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Abstract 
 
Hypertension, the chronic elevation of blood pressure, remains a sub-optimally 

managed condition for a large proportion of people and combined with its high 

incidence, is a large contributor to morbidity and mortality worldwide. Hypertension 

precision medicine aims to tailor treatment protocols to individuals in order to reduce 

side-effects and cost whilst improving efficacy of treatment. A hypertension GWAS 

by Padmanabhan et al, identified a locus on the cis-promoter of the human UMOD 

gene, indexed at rs13333226, as associating with reduced urinary UMOD levels, 

reduced systolic pressure and reduced cardiovascular disease events per copy of the 

‘protective’ haplotype. UMOD, a gene expressed almost exclusively in the thick 

ascending limb of mammalian kidneys was subsequently identified as correlating 

positively with bioavailability or activity of SLC12A1 (NKCC2), a renal sodium 

potassium chloride co-transporter, thus associating UMOD with blood pressure 

through natriuresis and volume retention. In this thesis, we aimed to refine the 

understanding of the variants which differentially drive expression of UMOD and to 

elaborate on the mechanisms with associate UMOD levels with blood pressure 

regulation, such that our findings may inform the rationale for downstream precision 

medicine experimentation.  

 

Whilst rs13333226 was the discovery variant in the initial GWAS, we hypothesised the 

nearby variant rs4997081 functionally drives differential expression between alleles, 

based on previous data. Firstly, we sought to determine the binding affinity of 50-

mer oligonucleotides, centered on our target variants, for renal cell nuclear lysate, 

in order to infer transcriptional activity. By performing electrophoretic mobility shift 

assays on material derived from both HEK293 and HK2 cells, on rs13333226 and 

rs4997081, we showed that rs13333226 does not display differential binding affinity 

for nuclear lysate between genotypes, whilst the ‘risk’ (G) genotype at rs4997081 

displayed significantly greater binding affinity versus the protective (C) genotype. 

Using mass spectrometry on purified binding complexes at rs4997081, we identified 

a number of potential proteins, including PARP1 as complexing at this site. The 

addition of TNF-α to these cells caused an abrogation in the differences in binding 
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affinity between the risk and protective alleles at rs4997081. Together these data 

suggest that PARP1 differentially complexes at rs4997081 in a TNF-α dependent 

manner to drive differential expression of UMOD.  

 

Following this, we aimed to characterise the association between UMOD mRNA and 

the renal transcriptome. We performed a low sample-size RNA-sequencing 

experiment (n=3/group) on human individuals stratified by expression of UMOD. We 

detected strong positive coexpression between UMOD and NKCC2, which we validated 

by qRT-PCR in 84 human samples, showing a highly significant correlation. Alongside 

this coexpression, we also detected significant increases in WNK1/4, KCNJ1/5 and 

decreases in SGK1 mRNA levels, with each of these genes implicated in renal blood 

pressure regulation independently in the literature, these findings may indicate 

additional complementary mechanisms by which UMOD associates with hypertension. 

By gene set enrichment and pathway analysis we showed enrichment toward NFKβ 

and TNF-α signaling as associating with UMOD levels, corroborating our prior findings 

by EMSA and mass spectrometry. Furthermore, analysis of long non-coding RNAs both 

using bulk RNA sequencing and independent single cell data mining indicated 

lnc01762 as associating with UMOD expression and thus potentially associating with 

blood pressure regulation. Together, these data further reinforce the canonical 

understanding between UMOD and blood pressure regulation through NKCC2, but also 

indicate a number of novel mechanisms which may be potential therapeutic targets. 

 

Seeking to identify relationships between the UMOD promoter haplotype, UMOD 

expression and patient phenotype, we performed analysis of a cohort of n=84 human 

renal samples characterized by Sanger sequencing at both rs13333226 and rs4997081 

and for expression of UMOD by qRT-PCR. Our findings suggest that protective 

haplotype females have significantly reduced systolic blood pressure than either risk 

haplotype females or risk or protective haplotype males, indicating a potential UMOD 

sex effect. We stress that the single-measurement blood pressure recordings 

collected during this sampling do not qualify as reliable, however we believe this 

finding requires additional research. We furthermore sought to determine 

relationships between antihypertensive treatments and UMOD mRNA levels and show 
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that treatment with both bendroflumethiazide and amlodipine in this cohort 

associates with significant reductions in UMOD expression, independently of 

haplotype. When we removed individuals using these medications from our analysis, 

the risk genotype at rs4997081 was associated with significantly increased expression 

of UMOD versus the protective allele. 

 

Aiming to expand on previous work conducted in 2014 using male, 12-week Sv129-

Umod-/- mice, where it was shown that knock-out mice have lower baseline blood 

pressure versus wild type counterparts and blood pressure tolerance to 2% sodium 

chloride loading, we performed a mirrored study on Sv129-Umod-/- , Sv129-Umod-/+ 

and wild type Sv129 mice (n=6-8 per group). By weekly blood pressure 

plethysmography across a 6-week 2% sodium chloride loading period, we show no 

significant differences in baseline systolic or diastolic blood pressure and no 

differences in blood pressure tolerance in response to sodium chloride, between 

homozygous knock-out, heterozygous or wild type mice. By follow-up taqman qRT-

PCR on mouse renal RNA, we show that UMOD mRNA expression in the homozygous 

knock-out animal is not fully abolished, and furthermore that Nkcc2 expression was 

significantly reduced in sodium chloride treated mice in a Umod gene-dose-

dependent manner suggesting compensatory mechanisms were occurring to diminish 

differences. Based on these initial findings we emphasise the need for further 

validation studies with increased power. 

 

Finally, we sought to provide novel resources toward the study of UMOD, by 

generating a stably transfected UMOD human cell line, as currently, no commercially 

available lines express UMOD. Using full length human UMOD cDNA integrated into a 

pTARGET plasmid, we generated a HEK293-UMOD cell line with abundant expression 

of both UMOD mRNA and UMOD protein, significantly elevated above the negligible 

level of endogenous UMOD expression. Whilst not possible within the time constraints 

of this thesis, we suggest a number of downstream experiments based on the 

protein:protein interactions of UMOD within the cell, experiments which could be 

performed using this novel and valuable experimental resource. 
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Together, these data provide novel, multi-omics insights as to the relationship 

between UMOD variants and UMOD mRNA levels, with further basic-science evidence 

toward possible blood pressure mechanisms. Using a combination of base-directed 

experiments, transcriptomics and proteomics, for the first time, we provide empirical 

evidence linking rs4997081 to transcriptional apparatus driving expression of the 

UMOD gene and identified PARP1 as possibly driving this, in a TNF-α dependent 

manner. We also show that the expression of UMOD is strongly positively associated 

with the expression of NKCC2, suggesting this coexpression mechanism underpins the 

relationship between UMOD and blood pressure which is potentially enhanced by a 

number of novel targets surrounding WNK and SGK based signaling. We further enrich 

understanding of the relationship between UMOD and blood pressure by suggesting 

that rs4997081, not rs13333226, should be targeted for precision medicine and that 

the mechanism driving the pathway between TNF-α, UMOD and NKCC2 may be a 

candidate for precision pharmacogenomics. Together, these data provide insights 

toward the mechanism of blood pressure regulation at the UMOD locus and set a basis 

for research with increased sample size to further validate these novel findings. 
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motifs 

ADP Adenosine diphosphate 

ADTKD Autosomal dominant tubulointerstitial kidney disease 

ALGGEN 
Virtual laboratory for the identification of putative 
transcription factor binding sites 

ALMS1 Centrosome and basal body associated protein 

AMP Adenosine monophosphate 

ANKRD Ankyrin repeat domain 11 

ANOVA Analysis of variance 

API Application to program interface 

APOE Apolipoprotein E 

AQP Aquaporin 

ARHGAP Rho GTPase activating protein 1 

ARRIVE Animal Research: Reporting of In Vivo Experiments 

ATP Adenosine Triphosphate 

AVPR1a Vasopressin receptor 1 alpa 

AWS Amazon web services 

BAM Binary Alignment Matrix 

BCA Bicinchoninic acid  

BHF British Heart Foundation 

BMI Body Mass Index 

BMP Bone Morphogenetic Protein 

BPTF Bromodomain PHD Finger Transcription Factor 

BSA Bovine serum albumin 

CACNA1A Calcium Voltage-Gated Channel Subunit Alpha1 A 

CAD Coronary Artery Disease 

CASR Calcium sensing receptor 

CEU 
Utah residents with ancestry from Northern and Western 
Europe 

CHI Community Health Index number 

CID Histone H3-like centromeric protein 

CKD Chronic Kidney Disease 

CLAHE Contrast limited adaptive histogram equalisation 

CLCN1 Chloride voltage-gated channel 1 

CLCNKB Chloride Voltage-Gated Channel Kb 

CLDN Claudin 

CMV Cytomegalovirus 

COOH Methanoic Acid 
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CPNE Copine 1 

CPU Central Processing Unit 

CSVD Cerebral Small Vessel Disease 

CTDSPL CTD Small Phosphatase Like 

CVD Cardiovascular Disease 

CYP Cytochrome P450 

DALY Disability adjusted life years 

DAPK Death Associated Protein Kinase 1 

DBP Diastolic blood pressure 

DEG Differentially expressed gene 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNAH Dynein axonemal heavy chain 

DTT DL-Dithiothreitol; Clelands reagent 

EDTA Ethylenediaminetetraacetic acid 

EFHD1 EF-Hand Domain Family Member D1 

EGF Epidermal growth factor  

EMSA Electrophoretic mobility shift assay 

ENCODEDB Encyclopedia of DNA Elements database 

ERK Extracellular signal-regulated kinase 

FAM Probe identifier 

FDR False discovery rate 

FUSBP FUSE binding protein 1 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

GATC Eurofins sequencing provider 

GFP Green fluorescent protein 

GFR Glomerular filtration rate 

GMP Guanosine monophosphate 

GOI Gene ontology identifier 

GPI Glycosylphosphatidylinositol 

GRM Genetic relationship matrix 

GRP Gastrin-releasing peptide 

GSE Gene set enrichment 

GSEA Gene set enrichment analysis 

GWAS Genome wide association study 

GWS Genome wide significance 

HEK Human embryonic kidney 

HIC1 HIC ZBTB Transcriptional Repressor 1 

HIF1A Hypoxia Inducible Factor 1 Subunit Alpha 

HMOD Hypertension-mediated organ damage 

HNF Hepatocyte nuclear factor-1 beta 

HPLC High-Performance Liquid Chromatography 

HPSF Hypoxanthine-guanine phosphoribosyltransferase 1 

HRP Horseradish Peroxidase 

HSD Honestly significant difference 

IDE Interactive development environment 
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IHC Immunohistochemistry 

IKMC International Knockout Mouse Consortium 

IPA Ingenuity pathway analysis 

IQR Interquartile range 

ISSF Institutional Strategic Support Fund 

JAK Janus kinase 2 

KCNIP voltage-gated potassium (Kv) channel-interacting proteins 

KCNJ  ATP-sensitive potassium (K-ATP) channel 

KCTD potassium channel tetramerizationdomain 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KINEMATICA Homogenizer 

KLHL Kelch-like gene 

LDL Low density lipoprotein 

LIC Low income country 

LINC Long noncoding ribonucleic acid 

LINE Long interspersed nuclear element 

LMIC Lower and middle income countries 

LNC Long noncoding 

LQT Long QT 

MAF Minor allele frequency 

MAGI 
Membrane Associated Guanylate Kinase, WW And PDZ 
Domain Containing 1 

MAML1 Mastermind Like Transcriptional Coactivator 1 

MKTAL Mouse kidney thick ascending limb 

MONICA monitoring cardiovascular disease 

MST Macrophage Stimulating 1 

MTT 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide 

NCBI National Center for Biotechnology Information 

NCC Sodium-chloride symporter 

NEB New england biolabs 

NEFL Neurofilament Light Chain 

NEPER Cell Lysis Buffer 

NFKB Nuclear factor kappa beta 

NGS Next generation sequencing 

NHE3 Na+/H+ exchanger isoform 

NHS National health centre 

NKCC2 Sodium potassium chloride cotransporter 

NMI Nearest mutual information 

NORDIL the Nordic Diltiazem (NORDIL) study 

NOVEX Protein separation reagent 

OLS Ordinary least squares 

OSR1 Odd-skipped related 1 

PADI Peptidyl arginine deiminase, type I 

PAGE Polyacrylamide gel electrophoresis 

PAMELA Pressioni Arteriose Monitorate E Loro Associazioni 

PARP1 Poly [ADP-ribose] polymerase 1 
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PBS Phosphate-buffered saline  

PCA Principal component analysis 

PCR Polymerase chain reaction 

PDE Phosphodiesterase 

PDILT Protein Disulfide Isomerase Like, Testis Expressed 

PFA polymer of formaldehyde 

PHACTR1 phosphatase actin regulator-1 

PMN Peripheral mononuclear 

POU3F3 POU Class 3 Homeobox 3 

PRDM PR domain zinc finger protein 1 

PRKY Protein Kinase Y-Linked (Pseudogene) 

PSIP1 PC4 And SFRS1 Interacting Protein 1 

PVDF Polyvinylidene fluoride 

PXDNL Peroxidasin Like 

QTL Quantitative trait loci 

RAAS Renin angiotensin aldosterone system 

RALYL RALY RNA Binding Protein Like 

RAM Random access memory 

RCF relative centrifugal force 

RDD RNase-Free DNase Set buffer 

RIN RNA integrity number 

RIPA Lysis and Extraction Buffer 

RNA Ribonucleic acid 

RNAL Ribonucleic acid-like 

ROMK product of the KCNJ1 gene 

RPKM Reads per kilo base per million mapped reads 

RPM Reads per million 

SBP Systolic blood pressure 

SCNN1G Sodium Channel Epithelial 1 Subunit Gamma 

SEABLOCK Blocking buffer 

SGIP1 SH3GL Interacting Endocytic Adaptor 1 

SGK1 Serum/Glucocorticoid Regulated Kinase 1 

SHRSP Spontaneously hypertensive stroke prone rat 

SKIPOGH Swiss Kidney Project on Genes in Hypertension 

SLC12A1 Sodium potassium chloride cotransporter 

SNARE SNAP REceptor 

SNP Single nucleotide polymorphism 

SPAK STE20/SPS1-related proline-alanine-rich protein kinas 

STAT Signal transducer and activator of transcription protein 

TAL Thick ascending limb 

TBE Tris/Borate/EDTA 

TBS Tris-Buffered Saline  

TBST Tris-Buffered Saline tween 

TGFB Transforming growth factor-beta 

THSD Thrombospondin type-1 

TIGD Pogo superfamily of DNA-mediated transposons 
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TLR Toll like receptor 

TMEM Transmembrane protein 

TNFA Tumor necrosis factor alpha 

TPM Transcripts per million 

TRANSFAC Transcription factors database 

TRPM Transient receptor potential ion channels 

TRPV 
Transient receptor potential cation channel subfamily V 
member 1 

TSS Transcriptional start site 

UCSC University of California, Santa Cruz 

UMAP Uniform Manifold Approximation and Projection 

UMI Unique molecular identifier 

UMOD Uromodulin 

UTR Untranslated ragion 

VCF Variant caller file 

WDR WD Repeat Domain 

WHO World health organisation 

WKY Wistar kyoto 

WNK WNK Lysine Deficient Protein Kinase 

ZNF Zinc-finger proteins 
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1 Introduction 

1.1 Cardiovascular Disease 

Cardiovascular disease (CVD) describes a collection of disorders involving 

pathophysiological events within the heart and vasculature. Broadly categorized, CVD 

can be subdivided into four main categories: coronary heart disease, myocardial 

disease, cerebrovascular disease, and peripheral artery disease. In order, these 

conditions describe disease in the vasculature of the heart, the muscle of the heart, 

the brain and lastly the peripheral vasculature of the body, with each condition 

carrying risk factors to both patient morbidity and mortality which scale with disease 

severity. The majority of CVD events which lead to large impacts on disability-

adjusted-life-years (DALYs) and even mortality involve acute injury, usually 

attributed to ischemic damage in the heart and brain. However, these events are 

often preceded by chronic pathophysiological adaptations. Though these mechanisms 

are known to develop in many tissue types, involving a variety of processes, 

hypertension, the chronic elevation of blood pressure caries the highest burden. 

According to the World Health Organisation (WHO) in 2021, CVD is the primary cause 

of death globally, with disproportionately high impacts in low and middle-income 

countries. In 2019, 17.9 million deaths were attributed to CVD, with 15.2 million 

attributed to heart attack and stroke. Between 1990 and 2019, the absolute number 

of concurrent CVD cases nearly doubled, from 271million to 523million individuals, 

whilst DALYs also nearly doubled from 17.7million to 34.4million years (Roth et al., 

2020). In the US, up to 30% of the household median income is spent on healthcare, 

primarily in the management and treatment of CVD, with the condition being termed 

“the world’s most urgent healthcare problem”, both in terms of health and 

economics (Emanuel et al, 2017; Slavin et al., 2021). 

1.2 Primary hypertension and the Global Burden 

Primary hypertension is defined as sustained elevation of both systolic (SBP) and 

diastolic blood pressure (DBP) above a healthy physiological baseline, distinct from 

secondary hypertension which is driven by underlying separate disease. Currently, 
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Stage I hypertension is accepted as readings of >130mmHg and >80mmHg and Stage 

II hypertension consisted of readings of  ≥140mmHg SBP and ≥90mmHg DBP (versus 

120mmHg and 80mmHg respectively in healthy individuals) (Unger et al., 

2020)(Whelton et al., 2018). Increases in SBP and DBP values past the healthy range 

are known to correlate positively in a log-linear fashion with cardiovascular disease 

(CVD) incidence risk, with incremental increases of 20mmHg SBP or 10mmHg DBP 

associated with a doubling in risk of CVD death at ages 40-69 years (Lewington et al., 

2002). Globally, hypertension is the leading cause of death and is the number one 

modifiable CVD mortality risk factor and number two global all-cause mortality risk 

factor as of 2017 (secondary only to smoking) (Danaei et al., 2009)(Forouzanfar et 

al., 2017). 

As of 2020, hypertension, whilst treatable if addressed effectively, is an expanding 

pandemic with prevalence in adults of lower and middle income countries (LICs, MICs) 

at 31.5% and high income countries (HICs) at 28.5% with these values increasing 

linearly per each decade from 1980 to present (Mills et al, 2020). Interestingly, 

hypertension is commonly a cryptic condition as the primary symptoms do not 

noticeably manifest, with a recent study suggesting that globally 46.5% of suffers are 

unaware of their condition. This further diminishes effective control which is 

currently rated as 19% controlled in HICs and 15.6% and 10.8% In MICs and LICs 

respectively (Chow and Gupta, 2019). Due to the extensive and ubiquitous nature of 

the hypertension pandemic, alongside its capacity to cause morbidity and mortality, 

hypertension has a large socioeconomic burden worldwide. Out-of-pocket 

expenditure per capita (PPP) ranges from $100 to $1000- constituting an estimated 

global burden of hundreds of billions of dollars a year (Wierzejska et al., 2020). 

Though these studies acknowledge the caveats of obtaining such population level 

metrics from LMICs, hypertension is clearly one of the most prominent global health 

concerns of the 21st century to date. 

1.2.1 Primary Hypertension Burden in the United Kingdom 

Hypertension in the United Kingdom (UK) had around 30% prevalence as of 2013, with 

the British Heart Foundation estimating that as many as 5 million adults may be 
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undiagnosed individuals (Joffres et al., 2013).  The prevalence of hypertension in the 

UK, though extensive, does appear to be decreasing, with treatment efficacy 

increasing between 2003 and 2015 and concurrently average blood pressure values 

decreasing across this timescale (Zhou et al., 2019). High blood pressure accounts for 

12% of all NHS GP visits and is estimated to cost at least £2 billion per year. The 

prevalence of hypertension in the UK correlates with socioeconomic status, with the 

most deprived communities suffering both the highest proportion of patients and also 

the lowest access to treatment (Petersen and Benzeval, 2016). 

Though estimating the impact of hypertension on morbidity and mortality in the UK 

is challenging, with limited evidence currently, a study in 2018 identified an odds-

ratio of 2.8 for CVD related mortality in those suffering with hypertension versus 

healthy controls (Hammami et al, 2018), with a separate study indicating that up to 

5000 stroke-deaths in the UK could be prevented by increasing population level 

control of blood pressure (Health Survey for England 2017 Cardiovascular diseases, 

2018).  

1.2.2 Risk Factors of Primary Hypertension and Cardiovascular Implications 

Primary hypertension is driven by several risk factors, both modifiable (therefore 

potentially targetable) and immutable. Modifiable risk factors include body-mass-

index (BMI), smoking, low-density lipoprotein serum values, alcohol intake, smoking 

status and diet (particularly sodium chloride intake). Contrastingly, a number of risk 

factors are fixed and include sex, age and genetics; this combination of factors, both 

environmental and genetic has led hypertension to be regarded as a complex disease. 

Diabetes also contributes to hypertension risk and may be categorized as both 

modifiable and immutable depending on the underlying disease mechanism (Unger et 

al., 2020)(De Boer et al., 2017). Together these covariates produce an increasing 

model of risk which positively correlates with these variates up to the age of 60, after 

which age correlates negatively with both SBP and DBP (Whelton et al., 2018)(Pinto, 

2007). The multifactorial aetiology of genetic architecture in hypertension is a 

particularly prominent aspect which will be discussed to greater detail in 1.4.4. 
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Risk Factors of Primary Hypertension 

Factor Type Relationship 

Body Mass Index Modifiable Positive correlation 

Is smoker Modifiable Increased 

Dietary sodium 

chloride 

Modifiable Positive correlation 

Alcohol intake Modifiable Positive correlation 

Serum LDL Modifiable Positive correlation 

Type II diabetes Somewhat modifiable Increased 

Age Immutable Positive correlation (to Age 60) 

Is male sex Immutable Increased 

Genetics Immutable Cumulative 

Table 1.2-1 Primary hypertension risk factors, delineated by modifiability and 

directionality of relationship. 

 

Much of the morbidity and mortality caused by hypertension is driven by the process 

of hypertension mediated organ damage (HMOD) with organ specific 

pathophysiological processes developing over time. Firstly, the brain can be affected 

transiently due to potential ischemic events which are themselves increased in 

likelihood due to the long term increases in risk of thromboembolic type events in 

the circulatory system (Holst et al, 2010; Huang et al, 2016). HMOD in the brain is 

also known to manifest over longer, chronic time periods, with microbleeds and 

cerebral small vessel disease (CSVD) known to be increased in hypertensive patients 

over lifetimes. Furthermore, the increased risk of CSVD has been shown to increase 

linearly with the duration of hypertension in patients (Petrea et al., 2020). Together 

these findings indicate prominent risk of both transient and chronic neurological 

damage due to hypertension. 

Hypertension is also known to negatively affect both the heart and circulatory 

system. Firstly, the effects of heart HMOD manifest by driving both development of 
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hypertensive cardiomyopathy and heart-failure-with-preserved-ejection-fraction 

(HPEF), both structural disorders affecting the efficiency of the left ventricle (LV). 

Initially, LV remodeling is adaptive in response to increased peripheral pressure, 

however over time and without adequate control, this adaptation can become 

pathological (“transition to failure”) leading to significant impact on mortality and 

disability adjusted life years (Drazner, 2011; Oh and Cho, 2020; Tackling and Borhade, 

2021). With respect to the circulatory system, hypertension is a known risk factor in 

the development of atherosclerosis, with a direct positive correlation between SBP/ 

DBP and atheroma risk thought to be mediated by increased turbulent blood flow and 

inflammation  (Rafieian-Kopaei et al., 2014)(Prado et al., 2008)(Kobayashi and 

Uesugi, 1995). Linking these two highly related but distinct conditions, coronary 

artery disease (CAD) is characterized by atherosclerosis of cardiac arteries 

progressing to myocardial infarction and is a known HMOD associated condition, with 

significant risk of mortality and morbidity with even short term reduction in SBP over 

months reducing CAD events by 16% ( Cubrilo-Turek, 2003). 

The kidneys are also a HMOD target, with hypertensive renal damage being a 

downstream risk even in individuals with moderately raised SBP and DBP due to the 

effect of raised pressure in the mechanically sensitive glomerular structure (Bidani 

and Griffin, 2004). Hypertensive damage to the kidneys and subsequent chronic 

kidney disease (CKD) is known to itself be a risk factor for CVD, creating a feedback 

loop of further pathophysiological processes in response to chronic increases in blood 

pressure (Griffn, 2017). 

1.2.3 Regulation of Blood Pressure and Development of Primary Hypertension 

A large component of blood pressure regulation and hypertension development can 

be attributed to the renin-angiotension-aldosterone system (RAAS), which is the 

primary regulator of Na+ retention and pressure natriuresis. The RAAS controls the 

pressure:volume homeostatic system in the kidneys where it mediates feedback 

between volume and natriuresis, with RAAS mechanisms known to be prominent in 

the development of hypertension  (Yim and Yoo, 2008; Te Riet et al., 2015; Oparil et 

al., 2018). These physiological effects are mediated by decreases in perfusion 
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pressure and Na+ delivery stimulating renin, which in turn increases the pro-

contractile and pro Na+ reabsorption effect of angiotensin II. In a healthy individual 

these mechanisms synergize to maintain blood pressure within a healthy physiological 

range but are known to become imbalanced in pro-hypertensive states. This leads to 

an abundance of perfusion pressure, combined with high Na+ load to the tubule, high 

Na+ reabsorption and in turn increased blood osmolarity and subsequent hypertension 

(Fountain and Lappin, 2018). Underpinning the strong link between Angiotensin II and 

HMOD are both the angiotensin-converting-enzyme (ACE) and the angiotensin-

converting-enzyme II (ACE2). ACE catalyzes the formation of angiotensin II, driving 

disease, whilst ACE2 converts angiotensin II to the vasodilatory compounds 

angiotensin (1-7) with evidence indicating the pro-hypotensive effects of angiotensin 

(1-7) are as important as the pro-hypertensive effect of angiotensin-II in 

cardiovascular disease (Ferrarlo, 2011).  

The endothelium of the vascular system is also a prominent contributor to blood 

pressure homeostasis through local and systemic effects on vessel contractile tone- 

primarily through the production of nitric oxide (NO). As a mechanical response to 

flow, endothelial cells are stimulated to produce NO which in turn causes vascular 

smooth muscle relaxation through initiation of the guanylate cyclase pathway 

(Spieker et al, 2006; Oparil et al., 2018). Systemic reductions in NO production in 

both hypertensive and diabetic patients have been evidenced in human studies and 

contribute to disease development (Panza et al., 1993; Ayub et al., 2011). Alongside 

NO production, endothelial cells secrete several autocrine and paracrine vasoactive 

compounds including locally derived angiotensin-II and a second significant 

vasoconstrictor known as endothelin-1 (ET-1). ET-1 acts through activation of ET-A 

receptors in vascular smooth muscle cells, leading to a pro-contractile state. 

Significantly, targeting the ET-A is known to restore a normotensive state in both 

animal models and phase-2a human studies (Weber et al., 2009; Lazich and Bakris, 

2011). 

Increasingly, the immune system is known to contribute toward the development and 

maintenance of hypertensive states in humans through effects on both the systemic 

vasculature and the kidneys (Oparil et al., 2018). Through both innate and adaptive 



7 
 
mechanisms, cytokines, reactive-oxygen-species and macrophage derived NO act to 

increase vascular tone and promote arterial lumen thickening, most commonly 

through JAK-STAT, NF-κB, and Smad signalling pathways (Sprague and Khalil, 2009). 

Cytokines released by both vascular endothelium and circulating adaptive immune 

cells also promote responses to ET-1 and angiotensin-II, which in turn increase pro-

inflammatory cytokine production (in particular IL-6), thus creating a positive 

feedback loop which further exacerbates the pro-contractile state observed in 

hypertension (Ruiz-Ortega et al., 2002; Shinagawa et al., 2017; Tanase et al., 2019). 

Tumour necrosis factor alpha (TNF-α) is a prominent constituent of this family, known 

to exert a strong positive natriuretic response, possibly through the RAAS system 

(Sriramula et al., 2008; Majid et al, 2015; Mehaffey and Majid, 2017). Contrastingly, 

an additional mechanism has been suggested, where silencing of renal TNF-α in mice 

was shown to reduce tolerance to salt sensitive hypertension in these animals, 

suggesting a more direct role through effects on sodium channels and transporters 

directly (Hao et al, 2018)(Figure 1.2-1). 
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1.2.4 Diuretics 

Anti-hypertensive medications which target the renal system invariably attempt to 

attenuate natriuresis, though their mechanisms of action differ into three sub-

categories. Firstly, thiazide diuretics aim to reduce the reabsorption of NaCl in the 

distal-convoluted-tubule (dCT), specifically achieving diuretic inhibition by inhibiting 

the Na+ /Cl- co-transporter (NCC). With the dCT constituting 7% of Na+ reabsorption, 

this results in reduced osmotic pressure back across the lumen and into the blood 

(Adrogué and Madias, 2007; Duarte and Cooper-Dehoff, 2010). Subsequent volume 

reductions result in stimulation of both the sympathetic nervous system and the 

hypotensive aspects of the RAAS, with studies emphasizing the contribution of Ang-

(1-7) and Renin in both humans and animal models (Jessup et al., 2008; Kramers et 

Figure 1.2-1. Simplified diagram of the primary blood pressure regulatory 

mechanisms in humans and the complementary effects of the immune system. 

 Vascular mechanisms are highlighted by red (left), renal mechanisms are 

highlighted by purple (left). Contributions to mechanisms in both the 

vasculature and kidney are indicated by blue arrows, as are the effects of 

RAAS pathway metabolites on both the vasculature and kidneys.  
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al., 2020). Interestingly, though the reductive effects of thiazide diuretics are lower 

than their loop counterparts, resistance to rises in blood pressure as a response to 

titrating down the dosage appear to suggest there is an additional undiscovered 

mechanism of action which confers more chronic protection with seminal study 

suggesting this ‘non-diuretic’ effect was due to mechanisms in the systemic epithelia 

with total peripheral resistance falling (Duarte and Cooper-Dehoff, 

2010)(Aleksandrow et al, 1959; FREIS et al., 1960). 

The second of three main renal antihypertensives are the loop diuretics, which target 

the sodium-potassium-chloride cotransporter (SLC12A1 (NKCC2)) of the tubular 

epithelial cells located in the thick-ascending-limb (TAL)- responsible for 25% of total 

sodium reabsorption (Jung et al, 2011). Specifically, loop diuretics are hypothesized 

to bind within the translocation cavity of this cotransporter (the same site as where 

the ions are shuttled), thus inhibiting function (Somasekharan et al, 2012). Much like 

thiazide diuretics, loop diuretics act on the lumen-side of the system, though they 

are distinguished both on the proteins they target and their location within the kidney 

(Ellison, 2019a). Loop diuretics, due to their mechanism  of action targeting a 

transporter which associates with movement of not just sodium, but also chloride 

and potassium ions, are associated with cation disturbances in general, including 

hypokalemia, hypomagnesemia and hypocalcemia (Oh and Han, 2015). 

The last family of renally acting antihypertensives are the potassium sparing 

diuretics, including mineralocorticoid receptor blockers (MRBS), which competitively 

inhibit the mineralocorticoid receptor (the target of aldosterone). Potassium sparing 

diuretics promote epithelial sodium channel degradation or inhibit reabsorption, 

which ultimately promotes natriuresis, primarily in the distal convoluted/connecting 

tubules (Sica, 2015). This family of drugs is particularly effective in resistant forms 

of primary hypertension, with spironolactone (the most prescribed MRB) being 

significantly more effective at treating resistant hypertension versus other 

antihypertensives. Interestingly, the magnitude of lowering of BP negatively 

correlated with plasma renin concentration in this analysis (Narayan and Webb, 2016; 

Yugar-Toledo et al., 2017). 
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1.3 Precision Medicine 

1.3.1 Precision Medicine 

Precision medicine is potentially one of the most impactful healthcare paradigm 

shifts of the 21st century, where the fundamental aim is to use targeted treatment 

approaches to reflect the underlying differences in patients. In effect, using patient 

information to inform prescription increases efficacy and decreases side-effects and 

costs on a per-patient basis, delivering benefits to both the individual and the health 

Figure 1.2-2 Single nephron visualization of diuretics. 

Loop diuretics target mechanisms within the loop and ascending limb, particularly 

NKCC2 mediated natriuresis. Thiazide diuretics target NCC in the distal 

convoluted tubule, whilst potassium sparing diuretics target ENaC in the proximal 

convoluted tubule and distal collecting duct (shown in blue). 
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service. With an estimated 10% of all CVD healthcare being spent on drugs in the US, 

the impacts of reducing this are likely to be significant (Bode and Dong, 2018). 

Broadly speaking, precision medicine considers all of the underlying differences 

between patients: lifestyle, environment and deep-phenotyping (examining patients 

for biomarkers at the genomic, proteomic and metabolomic level). Specifically, 

deep-phenotyping (particularly via genomics) is the most promising of these fields 

because typically, clinician led changes to prescriptions are the easiest of the three 

to implement on a broad scale and, unlike lifestyle and environment, do not rely on 

patient-led action. Consideration of the genome as a method of informing treatment 

led to the emergence of pharmacogenomics as a research discipline, with 

‘pharmacogenomics’ constituting a portion of ‘precision medicine’, though they are 

often used interchangeably. Essentially, pharmacogenomics aims to associate genetic 

variants with drug effects, both pharmacokinetically and pharmacodynamically. In 

future, large pharmacogenetic reference libraries may exist which could be used to 

inform per-patient drug choices and dosages, though such a widespread 

implementation would require both substantial infrastructure investment and ethics 

discussion. 

1.3.2 Economics of Precision Medicine 

The success of precision medicine development and implementation depends heavily 

on cost-effectiveness. Over the last decade, the primary economic barrier has been 

the cost of next-generation-sequencing- an essential aspect of pharmacogenomics. 

However, with the reduction in cost of whole-genome-sequencing from $22,000,000 

in 2006 to around $1000 in 2020 these costs are beginning to be outweighed by 

benefits (Schwarze et al., 2018, 2019). As early as 2014, studies began reporting on 

the cost-effectiveness of targeting variants in the treatment of both cardiomyopathy 

and colorectal cancer though they emphasized that at this point it was not cost 

effective to perform population level screening (CS et al., 2015). In more recent 

years, a number of analyses (n=53) concluded that precision medicine was 

increasingly positively cost effective, although these analyses were significantly 

heterogenous in nature (Kasztura et al., 2019). Possibly the most important finding 

from the large number of analytical studies attempting to characterize the economics 



12 
 
of precision medicine is that, whilst the impact is consistently positive, the 

methodologies of measuring these impacts require significant refinement in order to 

provide directly comparative results (Faulkner et al., 2020). 

1.3.3 Applications of Precision Medicine 

Pharmacogenomic style precision medicine applications can be broadly characterized 

into two fields: precision oncology and non-cancer pharmacogenomics. In terms of 

current healthcare impacts, precision oncology has the largest effect on treatment. 

Precision oncology is the process by which tumours are sampled, and whole genome 

sequencing performed to identify tumour specific drug vulnerabilities, based on 

specific annotated variants within the sample. Precision oncology is a rapidly 

emerging treatment paradigm in HIC healthcare, though accessibility is more limited 

in poorer countries (Faulkner et al., 2020).  Using pre-determined genomic signals, 

the process optimizes the application of both small molecule inhibitors (such as those 

targeting kinases) and immune therapeutics by delivering them in a more targeted 

manner; with both of these drug classes having proven successes to date (Krzyszczyk 

et al., 2018)(Bode and Dong, 2018). A growing reference library of specific tumour 

mutations now exists from which healthcare professionals are able to generate 

predictively effective drug combinations (Bode and Dong, 2018). However, notable 

challenges to generalized execution of precision oncology exist and even in world-

leading countries such as the UK, disparity in social-status, age and race currently 

diminish the potential effectiveness of the discipline (Spratt, 2018). 

Cardiovascular disease pharmacogenomics constitutes the majority of non-

oncological precision medicine, with several streams of treatment currently in 

development, existing or in use. Variants on the Cytochrome P450 (CYP)2C19 

(CYP2C19) gene are now known to contribute to adverse drug reactions to the anti-

platelet drug clopidogrel by reducing enzymatic degradation and contribute to the 

risk of acute coronary syndrome in these patients (SA et al., 2013). As a result, 

guidelines in both the UK and US were updated to reflect this risk, though CYP2C19 

genotyping is not practiced as standard despite this genotyping having been shown to 

influence clopidogrel prescribing habits in small clinical trials (Tuteja et al., 2020). 
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Similarly, the effect of cytochrome P450-2C9 (CYP2C9) and vitamin K-epoxide 

reductase complex (VKORC1) alleles on warfarin pharmacodynamics and kinetics have 

been evidenced, with variants on the former influencing degradation and sensitivity 

respectively (IY Gong, 2011)(JA et al., 2011). However, in much the same way as 

clopidogrel, point-of-care genotyping, though clearly evidenced as effective, is not 

standard protocol in the UK currently (Jorgensen et al., 2019).  

Cardiovascular precision medicine also extends to lipid modulating drugs, with 

myopathy noted as a moderately common side effect. A locus of variants on the 

organic anion polypeptide transporter 1B1 (SLCO1B1) was noted to associate with an 

increased risk of myopathy in patients with lower doses of statins recommended for 

the risk allele, though again, even with strong evidence point-of-care genotyping is 

not standard (LB et al., 2014; Tuteja and Rader, 2018). Long QT syndrome type-3 

(LQT3) has been observed as driven by gain-of-function mutations in SCN5A- the alpha 

subunit of the sodium channel NaV1.5. In these patients it was noted that they would 

be likely to respond positively to Mexiletine therapy, specifically targeted to block 

this sodium current in cardiomyocytes (due to their underlying genotype). This 

targeted therapy was shown to reduce arrhythmic events from 22% to 3% in patients, 

requiring only a simple genotyping assay for pre-selection (A et al., 2016). Lastly, 

loss of function variants on CYP2D6 are known to reduce the therapeutic index of β-

blockers- a mechanism particularly important to heart failure patients with direct 

association with patient survival (M et al., 2011). A more recent study evidenced a 

greater than 6-fold increase in trough concentration, though as with other CVD 

precision medicine targets, broad implementation is not the case (Anstensrud et al., 

2020) (Figure 1.3-1). 

Though a number of pharmacogenomic precision applications for cardiovascular 

diseases have been identified and examined over the last decade, ranging from risk-

of-death interventions to adverse side effects, their utilization in the UK and 

worldwide is still very limited. This reflects inadequacies in genotyping facilities and 

infrastructure rather than the lack of evidence toward their benefits. 
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1.4 Genomics as a Research Paradigm 

1.4.1 Genome Wide Association Studies 

Genome wide association studies (GWAS) are high throughput population level studies 

resulting from the development of next-generation-sequencing (NGS) and its 

subsequent reduction in cost. GWAS largely facilitated the transition of genetics from 

size-limited Mendelian study to population level analysis. Either binomial in design 

(with or without a disease) or continuous (quantitative trait, such as blood pressure), 

Figure 1.3-1 Applications of precision medicine in cardiovascular disease.  

Described elements per application are: precision medicine gene, genotype 

dependent reaction, health service action and initial publication date. Only 

cardiac arrythmia risk response to mexelitine derived from SCN5A alleles are 

commonly practiced precision medicine applications in public healthcare in the 

United Kingdom. 
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GWAS attempt to correlate a phenotype or disease with genetics. Specifically 

speaking, they attempt to associate variants on the genome with the target 

phenotype, such that the loci on which these variants exist can be used to identify 

novel risk markers, novel druggable targets and potentially novel precision medicine 

targets (Mattson and Liang, 2017; Ho et al., 2019) . Early in their development, GWAS 

were predicted to radically improve medicine (JN, 2009; RJ et al., 2010). However, 

in more recent years a necessary acknowledgement of the limitations has emerged, 

with the suggestion of the impact of GWAS on life expectancy and morbidity being 

‘minimal to none’ (Joyner and Paneth, 2019). This lack of impact can be attributed 

to both inadequacy of interpretation and the comparatively weaker ‘follow-up’- the 

translation of GWAS findings to the wet laboratory. With respect to the first caveat, 

this can largely be attributed to missing heritability, the aspect of genetics not 

properly controlled for in GWAS, particularly the impact of minor-allele-frequency 

(MAF) <10% variants on disease, alongside the majority (90%) of GWAS variants 

existing outside of protein coding regions (Manolio et al., 2009)(Lonsdale et al., 

2013). In the context of blood pressure regulation, it was found using a meta-analysis 

study of 1.3 million individuals that the average effect size of rare variants was 

around 8 times greater than common variants at loci, though typically rare variants 

are more likely to be overlooked or not detected during analysis (Surendran et al., 

2020). However, in spite of the seemingly poor translation, GWAS continue to become 

increasingly large in number and scope (55,000 unique loci for nearly 5000 diseases 

and traits currently exist), suggesting that applications may simply be lagging behind 

the initial GWAS execution (Loos, 2020) (Figure 1.4-1). 
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Typically, GWAS are designed using a randomly sampled cohort, both for control and 

disease states- or one randomly sampled group for a continuous phenotype. These 

participants are then genotyped by SNP-array, an NGS method which directly 

characterizes around 350,000 variants, though this varies with the panel used. Up to 

an additional 3,000,000 variants are then imputed using known linkage-disequilibrium 

blocks (section 1.4.3) on the genome to provide around 3,500,000 variants (Loos, 

2020)(Li et al., 2015). Bayesian variable (correcting for familial data trends) multiple 

regression is then typically performed to provide associations between variants and 

traits, though statistical models are continually evolving in line with improved 

computational power and machine learning (Banerjee et al., 2018). Genome wide 

Figure 1.4-1 The iceberg of missing heritability in GWAS.  

‘Missing’ heritability, whilst a major caveat, is considered to be increasingly 

addressable using large sample sizes to detect minor allele frequency 

variants, combined with the statistical methods of mendelian randomization 

to attribute causality. 
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significance (GWS) p-values are thresholded far below the typical 95% test statistic 

due Bonferroni based correction of multiple testing, with the GWS p-value currently 

accepted at 5e10-8 (Roeder and Wasserman, 2009). In certain cases for quantitative 

traits, GWAS can be further enhanced by subsampling the extremes of the phenotype 

distribution, a method with strong potential to reduce the cost/power ratio by 

magnitudes of order (Li et al., 2019). 

