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Abstract

A vital component of visual word recognition is the decoding of orthography, the rules by which
language is transcribed from and to visual script. Literate humans demonstrate considerable
consistency in the timing and localisation of orthographic processing in the brain, with an early
occipitotemporal response showing robust sensitivity to orthographic information as early as
150 - 200 ms post-stimulus. It has been proposed that, consistent with mechanisms involved
in other visual perceptual processes, orthographic processing is sensitive to higher-level
information provided via top-down inputs. In this thesis, I investigate the degree to which
early orthographic processing is modulated by higher-level expectations for word forms
over unpredicted word forms that vary in their predictability. I focus on the N1 event-related
potential component observed in electroencephalography (EEG). Peaking around 170 ms, this
component has shown consistent sensitivity to orthographic information.

I present evidence from two EEG experiments probing the effect of predictions on
orthographic processing. In the first of these experiments, I examine the interaction between
task (lexical decision, semantic categorisation) and stimulus (category-relevant words,
category-irrelevant words, pseudowords, nonwords). I replicate findings of sensitivity to
orthography in the N1, and, consistent with previous research, find evidence for a general
effect of task on processing during the N1. However, I observe a lack of selective sensitivity
for category-relevant word forms in the semantic categorisation task, where such a finding
would advocate category-level top-down modulation of the N1. I argue that a sensitivity to
higher-level predictions in orthographic processing would require a transcoding of information
from semantic to orthographic representations, which would be necessarily computationally
lossy and entail a loss of specificity in predictions. As a result, selective sensitivity to predicted
word forms may only be expected when predictions are more targeted, such that they maximise
the specificity of any predictions for orthographic input.

In the second EEG experiment I show that, indeed, when predictions are more targeted,
for specific word forms, an effect of prediction is observed in the N1. I employ a picture-word
verification paradigm to induce participants to generate strong predictions for upcoming words.
I show an interaction between picture-word congruency and predictability, where predictability
negatively predicts N1 amplitudes for picture-congruent words, and positively predicts N1
amplitudes for picture-incongruent words. I argue that these findings are inconsistent with
typical predictive coding accounts, in which predicted orthographic information is "explained
away" such that activity scales with prediction error, but support an account in which top-down
modulation results in a "sharpened" sensitivity to predicted orthographic features, such that
activity scales with prediction congruency. I suggest that the development and testing of
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computational models of orthographic processing can better delineate the specific mechanisms
by which top-down contributions influence orthographic processing.

A vital component of any model of orthographic processing is a description of orthography
and orthographic similarity. I argue that orthographic similarity is particularly relevant to
descriptions of how top-down modulation influences orthographic processing - whether
responses are "explained away" or "sharpened", the degree to which predictions modulate
neural activity associated with orthographic processing should correlate with the similarity
between the predicted and presented word form. Orthographic Levenshtein distance, the
current gold-standard measure of orthographic similarity in alphabetic orthographies, by
default overlooks sub-character complexities. In work in this thesis, I develop and validate a
sub-character measure of orthographic similarity, showing that its performance in predicting
behavioural and neural correlates of visual word recognition, including the N1 component in
EEG, can elucidate and better explain sensitivity to sub-character features of orthography.

I additionally describe and validate methodological approaches that can improve
experimental design and statistical inference in the research area. Specifically, I describe an R
package I developed, LexOPS, that provides a formalisation of an item-matching approach that
is flexible and reproducible. Such item-wise matching of factorial conditions is a key component
of experimental design in visual word recognition research, as well as in other areas of
psychological science. I also describe a formalised distribution-wise approach to matching
that can be integrated with the item-wise approach implemented in LexOPS. I apply the
item-wise and distribution-wise approaches to matching in stimulus design of the experiments
reported in this thesis. Another key component of psychological research that I examine is
the norming of items on subjective Likert ratings. Work in this thesis demonstrates, via Monte
Carlo simulations, that a statistical approach that appropriately accounts for the hierarchical
and ordinal nature of rating norming studies’ data, drawing inferences from cumulative-link
mixed-effects models, can more accurately and meaningfully summarise rating norms. I
demonstrate the improvements conferred by this approach on existing datasets, including
normed ratings of perceived orthographic similarity.

This thesis combines multiple complementary approaches to provide insight into the
processing of orthography in visual word recognition, and the degree to which such processing
may be sensitive to top-down contributions. I provide in-depth experimental evidence and
methodological developments that can inform and equip future research and computational
models of orthographic processing in the brain.
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Chapter 1

General Introduction

1.1 Introduction

The written word is a visual symbolic representation of language that supports efficient and
precise storage and transmission of information. Cognitively, reading and writing necessarily
involve flexible coordination of processes spanning a range of human faculties, including visual,
language, motor, and attentional domains. One essential process, if readers are to decode
written language, is the accurate perception and recognition of words and their sublexical
components in incoming visual information, i.e., visual word recognition. For words’ meanings to
be accessed and processed, readers must decode the orthography of written language, that is,
the rules of the visual script by which language is transcribed from and to visual representations.
The processing of orthography can be viewed as a form of expert perception that enables
readers to discriminate, for the case of English orthography, between over 20,000 known unique
word forms (Brysbaert et al., 2016) with remarkable speed, with normal reading averaging rates
of around 240 ms per word (Brysbaert, 2019).

Despite the clear perceptual expertise that reading demands, written transcription of
language is a recent human invention. Rather than a sudden innovation, the invention of
writing systems likely emerged through a gradual progression from pictorial, ideographic,
mnemonic, and mathematical figures (e.g., X. Li et al., 2003; Locke, 1912; Walker, 1987) before
scripts were capable of representing natural language. Nevertheless, archaeological evidence
for even the simplest proto-writing is confined to the past 10,000 years of human history,
while anatomically modern humans have existed for around 200-300 thousand years. On an
evolutionary timescale, then, visual word recognition is a very recent cognitive phenomenon,
with limited direct survival or reproductive value. It follows that humans are very unlikely to have
evolved dedicated neural circuitry for the specific processes involved in visual word recognition
(Dehaene & Dehaene-Lambertz, 2016). Contrast visual word recognition with a cognitive
process requiring similarly expert visual perception: face recognition. Evidence shows that
the timing and localisation of early visual word and face processing is highly similar (Goodale
& Milner, 1992; Rossion et al., 2003), and it has been suggested that they are accomplished
and supported by similar neural mechanisms (Kay & Yeatman, 2017; Price & Devlin, 2011).
However, the evolutionary value of accurate intra-species face recognition in primates extends
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far beyond the homo genus, supporting a range of complex social interactions across primates.
Chimpanzees, whose last common ancestor with modern humans lived 4-12 million years
ago, show neural mechanisms for face processing in the fusiform gyrus homologous to those
of humans (Parr et al., 2009). Evidence for some degree of such perceptual organisation
being inherent, rather than learned, is seen in the behavioural preferences of both human
and monkey newborns, such as a preference for face-like images or patterns of dots (Goren
et al., 1975; Kuwahata et al., 2004; Sugita, 2008; Valenza et al., 1996). An analogous innate
preference for alphabet-, cuneiform-, or hanzi-like characters, over non-character control
patterns, would be very surprising indeed. Writing systems have existed, and have been
perceptually relevant, for a small fraction of the time that faces have. Furthermore, unlike faces,
that show consistent geometric regularity as ovoids with predictable locations of and distances
between features, orthographic characters can vary considerably in their geometry, within and
between writing systems, and across time as writing systems develop. In sum, it would be
computationally difficult, and evolutionarily implausible, for humans to have evolved innate
neural organisation specifically for visual word recognition.

How, then, do humans achieve this feat so successfully? As this introduction will show,
evidence suggests that humans are utilising neural substrates which, although they did not
evolve for orthographic processing, are conveniently placed for abstracting orthography from
sensory input and bridging it with language and higher-level circuitry. An additional feature that
may characterise human orthographic processing, and account for the efficiency with which
humans can read, is a sensitivity to top-down modulation, permitting flexible and fast processing
in a context-dependent manner. Here, it is proposed that higher-level attentional, language, and
executive functions guide early orthographic processing via general or targeted predictions of
upcoming content. I begin by defining orthography and reviewing evidence for where and when
orthography is processed, focusing on early occipitotemporal activity. I then examine the degree
to which evidence suggests such occipitotemporal processing of orthography may be sensitive
to top-down modulation. Finally, I introduce the methodological approaches I have developed
and applied throughout this thesis, and present an outline of the thesis’ chapters.

1.2 Defining Orthography

Orthography refers to conventions in the representation of language in a written or printed
form. The building blocks of orthography are individual graphemes that represent language
by each encoding one or many sublexical or lexical features, which can be combined to
form progressively larger orthographic units, like morphemes, character N-grams, and word
forms. The granularity of information that graphemes represent differs across writing systems.
For instance, the characters of alphabetic orthographies typically encode spoken language
at the level of phonemes, while writing systems like Chinese characters mostly encode
information at the level of syllables. Nevertheless, the features encoded by orthography are
almost always phonological in nature, even when the graphemes are logographic (i.e., each
character represents an individual word), as Chinese characters are. Indeed, although they
vary in the transparency of this orthography-phonology relationship (Katz & Frost, 1992), most
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orthographies serve to represent spoken language. Writing systems that represent concepts
entirely independently of spoken language are very rare, and very limited in their range
of expression (Sampson, 2016). In transcribing spoken language, orthographies therefore
reproduce many of its features. As an example, one central feature of spoken language,
and therefore of written language, is its ordinal nature. Changing the order of characters,
word forms, or phrasal components can dramatically alter, or destroy, the intended meaning
of language, just as it would for the spoken language counterparts of such linguistic units.
Consequently, writing systems must include rules dictating the order in which orthographic
components are to be read and combined, such as left-to-right and top-to-bottom, to convey
their intended meaning.

To summarise, orthography refers to rules by which phonetic components of spoken
language are transcribed into visual word forms as lexical graphemes, or else via sublexical
graphemes that can then be combined to produce individual word forms. These word forms
can then be further combined ordinally to represent natural language, reproducing features of
the spoken language that orthographies transcribe.

1.3 The "Visual Word Form Area" and the N1

Given the implausibility of orthography-dedicated neural substrates arising from evolutionary
pressures, it is at first glance surprising that literate humans show a high degree of
homogeneity in the neural processing of visual word forms. In particular, an area in the left
ventral occipitotemporal cortex (vOT) of the fusiform gyrus, not anatomically distant from
other regions implicated in expert visual object perception and recognition (Goodale & Milner,
1992), has been consistently implicated in orthographic processing (Cohen & Dehaene,
2004; Dehaene & Cohen, 2011; McCandliss et al., 2003; Petersen et al., 1988; Price, 2012;
White et al., 2019). Containing a region sometimes referred to as the visual word form area
(VWFA), vOT shows robust sensitivity to visually presented words (Cohen & Dehaene, 2004;
Price, 2012). Furthermore, this region is known to be functionally implicated in reading and
visual word recognition, as opposed to showing epiphenomenal activation, as demonstrated in
studies of participants with lesions to vOT, who consistently show alexia (Cohen & Dehaene,
2004; Turkeltaub et al., 2014; Wilson et al., 2013).

Readers also show striking similarity in the timing of orthographic processing. The first
negative-going event-related potential (ERP) component observed in electroencephalography
(EEG) signals, following word presentation, is consistently associated with the processing of
orthographic features of word forms (Bentin et al., 1999; Ling et al., 2019; Maurer, Brandeis,
et al., 2005; Maurer, Zevin, et al., 2008; Pleisch et al., 2019). The magnetoencephalography
(MEG) counterpart to the N1, the M170, shows similar timing and topography, and a comparable
sensitivity to orthographic and morphological features (Hsu et al., 2011; Lewis et al., 2011;
Solomyak & Marantz, 2010; Zweig & Pylkkänen, 2009). In EEG research, this largely left-
lateralised ERP component has been referred to by two names: as the N1, reflecting its ordinal
status as the first negative-going component, and as the N170 (or M170 in MEG), reflecting
the approximate timing of its peak in milliseconds. In this thesis, I refer to this ERP component,
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when it is observed in EEG, as the N1, due to variability in the peak’s timing across studies,
individuals, groups with different reading experience, scalp locations, and stimulus features
(Brem et al., 2009; Fan et al., 2015; Maurer, Rossion, et al., 2008, see also results of chapters
4 and 5).

Although the N1 is mostly observed as a left-lateralised occipitotemporal ERP component,
some studies report an N1 component with a similar pre-200 ms peak, but with anterior
topography. This component has also been referred to as the early left anterior negativity
(ELAN; Friederici, 2002; Lee et al., 2012; Neville et al., 1991). Although there are exceptions
(e.g., Lau et al., 2006), whereas the posterior N1 is typically observed in studies using global
average, the ELAN is typically observed in studies using a mastoid reference (Nieuwland,
2019). One interpretation of the ELAN, given its similar timing to the posterior N1, is that
it is the same component as the posterior N1, with its topography altered by the use of a
different reference system. A similar effect is observed for the N170 component elicited by
faces, whose topography is highly dependent on the referencing method used, observed as a
posterior negativity with an average reference, or an anterior positivity with a mastoid reference
(Joyce & Rossion, 2005). However, this explanation of the ELAN fails to explain the purported
sensitivity of the component to syntax, rather than the sensitivity to orthography associated
with the posterior N1 (Friederici & Weissenborn, 2007; Neville et al., 1991), and why the
ELAN remains negative rather than reversing in polarity (Joyce & Rossion, 2005). In addition
to topographical disparities with the posterior N1, it is of note that the ELAN is more reliably
observed in response to auditory, rather than visual, stimuli (Steinhauer & Drury, 2012). While
ELAN components are observed in some reading studies, they are rare, and may reflect effects
carried over from preceding words’ ERPs such as the N400 or P600 (Steinhauer & Drury,
2012). Given the apparent differences between the N1 and ELAN, and the ELAN’s lack of
sensitivity to orthography, I focus on the posterior, occipitotemporal N1 in this thesis.

It is quite likely that the occipitotemporal N1’s neural generator is the area identified
as the VWFA, which shows similar sensitivity to orthographic features, and a comparable
developmental trajectory (Brem et al., 2006; Pleisch et al., 2019; J. Zhao et al., 2014, c.f. Brem
et al., 2009). Indeed, a range of evidence suggests that the N1 and M170 originate in an area
of the left occiptotemporal cortex that largely aligns with the purported location of the VWFA in
vOT. Such evidence is observed in source localisation of M/EEG (Brem et al., 2009; Maurer,
Brem, et al., 2005; Parviainen et al., 2006; Taha et al., 2013; Xiang et al., 2019; Zweig &
Pylkkänen, 2009), as well as in studies that have combined M/EEG with fMRI methodologies
(Cohen et al., 2000; Dale et al., 2000; Pleisch et al., 2019) or have measured EEG responses
of vOT intracranially (Allison et al., 1994; Nobre et al., 1994; Whaley et al., 2016; Woolnough
et al., 2021). In sum, research shows that an early, occipitotemporal response to visual word
forms is involved in the processing of orthography.

1.4 Neural Recycling and Visual Word Form Specificity

If humans are unlikely to have evolved orthography-specific neural circuitry, why is it that humans
show such consistency in the timing and location of orthographic processing? One plausible
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explanation is that humans are re-purposing, or "recycling", neural circuitry that has features
convenient for the representation and decoding of visual word forms (Dehaene & Cohen, 2007,
2011). According to such an account, sensitivity to orthography arises through experience,
utilising neural substrates that would otherwise be involved in processes that are unrelated,
though perhaps computationally analogous. There is broad agreement with some version of
the neural recycling hypothesis, though the extent to which this renders the VWFA a misnomer,
because it is not necessarily visual, or even not necessarily word-form-related, persists as a
subject of debate.

1.4.1 Visual Processing of Orthography

The location of the VWFA in vOT places it in close proximity to higher-level visual areas,
especially those on the ventral visual stream putatively associated with object recognition
(Goodale & Milner, 1992). Similarly, the timing of the N1 is consistent with rapid processing
of visual information. These spatial and temporal features concord with the visual nature of
orthographic processing, which can be viewed as a form of expert visual perception akin to
other occipitotemporal processes like face or tool recognition (Grill-Spector & Malach, 2004).
Indeed, sensitivity to orthographic features of word forms scales with reading experience and
ability, for both vOT activity and N1 amplitude (Brem et al., 2006; Brem et al., 2018; Dehaene
et al., 2010; Dehaene-Lambertz et al., 2018; Pleisch et al., 2019; Varga et al., 2020; J. Zhao
et al., 2014). An additional feature of the VWFA’s location is that it shows projections into
(Bouhali et al., 2014), and functional connectivity with (Vogel et al., 2012; W. Zhou et al.,
2016), frontal and perisylvian areas associated with language and attention - more so than the
regions that surround it. Furthermore, rather than developing during or after literacy acquisition,
such projections even exist prior to language acquisition, observable from just a week after
birth (J. Li et al., 2020), though literacy acquisition appears to strengthen these connections
(López-Barroso et al., 2020; Moulton et al., 2019). Localisation of the VWFA in vOT differs
somewhat between individuals, and its specific location in literate children can be predicted
from the patterns of connectivity of candidate locations in the fusiform gyrus that exist prior
to learning how to read (Saygin et al., 2016). As a result, it has been often proposed to be a
combination of the visual input to the VWFA, its location in the ventral visual stream utilised in
object recognition, and its functional connectivity to left-lateralised language areas that result
in the area developing sensitivity to orthography in the literate brain with such consistency
(Behrmann & Plaut, 2013; Dehaene & Dehaene-Lambertz, 2016).

Notably, regions in the ventral visual stream that are related to object recognition show a
degree of invariance in their response across colour, location, size, and orientation of objects
(Grill-Spector & Malach, 2004; Rust & DiCarlo, 2010). Intuitively, this largely concords with
what may be expected of orthographic processing, which must be achieved for words of varying
viewing conditions, locations, and typographies, and is ostensibly consistent with vOT’s location
in the ventral visual stream. Whether the orthographic processing that takes place in vOT
and during the N1 is invariant across such dimensions has therefore been a key question
for investigations into the area (Dehaene et al., 2005). Location invariance, i.e., consistent
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representation regardless of retinal position, was identified as a likely feature of the VWFA in
early investigations. For instance, it has been shown that the VWFA’s response is invariant to
manipulations of which visual hemifield words are presented in (Cohen et al., 2000; Cohen
et al., 2002), with orthographic information in the left hemifield likely being conveyed from
the right visual cortex to the left vOT via the corpus callosum (Bouhali et al., 2014; Cohen
et al., 2000; McCandliss et al., 2003; Molko et al., 2002). Such an interhemispheric account
is consistent with the reduced sensitivity, and possibly delayed timing, of vOT’s response to
orthographic information that is presented in the contralateral hemifield (Rauschecker et al.,
2012, though EEG has failed to demonstrate timing or sensitivity differences, Takamiya et al.,
2020). However, it has also been shown that some positional information must be present in
the area identified as the VWFA. Rauschecker et al. showed that a support vector machine
classifier trained on multivariate patterns of VWFA activity, as measured by fMRI, was able to
decode a presented word form’s position in the visual field, both horizontally and vertically,
with accuracy above what would be expected by chance. This finding of retinotopy in the
VWFA was reconciled with earlier evidence for location-invariant orthographic processing by
suggestions that the VWFA’s representations include retinotopic information in the first stages
of orthographic processing, that take place in more posterior regions, but that this information
is discarded as representations become progressively more abstracted from the visual input
(Hannagan & Grainger, 2013; J. S. Taylor et al., 2019), supported by evidence that posterior
regions of the VWFA are sensitive to positional information that the more anterior regions are
not (Dehaene et al., 2004). As a result, evidence supports the emergence of location invariance
in vOT, as representations are abstracted from vision.

A second type of invariance that could be expected from the purported VWFA, if it is
responsible for orthographic processing, is an invariance to typography. While it is well known
that the VWFA and N1 are consistently sensitive to orthography across scripts and languages
(Bai et al., 2011; Fan et al., 2015; Gagl et al., 2020; Krafnick et al., 2016), this alone does
not necessarily mean that orthographic information is represented in the same manner, or
with the same sensitivity, across scripts and languages. Varying the typographic appearance
of word forms, while keeping the word, context, script, and language constant, can provide
insight into whether such linguistic information is abstracted from visual input in orthographic
representations. Indeed, some degree of invariance to typography should be expected for
orthography, given the variability that exists across a single writing system which readers of
that orthography are routinely required to negotiate. In addition to differences between fonts
(e.g., a vs. a), in an alphabetic writing system a single word can be written using all lower-
or upper-case letters that bear only limited visual or geometric resemblance to one another
(e.g., barge vs. BARGE). Because upper-case graphemes are so typographically distinct from
their lower-case counterparts, while preserving phonemic and lexical identity, manipulation
of letter case has been common in studies of typographic invariance, with findings generally
demonstrating that the VWFA’s response is invariant to it. The VWFA shows activation in
response to word forms whether they are case-consistent or mixed-case (i.e., both window
and WiNdOw ; Polk & Farah, 2002). Moreover, priming studies using the same word as prime
and target, but with varied letter case, show priming effects on the VWFA in both within- (i.e.,
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cat-cat or CAT -CAT ) and cross-case (i.e., cat-CAT or CAT -cat) manipulations (Dehaene
et al., 2004; Dehaene et al., 2001), suggesting shared representation. More recent work,
utilising multivariate pattern analysis of fMRI to decode the information encoded by VWFA
representations, has further supported the hypothesis that the VWFA does not represent
the case of a given word, but represents information abstracted from the given typography.
Specifically, a classifier trained on the differences in activity patterns observed between
lower-case words and letter strings can also discriminate between upper-case words and letter
strings, whereas a classifier trained on the differences observed between lower-case and
upper-case words was unable to discriminate between lower- and upper-case strings of letters
(Lu et al., 2021). However, as with location invariance, typographic invariance may emerge
only in the more anterior regions of vOT. Z. Zhou, Vilis, et al. (2019) showed via a repetition
suppression paradigm that while the VWFA exhibits a response that is mostly font-invariant,
it also shows a limited degree of font sensitivity: whereas more anterior occipitotemporal
regions showed a font-invariant response specifically in the left hemisphere, more posterior
occipitotemporal regions showed font sensitivity bilaterally. Notwithstanding an additional
finding of possible font invariance in early occipital regions (see section 7.5), Zhou et al.’s
findings are largely consistent with evidence for posterior-to-anterior emergence of font
invariance in vOT. Indeed, a picture emerges of the VWFA as a region that processes visual
orthographic information with representations that become progressively more abstracted from
visual input as responses propagate anteriorly (Vinckier et al., 2007), in a manner comparable
to, and reproducible within, the hierarchical organisation of neural networks (Hannagan et al.,
2021).

1.4.2 Meta-Modal Linguistic Processing

Thus far, vOT’s and the N1’s responses to visual linguistic input have been considered, but can
these neural phenomena be considered exclusively visual? In addition to visual word forms,
the VWFA also shows activation in response to spoken words in literate participants (Muneaux
& Ziegler, 2004; Perre & Ziegler, 2008; Planton et al., 2019; Salverda & Tanenhaus, 2010).
Non-visual modalities are very unlikely to preserve the timing of vOT responses, such that an
auditory N1, at around 170 ms in vOT, would be very unlikely. Nevertheless, EEG evidence
suggests that there are influences of orthography on ERPs elicited by spoken language, within
the period of the N400 (Pattamadilok et al., 2011; Perre et al., 2011; Zou et al., 2012) or even
earlier (Pattamadilok et al., 2014; Pattamadilok et al., 2011). Although it is unclear whether
orthography-phonology interactions in auditory word recognition are employed automatically or
strategically (Cutler et al., 2010; Pattamadilok et al., 2014; Pattamadilok et al., 2011; Planton
et al., 2019), such evidence has generally been interpreted in terms of a functionally relevant
recoding of spoken language into an orthographic code (Dehaene et al., 2002; Madec, Le
Goff, Anton, et al., 2016), facilitating auditory language comprehension. Indeed, Dehaene
et al. (2010) have shown that literate participants exhibit greater VWFA activation during
auditory word recognition than do illiterate participants, supporting the hypothesis that it
is orthographic information being activated. Such cortical reorganisation of oral language
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processing is plausible, consistent with behavioural evidence and findings of comparable neural
reorganisation in other areas that occurs after literacy acquisition (Dehaene et al., 2015), at
least when the orthography contains relevant phonemic information (Brennan et al., 2013).
However, more recent evidence has suggested that rather than spoken language being recoded
into orthographic information to be represented in the VWFA, the VWFA of literate participants
may encode spoken language in an auditory modality directly. Specifically, representational
similarity analysis suggests that both orthographic and phonological information is represented
in vOT (Qu et al., 2022; L. Zhao et al., 2017), with phonological similarities best predicting
vOT activity in more anterior regions, where representations are more abstracted from visual
input (J. S. Taylor et al., 2019). Investigating auditory representations in vOT more directly,
Pattamadilok et al. (2019) had participants complete a lexical decision task using both visual
and auditory modalities, with an adaptation to either modality preceding each trial, in a 2
(auditory/visual adaptation) x 2 (auditory/visual stimulus) x 2 (word/nonword lexicality) x 2
(left/right vOT stimulation) design. Here, TMS was applied to vOT during stimulus presentation,
with the right vOT stimulation employed as a control condition. When adaptation and stimulus
modality matched, TMS to the left vOT had a facilitatory effect on lexical decision response
times, as would be expected if the adaptation period depressed the neurons responding to
that modality, but facilitation across modalities was either much smaller or completely absent.
This suggests that distinct populations of neurons, within the area affected by TMS to left vOT,
encode language in distinct modalities. As a result, while the VWFA’s response to spoken
language may arise or increase alongside reading acquisition, it may in part represent the
auditory features of language directly in an auditory code. VWFA recruitment while decoding
language has also been shown to generalise to the decoding of language in an auditory script
(Striem-Amit et al., 2012), further highlighting the multimodal flexibility of the area. Moreover,
there is reason to believe that auditory information is not the only exception to the VWFA’s
ostensible visual specificity, as the area also shows sensitivity to language-related information
from other sensory modalities.

In addition to responding to visual word forms and spoken language, the area identified as
the VWFA appears to be sensitive to tactile linguistic information. Congenitally blind readers
of Braille who have been blind their whole lives show greater activation in a region of vOT that
overlaps strikingly with the VWFA of sighted readers, in response to real Braille words relative
to Braille nonwords (Büchel et al., 1998; Reich et al., 2011). As in sighted individuals, the
anatomic location of the VWFA is highly consistent across and within blind Braille readers, and
is implicated most specifically in reading processes rather than language or sensory processing
more generally (Reich et al., 2011). If the VWFA is assumed to be visual, then its recruitment in
Braille reading is particularly puzzling. It could be argued that participants who lost their sight
after having acquired visual reading are recoding tactile information into a visual orthographic
code, similar to the recoding account proposed to explain VWFA activation elicited by spoken
language (Dehaene et al., 2002), yet it is difficult to see how congenitally blind participants who
have never seen could be recoding tactile information into a visual code. It has therefore been
argued that the VWFA is not visual at all, but is rather meta-modal (Dehaene & Cohen, 2011;
Reich et al., 2011), employed in computations that require the decoding of sensory information,
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across modalities, pertaining to shapes and patterns that have linguistic relevance. Such an
account can be considered an augmentation of the recycling hypothesis, suggesting that vOT’s
capacity for decoding linguistically relevant sensory input applies not only to the visual domain
but extends to multiple, possibly any, sensory modalities. The meta-modal account of vOT is
bolstered by evidence that blind readers of Braille represent both tactile and auditory linguistic
information in vOT, possibly in discrete neuronal populations (Dzigiel-Fivet et al., 2021), as
has been argued to be true of visual and auditory language processing in sighted readers
(Pattamadilok et al., 2019). To summarise, while the area of vOT identified as the VWFA is
mostly implicated in visual processing for sighted individuals, the region is seemingly sensitive
to language-relevant information across multiple modalities.

1.4.3 Non-Linguistic Processing

In addition to sensory exclusivity, it should also be examined whether the VWFA, and the
related N1, are only sensitive to information that is language-relevant, or whether they are also
functionally implicated in representation and processing of non-linguistic information. It has
been suggested that, indeed, reading acquisition may cause competition in occipitotemporal
regions between the perception of words, and the perception of objects or faces (Dehaene &
Cohen, 2007). The representation of objects or faces in the VWFA, in the literate or preliterate
brain, is certainly plausible: nearby regions are implicated in the perception of such stimuli
(Goodale & Milner, 1992), which require visual expertise that is arguably comparable to that
required for word recognition, and expert perception tasks like face perception result in ERPs
with similar topography and timing (Rossion et al., 2003). Furthermore, rather than vOT
responding preferentially to grapheme-like visual input (i.e., two-dimensional monochromatic
geometric patterns), the region is even involved in decoding linguistic information when the
linguistic units are images of objects such as houses (Martin et al., 2019).

Commonly cited as evidence for competition between word form processing and that of
objects or faces is the finding that literacy acquisition affects the lateralisation of face perception
in occipitotemporal regions. In both fMRI (Dehaene et al., 2010) and EEG (Dundas et al.,
2014), it has been found that literacy acquisition causes face perception to become more right-
lateralised, often interpreted as evidence that the development of left-lateralised sensitivity to
visual word forms prevents these neural populations from responding to faces (Dehaene et al.,
2015), as it is proposed that they may have done prior to literacy acquisition. Similarly, Centanni
et al. (2018) found that, in children, the size of the region of the left fusiform cortex which is
sensitive to face stimuli (i.e., the left fusiform face area) is negatively correlated with the size
of the fusiform region sensitive to letters, indicative of competition leading to pruning of the left
fusiform face area. Feng et al. (2022) did not replicate this finding, though they did observe an
increase in right-lateralisation of the fusiform face response that occurred alongside an increase
in reading expertise. Direct evidence for online competition between face and word processing
has also been found. Fan et al. (2015) reported that the amplitude of N1 ERPs observed
in response to images of faces is reduced when the face stimuli are presented concurrently
alongside Chinese characters, with no such reduction observed when faces are presented next
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to unidentifiable Chinese characters. This implies some overlap and competition between the
neuronal populations responsible for processing faces and word forms.

Suggestions that literacy acquisition causes word form perception to compete with other
forms of perception for neural resources have been challenged more recently, however. For
instance, findings of literacy acquisition causing a redistribution of hemispheric organisation
in processes like face perception have been questioned, with Rossion and Lochy (2022)
pointing out that right-lateralisation of face processing emerges in infancy long before reading
acquisition, and arguing that there is only limited evidence for reading acquisition influencing
the degree of this lateralisation. Furthermore, if literacy acquisition does precipitate neural
competition with face and object processing, it does not seem to impede such processing. In a
study tracking the effect of literacy acquisition longitudinally, Dehaene-Lambertz et al. (2018)
found that while the preliterate vOT is clearly implicated in the perception of non-linguistic
objects, such as tools, houses, and faces, literacy acquisition does not reduce the area’s
sensitivity to such objects. Rather, literacy acquisition appears to cause vOT to increase
sensitivity to visual word forms, while maintaining its preliterate category-specific sensitivity
to other objects. This concords with behavioural (van Paridon et al., 2021) and ERP findings
(Pegado et al., 2014) showing that literacy acquisition does not impede object recognition
performance or sensitivity, but is in fact associated with small improvements.

If the VWFA is implicated in the processing of non-linguistic objects, what features does it
represent? There is some evidence that the region of vOT that the VWFA emerges in is involved
in processing dynamic motion of inanimate objects (Jastorff & Orban, 2009; Whitney et al.,
2019). Whitney et al. (2019) argue that the VWFA emerges in a region seemingly sensitive
to object motion because visual input in the early stages of reading acquisition, wherein
single-letter saccades cause word forms to make progressive movements in the visual field,
require processing that is computationally analogous to the perception of objects in dynamic
motion. This account is not necessarily inconsistent with suggestions of competition for neural
resources between orthographic processing and the processing of other objects, as many
forms of object perception could utilise and benefit from dynamic object motion representations
as orthographic processing may, consistent with vOT’s robust sensitivity to non-linguistic
visual categories (Dehaene-Lambertz et al., 2018; Whitney et al., 2019). It has also been
suggested that the VWFA region of vOT is functionally implicated in attentional processes. In
addition to robust connections with language networks (Bouhali et al., 2014; W. Zhou et al.,
2016), there is evidence that the VWFA has strong connections to the fronto-parietal attention
network (Bouhali et al., 2014; Vogel et al., 2012), which strengthen with reading acquisition
(López-Barroso et al., 2020). Exploiting the high resolution and large sample size of the
Human Connectome Project, L. Chen et al. (2019) examined the structural and functional
connectivity between the VWFA and these networks in more detail. Notably, this included
robust connectivity with fronto-parietal regions, markedly with parts of the intraparietal sulcus,
which is implicated in visual attention and the coordination of perception and motor responses
like eye movements (Culham et al., 2006; Grefkes & Fink, 2005). Chen et al. also showed
robust connectivity between the VWFA and the middle temporal visual area (i.e., V5/MT+)
heavily implicated in motion perception, perhaps consistent with Whitney et al.’s account of vOT
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as an area that processes inanimate object motion. Moreover, Chen et al. demonstrated that
the VWFA’s connections to language and attentional networks were distinct and independently
functionally relevant, predicting competency in behaviours associated with these networks
in a double dissociation. Specifically, connections to the language network predicted word
reading abilities and picture naming vocabulary, while connections with the attentional network
predicted competency in tasks utilising visuo-spatial attention, and attention connections did
not predict language abilities or vice-versa.

Findings suggesting that vOT is implicated in visual attentional processes or dynamic object
perception are not necessarily mutually exclusive, and could provide insight into why vOT
seems to be functionally relevant in language-irrelevant processing, such as making manual
manipulations (e.g., twisting vs. pouring) in response to images of action-relevant objects
(Phillips et al., 2002) and dynamic motion perception (Whitney et al., 2019). Such findings
may further augment the neural recycling hypothesis, as such attentional and visual processing
is likely to be functionally convenient for key aspects of reading behaviour and processing, such
as the control of eye movements and representation of orthography as a collection of visual
objects that consequently move across the retina (Whitney et al., 2019).

1.4.4 Summary of vOT and its Word Form Specificity

To summarise, vOT shows, in sighted readers, robust sensitivity to the orthographic features
of visual word forms (Cohen et al., 2002; McCandliss et al., 2003; Price, 2012), with a
corresponding sensitivity in the N1 component (Bentin et al., 1999; Maurer, Brandeis,
et al., 2005). Moreover, consistent with the neural recycling hypothesis (Dehaene & Cohen,
2007), there is strong evidence that sensitivity to orthographic features in vOT develops
with literacy acquisition, rather than existing as an innate preference for grapheme-like
patterns. Nevertheless, it is clear that the region is much more flexible than the VWFA
name would suggest, showing sensitivity to information from non-visual modalities, and
possibly non-linguistic information. The involvement of vOT in a range of faculties, and across
multiple sensory modalities, has long led to calls for the role of the area, and accounts for its
involvement in visual word recognition, to be reconsidered (Price & Devlin, 2003). Although the
original conceptualisation of the neural recycling hypothesis, focusing on linguistic processing
of visual shapes, was somewhat limited, the general principle of cortical reuse appears to be
well-supported. Evidence for sensitivity to non-visual and non-linguistic information can be
used to inform a more flexible neural recycling hypothesis, in which the area is meta-modal,
and in which literacy acquisition does not necessarily lead to impairments in non-orthographic
vOT processes (Dehaene-Lambertz et al., 2018). Indeed, there have been recent calls to
describe vOT in terms of its general processing mechanisms and the forms of computation that
it supports, rather than its specificity for a single task or type of stimulus (Kay & Yeatman, 2017;
Vogel et al., 2014), to provide an account consistent with the area’s flexibility. An emerging
account of vOT that satisfies these criteria considers the area to be a site of interplay between
bottom-up and top-down contributions (Price & Devlin, 2011).
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1.5 Top-Down Modulation of Orthographic Processing

It has been suggested that orthographic processing in vOT is underpinned by top-down
modulation of bottom-up sensory information processing. Such an account is consistent with
evidence that vOT’s representations are flexible and meta-modal; it has been suggested that
top-down modulation could underlie findings of flexibility and meta-modality in vOT such as
its sensitivity to phonological information (Dehaene & Cohen, 2011; Fischer-Baum et al.,
2017; Pattamadilok et al., 2011; Planton et al., 2019; S. Wang et al., 2022). In the interactive
account of vOT’s contributions to reading, Price and Devlin (2011) argued that the area is an
interface between bottom-up and top-down information, wherein abstraction of orthographic
features from sensory input is guided by top-down predictions. Accounts like the interactive
account of vOT (Price & Devlin, 2011), that permit top-down influences within a processing
hierarchy (Rauss & Pourtois, 2013), exist within a predictive coding framework. According to
such a framework, the brain utilises higher-level information to build, maintain, and continually
update a generative model (or hierarchical series of generative models) of sensory information
(Friston, 2010; Rao & Ballard, 1999). Such generative models are proposed to propagate
their predictions to lower-level areas to compare internally generated predictions to externally
generated sensory input. In the case of orthographic processing in vOT, this would comprise
predictions of visuo-spatial features in graphemes and word forms (Gagl et al., 2022; Price
& Devlin, 2011), with neural activity scaling with the size of the prediction error, defined as
the difference between backward-propagated predictions and forward-propagated sensory
information (Gagl et al., 2020; J. Zhao et al., 2019). According to the interactive account of vOT,
therefore, motivated to minimise prediction error (A. Clark, 2013; Friston, 2010; Walsh et al.,
2020), the reading system may learn to use higher-level processes to generate predictions
of upcoming content, and provide these to lower-level orthographic processes via top-down
contributions (Price & Devlin, 2011).

To investigate effects of top-down modulation, it is important to define it. Top-down
modulation is a potentially broad term (Rauss & Pourtois, 2013). For instance, components
within orthographic processing, progressing from location- and typography-sensitive visual
information, to graphemic, and morphological levels of representation, may transfer information
locally via feedforward and feedbackward connections, as proposed by connectionist models
(e.g., McClelland & Rumelhart, 1981). Findings have supported the notion that such interactive
processing hierarchies exist and function as predicted by a predictive coding account. For
instance, Gagl et al. (2020), have shown that orthographic prediction error, calculated as the
pixel-wise distance between a presented word form and the orthography’s average word form,
predicts N1 amplitude, and fMRI activity in multiple regions including an area close to vOT.
Similarly, J. Zhao et al. (2019) showed that in developing readers of Chinese script, bottom-up
orthographic regularity interacts with their ability in reading and lexical classification to predict
N1 amplitude, with amplitude in the N1, interpreted as indicative of top-down modulation,
becoming less extreme as word recognition ability improves. Such findings provide support
for a predictive coding account of orthographic processing, and a likely influence of top-down
modulation. However, it has been argued that such findings should not be considered evidence
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for top-down modulation unless they also demonstrate an influence of processes outside
of the sensory domain or brain region in question (Barlow, 1997; Rauss & Pourtois, 2013).
The average word forms used by Gagl et al. (2020), and the lexical classification ability of
developing Chinese readers tested by J. Zhao et al. (2019), were context-irrelevant, and so the
finding of sensitivity to orthographic error does not necessarily support the notion that predictive
coding in orthographic processing is sensitive to top-down modulation. Instead, it is possible
that predictions are formed and tested entirely within lower-level orthographic processing
mechanisms, without higher-level input. As a result, top-down modulation of orthography can
be defined as the direct influence of higher-level non-orthographic processes on lower-level
orthographic processing, bypassing intermediary stages in the processing hierarchy (Barlow,
1997; Rauss & Pourtois, 2013). Examples of such higher-level non-orthographic information
include the broader semantic or task context that a word form is presented within.

How plausible is it, then, that orthographic processing is sensitive to top-down modulation?
One aspect that should be considered is whether the brain’s anatomical connections
could support top-down modulation. Notably, vOT shows robust anatomical and functional
connectivity with frontoparietal areas (Bouhali et al., 2014; L. Chen et al., 2019; Vogel et al.,
2012), including attention networks and prefrontal regions causally implicated in the top-down
modulation of sensory processing (Gilbert & Li, 2013). Findings also suggest that these
connections between vOT and frontoparietal areas influence the early processing necessary
for word recognition: evidence from MEG and intracranial EEG suggests that frontoparietal
regions influence vOT activity in some manner earlier than 200 ms after stimulus presentation
(Whaley et al., 2016; Woodhead et al., 2014), within the timeframe of the N1. The plausibility
of top-down modulation of such early occipitotemporal processing is further supported by
evidence for top-down modulation in correlates of visual perceptional processes comparable in
latency and localisation. For instance, research has shown sensitivity to top-down modulation
in the N1 (N170) associated with face processing (Blau et al., 2007; Dou et al., 2021;
Mattavelli et al., 2013; Rousselet et al., 2011; Wieser & Brosch, 2012), vOT activity during face
perception (Kay & Yeatman, 2017), and the N1 observed during object recognition (Maier &
Abdel Rahman, 2019; Rose et al., 2005). The notion that readers maintain a generative model
of upcoming content capable of influencing multiple levels of representation has also been
argued to be well supported by research on predictability (Kuperberg & Jaeger, 2016), though
the nature and scope of such a predictive system is widely debated (Altmann & Mirković,
2009; Huettig, 2015; Pickering & Gambi, 2018). Arguments against such predictive processes
influencing reading have often contended that naturalistic text is not predictable enough to
support predictions of it (Huettig & Mani, 2016). However, while average predictability in
naturalistic texts tends to be low, highly biasing contexts do occur rarely, but consistently, with
robust facilitative effects on reading behaviours like eye movements (Bianchi et al., 2020;
Luke & Christianson, 2016, 2018; Rayner, 1998; Staub, 2015). Further, when specific word
forms cannot be predicted, morphological features may still be highly predictable, and may
also benefit from orthographic predictions (Lopukhina et al., 2021; Luke & Christianson, 2015,
2018), while non-linguistic information such as visual aids, existing knowledge of the text, and
task demands other than reading for comprehension (e.g., skimming a text for specific words
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or phrases; Rayner et al., 2016) may provide additional context to reading processes beyond
the direct predictability of the text.

The extent to which higher-level, non-orthographic processes can modulate early,
lower-level orthographic processing is the focus of this thesis. While research suggests that
top-down modulation of orthographic processing is certainly plausible, the extent to which early
orthographic processing is causally influenced by such contributions is not unequivocal. To
demonstrate causality in effects of predictability, researchers must manipulate the degree of
top-down modulation that participants employ in reading processes, while controlling for other
factors. In some domains of cognitive research, researchers can interfere with processing in
regions involved in top-down processes to demonstrate a causal role, such as with transcranial
magnetic stimulation (e.g., Feredoes et al., 2011; Mattavelli et al., 2013; Zanto et al., 2011).
Such an approach would make demonstration of causality in language processing difficult: the
frontoparietal network involved in attentional and executive processes covers a broad network
of regions of the brain (Gilbert & Li, 2013), and regions close to or within this network are likely
involved in language processes unrelated to top-down modulation of orthographic processing.
As a result, researchers instead tend to investigate the causal role of top-down modulation
on orthographic processing with methodological paradigms that intend to differentially bias
participants’ orthographic predictions, while controlling for bottom-up features. Causal
interpretation of such evidence additionally requires consideration of the kinds of insights that
can be gained from the selected neuroimaging method.

1.5.1 Questions Permitted by Temporal and Spatial Perspectives

Top-down modulation of orthographic processing has long been proposed to be a vital
component in cognitive models of reading (Neisser, 1967), allowing acquired knowledge about
written language to inform perceptions of it (Rumelhart, 1977). Indeed, the interactive account
of vOT shares key features with connectionist models of word recognition like the interactive
activation model (McClelland & Rumelhart, 1981), such as a continual interaction between
processing levels (or brain regions) to permit feedforward and feedbackward synthesis. Such
cognitive models, although often inspired by principles of neural organisation (Rumelhart,
1989), were principally developed to account for behavioural observations like lexical decision
response times (Norris, 2013). With neuroimaging techniques like M/EEG and fMRI, however,
researchers can delineate the neural dynamics of such top-down modulation, restricting the
search to specific time frames or brain regions. This allows the development and testing of
temporally and spatially constrained models of specific neural processes involved in visual word
recognition (e.g., Gagl et al., 2022; Kay & Yeatman, 2017; Price & Devlin, 2011). Whether a
given investigation provides insight into spatial or temporal aspects of orthographic processing
depends largely on which neuroimaging method is applied. For instance, the millisecond-level
temporal resolution afforded by M/EEG allows researchers to delineate the timing of cognitive
processes, whereas the superior spatial resolution of fMRI can provide insight into their
location.

A spatial perspective can provide insight into the spatial dynamics of top-down modulation.
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For instance, fMRI could demonstrate that a low-level region shows sensitivity to higher-level
information that cannot be inferred from a stimulus’ low level features. Analyses could also
probe the representational nature of this sensitivity (Kriegeskorte et al., 2008), to examine which
features of higher-level information are encoded in lower-level regions, and the extent to which
lower-level representations encode the same information as higher-level regions. Furthermore,
by analysing functional connectivity, a spatial perspective can delineate the dynamics of how
information is communicated between regions to permit top-down modulation (e.g., L. Chen
et al., 2019), including identifying which regions the higher-level information is projected from.
However, the haemodynamic response, underlying the blood-oxygen-level-dependent signal
that fMRI records, is so slow (peaking several seconds post-stimulus) as to provide poor insight
into the timing of such interactions (S. G. Kim et al., 1997). Although sub-second resolution
can sometimes be achieved with fMRI through a variety of methodological techniques
(e.g., Buckner et al., 1996; Posse et al., 2012), it still provides far poorer resolution than
techniques like MEG and EEG, and interpretation is further obfuscated by variability in the
timing of the haemodynamic response across brain regions (Pfeuffer et al., 2003; Siero et al.,
2011). Functional near-infrared spectroscopy partially ameliorates such problems, but is
still temporally imprecise because of its reliance on the haemodynamic response. Activity
indexed by the haemodynamic response could potentially amalgamate multiple distinct events,
temporally discrete but spatially proximate. With such coarse temporal resolution, it is difficult
to ascertain the behavioural relevance of any top-down influence, as any representation of
higher-level information could emerge long after bottom-up orthographic processing has
occurred and may actually be contingent on word recognition having already been achieved.
Considering the speed at which humans can read and identify words (Brysbaert et al., 2019;
Hauk et al., 2012; Keuleers et al., 2012; Sereno & Rayner, 2000), the orthographic processing
necessary for word recognition must occur very quickly (Sereno et al., 1998), such that late
effects of higher-level information on orthographic processing, in regions like vOT, could be
irrelevant to initial word recognition (Hauk, 2016). Indeed, intracranial EEG recordings of
responses to words do suggest that, in addition to initial, early orthographic processing in
vOT, sensitivity to features like lexicality also emerge in the same (and in proximate) regions
hundreds of milliseconds later (Woolnough et al., 2021), possibly related to later feedback
from higher-level regions (Woodhead et al., 2014). Furthermore, because of the flexible
and meta-modal nature of the region, sensitivity to higher-level information in vOT could, in
later periods, even reflect the direct processing of higher-level non-orthographic information,
like the presented word’s phonology (Pattamadilok et al., 2019), rather than a modulation of
orthographic processing. Consequently, while a spatial perspective can provide insights into
the localisation of, and connective mechanisms underlying, top-down modulation, direct, online
evidence for behaviourally relevant top-down modulation of early orthographic processing
requires higher temporal resolution than that afforded by techniques like fMRI.

In contrast to the haemodynamic response recorded by fMRI, EEG measures changes
in the electrical currents of the brain, while MEG records the magnetic fields those currents
produce. Changes in these electrical currents reflect more directly the activity of neuronal
populations, affording far superior temporal resolution. With the millisecond-level resolution
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afforded by M/EEG, it is possible to discriminate between effects of top-down modulation on
early orthographic processing and later patterns of activity that arise in the same area but
are unnecessary for word recognition. Indeed, the ability of M/EEG to temporally disentangle
distinct neural events, that would be amalgamated by methods like fMRI, may in part explain
some findings indicating distinct activity patterns, or developmental trajectories, in the N1 and
vOT (Brem et al., 2009), despite consistent localisation of the N1 in vOT. These disparities may
reflect fMRI’s failure to isolate early transient activity from later activations in the same region.
To distinguish top-down modulation of early processes from later, post-lexical processes that
utilise the same regions, I focus on M/EEG methods in this thesis. A spatial perspective can
provide useful insight into which regions top-down modulation may influence and originate from,
but a temporal perspective is vital to demonstrate an impact on the early processes that instigate
initial word recognition.

1.5.2 Biasing Predictions to Causally Investigate Top-Down Modulation of
Orthographic Processing

Studies investigating the causal nature of top-down modulation of occipitotemporal orthographic
processing have principally manipulated readers’ expectations of specific visual word forms or
orthographic features and have examined the resulting variations in the N1’s amplitude and
latency, and in vOT activity. Typically, such biasing of expectations is achieved via linguistic
contexts, where text preceding the target word form provides a context that can vary in
how predictable it makes the target word form. An alternative approach, meanwhile, biases
expectations via non-linguistic cues, such as cross-modal contexts and manipulation of task
demands.

Biasing Word Form Predictions via Linguistic Cues

Readers’ predictions are typically manipulated via linguistic cues. A common approach is to
present a sentential context before a target word to bias its semantics. In these studies,
a word’s predictability is determined in a pre-experiment norming study, operationalised via
Cloze probability: participants read a sentential context and explicitly predict what the next
word will be. An alternative approach relies on the readers’ adherence to grammatical rules,
with the assumption that highly constraining grammatical rules induce strong predictions for
the identity or part-of-speech category of an upcoming word form. A key feature common to
studies that use linguistic cues to bias predictions is that they bias predictions using information
more high-level than orthography, rather than orthography itself. As an illustration, an approach
to biasing predictions without necessitating higher-level predictions or processing may be to
use something like a repetition priming paradigm, where a target word form is preceded by an
identical prime. For example, Eisenhauer et al. (2022) showed that identical targets preceded
by an identical prime showed facilitated orthographic and visual processing. Such an effect is
interesting, highlighting a role of orthographic preactivation in word recognition. However, as
with the predictive coding findings reported by Gagl et al. (2020) and J. Zhao et al. (2019),
although the effect reported by Eisenhauer et al. (2022) is suggestive of top-down modulation,

16



CHAPTER 1. GENERAL INTRODUCTION

its explanation does not necessitate top-down modulation, as orthographic preactivation could
occur entirely within an orthographic processing system or module. Rather than identical primes
and targets, then, stimuli should be orthographically distinct, primed (or preactivated) by higher-
level information. Indeed, studies with orthographically distinct but semantically related prime-
target pairs have demonstrated some effect of semantic relations on vOT activity (e.g., Devlin
et al., 2006). However, effects of priming between semantically associated words may reflect
higher-level knowledge, but may not necessitate online top-down modulation. For instance, vOT
may have learned to automatically preactivate word forms that often co-occur with observed
word forms without input from higher-level representations. This relates to an historic argument
made about the need to avoid direct semantic associativity, between semantic contexts and
target word forms, to conclude that effects result from top-down or interactive effects rather than
intralexical preactivation (Fodor, 1983; Forster, 1979). Similarly, if linguistic cues are used to
provide a biasing context to interrogate top-down modulation of orthographic processing, these
linguistic cues must bias predictions using only word forms that are orthographically unrelated,
in terms of orthographic features but also word form co-occurrence, to ensure that the effect of
predictability is not intra-orthographic. This is why studies have largely used sentential contexts,
which can bias predictions using higher-level semantic and discourse processes, avoiding direct
orthographic priming or effects of semantic associativity.

ERP investigations that have manipulated sentential context have generally demonstrated
effects in the N1, although the pattern of effects across studies is inconsistent (for a review,
see Sereno et al., 2019). Such studies have also typically varied word frequency, with the
assumption that an interaction of predictability with word frequency would provide evidence
for top-down influences on lexical access. While effects often extend to earlier and later
components, I focus here on those effects most relevant to this work, involving predictability
within the N1 window. Except where noted, sentences were displayed word-by-word,
although different word presentation rates or stimulus onset asynchronies (SOAs) were
used. Importantly, the studies cited here all broadly examined effects of prediction on the
N1, but differ somewhat in the exact windows they analysed: these timing differences are
illustrated in Figure 1.1. The review of studies utilising sentential contexts to examine the
effect of predictability is presented chronologically. Sereno et al. (2003), using a 450 ms SOA,
manipulated predictability (low, high) and word frequency (low, high) and found an interaction
of these factors in the N1 (132-192 ms) across posterior and anterior sites (comprising their
first factor in a spatial factor analysis). Specifically, they reported an effect of predictability,
leading to less negative amplitudes at higher predictability. This effect was observed for
low but not high frequency words. Penolazzi et al. (2007), using a longer SOA of 700 ms,
manipulated predictability (low, high), word frequency (low, high), and word length (four or six
letters). In a 170-190 ms window, they found that high predictability conditions showed a more
negative-going amplitude over centro-parietal sites than low predictability conditions, but unlike
Sereno et al. (2003), found no interaction with word frequency. In a German study, Dambacher
et al. (2012) varied predictability (low, high) and word frequency (low, high) in three experiments
using different SOAs, with results possibly suggesting that the disparity in SOA may account for
differences in whether a predictability-frequency interaction is observed. At the shortest SOA
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Figure 1.1: The timing of the N1 windows in predictability studies. Studies are listed in order of
mention in this section. For reference, the blue region reflects the period defined as the as the
N1 window in the experiments in this thesis, as reported in chapter 4 and chapter 5.

of 280 ms, but not at SOAs of 490 or 700 ms, they found an interaction of predictability and
frequency in the early portion of the N1 (135-155 ms). For high predictable words only, there
was a frequency effect, with low frequency words showing a more negative-going amplitude
than high frequency words over posterior sites. In a study measuring eye movements and
EEG simultaneously during normal reading, Kretzschmar et al. (2015) also manipulated
items’ predictability (low, high) and frequency (low, high). Testing only bilateral centroparietal
electrodes, their fixation-related potentials (FRPs) demonstrated a main effect of predictability
in a window from 150-200 ms, with high predictable words showing a more positive-going
amplitude than low predictable words, but did not find an interaction with frequency. Finally,
Sereno et al. (2019) manipulated both predictability (low, high) and frequency (low, high).
While the first, context sentence was presented in full, the second sentence containing the
target word was presented word-by-word, with a short, 300 ms SOA. Sereno et al. (2019)
found a predictability-frequency interaction in the N1 (160-200 ms). A predictability effect
emerged only for high frequency words. Amplitudes to low predictable words, in comparison
to those to high predictable words, were more positive-going over left-hemisphere sites, but
more negative-going over right-hemisphere sites. In sum, while these studies using sentential
contexts have demonstrated predictability effects in the N1 window, it is clear that the timing
and topography of effects, and interactions with frequency are not consistent.

