1(u, s)− b1Ẽt[λ1(u)].

The solution of the above ODE is then obtained through

M(t, s, λ1) =Ẽt[λ1(s)] = λ1(t)e−b1(s−t) +

∫ s

t

(
a1(u)− σ2

1A1(u, s)
)
e−b1(s−u)du

=λ1(t)e−b1(s−t) +
(
b1ν1 −

σ2
1

b1

)
(s− t) +

1 + b1∆1

∆1

(
e
s−m1

∆1 − e
t−m1

∆1

)
+
σ2

1

b1

A1(t, s).

Appendix 3.C: Proof of Proposition 3.3.3

Proof. We denote f(t, s, λ1, λ2) = Et
[
e−

∫ s
t λ2(u)du

]
. Applying Itô’s formula to

e−
∫ t
0 λ2(u)duf(t, s, λ1, λ2) and setting the dt term equal to 0, we get

λ2f =ft + fλ1(a1 − b1λ1) + fλ2(a2 − b21λ1 − b22λ2) +
1

2
fλ1λ1σ

2
1 (3.21)

+
1

2
fλ2λ2(σ2

21 + σ2
22) + fλ1λ2σ1σ21.

Asλ1(t) andλ2(t) followaffine classmodels, wemake a sophisticated guess that f(t, s, λ1, λ2)

has the following form

f(t, s, λ1, λ2) = eC0(t,s)−C1(t,s)λ1(t)−C2(t,s)λ2(t), (3.22)

with terminal conditions f(s, s, λ1, λ2) = 1, C0(s, s) = 0, C1(s, s) = 0 and C2(s, s) = 0.

Differentiating f(t, s, λ1, λ2) and plugging into (3.21) leads to three ODEs

0 =
∂C0

∂t
− a1C1 − a2C2 +

1

2
σ2

1C
2
1 +

1

2

(
σ2

21 + σ2
22

)
C2

2 + σ1σ21C1C2,

0 = −∂C1

∂t
+ b1C1 + b21C2,

1 = −∂C2

∂t
+ b22C2.
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Let γ1 = B21

b1−B22
and γ2 = σ2

21 + σ2
22, then we obtain

C0(t, s) =

(
γ2

2b2
22

− b21σ1σ21

b1b2
22

+
σ2

1γ
2
1γ2

2b2
1b

2
22

+
γ2

1σ
2
1

b1b22

)
(s− t)

+
b21(1 + b1∆1)− b2

1∆1

b1b22∆1

(
e
s−m1

∆1 − e
t−m1

∆1

)
− (1 + b1∆1)γ1 − b1∆1

b22(1 + b22∆1)∆1

(
e
s−m1

∆1 − e
t−m1

∆1
−b22(s−t)

)
− 1 + b22∆2

b22∆2

(
e
s−m2

∆2 − e
t−m2

∆2

)
− 1

b22∆2

(
e
s−m2

∆2 − e
t−m2

∆2
−b22(s−t)

)
+

(
γ1(1− σ1σ21 − γ1σ

2
1)

b1(b1 + b22)
− σ2

1γ
2
1

2b1

)
A1(t, s)

+

(
ν2 +

(b21 − 1)ν1

b22

+
γ1(σ1σ21 + γ1σ

2
1 − 1)

b1(b1 + b22)

)
C2(t, s)

+

(
2γ1σ1σ21 − σ2

1γ
2
1 − γ2

2b2
22

− γ1σ1(σ21 + γ1σ1)

b1b22

)
C2(t, s)

+
γ1(1− σ1σ21 − γ1b1σ

2
1)

b1 + b22

A1(t, s)C2(t, s)

+
2γ1σ1σ21 − γ2 − γ2

1σ
2
1

4b22

C2
2(t, s)− γ2

1σ
2
1

4b1

A2
1(t, s),

C1(t, s) =γ1

(
A1(t, s)− C2(t, s)

)
,

C2(t, s) =
1− e−b22(s−t)

b22

.

Similar to Proposition 3.3.3, in order to obtain G(t, λ1, λ2), we first solve Ẽt[λ1(s)] and

Ẽt[λ2(s)] under P̃ which is defined as

dP̃

dP
= Z̃(s) = exp

(
−
∫ s

0

θ̃(u, s)
′
dW (u)− 1

2

∫ s

0

∥∥∥θ̃(u, s)∥∥∥2

du

)
,

where

θ̃(u, s) =


σ1C1(u, s) + σ21C2(u, s)

σ22C2(u, s)

0

 ,
dW̃ (u) =dW (u) + θ̃(u, s)du.

Then, we solve the following two ODEs

dẼt[λ1(u)]

du
= a1(u)− σ2

1C1(u, s)− σ1σ21C2(u, s)− b1Ẽt[λ1(u)],

dẼt[λ2(u)]

du
= a2(u)− σ1σ21C1(u, s)− (σ2

21 + σ2
22)C2(u, s)− b21Ẽt[λ1(u)]− b22Ẽt[λ2(u)],
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and obtain

M(t, s, λ1, λ2) =Ẽt[λ2(s)] = γ1

(
N(t, s, λ1)− Γ1(t, s, λ1)

)
+ Γ2(t, s, λ2), (3.23)

N(t, s, λ1) =Ẽt[λ1(s)]

=λ1(t)e−b1(s−t) +

∫ s

t

(
a1(u)− σ2

1C1(u, s)− σ1σ21C2(u, s)
)
e−b1(s−u)du,

=λ1(t)e−b1(s−t) +
1

∆1

(
e
s−m1

∆1 − e
t−m1

∆1
−b1(s−t)

)
+
(
b1ν1 +

σ1σ21b21

2b1(b1 + b22)
− σ2

1

b1 + b22

)
A1(t, s)

− 1

2
σ1σ21γ1A

2
1(t, s) +

σ1σ21γ1b1 − σ2
1b1

b1 + b22

A1(t, s)C2(t, s)

+
σ2

1 − σ1σ21γ1

b1 + b22

C2(t, s),

Γ1(t, s, λ1) =λ1(t)e−b22(s−t) +

∫ s

t

(
a1(u)− σ2

1C1(u, s)− σ1σ21C2(u, s)
)
e−b22(s−u)du,

=λ1(t)e−b1(s−t) +
1 + b1∆1

∆1(1 + b22∆1)

(
e
s−m1

∆1 − e
t−m1

∆1
−b22(s−t)

)
+

γ1σ
2
1

b1 + b22

A1(t, s)− γ1σ
2
1b22

b1 + b22

A1(t, s)C2(t, s)

+
1

2
σ1

(
γ1σ1 − σ21

)
C2

2(t, s) +
(
b1ν1 −

γ1b1σ
2
1

b1 + b22

)
C2(t, s),

Γ2(t, s, λ2) =λ2(t)e−b22(s−t)

+

∫ s

t

(
a2(u)− σ1σ21C1(u, s)−

(
σ2

21 + σ2
22

)
C2(u, s)

)
e−b22(s−u)du

=λ2(t)e−b22(s−t) +
b21

1 + b22∆1

(
e
s−m1

∆1 − e
t−m1

∆1
−b22(s−t)

)
+

1

∆2

(
e
s−m2

∆2 − e
t−m2

∆2
−b22(s−t)

)
+

1

2

(
γ1σ1σ21 − γ2

)
C2

2(t, s)

− γ1σ1σ21b22

b1 + b22

A1(t, s)C2(t, s) +
γ1σ1σ21

b1 + b22

A1(t, s)

+
(
b21ν1 + b22ν2 −

γ1σ1σ21b1

b1 + b22

)
C2(t, s).

86



Chapter 4

Optimal winding up time and investment
strategy in a Defined Benefit scheme

4.1 Introduction

In defined benefit (DB) schemes, the benefit payments in the distribution phase are pre-

determined. Thus, the scheme sponsors face the risk of failure to cover the liabilities,

whereas the members bear no risks. DB scheme sponsors are increasingly looking for ways

to reduce their risks, and many DB schemes have closed to new entrants. According to PPF

(2020), 41% of the 5, 318 DB schemes in the UK are closed to new members (but open to

new benefit accrual), and 46% of the schemes are closed to new benefit accrual in 2020. In

this chapter, we study the risk management of a DB scheme that is closed to new entrants.