1.4.2 The Genotype Tissue Expression Project 

Whilst GWAS have provided an abundance of loci for both continuous traits and 

diseases, their translation to function remains challenging. Context within the cell, 

in particular the direct effect of GWAS variants on gene expression rapidly became 

the downstream high-throughput experiment after GWAS. Referred to as the 

Genotype Tissue Expression Project (GTEx), GTEx aim to determine tissue specific 

variation in gene expression in response to genotype (Lonsdale et al., 2013). GTEx, 

unlike GWAS, require mRNA-based quantification of gene expression and are 

therefore generally centered on transcriptomic analysis (RNA-sequencing) and not 

genomic analysis- with alleles as the experimental variable as opposed to a specific 

phenotype. GTEx provide two-fold enhancement to GWAS. Firstly, they can provide 

numerical data on gene expression, which can allow effect sizes of GWAS variants for 

the same phenotype to be compared. Secondly, they can provide tissue specific 

information on GWAS loci- providing greater understanding of where these genes act, 

improving the translatability of identified targets (Lonsdale et al., 2013; Basu et al., 

2021). GTEx catalogues provide a valuable resource for the field and continue to be 

improved and utilized in multiple different ways, including identifying inter-

chromosomal effects and RNA splicing, two biological phenomenon not highlighted 

by GWAS alone (Aguet et al., 2017; Ward and Gilad, 2017; Barbeira et al., 2021). 

GTEx analyses have also been used in the context of blood pressure, where they were 

used to identify two subtypes of hypertension patients, based on their GTEx 

characteristics, a Diffused group, where dysregulation existed across a broad range 

of tissues and a Localized group, where dysregulation was limited to more specific 

tissues. Interestingly, comorbidities between these two subgroups were also 
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substantially different, indicating potentially separate streams of disease 

development and progression (Basu et al., 2017). 

1.4.3 Linkage Disequilibrium in GWAS 

Linkage describes the non-random association of variants at or between specific loci 

on the genome, counterbalanced by the actions of genetic drift and recombination 

(Qu et al., 2020). Linkage disequilibrium (LD) as a concept describes the proportion 

of correlation between alleles, with ‘1’ representing perfect squared correlation and 

‘0’ representing no correlation (Qanbari, 2020). These ‘haplotype blocks’, regions of 

perfect or near-perfect linkage disequilibrium, are themselves powerful markers of 

both population growth and evolution (Wall and Pritchard, 2003). However, they also 

provide critical underpin to GWAS. Genome wide association studies typically publish 

one variant at a loci (attributed to the nearest plausible gene or other genomic 

marker), normally referred to as the ‘index’ or ‘discovery’ variant, effectively the 

genetic marker at this locus with the most significant p-value. However, in both 

concept and practice, GWAS do not discover a variant but rather they discover a locus 

(Joiret et al., 2019). Whilst the discovery variant is used to tag the locus, that does 

not mean the casual variant is the discovery variant, this can only be determined 

with a degree of accuracy through ‘fine mapping’. Fine mapping is a critical analysis 

step in GWAS which utilizes underlying information on haplotype blocks to determine 

the size of this locus, therefore providing an array of potential causal variants. Fine 

mapping, although conceptually simple, is also strongly influenced by localized, non-

linear LD patterns, meaning that those variants most proximal to the discovery SNP 

are not always the most likely causal candidates (Schaid et al , 2018). This was 

evidenced by the APOE-4 locus detected in Alzheimers targeted genotyping having a 

non-linear LD at the target site, leading to potential causal variants being distributed 

across a relatively wide region around the discovery SNP (Martin et al., 2000). The 

necessity for the inclusion of fine-mapping in GWAS analysis may help to further 

explain the poor translation of GWAS to clinical effect (Joyner and Paneth, 2019). 
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1.4.4 Hypertension GWAS 

Both GWAS for blood pressure as a quantitative trait and for hypertension as a disease 

were phenotypes which were studied early in the progression of GWAS due to their 

population penetrance and genetic contribution (between 30-50% of blood pressure 

variance is thought to be attributed to genetics) (Ehret and Caulfield, 2013; RS et al, 

2017; Wang and Wang, 2018). Data mining of all currently GWAS-catalogue archived 

studies, with respect to hypertension, not blood pressure, found to date, a total of 

46 studies have been catalogued by the central system. The first GWAS was published 

in 2007 with a non-significant linear trend in publication frequency between 2007 and 

2021 of an average of four publications per year. On average, these publications 

returned 17 GWS variants per study with an absolute range of 1:161 and a 25:75% 

interquartile range (IQR) of 2:16. This indicates a strong skewness in the right-tail of 

the distribution of 3.31AU, driven by a strong increase in the number of variants 

discovered in more recent years due to improvements in experimental design and 

sample size. With respect to sample size, a high degree of variability exists. The 46 

catalogued hypertension GWAS enrolled between 112: 382147 participants, with a 

25:75% IQR of 821:17022. This again indicates a strong degree of positive skewness in 

the dataset with a skewness value of 3.07AU- a feature of more recent studies 

enrolling higher number of participants. 

When data were mined from GWAS-catalogue specifically and filtered to remove 

detection of identical variants between studies total of 696 unique variants have been 

annotated by GWAS as associating with hypertension. Of these, meta-analysis of the 

most significant variants shows that their top WGS finding is most likely to exist in 

intronic regions (45.9%), with the second most populated cohort existing in intergenic 

regions (18.7%). Following this, an even smaller proportion of variants were detected 

in regulatory (cis-promoter) regions (4.5%) with the remaining variants existing in 

both 5’ and 3’ UTRs and splice regions alongside a small proportion causing missense 

mutations. The number of associated loci and the heterogeny of their location in the 

human genome further emphasizes the complex polygenic architecture of 

hypertension with the disease contribution likely to be driven by small additions from 

each loci. It is theorized that a large majority of hypertension genetic contribution is 



20 
 
missing as the quantitative additions of discovered loci do not effectively constitute 

the known phenotypic variance of blood pressure. As of 2019, only 3.5% of the genetic 

contribution to blood pressure was thought to have been discovered (Wang and Wang, 

2019). Much like the majority of GWAS, hypertension GWAS are thought to be lacking 

the crucial “rare variant” contribution, due the GWAS study design often not 

capturing these variants within typical analysis (A et al., 2018). As described 

previously, low frequency variants are now considered to have large effect sizes in 

blood pressure regulation (Surendran et al., 2020). However, because of their 

inherent low minor-allele-frequency (MAF), rare variants, though they may explain 

much of the population level variance, do not present the greatest potential 

translatability. This falls instead to hypertension GWS loci which have been identified 

as existing in the most physiologically plausible regions where mechanism to 

pathophysiology can be effectively resolved. 
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Blood Pressure 

Primary Hypertension 

Figure 1.4-2 GWAS Catalogue described human variants for blood pressure (top) 

and primary hypertension (bottom) by year. 

Data was filtered to prevent multiple reporting of the same variant by different 

publications. Exact date of publication is shown (x-axis). Original data were text 

mined in their original format as catalogued by GWAS Catalogue (NHGRI-EBI 

Catalog of human genome-wide association studies, 2021) 
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1.4.5 Eukaryotic Gene Expression 

Broadly speaking, gene expression in eukaryotic cells is regulated and maintained by 

transcription factors (TFs). Transcription factors are proteins which interact by non-

covalent mechanisms with genomic DNA, facilitating the formation of single-stranded 

messenger RNA (mRNA). Transcription factors typically associate with the cis-

promoter of their target gene, generally 500-1000bp upstream of the TSS, where they 

usually ‘dock’ in a complex nature consisting of several proteins maintained in an 

active complex by non-covalent mechanisms. Mammalian genomes typically encode 

for around 1500 transcription factors, with each one recognizing a ‘perfect’ 

oligonucleotide sequence (response element (RE)) but also possessing binding affinity 

for non-perfect RE’s (Tan et al, 2008; Todeschini, Georges and Veitia, 2014; Zhou et 

al., 2017). When they perform an activatory function, transcription factors may be 

referred to as ‘activators’, conversely if they function to diminish gene expression, 

they may be referred to as ‘repressors. The robustness of the binding match between 

the TF and the RE element, in terms of the topology of the interaction between the 

transcriptional complex and the associated DNA, is known to play a key role in the 

resulting gene expression  (MacNeil and Walhout, 2011).   

Whilst transcription can be initiated by RE interactions, eukaryotic promoters can 

also interact with secondary nuclear elements which repress transcription. Typically 

referred to as ‘silencers’, these elements correlated negatively with gene expression 

when activated. Silencer molecules are generally small-molecule oligonucleotides 

(micro RNAs (miRNAs) and antigene RNAs (agRNAs)), though recruitment of proteins 

to RE loci can also occur (Kolovos et al., 2012; Leopold, Stirpe and Schalch, 2019). In 

turn, recruitment of silencing complexes to RE can result in chromatin remodelling 

effects, leading to more sustained effects on gene expression than more temporary 

small-molecule RNA interactions (E et al., 2006). DNA methylation, a covalent 

modification to genomic DNA, can also be induced by gene silencing RE interactions, 

with DNA methylation study becoming an increasingly well recognised element to 

epigenetics (E et al., 2006). 
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Both positive and negative regulation of gene expression can be affected by the 

magnitude of the non-covalent interaction between transcriptional activators, 

repressors and their target genomic loci. Thus, differential magnitude of electrostatic 

interactions at RE which contain variants explains a degree of differential gene 

expression in the population. With the advent of high-throughput genomics and 

transcriptomics, particularly over the last few years, the heterogeneous nature of 

transcription factor binding affinity between alleles has been widely suggested as 

being highly functionally relevant (Cusanovich et al., 2014; Mitchelmore et al., 2020; 

Abramov et al., 2021). As recently as 2021, it was suggested by novel analysis of 

CHIp-Seq data, that >270,000 variants on the human genome accounted for the 

differential binding affinity of several hundred different transcription factors across 

several hundred different cell types (Abramov et al., 2021). However, specific 

functional linking between GWAS and gene expression in the literature remains rare, 

possibly commenting on the disconnect between bioinformatics and functional 

physiological data. 

1.5 The UMOD Gene and Hypertension 

1.5.1 Padmanabhan et al Hypertension GWAS 

One of the earliest and most impactful hypertension GWAS was conducted at the 

University of Glasgow and discovered a locus on the cis-promoter of the human UMOD 

gene using an extreme case control design. The GWAS highlighted the variant 

rs13333226 as associating with hypertension, in particular the minor G allele 

associated with a decreased risk of 13% (OR [95%CI]: 0.87 [0.84–0.91]) for each copy, 

0.49mmHg lower SBP per allele and also associated with a 7.7% reduction for adjusted 

cardiovascular disease risk per allele (Padmanabhan et al., 2010). The study initially 

enrolled 1621 cases and 1699 normotensive controls but this was expanded to 19845 

cases versus 16541 controls upon follow-up. Both aspects of the study sourced their 

participants from Scandinavian populations. The discovery arm enrolled participants 

from the Nordic Diltiazem study (NORDIL) and the Malmo Diet and Cancer study- with 

both of these studies reflecting the inherent proportional representation of racial 

groups within Scandinavia, therefore featuring primarily White-European participants 

(BERGLUND et al., 1993; Hedner, 2009). The validation study enrolled from the 



24 
 
MONItoring trends and determinants of CArdiovascular diseases (MONICA)/Pressioni 

Arteriose Monitorate E Loro Associazioni (PAMELA) and also from the aforementioned 

Malmo diet and cancer study (Keil, 2005; R et al., 2005). The Padmanabhan study 

employed an extreme case control design, where they sampled the upper 2% and 

lower 9.2% of the distribution of blood pressure in the population, increasing their 

statistical power significantly and resulting in the identification of the GWS variant 

rs13333226 on the UMOD gene. Additional study, published in 2018 also further 

reflected and corroborated the initial finding, associating rs13333226 with blood 

pressure and hypertension (TJ et al., 2017). 

Rs1333226 is a A/G single-nucleotide-polymorphism which exists 1617 base pairs 

upstream of the canonical UMOD transcriptional start site in humans. In the Asian 

haplogroup the prevalence of the reference A-genotype is 93.4%, though this varies 

with haplogroup, decreasing to 62.5% in the African American subgroup. In the 

primary enrollment population, White-European, the prevalence of the reference A-

genotype is 82.0%. Each copy of the minor G-allele in the study cohort was 

subsequently associated in further experiments with reduced urinary UMOD excretion 

(AA:53, AG:40, GG:17mg/24hr)(n=110). Significantly, it was also found that the minor 

G-allele was associated with decreased fractional excretion of sodium (AA:0.92, 

AG:0.95: GG:0.73 %) (n=256). These data together suggest that the allele at 

rs13333226 directly associates with the activity of the UMOD promoter. In turn the 

initial findings appeared to indicate that differences in UMOD expression between 

genotype drive differences in sodium excretion which, when further extrapolated, 

would suggest UMOD levels associate with blood pressure and hypertension through 

sodium homeostasis. This hypothesis, given the highly specific expression profile of 

the UMOD gene almost exclusively to the thick ascending limb cells of the mammalian 

kidney, strongly implicated UMOD with blood pressure regulation by this mechanism. 

1.5.2 The Thick Ascending Limb 

The thick ascending limb of the mammalian kidney performs a central role in renal 

physiology, particularly regarding ion homeostasis and urinary protein composition. 

Composed of water impermeable eponymous thick-ascending-limb (TAL) cells, these 
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cells form a polarized apical-basolateral complex between the apical pole facing 

lumen of the medulla containing pre-urine and the basolateral pole facing the blood 

(Mount, 2014). Arguably the most active mechanism within these cells is the apical 

transport of Na+, K+, and Cl− ions, which plays a crucial role in sodium diuresis and is 

primarily mediated by NKCC2, the sodium potassium chloride co-transporter 

responsible for counter-gradient reabsorption of these ions from the lumen. The role 

of NKCC2 in TAL cells is responsible for 25-30% of all sodium reabsorption with 

homozygous protein coding mutations in NKCC2 known to drive Bartter syndrome 

type-1, characterized by pathologically low blood pressure and salt-wasting (GR, PS 

and PA, 2011). Constituting a smaller fraction of Na+ reabsorption in the lumen is the 

sodium/proton exchanger isoform 3 (NHE3), with tubule specific NHE3 crelox 

knockout mice displaying increased Na+ wasting versus control and a 20% reduction 

in SBP (Fenton et al., 2017). Additionally, adaptive mechanisms are known to exist 

in response to abrogation of the action of NHE3 with knockout mice shown to 

upregulate expression the γ-subunit of the epithelial sodium channel (ENaC), a 

passive sodium reabsorption channel in the proximal convoluted tubule (Brooks et 

al., 2001). 

Though Na+ homeostasis (particularly though NKCC2) appears to be the central 

regulatory role within TAL cells, the function of NKCC2 has been shown to be highly 

dependent on the activity of K+ channels, with abrogation of this ion current shown 

to result in a significant decrease in the reabsorption of Na+ and Cl- ions. Removal of 

K+ ions from the lumen displayed a decrease in sodium current of 215 to 133microA 

whilst additional blockade of K+ conductance displayed the same effect (R and E, 

1981). The movement of K+ ions, unlike Na+ or Cl- ions is self-sustained due to the 

continual cycling of K+ into the TAL and back out into the lumen (Mount, 2014). 

Potassium is cycled into the lumen by the renal outer medullary potassium channel 

(ROMK) and Maxi-K, with approximately 80% of the current being facilitated by the 

former (R and E, 1981). ROMK has such a central role to the activity of NKCC2 that 

ROMK loss-of-function mutations are also known to cause Bartters syndrome type-1 

(DB et al., 1996). 
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Additionally, TAL cells are responsible for approximately 55% of total magnesium 

reabsorption (GA, 1989). Magnesium reabsorption is not controlled or dominated by 

a specific channel or transporter but rather is believed to be mediated exclusively by 

‘paracellular shunt’ mechanisms wherein passive reabsorption occurs across a highly 

positive electrochemical gradient at tight junctions between the cells through 

Claudin-16/19 heterodimers (Curry and Yu, 2018). Much like Mg2+ ions, Ca2+ ions are 

also reabsorbed via the paracellular pathway, with roughly 20% being by this manner. 

Significantly, claudin knockdown mice exhibit hypermagnesuria and hypercalciuria, 

with hypomagnesemia (N et al., 2008). The calcium sensing receptor (CASR) is 

thought to play a role in calcium dependent paracellular transport regulation via its 

control over Claudin expression (H et al., 2013). Whilst the majority of renal calcium 

reabsorption is paracellular, there is a lesser proportion attributed to the epithelial 

Ca2+ channels TRPV5 and TRPV6 which can be rapidly recycled between the sub-

surface and apical cell membrane, allowing a degree of homeostatic regulation- an 

adaptation to the need for extracelluar Ca2+ to be tightly controlled in the body (De 

Groot et al, 2008). 

1.5.3 The UMOD Gene 

Sourced from Ensembl(2021) and UCSC(2021) against GRCh38, the UMOD gene 

encodes for the uromodulin protein in humans and is located on chromosome-16 at  

20,344,373-20,367,623 in p12.3, consisting of 23,250 bases from the transcriptional 

start site (TSS) to the tail of the 3’UTR. The gene is encoded on the reverse strand 

and is preceded 5’ by PDILT and followed 3’ by GP2. The canonical reference 

promoter extends roughly -3000bases from 20,352,710. Within this canonical cis-

promoter region there are 48 variants with a MAF >3% and 6 repeating elements 

(Repeat Masker 2021). The promoter is encompassed by a region of LD, which in the 

European population begins to extend from 20,353,000 to 20,358,500 (NIH LDAssoc 

2021). Tight tissue specific control of promoter activity is apparent in mammals, an 

observation which has been examined in mice, where it was shown by transgenic 

design with human and bovine UMOD that the 3kb region upstream of TSS in mice 

appears to contain the necessary cis elements which govern this specificity (Zhu et 

al., 2002). An additional transgenic study further evidenced this using a 3.9kb mouse 



27 
 
promoter sequence in conjunction with bovine UMOD (Kim et al., 2003). UMOD is 

expressed almost exclusively in the thick-ascending-limb of mammals (90%), with 10% 

of total expression in the distal-convoluted tubule. The cis-promoter is highly 

conserved across humans, rats, mice and cattle (Schaeffer et al 2021). 

Up to 12 transcripts have been identified and validated through a combination of 

Sanger sequencing and NGS. These may be broadly categorized into three distinct 

groups. Firstly, the ‘full length’ UMOD transcripts, of which there are three, consist 

of 11 exons. Two of these transcripts have their TSS within 30bases of each other, 

with the reference transcript TSS at 20,352,710. The third full length transcript has 

a TSS several thousand bases upstream at 20,356,301, potentially placing this 

transcript under the control of non-canonical regulation. Of these eleven exons, ten 

are <400 bases, whilst exon-3 is 801 bases long, constituting the ‘long’ exon of the 

transcript. The second category encompasses ‘short transcripts’, of which there are 

eight. These transcripts all contain the first two full length exons, but their defining 

feature is the foreshortening of exon three to varying degrees and the absence of 

further exons. The last category contains the one ‘non-coding’ annotated UMOD 

transcript which encompasses untranslated versions of exons 7-11. As a non-coding 

transcript, the biological function of this transcript remains unclear.  

Analysis of the nascent pre-mRNA by miRabel- a prediction tool which uses a 

composite of novel methods and historic binding prediction algorithms- predicts the 

interaction of 176 human miRNAs with the canonical UMOD transcript, three of which 

are predicted to interact with the 5’UTR; 4419b, 4708-5p and 18a-3p. The majority 

of the rest of the signals interact with the 3’ UTR, with the most enriched (miRabel 

score < 0.1) signals being for 16-5p, 548c-3p, 214-3p, 193a,3p, 125b-2-3p, 330-3p, 

103a-3p, 107 and 195-5p in descending order of significance (Quillet et al., 2020). 

Additionally, a strong enrichment for the transcription factor HNF1β is apparent 

within the cis-promoter of human UMOD, with two putative interaction sites present. 

Furthermore, in kidney specific HNF1β-/- mice, UMOD levels are decreased by >90% 

(G. L et al., 2004; Schaeffer et al., 2021). 
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1.5.4 Association Studies, GTEx and the UMOD Promoter 

Variants on the UMOD gene have been associated with a number of phenotypes in 

humans, across variants extending from several thousand base pairs upstream of the 

canonical TSS to variants within a few hundred base pairs of this site. Particularly 

well categorized is rs12917707, the T-allele of which has been associated with 

decreased estimated glomerular filtration rate (eGFR), decreased renal function, 

increased risk of chronic kidney disease and significantly, increased urinary UMOD 

levels, versus the C-allele (A et al., 2009, 2010; C et al., 2016, 2016). Around 1000bp 

upstream (toward the TSS) of rs12917707, rs13329952 has been categorized in a 

similar manner to rs12917707, with the T-allele associated with increased eGFR 

versus C (C et al., 2016). An additional finding at rs13329952 was the association with 

patient non-compliance for calcium channel blocker use, suggesting a potential 

precision medicine role for the UMOD promoter here (Y et al., 2019). Around 600bp 

upstream of this, is rs13333226 which, alongside its previously discussed association 

with blood pressure, has been associated with type-2 diabetes risk (NR et al., 2018). 

Around 350bp upstream of rs13333226 is rs4997081, the C-allele of which has been 

associated with increase urate levels in humans (A et al., 2019). Additionally, a 

further 300bp upstream of rs4997081, rs4293393 was associated with a risk of chronic 

kidney disease and serum creatinine- indicating an effect on renal function (DF et 

al., 2010). In total, seven variants on the cis human UMOD promoter have been 

associated with disease and physiological functions, with the majority of traits 

(14/38) attributed to rs12917707. Interestingly, further UMOD variants upstream of 

the canonical TSS have been associated with type-1 diabetes, though no functional 

pathways have been suggested by their parent publications (Figure 1.5-1). 

Genotype tissue expression analysis of the human UMOD gene indicate >40 potential 

variants which associate with functional expression, including rs13333226 and 

rs12917707. However, the majority (>70%) of these highlighted variants exist in 

intronic regions. Research has shown the potential auto-regulatory effects of intronic 

variants on gene expression. Interestingly, one paper has shown that even with the 

deletion of the cis-promoter, introns can still stimulate ‘strong’ expression of their 

parent gene (Rigau et al., 2019; Rose, 2019). Whilst available GTEx catalogues on the 
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human renal transcriptome do corroborate the GWAS findings at rs13333226 and 

rs12917707, the majority of the identified variants provide cryptic indications as to 

the underlying architecture of the variance in UMOD expression in humans 

(Gadegbeku et al., 2013) (Figure 1.5-2). 

The issue of translatability between high through-put omics experiments and 

functional data can again be exemplified by data mining the Encyclopedia of DNA 

Elements Database, which curates all submitted human CHIp-Seq datasets. For the 

region of the human UMOD promoter, encompassing 20,356,000:20,330,000 

(containing rs1297707 and rs13333226), 1606 transcription factors and repressors 

have been typed in silico as associating along this locus, annotated in over 50 

different human cell types. Of these, 710 were directly annotated as transcription 

factors, whilst the remaining 895 proteins were designated as possibly participating 

in histone modifications at the locus (ENCODEDB 2021). Thus, the signal to noise ratio 

of such datasets makes functional predictions as to transcription factor binding at 

variants extremely difficult, lending weight to the necessity that such questions must 

be addressed by laboratory based experiments.  
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Figure 1.5-1 UMOD human variants and their associated traits (GRCh38), visualized by mined data from GWAS Catalogue 

(2021).  

Coordinates are shown left (5’) to right (3’), the UMOD TSS is upstream (right) of rs34857077. X-axis data are shown not to 

scale on coordinates but rather are displayed as equidistant for visualization purposes. 
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Figure 1.5-2 GTEx Variants which drive differential expression of UMOD (GRCh37).  

GTEx visualisations are 5’ (left) to 3’ (right), the UMOD promoter is on the right. FDR (Bonferroni) p-values are colour 

coded. Of the top 18 variants on the UMOD gene which are associated with differential expression, 15 are located 

intronically, whilst 3 are in the UMOD cis promoter. 
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1.5.5 The UMOD Protein 

The canonical UMOD protein is composed of 640 amino acids (AA). From the N-

terminus there are several annotated structural motifs, beginning with four 

epidermal-growth-factor like domains (EGF) ending at AA148. Two of these EGF 

domains are known to bind calcium, leading some to regard the uromodulin protein 

as a medullary calcium sensor, providing important protection against calcium 

crystallization in filtrate (Johnson et al., 2017a; R et al., 2020). Leading from these 

EGF domains, toward the C-terminus, is a cysteine-rich domain which terminates into 

a zona pellucida and finally a C-terminal phosphatidylinositol (GPI) anchoring site at 

AA614 (Wolf, Zhang and Nie, 2019). Extensive glycosylation at up to eight potential 

N-linked sites is thought to account for up to 30% of the molecular weight of the 

UMOD protein, which is between 80-105kDaltons (kDa) in humans (F, N and D, 2003).  

The UMOD protein is shuttled to the cell surface in a manner prioritising the apical 

surface (versus the basolateral) due to inherent epithelial polarity, underpinning the 

high degree of bias toward urinary uromodulin versus the much lower levels detected 

in serum (Scherberich et al., 2018). Highlighted by immunogold labelling this is 

facilitated by cytoplasmic vesicles via the Golgi apparatus (Scherberich et al., 2018; 

Boder et al., 2021). From endoplasmic reticulum to cell surface, the UMOD protein 

is first folded, glycosylated and GPI anchored before it undergoes N-glycan 

maturation prior to entering a secretory stage at the cell surface (Wolf, Zhang and 

Nie, 2019). Correct protein folding is dependent on 48 well conserved cysteine 

residues within the protein (Schaeffer et al, 2021). 

Unique to the apical surface, UMOD is cleaved by the activity of serine protease 

hepsin at AA589 on the C-terminus aspect of the zona pellucida with this activity 

shown to affect salt sensitive hypertension induction in mice, where hepsin deficient 

mice showed muted blood pressure responses to mice (Olinger et al., 2019a). Upon 

cleavage, the apical UMOD secreted protein self-polymerises, whilst basolateral 

UMOD does not (C, A and WR, 1985; Olinger et al., 2019a; Wolf et al, 2019; Boder, 

et al., 2021). Although not specifically known, the homo-polymerisation site of UMOD  

is thought to be within an interdomain linker connecting the ZP-N and ZP-C domains 
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(M et al., 2016). An internal motif within the zona pellucida, referred to as the 

internal hydrophobic patch (IHP), prevents internal polymerization, whilst the 

external hydrophobic patch (EHP) is not retained within the mature protein after 

cleavage, resulting in the observed extracellular polymerization (C et al., 2009). 

1.5.6 Physiological Functions of the UMOD Protein 

1.5.6.1 Urinary Tract Infections 

Uromodulin protein has been noted for several decades as providing protection 

against pathological bacterial infection in the nephron. Scanning electron microscope 

of the mature urine purified UMOD homopolymer was shown to display UMOD as a 

‘mesh’ structure with a pore size of 100-1000nm which theoretically could entangle 

invasive bacteria prior to their proximity to TAL cells (R and PR, 1988). Additionally, 

it has been shown that the high-mannose glycan chain of glycosylated UMOD interacts 

with several E.coli adhesion molecules, preventing infiltration- with additional study 

extending this potential past E.coli to several strains of common pathological 

bacteria and yeast (P. J et al., 2001; D et al., 2004; Coady et al., 2018). Subsequent 

population level study correlating UMOD levels with urinary tract infection incidence 

showed that the sub-population of those with the lowest urinary UMOD protein 

displayed an increased risk of bacteremia (PS et al., 2017). 

1.5.6.2  Kidney Stones and Calcium & Magnesium Homeostasis 

Protection from kidney stone development has also been a noted function of 

uromodulin with both male and female Umod-/- mice displaying spontaneous 

intrarenal calcium crystalisation within 9 months of birth (M. L et al., 2004). 

However, exact underlying mechanisms through which this formation and 

pathophysiological cell damage is mediated remain unclear (B, 1992). Several case 

controlled human studies have however shown that urinary uromodulin levels 

correlated negatively with kidney stone formation risk (A et al., 2000; Lau et al., 

2008). Furthermore, interaction between UMOD and the calcium sensing receptor 

(CaSR) has been observed in both mice and humans, with cinacalet, a CaSR antagonist 
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shown to decrease urinary UMOD levels- an effect attributed to drug induced 

alterations in cAMP levels (Tokonami et al., 2018a). 

Whilst also acted upon by intracellular Ca2+ levels, UMOD is also known to affect 

levels of both Ca2+ and Mg2+ in TAL cells. With UMOD protein levels in vitro shown to 

diminish the caveolin mediated endocytotic mechanism of TRPV5 and TRPV6, 

increasing the cell surface bioavailability of both channels and subsequently calcium 

reabsportion. Decreased luminal TRPV5 was also observed in Umod-/- mice in the dCT 

(L. J et al., 2001; T et al., 2003; M et al., 2018). As with the case for Ca2+ 

reabsorption, similar mechanisms can be observed with Mg2+, where UMOD inhibits 

endocytosis of the magnesium channel TRPM5 and is hypothesized to play a role in 

hypomagnesemia (Baaij et al., 2013; MTF, J and M, 2019). 

1.5.6.3 Immune Regulation 

Extracellular homo-polymeric UMOD protein is known to play both an immunogenic 

and immunosuppressive role, depending on surrounding physiology. Isolated human 

polymorphonuclear leukocytes (PMNs) were shown to become activated in-vitro in 

response to incubation with human UMOD protein where it was phagocytosed, with 

additional study indicating canonical neutrophil activation in response to polymerized 

UMOD (JK et al., 1990; Thomas et al., 1993). UMOD protein has also been shown to 

enhanced neutrophil infiltration and migration in renal epithelia (M et al., 2010) and 

also to stimulate TNF-α secretion in renal F4/80 positive macrophages (Immler et al., 

2020a). Furthermore, in the context of ischemia-reperfusion injury, increased 

necrosis and inflammation was observed in Umod-/- mice due to enhancement of the 

expression of the innate immune mediator toll like receptor-4 (TLR4) in these animals 

versus controls (El-Achkar et al., 2008).  

Basolaterally secreted UMOD protein may act as a systemic immune modulator, 

potentially through basolateral mechanisms. Umod-/- mice were shown to have 

reduced IL17 expression- a key granulopoietic cytokine, causing neutrophilia. This 

study showed an increase in neutrophils in both the kidney and also systemically, a 

finding reversed by the addition of exogenous IL17 treatment (Micanovic et al., 2015). 
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Additionally, an upregulation of a number of systemic cytokines in response to UMOD 

levels in the context of hypertension has been suggested, though this was only shown 

in silico and not biologically (Jian et al., 2015). 

1.5.6.4  Tubulointerstitial Kidney Disease 

Homozygous protein coding mutations on the human UMOD gene have been shown to 

drive chronic kidney disease, particularly referred to as UMOD-autosomal-dominant-

tubulointerstitial kidney disease (UMOD-ADTKD). UMOD-ADTKD a progressive disease 

which first manifests in teenage years and progresses to end stage renal failure, 

normally within three to six decades (Bleyer et al., 2021). UMOD-ADTKD is typically 

characterized physiologically by hyperuricaemia, though with an absence of the 

haematuria or proteinuria normally associated with other renal disorders  (Gast et 

al., 2018). Furthermore, it was shown that UMOD-ATKD may or may not be associated 

with the presence of intra medullary cysts in patients (TC et al., 2002). 

It is understood that the protein coding mutations driving UMOD-ADTKD cause 

misfolding which allows the mutated uromodulin protein to accumulate with the 

endoplasmic reticulum (ER), causing increased intracellular accumulation, ER-stress 

and reduced uromodulin excretion (L et al., 2003). It was also found that UMOD-

ADTKD patients had distinct glycosylation patterns within the uromodulin protein that 

they express (P et al., 2006). In an ADTKD-UMOD mouse model, it was shown that 

TAL cells of these animals had upregulation of Grp78 , a marker or ER-stress and 

additional upregulation of pathways indicating intracellular unfolded protein 

responses (SE et al., 2017). 

1.5.7 UMOD and Blood Pressure Regulation 

Whilst the seminal GWAS associating rs13333226 and the UMOD gene with 

hypertension provided a potential link to blood pressure through sodium natriuresis, 

they acknowledge there were no causative experiments conducted at that point to 

provide data on mechanisms (Padmanabhan et al., 2010). In the years since however, 

two fundamental papers have been published providing causative mechanisms, with 

both papers differing in their approach and interpretation. 
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Firstly, Trudu et al published in 2013, suggesting that UMOD affects blood pressure 

regulation through affecting the activity of NKCC2. In particular, they hypothesized 

that salt-sensitive hypertension is underpinned by aberrant over-activation of NKCC2. 

In turn, and consistent with this, they generated a human overexpressing UMOD 

transgenic mouse (TgUmodwt/w), which displayed increased phosphorylation of NKCC2 

at two known activation sites (Thr96 and Thr101). These transgenic over-expressers 

were shown to have increased baseline blood pressures, and also appeared to respond 

to the removal of NaCl from diet more than their wild type counterparts. Of 

additional importance in the Trudu paper was the finding that in stable transfectants 

of NKCC2 in renal cells, activation of the cotransporter was observed in wildtype 

uromodulin cotransfectants but not in solubilized uromodulin (truncated at the 

anchor site) cotransfectants, implying that the action of uromodulin in relation to 

NKCC2 activation is dictated by cellular membrane anchored uromodulin (Trudu et 

al., 2013). 

Trudu et al built further on the mechanism behind their proposed effect, by showing 

that the modulation of NKCC2 activation by uromodulin in their TgUmodwt/w mouse 

model was mediated in-part by increased activation of STE20/SPS1-related 

proline/alanine-rich kinase (SPAK) and oxidative stress response 1 kinase (OSR1)- 

themselves known regulators of NKCC2 phosphorylation. Thus, Trudu et al provided 

a clear causative mechanistic relationship between UMOD and blood pressure 

regulation, through uromodulin associating with increased phosphorylation/activity 

of NKCC2 via SPAK and OSR1. Additionally, Trudu et al showed that in the context of 

elevated UMOD expression in mice, loop-diuretic treatment was significantly more 

effective at reducing blood pressure in TgUmodwt/w  mice versus wildtype counterparts. 

By contrast, in 2014, Graham et al employed a knock-out driven approach, using 

homozygous knock out mice on a Sv129 background (UMOD-/-). Like Trudu et al, 

Graham et al concluded that UMOD associated with blood pressure through its effects 

on sodium excretion. However, they suggested a different mechanism. They 

hypothesised that TNF-α is central to regulation, and this was achieved through UMOD 

mediating the effect of TNF-α on NKCC2 function. To this end, they showed reduced 

levels of NKCC2 expression in UMOD knockout animals, and that TNF-α excretion in 
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these animals was also significantly increased in the presence of dietary sodium 

chloride. With UMOD potentially sequestering TNF-α in the lumen, TNF-α was then 

available to act in an autocrine manner to inhibit Na+ uptake by NKCC2, in turn 

affecting blood pressure. Observation of this mechanism was also reflected in the 

phenotype of the animals, with Umod-/- displaying tolerance to dietary NaCl as a 

method of increasing this blood pressure. Interestingly, these animals displayed 

increased urinary excretion of NaCl, both at baseline and with dietary NaCl, 

suggesting constitutive effects of natriuresis, not limited only to period of elevated 

NaCl intake (Graham et al, 2014). 
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1.5.8 The Sodium Potassium Chloride Cotransporter 

Both interpretations of the link between UMOD and blood pressure indicating 

mechanistic action through NKCC2, suggesting this transporter is highly likely to be 

the causative pathway. Responsible for the filtration and reabsorption of around 200-

250g of NaCl per day in humans, NKCC2 is encoded by one gene, but has highly 

differentiated splicing, which is itself highly location specific along the nephron 

(Hebert and Gamba, 1994; SC and G, 1994; Castrop and Schießl, 2014). NKCC2 

Figure 1.5-3 Two evidence-based UMOD:blood pressure hypotheses.  

Trudu et al hypothesise that basolateral UMOD drives increased phosphorylation 

of NKCC2 by SPAK/OSR, leading to increased activity. Graham et al hypothesise 

that basolateral UMOD acts as a TNF-α sink, leading to reduced activatory effects 

of TNF-α on expression of NKCC2. 
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consists of 1099 aminos acids in humans, with a size of 131.4kDa (Markadieu and 

Delpire, 2014) with glycosylation increasing the molecular weight by 30-40kDa in 

humans (A, MN and RJ, 2009). As opposed to a single large ‘pore like’ channel, NKCC2 

has a complex structure which contains ion specific interaction sites at a central 

protein motif, with sites for one Na+ and K+ and two Cl- ions per single transport 

(Markadieu and Delpire, 2014). 

 The membrane localization of NKCC2 in its activated form is primarily mediated in 

an inhibitory manner via cyclic-guanosine-monophosphate (cGMP) and in a 

stimulatory manner by cyclic-adenosine-monophosphate, with the activatory cAMP 

pathway known to be modulated by vasopressin (Hebert et al., 1987; A et al., 1991). 

Specifically speaking, this subsequent finding identified that the presence of 

vasopressin in TAL cells underpins the requirement of NKCC2 to function as a 

potassium transporter (such that in the absence of vasopressin, potassium was not 

transported by the cotransporter). Additionally, in a separate mechanism, Ca2+ and 

Mg2+ stimulation the CaSR causes modulation of cAMP in TAL cells potentially 

allowing the CaSR to affect the activity of NKCC2 in an ion-dependent manner (G and 

PA, 2009). Furthermore, TNF-α has been shown to affect the bioavailability and 

function of NKCC2, reflecting the in vivo findings of Graham et al in Umod-/- mice (S 

et al., 2011). Specifically, this study examined the TAL cells of TNF-/- mice, where it 

was observed that in the knockout strain, both protein and mRNA expression of 

NKCC2A were significantly upregulated. Like Graham et al, this study suggests that 

TNA-α acts as an endogenous inhibitor of NKCC2. Lastly, NKCC2 activity has been 

shown to respond to NaCl levels, which can be attenuated by TNF-α, with low salt 

diet leading to increased phosphorylation of NKCC2 and upregulation of NKCC2B. This 

upregulation was subsequently diminished by treatment with endogenous TNF-α (S et 

al., 2020). 

Loop diuretics (Figure 1.2-2) are highly potent actors at NKCC2, in particular, loop 

diuretics bind to the chloride binding site on the cotransporter, consequently 

inhibiting sodium reabsorption (Ellison, 2019b). However, despite the high efficacy 

of loop diuretics through their effects on NKCC2, these drugs are not normally 

recommended for long-term interventions due to their notable side effects- 
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particularly their ability to induce rapid uresis leading to discomfort in patients. 

Building on this, studies have suggested the need for further refinement of the NKCC2 

induced diuretic effects of loop diuretics in order for their side effects to be better 

managed (Caceres and Ortiz, 2019). 

1.6 The UMOD Precision Medicine Hypothesis 

Whilst there is a lack of agreement in the field on the potential mechanisms 

underpinning the relationship between UMOD and the activity of NKCC2, the overlying 

hypothesis is clear; UMOD associates with blood pressure primarily through exerting 

effects on NKCC. Thus, UMOD may itself be a hypertension precision medicine target. 

With volume overload via natriuresis considered a major driver of hypertension, loop 

diuretics should be optimized as much as possible as a therapeutic, and administered 

as first line treatment where appropriate. In the context of UMOD, the hypertensive 

population can be stratified into two groups, differentiated by their potential 

response to loop diuretic medication. Firstly, the UMOD ‘risk’ genotype (those with 

increased UMOD levels) can be considered ‘optimal responders’ to loop diuretics due 

to the previously discussed relationship between UMOD, NKCC2 and the hypertensive 

phenotype. Contrastingly, those individuals with the UMOD ‘protective’ genotype can 

be regarded as likely to have diminished NKCC2 driven sodium reabsorption, resulting 

in weakened responses to loop-diuretics versus the risk genotype.  

Such a hypothesis has led to the development and execution of an on-going 

multicentre trial (n=240), using torasemide as the target medication and rs13333226 

as their identifying variant. The BHF-UMOD study intends to use the change in 24-

hour ambulatory SBP area under the curve between baseline and end of treatment as 

their primary study metric, though they also hope to capture mechanism validation 

data via urinary UMOD excretion and serum ion concentrations (McCallum et al., 

2021). 
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1.6.1 Thesis Hypothesis 

We hypothesise that the UMOD gene is a precision medicine target. However, unlike 

McCallum et al, we believe that the underlying genetic contribution on the cis-UMOD 

promoter may not exclusively be affected (or affected at all) by rs13333226. 

Additionally, we believe that understanding the transcriptional mechanisms 

underlying genotype dependent UMOD expression may further inform and refine the 

UMOD precision medicine hypothesis. Lastly, we hypothesise that whilst UMOD affects 

NKCC2 protein quantity or activity, the drivers of this relationship have not yet been 

fully elucidated and may be multifaceted. Greater understanding of the mechanisms 

associating blood pressure with the UMOD locus are likely to benefit any downstream 

clinical investigation. Therefore, we propose a basic science approach to provide new 

insights to this phenomenon. 