A related study, also using sentential contexts to bias expectations, was conducted
by A. Kim and Lai (2012). In contrast to studies cited above that examined the effect of
predictability, however, all sentences were designed to be high-cloze. Using a 550 ms
SOA, A. Kim and Lai (2012) presented participants with target word forms that were either:
the predictable word, a pseudoword orthographically similar to the predictable word, a
pseudoword orthographically dissimilar from the predictable word, or a consonant-string
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nonword. Consistent with an orthographic explanation for prediction effects in the N1, it was
found that, relative to control words, N1 (175-205 ms) amplitude was more negative-going for
orthographically dissimilar pseudowords and nonwords. Orthographically similar pseudowords,
meanwhile, elicited N1 components more similar in amplitude to control words.

Another method of providing sentential context utilises grammatical manipulations. In such
a study, A. E. Kim and Gilley (2013) demonstrated effects of syntactic anomaly on the N1.
Sentences leading to a strong prediction for the determiner “the” were presented unchanged or
with the determiner replaced with a preposition (e.g., “the thief was caught by the/for police”).
Left-lateralised occipitotemporal N1s (170-270 ms) elicited by the target word were more
negative-going when the determiner was replaced with a syntactically anomalous preposition.
As the authors point out, the effect of the syntactic anomaly on the N1 is unlikely to be evidence
for sensitivity to syntax per se. Rather, in light of evidence suggesting the N1 is sensitive to
orthographic features, it is probably more accurate to interpret this early sensitivity to syntactic
differences as support for prediction of orthographic features, eliciting less negative-going N1
components when these predictions are confirmed.

That Kim and Gilley’s manipulation simultaneously altered both orthography and syntax
reflects an inherent issue with the use of sentential contexts to investigate early processing
of visual words. Namely, one cannot alter the visual word form without also altering the
semantics, syntax, or plausibility of the sentence or wider discourse the word appears in.
Methodological issues also arise, such as that ERPs elicited by the target word can become
difficult to disentangle from ERPs elicited by preceding words, especially if the delay is short or
unjittered. I argue that while sentential contexts, optionally with realistic presentation times, are
useful for demonstrating that early modulation by predictive processes extends to naturalistic
reading, their application is not necessary to demonstrate such modulation can occur. It is also
of note that in a recent review of ERP studies using sentence- and discourse-level contexts to
examine top-down contributions to visual word form processing, Nieuwland (2019) concluded
that findings thus far have been weak, inconsistent, and in need of more replication attempts.
Most studies so far were additionally not preregistered and used inappropriate models that did
not account for measurement variability, raising questions about false positives in that literature.

Biasing Word Form Predictions via Non-Linguistic Cues

As an alternative to relying on linguistic contexts to bias participants’ predictions, effects of top-
down modulation may be investigated using paradigms that modulate non-linguistic features of
tasks and stimuli. In one approach, task instructions are altered while stimuli are unchanged
or designed to be equivalent, exerting an influence on task demands and on participants’ task
sets. For instance, a task which explicitly requires participants to judge the lexicality of words
may be more likely to lead participants to predict and show sensitivity to lexical variables than a
task which requires judgements on a non-lexical dimension, such as the word’s colour. In one
such study, Bentin et al. (1999) presented words in a lexical decision task (word vs. nonword),
semantic categorisation task (concrete vs. abstract), and rhyme task (rhymes vs. does not
rhyme with "-ail"). Results revealed a task-stimulus interaction on the N1 (140-200 ms), with

19



CHAPTER 1. GENERAL INTRODUCTION

the difference between orthographically plausible and implausible stimuli (nonwords eliciting
N1 components with more negative-going amplitudes) being larger in tasks requiring lexical or
semantic processing than in the rhyme task. Y. Chen et al. (2013) also presented target words
compared lexical and semantic decision, but included a condition with minimal task demands
requiring only silent reading of the words. They identified an effect of task on the N1 (144-
176 ms), with a more negative-going N1 for words observed for lexical decision and semantic
decision than for silent word reading. In a similar study, Y. Chen et al. (2015) further suggested
that the degree to which variables like frequency and imageability affect activity in the N1 (144-
176 ms) is task-dependent. For instance, the effect of word frequency on source-space activity
in the N1, where less activity is observed as frequency increases, was larger in lexical decision
than in semantic decision or silent word reading. Using a related paradigm, Strijkers et al.
(2015) similarly reported that ERP amplitude in a period including the N1 (150-250 ms) is more
sensitive to word frequency (with more negative amplitudes for higher frequency words) during a
semantic categorisation than a colour categorisation task. F. Wang and Maurer (2017) applied a
similar paradigm to Chinese symbols, finding that the sensitivity of Chinese-reading participants’
N1 (125-253 ms) components to the difference between familiar Chinese characters and stroke-
matched, unfamiliar Korean symbols (with more negative amplitudes for Korean symbols than
Chinese characters) was greater in delayed naming and colour categorisation tasks than in a
repetition detection task. This effect was specifically observed in the N1’s offset period of 172-
253 ms, where onsets and offsets are defined respectively as the periods in the component’s
time window which precede or succeed its peak. Other non-sentential approaches to biasing
participants’ word form predictions include a related attempt to alter expectations for different
types of script, with the finding that native Mandarin speakers’ sensitivity in the N1 (onset 127-
162 ms; offset 162-212 ms) to differences between unfamiliar Korean (more negative offset)
and familiar Chinese characters (less negative offset) was greater when participants were led to
expect Chinese characters (F. Wang & Maurer, 2020). As task modulation only requires single
word presentation, it avoids the need to disentangle neural responses to successive words that
often exists with approaches that use linguistic contexts. Correspondingly, the paradigm has
been applied in fMRI studies. Comparing neural activity between implicit (silent reading) and
explicit (word naming) reading tasks, Qu et al. (2022) showed via representational similarity
analysis that representations of both orthographic and phonological information in vOT were
sharpened during explicit word naming.

In addition to general effects of task, it is also possible that top-down modulation could affect
orthographic processing of targeted representations - readers may construct predictions of
specific words or categories of words from semantic contexts. Indeed, it has been shown that
semantic information can be decoded from vOT activity in a manner that is modulated by task.
Examining representational similarity between semantic dimensions (taxonomic and thematic)
and VWFA activity during tasks when participants were required to categorise Chinese
characters on taxonomic or thematic dimensions, X. Wang et al. (2018) showed that relevant
semantic information could be decoded from fMRI patterns in a task-dependent manner.
More taxonomic semantic information could be decoded during a taxonomic categorisation
task, and more thematic information during a thematic categorisation task. Nevertheless, as
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has been argued, such fMRI findings could reflect both (or either) early and late interactions
between semantics and orthography, while less temporally coarse approaches like EEG and
MEG may be more appropriate for demonstrating an influence of predictions on initial word
recognition. In an ERP study that used a task manipulation paradigm, Segalowitz and Zheng
(2009) presented words and pseudowords in either a lexical decision task or lexical semantic
task. The latter task was here identical to the lexical decision task, except that words were
drawn from a single category (e.g., animals). Segalowitz and Zheng reported an interaction
between stimulus type and task in the N1 (158 - 178 ms), wherein, after the main effect of
task had been accounted for, N1 amplitudes for words differed between the tasks, but N1
amplitudes for pseudowords did not. This finding may suggest that knowledge of semantic
category membership affected processing during the N1 component, indicating a sensitivity
to lexical or post-lexical information in the N1, possibly resulting from top-down modulation.
However, it is unclear from this study whether the effect indeed reflects sensitivity to category
relevance, or a general effect of task demands on early sensitivity to lexicality or lexical features
like frequency, consistent with the research cited above. While the finding that Segalowitz
and Zheng report is interesting, further research could improve on the implementation of this
paradigm, disentangling interactions between task and lexicality, from interactions between
task and category relevance. Although not fully describing the interactions between both task
and lexicality, and task and category relevance, evidence has supported the notion that both
effects may exist. Using a similar paradigm to that used by Segalowitz and Zheng, Hauk et al.
(2012) compared ERPs in lexical (word vs. pseudoword) and semantic (living vs. non-living)
decision tasks, showing that in both tasks, stimulus differences were observed as early as 166
ms (data were analysed continuously, with no N1 window definition). This finding suggests,
consistent with the findings of Segalowitz and Zheng (2009), an early sensitivity to category
relevance during the N1 which, given the N1’s robust sensitivity to orthography, is likely to
reflect a top-down influence of higher-level predictions on orthographic processing.

To summarise the results of published studies that have used task manipulations to
investigate top-down modulation of the N1, task manipulations do seem to alter sensitivity to
orthographic features of words, suggesting a contribution of higher-level strategic processes.
Less research has examined whether task demands can influence sensitivity to word forms
that belong to expected semantic categories, and a key question remains whether such
sensitivity reflects a task interaction with category relevance or of lexicality. Paradigms that
manipulate task demands in this way have several advantages. Firstly, they remove the need
for word forms to be presented within sentences or wider discourse. This makes it much easier
to avoid issues like intralexical or intra-orthographic priming which can otherwise obfuscate
the interpretation of effects as top-down. Furthermore, manipulating task while presenting
identical stimuli across tasks mitigates effects of the target word form that may inadvertently
alter bottom-up processing. Indeed, as previously mentioned, no two words differ only in
semantics, but will necessarily vary in orthography, as well as in a range of dimensions such as
frequency, age of acquisition, familiarity, and phonology. Such features are likely to impact the
bottom-up processing of words, requiring careful and precise matching of items. By altering
task demands, while presenting identical or tightly controlled stimuli, researchers can alter
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top-down contributions but ensure that bottom-up information is comparable or equivalent.

In a related attempt to modulate top-down expectancy without linguistic context, Dikker and
Pylkkanen (2011) implemented a picture-word verification task, in which images containing a
target object alone, or a target object among other related objects, were followed by written
noun phrases (article + noun) denoting the target object. They manipulated congruency (match
or mismatch of the noun phrase to an object in the image) and predictability (low, with the target
object as one of several objects, or high, with the target object presented alone). Although
they did not examine effects in the MEG equivalent of an N1 window, they did find effects
of congruency only in the high predictive condition in preceding and succeeding temporal
windows. Dikker and Pylkkanen’s stimuli were designed such that orthographic similarity
between congruent and incongruent pairs of stimuli was minimised, suggesting that the
authors anticipated that any early sensory effect of predictability may be related to orthographic
processing. It is possible that the study (N=7) lacked the sample size necessary to identify
such an effect in an N1-like window. Indeed, in a related paradigm, Kherif et al. (2011) recorded
fMRI while picture and word prime-target pairs were presented in a repetition priming design.
The stimulus types of prime-target pairs were either matching (word-word, varying typography,
and picture-picture) or non-matching (word-picture and picture-word). Kherif et al. (2011)
showed cross-stimulus priming effects in vOT for the picture-word condition. Assuming that
picture identity is not directly processed in the orthographic processing system, these findings
suggest that higher-level processes link the identity and content of pictures to orthographic
representations of word forms. However, Kherif et al.’s use of fMRI obscures the interpretation
of the timing of such effects - mapping of picture content to orthographic representations could
occur so late as to be irrelevant to initial word recognition processes.

As with the task manipulation approach, picture-word tasks like those used by Dikker and
Pylkkanen (2011) and Kherif et al. (2011) have several advantages over paradigms that rely
on linguistic cues. Like task manipulations, the picture-word paradigms can avoid intralexical
or intra-orthographic priming effects that might sometimes confound approaches like sentential
contexts or word-word priming to bias predictions. An additional advantage of picture-word
paradigms is that the researcher can control and manipulate variables like predictability and
specificity of the picture-word relation. This was demonstrated in the design of the task used
by Dikker and Pylkkanen (2011), where the picture preceding the target word could clearly bias
participants towards expecting one word form, with an image of one clearly identifiable object, or
towards expecting multiple possible word forms, with an image of multiple candidate items. Such
a manipulation is comparable to the use of cloze probability in sentential contexts. Nevertheless,
unlike task manipulations, picture-word paradigms must use stimuli that are carefully matched
between picture-congruent and picture-incongruent word forms to ensure that effects do not
arise from bottom-up differences.
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1.5.3 Summary of Top-Down Modulation of Occipitotemporal Orthographic
Processing

In sum, findings suggest there may be effects of predictability on early occipitotemporal
responses to word forms, indexed by the N1, though studies thus far have largely relied
on sentential contexts, and have been inconsistent in effects, in need of further research
and replication (Nieuwland, 2019). Two promising, non-linguistic approaches to biasing
participants’ expectations of upcoming word forms are paradigms that manipulate task
demands, and paradigms that use cross-stimulus semantic relationships such as picture-word
verification tasks. One key question concerns the specificity of prediction effects, as most
research has only presented high and low predictability items, rather than varying predictability
continuously to delineate more precisely the point at which higher-level information impacts
early orthographic processing. This review also highlights the importance of methodological
considerations, such as precise close matching of items.

1.6 Methodological Considerations

Throughout this introduction, several methodological issues have been highlighted, such as the
need for precise stimulus matching and appropriate modelling approaches. These issues are
considered in detail in this thesis, and potential solutions are proposed.

1.6.1 Controlling for Confounding Variables

As highlighted in this introduction, no two words differ on only one dimension; words are multi-
faceted, varying continuously on a range of dimensions from orthography and phonology to
frequency and semantic associations. With regards to research on top-down modulation of
word recognition processes, this means that words differing in their top-down relevance, either
congruous or incongruous with the reader’s expectations, also differ in terms of their bottom-
up features. The problem is often solved in psycholinguistics research by selecting items that
differ in the relevant dimension, but are precisely matched on dimensions that may confound
the effect of interest. For instance, in research on the top-down modulation of orthographic
processing, features like frequency, length, and orthographic neighbourhood should be matched
between prediction-congruent and -incongruent conditions. Such matching techniques are are
often applied manually, and are difficult to reproduce. However, with the growing importance
of replication, reproducibility, and preregistration in Psychological science (Munafò et al., 2017;
Nosek et al., 2018; Nosek et al., 2022), there is an increasing need to formalise matching
methodologies computationally. In this thesis, I explicitly formalise two approaches for stimulus
matching, respectively presenting a new R (R Core Team, 2021) package I developed, LexOPS,
and suggesting a novel application of existing statistical tools.
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1.6.2 Consideration of Statistical Approaches

Variables used to match items in stimulus design are often derived from norming studies, where
participants rate items on specific dimensions. Such variables are also widely used as predictors
in statistical models, either as independent variables or as covariates to mitigate the effects
of confounds. The norming approach to calculating variable features is most common when
variables are difficult to formalise computationally, or cannot be derived from corpora of texts
(e.g., the emotional valence of a word). However, such norms are usually calculated as simply
the average rating on the Likert scale. Such an approach, when the norms are treated as
continuous variables, is inappropriate for a variable that is fundamentally ordinal: there is no
reason to assume that the step between 1 and 2 on a Likert scale is equal in magnitude to
the step between 2 and 3. Inappropriate treatment of ordinal ratings as continuous variables
limits the quality of inferences that can be made about them, and is the cause of misleading
artefacts in norming studies (e.g., Pollock, 2018). Further, because of the size of norming
studies, especially for large-scale norming studies of words (e.g., Brysbaert et al., 2014), ratings
are calculated from subsets of participants rating subsets of items, which introduces hierarchical
complexities into norming data. I argue that with more appropriate statistical approaches, like
explicitly ordinal, hierarchical models with random (varying) effects, researchers will be able to
more accurately and meaningfully norm items.

One case where such an approach may not improve inferences is when the normed variable
is binned into ordinal categories. For example, researchers may compare the 100 words that
are rated highest on the normed dimension to the 100 lowest words. However, such binning
into ordinal categories considerably reduces the quality of inferences that can be gained
from data (MacCallum et al., 2002; Royston et al., 2006) discarding meaningful differences
between observations. One possible reason for ordinal binning of continuous variables being
so widespread is that it has often been necessary to satisfy the requirements of statistical
methods. For instance, t-tests and Analyses of Variance (ANOVAs) compare means of groups,
while accounting for variability within groups. Traditionally, including continuous variables in
analyses would have required the use of regression approaches that fail to account for repeated
measurements within groups. However, with the rise of mixed effects (hierarchical/multilevel)
approaches to modelling it is possible to include multiple random effects in a model with
continuously varying fixed effect predictors, more accurately describing how the data were
generated (Baayen et al., 2008; Barr et al., 2013; Pinheiro & Bates, 2000; Yarkoni, 2022). In
addition to using random effects to calculate norms, in this thesis I apply mixed effects models
to more accurately describe behavioural and EEG data. Such approaches can additionally
benefit from the use of link functions more appropriate to the probability distribution of the
dependent variable, in generalised linear mixed effects models (Bürkner & Vuorre, 2019; Lo &
Andrews, 2015), and from descriptions of changes in the full distribution rather than simply its
central tendency, in distributional models (e.g., Heathcote et al., 1991; Staub et al., 2010).
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1.6.3 (Re-)defining Orthographic Similarity

Just as statistical models can be selected that more fully describe data, I argue that fuller
computational descriptions of orthography can improve the quality of insight that can be
gained from cognitive models of visual word recognition. The most widely applicable measure
that can be derived from an orthographic description is orthographic similarity, quantifying
the distance between word forms. Orthographic similarity has played a significant or central
role in models of visual word recognition (e.g., Adelman, 2011; Davis, 2010; Gagl et al.,
2022; Gomez et al., 2008; Norris, 2013; Norris & Kinoshita, 2012). However, measures of
orthographic similarity have mostly limited their scope to the level of graphemes, implicitly
ignoring the more fine-grained elements from which characters are composed. Indeed, the
mostly widely used measure of orthographic similarity, orthographic Levenshtein distance,
and its neighbourhood complement, OLD20 (Yarkoni et al., 2008), are calculated under
the implicit assumption that characters are functionally equivalent and interchangeable in
orthography. Standard Levenshtein distance neglects the complexities of individual graphemes,
and similarities between graphemes. I argue that calculating orthographic similarity from a
pixel-based implementation of orthography can yield more powerful and sensitive metrics
of orthographic similarity. Such measures can be used to further research on areas like
typographic sensitivity, since it permits the calculation of font-specific similarity estimates. I
further argue that such a measure can contribute meaningfully to the development of more
specific hypotheses regarding orthographic processing, particularly its sensitivity to top-down
modulation, as models of top-down modulation make specific predictions about the relationship
between top-down modulation of orthography and orthographic similarity between observed
and predicted word forms.

1.7 Thesis Layout

In chapter 2, I present an R package I developed, LexOPS, to enable reproducible and
precise item-wise stimulus design. I also describe and evaluate an alternative approach
using existing tools to match stimuli in a distribution-wise manner, and compare this to, and
integrate it with, the item-wise approach implemented in LexOPS. In chapter 3, I argue that
norming studies that use Likert rating paradigms should calculate their norms from hierarchical
ordinal models. I specifically focus on Cumulative Link Mixed Effects Models (CLMMs), and
show via a series of Monte Carlo simulations and re-analyses of existing datasets (including
of subjective orthographic similarity ratings), that CLMMs solve many statistical issues that
exist for traditional norming methods. Approaches outlined in chapters 2 and 3 are applied in
research presented in later chapters, including stimulus design and hierarchical analyses of
rating data. In chapter 4, I expand on the paradigm introduced by Segalowitz and Zheng (2009)
and examine whether the occipitotemporal N1 shows sensitivity to category-level expectations
of word forms, manipulating task by presenting the same items in a lexical decision task and a
semantic categorisation task. I present evidence that stimulus-task interactions emerge later
than the N1. In chapter 5 I hypothesise that the lack of effect in chapter 4 was due to the lack
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of word form specificity permitted by category-level predictions. In a picture-word verification
task, I vary predictability continuously to identify the relationship between predictability and
top-down modulation. I find an interaction between picture-word congruency and predictability
that is consistent with top-down modulation of activity during the N1. However, I argue that the
pattern of results that I find is inconsistent with a simplistic implementation of predictive coding,
instead supporting a "sharpening" of neural responses to predicted orthographic information.
In light of these results, I consider that a full description of how semantic information interacts
with orthographic processing requires a computational description of orthography, from which
orthographic similarities and neighbourhoods can be inferred. In chapter 6 I implement a
pixel-based measure of orthographic similarity (SCOLD) that could be integrated into models
of orthographic processing to provide a more powerful framework for describing hypotheses of
orthographic processing and its sensitivity to top-down modulation. I compare the predictive
power of SCOLD to that of standard Levenshtein distance in models of behavioural and neural
correlates of orthographic similarities and neighbourhood densities. Finally, in chapter 7, I
consider and evaluate the conclusions that can be drawn from this thesis, relating the work to
existing literature and future work.
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Chapter 2

LexOPS: An R Package and User Interface for
Stimulus Selection

2.1 Introduction

A fundamental dilemma inherent to psycholinguistics research is that there exists a finite set
of real words. By necessarily sampling from a finite population of stimuli, psycholinguists are
limited to only drawing inferences about the effects of variables from locations within these
variables at which words exist. Were a feature space created from all visual, auditory, and
semantic variables which might impact humans’ perceptions of words, words would populate
this space rather sparsely, and there would be few cases of any two words differing in terms
of only one variable. This stands in contrast to forms of stimuli for which unique items can be
generated by sampling values from continuous parameters which define them. At the extreme,
stimuli randomly generated from these parameters can be applied in approaches like reverse
correlation to infer isolated effects of, and interactions between, relevant variables. Examples
include attempts to delineate the perception of features in orthographic characters (Gosselin &
Schyns, 2003; Ling et al., 2019), faces (Jack & Schyns, 2017; Mangini & Biederman, 2004) or
voices (Ponsot et al., 2018). Similarly, researchers wishing to modulate an independent variable
while holding confounding variables constant can typically generate, from such a system, items
which differ in one variable but are matched exactly on other variables, even if no such stimulus
exists in the population of real stimuli that the system emulates. While such an approach may
be applied in psycholinguistics to generate novel plausible pseudowords which are perceptually
similar (orthographically or phonologically plausible) to real words (such as with an N-gram
chain method of generating pseudowords; Keuleers & Brysbaert, 2010), its application restricts
researchers to only examining and considering effects of stimuli’s sublexical features. This
reduction would neglect the effects of higher-level variables like semantics and frequency of
exposure which are present in real words, and which the researcher may even be specifically
interested in, as a novel pseudoword has no meaning and a frequency of zero. Instead,
researchers in psycholinguistics largely rely on presenting real words varied and matched on
respective variables within some reasonable tolerance, or else using data-driven approaches
attempting to implement controls statistically on the limited number of observations available.

Whether designing controlled experiments or estimating effects of variables in data-driven
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Figure 2.1: The percentage of documents on Scopus published each year in the period 1990-
2021 containing the term "psycholinguistics" in the title, abstract, or keywords, which also
contains the term "corpus", "database", or "norms".

approaches, psycholinguists require a large amount of data on variables of interest to identify
suitable candidate words and to implement controls. Reflecting this demand, the number and
size of psycholinguistic corpora that have been created and employed in research have greatly
increased in recent years. Figure 2.1 shows the growing proportion of psycholinguistic research
over the past three decades that provides or cites databases related to various properties of
words. Indeed, the use of large datasets has been made considerably more feasible as a result
of the internet and an increase in computing power. Although such large-scale databases
of psycholinguistic features, with interfaces for querying and downloading contents, have
existed for many years (e.g., Balota et al., 2007; Coltheart, 1981), few tools currently exist
to aid in adapting these datasets to generate suitably controlled stimuli, and these are often
greatly limited in their capabilities, requiring considerable supervision and manual inputs from
researchers. This makes the generation of controlled word stimuli currently time-consuming,
labour-intensive, and difficult to reproduce.

One tool that has been provided and is widely used to control for factors in stimulus design
is Match, a command line tool written in C++ (van Casteren & Davis, 2007). Match supports
item-wise matching of factorial designs on numeric variables. Here, it uses Euclildean distance,
with equal weighting given to all variables, to identify optimal matches across conditions.
For instance, if matching two conditions of word stimuli by word frequency and length, it will
iteratively try combinations of word pairs to minimise the overall sum of Euclidean distances
between all pairs of words. The final stimuli provided will comprise the list which, of those
tried, has the smallest overall sum of distances between pairs. Match has been widely used
to generate stimuli, especially in psycholinguistic research. However, the program has key
limitations when compared to how researchers often match words. For instance, matching by
unweighted Euclidean distance assumes that researchers consider all variables as equally
important in matching. In fact, researchers may be more concerned with matching variables
like word frequency, that account for large proportions of variance in word recognition behaviour
(Brysbaert et al., 2011; van Heuven et al., 2014), than they would be for matching variables
likely to be less impactful, such as a word’s number of synonyms. Furthermore, the researcher
may wish to match items using variable-specific tolerances (e.g., match word length exactly,
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but match frequency within a certain tolerance), combine such variable-specific approaches
with distance matching, or match by multidimensional item-wise variables like orthographic
similarity. In this chapter I present a tool I have developed to address such limitations of existing
software, providing a much more flexible solution to the problem of matched stimulus design.

This chapter presents LexOPS, a flexible R (R Core Team, 2021) package I developed
to offer a comprehensive range of capabilities relevant to the selection of psycholinguistically
controlled word stimuli. The appellation, ’LexOPS’, is derived from four types of word properties
commonly recognised in psycholinguistics: Lexical, Orthographic, Phonological, and Semantic.
The most noteworthy feature of LexOPS is that it can produce suitably controlled word stimuli
for any possible user-specified factorial design, specified in a readable and fully reproducible
pipeline of code. To further support readability and interpretability, the package features an
easy-to-use graphical user interface (GUI) in the form of a Shiny app (W. Chang et al., 2018),
which provides multiple interactive visualisations and summaries of available word properties,
as well as how stimuli LexOPS has generated relate to these properties, and can translate
selected GUI options into reproducible code. Another novel feature of the package is that it can
work with any database of variables for a finite set. This means that the user is not limited to
built-in variables or words, but can design stimuli according to any numerically or categorically
defined properties, for words from any language. Nevertheless, several useful psycholinguistic
variables are included from a range of datasets to illustrate the capabilities of LexOPS. These
also serve as a template demonstrating the expected format of the data if users wish to run
LexOPS on their own databases. Given that LexOPS can work with any suitably formatted
data, and the ease with which new datasets can be downloaded and combined, the built-in
dataset included with LexOPS is explicitly not exhaustive in its coverage.

This chapter first provides an overview of the package’s functionality in generating well-
controlled stimuli. I then describe the variables native to LexOPS, citing sources for the data
and explaining the processes by which original variables were calculated. Using variables drawn
from the built-in dataset, I then provide illustrative examples of possible applications for LexOPS.
Following this, an introduction to the package’s accompanying Shiny app is presented. I also
report the results of a validation analysis, comparing the stimuli used in several well-controlled
experiments to examples generated with the package. Implications for reproducibility and
replicability are discussed. Finally, a distribution-wise approach to matching stimuli is introduced
and briefly contrasted to the explicitly item-wise appraoch of LexOPS. I demonstrate that the
item-wise and distribution-wise approaches are not mutually exclusive, but can be combined
to flexibly generate stimuli matched using both approaches. Although I provide an overview of
the LexOPS package’s functionality, and alternative computational approaches to matching, this
chapter is not intended to be read as a tutorial. Detailed instructions on how to install and use the
package are available in the LexOPS walkthrough: https://JackEdTaylor.github.io/LexOPSdocs/.

2.2 Functionality Overview

LexOPS is designed to support two main methods of stimulus generation: a fully automated
grouping of items into factorial cells according to specific constraints (with the "generate
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pipeline"), and a more bespoke matching of stimuli from several candidates (with the
match_word() function). Example practical applications are provided with code later in this
chapter.

2.2.1 The Generate Pipeline

The "generate pipeline" consists of three main functions: (1) split_by(), for specifying
independent variables; (2) control_for(), for specifying variables that should not differ between
conditions; and (3) generate(), for running the algorithm that generates lists of stimuli. Factorial
designs with any number of main or interactive effects can be generated by calling the split_by()
function once for each variable which consists of a main effect. The factorial designs specified
by these functions can adopt any number of word properties, expressed either numerically
(e.g., concreteness) or categorically (e.g., part of speech), as independent variables with
user-defined levels. Similarly, the user can define any number of control variables with multiple
calls to control_for(), with tolerances of any size. The generate() function employs options
defined in calls to split_by() and control_for() to create a stimulus list, with the requested
number of items, that fit the specified options.

The generate() function creates lists of stimuli in the following way. Firstly, the boundaries of
each factorial cell are identified, and the factorial cell to which items should be matched (i.e., the
"match-null" condition), is assigned. By default, this is done pseudo-randomly, such that each
factorial cell is used as a match-null with equal frequency, and in a random order. If the number
of stimuli requested is not divisible by the number of factorial cells, the match-nulls will, by
default, be allocated as equally as possible across conditions, with over-represented conditions
selected randomly. Other (non-default) options for assigning conditions as match-nulls to each
item include assigning a single factorial cell as the match-null for all items, assigning match-
nulls completely randomly (i.e. no attempt is made to balance assignment across conditions),
and designating that the tolerances should be treated "inclusively" such that every factorial cell
is within each tolerance of every other factorial cell. The generate() function then iteratively
identifies suitable combinations of stimuli. On each iteration, a word is randomly selected that
fits the current match-null condition’s specifications (e.g., a word with a low valence rating that is
a noun). Possible matches that fit the other conditions’ specifications (e.g., high valence nouns,
low and high valence verbs), but that are matched to the word selected from the match-null
condition on control variables (e.g., within ±.2 Zipf frequency and of equal length), are then
identified for each condition, from a pool of unused words. One word is randomly selected from
this pool for each condition. If it is not possible to generate a match from each condition for
the word from the match-null condition, the function will discard the result of this iteration, and
randomly select another word that has not yet been tried, from the same match-null condition.
Words that are successfully generated for each condition are stored, and the function will
attempt to generate another matched set for the next match-null condition. This will be repeated
until as many stimuli are generated as was requested, or until the function fails to generate
new stimuli. In addition, the user can elect to generate as many stimuli as possible. If this is
specified, the function will generate items until it can no longer generate a matched set across
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all conditions.

2.2.2 Generating more Complex Experimental Designs

The two key functions of the generate pipeline detailed in the previous section, split_by()
and control_for(), are suitable for most applications, but are insufficient for more complex
experimental designs. Additional functions have been created to allow the generate() function
to accommodate these commonly used methods of matching stimuli. These functions can be
combined with split_by() and control_for() and can be similarly chained multiple times within a
single pipeline to allow the user to define any number of splits or controls.

Creating Conditions Unrelated to the Stimuli

A central assumption of the split_by() and control_for() functions is that the experimenter wishes
to control for specific variables across conditions which differ according to features of the stimuli.
In many cases, however, this is not the case. The experimenter’s manipulation may instead be
unrelated to the stimuli. For instance, the experimenter may wish to present tightly controlled
stimuli in two distinct tasks, or varying whether the participant receives genuine or sham brain
stimulation such as Transcranial Magnetic Stimulation (TMS), but avoiding presenting the same
words to each participant twice. The experimental design may additionally examine whether
the effect of this variable interacts with one or many variables which could be defined more
straightforwardly via split_by().

The split_random() function was written to allow for stimuli for such designs to be created
with LexOPS. The function allows the user to specify a split in the data which is random (though
reproducible with a seed), with any number of levels, matched item-wise using the specified
controls. If a pipeline is run which uses both split_by() and split_random(), this will result in a
factorial split similar to that produced by a pipeline using multiple calls to split_by().

Higher-Order Matching

Similarly, an assumption of the control_for() function is that controlled-for variables can be
expressed, and are stored as, vectors containing a single number for each candidate item. While
this is true of most variables (and of all variables in the inbuilt dataset), some variables can only
be fully expressed in multidimensional arrays. As an example, consider similarity values. The
experimenter may wish to control for orthographic, phonological, or semantic distance values,
constraining the extent to which matched items have similar appearances, sounds, or meanings
to one another. Such values could only be stored in a matrix of size N2. Alternatively, if the
variable may be computationally costly to calculate for all possible cases, the user may wish to
only calculate the variable for items which are actually considered as candidate matches by the
generate() function.

To allow the generate pipeline to work with such multidimensional or computationally costly
variables, the control_for_map() function was written. As the "map" suffix suggests, this is a
higher-order function allowing the user to specify a function that should be called to return a
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given iteration’s values for the variable, given the identifier for the current iteration’s item and
the candidate item it is being matched to. The user-provided function may either index an
existing array of data if all possible values have already been calculated, or alternatively may
itself calculate only the values necessary for a single iteration.

Matching by Measures of Distance

While specifying specific tolerances for each numeric variable in control_for() is easily
interpretable, and is more likely to reflect researchers’ practice in Psycholinguistics when
matching manually, an alternative approach exists which is more flexible. Rather than matching
items in separate one-dimensional arrays of values, the researcher may wish to match items
by measures of distance in a multi-dimensional space derived from these variables. As an
example, Match (van Casteren & Davis, 2007) generates stimuli according to Euclidean
distance calculated from an arbitrary number of variables. An advantage of matching by
Euclidean distance in this way is that it penalises candidates which are extremely distant from
the target in one dimension, by favouring or only permitting matches which are then also closer
in other dimensions. Additionally, such a Euclidean space could be weighted so that the extent
to which variables contribute to the distance between two items is proportional to their relative
importance. This relative importance may be decided by experience, for example giving more
weight to word length and frequency based on the prior knowledge that these variables explain
the most variance in lexical decision tasks (LDTs). Alternatively, these weightings could be
data-driven, drawn, for instance, from standardised Beta values of a linear model.

To support this approach to stimulus matching in LexOPS, and its combination with more
variable-specific approaches to matching, the control_for_euc() function was written. This user-
friendly wrapper for control_for_map() allows the user to provide a list of variables, and an
optional list of weights, to control for variables in terms of Euclidean distances. If weights are
not provided, the variables are by default weighted equally. This function can also be arbitrarily
combined with the control_for() function such that a single pipeline can generate stimuli matched
in a combination of controls calculated in Euclidean space and raw one-dimensional values.
In addition, multiple calls to control_for_euc() can be used to match in multiple Euclidean
spaces simultaneously. This latter use could be applied, for example, in cases where the
researcher wishes to match by multiple estimates of the same features. For instance, two calls
to control_for_euc() could be used to match word frequency as a combination of objective word
frequency estimates and subjective familiarity ratings via one call to the function, while also
matching for multiple estimates of word concreteness using different Likert scales via another
call to the function.

2.2.3 Matching Individual Words

Finally, LexOPS permits more bespoke stimulus generation with the match_item() function.
This function suggests possible matches for a given string (or item), within tolerances for
any number of variables specified by the user. This is useful for cases when the automatic
stimulus generation detailed above is unsuitable. For instance, experiments presenting
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stimuli within sentences often require that matched controls for target words are semantically
plausible replacements within a given sentential context, which can be difficult to quantify. The
match_item() function will return a list of possible matches ordered by Euclidean distance
(calculated from all numerical matching variables). The user can then easily select the best
match that is a suitable replacement for the target word.

2.3 Inbuilt Variables

While the package can generate stimuli from any dataset provided by the user, LexOPS has
a dataset already inbuilt. This dataset is not exhaustive, but is an amalgamation of several
variables useful for generating word stimuli. These variables can be broadly sorted into five
categories: (1) lexical, (2) orthographic, (3) phonological, (4) semantic, and (5) behavioural.
Some variables were taken directly from freely available published corpora, whereas others
were calculated indirectly from such sources. All built-in variables are for English words only.
The package will work with variables from any language, but these need to be provided by the
user.

The built-in dataset was filtered, such that word entries were excluded based on the following
criteria: (1) they contained non-alphabetic characters; (2) they were longer than 28 characters;
or (3) they were only observed once out of all of the word frequency corpora that were used.
This left a total of 262,532 unique word strings.

2.3.1 Lexical Variables

Built-in lexical variables include word frequency and part of speech. Word frequency corpora
comprise the SUBTLEX-US corpus (Brysbaert & New, 2009), the SUBTLEX-UK corpus
(van Heuven et al., 2014), and the British National Corpus (“The British National Corpus,
version 3 (BNC XML Edition)”, 2007). Frequencies are available in LexOPS in two standardised
measures: in frequency per million words (fpmw), or in the Zipf scale, calculated as Zipf =
log10(frequency per billion words) (van Heuven et al., 2014). The Zipf scale is a log-normalised
measure of word frequency bounded between 1 and 8, which in the context of LexOPS makes
it easier to visualise and implement as an independent variable or control variable than fpmw
or log(fpmw) (Brysbaert et al., 2018). The BNC frequencies were calculated by parsing the
tagged xml of the latest version of the BNC. LexOPS additionally separates the written and
spoken sources in the BNC, though the combined frequency across these modalities is also
available.

The part of speech for a given word in LexOPS is defined as its most commonly identified
part of speech within a specific corpus. Part of speech is available as a categorical variable,
according to SUBTLEX-UK, the BNC, and the English Lexicon Project (ELP; Balota et al., 2007).

33



CHAPTER 2. LEXOPS: R PACKAGE FOR STIMULUS SELECTION

2.3.2 Orthographic Variables

Inbuilt orthographic variables comprise length (number of characters), bigram probability, and
orthographic neighborhood size.

Character bigram probability was calculated using the word frequency corpora listed in the
previous section. For each word frequency corpus, the probability of each possible character
bigram (from aa to zz) was calculated by counting the number of times each bigram appears,
weighted by the frequencies of the words it appeared in, in fpmw. These bigram frequencies
were then scaled from 0 to 1 to get the respective probabilities of all bigrams. A word’s bigram
probability could then be calculated as the mean probability of all its constituent bigrams (i.e.,
both overlapping and non-overlapping).

Orthographic neighborhood size is available in two measures. The first is Coltheart’s N
(Coltheart et al., 1977), defined as the number of words at a Hamming distance of 1 (i.e., a one-
character substitution) from a given word.. The second is Orthographic Levenshtein Distance 20
(OLD20; Yarkoni et al., 2008), defined as the mean Levenshtein distance between a given string
and its 20 closest Levenshtein neighbors, where Levenshtein distance is the minimum number
of character insertions, substitutions, or deletions between two strings. The OLD20 measure
is generally preferable to Coltheart’s N, as it allows for distance calculation between strings of
different lengths and better accounts for behavioural correlates of orthographic neighbourhood
density (Yarkoni et al., 2008). Both of these measures were calculated using the R package,
"vwr" (i.e., "visual word recognition"; Keuleers, 2013).

2.3.3 Phonological Variables

The inbuilt phonological variables of LexOPS comprise the following: number of phonemes,
number of syllables, number of pronunciations, rhyme, and phonological neighborhood size.
The phonological features were calculated using phonetic transcriptions from two different
sources: the eSpeak speech synthesiser’s (“eSpeak version 1.48.15”, 2015) standard British
English pronunciations of all entries in the database; and the Carnegie Mellon University
(CMU) Pronouncing Dictionary of American English (Weide, 2014).

The transcription system adopted by eSpeak (Kirshenbaum phonetic encoding) uses one-
character ASCII representations for individual phonemes, but two-character representations for
affricates and diphthongs. The affricates /Ù/ and /Ã/ (as in the beginnings of char and jar,
respectively) are encoded with one-character ASCII representations. The CMU transcriptions
are represented by an ARPAbet transcription system for American English, and are represented
as either two-letter or one-letter ASCII characters. For example, the word how, containing the
diphthong /aU/, is represented as ’HOW’ in the two-character system or as ’hW’ in the one-
character system. Similarly, the word China, containing the affricate /Ù/, is represented as ’CH-
AY-N-AE’ (with phonemes separated by hyphens) in the two-character system, or as ’CYN@’ in
the one-character system.

Number of phonemes is simply a count of how many phonemes a word contains. The
number of syllables was calculated by simply counting the number of vowel phonemes that
occurred in the transcription. The number of pronunciations is a variable only available for the
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CMU Pronouncing Dictionary, calculated by counting how many possible pronunciations are
listed for each entry. This includes differences in both pronunciation and stress patterns.

Rhyme is represented as a categorical variable consisting of a transcription of all phonemes
from the final vowel phoneme until the end of the word (i.e., the final syllable’s ’rime’). For
instance, eSpeak’s British English pronunciation of partake is represented as /pAteIk/ in the
International Phonetic Alphabet (IPA) and, as such, belongs to the rhyme category of /-eIk/,
which it shares with entries such as steak and opaque.

Phonological neighborhood size is available in terms of the phonological Coltheart’s N
and Phonological Levenshtein Distance 20 (PLD20), calculated similarly to the orthographic
neighborhood measures, using the "vwr" package for R (Keuleers, 2013).

2.3.4 Semantic Variables

Semantic features which LexOPS has built-in mostly come from norming studies in which
participants provide ratings for a particular semantic aspect of a word on a Likert scale. A
summary of the available semantic features is presented in Table 2.1.

2.3.5 Behavioural Variables

Behavioural variables consist primarily of lexical decision response time and accuracy from the
ELP (Balota et al., 2007) and the British Lexicon Project (BLP; Keuleers et al., 2012).

Behavioural variables also include measures of proportion known (the proportion of people
who know a given word) and word prevalence (probit-transformed proportion known), taken
from (Brysbaert et al., 2019). Brysbaert et al. (2019) demonstrate that proportion known and
word prevalence have advantages over variables such as word frequency, age of acquisition,
and familiarity (which have traditionally served as proxies to gauging word difficulty) since these
two measures more directly operationalise word difficulty.

2.4 The Shiny App: An Interactive User Interface

LexOPS features a GUI in the form of a Shiny app (W. Chang et al., 2018), which provides
an interactive front-end to the package’s functions. For instance, tolerances for independent
variables can be specified via a slider (i.e., a moveable graphical button on an analogue scale),
and are then visualised as shaded areas in a plot of a variable’s density. Figure 2.2 presents
such an example for defining experimental conditions in the split_by() function. The "generate
pipeline" is accessible through a "Generate" tab in the sidebar, while the match_word() function
is accessible through a "Match Word" tab. Interactive functionality is also provided for querying
the LexOPS dataset (through the "Fetch" tab), and for integrating custom variables or datasets
into the app (through the "Custom Variables" tab). The Shiny app’s GUI is likely to be more
accessible for users unfamiliar with R, as it can be run with a minimal amount of R code with
the run_shiny() function, though the speed and ease with which it allows for stimulus generation
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Table 2.1: Summary of the sources and semantic features used in LexOPS

Source and Semantic
Feature

Scale N Words Observations/Worda

Scott et al. (2019)
FAM 1-7 5553 30.58 (3.71)
AOA 1-7 5553 33.7 (3.72)
CNC 1-7 5553 32.71 (3.85)
AROU 1-7 5553 32.71 (3.74)
VAL 1-9 5553 33 (3.76)
DOM 1-9 5553 32.6 (3.78)
IMAG 1-9 5553 32.6 (3.8)
SIZE 1-7 5553 32.78 (3.84)
GEND 1-7 5553 33.33 (4.03)

J. M. Clark and Paivio (2004)
FAM 1-7 2311 16
IMAG 1-7 2311 47-49

Kuperman et al. (2012)
AOA ages 1-25 30124 18-22 for most items

Brysbaert and Biemiller (2017)
AOAb ages 2-14c 43991 Around 200

Brysbaert et al. (2014)
CNC 1-5 37058 ≥25

Warriner et al. (2013)
AROU 1-9 13915 22.97 (23.73)
VAL 1-9 13915 21.81 (23.44)
DOM 1-9 13915 24.32 (25.07)

Engelthaler and Hills (2018)
HUM 1-5 4997 32.93 (5.64)

For each source, the relevant semantic feature(s), scale, number of words, and
observations per word are specified.
AROU arousal; VAL valence; DOM dominance; CNC concreteness; IMAG imageability;
FAM familiarity; AOA age of acquisition; SIZE semantic size; GEND gender association;
HUM humor.

a Where the number of observations for each word was available, the mean, and standard
deviation in parentheses, are presented; otherwise, summary statistics are reported. b This
measure is test-based, not from a rating study. c Age estimates cover ages 2, 4, 6, 8, 10,
12, 13, and 14.
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make it a convenient feature for all users. Furthermore, the Shiny app automatically translates
the user’s selections into reproducible R code that can then be run as a stand-alone R script.

In addition to providing an interface to LexOPS functions, the Shiny app also provides an
interface in its "Visualise" tab for interactive visualisation of relationships between variables, and
the distribution of generated stimuli across variables. Here, users can select variables to plot on
x- and y- axes, and can optionally elect to plot variables on a z-axis or color scale. LexOPS will
generate an interactive scatter plot of all words which have a value for all requested variables,
where each point represents a single word. By hovering with the cursor over a given point, the
user can query the word visualised at that location as well as its specific values (coordinates)
across the plotted variables.

Whereas axes can only be used to visualise numerical values, color scales can be used to
visualise the distributions of variables which are either numerical or categorical. For instance,
the user can select to view the distributions of different parts of speech by means of differential
coloring of the defined levels of this variable. The user can also have the app visualise
distributions of stimuli produced by the Generate tab, as shown in Figure 2.3, as well as
suggested matches produced by the Match tab, or words uploaded to the Fetch tab.

2.5 Example Applications

2.5.1 Psycholinguistic Stimuli

Fully Automated Word Selection

As an example, a user could define a 2 x 2 design to investigate the interaction between
character bigram probability, according to SUBTLEX-UK, and concreteness ratings, according
to Brysbaert et al. (2014). The user could also specify that stimuli should be controlled across
conditions for word frequency within ±.2 Zipf according to SUBTLEX-UK, as well as exact word
length. The dataset that stimuli are generated from can be additionally filtered, for instance
according to word prevalence reported by Brysbaert et al. (2019) such that the generated stimuli
consist entirely of words that at least 90% of people know. The following R code will generate
50 words per factorial cell (200 in total) that fit these specifications. The variables used in this
example have all been drawn from the inbuilt dataset described in the previous section to make
the code more easily readable and reproducible.

stim <- lexops %>%

subset(PK.Brysbaert >= 0.9) %>%

split_by(BG.SUBTLEX_UK, 0:0.003 ~ 0.009:0.013) %>%

split_by(CNC.Brysbaert, 1:2 ~ 4:5) %>%

control_for(Length, 0:0) %>%

control_for(Zipf.SUBTLEX_UK, -0.2:0.2) %>%

generate(n = 50)
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Figure 2.2: An example box for specifying the levels of an independent variable in the Shiny app.
Here, two levels (A1, A2) are being specified for the variable of Familiarity from the Glasgow
Norms (Scott et al., 2019). In this case, the density plot shows that the distribution is skewed
towards words rated as more familiar, with far fewer words rated as less familiar. As such, it
might make sense to use a wider range or bin for a low familiarity condition, to ensure there are
enough candidate words. Similar boxes are used for specifying controls and filters. Such boxes
can be added to or removed from the design specification with the plus and minus buttons,
respectively.
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Figure 2.3: Example showing (A) user interface options and (B) resulting interactive plot
produced by the Visualise tab, for stimuli generated by the "generate pipeline" specified by the
code in the Example Applications section (2 x 2, character bigram probability by concreteness
design, controlling for length and frequency). Each point corresponds to one word, which can
be queried by the user by moving the cursor directly over that point. In the example, the user
has queried a word from condition A2_B2, corresponding to the word, "engine".
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Figure 2.4: An example figure generated by the plot_design() function, for a stimulus list
generated by the example code, consisting of 200 words split into four factorial cells: A1_B1
(low bigram probability, low concreteness), A1_B2 (low bigram probability, high concreteness),
A2_B1 (high bigram probability, low concreteness), and A2_B2 (high bigram probability, high
concreteness). In this example, words are controlled in terms of frequency (within ±.2 Zipf),
and length (exactly). When words are more closely matched on a variable, the distributions of
control variables appear more similar, and the slopes of lines between matched items are less
steep. The differences between conditions in character bigram probability and concreteness
ratings (sought by the user) are reflected in the upper two plots.

The distributions of generated stimuli on relevant numerical variables can be readily
examined using the plot_design() function. Figure 2.4 presents an example figure generated
by the plot_design() function for a stimulus list generated by the code above. This function
produces a multi-faceted figure showing the distributions (in violin plots) of all numeric
independent or control variables used for each generated condition. Within each distribution,
individual words are visualised as points, joined by lines to other words (points) from the same
matched set (i.e., that share the same match-null). Such a figure can be a convenient way to
check that LexOPS has generated stimuli as expected. For instance, excessive differences
between generated conditions in the distributions of control variables may indicate that more
restrictive tolerances might be appropriate.

In addition, the user may be interested in how representative their stimuli are in the variables
they are interested in. To support visualisation of this, the plot_sample() function compares
the generated stimuli’s distributions on all variables in the design of the generated stimuli to
those in the pool of possible candidates from which they are drawn. An example is presented in
Figure 2.5.
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Figure 2.5: An example figure generated by the plot_sample() function, for a stimulus list
generated by the example code. The distributions of the 200 generated items are presented
in blue, while the distributions of all candidate words available to the LexOPS algorithm (which
includes those generated) are presented in grey.

Finally, the user can examine the algorithm’s performance by looking at the output of the
plot_iterations() function. This function generates a plot showing the cumulative number of
items generated for each iteration of the algorithm. As LexOPS begins to exhaust the pool of
possible candidates available for the specified design, this plot’s line will typically "flatten-out"
and begin to show a logarithmic relationship. Example output from the plot_iterations() function
is presented in Figure 2.6.

Supervised Word Selection

The match_item() function is convenient in cases where matches need to be controlled for
factors that would be difficult to operationalise as numeric or categorical variables, such as
maintaining sentence plausibility when a target word is replaced, such that an expert needs
to supervise the word selection with these rules in mind. As a practical example, imagine an
experiment where the researcher wants to replace target words in existing sentences with words
having a later age of acquisition. Suppose they also want the words to be controlled for length,
frequency, concreteness and part of speech (according to the written texts of the BNC). If the
researcher wanted to find a suitable replacement for the word "butterfly" in the sentence, "The
man looked up - he had never seen such an enormous butterfly before", they could use the
following code to identify a suitable match. Again, all the variables used have been drawn from
the inbuilt dataset for readability.
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Figure 2.6: An example figure generated by the plot_iterations() function, for a stimulus list
generated by the example code. To highlight how the plot may be interpreted, panel A shows
the results from the example stimuli generated, while panel B shows results from a pipeline with
the same design, but generating as many stimuli as possible (i.e. until the pool of candidate
matches is exhausted).

stim <- lexops %>%

match_item(

"butterfly",

Length,

Zipf.SUBTLEX_UK = -0.2:0.2,

CNC.Brysbaert = -0.25:0.25,

PoS.BNC.Written

) %>%

subset(AoA.Kuperman >= 9)

This would return a data frame containing four possible matches, ordered by Euclidean
distance in the matching variables: "satellite", "orchestra", "champagne", and "machinery". Of
these, the researcher would probably select the word "satellite", as the closest match that is a
plausible replacement for "butterfly" in the example sentence.

2.5.2 Applications Beyond Psycholinguistic Stimuli

Although LexOPS was developed primarily for experiments employing word stimuli, the
package can also be used to generate stimuli in any experimental domain for which there
is a finite set of possible stimuli, having properties that have been coded numerically or
categorically. For example, the Chicago face database (Ma et al., 2015) is a resource that
specifies both objective and subjective measures of a set of faces. LexOPS could be used on
this database to generate stimuli to investigate, for example, a possible effect of attractiveness
on face recognition processes. Analogous to its functionality with words, LexOPS could easily
be adapted to define levels of facial attractiveness, while controlling for variables such as the
race, gender, and luminance of individual faces.
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Furthermore, in addition to generating matched stimuli from any database, LexOPS could
feasibly be applied to generate matched items of any form of entry in a database. An example,
applicable to a large portion of scientific research using human participants, is participant
selection. A common requirement of between-subject designs is that participants are matched
across conditions on relevant variables such as age, sex, and socioeconomic status. LexOPS
could easily be run on a database of participants to generate lists of participants matched across
conditions for such variables, within desired tolerances.

2.6 Validation

To demonstrate that the package is a valuable tool for generating word stimuli, I tested
whether LexOPS could produce stimulus sets comparable to those of previous studies that
employed well-controlled word stimuli. Four studies were selected based on the following
criteria: the experimental design was unambiguously presented (e.g., with clear definitions
and/or boundaries of conditions); the characteristics of stimuli (e.g., concreteness, valence)
were taken from freely available published norms; the stimuli across conditions were matched
on an item-by-item basis; and the complete set of stimuli was provided. The first study,
by Kousta et al. (2011), examined concreteness (high/low), using 38 words per condition,
and controlling for 12 different psycholinguistic variables. The second study, by Scott et al.
(2009), investigated the interaction between word frequency (high/low) and emotional valence
(negative/neutral/positive), using 40 words per each of the six conditions, and controlling
for word length and frequency. The third study, by Sereno et al. (2015), employed a similar
frequency (high/low) by emotion (negative/neutral/positive) design, with a different set of
40 words per condition, and similarly controlled for word length and frequency. Finally,
B. Yao et al. (2018) examined the interaction between concreteness (high/low) and emotion
(negative/neutral/positive), using 45 words per factorial cell, and controlling for word length and
frequency.

For each study, I used LexOPS to generate the same number of stimuli according to the
original constraints that had been specified. I used the same databases that were detailed within
the studies with one exception (the norms for one of Kousta et al.’s control variables, context
availability, were obtained locally for that study and not made freely available). In all cases,
LexOPS was able to generate stimuli that fit within the boundaries of the original conditions,
which were matched at least as closely on all control variables. In many cases, it was found
that closer tolerances on many variables were possible than those implemented in the original
studies. To encapsulate the comparison between the original stimuli and those generated by
LexOPS, for both lists the Euclidean distance in all numeric control variables (scaled by standard
deviation for comparability) was calculated between each word in the list, and each word it
should be matched to. As the controls were implemented item-wise, this resulted in n k(k−1)

2

observations of Euclidean distance for each stimulus list, where n is the number of items per
factorial cell, and k is the number of factorial cells. The calculated values are presented in
Figure 2.7.
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Figure 2.7: Summary of the results from the validation analysis of LexOPS. The Euclidean
distance values between each matched pair of words in the four studies, for the original study
(in orange) and the stimuli generated by LexOPS (in blue). Each point represents a single value
of distance, while the density plot above depicts the shape of the distribution. The overlaid
boxplots present summary statistics of the median (central, dark vertical line), first and third
quartiles (the left- and right-most ends of the boxes) and the range of the values, bounded to
within a distance of 1.5 times the interquartile range from the boxes (the whiskers). The bands
of points seen in the values for Scott et al. and Sereno et al. reflect that stimuli from these
studies were allowed to differ in length. The bands are absent in the distance values for the
LexOPS stimuli generated for Sereno et al., as these stimuli were matched for length exactly.
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2.7 Contributions to Replicability and Reproducibility

LexOPS offers a valuable contribution to research in terms of reproducibility and replicability.
By sharing LexOPS code, for example in existing repositories such as the Open Science
Framework and GitHub, researchers can provide the exact specifications, in readable code,
used to generate stimuli lists that were found to produce a given effect. Moreover, the code
can include a random seed that allows other users to reproduce a specific stimulus list. If a
random seed is not set, or is set to a different value, a given pipeline will generate a different
set of stimuli each time it is run. This means that an experimental design can be replicated,
with the same relationships between variables, and same precision in matching tolerances,
but consisting of different stimuli. Other users can also modify shared code to see how such
changes in the experimental design might alter a reported effect, for instance, by modifying
the cut-off values of a variable’s levels or the tolerances of control variables, or by including
additional control variables.