Typically, in the accumulation phase of a DB scheme, the sponsor pays flexible contributions

while the members’ contributions are fixed. The sponsor needs to adjust the contribution

rate and determine the investment strategy in order to maintain the fund in balance. Thus,

the choice of investment strategy and contribution rate is crucial for DB scheme sponsors.

The literature on risk management and asset allocation in DB schemes is rich. One main

focus is to minimize contribution rate risk and solvency risk from the perspective of DB

scheme sponsors. For example, Haberman et al. (2000) studied the contribution and solvency

risks in DB schemes in a discrete-time setting. By controlling the spread period, the aim

is to minimize a time-weighted sum of the weighted average of the quadratic deviations of

the contribution rate and scheme wealth from their desired targets. In the papers of, for

instance, Josa-Fombellida & Rincón-Zapatero (2004), Hainaut & Deelstra (2011) and Josa-
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Fombellida & Rincón-Zapatero (2012), the normal cost and the actuarial liability in a DB

scheme are defined as the ideal contribution rate and fund level, respectively. The scheme

manager chooses contribution rate and investment strategy to minimize both the quadratic

spread between contribution rate and normal cost and the quadratic deviation of terminal

assets from liabilities. In this chapter, we suppose that the members of the DB scheme we

considered are a retired cohort. In other words, the scheme is in the distribution phase,

and there is no active member (i.e., members who are currently paying into the scheme)

and no future contributions. Thus, we only focus on the scheme’s solvency risk and do not

consider the contribution rate risk. We suppose that the sponsor’s objective is to minimize

the quadratic deviation of the terminal assets from a desired target. See Josa-Fombellida &

Rincón-Zapatero (2010) and Hainaut & Deelstra (2011).

There are several consolidation solutions for DB schemes, such as transferring all the

assets and liabilities to DB master trust (or superfunds), merging with larger schemes and

scheme insurance buy-in/buy-out. An insurance buy-in is an insurance policy covering a

subset of the scheme’s members. The scheme holds the insurance policy as an asset that pays

benefits to the covered members. An insurance buy-out (or bulk annuity) is a single premium

insurance policy purchased by the scheme for all its members. Members hold insurance

policies individually, and the scheme can transfer all its pension liabilities and risks to the

insurance company. This option also enables a scheme to wind up. PPF (2020) shows that, in

the UK, the volume of buy-ins and buy-outs was £43.8bn in 2019 and £24.2bn in 2018. Since

2010, the volume of buy-ins and buy-outs has increased significantly. In this chapter, we

suppose that the scheme sponsor’s ultimate goal is to wind up the scheme through insurance

buy-out. Moreover, we assume that the sponsor sets the buy-out cost as the scheme wealth

target and measures the solvency risk as the quadratic deviation of the scheme wealth from

the buy-out cost.

In this chapter, we formulate the problem as a combined stochastic control and optimal

stopping time problem. The objective is to minimize the terminal solvency risk by controlling

the investment strategy and determining the buy-out purchase time. As far as we know, the

optimal winding up time and investment strategy problem for DB sponsors has not been

studied in the literature. However, past papers on optimal annuitization time for individual
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retirees provide a model framework for our study. See, for example, Stabile (2006), Farhi &

Panageas (2007), Milevsky & Young (2007), Gerrard et al. (2012), Park & Jang (2014) and

Park (2015). We assume that the members’ random death time is exponentially distributed

with a positive constant. See also Stabile (2006) and Gerrard et al. (2012). There is no

further building up of pension liabilities while the scheme continuously pays benefits to

surviving members until the buy-out is purchased. Before the buy-out is purchased, the

sponsor determines the investment in a risk-less asset and a risky asset. To solve the problem,

we give a verification theorem that relates the value function of the problem with a solution

to the variational HJB inequality (HJBVI). We find that the value function equals zero on one

part of the continuation region. On the other part of the continuation region, we solve the

HJBVI via Legendre dual. When the funding level on the technical provisions basis is less

than 100%, the optimal investment in the stock is a linear function of the unfunded liability.

Our main contribution is the derivation of the explicit solution to the optimal winding up and

investment strategy for DB schemes. We believe this chapter could contribute to DB scheme

sponsors and insurers in making buy-out purchase decisions.

This chapter is organized as follows. In Section 4.2, we describe the financial and insur-

ance markets and formulate the combined optimal stopping and stochastic control problem.

Section 4.3 derives the explicit solution by investigating the form of the continuation region

and applying the Legendre transform. In Section 4.4, we present numerical applications.

Section 4.5 concludes this chapter.

4.2 Model

4.2.1 The markets and the scheme

In this section, we describe the financial and insurance markets. We assume that the scheme

sponsor can trade two broad classes of assets: a bond (i.e., risk-less asset) R and a stock (i.e.,

a risky asset) S. The dynamics of the prices are described by the following equations

dRt = rRtdt,

dSt = µStdt+ σStdBt,
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where r > 0 is the constant risk-free interest rate, µ > r is the constant expected rate of stock

return, σ > 0 is the stock’s constant volatility and Bt is a standard Brownian motion defined

on a suitable probability space.

Next, we make our insurance and mortality assumptions. We consider a DB scheme

that is closed to new entrants, and all its members are pensioners. There are no future

contributions, and the scheme pays benefits continuously to surviving members. We suppose

that the scheme members are of the same age (i.e., a retired cohort), have a similar mortality

trend and receive the same benefit payments. See Hainaut & Deelstra (2011), Cox et al.

(2013) and He & Liang (2017), where the authors studied optimal control problems with a

single cohort of scheme members. Denote by τd the members’ random remaining lifetime.

We assume that the scheme sponsor believes that τd is independent of the Brownian motion

Bt and expects that τd is exponentially distributed with a positive constant parameter λS . That

is, the sponsor supposes that members’ force of morality is λS . See Stabile (2006), Gerrard

et al. (2012) and He & Liang (2017). Let n ≥ 1 be the number of scheme members at the

initial time, and β be the positive constant instantaneous benefit payment to each surviving

member. Then, the sponsor calculates the scheme’s instantaneous benefit payments P (t) and

technical provisions I(t) (i.e., the actuarial present value of future liabilities) as

P (t) = np(t)β = nβe−λ
St, I(t) =

∫ ∞
t

P (u)e−r(u−t)du =
nβ

r + λS
e−λ

St, (4.1)

where p(t) = e−λ
St is the fraction of the members that is still alive at time t. Suppose that

the scheme has an initial wealth of the size X0 = x, before the termination of the scheme,

the dynamics of Xt is given by

dXt = (rXt + π̃(t)(µ− r)− P (t)) dt+ π̃(t)σdBt, (4.2)

where π̃(t) is the investment in the stock at time t.

There may be some constraints on the investment strategy and scheme funding level:

• There may be no-short-selling and no-borrowing restrictions. In other words, π̃(t) may

be constrained to be non-negative, or the proportion of the wealth invested in stock may

be required not to exceed 100%.
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• There may be a lower limit on the funding level. For example, there may be a triggering

value l ∈ [0, 1), determined in an agreement between the sponsor and the members,

that the buy-out will be purchased (and the scheme will be wound up) if the funding

level on the technical provisions basis (i.e., Xt/I(t)) ever falls below l.

• There may be employer contributions to be paid into the scheme, though there is no

further members’ contribution. For example, in the UK, when a scheme does not have

sufficient assets to cover its technical provisions, a recovery plan must be put in place

in order to return the scheme to full funding.

In Section 4.3, we first study the situation of unconstrained π̃. Then, we assume that

short-selling is not allowed, but the sponsor has the possibility of borrowing. That is, π̃ is

constrained to be non-negative. In addition, we consider a non-negative wealth constraint

(i.e., l = 0): the sponsor is forced to purchase the buy-out and thus wind up the scheme when

the scheme ruins. Our analyses and results can be applied to cases where 0 < l < 1 and

where there are deficit reduction payments from the sponsor. See Appendix 4.B.