1.6.2 Thesis Aims 

The stated aims of this thesis are as follows; 

• To provide additional insights into which variants on the UMOD promoter drive 

expression, and to study the mechanisms underlying their activity 

• To further examine the relationship between the expression of UMOD and 

NKCC2 

• To establish a system of stable expression of the UMOD gene to facilitate 

trafficking studies 

• To perform in vivo experimentation examining the relationship between 

sodium chloride and UMOD expression  

• To use the impact of the Covid-19 pandemic to develop a series of 

computational biology tools to assist in experimentation and hypothesis 

development 
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2 General Methods 

2.1 Extraction of Genetic Material and Polymerase Chain Reaction 

2.1.1 Human Renal Biopsy Processing 

Diseased human kidneys were extracted from renal cancer patients by invasive 

surgery with the patient under general anesthetic during the procedure. During ex-

vivo, a 1mm wide bore was used to sample tissue from the opposite (non-diseased) 

pole of the cancerous kidney, to an average depth of 10mm. Tissue was immediately 

stored in RNALater (Sigma-Aldrich, Dorset, UK) and shipped on the same day to the 

Institute of Cardiovascular and Medicinal Sciences, University of Glasgow. Upon 

receipt, samples were immediately removed from solution and stored at -80˚C until 

use. Accompanying each sample was phenotypic information consisting of systolic 

blood pressure, pulse rate, age, sex and body-mass-index. Systolic blood pressure and 

pulse rate were not considered reliable variables due to their single-sampling 

methodology in the period when the patient was due to undergo invasive surgery. 
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2.1.2 DNA Extraction 

All samples were processed using DNeasy Blood and Tissue Kit (Qiagen, Manchester, 

UK) on a RNAzap (Sigma-Aldrich, Dorset, UK) and 70% ethanol (dH2O) cleaned lab-

bench, using filter pipette tips only to minimize contamination. Where appropriate, 

frozen samples were fragmented using a liquid nitrogen cooled mortar and pestle, to 

obtain chipped products which amassed to less than 30mg, to prevent overloading of 

the column. Samples were first lysed in 220µL 1:10 Proteinase-K:Buffer AL for 1-hour 

Figure 2.1-0 Selection process of samples for experimental methodologies 

with attrition shown. Due to low yields of nucleotide material, some samples 

were lost at both DNA and RNA extraction steps. For NGS experiments, an 

inclusion criterion was developed, from this subset of n=29 appropriate 

samples, n=3 per group were selected based on their expression of UMOD, as 

determined by qRT-PCR. 
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at 56˚C and vortexed every 10min. Following this, 200µL 100% ethanol was added and 

the mixture thoroughly mixed. The resulting mixture was then transferred to a 

DNeasy Mini-spin column and centrifuged at 8000 x g (RCF) for 1min and flow-through 

discarded. Buffer AW1 was then applied to the column and centrifuged at 8000 x g 

(RCF) for 1min with flow-through again discarded. Finally, buffer AW2 was applied to 

the column and centrifuged at 8000 x g (RCF) for 3min. The column insert was then 

removed and placed in a fresh 1.5ml eppendorf. To the membrane of the column 

directly, 30µL nuclease-free-water (Thermofisher, Paisley, UK) was applied. The 

column was rested at room temperature for 1min and then centrifuged at 8000 x g 

(RCF) for 1min. The flow through of this centrifugation was then re-applied to the 

membrane of the column and then re-centrifuged under the same conditions, 

increasing yield.  For yield quantification, 1µL of sample was pipetted onto the 

receptacle of a NanoDrop ND-1000 Spectrophotometer (ThermoFisher, Paisley, UK) 

with a 260/280 ratio of >1.8 accepted as ‘pure’ in accordance with machine use 

guidelines. Product DNA was then stored at -20˚C until use. 

2.1.3 RNA Extraction 

All samples were processed using DNeasy Blood and Tissue Kit (Qiagen, Manchester, 

UK) in an RNAzap (Sigma-Aldrich, Dorset, UK) and 70% ethanol (dH2O) cleaned fume 

hood, using filter pipette tips only to minimize contamination. Where appropriate, 

frozen samples were fragmented using a liquid nitrogen cooled mortar and pestle, to 

obtain chipped products which amassed to less than 30mg, to prevent overloading of 

the column. No more than 1e106 were used, suspended in PBS, where applicable. To 

tissues, 700µL QIAzol Lysis Reagent (Qiagen, Manchester, UK) was added alongside 

one sterile stainless steel ball, and these samples disrupted and homogenized using 

a Polytron PT2100 Benchtop Homogeniser (KINEMATICA, Luzern, Switzerland) set to 

a 30Hz cycling period for 2min. Where cells were used, media was removed from 

adherent cells, which were then washed with 3x PBS washes. Following this, cells 

were then directly lysed on-plate using 700µL QIAzol. Homogenised QIAzol 

suspensions were then incubated at room temperature (19-22˚C) before 140µL 

chloroform was added to each sample and tubes thoroughly mixed by hand-shaking. 

Product was then incubated for 3min at room temperature before being centrifuged 
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at 12000 x g (RCF) at 4˚C for 15min. The upper aqueous phase of three specific layers 

was then extracted by pipette and transferred to a fresh 1.5 eppendorf where it was 

mixed by pipetting with 525µL 100% ethanol. A maximum of 700µL of this product 

was then transferred to RNeasy Mini Spin columns and centrifuged at 8000 x g (RCF) 

for 15s (at room temperature), with flow through discarded, any left over product 

greater than 700µL was then subjected to the same method.  

Following this, and on-column DNAse digest was performed by first adding 350µL 

Buffer RWT then centrifuging at 8000 x g (RCF) for 1min. To the column, a total of 

80µL DNase-I: Buffer RDD was added (10µL:70µL) and incubated at room temperature 

for 15min. After 15min, 350µL Buffer RWT was added to the column and then 

centrifuged at 8000 x g (RCF) for 1min To each dried column, 500µL buffer RPE was 

added and this centrifuged at 8000 x g (RCF) for 15s with flow-through discarded. An 

additional 500µL buffer RPE was added and this again centrifuged at 8000 x g (RCF) 

for 2min with flow-through discarded. To the membrane of the column directly, 30µL 

nuclease-free-water (Thermofisher, Paisley, UK) was applied. The column was rested 

at room temperature for 1min and then centrifuged at 8000 x g (RCF) for 1min. The 

flow through of this centrifugation was then re-applied to the membrane of the 

column and then re-centrifuged under the same conditions, in theory increasing 

yield.  For yield quantification, 1µL of sample was pipetted onto the receptacle of a 

NanoDrop ND-1000 Spectrophotometer (ThermoFisher, Paisley, UK) with a 260/280 

ratio of >2 accepted as ‘pure’ in accordance with machine use guidelines. Product 

RNA was then stored at -80˚C until use. 

2.1.4 End-point Polymerase Chain Reaction and Electrophoresis 

All end-point PCR reactions were performed on genomic-DNA products obtained from 

extraction using Qiagen DNeasy Blood and Tissue Kit as detailed in Section 2.1.2. 

Input gDNA yield to the reaction was 10ng, suspended in an appropriate volume of 

nuclease-free-water. HotStarTaq DNA Polymerase (Qiagen, Manchester, UK) was 

selected as the polymerase enzyme for these reactions. A series of different reactions 

were performed, depending on the required product. Amplification of the human 

UMOD promoter for Sanger genotyping (2.1.4.1), amplification of the human UMOD 
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gene for next-generation sequencing (2.1.4.2), amplification of full length human 

UMOD cDNA (2.1.4.3) and finally amplification of the mouse UMOD promoter for 

UMOD alleles in the UMOD-/-:UMODwt colony (2.1.4.4). Human primers were designed 

against GRCh38 and mouse primers against Mm9 genome builds and ordered from 

Eurofins Genomics (Ebersberg, Germany) where they were assembled and purified by 

HPSF before being shipped lyophilized and resuspended in-lab to concentrations of 

100mM in nuclease-free-water. All end-point PCR reactions were amplified on a MJ 

Research PTC 225 Tetrad thermal cycler (Marshall Scientific, Hampton NH, USA) using 

96-well PCR plates (Starlab, Milton Keynes, UK) . 

An agarose gel consisting of 0.8-1.2% Agarose (Invitrogen, Carlsbad, USA) in 120ml 

Tris-borate EDTA (TBE) was prepared using a microwave and upon cooling, 1.5µL 

10mg/ml ethidium bromide solution ((Sigma-Aldrich, Dorset, UK) was carefully added 

in a fume hood before gentle mixing. Molten agarose was poured into a gel template 

with a 15-well comb before being solidified over 1.5hours. Upon solidification the gel 

was transferred to an electrophoresis system (BioRad, Hampstead, UK). 2µL 5X 

loading dye (Thermofisher, Paisley, UK) was added to 8µL PCR product and the 

resulting 10µL added to wells on the gel. In lane 1 8µL of DNA ladder of appropriate 

size (either 100bp or 1kb) was added (NEB, Ipswich MA, USA). Electrophoresis was 

performed on the samples by running the gel in 1X TBE solution at 100V for 1-hour 

using a BioRad Powerpac 300 direct-current system. Following this, gels were 

visualized using a BioRad Molecular Imager XRS+ transillumination system (BioRad, 

Hampstead, UK). Gel products were then discarded in specific ethidium bromide 

contaminated wastebins. 

2.1.4.1 Amplification for Sanger Genotyping of rs13333226 and rs4997081 

Reagents 

Mastermix Reagents Volume (µL) 

Template gDNA 2 (5ng/µL stock) 

dNTP (10mM) 0.6 

10X PCR Buffer 3 

HotStarTaq DNA Polymerase 0.3 
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Nuclease Free Water 22.1 

Forward Primer (10nM) 1 

Reverse Primer (10nM) 1 

Cycling Conditions 

Time Temperature (˚C) 

15min 95 

1min 95 

1min 58 

1min 72 

Cycle back to step-2 34 times 

10min 72 

Primers (GRCh38) 

Sequence Tm (˚C) 

5’-GAAACTGGTGAGTAGTGTTGGT-3 

(Forward) 

59.6 

5’-CATCAACAATGGCACATGTATA-3 

(Reverse) 

60.7 

Table 2.1-1 Genotyping Standard Operating Procedure 

2.1.4.2  Amplification for Targetted Next Generation Sequencing of the Human 

UMOD Gene 

Reagents 

Mastermix Reagents Volume (µL) 

Template gDNA 2 (10ng/µL stock) 

dNTP (10mM) 0.6 

10X PCR Buffer 3 

HotStarTaq DNA Polymerase 0.3 

Nuclease Free Water 21.7 

Forward Primer (10nM) 1.2 

Reverse Primer (10nM) 1.2 

Cycling Conditions 
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Time Temperature (˚C) 

15min 95 

1min 95 

1min At least 5˚C lower than primer Tm 

1min 72 

Cycle back to step-2 34 times 

10min 72 

Primers (GRCh38) 

Sequence Fragment ID Tm (˚C) 

5’-TCATCCTTACACCTACTTCC-3’ 

(Forward) 

1 

 

55.6 

5’-ACGAACCTTAATCTCTCAGC-3’ 

(Reverse) 

57.6 

5’-AAAACACAAATTAGCCGGGC-3’ 

(Forward) 

2 

 

64.7 

5’-AAAAGTCAGTGTGAGAGTGG-3’ 

(Reverse) 

56.8 

5’-GACAAGTTAATGGGTGCAGC-3’ 

(Forward) 

3 

 

62.1 

5’-GATGCGACCTAAAACACTGC-3’ 

(Reverse) 

62.3 

5’-CTCTTTGATCCTCTCTGTCC-3’ 

(Forward) 

4 

 

57.9 

5’-TGTGAACAGAGATGGATGGG-3’ 

(Reverse) 

63.7 

5’-GGGATGTTGGTGAGGTAAGG-3’ 

(Forward) 

5 

 

63.1 

5’-TCCAAAACAAGGAAAGAAGC-3’ 

(Reverse) 

60.8 

5’-CCAGGAATTGGAGGCTATGG-3’ 

(Forward) 

6 

 

65.4 
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5’-TGAGCTGATTGGTGGACTGG-3 

(Reverse) 

66.4 

5’-GAGGAGTGCAGTATAGACGAGG-3’ 

(Forward) 

7 

 

61.8 

5’-TGTCATTGGCCCCACATTCC-3’ 

(Reverse) 

69.9 

Table 2.1-2 Targetted Resequencing Standard Operating Procedure 

 

Figure 2.1-1 Primer annealing points (red) on the UMOD gene 

 



50 
 
2.1.4.3 Amplification of full-length human UMOD cDNA 

Reagents 

Mastermix Reagents Volume (µL) 

Template cDNA 2µL (not quantified) 

dNTP (10mM) 0.6 

10X PCR Buffer 3 

HotStarTaq DNA Polymerase 0.3 

Nuclease Free Water 22.1 

Forward Primer (10nM) 1 

Reverse Primer (10nM) 1 

Cycling Conditions 

Time Temperature (˚C) 

15min 95 

1min 95 

1min 58 

1min 72 

Cycle back to step-2 34 times 

10min 72 

Primers (GRCh38) 

Sequence Technique Tm (˚C) 

5’-AGACTAACTCTACCTTTCTG -3 (Fwd 

[5’UTR]) 

cDNA amplification 

 

49.1 

5’- GTACACCGTCACAAGTCCCAT-3 (Rev 

[exon-11]) 

52.4 

5’- TAATACGACTCACTATAG- 3’ (Fwd 

[T7]) 

Insert orientation 

verification 

40.9 

5’-GTACACCGTCACAAGTCCCAT-3’ (Rev 

[exon-11]) 

63.7 

Table 2.1-3 Full length UMOD cDNA Synthesis Standard Operating Procedure 
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2.1.4.4  Amplification for Characterisation UMOD alleles of SV129 Mice 

Reagents 

Mastermix Reagents Volume (µL) 

Template gDNA 2 (10ng/µL stock) 

dNTP (10mM) 0.6 

10X PCR Buffer 3 

HotStarTaq DNA Polymerase 0.3 

Nuclease Free Water 22.1 

Forward Primer (10nM) 1 

Reverse Primer (10nM) 1 

Cycling Conditions 

Time Temperature (˚C) 

15min 95 

1min 95 

1min At least 5˚C lower than primer Tm 

1min 72 

Cycle back to step-2 34 times 

10min 72 

Primers (Mm9) 

Sequence UMOD Fragment Tm (˚C) 

5’- AGGGCTTTACAGGGGATGGTTG -3’ 

(Forward) 

Wild-type 

 

68.9 

5’- GATTGCACTCAGGGGGCTCTGT -3’ 

(Reverse) 

59.1 

5’- AGGGCTTTACAGGGGATGGTTG -3’ 

(Forward) 

Knock-out 

 

68.9 

5’- GGCTATTCGGCTATGACTGGG -3’ 

(Reverse) 

66.6 

Table 2.1-4 Mouse Genotyping Standard Operating Procedure 
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2.1.4.5  PCR Product Purification and Sanger Sequencing 

Where appropriate, in the context of samples being analysed either by Sanger or 

next-generation-sequencing, products were purified by QIAquick PCR Purification Kit 

(Qiagen, Manchester, UK). To each 30µL PCR product, 150µL Buffer PB was added 

before the solution was transferred to a QIAquick column and centrifuged for 1min 

at 8000 x g (RCF) and flow through discarded. To the dried column, 750µL Buffer PE 

was added and again centrifuged for 1min at 8000 x g (RCF). Following this, 30µL 

nuclease-free-water was applied directly to the membrane and the column left for 

1min, after which columns were centrifuged at 8000 x g for 1min to collect the 

eluate. The flow through of this centrifugation was then re-applied to the membrane 

of the column and then re-centrifuged under the same conditions, in theory 

increasing yield.  For yield quantification, 1µL of sample was pipetted onto the 

receptacle of a NanoDrop ND-1000 Spectrophotometer (ThermoFisher, Paisley, UK) 

with a 260/280 ratio of >1.8 accepted as ‘pure’ in accordance with machine use 

guidelines. Purified product was stored at -20˚C until use. The total volume of 

purified samples were sent to GATC (discontinued, now Eurofins (Ebersberg, 

Germany)) for Sanger sequencing. Returned AB1 files which contain the 

electropherogram signal were analysed for genotype at rs13333226 and rs4997081 by 

eye using CLC Genomics Software (Qiagen, Manchester, UK). Homozgous signals were 

distinguished the electropherogram displaying a single peak for a specific base, 

heretozygous signals were characterized by the electropherogram displaying a double 

peak of half-height. 

2.1.5 cDNA Preparation 

All cDNA reactions were prepared in the absence of gene-specific-primers on a 

RNAzap (Sigma-Aldrich, Dorset, UK) and 70% ethanol (dH2O) cleaned bench, using 

filter pipette tips only to minimize contamination. Superscript-IV (Thermofisher, 

Paisley, UK)  reverse transcription reactions were performed using 200ng RNA 

extracted by methods detailed in 2.1.3. The resulting 20µL cDNA product was diluted 

in 80µl nuclease-free-water to give a final dilution of 1:5 and stored at -20˚C until 

further use. 
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Reaction Vessel 1 

Reagents Volume (µL) 

Template RNA 2 (100ng/µL stock) 

dNTP (10mM) 1 

Random Hexamers (50µM) 1 

Nuclease free water 9 

Cycling Conditions (Vessel 1) 

Time Temperature (˚C) 

5min 65 

1min 4 

Reaction Vessel 2 

Reagents Volume (µL) 

5x Superscript IV Buffer 4 

100mM DTT 1 

RNAseOUT (Thermofisher) 1 

Superscript IV Reverse Transcriptase 1 

Vessel 1 Product 13 

Cycling Conditions (Vessel 2) 

Time Temperature (˚C) 

10min 23 

10min 55 

10min 80 

Table 2.1-5 Pre-Taqman cDNA Synthesis Standard Operating Procedure 

 

2.1.6 Taqman Quantitative Real-time PCR 

Diluted cDNA from 2.1.5 was combined with the desired Taqman qRT-PCR probe 

(Thermofisher, Paisley, UK) and Taqman Mastermix (Thermofisher, Paisley, UK) was 

added to wells on a 384-well optical plate (Thermofisher, Paisley, UK). All reactions 

were performed in triplicate and plates featured both an RT (reverse-transcription) 

negative control and no-RT negative control. Reactions were duplexed, with the 

gene-of-interest assayed using a FAM labelled probe and a housekeeper gene assayed 
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with a VIC labelled probe in the same well. Plates were amplified using a QuantStudio 

12K Flex Real-Time PCR System (Thermofisher, Paisley, UK). Raw data was displayed 

as Ct values, in triplicate. Any biological n with a technical replicate Ct standard 

deviation value > 0.5 was excluded from analysis, in the exception that it was not 

immediately apparent there was a user error in one of the 3 triplicate wells. If there 

was a clear user-error in a well, this well was excluded from the analysis Triplicates 

were reduced to means and mean Ct values used to calculate relative quantification 

via the double-delta-Ct method. The ddCT method first involved subtracting the Ct 

of the gene of housekeeper from the gene of interest (dCT), before normalizing each 

sample to the average dCT of the control group (ddCT). Following this, the second 

exponent of the negative ddCT was calculated to determine in the fold change in 

gene expression.  

∆Ct = Ct (gene of interest) – Ct (housekeeping gene) 

∆∆Ct = ∆Ct (Sample) – ∆Ct (Control average) 

Fold gene expression = 2^-(∆∆Ct) 

Reagents 

Mastermix Reagents Volume (µL) 

Universal Mastermix (no UNG) 2.5 

Gene of Interest (FAM Fluorophore) 0.25 

Housekeeper (VIC Fluorophore) 0.25 

cDNA Template 2 

Cycling Conditions 

Method Selection 

Cycling Style Standard 

Well volume 5 µL 

Table 2.1-6 Taqman qRT-PCR Standard Operating Procedure 
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2.1.7 Sample Preparation of Next Generation Sequencing Samples 

Relative quantification for UMOD mRNA of all 86 human renal samples was performed. 

Of these data, 3 individuals with UMOD mRNA expression in the lower 20th percentile 

of the gaussian distribution were selected as the ‘low UMOD expression’ group and 

conversely individuals with UMOD expression in the upper 20th percentile selected as 

the ‘high UMOD expression’ group. Due to insufficient evidence on the correlation 

between anti-hypertensive medication and UMOD expression, any individual samples 

which were recorded as taking medication at the time of surgery were excluded. Both 

next-generation-sequencing of DNA and RNA was performed on the same samples. 

Prior to RNA-sequencing, samples were analysed using Agilent 2100 Bioanalyzer with 

a Eukaryote Total RNA Nano assay (Glasgow Polyomics). RIN values greater than 6 

were considered acceptable. 

2.2 Next Generation Sequencing 

2.2.1 Targetted DNA Sequencing of the Human UMOD Gene 

Seven consecutive 1.5kb fragments of the human UMOD gene, starting 2kb upstream 

of the UMOD-201 human transcriptional-start-site were amplified by 2.1.4.2 and 

purified by 2.1.4.5. These purified fragments were pooled to produce a final 

equimolar solution of 1000ng total DNA in 100µL, suspended in nuclease-free-water. 

Samples were then shipped on dry ice to Glasgow Polyomics (Garscube, Glasgow, UK). 

An operator at Glasgow Polyomics subsequently fragmented this solution into 150bp 

reads before ligating adapters and beads provided with the TruSeq DNA Nano kit 

(Illumina, SanDiego CA, USA). The prepared library was then sequenced on the MiSeq2 

platform in paired end style (Illumina, SanDiego CA, USA). Data was returned in the 

form of raw reads which were trimmed and analysed by the author. 

2.2.2 DNA Sequence Data Processing Pipeline 

Raw reads were obtained and loaded into a Linux operating system (Ubuntu 16.04.1 

LTS). Cutadapt (Version 3.4), running in Python 3.7 was used to trim adapter 

sequences from reads (5’-AGATCGGAAGAGCACACGTCTGAACTCCAGTCA-3’ and 5’-

AGATCGGAAGAGCGTCGTGTGTAGGGGAAAGAGTGT-3’). Reads were then aligned to 
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GRCh38 (Release 78) using Burrow-Wheeler-Aligner (Version 0.7.17) to produce a 

binary-alignment-file (BAM). Picard tools (version 2.20.6) was then used to mark PCR 

duplicates in the BAM file, following which duplicates were removed. Genome-

analysis-toolkit (GATK) (Version 4.0.7.0) haplotype-caller was then used to detect 

SNPs from these BAM files, with base calls excluded if the Phred score of the base 

was <20 (5% chance of a mis-call). Haplotype caller provided an endpoint tabular file 

containing all detected variants, their coordinates, db-SNP annotation and allele 

count. 

 

Figure 2.2-1 Genomic fastqc processing pipeline 

 

2.2.3 Total RNA Sequencing between Low and High human UMOD Expressers 

Following verification of integrity of RNA, 30µL of human renal RNA, concentration 

30µg/µl, was shipped on dry ice to Glasgow Polyomics (Garscube, Glasgow, UK). Upon 

receipt, an operator fragmented RNA to 75bp reads and libraries were prepared using 

Illumina TruSeq Stranded mRNA Sample Preparation Kit adapters (Illumina, SanDiego 

CA, USA). The prepared library was then sequenced on the NextSeq500 platform in 

paired end style using the in-house sequencer at Glasgow Polyomics (Illumina, 

SanDiego CA, USA). 
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2.2.4 RNA Sequence Data Processing Pipeline 

Raw reads had their adapters (5’-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC’-3’, 

5’-AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT-

3’) trimmed and bases with Phred score < 15 were removed using FastP (Version 

0.20.0). Reads were then assessed for potential contaminants by Fastq-Screen 

(Version 0.13.0). Following this, reads were aligned to GRCh38 (Release 78) using the 

splice-sensitive aligner Hisat2 (Version 2.1.0). Transcript abundances were then 

determined by Stringtie (Version 1.3.6) using the GRCh38 Gene-feature-file (Release 

79). Stringtie tabular counts were then ported to R (version 3.6.0) using TxImport 

where samples were assessed for differential expression between groups using 

Deseq2. Further discussion of the statistical methods of Deseq2 can be found in 4.3.2. 

 

Figure 2.2-2 Transcriptomic fastqc processing pipeline 

 

2.3 Computational Biology 

2.3.1 Software 

During the Covid19 disruption and based on several potential data analysis 

applications using data already generated (particularly RNA-seq), Python 3.8 was 

learned and executed across several open-source programs by the author. Python was 

chosen over R due to its inherent flexibility and more widely applicable use-cases in 

biology. The author’s Integrated Development Environment (IDE) was created around 
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Jupyter Client (Version 6.1.5), though as applications became larger in scope, 

Microsoft Visual Studio Code 2019 was transitioned into. In total over 5000 lines of 

code were written to generate these novel applications. All underlying code for 

applications can be found in appendix or otherwise is fully available at 

https://github.com/SimonF92. Modules were installed into the IDE using Pip (Version 

21.1.2) or Anaconda, depending on requirements. 

 

2.3.2 PadPlot 

Padplot describes a web-application authored in full by the writer during the initial 

covid19 pandemic. Padplot is a modular program for visualization and analysis of bulk 

RNA-sequencing data. No other software developers contributed to the writing and 

hosting of Padplot. Padplot was hosted on a linux based virtual machine provided by 

Amazon Web Services. 

2.3.2.1 Data Processing 

Deseq2 output files were loaded into a Python environment using Pandas (Version 

1.0.5) following which log2FoldChanges, adjusted-pvalues and gene-names were 

created as individual list variables. Adjusted-pvalues were transformed to both 

negative log-pvalues and negative log-10-pvalues by Numpy (Version 1.19.5) before 

being reintegrated with the original dataframe variable. Padplot was then 

constructed around this central ‘prepdata’ function which could be used via flow 

control to send necessary values to each of the individual plotting functions. 

https://github.com/SimonF92
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Figure 2.3-1 Padplot web application architecture 

 

2.3.2.2 Principal Component Analysis 

Principal component analysis was performed using sklearn.preprocessing 

StandardScaler and sklearn.decomposition PCA (Version 0.23.1). A dataframe was 

created from raw counts at each gene for each sample, with an option provided via 

flow control to convert all values to their log(count+1) counterpart- to provide a log-

transformation alternative. A ‘features’ list was subsequently created producing a 

range of values between 0 and the total count of genes in the sample. Each gene per 

sample was transformed via pca_fit into PCA scaled counterparts. An ‘explained 
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variance’ variable was then created by taking the explained variance value at each 

of the components and converting this to a percentage against the sum of all 

variances, with PC1 representing the component with the greatest variance in the 

data. From the list of components, a new dataframe was created containing both PC1 

and PC2 for each sample, with these values providing the x and y coordinates of a 

scatterplot visualization and the sample name providing a text variable for label at 

each of these points. This scatterplot was created using matplotlib (Version 3.3.1), 

seaborn (Version 0.10.1) and text labels were dodged from each other using 

adjustText (Version 0.7.3).  

2.3.2.3 Graphical Visualisations 

Both log10 and log2 options were provided to the user in terms of p-value 

transformations, with the discretionary choice relating to the skewness in their data. 

A figure canvas was created with Matplolib.pyplot and the volcano-plot cast to it 

using Seaborn.scatter, with each point being represented by local variables of 

log2foldchange on the x-axis and negative log-pvalue on the y-axis. Individual points 

on the scatter were coloured by Boolean depending on their significance. Genes with 

the highest negative log-pvalue were also tagged with this respective gene names 

using plt.text, creating a variable which was then passed through AdjustText in order 

to prevent overlap of gene names within the final visualization. In the case of human 

data, an additional option was provided to merge gene names within the dataset with 

Gene Ontology definitions (using Pandas), generating volcano plots in which the user 

could define and highlight genes relating to a particular process within their data. 

Options for both vertical and horizontal guidebars to indicate significance were also 

added be assigning plt.hline and plt.vline variables to these. 

For heatmap visualisations, users were first asked to provide data grouping following 

which the basic dataframe obtained from prepdata() was melted around grouping 

using Pandas. Data was then plotted using the clustering algorithm of Seaborn due to 

its inherent ability to produce hierarchy before being cast to a Matplotlib canvas. All 

data was plotted on z-score of individual samples relating to the mean of counts at 

that gene, as opposed to raw counts. 
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Lastly, for violinplot visualisations, as for heatmap, the user was given the option to 

log(counts +1) transform their data in order to reduce skewness, creating a new 

dataframe variable. Again these counts were melted around grouping, following 

which a Matplotlib canvas was prepared to which a Seaborn violinplot object was 

cast. Additional options were given to the user to add a swarmplot jitter based on 

their requirements alongside sample grouping.  

2.3.2.4 Gene Set Enrichment Analysis 

Gene set enrichment within Padplot was performed using the Gsea.py library 

(0.10.2). A subsetted dataframe of gene counts at each sample for each gene was 

created from ‘prepdata()’ before this new ‘gene_exp’ variable was subsetted to the 

top-7000 genes in terms of expression. Using caching, gene sets were pulled via the 

Enrichr API and geneset enrichment performed using a permutation analysis across 

all genes- with no thresholding. One hundred permutations were performed and 

enriched pathways determined by their signal to noise ratio. The gene-set variable 

created was parsed into a dataframe from which both total gene-sets and individual 

gene-sets could be accessed. In the case of individual gene-sets, visualization was 

based on creating the ratio of experimental to control gene expression and then 

representing this ratio on a sliding scale with an underlying colourmap from blue to 

red. The user was given control over all of the statistical methods and gene-sets 

against which to compare. 

2.3.2.5 Interactivity 

Streamlit (Version 0.69.2) was used to provide interactivity to the user with input 

and output (IO) being pushed through the Streamlit python to css and html conversion 

process. All variables, including those relating to plotting were modifiable through 

Streamlit to give the end user control over plots. The webpage was continuously 

cached on the host machine to improve speeds for the user.  
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2.3.2.6 Web hosting 

A Linux (Ubuntu 16.04.1 LTS) machine with 1 CPU core and 1Gb RAM was reserved on 

Amazon Web Services (AWS, Seattle WA, USA). Via controlled access through PuTTy, 

to this, a Python 3.8 environment was constructed with appropriate libraries installed 

via Pip. Git fetch was used to pull code from https://github.com/SimonF92 on the 

machine. Streamlit was used via port 8501 to run Padplot via the dynamic IP of the 

AWS console. Users requesting access to Padplot were given remote access via this 

dynamic IP and port, allowing them to run Padplot from their own computers in-

browser without having to install any python-based applications natively. No security 

steps were taken to secure Padplot, as a result, the machine was turned off after use 

and no user data was stored on the machine at any time. A fully working web address 

can be provided to readers on request although the website is not running at all times 

to prevent fees from Amazon. This web-application may become non-functional in 

2022 due to inherent costs. 

 

Figure 2.3-2 Padplot web-hosting architecture 
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2.4 Ingenuity Pathway Analysis 

Ingenuity Pathway Analysis (Qiagen, Manchester, UK) Winter-2020 version was used. 

Datasets used in Ingenuity Pathway Analysis were loaded into the application in 

comma-separated-values ‘csv’ format, filtered on log2FoldChange of +1/-1 and 

adjusted p-value of (<0.05). Gene-sets within IPA consisted of independently curated, 

private gene sets, distinct from the gene-ontology based publicy curated gene-sets 

used in gene set enrichment analysis within the study. 

2.5 Single Cell Data Mining 

Human renal single cell data (10X Genomics) was mined from GEO accession 

GSM4145205. Features, matrix and barcode files were loaded into Python using 

Scanpy (Version 1.6.1). Cells expressing <200 genes, cells expressing >10% 

mitochondrial genes or genes which were expressed in <10 cells were removed from 

analysis. Counts were normalized by log transformation before nearest-neighbour 

clustering was performed (10 neighbours, 40 components) and these data then 

dimensionally reduced into 2 dimensions by UMAP for initial visualization. Leiden 

algorithm was then applied to this to generate clustering.  UMOD expressing cells 

were then sub-filtered by selecting only cells with log-expression of the UMOD gene 

> 0.2, this enriched the dataset for theoretically primarly TAL cells, increasing the 

signal to noise ratio of the data. This subset of data was subsequently further reduced 

by reanalysing the components by nearest-neighbours (10 neighbours, 50 

components) in order to stratify UMOD expressing cells from one another.  

2.5.1 Automated EVOS Cell Detection 

EVOS .tif images were imported using openCV (Version 4.4.0.40) and converted to 

16bit greyscale before Clahe based normalisation was applied. Subsequent 

normalized images were read into the environment using Skimage (Version 0.17.2) 

and filtered using multiotsu thresholding (Skimage) with 5 brightness classes applied. 

Dead cells were characterized as those occupying a brightness threshold by Otsu 

(Skimage) algorithm of >2. If cells were highly confluent, a variable was created using 

morphology.white_tophat (Skimage) in order to increase accuracy of background 

detection. Distance transformation was prepared using ndi.transform_edit (Skimage) 
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on these thresholded images. Following this, local max features were detected using 

feature.peak_local (Skimage) with a min_distance of 1. Markers were then create 

from this matrix and this variable used to create segmented cells using 

segmentation.watershed. Total quantity of segmented features was used to give a 

count of total dead cells, which could automatically recognize and dissect clumped 

cell clusters. The ratio of total cell coverage was normalized to dead cells in order 

to give a marker of plate viability. 

2.6 Plasmid Generation 

2.6.1 Luria Bertani Medium, Glycerol Stocks and Agar Plates 

All transformed and stock bacteria were cultured using Luria Bertani medium. All 

products were sterlised using the autoclave method before use. 

Luria Bertani Medium 

Component Mass or Volume for 1-litre 

Tryptone 10g 

dH2O 950ml (+1000- volume NaOH) 

Yeast Extract 5g 

Sodium Chloride 5g 

Sodium Hydroxide (to pH 8) Variable 

Ampicillin 100mg (100µg/ml) 

Glycerol Stock 

Component Mass or Volume for 10ml 

Glycerol 5ml 

dH2O 5ml 

LB-Agar XGal Plate 

Component Mass or Volume for one plate 

Lucia Bertani Medium from above 30ml 

Agar Powder 0.3g 

X-Gal (5-bromo-4-chloro-3-indolyl-β-

D-galactopyranoside) 

0.6g 
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Table 2.6-1 Media and stock recipies 

 

2.6.2 Insert Preparation and Ligation into Plasmid 

Full length human UMOD RNA (500ng) was reverse transcribed to cDNA by the steps 

described in 2.1.5 and amplified by the steps described in 2.1.4.3. Cloning of this 

PCR product was performed using the pTargeT Mammalian Expression Vector System 

(Promega, Wisconsin, USA).  PCR product was used at either a 1:1 or 3:1 ratio with 

pTtargeT Vector. Reaction vessels were incubated overnight at 4˚C to facilitate 

ligation of product into the vector. 

Ligation of human UMOD into pTargeT System 

Reagent Volume (µL) 

T4 DNA Ligase 1 

pTargeT Vector  1 

PCR Product 1 or 3  

Control Insert  2 (Absent from standard reaction) 

T4 DNA Ligase 1 

Nuclease-free-water To 10µL 

Table 2.6-2 Ligation reagents 

 

2.6.3 Transformation of Competent Cells 

All transformations were performed using aseptic technique. LB-Agar XGal Plates 

were equilibrated to room temperature prior to plating and JM109 High Efficiency 

Competent Cells, which produce at minimum 1 × 108cfu/µg DNA, were removed from 

storage at -80˚C and thawed on ice immediately prior to reaction. 50µL JM109 cells 

were combined with 2µL of ligation product and vessels were gently flicked to 

disperse the mixture before being incubated on ice for 20minutes. The cells were 

then heat-shocked for 50 seconds at 42 ˚C before being immediately returned to ice 

for 2minutes. 950µL room temperature LB media was then added to each reaction 

vessel. This mixture was then incubated for 1.5hours at 37˚C with shaking at 150RPM. 



66 
 
100µL of each transformation reaction was then plated onto duplicate LB-Agar XGal 

plates which were then incubated overnight at 37˚C. The following day, colonies 

were screened by eye for blue/white colour selection. White colonies indicate 

recombinant events and so were selected for further analysis by scraping these 

colonies with a sterile filtered pipette tip and splitting the scraped product between 

starter culture and PCR amplification. Starter cultures were prepared by incubating 

this contaminated pipette tip in 10ml LB-media overnight with shaking. The following 

day 1ml of overnight starter culture was added to ml glycerol stock and stored at -

80˚C for future use. Insert orientation was verified by amplifying the plasmid product 

again the T7 promoter 5’-CATTATGCTGAGTGATATC-3’. 

2.6.4 Plasmid Purification 

1ml of amplified product from a single colony, clonally expanded through start 

culture was added to 999ml LB-media and incubated overnight at 200 RPM at 37˚C 

with gentle shaking (at 40rpm), prior to purification using the Qiagen Plasmid Midi 

Kit (Qiagen, Manchester, UK). The following morning product was purified using 

centrifugation at 6000rcf (g) for 15min at 4˚C and the supernatant discarded. 

Pelleted transformed bacterial cells were then resuspended in 0.3ml of Buffer P1. To 

this 0.3ml buffer P2 was added and the mixture then vigorously inverted multiple 

times to ensure homogenisiation. To the resulting mixture, 0.3ml chilled buffer P3 

was added and this immediately mixed 5 times before being incubated on ice. The 

resulting solution was centrifuged at maximum speed (13000 x g (RCF))) for 10min. 

The supernatant (containing plasmid) of this centrifugation was then retained.  

A QIAGEN-tip 20 was equilibrated using 1ml Buffer QBT, the solution was allowed to 

perfuse into the tip and emptied via gravity flow. Following equilibration, the 

supernatant from above was added to the column and allowed to empty via gravity 

flow. Following this, 2x2ml Buffer QC was allowed to flow through the column. 

Finally, the DNA retained in the column was eluted using Buffer QF. DNA was then 

precipitated from the eluent by adding 0.56ml per 0.8ml elution volume of room 

temperature isopropanol. The resulting solution was then immediately centrifuged 

by ultracentrifugation at 15000 x g (RCF) for 30min. The supernatant was carefully 
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removed and the resulting pellet was then washed with 1ml of 70% ethanol before 

being centrifuged again at 15000 x g (RCF) for 10min. The supernatant was again 

carefully removed and the resulting pellet air dried for 5-10min before the final DNA 

pellet was resuspended in 10ml nuclease free water. This resuspended solution of 

DNA was then characterized for concentration by Nanodrop Spectrophotometer using 

the same standards for quality as described prior. 

 

2.7 Cell Culture 

2.7.1 Media Preparation and General Methods 

Cells were initially obtained by donation from PhD researcher Ahmad Mohammed A 

Alhajoj. All experiments were conducted under aseptic technique. HEK293 cells were 

cultured in Minimal Essential Medium (MEM) (Thermofisher, Paisley, UK), 

supplemented with 10% fetal-bovine-serum, 1% L-glutamate, 1% Sodium pyruvate and 

1% Penicillin-Streptomycin (all Thermofisher, Paisley, UK). Cells were cultured in a 

Class-II Biosafety laminar flow hood (Thermofisher, Paisley, UK) and incubated at a 

constant 37˚C with 5% CO2 . All cultures were performed using Corning Flasks of 

varying size (T25 (5ml), T75 (13ml) and T150 (20ml) ) (Corning, Arizona AZ, USA). 

Where appropriate, cells were analysed for viability using light microscopy and 

counted using a hemocytometer (Sigma, Dorset, UK). Cell counting was completed by 

first incubating cells with 0.4 trypan blue solution (Sigma, Dorset, UK), each quadrant 

on the finder was used to count cells, and average count was taken as the mean of 

the four quadrants. 

Cells were raised from -80˚C by rapid transference from cryostorage vials to flasks 

containing pre-warmed media. Media was replaced on growing cells every 48-72 

hours, all solutions which were to come into contact with cells were first heated to 

37˚C using a waterbath. Between uses, all solutions were stored at 4˚C. Upon 

confluency or prior to experimental necessity, cells were split and passaged by first 

removing media and then performing 3x gentle washes with sterile PBS with the last 

PBS wash aspirated leaving only cells. Upon completion of washes, cells were 
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incubated with 5ml 10% trypsin solution in PBS (Thermofisher, Paisley, UK) for 

5minutes in an incubator to detach them from plate surface. This 5ml solution was 

mixed with 5ml of supplemented MEM to neutralize the trypsin. The resulting 10ml 

solution was centrifuged at 1000 x g (rcf) for 5minutes to create a pellet. Having 

discarded the supernatant, this pellet was resuspended in 1ml of supplemented 

media. If these cells were to be frozen, 100µL of sterile Dimethyl sulfoxide (DMSO) 

was added and mixed, following which the resulting solution was added to a 

cryostorage vial before being rapidly cooled to -80˚C using a MrFrosty Freezing 

Container (Thermofisher, Paisley, UK) overnight. After overnight cooling, cryostorage 

vials were transferred to liquid nitrogen for long term storage. 

2.7.2 Transfection 

Transfection was performed usingt PolyFect Transfection Reagent (Qiagen, 

Manchester, UK). Cells were seeded at 6e105 density into 6-well tissue culture plates 

with 3ml supplemented MEM before being grown to 70% confluency. 2µg of purified 

DNA product from 2.4.4 was dissolved in TE buffer with basic MEM to a volume of 

100µL. To this, 20µL PolyFect Transfection Reagent was added and solution mixed by 

pipetting. These samples were incubated for 10min at room temperature (21-23˚C). 

Media was aspirated from cells before 600µl supplemented MEM combined with the 

120µL polyfect product using mixing was transferred to wells. The resulting plate was 

incubated overnight, following which this media:polyfect mixture was aspirated and 

replace with supplemented MEM. 

2.7.3 MTT Assay 

Confluent cells post-transfection were assessed for viability using MTT Assay Kit 

(Sigma, Dorset, UK). Cells seeded in 96-well TC plate wells were treated with 10µL 

MTT labelling reagent and incubated for 4hours at 37˚C (5% CO2). Following this, 

100µL Solubilisation solution was added to each well and the plate incubated 

overnight at 37˚C to permit the MTT reaction (5% CO2). Spectrophotometrical 

absorbance was then assessed at 550nm wavelength using a PerkinElmer VICTOR plate 

reader (PerkinElmer, USA). 
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2.7.4 RNA and Protein Harvesting from Cells 

Where appropriate, following media aspiration with subsequent 3x PBS washes before 

aspiration of the final PBS volume, cells were incubated in either Lysis Buffer (Qiagen, 

Manches, UK) or RIPA buffer (Thermofisher, Paisley, UK) for RNA and protein 

extraction respectively for 5 minutes in an incubator at 37˚C. Following this, the cells 

were scratched from the dish using sterile cell scraper and the resulting solutions 

harvest and stored at -80˚C (RNA) or -20˚C (protein) for future use.  

2.8 Electrophoretic Mobility Shift Assay and Mass Spectrometry 

2.8.1 Extraction of Nuclear Protein 

Wild type HEK293 cells were trypsinised and pelleted as described in 2.5.1 with one 

confluent T75 producing a packed cell volume of 20µL with the supernatante 

discarded. From this, nuclear protein was extracted using the NEPER kit 

(Thermofisher, Paisley, UK). For packed cell volumes of 20µL, 200µL ice cold CER-I 

solution was added to this pellet and the resulting mixture was vortexed for 15 

secondard prior to a 10 minutes incubation on ice. Following this, 11µL ice cold CER-

II was added and the mixture vortexed for 5 seconds before a 1 minute incubation on 

ice. The mixture was then vortexed for 5 seconds again before being centrifuged at 

13,000 x g (rcf) for 5 minutes. Supernatant from this spin was discarded before the 

resulting pellet was resuspended in 100µL ice cold NER solution with repeated 

vortexing over a 45 minute period between periods of incubation on ice. After this 

process, the tube was centrifuged at 13,000 x g (rcf) for  10 minutes. The 

supernatant, containing nuclear proteins was then stored at -80˚C until required. 