2.8 An Alternative Approach: Distribution-Wise Matching

The method of matching in LexOPS is exclusively item-wise; each item from factorial cell x is
matched on a controlled variable, within a specified tolerance, with one item from factorial cell
y. Distributional similarity in variables that are matched between factorial cells is a necessary
by-product of item-wise matching, with the degree of distributional similarity dictated by the
stringency of the item-wise tolerance. Item-wise matching has the additional advantage
of providing items for each condition which are directly comparable. Another approach to
matching, however, could centre on distribution-wise matching, maximising distributional
similarity directly, without generating item-wise matches.

2.8.1 Parametric Distribution-Wise Matching

In a simple case, a split which maximises the distributional similarity between two conditions
on a normally distributed variable could be identified by minimising the difference between the
conditions in the two parameters that define the normal distribution: µ (the mean) and σ (the
standard deviation). A simple way of maximising similarity in these parameters could be to
randomly perform the split using a large number of random seeds and recording each split’s
values for each distribution. The best split could then be identified as that with the minimum
distance between the generated conditions’ mean and standard deviation values. This approach
could be applied to any possible distribution. For example, similarity could be maximised in
terms of the Weibull distribution by minimising distance in the parameters of β (shape), η

(scale), and γ (location).
There are, however, some clear issues with matching distributions by their parameters.

Variables rarely conform perfectly to these parametric assumptions, and their distributions can
be highly dependent on the filtering criteria used for other variables (although researchers
may decide that artificially imposing parametric assumptions is desirable for their stimuli, e.g.
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Solomyak & Marantz, 2010). Even if a variable conforms strongly to distributional assumptions
in a population, random samples drawn from this population can by chance differ greatly
from their population and from each other, especially if samples are very small relative to
the population. Moreover, matching by distributional parameters requires identification of a
distribution that describes well each variable that is to be matched, while some variables’
distributions are so unusual that they would require considerable time and effort to tailor
mathematical parametrisation (as, for example, in the multimodal distribution of OLD20; see
chapter 6).

2.8.2 Assumption-Free Distribution-Wise Matching

An ideal solution, therefore, would allow the identification of suitable splits by maximising
a measure of distributional similarity that makes no parametric assumptions about the
distributions being compared. Suggested measures satisfying this description include the
Kolmogrov-Smirnov statistic (Kolmogorov, 1933; Smirnov, 1948) and the Q statistic (Wilcox
& Muska, 1999). A recently proposed method of measuring distributional similarity in
an assumption-free manner is outlined by Pastore and Calcagnì (2019) in the form of the
overlapping index. Implemented in the R package, overlapping (Pastore, 2018), the overlapping
index makes it possible to quantify the degree of overlap between empirical distributions.

As various existing solutions for calculating distributional similarity, including the overlapping
R package, can be applied to stimulus matching with a minimal amount of code, and since
the scope of LexOPS is focused on item-wise matching, no functionality is provided within
LexOPS for generating stimuli with distribution-wise matches. Nevertheless, code maximising
distributional similarity could be combined with the item-wise approach of LexOPS with relative
ease. To demonstrate this, and to highlight differences between item-wise and distribution-wise
matching, the following LexOPS pipeline was written. The imagined study uses 200 matched
pairs of abstract and concrete words, controlled for length and frequency item-wise.

stim <- lexops %>%

split_by(CNC.Brysbaert, 1:2 ~ 4:5) %>%

control_for(Zipf.SUBTLEX_UK, -0.1:0.1) %>%

control_for(Length, 0:0) %>%

generate(200)

In addition to the item-wise matching native to LexOPS, additional distributional controls
may be implemented in these stimuli. As a demonstration, I matched the design specified
above by three additional variables in a distribution-wise manner: age of acquisition (Kuperman
et al., 2012), character bigram probability in SUBTLEX-UK, and OLD20. To achieve this, I
used a Monte-Carlo approach, generating 3000 unique stimulus sets with the above LexOPS
pipeline, providing unique random seeds in the seed argument of the generate() function for
each set. To ensure no words were selected with missing data for the distribution-wise matches,
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the inbuilt dataset was filtered at the start of the pipeline such that all candidate items had
observations for each distribution-wise control. After generating each unique stimulus set, I
calculated the overlapping index between the concrete and abstract conditions’ distributions for
the three distribution-wise controls in each stimulus set. To maximise distributional similarity
in the desired variables, I could then select the stimulus set with the largest total overlap by
summing (or, equivalently, averaging) over each iteration’s overlapping index values for each
distribution-wise control.

The distributions on the independent variable, and on the item-wise and distribution-wise
controls, are presented for an example stimulus set in Figure 2.8. To further highlight the
difference between item-wise and distribution-wise controls, the correlations between the
matched pairs’ values, in each of these variables, are presented in Figure 2.9. These two plots
demonstrate that whereas item-wise controls show high similarity between both distributions
and matched items, distribution-wise controls show similarity in distributions, but less similarity
between matched items. A noticeable exception is OLD20, which shows a moderately
strong correlation between matched pairs’ values even though OLD20 was only controlled
distribution-wise. This item-wise similarity in orthographic density most likely arose from
the item-wise matching of length, as word length and orthographic neighbourhood density
are highly correlated (see Figure 2.10), since character addition and subtraction are costly
operations in the calculation of Levenshtein distance.

To evaluate the reproducibility of the method combining LexOPS’ item-wise approach with
distribution-wise controls, the pipeline was run 12 times. The overlapping index values between
the abstract and concrete words’ values for the distribution-wise controls, for each of the 3000
iterations, in each of the 12 runs, are presented in panel A of Figure 2.11. As mentioned,
controlling for multiple variables in a distribution-wise manner requires that the stimulus set
with the best overall or average distributional overlap is selected. As panel B of Figure 2.11
demonstrates, this introduces more variability between runs of the algorithm than maximising
distributional similarity in a single variable would, and can decrease the maximum overlap value
that may be achieved in any single distribution-wise control. This is due to a combination of
an increase in the degrees of freedom (as more parameters are being optimised), and the
constraints imposed by non-orthogonalities between the variables in the population (e.g. words
with earlier age of acquisition may have systematically higher character bigram probabilities).
Nevertheless, it is shown that reasonably high distributional similarity, within the constraints of
the experimental design and item-wise matching specifications, can be achieved when matching
by multiple variables within only a few thousand iterations. Due to the aforementioned changes
in the number of parameters and the non-orthogonalities between them, the number of iterations
required to elicit similar performance in such an algorithm will increase with each additional
distributional control that is added.

To summarise, an alternative approach to matching stimuli matches features in variables’
distributions. This can be achieved while making minimal assumptions about distributional
shape. Although LexOPS is explicitly item-wise in its approach, it can be flexibly combined
with distribution-wise approaches to produce more carefully matched stimulus sets.
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Figure 2.8: The distributions on relevant variables of an example stimulus set, generated from
one run of the combined item-wise and distribution-wise matching algorithm, in the abstract
and concrete conditions. The top three panels depict the distributions in concreteness (the
independent variable), and frequency and length (which were matched item-wise). The bottom
three panels depict the distributions in the three variables which were matched distribution-wise.
Violin plots depict variables’ densities, trimmed to the maxima and minima. Matched items are
depicted as points joined by lines, with position on the x axis jittered randomly for visibility.
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Figure 2.9: The correlation between matched concrete and abstract items’ values in relevant
variables of the example stimulus set depicted in Figure 2.8. Individual observations are
depicted as points. Pearson’s r values are presented in the top-left corner of each plot. The
respective linear relationships are depicted blue lines, with grey shaded areas depicting 95%
confidence intervals.
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Figure 2.10: The relationship between length and OLD20 for all words in the Brysbaert et al.
(2019) concreteness norms (this filter was applied as all words in the generated stimuli were
drawn from this corpus). The blue line depicts the positive linear relationship (r = .89).
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Figure 2.11: The overlapping indices generated from 12 runs (superimposed) of the combined
item-wise and distribution-wise matching algorithm, with 3000 iterations (observations) in each
run. Each iteration generated a unique random list of stimuli fitting the specified LexOPS
pipeline. The left panel (A) shows the densities of overlapping index distributions observed
from all iterations on each run, for each variable. The two right panels (B) shows the cumulative
maximum value overlapping index over iterations for each variable on each run. The final value
of this latter variable for each run indicates the overlapping index which would then be observed
in the selected stimulus set. Results for panel B are split into (left) the values observed when
maximising overlap for variables individually, and (right) the values observed when maximising
total overlap across all three variables. For the former, three stimulus sets are generated for
each run, controlling distributionally for one variable only. For the latter, a single stimulus set is
generated controlling for all three distribution-wise controls concurrently.
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2.9 Discussion

LexOPS is a valuable resource to researchers who use matched sets of stimuli, providing
a method for flexible and controlled generation of items, with the added value of intuitive
interfaces. In addition, LexOPS facilitates the reproducibility and replicability of experiments,
allowing specific stimulus lists to be recreated, and providing an easy method for generating
novel stimulus lists for the purposes of replication or validation. Furthermore, its flexibility allows
its algorithm to be combined with other methods of matching stimuli, such as implementations
of distribution-wise matching.

One point that should not be overlooked is that both the item-wise matching of LexOPS and
distribution-wise matching suggested as a less constrained alternative are inherently limited by
the nature of the variables, tolerances, and condition boundaries that are used. For instance,
some variables have entries for relatively few words (e.g., the familiarity rating norms from
J. M. Clark and Paivio (2004) include ratings for only 2311 words), and there is often limited
overlap of items between different corpora. This means that if variables from small corpora,
or from multiple corpora with little overlap, are used as independent or control variables, the
pool of possible stimuli will be greatly reduced. Similarly, variables are often highly correlated,
as, for instance, imageability and concreteness are (Scott et al., 2019). It would be difficult
to generate stimuli, matched item-wise, for designs probing interactions between such highly
correlated variables, or for those in which independent variables and control variables are
highly correlated. Finally, the precision of control variables’ tolerances, and the positioning
of independent variables’ boundaries relative to the variables’ density distributions, will also
modulate the number of possible stimuli that can be generated.

A similar caveat exists for other methods of generating matched stimuli, such as
distribution-wise matching. This is a point well demonstrated by the matched design outlined
in the section on assumption-free distribution-wise matching. The strong correlation between
words’ concreteness and age of acquisition ratings (Scott et al., 2019), likely reflecting the
later age of acquisition of abstract words relative to concrete words, means that the overlap
observed between concrete and abstract words’ age of acquisition ratings will always remain
low regardless of how many iterations are run. The lack of any consistent relationship between
concreteness and character bigram probability, meanwhile, means that the overlapping index
values observed by chance are likely to be relatively high in any iteration. As with the item-wise
matching used in LexOPS, results will also be similarly constrained by relationships between
controls.

While the features of LexOPS detailed here are unlikely to change, work will continue on
the package, and it is very likely that I will add extra functionality to LexOPS in the future in
response to users’ requests. Similarly, the inbuilt database may be expanded to include further
variables if they are likely to be of use to many researchers. Any such additions or changes will
be described in the package’s documentation and in the LexOPS walkthrough.

To conclude, I have developed and made freely available a flexible and intuitive tool for the
controlled generation of matched stimuli, with a focus on word stimuli. This R package allows
researchers to generate robustly lists of matched stimuli for factorial designs in a reproducible
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and replicable manner. The approach is flexible, and can be easily combined with other
approaches to controlling for confounding variables. LexOPS has potential to be of great
benefit to a broad range of researchers, particularly those who use word stimuli.
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Chapter 3

Rating Norms should be Calculated from
Cumulative Link Mixed Effects Models

3.1 Introduction

In a typical rating norming study, participants are asked to rate features of stimuli on Likert scales
(e.g., on a scale from 1 to 7 ). These ratings are used to estimate how participants perceive
these features. Such estimates may be used to validate stimuli for an existing experiment,
design new stimuli, or correlate with observations of behaviour or neural activity. For the latter
two purposes, the estimates are often made public for use by other researchers alongside
dedicated publications. Examples include but are not limited to ratings on various dimensions,
for stimuli as diverse as words (Brysbaert et al., 2014; Scott et al., 2019; Warriner et al., 2013),
orthographic characters (Simpson et al., 2013), photographs of objects (Brodeur et al., 2014) or
faces (Ma et al., 2015), and melodies (Belfi & Kacirek, 2021). Such norming studies are typically
summarised via per-item statistics of means and standard deviations (SDs) of the ratings for
each item. In this chapter, I argue that ordinal models can provide more robust measures of
item norms, quantifying dimensions more meaningfully, for purposes of statistical analysis and
for application in different methods of stimulus design (e.g., chapter 2). I focus on cumulative
link mixed effects models (CLMMs), showing that they can yield summary statistics analogous
to the traditional estimates of means and SDs, but disentangled from artefacts of nonlinearities
in participants’ response patterns.

Datasets of norms typically report, for each individual item, the mean of the Likert ratings, the
SD of the Likert ratings, and the number of observations. These reflect, respectively, estimated
central tendencies of ratings, variability in these central tendencies, and sample size from which
the summary statistics are calculated. These simple metrics are intuitive and easy to calculate,
and can be used to rank items on the rated dimension. However, the use of means and
SDs to accurately estimate distances between normed items would require that Likert scales
are continuous, with an equal step size between each successive option. In fact, while the
dimension participants are judging may scale continuously when measured objectively (e.g.,
age of acquisition), and while a Likert scale may be presented to participants with equal steps
between options (e.g., via radio button inputs), there is no reason to assume that judgements
on the target dimension are graduated linearly. Instead, Likert scales are examples of ordinal
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scales, with responses scaling in one direction (i.e., 1<2<3<4<5. . . ), but not necessarily in equal
steps. At the very least, the true relationship between ratings and the dimension(s) they are
supposed to measure remains underspecified. By norming items on an ordinal variable via their
means and SDs, researchers produce estimates which can be distorted by nonlinearities in the
scaling of Likert judgements (Liddell & Kruschke, 2018). If researchers were only interested
in ranking items, summaries like the mean would be sufficient. However, it is often useful to
accurately know the relative distances between items in the target dimension. For instance,
item norms are frequently included in statistical analyses as continuous variables or predictors
(e.g., Fernandino et al., 2016; Goh et al., 2016; Hollis & Westbury, 2016; Khanna & Cortese,
2021; Perry et al., 2018; Pexman et al., 2019; Scott et al., 2019; Vejdemo & Hörberg, 2016).
Instances where researchers dichotomise a rated feature to compare the N highest- and lowest-
rated items may be less impacted by distortions in averages of Likert ratings, as the comparison
is still essentially ordinal. However, such dichotomisation will result in an unnecessary loss of
statistical power and precision if continuous alternatives are available (MacCallum et al., 2002;
Royston et al., 2006).

An alternative approach to summarising Likert judgements is to assume that a latent
continuous distribution underlies the ordinal scale, allowing any given ordinal response to
be converted into possible latent values (Figure 3.1). This is the approach implemented in
cumulative link models (CLMs), where ordinal dependent variables are mapped onto ordered
regions of a latent distribution (Bürkner & Vuorre, 2019; McCullagh, 1980). Responses are
commonly modelled via probit- or logit-link functions which, respectively, assume that the latent
variable is normally or logistically distributed. The model estimates the locations of ordered
thresholds demarcating the borders between regions of the latent distribution associated
with each response, while other coefficients can estimate a constant shift in the location of
the distribution associated with changes in the values of predictors (i.e., slopes). The CLM
approach can be extended to account for multilevel data in the form of CLMMs, which allow the
researcher to estimate not only the values of population-level intercepts and slopes (i.e., fixed
effects), but also how these intercepts and slopes differ across members of distinct populations
which are sampled in the data (i.e., random, or "varying", effects). For instance, a CLMM can
estimate how the mean latent value associated with each individual participant or item differs
from that of the population average.

The need for ordinal models such as CLMs and CLMMs to appropriately model ordinal
responses is already commonly recognised in the analysis of typical experiments (Liddell &
Kruschke, 2018). Correspondingly, several tools currently exist, and are already widely used, to
fit CLMMs, such as the ordinal (Christensen, 2020) package for the R programming language (R
Core Team, 2021). When these models are applied, however, they are typically used to estimate
the effects of experimental manipulations (i.e., fixed effects); when CLMMs are applied, random
effects are typically included to account for participant and item variability, thereby improving
accuracy of fixed effect estimation, but are rarely examined in any detail beyond a cursory
glance at summary statistics like random effects variances. Estimating a CLMM with by-item
random effects could, however, also be used to norm items in a manner which is not distorted by
participants’ response patterns. Indeed, random effects in such models are per-unit (per-item,
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Figure 3.1: The assumed relationship between a continuous latent distribution and ordinal Likert
responses (here, on a 1-5 scale). Each Likert response corresponds to a region of the latent
distribution. The probability of observing any Likert response is the probability of a value being
drawn from the latent distribution which is between the lower and upper bounds of that Likert
response’s region. In the example illustrated, the latent distribution is assumed to be normal (as
is the case for a probit-link function). The nonlinearities in this example response pattern result
in the most likely response being 2, while the responses 1 and 5 would be comparably rare.

per-participant, etc.) estimates of each unit’s most likely deviation from the corresponding fixed
effect, in link units. CLMMs and related ordinal models assume the overall mean of the latent
distribution (i.e., what would be the fixed-effect intercept in a linear model) to be equal to zero,
for identifiability. In the case of a CLMM with per-item random effects, therefore, the extracted
random effects will represent estimates of the latent mean associated with each item. In R,
these values are stored within a fitted CLMM object, and can be extracted, for example, via
the generic R function ranef(). Norming items via random effects in this way confers additional
benefits, such as improvements in accuracy associated with shrinkage (where outlying, unlikely
values, are appropriately pulled towards more likely estimates) and the concurrent estimation of
additional sources of variability (such as per-participant random effects). In this article, I argue
that CLMMs are well-suited to calculating norms from Likert responses, and solve key issues
associated with more traditional analyses of norming studies.

One issue with traditional analyses of norming studies centres around the finding that
heterogenous relationships are frequently observed between means and SDs. Notably,
Pollock (2018) highlighted a common relationship in ratings of word concreteness (Figure 3.2),
whereby the lowest SDs are observed at the extremes of a Likert scale, while items towards
the centre of the scale show much higher SDs. Such heterogeneity should be expected to
some degree for any scale which has lower and upper bounds. However, Pollock showed that
although it was common for participants to agree on ratings at the extremes of the scale (1 and
5), such inter-rater reliability was exceedingly rare for ratings at midpoints in the scale. Pollock
interpreted this finding as evidence that participants’ judgements on dimensions showing this
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Figure 3.2: The relationship between the mean and SD of items’ Likert ratings (1-5 scale) in
word concreteness, from Brysbaert et al. (2014). The pattern suggests that responses are most
consistent at the extremes of the Likert scale, but that items with averages at the midpoints of
the Likert scale elicit less consistent responses.

overall pattern are largely dichotomous. Such a view is directly relevant to theories concerned
with how concreteness is represented, standing in stark contrast to perspectives that suggest
concepts like concreteness exist on a continuum (e.g., Gentner & Asmuth, 2019). It was argued
that Likert scales are inappropriate for norming items on variables with dichotomous responses,
and that averages at the centre of the scale merely reflect polarisation in responses, rather
than a meaningful estimate. For instance, if half of all responses for a single item were 1, and
half were 5, this would result in an average Likert response of 3, even though no participant
gave this response. This inconsistency would also be reflected by a high SD of >2.

Pollock’s argument has been criticised by Neath and Surprenant (2020), who examined
whether a concreteness effect in a serial word recall task differs between words with low or high
SDs in Likert judgements. If mid-scale responses are less meaningful, they may be expected
to predict effects of concreteness less well. Neath and Suprenant showed, however, that the
effect of word concreteness was estimated as a consistent effect size when average Likert
responses are used as the predictor, regardless of how large the SDs of Likert ratings are for the
presented items. Further to this, I argue that Pollock’s interpretation of the mean-SD relationship
suggests that Likert responses are expected to be continuous, rather than ordinal. When Likert
responses are instead viewed as ordered regions of a latent continuous variable, a unimodal
latent distribution can lead to an apparent dichotomy in Likert responses, and responses can
appear inconsistent even when there are meaningful differences in the latent distribution. Such
a pattern could arise from any response pattern where the lowest and highest Likert responses
(e.g., 1 and 5 on a five-point scale) account for large portions of the latent distribution, increasing
the likelihood of any given latent value being mapped onto an extreme Likert response, while
responses at the scale’s centre (e.g., 2, 3, and 4), account for much less, making these mid-
scale responses comparably less likely. Importantly, even though responses could appear
dichotomous in such cases, changes in the relative likelihood of the different Likert responses
would still track meaningful shifts in the central tendency of the latent distribution. Furthermore,
lower SDs at the extremes of a scale may reflect floor and ceiling effects, rather than agreement
among raters. There may be meaningful differences between items that share the minimum
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or maximum possible average rating, which are nonetheless undetectable within the limited
bounds of the rating scale.

When dichotomous response patterns are explained with reference to ordered regions of
a latent distribution, it is clear that many other response patterns should also be possible, and
that these would result in distinct patterns in the mean-SD relationship of Likert responses
(Brainerd et al., 2021). In any pattern, items whose average is closer to regions that participants
are biased towards should be more likely to show greater consistency in responses, and thus
have lower SDs, while items further from these regions will be more likely to have higher SDs.
Figure 3.3 shows the mean-SD relationships observed in the Likert judgements of words on
three different semantic variables from the Glasgow Norms (Scott et al., 2019): Dominance,
Familiarity, and Gender. Each of these variables shows a qualitatively different mean-SD
relationship distinct from that identified by Pollock (2018). For Dominance, the lowest and
highest SDs, respectively reflecting the greatest and least consistency, are at the centre of the
Likert scale, and no items are observed at or close to the scale endpoints. This suggests that,
for this sample, judgements of words’ dominance are biased towards a mid-point response
or are dichotomous, and that there was never any consensus among raters for items having
extreme Dominance values. For Familiarity, in contrast, responses are most consistent at
the upper end of the Likert scale, with lower SDs observed as average Familiarity increases.
Further, the average Likert response never reaches lower than 1.5, suggesting that for this
sample of items participants rarely consistently agree that a word is unfamiliar. In the case
of Gender, three separate regions of the Likert scale show the lowest SDs, with intervening
responses never showing such consistency. These three regions may suggest that participants
were biased towards three different responses: 1 for highly male, 4 for gender neutral, and 7
for highly female. It is important to note, however, that the highest SDs are also observed at the
gender-neutral centre of the scale, suggesting that the average Likert response for some words
may index polarisation in responses, with dichotomous ratings as either highly male or highly
female. An example of such a word is bridegroom, a compound word which technically refers
to a man, yet consists of two highly, yet oppositely, gendered words, bride and groom. The
inconsistency observed for words like bridegroom stands in contrast to the consistent gender
neutrality observed for words whose gender ratings also average to 4, but which result in low
SDs (e.g., the words impaired, name, occurrence). This highlights that relative differences
in the variance of Likert judgements can reflect meaningful differences, such as an items’
ambiguity or discriminability. If overall variance is calculated on raw Likert responses, however,
these meaningful differences in variance will be entangled with differences in response
consistency that result from the overall response pattern.

If variance reflects meaningful differences among items, how can it be estimated without
distortion from response patterns? One solution could be for researchers to estimate both
a latent mean and latent SD for each item that is normed. Although CLMMs traditionally
assume homogeneity of variance, the framework provided by CLMMs may be extended to
simultaneously describe meaningful differences in both the central tendency and spread of
a latent distribution. Just as latent means are analogous to raw means, estimates of latent
SDs are analogous to raw SDs, similarly disentangled from response patterns. While most
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Figure 3.3: Mean-SD relationships for judgements of words on three semantic variables in
the Glasgow Norms (Scott et al., 2019). Dominance was judged on a 1-9 Likert scale, while
Familiarity and Gender were judged on 1-7 scales.

CLMMs, including those fit by the ordinal package (Christensen, 2020), exclusively model
changes in the central tendency of a latent distribution (assuming homogenous variance across
observations), it is possible to fit a model which concurrently describes changes in both the
variance and central tendency of the latent distribution. The brms package (Bürkner, 2018) for
R, an interface to STAN (STAN Development Team, 2021), provides an accessible solution to
fit such models. Here, in addition to multi-level changes in the mean of the latent distribution,
a discrimination parameter can be estimated, as the inverse of the latent SD (Bürkner &
Vuorre, 2019). As the models are estimated via Markov chain Monte Carlo (MCMC) sampling,
translating the discrimination parameter of each posterior sample to the SD, before calculating
summary statistics, will allow the calculation of random effects for the variance of the latent
distribution. CLMMs can therefore provide researchers with analogues to the traditionally
reported statistics of means and SDs, but with both estimates disentangled from participants’
response patterns.

I argue that CLMMs provide a valuable framework for norming items via Likert scales,
allowing the calculation of items’ latent means and SDs, analogous to the traditional estimates
of means and SDs of responses, but disentangled from overall response patterns. In the
first half of this article, through a series of simulations, I demonstrate the following: (1) non-
linear response patterns can account for the typical patterns of relationships observed between
means and SDs of ratings, and CLMMs can appropriately model items’ values in the latent
distribution underlying Likert responses; (2) such models can be expanded to account for other
sources of variability, such as participant random effects, with improvements in the accuracy of
item estimates; (3) such models can be further expanded to account for differences in a latent
distribution’s variance as well as its mean; and (4) while CLMMs make assumptions about the
underlying latent distribution, they are relatively robust to modelling responses that result from
distributions which violate these assumptions, and are still preferable to the traditional approach
of calculating raw means of ordinal responses. In the second half of the article, I apply CLMMs
to real norms data from existing datasets, on judgements of orthographic character similarities
(Simpson et al., 2013) and on semantic dimensions of words (Scott et al., 2019), showing how
these methods and results differ from those of traditional analyses.
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3.2 Simulations

To demonstrate that CLMMs provide comparable results across different response patterns,
I performed simulations as follows. On each iteration, a single dataset was simulated which
had differences between observations, items, and (from Simulation 2 onwards) participants,
described in terms of the mean and SD of a normally distributed latent distribution. This
normal distribution represents latent values before they are distorted by an overall pattern in the
Likert responses. Differences between items and participants are similarly drawn from normal
distributions - I model these differences via the random-effect structure of the CLMM. The values
from this single dataset are then mapped onto one of five possible response patterns. This is
done to show (a) how identical effects in latent space can result in divergent estimates and
patterns when using traditional means and SDs, and (b) how CLMMs provide estimates which
are far less biased by overall response patterns.

Throughout the simulations, I use five example response patterns, as follows: equidistant,
left-biased, right-biased, edge-biased, and centre-biased. These are similar to the qualitative
categories of response styles identified in the item response theory literature (Baumgartner
& Steenkamp, 2001). The only difference between the response patterns I simulate is in the
locations of the thresholds demarcating the borders between regions of the latent distribution
which map onto respective ordinal observations. The differences between the five response
patterns are illustrated in Figure 3.4, which shows how the probabilities of ordinal Likert
responses differ among the response patterns, even when the change in the latent distribution
is identical; differences in the probability of each response are accounted for entirely by
changes in locations of thresholds.

In each simulation, I mapped simulated latent values onto a corresponding Likert response
according to each response mapping. For example, a latent value of 2.5 on one trial would
be recoded to responses 4, 3, 5, 5, and 4 for the equidistant, left-biased, right-biased, edge-
biased, and centre-biased response patterns, respectively. In this way, the results across the
different response patterns are directly comparable. The only exception to this is Simulation
4, where I manipulated the distribution of latent variables and random effects but kept the
response mapping constant. In every simulation, I recovered the item random effect values
after fitting a separate CLMM to ratings simulated for each response pattern, using a probit-link
function to reflect the normal distribution of the simulated latent distribution. Here, the retrieved
item random effects encode the difference between each item and the overall distribution in a
parameter describing the latent distribution (usually the latent mean, but in Simulation 3, also the
latent SD). For instance, a random effect of -1.2 for a single item’s latent mean would indicate a
shift of the full latent distribution of -1.2 away from the grand mean (which, for CLMs, is always
0). Each CLMM was fit with either the ordinal (Christensen, 2020) or brms (Bürkner, 2018)
package for R.

The code used in all simulations is available at the OSF project associated with this work, at
https://osf.io/ntvmf/.
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Figure 3.4: Illustration of how response patterns affect Likert responses. Given the same latent
distribution, the five example response patterns I used in the simulations alter the probability of
different Likert responses. The top half of the figure, (A), shows the locations of the thresholds
for each response pattern, highlighting how changes in the latent mean alter the proportion
of the latent distribution which maps onto each Likert response. Importantly, this effect differs
among response patterns. To illustrate this point, for each response pattern, the densities of
three example distributions (white curves) are shown, with means of -2.5, 0, and 2.5, and an
identical SD of 1. An observation sampled from one of these distributions would fall into one
coloured region and would be mapped onto the corresponding Likert response. The bottom
half of the figure, (B) shows how the change in the mean of the latent distribution (on the x-
axis) alters the probability (cumulative percentage; y-axis) of observing any Likert response
differentially in each of the five response patterns for an identical latent distribution of mean 0
and SD 1. The same example three distributions as in panel A are highlighted with white vertical
lines.
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3.2.1 Simulation 1: CLMMs with Item Random Effects

In this first simulation, I demonstrate that cumulative links appropriately account for nonlinear
response patterns, and that random effects can be used to accurately calculate differences in a
Likert scale’s underlying latent distribution for separate items. In each iteration, I simulated 100
individual items’ positions on a latent distribution with a mean of 0 and SD of 1. I also simulated
residual variance in the latent distribution with a normal distribution of mean 0, and SD 1. As
such, latent distribution values for item i, Li, were simulated as follows, where µi refers to item
random effects, and ei refers to the residuals.

Li = µi + ei

µi ∼ N(0,1)

ei ∼ N(0,1)

In each iteration, I generated 25 latent means for each item, given that item’s random effect
µi, with these values then recoded to ordinal responses on a 5-item Likert scale, as described
above. To recover (via ranef()) the item random effect values, I used the ordinal package
(Christensen, 2020) to fit a CLMM to ratings simulated for each response pattern, with a probit-
link function. In the package’s syntax, the model was specified as follows:

rating ~ 1 + (1 | item_id)

Figure 3.5 depicts the results of Simulation 1. This simulation demonstrates that distinct
patterns in the relationship between ratings’ means and SDs can arise from the response
patterns alone, even when the underlying latent distribution is identical. The results further show
that while the means of ratings are heavily influenced by nonlinearities in response patterns,
estimates of item random effects from the CLMMs are more robust to differences between
response patterns. Notably, however, the distortions that result from using the raw mean
may be less problematic if researchers are only interested in rank order (see Appendix A.1).
Nevertheless, whenever researchers are interested in the relative distances between items,
CLMMs provide estimates which are far less distorted by overall response patterns.

3.2.2 Simulation 2: CLMMs with Item and Participant Random Effects

In the typical design of a rating norming study, the 25 observations simulated in the previous
simulation would have come from different participants, who are likely to systematically differ in
how they judge any given word. Each participant would additionally rate a subset of the total
set of items in the study, introducing a crossed random effects structure. Variability between
participants can be calculated in the same model as item variability with the incorporation
of an additional random effect. As a demonstration of this, I re-ran the previous simulation
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Figure 3.5: Results of Simulation 1: CLMMs recover items’ latent distribution random effects
from the five example response patterns. The panels show (A) the relationship between means
and SDs of ratings, (B) the relationship between items’ simulated latent means and their mean
ratings, and (C) the relationship between items’ simulated latent means and estimated random
effects from the CLMM. The relationships in panels B and C shown with the black lines were
estimated via locally estimated scatterplot smoothing (LOESS), with a span parameter of .75.
The dashed red lines show an expected linear relationship for reference, identical across all
response patterns. In all panels, results from all simulation iterations are concatenated. The
results show that the relationship between items’ means and SDs of ratings differs markedly
between simulated response patterns, even though the simulated values in the latent distribution
were identical. While averaging over ordinal responses works well when the responses
are generated from equidistant thresholds, any other response pattern leads to nonlinear
inaccuracies in the values. CLMMs, meanwhile, account for any pattern of thresholds and
more accurately recover the items’ distributions in the latent variable.
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with the additional inclusion of participant random effects. As in the previous simulation, 25
observations were generated for each item, but each observation for an item was generated by
25 different simulated participants, where each participant rated 25 items in total. Participants
were allocated to items pseudo-randomly, such that they rated each item only once. This meant
there were a total of 100 participants in each iteration. The latent distribution values were thus
simulated from a normal distribution with mean 0 and SD 1, with both item and participant
random effects also drawn from normal distributions with mean 0 and SD 1. As a result, latent
distribution value Li j for the ith item and jth participant, was simulated as:

Li j = µi +µ j + ei

µi ∼ N(0,1)

µ j ∼ N(0,1)

ei j ∼ N(0,1)

As before, ratings were simulated by recoding regions of the latent distribution using the five
response patterns shown in Figure 3.4. The CLMMs were again fit using the ordinal package
with a probit-link function, specified to either omit or include participant random effects from the
formula, written in the package’s syntax as, respectively:

rating ~ 1 + (1 | item_id)

rating ~ 1 + (1 | item_id) + (1 | participant_id)

Figure 3.6 shows the Simulation 2 results, demonstrating that the estimation of participant
random effects allows the CLMMs to recover the simulated item random effects more accurately.

In examining whether the estimation of participant random effects improves the accuracy
of item random effect estimates, I first calculated the difference between each item’s simulated
item random effect, and that estimated by the two models. As panel D of Figure 3.6 shows,
including both participant and item random effects in the fitted model improved the accuracy
of the estimates compared to considering only item random effects. However, panel C shows
that the magnitude of item random effects was underestimated when participant random effects
were not calculated, which I considered could be the cause of the difference in accuracy of
estimates between the two models. If the improvement in accuracy is due to a difference in
magnitude alone, the improvement may not be meaningful or useful for rating norming studies.
This is because it is the ordinal relationships and relative sizes of differences between items
which are most informative, while underlying latent values are functionally arbitrary if relative
distances are preserved. To examine whether the improvement in accuracy was solely the
result of this difference in the magnitude of estimated item random effects, I calculated the error
in item random effect estimates when model estimates are normalised by their respective SDs,
thereby standardising the magnitude of the random effect estimates from each model. These
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Figure 3.6: Results of Simulation 2: CLMMs recover items’ latent distribution random effects
when per-participant random intercepts are also simulated. Panels A and B show the same
information as the respective panels in Figure 3.5. Panel C shows the relationship between
simulated latent distribution values and item random effect estimates, from the CLMM estimating
item random intercepts only (green), and from the CLMM estimating both item and participant
random intercepts (orange). As in Figure 3.5, the lines represent LOESS estimates (span
parameter of .75). Panel D shows densities of the error in the items’ random effect estimates
(i.e., error=simulated value-estimated value) from both types of CLMM. Panel E shows the same
as panel D, but with random effect estimates scaled by standard deviation to account for the
differences in estimated magnitude shown in panel C.
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results are presented in panel E of Figure 6, showing that while most of the improvement in
accuracy with participant random effects can be attributed to differences in the magnitude of
effects, there may be some gain in accuracy when participant random effects are additionally
accounted for.

The degree to which item random effect estimates increase in accuracy when participant
random effects estimates are included will depend on features of the data. One important
consideration is the magnitude of variances of the random effect distributions relative to one
another, and to the latent distribution. This is because greater variance in the participant random
effects distribution will increase the degree to which estimates are distorted by the biases of
individual participants. To demonstrate this, I ran additional iterations in Simulation 2b (see
Figure 3.7), varying the SDs of the participant and item random effect distributions from which
the random effects are simulated. For simplicity, and because there would be similar results
for each response pattern, I simulated Likert responses from the edge-biased response pattern
only. SDs of item and participant random effect distributions were varied between .25 and 5, in
steps of .25. All other features of the data were simulated as specified above. I ran 50 iterations
for each combination of item and participant random effects and calculated the SDs of the
error in scaled item random effect estimates (Figure 3.7A). I could then calculate the difference
between these estimates to estimate the effect of including participant random effects on the
accuracy of item random effects (Figure 3.7B). This analysis revealed that estimating participant
random effects in the CLMM random effect structure can reduce error in the estimates of item
random effects. Specifically, the results suggest that when participants are more variable than
items, estimating participant random effects increases the accuracy of item random effects
estimates. When items are more variable than participants, the results suggest that while there
is no gain in accuracy, there is also no loss of accuracy.

An alternative approach to accounting for participant variability when calculating item norms
may be to first z-score responses within participants, before calculating per-item averages. I
consider such an approach in Appendix A.2. To summarise this evaluation, such an approach
is well-considered as a simple approach which will account for per-participant differences in
central tendency, but in itself it fails to account for the ordinal nature of a Likert scale, and will
accordingly result in a similar distortion of estimates to that observed for raw averages. I further
argue that CLMMs provide additional advantages, such as estimating item and participant
variability concurrently, rather than accounting for these sources in separate steps, as the z-
scoring approach does.

In sum, this simulation shows that estimating both item and participant random effects can
improve the accuracy of item random effect estimates from a CLMM applied to data with a
design comparable to that of a typical rating norming study. Fitting CLMMs which estimate item
as well as participant random effects is unlikely to reduce accuracy of estimates and will provide
a gain in accuracy which is dependent on the relative variability of items and participants. As
a result, I argue that modelling both sources of variability simultaneously is both useful and
appropriate when the goal is to accurately norm items on the basis of Likert ratings.
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Figure 3.7: Results of Simulation 2b: effect of varying the magnitude of item (x-axis) and
participant (y-axis) random effects on estimation accuracy of item random effects. Panel A
shows the estimated SDs of errors of item random effects, where estimates are scaled (as in
Figure 3.6E) to account for differences in magnitude. Estimates in panel A are shown separately
for a model estimating only item random effects (left), and a model estimating both item and
participant random effects (right). Panel B shows the difference between the estimates from the
two models, calculated as item estimates from the less complex model (estimating only item
random effects) minus those of the more complex model (estimating both item and participant
random effects). Values in panel B therefore index the reduction in error that results from
accounting for participant random effects (e.g., a value of .3 reflects a reduction of .3 SDs
in the magnitude of errors).
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3.2.3 Simulation 3: CLMMs Estimating Latent Variance

All CLMMs shown thus far estimate changes in the mean of a latent normal distribution,
assuming homogeneity of variance. The latent distribution’s spread may also differ meaningfully
between items, however. As an example, consider polysemous words (words with multiple
senses): for example, the word lie may be used in the sense of a bodily position, or in the
sense of spreading falsehoods. As a result, one may expect ratings on semantic dimensions
to show greater variance for such ambiguous words. However, if the words are presented
with a disambiguating context (e.g., lie (position) and lie (untruth)), one may expect not only
an associated shift in the average of Likert ratings (Scott et al., 2019), but also in the variance
of ratings. Like means, however, SDs of Likert ratings incorrectly assume continuity in an
ordinal scale, and this accordingly causes response patterns to distort estimates (see panel A
of Figure 3.5 and Figure 3.6). As with the mean, an estimate of the SD of the latent distribution
may therefore be used to disentangle such meaningful differences from the ordinal response
pattern.

Although packages like ordinal generally assume homogeneity of variance, differences
in multiple parameters of a distribution function can be modelled concurrently with the brms
package (Bürkner, 2018) for R. When estimating changes in all parameters which specify
a distribution, such an approach can be considered an example of distributional modelling.
Extending this method to CLMs and CLMMs can allow researchers to estimate differences
in a latent distribution’s mean and variance concurrently. Here, the latent distribution’s mean
is estimated on an identity scale via one linear formula, while a second linear formula allows
differences in the latent distribution’s variance to be estimated as changes in a discrimination
parameter (Bürkner, 2020). This parameter is specified as the inverse of the latent distribution’s
SD (i.e., 1/SD), and is modelled on a log scale by default (Bürkner & Vuorre, 2019). In the
previous simulations, I have shown that random effect estimates of an item’s mean in a latent
distribution can be used as a measure of its central tendency in the rated dimension, akin to
means of Likert ratings but disentangled from overall response biases. In a similar manner,
I argue that random effect estimates of the latent distribution’s variance can be used as a
measure of an item’s spread in the rated dimension, akin to the SD of Likert ratings, but again,
disentangled from response patterns.

To demonstrate that a distributional CLMM can accurately estimate items’ latent means
and SDs across different response patterns, I simulated data with participant and item random
effect estimates for both the latent distribution’s mean and SD. The numbers of participants and
items, and the numbers of observations per participant or item were identical to those used in
Simulation 2. The latent distribution value associated with each trial, however, was simulated
as follows:

Li j ∼ N(µi j,σi j)

µi j = µi +µ j

µi ∼ N(0,1)
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µ j ∼ N(0,1)

σi j =
1

edisci+disc j

disci ∼ N(0, .5)

disc j ∼ N(0, .5)

Here, latent values (Li j) are drawn from a normal distribution with mean µi j and SD σi j.
Latent means (µi j) are calculated as the sum of item (µi) and participant (µ j) random effects,
which are both drawn from normal distributions of mean 0 and SD 1. Latent SDs (σi j) are
calculated as the inverse of the exponent of the sum of item (disci) and participant (disc j) random
effects for a discrimination parameter, which are drawn from normal distributions of mean 0 and
SD .5.

In total, 100 datasets were simulated, and, as in the previous simulations, the latent
distribution was recoded to values on the Likert scale using the five different response patterns.
For each of the five response patterns in each of the 100 iterations, a probit-link Bayesian
distributional CLMM was fit with brms, with 3 Markov chains consisting of 6,000 iterations each
(split equally between warmup and sampling). For all CLMMs, the adapt_delta parameter was
set to .8, and the max_treedepth parameter was set to 10. In brms syntax, the model formula
was specified as follows:

brmsformula(

rating ~ 1 + (1 | item_id) + (1 | participant_id),

disc ~ 0 + (1 | item_id) + (1 | participant_id)

)

The results of Simulation 3 are presented in Figure 3.8. As in the previous simulations,
averages of simulated Likert responses were distorted by nonlinearities in response patterns
(panel B), whereas CLMM random effects scaled linearly, across all response patterns, as a
function of simulated differences in the latent variable (panel C). Similarly, SDs of simulated
Likert responses less accurately represented the simulated latent variable variance (panel D)
than SDs calculated from random effects for the disc parameter (panel E). Notably, as the
simulated latent variable SDs increase, the degree to which this is underestimated by SDs of
Likert ratings increases, to the extent that items with a simulated SD of 8 are only estimated as
having an SD of between 1.5 and 2. This is a consequence of the Likert scale’s finite bounds.

The results of Simulation 3 show that unequal variances in the latent distribution can be
retrieved by a distributional CLMM.

However, a model assuming equal variances across observations can still accurately
retrieve differences in the central tendency of the latent distribution, when variances differ
systematically between participants and items. To demonstrate this, for each of the 100
datasets in this simulation, I fit an additional model assuming equal variance across

68



CHAPTER 3. RATING NORMS SHOULD BE CALCULATED FROM CLMMS

Figure 3.8: Results of Simulation 3: efficacy of distributional unequal variance CLMMs for
calculating the SD of latent variables’ variance from Likert response data. Panels A, B, and
C show that the findings from the previous simulation also apply to models which calculate
differences in both the mean and variance of the latent distribution. Panel D shows the
relationship between items’ simulated latent variable SD, and the SD of Likert ratings, while
panel E shows that differences in the latent distribution’s SD are more accurately retrieved by
random effects in the disc parameter. Lines tracking relationships in panels B-E are estimated
via LOESS (span parameter = .75).
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observations. For comparability, this model was specified and fit in a manner identical to that of
the distributional CLMM (i.e., using brms with identical sampling settings). The sole difference
between the model specifications was that the formula for the equal-variance model only
estimated differences in the latent distribution mean, assuming homogenous latent variance. In
brms syntax, this was simply written as follows:

rating ~ 1 + (1 | item_id) + (1 | participant_id)

I could then compare the accuracy of estimation of each item’s latent distribution mean,
from each iteration of the simulation. The results of this analysis are summarised in Figure 3.9,
showing that accuracy in the estimation of item random effects is very similar for both equal and
unequal variance models. As a result, assuming equal variance, when variances across items
and participants are in fact unequal, may not be overly problematic, provided the researcher
is not interested in the differences in variance of the latent distribution. However, the extent to
which accounting for unequal variance may improve accuracy of estimates may be related to
the magnitude of differences in latent variance, relative to the magnitude of differences in latent
mean. Consequently, researchers should carefully consider whether they expect meaningful
differences in the variance of the latent distribution.

3.2.4 Simulation 4: Robustness of the Normal Assumption

The previous simulations all considered a normally distributed latent variable. This choice was
motivated by normality of the latent distribution being a central assumption of CL(M)Ms fit with
a probit-link function. Other link functions similarly assume other distributions; for instance, the
logit-link function assumes the latent variable takes a logistic distribution. Relatedly, CLMMs
assume that item and participant random effects are drawn from normal distributions centred
on zero. One can imagine scenarios, however, in which a model’s distributional assumptions,
for either the latent variable or random effects, are inconsistent with reality. For example, item
random effects may be bimodally distributed if there are two distinct categories in the data,
such as has been argued to be the case for judgements of concreteness (Pollock, 2018).
To demonstrate that the use of CLMMs for norming items is relatively robust to violations of
the models’ distributional assumptions, I ran two simulations fitting probit-link CLMMs via
the ordinal R package (assuming equal variances) to data where, respectively, the latent
variable (Simulation 4a) or the item random effects (Simulation 4b) are drawn from non-normal
distributions. In all simulations, for simplicity of the results, I simulated only the edge-biased
response pattern.

In these final two simulations, the data were generated equivalently to those described in
Simulation 2, except that either the latent distribution, or the item random effects, were drawn
from one of five possible distributions (Figure 3.10A). The first of the five distributions was a
normal distribution with mean of 0 and an SD of 1 (i.e., identical to the N(0,1) used in Simulation
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Figure 3.9: Comparison between a CLMM assuming equal variance across observations (blue),
and a CLMM estimating differences in the variance of the latent distribution (yellow). Panel A
shows that a similar pattern exists for both models between simulated latent means, and those
estimated by the models’ random effects (scaled for comparability between the models). The
estimates are so similar that results for the equal variances model are largely overlaid by results
from the distributional model. Panel B shows the density of the differences between simulated
latent mean values and scaled estimates from CLMM random effects. While estimating items’
differences in latent variance may provide a small gain in accuracy for the estimated means,
reflected by the slightly heavier tails in the density plots, this improvement is minimal for data
simulated here.
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2). This was included such that results for all other distributions could be directly compared to
data which conformed to the model’s assumptions. The four non-normal distributions were as
follows: a logistic distribution (µ = 0, s = 1); a uniform distribution (min =−2, max = 2); a bimodal
distribution composed of two normal distributions (respectively, µ =−1.5, σ = .75, and µ = 1.5,
σ = .75), and a half-normal distribution (µ = 0, σ = 1). Each of the two simulations was run for
250 iterations. In both simulations, the distributions of either the latent variable or item random
effects was altered while all other parameters and results were held constant.

In the first of the two simulations (Simulation 4a), I varied the distribution that the latent
variable is drawn from. Item and participant random effects distributions, meanwhile, were
drawn from the normal distributions specified in Simulation 2. Figure 3.10 presents the results
of this simulation: using the same (probit-) link function to model data, where the latent variable
values are in fact drawn from the five distributions described above, may affect the accuracy of
estimation of item random effects, but in all cases provides item norms which are more accurate,
and scale more linearly, than calculation of mean Likert responses.

In the second of the two simulations (Simulation 4b), I varied the distribution that the
simulated item random effects were drawn from. The latent distribution itself, and the
distribution of participant random effects, were simulated as the normal distributions described
in Simulation 2. Figure 3.11 presents the results of this simulation, showing that, even for very
non-normal random effects distributions, the CLMMs still estimate the item random effects
more accurately than would a traditional average of Likert ratings.

3.3 Application to Real Data

To demonstrate the viability of CLMMs for norming items, I applied the approach to two real
datasets collected from norming studies: orthographic character similarity judgements collected
by Simpson et al. (2013), which show a similar mean-SD relationship to that identified by Pollock
(2018), and norms on semantic dimensions collected in the Glasgow Norms (Scott et al., 2019).
I demonstrate that CLMMs exhibit patterns of results like those in the simulations reported in this
chapter, and that, unlike traditional summary statistics of Likert responses, they can disentangle
meaningful differences among items from participants’ overall response patterns. I also show
that CLMM-derived norms show greater reliability than traditional summaries across most of
the normed dimension, but greater discriminatory power at the normed dimension’s extremes.
Together, these benefits confer improvements in predictive power of relationships with variables
that correlate with the normed variables.

3.3.1 Simpson et al. Analysis

Simpson et al. (2013) collected character similarity judgements for 2,704 pairs of characters,
from 677 participants, on a seven-point Likert scale ranging from not at all similar (1) to
very similar (7 ). Each pair of characters comprised either two lower-case or two upper-case
characters. The trial-level data, shared via personal correspondence, consisted of 81,199 total
trials, with between 108 and 120 trials per participant, and between 29 and 31 ratings per item.
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Figure 3.10: Results of Simulation 4a: varying the shape of the latent distribution. Across all
non-normal distributions (panel A), a similar heterogenous pattern in the mean-SD relationship
in Likert ratings was observed, though it is notably asymmetrical in the case of the half-normal
distribution (panel B). For all distributions, estimates of items’ simulated latent variable values
were distorted by the edge-biased response pattern when estimated via the mean of simulated
Likert ratings (panel C). In contrast, random effects estimates from the CLMM more accurately
retrieved the simulated latent variable values, with similar accuracy across the distribution (panel
D).
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Figure 3.11: Results of Simulation 4b: varying the distribution of the item random effects. Across
all non-normal distributions (panel A), the mean-SD relationship for Likert ratings (panel B)
showed greatest inconsistency at the midpoints of the Likert scale, although this reflects any
asymmetries in the random effect distribution, as is shown for the half-normal distribution. For
all non-normal random effect distributions simulated, estimates from averages of Likert ratings
(panel C) are distorted by the response pattern, and are less accurate than random effect
estimates from CLMMs (panel D), which scale more linearly with simulated values. The unusual
pattern in panel C for random effects drawn from a logistic distribution does not reflect the
pattern of observations well, but is an artefact of the LOESS method of estimation.
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Unlike the original analysis, I did not exclude responses based on a ±2 SD cutoff, but only
excluded missing (i.e., blank) or meaningless (e.g., less than 1 or more than 7 ) responses.

Model Results

I fit a Bayesian distributional CLMM to the trial-level data, estimating item and participant random
effects. The model was fit with brms, using a cumulative probit-link function, and with 6 Markov
chains of 6,000 iterations each (split equally into warmup and sampling). The adapt_delta
parameter was set to .95, and the max_treedepth was set to 10. To reduce the size of the
model for feasibility of storage, the thin argument was set to 2, meaning that only one half of the
posterior samples (i.e., 1,500 per chain) were saved. In brms syntax, the model formula was as
follows:

brmsformula(

rating ~ 1 + (1 | item_id) + (1 | participant_id),

disc ~ 0 + (1 | item_id) + (1 | participant_id)

)

Table 3.1 presents the estimates and credible intervals for parameters estimated by the
model. A summary of the per-item results is presented in Figure 3.12, showing that the problems
I identified with reporting means and SDs for ordinal Likert responses, namely the distortion
of estimates by response patterns, did affect the data. Notably, the patterns of mean-SD
relationships (Figure 3.12A), and the estimated locations of the thresholds (Figure 3.12E), are
similar to those I observed in simulations of edge-biased responses (Figure 3.5). Similarly,
given that latent means provide a measure less biased by response patterns, the relationship
between means of Likert ratings and latent means (Figure 3.12C) suggests that the use of
averaged ordinal responses has distorted the results of the norming study. Furthermore, this
nonlinearity in the study’s response pattern is accounted for by the CLMM, with the distinct
inverted U pattern (Figure 3.12A) disappearing for means and SDs in the latent distribution
(Figure 3.12B). However, some differences between items’ SDs of Likert responses is preserved
in latent SDs (e.g., between items o-b and b-h), suggesting that SDs of ratings are influenced
by both response patterns and variability of responses for different items. This is reflected in
the scatter plot showing the relationship between SDs of ratings and latent SDs (Figure 3.12D),
which suggests only a noisy relationship, due to the influence of response patterns on SDs
of Likert ratings. In summary, by estimating differences in the mean and SD of the latent
distribution, I was able to estimate analogues to the traditional mean and SD of Likert responses,
but which are disentangled from the raters’ response biases. These estimates of latent means
and SDs can be used to calculate a latent distribution for any presented item (Figure 3.12E).
When combined with the threshold estimates, it is possible to probabilistically predict Likert
responses for any item. For instance, the character pair u-ù would be expected to elicit a Likert
response of 7 around 50% of the time.
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Table 3.1: Summary of parameters for of character similarity ratings from Simpson et al. (2013):
Estimates (medians of posterior distributions) and 89% highest density intervals (HDIs) for
the key parameters estimated by the Bayesian distributional CLMM. The first six parameters
reflect the estimated locations of the six thresholds in the latent distribution (e.g., Threshold
3|4 reflects the latent location of the threshold between Likert responses for 3 and 4). The
last four parameters reflect the standard deviation of the random effects distributions for the
cumulative link’s µ, and disc parameters, for items (i) and participants ( j). The symbols and
i and j subscripts are used for consistency with the simulations. These estimates revealed
that magnitude of differences is larger in the µ parameter than in the disc parameter, and
interestingly, that the variability in µ is larger for items than for participants, while the variability
in disc is larger for participants than for items.