Following Stabile (2006) and Milevsky & Young (2007), we allow the scheme sponsor

and the insurance company to evaluate the scheme’s liability using different values of the

force of mortality, and we denote by λO the constant force of mortality used by the insurance

company. In this chapter, we suppose that λS ≥ λO and call λS and λO the subjective and

objective force of morality, respectively. The actuarial present value of a lifetime annuity ā

that pays β continuously to an individual until death is

ā =

∫ τd

0

βe−rudu = β

∫ ∞
0

e−(r+λO)udu =
β

r + λO
.

See Bower et al. (1997, Section 5). An insurance buy-out is a single premium insurance

policy that passes a pension scheme’s responsibilities to an insurance company. Once the

buy-out is purchased, members receive individual policies. Denote by L(t) the buy-out cost,

we have

L(t) = np(t)ā =
nβ

r + λO
e−λ

St.

If λS > λO, then the scheme’s technical provisions I(t) at any time t is always lower than the
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buy-out cost L(t) and vice versa. The buy-out cost coincides with the technical provisions

when λS = λO.

4.2.2 The optimization problem

The scheme sponsor plans to wind up the scheme through an insurance buy-out. The aim is

to minimize the terminal solvency risk by controlling the investment strategy π̃ and deciding

the buy-out purchasing time T . We suppose that the sponsor measures the solvency risk by

the square of the difference between the scheme wealth and the buy-out cost. The goal is to

minimize the terminal solvency risk by controlling the investment strategy and determining

the buy-out purchasing time. Then, the combined optimization problem is given as

φ(x) =inf
π̃,T

Ex
[
e−ρ(T∧τ0)(XT∧τ0 − L(T ∧ τ0))2

]
, ∀ x ∈ R+,

where ρ is the sponsor’s subjective discount rate and τ0 denotes the time of ruin τ0 := inf{t ≥

0 : Xt ≤ 0} with the convention that τ0 =∞ if Xt > 0 for all t. By definition, we find that

the value function φ(x) is always non-negative.

Remark 4.2.1 (Quadratic loss function). Denote by τ = T ∧ τ0 the termination time of the

scheme, then (Xτ − L(τ))2 measures the scheme’s terminal solvency risk. This form of the

solvency risk assessment is also used in previous works such as Josa-Fombellida & Rincón-

Zapatero (2001), Josa-Fombellida & Rincón-Zapatero (2010), Hainaut (2014) and Ngwira

& Gerrard (2007). (Xτ − L(τ))2 is also known as a quadratic loss function or a disutility

function. The buy-out cost L(τ) is a target level. It means that the sponsor wishes to achieve

this target, and deviations of the terminal scheme wealth from this target are penalized. The

use of the quadratic loss function is sometimes questioned: it also penalizes deviations above

the target. However, we do not consider this to be a limiting feature for our study. Since

once the target is achieved, there is no reason for further exposure to risk, and therefore the

surplus becomes undesirable. Thus, our choice of this objective function is appropriate. See

also Gerrard et al. (2004).

Observing the value function φ(x), we find that we can construct an auxiliary process Yt
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to rewrite φ in a simpler form. Let Yt = Xt
L(t)

, we have

dYt =
(

(r + λS)Yt + π(t)(µ− r)− (r + λO)
)

dt+ π(t)σdBt, (4.3)

where π(t) = π̃(t)
L(t)

= r+λO

nβ
eλ

Stπ̃(t). In the above, we used the relationship P (t) = (r +

λO)L(t). Yt is the scheme’s funding level on a wind up basis. On the other hand, Xt
I(t)

is the

scheme’s funding level on the technical provisions basis. For convenience, we hereafter call

Yt the funding level if not specified. At the initial time, the funding level is Y0 = y = r+λO

nβ
x.

The ruin time can now be written as τ0 = inf{t ≥ 0 : Yt ≤ 0}. Thus, denote by τ = T ∧ τ0

the termination time (or, the winding up time), the optimization problem can now be rewritten

as

φ(y) =inf
π,T

Ey
[
e−(ρ+2λS)τg(Yτ )

]
, ∀ y ∈ R+, (4.4)

where

g(ξ) =

(
nβ

r + λO

)2

(ξ − 1)2. (4.5)

Remark 4.2.2. (i) When the scheme’s funding level reaches 100%, the solvency risk

becomes zero and it is optimal to wind up the scheme immediately. Moreover, when

y = 1, we have T ∗ = 0, τ ∗ = T ∗ ∧ τ0 = 0 and φ(1) = g(1) = 0.

(ii) The compulsory wind up of the scheme when ruin occurs implies that τ0 = 0, τ ∗ =

T ∗ ∧ τ0 = 0 and φ(0) = g(0).

(iii) If the sponsor invests the total scheme wealth in the risk-less asset (i.e., π̃(t) = π(t) =

0), then the funding level Yt is a deterministic function of time:

Yt = ŷ + (y − ŷ)e(r+λS)t, ∀ y ∈ R+, (4.6)

where ŷ = r+λO

r+λS
. For y > ŷ, we have lim

t→∞
Yt = +∞. Denote by τ1 := inf{t ≥ 0 :

Yt = 1} the first time when the funding level reaches 100%. If λS > λO and y ∈ (ŷ, 1],

then we have τ0 = ∞ and P(τ1 < ∞) = 1. By definition (4.4), we find that the value

function φ(y) equals zero on (ŷ, 1]. Furthermore, it implies that the sponsor can invest

the total scheme wealth in the bond and wind up the scheme when the funding level

reaches 100%.
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(iv) When the funding level reaches ŷ, the scheme is well-funded on the technical provisions

basis, i.e., the scheme wealth Xt equals the scheme’s technical provisions I(t). If the

initial funding level is ŷ and the sponsor invests the total scheme wealth in the bond

and pays the benefits using the interest earned on the fund, then the funding level keeps

constant over time, i.e., Yt = ŷ. Moreover, we have τ0 =∞ and

0 ≤ φ(ŷ) ≤ lim
t→∞

Eŷ
[
e−(ρ+2λS)(t∧τ0)g(Yt∧τ0)

]
= 0.

4.2.3 The verification theorem

By applying the dynamic programming principle and the Itô formula, we expect the value

function φ(y) satisfies the following HJBVI

min {Lϕ(y), g(y)− ϕ(y)} = 0, ∀ y ∈ R+, (4.7)

where

Lϕ(y) =− (ρ+ 2λS)ϕ(y) + inf
π
Aπϕ(y), (4.8)

Aπϕ(y) =
(

(r + λS)y + π(t)(µ− r)− (r + λO)
)
ϕ′(y) +

1

2
π2(t)σ2ϕ′′(y).

See Oksendal (2013, chapter 10). The following theorem relates the value function to the

solution of the HJBVI. See, e.g., Stabile (2006) and Gerrard et al. (2012).

Theorem 4.2.1 (The verification theorem). Let ϕ(y) ∈ C1(R+), with the second derivative

continuous almost everywhere inR+, be a solution to (4.7) such that for all y ∈ R+ and π(t),

Ey
[∫ t

0

e−(ρ+2λS)uσπ(u)ϕ′(Yu)dBu

]
= 0, (4.9)

1 for all t. Then,

(i) ϕ(y) ≤ φ(y), ∀ y ∈ R+.

(ii) Moreover, define the sets

C :={y ∈ R+ : ϕ(y) < g(y)},

C1 :={y ∈ R+ : ϕ(y) < g(y) and ϕ(y) 6= 0}.

1The condition (4.9) is satisfied if π(u)ϕ′(Yu) is bounded.
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Within the region C1, assume that ϕ(y) is strictly convex and define the control

π∗(t) :=− µ− r
σ2

ϕ′(Y ∗t )

ϕ′′(Y ∗t )
1Y ∗t ∈C1 , (4.10)

where Y ∗t is the solution to (4.3) with π∗(t). Let τ ∗ := inf{t ≥ 0 : Y ∗t /∈ C}, and

assume that

lim
t→∞

Ey
[
e−(ρ+2λS)tϕ(Y ∗t )1τ∗>t

]
= 0. (4.11)

Then, π∗(t) and τ ∗ are the optimal control and the optimal stopping time, respectively.

Furthermore,

ϕ(y) = φ(y), ∀ y ∈ R+.