 

2.8.2 Generation of the EMSA Product 

Electrophoretic mobility shift assay was performed using LightShift 

Chemiluminescent kit (Thermofisher, Paisley, UK). The current GRCh38 human 
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reference genome was used to determine the 50-mer flanking sequences (+25bp, -

24bp) of both rs4497081  

(CCCAGGGGCCTATTGTGGGATG[C/G]GGGGAGCGGGGAGGGATAGCATTAGGA) and 

rs13333226 

(CTGTTTGGGAAGAGGAGTCAATAT[T/C]CCTACAGCTGTGCTACCTCTTTGAC). Of these 

four sequences, both standard and 5-prime biotinylated were obtained from Eurofins 

(Eurofins Genomics, Ebersberg, Germany) along with their reverse and complement 

sequences giving a total of eight oligonucleotides. Both the biotinylated and un-

biotinylated oligos were incubated with their respective reverse complement 

sequences for 30min at room temperature (21-23˚C) to product double stranded 

product. Following this, EMSA products were produced by combining reagents in a 

1.5ml Eppendorf tube with gentle mixing and a 20min incubation at room 

temperature. 

Generation of EMSA Product 

Reagent Negative 

Control-A (No 

protein) (µL) 

Experimental 

Assay 

(µL) 

Negative Control-B 

(out-competition) 

(µL) 

dH2O 10 7 3 

10X Binding Buffer  2 2 2 

1µg/µL Poly (dIdC) 1  1 1 

50% Glycerol 1 1 1 

1% NP-40 1 1 1 

1M KCl 1 1 1 

100mM MgCl2 1 1 1 

200mM EDTA 1 1 1 

Unlabelled Target 

Oligo (1pmol) 

0 0 4 

Protein Extract 0 3 3 

Biotinylated Target 

Oligo (10fmol) 

2 2 2 
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Table 2.8-1 Electrophertic Mobility Shift Standard Operating Procedure 

 

2.8.3 Visualisation and Quantification 

The products of EMSA reaction were visualized by combining 20µL of product with 

5µL bromophenol blue dye and loading these products into pre-flushed wells of a 

NOVEX DNA retardation gel (Thermofisher, Paisley, UK) and running the system at 

150V in 0.5% TBE (dH2O) using a BioRad Powerpac 300 direct-current system for 

approximately 1-hour, or until the dye migrated to the end of the gel. This gel was 

then transferred onto a Biodyne™ B Nylon Membrane (Thermofisher, Paisley, UK) in a 

wet process using pre-cooled 0.5% TBE solution at 380mA for 30 minutes. The 

membrane was subsequently cross linked using a UV crosslinker equipped with 254nm 

bulbs, with the dye-side facing down for 10 minutes. 

This crosslinked membrane was then blocked using 1X Blocking Buffer for 15 minutes 

with gentle shaking (40RPM) before being incubated with 20ml Blocking Buffer 

containing 66.7µL Stabilised Streptavidin-HRP Conjugate for 15 minutes with shaking. 

The membrane was then washed in 1X wash buffer four times, with 5 minutes shaking 

periods in each wash. Following this, the membrane was then incubated with 30ml 

Substrate Equilibration Buffer for 5 minutes with shaking. Lastly, the membrane was 

incubated face down in a mixed combination of 6ml Luminol Enhancer solution and 

6ml Stable Peroxide Solution for 5 minutes. Following this, and within 20 minutes of 

this stage, the membrane was imaged using a Licor cDigit scanner (Licor Biosciences, 

Nebraska, USA). 

Data were exported in zip format and unzipped into Image Studio Light (Licor 

Biosciences, Nebraska, USA). Experimental lanes of the membrane were analysed by 

densitometry, drawing equal sized squares by hand around both the upper and lower 

bands. The upper band represented oligonucleotides bound to nuclear protein whilst 

the lower band represented free oligonucleotides. Therefore, the ratio of upper to 

lower band was used to quantify binding affinity. Log ratios of these binding affinities 
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were then used to visualise relative binding affinity and perform statistical 

calculations. 

 

2.9 Western Blotting and Co-immunoprecipitation 

2.9.1 Protein Extraction and Quantification 

Proteins were extracted from HEK-293 by performing an on-plate lysis of cells. 50µL 

RIPA buffer (Thermofisher, Paisley, UK) was added to 1x 106 washed cells and a 30min 

incubation performed at room temperature. Cells were then scraped using a blunted 

P1000 pipette tip and lysates harvested and store at -80˚C until further use.  

Protein concentration was then determined using Pierce Gold Rapid BCA kit 

(Thermofisher, Paisley, UK). Bovine Serum Albumin (BSA) standards were first 

prepared by diluting 2000µg/ml BSA in nuclease-free-water serially, to 

concentrations of [2000,1500,1000,750,500,250,125,25,0] µg/ml. All BCA assay 

reactions were performed in wells of a 96-well TC plate. To each well, 196µL Reagent 

A was added, to which 4µL Reagent B was added, and then wells mixed by pipetting. 

To these wells, 20µL of RIPA lysates were added with mixing and these reactions 

incubated at room temperature for 5min. All reactions were performed in duplex, 

including the standard controls, with additional blank wells included. Following a 

5min incubation, this plate was then analysed at 480nm wavelength using a 

PerkinElmer VICTOR plate reader (PerkinElmer, USA). Raw absorbance data from this 

analysis was obtained. From all wells, the blank control value was subtracted to 

normalize. Mean values were obtained from duplicates. The BSA ladder was used to 

generate a linear regression equation in the form 𝑦 = 𝑚𝑥 + 𝑐 , from which unknown 

sample concentrations were calculated. Samples were then diluted to standard 

concentrations in dH2O.  

2.9.2 Western Blotting 

Samples diluted to stocks in 2.7.1 were mixed 1:4 with NuPAGE LDS-sample buffer 

and heated to 95˚C for 5min. All western blotting was performed using the 
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Invitrogen™ Novex™ mini system (Thermofisher, Paisley, UK). A total of 30ug protein 

lysate in LDS-sample buffer was loaded into the wells of a Bolt™ 4 to 12%, Bis-Tris, 

1.0 mm, Mini Protein Gel (Thermofisher, Paisley, UK), with 3µL PageRuler Prestained 

Protein Ladder(Thermofisher, Paisley, UK) loaded in the rightmost well. NuPAGE 

running buffer (1X) (Thermofisher, Paisley, UK),  was used as the running solvent with 

the system placed in ice while it ran. Proteins were electrophoresed using a BioRad 

Powerpac 300 direct-current system, initially at 100V for 10min before increasing the 

voltage to 120V until the dye had migrated to the bottom of the gel.  

Prior to transfer, transfer buffer was prepared by combining 50ml 20X NuPAGE 

transfer buffer with 850ml dH2O and 100ml methanol. This solution was cooled to 

4˚C following which either Powerblotter Membrane (Thermofisher, Paisley, UK) or 

PVDF membrane (Thermofisher, Paisley, UK) and filter sponges were activated in 1X 

transfer buffer for 10min. Following activation, the gel was paired with the 

membrane with continuous wetting and the system transferred using a Novex cage in 

a cold room at 4˚C at 120V for one hour. 

Ensuring a continually wet membrane, this membrane was removed and blocked in 

50:50 SEABLOCK (Thermofisher, Paisley, UK) in Tris-buffered-saline (TBS) (6.05 g Tris 

and 8.76 g NaCl in 800 mL of H2O) with rotary shaking at 40 RPM for 1 hour. Following 

this, the membrane was incubated at 4˚C overnight at 40 RPM in 1:800 rabbit anti-

UMOD antibody (Abcam, Cambridge MA, USA) diluted in 1X TBS-Tween (TBST) (TBS 

with 1% Tween solution) 50:50 with SEABLOCK. The following day, the membrane was 

washed in TBST for 5min at 40 RPM, with this process repeated 3 times, each time 

discarding the wash. The membrane was then incubated at room temperature in a 

tinfoil wrapped vessel for 1 hour in 1:10,000 donkey Anti-Rabbit IgG H&L (Alexa 

Fluor® 488) (Abcam, Cambridge MA, USA) diluted in 1X TBST. Following this, the 

membrane was washed in a tinfoil wrapped vessel in TBST for 5min at 40 RPM, with 

this process repeated 3 times, each time discarding the wash. The membrane was 

then imaged face down on a Licor cLX system at high-quality in dual channel mode, 

detecting both 488nm and 647nm channels. After this, the membrane was incubated 

at 4˚C overnight at 40 RPM in 1:4000 mouse anti-Actin antibody (Abcam, Cambridge 

MA, USA) diluted in 1X TBS-Tween (TBST) (TBS with 1% Tween solution) 50:50 with 
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SEABLOCK. The following day, the membrane was washed in TBST for 5min at 40 RPM, 

with this process repeated 3 times, each time discarding the wash. The membrane 

was then incubated at room temperature in a tinfoil wrapped vessel for 1 hour in 

1:10,000 donkey Anti-mouse IgG H&L (Alexa Fluor® 647) (Abcam, Cambridge MA, USA) 

diluted in 1X TBST. Following this, the membrane was washed in a tinfoil wrapped 

vessel in TBST for 5min at 40 RPM, with this process repeated 3 times, each time 

discarding the wash. The membrane was then imaged face down on a Licor cLX system 

at high-quality in dual channel mode, detecting both 488nm and 647nm channels. 

Together these steps produced an image of firstly raw UMOD densitometry and 

secondly UMOD and Actin densitometry, with Actin used as a housekeeper. Data were 

exported in zip format and unzipped into Image Studio Light (Licor Biosciences, 

Nebraska, USA). Experimental lanes of the membrane were analysed by 

densitometry, drawing equal sized squares around signals. UMOD densitometry was 

normalized to loading by dividing it by the Actin densitometry values. 

2.10  In-vivo Experimentation 

2.10.1 General Methods 

All animal procedures were approved by the Home Office according to the Animals 

(Scientific Procedures) Act (1986) (Project Licences 60/9021 and PP0895181) and 

followed ARRIVE guidelines and subject to local ethics approval. Sv129-WT and Sv129-

Umod-/- , Umod +/- and Umod +/+ mice were housed with an ambient temperature 

of 21°C±2 on a 12-hour light/dark cycle and given ad libitum access to standard chow 

and tap water. One male Umod +/- and one female Umod +/- were cage mated and 

litters reared with the mother until weaning. At 6 weeks, pups were genotyped using 

tissue derived from ear notching using an ear punch. 

2.10.2 Pilot Study Design 

At 12 weeks male Umod-/- , Umod +/- and Umod +/+ mice were randomly assigned 

to one of two groups where they were separated into paired housing and given ad 

libitum access to standard chow and either tap water or 2% sodium chloride in tap 

water. Animals were monitored to ensure their tolerance to sodium both by weighing 
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them and observing their behaviour. Animals had their baseline blood pressures 

assessed by tail cuff plethysmography for training in the week before beginning the 

procedure and started on either tap water or sodium chloride solution for the next 6 

weeks. Blood pressure was taken every Tuesday morning at 9am by tail cuff 

plethysmography. This produced a total of 7 measurements- one training 

measurement and 6 actual measurements. At week 3 and week 6 of being on this 

procedure, the animals were housed in metabolic cages for 24 hours.  After the final 

blood pressure measurement, the animals were sacrificed and tissues harvested. 

 

Figure 2.10-1 Experimental design of the UMOD mouse study 

2.10.3 Tail Cuff Plethysmography  

A BP-2000 Series II machine (Therassay/ Visitec Systems/ Bioseb) in mouse 

configuration was used to measure all tail-cuff blood pressure readings, preheated to 

37˚C to vasodilate the tail prior to study. Animals were taken in their home cages to 

a dedicated, quiet room. A cardboard tube was used to pick up the mice non-

aversively before they were placed in a free moving, closed vessel on the BP-2000 

system and their tails had a cuff placed over the base. These mice were then secured 

in place by gently taping down the end of their tails. A total of 5 induction and 15 

Training  

Treatment 

Start Sacrifice 

Random Assignment 

to either tap water 

or sodium chloride 

Midpoint 

Met-cage 

Endpoint 

Met-cage 

Tail-cuff Blood Pressure 

11 weeks 12 weeks 18 weeks 
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actual measurements were taking with 30 second intervals and a maximum pressure 

of 220mmHg. Data were exported in their raw format. 

Data was firstly assessed for 0 values which were discarded. From non-zero values, 

the 5th and 95th percentiles were calculated and values lying out with this range 

discarded as outlier. Using percentiles and not Gaussian distribution boundaries 

accounted for the high incidence of positive outliers. Mean values for each set of 15 

measurements were then calculated and these mean values used as values for any 

subsequent analysis. 

2.10.4 Metabolic Caging 

One mouse was assigned to a single metabolic cage with ad-libitum access to 

powdered chow and 100ml of their assigned drinking water. Prior to the first 24-hour 

metabolic cage period, a 4-hour acclimatization period was given to the animals to 

allow them to acclimatize to the cage. Over the 24-hour period, all urine was 

collected and at the end of the period, drinking water was assessed for volume. Per 

animal, volume of liquid consumed, and volume of urine excreted were obtained as 

metrics, whilst the urine itself was stored at -80˚C until further use. All transfers of 

animals between home cage and metabolic cage was performed using a tube under 

non-aversive handling guidelines. 

2.10.5 Sacrificing 

After 6 weeks of treatment, at 18 weeks of age, animals were anaesthetized with 5% 

isoflurane in oxygen mix in an induction chamber until non-responsive to pressure 

applied forcefully to the tip of the tail with a pair of forceps. These animals were 

then weighed before being placed on an operating table in a supine position and 

attached to a face mask to maintain general anesthesia. Blunt forceps were then 

used to raise the skin above the diaphragm before the skin and fur covering the area 

was cut off, leaving muscle tissue overlaying the chest exposed. A blunt incision was 

made into the peritoneum before the tissue was cut away on either side of the Xiphoid 

process of the sternum, exposing the diaphragm. A second blunt incision was made 

into the diaphragm before this was cut away. Following this, the rib cage 5mm either 
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side of the sternum was cut, exposing the organs of the chest. A 23G needle fitted to 

2ml syringe (Sigma-Aldrich, Manchester, UK) was inserted into the apex of the heart, 

targeting the left ventricle (LV). The animal was then ex-sanguinated by removing 

blood from the LV as the chamber filled. Following exsanguination, watchmakers 

forceps were used to lift and hold the aorta from the posterior wall of the thoracic 

cavity before this was cut away from the base of the spine upward toward the heart 

until it was cut away completely at the aortic arch. One half of this aortic section 

was placed in 10% paraformaldehyde solution with the other half snap frozen using 

liquid nitrogen. The heart was then removed from the animal and connective tissue 

stripped from it before it was weighed. The heart was then cut laterally (horizontally 

if standing up) into equally sized pieces half which was placed in 10% 

paraformaldehyde solution with the other half snap frozen using liquid nitrogen. With 

the aorta and heart removed, the abdomen wall was then cut to expose the organs 

of the abdomen. Both the right and left kidney were removed, weighed and then cut 

in half laterally. Three of the four sections were then snap frozen in liquid nitrogen 

with the last section placed in 10% paraformaldehyde solution (PFA). Lastly the liver 

was removed and weighed, with a 100mg section dissected away and snap frozen in 

liquid nitrogen. 

All snap frozen components were stored at -80˚C until further use. All PFA stored 

components were kept in 10% PFA at room temperature for 24 hours before being 

transferred to 70% ethanol and stored at 4˚C in the fridge. 

2.11 Statistical Analyses 

Data was analysed in Python 3.8 using the Stats and Scikit-learn libraries. Continuous 

data was tested for normal distribution prior to analysis. Appropriate tests were then 

selected based on the required analysis. For comparisons between two groups, 

students t-test was applied, with Welch’s correction applied to non-normally 

distributed data. For comparisons between multiple groups, one-way ANOVA was 

used with Tukey’s HSD post-hoc. For linear regression analysis, two-sided p-values 

were calculated against a hypothesis test whose null hypothesis was that the slope 

was zero. For comparisons involving multiple testing, Benjamini-Hochberg correction 



78 
 
was applied. 95% confidence interval values were calculated and represented 

alongside mean values where appropriate. For all data, p<0.05 was considered the 

lowest threshold of statistical significance. For data involving more than one 

significance test, multiple testing correction was applied.  
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3 Chapter 3 The UMOD Promoter and rs4997081 

3.1 Introduction 

With the Padmanabhan et al study discovering the association of the UMOD gene with 

blood pressure and Graham et al & Trudu et al confirming this association in-vitro 

and in-vivo as acting via NKCC2 centred natriuresis, focus moved toward proving 

genetic functional causation (Padmanabhan et al., 2013; Graham et al, 2014). 

Specifically, ‘functional causation’ attributed to base and not haplotype would be 

defined by empirical data showing that the specific base change at a specific variant 

on the locus resulted in a difference in UMOD transcription between alleles which 

associated with differences in blood pressure. Interestingly, causality at the discovery 

variant, rs13333226, has not been shown to date; rather it was shown that the loci 

containing rs13333226 is causative. Due to linkage disequilibrium (LD) resulting in 

strong or perfect correlation between rs13333226 and variants in proximity, 

effectively any variant in LD may be causative. Previous data assessing a range of 

variants in LD with rs13333226 firstly showed that rs13333226 assessed by luciferase 

assay, does not produce a difference in luminosity between alleles. Significantly 

however, this data indicated that a variant in near perfect LD with this variant, 

rs4997081, may be functional due to it displaying increased promoter activity in the 

risk allele (Graham, unpublished). Specifically, Graham et al, showed that, in this 

series of experiments on constructs containing the human UMOD promoter, with site 

directed mutagenesis to specify alleles at rs133333226 and rs4997081, a significant 

(p<0.0001) increase in luminosity was observed at the risk allele versus the protective 

allele. They performed these experiments across several relevant cell lines, HeLa, 

NRK, HEK293 and HK2, observing the same finding across each cell. 

It is possible that the variant array used in the initial GWAS in 2010 did not include 

rs4997081 as a SNP, and furthermore that the UMOD promoter locus was not 

annotated to the extent which allowed rs4997081 to be imputed, therefore it was 

not included in the initial analysis. Based on the combination of our previous 

luciferase data and our finding that rs4997081 was masked in the initial analysis, we 

believe at present, that preliminary indications suggest that rs4997081 is most likely 
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a causative variant. Critically, rs13333226 and rs4997081 are not in perfect LD, rather 

they are in 91.9% linkage (National Cancer Institute, Division of Cancer Epidemiology 

and Genetics). Currently, UMOD precision medicine studies genotype rs13333226 for 

analysis, therefore, an error rate of up to 8.1% may exist between characterised and 

true causal variants; possibly leading to decreases in accuracy of analysis. 

Showing functionality by luciferase assay between alleles at target variants provides 

important preliminary data. However, luciferase assay design uses reporter 

constructs in a system isolated from underlying human biology. As a result of this, 

the specifics of gene transcription cannot be interrogated to provide enhanced 

understanding of causality at the biochemical level. Electrophoretic mobility shift 

assay conversely assesses the binding affinity of eukaryotic transcriptional apparatus 

to target oligonucleotides, and can be modified to stratify binding by genotype. The 

significant benefit of this approach is that we believe a magnetic based isolation 

system can be developed in order to capture and characterise the transcription 

factors binding at the target locus. The benefits of this design therefore are two-

fold, in that we believe we can use this to determine causation between rs13333226 

and rs4997081, and also show the mechanism of this function. This in turn is likely to 

further enhance potential precision medicine applications downstream. 

As we rationalise it is possible that further causative variants may exist cryptically in 

non-annotated regions at the locus, the work in this chapter initially intends to 

examine the human promoter for novel variants by targeted resequencing stratified 

against UMOD mRNA levels in our human renal samples. Following this, we intend to 

design, optimise and execute a protocol for determining the differential binding of 

transcription factors to our variant-containing oligonucleotides and building on this, 

to isolate and characterise these proteins by Mass Spectroscopy. For these 

experiments, we elected to use the HK2 cell line, which is an immortalised proximal 

epithelial cell line (Ryan et al., 1994). HK2 cells, while not exact physiological 

matches for TAL cells, are the most appropriate cell model of choice as they remain 

highly representative of renal tubular cells and are a well-researched model for drug 

induced nephrotoxicity due to their broad expression of renal ion transporters 

(Jenkinson et al., 2012). Alongside this they are known to exhibit stable properties 
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across passage, making them good choices for long term studies on renal cells, where 

material will be harvested longitudinally (Handl et al., 2020). 

Finally, UMOD has been shown repeatedly to associate with TNF-α across various 

mechanisms, including where blockade was shown to inhibit functional decline in 

UMOD mutant (C147W/+) mice and also where it has been shown to stimulate 

secretion of TNF-α in monocytes (Su et al., 1997; Johnson et al., 2017b). 

Furthermore, in wild-type mice, intraperitoneal injection of polyomerised UMOD was 

shown to produce this effect in-vivo, suggesting a relationship between UMOD and 

TNF-α (Immler et al., 2020b). Graham et al in their publication relating Umod to 

blood pressure in mice also show an effect of Umod on TNF-α, where they suggest 

basolateral UMOD acts as a TNF-α sink. In early 2021, we became aware of highly 

significant, unpublished data implicating TNF-α treatment in the context of UMOD 

expression. This novel data showed TNF-α treatment associated with increased levels 

of UMOD expression in human cells, which could be reversed using Etanercept 

(specifically at rs4997081). The researchers involved with these experiments 

however, based their assays on Taqman qRT-PCR, thus our newly optimised EMSA 

protocol had the potential to corroborate and enhance their findings. Based on the 

pre-existing and annotated relationship between UMOD and TNF-α alongside this new 

and highly encouraging data, we pivoted to specifically focus on TNF-α, with our 

fundamental aim being to uncover targetable pathways in the expression of the UMOD 

gene in the context of blood pressure regulation. 

3.2 Aims 

• To examine our bank of human DNA/RNA samples genotypes for rs13333226 

and rs4997081 for expression of the UMOD Gene 

 

• To assess by NGS the promoter of low and high UMOD expressers for novel 

variants which differ between groups 
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• To investigate by EMSA, both rs13333226 and rs4997081 risk and protective 

alleles, and any further discovered variants for differential binding affinity to 

nuclear protein lysates 

 

• To design and execute a protocol for enrichment of bound transcription factors 

 

• To use these data to characterise the role of TNF-α in UMOD expression and 

build on the significant new data we were made aware of 
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3.3 Methods 

3.3.1 Magnetic Purification of EMSA Product 

Magnetic purification of products prepared from EMSA were purified using a protocol 

based on the m-280 Streptavidin Dynabead system (Thermofisher, Paisley, UK). 

Pooled EMSA reactions totalling 100µL were used in conjunction with 20µL M-280 

Streptavidin Dynabeads. Prior to purification, these beads were resuspended in the 

original vial by vortexing, following which 20µL beads were transferred to a new 

1.5ml Eppendorf which was placed on a Dynamag-Spin magnet system for 2min. With 

the tube still attached to the magnet, the supernatant was discarded. The tube was 

then removed from the magnet and the string of beads which had migrated toward 

the magnet were resuspended in 1X B&W buffer (Thermofisher, Paisley, UK). 

Resuspended beads were then placed back on the magnet for 2min and the process 

repeated 3x times in order to wash the beads, each time using 1X B&W buffer as the 

resuspension media. The last wash was resuspended in 40µL 1X B&W buffer. 100µL 

EMSA product was then added to this 40µL of washed beads and this volume incubated 

for 15min at room temperature whilst under gentle vertical rotation to ensure 

thorough mixing (10 RPM). Following this, the product of this reaction was placed on 

the magnetic rack for 3min to allow migration of beads onto the magnet. The 

supernatant was removed and the product resuspended in 100µL 1X B&W buffer. This 

wash step was repeated 3 times using 2min magnetic incubations before the beads 

from the last wash were resuspended in 100µL nuclease free water. The biotin-

streptavidin bond was then broken using a 5min incubation at 65°C and these 

products submitted in full for mass spectrometry. 

3.3.2 Mass Spectrometry 

A volume of 30µL purified sample from 2.6.4 was mixed with 200µL UA solution (8M 

Urea (Sigma, Dorset, UK) in 0.1M Tris/HCl, pH 8.5) inside an Ultracel YM-10 (Millipore) 

vessel and the unit centrifuged at 14,000 x g (RCF) for 40min. Following this, an 

additional 200µL UA solution was added to the column and the column centrifuged 

again at 14,000 x g (RCF) for 40min, after which flow through was discarded. 

Subsequently, 100µL IAA (0.05M iodoacetamide in UA) was added to the column which 
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was then mixed at 600 RPM in a Thermo-mixer (Thermofisher, Paisley, UK) for 1min 

before a 5min incubation. The unit was then centrifuged for 30min at 14,000 x g 

(RCF). 100µL UB (8M Urea (Sigma, Dorset, UK) in 0.1M Tris/HCl, pH 8.0) was then 

added to the filter and this centrifuged for 40min at 14,000 x g (RCF), with this step 

repeated twice. 40µL of UB with Lys C (enzyme to protein ratio 1:50) was added to 

the column and mixed for 1min at 600 RPM using a thermo-mixer. The column was 

then incubated in a wet chamber overnight at room temperature. Filter units from 

these columns were then transferred to new column with 120µL ABC (0.05 M 

NH4HCO3) in water with Trypsin (enzyme to protein ration 1:100) added and mixed 

at 600 rpm in thermo-mixer for 1 min. These units were then incubated at 4 hours at 

room temperature. Filter units were then centrifuged at 14000 x g (RCF) for 40min. 

50 ul of 10% ACN was then added and the units centrifuged at 14,000 x g for 20 min. 

Lastly, the filter unit was acidified with CF3COOH and dried in a 96-well plate with 

vacuum centrifuged. These dried peptides were solubilized in 20 µL 5 % acetonitrile 

with 0.5 % formic acid using the nanoflow uHPLC system (Thermofisher, Paisley, UK). 

Peptide ions were detected by electrospray ionization mass spectrometry (MS/MS) 

with an Orbitrap Elite MS (Thermofisher, Paisley, UK). 5µL of sample was desalted 

and concentrated for 10min on a trap column with 1% acetonitrile and 0.1% formic 

acid. Peptides were separated on a Pepmap C18 phase column (50x75cm, 3µm 

particle size, 100A pore size). The Orbitrap Elite acquired full-scan MS in the range 

300 to 2000 m/z for a high-resolution precursor scan at 60,000 RP (at 400 m/z), while 

simultaneously acquiring up to the top 15 precursors which were isolated at 0.7 m/z 

width and subjected to CID fragmentation (35 % NCE) in the linear ion trap using rapid 

scan mode. Singly charged ions were excluded from selection, while selected 

precursors are added to a dynamic exclusion list for 30s. Proteins were assigned 

identifications using the Mascot Search Engine (v 2.6.2, Matrix Science) and further 

identified using the Swissprot database. A mass tolerance of 10ppm was used with 

0.3 Da MS/MS matching. 

3.3.3 TNF-α Treatment of HK2 Cells 

HK2 cells were cultured as per 2.5, in complete MEM, in T75 flasks. When 70% 

confluent, media was aspirated and replaced with media containing 20ng/ml human 
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recombinant TNF-α (Thermofisher, Manchester, UK) or 20ng/ml TNF-α supplemented 

with 10mg/ml Etanercept (Thermofisher, Manchester, UK) for prescribed timepoints. 

Upon completion of timepoints, the media was immediately aspirated and cells were 

washed with sterile PBS before trypsin-based harvesting as per 2.5.1. Pelleted cells 

were then harvested for nuclear protein as per 2.6.1. The culturing of HK2 cells 

specific to this experiment was performed in full by Dr Lesley Graham. 
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3.3.4 Analysis of Electrophoretic Mobility Shift Assay Images 

 

  

Figure 3.3-1 Methods of electrophoretic mobility shift assay analysis. 

 Electrophoretic Mobility Shift Assays quantify binding affinity through the 

generation of a fragment of oligonucleotide which is non-covalently 

associated with a transcription factor. These migrate more slowly during 

electrophoresis, producing a signal of both bound (upper) and unbound (lower) 

biotinylated-oligonulceotide. Through stoichiometry using the ratio of 

bound:unbound densitometric signal, binding affinity can be inferred. As this 

metric is produced as a ratio, the log of this ratio is used for downstream 

analysis. 
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3.4 Results 

3.4.1 Analysis of Human Renal Samples Stratified by Genotype 

The human samples we assessed were well randomised for sex, medication use, BMI 

and age, with no differences between groups observed (Figure 3.4-1)(Figure 3.4-2). 

Analysis of the systolic blood pressures of participants stratified by genotype at 

rs13333226 and rs4997082 were significant, with risk genotype at both alleles having 

significantly greater SBP than protective genotype. The confidence intervals of the 

differences to protective genotypes were (0.747 15.554, 95%CI) mmHg in the case of 

rs13333226 and (1.098 15.514, 95%CI) mmHg in the case of rs4997081 (Figure 3.4-3). 

These differences, when stratified by sex, were only maintained in female 

participants (Figure 3.4-4). We stress that only a single blood pressure measurement 

was taken, thus we will not interpret these findings further. Our reasons for this 

exclusion are discussed to greater detail in 3.5. 

A total of 76 participants were genotyped for rs13333226 and rs4997081. By Sanger 

sequencing, at rs13333226, 52 were homozygous risk (AA), 21 were heterozygous (AG) 

and 3 were homozygous protective (GG). At rs4997081, by Sanger sequencing, 50 

were homozygous risk (GG), 21 were heterozygous (GC) and 3 were homozygous 

protective (CC). A total of 2 (2.6% of) participants did not have matched genotypes 

between rs13333226 and rs4997081. Taqman qRT-PCR for UMOD expression on 84 

samples indicated the rs13333226 genotype did not associate with differences in 

UMOD expression between alleles, though homozygous risk individuals did trend 

toward increased expression (Figure 3.4-5)(A/B).In the context of rs4997081 there 

were no differences in UMOD expression between alleles, though homozygous risk 

individuals did again trend toward increased expression (Figure 3.4-5)(C/D). 

Analysis of the data suggested that the use of antihypertensive medication may 

associate with differences in UMOD expression. When groups were matched for the 

haplotype at rs13333226/rs4997081, individuals prescribed amlodipine had 

significantly lower (p<0.01) expression of UMOD versus unprescribed counterparts 

(Figure 3.4-6)(A) with the same observation made the context of 

Bendroflumethiazide use (p<0.001)  (Figure 3.4-6)(B). When individuals prescribed 
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these medications were removed, homozygous risk individuals at rs4997081 had 

significantly greater (p<0.05) expression of UMOD versus their wild type counterparts 

of fold change between (1.189, 9.38, 95%CI), but this difference was not reflected at 

rs133333226, although showed a strong trend (Figure 3.4-6)(D/E). 



89 
 

 

Figure 3.4-1 Randomisation of Sex (Male/female) and medication use 

 (Yes/no), between rs13333226 (1A, C) and rs4997081 (1B, D) genotypes. At 

rs13333226, Homozygous ‘protective’ (GG (forward strand)) and heterozygous 

(GA (forward strand)) alleles were combined. Homozyous ‘risk’ consists of the 

remaining AA genotypes. At rs4997081, homozygous ‘protective’ (CC (forward 

strand)) and heterozygous (CG (forward strand)) alleles were combined. 

Homozyous ‘risk’ consists of the remaining GG genotypes. Non-significant, 

Pearsons chi-squared. 

 

A B 

C D 
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Figure 3.4-2 Parametric randomization of continuous variables. 

Randomisation of BMI (AU) and age (Years), between rs13333226 (1A, C) and 

rs4997081 (1B, D) genotypes. Grouping by genotype as described in Figure 1. 

Non-significant, students unpaired t-test. 

A B 

C D 
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A 

B 

Figure 3.4-3. Stratification of SBP by genotype 

A) Distribution of systolic blood pressures (mmHg) by rs13333226 genotype. B) 

Distribution of systolic blood pressures (mmHg) by rs4997081 genotype. 

Grouping by genotype as described in Figure 1. Students unpaired ttest, * 

p<0.05 

* 

* 
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** 

** 

Males Females A B 

C D 

Figure 3.4-4 Stratification of SBP by sex by genotype. 

A) & B) Distribution of systolic blood pressures (mmHg) by rs13333226 

genotype by sex. C) & D) Distribution of systolic blood pressures (mmHg) by 

rs4997081 genotype by sex. Grouping by genotype as described in Figure 1. 

Students unpaired t-test, ** p<0.01 
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Figure 3.4-5 UMOD expression by genotype at rs13333226 and rs4997081 

 A) Umod expression (dCT vs ACTB) by rs13333226 genotype (CC/ CT/ TT), 

genotype shown as actual base change (reverse strand). B) Relative 

quantification of umod expression (RQ vs ACTB) by grouped rs13333226 

genotype, grouping as described in Figure 1. C) Umod expression (dCT vs 

ACTB) by rs4997081 genotype (GG/ GC/ CC), genotype shown as actual base 

change (reverse strand). D) Relative quantification of umod expression (RQ vs 

ACTB) by grouped rs13333226 genotype, grouping as described in Figure 1. 

Non-significant, students unpaired t-test. 

A B 

C D 
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Figure 3.4-6 Stratification of UMOD expression based on medication 

A) Expression of UMOD (dCT vs ACTB) between individuals not-using, or using 

amlodipine. B) Expression of UMOD (dCT vs ACTB) between individuals not-

using, or using bendroflumethiazide. C) Expression of UMOD (dCT vs ACTB) 

between individuals not-using, or using bisoprolol. D)/E) expression of UMOD 

(RQ vs ACTB) between rs13333226/rs4997081 genotype when individuals using 

antihypertensive medication were removed from analysis. * p<0.05, 

***p<0.001, **** p<1e-4 

A B 

C 

D E 

*** 
***

* 

* 
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3.4.2 Next Generation Sequencing of the UMOD Promoter 

The UMOD gene was successfully resequenced from -4000bp upstream of the TSS to 

intron-5 using PCR amplified amplicons of 1800bp (as anticipated from the primer 

design) from a subset of high and low UMOD expressers with the amplicons amplifying 

cleanly, only producing one band, indicating good primer specificity. (Figure 

3.4-7)(A/B).  

A number of variants were detected in reference to GChR38 in all samples, though 

none were significantly enriched in either high or low UMOD expressers (Figure 

3.4-7)(C). On average, 126 variants were annotated differently the reference genome 

(95%CI 14.52, 17.48) and there was no difference between variant detection number 

between groups. Of detected variants, the majority were assigned dbSNP identities, 

though four detected variants could be considered specific to the local west-Scotland 

haplogroup and as such were not catalogued within dbSNP (Figure 3.4-8). None of the 

detected variants, by text mining were associated with blood pressure. 
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C 

 

Figure 3.4-7 Next generation sequencing of the UMOD promoter. 

A)UV luminescence of the 1F1R amplicon across samples, prior to NGS. B) Design of the overlapping amplicons for targeted 

resequencing. C) Detected variants across the samples between high and low UMOD expressers, displayed relative to the 

UMOD gene (reverse strand (promoter to right)). 

High UMOD x3 Low UMOD x3 
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Figure 3.4-8 Linux based assignment of  reference SNP ID by dbSNP performed with the GATK-HaplotypeCaller (2020).  

Shown 5’ (left) to 3’ (right). Blue line indicates the canonical TSS. Individuals with high UMOD expression designated by red 

colour, individuals with low UMOD expression designated by teal colour. Variants (black dots) not annotated within the dbSNP 

database are shown without labels. 
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3.4.3 Electrophoretic Mobility Shift Assay  

Successful optimisation of the EMSA method was performed over several months in 

HeLa cells (data not shown), following which assays were performed using HEK293 

total nuclear lysates. In the context of rs4997081, the C (risk) allele incorporated 

into a 50-mer oligonucleotide of the flanking sequence of this variant displayed 

significantly greater binding affinity (log-ratio of upper to lower band) versus lysate 

than the G (protective) genotype of between (0.133, 1.398, 95%CI) arbitrary units 

(Figure 3.4-9)(A/B)(lanes 3-5 and 7-9 are experimental lanes, with further lanes 

control). Furthermore, addition of the out-competition non-biotinylated 

oligonucleotide reversed the band shift binding observed (final lane), indicating this 

reaction was specific to the design of the experiment. There was no difference in the 

binding affinity of either genotype at rs13333226 ( -1.22, 1.39, 95%CI) (Figure 

3.4-9)(C/D).  Critically, there was consistently an absence of any binding at 

rs13333226, whilst both genotypes at rs4997081 displayed binding, even when both 

variants were paired in the same experiment and electrophoresed on the same gel, 

indicating the observations are not determined by experimental batch (Figure 

3.4-9)(E). 
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Figure 3.4-9 EMSA assay at rs4997081 and rs13333226 

A) Example image of binding affinity for HEK293 nuclear lysate at the 

rs4997081 genotype. Lane 1&2 are controls for biotin signal, lanes 3-5 are 

experimental lanes (red) for the C genotype. Lanes 6 and 10 are negative 

controls for out-competition and lanes 7-9 are experimental lanes for G-

genotype (green). B) Boxplot of total experiments at rs4997081. C) Example 

image of binding affinity for HEK293 nuclear lysate at the rs13333226 

genotype. D) Boxplot of total experiments at rs13333226. E) Contemporary 

electrophoresis of both rs4997081 and rs13333226 variants. 

* 
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3.4.4 Magnetic Purification and Mass Spectrometry 

Based on conversations with Thermofisher, the supplier of magnetic dynabeads, we 

anticipated that successful purification of the complex containing biotin:streptavidin 

conjugated complex would produce a band at 29kDa, and that any of these complexes 

associated with transcription factors would produce a fragment greater than this 

(Figure 3.4-10)(A). During our purification process, we successfully eluted protein 

contaminants via washes, and evidence purified complexes which we then submitted 

for mass spectrometry. Monitoring of our wash fraction also indicated a successful 

wash-wise purification process as total protein fraction decreased with wash step 

(Figure 3.4-10)(B). With Coomassie blue staining, we detected a band at 29kDa in our 

purified product, however, we did not observe any other bands within the gel; likely 

attributed to the sensitivity of Coomassie staining. 

Submission of these products for Tandem Mass Spectrometry in an n=1 per-group 

discovery phase returned characterization of 46 proteins in our negative control 

sample and 117 proteins in the rs4997081 oligonucleotide. A total of 29 of the protein 

matches unique to rs4997081 were enriched with >3 peptides and a MascotDb score 

of greater than 100, we selected these metrics as marked of reliability and plotted 

these on x and y axes in order to stratify proteins for visualisation (Figure 

3.4-10)(C)(Figure 3.4-11)(A). We then performed text mining for for Uniprot 

descriptors, hypothesizing that these proteins may be involved in gene expression in 

the context of UMOD, from this we found that 15 of these descriptors for our detected 

proteins included the term ‘expression’ (Figure 3.4-11)(B). 



101 
 

 

Figure 3.4-10 Magnetic purification and mass spectroscopy. 

A) Schematic of the proposed complex generated by the magnetic purification 

process. Target proteins associate with the rs4997081 genotype. The 5’ biotin 

of the oligonucleotide potently non-covalently associates with streptavidin of 

the m280 beads which are themselves part of the larger BEAD recombinant 

protein. B) Purification process by lane, L2- raw wash buffer, L3- initial wash 

supernatant using non-magnetised EMSA product, L4- wash supernatant after 

initial magnetic purification, L5- wash supernatant after 3 magnetic 

purification steps. L6-8 purified EMSA product submitted for mass 

spectrometry. C) Tandem Mass Spectrometry characterized proteins (derived 

from HEK293 cells) from the purified product, unique to rs4997081, versus 

control. These products were filtered on Peptide matches >3 and MS Score 

>50. 
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Figure 3.4-11 Analysis of mass spectroscopy data. 

 A) Venn diagram of detected peptides between negative control and 

rs4997081. B) String search on Uniprot descriptions of identified proteins 

for the strings ‘expression’ and ‘Expression’. Labels indicate string hit and 

the identified protein. 
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3.4.5 Analysis of TNF-α Treatment in the Context of Genotype 

When HK2 cells were treated with TNF-α prior to extraction of their nuclear material, 

a time dependent negative effect was observed in terms of the binding affinity at the 

risk (C ) genotype at rs4997081, but not the protective (G) genotype (Figure 

3.4-12)(A). Comparing within treatment groups, by Bonferroni adjusted t-test showed 

a highly significant (p<0.001) decrease in binding affinity in the protective genotype 

versus the risk genotype in control HK2 cells, but no differences between genotypes 

when TNF- α treatment was added to the cells, and no differences with the addition 

of Etanercept and TNF- α (Figure 3.4-12)(B).  Over the progression of this experiment, 

we began to consider that different treatments were exerting effects on the 

transcriptional complement, therefore for analysis purposes we chose to normalise 

within groups. When normalised within treatment groups, data indicate that the 

control risk genotype maintained significantly greater binding affinity versus the 

protective genotype of all treatments. Furthermore, there were no differences 

between genotype comparisons out-with the control experiment. A time-dependent, 

non-significant, trend could be observed, with the risk genotype becoming more 

similar to the protective genotype between 5 and 60 minutes, which appeared to 

reverse given the addition of etanercept, though this was also non-significant. 

However, a high degree of variability was observed in the TNF-α +Etanercept group, 

meaning we believe our interpretation of these data should remain cautious (Figure 

3.4-12)(C). 
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Figure 3.4-12 EMSA assay in the context of rs4997081 examining the effect of 

TNF-α on binding affinity between genotype 

  A) Example images of the risk (C ‘Risk’) genotype at rs4997081 across a range 

of 20ng/ml TNF-α treatments, administered to HK2 cells via media 

supplementation. Control= basic complete MEM media. TNF-α- Etanercept 

indicates 20ng/ml TNF-α supplemented with 10mg/ml Etanercept for 6- 

hours. All cell culture and treatment experiments involving TNF-α were 

performed by Dr Lesley Graham. All EMSA reactions and analyses were 

performed by the author. B) Log binding ratios across treatment and between 

genotype (C (risk, ‘Risk’) and G (protective, ‘Prot’)), experiment number is 

displayed by colour, *** p<0.001. C) Log binding ratios across treatment and 

between genotype (C (risk) and G (protective)), normalized within treatment 

groups. Anova, Tukey’s post-hoc, * p<0.05, **, p<0.01. 