Parameter Estimate 89% HDI

Threshold 1|2 .02 [-.04, .08]
Threshold 2|3 .84 [.77, .91]
Threshold 3|4 1.53 [1.46, 1.60]
Threshold 4|5 2.08 [2.00, 2.15]
Threshold 5|6 2.87 [2.79, 2.96]
Threshold 6|7 4.33 [4.22, 4.44]
SD of µi 1.47 [1.43, 1.51]
SD of µ j .71 [.67, .75]
SD of disci .16 [.15, .17]
SD of disc j .27 [.26, .29]
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Figure 3.12: Summary of analyis of character similarity ratings from Simpson et al. (2013):
Item random effect results of the Bayesian distributional CLMM. Six pairs of Arial characters
are highlighted as examples, ranging from o-j at a low level of similarity, to u-ù at a high level
of similarity. Panels depict: (A) The mean-SD relationship in items’ ratings; (B) The mean-SD
relationship in the latent distribution; (C) The relationship between each item’s mean rating and
its latent distribution mean as estimated by the CLMM; (D) The relationship between ratings’
SDs and the estimated latent SD; and (E) The predicted densities of the latent distributions
for the six example items, calculated from their random effect estimates for the µ and disc
parameters. Coloured regions indicate the mapping from latent values to Likert responses,
where the boundaries between coloured regions reflect the estimated locations of the latent
thresholds.
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Figure 3.13: Uncertainty in the estimates of example pairs of characters’ means and standard
deviations in the latent distribution. Ellipsoids present the 50, 75, and 89% HDIs in the posterior
samples, while points show the median estimates for each pair of characters.

The use of Bayesian estimation in the distributional model can also allow researchers to
examine uncertainty in the random effects of each item. To demonstrate this, I calculated
a series of two-dimensional highest density intervals for the latent distribution’s mean and
standard deviations, for each of the example items highlighted in Figure 3.12. These highest
density intervals are presented in Figure 3.13 and demonstrate the degree of uncertainty in the
posterior estimates of the Bayesian distributional model. For instance, Figure 3.13 shows that
of the six example items, the latent mean and SD values for the o-b pair are most certain. In
contrast, there is high uncertainty about the latent mean and SD associated with the o-j pair.
This is in part likely to reflect that all responses were 1 for this pair, such that a floor effect makes
it difficult to estimate the latent distribution (i.e., there are many normal distributions that could
plausibly result in the observed number of participants consistently responding with the lowest
value in the Likert scale).

The Bayesian distributional CLMM presented above modelled differences in both latent
means and latent variances. Following the results of Simulation 3, I was interested in examining
how estimates would change if the CLMM assumed equal variance across observations.
To additionally show the similarity in the results between Bayesian MCMC and frequentist
maximum likelihood models, I fit an equal-variance model using the ordinal package. The
model was fit using the same link function as the Bayesian distributional CLMM (probit), with a
random effects structure specified as follows:

rating ~ 1 + (1 | item_id) + (1 | participant_id)

I could then compare the per-item latent mean estimates of the two models. In this way,
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Figure 3.14: Correlation between random effect estimates of items’ latent means from CLMMs
assuming unequal and equal variance. The latent mean estimates from the Bayesian
distributional CLMM, fit with the brms package, correlate very highly with estimates from the
model assuming equal variance, fit with the ordinal package.

I could examine to what extent assuming equal variance (and fitting via maximum likelihood
rather than Bayesian estimation) would affect estimates if the researcher were only interested
in latent means. This revealed a Pearson’s correlation of r=.997 between the models’ estimates
Figure 3.14. However, it is worth noting that there were considerable differences in the time it
took to fit each of the two models - the Bayesian distributional model took several hours to fit on a
typical modern computer, while the equal-variance model fit with maximum likelihood took only a
couple of minutes. Nevertheless, the simpler, equal-variance model provided extremely similar
estimates of per-item latent means. Were the researcher only interested in latent means, the
simpler, equal-variance model would have been arguably sufficient for norming the similarity
judgements, though that would mean forfeiting the rich posterior distributions afforded by the
Bayesian approach.

Reliability and Discriminatory Power

An important consideration is the variability of norms derived via the CLMM approach between
separate samples. To examine this, I used a method of cross-validation whereby the full
Simpson et al. dataset was split randomly into two samples, with roughly equal numbers
of ratings for each item, and roughly equal numbers of trials for all items per sample. Both
samples could then be normed independently, so that consistency of estimates across samples
could be examined (Figure 3.16A). I compared the results from CLMM-derived estimates to
both raw means, and estimates derived from the random effects structure of a linear mixed
effects model (LMM). This latter comparison was employed to delineate the effects of shrinkage
and of accounting for participant variability which result from the random effects structure
(LMM versus raw means) from the effect of treating the scale as ordinal rather than continuous
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(CLMM versus LMM). The LMMs were fit via the lme4 package for R (Bates et al., 2015),
with a Gaussian identity link for comparability to the raw means. Both CLMMs and LMMs
were fit with item and participant random intercepts. The process of splitting the data in two,
and estimating norms for both samples using each of the three methods, was repeated 100
times. I could then examine the distribution of differences between the two samples of all
iterations (Figure 3.16B). I expected this distribution of differences to show reduced spread
when results are more consistent, and to have greater spread when results are less consistent.
I found that across most of the Likert scale, the CLMM-derived norms were more consistent
between separate samples. The exception was at the lower end of the scale, where items were
overwhelmingly responded to with a rating of 1 (i.e., "not at all similar"). Here, I found that raw
means and estimates derived from LMMs were in fact more consistent than estimates derived
from CLMMs. However, this consistency is in fact illusory, since raw means and LMMs fail to
account for the finite bounds of the Likert scale, resulting in very small variance estimates due
to floor and ceiling effects. In contrast, the CLMM approach provides greater discriminatory
power, by estimating differences in a latent distribution which does not suffer from the same
bounds. The CLMM-derived estimates are therefore necessarily more variable in the extremes
of the scale, where non-ordinal approaches would typically suffer from floor or ceiling effects.
In such cases, the estimates provided by CLMMs are more informative than estimates from
approaches like raw means and LMMs. Indeed, in the Bayesian distributional model I found
that for items affected by floor effects, uncertainty in the latent mean increases markedly with
distance from the location of the lowest threshold (lower section of Figure 3.16B). In such
cases, the responses are too consistent to provide much statistical certainty, and estimates
increasingly rely on other, less directly informative features in the data. For example, items’
latent means will be adjusted based on the random effects of participants who provided the
items’ ratings (as in Simulation 3). This suggests another advantage of Bayesian modelling,
in that it can allow researchers to describe the certainty of their estimated norms. However, it
is important to note that comparable measures could be calculated for non-Bayesian models
via a Monte-Carlo re-analysis of the results. Moreover, the increased uncertainty observed at
extreme values highlights the importance of considering the design of rating scales and wording
of instructions provided to participants. By carefully wording the task’s instructions or anchoring
responses with labels (Hollis & Westbury, 2018), researchers may be able to systematically
shift participants’ responses away from a floor or ceiling effect, such that differences in the
probabilities of the possible ratings allow items to be normed with greater certainty, consistency,
and precision. Nevertheless, this analysis demonstrates that a CLMM approach to norming
items is more robust to floor and ceiling effects than non-ordinal alternatives.

All code, and the fitted Bayesian model, for this re-analysis of the data from Simpson et al.
(2013) is available in the OSF project associated with this work, at https://osf.io/ntvmf/. This
project additionally contains RMarkdown documents showing and explaining minimal examples
of how to use CLMMs to norm items. For researchers who are unfamiliar with R but wish to
compare raw to CLMM-derived estimates, I designed and made freely available a web app that
supports norming items via CLMMs: https://github.com/JackEdTaylor/shinynorms. This app
provides functionality to fit equal-variance CLMMs via the ordinal package, with the item and
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Figure 3.15: Results of the analysis examining consistency in norms estimates for three
approaches: raw means, LMM random effects, and CLMM random effects. Panel A depicts
the test-retest consistency for 30 example items, from one test-retest iteration. Estimates for
the same items, from the three different approaches, are joined by grey lines, while the dashed
diagonal line depicts perfect consistency between the two samples for reference. The lower
region of panel B shows how uncertainty in latent mean estimates (width of the 89% HDI) from
the Bayesian distributional model varies across the latent scale. The coloured bands depict the
89% HDIs for the estimated threshold locations (e.g., 1|2 is the threshold between ratings of
1 and 2). The upper region of panel B shows the distribution of differences between samples
A and B, with observations combined from 100 iterations of the test-retest procedure. The
differences are depicted separately for items which were either below (left) or above (right)
the lowest threshold. The jagged appearance of the density plot of differences for raw means
reflects that there is only a finite number of possible values the average rating can take without
the additional discriminatory power provided by random effects.
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participant random effects downloadable alongside traditional summary statistics of means and
SDs.

3.3.2 Glasgow Norms Analysis

Scott et al. (2019) collected ratings for 5,553 words on nine semantic dimensions from 829
participants. Six variables (Age of Acquisition, Concreteness, Familiarity, Gender, Imageability,
and Size) were rated on 1-7 Likert scales, while the remaining three variables (Arousal,
Dominance, Valence) were rated on 1-9 scales. I fit CLMMs to trial-level data from the Glasgow
Norms, for all nine dimensions. I identified and excluded some duplicate entries in the trial-level
dataset - 45 trials were excluded because they were duplicate data entries (i.e., identical in
all fields, including timestamp, participant ID, item ID, and response), and an additional 153
observations were excluded because, in error, the experiment platform presented the same
item to participants more than once (in such cases, only the first presentation of each item
was included in the analysis). I also excluded trials where participants, instead of rating a
word on the given dimension, indicated that they did not know the word, which was an option
for all dimensions except Familiarity (as an unknown word should receive a rating of 1 in
Familiarity). Following these exclusions, I then applied the response time filter as used in the
original Glasgow Norms analysis, excluding trials with response times less than 600 ms. After
these exclusions, there were a total of 1,679,206 observations across all nine dimensions. As
in the analysis of reliability and discriminatory power reported for the Simpson et al. data, I
estimated norms for each of the nine variables using three different methods: raw means, LMM
random effects, and CLMM random effects. Each semantic variable was normed separately.
As in the Simpson et al. analysis, distributions of estimates (Figure 3.16) were very similar
for raw means and LMM random effects, while CLMM random effects distributions showed
larger changes - especially at scales’ extremes where ceiling and floor effects were more likely.
LMMs were fit with lme4, and equal-variance CLMMs were fit with the ordinal package, while
all model formulae were specified as in the Simpson et al. analysis:

rating ~ 1 + (1 | item_id) + (1 | participant_id)

In this analysis, I was interested in comparing the predictive power of norms calculated
traditionally to norms derived from LMMs and from CLMMs. Scott et al. (2019) identified three
strong correlations between the normed variables: Age of Acquisition - Familiarity (r=-.67),
Concreteness - Imageability (r=.91), and Valence - Dominance (r=.68). I compared how well
the norms calculated from raw means, LMMs, and CLMMs could account for these relationships.
I additionally examined the relationship between subjective familiarity norms and objective word
frequency estimates (log10 word frequency per million from SUBTLEX-UK; van Heuven et al.,
2014), as research has shown these variables to be highly correlated (Brown & Watson, 1987;
Scott et al., 2019; Tanaka-Ishii & Terada, 2011). To compare the predictive power of the
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Figure 3.16: Distributions of words’ rating norms from the Glasgow Norms dataset, calculated
from raw means, or from the random effects estimates of LMMs and CLMMs. Densities of raw
means and LMM random effects are usually so similar as to overlay one another. Densities are
scaled by SDs for comparability between variables and methods of estimation. Vertical black
lines depict the estimated locations of CLMM thresholds.

relationships, when norms were estimated using the three different methods, I estimated the
R2 values for variables’ linear relationships. Results (Figure 3.17) revealed that estimating
norms from LMM random effects sometimes resulted in small improvements in the proportion of
variance explained by relationships, and that CLMM-derived norms usually yielded the largest
proportion of variance explained. The main exception was the correlation between Valence
and Dominance norms, for which similar proportions of variance were explained when norms
were calculated from any of the three methods, reflecting that for these two variables, norms
calculated from the three methods were very similar. In sum, this reanalysis of the Glasgow
Norms showed that the greater reliability and discriminatory power provided by CLMMs confer
greater predictive power, and suggest that CLMM-derived norms better index the dimensions
that rating scales aim to capture.

3.4 Discussion

Norming studies which use ordinal scales constitute a vital resource for research and are
applied to a wide range of scientific applications. It is therefore important that the reported
norms accurately reflect the inter-item relations on the dimension of interest. Informed by the
simulations reported here, I argue that to this end, norming studies should report estimates
which appropriately account for nonlinearities in the ordinal norming scale, rather than
inaccurately assuming that the ordinal scale is linear. Specifically, this chapter has shown that,

83



CHAPTER 3. RATING NORMS SHOULD BE CALCULATED FROM CLMMS

Figure 3.17: Proportion of variance explained in linear relationships when ratings are normed
using means, LMMs, or CLMMs. Points depict estimates for individual words, while black lines
depict the estimated linear relationships. For comparability, raw means, LMM estimates, and
CLMM estimates are scaled consistently, by their SDs.
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when using an ordinal Likert scale to norm items, traditional methods such as raw means
and SDs can lead to systematically distorted item comparisons. On the other hand, properly
accounting for the ordinal nature of the judgements via CLMMs provides estimates which
are far less affected by participants’ response mappings. While this problem is generally
well-understood in studies that aim to estimate fixed effects of experimental manipulations
(Liddell & Kruschke, 2018), the problem has been less widely discussed in relation to norming
studies.

From this chapter, the chief recommendation is that items are normed via the random effects
structure of hierarchical ordinal models like CLMMs. In this way, researchers will be able
to estimate norms which are appropriately disentangled from the nonlinearities in response
patterns. However, while random effects estimates extracted from CLMMs will provide more
accurate estimates for norming studies, such studies should report them in addition to more
traditional measures like Likert means and SDs, rather than instead of them. This will be
important for ensuring that results are still comparable with existing datasets which only report
means and SDs, and for users of the data to examine the differences between estimates from
ordinal models versus traditional summary statistics.

In addition to more accurately norming items’ central tendencies, this chapter has
demonstrated how CLMMs can be used to explicitly model and norm latent variances, which
requires the application of a Bayesian distributional modelling approach. While researchers
are typically most interested in items’ central tendencies, ambiguity in judgements can also be
of great theoretical relevance (e.g. Brainerd et al., 2021). Explicitly modelling differences in
latent SDs, rather than assuming equality of variance, could offer a more meaningful analogue
to the traditional Likert SD reported in norming studies. This recommendation is informed by
the finding that SDs of Likert ratings reflect both meaningful differences in latent variance,
and artefacts of nonlinearities in response patterns. I note that when distributional CLMMs
are used to disentangle meaningful and artefactual contributions to items’ SDs, the striking
mean-SD relationships identified as problematic by Pollock (2018) are no longer observed. As
a result, I argue that this statistical concern raised by Pollock is not inherently problematic.
Rather, it reflects consequences of treating ordinal scales as continuous. This conclusion
is likely to have important consequences in research concerned with whether concepts
like concreteness are categorical or continuous in nature (e.g., compare Pollock, 2018, to
Gentner and Asmuth, 2019). While CLMMs necessarily assume that a continuous distribution
underlies ordinal responses, the results of this chapter demonstrate that conversely, the raw
frequencies of different ordinal categories cannot be interpreted as evidence for a concept
existing categorically or continuously.

It is notable that the methods required to estimate Bayesian distributional CLMMs tend to
be more computationally complex, and correspondingly, take substantially more time to fit, than
more standard equal-variance CLMMs. The difficulty of fitting such models may even become
unfeasible for especially large datasets. Researchers may therefore wish to ignore differences
in latent variance, to focus only on the perhaps more theoretically relevant estimates of latent
means. In Simulation 3, I showed that assuming equality of variance in this way does not
seem to reduce the accuracy of latent mean estimates to any great extent. In addition, in
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the analysis of the character similarity dataset (Simpson et al., 2013), I showed that fitting a
maximum likelihood model assuming homogeneity of latent variance can provide highly similar
estimates of latent means to those from a Bayesian distributional model. As a result, I argue
that if researchers are not interested in reporting latent variances, then simpler, equal-variance
models can generally be used to estimate latent means without any great loss in accuracy.
However, given that other researchers may be interested in estimates of latent SDs, making
the trial-level dataset publicly available regardless would allow other researchers to model such
differences if they wish.

All the simulations and analyses presented in this chapter fit models which assume a
single response pattern across all observations (but which can take different shapes such as
equidistant, left-biased, right-biased, centre-biased, edge-biased, etc.). This assumption is
likely appropriate for many normed variables, as reflected in how the artefacts of response
patterns are clearly observed when data is collapsed across participants (see Figure 3.2,
Figure 3.3, and Figure 3.12). However, researchers may observe that different participants, or
indeed items, show distinct response patterns. In this case, a considerable degree of accuracy
will be lost by failing to account for such participant- or item-related dependencies. A solution
could be, rather than assuming that all participants (or items) display the same overall response
pattern, to model response patterns per-participant or per-item, or both (Bolt & Johnson, 2009;
Jonas & Markon, 2019). Indeed, CLMMs can be specified to model such variability with brms,
by using the thres() term to provide participant or item IDs as a grouping variable for which
thresholds should be calculated separately: e.g. response | thres(4, gr=participant_id) 1 +
(1|item_id) + (1|participant_id) ). Such models can be very computationally intensive, adding
a large number (number of participants * number of thresholds) of parameters that need to be
estimated. This is especially likely to make results from large-scale norming studies difficult
to estimate (e.g., N=4,237 participants in Brysbaert et al. (2014)). However, modelling data
in such cases may be made more tractable with statistical approaches like that outlined by
Selker et al. (2019), which allows an arbitrary number of thresholds in a latent distribution to
be estimated via just two parameters per participant. As a result, researchers may consider
calculating thresholds separately for individual participants, although I do not evaluate the
performance of such models here. An alternative could be to use a different grouping variable
with fewer levels, but which accounts for differences in response patterns relatively well. As
an example, it may be that differences in, say, reading skill (high, medium, low) could account
for variability in participant-related response patterns such that the skill groups show distinct
response patterns. In this case, calculating thresholds separately for each skill group will allow
the norms to be better disentangled from response patterns, while only requiring a few more
parameters to be estimated. Importantly, whether splitting estimates of threshold locations by
grouping variables is appropriate, and which grouping variables it would be most appropriate
to split by, will differ between norming studies and participant samples. I also note that such
considerations may benefit from further investigation in future research.

Throughout the simulations and reanalysis, I have used CLMMs with probit-link functions
to model Likert responses. While the probit-link is convenient for estimating latent parameters
more directly comparable to traditional means and SDs (as it assumes the latent variable is
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normally distributed), other link functions can be equally appropriate, given that the true shape of
the latent distribution is usually unknown. Altering the link functions for CL(M)Ms typically results
in only small changes in model parameters (McCullagh, 1980). In Simulation 4, I showed that
CLMMs fit with a single link function can estimate item random effects similarly well, regardless
of different violations in the assumption of the latent variable and random effect distributions.
Indeed, no single link function is likely to be superior for modelling rating data in all cases. If
researchers wish to check that the link function they use is appropriate, they may want to fit
several models to the data, using different link functions but identical formulae. Researchers
could then select the model which best accounts for the data, assessed via measures of model
fit such as log-likelihood. Regardless, I recommend that researchers always report the link
function they used to model responses.

Similarly, all the CLMMs presented in this chapter were fit using flexible thresholds. This
means that no constraints were imposed on the possible positions of the thresholds which
demarcate the ordered regions of the latent distribution. An alternative would be to specify
necessary features of the threshold locations, such as symmetry (around the mode of the latent
distribution), or equidistance between thresholds. Estimating flexible thresholds is likely to be
the most informative and most generalisable option when fitting a CLMM. There may be cases
when specifying constraints on threshold locations is desirable for norming items, but in such
cases researchers should clearly explain and justify the use of non-flexible thresholds.

In contrast to the models examined in this paper, which focus on random effects, norming
studies have frequently separated results by demographic features of participants, like gender
and age (e.g., Engelthaler & Hills, 2018; Grühn & Scheibe, 2008; Kanske & Kotz, 2010; Warriner
et al., 2013), or features of experimental design, such as counterbalanced order of task (e.g.,
Salmon et al., 2010). Similarly, researchers frequently report correlations with features of items,
such as other normed or corpus-derived variables (e.g., Pexman et al., 2017; Pexman et al.,
2019; Scott et al., 2019; Stadthagen-Gonzalez & Davis, 2006; Warriner et al., 2013). While such
effects could be estimated by examining correlations between relevant variables and random
effect correlations, such variables could alternatively be incorporated into the CLMM, thereby
accounting for the hierarchical variability of such effects in the random effects structure. For
instance, a model estimating item norms, while also estimating the effects of age and gender of
participants on ratings of individual items, could be estimated with random slopes as follows:

rating ~ 1 + (1 + age + gender | item_id) + (1 | participant_id)

A key advantage of using CLMMs to more accurately norm items is a reduction in
measurement error. As an example, consider studies examining effects of normed features of
words like concreteness and imageability on behavioural or neural correlates (e.g., Goh et al.,
2016; Khanna & Cortese, 2021). Such studies will be able to estimate effects more accurately,
and with greater statistical power, if the normed variables more accurately reflect the underlying
variable of interest, disentangled from artefacts of response patterns. Similarly, research that
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aims to expand the breadth of norming studies by predicting responses for unpresented items,
for example via latent semantic analysis (Bestgen & Vincze, 2012), will be able to provide more
accurate predictions, without simply reproducing artefacts of response patterns, if the models
predict latent means rather than Likert means. The advantages of CLMMs are also likely
to provide benefits in stimulus design. For instance, many variables in the LexOPS dataset
(chapter 2) are calculated from averages of raw ordinal responses. Consider that the greater
precision and discriminatory power provided by norms derived from hierarchical ordinal models
will confer improved precision in stimulus matching when the normed variable reflects an
experimental confound, and is used as a continuous control variable to minimise the confound’s
impact. This improved precision in matching will in turn provide more accurate and meaningful
insight into the results of the experiment that the designed stimuli are generated for, reducing
the impact of this experimental confound.

Not all norming studies employ ordinal scales; the recommendation to use CLMMs applies
mostly to studies norming participant ratings, which are inherently ordinal. Some norming
studies, meanwhile, norm variables which are clearly not ordinal. For example, participants
may provide norms to a binomial decision, such as whether they know a given word (word
prevalence; Brysbaert et al., 2019). I argue, however, that such studies can still benefit from
using hierarchical modelling to pool observations and norm items more accurately. For example,
random effect estimates from a binomial generalised linear mixed effects model could be used
to norm word prevalence more accurately, concurrently accounting for item and participant
variability, and appropriately adjusting outliers towards more accurate estimates via shrinkage.
On the other hand, researchers may use scales which appear more continuous than the 5-point,
7-point, and 9-point scales most commonly used in norming studies. For instance, participants
may be asked to rate items on a scale from 0 to 100 (e.g., Ma et al., 2015; Z. Yao & Wang,
2013). In this case, however, the only difference is in granularity: the latent continuous variable
is simply separated into more regions. Participants will still show nonlinear response patterns in
their judgements, biased towards some region of the scale. For such a large Likert scale there
also likely to be additional sources of nonlinearity, such as ratings biased towards numbers
which are multiples of 5 or 10.

Finally, it is important to note that there is a rich literature of existing recommendations
for the formulation of Likert scales. Although such recommendations often assume the use
of traditional Likert means for norming, such recommendations still hold true for norming
studies using the methods of analysis that are recommended here. Researchers should still
carefully consider the phrasing of their questions and the instructions given to participants
so as to maximise their sensitivity to the underlying variable they are interested in (Connell
& Lynott, 2012; Hollis & Westbury, 2018). This will allow researchers to avoid undesirable
outcomes such as floor and ceiling effects, which necessarily reduce the precision of estimates
(as in Figure 3.16B). Similarly, researchers should still consider whether collecting subjective
judgements is informative or useful for the variable they are interested in. Regardless of how
subjective judgements are analysed, they will still be inherently subjective. As an illustration,
imagine a study utilising the Müller-Lyer illusion, where the sizes of lines are perceptually
distorted by inward- and outward-pointing arrowheads at each end. Suppose that participants
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are asked to provide a Likert scale rating of how similar the two lines are in their lengths. Even
if the ordinal nature of the scale is accounted for, estimates on the latent distribution will still
be biased by the perceptual illusion, away from the lines’ objective lengths. This is to say, the
latent variable will be disentangled from response patterns, but will inherently reflect subjective
perceptions, which may not necessarily align with objective reality.

To summarise, in this chapter I have shown that CLMMs support more accurate norming of
items than traditional statistics of means and SDs, which treat the scale is continuous rather than
ordinal. Summarising items via estimates of their latent means and SDs provides an analogue
to traditional analyses, with the advantage of appropriately disentangling variables of interest
from artefacts of nonlinearities in participants’ response patterns.
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Chapter 4

Category-Level Top-Down Modulation of the
N1 via Task Manipulation

4.1 Introduction

A key question in research into visual word recognition is whether early orthographic processing
is influenced by top-down modulation. While there is support for higher-level contributions
to occipitotemporal regions associated with orthographic processing (Bouhali et al., 2014;
L. Chen et al., 2019; Vogel et al., 2012), a demonstration that these connections functionally
influence early stages of word recognition requires disentangling early, prelexical processing
from later processing that occurs after word recognition. The high temporal resolution of
electroencephalography (EEG) affords such insight into the timing of cognitive processes in
the brain; the extent to which, and latency at which, activity recorded in EEG is sensitive
to higher-level information can delineate the timeline of sensitivity of early processes to
top-down modulation. The occipitotemporal N1, the first negative-going event-related potential
(ERP) component observed in response to individual words, has been widely associated
with orthographic processing (Bentin et al., 1999; Brem et al., 2006; Maurer, Brandeis, et al.,
2005). If the N1 is sensitive to higher-level task or semantic information, when this can be
predicted from preceding context, this is likely to indicate a functionally meaningful influence of
top-down modulation on early orthographic processing. A useful step in research on effects
of predictability and top-down modulation is to identify the limits of their influence (Luke &
Christianson, 2016; Van der Stigchel et al., 2009). In this chapter, I report the results of an
experiment investigating whether the N1 is sensitive to predictions at the level of categorical
semantic information, setting an upper bound on top-down modulation of early orthographic
processing.

In addition to approaches that bias participants’ expectations via linguistic (see Nieuwland,
2019, for a review) or non-linguistic (e.g., Dikker et al., 2009; Kherif et al., 2011) cues in
stimuli, a common paradigm for investigating top-down modulation uses task manipulations.
Here, changes in task cue attention to, or predictions of, different features of stimuli. An
advantage of using task manipulations to investigate top-down modulation is that researchers
can present identical stimuli between tasks, such that bottom-up processing can be matched
exactly. Most commonly, paradigms using task manipulations have compared responses
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in tasks that explicitly require different levels of processing. Commonly used tasks in this
paradigm include semantic categorisation tasks (SCTs), explicitly requiring word recognition
and semantic processing; lexical decision tasks (LDTs), explicitly requiring word recognition
but not necessarily semantic processing; and perceptual or sublexical tasks, explicitly
requiring only non-linguistic perceptual processing or attention to sublexical elements such as
individual letters in a word. Much research on task manipulations has focused on questions of
automaticity in word recognition. For example, if readers show sensitivity to word frequency
effects during LDTs, but not during perceptual tasks, then it is possible to conclude that word
frequency does not automatically influence word recognition processes, but rather depends on
task demands. Combining task manipulations with the temporal resolution of EEG provides
insight into the timing of such task-stimulus interactions.

One line of research that has used task manipulations to investigate automaticity has
focused on the N400, a centroparietal ERP component observed around 400 ms after word
presentation that is typically associated with semantic processing (Kutas & Federmeier,
2011). For instance, Chwilla et al. (1995) presented words in two tasks: an LDT, in which
participants discriminated between words and orthographically and phonologically plausible
pseudowords, and a perceptual task, in which participants discriminated between lower- and
upper-case words. Each target word was preceded by a prime, for 200 ms, with a stimulus
onset asynchrony (SOA) of 700 ms, which was either semantically related or unrelated to the
target. Results showed that prime-target relatedness only influenced N400 amplitude in the
LDT. In the perceptual task, in which lexical or semantic processing was unnecessary, no effect
of prime-target relatedness on the N400 was observed. Such effects of task on the N400,
indicate that processing in the N400 is to some degree strategic, subject to top-down control,
rather than fully automatic (though the N400 is not fully strategic either; Kutas & Federmeier,
2011). Task dependence has also been observed for other late ERP components, such as
the P600, a positive-going component, peaking centroparietally around 600 ms after stimulus
presentation, that is thought to reflect syntactic and late semantic processing (Brouwer et al.,
2012; Molinaro et al., 2011). For instance, syntactic and semantic violations elicit a clear
P600 when the violations are task-relevant, such as when participants respond to stimuli with
sentence correctness judgements (Martín-Loeches et al., 2006), but are harder to detect
or absent when such violations are task-irrelevant, such as in a probe verification task (i.e.,
"was this word in the sentence?"; Schacht et al., 2014). Hahne and Friederici (1999, 2002)
applied a similar task manipulation paradigms to examine whether an earlier syntax-sensitive
component, the early left anterior negativity (ELAN; peaking 100-300 ms post-stimulus), shows
a comparable modulation from task demands. Results showed that whereas sensitivity to
semantic and syntactic violations in the N400 and P600 was modulated by task demands, the
ELAN was seemingly insensitive to task demands. On this basis, Hahne and Friederici (1999,
2002) argued that higher-level influences only affect later processing, while early syntactic
processing is automatic and impervious to top-down modulation (although see Steinhauer &
Drury, 2012, for a discussion of whether the ELAN reflects early syntactic processing or is
carried over from processing of preceding words).

A similar argument was originally made for task-insensitive automaticity in early
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occipitotemporal processing of word forms (Posner et al., 1989). In contrast to the ELAN,
however, much research has suggested that the occipitotemporal N1 may be sensitive to
task manipulations. These findings are detailed in section 1.5.2 of the general introduction.
To summarise the findings here, the N1 shows a sensitivity to task demands similar to that
observed for the N400 and P600. N1 amplitudes are more negative-going in tasks explicitly
requiring lexical or semantic processing than in non-lexical perceptual tasks (Y. Chen et al.,
2013; F. Wang & Maurer, 2017). Furthermore, tasks explicitly requiring lexical or semantic
processing cause the N1 to show greater sensitivity to word forms’ orthographic legality
(Bentin et al., 1999), and word frequency (Y. Chen et al., 2015; Strijkers et al., 2015). In one
interesting use of task manipulations, F. Wang and Maurer (2020) presented Chinese speakers
with Chinese characters, or stroke-matched Korean characters. Participants were required
to categorise characters as either Chinese or Korean, with coloured (blue or green) frames
preceding the stimulus cueing the likely category of the upcoming character. Unlike studies
that bias participants’ attention towards different aspects of the stimulus (perceptual, lexical,
semantic, etc.), this task biased expectations for categories of word forms. F. Wang and Maurer
(2020) showed that, in the period of the N1 that follows its peak (i.e., its offset), the effect of
orthographic familiarity, where unfamiliar Korean characters elicited more negative-going N1
components than familiar Chinese characters, was greater when the task cued participants’
expectations towards Chinese characters, and smaller when participants were cued to expect
Korean characters.

Wang and Maurer’s paradigm differs from much research on top-down modulation of the
N1, which has typically either examined sensitivity to features of word forms like frequency
(as summarised above), or has biased expectations towards specific, individual word forms
(Nieuwland, 2019). The findings of F. Wang and Maurer (2020) suggest that expectancy
for entire orthographic categories, when these categories differ in orthographic familiarity or
legality, may modulate N1 responses. If the N1 is sensitive to expectations of orthographic
categories, it may also be sensitive to predictions of categories of word forms like semantic
categories. A key difference, here, is that both category members and non-members would
be orthographically legal and familiar, such that sensitivity to category membership would
indicate an influence of targeted predictions on processing during the N1. One previous study
that examined whether early ERP components are sensitive to information at the level of
semantic categorisation was reported by Segalowitz and Zheng (2009). Here, Segalowitz and
Zheng presented participants (N=14) with different sets of stimuli in two very similar LDTs,
where stimuli within each block either all belonged to the same category, or else were drawn
from multiple categories. It is notable that, unlike most research that uses task manipulation
paradigms, the two tasks did not greatly differ in task demands; category membership was
a largely implicit feature of words, with the more semantic LDT only probing knowledge
of category membership at the end of each block (asking participants to identify which of
four words would be a member of the same semantic category as those presented in the
preceding block). Segalowitz and Zheng’s stimuli comprised 100 words, drawn from five
semantic categories, and 100 pseudowords designed to be orthographically and phonologically
plausible. Segalowitz and Zheng reported a task-stimulus interaction on the N1, wherein
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amplitudes for words were more negative-going when words were drawn from the same
semantic category, while N1 amplitudes observed for pseudowords did not differ between
tasks. While this may demonstrate an effect of task demands on sensitivity to lexicality,
consistent with research cited above, it may also demonstrate a task-dependent sensitivity to
semantic category membership. Disentangling these two explanations would require two types
of word stimuli: category-relevant and category-irrelevant words. Presenting these stimuli
alongside non-lexical stimuli like pseudowords and nonwords would allow the disentanglement
of the two possible explanations for the effect reported by Segalowitz and Zheng (2009).

Such a comparison, between category-relevant and category-irrelevant words in an SCT,
was examined by Hauk et al. (2012), who presented words, matched on multiple orthographic
variables, that refer to either living or non-living objects. In a go-no-go SCT, analysing results
across the full topography simultaneously, Hauk et al. reported that differences emerged as
early as 166 ms (although the difference peaked later, at 338 ms). Hauk et al. also presented
a separate set of items in an LDT, reporting a difference between words and pseudowords,
matched for orthographic features, as early as 168 ms, suggesting an early N1 sensitivity to
lexicality, in addition to category relevance. If the effect reported by Hauk et al. in the SCT does
indeed reflect category relevance, then the difference between category-relevant and category-
irrelevant items should be expected to be absent in an LDT (assuming the category-relevant
words are not salient enough for participants to notice the shared semantics and infer the
underlying categories). Alternatively, if the category difference is present in both an SCT and
LDT, then the difference may not reflect a sensitivity to category relevance, but rather to bottom-
up features that differ between the stimuli (e.g., Hauk et al.’s category-relevant and -irrelevant
words differed slightly in average word frequency).

In this experiment, I examine whether expectation for a semantic category of word forms
modulates the N1. I apply a task manipulation paradigm to compare N1 responses to words
during an SCT, in which words’ membership of semantic categories is task-relevant, to during a
LDT, in which semantics is not explicitly relevant. Unlike Segalowitz and Zheng (2009), the task
manipulation has been designed to make semantic category membership explicitly relevant to
the SCT, and not the LDT, while, unlike Hauk et al. (2012), the same items are presented in
both tasks. By including both category-relevant and category-irrelevant word stimuli in the SCT,
in addition to non-lexical pseudowords and nonwords, I am able to disentangle any observed
effects indicative of top-down modulation, thereby distinguishing between the two interpretations
of the the effect that Segalowitz and Zheng report, and ensuring hat any effect of category
relevance is not related to bottom-up differences. If the N1 shows an interaction between
task and category-relevance of stimuli, where category relevance influences the N1 during the
SCT but not during the LDT, this would provide evidence in favour of top-down modulation
of the occipitotemporal N1 at the level of the semantic category. I show that while this task-
stimulus interaction does emerge, it is observed later than the N1, setting an upper bound on
the top-down modulation of early orthographic processing. Further, while I replicate sensitivity
to orthographic features in the N1, no sensitivity to lexicality is observed, and no clear interaction
between task and either orthographic plausibility or lexicality is observed in the N1. I discuss
the findings, arguing that differentiation between whole categories of words on the basis of

94



CHAPTER 4. CATEGORY-LEVEL TOP-DOWN MODULATION OF THE N1

orthography is difficult for an alphabetic script, in which a small number of graphemes are reused
and will necessarily occur in both category-relevant and -irrelevant word forms.

4.2 Methods

In this experiment, words commonly listed as members of semantic categories (Van
Overschelde et al., 2004) were matched with category-irrelevant words. Words were
presented in an LDT (with category-relevant words randomised across blocks) or SCT
(with category-relevant words randomised within category-specific blocks). In addition to
category-relevant and -irrelevant words, pseudowords (orthographically and phonologically
plausible) and nonwords (consonant strings) were presented as matched non-lexical stimuli for
the LDT, additionally providing a validation of the orthographic sensitivity of the N1.

4.2.1 Design

Participants were randomly assigned to one of four groups: A, B, C, or D. All participants
completed both the LDT and SCT, but the order in which the tasks were completed, and the
items presented in each task, were counterbalanced. A summary of the experimental design is
shown in Table 4.1.

Table 4.1: The order of tasks, and the blocks of stimuli presented in each task, for the four
participant groups. The final two columns indicate the number of participants assigned to each
response mapping scheme (respectively, where the right-handed response is affirmative, and
where the left-handed response is negative) - response mappings are explained in section 4.2.4.

Participant
Group

Task Order Blocks in LDT Blocks in SCT
N per Response

Mapping

A LDT, SCT 1,2,3 4,5,6 3,3
B SCT, LDT 1,2,3 4,5,6 4.2
C LDT, SCT 4,5,6 1,2,3 4,3
D SCT, LDT 4,5,6 1,2,3 5,5

4.2.2 Participants

A total of 38 participants were selected by opportunity, though of these, 9 participants were
excluded due to problems with the EEG recording. Of the participants excluded, 5 were
excluded due to issues with the EEG setup meaning that data were missing or triggers were not
recorded, and 4 were excluded due to high offsets (more extreme than ±20 µV) or excessive
noise producing unreliable ERPs .

Of the 29 participants included, 6 were in participant group A, 6 in B, 7 in C, and 10 in D.
Ages ranged from 16 to 45 years (mean=24.48, SD=6.1), and 20 identified as female, while 9
identified as male. All participants reported right-hand dominance. A screening questionnaire
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was used to additionally ensure that all participants were monolingual English speakers, and
did not report being diagnosed with any condition or disability that impairs language ability or
reading. All participants reported having normal vision, or else wore glasses or contact lenses
if they usually wear them to read.

Data collection was approved by the University of Glasgow School of Science and
Engineering Ethics Committee (application number: 300170093).

4.2.3 Stimuli

Stimuli comprised 496 items, consisting of 124 category-relevant words, category-irrelevant
words, pseudowords, and nonwords, respectively. A list of all items is presented in Appendix
B.1. Category-relevant words were drawn from a set of semantic category norms reported
by Van Overschelde et al. (2004), which comprise words commonly listed as members of
semantic categories. I selected 6 semantic categories from the Van Overschelde et al. (2004)
norms: Four-Footed Animals, Fruits, Musical Instruments, Parts of the Human Body, Relatives,
and Things that Fly. Items longer than one word (e.g., star fruit) or ambiguous in meaning
(e.g., orange) were excluded. As a result, all category-relevant words were category-specific,
unambiguous, concrete nouns. Words in the category norms that were plural in the original were
singularised (e.g., teeth was changed to tooth), and words specific to American English were
replaced with British English equivalents (e.g., ladybug was replaced with ladybird). Finally,
some items were excluded from categories such that each category block could be matched in
length (number of items) with one other category.

Category-irrelevant words were matched to category-relevant words manually using features
of an early version of LexOPS (J. E. Taylor et al., 2020). Category-relevant and -irrelevant items
are summarised in Figure 4.1A. Category-irrelevant words were selected to match category-
relevant words exactly in word length, and closely in word frequency. Where suitably close
matches could not be found, items were hand-selected to match stimuli distributionally. Items
were additionally selected to produce similar distributions in variables relevant to orthographic
processing, and likely relevant to performance in the LDT and SCT: othographic neighbourhood
size (OLD20; Yarkoni et al., 2008), character bigram probability (calculated from SUBTLEX-UK;
van Heuven et al., 2014), age of acquisition ratings (from Scott et al., 2019), and concreteness
ratings (from Scott et al., 2019).

Pseudowords were formed manually, designed to be orthographically and phonologically
plausible, while nonwords were formed as strings of randomly selected consonants (excluding
the letter y ), designed to be unpronounceable and orthographically implausible. Pseudowords
and nonwords were matched on length exactly, to pairs of category-relevant and -irrelevant
words. Distributions of pseudowords and nonwords on orthographic variables, average
character bigram probability and OLD20, are presented in Figure 4.1B, showing that
pseudowords show similar distributions to category-relevant and -irrelevant words, while
nonwords are highly dissimilar from real words in these variables.

Stimuli were split into 6 blocks, for each of the 6 semantic categories of category-relevant
words. For the SCT, stimuli were pseudorandomised within blocks such that no more
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Figure 4.1: Summary of stimuli features. (A) Matched category-relevant and -irrelevant words.
Points denote individual items, while lines joining points denote that items were matched. Where
possible, pairs were matched item-wise for length and frequency. All other variables were
matched distribution-wise. Some points and lines are missing, reflecting words for which values
were unavailable. Coloured shapes depict the densities of points. (B) Distributions of all four
stimulus types on orthographic variables: character bigram probability and OLD20. Density is
not scaled consistently across plots and are only comparable within variables.
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than 3 consecutive trials were of the same stimulus type. For LDT trials, stimuli were
pseudorandomised across the 3 blocks, rather than within them, to reduce the salience of
the shared semantic categories of category-relevant words. Randomisation was performed
separately for each participant.

4.2.4 Procedure

Participants completed the experiment resting on a chin rest at a distance of 50 cm from a VPixx
Technologies VIEWPixx monitor (resolution = 1920*1080 px, diagonal length = 23") on which
the stimuli were displayed. Stimuli were presented using the Psychophysics Toolbox extensions
for MATLAB (Psychtoolbox 3; Kleiner et al., 2007). In both tasks, the following events occurred.
(1) A blank grey screen was presented for 200 ms (equal to 50% of the maximum intensity in
each colour channel). (2) A fixation cross was presented for 200 ms, shown as the "+" symbol
(black, 40-point DejaVuSans font, .75◦ of visual angle high, and 1.03◦ wide) in the centre of the
screen, on a grey background. (3) A blank grey screen was presented for between 300 and
1300 ms (jittered randomly; uniform distribution). (4) The target was presented in the centre of
the screen for 400 ms, in black, 40-point DejaVuSans font on a grey background. Target stimuli
ranged in height from .7 to 1.22◦ of visual angle (mean=1.04, SD=.16). As the font was not
monospaced, width in visual angle was calculated for each stimulus individually, ranging from
.47 to .9◦ (mean=.67, SD=.08) per character, and from 1.43 to 8.31◦ per word (mean=3.69,
SD=1.36). (5) After the target, a blank grey screen was shown until the participant responded.
Participants responded to each trial with either the right or left control (Ctrl) key on a standard
QWERTY keyboard, where one of these buttons indicated an affirmative response, "yes", while
the other indicated a negative response, "no". Mapping of the right and left control keys to
affirmative and negative responses was pseudorandomly assigned for each participant before
the experimental session, such that there were similar numbers of participants for each type
of response mapping. Specifically, 16 participants responded with "yes" mapped to the right
control key, and 13 participants with it mapped to the left control key. There were also similar
numbers of participants for each response mapping across the participant groups that dictated
presentation order (Table 4.1).

For the LDT, participants were instructed to respond "yes" to targets that are real words
(i.e., category-relevant and category-irrelevant words), and to respond "no" to targets that are
not (i.e., pseudowords and nonwords). For the SCT, participants were instructed to respond
"yes" to targets that are members of the current category (i.e., category-relevant words), and
"no" to items that are not (i.e., category-irrelevant words, pseudowords, and nonwords). These
instructions were presented at the start of every block, which for the SCT included the name of
the category that category-relevant words in the upcoming block belonged to.

Each participant completed 3 blocks of the LDT and 3 blocks of the SCT, with the order
of tasks dictated by their participant group (see Table 4.1). The first block of each task was
preceded by a practice block of 32 trials that were similar to the upcoming task. For the SCT,
category-relevant words were names of flowers, while for the LDT, they were just randomly
selected words. For the practice trials only, participants were provided with per-trial feedback on
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the accuracy of their responses, with text reading "Correct" or "Incorrect" after each response.

4.2.5 Recording

EEG data were recorded from a 128-electrode BioSemi system in an electrically shielded booth,
with channel positions conforming to the standard BioSemi 128-electrode arrangement. Four
electro-oculography (EOG) electrodes were placed to record eye movements and blinks: 2
were placed to the sides of eyes (on the right and left outer canthi), and 2 below the eyes (on
the infraorbital foramen). Data were recorded at 2048 Hz, with an online low-pass filter at the
Nyquist frequency. Recordings were downsampled to 512 Hz using the BioSemi Decimator tool.
Electrode offset was kept stable and low through the recording, within ±20 mV, as measured by
the BioSemi ActiView EEG acquisition tool.

4.2.6 Preprocessing

Stimuli were preprocessed using MNE Python (version 1.0.2; Gramfort et al., 2013). Trials were
filtered on the basis of accuracy (excluding 318 trials that were responded to incorrectly), and
then on response time (excluding 170 trials with response times <250 or >1500 ms). Following
these behavioural exclusions, there were 13,896 trials in total. Recordings were epoched to
stimulus onset, with the 200 ms pre-stimulus as a baseline, lasting until a maximum of 1 second
after the stimulus. As trials ended after participants’ responses, this means that each trial had
data until at least 250 ms after the stimulus, but that there were progressively fewer observations
for later time points. Signals were bandpass filtered to between .1 and 40 Hz (causal, fourth-
order Butterworth filter). To counteract the delay in ERP timing inherent to causal filters (which
shift signal phase forwards or backwards in time, depending on the direction they are applied
in), the filter was applied in both directions, using the MATLAB function, filtfilt().

Independent component analyses (ICAs) were applied to copies of the data filtered to
between .5 and 40 Hz (fourth-order Butterworth filter). The ICA was run using the FastICA
algorithm (Hyvärinen, 1999) with a seed for reproducibility, using only data from within blocks
(i.e., not during breaks). Here, blocks were defined as beginning one second before the first
stimulus of each block, and ending one second after the block’s last response. EOG-related
ICA components were identified by first determining EOG epochs, defined as one-second
windows centred on peaks in the EOG signal at least as extreme as one quarter of the
difference between the minimum and maximum EOG amplitude. EOG-related ICA components
were then identified as those showing a high correlation with these events, while also showing
the typical frontal topography associated with EOG activity. For participants for whom EOG
epochs could not be defined automatically, the time-course of all ICA components and EOG
channels was compared manually.

Following EOG artefact removal, data were re-referenced with a common average
reference. Trials with peak-to-peak amplitudes more than double the 99% confidence interval
of the absolute amplitudes or greater were then excluded from analysis (N=620), such that
there was a total of 13,276 trials. Some channels were identified as noisy (mean count per
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Figure 4.2: Occipitotemporal electrodes and average ERPs from maximal electrodes. (A)
The locations of the 13 occipitotemporal electrodes (red) from which per-participant maximal
electrodes were identified. (B) Average ERPs of the occipitotemporal electrodes for all stimulus
types, across the SCT and LDT, with the 120-200 ms window of the N1 highlighted in blue.

participant=1.28, SD=2.67), and had their activity interpolated using spherical splines (Perrin
et al., 1989).

4.3 Results

4.3.1 Occipitotemporal EEG Activity

To analyse effects of task, stimulus, and task-stimulus interactions on occipitotemporal EEG
activity, I identified 13 left-lateralised occipitotemporal electrodes, selected to reflect the typical
topography of the N1 (Figure 4.2). Averaging across conditions, the N1 component was
observed to peak within this window at 146 ms. I analysed effects of task, stimulus, and
task-stimulus interactions on the average amplitude of this occipitotemporal cluster. I first
examined effects on trial-level average amplitude during the N1, between 120 and 200 ms.
Second, I fit sample-level models, to examine the precise time-course of effects across the full
ERP of the occipitotemporal cluster.

Effects on Average Amplitude

Trial-level average amplitude during the N1 was calculated as the mean of occipitotemporal
electrodes’ amplitudes in the window of the N1 (120-200 ms) for each trial. Distributions of
average N1 amplitude for each factorial cell are summarised in Figure 4.3.

Average amplitude was modelled via a linear mixed effects model, fit with R package lme4
(version 1.1.27.1; Bates et al., 2015). The model’s formula estimated the fixed effects of task
and stimulus, and interactions between them, while also estimating the maximal random effects
structure justified by the design (Barr et al., 2013), which included per-participant, per-item,
and per-match-set random intercepts and slopes. Here, match sets refer to the groups of 4
matched items (1 item per stimulus type) described in section 4.2.3. All fixed-effect variables
were deviation-coded (i.e., mean-centred on 0 with a distance of 1 between the variable’s levels).
For the effect of stimulus, category-irrelevant words were used as the null condition, with all other
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Figure 4.3: Distributions of average N1 amplitude for each factorial cell in the experimental
design. Below empirical densities, points depict mean values, thick horizontal lines depict 50%
quantile intervals, and thin horizontal lines depict 89% quantile intervals.
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stimulus types deviation-coded relative to this condition. For the effect of task, LDT was coded
as the null condition. The model formula, in lme4 syntax, was as follows:

amplitude ~ 1 + (category_relevant + pseudoword + nonword) * task +

(1 + (category_relevant + pseudoword + nonword) * task | participant) +

(1 + (category_relevant + pseudoword + nonword) * task | match_set) +

(1 + task | item)

The overall average of occipitotemporal amplitude during the N1 (i.e., the model intercept)
was estimated to be β=-2.42 µV (SE=.4). All reported model estimates are in µV, and the
statistical significance of fixed effects was tested via Chi-square model comparisons. The
hypothesised effect, the interaction between task and category-relevance, was estimated to
be small (β=-.07, SE=.26) and was not statistically significant (χ2(1)=.66, p=.798).

Bonferroni corrections were applied to p values calculated for all model comparisons
that were not related to the hypothesised effect, and these are reported as pbon f , alongside
unadjusted p values. Where corrected p values exceeded 1, this is reported as >.999. Average
N1 amplitudes were more negative in the SCT than in the LDT (β=-.18, SE=.12, χ2(1)=7.07,
p=.008, pbon f =.047).

The average N1 amplitude was more negative for nonwords than for for category-irrelevant
words (β=-.57, SE=.16, χ2(1)=11.47, p<.001, pbon f =.004). The overall differences between
category-irrelevant words and pseudowords (β=.07, SE=.16, χ2(1)=.19, p=.661, pbon f >.999),
and between category-irrelevant words and category-relevant words (β=-.2, SE=.15,
χ2(1)=1.76, p=.184, pbon f >.999), were small and not statistically significant.

Task-stimulus interactions for the difference between pseudowords and category-irrelevant
words (β=-.15, SE=.33, χ2(1)=.21, p=.648, pbon f >.999), and between nonwords and category-
irrelevant words (β=-.41, SE=.34, χ2(1)=1.54, p=.214, pbon f >.999), were not statistically
significant.

Full N1 ERP Analysis

In addition to analysing the full N1 window, I anticipated that effects may be greater during the
ERP’s onset or offset. Indeed, sensitivity to lower-level differences has been reported to emerge
during the early portion of the N1 (Appelbaum et al., 2009; Cohen et al., 2000; F. Wang &
Maurer, 2020), while effects indicative of top-down modulation have been reported to be emerge
during the later periods of the N1 (e.g., F. Wang & Maurer, 2017, 2020). To analyse the full ERP,
I fit a linear mixed effects model to each sample, using a similar model formula to that described
for the analyses of average N1 amplitude. A key difference, however, was that amplitudes were
averaged across the occipitotemporal region, rather than using maximal electrodes. To deal
with model non-convergence at multiple time points but ensure cross-sample comparability, no
models estimated random correlations. The sample rate was unchanged for this analysis, kept
at 512 Hz. Changes in the model fixed effects are summarised in Figure 4.4A.
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The effect of interest, the interaction between task and category relevance and was only
observed reliably from around 300 ms onwards (emerging at 225 ms at the earliest), with
category-relevant words eliciting more negative amplitudes than category-irrelevant words in
the SCT, but this effect being smaller or absent in the LDT. Notably, this effect emerged late into
the N1’s offset, but the difference was small and not observed reliably prior to 300 ms.

Results also replicated the N1’s sensitivity to orthographic features, as revealed by the
analysis of average N1 amplitude, captured by the difference between category-irrelevant words
and consonant string nonwords, whereby nonwords elicited a more negative-going N1. This
difference was greatest around 45 ms after the component had peaked, at 190 ms. Moreover,
the direction of the orthography effect reversed after the N1, peaking again at around 260
ms, with nonwords here eliciting more positive ERP amplitudes than words did. The effect
reversed again, peaking for a third time at around 350 ms, with nonwords again eliciting more
negative ERP amplitudes than words did. This latter difference was sustained up to 600 ms
after stimulus presentation, and possibly for longer. Sensitivity to differences between words
and pseudowords emerged later, with pseudowords eliciting more positive ERP amplitudes from
around 290 ms until 450 ms post-stimulus.

A main effect of category relevance was observed from around 225 ms. As task was
deviation-coded in the model, this reflects the average effect of category relevance across tasks.
To more clearly decompose the task-stimulus interaction, I fit models dummy-coded to focus on
stimulus effects in the SCT and LDT respectively (i.e., simple effects; Figure 4.4B). This revealed
that, indeed, the effect of category relevance was clearly observed in the SCT, whereas in the
LDT it was much closer to zero. Smaller task-stimulus interactions were also observed for
peudowords and nonwords. For both stimulus types, differences between these stimulus types
and words were more negative in the SCT than in the LDT, for a sustained period beginning
at around 200 ms. The effect of task on occipitotemporal ERPs is more clearly displayed in
Figure 4.5, which shows the fixed-effect predictions for each factorial cell in the design.

The main effect of task, that was identified in the analysis of average N1 amplitudes, was
less clear in this sample-level analysis. However, a small negative deflection in the effect of task
was observed between 150 and 200 ms, suggesting that this small effect was inflated when
average amplitude was calculated across the whole N1 window.

For comparison, I additionally analysed effects over right-hemispheric occipitotemporal
electrodes (Appendix B.2), with results showing a larger word-nonword difference than was
observed over the left hemisphere, but a similar lack of any interaction between task and
category relevance in the N1. Notably, post-N1 interactions between task and category
relevance were smaller in magnitude than estimates for left-hemispheric electrodes.

4.3.2 Scalp-Wide Analysis of the Time-Course for the Effect of Interest

Analyses of occipitotemporal EEG activity revealed that while the N1 showed robust sensitivity
to orthographic features of stimuli, task-relevance interactions were smaller, and emerged later
(post-225 ms). Anticipating that top-down modulation may be visible elsewhere in early EEG
signals, and that the task-relevance interactions observed in occipitotemporal regions after the
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Figure 4.4: Time-course of fixed effects estimates from the per-sample linear mixed effects
models of occipitotemporal electrode voltages. (A) Fixed effects estimates from a model with all
variables deviation-coded. (B) Simple effects of task for each stimulus type. In both panels, solid
lines depict estimates for each sample, while shaded regions depict 95% confidence intervals.