Proof. (i) For any control π(t) and stopping time τ , applying Ito’s formula to e−(ρ+2λS)tϕ(Yt)

between 0 and τ gives

e−(ρ+2λS)τϕ(Yτ ) =ϕ(y) +

∫ τ

0

e−(ρ+2λS)t
(
−(ρ+ 2λS)ϕ(Yt) +Aπϕ(Yt)

)
dt

+

∫ τ

0

e−(ρ+2λS)tπ(t)σϕ′(Yt)dBt.

Using (4.7) and (4.8), we have

ϕ(y) ≤e−(ρ+2λS)τg(Yτ )−
∫ τ

0

e−(ρ+2λS)tπ(t)σϕ′(Yt)dBt.

Taking expectation and using (4.9), we obtain

ϕ(y) ≤ Ey
[
e−(ρ+2λS)τg(Yτ )

]
.

From the arbitrariness of π(t) and T , we have ϕ(y) ≤ φ(y) for all y ∈ R+.

(ii) Consider π∗(t), τ ∗ and let Y ∗t be the corresponding trajectory. For any 0 ≤ s ≤ τ ∗, we

have Y ∗s ∈ C and −(ρ+ 2λS)ϕ(Y ∗s ) +Aπ∗ϕ(Y ∗s ) = 0. Thus,

ϕ(y) =e−(ρ+2λS)(τ∗∧t)ϕ(Y ∗τ∗∧t)−
∫ τ∗∧t

0

e−(ρ+2λS)s
(
−(ρ+ 2λS)ϕ(Y ∗s ) +Aπ∗ϕ(Y ∗s )

)
ds

−
∫ τ∗∧t

0

e−(ρ+2λS)sπ∗(s)σϕ′(Y ∗s )dBs

=e−(ρ+2λS)τ∗ϕ(Y ∗τ∗)1τ∗≤t + e−(ρ+2λS)tϕ(Y ∗t )1τ∗>t −
∫ τ∗∧t

0

e−(ρ+2λS)sπ∗(s)σϕ′(Y ∗s )dBs.
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Taking expectation and using the definition of τ ∗, we obtain

ϕ(y) = Ey
[
e−(ρ+2λS)τ∗g(Y ∗τ∗)1τ∗≤t + e−(ρ+2λS)tϕ(Y ∗t )1τ∗>t

]
.

Setting t→∞ and using (4.11), we obtain

ϕ(y) = Ey
[
e−(ρ+2λS)τ∗g(Y ∗τ∗)

]
= φ(y), ∀ y ∈ R+.

The set C is called the continuation region. When the funding level is in C, it is better to

keep operating the scheme. While, when the funding level is not in C, it is optimal to wind

up the scheme immediately (or, the scheme ruins and the sponsor is forced to terminate the

scheme immediately). Thus, we call R+\C the stopping region. The optimal stopping time

τ ∗ is the first time the funding level goes outside C. According to the verification theorem

and Remark 4.2.2, we provide the following lemmas to show some properties of C.

Lemma 4.2.1. The stopping region contains {0, 1}. If λS > λO, then the continuation region

contains [ŷ, 1).

Proof. As discussed in Remark 4.2.2, we have φ(y) = 0 < g(y) on [ŷ, 1) when λS > λO.

Besides, ϕ(1) = g(1) = 0 and ϕ(0) = g(0).

Lemma 4.2.2. If the set U is defined by U := {y ∈ R+ : Lg(y) < 0}, then

(i) the continuation region C contains the set U .

(ii) Moreover, if g(y) satisfies (4.9) and U = ∅, then ϕ(y) = g(y) for all y ∈ R+, the

continuation region is empty and it is optimal to wind up the scheme immediately.

Proof. (i) If y ∈ R+\C, then ϕ(y) = g(y) and Lϕ(y) ≥ 0, from which it follows that

Lg(y) ≥ 0 and y ∈ R+\U . Thus, (R+\C) ⊆ (R+\U) and U ⊆ C.

(ii) If U = ∅, then Lg(y) ≥ 0 for all y ∈ R+ and Aπg(Yt) ≥ 0 holds for all t. Thus,

g(y) ≤ Ey
[
e−(ρ+2λS)τg(Yτ )

]
for all τ . By definition, we have φ(y) = g(y) for all y ∈ R+

which implies that τ ∗ = 0 and C = ∅.

A common way to gain information of the continuation region C is to analyze the set U .

In Section 4.3.1, we compute the set U explicitly and use it to investigate the form of the

continuation region C.
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4.3 The optimal solution

4.3.1 The analysis of the set U

In this section, we deduce the form of the continuation region C by analyzing U in both the

situation of unconstrained π̃(t) and the situation without short-selling.

The situation of unconstrained investment strategy

If there is no restriction on the risky investment, then the sponsor is able to short the risky

asset (i.e., π̃(t) and π(t) can be negative) and has the possibility of borrowing (i.e., π̃(t)/Xt

can be greater than 1). From (4.5) and (4.8), we get

Lg(y) =

(
nβ

r + λO

)2 {
γ(y − 1)2 + 2(λS − λO)(y − 1)

}
, ∀ y ∈ R+,

where γ = 2r−ρ−
(
µ−r
σ

)2. In the above, the minimizing value of π is π(y) = −µ−r
σ2 (y−1).

We see that π ≤ 0 when y ≥ 1. When γ 6= 0, we denote

y2 = 1− 2
λS − λO

γ
. (4.12)

One can show that y2 < ŷ < 1 when γ > 0 and y2 > 1 when γ < 0. We identify the

following cases:

(a) equal forces of mortality λS = λO

U =

 ∅, if γ ≥ 0,

(0, 1) ∪ (1,+∞), if γ < 0.

(b) higher subjective force of mortality λS > λO

U =


(y2, 1), if γ > 2(λS − λO),

(0, 1), if 0 ≤ γ ≤ 2(λS − λO),

(0, 1) ∪ (y2,+∞), if γ < 0.

When λS = λO, the buy-out costL(t) and the scheme’s technical provisions I(t) coincide.

Using Lemma 4.2.1 and 4.2.2, one can find the explicit continuation region C:

C =

 ∅, if γ ≥ 0,

(0, 1) ∪ (1,+∞), if γ < 0.
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The situation where γ < 0 is likely to happen when the subjective discount rate ρ is

relatively high or when the Sharp ratio µ−r
σ

is very large. On the one hand, a large ρ means

that the scheme sponsor values the present more than the future. On the other hand, a high

Sharp ratio implies that the stock is very attractive to the sponsor as it has a high expected

rate of return but small volatility. Therefore, the sponsor would like to invest in the financial

market for a longer time and defer the buy-out purchase, though the sponsor can always wind

up the scheme by paying a price that equals exactly the technical provisions and transfer all

the risks to the insurance company. As a result, the continuation region is wide.

When γ ≥ 0, the emptiness of the continuation region C implies that it is always optimal

to wind up the scheme immediately. One could find a non-negative γ when the Sharp ratio
µ−r
σ

or the subjective discount rate ρ is relatively small. When µ−r
σ

is small, the intuition

behind this immediate-wind-up strategy is that the insurance market is more attractive than

the financial market. Besides, the sponsor values less the present than the future (i.e., ρ is

small).

Although we can find the explicit continuation region, it may be unreasonable to assume

that the subjective and objective forces of mortality coincide. In the real world insurance

market, the buy-out cost is normally higher than the technical provisions. For this reason,

we will only focus on the situation where λS > λO hereafter. To further investigate the cases

where λS > λO, we give the following lemma.

Lemma 4.3.1. Assume that there is no restriction on the risky investment and λS > λO.

Then, the value function φ(y) equals zero on y ∈ (1,+∞) and the continuation region C

contains (1,+∞).

Proof. Denote by τ1 := inf{t ≥ 0 : Yt = 1} the first time that the funding level touches

100%. If there exists at least one π such that τ1 < τ0 and P(τ1 <∞) = 1, then

0 ≤ φ(y) ≤ Ey[e−(ρ+2λS)(τ1∧τ0)g(Yτ1∧τ0)] = Ey[e−(ρ+2λS)τ1g(1)] = 0.

If we construct a control π(t) = − r+λS

µ−r (Yt − ŷ), then Yt follows

dYt = −σ(r + λS)

µ− r
(Yt − ŷ) dBt, ∀ y ∈ R+,
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which can be explicitly solved to give

Yt = ŷ + (y − ŷ) exp

{
−1

2

σ2(r + λS)2

(µ− r)2
t− σ(r + λS)

µ− r
Bt

}
.