   

  



106 
 

3.5 Discussion 

Whilst understanding of the relationship between UMOD and blood pressure 

regulation has been extensively developed following the seminal Padmanabhan et al 

GWAS publication, no group has ever shown using base-directed experiments, 

functional causality in terms of the relationship between UMOD variants and 

transcription factor binding. We show, for the first time, that rs4997081 displays 

significantly greater binding affinity for nuclear protein at the risk genotype versus 

the protective genotype, in multiple renal human cell lines. Conversely, we evidence 

for the first time, that the genotype at rs13333226 does not associate with 

differential binding affinity, and furthermore that, in the context of HEK293 nuclear 

lysate does not appear to interact with human transcriptional apparatus at 

rs13333226. Our data signal that a shift in the understanding of the UMOD promoter 

is necessary, and that rs4997081, not rs13333226, indicates the more likely causative 

variant. The strong linkage disequilibrium, combined with the likely masking of 

rs4997081 during initial analysis, explain why the haplotype was initially indexed at 

rs13333226. However, with a disparity of up to 8% in white Europeans between the 

two variants, combined with the high incidence of hypertension in the population, 

we strongly believe that the UMOD:blood pressure hypothesis can be enhanced be 

considering the potential functionality of rs4997081 at the locus. 

Whilst we did not detect binding of transcriptional apparatus at rs13333226, we 

detected differential binding at rs4997081. Therefore, we further developed the 

discovery at rs4997081 by characterising proteins associated with this variant through 

mass spectrometry where we identified several potential transcriptional modulators. 

Our experimental design consisted of a novel operating procedure which delineated 

a complete process from variant to mass spectrometry characterisation, which does 

not exist elsewhere in the public domain. Notable findings from these data include 

the transcription factor FUSE binding protein 1/3 (FUSBP1/3) and Zinc Finger Protein 

296 (ZNF296), which are known to be a regulators/ enhancers of gene expression by 

complexing with RNA Polymerase II (Gaudet et al., 2011; Debaize and Troadec, 2018). 

Additionally, PC4 And SFRS1 Interacting Protein 1 (PSIP1) was detected, a protein 

which has been observed by GWAS as associating with systolic blood pressure (Chen 
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et al., 2014). However, of the findings from this experiment, we were most 

interested in the characterisation of Poly(ADP-ribose) polymerase-1 (PARP1) as 

enriched at the rs4997081. PARP1 is typically associated with DNA-repair, particularly 

in the context of cancer (Weaver and Yang, 2013). However, PARP1 is increasingly 

recognised as driving gene expression, with notable interactions with both HIF1-α and 

HNF1β, where PARP-1 depleted melanoma cells showed reduced gene expression 

through HIF1-α (Rosenbluh et al., 2016; Martí et al., 2021 )(Ray Chaudhuri and 

Nussenzweig, 2017). The fact that PARP-1 is noted as interacting with these 

transcription factors becomes ultimately important when considering that HNF1β and 

HIF1-α have been found through meta-analysis as both existing within the top 20 most 

significant genes in terms of UMOD:creatinine ratio in humans (Olden et al., 2014a). 

We did not detect either HNF1β or HIF1-α within our mass spectrometry analysis. We 

argue therefore, that it is possible that differential PARP1:complex  interactions at 

rs4997081 cause differential binding of either/or HNF1β and HIF1-α at cis sites on the 

UMOD promoter which are themselves proximal, but not proximal enough that they 

were detected within our 50-mer oligonucleotide used in this study. Thus, PARP1 may 

exert effects on UMOD expression through interactions with other response elements 

on the cis-promoter. Fundamentally, we highlight the novelty of the PARP1 finding 

at the UMOD locus, and suggest this should be considered as potentially functional in 

terms of expression, particularly due it its differential binding at rs4997081. 

PARP1 has also been noted as interacting with TNF-α signalling, in particular through 

nuclear factor-κB (NF-κB) (Alves-Lopes and Touyz, 2018; Liang et al., 2018a). Nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-Kβ) a transcriptional 

activator ubiquitously expressed in human cells, is critical to development, with 

knock-out mice being embryo-lethal (Hayden and Ghosh, 2014).  In the context of 

Ang-II treated mice, PARP-1 inhibition by siRNA reduced the inflammatory response 

through inhibition of the phosphorylation of extracellular signal-regulated kinase 

(ERK) and NF-κB. Of additional interest is that NF-κB inhibition significantly decreases 

expression of HNF1β in mice (Wu et al., 2017). Crucially, it is a factor known to be 

activated through signal transduction by TNF-α (Dhingra et al., 2009). Blockade of 

NF-Kβ chronically in rats has been shown to decrease blood pressure, with this paper 
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attributing these effects to angiotensin-II receptor changes (Luo et al., 2015). 

Additionally, sodium chloride treatment in rats has been shown to activate NF-Kβ and 

subsequently increase blood pressure in these animals differentially between 

superoxide scavenging protocols (Dornas et al., 2017). 

We treated HK2 cells with TNF-α, which caused abrogation of the differences 

between the risk and protective alleles for their affinity for nuclear lysate. Though 

not significant, this reduction toward protective genotype in binding affinity at the 

risk genotype appeared to increase with treatment duration. This suggests that TNF-

α treatment reduces the binding of transcriptional modulators (we propose PARP1) 

in the risk genotype at rs4997081, in turn reducing expression of UMOD. This proposed 

mechanism aligns closely with Heitmeier et al, where they showed that recombinant 

TNF-α significantly, and in a dose-dependent manner, reduced UMOD expression in 

mouse kidney thick ascending limb (MKTAL) cells (Heitmeier et al., 2014). Heitmeier 

et al consider HNF1β to be the transcription factor responsible for UMOD expression, 

so they additionally assessed HNF1β levels, and show no change in response to TNF-

α treatment. Furthermore extracellular UMOD has been shown to stimulate secretion 

of TNF-α in macrophages, suggesting a possible feedback loop between TNFα and 

UMOD, which we propose may be regulated by PARP1 (Immler et al., 2020b). 

Importantly, HEK293 cells transfected to over-express wild-type UMOD display strong 

reductions in NFκB activation; suggesting negative feedback exists within this 

pathway to regulate UMOD expression (Dinour et al., 2014). Critical to the 

understanding of our proposed mechanism is that risk genotype individuals have 

higher baseline binding affinity of PARP1 to rs4997081, that this differential affinity 

exerts effects on UMOD expression through NF-κB mediated activation of HNF1β and 

that this increased binding affinity at the risk genotype negatively correlates with 

the presence of TNF-α in these cells. Curiously, one of the most documented side 

effects of PARP1 inhibition as a therapy for cancer is urinary tract infection, a 

condition known to be attributed to low urinary UMOD (Jiang et al., 2019). We 

acknowledge that this proposed pathway involves extrapolation between indirect 

experiments, based on publication. Here we provide for the first time, a data driven 

explanation as to the differential expression of UMOD (Figure 3.5-1). 
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Within our analysis of our bank of 84 human kidney samples, we detected a significant 

decrease in expression of UMOD in individuals prescribed amlodipine or 

bendroflumethiazide. This finding suggests an association of decreasing UMOD in 

response to antihypertensive use. Amlodipine is an angioselective L-type calcium 

channel blocker, with known off-target implications on the kidney. In particular, a 

study found that amlodipine (but not other classes on antihypertensives) was a 

significant risk factor in chronic kidney disease mortality (a disease which strongly 

associates with UMOD) (Haider et al., 2015). Furthermore, in WKY rats, it was shown 

that nifedipine significantly decreased secretion of UMOD (Boder et al., 2021). 

Conversely, Bendroflumethiazide inhibits NaCl reabsorption in the distal convoluted 

Figure 3.5-1 Proposed mechanism of differential gene expression between 

rs4997081 alleles 

, based on thesis data and previous publication (indicated by red numbers). 

• TNFα regulates differential association of PARP1 to rs4997081 

• Associated PARP1 phosphorylates NFκB 

• Phosphorylated NFκB activates HNF1β proximal to the PARP1 complex 

• Activated HNF1β transcribes UMOD 
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tubules via NCC. Our finding that Bendroflumethiazide prescription appears to 

associate with decreased levels of UMOD in humans inversely reflects, but 

corroborates with, a finding in Umod-/- mice, which showed that these mice had 

increased levels of NCC mRNA (Bachmann et al., 2005). We believe that these data 

may indicate that UMOD acts as a regulator within the renal system, responding to 

the disruptions to homeostasis induced by medication use. Not only should this be 

considered when analysing human population level data in the context of UMOD 

expression, but it could also be used in future experiments to further refine the 

precision medicine hypothesis surrounding UMOD. We should however, stress that the 

group size of blendroflumethiazide users was relatively small (n<15) which may have 

exposed this group to outliers; thus this initial finding should be regarded as requiring 

further validation. 

The finding that both risk alleles at rs13333226 and rs4997081 were associated with 

significantly increased blood pressure versus control forms the basis of what we 

consider a limitation rather than a finding. The American Heart Association as of 2019 

states that as a minimum, recordings by auscultation (cuffing) should be performed 

at least two times on two individual sittings, and the average of these >4 

measurements should be recorded for research purposes (Muntner et al., 2019). The 

information provided to us by the NHS used one pre-surgical measurement, and as a 

result would be considered unreliable. Were we to assume that these covariates were 

randomised across genotypes, we could interpret blood pressure readings, we are 

however, unwilling to do this. As a result, we cannot reliably link our findings from 

our human cohort back to blood pressure, even though blood pressure is the 

fundamental base-metric of the hypothesis. In terms of additional limitations, we 

detected the homozygous protective genotypes for rs13333226 and rs4997081 at an 

incidence of 2.8%, meaning we had very few (3) of these homozygous protective 

genotypes to include in our analysis. If the effect is allele-dose-dependent, then we 

believe we would have had significantly greater power over the study to detect 

differences had we been able to incorporate greater numbers of homozygous 

protective individuals. As we discussed in 3.4.5, the EMSA protocol we optimised 

remains a highly sensitive and challenging assay in terms of binding conditions, and 
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we are aware of potential drift, possibly attributed to treatment. Ideally, we would 

have performed all treatment points on the same day, and built our n-number in this 

manner, to eliminate treatment/batch effects. However, due to the nature of cell 

culture, and time restraints of the PhD, we could only perform experiments as the 

material was generated. A method of overcoming our concerns regarding the effect 

of treatment on cells would be to pair the generation of material with a cell viability 

assay such as an MTT assay, to ensure that cells remained metabolically similar 

between treatments, eliminating the potential need to within-group normalisation. 

In terms of future work, this chapter presents novel pilot data implicating rs4997081 

as functionally relevant in terms of UMOD expression. However, the mass 

spectrometry data we present was a preliminary discovery qualitative experiment, in 

that we only examined n=1 (and negative control), due to time constraints. We 

believe that antibody directed super-shift of anti-PARP1 on the purified EMSA 

products would provide quantitative data which we could cost-effectively expand to 

multiple samples. Additionally, we could use this technique to further enhance our 

understanding, by assessing PARP1 densitometry between rs4997081 genotypes. 

Furthermore, there are two more variants on the UMOD promoter which have been 

investigated in terms of UMOD expression by other groups, Trudu et al previously 

implicated rs4293393 and Olden et al describe rs12917707 as the most likely 

functional variant; though neither of these studies employ the base-directed 

experiments we used, rather they focus on haplotypes (Trudu et al., 2013a; Olden et 

al., 2014b). In terms of completeness, we would recommend that EMSA experiments 

also be performed against the genotypes of rs4293393 and rs12917707. Therefore, 

while these pilot findings are biologically interesting, they require considerable 

validation and follow-up leading on from this thesis to further determine causality. 

Furthermore, the low sample size, due to the inherent costs of these experiments, 

must be addressed, ideally providing a statistically addressable sample size for 

quantitative inference to be made, as the current n=1 should be regarded as 

qualitative only. 

The work in this chapter highlights rs4997081 as functionally causative in driving 

differential associating of transcriptional apparatus between alleles. Conversely, we 
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provide evidence that rs13333226 is not functional by the same assay, though we did 

not examine other potentially relevant variants during this process. Using mass 

spectrometry, we identified a PARP1 containing complex as binding at the rs4997081 

allele. Our experiments using TNF-α suggest that TNF-α treatment abrogates the 

differences in risk and protective genotypes. We believe these findings are linked to 

expression of UMOD via NF-κB induced HNF1β, in a PARP1 and subsequently genotype 

dependent manner. To our knowledge, these experiments form the basis of the first 

functionally described relationship between UMOD and blood pressure. 
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4 UMOD and the Transcriptome 

4.1 Introduction 

The combination of research by both Trudu et al and Graham et al toward 

understanding the mechanisms underpinning the association of UMOD with blood 

pressure have provided substantial insights, but carry limitations. Trudu et al took an 

activation-centric approach to their experimentation, particularly focusing on the 

hypothesized role of UMOD in increasing activity and membrane localization of NKCC2 

in TAL cells by phosphorylation (Trudu et al., 2013). In contrast, Graham et al showed 

that the Umod-/- mice exhibited decreased expression of NKCC2 mRNA, which they 

hypothesise was driven by changes in TNF-α bioavailability in the lumen (LA et al., 

2014). Both approaches provide validated functional roles, however, neither was able 

to interpret the multifactorial role of UMOD in TAL cells, as these experiments were 

directed at both the mRNA and protein level by hypothesis-led rationale. Thus, an 

experimental protocol which is not directed by prior hypothesis may lead to a more 

refined understanding of the global roles of UMOD in blood pressure regulation. 

Ideally, such a study would make use of hypothesis-free, high-throughput omics style 

in order to provide a systematic interpretation as opposed to a specific one. 

Building from Microarray analysis, which uses a panel of pre-selected genes and 

proceeds by gene-specific amplification on a larger scale than qRT-PCR, bulk RNA 

sequencing (RNA-Seq) was the first developed method by which researchers could 

theoretically examine the entire transcriptome of a sample, though these libraries 

are typically lacking in long non-coding components (Engelen et al., 2006). Typically, 

bulk RNA-Seq performs non-specific RNA selection and non-specific reverse 

transcription on a homogenized sample. Fragmentation is then performed, typically 

generating fragments between 75-150bp, following which size selection occurs. After 

this, non-specific PCR is performed with a discretionary level of cycles depending on 

input RNA (in order to load the sequencer with adequate material), before the sample 

is sequenced, typically by Illumina next-generation-sequencing. Transcriptomic 

sequencing is, by contrast to previous methods of RNA quantification (qRT-PCR and 

Microarray), the first method which does not rely on a prior hypothesis. Instead, it is 
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expected to return a broader characterization of the constituent molecules within 

the analysed sample (Wang, Gerstein and Snyder, 2009). The catalogued 

transcriptomic data can then be interpreted for potential pathways which can be 

developed by gene-set-enrichment analysis (GSEA) and pathway analysis to provide 

analyses supporting linkage of the underlying hypothesis to diseases and functions. 

With the rapid development and utilization of bulk RNA-Seq came the subsequent 

bioinformatics-based development of tools used to provide functional interpretation 

of these returned data. Central to this rational are ‘gene-sets’. Gene-sets are 

effectively libraries of groups of genes which contain the summarized knowledge of 

genes associated with cellular function. For example, a gene-set may contain three 

genes (X (decreased expression),Y (increased expression) and Z (increased 

expression)) and be correlated with diabetes. At its smallest dimension, if a 

researcher produces an RNA sequencing dataset in which gene X is decreased and Z 

is increased, then by gene set enrichment analysis (GSEA), they may label their 

dataset as associating with diabetes, as the majority of the genes within the gene-

set were differentially expressed in their experiment (Chen et al., 2013). These 

libraries exist in a maintained and curated set on MSigDB (A et al., 2011). Building on 

GSEA, Ingenuity Pathway Analysis (IPA)(Qiagen, Manchester, UK) uses custom 

algorithms to perform GSEA, however they are less scrutable due to their proprietary 

nature. The author is aware that IPA use a Fishers Exact Test to detect differences 

by gene-set overrepresentation analysis but cannot view the source code. Regardless 

of openness in their algorithms, they themselves are powerful tools which when used 

alongside typical GSEA can provide additional insights to biological systems and 

pathways as they also incorporate GWAS data and microRNA based mirTar databases 

into their analysis (Hsu et al., 2011).  

Single-cell sequencing (scRNA-Seq), developed in the decade leading from bulk RNA 

sequencing, further refined the technique, by examining not only the whole 

transcriptome on a sample-wise level, but rather on a single cell level (Hwang, Lee 

and Bang, 2018). Though there are multiple service providers for scRNA-Seq, each 

with somewhat distinct protocols, broadly summarized, scRNA-Seq methods isolate 

cells into individual ‘reaction vessels’, generally droplet based, before performing 
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in-droplet reverse transcription, which involves the tagging of transcripts with both 

a cell-based unique-molecular-indicator (UMI) and a transcript based UMI, after which 

these samples are sequenced by NGS. Due to the UMI tagging nature of the library 

preparation, genetic material can then be derived back to individual cells, 

maintaining the cellular precision advantages of scRNA-Seq versus bulk RNA-Seq 

Unlike its predecessor, bulk RNA sequencing, scRNA-Seq can elucidate complex 

relationships between cell types within the dataset and return additional information 

on cell trajectory. In particular, scRNA-Seq can be utilized to examine heterogenous 

gene expression within a sample containing the ‘same’ cell types (L and H, 2010; AK 

et al., 2014). Increasingly, whereas previously this variation would have been 

considered ‘noise’, it is now considered to be biologically relevant and informative 

(S, 2009).  

Of relevance to this study is the potential for UMOD to form coexpression networks- 

where the presence of UMOD mRNA correlates either negatively or positively with the 

presence of other genes. Whilst no formal bioinformatics data-analytics methodology 

exists for generating these correlations, potential does exist for the development of 

one. Given access to high-throughput data in the context of UMOD would allow us to 

investigate co-expression. Co-expressed gene subnetworks are known to play a role 

in blood pressure regulation with Huan et al identifying four gene co-expression 

networks which were associated with blood pressure regulation in a sample of 3679 

humans (Huan et al., 2015).  Building on this, Cao et al used the same algorithm but 

this time in the context of salt sensitive hypertension, again in humans, and identified 

gene coexpression networks which associated with salt sensitive systolic blood 

pressure (Cao et al., 2019). While these findings do not directly implicate UMOD 

within these networks, they do infer that this would be an import analyses to 

perform. 

UMOD, in the context of blood pressure, presents as a suitable candidate for RNA-

sequencing analysis because previous investigation was only able to focus on single-

gene or single-protein analysis (derived from an NKCC2 focused hypothesis) and 

therefore was only able to provide interpretation based on this hypothesis. We 

believe that UMOD may contribute to blood pressure regulation through multiple 
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mechanisms in these cells, which provide a cumulative contribution. In particular, 

further data on potential signalling molecules between UMOD levels and the function 

of NKCC2 would be highly informative. The experimental work of this chapter 

investigates RNA sequencing (both bulk and independent single-cell) in the context 

of UMOD expression, with the end goal of extrapolating this to blood pressure 

regulation. Using human renal RNA stratified on UMOD expression, we aim to 

investigate these differences. In doing so, we aimed to refine prior knowledge 

generated by both Trudu et al and Graham et al and in turn provide additional insights 

associating the UMOD gene with blood pressure in a hypothesis-generating manner. 

 

4.2 Aims 

• To examine the relationship between UMOD levels and the renal 

transcriptome in humans using RNA sequencing 

 

• To use pathway analysis to investigate the relationship between UMOD and 

renal physiology   

 

• To use a combination of wet-laboratory and single cell mining to validate 

these observations  
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4.3 Specific Methods 

4.3.1 RNA Sequencing 

Samples were selected and processed as per section 2.1.7, 2.2.3 and 2.2.4. 

4.3.2 Deseq2 Based Identification of Differentially Expressed Genes 

Deseq2 was used on count files generated during 4.3.1 to identify differentially 

expressed genes. Deseq2 models these counts as following a negative binomial 

distribution- a distribution which models the probability of extreme log2 fold changes 

occurring by chance across replicate number. Deseq2 normalizes read counts using 

the median-of-ratios method- a statistical normalization method distinct from 

Transcripts-per-million (TPM) or Reads-per-kilobase-million (RPKM). Specifically, 

whilst TPM/RPKM type normalization methodologies which take derivation from the 

total genetic material within a sample, median-of-ratios uses a between sample 

approach. Mathematically stated, Deseq2 normalisation calculates the within-gene 

geometric mean µ and calculates a size factor estimate s as the median of the ratios 

to this µ. 

Following normalization of read counts, Deseq2 performs hypothesis testing to 

determine differentially expressed genes (DEGs) (those genes where the null 

hypothesis of differences between groups can be rejected). Specifically, Deseq2 

takes the shrunken estimates of Log2FC values derived from normalized counts and 

divides these by the standard error for this gene, producing a z-score which is 

compared against the null distribution (statistically speaking, DEGs would differ 

significantly from this distribution (FDR<0.05)). This Wald test can model both 

coefficient distributions for individual genes and coefficients for all contrasts. The p-

values returned for per-gene comparisons by Deseq2 are then corrected for multiple 

testing effects using the Benjamini Hochberg false-discovery-rate (FDR) adjustment 

(Anders and Huber, 2010; Benjamini, 2010; Love, Huber and Anders, 2014) 
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4.3.3 Alternative Statistical Methodology 

Where applicable, the Wald test was noted to decrease in resolving power as the 

number of genes within the model reduce, due to its reliance on the compounding 

effect of multiple genes on the accuracy of the model. As a result, a simple statistical 

algorithm was constructed in python3.8. This novel method consisted of firstly a 

within-group normalization, using the log(counts-per-million+1) (log(cpm+1) method. 

The log(cpm) method was performed by initially calculating the total counts for a 

sample/1,000,000, after which the counts for a specific gene were divided by this 

constant. The log of these values were then calculated, with any 0-values being 

converted to 1-values to prevent infinitely negative floating point errors. Following 

this, between-sample hypothesis testing was performed using a t-test using arrays of 

normalized count data, under the assumption that the variance was not equal 

between groups (Welch’s t-test). 

4.3.4 Utilisation of Gene-sets and Pathway Analysis 

Gene set enrichment analysis was always performed using the latest editions of all 

gene-sets, as curated by MSigDb. Data were loaded into GSEA using normalized counts 

as quantitative metrics. Deseq2 output files were loaded into IPA, where FDR<0.05 

and log2FC > 1 were considered statistically significant DEGs. For pathway analysis 

within IPA, connections between genes were constructed only where individual genes 

could be linked on a pathway by one or less intermediary genes. 

4.3.5 Single Cell Data Mining 

For data assessed for cell specific co-expression using the custom written Python3.8 

application described in 1.1.1 (sic) and 4.3.6, data was mined from public database 

repositories. In particular, all datasets were obtained from the SRA (Read Archive) 

using the following accession numbers. In order to provide biologically relevant 

inference, all mined datasets had to be human in origin, and had to be derived from 

renal tissue from a healthy individual. Additionally, only verified upon initial analysis, 

each dataset had to contain the presence of UMOD+ cells, indicating the inclusion of 

TAL cells in the sample originally submitted for single cell analysis. Due to the limited 
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availability of appropriate datasets, the haplogroup of the individual was not 

considered physiologically meaningful. 

Single Cell Dataset Mining 

Database Accession 

NCBI:GEO GSE118545 

NCBI:GEO GSM4572192 

NCBI:GEO GSM4572193 

NCBI:GEO GSM4572194 

NCBI:GEO GSM4572195 

NCBI:GEO GSM4572196 

Table 4.3-1 Single cell dataset mining accession ids 

 

4.3.6 Custom Co-expression Analysis 

While Scanpy libraries for providing single cell analysis provide meaningful insights 

into differences in cell populations between healthy and disease states, they cannot 

to date address the question of co-expression. ScGress, a custom authored python3.8 

application attempts to perform this function. ScGress initially performs standard 

UMAP and Louvain algorithm clustering via Scanpy in python. However, following this 

the program allows select of a ‘gene of interest’ (GOI). ScGress then thresholds the 

entire dataset, only selecting cells which have a positive expression of the GOI >2 in 

log-normalised counts. ScGress additionally allows for the selection of cluster specific 

co-expression, by providing the option to filter for only a single Louvain labeled 

cluster. However, in the context of UMOD, because there is marginal expression of 

the gene in the dCT alongside the TAL, cluster specific co-expression was not utilized. 

ScGress then creates a list of all genes contained within the dataset, and following 

this performs statistical testing in a step-wise manner, between all of the genes 

(target genes) (TGs) in the dataset and the GOI. This is calculated by taking the 

expression levels of the TG and GOI on a per-cell basis and performing linear 

regression on these expression levels. 
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Statistically speaking, ScGress gathers metrics on the linear regression p-value (OLS 

method), the R of the regression, the beta-coefficient (slope) and finally the 

proportion of GOI expressing cells which also express the TG. This final metric is 

gathered to prevent TGs being labelled as physiologically interesting when in reality 

they are only expressed in a very small proportion of GOI cells, causing a type-II error 

in the statistical interpretation. The proportion of cells which must be TG+ was 

thresholded at 70% in the context of UMOD expression, though the application allows 

for this to be changed.  

Following competition of the program, the user is provided with a dataframe 

containing all of the TGs tested (<10,000 genes long), their relationship to GOI 

expression (positive or negative correlation), the fit of that correlation (via the R 

metric) and lastly the significance of this correlation. Though not standard, it is 

advised that Bonferroni multiple-testing-corrections are applied to these p-values, 

however, as a discovery method it is noted that this may lead to type-I errors in 

interpretation due to the highly heterogeneous nature of single cell gene expression, 

even within clusters. 

  



121 
 

4.4 Results 

4.4.1 Selection of the RNA-sequencing Subset 

All 92 human samples exhibited expression of UMOD mRNA under a normal 

distribution with a somewhat skewed tail of lower expressors (these data are dCT, 

therefore higher values indicate lower expression) (4.4.1)(A). During exploratory 

analyses, the expression of UMOD by blood pressure was observed. Expression of 

UMOD mRNA did not significantly correlate with either diastolic (Figure 4.4-1)(B) or 

systolic (Figure 4.4-1)(C) blood pressure, though in both cases a non-significant 

positive trend between UMOD expression (normalized to beta-actin) and blood 

pressure was observed. Within the total cohort, the use of antihypertensive 

medication, a potential confounding variable, was widespread and heterogenous with 

55 of 106 patients being medicated against hypertension (Figure 4.4-2)(A). However, 

selection of individuals not prescribed antihypertensive medication at the time of 

data entry were still successfully stratified on UMOD expression (Figure 4.4-2)(B/C). 

These n=3 sub-groups were not significantly different in terms of either their SBP or 

DBP. Furthermore, within the limits of n=3 analysis BMI, age and sex were not 

different between group (data not shown). The flow chart of the selection process 

for individual samples for next generation sequencing can be observed in Figure 2.1-

0. 
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Figure 4.4-1 Correlation analysis of UMOD and blood pressure 

A) Distribution of UMOD expression (dCT vs ACTB) in RNA obtained from human 

renal biopsy (n=92) as shown by density histogram analysis with fitted 

polynomial. D’Agostino and Pearson’s test for normality indicates normal 

distribution of UMOD expression across samples p=1.65e-11. B) UMOD 

expression regressed against diastolic blood pressure (n=92), no significant 

trend by OLS (p>0.05). C) UMOD expression regressed against systolic blood 

pressure, (n=92), no significant trend by OLS (p>0.05). 

 

A 

 

B 

 

C 
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Figure 4.4-2 Selection of the high and low UMOD expressor subset 

A) Distribution of antihypertensive medication usage across the dataset, using 

UMOD expression as the y-axis variable and systolic blood pressure as the x-axis 

variable for visualization purposes. Those not prescribed antihypertensive are 

also shown as ‘no medication’. B) Binary classification of antihypertensive 

medication usage, all samples submitted for RNA-sequencing were not 

prescribed any hypertensive medication. C) Selection of the ‘low’ (green) and 

‘high’ (orange) UMOD expressers (NB data shown as dCT meaning expression 

levels are the inverse of shown values). inverse of shown values). 

A 

 

B 

 

C 
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4.4.2 Quality Control 

Samples submitted for RNA-sequencing analysis displayed marginal degradation when 

assessed by Bioagilent (represented by the ratio of 18S and 28S subunits to total). 

Quantitative assessment of the RIN values indicated a RIN of 7.42 (6.91, 7.91 95%CI), 

indicating RNA submitted for assessment by RNA-sequencing was of acceptable 

quality (Figure 4.4-3)(A/B). Distribution of unfiltered read counts across individuals 

samples was uniform and normally distributed when log transformed, though a 

proportion of genes were filtered due to 0-counts in post-processing (an accepted 

process in RNA-sequencing analysis), which explains the marginal bimodality 

observed at 0-counts in the raw data (Figure 4.4-3)(C). As component influence is 

expected to logarithmically decay from PC1 though the additional components, 

principal component analysis displaying that PC1 and PC2 explained 32% and 22.6% 

respectively was reasonable (Figure 4.4-3)(D). Principal component analysis produced 

acceptable separation between groups, though grouping indicated a possibility that 

>2-means clustering would be superior to the prescribed 2-means in terms of 

Normalized Mutual Information score (NMI). Specifically, 2 of the 6 samples did not 

cluster well within their perceived grouping by PCA indicating that they are somewhat 

biologically distinct from the other samples within their grouping. 

Due to the TAL specific expression of UMOD, it was necessary to confirm that ‘high’ 

UMOD expressors were not simply samples which sampled more thick ascending limb 

structures than ‘low’ UMOD expressors. Confirmation of the absence of sampling 

region variance was confirmed by data-mining TAL specific markers in mice and 

converting these to human orthologues before assessing our RNA-sequencing data for 

differences in these markers between groups (Figure 4.4-4). We hypothesized that if 

sampling was from similar region, TAL markers would not be differentially expressed. 

Of 96 mTAL markers assessed, only four were differentially expressed, indicating 

differential biopsy locations between groups was unlikely to be a confounder.  
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A 

 

B 

 

C 

 

D 

 
Figure 4.4-3 Quality control 

A) RNA-Integrity-numbers and 

their underlying bio-agilent 

analyses showing the 18-S and 

24-S ribosomal subunits. B) 

Boxplot of RIN values, mean 7.42 

(6.91, 7.91 95%CI). C) Violin 

kernel density estimation plot of 

distribution of logn+1-

normalized read counts (Deseq2) 

per-gene with sample grouping 

displayed. 

 

 

D) Principal component analysis (log) of distribution of normalized (sklearn) 

read counts per sample. PC1 visualized on x-axis (32.0% of variance), PC2 

visualized on y-axis (22.6% of variance). 

 

D) Principal component analysis (log) of distribution of normalized (sklearn) 
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Figure 4.4-4 Assessment of biopsy location by transcriptomics 

Adjusted p-values of all mTAL specific markers (Lee et al 2015). 5/96 mTAL 

markers were differentially expressed between group. Points coloured by 

logMean expression (n=3 group,2 groups). 
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4.4.3 Analysis of RNA-Sequencing Data 

A total of 34760 genes were detected in at least one sample, of the total of 61393 

currently annotated genes. The expression of genes followed the expected 

exponentially decaying signal, such that the majority of genes had zero of low 

expression counts which some genes had very high counts. A total of 163 genes were 

differentially expressed (DE) (FDR < 0.05) between high and low UMOD groups. The 

distributions of differentially expressed genes by chromosome was uniform across all 

gene biotypes. Of these differentially expressed genes, 39 were decreased and 124 

were increased in the high-UMOD group. In total, 19 differentially expressed genes 

(DEGs) were lncRNAs, 139 were protein coding and the final five were a mixture of 

unprocessed pseudogenes and small-nuclear (SN)-RNAs (Figure 4.4-5)(Table 

4.4-1)(Figure 4.4-6). Of the 19 lncRNAs differentially expressed, two of these, 

TMEM72-AS1 and LNC01762 had GWAS hits for diastolic blood pressure as described 

by GWAS catalogue. Analysis of lncRNAs located on chromosome-16, the same 

chromosome as UMOD (and therefore with cis-acting potential), indicated that whilst 

several were differentially expressed, none of these were within 50Mb of the 

boundaries of the UMOD gene (Figure 4.4-7). 
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Figure 4.4-5 Volcano plot of high versus low UMOD. 

 genes, stratified on the y-axis by False-discovery-rate (BH) (-log 

transformation) and on the x-axis by Fold Change in gene expression between 

groups (log transformation). Guidebars (grey dashes) indicate significance 

thresholds of FDR 5% and log2 Fold Change values of -1, +1. The ensemble 

gene-names of the 25 most significantly differentially expressed genes are 

shown with labels. (n=3 group,2 groups). 
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Figure 4.4-6 Clusterplot of high versus low UMOD. 

Subsetted the most differentially expressed genes within the dataset 

(thresholded at p=1e-5). Calculated dendrograms are shown by black 

connecting lines and gene labels are shown on the right axis. Gene expression 

values were converted to within-gene z-scores to provide colour intensity 

normalization 
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High vs Low UMOD RNA-Sequencing Analysis 

Gene Name Log2- Fold Change Adjusted p-value 

WDR74 

TMEM189- 

BMP6 

KCTD16 

SLC12A1 

PXDNL 

GRM1 

AVPR1A 

PADI2 

MST1L 

GP2 

CLDN19 

ADAMTS15 

LINC02432 

ANKRD2 

AC124017.1 

UMOD 

PRKY 

KCNJ5 

LAMA1 

NEFL 

TYRP1 

AC139530.3 

PRDM16-DT 

AC008878.1 

CPNE6 

TIGD1 

LINC01543 

AC011511.4 
 

-6.06 

-12.10 

3.85 

2.80 

3.30 

3.30 

3.12 

-2.72 

2.09 

2.39 

2.57 

2.97 

2.22 

3.02 

8.31 

4.35 

2.83 

6.16 

3.47 

2.10 

3.70 

2.65 

-21.40 

2.62 

-21.40 

-5.18 

21.20 

7.89 

21.00 
 

5.52E-56 

4.82E-19 

2.95E-10 

4.35E-10 

2.58E-09 

3.69E-09 

7.1E-09 

1.83E-08 

4.67E-08 

2.39E-07 

4.1E-07 

7.19E-07 

8.22E-07 

8.22E-07 

1.08E-06 

4.91E-06 

6.34E-06 

6.56E-06 

6.56E-06 

1.84E-05 

3.61E-05 

3.78E-05 

3.91E-05 

3.91E-05 

3.91E-05 

3.91E-05 

0.000051 

5.55E-05 

6.05E-05 
 

 

 

 

 

   

 

   

Table 4.4-1 Top 30 differentially expressed genes between high and low UMOD. 

Positive log2 Fold Changes indicates increased expression in high UMOD group. 

Adjusted p-values indicated benjamini-hochberg corrected p-values (Deseq2) 

 

Table 4.4-2 Top 30 differentially expressed genes between high and low UMOD. 

Positive log2 Fold Changes indicates increased expression in high UMOD group. 

Adjusted p-values indicated benjamini-hochberg corrected p-values (Deseq2) 
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Figure 4.4-7 LncRNA analysis between high and low UMOD expressors 

A) Analysis of lncRNAs in cis-proximity to UMOD. X-axis, chromosome-16 

coordinates (100 Mbp ticks). Y-axis, level of differential expression (log2 fold 

change). Red horizontal line indicates 0-fold-change difference.  Black horizontal 

dotted line indicates position of UMOD on chromosome-16. B) Table of all 

differentially expressed lncRNAs across all chromosomes with annotation as to 

any which had a previous GWAS association for blood pressure.  

A) 
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4.4.4 Pathway Analysis 

Gene set enrichment analyses of data against KEGG and Gene-Ontology reference 

sets indicated a strong enrichment of DEG pathways toward transcriptional pathways 

and functions, with 24 individual processes identified (Figure 4.4-8)(A).  The primary 

enriched process within gene transcription was the upregulation of RNA-polymerase 

II activity and binding in response to high UMOD. However, globally, significant 

pathways implicating gene expression, particularly in the context of RNA-polymerase 

II activity were ambiguous in terms of directionality, with both positive (6) and 

negative (18) normalized enrichment scores observed. Together these findings 

suggest an association between UMOD levels and transcriptional activity, though the 

potential specific gene targets are not described. Aside from transcriptional 

regulation, the primary schema identified by GSEA focused on processes involving the 

regulation of ionic gradients in cells, with 24 pathways identified. The majority of 

these (23) were upregulated in correlation with high-UMOD levels and transmembrane 

movement of ‘cations’, ’metals’, ’chloride’, ’calcium’, ‘hydrogen’ and ‘anions’, 

though these gene sets also describe the transport of protein and carboxylic acids. 

Conversely, one pathway was highlighted as down-regulated in response to high-

UMOD levels; sodium ion transmembrane transporter activity (Figure 4.4-8)(B).   

A total of seven individual gene sets were described in detail (Figure 4.4-9) In 

particular, there was an enrichment of signaling pathways in correlation with changes 

in UMOD levels. TNF-α, TGF-β and NF-kβ signaling pathways were all differentially 

regulated. Additionally, the WNT and cAMP pathways were also implicated. Finally, 

data also suggest the alternate regulation of the RAAS system through vasopressin. In 

terms of IPA analysis shown in Figure 4.4-10 indicated POU3F3 was highlighted 

through in-silico mining as a transcription factor which may underpin the expression 

of both NKCC2 (SLC12A1) within these cells; although this transcription factor itself 

is not a DEG. Multiple DEGs facilitating natriuresis within TAL cells were detected in 

IPA alongside SLC12A1 (NKCC2); the sodium epithelial subunit 1-gamma (SCNN1G) and 

the Potassium Inwardly Rectifying Channel Subfamily J Member 1 (KCNJ1)( Figure 

4.4-11).  Two DEGs, SGK1 and WNK4, were highlighted as potentially interacting as 

signaling molecules, participating in the activity of natriuretic DEGs within the data. 
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Figure 4.4-8 Gene set enrichment analysis between high and low UMOD 

 (A) Gene set enrichment arrays were filtered specifically through keywords 

’transcription’ by python regex, and visualised with enrichment score (x-axis) 

and FDR (colour intensity). (B) Gene set enrichment arrays were filtered 

specifically through keywords ’ channel|transporter’ by python regex, and 

visualised with enrichment score (x-axis) and FDR (colour intensity). 

A) 

  

B) 
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 Figure 4.4-9 Specific enriched gene-sets obtained from Gene Ontology 2021.  

Header describes the implicated process or function, genes are displayed below plots and the difference in counts of these genes 

between low and high UMOD are displayed by colour (blue= higher mean expression in low-UMOD, red= higher mean expression in 

high-UMOD). As this is a whole-sample GSEA, not all of the genes displayed within the pathway are statistically differentially 

expressed but they do contribute to the GSEA model.  
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Figure 4.4-10 Ingenuity pathway analysis of data-mined connections between 

differentially expressed genes. 

 Genes which positively correlate with UMOD expression are coloured red, 

those with negative correlation are coloured green. The top-most numerical 

variable per gene indicates FDR adjusted p-value, the middle variable 

indicates log2-fold change, the bottom-most variable indicates mean 

expression in control (low-UMOD) group. Filled lines indicate published 

connections, dashed lines indicated in silico inferred connections. 
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Figure 4.4-11 Ingenuity pathway analysis, cellular functions 

A) IPA visualization of TAL cell ion handling functions with differentially 

expressed genes coloured by log2fold directionality. Genes which positively 

correlate with UMOD expression are coloured red, those with negative 

correlation are coloured green. B) IPA identified genes for enrichment phrase 

“movement of metal ion”, stratified by log2fold expression. Labelled by 

direction of enrichment. 

B) 

  

A) 
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4.4.5 Co-expression Analysis 

Scanpy-based single-cell analysis (source code in 4.6.2) of five independent healthy 

human renal samples displayed clear UMOD+ clustering within cell populations, 

presumably indicating these cells as either TAL or dCT components. Coexpression 

analysis was performed on these 5 samples by analysing the linear regression 

parameters of each gene against that of UMOD, on a cellular basis (Figure 4.4-12). As 

this is a fundamentally novel analysis method, the p-values of these Pearsons 

correlations were not adjusted for multiple testing due to the inherent variability 

and the risk of filtering interesting targets. To increase the signal to noise ratio of 

this analysis, only coexpressed signals which were detected in more than one sample 

were considered. The top 30 genes coexpressed at the single cell level with UMOD 

are shown in Table 4.4-3. Of these genes, WNK1 was the most significantly co-

expressed, with an uncorrected p-value < 0.00001 and detectable expression in 71% 

of UMOD cells. 

The coexpression between UMOD and NKCC2 (SLC12A1) which was observed in 

analysis of both bulk and single cell was verified using RNA from 84 human samples 

(described in 2.1-0) by Taqman qRT-PCR. A highly significant positive correlation in 

expression was detected by linear regression analysis (****, p<0.0001) (Figure 4.4-13). 
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Figure 4.4-12 A) Example plot from one human scRNA-seq dataset analysed. 

 Y-axis shows the p-value of the linear regression analysis between the target 

gene and UMOD (-log adjusted). A higher value is more significant. X-axis 

shows the proportion of UMOD+ cells which also express the target gene. A 

higher value here indicates a more robust correlation. B) Example 

visualisations of the significant co-expression between UMOD and NKCC2 at 

single-cell level.  