104



CHAPTER 4. CATEGORY-LEVEL TOP-DOWN MODULATION OF THE N1

Task
SCT

LDT
Stimulus Type

Category−Irrelevant Words

Category−Relevant Words

Pseudowords Nonwords

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

−4

−2

0

2

Category−Irrelevant Words Category−Relevant Words

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

−4

−2

0

2

Time (ms)

A
m

pl
itu

de
 (

µV
)

A

−4

−2

0

2

SCT LDT

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

Time (ms)

A
m

pl
itu

de
 (

µV
)

B

Figure 4.5: Fixed-effect predictions of ERPs for each factorial cell, using estimates depicted in
Figure 4.4. These predictions are equivalent to overall average ERPs, but with the influence of
random intercepts and slopes removed. Panels focus on (A) the effect of task for each stimulus
type, and (B) the effect of category relevance in each task.
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Figure 4.6: Time-course of task-relevance effects in the SCT and LDT. The lower panel depicts
baseline-corrected estimates of global field power of the difference between average ERPs
for category-relevant and category-irrelevant words, for the SCT and LDT separetly. Shaded
intervals indicate 99% bootstrap confidence intervals (10,000 samples). The upper panel
depicts the topography of category-relevance effects in the SCT and LDT at 170, 260, 314, 414,
and 514 ms. ERP differences were calculated as category-relevant minus category-irrelevant.

N1 may reflect activity indexed by components that originate elsewhere, I analysed the scalp-
wide time-course of ERP differences between category-relevant and category-irrelevant stimuli
for both the SCT and LDT. Figure 4.6 shows the results of this analysis, which suggests that,
consistent with the analysis of occipitotemporal channels, robust interactions between task and
category-relevance emerged late into the N1’s offset, after 225 ms. The timing (peaking at 414
ms) and centroparietal topography of the differences between conditions suggest sensitivity
to this interaction in the N400, with category-irrelevant words eliciting more negative-going
N400s than category-relevant words during the SCT but not during the LDT. To examine this
centroparietal interaction in more detail, I conducted a sample-level analysis of a centroparietal
cluster of electrodes (Appendix B.3). This revealed that, indeed, centroparietal electrodes
showed a robust sensitivity to the interaction between task and category relevance, although
the observed components did not conform to the typical timing of the N400, peaking instead at
around 300 ms.

Topographies of the difference between category-relevant and -irrelevant words also
reproduced the finding from the sample-level analysis that showed the difference in
occipitotemporal electrodes that was observed after 225 ms (Figure 4.4B) to be larger for left
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hemispheric electrodes than it was for right hemispheric electrodes, consistent with differences
between left (section 4.3.1) and right-hemispheric (Appendix B.2) sample-level analyses.

4.3.3 Behavioural Results

I also examined effects of task and stimulus on the accuracy and speed of participants’
responses. For comparability to the EEG results, I only analysed the behavioural results for
participants who were included in the EEG analysis, although no trials were excluded on the
basis of noise in the EEG (e.g., based on peak-to-peak amplitude). Similarly, unlike for the EEG
results, trials were not excluded on the basis of response times. The only exclusion criterion
applied was the removal of trials that were responded to inaccurately, and this was only applied
to the analysis of response times.

Effects on Accuracy

As described above, all trials were included when analysing accuracy, for all 29 participants
whose EEG results were analysed. This meant that accuracy was analysed in 14,384 trials (i.e.,
29 x 496). Overall, empirical accuracy was very high, averaging 97.79%. To examine whether
accuracy differed with the experimental manipulations, I fit a logit-link binomial generalised linear
mixed effects model (GLMM) to predict accuracy via the R package, brms (version 2.16.3;
Bürkner, 2018). Flat prior distributions were used for all fixed effects, while the priors for
standard deviations (SDs) of all random effects were specified as t distributions with 3 degrees
of freedom, where µ=0 and σ=2.5. The model was fit with 5 chains, and 10,000 iterations
per chain (split equally between warm-up and sampling). The adapt_delta parameter was set
to .8, and the max_treedepth parameter was set to 10. The thin parameter was set to 2, to
reduce the size of the saved model. The same model formula was used as that described in
the analysis of average N1 amplitude, with a maximal random effects structure. The model’s
fixed effect estimates are summarised in Figure 4.7. The model revealed clear effects of
stimulus, and task-stimulus interactions. Notably, accuracy was higher for category-irrelevant
words in the SCT than it was in the LDT, while the opposite was true for category-relevant
words. Further, there was a small difference between category-irrelevant and category-relevant
words in the LDT, despite careful matching of these conditions’ features and cross-category
randomisation of items in the LDT, although there was a high degree of overlap between the
posterior distributions.

Effects on Response Time

To analyse response time, I opted to fit a Bayesian mixed-effects model for parameters of
the shifted log-normal model. Whereas more traditional methods of modelling response times
assume changes in one central tendency parameter of a distribution while other parameters are
assumed to be homogenous across observations (e.g., Gaussian models of log-transformed
RTs, or Gamma family models), modelling all parameters of multi-parameter distributions, which
accurately describe the distribution of observations, allows researchers to assess changes in
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Figure 4.7: Summary of the logit-link binomial model of response accuracy. (A) Fixed effects
estimates from the model, where labels on the y axis reflect the names of fixed effect parameters
dictated by the model formula. (B) Predicted accuracies for each factorial cell in the experiment.
In both panels, round central points depict median posterior estimates, while the thicker and
thinner horizontal lines depict the 50% and 89% highest density intervals (HDIs), respectively.
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the shape of entire response time distributions (Heathcote et al., 1991; Rouder et al., 2005). The
shifted log-normal model was fit via brms (version 2.16.3; Bürkner, 2018), estimating fixed and
random effects for each parameter of the distribution (i.e., µ, σ , and δ ). In modelling the shifted
log-normal distribution, µ, which reflects changes in means, was modelled with an identity link
function. Meanwhile, σ and δ , respectively reflecting SDs (of log-transformed response times)
and non-decision time, were modelled with log link functions. For feasibility, random slopes
were removed from the model, and moderately informative priors were defined for the model’s
intercepts. The model formula, in brms syntax, was as follows, where rt refers to trial-level
response times:

rt ~ 1 + (category_relevant + pseudoword + nonword) * task +

(1 | participant) +

(1 | match_set) +

(1 | item),

sigma ~ 1 + (category_relevant + pseudoword + nonword) * task +

(1 | participant) +

(1 | match_set) +

(1 | item),

ndt ~ 1 + (category_relevant + pseudoword + nonword) * task +

(1 | participant) +

(1 | match_set) +

(1 | item)

Moderately informative priors were constructed for the model’s intercepts, based on
plausible ranges of shifted log-normal parameters in similar tasks. Specifically, the prior for
the µ intercept was specified as N(5,2.5) (i.e. a normal distribution of mean 5 and SD 2.5),
the prior for the σ intercept was specified as N(0,5), and the prior for the δ intercept was
specified as N(0,7.5). All other fixed effects were assigned non-informative prior distributions
in the form N(0,2.5). Priors for all random effects were specified as t distributions with 3
degrees of freedom, where µ=0 and σ=2. The model was fit with five chains, each with 10,000
iterations (7,500 warm-up, 2,500 sampling). The adapt_delta parameter was set to .99, and the
max_treedepth was set to 10. To reduce model size, the thin parameter was set to 2.

The results of the response time model are summarised in Figure 4.8. Notably, while
there were differences in the shifted log-normal parameter estimates for category-relevant and
category-irrelevant words (Figure 4.8A), the resultant response time distributions were generally
similar in both tasks (Figure 4.8C). However, the increase in response times observed for both
types of word stimuli in the SCT, relative to the LDT, was slightly larger for category-irrelevant
words than it was for category-relevant words (Figure 4.8B).
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Figure 4.8: Summary of fixed-effect results from the shifted log-normal model of response times.
(A) Estimates for each fixed effect, for each parameter of the shifted log-normal distribution,
where fixed effect names are dictated by the model formula. Points represent median of
posterior distributions, while horizontal lines depict 89% HDIs. (B) Predicted response time
distributions for each factorial cell in the design, highlighting the effect of task for each stimulus
type. Shaded regions depict 89% HDIs of density estimates for posterior samples. (C) Predicted
response times for each factorial cell, highlighting stimulus differences for each task, where
lines depict median estimates of densities. Axes for density, in (B) and (C), begin at zero, while
densities are only plotted where median estimates for density are greater than zero.
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4.4 Discussion

In this experiment, I examined whether the orthography-sensitive posterior N1 ERP component
is sensitive to top-down modulation at the level of semantic category. Results showed that robust
evidence for sensitivity to category relevance emerged later than the N1, starting at 225 ms at
the earliest. From these results, it can be concluded that if early occipitotemporal orthographic
processing is indeed sensitive to top-down modulation, the effect is likely small or absent at
the semantic category level of word form prediction. Importantly, while evidence for top-down
modulation of activity during the N1 was not observed here, the previously reported finding of
bottom-up sensitivity to orthography was replicated.

4.4.1 Replication of Bottom-Up Sensitivity to Orthography

Previous research has demonstrated a sensitivity to orthographic processing during the N1.
This sensitivity has been evidenced by differences between orthographically legal and illegal
strings of letters (Bentin et al., 1999; Holcomb et al., 2002; Maurer, Brandeis, et al., 2005)
that is dependent on the reader’s knowledge of the presented orthography (Brem et al., 2018;
Pleisch et al., 2019). Specifically, in both the LDT and SCT, consonant string nonwords elicited
N1 components with more negative-going amplitudes. This difference was greatest in the later
periods of the N1, peaking at a difference of around 1 µV at 190 ms. Importantly, this clear
difference was not observed for pseudowords, which were designed to be orthographically (and
phonologically) plausible. While this finding replicates a lack of word-pseudoword sensitivity
that has previously been reported (Holcomb et al., 2002; Maurer, Brem, et al., 2005), it stands
in contrast to some previous reports of sensitivity to the word-pseudoword difference during
or close to the N1 (Eberhard-Moscicka et al., 2016; Hauk et al., 2006; Segalowitz & Zheng,
2009). However, such variability in findings could be partially attributed to differences in features
of pseudoword stimuli. While some procedural techniques exist for pseudoword generation
(e.g., Duyck et al., 2004; Keuleers & Brysbaert, 2010), evaluation of pseudowords’ word-
likeness is difficult to formalise, such that researchers must often rely on subjective perceptions
of word-likeness. For the stimuli used in this task, I confirmed that the manually generated
pseudowords were orthographically word-like by examining the distributions of orthographic
variables: character bigram probability, and OLD20. While the selected pseudowords showed
similar distributions to those observed for real words on both of these variables, nonwords
differed markedly from real words, showing lower bigram probabilities and larger OLD20 values
(indicating less orthographic similarity to real words). As a result, I suggest that it is the high
orthographic plausibility of the pseudowords used in this experiment that resulted in the high
similarity to N1 components observed for real words. In contrast, I suggest that sensitivity to
nonwords was observed in the N1 because of the very low orthographic plausibility of consonant
strings.

Sensitivity to nonwords-versus-words, and not pseudowords-versus-words, also provides
evidence that the N1 is likely sensitive to orthographic information that is more fine-grained
(and low-level) than representations of entire word forms. This is because pseudowords,
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while orthographically plausible, were unlikely to have ever been observed by the participants
prior to the experiment. Were participants processing the entire observed word form as a
whole only, the difference between words and pseudowords would be similar to that observed
between words and nonwords. The lack of pseudoword sensitivity observed in this experiment
is difficult to reconcile with suggestions that some degree of lexical access, or whole-word
processing, occurs during or by the N1, as has been claimed on the basis of previously
reported word-pseudoword differences (e.g., Eberhard-Moscicka et al., 2016) and sensitivity to
word frequency (e.g., Assadollahi & Pulvermüller, 2003; Hauk & Pulvermüller, 2004; Sereno
et al., 1998; Simon et al., 2007) in the N1. Indeed, as with the word-pseudoword difference,
sensitivity to word frequency in the N1 could result from differences in orthographic features
that necessarily covary with word frequency. For instance, both average character bigram
probability (Figure 4.9A) and OLD20 (Figure 4.9B) show heterogenous relationships with word
frequency, such that high frequency words are more likely to have higher bigram probabilities
and larger orthographic neighbourhoods. To consider the relationship between word frequency
and words’ orthographic features in another way, highly frequent words will, by definition,
be perceived more often. Each time a word is observed, its component N-grams will also
be observed. As a result, the orthographic components of high-frequency words will also
be observed more frequently, and sensitivity to word frequency could emerge via sensitivity
to the frequency of these orthographic components without recognition of the word form
they constitute (i.e., without necessitating lexical access). Of course, character N-grams
in high-frequency words will also occur in low-frequency words (Figure 4.9A), though the
correlation between N-gram frequency and word frequency will necessarily become stronger
when N is higher (e.g., trigrams, quadrigrams, etc.). Furthermore, there is no reason to believe
that orthographic processing utilises features like N-grams alone. Indeed, it is likely that other
featural information informs orthographic processing, and that configural information may also
play a role (e.g., characters’ or character N-grams’ relative positions within words; Davis,
2010; Gomez et al., 2008; Grainger & van Heuven, 2004), such that sub-lexical orthographic
configurations could occur within words with quite high consistency. As a result, if such
orthographic features are not carefully controlled, it is feasible that sensitivity to word frequency
could arise from processing that is exclusively orthographic and sub-lexical.

One interesting finding was that, relative to the N1 component’s peak, sensitivity to
orthography emerged early but peaked late: sensitivity to orthography seemed to emerge close
to the N1 peak (146 ms), but peaked later, with sensitivity highest at 190 ms. This finding
concords with other research highlighting heterogeneity within the window of the N1, with
bottom-up sensitivity to orthography emerging during the component’s onset or peak, but often
peaking later, during the component’s offset (Appelbaum et al., 2009; Cohen et al., 2000; Ling
et al., 2019; F. Wang & Maurer, 2020). It has been suggested that top-down effects, meanwhile,
begin to influence the N1 during later periods, with effects only emerging in the component’s
offset (e.g., F. Wang & Maurer, 2017, 2020).

To summarise the interpretation of stimulus effects, this experiment demonstrated a robust
bottom-up sensitivity to orthographic information (words-nonwords), but not to lexicality (words-
pseudowords), in the later portion of the N1 component.
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Figure 4.9: The relationships between word frequency (Zipf) in SUBTLEX-UK (van Heuven
et al., 2014) and average character bigram probabilities (calculated from SUBTLEX-UK), and
OLD20 values (calculated from all words in the LexOPS dataset). The blue line reflects an
estimate of the relationship, fit with a cubic spline, to depict changes in central tendency over
word frequency.)

4.4.2 Lack of Sensitivity to Category-Level Top-Down Modulation

The hypothesised effect, an interaction between task and category relevance in the N1, was not
observed until late into the N1’s offset. Indeed, further analyses suggested that this sensitivity
to task-dependent category relevance reflected centroparietal effects that peaked during the
N400. As a result, it is likely that top-down modulation of the N1, in response to expectations
formed at the level of semantic categories, either produces small effects or is entirely absent.

The lack of sensitivity to category relevance, in either LDT or SCT, represents a failure
to replicate the finding reported by Hauk et al. (2012). One possible explanation for this
discrepancy is the qualitatively different categories employed. The categories of living and
non-living objects are semantically broader than the categories employed here (e.g., Four-
Footed Animals are a subset of living objects). However, as outlined below, if the sensitivity
to categories relies on orthographic information, then the more targeted categories employed
in this study should be expected to show a larger effect, as the mapping from semantics to
category should have greater specificity. An alternative explanation for the differences between
the results from Hauk et al. and those of this study is that the former study’s results do not
reflect a task-dependent sensitivity to the living-versus-non-living categories of words, but
either a bottom-up sensitivity to the categories (e.g., words for living objects may be more
familiar) or to other category-irrelevant features that differed somewhat between the categories
presented by Hauk et al., such as orthographic neighbourhood density or word frequency, for
which effects have sometimes been reported in the N1 (Assadollahi & Pulvermüller, 2003;
Hauk & Pulvermüller, 2004; Sereno et al., 1998, see also chapter 6). Finally, it is possible that
the high-pass filter of 1 Hz employed by Hauk et al. produced artefactually early effects in the
ERP, that in fact originated in later components, by distorting the timing of effects (Tanner et al.,
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2015; VanRullen, 2011). In contrast, low high-pass, gentle-slope filters like the fourth-order
Butterworth filter employed in the present study do not suffer from the same distortion effects
introduced by standard finite-impulse response filters (Rousselet, 2012).

Importantly, however, a lack of top-down influence at the level of broad categories does
not discount the possibility of top-down modulation in response to more targeted predictions.
Indeed, if activity during the N1 reflects orthographic processing, an influence of top-down
modulation from the level of semantics may require predictions to be more targeted. This is
because recoding information from semantic to orthographic representations is likely to be
computationally lossy. Here, lossiness is a concept borrowed from information technology,
where transcoding of information between digital formats, or digital compression of data,
entail a loss of information. It is argued that transcoding of information between high-level,
specific semantic representations, and low-level orthographic representations, results in a
similar loss of information, which in turn causes predictions to be less specific. To explain this
concept in another manner, semantic and orthographic representations have a many-to-many
relationship, where a semantic concept is related to or expressed via many words, which
themselves contain many orthographic features. These orthographic features occur in many
other words, which similarly each refer to many semantic concepts. Recoding from lexical or
semantic representations to sublexical orthographic representations therefore entails a loss
of specificity, as these features will also occur in unrelated words. Indeed, in orthographies
constructed from alphabetic scripts like English, it is on the basis of strings formed from around
just 30 graphemes, which additionally often show high similarity to one another (chapter 6), that
readers are able to discriminate between tens of thousands of word forms (Brysbaert et al.,
2016). As a result, orthographic representation of predicted word forms, e.g., brother, may
also lead to facilitation for semantically unrelated words if their word forms share orthographic
features, e.g., bother, smother, betroth. Top-down facilitation for predictions of entire semantic
categories of orthographically diverse word forms (e.g., Relatives: brother, niece, nephew,
aunt), where each word would itself confer facilitation for word forms orthographically similar
but semantically unrelated to it, could therefore be expected to only produce very small
practical effects, if any, on orthographic processing or its neural correlates.

Evidence for predictions leading to such inadvertent facilitation of unpredicted but
orthographically similar word forms in the N1 has been reported previously. A. Kim and
Lai (2012) showed that sentence stems designed to induce strong predictions of upcoming
words (e.g., She measured the flour so she could bake a-) led to similar reductions in N1
amplitude (175-205 ms) for the predictable word form (e.g., cake) as well as an unpredictable
but semantically similar pseudoword (e.g., ceke), but not for an orthographically dissimilar
pseudoword (e.g., tont). This finding suggests that, indeed, facilitation for sublexical
orthographic features of word forms can entail a loss of specificity in predictions. Furthermore,
the suggestion that this loss of specificity is engendered by the orthographic similarities
of items within a script is supported by the previously mentioned finding of sensitivity to
categories of orthographic script (F. Wang & Maurer, 2020). Functionally meaningful sensitivity
to expectations of the category of script (Chinese vs. Korean) that upcoming characters
belong to could be made possible by the intra-script similarity, and inter-script dissimilarity, of
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these two orthographic categories (in addition to differences in familiarity). A further prediction
of this interpretation of the present study’s results would be that if top-down modulation of
the N1 does occur in response to semantic predictions, then effects in the N1 of predictions
for semantic categories of word forms may be more visible for some non-alphabetic scripts.
In particular, logographic scripts, whose word forms are more diverse and numerous, may
support predictions at the level of the semantic category. Another factor related to top-down
modulation of categories of word forms that requires semantic-to-orthographic recoding may
be intra-category orthographic similarity, and this feature is also likely to systematically differ by
script. For instance, in contrast to word forms in alphabetic orthographies, Chinese characters
for items in a semantic category are often orthographically similar, sharing orthographic
components that reflect their shared semantics. For instance, in simplified Chinese, many
items in the category of Four-Footed Animals share a variant of the Kangxi radical 犬,
specifically 犭, at the left of the characters, for instance: 狗 (dog); 猫 (cat); 猪 (pig); 狮 (lion);
狼 (wolf )). Indeed, although a direct comparison to non-logographic scripts is lacking, fMRI
findings reported by X. Wang et al. (2018) do indicate that for Chinese characters, semantic
information (thematic/taxonomic) can be decoded from visual word form area activity in a
task-dependent manner (thematic/taxonomic categorisation tasks). Further research could
more directly compare such findings to alphabetic scripts to examine whether this finding is
indeed script-dependent, and could examine use EEG or MEG to determine whether semantics
influence initial occipitotemporal orthographic processing. If script-dependent, research could
further delineate the influence of semantics on orthographic processing by examining how
categoric-orthographic typicality interacts with the decodability of semantics in vOT or from the
N1. For instance, characters whose orthography is less typical of a semantic category, sharing
fewer orthographic features with characters they share the category with (e.g., 羊 (donkey ) is
orthographically dissimilar from other characters in the category of Four-Footed Animals) may
show a reduced effect of category-level predictions on orthographic processing.

The lossiness of transcoding information from semantic to orthographic representations may
explain why much, if not most, published research on early effects of prediction in alphabetic
scripts has utilised designs that aim to elicit more targeted predictions (Nieuwland, 2019). As a
result, experimental designs that lead participants to form stronger predictions about upcoming
word forms (e.g., Dambacher et al., 2012; Dikker & Pylkkanen, 2011; Kretzschmar et al., 2015;
Penolazzi et al., 2007; Sereno et al., 2003) may be vital for examining whether the N1 is affected
by top-down modulation on the basis of higher-level predictions. Alternatively, considering
evidence that the N1’s likely neural generator is capable of representing multiple word forms
simultaneously (White et al., 2019), neural activity during the N1 may be similarly capable of
maintaining predictions for specific word forms in parallel. However, even in such a case, this
would require the participant to actively predict all members of a category, rather than evaluate
their category relevance post-hoc, which may be unlikely for such large categories as Musical
Instruments.

Finally, it is notable that interactions between category relevance and task were observed
in occipitotemporal amplitudes after the N1 (Figure 4.4). The strong left-lateralisation of this
effect (Figure 4.6), in contrast to the largely symmetrical topography of effects on the N400
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component, may suggest that this reflects meaningful late occipitotemporal activity related to
category membership. While possible interpretations include a sustainment of occipitotemporal
activation that begins during the N1, or a reactivation of orthographic information driven by
feedbackward connections, a specific mechanistic interpretation of this finding is not possible
here.

To summarise, the hypothesised category relevance-task interaction was not observed in
the N1 until late into its offset. In retrospect, a finding of category-level sensitivity would be a
particularly surprising result, given the lossiness inherent to the recoding of information from
semantic to orthographic representations. Nevertheless, this study does provide some useful
insight into top-down modulation of the N1. Namely, if top-down modulation of the N1 does
occur, it probably requires higher-level predictions of words, and hence word forms, that are
more specific than those that can be formed at the level of the semantic category.

4.4.3 Main Effect of Task

Previous studies utilising task manipulations like that employed here sometimes report a
main effect of task, where N1 amplitudes are more negative going, across different stimulus
types, during tasks that more explicitly require lexical or semantic processing, relative to more
perceptual tasks (Y. Chen et al., 2013; Segalowitz & Zheng, 2009). In one recent M/EEG
investigation, Rahimi et al. (2022) reported general effects of task, between an LDT and SCT,
as early as 60 to 65 ms, in the primary visual cortex (V1), with clear effects during a time
window that includes the N1 (150-250 ms). The present study also found a main effect of task
on the N1, and this was in the same direction, with more negative-going average N1 amplitudes
observed in the SCT than in the LDT. Notably, this effect was quite small (.18 µV), relative
to the sensitivity to the word-nonword difference, for example, though the full-ERP analysis
of occipitotemporal electrodes suggested that if there is a main effect of task, it did indeed
coincide with the N1.

4.4.4 Lack of Sensitivity to Top-Down Modulation of Lexical or Orthographic
Processing

Previous results have suggested that processes indexed by the N1 that are sensitive to the
difference between words and nonwords, or between words and orthographically unfamiliar
stimuli, may be influenced by task demands. Specifically, some evidence suggests that
sensitivity to this difference is greater during tasks that more explicitly require lexical and
semantic processing (Bentin et al., 1999; F. Wang & Maurer, 2017). Indeed, the category-level
effect reported by F. Wang and Maurer (2020) is likely to reflect an effect of top-down modulation
on general orthographic or lexical processing, given that the experiment compared responses
to two orthographic scripts that were respectively familiar (Chinese) or unfamiliar (Korean)
to participants, comparable to the word-nonword differences observed for alphabetic scripts.
Evidence also suggests that the N1 is more sensitive to word frequency (or orthographic
features that covary with word frequency) in tasks requiring more explicit lexical or semantic
processing (Y. Chen et al., 2015; Strijkers et al., 2015). I have suggested in this chapter that,
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if not a sensitivity to semantic category relevance, the task-dependent effect reported by
Segalowitz and Zheng (2009) could result from such effects. Specifically, the greater semantic
processing precipitated by the LDT where words were drawn from a common category may
have induced deeper semantic processing of words in this condition. Indeed, as previously
noted, the absence of category-irrelevant words, as a lexical control, means that it could reflect
a task interaction with category relevance, or lexicality, or both.

However, in addition to a lack of sensitivity to lexicality, and the absence of task interactions
with category relevance prior to 200 ms, no clear interaction between task and either lexicality
(words vs. pseudowords) or orthographic processing (words vs. nonwords) was observed in
the present study. As a result, the present study did not replicate the previous findings listed
above, although it is notable that none of those studies used the specific tasks employed in the
present study.

4.4.5 Possible Limitations

It should be noted that the lossiness of semantic-to-orthographic recoding is not the only
possible explanation for this study’s lack of evidence for a task interaction with category
relevance in the N1. Another possible explanation that could account for this is that participants
may not have actively predicted words in the SCT, instead only evaluating category membership
after a word has been observed. This is to say, the task may not have sufficiently biased
expectations to lead participants to form the predictions necessary for top-down modulation
to occur. Indeed, the finding of relatively late sensitivity to category relevance in the SCT,
peaking around 400 ms, could reflect largely bottom-up lexical and semantic processing. One
analysis that could be used to evaluate this interpretation would examine the extent to which
observed sensitivity to category relevance depends on word predictability. For instance, in the
category of Fruit, category members such as apple and banana may be more predictable than
cantaloupe or papaya. If the sensitivity to category relevance that emerges in the SCT from
225 ms only emerges for highly predictable items, this would be more suggestive of top-down
contributions to such processes, rather than bottom-up evaluation of category membership.
This is difficult to evaluate for the data collected from this experiment, however, as although
(Van Overschelde et al., 2004) did report the proportion of participants who provided each
item as a category member, most items were not highly predictable by this measure. For
example, while dog and cat were highly predictable members of the Four-Footed Animal
category, respectively provided by 98% and 97% of participants, the average predictability of
items in this category was only 23.96%, and over half of items had predictabilities below 20%.
Therefore, in addition to designing paradigms which lead to predictions for specific word forms,
future investigations could improve on the present study by formalising word predictability, and
ensuring that a sufficient number of items are highly predictable to estimate the relationship
between predictability and top-down modulation.

Another possible limitation of the present study is that the behavioural analysis suggested
that some small differences may have been observed between category-irrelevant and
category-relevant words in the LDT. This could be problematic, as it would indicate that either
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the stimuli were not suitably well-matched enough, or that participants may have noticed
the shared semantic categories of category-relevant stimuli in the LDT, even though items
were shuffled across blocks to avoid this. However,in addition to the small magnitude of the
difference in accuracy (less than .5% difference), there was considerable overlap between the
posterior distributions, such that comparability of responses was still highly plausible. Similarly,
although the shifted log-normal parameter estimates for response time distributions differed
between category-irrelevant and category-relevant stimuli in the LDT (category_relevant:task
interaction in Figure 4.8), the resultant response time distributions were very similar. Finally,
while there were potentially interesting behavioural results across the two tasks, it should
be noted that interpreting data about responses like accuracies and response times is made
difficult by the change in responses necessary for category-irrelevant stimuli across the tasks.
In the SCT, the correct response for category-irrelevant stimuli was the negative response (i.e.,
"no"), while the correct response for category-relevant stimuli was affirmative (i.e., "yes"). In the
LDT, however, the correct response for both types of word stimuli was affirmative. Indeed, this
difference in the frequency of responses, from .5 affirmative to .25 affirmative, is also likely to
have affected responses to pseudowords and nonwords, further complicating the interpretation
of behavioural data.

4.4.6 Conclusions

In this study, I replicated previous findings of bottom-up sensitivity to orthography, and found
evidence suggesting that the N1 is not sensitive to lexicality. Importantly, I showed that if higher-
level predictions affect orthographic processing in the N1 via top-down modulation, the effect
is likely small or absent at the level of semantic categories when predictions are broad. In this
way, this study provides an upper bound for the influence of top-down modulation. If top-down
modulation does functionally influence the N1, it is likely to occur when predictions have greater
specificity than multiple, orthographically diverse members of a semantic category. Such an
influence may also be expected to vary with predictability, affecting processing the most when
predictability is highest.
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Chapter 5

The Effect of Predictability on Top-Down
Modulation of the N1

5.1 Introduction

In chapter 4, I showed that the N1 event-related potential (ERP) component, observed in
electroencephalography (EEG) signals around 170 ms after word presentation, is sensitive to
orthographic features of word forms in a bottom-up manner. I found no evidence for top-down
modulation of the orthographic processing of words at the level of semantic categories. One
possible reason for this lack of top-down modulation could be that predictions for orthographic
features of entire semantic categories may be too non-specific to effect any meaningful change
in orthographic processing. In this chapter, I therefore examine whether top-down modulation
of orthographic processing is observed in a task designed to bias predictions towards more
specific word forms: a Picture-Word Verification Task. I additionally vary the predictability of
the picture-word relationship to examine, if top-down modulation occurs, whether this effect
interacts with predictability. In particular, I expected that the effect of picture-word congruency
would be largest when predictability is high.

The N1 component shows robust sensitivity to orthographic features of visual word forms
(Bentin et al., 1999; Brem et al., 2018; Gagl et al., 2020; Holcomb et al., 2002; Ling et al.,
2019; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019, see also chapter 4). However, much
less is known about the extent to which processing during the N1 is sensitive to top-down
modulation. While research suggests there may be a general effect of task demands on the N1
(Y. Chen et al., 2013), and that task demands may interact with the N1’s sensitivity to stimuli’s
orthographic features (Bentin et al., 1999; F. Wang & Maurer, 2017, 2020) or lexical features
that covary with orthography (Y. Chen et al., 2015; Strijkers et al., 2015), less is known about
effects of prediction for specific word forms. Although some evidence suggests that targeted
predictions for entire categories of word forms may affect the N1 (Hauk et al., 2012; Segalowitz
& Zheng, 2009), I did not observe such an effect in chapter 4. Further, as argued in chapter 4,
recoding information from semantic to orthographic representations would be an inherently
lossy operation - especially for alphabetic scripts that rely on the reuse of a small number of
orthographic characters. Indeed, if orthographic processing during the N1 is sensitive to top-
down modulation, effects of such influences may only be observed when predictability is high
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enough to preserve specificity in the mapping from semantics to orthography.

Rather than investigating the effects of prediction at the level of entire categories,
researchers more commonly design paradigms to induce participants to construct more
specific predictions, for individual word forms. For example, researchers design sentences
with varying cloze probabilities for target words, to examine the effect of such predictions on
ERP components including the N1. Published findings using paradigms with such sentential
manipulations have broadly suggested an effect of predictability on the N1, with findings
generally revealing that less negative-going N1 components are elicited by words that are
predicted. Such a finding is consistent with a predictive coding account of orthographic
processing (Gagl et al., 2020) that involves top-down modulation (e.g., Price & Devlin, 2011),
according to which predicted features of a word form would be "explained away" (A. Clark,
2013; Eisenhauer et al., 2022; Gagl et al., 2020), while unpredicted features would elicit a
component of more extreme amplitude, reflective of the relatively higher orthographic prediction
error (the difference between the predicted and observed orthographic representations; Gagl
et al., 2020). Nevertheless, key features of the effect of predictability on early visual word
processing, like its reported topography and timing, differ considerably across studies, as does
the oft investigated interaction between predictability and word frequency (see section 1.5.2 for
a summary). It is similarly notable that in a review of studies using such sentential paradigms
to bias predictions towards specific word forms, examining effects on multiple components
including the N1, Nieuwland (2019) concluded that reported effects had thus far been weak,
inconsistent, and in need of replication.

While sentential approaches are useful for forming strongly biased expectations with
naturalistic stimuli, they can also introduce several issues, such as that ERPs elicited by
the target word can become difficult to disentangle from ERPs elicited by preceding words
(as has been argued for the early left anterior negativity, i.e., ELAN: Steinhauer & Drury,
2012), especially if the delay is short or unjittered. Further, it has long been recognised that
paradigms using linguistic stimuli to bias expectations for word forms must be cautious of
direct semantic associates priming target word forms intra-lexically, to differentiate between
modular and interactive accounts of word processing (Fodor, 1983; Forster, 1979). This
complication also applies to investigations of top-down modulation of orthographic processing.
For instance, priming the word chips with the words fish and may not necessarily require
active top-down modulation, with input from regions that process semantic information, if
the word forms frequently co-occur. Rather, an orthographic processing module could, upon
encountering orthographic features of the words fish and, learn to facilitate processing of
orthographic features in the word form chips via local non-feed-forward connections, without
such connections necessitating top-down modulation (Barlow, 1997; Rauss & Pourtois, 2013).

An alternative approach utilises non-linguistic contexts to bias participants’ predictions.
For example, researchers can alter task demands while presenting identical or highly similar
target stimuli. In chapter 4, I applied such a paradigm, finding that top-down modulation of
orthographic processing probably doesn’t occur at the level of semantic categories. Some
evidence suggests that top-down modulation may produce a main effect of task (Y. Chen et al.,
2013; Segalowitz & Zheng, 2009), or that sensitivity to orthography or lexicality may interact
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with task (Bentin et al., 1999; F. Wang & Maurer, 2017), though these differences were not
observed between the tasks I employed, of lexical decision and semantic categorisation.

In addition to varying task, researchers can also bias participants’ predictions by providing
non-linguistic stimuli with semantic content. For instance, one approach involves preceding
word forms with pictures. This method was employed in a picture-word verification paradigm
applied by Dikker and Pylkkanen (2011). Here, Dikker and Pylkkanen preceded noun phrases
(e.g., the apple) with congruent or incongruent pictures of either single objects (e.g., an apple
vs. a banana), or multiple related objects (e.g., a bag of groceries vs. a collection of animals).
In this way, it was possible to manipulate a specific word form’s predictability, independently
of its semantic congruency. Results showed a main effect of picture-word congruency on the
M100 component observed in magnetoencephalography (MEG) at around 100 ms, wherein
less extreme M100 amplitudes were elicited by word forms that matched high-predictability
images. It was also reported that this effect was observed only for the picture-word pairs with
high predictability. A similar finding was observed during a window from 250 to 400 ms, with a
main effect of congruency, but only for the picture-word pairs with high predictability. The early
predictability-congruency interaction reported for the M100 is interesting, and is consistent with
an account of early effects of top-down modulation of visual or orthographic processing, but
as it is (a) less directly relevant to the present thesis, and (b) reported for MEG rather than
EEG data, I do not focus on the comparable P1 ERP component observed in EEG, though I
discuss the plausibility of, and possible explanations for, this effect in section 7.5. Dikker and
Pylkannen did not examine effects in an M170 window with timing comparable to the N1 in
EEG, though it is possible that no effects were reported in such a window because none were
observed. Nevertheless, it is possible that the study’s small sample size (N=7 participants, each
presented with 320 trials) may have been insufficient to reliably detect this effect if it exists.
Indeed, functional magnetic resonance imaging (fMRI) findings have suggested that predictions
in a picture-word verification task may modulate activity in the N1’s likely neural generator in
the ventral occipitotemporal cortex (vOT; Kherif et al., 2011), though, as previously noted (see
section 1.5.1), the coarse temporal resolution of fMRI fails to provide insight into whether top-
down contributions influence activity in the early, initial stages of word processing.

As a non-sentential approach, the picture-word verification task has potential to offer insight
into the possible top-down modulation of early processes in visual word recognition, while
the stimuli, analyses, and sample size used by Dikker and Pylkkanen can be improved and
made reproducible. The present study applies a picture-word verification task similar to that
used by Dikker and Pylkkanen (2011), to examine whether the N1 component is sensitive
to top-down modulation, as operationalised by the difference between picture-congruent and
picture-incongruent word conditions. I draw a methodological distinction between congruency,
defined as whether a given word matches its preceding picture, and predictability, defined as
the likelihood that the image is associated with its congruent word. This stands in contrast to
previous studies, which only examined an effect of predictability, but is similar to the design
employed by Dikker and Pylkannen, which additionally manipulated congruency. In this way,
as Dikker and Pylkkanen did, I was able to examine whether the possible congruency effect
is contingent on the predictability of the word given the image that precedes it. Instead of
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dichotomising predictability into categories of low and high predictability, however, predictability
is here operationalised similarly to Cloze probability, as the proportion of people who identify
the given image as the word that follows it. This allowed me to estimate effects more accurately,
avoiding an unnecessary loss of information that arises from the dichotomisation or binning
of continuous variables (MacCallum et al., 2002; Royston et al., 2006). I predicted that were
the N1 sensitive to top-down modulation, there should be an interaction between picture-word
congruency and predictability, with no effect of congruency at the lowest level of predictability,
and, consistent with findings from sentential studies and the predictive coding account of top-
down modulation (see section 1.5), less negative-going N1s for congruent words at higher levels
of predictability.

This study was pre-registered at https://osf.io/389ce/, and the reported planned analysis
conforms to that specified in the pre-registration.

5.2 Stimuli

Stimuli were designed for two separate tasks in this experiment: the picture-word task, and a
localiser task to account for between-participant variability in the N1’s timing and location.

5.2.1 Picture-Word Task Stimuli

A total of 400 words (200 per congruency condition; one congruent and one incongruent
word per image) were selected with LexOPS (J. E. Taylor et al., 2020), a package in the R
programming language (R Core Team, 2021). A list of the full set of stimuli is available in
Appendix C.1. The experimental stimuli are summarised in Figure 5.1. First, stimuli were
filtered by word prevalence according to Brysbaert et al. (2019), such that at least 90% of
participants knew each word. In addition, stimuli were filtered such that all words were nouns
according to the dominant part of speech data from SUBTLEX-UK (van Heuven et al., 2014),
and had a mean concreteness rating above 4 (on a Likert scale from 1, least concrete, to
5, most concrete) according to Brysbaert et al. (2014). Images were taken from the Bank
of Online Standardised Stimuli (BOSS) norms (Brodeur et al., 2014), a large database of
images with normed statistics, including percentage of name agreement, which I use here as
a measure of predictability. Words were identified as possible picture-congruent words if they
were listed as a modal name for any image in the BOSS norms, and were identified as possible
picture-incongruent words if they were not.

Picture-congruent and -incongruent words were matched item-wise in terms of several
lexical variables as follows: word length (number of characters) exactly; concreteness
according to Brysbaert et al. (2014) within ±.25; Zipf frequency (a logarithmic scale of word
frequency) according to SUBTLEX-UK within ±.125; character bigram probability (calculated
from SUBTLEX-UK) within ±.0025; and OLD20 (the average orthographic Levenshtein
distance of the 20 closest neighbours to a given word; Yarkoni et al., 2008) calculated
from the LexOPS inbuilt dataset within ±.75. To ensure that picture-incongruent words
were not inadvertent possible descriptors for images, the cosine positive pointwise mutual
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Figure 5.1: Summary of the picture-word stimuli. Each panel depicts how a single
variable was controlled. (A) Probability densities for variables which were matched item-wise
between picture-congruent and picture-incongruent conditions, and distribution-wise between
counterbalanced stimulus Sets 1 and 2. Points representing pairs of words which are matched
item-wise are joined by lines. Points’ positions are jittered slightly along the x-axis for visibility.
(B) Probability densities for variables matched distribution-wise between the counterbalanced
stimulus sets for which values are only available for half of the items: Cosine PPMI (Positive
Pointwise Mutual Information) Semantic Similarity from SWOW (Small World of Words; De
Deyne et al., 2019), and modal name agreement from the BOSS norms. Semantic similarity
was actually matched item-wise, but values are only meaningful for half of the stimuli, as items
will have a similarity of 1 with themselves, while for percentage of name agreement, values are
only available for picture-congruent words.
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information (PPMI) measure of associative semantic similarity calculated from the Small World
of Words (SWOW) word association norms (De Deyne et al., 2019) was minimised to be
≤.01 between each image’s matched picture-congruent and picture-incongruent words. To
ensure picture-incongruent words did not share orthographic features with their respective
picture-congruent words, orthographic Levenshtein distance between matched items was
maximised. As items were also matched in word length, this meant all matched pairs of words
had a Levenshtein distance equal to their numbers of characters. The variable used to index
the predictability of picture-congruent words was percentage of modal name agreement,
which was sampled pseudo-randomly (picture-congruent words were not selected if no match
could be identified fitting the constraints specified above) from the BOSS norms, and varies
continuously in the generated stimuli from 7 to 100%.

As the participants were recruited in the United Kingdom, picture-congruent and
-incongruent words were excluded if identified as Americanisms (e.g., sidewalk ) or if they were
modal names for images that the Canadian participants of the BOSS norms are likely to have
been more able to name or distinguish (e.g., buffalo, bison). In addition, words were excluded
if identified as shortened versions of proper names (e.g., limo, chimp) or alternate names for
the same object (e.g., motorbike, motorcycle). Candidate picture-incongruent words were
additionally excluded if images the objects would refer to would be markedly dissimilar from
the images in the BOSS (e.g., waiter or church, as there were no images of people or entire
buildings in the BOSS), or if they were unimageable despite their high concreteness value
(e.g., item). Some plural words (e.g., sticks) were excluded to ensure that the number of plurals
in the incongruent words was similar to that seen in the congruent words. Finally, four images
with the modal names nut, trumpet, spinach, and tuba were excluded, as I judged the modal
names as incorrect descriptions of their images.

To avoid repetition effects from observing the same image twice, each image was presented
once, with participants viewing either the picture-congruent or picture-incongruent word. This
was counterbalanced by splitting the stimuli pseudo-randomly into two equally sized stimulus
sets, referred to as Set 1 and Set 2. Participants were each presented with one of these
stimulus sets. Pictures followed by congruent words in Set 1 were followed by incongruent words
in Set 2, and vice versa. To minimise any systematic difference between the counterbalanced
groups, the stimulus split was selected to maximise the empirical distributional overlap (Pastore
& Calcagnì, 2019) between the two stimulus sets in relevant variables, using the distributional
matching method detailed in chapter 2. Specifically, the stimulus sets were selected from
50,000 random splits to maximise overlap between the stimulus sets in the distributions of
the following variables: percentage of modal name agreement according to the BOSS norms;
cosine PPMI semantic similarity according to the SWOW; Zipf word frequency and character
bigram probability according to SUBTLEX-UK; word concreteness (Brysbaert et al., 2014); word
length; and OLD20. Variables that were also matched item-wise between the conditions were
matched distribution-wise separately within each congruency condition. This ensured there
were no systematic differences in distributions between conditions or stimulus sets.

To generate stimuli for practice trials, 20 matched pairs of picture-congruent and
-incongruent words were generated using the same pipeline as above, except that word
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frequency, word concreteness, and character bigram probability were not matched item-
wise. The practice trial stimuli were generated from images and words not used in the
experimental stimuli. The same practice trials were presented to all participants and were not
counterbalanced.

Behavioural Validation

To validate the stimulus generation method for the picture-word stimuli, a behavioural
experiment was run using a different (earlier) stimulus set generated from a very similar
pipeline. The only differences in the pipeline were that (a) Zipf frequency was controlled
within ±.2, (b) Levenshtein distance was not maximised, (c) OLD20 was not controlled for,
and (d) the split into stimulus Sets 1 and 2 was optimised from only 20,000 iterations. The
stimuli generated for the validation experiment varied in predictability from 12 to 100%. The
procedure was also identical to that described in the Procedure section of the present study,
except that participants could respond as soon as the word was presented, rather than 1
second after presentation, and the word did not change colour (see Procedure, section 5.4.2,
below). Participants comprised 35 monolingual native English speakers (15 female, 19 male,
1 non-binary) who were not diagnosed with any reading disorder. Age varied from 18 to 26
years (M=21.4, SD=2.05), and all participants reported being right-handed with normal or
corrected-to-normal vision. Trials were excluded if response times (RTs) were less than 250
ms or more than 2000 ms. The logic for the validation experiment was as follows: assuming
the stimulus pipeline produces suitably controlled stimuli, increased predictability should
facilitate task performance for congruent trials and have either no effect or a minimal effect on
performance for incongruent trials.

More traditional methods of modelling response times assume changes in one central
tendency parameter of a distribution while other parameters are assumed to be homogenous
across observations (e.g., Gaussian models of log-transformed RTs, or Gamma family models).
Meanwhile, modelling all parameters of multi-parameter distributions which accurately describe
the distribution of observations, like the ex-Gaussian or shifted log-normal distributions for
RTs, allows researchers to assess changes in the shape of entire response time distributions
(Heathcote et al., 1991; Rouder et al., 2005). The shifted log-normal distribution, for instance,
allows researchers to describe changes in the means (µ) and standard deviations (σ ) of
log-transformed RTs, while also modelling changes in shift (δ ). In modelling the validation
experiment data, I fit a Bayesian mixed-effects model estimating the same fixed and maximal
random effects structure for each parameter (µ, σ , δ ) of the shifted log-normal distribution
using the brms package for R (Bürkner, 2018). More details on this shifted log-normal model
are presented in Appendix C.2.

The predictions from the shifted log-normal model showed the expected effects, with
predictability leading to faster responses for congruent trials, but having almost no effect on
incongruent trials (Figure 5.2). It also demonstrated that when predictability is low, response
times show similar central tendency for congruent and incongruent trials though a larger
spread in the distribution for congruent trials. When predictability is high, on the other hand,
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the difference is mostly due to changes in shift, whereas other features of the distribution are
very similar. A more traditional analysis modelling changes in RT as changes in the scale
parameter of the Gamma distribution is reported in Appendix C.2, with results corroborating the
conclusions drawn from the shifted log-normal model.

5.2.2 Localiser Task Stimuli

The precise timing and location of the N1 varies among studies and participants. Rather than
identifying a single electrode and timepoint for all participants before data collection, I designed
a localiser task to identify, within an appropriate region and time period of interest, the timepoint
and electrode at which each participant’s maximal sensitivity to orthography emerges. This
data could then be used to extract N1 amplitudes in the picture-word task, while accounting for
variability among participants in timing and topography of orthographic processes.

For the localiser task, three categories of stimuli were presented for 100 trials each
(Figure 5.3). These consist of matched triplets of words (Courier New font), false-font strings
(BACS2serif font), and phase-shuffled words. While the comparison between words and
false-font strings is a more traditional measure of N1 sensitivity to orthography, with previous
evidence suggesting a more robust difference from words than exists between nonwords and
words (Brem et al., 2018; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019), phase-shuffled
words have been designed for this study as a more controlled alternative comparison for
exploratory analyses, with equal spatial-frequency amplitude and permuted spatial-frequency
phase. Similar phase-shuffled word stimuli have shown robust differences to word forms in
fMRI investigations of vOT activity (Rauschecker et al., 2012; Rodrigues et al., 2019; White
et al., 2019; Yeatman et al., 2013).

To generate these stimuli, a large list of suitable words (N=27,332) was identified by filtering
the word prevalence norms of Brysbaert et al. (2019) to only contain words known by at least
90% of participants and which were not selected for the main experiment. A representative
sample (N=100) of this list was generated by maximising distributional overlap (Pastore &
Calcagnì, 2019), between the sample and the full list of candidates, on 13 variables where
observations were available: word prevalence (Brysbaert et al., 2019); length (number of
characters); word frequency in Zipf in SUBTLEX-UK (van Heuven et al., 2014); part of speech
according to SUBTLEX-UK; character bigram probability calculated from SUBTLEX-UK;
OLD20 (Yarkoni et al., 2008) calculated from the LexOPS dataset (J. E. Taylor et al., 2020);
concreteness (Brysbaert et al., 2014); age of acquisition (Kuperman et al., 2012); average
lexical decision response time (RT) and accuracy according to the British Lexicon Project
(Keuleers et al., 2012); and the emotion ratings of valence, arousal, and dominance (Warriner
et al., 2013). Similarity in the categorical variable of part of speech was maximised with
dummy-coded variables. Distributional similarity was maximised by selecting the sample from
500,000 random samples with the highest total distributional overlap with the full list of possible
words. The selected sample of words is summarised in Figure 5.4. The full list of word stimuli
for the localiser task is presented in Appendix C.3.

The false-font strings consist of characters from the Brussels Artificial Character Sets
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Figure 5.2: Fixed effect predictions of RT distributions in the behavioural validation experiment
for the picture-word stimuli. Predictions of RT distributions are shown for congruent and
incongruent trials for values of percentage of name agreement, from 10 to 100% in steps of 10.
These predictions were estimated from a single Bayesian mixed-effects model, modelling the
same fixed and random effects structure for each parameter of a shifted log-normal distribution.
The two panels show the same results but highlight (A) the effect of predictability for picture-
congruent and picture-incongruent words, and (B) the effect of picture-word congruency at
different values of predictability, showing the degree of certainty in the predictions with the 89%
highest density intervals (HDIs) of the predictions from all posterior samples. Density is scaled
consistently across panels.
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Figure 5.3: Ten example stimuli for each stimulus type in the localiser task. Each row represents
a matched triplet of word, false-font string, and phase-shuffled word stimuli. The phase-shuffled
word images were generated uniquely for each trial.

(BACS; Vidal et al., 2017) font. Specifically, I used the font BACS2serif, to create an item-wise
false-font match to each word, where every Courier New character in the word stimuli is
replaced with a BACS character matched in the number of strokes, junctions, terminations, and
serifs. The phase-shuffled stimuli were generated by using a Fourier transformation to extract
the phase and amplitude from the word images. Phase values were randomly shuffled (i.e.,
permuted), while amplitude values were preserved. An inverse Fourier transformation was
then used to generate a new image with the original amplitude values, but with phase randomly
shuffled. To prevent phase shuffling from resulting in noticeably large changes in contrast, the
phase shuffling was done on a version of the word image with 50% of the original contrast.
After the inverse Fourier transformation, the contrast of the generated phase-shuffled image
was readjusted to equal that of the original word image. The phase-shuffling method was
chosen because unlike replacing phase with random noise (e.g., uniformly distributed phase
between -π and π), permuting the original phase values preserves the original image’s overall
distribution of phase, preserving coarse spatial frequency information such as spaces between
letters. To avoid repeating the same stimuli across participants more than necessary, unique
phase-shuffled images were generated for each trial, for each participant.

Versions of the localiser task’s stimuli were also created in green, to be displayed when the
participant is required to respond. For words and nonwords, this was done by simply changing
the font colour to be green. To preserve image intensity, the colour of phase-shuffled images
was changed by altering pixels in the following way. For pixels in which the value in the green
channel was less than 50% of the maximum intensity (i.e., the intensity of all channels in the
grey background), values in red and blue channels were altered to equal the value in the green
channel for that pixel. For all other pixels, the values in red and blue channels were set to 50%
of the maximum intensity.
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Figure 5.4: Distributions of key variables illustrate the similarity between the selected localiser
stimuli words (sample) and the list of all words known by at least 90% of participants
(population). Panel A shows distributional similarity of continuous variables. Panel B shows
similarity in length (all integer values) as a histogram showing proportions, and the similarity in
the counts of each part of speech category as a bar plot of proportions. Only the part of speech
categories which were present in the sample are shown. No members of less common part of
speech categories like determiner or number were selected in the sample.
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5.3 Power Analysis

I conducted simulations to identify the number of participants required to reach at least 80%
power (an arbitrary but commonly used target for statistical power), if I were to carry out the
same experiment a large number of times. Since I expected a much larger effect of predictability
in the congruent trials (incongruent trials were originally included as a control condition), the
planned analysis for this experiment focuses on the congruency-predictability interaction. A
fixed effect coefficient for the interaction in the expected direction would be evidence for an effect
of predictability on the N1. The expected fixed effects coefficients were calculated assuming an
interaction between predictability and image-word congruency consisting of a .75 µV reduction
in N1 amplitude for the most predictable congruent trials relative to the least predictable trials,
and no difference for incongruent trials. This effect size was based on proportional effects
observed in occipitotemporal electrodes’ peak N1 amplitude in a single-electrode analysis of
chapter 4.

To determine the .75 µV effect size, first I decided to simulate the difference as a proportion
of the maximum N1 amplitude, because different EEG systems and setups can result in
vastly different voltage measurements. Next, to identify a realistic proportional difference at
the maximum level of predictability (100% name agreement) between picture-congruent and
picture-incongruent words, I considered the design by A. E. Kim and Gilley (2013), which is as
close to this design as I could find. In their study, 53 participants were presented with highly
predictable target words which were either prediction-congruent or prediction-incongruent.
Kim and Gilley observed left-lateralised occipitotemporal electrodes’ N1 peaks that were
less negative when the word was prediction-congruent (-2.6 µV) than when the word was
prediction-incongruent (-3.9 µV), equal to a proportional difference of .33. A less comparable,
though still possibly informative, study from A. Kim and Lai (2012) presented 20 participants
with 180 high Cloze probability sentences (with 550 ms SOAs such that overlap of ERPs
was minimised). The last word in each sentence was either a highly predictable word,
an orthographically similar pseudoword, an orthographically dissimilar pseudoword, or a
consonant string nonword. Here, the N1 (170-205 ms) for a left occipitotemporal electrode was
shown to be more negative for nonwords and orthographically dissimilar pseudowords (both
around -4 µV) than for the predicted word and an orthographically similar pseudoword (both
around -3 µV). This is equal to a proportional difference of .25. I decided that other potentially
comparable studies, published at the time of the power analysis, were too different in their
experimental design, either because they used manipulations other than varying predictability
(Y. Chen et al., 2013, 2015; Segalowitz & Zheng, 2009; Strijkers et al., 2015; F. Wang & Maurer,
2017, 2020) or they presented the target items midway through sentences using an SOA of
300 ms or less resulting in ERPs overlapping with those of preceding words (Dambacher et al.,
2012; Kretzschmar et al., 2015; Sereno et al., 2019).