Hence, we have lim
t→∞

Yt = ŷ < 1 almost surely. If y ∈ (1,+∞), then τ1 < τ0, P(τ1 <∞) = 1

and φ(y) = 0. Besides, (4.9) and (4.11) are satisfied.

Remark 4.3.1. Lemma 4.3.1 implies that when the investment strategy is unconstrained and

the funding level is above 100%, the sponsor can short sell the stock and purchase the buy-out

when the funding level falls to 100%. This paradoxical investment behavior is because the

sponsor’s prior objective is not to increase the scheme wealth/funding level but to reduce the

solvency risk. Later in this section, we investigate the situation where short-selling is not

allowed.

When λS > λO, using Lemma 4.2.1, 4.2.2 and 4.3.1, we infer that the continuation region

is of the form:

C =

 (ỹ, 1) ∪ (1,+∞), if γ > 2(λS − λO),

(0, 1) ∪ (1,+∞), if γ ≤ 2(λS − λO),

where ỹ is a free boundary to be determined and we require that 0 ≤ ỹ ≤ y2. Again, we find

that the continuation region C is likely to be narrower when γ has a larger value. On [ŷ,+∞),

the value function equals zero. We suppose that C1 = (ỹ, ŷ) when γ > 2(λS − λO) and

C1 = (0, ŷ) otherwise. It remains to determine the free boundary ỹ and the value function

within region C1.

The situation without short-selling

In this section, we consider the situation where short-selling is not allowed (i.e., π(t) is

constrained to be non-negative) and suppose that λS > λO. From (4.5) and (4.8), the first

and second order partial derivatives of Aπg with respect to π are respectively

∂Aπg
∂π

= (µ− r)(y − 1) + σ2π,
∂2Aπg
∂π2

= σ2 > 0.
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When y > 1, the first order partial derivative is positive for all π ≥ 0. Thus, the minimizing

π is

π(y) =

 −
µ−r
σ2 (y − 1), on y ∈ [0, 1],

0, on y ∈ (1,+∞).

Hence,

Lg(y) =


(

nβ
r+λO

)2 {
γ(y − 1)2 + 2(λS − λO)(y − 1)

}
, on y ∈ [0, 1],(

nβ
r+λO

)2 {
(2r − ρ)(y − 1)2 + 2(λS − λO)(y − 1)

}
, on y ∈ (1,+∞).

When 2r − ρ 6= 0, we denote by ȳ2 = 1− 2λ
S−λO
2r−ρ and identify the following cases:

U =


(y2, 1), if 2r ≥ ρ+ 2(λS − λO) +

(
µ−r
σ2

)2
,

(0, 1), if ρ ≤ 2r < ρ+ 2(λS − λO) +
(
µ−r
σ2

)2
,

(0, 1) ∪ (ȳ2,+∞), if 2r < ρ,

where y2 is given in (4.12). We first study the case where 2r < ρ and give the following

lemma.

Lemma 4.3.2. Assume that short-selling is not allowed, λS > λO and 2r < ρ. Then, the

value function φ(y) equals zero for all y ∈ [ŷ,+∞). Furthermore, the continuation region

is C = (0, 1) ∪ (1,+∞).

Proof. We prove the statement by constructing a risk-free investment strategy. If π(t) = 0,

then Yt is deterministic and is given in (4.6). For any y ∈ R+, we have

Ey
[
e−(ρ+2λS)(t∧τ0)g(Yt∧τ0)

]
=(ŷ − 1)2e−(ρ+2λS)(t∧τ0) + 2(ŷ − 1)(y − ŷ)e(r−ρ−λS)(t∧τ0)

+ (y − ŷ)2e(2r−ρ)(t∧τ0).

When y ∈ [ŷ,+∞), we have τ0 =∞. Hence,

0 ≤ φ(y) ≤ lim
t→∞

Ey
[
e−(ρ+2λS)(t∧τ0)g(Yt∧τ0)

]
= 0, ∀ y ∈ [ŷ,+∞).

Thus, the value function equals zero for all y ∈ [ŷ,+∞) as 2r < ρ and φ(y) = g(y) for all

y ∈ (0, 1) ∪ (1,+∞).

100



Therefore, the continuation region is of the form:

C =


(ỹ, 1), if 2r ≥ ρ+ 2(λS − λO) +

(
µ−r
σ2

)2
,

(0, 1), if ρ ≤ 2r < ρ+ 2(λS − λO) +
(
µ−r
σ2

)2
,

(0, 1) ∪ (1,+∞), if 2r < ρ.

Although we are able to obtain the explicit C when ρ > 2r, we will restrict our attention to

the case ρ ≤ 2r from now on. Since it is not realistic to assume that the sponsor’s subjective

discount rate is more than twice the risk-free interest rate. If short-selling is not allowed,

2r ≥ ρ and the initial funding level is above 100%, then it is optimal to purchase the buy-out

immediately.

4.3.2 Legendre transform

In this section, we study the value function in region C1. According to the HJBVI (4.7) and

using the optimal control (4.10), the value function satisfies

0 = −(ρ+ 2λS)ϕ+ (r + λS)yϕ′ − (r + λO)ϕ′ − 1

2

(µ− r
σ

)2 (ϕ′)2

ϕ′′
, (4.13)

for all y ∈ C1. Where we have assumed that ϕ′′ > 0. If short-selling is not allowed, we also

require that ϕ′ < 0. We apply the Legendre transform to linearise this non-linear 2nd order

ODE. See, e.g., Choulli & Hurd (2001), Jonsson & Sircar (2002), Milevsky et al. (2006) and

X. Liang et al. (2014). Define

H(z) = inf
y>0
{ϕ(y) + zy},

where z ≥ 0 is the dual variable to y. The value of y where this optimum is attained is

denoted by f(z), so we have

f(z) = sup{y > 0 | ϕ(y) ≤ H(z)− zy}.

The relationship between H(z) and f(z) is f(z) = H ′(z). We can choose either f(z) or

H(z) as the dual function of ϕ(y). In this chapter, we use f(z). Moreover, we have

ϕ′(y) = −z, H(z) = ϕ(f) + zf, f(z) = y. (4.14)

101



Differentiating (4.14) with respect to y, we have

ϕ′(y) = −z, ϕ′′(y) = − 1

f ′(z)
= − 1

H ′′(z)
.

Since we assume ϕ′′(y) > 0, we require that f ′(z) < 0. Substituting into (4.13), we obtain

0 = −(ρ+ 2λS)(H − zy)− (r + λS)zy + (r + λO)z +
1

2

(µ− r
σ

)2

z2H ′′.

Differentiating the above equation with respect to z and using f(z) = H ′(z), we get

1

2

(µ− r
σ

)2

z2f ′′ −
(
r − ρ− λS −

(µ− r
σ

)2)
zf ′ − (r + λS)f = −(r + λO). (4.15)

We first solve the homogeneous equation associated to (4.15) and obtain

fcf (z) = C1z
α1 + C2z

α2 ,

where α1 < −1 < 0 < α2 are two roots of the equation

1

2

(µ− r
σ

)2

α2 −
(
r − ρ− λS − 1

2

(µ− r
σ

)2
)
α− (r + λS) = 0.

It should be noticed that z does not take the value 0 whenC1 6= 0, otherwise zα1 is undefined.

The particular solution to (4.15) is

fp(z) =
r + λO

r + λS
.

Therefore, the solution to (4.15) is given by

f(z) = C1z
α1 + C2z

α2 +
r + λO

r + λS
,

where C1 and C2 are constants to be determined. Moreover, C1 and C2 do not equal to zero

at the same time, otherwise function f(z) is not invertible. The corresponding functions H

and ϕ are respectively

H(z) =
1

α1 + 1
C1z

α1+1 +
1

α2 + 1
C2z

α2+1 +
r + λO

r + λS
z, (4.16)

ϕ(f(z)) = − α1

α1 + 1
C1z

α1+1 − α2

α2 + 1
C2z

α2+1.