A) 

  

B) 
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Single Cell Coexpression Analysis 

Gene Name Number of Occurrences Mean P-value 

WNK1 

CLCN5 

SLC12A1 

DAPK1 

AC019197.1 

WNK4 

PHACTR1 

UGT8 

THSD4 

HIP1 

CTDSPL 

SGIP1 

EFHD1 

ACPP 

PDE1A 

GP2 

RNPC3 

AC092078.2 

LINC01762 

DNAH14 

CACNA2D3 

ATP1A1 

LINC01606 

STK39 

SUSD4 

BPTF 

RALYL 

CLCNKB 

HS6ST2 

LINC02343 

ARHGAP6 

KLHL13 

MAML2 

RP1 

MAGI1 

CASR 
 

2 

2 

2 

2 

2 

2 

2 

2 

2 

4 

2 

2 

2 

2 

2 

3 

2 

2 

3 

2 

4 

2 

2 

2 

2 

2 

2 

3 

2 

3 

2 

2 

2 

4 

2 

4 
 

7.49E-07 

5.46E-05 

0.000714668 

0.000716177 

0.000733789 

0.00126575 

0.002679055 

0.003682381 

0.004895217 

0.0051493 

0.006152223 

0.006185742 

0.007186302 

0.007517833 

0.007699149 

0.008800284 

0.009290538 

0.009360066 

0.01153034 

0.013810497 

0.014578991 

0.016340168 

0.017306249 

0.017926789 

0.019716807 

0.026456246 

0.027311588 

0.02959887 

0.029870208 

0.03170051 

0.032995793 

0.033718924 

0.034779892 

0.040472588 

0.041484078 

0.043297544 
 

 

 

 

 

 

Table 4.4-3 Five human renal single cell datasets were analysed for linear regression 

coexpression with UMOD. Each coexpression matrix was filtered into genes which 

were detected in more than one dataset as coexpressors and p-value < 0.05. The 

number of significant occurrences of coexpression (/5) are shown in C2. Mean 

Pearson’s test p-values are shown in C3 (non-adjusted p-values).  
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Figure 4.4-13 Linear regression of UMOD expression (dCT) against NKCC2 

expression (dCT) in RNA extracted from human renal samples (n=84).  

Blue filled area indicates 95% CI of the β-coefficient. Pearson’s correlation 

****, p<0.0001. 
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4.5 Discussion 

By stratifying human renal samples on expression of UMOD and then assessing the 

differences in the renal transcriptome between these groups, we show a strong, 

positive correlation between expression of UMOD and genes involved in natriuretic 

mechanisms. This provides, for the first time, transcriptomic evidence relating UMOD 

to the regulation of blood pressure. Our findings suggest that UMOD associates with 

blood pressure through several potential pathways, which may contribute varying 

effect-sizes to the relationship. Furthermore, we corroborate our bulk data with 

analysis of single cell data, from independent datasets. We believe that our most 

important finding is the detection of coexpression between UMOD and NKCC2 that we 

detected in both bulk and single cell transcriptomics. Building on this finding, we 

generated evidence of a significant relationship between UMOD expression and 

expression of NKCC2 in a qRT-PCR validation study (n=84). We emphasise that while 

these data do not show causation, they provide a number of pertinent indications as 

to the possible systematic effect of UMOD with respect to blood pressure regulation. 

As discussed in 3.5, the majority of previous studies implicate the transcription factor 

HNF1β as the primary regulator of UMOD expression, with Hnf1β mice showing 

reduced Umod expression, and a binding site of Hnf1β on the Umod promoter at both 

−1.1 and −0.58 kb from the TSS shown in mice (Gresh et al., 2004; Igarashi et al., 

2005; Han et al., 2013; Verhave et al., 2016). Interestingly, HNF1β has not been 

characterized in the literature as associating with expression of NKCC2; suggesting it 

does not factor in the coexpression we observed. However, it is unlikely that UMOD 

is under the explicit, singular control of this transcription factor. Our IPA analysis 

highlights POU class 3 homeobox 3 (POU3F3) as a potential coregulator of both UMOD 

and NKCC2. Crucially to this hypothesis, Pou3f3 (Brn1) knock-out mice have been 

shown to have reduced expression of both Umod and Nkcc2 (Nakai et al., 2003; Kumar 

et al., 2016; Rieger et al., 2016). It should be noted that Reiger et al analysed blood 

pressures between Pou3f3 missense mutation cohorts and did not observe a 

difference between these and wild type animals. However, Pou3f3 has been shown 

to exist in a quantitative trait locus for blood pressure on the rat genome, spanning 

40Mb on Chromosome-9 ((Blood pressure QTL 392) Rattus norvegicus, 2021). In our 
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data, POU3F3 was not differentially expressed between the low and high UMOD 

groups. However,we do not believe this lack of differential expression to be an 

indication of a lack of relationship. Rather, we hypothesise the potential mechanisms 

between differential expression of both UMOD and NKCC2 between groups are likely 

under-pinned by more cryptic processes involving POU3F3. We would suggest the 

most likely mechanism here being that POU3F3 coding mutation(s) may induce 

differential binding to the RE on both the UMOD and NKCC2 promoter between the 

high and low UMOD groups.  Less likely, though also possible, is that variants on both 

the UMOD and NKCC2 promoters drive this differential coexpression. In theory, if it 

can be shown that POU3F3 binds to a RE on the UMOD promoter that centers on 

rs4997081 we believe this may be a causative finding as to the UMOD:blood pressure 

hypothesis, however, this has not been proven to date and our preliminary analysis 

by ALGGEN-TRANSFAC prediction does not suggest a binding site at this locus. 

Fundamentally and empirically, our novel data here suggest that POU3F3 is likely to 

be the primary driver of coexpression between UMOD and NKCC2. To further build on 

these findings, we would suggest both a targeted CHiP-Seq of POU3F3 binding sites 

and additionally anti- Pou3f3 siRNA treatment in mice. Such experiments could show 

both potential promoter interactions and downstream physiological effects. 

Following from our observations of UMOD and NKCC2 coexpression, we identified 

several genes and pathways associating differential UMOD expression with blood 

pressure regulation. By IPA we identified serum/glucocorticoid regulated kinase 1 

(SGK1) levels  as  negatively  correlated  with  expression  of  NKCC2 and SCNN1G.  

SGK1 is a kinase known to drive differential activation of renal ion transporters in 

humans, with variants (MAF 3-10%) identified  as  correlating with differences in  

blood  pressure  in  humans (Lang et al, 2010)(Van Beusecum et al., 2019). 

Interestingly, it has been noted that the effect of SGK1 on the activation of ion 

transporters in renal cells is not fundamental to their function, rather that SGK1 acts 

as a secondary regulator which may drive pathophysiology as opposed to basic 

function (Lang and Shumilina, 2013). By IPA we show that the relationship between 

UMOD and these ion transporters/channels, is secondary through EGF, which has itself 

been shown to play a role in salt sensitive hypertension (Ying and Sanders, 2005; 
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Graham et al,. 2014a). Within this pathway matrix, we also identified lysine deficient 

protein kinase 4 (WNK4) as differentially expressed. WNK4, a renally expressed kinase 

similar to SGK1, is also heavily implicated in the activation of ion channels and 

transporters (Lang and Shumilina, 2013; Terker et al., 2018). Furthermore, human 

studies have shown a relationship between WNK4 and blood pressure (Murthy, Kurz 

and O’Shaughnessy, 2017). Additionally, analysis of Wnk4-/- mice found these animals 

were highly hyponatremic and additionally displayed both decreased Nkcc2 

phosphorylation and decreased absolute quantities of Nkcc2 (Terker et al., 2018). 

Finally, cross-phosphorylation between WNK4 and SGK1 has also been detected, 

suggesting feedback mechanisms may exist to further enhance pathophysiological 

states and provide homeostatic correction to aberrant pathways  (Ring et al., 2007). 

By gene set enrichment analysis, we detected enrichment within our DEGs for 

pathways implicating TNF-α, TGF-β and the RAAS system in association with 

differential UMOD levels between groups. Based on our Chapter 3 hypothesis, we 

predicted the enrichment of TNF-α signaling, as we theorised TNF-α was fundamental 

to the expression of UMOD. We believe our findings in this chapter reinforce those of 

Chapter 3, as we directly implicate both TNF-α and NF-Kβ signaling, independently 

of our Chapter 3 experiments. It is possible that the differences in TNF-α and NF-Kβ 

signaling we detected between the high and low UMOD expressors in this study may 

actually be underpinned by the mechanism we suggest in Chapter 3. Furthermore, 

the findings in this chapter suggest to us that the inhibitory activity of TNF-α in TAL 

cells correlates with levels of UMOD, suggesting a possible regulatory or negative 

feedback mechanism here with TNF-α signaling itself dependent on UMOD levels. 

Both our observations of the TGF-β and RAAS system in the context of UMOD 

expression can be considered ‘non-canonical’ as they are based on novel findings 

from this study. Interestingly, step-wise changes in TGF-β expression in mice in five 

steps from 10% to 300% normal was shown to correlate positively and proportionately 

with both blood pressure and sodium transport in the kidneys of these animals (Kakoki 

et al., 2013; Matsuki et al., 2014). It is currently hypothesized that TGF-β signaling 

alters blood pressure via aldosterone and thus is a cofactor in the RAAS system (Kakoki 

et al., 2013). The finding that the RAAS system appears to associate with UMOD levels 
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was unexpected, with limited published evidence to support this finding. However, 

we would emphasise that potential synergy or inhibition between UMOD and RAAS 

should be considered as functionally relevant in TAL cells. Arginine Vasopressin 

Receptor 1A (AVPR1A), a critical receptor within the RAAS system, was the third most 

negative DEG within our dataset; decreasing in expression with increasing levels of 

UMOD. It is possible that the significant downregulation of AVPR1A provides evidence 

of homeostatic adaptations to the increase natriuretic load induced by elevated 

UMOD levels in these cells. 

Analysis of coexpressed genes by single cell datamining using our custom self-

authored python applications detected a number of targets which cross-validate the 

findings observed in our bulk data experiment. Specifically, we detected 

coexpression of both WNK1/4, alongside NKCC2. Interestingly, the calcium sensing 

receptor (CASR) was also detected by this analysis; as it was within the bulk dataset 

also. The excretion of UMOD is known to be dependent upon activation of 

intracellular CASR  (Tokonami et al., 2018b). Whilst we do not believe that the CASR 

is a prominent factor in the UMOD:blood pressure hypothesis, we do believe that it is 

notable that CASR was enriched multiple times within our data analytics for this 

chapter. Of single-cell coexpressed genes, the lncRNA LINC01762 appealed to us for 

further analysis because it was also a DEG within our bulk dataset, and furthermore 

due to its strong consistency of enrichment in single cell analysis, with 4/5 datasets 

detecting this gene as coexpressed. Significantly, rs12078697-C on LINC01762 has 

been shown to associate with diastolic blood pressure in humans (GWAS Catalogue, 

2021). We performed a burrow-wheeler alignment for each exon (plus reverse 

complement) of LINC01762 to determine if there were any potential interactions with 

other DEGs within our dataset, and found none. However, the cryptic nature of 

lncRNA effects on downstream targets means we do not rule out causation based on 

a lack of direct interaction 

In terms of limitations, our primary aim in Chapter 4 was to address the 

transcriptomic relationship between UMOD genotype and renal pathways. In these 

experiments we assessed the relationship between UMOD levels and renal pathways. 

Had it been possible, we would have targeted both homozygous alleles of rs4997081; 



145 
 
this would have provided a more clinical, precision-medicine centric interpretation 

of the data. However, our grouping and selection protocol (combined with the low 

prevalence of homozygous ‘protective’ alleles) resulted in us not having access to 

adequate tissues for this experimental design. Additionally, our RNA was consumed 

during the transcriptomic application due to its inherently very low yield (we received 

on average a yield of >1µg total RNA per sample). Such limitation in tissue availability 

produced caveats to qRT-PCR based follow-up/ validation study of gene expression 

on the same human samples. Furthermore, we would like to note that this tissue was 

biopsied from the healthy pole of cancerous kidneys. As a result, it should be 

considered that our experiment is not specifically representative of an a-morbid, 

healthy population. It is reasonable to suggest that stress-response and immune 

pathways within these samples is likely to be upregulated versus true healthy controls 

due to both the proximity of a tumour and the therapeutic interventions administered 

to these patients. Lastly, in terms of caveats, we acknowledge that we did not apply 

multiple-testing-correction to our single-cell linear regression application. We feel 

that doing so when the application exists in a nascent state would be deleterious to 

our initial interpretations. The data, in theory, require a significantly more robust 

normalization strategy than the simple log-expression normalization applied. 

Inherently reducing the range and variability in expression of each cell within the 

data with appropriate normalization would increase the power of each regression 

analysis. We do not interpret the single cell data as ‘significant’, but rather, 

‘indicatory’ of coexpression events. 

In future, we believe an RNA-sequencing experiment stratified on UMOD genotype 

and not expression levels may provide highly relevant data in terms of informing the 

hypothesis with respect to blood pressure regulation at the UMOD locus. We would 

also emphasise that such a study should attempt to use samples which have an 

abundance of material. We would stress that, if possible, this material should yield 

enough to stratify across both qRT-PCR and western blot experiments as mRNA 

differences are not always perfectly correlated with protein differences. Such a 

resource of human tissue is likely to be highly challenging to procure. Therefore, it 

may be advisable to translate this study to in vivo using mouse or rat tissue, though, 
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in doing so this would prevent stratification across genotype as neither rs13333226 

nor rs4997081 exist on the mouse or rat UMOD promoters. Lastly, of our complement 

of DEGs from this study, an appreciable proportion (19/163) were lncRNAs, and of 

these 2/19 had previously attributed GWS to blood pressure. LncRNA annotation, 

particularly in terms of diseases and functions, is generally poor but we believe the 

contribution of lncRNA with our dataset is not negligible and it should be considered 

that at least one or several of the lncRNAs we detected may play a causative role in 

blood pressure regulation via UMOD. LncRNAs are widely theorized to play a 

significant (and targetable) but ‘dark-matter’ style role in blood pressure regulation 

(Murakami, 2015; Collins et al., 2020; Jiang and Ning, 2020). Therefore, we 

recommend that the use of specific siRNAs against our set of lncRNAs followed by the 

monitoring of UMOD expression may be potentially relevant downstream 

experiments. 

All transcriptomics visualisations in this thesis were made with the self-authored 

Padplot. The impact of Covid19 was substantial as it caused significant lab closures, 

with 4-months of absolute closure and 6 months of additional disruption. During this 

time, the author worked on building and deploying Padplot. Preexisting 

bioinformatics tools for analysing bulk RNA-Seq data exist, therefore Padplot was 

conducted with a specific set of goals which would allow it to occupy a niche and 

provide novelty. Firstly, to be free and open-source, so that it can be used by anyone. 

In this way, Padplot superseded both subscription based tools (which cost money) and 

Galaxy (which is free but cannot be modified). Secondly, Padplot was required to be 

lightweight, so that it can be deployed cheaply on Amazon storage with no costs 

incurred, to protect the first aim. Padplot, due to its Streamlit integration, 

incorporates <1500 lines of code and furthermore only requires <10 external libraries 

to run making it lightweight, significantly more so than other open-source tools which 

do not deploy directly to a browser. Finally, Padplot was required to be used by 

anyone, but in particular, wet-lab biologists who do not have experience with code. 

Therefore, Padplot was not written to run directly in python, nor did it come in a 

docker container, but rather it could be accessed using an IP address. These specifics 

(the easily accessible source, Padplot being free and with a shallow learning curve), 
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made Padplot a useful tool, as was consistently fed-back by users. However, in 

December of 2021, users began to incur the author with costs from Amazon, therefore 

Padplot was discontinued until funding can be found to restart the server- as charging 

customers a fee is out-with the remit of the work. 

The transcriptomic work conducted within this chapter reinforces previous work both 

internally at the University of Glasgow and in the wider academic community, linking 

UMOD to blood pressure. However, we show for the first time that it is likely that the 

nature of this relationship is multifactorial. We evidence the canonical pathway 

suggesting UMOD links to blood pressure through NKCC2 is likely the primary driver, 

and we also provide increased resolution on the relationship between TNF-α and 

UMOD expression, with our evidence indicating this is driven by NF-Kβ activation. 

Furthermore, we build upon these findings by suggesting that UMOD may associate 

with the RAAS system, and that this may be driven through TGF-β. We also provide 

seminal data suggesting lncRNAs may associate with blood pressure through UMOD. 

Finally, we emphasise that the significant contributions of these data to the 

understanding of UMOD and blood pressure would benefit from further validation 

through in-vivo and in-vitro follow-up study. 
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4.6 Chapter Specific Self-authored Code 

4.6.1 PadPlot- Bulk Data 

import numpy as np 

import pandas as pd 

import streamlit as st 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set_style("white") 

import adjustText 

from adjustText import adjust_text 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

import gseapy as gp 

from gseapy.plot import gseaplot, heatmap 

import matplotlib.gridspec as gridspec 

st.beta_set_page_config(layout="centered") 

initial_sidebar_state="expanded" 

def _max_width_(): 

    max_width_str = f"max-width: 1300px;" 

    st.markdown( 

        f""" 

    <style> 

    .reportview-container .main .block-container{{ 

        {max_width_str} 

    }} 

    </style>     

    """, 

        unsafe_allow_html=True, 

    ) 

def loaddata(): 

    global df 

    global headers 

    global log2s 

    global paddys 

    global genenames 

    global temp 

    global gene 

    global controlg 

    global expg 

    global title 

    global pim 

    st.header("Next point PadPlot to the Relevant Columns") 

     

         

    df=pd.read_csv(data) 

    #st.dataframe(df) 

     

    headers= list(df.columns.values) 

    title=data.name 

        

def loaddata(): 

    global df 

    global headers 

    global log2s 

    global paddys 

    global genenames 

    global temp 
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    global gene 

    global controlg 

    global expg 

    global group1_title 

    global group2_title 

    global schema 

    global statmethod 

    global gene_set 

    global permtype 

    #st.dataframe(df.head(20)) 

    st.header("Next select a Global Style for Plots") 

    STYLES = { 

        "White":"white", 

        "Dark grid": "darkgrid", 

        "Dark": "dark", 

        "White Grid":"whitegrid", 

        "Ticks":"ticks", 

         

         

    } 

    schemes= list(STYLES.keys()) 

    sch = st.selectbox("Define a plot schema", schemes) 

    schema= STYLES.get(sch) 

    st.text("") 

    st.text("") 

    st.text("") 

    st.header("Finally point PadPlot to the Relevant Columns") 

     

    data.seek(0)   

    df=pd.read_csv(data) 

    #dfprocesses=pd.read_csv('mart_export.txt') 

    headers= list(df.columns.values) 

    

stat_methods=['signal_to_noise','t_test','ratio_of_classes','diff_of_classe

s','log2_ratio_of_classes'] 

    

gene_sets=['GO_Molecular_Function_2018','GO_Biological_Process_2018','KEGG_

2019_Human','MGI_Mammalian_Phenotype_Level_4_2019','miRTarBase_2017','WikiP

athways_2019_Human'] 

     

     

    col1, col2, col3= st.beta_columns(3) 

    genenames = col1.selectbox("Select Gene Names", headers) 

    paddys = col2.selectbox("Select Adjusted p-values", headers) 

    log2s = col3.selectbox("Select Log2 Fold Changes", headers) 

     

    controlg = st.multiselect("Select Control Group", headers) 

    expg = st.multiselect("Select Experimental Group", headers) 

    col4, col5= st.beta_columns(2) 

    group1_title = col4.text_input("Define Group 1 Title Here", 'ie 

"Control"') 

    group2_title = col5.text_input("Define Group 2 Title Here", 'ie 

"Experimental"') 

    st.text("") 

    st.text("") 

    st.header("Customise Gene Set Enrichment Parameters (Human Data Only)") 

    col6, col7, col8=st.beta_columns(3) 

    statmethod = col6.selectbox("Gene Set Enrichment Method", stat_methods) 
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    gene_set= col7.selectbox("Gene Set Enrichment Reference Database", 

gene_sets) 

    permtype= col8.selectbox("Gene Set Enrichment Permutation Type 

(Phenotype only if samples > 15", ['gene_set','phenotype']) 

     

def selectplot(): 

    st.text("") 

    st.text("") 

    st.text("") 

    options = [ 

        "PadPlot Volcano", 

        "PadPlot Heatmap", 

        "PadPlot PCA", 

        "PadPlot Violin", 

        "PadPlot Gene Set Enchrichment (Human Only)", 

         

         

    ] 

    #padplots= list(OPTIONS.keys()) 

    st.header("Choose a plot:") 

    plot = st.selectbox("Define a plot schema", options) 

    

    if plot== "PadPlot Volcano": 

        volcanoplot() 

         

    elif plot== "PadPlot Heatmap": 

        heatmapplot() 

    elif plot== "PadPlot PCA": 

        pcaplot() 

    elif plot== "PadPlot Violin": 

        violinplot() 

    elif plot== "PadPlot Gene Set Enchrichment (Human Only)": 

        geneset_enrichment() 

    else: 

        st.header("No Plot Currently Selected") 

def pcaplot(): 

    st.sidebar.header("Change PCA-plot Parameters") 

     

     

    pca_df=df[controlg+expg] 

    genes=len(pca_df) 

    pca_df=pca_df.transpose() 

    logdata = st.sidebar.checkbox('Log PCA Input Values') 

    if logdata: 

        pca_df=np.log((pca_df+1)) 

        title='Logged Values' 

    else: 

        pca_df=pca_df 

        title='Raw Values' 

    pca_df['Sample']=pca_df.index 

    #st.dataframe(pca_df) 

    labelsize=st.sidebar.slider('Size of text labels', 2, 20, 8) 

     

    g1= [group1_title] 

    g1=g1* len(controlg) 

     

    g2= [group2_title] 

    g2=g2*len(expg) 

    grouping=g1+g2 
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    pca_df['Group']= grouping 

     

     

    #st.dataframe(pca_df) 

    features = range(0,genes,1) 

    x=pca_df.loc[:,features].values 

    y=pca_df.loc[:,['Sample']].values 

    #x=StandardScaler().fit_transform(x) 

    pca=PCA() 

    principalComponents=pca.fit_transform(x) 

    ex_variance=np.var(principalComponents,axis=0) 

    ex_variance_ratio=ex_variance/np.sum(ex_variance) 

    pc1=round((ex_variance_ratio[0] * 100), 1) 

    pc2=round((ex_variance_ratio[1] * 100), 1) 

    pcx= [i[0] for i in principalComponents] 

    pcy= [i[1] for i in principalComponents] 

    #pc2 

    principaldf=pd.DataFrame(data=zip(pcx,pcy),columns=['PC1 ' + '(' + 

str(pc1) + '% of variance' + ' )','PC2 ' + '(' + str(pc2) + '% of variance' 

+ ' )'])#,raise_missing=False) 

    principaldf['Sample']=pca_df.index 

    principaldf['Group']= grouping 

    principaldf['x']=principaldf['PC1 ' + '(' + str(pc1) + '% of variance' 

+ ' )'] 

    principaldf['y']=principaldf['PC2 ' + '(' + str(pc2) + '% of variance' 

+ ' )'] 

    #st.dataframe(principaldf) 

     

    with sns.axes_style(schema): 

        fig = plt.figure(figsize=(8,8))         

        ax = fig.add_subplot(1, 1, 1) 

        sns.scatterplot(data= principaldf,x= 'PC1 ' + '(' + str(pc1) + '% 

of variance' + ' )', 

                        y= 'PC2 ' + '(' + str(pc2) + '% of variance' + ' 

)',  

                        ax=ax,s=400, hue=principaldf.Group.tolist()) 

        plt.title(title,loc='left') 

        texts= [] 

        for x,y,s in zip(principaldf.x,(principaldf.y),principaldf.Sample): 

            texts.append(ax.text(x,y,s,size=labelsize)) 

        adjust_text(texts,force_points=0.1, force_text=0.2, 

expand_points=(1,1)) 

    st.pyplot(fig) 

def violinplot(): 

    st.sidebar.header("Change Violin-plot Parameters") 

     

    df2=df 

    samples=controlg+expg 

     

     

    cols = [x for x in headers if x not in samples] 

    gp1=group1_title 

    gp2=group2_title 

    g1= [gp1] 

    g2= [gp2] 

    grouping= (g1 * len(controlg)) + (g2 * len(expg)) 

    temp = (df2[headers].melt(id_vars = cols, var_name = 

'Sample',value_name = 'Expression')) 

    temp=temp.dropna() 
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    logviolin = st.sidebar.checkbox('Log Expression Input Values') 

     

    if logviolin: 

        temp['Expression']=np.log((temp['Expression']+1)) 

        title='       Logged Values' 

    else: 

        temp['Expression']=temp['Expression'] 

        title='       Raw Values' 

     

    #st.markdown(controlg) 

    low_samples = controlg 

    temp['Group'] = temp['Sample'].apply(lambda x : gp1 if x in low_samples 

else gp2) 

     

    with sns.axes_style(schema): 

        fig = plt.figure(figsize=(8,8))         

        ax = fig.add_subplot(1, 1, 1) 

        grouped = st.sidebar.checkbox('Sample Grouping') 

        if grouped: 

            sns.violinplot(data= 

temp,x='Sample',y='Expression',hue='Group',dodge=False) 

        else: 

            sns.violinplot(data= temp,x='Sample',y='Expression') 

        jitter = st.sidebar.checkbox('Add Jitter') 

     

        if jitter: 

            jittersize=st.sidebar.slider('Size of points', 0, 10, 1) 

            jitteralpha=st.sidebar.slider('Opacity of points', float(0), 

float(1), float(0.2)) 

            sns.stripplot(data= 

temp,x='Sample',y='Expression',alpha=jitteralpha,s=jittersize,color='black'

,jitter=0.4) 

         

        else: 

            pass 

         

        locs, labels = plt.xticks() 

        plt.setp(labels, rotation=45) 

        plt.title(title,loc='left') 

         

    st.pyplot(fig) 

def prepdata(): 

    global l2fc 

    global logp 

    global df 

    global ps 

    df= df.sort_values(by=[paddys]) 

    Fold_changes = log2s 

    padjs = paddys 

    gene_names = genenames 

    fc_df = df.filter([Fold_changes]) 

    fc_df.columns= ['L2FC'] 

    p_df = df.filter([padjs]) 

    p_df.columns= ['p-value (Adjusted)'] 

    gene_df = df.filter([gene_names]) 

    gene_df.columns= ['Gene'] 

    df['L2FC'] = fc_df 

    df['padj'] = p_df 

    df['Gene'] = gene_df 
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    df['neglogp'] = - np.log(df['padj']) 

    df['p(-log10)'] = - np.log10(df['padj'])   

    ps=df["padj"].tolist()      

    l2fc=df["L2FC"].tolist() 

    logp=df["neglogp"].tolist() 

    #st.dataframe(df) 

def volcanoplot(): 

    global logp 

     

     

     

    st.sidebar.header("Change Volcano-plot Parameters") 

    option = st.sidebar.selectbox('Choose Volcano Type',('Standard', 'Gene 

Ontology (Human Only)')) 

     

    p=st.sidebar.slider('p-value threshold', float(min(ps)), 

float(max(ps)), 0.05) 

    top_genes=st.sidebar.slider('Label top genes', 0, 30, 5) 

    textsize=st.sidebar.slider('Size of labels', 0, 20, 8) 

    x=st.sidebar.slider('Adjust x-axis', float(0), float(max(l2fc)+2), 

float(max(l2fc)+2)) 

    y=st.sidebar.slider('Adjust y-axis', float(0), max(logp)+10, 

(max(logp)+10)) 

    size=st.sidebar.slider('Point Size', float(1), float(50), float(25)) 

    logtrans = st.sidebar.checkbox('Log base-10 Transformation') 

     

    if logtrans: 

        logp=df["p(-log10)"].tolist() 

        yaxistitle="-log10 p-value" 

        guidebar=-np.log10(p) 

        df['x']= df.L2FC 

        df['y']= df['p(-log10)'] 

        df['Gene2']= df.Gene 

        

        dfmod20=df.head(top_genes) 

    else: 

        yaxistitle="-log p-value" 

        guidebar=-np.log(p) 

        df['x']= df.L2FC 

        df['y']= df.neglogp 

        df['Gene2']= df.Gene 

         

        dfmod20=df.head(top_genes) 

    

    if option=='Gene Ontology (Human Only)': 

        st.error('Currently In Development') 

        ''' 

        st.sidebar.header("Biological Process Labelling Input (Human 

Only)") 

        user_input = st.sidebar.text_input("Enter GO Processes here 

separated by commas, ie 'Sodium, Receptor, Membrane, Pregnancy'") 

        user_list=user_input.split(',') 

        st.text(user_list) 

       

         

         

        @st.cache(suppress_st_warning=True) 

        def prepmartdata(): 
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            st.write("Cache miss: expensive_computation ran") 

             

            dfprocesses=pd.read_csv('mart_export.txt') 

            df2=dfprocesses.merge(df, right_on='Row.names', left_on='Gene 

stable ID', how='outer') 

            df2=df2.dropna(subset=['Unnamed: 0', 'Row.names','padj','GO 

term name']) 

            return df2 

             

             

            

        df2=prepmartdata() 

         

        

        remove_list = user_list 

        df2['flagCol'] = np.where(df2['GO term 

name'].str.contains('|'.join(remove_list)),1,0) 

        df2['flagCol'] = df2['flagCol'].replace(0, np.nan) 

        dfflagged=df2.dropna(subset=['flagCol']) 

        genes=dfflagged['external_gene_name'].values.tolist() 

        genes = set(genes) 

        genes = list(genes) 

        df2['Flagged by keywords ' + str(remove_list)]= 

df2['external_gene_name'].isin(genes) 

        df3= df2[df2['Flagged by keywords ' + 

str(remove_list)].astype(str).str.contains('True')] 

        df3=df3.drop_duplicates(subset=['external_gene_name']) 

         

        df3=df3.sort_values(by=['padj']) 

        df3['x']= df3.log2FoldChange 

        df3['y']= df3.neglogp 

        df3['Gene2']= df3.external_gene_name 

         

        dfgolabels=df3.iloc[0:top_genes] 

         

         

        df['Flagged by keywords ' + str(remove_list)]= 

df['external_gene_name'].isin(genes) 

        coly=df['Flagged by keywords ' + str(remove_list)].values.tolist() 

        with sns.axes_style(schema): 

            fig = plt.figure(figsize=(8,8))         

            ax = fig.add_subplot(1, 1, 1) 

            sns.scatterplot(l2fc,logp,hue=coly,s=size,ax=ax) 

            ax.set_ylabel("-log p-value",fontsize=15) 

            ax.set_xlabel("log2 Fold Change",fontsize=15) 

            plt.ylim(0, y) 

            plt.xlim((-x), x) 

            plt.title(title) 

            legendlabel='Flagged by keywords ' + str(remove_list) 

            ax.legend([legendlabel],loc="upper right") 

            texts=[] 

            props= dict(boxstyle='round', facecolor='wheat', alpha=0.9) 

            for x,y,s in zip(dfgolabels.x,dfgolabels.y,dfgolabels.Gene2): 

                        

texts.append(ax.text(x,y,s,size=textsize,bbox=props)) 

            adjust_text(texts) 
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            st.pyplot(fig) 

            ''' 

     

         

    else: 

         

         

        df['coly']=df["padj"]<p 

        coly=df['coly'].values.tolist() 

         

        with sns.axes_style(schema): 

            fig = plt.figure(figsize=(8,8))         

            ax = fig.add_subplot(1, 1, 1) 

            sns.scatterplot(l2fc,logp,hue=coly,s=size,ax=ax) 

            ax.set_ylabel(yaxistitle,fontsize=15) 

            ax.set_xlabel("log2 Fold Change",fontsize=15) 

            guides = st.sidebar.checkbox('Toggle Guidebars') 

            if guides: 

                ax.hlines(guidebar,(-x),x,linestyles='--

',color='grey',linewidth=0.7) 

                ax.vlines(-1,0,y,linestyles='--

',color='grey',linewidth=0.7) 

                ax.vlines(1,0,y,linestyles='--',color='grey',linewidth=0.7) 

            else: 

                pass 

             

            plt.ylim(0, y) 

            plt.xlim((-x), x) 

            plt.title(title) 

            legendlabel="p.Adj < " + str(p) 

            ax.legend([legendlabel],loc="upper right") 

            texts=[] 

            #st.dataframe(dfmod20) 

            for x,y,s in zip(dfmod20.x,dfmod20.y,dfmod20.Gene2): 

                        texts.append(ax.text(x,y,s,size=textsize)) 

            adjust_text(texts) 

             

             

         

             

            st.pyplot(fig) 

def heatmapplot(): 

    #p2=0.05 

    #delta= st.sidebar.number_input("Adjust p-value:", 

min_value=float(0.0001), max_value=float(1),value=float(0.05),step=0.005) 

    #st.write(delta) 

    #p2=st.slider('p-value threshold', min(ps), 0.05, 0.0005) 

    st.sidebar.header("Change Heatmap Parameters") 

    user_input = st.sidebar.text_input("Threshold adjusted p-value at 

(enter a value)", 0.05) 

    delta=float(user_input) 

    fontsize=st.sidebar.slider('Set gene names font size', 0.01, 

float(1.5), float(1)) 

    xfont=st.sidebar.slider('Set sample names font size', 2, 20, 10) 

    sns.set(font_scale=fontsize) 

     

    MODES = {"Standard": "magma", 

        "Yellow, Orange and Red":"YlOrRd", 
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        "Orange and Red":"OrRd", 

        "Blue and Red":"bwr", 

        "Red and Purple":"RdPu", 

        "Hot":"hot" 

         

         

    } 

    x= list(MODES.keys()) 

    c = st.sidebar.selectbox("Define a colour-scheme", x) 

    colour= MODES.get(c) 

     

     

    df2=df.where(df[paddys]<delta) 

    samples=controlg+expg 

    cols = [x for x in headers if x not in samples] 

    gp1="placehld" 

    gp2="placehld_2" 

    g1= [gp1] 

    g2= [gp2] 

    grouping= (g1 * len(controlg)) + (g2 * len(expg)) 

    temp = (df2[headers].melt(id_vars = cols, var_name = 

'Sample',value_name = 'Expression')) 

    #st.markdown(controlg) 

    low_samples = controlg 

    temp['Group'] = temp['Sample'].apply(lambda x : gp1 if x in low_samples 

else gp2) 

    gene=genenames 

    global temp_adj 

    def plot(): 

        g= sns.clustermap(temp.groupby([gene, 

'Sample'])['Expression'].mean().unstack(),cmap=colour,metric = 

'correlation',z_score=0) 

        g.ax_heatmap.set_xticklabels(g.ax_heatmap.get_xmajorticklabels(), 

fontsize = xfont) 

        return g.fig 

    #st.table(temp_adj) 

    figure= plot() 

    st.pyplot(figure) 

def geneset_enrichment(): 

     

    gseaselect=[genenames]+controlg+expg 

    gene_exp=df[gseaselect] 

    gene_exp=gene_exp.sort_values(by=gene_exp.columns[2]) 

    gene_exp=gene_exp.tail(7000) 

    #st.dataframe(gene_exp.head(5)) 

    # 

gene_sets='GO_Biological_Process_2018','GO_Molecular_Function_2018','KEGG_2

019_Human' 

    # gene_sets='MGI_Mammalian_Phenotype_Level_4_2019' 

    # gene_sets='GO_Molecular_Function_2018' 

    gp1="placehld" 

    gp2="placehld_2" 

    g1= [gp1] 

    g2= [gp2] 

    grouping= (g1 * len(controlg)) + (g2 * len(expg)) 

    @st.cache(suppress_st_warning=True,allow_output_mutation=True) 

    def calculate_genesets(): 

        gs_res = gp.gsea(data=gene_exp, # or 

data='./P53_resampling_data.txt' 
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                        gene_sets=gene_set, # enrichr library names 

                        cls= grouping, # cls=class_vector 

                        # set permutation_type to phenotype if samples >=15 

                        permutation_type=permtype, 

                        permutation_num=100, # reduce number to speed up 

test 

                        outdir=None,  # do not write output to disk 

                        no_plot=True, # Skip plotting 

                        method=statmethod, # or t_test 

                        processes=0, seed= 7, 

                        format='png') 

        return(gs_res) 

     

     

    gs_res=calculate_genesets() 

    st.success('Gene Set Enrichment Successful') 

    terms = gs_res.res2d.index 

    fdrs= gs_res.res2d['fdr'] 

    reindexed=gs_res.res2d.reset_index() 

    st.dataframe(reindexed) 

    processes = st.selectbox("Enriched Processes in Your Dataset (Choose 

one to visualise)", terms) 

    keepGO= str(processes[-len(processes):]) 

    #st.text(keepGO) 

     

    #ids = 

np.unique(reindexed.stack()[reindexed.astype('str').str.contains(keepGO)].i

ndex.get_level_values(0)) 

    ids= reindexed.index[reindexed['Term'] ==keepGO].tolist() 

    #st.text(ids) 

     

    def plot(n): 

        #st.text(n) 

        genes = gs_res.res2d.genes[n].split(";") 

        #st.dataframe(genes) 

        dfprocess= gs_res.heatmat.loc[genes] 

        control_mean= dfprocess.iloc[:,:3].mean(axis=1) 

        exp_mean= dfprocess.iloc[:,3:].mean(axis=1) 

        dfprocess_mean=pd.DataFrame() 

        dfprocess_mean['Control_mean']=control_mean 

        dfprocess_mean['Experimental_mean']=exp_mean 

        

dfprocess_mean['Divided']=(dfprocess_mean['Control_mean']/dfprocess_mean['E

xperimental_mean']) 

        dfprocess_mean=np.log(dfprocess_mean[['Divided']]) 

        

dfprocess_mean=dfprocess_mean.sort_values(by='Divided',ascending='False') 

         

         

        grid=sns.clustermap(data=dfprocess_mean.T ,z_score=0, 

col_cluster=False,row_cluster=False, figsize=(18,4),cmap='RdBu_r', 

dendrogram_ratio=0.0,cbar_pos=None) 

        labels=grid.ax_heatmap.get_xticklabels() 

        grid.ax_heatmap.set_xticklabels(labels=labels, rotation=60, 

fontsize = 16) 

        labels=grid.ax_heatmap.get_yticklabels() 

        grid.ax_heatmap.set_yticklabels(labels=labels, fontsize = 16) 

        grid.ax_heatmap.set_title(terms[n] + ',  FDR: ' + 

str(round(fdrs[n],3)),size=17) 
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        return grid 

    indexes=ids 

    for value in indexes: 

        figure=plot(value) 

        st.pyplot(figure) 

     

     

     

     

    def fullgenesets(): 

        fig, ax = plt.subplots(figsize=(3,len(fullset_head)/4))  

        

scatterplot=ax.scatter(y=fullset_head.index,x=fullset_head['neglogp'],c=ful

lset_head['nes'],cmap='seismic',edgecolors='black',s=60) 

        cbar= plt.colorbar(scatterplot, orientation="horizontal", 

pad=2.8/len(fullset_head)) 

        cbar.set_label("Normalised\nEnrichment Score") 

        plt.title('Enriched Pathways and Functions',size=12) 

        plt.xlabel('FDR (-log)') 

         

        st.pyplot(fig) 

     

    gseaplot = st.sidebar.checkbox('Display GSEA Bubble Plot') 

    if gseaplot: 

        fullset=gs_res.res2d 

         

        fullset['neglogp']= -np.log(fullset['fdr']) 

        fullset=fullset.sort_values(by='neglogp',ascending=False) 

        head=st.sidebar.slider('Number of Pathways', 0, 50, 20) 

        fullset_head=fullset.head(head) 

        fullset_head=fullset_head.sort_values(by='neglogp') 

        fullgenesets() 

                 

_max_width_()    

#load=st.checkbox("Load Data") 

st.title("Welcome to PadPlot") 

st.header("Start by Providing your Dataset") 

data = st.file_uploader("Upload a Dataset", type=["csv", "txt","tsv"]) 

if not data: 

    st.warning('Please input a file.') 

    st.stop() 

st.success('Dataset loaded.') 