As a conservative estimate, given the lack of relevant data, I decided a proportional
difference of .15 was a realistic effect size for the difference between picture-congruent and
picture-incongruent trials at the maximum level of predictability. In the electrodes that show the
greatest N1 peak in the data collected for chapter 4, I observed a mean peak N1 amplitude
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of around -5 µV. Assuming a proportional difference of .15, I would therefore expect a .75 µV
reduction in N1 amplitudes at the highest level of predictability, relative to the lowest level of
predictability, in the picture-congruent condition. The values I predicted for the extremities of
each independent variable are presented in Table 5.1.

Table 5.1: The coding method and predicted N1 amplitudes for the extremities of each predictor
variable. As congruency is deviation-coded and there are an equal number of congruent and
incongruent trials, the values for Congspw are presented as between -.5 and .5, though the actual
values are likely to differ slightly after observations fitting exclusion criteria are removed (in both
the simulation and actual analysis). Predspw values are calculated as proportion of agreement
normalized between 0 and 1.

Congruency Congspw
Percentage of modal
name agreement (%)

Predspw
Predicted N1

amplitude (µV)

Incongruent -.5 7 0 -5.00
Incongruent -.5 100 1 -5.00
Congruent .5 7 0 -5.00
Congruent .5 100 1 -4.25

In each iteration of the simulation, I simulated 200 (100 per congruency condition) trials
for each of N subjects with subject-, picture-, and word-specific random intercepts and slopes.
The predictability values were taken directly from the generated stimuli. The simulation can be
understood through reference to the formula that describes the linear mixed effects model:

yspw = β0 +S0s +P0p +W0w +(β1 +S1s +P1p)Congspw +(β2 +S2s)Predspw

+(β12 +S12s)CongspwPredspw + espw

Table 5.2 explains each term in this model and presents the values simulated for the power
analysis. The simulated values for the fixed effects were calculated based on the predictions
and coding scheme, and are also presented in Table 5.2. The simulated values of subject
random intercepts were based on mixed effects models for N1 amplitudes in chapter 4, where
subject random effects showed much greater variability between subjects than items. The
variance for the distribution residuals was also based on estimates from mixed effects models
in chapter 4. Due to the coding method of the coefficients, the β terms in the table and equation
above can be interpreted as follows:

β0 reflects the average amplitude at the lowest level of predictability,

β1 reflects the difference between congruent and incongruent trials at the lowest level of
predictability,

β2 reflects the overall effect of predictability across congruent and incongruent trials, and

β12 reflects the difference between congruent and incongruent trials at the highest level of
predictability.
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Table 5.2: The meaning of each term in the design’s linear mixed effects model, and the value
simulated for the power analysis. Where simulated variables were drawn from distributions,
N(µ,σ) indicates that the respective variable’s values were drawn from a normal distribution
with mean µ and standard deviation σ .

Term Meaning Simulated Value (µV)

yspw Trial-level N1 amplitudes for subject s, picture p,
and word w

β0 Grand intercept =−5
S0s Subject random intercept for subject s ∼ N(0,2.5)
P0p Picture (image) random intercept for picture p ∼ N(0,2.5)
W0w Word random intercept for word w ∼ N(0,2.5)
β1 Fixed effect of congruency = 0
S1s Subject random slope for congruency for subject s ∼ N(0, .75)
P1p Picture (image) random slope for congruency for

picture p
∼ N(0, .5)

Congspw Trial-level congruency values (deviation-coded)
β2 Fixed effect of predictability = .375
S2s Subject random slope for predictability for subject s ∼ N(0,1)
Predspw Trial-level predictability values
β12 Fixed effect of congruency-predictability interaction = .75
S12s Subject random slope for congruency-predictability

interaction for subject s
∼ N(0,1)

espw Residual random noise ∼ N(0,3)
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Due to a lack of relevant data from similar designs, variance-covariance matrices for the
power analysis were simulated with all random effects correlations set to zero. To check this did
not result in heavily biased estimates, the power analysis was also run with all random effects
correlations set to values of .2, .4, .6, and .8. Each of these analyses estimated a strikingly
similar relationship between the number of participants and statistical power (see Appendix
C.4). In each simulation, simulated participants were pseudo-randomly assigned to stimulus
sets 1 and 2 in equal number, or with randomly allocated counts of N

2 − 0.5 and N
2 + 0.5 if the

number of simulated participants were odd. N varied from 10 to 100 in steps of 5, with 500
iterations run at each value. Before models were fit to simulated data of each iteration, data
exclusion was simulated as a random 10% loss of trials. This consisted firstly of the 5% of
data loss observed in the stimuli validation due to trials being responded to incorrectly or with
response times less than 250 ms or greater than 1500 ms. No lower bound for response time
exclusions was applied in the EEG experiment, as the word was visible for 1 second before
responses are permitted. As a conservative estimate, however, I expected a similar percentage
of data loss to that seen in the validation for the picture word stimuli. The remaining 5% of
data loss was simulated because, given the participant exclusion criteria, this is the maximum
allowable loss of data due to a combination of technical problems with the EEG system. This
conservative estimate can be considered a worst-case scenario in terms of EEG data loss.
The possibility of participants being excluded was not simulated, as I opted to simply continue
collecting data until I reached the desired number of participants, and excluded participants’
data would not be analysed. Covarying random effects were simulated using the R package
faux (DeBruine, 2020). Linear mixed effects models were fit using the same functions, formula,
and optimiser as those used for the analysis of the actual data (section 5.5.1). In the case of
non-convergence, models were re-fit without random correlations before significance testing,
as this is the action I would take when modelling the actual data. Likelihood ratio Chi-square
model comparisons were conducted between the full model and a version of the model lacking
the interaction term, and the resulting p values were recorded from each iteration.

Given that the hypothesis was directional, simulated significance tests were performed using
one-tailed comparisons with an alpha level of .05. Running only 500 simulations is likely to give
noisy estimates of power when simulating data which can vary in many parameters. Since fitting
a much larger number of models would be unfeasible due to the time taken to fit each mixed
effects model, the underlying relationship between the number of participants and the design’s
statistical power was estimated by fitting log-linear binomial generalised linear models (GLMs)
to all iterations for one-tailed and two-tailed comparisons. Figure 5.5 depicts the resulting power
curves. The power analysis suggested that a sample size of 68 participants (divisible by four, so
as to assign an equal number of participants to each combination of counterbalanced response
and stimulus groups) would be sufficient to reach at least 80% power for detecting the effect of
interest in the predicted direction with a one-tailed comparison. Specifically, the model predicted
that at this number of participants, I would have 81.72% power (99% confidence interval =
[80.46%, 82.91%]) to detect the predicted effect.
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Figure 5.5: Power curves calculated from the simulations. For comparison, both one-tailed and
two-tailed power are presented, though the p value used in the actual planned analysis is one-
tailed. Points (shifted horizontally for visibility) present the observed proportions of simulations
which resulted in statistically significant p values. Vertical error bars present 99% binomial
confidence intervals of these individual proportions. The coloured lines showing a logarithmic
relationship depict the upper and lower bounds of 99% confidence intervals of predicted of
probabilities from log-linear binomial GLMs fit to the data. The dashed horizontal line highlights
the 80% power target.
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5.4 Methods

5.4.1 Participants

68 monolingual native English speakers (40 female, 27 male, 1 non-binary) participated in the
study. Participants were randomly allocated into one of the four combinations of stimulus set
and response group (i.e., the mapping of the two response buttons to affirmative and negative
responses), such that each combination of stimulus set and response group comprised 17
participants. No participants were diagnosed with any reading disorder. Ages varied from 18 to
37 years (M=22.69, SD=4.9), and all participants reported having normal or corrected-to-normal
vision. Participants’ handedness was assessed via the revised short form of the Edinburgh
Handedness Inventory (Veale, 2014), with participants only permitted to take part if they scored
a laterality quotient of +40 indicating right handedness.

Exclusion criteria for participants were determined prior to data collection as: (1) if 10 or
more channels show an offset more extreme than ±25 mV (as measured on the BioSemi
acquisition software, ActiView), or (2) if more than 5% of the trials are lost due to technical
issues with the EEG system. As no participants satisfied these criteria, no participants were
excluded after data collection.

Data collection was approved by the University of Glasgow School of Science and
Engineering Ethics Committee (application number: 300200117).

5.4.2 Procedure

Stimuli were presented on a VPixx Technologies VIEWPixx screen (resolution 1920*1080 pixels,
diagonal length 23”, model VPX-VPX-2004A). Participants completed the experiment on a
chin rest positioned 48 cm from the centre of the screen. Stimuli were presented on a grey
background equal to 50% of the maximum intensity in each colour channel, roughly 12.3 cd/m2.
The experiment was written using the Python library PsychoPy (Peirce, 2007), and all code and
materials are available in the GIN repository. All stimuli were presented centrally (horizontally
and vertically). All trials in both tasks were presented in a pseudo-randomised order, such that
no more than five consecutive trials required the same response from the participant. Trials
were randomised across blocks, with the exception of the practice block, for which trials were
randomised within the block such that all participants observe the same practice stimuli but in a
random order.

Participants started with the localiser task, in the form of a lexical decision task (Figure 5.6A).
The localiser task began with 30 practice trials, and was then followed by 300 trials split into 5
blocks of 60 trials. Each trial began with the bullseye fixation target recommended by Thaler
et al. (2013) (outer circle diameter: 0.6° of visual angle, inner circle diameter 0.2°), presented
for 300 ms. This was followed by a jittered interval of between 300 and 1300 ms, during which
the screen was blank. The stimulus (word, false-font string, or phase-shuffled word image) was
then presented at a height of 1.5° (width of 1.07° for one character). Words and false-font strings
were presented in white (80 cd/m2), in the respective fonts of non-proportional Courier New and
BACS2serif font. The stimulus was visible for 500 ms, after which the font colour changed to
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Figure 5.6: Trial structure of the (A) localiser task and (B) picture-word task. This figure is
illustrative and the sizes are not to scale; in the experiment, images were in fact presented at a
much larger scale than the words.

green and participants could respond. The stimulus changed colour to signal that a button
press could be made. Although I did not plan to analyse data between the colour change and
the participant’s response, I anticipated that this data could be of interest to other researchers.
Participants were requested to respond after the stimulus changed colour once, quickly and
accurately, to indicate whether the stimulus they saw in each trial was either a word or not a
word. Responses were given with the right and left control (’Ctrl’) keys of a QWERTY keyboard,
with the mapping of affirmative and negative responses counterbalanced across participants.
After the participant had responded, the next trial began.

After the localiser task, participants completed the picture-word task (Figure 5.6B), which
is composed of an initial practice block of 20 trials, followed by 200 trials split into 5 blocks of
40 trials. As in the localiser task, each trial in the picture-word task began with the bullseye
fixation point, presented for 300 ms, after which there was a blank screen for a jittered interval
of between 300 and 1300 ms. An image was then presented for 2000 ms, at a size of 10x10°.
After the image, the bullseye fixation point was presented again for 300 ms, followed by another
interval jittered between 300 and 1300 ms. The word was then presented in white Courier New
font, at a height of 1.5° (width 1.07° for one character). After 1000 ms, the word turned green,
and the participant could provide their response to indicate whether the word describes the
image they saw. As in the localiser task, responses were given with the right and left control
(’Ctrl’) keys of a QWERTY keyboard, with the mapping of affirmative and negative responses
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counterbalanced across participants, but kept consistent within participants across the two
tasks. After the participant had responded, the next trial began. There was no deadline for
participants to respond. The instructions given to participants for the picture-word task are
presented in Appendix subsection C.5.

The first blocks of both tasks consisted of practice trials with 10 exemplars for each stimulus
type (word/false-font string/phase-shifted image and congruent/incongruent trials for each
task, respectively), during which participants were additionally given immediate feedback
on their accuracy for each trial. These practice trials were followed by green text reading
"CORRECT!" if the participant responded correctly, or else by red text reading "INCORRECT!",
presented in Courier New font with a height of 1.5°, for 1000 ms. Participants had self-paced
breaks between blocks for each task. Before the practice trials and at the start of every
experimental block, participants were presented with instructions for the task (see Appendix
C.5), summarising what would occur in each trial, and specifying that they should respond
as quickly and accurately as possible once the stimulus turns green. These instructions
also specified which keys participants should press to indicate their decision. After each
experimental block, including the practice trials, participants were presented with their average
accuracy and median response time. After the practice trials, participants were additionally
given the option to run the practice trials again if they wish.

5.4.3 Recording

EEG data were recorded using a 64-channel BioSemi system, sampling at 512 Hz, with an
online low-pass filter at the Nyquist frequency. Electrodes were positioned in the standard 10-
20 system locations. Four electro-oculography (EOG) electrodes were placed to record eye
movements and blinks: 2 were placed to the sides of eyes (on the right and left outer canthi),
and 2 below the eyes (on the infraorbital foramen). Electrode offset was kept stable and low
through the recording, within ±25 mV, as measured by the BioSemi ActiView EEG acquisition
tool. Electrodes whose activity exceeded this threshold were recorded, to be removed in data
preprocessing.

5.4.4 Preprocessing

The following section details the procedure applied to EEG data from each individual session,
with the same pipeline being applied to both the localisation task and picture-word task unless
otherwise specified. EEG preprocessing was achieved using functions from the EEGLAB
(Delorme & Makeig, 2004) toolbox for MATLAB (MATLAB, 2020) or OCTAVE (Eaton et al.,
2020). For both tasks, trials were excluded if responded to incorrectly (N=368 in localiser task,
N=226 in picture-word) or later than 1500 ms after the word (or nonword) changed colour
(N=41 in localiser task, N=42 in picture-word).

Channels recorded as having offsets ±25 mV during data acquisition were removed from
the data, with their activity to be later interpolated. The EEG data were then be re-referenced to
the average activity across all electrodes and filtered with a 4th order causal Butterworth filter
between .5 and 40 Hz. To counteract the distortion in signals’ timing (phase) that is inherent
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to causal filters, the filter was applied in both directions, with the MATLAB function, filtfilt().
Segments of data outside of experimental blocks (i.e., in break periods) were identified and
removed so they do not impact the independent components analysis (ICA) applied later in the
pipeline. Here, blocks were identified as beginning 500 ms before stimulus presentation in the
first trial of each block, ending 500 ms after the end of the last trial’s epoch. To reduce the
impact of occasional non-stationary artefacts with high amplitude (such as infrequent muscle
movements), artefact subspace reconstruction (ASR; C. Y. Chang et al., 2020) was used with
a standard deviation cutoff of 20 to remove non-stationary artefacts. Following this, an ICA
was run on the data to identify more stationary artefacts. The ICA was run using the FastICA
algorithm (Hyvärinen & Oja, 1997), with a recorded random seed for reproducibility. The ICA
was run on a copy of the data with channel offsets removed to allow for better sensitivity to
electro-oculogram (EOG) artefacts (Groppe et al., 2009). The ICLabel classifier (Pion-Tonachini
et al., 2019) was used to automatically identify artefacts which were eye-related or muscle-
related. Components classified by ICLabel as eye-related or muscle-related with a probability
of ≥85% were removed from the data. Following eye movement artefact removal, activity
from channels which were removed was interpolated via spherical splines, as implemented
in EEGLAB. Trials were then epoched and baseline-corrected to the 200 ms preceding stimulus
presentation. For the localiser task, stimulus presentation refers to the time point at which
words, false-font strings, or phase-shuffled images were presented; in the picture-word task,
stimulus presentation refers to the target word.

5.5 Results

The planned analysis (pre-registered at https://osf.io/389ce/) examined the whether the
predicted effect of predictability-dependent reduction of N1 amplitudes for picture-congruent
words, as outlined in the power analysis (section 5.3), was observed in the electrode which for
each participant showed the maximal sensitivity to orthography. I also examine the time-course
of the effect of picture-word congruency, and of the congruency-predictability interaction, and
behavioural results, in the picture-word task. I then report patterns of results for the time-course
of sensitivity to orthographic features in the localiser task, and corresponding effects on
participants’ behaviour.

5.5.1 Planned Picture-Word Analysis

Electrodes that showed maximal sensitivity to orthographic information in the N1 were identified
for each participant using data from the localisation task (Figure 5.7). Specifically, the maximal
electrode was identified, from an occipitotemporal region of interest (Figure 5.7A), as that which
shows the largest mean amplitude difference, in the expected direction, across all localiser
trials between word and false-font string stimuli, in the time window between 120 and 200 ms.
Here, the expected direction, based on previous findings (Appelbaum et al., 2009; Bentin et al.,
1999; Eberhard-Moscicka et al., 2016; Pleisch et al., 2019; J. Zhao et al., 2014) was a more
negative-going N1 for words than for false-font matches. In contrast to some previous studies
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Figure 5.7: The method by which trial-level amplitudes were extracted for the planned analysis.
(A) Electrodes in the left-lateralised occipitotemporal region of interest, from which maximal
electrodes were identified. The selected electrodes were in the standard 10-20 locations:
O1, PO7, PO3, P9, P7, P5, TP7, and CP5. (B) Maximal timepoints were identified for each
participant’s maximal electrode (upper panel), from which trial-level amplitudes were extracted
from the ERP of each participant’s maximal electrode. In the larger, lower panel, coloured lines
depict average ERPs for per-participant maximal electrodes, while the thicker black line depicts
the overall average.

whose N1 windows extended beyond 200 ms, I decided to set 200 ms as an upper bound for
the possible maximal timepoint in the main analysis, to ensure effects were indeed restricted
to the N1, and not later components like the N400. The topographic region of interest consists
of a cluster of eight left-lateralised occipitotemporal electrodes (Figure 5.7A) which reflect the
typical topography of the N1. The timepoint in the window at which the maximal electrode shows
the greatest sensitivity to the word-versus-false-font difference in the expected direction, that is,
the "maximal timepoint", was also recorded (Figure 5.7B). The identified maximal electrode and
maximal timepoint were then used to extract trial-level N1 amplitudes from the picture-word task.
To reduce the influence of noise on trial-level data, the trial-level N1 amplitudes in the picture-
word task were calculated as the maximal electrode’s mean amplitude across 3 time points: the
participant’s maximal timepoint, one sample preceding the maximal timepoint, and one sample
following the maximal timepoint. At the recorded sample rate of 512 Hz, this is equivalent to a
window of 3.91 ms centred on the maximal timepoint.

The trial-level N1 amplitudes from the picture-word task were modelled using a linear mixed-
effects model fit with the R package lme4 (Bates et al., 2015), estimating the maximal random
effects structure justified by the experiment’s design (Barr et al., 2013) as detailed in the section
on the power analysis (section 5.3). The model was fit using the bobyqa optimiser (Powell,
2009). In lme4 syntax, the formula for the mixed-effect model was specified as:

amplitude ~ 1 + congruency * predictability +

(1 + congruency * predictability | participant_id) +

(1 + congruency | image_id) +

(1 | word_id)
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In this formula, amplitude is the trial-level N1 amplitude in microvolts, while congruency
is a deviation-coded categorical variable indicating whether a given trial’s word was picture-
congruent or picture-incongruent, and predictability refers to the proportion of name agreement
in the BOSS norms, normalised between 0 and 1. A consequence of this coding method is
that the model’s intercept reflects the predicted amplitude at the lowest level of predictability,
averaged across both levels of congruency, while the slopes’ coefficients are standardised and
directly comparable in their magnitude. The variables of participant_id, image_id, and word_id,
in the formula, identify each trial’s participant, image, and word, respectively.

The fixed effect relationships predicted by the model are presented in Figure 5.8. The model
intercept, reflecting the average N1 amplitude at the lowest level of predictability, was estimated
to be β=-3.49 (SE=.47). The fixed effect of congruency from this model was estimated as β=.55
(SE=.3), which, because predictability was scaled to between 0 and 1, means that at the lowest
level of predictability (7%), N1 components for picture-incongruent words were .55 µV more
negative-going than those for picture-congruent words. The main effect of predictability was
estimated as β=.54 (SE=.25), meaning that N1 amplitudes, averaged across congruent and
incongruent conditions, were .54 µV less negative-going at the highest level (100%) than at the
lowest level of predictability (7%). The effect of interest, the interaction between congruency
and predictability, was in the opposite direction from that predicted in the power analysis (β=-
.93, SE=.43), with a larger, positive effect of predictability for picture-incongruent trials than for
picture-congruent trials. A likelihood ratio Chi-square model comparison yielded a two-tailed p
value of .019 (χ2(1)=5.5) for this effect, though as the planned analysis was one-tailed for an
effect in the opposite direction, this was not interpreted as significant.

To briefly describing the interaction in an exploratory manner, I report two-tailed p values
and their Bonferroni-corrected counterparts (pbon f ). For picture-incongruent words, the effect of
predictability was estimated to be β=.99 µV (SE=.31, χ2(1)=9.38, p=.002, pbon f =.004), while
for picture-congruent words, the effect of predictability was estimated as β=.06 µV (SE=.34,
χ2(1)=3.24, p=.07, pbon f =.14).

For comparison, I also analysed the data using the maximal electrodes that would be
identified from the comparison between words and phase-shuffled words (Appendix C.6).
This analysis revealed a similar pattern of effects, with picture-incongruent words eliciting less
negative-going N1 components as predictability increases, and with this effect being much
closer to zero for picture-congruent words.

5.5.2 Exploratory Picture-Word Analysis

To better understand the pattern of results observed in the planned analysis, I conducted an
exploratory analysis examining the time-course of effects in the occipitotemporal region of
interest. I also examined the behavioural results, and compared these to the results from the
behavioural validation study (section 5.2.1).
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Figure 5.8: Fixed effect predictions from the planned analysis of the picture-word task. (A)
Model-derived fixed-effect predictions, visualised over results from all trials (individual points).
(B) Fixed-effect predictions visualised alone for visibility, where dashed lines depict the bounds
of 95% bootstrapped prediction intervals (estimated from 5,000 iterations), where bootstrapped
predictions were generated using the bootMer() function of lme4. For feasibility, bootstrapped
predictions were generated from a version of the model that lacked random slopes.
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Time-Course of Effects in the Region of Interest

To examine the time-course of effects, I fit separate linear mixed effects models to sample level
data for the left-lateralised occipitotemporal region of interest, with variables coded as described
for the planned analysis. For feasibility, data were downsampled to 256 Hz, and the models
did not estimate random slopes. To account for variability between electrodes, and for per-
participant differences in topography, random intercepts were estimated for each combination
of participant and electrode. In lme4 syntax, the model formula was specified as:

amplitude ~ 1 + congruency * predictability +

(1 | participant_id) +

(1 | participant_id:electrode_id) +

(1 | image_id) +

(1 | word_id)

The results (Figure 5.9) reproduced findings from the planned analysis, with the N1 peak
becoming less negative-going as predictability increases, but only for picture-incongruent words.
Indeed, an effect of congruency at the lowest level of predictability first emerged during the
N1’s onset and peak, with more negative amplitudes for picture-incongruent words than for
picture-congruent words, while the effect of congruency for more predictable words emerging
later, after the N1 peak. The analysis also revealed effects during the N1’s offset, with higher
predictability eliciting more sustained negative amplitudes for picture-congruent words, but more
positive amplitudes for picture-incongruent words, while the offsets for picture-congruent and
-incongruent words were much more similar at lower levels of predictability. An additional
predictability-congruency interaction also emerged after the N1, peaking at around 400 ms
(likely resulting from effects in the N400 component) in the opposite direction to that observed
for the N1’s offset.

To better understand the interaction, I also examined the time-course of the effect of
predictability for picture-congruent and -incongruent words separately (i.e., simple effects;
Figure 5.10). This showed more clearly that predictability reduced amplitudes in the N1 for
picture-incongruent words, but increased amplitudes for picture-incongruent words. This
difference peaked around 225 ms, but reversed in direction after 300 ms. It is of note that the
timing of the observed effects were later than originally anticipated (the planned analysis was
limited to ≤200 ms). Nevertheless, the model intercept clearly shows that these effects peaked
during the N1’s offset, as the component overall peaked later than that observed in chapter 4.

For comparison to previous studies that examined effects of prediction bilaterally, I
also analysed effects on right hemispheric electrodes (Appendix C.8), revealing no clear
congruency-predictability interaction prior to 300 ms. I similarly examined whether the observed
effects interacted with word frequency, finding that while there may be a main effect of word
frequency on the N1, no clear interaction was observed between frequency and congruency or
predictability (Appendix C.8).
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Figure 5.9: Time-course of fixed effects from the sample-level analysis of the left-lateralised
occipitotemporal region of interest. (A) Time-course of fixed effects estimates, with shaded
regions depicting 95% confidence intervals. The model intercept (reflecting average amplitudes
at the lowest level of predictability) is depicted as a grey line on each panel to provide a reference
for the timing and magnitude of effects. (B) Fixed-effect predictions for picture-congruent and
-incongruent words at levels of predictability from 10 to 100%, in steps of 10%. (C) Same data
as (B), but split by predictability rather than congruency.
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Figure 5.10: Time-course of the effect of predictability (i.e., the difference between the ERPs
predicted for words at the maximum and minimum levels of predictability) for picture-congruent
and -incongruent words. Central lines depict effect estimates, derived from sample-level models
that were coded such that the model intercept lay at the respective levels of picture-word
congruency. Shaded areas depict 95% confidence intervals of model estimates.

Behavioural Results

I analysed RTs, to examine whether the pattern of effects was similar to that observed for
the behavioural validation experiment (section 5.2.1). I fit a Bayesian distributional shifted
log-normal model, estimating the same model formula as that described for the behavioural
validation experiment for all shifted log-normal parameters (µ, σ , and δ ), using prior
distributions based on the posterior distributions from the behavioural validation experiment
(full details are presented in Appendix C.7). Priors for the behavioural analysis of the EEG
experiment were not exact replicas of the validation experiment’s posteriors, but were rather
specified with greater uncertainty than that observed in the validation experiment’s posteriors. I
decided to specify this uncertainty because of key differences in the task demands; participants
in the validation experiment could respond to stimuli with no lower limit, whereas responses
were only permitted in the EEG experiment 500 ms after stimulus presentation. As a result
of the additional time for participants to consider their responses, and because RTs were
measured from the time point at which the stimulus changed colour, I reasoned that (1)
responses would be faster overall in the EEG experiment (reflected in a reduced prior for
the δ parameter intercept), and (2) effects observed in the validation experiment’s RT data
would be likely smaller in the EEG experiment’s RT data. Results revealed that, although
the effects were smaller than in the validation experiment, the main finding was replicated,
with low predictability eliciting later RTs for picture-congruent words, to a greater extent than
it does for picture-incongruent words (Figure 5.11A). RTs from the EEG experiment also
replicated the difference in spread between picture-congruent and -incongruent RTs at low
levels of predictability, with the congruency conditions showing more similar spread in RTs
as predictability increases (Figure 5.11B), though again this effect was smaller for RTs in the
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EEG experiment than it was for RTs in the validation experiment. Conversely, the difference in
shift observed between picture-congruent and -incongruent words at high predictability in the
validation experiment (Figure 5.2B) was not observed in the EEG experiment.

I similarly analysed accuracies in the picture-word task. I fit a logit-link binomial Bayesian
generalised linear mixed effects model (GLMM) to accuracy data, using the same maximal
mixed effects formula as that described for the planned analysis. All fixed effect prior
distributions were specified to be flat, with the exception of the model intercept. As I expected
overall accuracy to be very high, I specified the prior distribution for the fixed effect intercept
as ∼ N(4,1), where logit 4 would be equivalent to an average accuracy of .982. Priors for the
SDs of random effects distributions were drawn from Student’s t distributions with 3 degrees of
freedom, µ of 0, and σ of 2.5. Prior distributions for all correlations were flat (between -1 and 1).
The model was fit via brms, with 5 chains each sampling for 10,000 iterations (5,000 warmup).
The adapt_delta parameter was set to .9, and the maximum tree depth (max_tree_depth) was
set to 10. Results (Figure 5.12) revealed a main effect of predictability with higher accuracy
at higher levels of predictability. An interaction with congruency was also observed, where
predictability had a larger effect for picture-congruent than for picture-incongruent words, while
accuracy remained more consistent across predictability for picture-incongruent words.

5.5.3 Exploratory Localiser Analysis

I also analysed results from localiser task, examining the full time-course of stimulus effects on
ERP amplitudes, and patterns of RTs and accuracies.

Time-Course of Effects in the Region of Interest

I analysed the full time-course of stimulus effects in the localiser task, for right- and
left-hemispheric occipitotemporal regions of interest. Specifically, I fit per-sample (256 Hz)
linear mixed effects models via lme4, estimating models with the following formula:

amplitude ~ 1 + (false_font + noise) * hemisphere +

(1 | participant_id) +

(1 | participant_id:electrode_id) +

(1 | match_set) +

(1 | item_id)

Here, false_font and noise were deviation-coded variables, comparing the two nonword
conditions to the null condition of words (i.e., BACS-font nonwords, and phase-shuffled words,
respectively). In this way, the fixed effect slopes represented the difference between words
and each non-lexical stimulus type. The deviation-coded variable, hemisphere, distinguished
observations in the left (hemisphere=-.5) and right (hemisphere=.5) hemisphere. The
match_set variable uniquely identified each triplet of matched items (see section 5.2.2). As
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Figure 5.11: Fixed effect predictions of RT distributions in the EEG experiment. Figure layout
is identical to that described for the validation experiment RTs in Figure 5.2, except that the
axis limits for RTs are here limited to ≤1,000 ms. Unlike the validation experiment, where RTs
reflect latency from stimulus presentation, RTs here reflect latency from a colour change in the
stimulus, that occurred 500 ms after stimulus presentation (Figure 5.6).
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Figure 5.12: Fixed effect results for the analysis of accuracies in the picture-word task during
the EEG experiment. (A) Fixed effect logit estimates, where points depict median estimates
and whiskers depict the extent of 89% HDIs. (B) Model-predicted accuracies, for all levels of
predictability in each congruency condition, where the central lines depict median estimates,
while the shaded areas depict the extent of 89% HDIs.

in the sample-level analysis of the picture-word task, random intercepts were also estimated
for each combination of participant and electrode (participant_id:electrode_id), and random
slopes were excluded for feasibility.

Results (Figure 5.13) revealed that differences between words and phase-shuffled words
emerged clearly in the P1 component, with more positive-going amplitudes observed for
phase-shuffled words. Differences between words and false-font nonwords, meanwhile,
remained small until later, in the N1. N1 components were more negative-going for false-font
stimuli than for phase-shuffled words, for ERPs in both hemispheres. Both positive-going and
negative-going ERP components elicited by words were overall more positive in amplitude
for the right hemispheric occipitotemporal electrodes (i.e, the P1 was more positive-going,
and the N1 less negative-going, in the right hemisphere); the N1 elicited by word stimuli
was left-lateralised. An interesting stimulus-hemisphere interaction was observed, wherein
ERPs elicited by words showed N1 peak amplitudes most similar to false-font stimuli in the
left hemisphere, but most similar to phase-shuffled words in the right-hemisphere. Similar
differences in timing were observed in the N1 peak for stimuli across both hemispheres, with
phase-shuffled words peaking first, followed by false-font stimuli, and then words. Stimulus
effects in occipitotemporal electrodes after the N1 were more consistent across hemispheres,
with phase-shuffled words showing the most positive amplitudes, followed by false-font
stimuli, which in turn elicited more positive amplitudes than words did, although the difference
between words and phase-shuffled words was larger, post-N1, in the right hemisphere. The
post-N! difference between words and false-font nonwords, meanwhile, did not interact with
hemisphere except for a brief period around 250 ms.
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Figure 5.13: Fixed effect results for ERPs in the localiser task. (A) Fixed effects estimates for
each time point, with the shaded areas depicting 95% confidence intervals. (B) Model-derived
predictions for ERPs of left- (left) and right-hemispheric (right) occipitotemporal electrodes.
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Figure 5.14: Fixed effect predictions for behavioural outcomes in the localiser task. (A) Posterior
distributions for accuracies in the localiser task, where points below densities depict median
posterior estimates, while whiskers depict 89% HDIs of posterior samples. (B) Predicted RT
distributions, where the shaded regions depict 89% HDIs of posterior samples (density values
on the y -axis begin at 0).

Behavioural Results

I also analysed stimulus effects on lexical decision RTs and accuracies. Specifically, I fit a
logit-link binomial model to trial-level accuracies, and a distributional shifted log-normal model
to RTs, with maximal random effects structures. Results (Figure 5.14) revealed that responses
were fastest and most accurate for phase-shuffled words. False-font stimuli were responded to
somewhat faster. Conversely, responses were slowest and least accurate for word stimuli. RT
distributions were similar for false-font and phase-shuffled words, though accuracies for false-
font stimuli were closer to those observed for words. Behavioural results overall suggest that
participants found it easy to reject phase-shuffled words in lexical decision, but found it relatively
more difficult to reject false-font stimuli. Full model details are described in Appendix C.10.

5.6 Discussion

In the present study, a clear congruency-predictability interaction was observed in the N1 ERP
component, the timing of which is consistent with an account of word recognition that involves an
early sensitivity to predictions, and suggestive of some form of top-down modulation. However,
the pattern of effects was ostensibly inconsistent with an account of top-down modulation of
orthographic processing that is based on predictive coding, suggesting that such an account
may not fully explain prediction effects on the N1. Effects were also analysed in the localiser
task, revealing clear effects of stimulus on N1 amplitude and timing, including a stimulus-
hemisphere interaction in the N1.
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5.6.1 Evidence Consistent with Top-Down Modulation

The planned and exploratory analyses of the picture-word task revealed a clear congruency-
predictability interaction in the N1, the timing of which is consistent with top-down modulation.
However, the pattern of effects that characterised this interaction diverged markedly from the
pattern of effects hypothesised. At the highest levels of predictability, picture-congruent and
-incongruent words showed a clear difference in the N1’s offset, with more negative amplitudes
elicited by picture-congruent words, rather than for picture-incongruent words. Furthermore, at
the lowest levels of predictability, there was a smaller effect of congruency in the N1’s onset
and peak, with more negative-going N1s elicited by picture-incongruent words. This finding
stands in contrast to findings from sentential studies, which generally suggest that less negative-
going N1 components are observed for words that are orthographically congruent with readers’
predictions (e.g., A. E. Kim & Gilley, 2013; Kretzschmar et al., 2015; Sereno et al., 2003).

Some studies have previously reported that predictions can elicit more negative-going N1
components when observed word forms are congruent with readers’ predictions, though these
studies are in the minority. For instance, Sereno et al. (2019) observed that for high frequency
words, amplitudes during the N1 window were more positive over the left hemisphere for
highly predictable words than for words of low predictability. However, results from this study
also included a finding of more negative amplitudes for highly predictable words in the right
hemisphere, which was not observed in the present study (Appendix C.8). More negative-going
amplitudes for highly predictable items were also reported by Penolazzi et al. (2007), although
there the effect was located centroparietally rather than occipitotemporally, such that the overall
direction of ERPs, and likely the effects within the ERPs, was reversed.

One key difference between the present study and much previous work that has examined
effects of prediction on early visual word processing is that the present study did not bias
expectations via sentential stimuli. This difference may in part account for the disparity observed
between the present study’s results and those reported in previous investigations. However, if
this is the case, it is not clear which features of the present study’s design would have caused the
disparity, or how they may have caused it. For instance, one possibility could be that, rather than
using a sentence to bias expectations, as most previous investigations have, instead preceding
the target word with an image may have altered the dynamics of visual word processing or
predictive processes in some manner (see section 7.3 of the General Discussion for further
discussion of this possibility).

Notwithstanding the disparities between the present study’s findings and both the
hypothesis and previous findings, the observed congruency-predictability interaction in the N1
is suggestive of an influence of higher-level information on early stages of word recognition
that are associated with orthographic processing. The neural dynamics responsible for the
observed pattern of results are difficult to delineate from the evidence presented here, though
I briefly consider some possible explanations and their implications. First, the present study’s
findings are difficult to reconcile with an account of top-down modulation of orthographic
processing during the N1 that is based on a simplistic implementation of predictive coding,
according to which one would expect more negative-going N1s for picture-incongruent

150



CHAPTER 5. EFFECT OF PREDICTABILITY ON TOP-DOWN MODULATION OF THE N1

words at the highest level of predictability, as less of the orthographic information would be
"explained away" by the reader’s predictions (A. Clark, 2013; Eisenhauer et al., 2022; Gagl
et al., 2020). One possibility is that while the brain activity underlying N1 amplitude may
scale with bottom-up orthographic prediction error (Gagl et al., 2020), top-down predictions of
orthographic content may not be implemented by simply altering the orthographic prior but by
additional mechanisms that interact with bottom-up processing and produce divergent effects
in the N1. Such a process may even occur in temporal and spatial proximity to orthographic
processing while itself being functionally distinct from it. Alternatively, if top-down modulation is
implemented via on-line alteration of an orthographic prior, this may be achieved in a manner
that, counterintuitively, induces stronger predictions when predictability is low.

If not implemented via predictive coding mechanisms, alternative explanations for the
observed pattern of effects could include that N1 amplitude, especially in the component’s
offset, scales with similarity to predictions, rather than error. Such a finding could represent
predictability "sharpening" neural responses, rather than "explaining away" bottom-up input.
More specifically, it could be that the more certain a prediction is (i.e., the higher the
predictability of an image’s name), the more sensitive the neurons that generate the N1 are
to the predicted word form or its features. This interpretation concords with recent findings
from Eisenhauer et al. (2022), where source-localised MEG showed that prime words led
to the preactivation of orthographic and lexical-semantic information for predictable, but not
unpredictable, target words, leading to greater occipitotemporal activity in response to the
target word’s presentation. Related fMRI findings have shown that presenting primes that
appear embedded in the subsequent target word (e.g., car within scar ) cause the target word
to elicit greater activity in vOT (Z. Zhou, Whitney, et al., 2019). Parallels can be drawn between
such an explanation and related accounts of effects of task-driven modulation of activity during
the N1 and in vOT, which suggests that higher task demands elicit greater occipitotemporal
sensitivity to word form information (Y. Chen et al., 2013, 2015; Qu et al., 2022; Segalowitz &
Zheng, 2009; Strijkers et al., 2015), perhaps due to a heightened sensitivity to orthographic
information (Qu et al., 2022). According to such an account of the present study’s findings,
higher predictability led to more negative N1 amplitudes for picture-congruent words (matching
predictions), as the predicted orthographic features, perception of which was sharpened
selectively, were present in the observed picture-congruent word form and thus facilitated.
Meanwhile, lower predictability would have reduced sensitivity to the difference between
picture-congruent and -incongruent word forms or orthographic features. However, such an
explanation would also need to account for why effects of predictability emerged earlier for
picture-incongruent words, in the N1’s peak, than they did for picture-congruent words, in
the N1’s offset, or why a difference between picture-congruent and -incongruent words may
have emerged in the N1’s peak at the lowest effect of predictability. That periods within the
N1’s window show differential sensitivity to higher-level information is an emerging finding in
the literature, with the present study replicating previous reports that effects resulting from
top-down modulation emerge and peak in the N1’s offset period (F. Wang & Maurer, 2017,
2020).

Consequently, while the timing of the congruency-predictability interaction identified in this
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study is consistent with a top-down influence of higher-level information on early processing
in the N1, an ERP component associated with orthographic processing, the direction of
the observed effect is more puzzling. In contrast to the hypothesised effect of predictability
leading to less negative amplitudes for picture-congruent, and not for picture-incongruent,
words, words preceded by more predictable images elicited less negative amplitudes when
picture-incongruent, while the opposite effect was observed for picture-congruent words.
There were also differences in timing of effects, with the effect of predictability emerging for
picture-incongruent words during the N1’s peak, but emerging for picture-congruent words later,
in the N1’s offset. While I have briefly speculated about possible explanations for the study’s
findings, it is important to note that experimental evidence alone cannot provide evidence
capable of evaluating and distinguishing between possible explanations for such a pattern
of effects. As Guest and Martin (2021) argue, rather than merely describing linguistically
how cognitive processes relate to observations of neural activity, evaluating and comparing
the explanatory power of accounts would require comparisons of how well computational
implementations of these theories predict neural activity and behaviour. Moreover, examination
of the neural and behavioural consequences predicted by computational implementations of
theories could guide the design of future studies capable of providing meaningful evaluation of
theories, especially in research into top-down modulation (Ramsey & Ward, 2020). As such,
the findings of the present study are consistent with top-down modulation of orthographic
processing, or processing that is temporally and spatially proximal to orthographic processing,
and provide a basis for further research to more specifically delineate and examine evidence
for the cognitive and neural mechanisms underlying such influences. In particular, I argue
that more computationally explicit models of the processes involved are required to evaluate
whether theories accurately account for word recognition processes.

5.6.2 Bottom-Up Sensitivity to Orthography

Exploratory analyses of the localiser task, which was included primarily to identify per-
participant maximal electrodes and time-points for the picture-word analysis, replicated
previous findings of sensitivity to orthography in the N1. Results revealed differences in timing,
average amplitude, and (in the right hemisphere) peak N1 amplitude, in ERPs elicited by words
and false-font stimuli; N1 components observed for false-font stimuli peaked earlier bilaterally,
with less-negative average amplitudes in the left hemisphere, but with more negative-going
amplitudes in the right hemisphere, relative to word stimuli. This finding is broadly consistent
with existing evidence for such sensitivity to orthography in the N1 (Bentin et al., 1999; Brem
et al., 2018; Holcomb et al., 2002; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019). In
particular, previous research has generally also found that words elicit more negative-going
left-hemispheric N1 components than false-font stimuli do (Appelbaum et al., 2009; Bentin
et al., 1999; Eberhard-Moscicka et al., 2016; Maurer, Brandeis, et al., 2005; Pleisch et al.,
2019; J. Zhao et al., 2014), and it is this directional prediction on which the identification of
maximal electrodes and time-points in the localiser task was based (subsection 5.5.1).

As expected, the word-versus-phase-shuffled difference was in the same direction as the
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word-verus-false-font difference, though with a larger effect size. Robust sensitivity to the
difference between words and words with scrambled phase is consistent with fMRI findings
of greater activity in vOT for words relative to phase-randomised words (Rauschecker et al.,
2012; Rodrigues et al., 2019; White et al., 2019; Yeatman et al., 2013). However, a difference
between words and phase-shuffled words was in the present study observed prior to the N1, in
the P1 component (whereas words and false-font stimuli elicited more similar P1 components).
Such a finding is consistent with fMRI findings of sensitivity to the words-versus-phase-shuffled
difference in regions more posterior than the typical visual word form area (VWFA) location
(Rodrigues et al., 2019; Yeatman et al., 2013). It has been argued that areas posterior to
the VWFA of vOT are sensitive to orthographic information, such as the mid-fusiform cortex
(Woolnough et al., 2021), and indeed, even neurons in the primary visual cortex can become
tuned for geometric features of shapes via top-down influences (McManus et al., 2011).
However, early, posterior sensitivity to the difference between words and phase-shuffled
words, observed earlier and in regions more posterior than word-nonword (or word-false-font)
differences are, may arise from non-orthographic, lower-level visual differences between words
and phase-shuffled words. For instance, permuting or randomising images’ distributions of
phase necessarily alters their phase congruency, which can be used as an effective indicator
for edge and feature detection in image analysis (Kovesi, 2003). Evidence suggests that
human visual processing is sensitive to phase congruency, or information that correlates with
it, in areas as posterior and early as the primary visual cortex (Perna et al., 2008). In sum,
sensitivity to the difference between words and phase-shuffled words in the P1 component
cannot necessarily be interpreted as early sensitivity to orthographic information; if researchers
wish to isolate orthographic processing, then comparisons between words and false-font or
nonword stimuli may be more appropriate, as these are more closely matched on low-level
features.

An interesting stimulus-by-hemisphere interaction was observed in the present study’s
localiser task, wherein the N1 responses to false-font stimuli were more negative-going, while
responses to words were less negative-going, in the right hemispheric N1. Such hemispheric
interactions have been observed previously. Maurer, Brandeis, et al. (2005) observed that while
for the left hemisphere, average N1 amplitudes were more negative for words than they were
for symbols, in the right hemisphere, the effect reversed, with more negative N1 amplitudes
for symbols than for words. A related interaction was reported by Bentin et al. (1999),
where orthographic stimuli (words, nonwords, pseudowords) elicited more negative-going
N1 components over the left hemisphere than non-orthographic stimuli (symbols, simple
shapes) did, whereas no significant difference was observed over the right hemisphere. The
interaction between the word-false-font difference and hemisphere was similarly reported for
typical readers in Pleisch et al. (2019), in a simultaneous EEG-fMRI analysis. As a result, the
stimulus-hemisphere interaction observed in the present study’s localiser task replicates similar
interactions reported in existing literature.
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5.6.3 On the Content of Predictions

The picture-word paradigm employed in the present study was designed to elicit predictions
for specific visual word forms without relying on sentential contexts. One key issue with the
paradigm, also applicable to comparable designs employed in previous studies, is that it does
not provide insight into the content of predictions that participants actually form. For instance,
given as context an image of a vaccum cleaner, does the participant form a specific prediction
for either the word vacuum or hoover, or do they simultaneously predict both word forms? This
distinction could be expected to have important implications on the cognitive mechanisms by
which predictions influence early processing. For instance, a word of low cloze probability (e.g.,
10%) may be expected to elicit responses functionally similar to an unpredicted word if on
(e.g.) 90% of trials, readers’ predictions are devoted to an entirely different word. Conversely,
if readers predict multiple possible words simultaneously, a word of low cloze probability may
instead simply elicit a smaller or less specific effect of predictability than a word of greater cloze
probability would. That vOT could support simultaneous, parallel predictions of orthographic
features for more than one word form is plausible, given recent evidence showing that vOT can
represent bottom-up information of multiple presented word forms in parallel (White et al., 2019).
Further research could examine the content of predictions in more detail to better understand
how it relates to effects of predictability.

It is furthermore relevant to ask what information is being functionally predicted. For
instance, if semantic predictions are being recoded into predictions of orthographic features,
are these features predicted at the level of the word form, characters, or sub-character
features? Would, as evidence from A. Kim and Lai (2012) suggests, a semantically irrelevant
word that is nonetheless orthographically similar to a predicted word benefit from a top-down
prediction in orthographic processing? This is an additional instance in which computational
implementations and models of orthography and orthographic processing have the potential
to improve insight into the processing of it, and its sensitivity to top-down modulation. For
instance, with a computational description of orthography that can account for similarity at
multiple levels, it could become possible to relate features like orthographic similarity more
precisely to effects of top-down modulation on orthographic processing.

5.6.4 Summary

The results from this study are clearly suggestive of higher-level information influencing early
visual word recognition processes during the N1 component, likely via top-down modulation.
Given the N1 component’s robust and replicable sensitivity to orthographic information, it
is likely that top-down modulation of the N1 component reflects early interactions between
orthographic and higher-level information. However, the present study and existing literature
provide insufficient evidence to delineate a specific description of the manner in which such
interactions may occur and produce the observed effects. Indeed, the observed pattern of
effects was inconsistent with a simplistic predictive coding account of top-down modulation.
I suggest that future research would benefit from being guided by hypotheses that are more
directly informed by computational implementations of theories.
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Chapter 6

SCOLD: Sub-Character Orthographic
Levenshtein Distance

6.1 Introduction

An account of how the human reader processes orthographic information necessarily
constitutes a vital component in any model of reading and visual word recognition (e.g., Besner
& Smith, 1992; Coltheart et al., 1977; Coltheart et al., 2001; Dehaene et al., 2005; Grainger &
Jacobs, 1996; McClelland & Rumelhart, 1981; Reichle et al., 2003; Seidenberg & McClelland,
1989; Whitney, 2001), often constituting the model’s focus (e.g., Adelman, 2011; Gagl et al.,
2022; Gomez et al., 2008). This focus on orthography reflects its essential role in reading,
bridging lower-level visual processing, constituting the very first processing stages in the brain,
to higher-level semantic comprehension. A complete model of orthographic processing should
be able to describe how visual shapes are decoded into linguistic units in computational terms,
providing falsifiable predictions about the nature of such processes that can be tested via
comparisons to neural or behavioural correlates of reading. Measures describing and derived
from orthography are therefore vital for building and testing such theories and computational
models of visual word recognition. Perhaps the most important and widely applicable measure
that can be derived from orthographic descriptions is orthographic similarity, quantifying the
distance between word forms or their components. Orthographic similarity plays a central
role in testing models of orthographic processing, providing valuable insight into the nature
of orthographic representations in the brain (Norris & Kinoshita, 2012). However, existing
empirical measures of orthographic similarity are greatly limited in their resolution, failing
to account for sub-character complexities. In this chapter, I propose and test a pixel-based
measure of orthographic similarity that incorporates sub-character information: Sub-Character
Orthographic Levenshtein Distance (SCOLD). I further examine whether the inclusion of
geometric operations, of translation, rotation, rescaling, and mirroring, improves the measure’s
explanatory power for correlates of orthographic similarity. I show that the measure can capture
effects of sub-character complexities on orthographic processing, and that whether SCOLD
outperforms existing measures can reveal insight into cognitive mechanisms underlying
orthographic processing.

Orthographic similarity refers to how alike written representations of language are, with
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descriptions ranging in granularity from entire word forms to characters and sub-character
features. Orthographic similarity has been shown to have far-reaching consequences in
language processes spanning multiple levels of processing, strongly predicting low-level
effects like letter (Mueller & Weidemann, 2012) and word confusability (Kondrak & Dorr,
2006), even extending to reported effects in auditory word recognition (Chéreau et al., 2007;
Tanenhaus et al., 1980), purportedly due to a rapid and functionally meaningful activation of
orthographic information during spoken word recognition (Muneaux & Ziegler, 2004; Perre &
Ziegler, 2008; Salverda & Tanenhaus, 2010). Words’ orthographic neighbourhood densities,
reflecting their similarity to the lexicon, also show effects in word recognition (Andrews,
1997; Carreiras et al., 1997; Yap & Balota, 2009), that similarly permeate multiple stages
of processing (Hauk et al., 2006; Holcomb et al., 2002), and similarly transcend the visual
domain to impact word recognition in other modalities (Muneaux & Ziegler, 2004; Ziegler et al.,
2003). Correspondingly, effects of orthographic similarity and orthographic neighbourhood
density have had considerable influence on models of reading and visual word recognition.
As an example, an important observation in visual word recognition is that nonwords formed
by transposing two adjacent characters of a real word (e.g., judge - jugde) are often misread
as, and show similar behavioural effects to, real words (Davis, 2010). To accommodate this
observation, models have included elegant features such as flexible (Adelman, 2011; Whitney,
2001) or noisy (Davis, 2010; Gomez et al., 2008) coding of letter positions. In the context
of this thesis, effects such as orthographic priming (e.g., Eisenhauer et al., 2022; Ferrand &
Grainger, 1994; Frisson et al., 2014; Masson & MacLeod, 2002) and interactions between
orthographic and higher-level lexical or semantic processes (e.g., Y. Chen et al., 2015; Dikker
& Pylkkanen, 2011; A. Kim & Lai, 2012; Pecher et al., 2009; Pecher et al., 2005; Rodd, 2004;
P. Yao et al., 2022; J. Zhao et al., 2019) are of particular interest, and an understanding
of orthographic similarities and neighbourhoods may provide insight into the mechanisms
underlying such effects. For example, the relationship between predictability and top-down
modulation (see chapters 4 and 5) may have a basis in orthographic neighbourhoods densities,
as low-predictability expectations for a potentially large set of orthographically diverse word
forms may result in little to no top-down modulation, relative to more targeted predictions,
because the predicted word forms would be orthographically similar to a larger number of
irrelevant word forms.

The most widely used measure of word form similarity is orthographic Levenshtein
distance (OLD), which measures the minimum number of character insertions, deletions, or
substitutions required to convert one string into the other, implicitly assuming that the costs of
these operations are invariant across different characters (Norris & Kinoshita, 2012; Yarkoni
et al., 2008). This measure has been further applied to calculate orthographic neighbourhood
density (Orthographic Levenshtein Distance 20; OLD20), which describes how similar a word
form is to others in the lexicon (specifically, the OLD between the word form and its 20 closest
neighbours), and which accounts well for word recognition behaviour (Siew, 2018; Yarkoni
et al., 2008). Neighbourhood measures calculated from Levenshtein distance quantify a more
robust description of orthographic similarity than would be permitted by the previously most
widely used measure, Coltheart’s N (Coltheart et al., 1977). Specifically, Coltheart’s N defines
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a word form’s neighbourhood coarsely, as the number of words at a distance of just 1 character
(i.e., number of words that can be generated by exchanging one letter in the target word).
By this limited definition, it is implied that word form similarity is binary; the word forms price
and prize would be orthographically similar, but price and precise would be as dissimilar as
price and skunk are. The Levenshtein distance of price and precise, meanwhile, is equal to
3, reflecting their shared letters, whereas price and skunk have a Levenshtein distance of 5.
Thus, Levenshtein distance provides greater discriminatory power (Yarkoni et al., 2008) and is
at present accepted as the gold standard in the field. Correspondingly, computational models
of visual word recognition either recognise that sub-character features must be integral to
orthographic processing yet fail to explicitly describe how they are processed (e.g., Whitney,
2001), or use a simplified yet computationally convenient artificial character set (typically that
proposed by Rumelhart & Siple, 1974) that only loosely relates to real-world characters.

However, as previously mentioned, because the operations that OLD is calculated from
are invariant to the identities of characters which are being inserted, deleted, or substituted,
the measure overlooks sub-character similarities or complexities. Consider, for example, that
the word forms price and pride may be more orthographically similar than price and prize
are, if the sub-character features of c and d are more similar than c and z are. According to
OLD, however, these three word forms are all at an equal distance of 1 from one another. A
solution could be to integrate sub-character information into the Levenshtein distance metric.
For instance, character substitutions could be weighted by the distance between the characters
being exchanged. While Yarkoni et al. (2008) examined the impact of altering the relative
weights of all three operations globally, identifying no improvement over an equal weighting
scheme, they did not examine whether actively altering weights in response to relevant
character information could improve predictions of correlates of orthographic similarity. More
recently, H. Kim (2021) outlined and tested the performance of such a weighting scheme for
Levenshtein distance operations, including weighting character substitutions by subjective
character similarity judgements (i.e., average ratings reported by Simpson et al., 2013), or by
distance between keyboard keys (to reflect the probability of mistyping a character). H. Kim
(2021) did not examine the resultant measures’ relation to cognitive processing or its correlates,
but evaluated the approach in terms of computational efficiency in tasks of string matching that
OLD is typically applied to, showing that the approach outperformed traditional Levenshtein
distance measures despite the increased overhead computational cost. In this chapter, I
suggest that an approach extending that employed by H. Kim (2021) could be applied to word
recognition research to provide a more fine-grained and powerful description of orthographic
similarity.