The optimal controls π∗ and π̃∗ can now be written as

π∗(f(z)) = −µ− r
σ2

zf ′(z) = −µ− r
σ2

(
C1α1z

α1 + C2α2z
α2

)
, (4.17)

π̃∗(t, f(z)) = π∗(f(z))L(t) = −µ− r
σ2

(
C1α1z

α1 + C2α2z
α2

) nβ

r + λO
e−λ

St.
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Notice that, since z ≥ 0 and we require f ′(z) < 0, we have π∗ ≥ 0 and π̃∗ ≥ 0. The optimal

investment in stock π̃∗ is always non-negative within region C1 even in the situation without

restriction on risky investment.

4.3.3 Explicit solution

In this section, we explicitly solve the value function ϕ(y) and the free boundary ỹ when the

buy-out cost is more expensive than the technical provisions (i.e., λS > λO).

Case 1

Proposition 4.3.1. Assume that λS > λO, γ > 2(λS − λO) and λO ≥ (1−α2)r+(1+α2)λS

2α2
.

(i) If there is no restriction on the risky investment, then C1 = (ỹ, ŷ) and C = (ỹ, 1) ∪

(1,+∞) with

ỹ = 1− 2α2

α2 − 1

λS − λO

r + λS
. (4.18)

The optimal stopping time is τ ∗ = inf{t ≥ 0 : Y ∗t /∈ C}. The value function is

ϕ(y) =


g(y), on y ∈ [0, ỹ],

α2

α2+1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 , on y ∈ (ỹ, ŷ),

0, on y ∈ [ŷ,+∞),

where

C2 = −1

4

α2 + 1

α2

(
nβ

r + λO

)−1−α2
(

4α2

α2 − 1

λS − λO

r + λS

)1−α2

. (4.19)

Within region C1, the optimal controls are

π∗(t) = α2
µ− r
σ2

(ŷ − Y ∗t ), π̃∗(t) = α2
µ− r
σ2

(I(t)−X∗t ) . (4.20)

(ii) If short-selling is not allowed, then C1 = (ỹ, ŷ) and C = (ỹ, 1) with ỹ given in (4.18).

The optimal stopping time is τ ∗ = inf{t ≥ 0 : Y ∗t /∈ C}. The value function is

ϕ(y) =


g(y), on y ∈ [0, ỹ] ∪ [1,+∞),

α2

α2+1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 , on y ∈ (ỹ, ŷ),

0, on y ∈ [ŷ, 1],

where C2 is given in (4.19). Within region C1, the optimal controls are given in (4.20).
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See Appendix 4.A for the proof.

Figure 4.3.1 describes the value function ϕ(y) and function g(y). We see that, on [0, ỹ],

ϕ(y) = g(y) and it is optimal to wind up the scheme immediately. Within C1 = (ỹ, ŷ), ϕ(y)

is strictly convex and the optimal investment in stock π̃∗(t) is proportional to the unfunded

liability (i.e., the difference between the technical provisions I(t) and the scheme wealthXt).

In other words, the optimal investment strategy is a linear function of the unfunded liability

of the scheme. A similar investment strategy can be found in Josa-Fombellida & Rincón-

Zapatero (2001), where the aim is to minimize a DB scheme’s solvency and contribution rate

risks on an infinite time horizon. However, one can not infer the optimal weight invested

in the stock from the analytical solution (4.20). It is straightforward to see that the higher

the unfunded liability, the more is invested in the stock. Since α2 depends on r, µ and σ,

the impact of the risk-free interest rate r and the Sharp ratio µ−r
σ

on the optimal investment

strategy π̃∗ is unclear. We will numerically investigate the impact of model parameters on

the threshold value ỹ in Section 4.4.

Figure 4.3.1: The value function in Case 1 when (a) there is no restriction on risky investment
(b) short-selling is not allowed

Substituting π̃∗(t) into (4.3), for all 0 ≤ t ≤ τ ∗, we obtain

Y ∗t = ŷ + (y − ŷ)exp

{(
r + λS − α2

(
µ− r
σ

)2

− 1

2
α2

2

(
µ− r
σ

)2
)
t− α2

µ− r
σ

Bt

}
.

When y ∈ (ỹ, ŷ), the funding level Y ∗t is always lower than ŷ and can never reach 100%.

Thus, the buy-out is purchased the first time when the funding level touches the threshold

value ỹ. Moreover, the optimal stopping time is τ ∗ = inf{t ≥ 0 : Y ∗t = ỹ}. The lower is ỹ,

the later the sponsor purchases the buy-out. While, the closer is ỹ to ŷ, the earlier the wind up

happens. According to (4.25), we have ∂ỹ
∂λO

> 0, ∂2ỹ

∂λO2 = 0 and ∂ỹ
∂λS

< 0. Thus, the higher the
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objective force of mortality λO (or the lower the subjective force of mortality λS), the higher

the threshold value ỹ. It implies that the cheaper the buy-out, the narrower the continuation

region and the earlier the sponsor decides to wind up the scheme.

When y ∈ [ŷ, 1), the sponsor can invest all the scheme wealth into the bond and wind

up the scheme when the funding level increases to 100%. If the investment strategy π̃∗(t)

is unconstrained and the initial funding level is above 100%, the sponsor can short sell the

stock and wind up the scheme when the funding level falls to 100%. While, if short-selling

is not allowed, the sponsor winds up the scheme immediately if the initial funding level is

above 100%. Since investing in the financial market is expected to increase the funding level

and (I(t)−Xt)
2.

Case 2

Let us give the following conditions:

γ > 2(λS − λO), λO <
(1− α2)r + (1 + α2)λS

2α2

, (4.21)

γ ≤ 2(λS − λO). (4.22)

Proposition 4.3.2. Assume that λS > λO, and either (4.21) or (4.22) is satisfied.

(i) If there is no restriction on the risky investment, then C1 = (0, ŷ) and C = (0, 1) ∪

(1,+∞). The optimal stopping time is τ ∗ = inf{t ≥ 0 : Y ∗t /∈ C}. The value function

is

ϕ(y) =


α2

α2+1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 , on y ∈ [0, ŷ),

0, on y ∈ [ŷ,+∞),

where

C2 = −
(
α2 + 1

α2

)−α2
(

nβ

r + λO

)−2α2

ŷ1+α2 . (4.23)

Within region C1, the optimal controls are

π∗(t) = α2
µ− r
σ2

(ŷ − Y ∗t ), π̃∗(t) = α2
µ− r
σ2

(I(t)−X∗t ) . (4.24)

105



(ii) If short-selling is not allowed and 2r ≥ ρ, then C1 = (0, ŷ) and C = (0, 1). The optimal

stopping time is τ ∗ = inf{t ≥ 0 : Y ∗t /∈ C}. The value function is

ϕ(y) =


α2

α2+1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 , on y ∈ [0, ŷ),

0, on y ∈ [ŷ, 1],

g(y), on y ∈ [1,+∞),

where C2 is given in (4.23). Within region C1, the optimal controls are given in (4.24).

Proof. Within region C1, the value function is given in (4.16). One can obtain the solution

using boundary conditions ϕ(0) = g(0) and ϕ(ŷ) = 0.

Figure 4.3.2: The value function in Case 2 when (a) there is no restriction on risky investment
(b) short-selling is not allowed

In this case, the value function ϕ(y) is C2 everywhere in R+ and is described in Figure

4.3.2. Within C1, the optimal investment strategy π̃∗(t) is again a constant proportion to the

unfunded liability I(t)−Xt.

4.4 Numerical applications

In this section, we consider Case 1 and numerically examine the impact of the model param-

eters on the optimal solution. Section 4.4.1 gives a base scenario and calculates the threshold

value ỹ of the funding level and the optimal investment strategy π̃∗(t). Then, in Section 4.4.2,

we investigate the impact of initial funding level on the winding up time and investment

strategy. Section 4.4.3 and 4.4.4 provide sensitivity analyses to investigate the impact of the

mortality and market assumptions on the threshold value ỹ.
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4.4.1 A base scenario

Weassume that the subjective discount rate equals the risk-free interest rate, i.e., r = ρ = 0.03.