#st.success('Dataframe loaded') 

title=data.name 

st.text("") 

st.text("") 

st.text("") 

loaddata() 

prepdata() 

selectplot() 

#if load: 

#    loaddata() 

#    prepdata() 

# if data not in globals(): 

#     st.error('No File Loaded') 

st.text("") 

st.text("") 

st.text("") 
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st.text("") 

st.text("") 

st.text("") 

st.text("") 

c1, c2 = st.beta_columns((2)) 

c3, c4 = st.beta_columns((2)) 

 

4.6.2 ScGress- Single Cell 

import scanpy as sc 

import numpy as np  

from adjustText import adjust_text 

import seaborn as sns 

import matplotlib.pyplot as plt 

import pandas as pd 

from scipy import stats 

import shutil 

import os 

     

######################################################################     

###################################################################### 

# to be changed by the user, everything else is automatic 

dataset_name='GSM4572192' 

filepath='GSM4572192_Control1_filtered_feature_bc_matrix.h5' 

reference_gene='UMOD' 

###################################################################### 

###################################################################### 

newdir='figures\\umap' + dataset_name +'\\' 

plotdir=dataset_name 

if not os.path.exists(newdir): 

    os.makedirs(newdir) 

     

if not os.path.exists(plotdir): 

    os.makedirs(plotdir) 

def read_and_prepare_data(filepath, dataset_name,reference_gene): 

    dataset=sc.read_10x_h5(filepath) 

    dataset.var_names_make_unique 

    sc.pl.highest_expr_genes(dataset, n_top=20, ) 

    dataset.var['mt'] = dataset.var_names.str.startswith('MT-')  

    sc.pp.calculate_qc_metrics(dataset, qc_vars=['mt'], percent_top=None, 

log1p=True, inplace=True) 

    sc.pl.violin(dataset, ['n_genes_by_counts', 'total_counts', 

'pct_counts_mt'], 

                 jitter=0.4, multi_panel=True) 

    adata=dataset 

    adata = adata[adata.obs.n_genes_by_counts < 2500, :] 

    adata = adata[adata.obs.pct_counts_mt < 10, :] 

    sc.pp.normalize_total(adata, target_sum=1e4) 

    sc.pp.log1p(adata) 

    sc.pp.scale(adata, max_value=10) 

    sc.tl.pca(adata, svd_solver='arpack') 

    sc.pl.pca(adata, color=reference_gene) 

    sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40) 

    sc.tl.umap(adata) 

    sc.tl.leiden(adata) 
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    sc.pl.umap(adata, color=['leiden', 

reference_gene],use_raw=False,save=dataset_name + '\\Full_data.png') 

    adata.layers['scaled'] = sc.pp.scale(adata, copy=True).X 

    reference_adata = adata[adata[: , reference_gene].X > 1, :]  

    sc.pp.neighbors(reference_adata, n_neighbors=10, n_pcs=50) 

    sc.tl.umap(reference_adata) 

    sc.tl.leiden(reference_adata) 

    sc.pl.umap(reference_adata, 

color=['leiden',reference_gene],save=dataset_name + '\\' + reference_gene + 

'_cells.png') 

    sc.tl.rank_genes_groups(reference_adata, 'leiden', method='t-test') 

    sc.pl.rank_genes_groups(reference_adata, n_genes=25, sharey=False) 

     

    create_peicewise_linear_regressions(reference_adata) 

    

#specific_cluster=reference_adata[reference_adata.obs['leiden'].isin(['0'])

,:] 

     

def create_peicewise_linear_regressions(reference_adata): 

    genes=list(reference_adata.var.index) 

    genes 

    gene_list=[] 

    p_vals=[] 

    intercepts=[] 

    expression_level=[] 

    r_val=[] 

    slopes=[] 

    for gene in genes: 

        reference_subset=reference_adata[: , reference_gene].X 

        reference_subset=reference_subset.tolist() 

        target_subset=reference_adata[: , gene].X 

        target_subset=target_subset.tolist() 

        reference_flat= [item for sublist in reference_subset for item in 

sublist] 

        target_flat= [item for sublist in target_subset for item in 

sublist] 

        if len(target_flat)==len(reference_flat)*2: 

            target_flat=[1]*len(reference_flat) 

        else: 

            pass 

        

exp_level=(reference_adata[reference_adata.obs['leiden'].isin(['0']),:][:,g

ene].X > 0).mean(0) 

        df_pvals = pd.DataFrame({reference_gene:reference_flat, 

                          "Gene":target_flat}) 

        df_pvals=df_pvals[df_pvals['Gene']>1] 

        reference_flat=df_pvals[reference_gene].values.tolist() 

        target_flat=df_pvals['Gene'].values.tolist() 

        try:    

            slope, intercept, r_value, p_value, std_err = 

stats.linregress(reference_flat,target_flat) 

            p_value 

        except: 

            p_value=1 

            intercept=1 

            slope=1 

            r_value=1 

        gene_list.append(gene) 

        print(gene) 
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        p_vals.append(p_value) 

        print(p_value) 

        intercepts.append(intercept) 

        expression_level.append(exp_level) 

        r_val.append(r_value) 

        slopes.append(slope) 

        if p_value < 0.1 and p_value > 0 and exp_level > 0.5: 

            sns.scatterplot(reference_flat,target_flat) 

            plt.ylabel(gene) 

            plt.xlabel(reference_gene) 

            plt.title('Correlation of ' + gene + ' with ' + reference_gene 

+ ' p='+ str(round(p_value,6))) 

            savetitle=dataset_name + 

'\\{}_with_{}.png'.format(reference_gene,gene) 

            plt.savefig(savetitle) 

            plt.clf() 

            print(df_pvals) 

            #time.sleep(3) 

        else: 

            pass 

         

    create_allgenes_plot(gene_list,p_vals,intercepts,expression_level, 

r_val, slopes,dataset_name,reference_adata) 

         

def create_allgenes_plot(gene_list,p_vals,intercepts,expression_level, 

r_val, slopes,dataset_name,reference_adata): 

    from adjustText import adjust_text 

    plt.figure(figsize=(12,8)) 

    df_regression = pd.DataFrame({"Gene":gene_list, 

                          "pval":p_vals, 

                                'intercept':intercepts, 

                                 'expression':expression_level, 

                                 'r_value':r_val, 

                                 'slope':slopes}) 

    df_regression=df_regression.sort_values(by='pval') 

    df_regression=df_regression[df_regression['pval']<0.05] 

    df_regression=df_regression[df_regression['pval']>0] 

    df_regression=df_regression[df_regression['intercept']>0.1] 

    exp_vals=df_regression['expression'].values.tolist() 

    exp_vals_flat= [item for sublist in exp_vals for item in sublist] 

    df_regression['expression']=exp_vals_flat 

    df_regression['neglogp']=-np.log(df_regression['pval']) 

    df_regression_labs=df_regression[df_regression['expression']>0.5] 

    

#df_regression_labs=df_regression_labs[df_regression_labs['expression']>0.5

] 

    df_regression['Positive Correlation'] = df_regression['slope'] > 0 

    df_regression['rSq']=df_regression['r_value']**2 

    cmap=sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) 

    

sns.scatterplot(x=df_regression['expression'],y=df_regression['neglogp'],hu

e=df_regression['Positive Correlation'].values.tolist(),s=35) 

    plt.legend(title='Correlation Type', loc='upper left', 

labels=['Positive', 'Negative']) 

    plt.ylabel('Linear Regression neglog p-value (AU)') 

    plt.xlabel('Proportion of cells also expressing labelled gene') 

    plt.ylim(2.5,10) 

    #plt.hlines(0.05,0,max(df_regression['expression']),linestyles='--') 

    #plt.vlines(0.5,0,max(df_regression['pval'])) 



162 
 
    texts=[] 

    for x,y,s in 

zip(df_regression_labs['expression'],df_regression_labs['neglogp'],df_regre

ssion_labs['Gene']): 

                texts.append(plt.text(x,y,s,size=10)) 

    adjust_text(texts,autoalign='x' 

               ) 

    plt.savefig(dataset_name+'\Coexpressed_genes_regression.png') 

    df_regression_labs.to_csv(plotdir+'\\' + 

dataset_name+'Coexpressed_genes.csv') 

     

     

    x=df_regression_labs.head(3) 

    x=x['Gene'].values.tolist() 

    sc.pl.umap(reference_adata, 

color=[reference_gene,x[0],x[1],x[2]],save=dataset_name+'\\Coexpressed_gene

s.png') 

     

    return df_regression_labs 

read_and_prepare_data(filepath, dataset_name,reference_gene) 

     

source_dir = newdir 

target_dir = plotdir 

     

file_names = os.listdir(source_dir) 

     

for file_name in file_names: 

    shutil.move(os.path.join(source_dir, file_name), target_dir) 

     

shutil.rmtree(newdir) 
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5 In-vitro study of UMOD 

5.1 Introduction 

Whilst UMOD has been linked to the regulation of blood pressure in the context of 

sodium, TAL cells may also respond to the concentration of extracellular sodium 

chloride and react to changes via altered UMOD expression. In the clinical context, 

human studies have shown that the urinary excretion of UMOD correlates with sodium 

chloride intake. A dependent, time series study, using low or high doses of dietary 

sodium chloride (10mmol/day for the first week vs 240mmol/day for the second 

week) showed that urinary excretion of UMOD protein in humans was significantly 

below baseline for week one, and significantly above baseline for week two (11.7 

microg/min) versus baseline (19.5 microg/min; p < 0.05) and high salt intake (23.1 

microg/min; p < 0.01) (Torffvita et al, 2004). Significantly, this study also showed 

that the response blood pressure changes was also linearly related to the absolute 

excretion of UMOD, indicating a proportionate blood pressure response in relation to 

UMOD levels. Additionally, a study by the Swiss Kidney Project on Genes in 

Hypertension (SKIPOGH) performed multivariate linear regression on a cohort of 1020 

human individuals and showed that UMOD levels correlate positively with sodium 

chloride and blood pressure in these individuals, though their data only show this 

distinct three-way relationship in individuals in the upper quartiles of UMOD 

expression which reflects further on the challenges of examining this relationship in 

the human population (Ponte et al., 2021). Since the first UMOD promotor variant 

associated UMOD levels with hypertension, UMOD has been associated with effects 

on the movement of sodium ions, specifically through promoting sodium chloride 

reabsorption via NKCC2. However, a unidirectional UMOD:NKCC2 relationship in the 

content of sodium chloride is not fundamentally proven; particularly as these clinical 

studies are not able to provide cellular interpretations. Therefore, it may be relevant 

to also consider the existence of a cyclical feedback loop between UMOD, NKCC2 and 

sodium chloride within TAL cells. 



164 
 

 

In humans, the presence of UMOD in the urine has been shown to correlate with both 

the blood pressure phenotype and sodium chloride levels. However, for extracellular 

UMOD to exist, this first requires the protein to be trafficked-through and be cleaved-

from TAL cells. Trafficking is the process by which nascent proteins are shuttled to 

other locations within the cell, including the cell membrane. Trafficking itself is a 

highly studied aspect of general pathophysiology in the context of wide and varied 

human disease models. The study of UMOD trafficking, as detailed in section 1.4.5 is 

also reasonably well examined, with a relatively robust understanding of the 

mechanisms which allow UMOD to reach the cell surface. In the case of UMOD, the 

most well-studied physiological functions (immune regulation, calcium sequestration) 

appear to be generated from extracellular, cleaved protein. However, it is possible 

that not only may UMOD protein manifest effects in the context of natriuresis at the 

cell surface, but also during the trafficking process. With the identical apical cycling 

and trafficking profile of both UMOD and NKCC2, it is reasonable to hypothesise a 

linked process. A recent paper examining the cell surface recycling of NKCC2, 

identified Alstrom-1 protein (ALMS1) as mediating trafficking and activity. ALMS1 

knock out rats exhibited increased sodium natriuresis and were more sensitive to 

bumetanide- an NKCC2 inhibitor. Whilst this paper, noting the significance of UMOD 

in NKCC2 activity, attempted unsuccessfully to detect UMOD interactions, this does 

Figure 5.1-1 Theorised 

feedback loop between 

UMOD, NKCC2 and sodium 

chloride,  

in the context of protein -

trafficking through Thick 

Ascending Limb cells.  
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not rule out potential interactions between UMOD and NKCC2 within the cell as they 

are trafficked (Allison, 2018).  

Studying potential UMOD co-trafficking protein to protein interactions may be a 

valuable addition to understanding of the actions of UMOD in the context of blood 

pressure regulation. However, mechanistic interactions of the human UMOD protein 

are challenging to study due to the underlying properties of TAL cells. Primary human 

TAL cells can only be obtained by surgical biopsy, and due to limitations of operating 

theatres are challenging to obtain in viable states for cell culture; explaining why the 

majority of clinical studies only examine urinary UMOD levels. It is possible to use 

snap frozen primary tissue for protein work, however, yields from human surgery are 

often <5mg tissue, leading to poor signal in assay due to low concentration. Another 

approach involves the culturing of primary mouse TAL cells, however, the 

complement of transcription and trafficking cofactors between mouse and human is 

not entirely homologous and therefore mice signals may not translate well. This, 

when combined with the challenges in predicting eukaryotic gene expression 

mechanisms described in 1.3.5, may significantly confound analysis. Finally, no 

immortalised human cell lines have UMOD expression below semi-negligible cycle-

threshold values of 34-35. Therefore, it is our opinion, that the most appropriate 

method for obtaining material for experimentation is to generate a UMOD stable 

transfected cell line. 

Human Embryonic Kidney -293 (HEK293) cells are a hypotriploid immortalised renal 

derived human cell line (Graham et al., 1977; Louis et al, 1997). Of the 64 

immortalised human cell lines catalogued by the human protein atlas and clustered 

by the UMAP algorithm, HEK293 have the most relevant and varied renal gene 

complement (The Human Protein Atlas, 2021). For this reason, HEK293 cells are the 

most likely of available cell lines to express the required complement of transcription 

and trafficking factors required to be functionally relevant for mechanistic 

examination of UMOD, given that TAL cells are also derived from renal pathway 

pluripotents in-utero. Additionally, HEK293 cell lines have optimised transfection 

reagents and protocols, making them ideal choices for stable transfection. 
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Based on the observed relationship in humans between sodium chloride and urinary 

UMOD levels, we believe that UMOD levels and the magnitude of trafficking of UMOD 

may be affected by the presence of extra-cellular sodium chloride and that this is 

likely to provide mechanistic information as to the relationship between UMOD and 

blood pressure regulation. However, prior to this we require the development of a 

stable transfected HEK293 cell line. Therefore, we intend to produce a stable, 

reusable source of UMOD protein via the generation of a transfectant and to utilise 

this in downstream experiments. 

5.2 Aims 

• To establish a stable human UMOD transfectant HEK293 cell line as a 

resource 

 

• To design and optimise an assay for measuring the effect of sodium chloride 

on UMOD protein expression via western blotting 

 

• To examine trafficking of UMOD protein within the cell, in the context of 

sodium chloride 
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5.3 Specific Methods 

5.3.1 Design of the UMOD Plasmid 

 

The full length human UMOD transcript (UMOD-201 (Havana)) was produced as cDNA 

by 2.1.4.3 and ligated into the pTARGET Mammalian expression vector as per 2.4.2 

at position 1276. This placed UMOD expression under the control of a cytomegalovirus 

(CMV) enhancer/promotor at position 669-1022 giving constitutive expression in 

transformed cells, independent of endogenous expression mechanisms. The pTARGET 

plasmid also encoded a Neomycin resistance gene (neomycin phosphotransferase, 

protein id:AAS48584.1) at position 2675-3469. Incorporation of neomycin resistance 

facilitated selection of UMODtg cells from UMODwt counterparts by applying antibiotic 

based selection pressure. 

5.3.2 Selection of Stable Transfectants Using Geneticin 

In order to prevent negative drift in retention of transfected genetic material over 

time, Geneticin™ Selective Antibiotic (G418 Sulfate) (Thermofisher, Manchester, UK) 

was used to maintain selective pressure on transfectants, as the plasmid contains a 

neomycin resistance insert. Prior to stable use of geneticin, there was a requirement 

Figure 5.3-1. pTARGET 

Mammalian Expression 

Vector design, 

 human UMOD cDNA 

ligated into the T-

overhangs shown 

right.  
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to establish the optimal dosing concentration of antibiotic in order to enrich for 

successful stable transfectants. This was determined by seeding individual T25 flasks 

with the same transfected population of cells and culturing for 24 hours in basic 

complete media. Following this 24-hour period, complete media with a range of 

Geneticin concentrations (0-1400ug/ml) was aspirated onto cells. Cells were imaged 

daily between 1 and 7 days by EVOS and dead cell proportions determined using a 

custom self-authored python program as per 2.3.5. The optimal concentration was 

determined as the highest concentration at which a population of cells survived over 

the course of the experiment. 

5.3.3 Culturing of Cells Prior to Experiments 

Twelve individual transfection assays were performed, producing a concurrent 

number of ‘populations’, which were individually stored in liquid nitrogen between 

uses. During these processes, cells were maintained in complete MEM as per 2.5.1. 

For RNA based assays, immediately prior to experiments, stable transfectant cell 

populations were grown to confluency in T25 flasks before undergoing trypsinisation 

and reseeding into 6-well tissue-culture plates. Cells were cultured for 24-hours in 

basic media before being visually assessed for competency. Following this period, 

experimental assays were performed, with RNA extracted as per 2.4.5. Each 

individual T25 was treated as a biological n-number, while each well was treated as 

a technical replicate- for which averages were calculated. For protein-based assays, 

T25 flasks were grown to competency, with different transfection populations 

representing biological n-numbers. Cells were lysed in-flask using RIPA buffer 

(Thermofisher, Manchester, UK) and lysed homogenised solutions stored at -20˚C 

until use. 

If appropriate, solutions of ionic compounds were added to media prior to aspiration 

onto cells for culturing, to reflect sodium chloride consumption in humans. Control 

media was labelled as basic complete media. Sodium-chloride-media was created by 

diluting a sterile stock solution of NaCl (1mg/ml) into 40mM concentration of basic 

complete media. Due to the potential ionic gradient pressure induced by the addition 
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of ions to media, an additional control media was created using 27.6mM MgCl2 from 

a stock of 1mg/ml. 
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5.4 Results 

5.4.1 Generation and Purification of the UMOD pTARGET Plasmid 

Full length human UMOD cDNA was successfully reverse transcribed and subsequently 

amplified from human RNA, with the estimated size by PCR ladder of 2300bp 

reflecting the calculated size of 2353bp (Figure 5.4-1)(A). Blue/ white selection of 

colonies of transformed JM109 e-coli returned 42 white colonies and 29 blue colonies. 

White colonies indicate high probability of an interrupted lacZ gene, inhibiting 

metabolism, thus inferring successful integration of the UMOD insert (Figure 

5.4-1)(B). Upon PCR amplification of expanded colonies, these colonies displayed 

successful amplification of the human UMOD gene, with successful amplification 

against the T7 forward primer at a fragment size of 2500bp; indicating successful 

orientation of the insert (Figure 5.4-1)(C). Plasmid purification from expanded 

bacterial cultures was successful, with high yield and retention between wash 

eluates, successfully producing purified plasmid for transfection (Figure 5.4-1)(D).  
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Figure 5.4-1 Agarose gel characterization of UMOD-plasmid design 

A) End-point PCR of full length human UMOD cDNA (2353bp) (Lane 4) using the 

primer combination and reaction parameters described in 2.1.4.3, relativized 

against NEB-1kb ladder. B) Blue/white selection of successfully transfected JM109 

competent Escherichia coli (e-coli) cells. C) End-point PCR of the UMOD transcript 

from selected colonies of JM109 transformed cells using the UMOD_rev to T7 pair, 

to verify orientation. D) direct UV luminescence of genetic material derived from 

plasmid purification; lane 2-3, raw material, lanes 4-7 wash eluates, lanes 8-9 

purified plasmid.  
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5.4.2 Maintenance Geneticin Concentrations and Impact of Transfection 

Use of a custom created python application was successful in estimating proportions 

of dead HEK293 cells versus viable cells (Figure 5.4-2)(A-C). Cross-validation of 

python accuracy using random rolling 50µM windows was performed. Calculating 

python computed dead cells against actual manually (by eye) counted cells produced 

an error of 4.47% (2.58- 6.35% 95CI). With an error rate <5%, this python application 

was considered acceptable for use in quantifying toxicity. MTT assay 24-hours post-

transfection with either pTARGET-UMOD plasmid or empty vector produced no 

difference in cytotoxicity in cells (Figure 5.4-3)(A) and there was no difference in 

ACBT expression between transfected and control cells (Figure 5.4-3)(B); both of 

these findings indicating that the presence and integration of the pTARGET-UMOD 

plasmid within HEK293 cells was not acutely deleterious to cell viability, though our 

data does not include an examination of the long term effects (weeks to months). 

Determining the antibiotic concentration against which pTARGET-UMOD plasmid 

transfected cells would survive, but their untransfected counterparts would not, 

suggested a concentration between 500-600µg/ml Geneticin. For this reason, 

600µg/ml was selected, and cells closely observed with potential for decreasing to 

500µg/ml considered upon detection of flask-wide toxicity (Figure 5.4-3)(C). 



173 
 

 

A 

 

 

B 

 

 



174 
 
 

 

C 

 

 

Figure 5.4-2 Characterisation of antibiotic toxicity in HEK293 cells 

A) Python machine learning based quantification of dead HEK293 cells in 

response to 1000ug/ml Geneticin treatment at day-2 of experimentation. 

Frame 1- basic image obtained from EVOS microscope. Frame 2- intensity 

based thresholding of dead cells versus background. Frame 3- watershed 

segmentation via Euclidian distancing to individually segment clumped cells. 

Frame 4- super imposition of individual dead cells against basic EVOS image. 

B) 600ug/ml Geneticin treatment. C) 100ug/ml Geneticin treatment.  
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Figure 5.4-3 Impact of the transfection process on cell viability 

A) MTT assay absorbance at 410nm between UMOD-plasmid cells and cells 

transfected with empty vector. B) Cycle threshold values of B-Actin by 

Taqman qRT-PCR between control and transfected cells. C) Cell coverage/ 

dead cell count across a range of antibiotic concentrations (100-1400ug/ml), 

imaged from day-0 to day-6. Cell coverage was quantified by taking the 

absolute pixel count above threshold, quantifying the absolute cell 

mass:l_closed; = 

binary_closing(lowt,strel);I_closed_filled;nd.morphology.binary_fill_holes(I

_closed);cell_mass= cv2.countNonZero(np.float32(I_closed_filled)), thus 

normalizing each count to total cell coverage. 
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5.4.3 qRT-PCR Analysis of Transfected HEK293 Cells 

Expression of human UMOD mRNA was significantly greater (p<0.0001) in pTARGET-

UMOD transfected cells versus control, mean dCT 0.257 (-0.34, 0.89 95CI) versus 

12.87 in untransfected cells (Figure 5.4-4)(A). There was no significant difference 

(p>0.05) in expression of SLC12A1 (NKCC2) between transfected and control cells 

mean dCT 17.322 (16.41, 18.22 95CI) versus 16.17 in untransfected cells, though 

these data did trend toward a decrease in expression in transfected cells (Figure 

5.4-4)(B). Assessing the impact of differential ionic media supplementation on the 

expression of ACBT indicated there was no effect on expression of this housekeeper 

between standard, 40mM NaCl and 27mM MgCl2 supplementation (where MgCl2 was 

used as an ionic control) (ANOVA p>0.05) (Figure 5.4-4)(D). Examination of the 

relationship between transfected UMOD expression and endogenous NKCC2 

expression by linear regression indicated no relationship in expression (Figure 

5.4-4)(C). Time series analysis of the differences between expression of UMOD mRNA 

across a 14-day period, sampling every 3 days from day 2 (Figure 5.4-4)(E) suggested 

two possible effects; firstly, that pTARGET derived UMOD expression trends to 

decreasing over time and secondly, that there may be differences in response of 

UMOD expression between ionic solutions. This initial time series analysis was not 

statistically analysed due to nested triplicates within triplicates deriving from the 

same transfection event; therefore representing only one biological n. 
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Figure 5.4-4 Assessment of transfection and ions on UMOD expression 

A) Taqman Relative Quantification of UMOD versus B-Actin (ACBT) in individual 

transfection reactions with pTARGET-UMOD plasmid at 48-hours post transfection. 

B) Taqman Relative Quantification of SLC12A1 versus B-Actin (ACBT) in individual 

transfection reactions with pTARGET-UMOD plasmid at 48-hours post transfection. 

C) Regression of dCT for UMOD predictor versus NKCC2 response. D) ACTB cycle-

threshold values between stock, 40mM NaCl and 27.6mM MgCl2 at 48-hours post 

culturing within supplemented media. E) Taqman Relative Quantification of UMOD 

versus B-Actin (ACBT) in transfected HEK293 cells, with technical triplicates over a 

two-week period, sampling every 3 days via well splitting. 

*** 

 

 

ns 

 

 

E 
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5.4.4 Protein Analysis of Transfected HEK239 Cells 

Protein extracted individual transfectant populations was assessed for UMOD 

expression with successful optimisation and detection at the expected molecular 

weight of 60kDa (Figure 5.4-5)(A/B). Whilst protein expression could be detected in 

transfected cells and was absent in wild type cells, transfected media did not produce 

a signal for UMOD protein where we anticipated that UMOD may be secreted from the 

cells and therefore detectable (Figure 5.4-5)(C). The expression of GAPDH protein 

appeared to be affected by the addition of 40mM NaCl to media, however, B-Actin 

was not affected in the same manner (Figure 5.4-5)(D). 

Quantitative assessment of the UMOD protein in response to sodium chloride was 

challenging to interpret. B-Actin was detected at multiple isoforms (Figure 5.4-6)(C). 

Multiple isoforms of Actin are annotated in mammals, and possible antibody cross-

reactivity also observed (Lubit and Schwartz, no date; Müller et al., 2013; Vedula et 

al., 2017). However, in this case subjective interpretation of how to quantify and 

analyze isoforms become challenging, as differential conclusions can be made. 

Quantifying against the dominant isoform (Figure 5.4-6)(A) indicates a non-significant 

(p>0.05) result, whilst quantifying against all detected isoforms (Figure 5.4-6)(B) 

indicates that UMOD expression is significantly decreased (p<0.05) in response to NaCl 

in HEK293 transfected cells. 

 



179 
 

 

Figure 5.4-5 Transfected UMOD HEK293 cells western blot experiments 

A) Western blot of protein derived from individual pTARGET-UMOD HEK293 

transfectants, pre-optimisation, relativized against PageRuler Plus Ladder. B) 

Western blot of protein derived from individual pTARGET-UMOD HEK293 

transfectants, post-optimisation. C) Individual transfected (lane 2-4) versus 

untransfected HEK293 cells (lane 5-7). Media aspirated directly from 

transfected cells (lane 8-10). D) Transfected control versus 40NaCl media, to 

optimize for housekeeper stability between B-Actin and GAPDH.  
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Figure 5.4-6 Effect of sodium chloride treatment on UMOD protein 

A) Normalised density of UMOD protein (vs B-Actin) between control media 

and 40mM NaCl media. B-Actin produced a multi-isoform signal, 6A normalized 

UMOD expression to the dominant B-Actin isoform. Right side, dominant 

isoform. B) Normalized UMOD expression to the density of all four B-Actin 

isoforms (p<0.05). Right side, all four isoforms. C) Licor representative image 

of the observed relationship.  
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5.5 Discussion 

Our attempt to generate a stable transfectant cell line which produces detectable 

quantities of both UMOD mRNA and UMOD protein was successful, providing us with 

a replenishing and abundant stock of material for downstream experiments. We 

evidenced by both MTT and housekeeper analysis that the transfection process and 

the presence of viral-promoter-expressed UMOD within HEK293 cells is not acutely 

(days to weeks) deleterious to these cells. Messenger RNA and protein UMOD 

expression were both equivalent to B-Actin levels and several thousand-fold greater 

at mRNA versus endogenous expression in untreated HEK292 cells. The variability in 

expression we observed in our individual transfectant populations is likely attributed 

to plasmid copy-number-variation and should be considered in downstream 

experiments (Kaufman et al., 2008; Kim and Eberwine, 2010; Di Blasi et al., 2021). 

It should be noted that such inherent variability in expression levels between 

‘biological n’ (individual transfectants) could be exploited during experimental 

design, as this reflects the variability in the human population. We also show pilot 

data indicating that there is potential for expression levels to decrease over time, 

with our mRNA expression decreasing by roughly 15% on average over a two-week 

period of cell culture, in an n=3 experiment in different media.  

Stable transfection involves random recombination events between the host genome 

and the introduced plasmid, thus downstream response adaptations may occur. 

Reduction in expression over time of target genes in stable transfectants is noted and 

may be attributed to resource competition (Szczesny et al., 2018; Di Blasi et al., 

2021). Additionally, though not described in the literature, we would also consider 

reduced expression to be attributed to epigenetic responses in transfected cells. 

Although not specific to our experiment Rui et al suggest that episomal vectors 

undergo chromatinization in vivo, indicating the persistent effects of transgene 

expression are regulated in-part by histone modification (Riu et al., 2007). Due to 

these possible effects, we would recommend that researchers making use of the 

pTARGET-UMOD HEK293 cells we have generated, only culture the cells when 

material is required. 
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We hypothesised that exogenous expression of UMOD may induce expression of 

endogenous NKCC2, as we had previously observed evidence of coexpression between 

these two genes in both bulk and single cell RNA sequencing and through qRT-PCR 

analysis. Our pilot data do not show a relationship in expression between transfected 

UMOD and endogenous NKCC2 in these cells. This is likely attributed to the 

fundamental differences between endogenous and induced gene expression. Several 

studies have reported interpretation caveats around induction of endogenous gene 

expression in response to transfection, with Jacobsen et al finding that less than 10% 

of transcriptomic changes in transient transfections are attributed to introduction of 

the target gene, rather are a cellular response to the insults associated with 

transfection (Lang et al., 1995; Jacobsen et al.,, 2009). Whilst we performed our 

experimentation with stable transfectants, the UMOD expression in these cells was 

predominantly under the control of a CMV enhancer/promoter, producing non-

eukaryotic expression, thus these HEK293-UMOD cells are likely to not be ideal models 

for coexpression analysis. 

Our investigation into the effect of sodium chloride treatment in these cells returned 

challenging pilot data, due to interpretation of B-Actin expression. Should we choose 

to accept normalization against all B-Actin isoforms, sodium chloride significantly 

decreased expression of UMOD protein in these cells. This result is contrary to 

previously published data in humans which showed that urinary UMOD levels 

increased in response to elevated sodium chloride in humans (Torffvita et al., 2004). 

We believe this is related to the contrasting specifics of our experimental design 

versus Torffvita et al. Torffvita et al measured urinary UMOD concentrations, 

therefore, they assessed extracellular UMOD protein levels; showing an increase in 

response to sodium chloride. In contrast, by purifying and harvesting cells, we 

assessed intracellular levels, showing a decrease in response to sodium chloride. We 

believe that sodium chloride stimulates the trafficking of UMOD through the cell, 

providing an increase in abundance of extracellular UMOD. The inverse of this effect 

being a decrease in intracellular UMOD, as it is more rapidly transported to the cell 

surface. In order to prove this within our experiments, we needed to detect 

extracellular UMOD, therefore optimization of detection of the media fraction in is 
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vital (Figure 5.4-5). We hypothesised that a sodium-chloride-dependent inverse 

relationship between intracellular and media fraction of the UMOD protein would be 

detected. Both serum-free and serum-containing media can be used for media 

protein analysis, however, we would recommend that future experiments attempting 

to analyse the media fraction of UMOD protein should incorporate a serum starvation 

step. We believe it is possible that the fetal-bovine-serum complement of standard 

media may be disrupting the western blot process (Shin et al., 2019). In terms of 

experimental design, we elected to control specifically for the presence of both 

cations and anions, using MgCl2 as an osmolarity control, however, it may be 

recommended to use Mannitol to control for osmolarity as the introduction of 

magnesium may itself produce unconsidered effects (Traversari et al., 

2020)(Thermofisher, Technical Methods, ‘Quantitative screening of the effects of 

hyper-osmotic stress on cancer cells cultured in 2-or 3-dimensional settings’, 2019). 

Our hypotheses relating to the trafficking of UMOD with the cell were not addressed 

during the series of experiments we conducted in this chapter, due to time 

constraints in conjunction with the effect of the Covid19 pandemic, which will be 

addressed in greater detail in Chapter 7. The effect of sodium chloride on trafficking 

has been explored before, in the context of blood pressure regulation. Collectrin, 

which interacts with the soluble N-ethylmaleiamide-sensitive factor attachment 

protein receptor (SNARE) was shown to promote membrane association of ENaC and 

aquaporin II (AQP2) in Wistar Kyoto (WKY) rats to a greater extent in those which 

were treated with 8% sodium chloride in chow versus 1%. Interestingly, collectrin is 

expressed under control of the same transcription factor known to regulate UMOD 

expression, HNF1B (Yasuhara et al., 2008). Additionally, increased dietary salt is has 

been shown to increase phosphorylation of the oxidative stress response kinase-

1/STE20/SPS1-related proline alanine–rich kinase (OSR1/SPAK), which in turn 

mediates vasopressin activity (Chiga et al., 2008; Saritas et al., 2013). This 

differential activity of vasopressin in response to sodium chloride has been shown to 

differentially phosphorylate and traffic NKCC2 (Mutig, 2017). We believe, based on 

evidence suggesting disturbances to cell-membrane bound UMOD being linked to 

NKCC2 activity, that UMOD and NKCC2 may be co-trafficked, and that sodium chloride 
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is functionally important here- possibly via our proposed pathway (Olinger et al., 

2019b). Based on these considerations, we believe trafficking assays are essential 

next steps in investigating UMOD. 

We center our hypothesis on potential interactions between UMOD and NKCC2, as 

they traffic through TAL cells. However, using a hypothesis generating approach may 

be recommended to identify any potential binding partners. Co-immunoprecipitation 

approaches, using UMOD protein as the target should be the focal point of these 

experiments, but we would recommend purifying any pulldown and submitting these 

samples for mass spectroscopy. This would allow the characterization not only of 

individual binding partners, but also macromolecular complexes involving the 

interactions of multiple proteins. Such approaches have been discussed by other 

researchers and provide clear benefits over conventional antibody driven methods 

(Free et al., 2009; Maccarrone et al., 2017). We would like to highlight that 

Maccarone et al provide a comprehensive purification protocol for the steps prior to 

mass spectroscopy. It may even be recommended to pair these experiments with the 

RNA-sequencing data we obtained in Chapter 4, in a method similar to Zhang et al 

(Zhang et al., 2020). Furthermore, as we have proven the very low level of 

endogenous NKCC2 in these cells, we would recommend the use of cotransfection 

with NKCC2 in order to produce adequate material for cotrafficking assays. 

Additionally, we emphasize that the tagging of our UMOD plasmid with green-

fluorescence-protein (GFP) would provide additional benefits as this would facilitate 

visual tracking of UMOD in order to identify potential compartmentalisation (Kosugi-

Tanaka et al., 2006; Kuruppu et al., 2013). However, we elected not to create 

chimeric constructs for these initial studies as we were wary of the effect of GFP on 

protein interactions between UMOD and targets, as chimera proteins featuring GFP 

have been noted to interact differently and be differentially modified to their 

canonical counterparts (Baens et al., 2006; Skube et al., 2010). 

Within this chapter we developed a tool for classifying dead cells from living ones 

and background pixels. We did this as a repetitive task like cell counting lends itself 

highly applicably to code, and not to researcher based manual counting. The need 

for this kind of application is noted within literature, however, deployment lags 
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behind development, with Hu et al and Greca et al being the first groups to attempt 

to address this with advanced methods, though Greca’s algorithm is more prognostic 

(Hu et al., 2022)(Greca et al., 2022). The cell classifier deployed here works to within 

95% accuracy of ground truth annotation, however, it is unlikely to be transferable 

to other cell types due to its highly specific algorithm. We would suggest a deep 

learning approach be applied to this, reflected of the work previously described by 

Hu et al and Greca et al. However, our method may be a way of providing semi-

supervised annotation for a deep learning method, making it potentially useful for 

other researchers. 

In summary, we have successfully established a stable UMOD expressing human cell 

line via pTARGET-UMOD transfected HEK293 cells. Whilst our experiments within this 

chapter cover the successful generation of a cell-based resource, they do not 

comprehensively cover the role of UMOD protein within the cell. Based on preliminary 

data, we emphasise that these experiments should, as a priority, investigate UMOD 

trafficking in the context of sodium chloride. We recommend a coIP:mass-

spectroscopy approach here, in order to elucidate as many cotrafficking targets as 

possible. 
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5.6 Chapter Specific Code 

5.6.1 EVOS-Microscopy Cell Classification 

import skimage.io 

import skimage.feature 

import skimage.morphology 

import skimage.filters 

from skimage.color import label2rgb 

from skimage.measure import label, regionprops 

from skimage.segmentation import clear_border 

from scipy import ndimage as ndi 

from matplotlib.collections import PatchCollection 

import matplotlib.patches as mpatches 

import matplotlib.pyplot as plt 

import cv2 

import imagecodecs 

import numpy as np 

from skimage.morphology import binary_closing, disk 

from skimage.morphology import erosion, dilation, opening, closing, 

white_tophat 

from skimage.morphology import black_tophat, skeletonize, convex_hull_image 

from skimage.morphology import disk 

from skimage import ( 

    color, feature, filters, measure, morphology, segmentation, util 

) 

filepath='F:/EVOS/F.d8.500.0005.tif' 

#filepath='F:/EVOS/F.d8.0000.0016.tif' 

#filepath='F:/EVOS/F.d8.800.0008.tif' 

image = cv2.imread(filepath)  

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  

clahe = cv2.createCLAHE(clipLimit = 2.0, tileGridSize=(8, 8))  

claheNorm = clahe.apply(gray)  

cv2.imwrite(filepath+'claheNorm.tif', claheNorm)  

 

fig=plt.figure(figsize=(50, 20)) 

img = skimage.io.imread(filepath+'claheNorm.tif') 

img = img[:,:] 

 

thresholds = filters.threshold_multiotsu(img, classes=5) 

regions = np.digitize(img, bins=thresholds) 

cells = img > thresholds[0] 

deadcells = img > thresholds[2] 

selem =  morphology.disk(7) 

res = morphology.white_tophat(deadcells, selem) 

highconfluency=deadcells ^ res 

lowconfluency=deadcells 

cells=highconfluency 

 

distance = ndi.distance_transform_edt(cells) 

local_maxi = feature.peak_local_max(distance, indices=False, 

                                    min_distance=1) 

markers = measure.label(local_maxi) 

segmented_cells = segmentation.watershed(-distance, markers, mask=cells) 

 

 

underlay = cv2.imread(filepath)  

# remove artifacts connected to image border 
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cleared = clear_border(segmented_cells) 

# label image regions 

label_image = label(cleared) 

image_label_overlay = label2rgb(label_image, image=underlay, 

bg_label=0,alpha=0.4) 

 

fig, ax = plt.subplots(2,2, figsize=(20, 16)) 

ax[0,0].imshow(image, cmap='gray') 

ax[0,0].set_title('Basic EVOS') 

ax[0,0].axis('off') 

#ax[1].imshow(color.label2rgb(segmented_cells, bg_label=0)) 

ax[0,1].imshow(cells) 

ax[0,1].set_title('Dead Cells') 

ax[0,1].axis('off') 

ax[1,0].imshow(color.label2rgb(segmented_cells, bg_label=0)) 

ax[1,0].set_title('Watershed Segmentation (Euclidian Distance)') 

ax[1,0].axis('off') 

ax[1,1].imshow(image_label_overlay) 

ax[1,1].set_title('Overlay: (' + str(segmented_cells.max()) + " dead cells 

counted)") 

ax[1,1].axis('off') 

plt.show() 

fig.savefig('C:/Users/Administrator/Desktop/BlobinatorPro.png', 

facecolor='w',bbox_inches='tight') 
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6 Exploring the UMOD Knock-out Mouse Model 

6.1 Introduction 

The Umod knock-out sv129 mouse is a highly important in-vivo asset in the study of 

the relationship between UMOD and blood pressure. Developed by Bates et al in 2004, 

these mice are based on an exon disruption event as opposed to promoter disruption, 

based on omega-type replacement targeting developed by Koller and Smithies in 1992 

(Koller and Smithies, 1992; Bates et al., 2004). Using a neomycin cassette as a 

selection medium, Bates et al produced an animal with a gene-dose dependent 

reduction (or in the case of knock-out animals, removal) of UMOD protein, specific 

to the first four exons plus the intervening introns of the mouse Umod gene. These 

Umod knock out animals were observed to grow and breed normally and their serum 

electrolytes, urinalysis, and kidney histology were normal. However, it was not until 

2014 that these animals would be investigated in the context of blood pressure 

regulation. 

Graham et al and Trudu et al explored UMOD expression in the context of 

hypertension by studying the contrasting effects of both transgenic Umod over-

expression and the Umod knock-out model in mice, with both generating opposing 

findings which provided biologically relevant data in the context of the human UMOD 

hypothesis. However, both these studies utilized a ‘homozygous’ design, in effect, 

clinically relevant translatability in both studies may have been further emphasized 

by the inclusion of heterogenous genotype. Effectively, at a population level in 

humans, UMOD promoter genotypes are not binary, rather they are a Mendelian 

mixture of both homozygous and heterozygous individuals. Both rs13333226 and 

rs4997081 exist with predominantly homozygous genotypes, however, there exists a 

reasonably large population in both which are heterozygous (rs13333226 CEU: A/A: 

67.3%, A/G: 30.1%, G/G: 2.7%)(dbSNP 2021). Reflecting this in vivo, using study of 

the heterozygous (Umod+/-) genotype in mice may therefore provide novel insights 

and be more translatable to humans than study of the homozygous knock out (Umod-

/-) alone. 
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Physiological adaptions to reduced levels of gene expression, particularly germ-line 

changes, manifest differently to absent gene expression, thus leading to the potential 

identification of novel targets. Based on this understanding, heterozygous animal 

models have been explored in the context of other cardiovascular related diseases, 

producing novel findings not observed in homozygous animals. In the context of 

familial dilated cardiomyopathy, hetereozygous knock-outs of Mylk3, in mice 

displayed a 50% reduction in mRNA levels, yet interestingly the displayed a 75% 

reduction in protein expression, with a concurrent similar weighting in measured 

phenotype (a 23% fractional shortening reduction in heterozygous animals versus a 

30% reduction in homozygous knockouts) (Tougas et al., 2019). Additionally, cardiac 

myopathy in hetereozygous animals has been studied in zebrafish by examining the 

tnnt2a gene, where it was shown that hetereozygous mutations promote progressive 

cardiac remodelling in adult fish, whereas homozygous mutations are embryo-lethal 

and cannot be studied in mature organisms (Kamel et al., 2021). Particularly relevant 

to this study is the finding in mice, where it was shown that global knock-out of 

Hsd11b2 causes hypertension in mice, whilst a heterozygous knockout of the same 

gene in the same strain results in these animals exhibiting wild-type blood pressures 

but salt-sensitivity (Kotelevtsev et al., 1999; Bailey et al., 2011).  

It is probable that heterozygous knock out (Umod+/-) of UMOD expression affects both 

the blood pressure phenotype and underlying physiological drivers differently to a 

global knock out (Umod-/-) in these animals, given that these differential relationships 

have been observed consistently in other models. Graham et al observed lower 

baseline blood pressures in Sv129 Umod-/- mice, and tolerance to dietary sodium 

loading as a method of increasing blood pressure versus wild type animals (Figure 

6.1-1). Specifically, these animals were generated using a deletion of the mouse 

Umod by a specific deletion of a ‘2kb segment 5’ of the capsite of the UMOD gene 

and the first four exons plus the intervening intron’ (Bates et al., 2004). Heterozygous 

animals from this colony were shown by Bates et al to have reduced expression of 

UMOD protein versus wild type counterparts and therefore the animals would 

plausibly exhibit the reduced blood pressure phenotype to a lesser (but still present) 

extent than their homozygous knockout counterparts.  
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As an initial priority, we would seek to validate the relationship between a germline 

homozygous knockout of UMOD (Umod-/-) and reduction in blood pressure, using the 

tail-cuff plethysmography method. Following this, based on our hypothesis that the 

differences between TAL cell physiology between homozygous and heterozygous 

genotypes may drive the differential regulation of pathways, we intend to examine 

changes in gene expression between genotypes, in response to sodium induced 

A 

  

  

B 

Figure 6.1-1 Graham et al Umod sv129 blood pressure analysis 

Radiotelemetry observations of systolic blood pressures between Umod wild-

type and knock-out male sv129 mice. Weekly tail cuff plethysmography 

systolic blood pressures between genotype and sodium chloride treatment. 

Figures obtained directly from Graham LA, Padmanabhan S, Fraser NJ, Kumar 

S, Bates JM, Raffi HS, Welsh P, Beattie W, Hao S, Leh S, Hultstrom M, Ferreri 

NR, Dominiczak AF, Graham D, McBride MW. Validation of uromodulin as a 

candidate gene for human essential hypertension. Hypertension. 2014 

Mar;63(3):551-8.  
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hypertension. In Chapter 4, we generated novel data associating UMOD with 

natriuresis and ion handling in the human kidney, which we would cross-validate using 

our animal model. Supplementing these data, Graham et al performed an RNA-Seq 

experiment on mTAL cells derived from their Umod-/- animals versus wild type. These 

data strongly corroborate our finding in humans, however, they also implicated two 

further notable targets; otopetrin 1 (Otop1) and Solute carrier family 7 (cationic 

amino acid transporter, y+ system), member 12 (Slc7A12) as potentially functional. 