Implementing sub-character granularity in measures of orthographic similarity should
only be expected to confer more explanatory power, relative to comparable measures
which ignore sub-character features, insofar as the cognitive mechanisms driving observed
neural and behavioural outcomes are themselves sensitive to such fine-grained information.
Evidence for such sensitivity to sub-character similarity has been observed in behavioural
measures of priming studies, with effects emerging in early (pre-300 ms) stages of word
recognition (Gutiérrez-Sigut et al., 2019; Marcet & Perea, 2018). Similarly, recent findings
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have demonstrated that neural representations of individual characters’ features can be
reconstructed from functional magnetic resonance imaging (fMRI) of Visual Word Form Area
(VWFA) activity and complementary electroencephalograpy (EEG) recordings of the N1 ERP
component. This has been shown to be the case not only when characters are presented
in isolation (Schoenmakers et al., 2013; Shen et al., 2019), but also when presented within
words (Ling et al., 2019). Furthermore, orthographic prediction error, parameterised as the
difference between top-down predictions and observed (bottom-up) visual word forms on the
level of pixels (thereby including character-level information), has been found to account for
patterns of activation seen in the occipitotemporal cortex as early as 150 ms (Gagl et al.,
2020). Similarly, pixel-based descriptions of orthographic neighbourhood density have been
shown to meaningfully describe orthographic similarities of Chinese characters (Sun et al.,
2018), where their logographic nature makes a traditional character-based measure of OLD
particularly difficult to implement.

On the other hand, some studies have reported no sensitivity to character similarity, or
a sensitivity to character similarity when letters are replaced with visually similar digits, but
not when replaced with visually similar letters (Kinoshita et al., 2014). Nevertheless, these
divergent findings can be reconciled with an account of character similarity effects, and of
orthographic processing more broadly, that stresses the importance of task context, with
the observer dynamically adapting to task demands to process orthographic similarity when
task- or goal-relevant (Kinoshita et al., 2015). Indeed, a possible application for a measure
of orthographic similarity that is particularly relevant to the present thesis is in computational
models of top-down modulation of orthographic processing: interpreting and developing further
research to delineate the cognitive mechanisms underlying results observed in chapter 5 may
be made possible with more powerful operationalisation of orthographic similarity, and with
more computationally explicit models of orthographic processing and its sensitivity to top-down
modulation (which SCOLD could support). Indeed, the two main explanations that I considered
for results in that chapter, respectively, predictive coding and "sharpening" of sensitivity, would
both predict that the influence of top-down modulation on neural correlates of orthographic
processing varies with orthographic similarity between observed and predicted word forms
(although predictions are in opposite directions). These accounts could be better evaluated
and compared with more fine-grained measures of word form similarity. To summarise, a more
fine-grained measure of orthographic similarity between word forms may be expected to better
account for behavioural and neural correlates of orthographic processing, and could be used to
provide insight into the nature of orthographic representation.

An important consideration, when calculating a measure of character and sub-character
similarities, or a measure of word similarity which is sensitive to such information, is that
the measure will be font-specific. This is because the similarity between characters will
depend on their exact orthographic forms. For example, the similarity between the characters
for g and q may be greater if the g were single-storey (as in Helvetica font g) rather than
double-storey (as in Times font g). While objective measures of character similarity will be
inherently font-specific in this way, this is not necessarily true of all neural and behavioural
correlates of effects of orthographic similarity. It may be, for instance, that rather than in a
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font-specific manner, orthography is processed at some levels in a font-general manner, as
abstractions of character representations. This possibility is analogous to prototype accounts
of perceptual categorisation, where categorisation is achieved by comparing perceptual
information to a central-tendency prototype (Posner & Keele, 1968). However, the possibility of
font-generality in character similarity effects does not invalidate the use of measures that are
sensitive to character and sub-character information. Rather, if character similarity effects act
in a font-general, or prototypic, manner, character similarity measures should try to quantify
this font-general similarity, rather than a font-specific one. This could be done, for instance, by
calculating an average representation for each character, and calculating similarities between
these inferred prototypes. It is relevant, therefore, to examine whether measures of character
similarity, or measures of word form similarity that are sensitive to such information, predict
orthographic effects on behavioural or neural correlates in a font-specific or font-general
manner.

In this chapter, I consider the possibility of extending the existing measure of Levenshtein
distance to calculate a measure of word-level orthographic similarity that is sensitive
to sub-character complexities. First, I propose a measure of character similarities that
incorporates sub-character features, Jaccard similarity, and show that this can be applied
to calculate character similarities using both an existing simplified framework for describing
orthographies via an artificial character set (Rumelhart & Siple, 1974), and using a pixel-based
approach that can be used to calculate the similarities of real-world characters. An exploratory
analysis is then reported in which the proposed measure is considered as a predictor of
subjective character similarity ratings (Simpson et al., 2013), showing that the measure aligns
well with subjective ratings. It is also shown that these similarity effects may be font-specific,
with peak model performance observed for Jaccard similarities derived from the same font that
participants were judging. I then report the results of an online rating study expanding upon
the Simpson et al. (2013) results, conducted to validate the finding of font specificity, though,
interestingly, while the ability of Jaccard similarity to predict subjective ratings is replicated,
the results were not consistent with font specificity in predicting subjective character ratings.
I outline several approaches to integrating sub-character information into OLD, producing
several variants of SCOLD. To compare the new word form similarity measures to classic
OLD, orthographic neighbourhood densities are calculated from these sub-character-sensitive
measures of orthographic similarity. I show that an orthographic neighbourhood measure
which is sensitive to sub-character complexities is actually outperformed by traditional OLD20
in predicting neighbourhood effects in Lexical Decision Task (LDT) data, in the English Lexicon
Project (ELP; Balota et al., 2007) and British Lexicon Project (BLP; Keuleers et al., 2012).
However, results in predicting ERPs reveal differential sensitivity to sub-character information
over time and space, with SCOLD neighbourhood measures particularly outperforming OLD20
values in predicting amplitudes of the occipitotemporal N1, suggesting that the calculated
measures are capturing information that is relevant to orthographic processing. In sum, the
proposed SCOLD measure, and the neighbourhood metrics derived from it, can provide a
valuable description of sub-character orthographic similarities.
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Figure 6.1: Estimates of character similarities between pairs of Rumelhart-Siple characters. (A)
The fourteen segments used to form all Rumelhart-Siple characters. (B) Example fourteen-bit
representations for Rumelhart-Siple characters - the presence or absence of each segment can
be represented by a segment-specific bit. (C) Bit-wise Jaccard similarities for the Rumelhart-
Siple characters.

6.2 Character Similarity

I estimated character similarities for all pairs of alphabetic characters, using a bit-wise approach
for the Rumelhart-Siple character set (Rumelhart & Siple, 1974), and using a pixel-based
approach for real-world fonts. I estimated similarity of pairs of characters as the Jaccard
Similarity of their representations. For a pairs of characters, a and b, Jaccard similarity J is
calculated as the size of their intersection divided by the size of their union:

J(a,b) =
a∩b
a∪b

In the context of the bit-wise approach implemented for Rumelhart-Siple characters, Jaccard
similarity therefore reflects the proportion of non-zero bits that occur in both characters. For
the pixel-based approach, meanwhile, it reflects the proportion of non-zero pixels that are
accounted for by an overlap between the characters.

6.2.1 Rumelhart-Siple Character Similarity

While many models of visual word recognition limit descriptions of orthography to the level of
characters, often acknowledging the role of sub-character features but not explicitly modelling
them (e.g., Whitney, 2001), many models do indeed incorporate sub-character features (e.g.,
Coltheart et al., 2001; Davis, 2010; Grainger & Jacobs, 1996; McClelland & Rumelhart,
1981). However, such implementations have mostly relied on the highly limited and artificial
typography first implemented by Rumelhart and Siple (1974). In this font, all alphabetic letters
are, for computational convenience, represented with just fourteen segments which are binarily
present or absent in any character. As a result, each character can be represented in the
Rumelhart and Siple (1974) font in terms of a fourteen-bit binary sequence (Figure 6.1), and
operations like calculating characters’ orthographic similarity (Figure 6.1C) can be achieved via
bit-wise comparisons. The character set captures the general shape of upper-case alphabetic
characters, but does not include lower-case variants
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The Rumelhart-Siple characters are an example of cognitive models imposing artificial
restrictions to simplify real-world stimuli to make the model and its results more clearly
interpretable (Johns et al., 2017). For instance, the characters are composed of a discrete
set of clearly identifiable sub-character features where real-world characters are much more
geometrically complex and variable. An alternative approach could be to describe the full
orthographic variability observed in real-world characters, imposing no artificial constraints on
character shapes or features.

6.2.2 Pixel-Based Character Similarity

One early approach to calculating the orthographic similarities between real-world letters was
to find the maximum area of overlap between pairs of characters, while optionally permitting
translation and rotation. For instance, Dunn-Rankin et al. (1968) showed that such an approach
could be used to accurately identify neighbourhoods of characters that share key features but
are distinct from one another, such as p, q, b, d, versus n, u, m, h - neighbourhoods of characters
that are also reliably observed in analyses of objective effects of character similarity, such as
letter confusability (Gervais et al., 1984; Kuennapas & Janson, 1969; Mueller & Weidemann,
2012; Tinker, 1928; Uttal, 1970).

In calculating pixel-based character similarity, I represented characters as binary matrices
derived from TrueType font files, at 50-point font size. These matrices were constructed as
images and converted to matrices using the Pillow (A. Clark, 2020) and numpy (Harris et al.,
2020) libraries for Python (Van Rossum & Drake, 2009). I used a computerised method
analogous to that employed by Dunn-Rankin et al., identifying the optimal overlap for any pair. I
additionally controlled which geometric transformations were permitted for the optimal Jaccard
similarity to be calculated. Specifically, I either permitted or did not permit translation, rescaling,
rotating, and mirroring operations.

I applied this method to six separate fonts: Arial, Calibri, Consolas, DOS VGA ("More Perfect
DOS VGA" - a modern recreation of the code page 437 character set that participants were
presented with in the ELP; Balota et al., 2007), Droid Sans, and Times New Roman.

Default Position Similarity

In the most simple case, pixel-based similarities were calculated for character pairs’ default
positions when centre-aligned horizontally (i.e., permitting neither translation, rescaling,
rotation, nor mirroring; Figure 6.2). This approach provides included as a useful baseline
to which the more complex geometric transformations can be compared. Default position
similarities may also be psychologically meaningful however, especially for monospace fonts
like Consolas where the consistent spacing provides a common reference frame for letter
shapes. For example, lower-level processing may be translation-sensitive, while higher-level
processing may be more translation-invariant. Jaccard similarity for default character positions
is comparable to the method employed by Gagl et al. (2020), though whereas it is here
calculated at the level of pairs of single characters, Gagl et al. (2020) compared entire word
forms to the average of the full orthographic lexicon.
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Figure 6.2: The method by which Jaccard similarities were estimated for pairs of characters from
real-world fonts, using their default positions (central horizontal alignment if not monospaced),
showing results from Consolas font as a monospaced example. (A) The binary matrix
representations of characters are overlaid in their default positions, and Jaccard similarity is
calculated as the sum of their intersection divided by the sum of their union. (B) Jaccard
similarities for all alphabetic Consolas font characters.

Figure 6.3: The method by which Jaccard similarities were estimated for pairs of characters
from real-world fonts when translation was permitted, showing results from Arial as an example.
(A) From the two-dimensional cross correlation (function C) of the binary matrix representations
of characters, the translation required to achieve maximal overlap between the characters i and
j could be identified as the peak coefficient. Using the position with maximal overlap, Jaccard
similarity could be calculated as the sum of the intersection divided by the sum of the union. (B)
Jaccard similarities for pairs of Arial characters at their positions of maximum overlap (permitting
horizontal and vertical translation).

Translation Operation

To calculate the optimal Jaccard distance when translation is permitted, I estimated the
two-dimensional cross correlation of each pair of characters (Figure 6.3). Two dimensional
cross correlations were calculated via fast fourier transformations, using the scipy library for
Python (Virtanen et al., 2020), where the location of the peak correlation coefficient reflects the
location at which character i maximally overlaps character j. Allowing any vertical or horizontal
translation in this manner allows Jaccard similarity to capture the similarity of letter features
that do not align by default. For instance, rightward translation of the character K could allow
its two diagonal segments to overlap those on the right side of the character X.
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Rescaling, Rotating, and Mirroring Operations

In addition to translation, estimates of character similarity may also be improved by incorporating
information from further geometric operations, such as rescaling, rotation, and mirroring, which
are known to be relevant in objective and subjective effects of character similarity (Podgorny &
Garner, 1979). For instance, many lower-case and upper-case characters differ mostly in scale
(e.g., c and C), and some pairs have very similar shapes, but differ in rotation (e.g., Z and N)
or flipping (e.g., b and d). Estimating the geometric transformations required to convert one
character into another was made possible by combining the cross-correlation method detailed
above with a non-linear optimisation approach (i.e., gradient descent; Figure 6.4). Specifically,
the Nelder-Mead algorithm (Nelder & Mead, 1965) was used to identify values of rescaling and
rotation that maximise Jaccard similarity. Here, rotation was represented in degrees (where
0 is the default rotation), while scale was log-transformed for symmetry around zero (i.e., the
default scale of 1 is equal to zero, and rescaling to x.5 or x2 would produce values of -.69 and
.69 respectively). To avoid identifying only local maxima, the algorithm was run several times
for each pair of characters with varied starting values, and the maximum similarity from all runs
was recorded. Starting values for rotation were varied from -180 to 180° in 6 equally spaced
steps of 72°, while values for log scale were varied from −log(3) to log(3) (i.e., from 3x smaller
to 3x larger) in 5 equally spaced steps of ∼.549. When both scale and rotation were optimised,
this meant that Jaccard similarity was optimised with 30 distinct combinations of starting values
for each pair of characters. Mirroring transformations were permitted by calculating the maximal
Jaccard similarity twice, using either mirrored or unmirrored versions of the altered character.

Geometric Transformations

The maximal Jaccard similarity between pairs of characters was calculated for all possible
combinations of geometric transformations (i.e., with/without translation, rescaling, rotation, and
mirroring). As a result, there were 16 (24) variants of Jaccard similarity values for each font
analysed using the pixel-based approach. In addition, each of these 16 variants was calculated
twice for every non-identical character pair (i.e., the full matrix was calculated). Although I
expected the matrix to be symmetrical, there were sometimes small differences between the
sides of the matrix because of the non-linear optimisation approach applied for geometric
transformations. As a result, I set the Jaccard similarity values to the maximum of the two
estimates for a given character pair.

6.3 Character Similarity Validation

If the calculated character similarities capture perceived similarity, they should correlate
with subjective judgements of perceived character similarity. To examine this, I modelled
character similarity ratings reported by Simpson et al. (2013, trial-level data shared via
personal correspondence). I expected this to show that all measures of character similarity
would improve the quality of model fit relative to a model lacking any fixed effect of character
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Figure 6.4: The method by which Jaccard similarities were estimated for pairs of characters from
real-world fonts when translation, rescaling, rotation, and mirroring were permitted, showing
Arial results as an example. (A) An example space explored by an optimiser tasked with
maximising Jaccard similarity for Arial characters J and y, permitting operations of rotation and
rescaling. For the J-y pair, optimal overlap is achieved by a slight decrease in J ’s, and a rotation
of around 20 degrees. (B) Jaccard similarities for pairs of alphabetic Arial characters where all
geometric operations are permitted. Example pairs a-c, l-I, and O-X are highlighted.

similarity. However, I also expected the pixel-based estimates of Jaccard similarity for Arial
font to provide the best improvement, as these values should best capture the features of
characters that participants were judging. As expected, all values of character similarity
improved model quality relative to an intercept-only model, and the pixel-based estimates
for Arial font showed the best fit of the models examined. To examine whether this effect of
font-specificity replicated, I then conducted an experiment similar to that conducted by Simpson
et al. (2013), but where participants rated characters from one of two fonts. I expected that this
would reveal a crossed interaction, where the best model for character similarity judgements
would be that fit to font-congruent Jaccard similarities. The experiment comparing predictive
validity of font-congruent Jaccard similarity values replicated the predictive power of Jaccard
similarity, but did not find the expected font specificity effect, suggesting that the results in the
Simpson et al. analysis may not reflect font specificity in the predictive power of similarities
derived from the same font as that judged by participants.

6.3.1 Predicting Character Similarity Judgements

Simpson et al. (2013) collected character similarity judgements for 2,704 pairs of charcters, of
which 2,356 were pairs of Arial font letters. Character pairs were rated on a seven-point Likert
scale ranging from not at all similar (1) to very similar (7 ), and no pairs of identical characters
(e.g., k -k ) or case-conflicting (e.g., g-F ) were presented. Unlike the original analysis, I did
not exclude responses based on a ±2 SD cutoff, but only excluded missing (i.e., blank) or
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meaningless (e.g., less than 1 or more than 7 ) responses.

I calculated Jaccard similarities for the Rumelhart-Siple character set using the bit-wise
approach outlined in the previous section, and used the pixel-based approach to calculate
similarities for Arial, Calibri, Consolas, DOS VGA, Droid Sans, and Times New Roman
versions of all upper- and lower-case alphabetic character pairs. I fit probit-link cumulative-link
mixed effects models (CLMMs) with the R package ordinal (Christensen, 2020) to predict
character similarity ratings as a function of the fixed effect of Jaccard similarity, for each of
the six fonts. CLMMs account for the ordinal nature of Likert ratings, mapping responses
onto ordered regions of a latent distribution (see chapter 3). For the pixel-based measures,
separate models were fit for each of the 16 variants of Jaccard similarity calculated, with all
possible combinations of geometric operations, for each font. The model formula, in the lme4
syntax co-opted by the ordinal package, was specified as follows, where jaccard refers to the
calculated Jaccard similarity (mean-centred), item_id uniquely identifies each pair of Arial
characters, and participant_id uniquely identifies each participant:

rating ~ 1 + jaccard + (1 | item_id) + (1 + jaccard | participant_id)

Results revealed that the font producing the best-performing model (i.e., with the lowest
Akaike Information Criterion; AIC) was usually fit with similarity estimates derived from Arial
font, though Times New Roman values sometimes outperformed Arial when few geometric
transformations were permitted (Figure 6.5A). When many geometric transformations were
permitted, model performance improved, and models fit to values derived from Calibri and
Droid Sans, fonts visually similar to Arial, showed the best performance of the non-Arial
fonts. The best performing model overall was that fit using Arial-derived Jaccard similarities
where all transformations were permitted. By far, the most informative transformation was
translation, though including further transformations also improved the quality of prediction.
The least informative transformation was rotation, leading to only a small improvement in AICs
for the model fit to Arial when translation, rescaling, and mirroring were already permitted.
Nevertheless, all Jaccard similarity variants produced CLMMs with AICs vastly lower than that
observed for a model lacking the effect of Jaccard similarity (i.e., intercept-only).

Models revealed a robust effect of Jaccard similarity positively predicting participants’
ratings of perceived orthographic similarity. For the best performing model, this relationship
(Figure 6.5B) was estimated to be β=7.1 (SE=.24, likelihood-ratio χ2(1)=582.73, p<.001). As
Jaccard similarity was mean-centred for the CLMMs, but was not rescaled, this is equivalent to
an increase in the latent mean of .71 SDs for each 10% increase in Jaccard similarity.

As Rumelhart-Siple characters have only one case, the same Jaccard similarity values were
used for both the upper- and lower-case characters. However, the Rumelhart-Siple characters
most closely resemble typical upper-case characters. As a consequence, I re-ran the analysis
reported here for lower-case and upper-case character pairs separately. The pattern of results
for separate analyses of lower- and upper-case characters pairs (Appendix D.1) was broadly
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Figure 6.5: Results from the analysis of the relationship between calculated Jaccard similarity
and subjective ratings of character similarity collected by Simpson et al. (2013). (A) The
Akaike Information Criterion (AIC) associated with each CLMM, where line colours indicate
the font for which Jaccard similarity was calculated, and the y axis indicates which geometric
transformations were permitted in the calculation of Jaccard similarity: the presence of a T
indicates that transformation was allowed, S that rescaling was allowed, R that rotation was
allowed, and M that mirroring was allowed; - symbols indicate the absence of geometric
transformations. Geometric transformations are ordered by AIC of the models fit using Arial
font. (B) Fixed effects results from the optimal model, showing the estimated relationship (black
line) between Jaccard similarity and character similarity ratings. The left-hand y axis depicts
predicted latent means, while the right-hand y axis depicts the estimated location of thresholds
(e.g., γ1 demarcates responses 1 and 2). Colours indicate the ordinal responses associated
with latent mean values.
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similar to that observed for models fit to both together.

6.3.2 Replicating Font Specificity

A key finding in the analysis of rating data from Simpson et al. (2013) was one of font specificity,
with Jaccard similarity values derived from Arial quite consistently outperforming values
derived from the other fonts analysed. I reasoned that this may reflect a font specificity in the
relationship between Jaccard similarity and subjective perceptions of character similarities.
However, as there was only evidence for one font in the Simpson et al. analysis, the superiority
of Arial in predicting ratings from Simpson et al. may alternatively reflect a font-general effect,
where Arial, of the fonts examined, somehow best captures font-general features that inform
character similarity judgements. To examine whether the superiority of Arial in predicting
ratings collected by Simpson et al. reflects font specificity in Jaccard similarities’ predictions
of subjective perceptions of character similarity, I conducted a replication of Simpson et al.
(2013), collecting ratings for both Arial and Consolas font separately. I reasoned that if
Jaccard similarity values are capturing font-specific features of characters, then models for
ratings of similarities for both Arial and Consolas character pairs should more accurately
predict character similarity ratings when the ratings are predicted using font-congruent Jaccard
similarity values. I opted for a smaller character set to Simpson et al. (2013) for feasibility of
data collection, to ensure all participants were familiar with the presented characters, and
because simulations indicated that this would be sufficient to reliably detect the expected
difference. I chose lower-case rather than upper-case characters because the font specificity
of the relationship between Jaccard similarity and character similarity ratings appeared more
robust for lower-case character pairs (Appendix D.1).

Power Analysis

To decide on a suitable minimum sample size for the experiment, I conducted a simulation-
based power analysis. The experiment’s central aim was to test whether font-congruent
measures outperform font-incongruent measures in predicting subjective ratings of character
similarity, and to show that this was true for two separate fonts. Power analyses are typically
used to calculate the probability that a null hypothesis significance test will reveal a p value
below a given alpha threshold for an experimental manipulation of interest. This is important for
demonstrating that the proposed design and sample size have the statistical power necessary
to detect the effect. Unlike studies that test the effect of a manipulation, however, the present
experiment compares model fit for two possible predictors of the same data, for two separate
datasets. As a result, the power analysis for this experiment focused on the expected results
of a comparison in model fit, assuming that the improvement in font-specificity is equal to that
observed in the Simpson et al. (2013) dataset. Specifically, I predicted a lower AIC value (or
greater log-likelihood) for a CLMM which uses Arial-derived measures to predict judgements of
similarity for Arial font characters, than one which uses Consolas-derived measures. Consistent
with the experiment’s hypothesis, it was assumed that this difference would be equal but in the
opposite direction when using Consolas-derived measures to predict judgements of similarity
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for Consolas font characters, rather than Arial-derived Jaccard similarity. To summarise, the
power analysis’ aim was to examine the distribution of AIC differences that should be expected
for different sample sizes.

Based on the analysis of the Simpson et al. dataset, I decided that to use Jaccard similarities
calculated with all four geometric transformations (translation, rescaling, rotation, and mirroring)
permitted, as this variant of Jaccard similarity showed the best performance. I simulated data
for judgements of Arial characters using estimates of the effects of Arial-derived measures in
Simpson et al. (2013). Using coefficients estimated from a probit-link CLMM predicting the
lower-case Arial judgements from Simpson et al., latent values were simulated as follows, where
Table 6.1 presents each term’s meaning and its simulated value as estimated for the lower-case
Simpson et al. data:

Lip = I0i +P0p +(β1 +P1p)Jaccardi

Table 6.1: Summary of the meanings of terms in the mixed effects model formula, and their
simulated values. Where simulated values were drawn from random effect distributions, ∼
N(µ,σ) indicates that the respective variable’s values were drawn from a normal distribution
with mean µ and standard deviation σ .

Term Meaning Simulated Value

Lip Trial-level latent means, for the item i and participant p
I0i Item random intercept for item i ∼ N(0, .69)
P0p Participant random intercept for participant p ∼ N(0, .79)
β1 Fixed effect of Jaccard Similarity = 7.12
P1p Participant random slope for Jaccard similarity for participant p ∼ N(0,1.85)
Jaccardi Jaccard similarity values for item i

The correlations of random and fixed effects, and the variance-covariance matrices, were
also drawn directly from the CLMM fit to the Simpson et al. data. As in the CLMM fit to the
Simpson et al. data, per-item Jaccard similarity values (Jaccardi) were those calculated for
all lower-case Arial and Consolas letters when all geometric transformations were permitted.
Latent means were used to calculate trial-level latent values by drawing from a normal (latent)
distribution, N(Lip,1), reflecting the SD of 1 that is imposed on CLMMs by default. Following
simulation of latent values, these were recoded to Likert responses on a 7-point Likert scale by
separating the latent distribution into 7 ordered regions, the locations of which were determined
by the 6 response thresholds estimated by the CLMM which informed the simulation.

I decided that because participants would complete the experiment online with no monetary
compensation, each participant should only rate 30 items. I varied the number of ratings
collected for each item (from 2 to 8, with 250 iterations each), assigning simulated participants
to items using the method described in section 6.3.2. CLMMs were fit using the same model
formula as that described in section 6.3.1. On each iteration, I fit a CLMM with the ordinal
package for R, using the same formula as that applied in the Simpson et al. analysis:
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Figure 6.6: Results from the power simulations. (A) The distribution of AIC differences between
CLMMs fit to simulated datasets using Arial- and Consolas-derived Jaccard similarities. A
negative value indicates a superior fit for Arial-derived values. (B) The distribution of estimates
of the effect of Jaccard similarity in CLMMs fit using Arial-derived Jaccard similarity values.
In both panels, points depict values from individual simulation iterations, grey regions depict
values’ densities, and red lines depict median values. The solid black line in panel B depicts the
simulated effect.

rating ~ 1 + jaccard + (1 | item_id) + (1 + jaccard | participant_id)

In analysing the results of the simulations, I examined the AIC difference between the
CLMMs fit using Arial- and Consolas-derived fonts, and the variability of this value between
iterations. Results (Figure 6.6A) showed that even with just one rating for each item, AIC
values consistently and clearly detected the AIC difference between Arial- and Consolas-derived
Jaccard similarity values. I also examined variability in the estimated coefficient for the effect of
Jaccard similarity, with the direction and approximate magnitude of the effect also observed with
only a small number of ratings per items. If the effect observed in the results of the analysis for
the Simpson et al. data do reflect a font congruency effect, then a similar AIC difference should
be observed for judgements of Consolas characters, and should be expected to be similarly
clear.

Based on the simulations and on feasibility within the available period of time, I decided
to collect data from at least 132 participants, which would provide at least 6 ratings for each
unique pair of characters in Arial and Consolas (N=325 per font). I decided to then collect
additional data from subsequent participants for additional accuracy in estimation of effects,
with the experiment scheduled to stop automatically at the end of the pre-decided data collection
period (July 2021 - April 2022).

Methods

The experiment was run using a custom-made web application using the Shiny package (W.
Chang et al., 2018) for R, hosted on a publicly available Shiny web server (hosted by the
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University of Glasgow School of Psychology and Neuroscience). The experiment was designed
to be methodologically comparable to Simpson et al. (2013).

Participants each rated 30 different pairs of lower-case alphabetic letters, all drawn from
either Arial or Consolas font, on a Likert scale from 1 ("not at all similar") to 7 ("very similar").
Participants were instructed to focus on the visual appearance of the letters rather than their
sound: "It is important that you ignore the sounds of the letters, and just rate them purely on
their visual appearance".

Trials were allocated to participants in the following way. The first 132 participants (66 Arial,
66 Consolas) were pre-allocated trials pseudorandomly such that each participant judged a
random set of 30 different pairs of characters drawn from either Arial or Consolas, and so that
each pair of characters was judged by at least 3 different participants. Participants after the
first 132 were randomly assigned either Arial or Consolas font, and were then assigned trials
pseudorandomly during the experiment by sampling on a per-trial basis from character pairs
that currently had the lowest number of responses, that had not yet been responded to (e.g.,
if at the start of the experiment, 27 pairs had been responded to 5 times, and all other pairs
had been responded to at least 6 times, then the first 27 trials would be sampled randomly from
those that had been responded to 27 times, and the last 3 trials would be sampled from those
that had at the start of the experiment only been responded to 6 times).

On each trial, participants were presented with their two characters side-by-side, in 72-point
font, an equal distance from the horizontal centre of the screen (Figure 6.7). The side that each
character was displayed on was randomised on each trial. The characters were presented as
pre-rendered png images to ensure that participants’ operating systems or browsers did not
replace Arial and Consolas characters with characters from different fonts. Above characters
was shown text, reading, "How similar do these letters appear, on a scale of 1 (Not at All
Similar) to 7 (Very Similar)?". Below characters were presented seven buttons, labelled with the
numbers 1 to 7. To encourage participants to judge each trial, these buttons only appeared 1
second after the current trial’s characters were displayed. At the top of the page, text indicated
the current trial number (e.g., "Trial 23/30"). Participants progressed through trials by clicking
one of the seven buttons to indicate their choice.

Participants

In total, 247 participants completed the experiment (180 female, 58 male, 9 non-binary),
of which 130 judged Arial character pairs, and 117 judged Consolas character pairs. All
participants reported having no learning disabilities or disorders that impair their reading, and
reported that in their first language, all (N=165) or most (N=82) characters were in the Latin
alphabet. The mean age was 20.09 (SD=5.24), and most participants (N=206) were aged
20 or younger. I decided prior to data analysis to exclude any participants who responded to
all 30 items with only one response, but all participants responded with at least two different
responses. As a result, no participants were excluded from the analysis.

Data collection was approved by the University of Glasgow School of Science and
Engineering Ethics Committee (application number: 300200293).
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Figure 6.7: An example trial for the Arial characters u and q.

Results

Arial character pairs were judged by between 10 and 17 participants (mean=12, SD=1.45), while
Consolas character pairs were judged by between 10 and 14 (mean=10.8, SD=.91) participants.
In total, there were 3,900 observations for Arial font, and 3,510 observations for Consolas font.

I fit four separate CLMMs with the ordinal package, varying the font that participants
were judging (Arial/Consolas) and the font that Jaccard similarities were derived from
(Arial/Consolas). The model formula was identical to that used in the SImpson et al.
analysis and in the power analysis. All Jaccard similarity values were derived permitting all
four geometric transformations (translation, rescaling, rotation, mirroring). Model AICs are
presented in Table 6.2. Surprisingly, results showed that while the superiority of font-congruent
Jaccard similarity values observed for judgements of Arial characters in Simpson et al. (2013)
data was replicated, this font congruency effect was not observed for judgements of Consolas
characters.

Table 6.2: AICs for the CLMMs fit predicting character similarity judgements using Arial-
or Consolas-derived Jaccard similarity values, when the presented font was either Arial or
Consolas.

Presented Font Arial Model AIC Consolas Model AIC

Arial 10889.87 11026.97
Consolas 9815.42 9838.41

I also examined whether the same conclusions would be drawn using a more Bayesian
approach, making use of parameters estimated in the analysis of the Simpson et al. data. I
fit four Bayesian CLMMs with prior distributions informed by the analysis of Simpson et al.,
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using Arial-derived Jaccard similarities. However, I also added more uncertainty in the prior
distributions than I would have were I completing a full-scale replication of Simpson et al. (2013),
as I anticipated that differences in the experimental design from Simpson et al. (e.g., online vs.
in-person, 30 vs. 108-120 trials per session, etc.) may lead to different patterns of effects.
I specified priors for threshold locations as ∼ N(γi,1), where γi were the estimated threshold
locations from the analysis of Simpson et al.. I specified the prior for the fixed effect of Jaccard
similarity as ∼N(7.1,1). Prior distributions for standard deviations of random effects distributions
were specified with Student’s t distributions, as ∼ t(10,σ ,1), where σ was the the estimated
standard deviation from the Simpson et al. data analysis for that random effect. Finally, the prior
distribution for the random correlation between per-participant intercepts and per-participant
effects of Jaccard similarity, was specified to be flat, between -1 and 1.

All four Bayesian models were fit using brms, with the same model formula as that applied
in the analysis using CLMMs fit with the ordinal package. Each model was fit with 5 chains,
each with 10,000 iterations (split equally between warm-up and sampling). The adapt_delta
parameter was set to .8, and the max_treedepth parameter was set to 10.

I examined differences in the expected log probability densities (ELPDs) of the Bayesian
models, using the loo package for R (Vehtari et al., 2017). ELPD quantifies the expected
predictive accuracy of a given model for out-of-sample observations from the same population
(Vehtari et al., 2017). I calculated the leave-one-out ELPD for each model, using the
Pareto-smoothed sampling approach. In each model, over 99.4% of the Pareto distribution’s
k parameters were <.5, which is indicative of high reliability in the ELPD estimates (Vehtari
et al., 2017). Results revealed the same pattern of results as the AICs of the CLMMs fit via
the ordinal package, with models using Jaccard similarities derived from Arial outperforming
those using models derived from Consolas, for both sets of judgements. However, while the
difference between the predictive accuracy of the models fit to judgements of Arial characters
was quite robust (ELPD difference = -46.5, SE = 10.2), the difference between the models
fit to judgements of Consolas characters was less robust, with the ELPD difference showing
a high standard error relative to its size (ELPD difference = -8.4, SE = 8.3). As a result,
this experiment does not provide conclusive results on font specificity in the predictions that
Jaccard similarities provide of subjective similarity ratings, although this analysis does suggest
that if font-congruent Jaccard similarity values better predict character similarity ratings, then
the improvement in predictive accuracy is likely smaller than I first anticipated.

I also examined the posterior distributions for the fixed effect of Jaccard similarity
(Figure 6.8). Differences in the effect of Jaccard similarity revealed a surprising finding, that for
both Arial and Consolas characters, the effect of Jaccard similarity was estimated to be larger
when the similarity values were derived from Consolas font than when they were derived from
Arial font. This finding is difficult to interpret, but may be an artefact of the poorer predictions
provided by Consolas font.
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Figure 6.8: Posterior distributions for the effect of Jaccard similarity, for judgements of Arial
characters (left) and Consolas characters (right), where Jaccard similarity values were derived
from Arial font (green) or Consolas font (purple). The distribution shown in black reflects the
prior distribution for the effect of Jaccard similarity, which was identical in all four models.

6.4 Sub-Character Orthographic Similarity and Orthographic
Neighbourhood Density

After calculating objective estimates of sub-character letter similarities, which show a clear
(though not necessarily font-specific) relationship with subjective ratings of letter similarities, I
was interested in applying these estimates to quantify the sub-character orthographic similarity
of entire word forms. From these estimates descriptions of sub-character orthographic
neighbourhood density could then be derived. The approach I took was to calculate metrics
computationally similar to OLD and OLD20, weighting substitution, insertion, and deletion
operations by sub-character information, or else that were conceptually similar to OLD
and OLD20, capturing similar features of words but using a different approach. For both
approaches, the aim was to calculate measures of orthographic similarity between word forms
that are sensitive to sub-character information. I refer to these measures as variants of SCOLD
(sub-character orthographic Levenshtein distance), and the associated neighbourhood metrics
as variants of SCOLD20.

6.4.1 SCOLD

I calculated two variants of SCOLD: SCOLDs and SCOLDsid . Both measures could be calculated
using any combination of permitted geometric transformations. For feasibility, however, only
three combinations of geometric transformations were examined: (1) default positions, (2)
translations only, and (3) all four transformations. These correspond to ----, t---, and tsrm in
Figure 6.5, respectively. All variants of SCOLD were calculated for all 7 character sets examined
(6 fonts, plus the Rumelhart-Siple character set), but, as in prior analyses in this chapter, only
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default character position SCOLD values were calculated for the Rumelhart-Siple character set.
Example SCOLD values are presented in Table 6.3, showing the differences between

SCOLD values and traditional OLD values. The selected examples demonstrate (1) that
all variants of SCOLD show sensitivity to sub-character features in substitutions (e.g., the
reduced cost for substitution o-a in pocket-packet, relative to o-i in pocket-picket), (2) that
the variants differ considerably in cases where geometric transformations permit high overlap
between characters (e.g., the reduced cost for substitution p-d in pocket-docket, relative to
p-r in pocket-rocket for tsrm variants of SCOLD), (3) that inclusion or exclusion of geometric
transformations only affects SCOLD values when substitutions are involved (e.g., unchanged
values for the addition of characters ed in pocket-pocketed), and (4) that SCOLD can capture
the orthographic similarity between words and nonwords (e.g., pocket is more similar to drdhbl
than it is to vlfczm).

Table 6.3: Example SCOLD values for the orthographic distances between pocket and
8 other strings, calculated from matrix representations of 50-point Arial font, and their
corresponding OLD values for comparison. Variants of SCOLD reflect the method by which
character similarities were calculated, permitting, respectively, no geometric transformations
(----), only translation transformations (t---), and translation, rescaling, rotation and mirroring
transformations (tsrm). For comparability with the later SCOLD20 metrics, all SCOLDs values
are calculated using only lower-case character similarity matrices.

String A String B OLD SCOLDs SCOLDsid

---- t--- tsrm ---- t--- trsm

pocket pocket 0 .000 .000 .000 0 0 0
pocket packet 1 .616 .703 .815 160 152 140
pocket picket 1 1.124 1.209 1.313 309 269 217
pocket docket 1 1.073 .749 .393 450 192 22
pocket rocket 1 .947 .960 1.083 270 214 117
pocket pocketed 2 2.000 2.000 2.000 666 666 666
pocket chainsaw 8 6.901 7.041 7.352 1929 1733 1286
pocket drdhbl 6 5.310 4.725 4.972 1531 1029 793
pocket vlfczm 6 5.954 6.152 6.208 1755 1519 1305

SCOLDs

The first measure I calculated was SCOLDs, where the only change from OLD is that
substitution operations were weighted by Jaccard similarity. Specifically, Levenshtein distance
was calculated using a typical Wagner-Fischer algorithm (Vintsyuk, 1968; Wagner & Fischer,
1974), but where the cost assigned to character substitutions was the scaled Jaccard similarity
between the characters being exchanged. Jaccard similarity was scaled such that it had
a range of 1 (between the maximum and minimum), and was mean-centred on a value of
1. Because of large differences between lower- and upper-case characters, due to size
differences, this rescaling approach can result in within-case substitutions, which are by far the
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most common in everyday written language, being under-weighted. To avoid this, I calculated
SCOLDs using only lower-case character similarity matrices (as it was only data for lower-case
words that were analysed in the later validation of SCOLD and SCOLD20).

SCOLDsid

I also calculated SCOLDsid , where all OLD operations (substitution, insertion, and deletion)
were conducted using sub-character information. Specifically, again using the Wagner-Fischer
algorithm, the cost of inserting or deleting a character was equal to (for the pixel-based
approach) the number of pixels in the character being inserted or deleted, or (in the bit-wise
approach) the number of bits being inserted or deleted. Correspondingly, substitutions were in
this approach weighted by the number of pixels or bits that needed to be inserted or deleted to
transform one character into the other (i.e., a∪ b− a∩ b). SCOLDsid is similar to an approach
recently implemented to describe orthographic similarities of Chinese characters (Sun et al.,
2018), though the geometric transformations permitted in the present implementation, as well
as the application to alphabetic script, are novel.

6.4.2 SCOLD20

SCOLD20 values were calculated for each SCOLD variant: SCOLD20s and SCOLD20sid , for
all three combinations of geometric transformations: (1) default positions, (2) translations only,
and (3) all four transformations (translation, rescaling, rotation, and mirroring), for each of the 6
fonts and for the Rumelhart-Siple character set. For comparability to Yarkoni et al. (2008), these
neighbourhood metrics were calculated from words in the ELP (Balota et al., 2007), although
unlike Yarkoni et al., I only calculated the measures for words that only contained lower-case
alphabetic characters without diacritical marks (i.e., no spaces, hyphens, accented letters, etc.;
N=37,432). For comparison, OLD20 values were calculated from the same pool of words, using
equal costs for each Levenshtein distance operation (i.e., addition, deletion, and substitution
costs were all set to 1). SCOLD20 values were calculated for each word as the mean SCOLD
of that word’s 20 closest neighbours, for each SCOLD variant separately. All SCOLD20 values
showed high correlations with one another, and with OLD20 (Figure 6.9 shows example results
for Arial font).

6.4.3 Validation

To assess the degree to which the inclusion of sub-character information in metrics of
orthographic neighbourhood density is cognitively meaningful or useful, I compared the
performance of models using OLD20 and variants of SCOLD20 to predict behavioural and
neural correlates of lexical decision.
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Figure 6.9: Correlations between all pairs of SCOLD20 variants for Arial font. Correlations with
OLD20 are also included for comparison. Panels in the lower triangle of the figure depict the
correlations between words’ values in each variable. Numbers in the upper triangle of the figure
are Spearman correlations for each pair of variables. Panels on the figure’s diagonal depict
individual variables’ densities.
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Predicting Lexical Decision Behaviour

I predicted lexical decision response times (RTs) and accuracies for all words in the ELP lexical
decision dataset. I fit trial-level generalised linear mixed effects models (GLMMs) where the
only fixed effect predictor was either a SCOLD20 variant or OLD20. Trials were excluded from
both the RT and accuracy analyses if either the RT was greater than 4000 ms or recorded in the
dataset as less than 1 ms. Trials were additionally excluded from the RT analysis if responded
to incorrectly. Trials were only included if the presented word was a member of the pool of the
37,432 lower-case words for which OLD20 and SCOLD20 values were calculated. Following
these exclusions, the accuracy data consisted of 1,278,171 trials, while the RT data consisted
of 1,072,162 trials. Random effects comprised per-participant and per-word random intercepts,
and per-participant random slopes for the effect of the measure being assessed. The models
were fit using lme4 (Bates et al., 2015), with the following model formula:

outcome ~ 1 + measure + (1 | word_id) + (1 + measure | participant_id)

Accuracies were modelled via logit-link binomial GLMMs, while RTs were modelled via linear
mixed effects models (Gaussian link) predicting inverse RTs. Inverse RTs were calculated as
-1000/RT, where RTs were measured in ms, such that models of inverse RTs can be understood
as estimating the number of items, or information units, that could be processed or responded
to within one second (Brysbaert & Stevens, 2018). While analysing effects on inverse RTs
necessarily forgoes much rich distributional information in RTs (Heathcote et al., 1991; Lo
& Andrews, 2015), it represents an approach that captures robustly effects on RTs’ central
tendencies, while its efficiency makes it appropriate for describing effects in large datasets like
lexical decision megastudies, of which the ELP is one.

Results (Figure 6.10) showed that for both RTs and accuracies, the model fit using OLD20
values outperformed models fit using all variants of SCOLD20. This finding suggests that
the inclusion of sub-character information in the OLD20 metric of orthographic neighbourhood
density did not improve predictions of lexical decision behaviour. Furthermore, although the
best-performing SCOLD20 model was fit using DOS VGA values (where DOS VGA was the font
presented in ELP trials), the AIC differences did not show as clear a superiority of font-congruent
models as was observed in the analysis of subjective character similarity judgements.

I also analysed RTs and accuracies from the British Lexicon Project (BLP; Keuleers et al.,
2012), which showed a similar pattern of effects as was observed for the ELP, with the OLD20
model outperforming all SCOLD20 models, and any font-congruency superiority was less clear
than in the subjective character similarity results (Appendix D.2).

Predicting ERPs

I compared the explanatory power of the SCOLD20 metrics in describing ERP data, with an
exploratory analysis of data collected in Chapter 4. I fit sample-level models (at 512 Hz) to the
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Figure 6.10: AIC differences between models predicting ELP lexical decision behaviour using
OLD20, and using all calculated SCOLD20 variants. AIC difference values reflect the difference
between AICs from each SCOLD20 model and the OLD20 model, where a positive AIC
difference indicates superior performance in the OLD20 model.

dataset from the task modulation experiment. Models were fit as described in section 4.3.1,
except that models did not estimate random slopes, and additionally estimated the fixed effect
of orthographic neighbourhood, represented by the OLD20 and SCOLD20 metrics, scaled
by standard deviation for comparability. All possible fixed effect interactions with the fixed
effect structure were additionally included, to capture any interactions with the stimulus and
task variables manipulated in the experiment. This decision was motivated by evidence for
interactions between orthographic similarities and lexicality (Baeck et al., 2015). I analysed
data from three separate regions of interest: a left-lateralised occipitotemporal region (matching
that used in chapter 4), a right-lateralised occipitotemporal region, and a centroparietal region.

I first examined the effect of OLD20 - the results of this analysis are summarised in Appendix
D.3. To summarise the results here, OLD20 showed effects in all three regions examined, and
may have interacted with task and stimulus variables. One notable finding was that OLD20
values (larger orthographic neighbourhoods) elicited less negative-going left hemispheric N1
components.

I then examined the relative performances of the OLD20 and SCOLD20 models. Comparing
model AICs over time (Figure 6.11) revealed that some SCOLD20 variants outperformed
OLD20 at key points. In particular, SCOLD20sid without any geometric transformations
outperformed OLD20 in predicting right hemispheric N1 components, while this difference
was smaller in the left occipitotemporal N1. This difference may reflect that the effect size of
orthographic neighbourhood is larger overall in the N1 over the right hemisphere than over the
left (Appendix D.3). For the right hemispheric occipitotemporal region, SCOLD20sid without
any geometric transformations showed sustained superiority in predicting ERP amplitudes.
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All SCOLD20 variants also outperformed OLD20 models at later time points, especially in the
centroparietal region after 300 ms. Here, the best model was again that fit using SCOLD20sid

without any geometric transformations. The variant of SCOLD20sid that was calculated
permitting all geometric transformations showed a sustained superiority over other variants in
predicting centroparietal ERP amplitudes later than 400 ms, while all other variants showed
performance more similar to OLD20. At several other time points, OLD20 showed a superiority
over SCOLD20, especially centroparietally between 150 and 300 ms. OLD20 also largely
outperformed SCOLD20 variants in predicting N1 amplitudes during the component’s offset
period, suggesting that sub-character feature similarity neighbourhoods may be more influential
during processing that occurs during the earlier portions of the N1.

6.5 Discussion

I have developed and evaluated a measure of word form similarity with sub-character granularity,
in the form of SCOLD; Sub-Character Orthographic Levenshtein Distance. I have shown two
implementations of this measure, weighting substitutions by Jaccard similarity (which I show to
predict well subjective ratings of character similarity), or weighting all operations by a bit-wise
or pixel-wise cost. I suggest that while SCOLD and SCOLD20 do not represent a universal
improvement over OLD and OLD20, they may provide greater insight into the information that
is represented at different stages of visual word processing. I additionally suggest that SCOLD
and SCOLD20 are well-placed for inclusion in computational models of visual word recognition
theories, which can be used to form computationally informed hypotheses.

I calculated several variants of Jaccard similarity and of SCOLD, designed to capture
variability between fonts and the influence of geometric transformations. For SCOLD I
implemented both SCOLDs, which weights character substitutions by Jaccard similarities,
and SCOLDsid , which weights all operations by the number of pixels involved. SCOLDs and
SCOLDsid therefore differed in both the operations that were weighted and the manner in
which the weighting was implemented, with the SCOLDsid approach functionally similar to the
approach that has previously been applied to calculate similarities for word forms in more
logographic orthographies like Chinese (Sun et al., 2018), though it was here implemented
more flexibly, supporting geometric transformations, and in a manner more efficient for
alphabetic orthographies. It is important to note that the SCOLD and SCOLD20 variants
calculated here were not intended to be exhaustive, but rather to provide proof-of-concept
validation. Indeed, SCOLD variants may be implemented in a more bespoke manner, such as
permitting horizontal but not vertical translation, to preserve the vertical locations of ascenders
and descenders that evidence shows are particularly informative in reading processes (Beech
& Mayall, 2005). Similarly, anticipating that the degree of geometric transformation required
may provide more nuanced descriptions of character similarities, additional predictors could be
integrated as coefficients into models of character and word similarities capturing features like
the geometric distances of translations, size changes in rescaling, and angles of rotations, that
are required to optimise character similarity.

In validating SCOLD and SCOLD20, I first showed that Jaccard similarities between
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Figure 6.11: AIC differences between models predicting ERP amplitudes from Chapter 4
using OLD20, and all calculated SCOLD20 variants. Positive AIC differences indicate superior
performance in the OLD20 model, while negative differences indicate superior performance for
SCOLD20.
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characters concord well with subjective ratings of orthographic character similarity, and that
optimising the measure using geometric transformations further improves predictions of
subjective ratings. Results initially indicated a possible superiority of measures calculated
from fonts that match those presented, though a follow-up study suggested this may not be
true. I then calculated measures of word form similarity that aimed to integrate sub-character
similarity information with the traditional measure of OLD, in the form of SCOLD variants.
From these measures I derived measures of orthographic neighbourhood density, SCOLD20,
comparable to the current gold standard measure, OLD20. I showed that while OLD20
outperformed SCOLD20 in predicting behavioural outcomes in lexical decision, SCOLD20
may better account for neural correlates of some word recognition processes, including
the orthographic processing indexed by the N1. These differences were small, though this
is consistent with the high correlations observed between OLD20 and SCOLD20 values
(Figure 6.9). One key finding was that while geometric transformations improved predictions of
subjective ratings of character similarities, objective effects of neighbourhood density were best
predicted by measures that did not permit geometric transformations, especially in the early
occipitotemporal effects. The superiority of SCOLD20 values, and effects of neighbourhood
density more generally, were also heterogeneous across the N1’s window, both peaking in the
N1’s onset, with the effect of orthographic neighbourhood and difference in predictive power
of OLD20 and SCOLD20 then peaking in the opposite direction during the N1’s offset. These
results reflect the heterogeneous and often hierarchical nature of orthographic processing
in the ventral occipitotemporal cortex (vOT), with processing becoming progressively more
abstracted from visual input (Hannagan & Grainger, 2013), in particular showing greater
invariance to information like retinal position in more anterior subregions (Dehaene et al.,
2004) that are likely involved later than more posterior regions. Such posterior-to-anterior,
early-to-late, progressive abstraction from visual input may account for why early, but not late,
periods of the N1 are better explained by SCOLD, which captures sub-character features, than
by OLD values, which is restricted to the character level. Tentative evidence for a superiority of
font-congruent SCOLD20 was observed in the modelling of ERPs, with measures derived from
Droid Sans (the predicted font) and visually similar Calibri font, among the SCOLD20 variants
providing the greatest improvements over OLD20. To summarise the validations, SCOLD does
not always account for behavioural and neural correlates of orthographic and word recognition
processes better than OLD, but whether it does can provide valuable insight into whether such
information is relevant to the analysed outcome, for instance identifying time points at which
processing is sensitive to sub-character information.

One area not explored here is in the effects of similarities between individual word forms
on behavioural and neural correlates of word recognition. While neighbourhood metrics for
SCOLD and OLD, that average over the N smallest pairwise values, correlate very highly
(Figure 6.9), differences between individual pairwise SCOLD and OLD values may be more
variable, such that SCOLD could provide greater improvement over OLD than was observed at
the level of the neighbourhood. For instance, consider effects of repetition priming where the
orthographic similarity of prime and target can vary (e.g., Dehaene et al., 2001; Eisenhauer
et al., 2022; Huang et al., 2022): evidence suggests that priming effects scale with the

181



CHAPTER 6. SCOLD: SUB-CHARACTER ORTHOGRAPHIC LEVENSHTEIN DISTANCE

degree of similarity between prime and target (Kinoshita et al., 2014; Lien et al., 2021). The
degree to which behavioural and neural correlates of repetition priming are affected by the
orthographic similarity of word forms could be described more fully by SCOLD than by OLD.
Indeed, sub-character descriptions of orthographic similarity may be particularly useful for
describing and modelling effects of top-down modulation in orthographic processing - whether
predictions are hypothesised to "explain away" bottom-up orthographic input (A. Clark, 2013;
Gagl et al., 2020; Lien et al., 2021; Rao & Ballard, 1999), or "sharpen" sensitivity to predicted
orthographic features (Eisenhauer et al., 2022, see chapter 5), the degree to which top-down
modulation functionally influences orthographic processing should be expected to scale with
the orthographic similarity between the predicted and observed word form (though in opposite
directions). It follows that measures like SCOLD could also be applied to provide greater insight
into orthographic processing in biasing contexts, where higher-level information influences
early orthographic processing via top-down modulation, as was examined in chapters 4 and
5. SCOLD could be included in models like those reported in chapter 5 to more accurately
estimate, and more fully describe, how orthographic similarity relates to top-down modulation.
The stimuli in the picture-word verification experiment employed in chapter 5 were designed
specifically to minimise orthographic similarity between congruent and incongruent word forms,
such that any similarity-dependent effects of predictability and congruency were maximised.
Nevertheless, future research could examine whether the congruency-predictability interaction
observed in this experiment scales with the degree of dissimilarity between predicted and
observed word forms, which results here suggest could be better captured by SCOLD than
OLD. In addition, this could more directly relate the observed pattern of top-down effects to
modulation of orthographic processing specifically.

Relatedly, SCOLD also provides an opportunity for the development of more advanced
computational models of orthographic processing. Rather than assuming characters to be
functionally interchangeable orthographic units, incapable of being further divided into their
constituent parts, computational models integrating SCOLD could be expected to describe and
predict in greater detail exactly how orthographic neighbourhood and similarity effects relate
to behavioural and neural correlates, providing falsifiable, computationally derived hypotheses
that experiments could be conducted to examine. Such computational models can play a
vital role in testing and comparing cognitive models (Guest & Martin, 2021), and may be
one route to providing the more specific hypotheses that Ramsey and Ward (2020) argue is
lacking in current research into top-down modulation. Computational models integrating SCOLD
could also suggest possible mechanisms that might reconcile seemingly contradictory findings
consistent with predictive coding accounts of orthographic processing (Gagl et al., 2020; A. Kim
& Lai, 2012; Kretzschmar et al., 2015; Lien et al., 2021; Sereno et al., 2003) or with "sharpening"
of predicted features (Eisenhauer et al., 2022; Sereno et al., 2019, chapter 5).

I finally note that, although, in the analyses reported here, the estimates of Jaccard
similarity and SCOLD that were derived, using a bit-wise approach, from the Rumelhart-Siple
character set, were consistently outperformed by estimates from the pixel-based approach, this
does not entirely invalidate the use of Rumelhart-Siple characters. Indeed, while the characters
were originally developed to model empirical behaviour (Rumelhart & Siple, 1974), they may
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be integrated into models more as a computationally convenient and easily interpretable
representations of orthography that is analogous to real-world orthography and orthographic
processing, rather than as a veridical description of it. A model built on Rumelhart-Siple
characters could predict broad patterns of effects that can be compared to observed
behavioural and neural correlates of visual word recognition (e.g., predicting the relationship
between word frequency and lexical decision latency; Coltheart et al., 2001) to evaluate model
performance. However, it should also be noted that pixel-based representations of characters,
and measures like pixel-based SCOLD that can be derived from such representations, may
produce computational models with greater ecological validity. By better describing empirical
stimuli in this way, such models could produce item-level predictions of orthographic processing
that could be compared more directly to behavioural and neural correlates.