The drift and the diffusion of the risky asset are µ = 0.06 and σ = 0.30, respectively. The

choice of those financial market parameters is meant to be representative. At the initial time,

there are n = 100 members in the scheme. According to DWP (2021), the full new State

Pension is £179.60 per week in the UK. Thus, we suppose that the scheme pays β = 9, 365

pounds to each alive member per year continuously. The scheme actuary assumes that the

members’ remaining lifetime is 30 years, while the insurance company supposes that the

remaining life expectancy is 32 years, i.e., λS = 1
30

and λO = 1
32
. We obtain that ỹ = 0.7687

and ŷ = 0.9671. We choose the initial funding level as y = (ỹ + ŷ)/2 = 86.79%. Using the

optimal investment strategy π̃∗(t) presented in (4.20), we run 10, 000Monte Carlo simulations

over a 30-year time horizon. The distribution of the optimal winding up time is shown in

Figure 4.4.1. In the figure, ‘N’ in the x-axis reports the number of cases (1,437 out of 10,000)

where the wind up does not happen within 30 years. We find that there is an 85.63% chance

that the sponsor winds up the scheme within 30 years. Figure 4.4.2 plots the wealth level and

Winding up time

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure 4.4.1: The distribution of the optimal winding up time

investment strategy of the 1,437 cases where the buy-out is not purchased within 30 years.

In the left plot, we see that the scheme’s technical provisions I(t) and buy-out cost L(t) are

decreasing over time. It is because the number of surviving members drops continuously.

Although the sponsor invests in the financial market to gain investment returns, the scheme

wealth Xt declines. This is because there are continuous benefit payments to surviving

members. In the right plot, we see that both the funding level on a wind up basis Xt
L(t)

and the
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funding level on the technical provisions basis Xt
I(t)

have similar trends: they increase slightly

in the first 15 years and drop in the late 15 years.
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Figure 4.4.2: The dynamics of wealth level and funding level

In the left plot of Figure 4.4.3, we see that both the investment in stock π̃∗(t) and the

unfunded liability I(t) − Xt decline over time, and π̃∗(t) drops slower than I(t) − Xt. As

shown in the right plot, the optimal proportion of the scheme wealth invested in the stock

decreases in the first 17 years and increases in the late years. This is because the investment

in stock π̃∗(t) drops slower than the scheme wealth Xt in the late years. The optimal stock

weight takes values between 0.05 to 0.065, implying that the sponsor invests most of the

scheme wealth (over 90%) in the bond.
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Figure 4.4.3: The dynamics of investment amount and investment proportion

4.4.2 Initial funding level

By varying the initial funding level y, we observe the impact of y on the winding up behavior.

Figure 4.4.4 shows that the closer the initial funding level is to the threshold value ỹ, the
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greater the chance that the buy-out is purchased within 30 years. We see that, when the

initial funding level is 95%, τ ∗ ≤ 30 in only 673 out of 10,000 of the paths. When the initial

funding level is 77%, there are only 11 paths where the sponsor does not wind up the scheme

within 30 years. Besides, the possibility that the funding level touches ŷ is zero.

Winding up within 30 years
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Figure 4.4.4: The impact of the initial funding level on the winding up behavior

Then, we test the impact of the initial funding level y on the optimal investment strategy

π̃∗(t) and show our results in Figure 4.4.5. We observe that the higher the initial funding

level, the less is invested in the stock. It is because the lower the initial funding level, the

larger the unfunded liability. Thus, the sponsor invests more in the stock to gain investment

return and reduce the unfunded liability. Also, the higher the initial funding level, the smaller

the proportion of the scheme wealth is invested in the stock.
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Figure 4.4.5: The impact of initial funding level on the investment strategy

4.4.3 Mortality assumption

Now, we examine the impact of mortality assumptions on the buy-out purchasing strategy

by varying the values of subjective life expectancy 1
λS

and objective life expectancy 1
λO

. In
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Figure 4.4.6, we present two scenarios: (a) we suppose the subjective life expectancy goes

from 15 to 50 years, and objective life expectancy is always two years more than the subjective

life expectancy, i.e., 1
λS

= 1
λO
−2; (b) the subjective life expectancy is fixed to 30 years, while

the objective life expectancy changes from 30 to 35 years.
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Figure 4.4.6: The impact of λ on the threshold value ỹ

The results are consistent with our discussion in Section 4.3.3 that ỹ decreases when

λS increases (λO decreases). Figure 4.4.6 (a) shows that ỹ is an increasing function of the

subjective life expectancy
(

1
λS

)
. The intuition behind this is that if the scheme members are

younger and expected to live longer, the sponsor is more concerned with the solvency risk

and would like to purchase the buy-out earlier. As a result, ỹ is higher and the continuation

region is narrower when the expected remaining life span is longer. For smaller values of

the subjective life expectancy, we observe that the threshold value ỹ increases more rapidly

as the expected remaining lifetime increases. It is because that when the expected remaining

lifetime increases, the ratio L(t)/I(t) = r+λS

r+λO
decreases and the buy-out cost L(t) is closer to

the technical provisions I(t). Thus, the buy-out becomes more attractive, the sponsor prefers

to wind up the scheme earlier and, ỹ increases more sharply.

Figure 4.4.6 (b) indicates that ỹ declines as the objective life expectancy
(

1
λO

)
increases.

The higher the objective life expectancy, the lower the objective force of mortality λO and

the higher the buy-out cost. Intuitively, if λS is much larger than λO, then the buy-out cost is

much higher than what the scheme sponsor would expect, and the buy-out is not attractive.

Meanwhile, the sponsor finds the financial market more attractive and decides to invest in

the financial market for a longer time. If λO is slightly lower than λS , then the insurance

market is more attractive since the buy-out cost is cheaper and closer to the price that the
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sponsor expects. Immediate winding up is always optimal, if the subjective and objective

forces of mortality coincide. It is because that the buy-out cost equals the present value of

future benefit payments, and winding up enables the sponsor to transfer all the scheme’s risks

to the insurance company.

4.4.4 Financial market condition

Next, we investigate the impact of the subjective discount rate ρ and market parameters r, µ

and σ on the winding up strategy. Figure 4.4.7 shows how the changes in risk-free interest

rate r and subjective discount rate ρ affect the threshold ỹ. We observe that ỹ increases

(decreases) as the risk-free interest rate r increases (the subjective discount rate ρ decreases).

On the one hand, the higher the risk-free interest rate r, the cheaper the buy-out cost L(t),

and the more attractive is the buy-out. Besides, the Sharp ratio of the risky asset is low when

r is high. This makes the stock less attractive. Thus, the sponsor would wind up the scheme

earlier and ỹ is larger when the risk-free interest rate is higher. On the other hand, the higher

the subjective discount rate ρ, the more the scheme sponsor values the present. Thus, the

sponsor defers the buy-out purchasing, and ỹ is smaller.
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Figure 4.4.7: The impact of the risk-free interest rate r and subjective discount rate ρ on the
threshold value ỹ

In Figure 4.4.8, we plot the values of threshold ỹ when varying the drift µ and diffusion

σ of the risky asset. We observe that the higher the µ and the lower the σ, the lower the ỹ and

the wider the continuation region. The convention is that an increase in µ (σ) increases the

Sharp ratio µ−r
σ
, thus making the stock more attractive. Therefore, if the Sharp ratio is high,

the sponsor finds the financial market more attractive than the insurance market, and would
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defer the buy-out purchasing for a longer time.
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Figure 4.4.8: The impact of the risk-free interest rate r and subjective discount rate ρ on the
threshold value ỹ

4.5 Conclusion

In this chapter, we have studied the problem faced by a DB scheme sponsor who plans to wind

up the scheme via insurance buy-out and has to decide the investment strategy and the buy-out

purchasing time. We suppose that the scheme is closed to new entrants with all its members

being pensioners. The sponsor’s objective is to minimize the expected quadratic deviation

of the terminal wealth from the buy-out cost. The problem is formulated as a combined

stochastic control and optimal stopping time problem. We provide a verification theorem

that characterizes the value function of the combined problem, and the explicit solution is

obtained by solving the corresponding variational HJB inequality.