Furthermore, whilst analysis of RNA may provide useful insights, protein-level 

interpretation may be more precise. In particular, it would be advisable to examine 

the presence of NKCC2 in both the homozygous and heterozygous genotypes by 

immunohistochemistry (IHC). As discussed in 5.1, current understanding is unclear on 

whether UMOD and NKCC2 colocalise during their trafficking through the cell, 

therefore we believe it would be pertinent to observe NKCC2 localisation by IHC to 

see if its distribution is dependent on UMOD in a dose-dependent manner.  

6.2 Aims 

• To repeat the observations made by Graham et al (2014) in the context of the 

Umod-/- sv129 mouse, in order to validate the model for present day study 

 

• To enhance these observations by including the heterozygous genotype in 

analysis 

 

• To follow up on any significant findings using qRT-PCR, western blot, 

immunohistochemistry and RNA-sequencing so as to infer mechanisms of blood 

pressure regulation by Umod in the mouse model 
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6.3 Specific Methods 

6.3.1 Taqman qRT-PCR on Mouse Gene Targets 

RNA was extracted from half mouse kidneys, sectioned laterally horizontally, as per 

2.1.3. Superscript II reverse transcriptase (Thermofisher, Manchester, UK) was used 

to prepare cDNA, not Superscript IV, due to the relative abundance of high quality 

RNA versus applications using human RNA. Though the steps were identical to 2.1.5, 

the parameters of the reaction differed and were as follows (in particular, 600ng 

input RNA was used, with a 1:5 dilution of cDNA post-reaction); 

Reaction Vessel 1 

Reagents Volume (µL) 

Template RNA 3 (200ng/µL stock) 

dNTP (10mM) 1 

Random Hexamers (50µM) 1 

Nuclease free water 7 

Cycling Conditions (Vessel 1) 

Time Temperature (˚C) 

5min 65 

1min 4 

Reaction Vessel 2 

Reagents Volume (µL) 

5x Superscript IV Buffer 4 

100mM DTT 2 

RNAseOUT (Thermofisher) 1 

Superscript II Reverse Transcriptase 1 

Vessel 1 Product 13 

Cycling Conditions (Vessel 2) 

Time Temperature (˚C) 

10min 25 

50min 42 

15min 70 
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Taqman qRT-PCR reactions were performed against a number of genes-of-interest, 

all genes were normalised to the mouse ACTB housekeeper gene and analysed using 

the method described in 2.1.6; 

Taqman qRT-PCR Probes 

Gene Thermofisher Assay ID 

Umod Mm00447649_m1 

Slc12a1 Mm01275821_m1 

Sgk1 Mm00441380_m1 

Pou3f3 Mm00843792_s1 

Slc7a12 Mm00499866_m1 

Otop1 Mm00554705_m1 

Actb Mm02619580_g1 

Table 6.3-1 Taqman qRT-PCR Probe Ids 

 

6.3.2 Determining UMOD Expression in Ang-II Treated C57BL/6 Mice 

RNA was extracted from the kidneys of 14-week male C57BL/6 mice which were 

donated by Dr Ryszard Nosalski. These animals had undergone induced hypertension, 

confirmed by tail-cuff plethysmography using the same apparatus as this study, 

derived from the implantation of 14-day osmotic minipumps (Alzeta Corporation, San 

Jose, California) delivering a total of 490ng/kg/day mouse angiotensin-II (Sigma, 

Dorset, UK). Control animals consisted of sham treatment, with the osmotic pump 

delivering an infusion of vehicle for the same duration of time. Dr Nosalski culled 

these animals by terminal isoflurane anesthesia and cardiac puncture exsanguination 

before removing the kidneys and storing these at -80˚C until needed. The RNA 

derived from the kidneys of these animals was reverse transcribed as per 6.3.1 and 

subsequent Taqman qRT-PCR performed as per 2.1.6.  
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6.3.3 Imputation of Diastolic Pressure 

Diastolic blood pressure measurements by tailcuff plethysmography were 

significantly more likely to return null values than systolic blood pressure, therefore 

imputation was used to infer missing measurements. In the case of missing values, 

these ‘not-a-number’ (NaN) readings were designated as 0. Any 0 values within the 

dataset were subsequently imputed based on the mean of the adjacent readings (+/- 

1 week) for these animals. In total, 18/242 summarised measurements of DBP were 

imputed, representing 7.4% of the total number of readings. 

6.3.4 Retrospective Power Calculations 

Power calculations were performed to determine estimated sample sizes required 

per group in order to detect blood pressure differences, prior to the study, based on 

the standard deviations of blood pressure recordings by Graham et al 2014, in the 

initial study. New calculations were performed retroactively using the cumulative 

standard deviations of the set of blood pressure measurements at baseline in the 

present study. Prior to calculation, the Anderson-Darling test was used to confirm 

normal distribution of blood pressure recording within groups. A clinically meaningful 

difference of 5mmHg was assumed as a detectability threshold. A 1-β of 0.9 was used, 

with an α of 0.05. Where appropriate, a range of clinically meaningful differences 

were used from 2-20mmHg. All calculations were performed in Minitab (20.3.0.0). 
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6.4 Results 

6.4.1 Analysis of Blood Pressure Differences Between Umod Allele and Sodium 

Chloride Treatment 

Genotyping the Umod +/+, +/-, -/- sv192 mice via the novel developed assay, which was 

intended to captured and characterized heterozygotes alongside both the 

homozygous animal strains was successful, returning a clear and allele-specific 

banding (Figure 6.4-1). 

Time series analysis of both systolic and diastolic blood pressures across the study 

between standard water and sodium chloride treatment detected no significant 

differences between alleles or treatment (Figure 6.4-2)(A)(Figure 6.4-4)(A). When 

these data were normalized to the starting blood pressure of the animal, using the 

δ-baseline method, no significant differences between allele or treatment were 

observed (Figure 6.4-2)(B)(Figure 6.4-4)(B). Analysis of both the SBP and DBP of 12-

week male Umod +/+, +/-, -/- sv192 mice found no differences between Umod alleles at 

baseline (Figure 6.4-3)(A)(Figure 6.4-5)(A). A high degree of variability was detected 

in both measurements, with a mean standard deviation in SBP of 20.965 mmHg, 

roughly 20% of the blood pressure value. As a result, estimation of the population 

level statistics of the wild type sv129 mice we assessed suggests a baseline SBP of 

131.79mmHg (119.96,143.62 95%CI), in heterozygous animals a baseline SBP of 

131.49mmHg (118.32, 114.72 95%CI) and in knockout animals a baseline SBP of 

138.66mmHg (115.99, 161.33 95%CI). The wide confidence margins of this estimation 

reflect the sample size calculations shown in (Figure 6.4-6) where, should the 

standard deviation remain stable with increasing sample size, a cohort of 371 animals 

would be required to detect a 5mmHg difference in SBP. Area under curve analysis, 

which captures the total effect of treatment across the study, of both the systolic 

and diastolic blood pressures of these animals (Figure 6.4-3)(B)(Figure 6.4-5)(B). 

indicated no difference between Umod alleles or 2% sodium chloride treatment across 

the study.  
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There was no difference in 24-hour urine output measured by metabolic cage 

between allele or treatment at 3 weeks (Figure 6.4-7)(A), however, at 6-weeks, 2% 

sodium chloride treated mice produced significantly more urine than their standard 

water counterparts (p<0.05) (Figure 6.4-7)(C). This difference, though not 

statistically significant, showed a similar trend in both the heterozygous and 

homozygous knock out animals at 6-weeks. There was no difference in fluid 

consumption between alleles or treatment at either 3 or 6 weeks, with a large degree 

of variability (Figure 6.4-7)(C/D). 
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Figure 6.4-1 Genotyping of Umod +/+, +/-, -/- sv192 mice.  

Amplification of the Neomycin reverse primer via the Neomycin selection 

cassette incorporated into the knock-out allele resulted in the amplification 

of a 1100bp fragment. Amplification of the wild-type primer pair against the 

canonical mouse Umod promoter to exon-2 resulted in the amplification of a 

400bp fragment. Genotypes were distinguished by size. Fragments shown 

relation to New England Biolabs 100bp ladder. 
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Figure 6.4-2 Measurements of systolic blood pressure (mmHg), stratified on 

genotype  

(Graph columns) timepoint (X-axis) and treatment (colour [blue or orange]), 

data shown as mean +/- standard error (n measurements per group= 5-9). B) 

Delta (δ), difference in systolic blood pressure from baseline stratified on 

genotype (Graph columns) timepoint (X-axis) and treatment (colour [blue or 

orange]), data shown as mean +/- standard error (n measurements per group= 

5-9) 
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A 

 

 

B 

 

Figure 6.4-3 Assessment of summarised systolic blood pressure  

A) Baseline systolic blood pressures (mmHg) of sv129 12-week male mice by Umod 

genotype; wild type, heterozygous and knock-out. B) Cumulative area-under-curve 

(Trapezoid) analysis of systolic blood pressure across the 6-week treatment period, 

stratified into standard water or salt (Sodium chloride 2%) treatments. Data shown 

as mean +/-standard error, n=3-9 per group.  
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Figure 6.4-4 Measurements of diastolic blood pressure (mmHg), stratified on 

genotype  

(Graph columns) timepoint (X-axis) and treatment (colour [blue or orange]), 

data shown as mean +/- standard error (n measurements per group= 5-9). B) 

Delta (δ), difference in systolic blood pressure from baseline stratified on 

genotype (Graph columns) timepoint (X-axis) and treatment (colour [blue or 

orange]), data shown as mean +/- standard error (n measurements per group= 

5-9) 
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A 

 

B 

 

. 

Figure 6.4-5 Assessment of summarised diastolic blood pressure  

A) Baseline diastolic blood pressures (mmHg) of sv129 12-week male mice by 

Umod genotype; wild type, heterozygous and knock-out. B) Cumulative area-

under-curve (Trapezoid) analysis of diastolic blood pressure across the 6-week 

treatment period, stratified into standard water or salt (Sodium chloride 2%) 

treatments. Data shown as mean +/-standard error. 7.4% of the values used 

to create the matrix for AUC analysis of DBP were imputed by adjacent 

median. 
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A 

 

 

B 

 

Figure 6.4-6 Retrospective power calculations 

A) Absolute curves of two-sample power calculations for a range of theoretical 

systolic blood pressure differences between groups, based on the cumulative 

standard deviation of 20.965mmHg, α=0.05 and 1-β of 0.9. B) Table of sample 

sizes ranging across theoretical blood pressure differences between groups, a 

difference of 5mmHg would require a sample size of 371 animals per group to 

detect, a difference of 20mmHg would require 25 animals per group. 
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* 

 

 

 

 

A 

 

 

B 

 

 

C 

 

 

D 

 

Figure 6.4-7 Assessment of urine output and fluid intake by met-cage 

 A) 24-hour metabolic caging urine output at 3-weeks of treatment (15- week 

old male Umod +/+, +/-, -/- sv192 mice). B) 24-hour metabolic caging water 

consumption at 3-weeks of treatment. C) 24-hour metabolic caging urine 

output at 6-weeks of treatment. D) 24-hour metabolic caging water 

consumption at 3-weeks of treatment. * = p<0.05 Bonferroni adjusted 

unpaired t-test. . n=3-8 per group. 
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6.4.2 Organ Weights at Cull 

There was no difference between allele or treatment on the body weight at sacrifice 

of 12-week male Umod +/+, +/-, -/- sv192 mice nor was there a difference in the weight 

of the liver, left or right kidney or heart normalized to cull weight (Figure 6.4-8). 
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Figure 6.4-8 Cull organ weights 

Measurements in grams (g) of body weights of 18 week old male Umod +/+, +/-, 

-/- sv192 mice. A) total weight, B) liver weight normalized to body weight 

(mg/g), C) left kidney weight normalized to cull weight (mg/g),  D) right 

kidney weight normalized to body weight (mg/g),  E) heart weight normalized 

to body weight. n=3-8 per group. 

A B 

C D 

E 
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6.4.3 Taqman qRT-PCR Gene Expression 

Expression of Umod was significantly decreased in the knock-out salt treated animal 

versus both treatment protocols in both wild type and heterozygous animals. 

However, neither treatment of heterozygous animals, nor standard water treated 

UMOD knockout animals displayed reduced Umod expression versus wild type 

counterparts (p<0.01 or p<0.001). Interestingly, expression of Umod was detected at 

ct22-25 knockout salt treated animals versus ct15-17 for wild type animals, indicating 

the non-negligible detection of Umod RNA in knock-out animals (Figure 6.4-9)(A). 

Expression of Slc12a1 (Nkcc2) was significantly lower in salt treated heterozygous and 

knock-out animals versus their standard water counterparts (Figure 6.4-9)(A). Sgk1 

expression was significantly decreased in salt treated wildtype animals versus their 

standard water counterparts, with a similar trend in the knock-out animals, but not 

the heterozygous (Figure 6.4-9)(C). Expression of Slc7a12 trended toward a decrease 

in salt treated knock-out animals (Figure 6.4-9)(D). There was no relationship 

between Otop1 expression and either allele or treatment (Figure 6.4-9)(E) and 

additionally no relationship between Pou3f3 expression and allele or treatment was 

detected (Figure 6.4-9)(F). 

When these data were cumulatively examined for correlations between the dCT 

values of each gene assessed by Taqman qRT-PCR, creating a linear correlation matrix 

using python, Slc7a1 and Slc12a1 (Nkcc2) displayed a significant positive correlation 

in expression. No other significant correlations were detected, although a trend for 

negative correlation between Umod and Nkcc2 expression in these animals was 

detected (Figure 6.4-10). 

Finally, the relationship between Umod and AngII treatment in independent 14-week 

male c57bl6 mice indicated no difference in expression between AngII treatment and 

vehicle control (Figure 6.4-11). 
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Figure 6.4-9 qRT-PCR analysis of genes relative to Actb 

A) Taqman qRT-PCR expression of Umod relative to Actb in 18 week male 

Umod +/+, +/-, -/- sv192 mice. B) Taqman qRT-PCR expression of Slc12a1 (Nkcc2) 

relative to Actb. C) Taqman qRT-PCR expression of Sgk1 relative to Actb. D) 

Taqman qRT-PCR expression of Slc7a12 relative to Actb. E) Taqman qRT-PCR 

expression of Otop1 relative to Actb. F) Taqman qRT-PCR expression of Pou3f3 

relative to Actb. * = p<0.05, ** = p< 0.01, ** = p <0.001, bonferroni adjusted 

unpaired t-test.  
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* 

 

 

* 

 

 

Figure 6.4-10 Correlation matrix of dCT between individual genes assessed by 

Taqman qRT-PCR.  

Correlation performed on a per-sample basis, n=12 per sample. The positive 

correlation in dCT between Slc12a1 and Slc7a12 was significant Pearsons 

correlation, * = p<0.05 
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Figure 6.4-11 Assessment of Taqman qRT-PCR Umod expression vs Actb in 14-

week male c57bl6 mice treated with vehicle or AngII  

via ALZET Osmotic Pump (490ng/kg/day for 14 days). Renal RNA donated by 

Dr Ryszard Nosalski. 
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6.5 Discussion 

The work conducted within this chapter form the basis of a critical shift between 

present-day analysis of Umod +/+, +/-, -/- sv129 mice and the previous study by Graham 

et al in 2014 (LA et al., 2014). A disparity in results was observed in that the mice 

we assessed did not display allele dependent differences in blood pressure in response 

to sodium chloride treatment. The two foremost findings from the 2014 study were 

firstly that Umod knock-out mice display lower baseline blood pressures than their 

wild-type counter parts, and secondly, that the increases in blood pressures observed 

in wild-type animals in response to sodium chloride treatment are not observed in 

knock-out animals. Fundamentally, we did not observe a difference in baseline SBP 

between wild-type and knock-out animals with each analysis group in our study 

reflecting the wild-type genotype from Graham et al, clustering at 130mmHg (Figure 

6.1-1)(A). With respect to their second finding regarding sodium chloride treatment, 

we did not observe a difference in response to sodium chloride treatment between 

genotypes across the 6-week period (Figure 6.1-1)(B). Graham et al specifically 

observed a significant increase in blood pressure in response to 2% sodium chloride 

in wild-type animals, which was not reflected in their knock-out animals. Crucially, 

we did not observe this wild-type specific increase in blood pressure in our study, 

thus, in effect our wild-type animals remained phenotypically similar to our knock-

out animals. Whilst we did not observe the anticipated difference between wild-type 

and knock-out animals, we intended to build on the findings by Graham et al through 

including heterozygous animals in our study design. However, in terms of SBP at both 

baseline and 6-week sodium chloride treatments, we did not observe any significant 

difference to either wild-type or knock-out mice and nor did we observe a gene-dose-

dependency effect.    

The lack of replicability between Graham et al and the present study can be 

attributed to several factors, each of which may have varying causality. Firstly, our 

analysis of variability in tail-cuff plethysmography indicated a high degree of both 

within-sample and between-sample variance. As a result, the confidence intervals of 

our data between genotypes and also by treatments were wide across the study; this 

is reflected by the large sample sizes estimated retrospectively by power 
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calculations. The power calculations we performed prior to this study were correct, 

in that they reflected the standard deviation from the pilot data of the 2014 study,. 

However, it is possible that the technical aspects of sampling may have changed 

between 2014 and present. In 2004, a study reported that tail cuff method sampling 

can ‘fail to accurately detect elevated blood pressures’ and that these inadquencies 

cannot accurately be attributed to operator or technical issues (Whitesall et al., 

2004). Furthermore, these authors state they ‘strongly advise investigators to obtain 

an independent and simultaneous validation of tail-cuff determinations of mouse 

blood pressure before making critical genotyping determinations’. Consequently, a 

number of subsequent papers note the inherent variability attributed to tail cuff 

plethysmography and how this can be an analytical confounder, with variability even 

attributed to the sex of the researcher performing the measurements (Wilde et al., 

2017; Drüeke and Devuyst, 2019). Our design elected to use the tail-cuff method 

based on a data-driven and educated decision; we had strong, peer-reviewed 

previous findings in the same strain of animals, in the same building, suggesting that 

this method produced adequately stable data for analysis. For undetermined reasons, 

our data were significantly more variable than the previous study. This may be 

attributed to animal anxiety, particularly via the handling procedure of the 

researcher, the presence of rats in proximity or even the the proximity of other 

individuals to the apparatus (Zhao et al., 2011). Conversely, radiotelemetry based 

methods elimate the caveats around anxiety, due to it avoiding handling-induced 

stress. In terms of future work therefore, we would strongly recommend a transition 

to radiotelemetry based sampling due to its fundamental ability to eliminate a 

number of confounding issues in terms of variability  (Feng et al., 2008; Lemmer, 

2016; Drüeke and Devuyst, 2019). 

Within our analysis, we also observe a lack of blood pressure response in wild type 

animals to 2% sodium chloride, where it was previously observed by Graham et al 

after week-3 of treatment as significantly raising SBP. Whilst this may be attributed 

to the increased variability of measurements within our study, we do not rule out 

that these animals may not have responded to 2% sodium chloride due to physiological 

reasons. While we believe the increase in 6-week urine volume in response to 2% 



212 
 
sodium chloride in our animals is indicatory of physiological responses, it is possible 

that an increased level of salt-challenge may be required in order to induce 

detectable blood pressure changes. In theory, this would be acheivable by titrating 

the dose of sodium chloride past 2%, up to a level which is at the ceiling of 

physiological tolerance in these animals. Up to 6% sodium chloride in diet has been 

published as tolerable in male sv129 mice, however, this was only performed over a 

1-week period (Michael et al., 2008). Additionally, a further study found that 10% 

fructose/saline solution was also tolerated in male sv129 animal for four weeks 

(Ackermann et al., 2011). Though these studies followed a shorter time course than 

our 6-week experiment, they did observe differences in blood pressures versus 

controls and they did not report a large number of animal deaths in their manuscripts 

(though this does not exclude the possibility of unreported high death rates). 

Although our decision to use 2% sodium chloride was based on the study by Graham 

et al, we would recommend in future that our sv129 strain be reassessed for its 

tolerance to sodium chloride across a range of concentrations higher than 2%. 

The lack of gene dose dependent effects between Umod and blood pressure that we 

anticipated could also be attributed to genetic effects with this strain. Genetic drift 

describes the incorporation of spontaneous (de novo) and randomly sited mutations. 

Modifications which could in turn act to diminish or abrogate the defining 

characteristics of knock out strains versus their wild type counterparts (Cariappa et 

al., 2009; Zeldovich, 2017). Genetic drift is typically characterised as significant 

when the expected characteristics no longer manifest, and typically develops over 

more than ten generations (Fontaine and Davis, 2016; Zeldovich, 2017). According to 

the International Knockout Mouse Consortium (IKMC), up to 58% of mouse strains do 

not fully represent the original knock-out phenotypically, highlighting the prevalance 

of this issue (Fontaine and Davis, 2016). Based on the present characteristics of our 

animals, if we disregard the discussed technical variability within the study, we 

believe it is likely that our Umod +/+, +/-, -/- Sv129 mouse model may have developed 

genetic drift over the seven years between the Graham et al study published in 2014 

and present. Whilst the presence of genetic drift may be a confounding variable to 

the study presented in this chapter, it may also be beneficially exploited. If 
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previously, Umod knock-out mice had reduced blood pressures and now they do not, 

it means we presently have access to an environmentally controlled, case versus 

control difference in genome to explore between blood-pressure-different and blood-

pressure-similar animals. We would recommend NGS be performed on samples 

between 2014 and now, with a sequencing depth of at least 30X, to identify these 

potential de-novo mutations. Such a study could be used to identify genetic markers 

of blood pressure regulation and could be extrapolated to the human population data 

present at UK Biobank. 

Another confounding variable within this study, is our finding by Taqman qRT-PCR 

analysis that UMOD expression is non-negligible in the knock-out strain. We validated 

this across all knock-out samples indicating this finding cannot be attributed to 

technical errors within genotyping. This finding should therefore be regarding as a 

concern. Bates et al in 2004, when they developed this model, validated by northern 

blot a gene dose dependent decrease in Umod expression and no detectable 

expression in the knock-out (Bates et al., 2004). They specifically state that the 

knockout is characterized by a deletion of a ‘2kb segment 5’ of the capsite of the 

UMOD gene and the first four exons plus the intervening intron’. We mapped our 

TaqMan probe to the boundaries between exons-2 and 3 on the 2021 GRCm38 genome 

build. This indicates to us that the genome of our knockout animals must contain 

these exons in order for RNA to be detected by TaqMan. Additionally relevant is that 

there was a 10-fold decrease in the presence of this RNA versus either wild-type or 

heterozygous animals. This suggests that the Umod knock out animals may not be full 

knock-outs, and that marginal expression still remains. Due to the use of a cassette 

within exon-3, it is somewhat plausible that we may be measuring mRNA targeted for 

nonsense-mediated-decay (NMD); and this would go further to explain the 

significantly lower quantities of this RNA versus other alleles. However, Bates et al 

did not discuss this as part of their design, so this remains speculation without 

empirical data. We would comment that this study was conducted in 2004 and used 

the tools available at that time; present day sequencing of these animals would be 

necessary to prove this theory. Irrespective of mechanism, we would stress that it 
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would be highly pertinent to measure Umod protein levels in these animals as 

fundamentally physiological effects are exerted primarily by proteins and not mRNA. 

Our detection of increased levels of Nkcc2 in standard water treated animals versus 

wild type, in a Umod gene-dose-dependent manner, was highly interesting. This 

finding may underpin a large degree of the disparity between the Graham et al study 

and our study, given they did not detect this. Furthermore, it may explain the lack 

of observed baseline differences in systolic blood pressure between wild-type, 

heterozygous and knock-out animals. We discussed in Chapter 4 that the relationship 

between UMOD and blood pressure is likely to be multifactorial but predominantly 

underpinned by NKCC2. We speculate that the pathways and mechanisms affected by 

reducing Umod levels in these animals, which acted to reduce blood pressure in the 

2014 study, may now be negatively balanced by the increases in Nkcc2 we observe. 

Of additional interest to use here was the significant correlation in expression 

between Nkcc2 and Slc7a12 in these animals. McBride et al showed in 2006 at the 

Annual Scientific Meeting of the British Hypertension Society via conference paper 

that Slc7a12 was significantly enriched between spontaneously hypertensive stroke 

prone rats (SHRSPs) versus Wistar-Kyoto (WKY) control counterparts, suggesting a 

potentially functional role in blood pressure regulation. Furthermore, it has been 

shown that inhibition of Slc7a12 expression leads to blood pressure decreases in Dahl 

Salt Sensitive rats (Crespo, 2015). Our data build on these studies by indicating that 

Slc7a12 may exert these effects through Nkcc2 in the kidneys. 

Although the present study ultimately produced data showing that there is no 

relationship between Umod and blood pressure in our strain of Sv129 mice, we 

counter this by suggesting it is possible that the true relationship was not observed 

due to one or more of technical or biological effects discussed here. We would suggest 

that, due to the potential high variability of tail cuff plethysmography, future work 

incorporate the use of radiotelemetry either alone or alongside tail cuff 

plethysmography as a validatory metric. Furthermore, due to the apparent high inter-

animal variability, it should be considered that an increased sample size be used in 

any further experiments here. Should the lack of differences in baseline blood 

pressure between alleles be attributed to genetic differences between the 2014 
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animals and the present animals, then we believe this is an asset which should be 

studied through NGS. Firstly, we suggest genomic analysis for de novo mutations. 

However, based on our unanticipated findings by TaqMan, which implicated Nkcc2 as 

potentially countering Umod-based blood pressure changes, we would furthermore 

suggest a transcriptomic comparison between the 2014 and present day Umod knock-

out animals. To this end, we applied for funding for this experiment via the Wellcome 

Trust Institutional Strategic Support Fund (ISSF). Funding was awarded with the work 

supported by Wellcome [204820/Z/16/Z] and though, outside the time restraints of 

this thesis, we expect to have greater clarity on these genetic changes shortly. 
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7 General Discussion 

7.1 Conclusion 

Understanding the mechanisms controlling blood pressure regulation in humans is a 

significant area of research due to the implications for patients. With the advent of 

precision medicine as a treatment paradigm, using basic science to link genetic 

variants with possible blood pressure regulatory mechanisms is likely to promote the 

development of personalized hypertension therapy. In 2010, Padmanabhan et al 

identified the UMOD gene, specifically the promoter, as a potential hypertension 

precision medicine target given their finding that the protective allele of rs133333226 

was associated with decreased urinary UMOD levels, a 13% reduction in hypertension 

risk and a 7.7% reduction in the risk of incidence of cardiovascular disease 

(Padmanabhan, Melander, Johnson, Di Blasio, et al., 2010). Following this discovery, 

both Trudu et al and Graham et al associated this increase in UMOD levels with effects 

on natriuresis via NKCC2 in mammals, though they proposed differing mechanisms 

driving this effect (Trudu et al., 2013b; Graham et al., 2014b). Where Trudu et al 

proposed that UMOD modulates the phosphorylation and thus activity of NKCC2, 

Graham et al suggested that UMOD modulates the TNFα regulated expression of 

NKCC2. The precision medicine hypothesis for UMOD states that, individuals who are 

risk-genotyped for rs13333226, will have greater levels of UMOD expression and 

therefore greater levels or activity of NKCC2. As a result, these individuals are more 

likely to respond more optimally to loop diuretics (which target NKCC2) than their 

protective or heterozygous counterparts. 

Prior to precision medicine, there is a need for detailed understanding of underlying 

mechanisms, so that researchers can design clinical experiments. In this thesis, we 

identified potential knowledge-gaps in the UMOD precision medicine hypothesis, 

which we aimed to address using basic science, so they could be utilized downstream 

in precision medicine research. Firstly, functional causality had never been ascribed 

to rs13333226 in terms of this variant specifically driving expression of the UMOD 

gene; prior to this, only a 3-3.9kb region of the promoter in mammals had been 

characterized as being required for expression of UMOD (Zhu et al., 2002; Kim et al 
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2003). The linkage disequilibrium block in humans which contains rs13333226, though 

varying between haplogroup, encompasses at least a 2kb region of this promoter (NCI, 

Division of Cancer Epidemiology and Genetics). We regard the finding by 

Padmanabhan as identifying a locus, or haplotype, as opposed to a specific variant. 

Based on prior unpublished data using promoter luciferase activity assays, we 

regarded the masked variant rs4997081 as being the driver of UMOD gene expression. 

However, luciferase experiments require transfection of target cells and therefore 

may not reflect the endogenous genomic activity of this promoter. Our first research 

question therefore focused on showing causality at rs4997081, using a method which 

retained conditions reflective of the environment in TAL cells. Electrophoretic 

mobility shift methodology bases all material on endogenously derived transcriptional 

apparatus. In utilizing this technique, we believed we could accurately identify 

transcription factors associating at the variant and identify this using mass 

spectrometry; thus allowing interpretation of transcriptional pathways. 

Our second research question focused on the effects of UMOD in the cell. Firstly, the 

lack of consensus between the two published theories as to the relationship between 

UMOD and NKCC2 suggests that there may be additional experiments to undertake to 

further investigate this. Additionally, we were aware that no group had performed 

transcriptomic experiments in human samples; rather that prior to this, the focus had 

centered on NKCC2 using directed experiments. The ubiquitous nature of UMOD in 

the kidney is reflected by its involvement in varied processes, ranging across calcium 

handling, immune function and chronic kidney disease (Thomas et al., 1993; L. J et 

al., 2001; T et al., 2003; M et al., 2010, 2018; Baaij et al., 2013; Micanovic et al., 

2015; MTF, J and M, 2019) . We believed in designing this aspect of the study that 

the relationship between UMOD and blood pressure may be multi-modal, with TAL 

cells associating with UMOD levels through a number of pathways, the primary of 

which was NKCC2. As a result, we elected to perform an RNA-sequencing style 

experiment, allowing us to generate data-led hypothesis relating to potential ‘non-

canonical’ relationships between UMOD and blood pressure. 

No blood pressure study to date has described a ‘story’, from GWAS variant to cellular 

processes underlying pathophysiological mechanisms. Such translations from GWAS 
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to function are reported to be lacking, and are regarded as a fundamental barrier to 

clinical translation (Cano-Gamez and Trynka, 2020). Through the two primary 

experimental directives in this thesis, we aimed to generate a ‘story’ of UMOD, 

combining our EMSA based analysis or promoter variants with our bulk-RNA 

sequencing transcriptomic analysis.  

We showed, using material generated from two human renal cell lines (with a 

complement of human transcriptional apparatus) that rs4997081 has differential 

binding affinity between the risk and protective genotype; identifying the risk 

genotype as binding significantly greater amounts of nuclear lysate. Conversely, we 

showed that rs13333226 does not appear to bind transcription factors in a similar 

manner. Furthermore, we showed that with TNF-α treatment, the differences in 

binding between risk and protective genotype at rs4997081 normalise, with the 

increased binding in risk reducing toward the protective. In a n=1 pilot study using 

mass spectrometry on purified binding partners at rs4997081, we identified PARP1 as 

associating at this locus. We believe, consistent with this hypothesis and based on 

extrapolation through numerous studies, that TNF-α mediates the binding of PARP1 

to rs4997081, which phosphorylates NF-κB, in turn activating HNF1β to transcribe 

UMOD (Bachmann et al., 2005; Weaver and Yang, 2013; Ray  et al, 2017; Alves-Lopes 

and Touyz, 2018; Liang et al., 2018b; Martí et al., 2021). We examined the renal 

transcriptome between participants with high and low levels of UMOD expression and 

significantly show enrichment for TNF-α and NF-κB in the high-UMOD group, which 

provides independent corroborative data to this theorised pathway. In short, the 

presence of TNF-α appears to be protective, based on our theory and supporting 

evidence by Graham et al and Heitmeier et al, TNF-α negatively correlates with UMOD 

levels (LA et al., 2014) (Heitmeier et al., 2014).  

Levels of UMOD mRNA in TAL cells correlated strongly with NKCC2 expression in our 

RNA-sequencing data, a finding which we expanded to 84 samples, further evidencing 

a very significant correlation in expression. We believe, based on these data, that 

UMOD and NKCC2 are coexpressed. We suggest that POU3F3 may mediate this 

coexpression, however this hypothesis requires further investigation. Uniquely to our 

investigation, we build on the findings relating UMOD to blood pressure through 
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NKCC2 by detecting the increased expression of WNK1/4, KCNJ1/5, and SCNN1G; 

signalling molecules and ion channels/transporters all known to cause increased 

activation of NKCC2 or facilitate sodium transport themselves (Ring et al., 2007; 

Murthy, Kurz and O’Shaughnessy, 2017)(Welling and Ho, 2009). We also detected a 

decrease in expression of SGK1 and AVPR1, which may indicate homeostatic 

mechanisms acting to reduce phosphorylation of NKCC2 and inhibit the activation of 

the RAAS pathway in the as an adaptive mechanism to increased UMOD levels and the 

subsequent increases in natriuretic processes through NKCC2. Our ‘story’ of UMOD as 

we present, from variant to pathways can be viewed below (Figure 7.1-1). As studies 

move from mendelian disorders and their genes toward high-throughtput, complex 

genetic studies, the ‘renal-polygenic’ blood pressure rationale which we support with 

this thesis is increasingly considered to be important. Recently, in a multi-omics study 

of 430 human kidneys, 179 genes were enriched toward having causality with respect 

to blood pressure regulation in humans (Eales et al., 2021). While Eales identified a 

strong enrichment toward UMOD pathways within their study, they also highlight a 

number of further gene pathways in the kidney which may have causality- this is 

important to consider, as whilst this thesis focuses on UMOD, it does not make the 

assumption that the UMOD locus is the only BP regulator within the kidney. 

Furthermore, with the much higher power of the Eales et al paper than our n=3 per 

group transcriptomics experiments, the data produced by Eales et al should be 

considered more robust. 

In 1.4.7, we discussed the contrasting hypotheses of Graham et al and Trudu et al. 

Graham et al theorised that UMOD was linked to blood pressure by acting as a TNF-α 

sink, leading to reduced activator effects of TNF-α on expression of NKCC2. TNF-α 

was central to this hypothesis. Both our data from Chapter 3 and Chapter 4, the 

promoter and transcriptome studies respectively, independently yielded findings 

implicating TNF-α in the UMOD hypothesis. Furthermore, the findings in Chapter 4 

were inherently unbiased and not directed toward TNF-α based experiments. In this 

thesis, we link TNF-α to UMOD expression through rs4997081. Reflective of Graham 

et al, we believe TNF-α to be a negative regulator of UMOD expression. As we believe 

UMOD and NKCC2 are coexpressed, based on strong evidence, we would also regard 
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TNF-α as being a negative regulator of NKCC2 expression. Thus, we believe our 

findings both build-on and reinforce the hypothesis presented by Graham et al. We 

stress however that additional experiments are required to prove the causality of 

TNF-α in this network, at this point we regard our novel data and pathways to be a 

pilot indication. 
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Figure 7.1-1 Proposed pathway between rs4997081 and differential regulation of 

natriuresis in human TAL cells.  

Increased UMOD in response to differential PARP1 based activation of HNF1β 

drives increased UMOD expression. UMOD expression increases correlate positively 

with NKCC2 expression, alongside increases in expression of WNK1/4 and KCNJ1/5; 

which activate NKCC2. Decreases in SGK1 and AVPR1A expression may be 

compensatory mechanisms in response to heightened sodium reabsorption by 

NKCC2.  
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The research we present in this thesis, whilst novel and detailed, does have 

limitations. Firstly, our experiments on the sv129 Umod-/- mouse do not indicate a 

blood pressure phenotype in response to the disruption of expression of Umod. 

Additionally, we do not consider the blood pressure data of our human cohort to be 

clinically reliable and thus we cannot make conclusions based on blood pressure 

itself. As a result, no aspects of our study fundamentally link our discoveries back to 

blood pressure regulation per-se. We would however, counter this by suggesting that 

the extrapolation to blood pressure based on our highly significant findings of 

increased NKCC2 mRNA in correlation with increased UMOD mRNA is a strong and 

logical process. Additionally, we were restricted within this study by the lack of 

endogenous expression of UMOD within any commercially or academically available 

human cell lines. Human TAL cells are very difficult to obtain in viable states for cell 

culture. As a result, we chose to use renally derived HEK293 and HK2 cell lines to 

obtain nuclear material for our EMSA study. These cells are not strictly tubular 

epithelial cells, thus there is potential that the transcriptional apparatus within these 

cells does not reflect the complement with TAL cells. Lastly, our RNA sequencing 

experiment was stratified on expression of UMOD and not by rs4997081. As we 

discussed in 4.5, this was due to limitations within the cohort. As a result, we are not 

able to specifically relate the differences observed within our human RNA-sequencing 

experiment directly to rs4997081, rather these differences are indicative of changes 

to the transcriptome in correlation with differences in UMOD levels. Across the entire 

experiment we present highly novel data, yet we would stress that correlation is not 

causation; we have no evidence at present to indicate that UMOD directly causes 

these changes in the renal transcriptome, we suggest rather that UMOD correlates 

with these changes. 

In terms of future work, we emphasise the necessity for rs4293393 and rs1297701 to 

also be investigated using the methodology we designed and optimized in Chapter 3. 

We recommend this in order to be inclusive of the total literature-highlighted variants 

on the UMOD promoter, though personally we feel rs4997081 is the foremost 

functional variant based on unpublished luciferase data by Graham et al. 

Furthermore, we believe that the sv129 Umod-/- needs extensive genomic 
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characterization to identify any potential drift, as this could be highly informative; 

particularly given that we detected significant increases in Nkcc2 expression in the 

Umod-/- strain. Additionally, we recommended that increased sample sizes be used 

during the mass spectroscopy analysis in order to provide greater reliability to these 

findings. 

The prominence of the findings in both Chapter 3 and Chapter 4 lead us to believe 

that analysis of rs4997081 should be expanded to population level analyses. We 

discussed in Chapter 3, that rs4997081 was likely masked during the initial GWAS, 

thus we obtained access to UK Biobank data in collaboration with a colleague and 

assessed UK Biobank variant caller file (VCF) database for rs4997081. We discovered 

that rs4997081 is not genotyped directly meaning low-level multivariate regression 

between rs4997081 and the accurate UK biobank blood pressure recordings would not 

be possible. However, UK biobank also have 50,000 whole genome sequencing 

samples. From these, it would be possible to directly characterize rs4997081 and 

directly relate it to blood pressure. In theory, such an in-silico analysis could be 

performed on all variants on the UMOD promoter to construct a highly detailed 

understanding of the haplotype. This would, for the first time, link rs4997081 

specifically to blood pressure and would be superior to the lower powered analysis 

we have performed from our cohort of 76 genotyped human sample. UK Biobank also 

have a repository of urine samples from their participants, from which UMOD and 

creatinine could be ratioed to infer UMOD levels in these patients. We also discovered 

a potential sex effect of the UMOD locus in relation to blood pressure, with females 

differentiating in blood pressure between alleles and not males. We strongly 

recommend this finding be expanded to population level in order to determine if this 

finding was artefactual due to our low sample size and potential unreliability with 

respect to this finding. 

In Chapter 5 we laid out a framework for investigating the role of UMOD in trafficking, 

and the relationship between UMOD, trafficking and salt. Having developed a 

transfected stable UMOD cell line over several months, we had planned a number of 

trafficking experiments. However, we were made aware of highly exciting data 

regarding the UMOD promoter and resultingly pivoted our experiments toward this 
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research. We believe that the future work outlined in Chapter 5 should be regarded 

as a priority. Our experiments in this thesis did not address the actions of UMOD at 

the protein level, though fundamentally proteins exert physiological effects, not 

mRNA. Therefore, we would emphasize that cotrafficking assays in order to 

characterize potential interactions between UMOD and NKCC2 be performed in 

future. 

The work in this thesis provides additional basic science insights as to mechanisms 

which may underpin the association of UMOD with blood pressure. We show 

empirically that rs4997081, not rs13333226, appears to bind transcription factors or 

complexes at the locus with differential affinity. Therefore, based on our findings, 

we would recommend that clinicians undertaking trials involving UMOD consider 

genotyping both rs13333226 and rs4997081 during these trials, as there is potential 

that the 8% disconnect in linkage between these two variants could present as a 

confounder. We suggest that rs4997081 exerts differential effects on expression of 

UMOD through the binding of PARP1 at this locus, in a potentially TNF-α regulated 

manner. We confirm that, at a basic-science level, the primary association between 

UMOD and blood pressure regulation appears to be through NKCC2, thus loop diuretics 

may present as the best precision medicine therapeutic agent during future work. 

However, this thesis emphasises the need to regard the prominence of TNF-α in this 

relationship, alongside the potential for SGK1, WNK1/4 and KCNJ1/5 to be 

therapeutically targetable. It should be noted that this thesis does not use reliable 

measurements of human blood pressure at any point, therefore we do not propose to 

frame these findings as ‘precision medicine’ themselves, rather that they provide a 

scientific basis for downstream experiments. 

The work in this thesis was written during the Covid19 pandemic with a full laboratory 

closure lasting for 4 months and then further disruption due to the requisition of 

Biosafety cabinets by the Lighthouse Covid19 testing laboratory. The authors PhD 

spanned the disruption, which began during the experiments conducted within 

Chapter 5. These experiments were halted, and due to their cell-based nature, they 

could not be reinitialized until close to the end of the authors PhD. This did have a 

substantial impact on the flow and design of the experiments which could not be 
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avoided or worked around. During the pandemic the author aimed to maintain 

contribution by building and deploying open-source bioinformatics tools. These were 

successful in that the Padplot website was utilized by at least 6 individuals within the 

institute and, based on metrics from Amazon-Web-Services, many further remote 

researchers. The author is committed to the ongoing maintenance of these tools and 

will retain the right to keep these open source for academic researchers to use. 

In conclusion, the work presented within this thesis provides additional insights into 

the mechanistic understanding of the relationship between the UMOD locus and blood 

pressure, surrounding rs4997081. These new insights are likely to contribute to the 

wider challenge of addressing hypertension management in humans, given they set a 

basis for new precision medicine experimentation. While our data are significant, 

there remains a need for further research with the further experiments we have 

outlined likely to feature prominently in future work. 
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