Our analyses show that an immediate-wind-up strategy is optimal when the initial fund-

ing level is above 100% if short-selling is not allowed. When the investment strategy is

unconstrained, and the initial scheme wealth is sufficient to cover the technical provisions, it

is optimal to wind up the scheme when the scheme wealth equals the buy-out cost. While,

if the scheme wealth is initially lower than the technical provisions, it is optimal to purchase

the buy-out when the funding level touches a threshold under specific financial and insurance

markets conditions. Our numerical results show that the sponsor tends to wind up the scheme

earlier when the members are younger. The cheaper the buy-out cost, the earlier the sponsor

winds up the scheme. In addition, the sponsor would invest in the financial market for a

longer time and wind up the scheme later if the Sharp ratio or the subjective discount rate is
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high. Moreover, before winding up the scheme, the optimal investment in the stock turns out

to be a linear function of the unfunded liability.

Further research may include generalizing the model to incorporate stochastic interest rate

and stochastic force of mortality: the constant risk-free interest rate and force of mortality

limit the analyses to address practical issues associated with the financial and insurance

markets. Another extension would be to introduce a more complicated member structure.

Rather than pensioners only, one can consider a DB scheme that has both active and pensioner

members.
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Appendices

Appendix 4.A: Proof of Proposition 4.3.1

Proof. (i) When λS > λO, Remark 4.2.2 and 4.3.1 show that φ(y) = 0 on [ŷ,+∞). When

γ > 2(λS − λO), we have deduced that C1 = (ỹ, ŷ) and C = (ỹ, 1) ∪ (1,+∞). On [ŷ,+∞),

the value function equals zero. Within region C1 = (ỹ, ŷ), the value function is given in

(4.16) with the free boundary ỹ and constants C1 and C2 to be determined.

To solve for the values of ỹ, C1 and C2, we apply the smooth-fitting principle. In addition,

we require a boundary condition at y = ŷ. Two possible boundary conditions are ϕ(ŷ) = 0

and π(ŷ) = 0.

(a) Boundary condition at y = ŷ. Since the value function equals zero on [ŷ,+∞), one

reasonable boundary condition is ϕ(ŷ) = 0. Define by ẑ := {z ≥ 0 : f(z) = ŷ}, we have

ϕ(f(ẑ)) = 0 and f(ẑ) = ŷ. Using (4.16), we get C1ẑ
α1 + C2ẑ

α2 + ŷ = ŷ,

− α1

α1+1
C1ẑ

α1+1 − α2

α2+1
C2ẑ

α2+1 = 0.

It can be shown that α2 > 1 when γ > 0. Since ẑ ≥ 0, α1 < −1, α2 > 1 and C1 and C2 do

not equal to zero at the same time, we obtain that C1 = 0 and ẑ = 0.

When y ∈ [ŷ, 1), Remark 4.2.2 shows that the sponsor can invest the total scheme wealth

in the bond and wind up the scheme at the time when the funding level increases to 100%.

Thus, another possible boundary condition is π(f(ẑ)) = 0. Using (4.17), we get C1ẑ
α1 + C2ẑ

α2 + ŷ = ŷ,

−µ−r
σ2

(
C1α1ẑ

α1 + C2α2ẑ
α2

)
= 0.

Again, we obtain that C1 = 0 and ẑ = 0. Now, we have

f(z) = C2z
α2 +

r + λO

r + λS
, ϕ(f(z)) = − α2

α2 + 1
C2z

α2+1,

where C2 is a negative constant such that ϕ is convex.

(b) Value-matching and smooth-fitting conditions. We require that the free boundary ỹ is

non-negative and is smaller than y2.
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Define by z̃ := {z ≥ 0 : f(z) = ỹ}, the value-matching and smooth-fitting conditions

give 
C2z̃

α2 + ŷ = ỹ,

− α2

α2+1
C2z̃

α2+1 =
(

nβ
r+λO

)2
(ỹ − 1)2,

−z̃ = 2
(

nβ
r+λO

)2
(ỹ − 1).

The solution is 
z̃ = 4α2

α2−1
λS−λO
r+λS

(
nβ

r+λO

)2
> 0,

ỹ = 1− 2α2

α2−1
λS−λO
r+λS

,

C2 = −1
4
α2+1
α2

(
nβ

r+λO

)−1−α2
(

4α2

α2−1
λS−λO
r+λS

)1−α2

< 0.

(4.25)

After some algebra, one can prove that ỹ < y2. When λO ≥ (1−α2)r+(1+α2)λS

2α2
, we have ỹ ≥ 0.

Otherwise, we set ỹ = 0. It can be shown that f : (0, z̃)→ (ỹ, ŷ) is monotonically decreasing

and is invertible. In addition, we find that ϕ′′(y) > 0 for all y ∈ (ỹ, ŷ). Thus, the convexity

of ϕ(y) within the region C1 is verified.

(c) Within region C1, the optimal controls are

π∗(t) =− µ− r
σ2

zf ′(z) = α2
µ− r
σ2

(ŷ − Y ∗t ),

π̃∗(t) =π∗(t)L(t) = α2
µ− r
σ2

(I(t)−X∗t ) ,

where we used the relationships I(t) = ŷL(t) and Xt = YtL(t). It is easy to show that π∗ϕ′

is bounded on (ỹ, ŷ) and (4.9) is satisfied.

(ii) The proof is similar to statement (i) and is omitted here.

Appendix 4.B: Extended Applications

Extension to the case with wealth constraint

Suppose that the sponsor is required to purchase the buy-out and wind up the schemewhen the

funding level on the technical provisions basis Xt
I(t)

touches l ∈ (0, 1) (where I(t) and Xt are

given in (4.1) and (4.2)). Consider the funding levelYt given in (4.3) and denote by y = r+λS

r+λO
l.

Then, for y ≥ y, the optimization problem is given by (4.4) with τ0 = inf{t ≥ 0 : Yt ≤ y}.

In addition, we assume that λS > λO, and there is no restriction on the investment strategy.
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When γ > 2(λS−λO)
1−y and ỹ = 1− 2α2

α2−1
λS−λO
r+λS

> y, one can obtain that C = (ỹ, 1)∪(1,+∞)

and C1 = (ỹ, ŷ). Within region C1, the value function is

ϕ(y) =
α2

α2 + 1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 ,

where C2 is given in (4.19). The optimal controls are given in (4.20).

Otherwise, one obtains that C = (y, 1) ∪ (1,+∞), C1 = (y, ŷ) and C2 is given in (4.23).

Extension to the case with deficit reduction payments

When the scheme’s funding level on the technical provisions basis is lower than 100%,

the sponsor may be required by the regulator to pay deficit reduction payments in order to

return the scheme to full funding. This section considers a special case where the sponsor

continuously pays a fixed fraction of the unfunded liability into the scheme before the winding

up time. That is, we suppose that the instantaneous deficit reduction payment is

C(t) = δ(I(t)−Xt),

where δ > 0. Hence, the scheme wealth evolves as

dXt = (rXt + π̃(t)(µ− r) + C(t)− P (t)) dt+ π̃(t)σdBt,

=
(
(r − δ)Xt + π̃(t)(µ− r)− (r + λS − δ)I(t)

)
dt+ π̃(t)σdBt.

The funding level follows

dYt =
(

(r + λS − δ)(Yt − ŷ) + π(t)(µ− r)
)

dt+ π(t)σdBt,

where π̃(t) = π(t)
L(t)

. When δ > r + λS , one can show that the value function equals zero for

all y ∈ R+.

When δ < r + λS , one finds that the value function equals zero on [ŷ,+∞). Denote by

γ = 2r − ρ− 2δ −
(µ− r

σ

)2
, ỹ = 1− 2α2

α2 − 1

λS − λO

r + λS
,

where α2 > 1 is the positive solution to

1

2

(µ− r
σ

)2

α2 −
(
r − ρ− λS − δ − 1

2

(µ− r
σ

)2
)
α− (r + λS − δ) = 0.

116



If γ > 2(r+λS−δ)λS−λO
r+λS

and ỹ > 0, then C = (ỹ, 1)∪ (1,+∞) and C1 = (ỹ, ŷ). Within

region C1, the value function is

ϕ(y) =
α2

α2 + 1
(−C2)

− 1
α2 (ŷ − y)

1+ 1
α2 ,

where C2 is given in (4.19).

Otherwise, one obtains that C = (0, 1) ∪ (1,+∞), C1 = (0, ŷ) and C2 is given in (4.23).
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