To summarise, SCOLD can capture, at the sub-character level, the orthographic similarity
of word forms. The measure, and the neighbourhood metrics derived from it, can provide more
nuanced descriptions of orthography and orthographic processing, and could be integrated
into models to describe and test specific mechanisms by which top-down contributions affect
orthographic processing.
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Chapter 7

General Discussion

The work in this thesis examines orthographic processing in visual word recognition, and the
degree to which it may be sensitive to higher-level predictions in biasing contexts via top-down
modulation. In particular, I have focussed on the N1: an early occipitotemporal event-related
potential (ERP) component that peaks earlier than 200 ms after word presentation. In addition
to replicating the N1’s early sensitivity to orthographic information, findings suggest that,
indeed, these processes are likely sensitive to higher-level predictions, most probably via
top-down modulation. However, the specific mechanisms underlying this sensitivity to top-down
contributions on activity indexed by the N1, and that are capable of accounting for the observed
patterns of effects, remain unclear. I suggest that the dynamics of top-down modulation of
orthographic processing can be more clearly delineated through the testing of more specific
hypotheses, informed by and derived from computational implementations of candidate
theories, and methodological improvements such as in the operationalisation of orthographic
similarity.

7.1 Sensitivity to Orthography in the N1

The N1 ERP component shows clear sensitivity to orthographic information (Appelbaum et al.,
2009; Bentin et al., 1999; Brem et al., 2018; Eberhard-Moscicka et al., 2016; Gagl et al., 2020;
Holcomb et al., 2002; Ling et al., 2019; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019;
J. Zhao et al., 2014). This finding was replicated in chapters 4 and 5, with the left-hemispheric
N1 showing more negative (average) amplitudes for nonwords and false-font stimuli than it
does for words. Conversely, no robust difference was observed in the left hemispheric N1
between words and orthographically (and phonologically) plausible pseudowords - this finding
was consistent with some existing evidence (Holcomb et al., 2002; Maurer, Brem, et al., 2005)
but inconsistent with some other findings (Eberhard-Moscicka et al., 2016; Hauk et al., 2012;
Hauk et al., 2006; Segalowitz & Zheng, 2009). This inconsistency in findings may reflect
variability in the plausibility of pseudowords, such that previous reports of word-pseudoword
sensitivity reflect not necessarily lexical access, as they have sometimes been interpreted
(e.g., Eberhard-Moscicka et al., 2016), but rather a sensitivity to orthographic features that can
differ between words and pseudowords to a varying extent. Demonstration of a sensitivity
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to lexicality, via comparisons between the factorial conditions of words and pseudowords,
would require, in addition to pseudowords being orthographically plausible, careful and precise
item-wise matching of orthographic variables such as N-gram probabilities. A comparable
argument for early lexical access has been made on the basis of early sensitivity to word
frequency in components that include the N1 (Assadollahi & Pulvermüller, 2003; Dambacher
et al., 2006; Hauk & Pulvermüller, 2004; Sereno et al., 2003; Sereno et al., 1998; Simon et al.,
2007), with similar sensitivity to word frequency observed in functional magnetic resonance
imaging (fMRI) of the ventral occipitotemporal cortex (vOT; Kronbichler et al., 2004) - the
likely generator of the N1 component. However, word frequency necessarily correlates
with sublexical orthographic features like character N-gram probabilities and orthographic
neighbourhood size, such that a sensitivity to word frequency could emerge from processing
of only sublexical constiuents of words. If precise matching of confounding variables across
such factorial (word vs. pseudoword) or continuous (word frequency) predictors is not possible,
then correlating such experimental manipulations with neural correlates may be a method
that is, when applied in isolation, incapable of disentangling the mechanisms underlying such
correlates. As I have argued is true of research into top-down modulation of orthographic
processing, an approach that may elucidate cognitive mechanisms underlying neural correlates
is the implementation and testing of computational models. To summarise, evidence in this
thesis and elsewhere is consistent with the N1 indexing orthographic processing. However, I
argue that neither sensitivity to lexicality in the N1, nor to lexical frequency, necessarily index
lexical access.

7.2 Sensitivity to Top-Down Modulation in the N1

In chapter 4, where I examined effects of category-level semantic predictions in a task
modulation paradigm, no robust interaction between category relevance and task was observed
in the N1. The earliest that task interacted with category relevance, in occipitotemporal
electrodes, was late into the N1’s offset, more than 50 ms after the N1 peak and closer to the
succeding P2 component’s onset, with the difference peaking centroparietally around 400 ms.
I suggested that the lack of evidence for top-down modulation in the N1 at the level of semantic
categories may be unsurprising, if the N1 indeed indexes orthographic processing, as even
if the participant does predict orthographic features, a semantic category will encompass so
many orthographically diverse word forms as to be functionally uninformative once recoded
to an orthographic representation. I did, however, find evidence for a small stimulus-general
task modulation of the N1, with more negative-going N1 components in the SCT, consistent
with existing evidence for such early effects of task (Y. Chen et al., 2013; Rahimi et al., 2022;
Segalowitz & Zheng, 2009).

In chapter 5, I examined effects of prediction for more specific word forms in a picture-
word verification task. A congruency-predictability interaction was observed in the left,
occipitotemporal N1. This finding demonstrates an interaction between context (image
predictability) and stimulus (presented word form), which provides evidence for an influence of
higher-level predictions of specific word forms on the N1. If bottom-up processing during the
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N1 is restricted to orthographic information, this congruency-predictability interaction reflects
top-down modulation of orthographic processing.

Nevertheless, the direction of effects observed in chapter 5 was counter to the pattern
of effects that I hypothesised. Based on previous findings from sentential studies, where
prediction-congruent word forms elicited less negative-going N1 components (A. E. Kim &
Gilley, 2013; Kretzschmar et al., 2015; Sereno et al., 2003), I hypothesised that, similarly,
picture-congruent word forms would elicit less negative-going N1s. Further, I expected that
this effect would be largest at the highest level of predictability, and close to zero at the
lowest level of predictability. This hypothesised pattern of effects would be consistent with
a predictive coding account of processing during the N1, if such a mechanism additionally
permits a short-term online influence of predictions for specific word forms, according to
which predicted orthographic features are "explained away" to minimise overall prediction error
(A. Clark, 2013; Gagl et al., 2020; Rao & Ballard, 1999; J. Zhao et al., 2019). The pattern of
effects observed was in the opposite direction to that hypothesised: an effect of predictability
emerged in the N1’s peak for picture-incongruent and not picture-congruent words, with N1
components becoming less negative-going for picture-incongruent words as predictability
increased. In addition, during the N1’s offset the size of this interaction grew, with the opposite
effect emerging for picture-congruent words, with N1 amplitudes in the offset period becoming
more negative for picture-congruent words as predictability increased, not less.

Based on the discrepancy between the hypothesised and observed pattern of effects,
a simplistic implementation of top-down modulation via predictive coding is insufficient
to account for effects of prediction in the picture-word verification task. One alternative
explanation could be that rather than predictions "explaining away" bottom-up input, they
lead to a preactivation of orthographic information that induces a "sharpening" of responses
(Eisenhauer et al., 2022). Ostensibly, this interpretation could account well for the results
of the present work, but, as I have argued, is in need of reconciliation with findings from
sentential studies. It is also unclear why timing differences were observed, between the
congruency conditions, for the effect of predictability, which emerged for picture-incongruent
words before it did for picture-congruent words. I have suggested that, to better construct,
discriminate between, and evaluate hypotheses of orthographic processing and its sensitivity
to top-down contributions, there should be a greater focus on computational implementations
of theories. Results of computational simulations could guide research by highlighting patterns
of neural correlates of orthographic processing that arise as consequences of theories, with
such insights informing the direction of future experimental investigations. I developed one
important contribution to such computational models in chapter 6, in the form of Sub-Character
Orthographic Levenshtein Distance (SCOLD). The SCOLD approaches I implemented could
be integrated into models of orthographic processing to describe and predict more fully effects
of orthographic similarity and the sensitivity of orthographic processing to top-down modulation.
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7.3 Generation and Recoding of Predictions

An important consideration, if orthographic processing is influenced by top-down modulation, is
the manner in which the participant constructs and maintains internal predictions of upcoming
content. In predictive coding terms, such a mechanism could be referred to as a generative
model, capable of continually updating in response to prediction error and changes in context.
Clearly the neural mechanism that underlies participants’ predictions is of central importance
to any model of top-down modulation of orthography, as it will determine what information is
predicted, and the latencies and locations at which predictions can interact with bottom-up
processes.

One possibility is that readers are using the language production system (Adank, 2012; Dell
& Chang, 2014; Momma & Phillips, 2018; Pickering & Garrod, 2007) to construct predictions.
Here, it is suggested that the reader or hearer covertly emulates language production as
linguistic input is comprehended, and predicts upcoming content from perceived contexts
and intentions (Pickering & Gambi, 2018; Pickering & Garrod, 2013). Indeed, there is a high
degree of overlap between regions implicated in language production and comprehension
systems (Giglio et al., 2022), and vOT shows both direct and indirect anatomical and functional
connections to such shared regions (Bouhali et al., 2014; Vogel et al., 2012; Woodhead et al.,
2014; W. Zhou et al., 2016). If participants are utilising language production systems to
construct predictions, then this may result in differences between paradigms that use linguistic
stimuli and non-linguistic stimuli to bias participants’ expectations (see section 1.5.2). For
instance, more naturalistic sentential stimuli may automatically induce the production system to
predict upcoming content, whereas more artificial non-linguistic (e.g., pictures) or single-word
stimuli may require more conscious control to translate semantic and contextual information
into linguistic predictions. Indeed, evidence suggests that naturalistic, self-paced reading,
where task demands are minimal, elicit disparate dynamics of orthographic processing, with
more activity for words than pseudowords (Schuster et al., 2015), whereas most studies that
use more artificial tasks and paradigms reveal the opposite pattern (e.g., Kronbichler et al.,
2004; Woolnough et al., 2021) that would be more consistent with predictive coding accounts
(Gagl et al., 2020) according to which, if their is a word-pseudoword difference, prediction
error should be higher for pseudowords. Such stimulus differences could also underlie the
distinct patterns of prediction effects observed in sentential and non-sentential studies, which
the results of chapter 5 further highlight. An alternative account of prediction generation posits
that linguistic predictions are indistinct from from other prediction processes, sharing a single
prediction system with non-linguistic prediction processes (Altmann & Mirković, 2009), or
integrating multiple mechanisms to predict language, of which a domain-general production
system is simply one component (Huettig, 2015). However, even if prediction processes are
separate from language production mechanisms, this does not discount the possibility that the
dynamics of communication between language and predictive processing systems could result
in vastly different patterns of neural activity for predictions that are derived linguistically versus
nonlinguistically.

It is additionally pertinent to ask by what mechanisms top-down contributions interact
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with bottom-up signals in vOT. Indeed, exactly how information is transmitted between levels
of processing remains a key question in research into, and models of, word recognition
more generally (Norris, 2013). Kay and Yeatman (2017) have suggested a model in which
contributions from the intraparietal sulcus (IPS) are largely responsible for task-driven
modulation of processing in the VWFA, showing that stimulus-related activity in IPS scales with
the degree of top-down modulation observed in vOT. Consistent with a functional role of IPS
in controlling word recognition processes is the finding that anatomical connections between
vOT and parietal regions like IPS strengthen with literacy acquisition (Moulton et al., 2019).
However, in addition to task-driven modulation of early occipiotemporal activity (Bentin et al.,
1999; Y. Chen et al., 2013, 2015; Qu et al., 2022; Strijkers et al., 2015; F. Wang & Maurer,
2017), which requires only broad modulation of word form processing, evidence suggests a
more targeted influence of predictions, such as for specific word forms (chapter 5). In their
model of vOT computations, Kay and Yeatman (2017) implement a simplified model where
Gabor filters for local orientations are projected onto category templates and vOT responses
scale with the result of a dot-product template-matching computation. The most parsimonious
implementation of more targeted predictions for specific word forms in the general model
structure outlined by Kay and Yeatman would be targeted alteration of the word form template,
perhaps differentially weighting orthographic features to facilitate processing of features present
in the predicted word form.

If predictions are implemented via weighting of orthographic features, then predictions
must be recoded into orthographic representations. Research is indeed consistent with
the representation of and decoding of such sub-word-form orthographic features in early
occipitotemporal activity. Training a classifier to decode presented word form identities from
bilateral occipitotemporal EEG activity, Ling et al. (2019) have shown that orthographic features
can be reconstructed with accuracy well above chance, and that confusability of word identities
in the classifier’s representations concord well with word forms’ orthographic similarities.
Discrimination accuracy of this classifier additionally peaked at 200 ms, within the typical
offset period of the N1. Sensitivity to the visual features of orthography appears to contradict
findings of invariance in vOT (e.g., insensitivity to letter case; Lu et al., 2021). Nevertheless,
this disparity could be reconciled with reference to the heterogeneity of processing within the
N1 and vOT (see section 7.4 below), with invariance emerging in vOT, and even abstracted
orthographic representations retaining some degree of low-level information (Rauschecker
et al., 2012; J. S. Taylor et al., 2019). The recoding of semantic predictions into targeted
orthographic representations is likely to involve a pattern of activation distinct from that involved
in more general task-driven top-down modulations, which Kay and Yeatman (2017) show can
be described well with reference to just IPS and vOT activity. For instance, the pattern of neural
activity involved in targeted semantic-to-orthographic top-down modulation may involve more
frontal and perisylvian regions (Eisenhauer et al., 2022; J. Wang et al., 2019; Woodhead et al.,
2014), as well as more proximal regions like that identified by Purcell et al. (2014), a region
anterior to the VWFA that appears to be selectively involved in interfacing between orthographic
and semantic information. As I have argued in this work, recoding of predictions from semantic
to orthographic representations would be computationally lossy, entailing a loss of specificity.
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For instance, predictions for the word form chair may also confer facilitation for features in
semantically unrelated yet orthographically similar word forms, such as stair, chain, or char,
and even orthographically similar nonwords like cbeln. In addition to testing this predicted
effect as a general hypothesis (e.g., A. E. Kim & Gilley, 2013), future investigations could
provide insight into the mechanisms by which top-down modulations influence occipitotemporal
orthographic processing by testing how well different computational models, like that utilised
by Kay and Yeatman (2017), could account for effects like cross-word-form facilitation when
predictions target specific word forms. The calculation of sub-character word form similarity
could be implemented using a measure similar to or derived from the SCOLD measure that I
have proposed and tested in this work.

However, further research is required to describe more clearly how orthographic information
is represented in vOT and during the N1. One barrier that must be overcome is that models
of top-down modulation of orthographic processing that account for effects entirely through
reference to computations operated upon visual descriptions of stimuli need to be reconciled
with evidence for the meta-modal and flexible nature of processing in vOT (Price & Devlin,
2011). Further to this, it should be considered whether top-down influences causally modulate
the perception of non-visual linguistic, or even non-linguistic, processing in vOT. For instance,
Willems et al. (2016) reported an effect of predictability, specifically of surprisal, on vOT
activity during spoken language comprehension. Whether such findings reflect a role of
phonological-to-orthographic recoding (Dehaene et al., 2002; Madec, Le Goff, Anton, et al.,
2016) or direct representation of phonological information in vOT (Pattamadilok et al., 2019;
Qu et al., 2022; L. Zhao et al., 2017) is of central relevance to computational models of
orthographic processing and its sensitivity to top-down modulation, as it will constrain the
manner in which orthographic information is encoded and the types of representational codes
that predictions can be transcoded into, which, as argued above, constrain the functional
implications of top-down modulation. How to infer and understand neural representations
remains a key and current question in cognitive neuroscience more generally, especially as
computational models (and data-driven classifiers) can achieve high accuracy in predicting
neural activity even when models’ representations are entirely unalike those in the brain
(Guest & Martin, 2021; Popov et al., 2018). Yet, the development and testing of more formal
descriptions of the content of orthographic representations are vital for research to delineate
the manner in which bottom-up processing interacts with top-down predictions.

7.4 Processing during the N1 is Heterogeneous

A common finding in the current work was that processing within the N1 is not homogeneous.
Rather, sensitivity to different features emerged at different time points across the component’s
window and differed between hemispheres. The heterogeneities I observed in the N1 were
generally consistent with previous findings, and align well with research that takes a more spatial
perspective.
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7.4.1 Timing Differences

Effects of stimuli, including word-versus-false-font differences and the effect of orthographic
neighbourhood density, generally emerged earlier, in the component’s onset or peak, although
effects were largest in the component’s offset. Such early effects of stimuli are consistent
with evidence that bottom-up features of word forms can be accurately decoded from
occipitotemporal N1 amplitudes as early as 150 ms (Ling et al., 2019, although it is notable
that classifier accuracy similarly peaks later, during the component’s offset). Meanwhile,
consistent with previous findings (F. Wang & Maurer, 2017, 2020), I found that sensitivity to
higher-level information and predictions, likely to rely on top-down contributions, emerged later,
in the N1’s peak or offset. Temporal heterogeneity within the N1 is consistent with comparable
spatial heterogeneity in vOT, the N1’s likely generator, with processing becoming increasingly
abstracted from information in visual input such as retinotopy and image contrast (although
not completely; Kay & Yeatman, 2017; Rauschecker et al., 2012; J. S. Taylor et al., 2019), as
it progresses anteriorly through a feedforward hierarchy (Dehaene et al., 2004; Hannagan &
Grainger, 2013; J. S. Taylor et al., 2019; Vinckier et al., 2007).

7.4.2 Hemispheric Differences

In chapter 4, the sensitivity to the word-nonword difference was larger over the right hemisphere
during the N1 than it was over the left hemisphere. The ERP analysis of these data in chapter 6
similarly suggested that the effect of orthographic neighbourhood density (OLD20) and the
superiority of a metric that is additionally sensitive to sub-character complexities (SCOLD20)
were larger in the right hemispheric N1 than they were in the left. Results from chapter 5
also showed that sensitivity to the difference between words and false-font stimuli was larger
over the right hemisphere than it was over the left hemisphere. These findings are consistent
with previous reports of stimulus-hemisphere interactions in the N1 component (Bentin et al.,
1999; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019), as well as evidence for divergences
between the right and left vOT in the effect of orthographic similarity (Dehaene et al., 2004;
Krafnick et al., 2016; McCandliss et al., 2003; Vinckier et al., 2007; Woolnough et al., 2021) and
possibly corresponding with differences in the sensitivity to orthographic information presented
in the right and left visual hemifield (Parker et al., 2021; Rauschecker et al., 2012, c.f., Takamiya
et al., 2020). Such hemispheric interactions may be related to evidence that orthographic
processing occurs primarily in the left vOT (and in the visual word form area; VWFA), with
the region’s right-hemispheric homologue conveying left-visual-field input to the left vOT via the
corpus callosum (Bouhali et al., 2014; Cohen et al., 2000; McCandliss et al., 2003; Molko et al.,
2002).
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7.5 Orthographic and Predictive Processing Prior to the N1 and
vOT

While this work focuses on the N1 ERP component, some evidence has suggested that activity
earlier than the N1, in regions posterior to vOT, may also index orthographic processing. For
instance, magentoencephalography (MEG) evidence reported by Solomyak and Marantz (2010)
shows sensitivity in an occipital component peaking around 130 ms, dubbed the M130, to the
frequency of word forms’ affixes (e.g., affixes able and ity, in word form probability ). Evidence for
this component being distinct from the M170 has been reported by Gwilliams et al. (2016), with
the finding that levels of visual noise in images of word forms modulated a "type two response"
(a term used to distinguish pre-orthographic, visual processing from word form processing;
Tarkiainen et al., 1999) in a posterior M130 component, while the later M170 shows sensitivity to
differences between letter strings and symbols. The timing of this component is consistent with
the earliest observed sensitivity to visual differences between lower- and upper-case characters,
at around 120 ms (Madec, Le Goff, Riès, et al., 2016). However, the degree to which this M130
component indexes orthographic processing, rather than just late and more anterior effects of
low-level features such as luminancy, as are observed in the M100 (Gwilliams et al., 2016;
Helenius et al., 1999; Tarkiainen et al., 1999), is here unclear.

The M100 and associated P100 component observed in EEG are mostly associated
with low-level features of stimuli like luminance or stimulus size (Helenius et al., 1999;
Kurita-Tashima et al., 1991; Tarkiainen et al., 1999; Tobimatsu et al., 1993; Wicke et al., 1964),
or features of word forms like word length (Hauk & Pulvermüller, 2004) or number of character
strokes (Hsu et al., 2011) that correlate with such low-level visual information. However, some
studies have suggested that effects of orthographic or post-orthographic information are even
observed in the early stage of processing indexed by the M/P100. For instance, Segalowitz
and Zheng (2009) identified an effect of lexicality in the P100, indexed by a difference between
words and orthographically (and phonologically) plausible pseudowords that were matched in
length, with more positive-going P100 components elicited over both hemispheres by words
than by pseudowords. A similarly early effect of lexicality was reported by Sereno et al. (1998),
with more positive-going P100 components elicited by pseudowords and nonwords than by
words (although these differences were observed with a parietal topography unusual for this
primarily occipital component). Related to such reports are findings of early, pre-N1 effects of
frequency, which, as previously mentioned, are often interpreted as a proxy indicator of lexical
access. In their study of prediction effects elicited by sentential contexts, Sereno et al. (2019)
reported a main effect of word frequency in the P100, with a more positive-going posterior P100
elicited by low-frequency than by high-frequency words. It was further reported that this effect
interacted with predictability, present for words with high but not low predictability. Strijkers
et al. (2015) also reported a context-dependent sensitivity to frequency, with a left-hemispheric
posterior effect of word frequency at 120 ms during a semantic task, but not during a colour
categorisation task, with more positive-going amplitudes observed for high-frequency than for
low-frequency words. Scott et al. (2009) similarly reported an interaction between emotion
and word frequency, with more positive average P100 amplitude for positively valenced high
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frequency words than for negatively valenced high-frequency words, but no effect of emotion
for low-frequency words. Similar effects have been reported in the M100 component of MEG,
mostly comprising early influences of predictability. In a study with a picture-word verification
design similar to that I employed in chapter 4, Dikker and Pylkkanen (2011) reported an effect
of picture-word congruency in the M100 for predictive pictures (designed to elicit a prediction
for a specific word form), but not for non-predictive pictures, with more extreme amplitudes for
picture-incongruent words. In a related study, Dikker et al. (2009) reported effects of syntactic
violations on the M100, where syntactically unexpected word forms elicited more extreme
amplitudes. Such early effects of syntactic predictions have also been reported in Arabic
script: Matar et al. (2019) found that syntactically unpredictable Arabic word forms elicited
greater activation in posterior M100 activity. As highlighted by Nieuwland (2019), in their
review of word form prediction literature, some early effects of word form prediction could be
related to artefacts of high-pass filtering that, for non-causal filters, result in differences in later
components like the N400 being pushed backwards in time (Tanner et al., 2015; VanRullen,
2011). However, while high-threshold (1 Hz) high-pass filtering is a common feature of some
studies listed here that report early prediction effects in the M/P100 (Dikker & Pylkkanen, 2011;
Dikker et al., 2009; Matar et al., 2019), many employ lower high-pass thresholds, at .1 Hz or
below.

If pre-N1 activity indexes orthographic (or post-orthographic) processing, what neural
structures could be generating these signals? Research has generally pointed to vOT, and
specifically the VWFA, as the site of the earliest specifically orthographic processing (Centanni
et al., 2018; Cohen et al., 2000; Cohen et al., 2002; Dehaene & Cohen, 2011; Price, 2012).
However, information processed in vOT must be necessarily present, and to some extent
decodable, in regions that provide input to vOT (Petersen et al., 1988; Pugh et al., 1996) - even
if such regions encode information that is less orthographically specific (and more involved in
domain-general visual processing), they could still be sites of early sensitivity to orthographic
features, or even candidate sites for interactions between bottom-up, visual and top-down,
higher-level information. Recently, Woolnough et al. (2021) identified via intracranial EEG a
mid-fusiform region posterior to the VWFA that shows early sensitivity to lexicality and word
frequency - possibly consistent with M/EEG findings of early sensitivity to these features.
This region showed an initial sensitivity to low-level orthographic information, indexed by the
difference in response to words and strings of infrequent letters, which was sustained and
later joined by a sensitivity to more high-level orthographic and lexical information, sensitive
to differences between words and, successively, strings of frequent letters, strings of frequent
bigrams, and finally, strings of frequent quadrigrams. The role of this mid-fusiform region in
font-invariant orthographic processing is supported by fMRI evidence (Z. Zhou, Vilis, et al.,
2019), and may be the same as the occipitotemporal "letter form" area identified by Thesen
et al. (2012) via fMRI and intracranial EEG, which is similarly mid-fusiform and directly posterior
to the VWFA. However, linking the activity of this letter form area to the M/P100 is made
difficult by mismatches in timing and localisation. Specifically, the timing and localisation of
the pre-VWFA activation identified by Woolnough et al. and Thesen et al. do not concord
well with the M/P100, peaking instead closer to 170 ms than 100 ms, and showing a more
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occipitotemporal source than would be suggested by the mostly occipital topography of the
M/P100. Indeed, a source localisation of the M100 prediction effects identified by Matar et al.
(2019) localised effects mostly to the primary visual cortex (i.e., V1), while effects were much
smaller or absent in M100 activity localised to Brodmann areas 18 (i.e., V2) and 19 (comprising
V3, V4, V5, and V6), suggesting that the reported M/P100 sensitivity to syntactic violations is
indeed related to processing in more posterior visual areas. That such posterior regions could
show early selective sensitivity to differences between word forms is at first surprising, given the
sensitivity of V1 to low-level information like retinotopy (Engel et al., 1997; Tootell et al., 1998)
and visual contrast (Avidan et al., 2002) that could be expected to exclude it as a candidate for
orthographic processing, as such regions lack the invariance across viewing conditions that has
been argued to be vital for the shape recognition that orthographic processing involves (Avidan
et al., 2002; Cohen & Dehaene, 2004; Rust & DiCarlo, 2010). Nevertheless, evidence shows
that, to a limited extent, the low-level processing of early visual areas is actively implicated
in object and shape recognition processes (Fischer & Whitney, 2009; Hsieh et al., 2010; Kok
& De Lange, 2014). Indeed, recent findings have demonstrated that early representations of
individual letters, in V1 and V2, are enhanced when presented within the context of words
relative to nonwords (Heilbron et al., 2020), and that regions of the middle and inferior occipital
gyrus may have a response to orthographic information that is font-invariant (Z. Zhou, Vilis,
et al., 2019). Relatedly, emerging research shows that task demands or context can influence
such early processing in word recognition, probably via top-down modulation, with effects of
task to as early as 60 ms post-stimulus, and as posterior as V1 (Rahimi et al., 2022).

In sum, orthography-relevant information is necessarily processed prior to the N1 and
vOT. Immediately prior to VWFA processing, there is evidence for less holistic, letter-specific
processing, though the timing and localisation of activation is here very similar to that of the N1.
It is possible, however, that although not selective for orthography, very early visual processing
could also be considered orthographic. In particular, emerging findings point to a top-down
influence on such early visual processing of words, possibly corresponding to reports of effects
in the M/P100. These findings therefore further highlight the far-reaching influence of top-down
contributions to visual perception and word recognition.

7.6 Methodological Contributions

The present work also makes several contributions to methodology in the research area,
especially in chapters 2 and 3. In chapter 2, I describe LexOPS, an R package I developed to
aid in robust and reproducible item-wise stimulus matching. The package is aimed at language
researchers, and provides code-based and graphic interfaces for users to construct formal
pipelines to generate stimulus lists that can be reproduced by other researchers and altered to
generate new stimulus lists that fit the same criteria. I applied LexOPS in chapters 4 and 5 to
investigate top-down influences on orthographic processing. I also describe in chapter 2 an
assumption-free distribution-wise approach to matching variables, and show that this method
can be integrated with the item-wise approach implemented in LexOPS to design stimuli more
flexibly. I applied this integrative approach in chapter 5 to generate a list of picture-word stimuli
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that were matched on some variables in an item-wise manner, and on other variables in a
distributional manner. In addition, stimuli for the localisation task of that chapter were matched
distribution-wise, on several variables, to the population of words they were drawn from.

In chapter 3, I demonstrated that a hierarchical, ordinal modelling framework commonly
applied to data from Likert rating experiments, the cumulative-link mixed effects model (CLMM),
can be applied to Likert rating norming studies, conferring several advantages over traditional
approaches of means and standard deviations. Specifically, I showed that via Monte-Carlo
simulations that norming items by their random effects estimates of latent variables from
CLMMs removes artefacts of nonlinearities in responses that have previously been identified as
problematic in norming study datasets, while shrinkage and accounting for between participant
variability confer additional accuracy in estimation. I also showed that distributional CLMMs,
estimating differences in both location and spread of latent distributions, can provide more
complete descriptions of items’ ratings, from which an analogue of ratings’ standard deviations
can be calculated which does not treat responses as continuous.

I applied the modelling approaches described and evaluated in chapter 3 in subsequent
chapters. The example CLMM analysis of data from Simpson et al. (2013), described in
section 3.3, is expanded upon in chapter 6, with the inclusion of a fixed effect of Jaccard
similarity estimates for orthographic similarity. This approach allowed me to more accurately
estimate and describe the strong relationship between the objective estimates of character
similarities that I calculated, and participants’ subjective perceptions. Additionally, the
distributional modelling approach outlined and applied in the CLMM framework, in sections
3.2.3 and 3.3, is later applied to model response time data in chapters 4 and 5, providing a
more full description of response time distributions by modelling effects on all parameters of a
shifted log-normal distribution. Relatedly, Monte-Carlo methods like those utilised in chapter 3,
accounting for multiple hierarchical effects and relationships, were applied to conduct power
analyses in chapters 5 and 6.

Finally, I note that the contributions from chapters 2 and 3 are complementary: word stimuli
are frequently matched on normed variables. If specifying a tolerance within which a variable,
from a normed ratings dataset, should be matched, the researcher is essentially assuming that
the variable being matched is continuous and linear. However, given the nonlinearities inherent
to the traditional norming approach of calculating averages of ratings, the specified tolerance will
effectively vary across the normed distribution. The tolerance will fail, for instance, to account
for floor and ceiling effects, and the accuracy of tolerances would be reduced by a failure of raw
means to account for hierarchical variability. Matching conditions by norms calculated from the
random effects of CLMMs will therefore improve the quality of item matches that methods like
LexOPS can produce.

In chapters 2 and 3 I outlined methodological and statistical approaches that can benefit
psycholinguistic research, including research into the processing of orthography, and its top-
down modulation, which is the focus of the present thesis. However, this methodological
work has potential to improve Psychological research more generally, as matching of factorial
conditions and norming of participants or items on Likert scale responses are applied across a
range of research areas.
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7.7 Summary and Conclusions

In this work, I have provided evidence that, in alphabetic scripts, the N1 ERP component,
which indexes early orthographic processing, is not sensitive to broad predictions of semantic
categories, but is sensitive to targeted predictions for specific word forms. Such an early
influence of higher-level information on low-level processing is evidence for top-down
modulation of orthographic processing. I suggest that testing hypotheses informed by
computational models will allow future research to better disentangle the mechanisms by
which top-down contributions influence orthographic processing. I have provided an important
contribution to the implementation of such models with the development and validation of
sub-character measures of orthographic similarity. I have additionally developed, validated,
provided, and applied methodological tools and approaches that can improve the quality of
scientific inferences in this area.
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A.1 CLMMs offer no Additional Accuracy in Estimating Rank Order

I conducted an additional analysis of the results of Simulation 1, to assess whether the use of
raw means of Likert ratings is appropriate if researchers are only interested in the rank order of
items. Here, I examined the relationship between the rank positions of each iteration’s simulated
latent mean, and the estimate of its rank position from (A) raw means, and (B) estimated
latent means (Figure A.1). This revealed that, indeed, rank order is relatively unaffected by
differences in response patterns, and CLMMs offer no additional gain in accuracy of estimating
rank positions. However, as with any continuous variable, it should be noted that ranking
considerably increases noise in the relative distances between items. This is because a rank
difference of 1 could be a very large difference in the original units if at a position where
items are sparsely spread, or a very small difference if at a point where items are densely
clustered. Therefore, when researchers are interested in the relative distances between items,
I recommend the usage of ordinal models like CLMMs to appropriately account for the ordinal
nature of Likert scales.

Figure A.1: The relationship between rank simulated latent means, and (A) rank raw means, or
(B) rank estimated latent means (from CLMMs). Grey points show the results for individual items
(ranked within their iterations). The relationships shown with the black lines were estimated via
locally estimated scatterplot smoothing (LOESS), with a span parameter of .75. The dashed red
lines show an expected linear relationship for reference, identical across all response patterns.
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A.2 Within-Participant Z-Scores of Raw Responses do not Account for the
Ordinal Nature of Likert Responses

One approach which researchers may consider when norming items on Likert ratings, where
responses are provided by multiple participants, is to firstly z-score responses within each
participant. However, I argue that such an approach still fails to account for the ordinal nature
of Likert ratings, and consequently still entails the distortion in norming estimates which I have
identified for averages of raw responses.

A possible justification for z-scoring responses within participants may be that per-item
averages should be less biased by individual participants’ response styles. For instance,
participants who consistently respond with extreme (i.e., very high or low) ratings, will exhibit
correspondingly extreme averages and low SDs. Within-participant z-scores for such a
participant would thus align, more closely than raw responses would, with the z-scores of
participants who responded with ratings less extreme and more variable. However, this
approach still assumes that the raw Likert responses are continuous, rather than ordinal. In
this way, researchers applying this approach to norming items should still expect the norms to
be distorted by nonlinear response styles. To demonstrate this, I re-analysed the results from
Simulation 2, comparing the performance of the CLMM approach to that of within-participant
z-scores in norming items. The results (Figure A.2) showed that in assuming responses are
continuous, the z-scoring approach results in a distortion of item norms very similar to that
observed for averages of raw responses.

Figure A.2: The relationship between rank simulated latent means, and (A) rank raw means, or
(B) rank estimated latent means (from CLMMs). Grey points show the results for individual items
(ranked within their iterations). The relationships shown with the black lines were estimated via
locally estimated scatterplot smoothing (LOESS), with a span parameter of .75.
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The rationale behind z-scoring responses within participants, namely that raw means of
ratings will be biased by variability between participants, is well-considered. Nevertheless,
the random effects structures of CLMMs are better placed to account for between-participant
variability in ordinal models, as they estimate these differences in the latent distribution,
rather than assuming raw responses scale linearly. Furthermore, accounting for participant
variability via random effects allows the impact of item and participant variability to be estimated
simultaneously, and thus more accurately. This is preferable to the separate steps (i.e.,
z-score within participants, then calculate per-item averages) of the z-scoring approach. As
an example, consider a design where participants each rate only a small random subset of a
pool of items: here, it is likely for a single participant to be presented with items that all happen
to be extremely high or low in the feature being rated. Accounting for participant variability
in a separate step before calculating item norms would result in such a participant’s ratings
being adjusted away from the factually extreme responses, thereby reducing the magnitude
of the average ratings for the items they rated. Item and participant random effects estimated
in a single model, in contrast, would more accurately reflect both sources of variability. To
use the example again, the ratings of participants who were presented with only extreme
items would align with the ratings provided by participants who were not presented with such
a biased sample of items. By estimating crossed random effects simultaneously, the partially
pooled model would be able to disentangle item and participant variability, without requiring
each participant to be presented with a necessarily representative sample of items. Finally, it
should again be noted that pooling of the data allows the random effects structure to confer
additional accuracy via shrinkage, where unlikely extreme observations are appropriately
adjusted towards more likely estimates.
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B.1 LDT and SCT Stimuli

Table B.1: All stimuli presented in the experiment in chapter 4. Stimuli are ordered by semantic category (drawn from Van Overschelde et al.,
2004), with category-irrelevant words, pseudowords, and nonwords presented alongside the category-relevant words they were matched with.
Participants were presented with half of these 6 blocks in the LDT, and half in the SCT. Cat.=Semantic Category, where 1=Relative, 2=Four-
Footed Animal, 3=Part of the Human Body, 4=Thing that Flies, 5=Fruit, and 6=Musical Instrument. Items (String), words frequencies (Zipf ;
van Heuven et al., 2014), average character bigram probabilities (BG; calculated from van Heuven et al., 2014), and orthographic neighbourhood
density (OLD20; Yarkoni et al., 2008) are presented for all stimulus types (except for word frequency, where word frequencies are only reported
for Category-Relevant and -Irrelevant words; no pseudowords or nonwords occurred in the SUBTLEX-UK corpus). Stimulus types are labelled as
follows: CR=Category-Relevant Words, CI=Category-Irrelevant Words, PW=Pseudowords, and NW=nonwords. Length (number of characters)
is presented as a single column, as all items for a given set had identical length. Rows are numbered for ease of reference.

Cat. String Length Zipf BG OLD20

CR CI PW NW CR CI CR CI PW NW CR CI PW NW

1 1 uncle video clope jrxvl 5 4.56 4.56 .0037 .0026 .0029 <.0001 1.75 1.50 1.00 2.95
2 1 aunt barn penk kskq 4 4.32 4.32 .0050 .0048 .0058 .0004 1.00 1.00 1.00 2.00
3 1 cousin runner insten mvwvsj 6 4.26 4.26 .0120 .0065 .0118 <.0001 1.70 1.20 1.85 3.05
4 1 mother friend protal zjbjbt 6 5.29 5.29 .0204 .0069 .0057 <.0001 1.00 1.65 1.90 3.30
5 1 grandmother supermarket flispoilant vmvgbflgpwx 11 4.33 4.24 .0140 .0054 .0064 <.0001 3.50 2.80 4.85 6.90
6 1 father garden lesten mgmqtb 6 5.26 5.28 .0208 .0060 .0097 <.0001 1.35 1.00 1.45 2.95
7 1 grandfather electricity gristlewell mvqsgkkwplp 11 4.46 4.44 .0142 .0051 .0063 .0003 3.40 2.70 3.90 7.00
8 1 sister island lanker xxjccd 6 4.91 4.96 .0109 .0099 .0099 <.0001 1.35 1.75 1.00 3.70
9 1 brother bedroom flittoe llbkqcg 7 5.01 5.00 .0177 .0054 .0062 .0015 1.60 2.25 2.10 4.00
10 1 niece stool meast wjvxx 5 3.70 3.71 .0033 .0078 .0092 <.0001 1.40 1.05 1.40 2.95
11 1 nephew galaxy ortler nvmppp 6 3.81 3.81 .0086 .0030 .0085 .0009 2.50 2.00 1.80 2.95
12 1 son ice tid wcp 3 5.17 4.98 .0095 .0045 .0049 <.0001 1.00 1.00 1.00 1.00
13 1 daughter industry tratcher zlmfzjmn 8 4.97 4.95 .0055 .0088 .0107 <.0001 2.10 2.65 1.90 4.90
1 2 dog sun poy ynq 3 5.17 5.01 .0027 .0028 .0015 <.0001 1.00 1.00 1.00 1.85
2 2 cat hat ost stw 3 4.83 4.76 .0074 .0129 .0065 .0057 1.00 1.00 1.00 1.00
3 2 horse dream penth xjcsw 5 4.99 5.00 .0071 .0081 .0164 .0001 1.00 1.25 1.45 2.80
4 2 lion bite pund crnx 4 4.45 4.45 .0080 .0083 .0058 .0009 1.00 1.00 1.00 1.70
5 2 bear boat voke zqpz 4 4.88 4.89 .0088 .0044 .0023 <.0001 1.00 1.00 1.00 2.00
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Cat. String Length Zipf BG OLD20

CR CI PW NW CR CI CR CI PW NW CR CI PW NW

6 2 tiger photo flamp qyhzt 5 4.36 4.42 .0086 .0063 .0024 <.0001 1.00 1.55 1.50 3.00
7 2 cow lad jat ltw 3 4.44 4.43 .0059 .0039 .0050 .0008 1.00 1.00 1.00 1.00
8 2 elephant cupboard durledge ppchpsxf 8 4.34 4.27 .0087 .0027 .0039 .0010 2.60 2.50 2.85 4.75
9 2 deer chip quib mykc 4 4.26 4.26 .0100 .0051 .0009 .0005 1.00 1.00 1.20 1.90
10 2 mouse opera plail kbdwz 5 4.41 4.41 .0088 .0073 .0038 <.0001 1.00 1.60 1.25 2.90
11 2 pig map nid vbw 3 4.51 4.52 .0023 .0031 .0027 <.0001 1.00 1.00 1.00 1.30
12 2 rat pit dar sgh 3 4.23 4.20 .0069 .0080 .0064 .0017 1.00 1.00 1.00 1.00
13 2 giraffe yoghurt bruddle ftgvhvf 7 3.78 3.78 .0021 .0037 .0020 .0001 2.55 2.45 1.80 4.05
14 2 squirrel ballroom scanther hzchrrsz 8 3.94 3.93 .0045 .0053 .0183 .0016 2.05 2.45 2.35 4.00
15 2 rabbit button tellow qmhblb 6 4.39 4.46 .0046 .0077 .0067 .0004 1.35 1.00 1.25 3.05
16 2 goat poem spog chbz 4 4.12 4.13 .0050 .0020 .0016 .0017 1.00 1.15 1.00 1.80
17 2 zebra fibre spalt xyvlx 5 3.69 3.69 .0016 .0060 .0035 <.0001 1.80 1.55 1.55 2.90
18 2 moose dryer pober hmjnh 5 3.35 3.35 .0045 .0066 .0075 <.0001 1.00 1.35 1.25 2.00
19 2 sheep chair glate lkljx 5 4.67 4.66 .0109 .0068 .0058 .0002 1.00 1.00 1.35 2.90
20 2 cheetah brewery quintle yzcqqcy 7 3.45 3.45 .0090 .0086 .0078 <.0001 2.20 1.85 1.90 4.00
21 2 raccoon cutlass gromple wqdmybd 7 2.57 2.57 .0055 .0039 .0044 .0003 2.45 2.20 2.20 4.00
22 2 wolf jury pess thjg 4 4.17 4.17 .0023 .0035 .0054 .0135 1.00 1.00 1.00 1.75
23 2 fox jam vay tyf 3 4.46 4.34 .0025 .0018 .0023 .0007 1.00 1.00 1.00 1.00
24 2 hamster missile cromdel nldccqn 7 3.67 3.66 .0098 .0057 .0041 .0007 1.70 1.70 2.00 3.95
25 2 donkey boiler altess cjymfs 6 3.99 4.00 .0057 .0074 .0062 <.0001 1.60 1.50 1.80 2.95
26 2 elk jig het stf 3 3.16 3.13 .0031 .0017 .0191 .0054 1.00 1.00 1.00 1.00
27 2 lizard banker baffen yqlxyg 6 3.73 3.73 .0038 .0095 .0036 <.0001 1.60 1.00 1.85 3.70
28 2 turtle cement vamine tgkcdh 6 3.64 3.64 .0039 .0074 .0080 <.0001 1.65 1.65 1.65 3.00
1 3 leg bus rea dzx 3 4.88 4.74 .0044 .0041 .0140 <.0001 1.00 1.00 1.00 1.25
2 3 arm pub wub pfm 3 4.70 4.71 .0058 .0008 .0003 <.0001 1.00 1.00 1.00 1.00
3 3 finger toilet gellor cnqckq 6 4.53 4.54 .0128 .0066 .0069 .0005 1.00 1.65 1.75 3.00
4 3 head room fune tgvn 4 5.61 5.60 .0150 .0056 .0041 <.0001 1.00 1.00 1.00 1.90
5 3 toe bug dut vxl 3 4.08 4.07 .0068 .0023 .0034 <.0001 1.00 1.00 1.00 1.00
6 3 eye bed hix rrp 3 5.13 5.12 .0028 .0073 .0050 .0008 1.00 1.00 1.00 1.00
7 3 hand door fope rync 4 5.44 5.26 .0160 .0067 .0035 .0018 1.00 1.00 1.00 1.75203
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Cat. String Length Zipf BG OLD20

CR CI PW NW CR CI CR CI PW NW CR CI PW NW

8 3 nose moon bist dtzn 4 4.72 4.74 .0057 .0072 .0083 <.0001 1.00 1.00 1.00 1.90
9 3 ear toy zet mfw 3 4.41 4.39 .0097 .0067 .0027 <.0001 1.00 1.00 1.00 1.00
10 3 mouth cloud pench yfrtc 5 4.78 4.77 .0172 .0064 .0056 .0014 1.20 1.30 1.00 2.00
11 3 heart phone shiff vlhfv 5 5.30 5.19 .0139 .0070 .0043 <.0001 1.10 1.10 1.40 2.85
12 3 knee pipe flen sbpf 4 4.26 4.26 .0048 .0019 .0067 <.0001 1.35 1.00 1.00 1.85
13 3 neck bath hisk scfm 4 4.65 4.65 .0044 .0175 .0075 .0004 1.00 1.00 1.10 1.40
14 3 brain stone spont pqnrk 5 4.84 4.84 .0086 .0113 .0070 .0003 1.00 1.00 1.55 2.25
15 3 hair star weck qcdk 4 5.03 5.04 .0074 .0086 .0043 <.0001 1.00 1.00 1.00 1.90
16 3 elbow hatch quind tcdnw 5 3.85 3.85 .0035 .0078 .0101 .0002 1.85 1.20 1.50 2.60
17 3 lip pea weg sjf 3 3.91 3.91 .0035 .0064 .0039 <.0001 1.00 1.00 1.00 1.00
18 3 thigh basin slint bmrvz 5 3.48 3.48 .0142 .0100 .0106 .0002 1.60 1.00 1.00 2.50
19 3 ankle wheat trond lynjd 5 3.94 3.95 .0074 .0143 .0091 .0012 1.40 1.50 1.25 1.95
20 3 face city rupe csnz 4 5.44 5.40 .0032 .0059 .0023 <.0001 1.00 1.00 1.00 1.90
21 3 liver diary shipe xsfgp 5 4.13 4.13 .0095 .0047 .0045 <.0001 1.00 1.60 1.25 2.75
22 3 lung cart tesh zplg 4 3.81 3.77 .0055 .0064 .0074 .0010 1.00 1.00 1.00 1.90
23 3 tongue pastry wackle ddqdsp 6 4.36 4.37 .0081 .0057 .0040 .0006 1.75 1.55 1.65 3.00
24 3 tooth sword adelp gvqny 5 4.09 4.09 .0159 .0041 .0036 .0003 1.20 1.50 1.85 2.45
25 3 torso igloo chiff vdrql 5 2.93 2.91 .0081 .0033 .0046 .0003 1.50 1.90 1.70 2.60
26 3 wrist candy serth swzkt 5 3.84 3.83 .0073 .0095 .0178 .0001 1.10 1.00 1.45 2.00
27 3 hip pen rog kpx 3 4.37 4.37 .0051 .0077 .0036 <.0001 1.00 1.00 1.00 1.00
28 3 muscle cheque brance xcblvj 6 4.11 4.11 .0034 .0081 .0062 .0005 1.80 1.80 1.40 3.20
1 4 bird ship plub fvdg 4 4.85 4.77 .0021 .0047 .0015 <.0001 1.00 1.00 1.05 1.90
2 4 plane grass sterd jrqxk 5 4.58 4.58 .0085 .0042 .0101 <.0001 1.00 1.00 1.30 3.00
3 4 helicopter auctioneer hotchsting ppkpwgvfff 10 4.38 4.40 .0096 .0070 .0081 .0005 3.45 3.05 3.20 6.15
4 4 bee gym lon gcd 3 4.19 4.19 .0063 .0002 .0094 <.0001 1.00 1.00 1.00 1.00
5 4 kite arch gope vrgl 4 3.89 3.88 .0084 .0054 .0035 .0004 1.00 1.00 1.00 2.00
6 4 butterfly catalogue rothespan flbmmtvpz 9 4.03 3.99 .0056 .0045 .0148 .0002 2.45 2.15 3.45 5.00
7 4 mosquito cauldron hoshdess zvfbgvpd 8 3.29 3.29 .0051 .0050 .0043 <.0001 2.55 2.35 2.85 4.90
8 4 bat pin lim fhl 3 4.30 4.26 .0060 .0135 .0046 <.0001 1.00 1.00 1.00 1.00
9 4 eagle canal meach wrprc 5 4.11 4.18 .0048 .0090 .0066 .0009 1.10 1.00 1.20 2.00
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CR CI PW NW CR CI CR CI PW NW CR CI PW NW

10 4 dragonfly ballerina swothpold gnhlfrtjt 9 3.20 3.21 .0039 .0102 .0074 .0008 3.15 2.45 3.70 5.00
11 4 ladybird waitress naprator bhlnpfbb 8 3.35 3.38 .0022 .0083 .0063 <.0001 2.75 2.10 2.70 5.00
12 4 moth monk fung xcpd 4 3.64 3.63 .0165 .0064 .0055 <.0001 1.00 1.00 1.00 1.90
13 4 wasp mast ploe pprm 4 3.45 3.51 .0052 .0080 .0028 .0017 1.00 1.00 1.00 1.70
1 5 apple guest velay lncsw 5 4.58 4.58 .0034 .0056 .0061 .0006 1.35 1.35 1.65 2.00
2 5 banana dancer strile qxmqht 6 4.21 4.22 .0091 .0094 .0065 .0004 1.60 1.20 1.45 3.85
3 5 grape carpet clane vlvqt 5 3.54 4.25 .0028 .0051 .0081 <.0001 1.00 1.65 1.00 2.65
4 5 pear tyre trun mrfm 4 3.83 3.83 .0078 .0069 .0027 .0002 1.00 1.00 1.00 1.75
5 5 peach strap flube xdcpz 5 3.62 3.62 .0054 .0049 .0023 <.0001 1.00 1.00 1.45 2.75
6 5 strawberry wheelchair entrophite rhgpxddbmv 10 3.99 4.01 .0055 .0086 .0073 <.0001 3.45 3.70 3.60 6.00
7 5 kiwi lard feep htzr 4 3.27 3.28 .0022 .0056 .0029 .0007 1.45 1.00 1.00 2.00
8 5 pineapple magazine essendial pwmhhlgtg 9 3.84 4.29 .0071 .0059 .0073 <.0001 3.30 2.45 3.00 4.90
9 5 plum maid bamp bvsl 4 3.79 3.77 .0016 .0035 .0024 .0002 1.00 1.00 1.00 1.90
10 5 mango wagon prind tcxxv 5 3.74 3.73 .0102 .0065 .0117 .0001 1.00 1.60 1.20 2.80
11 5 cherry lawyer lerine qwvlpj 6 4.23 4.23 .0124 .0054 .0133 <.0001 1.55 1.70 1.45 3.65
12 5 lemon storm inkle lphcq 5 4.46 4.46 .0070 .0089 .0090 .0002 1.00 1.00 1.35 2.75
13 5 blueberry letterbox pracement vmpwrnhlv 9 3.17 3.15 .0044 .0058 .0060 .0005 2.55 2.90 2.40 5.00
14 5 cantaloupe physician rambration ptblqmbvdj 10 2.26 3.22 .0086 .0040 .0054 .0004 3.15 2.90 3.00 5.95
15 5 raspberry warehouse nidgeward vgnkllrqz 9 3.81 3.80 .0057 .0092 .0036 .0015 2.85 1.85 3.50 5.00
16 5 lime lamp wurn rsdj 4 4.09 4.09 .0061 .0030 .0023 .0012 1.00 1.00 1.00 1.90
17 5 tangerine beanstalk prosplard pxntlbnwk 9 3.03 3.00 .0123 .0078 .0041 .0013 2.45 2.95 3.00 4.60
18 5 melon broth pluff qqjng 5 3.49 3.49 .0084 .0135 .0014 .0030 1.00 1.30 1.65 2.75
19 5 nectarine paperclip spimstick fsvrvvwhc 9 2.53 2.55 .0084 .0045 .0040 .0008 2.70 3.75 3.45 5.85
20 5 papaya folder quanch kqjlzt 6 2.90 2.94 .0021 .0071 .0056 <.0001 1.80 1.00 1.85 3.40
21 5 apricot toaster slought wrhdcks 7 3.29 3.29 .0045 .0102 .0052 .0006 2.40 1.60 1.75 2.85
1 6 drum desk crun skpm 4 4.33 4.34 .0010 .0051 .0020 .0002 1.00 1.00 1.00 1.65
2 6 guitar pastry shrout lmwdmp 6 4.39 4.37 .0063 .0057 .0073 .0004 1.80 1.55 1.70 3.00
3 6 flute apron weast mtfzs 5 3.48 3.48 .0041 .0062 .0088 <.0001 1.05 1.05 1.45 2.25
4 6 piano shell punce jnwxl 5 4.36 4.39 .0072 .0129 .0027 <.0001 1.10 1.00 1.35 2.80
5 6 trumpet desert swoggle zrdvnvw 7 3.82 4.30 .0026 .0091 .0023 .0004 1.70 1.60 1.90 4.00205
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6 6 clarinet hosepipe glutcher wlsrcbnw 8 3.26 3.25 .0086 .0034 .0094 .0003 2.10 2.80 2.10 4.90
7 6 saxophone scarecrow beetdouse kknwrbjjc 9 3.25 3.35 .0040 .0066 .0068 .0002 2.75 3.35 3.40 5.85
8 6 violin oyster lacket rxvhlv 6 3.82 3.82 .0081 .0080 .0040 <.0001 1.75 1.55 1.45 3.00
9 6 trombone armchair incolent bkjbbslv 8 3.27 3.31 .0058 .0056 .0095 .0002 2.50 2.80 2.60 4.15
10 6 tuba wart lidy zdrm 4 2.95 2.88 .0016 .0064 .0032 .0007 1.00 1.00 1.00 1.95
11 6 cello wedge clush bgcbd 5 3.46 3.45 .0060 .0048 .0028 <.0001 1.00 1.25 1.45 2.45
12 6 oboe toga crim ggmv 4 2.70 2.58 .0015 .0049 .0034 .0001 1.55 1.00 1.00 1.95
13 6 bass nail kile vrkz 4 4.18 4.18 .0045 .0034 .0049 .0004 1.00 1.00 1.00 2.00
14 6 viola clove thack vdwqq 5 3.07 3.07 .0032 .0046 .0157 <.0001 1.35 1.00 1.15 2.95
15 6 harp slug snam vdlr 4 3.40 3.39 .0090 .0010 .0018 .0002 1.00 1.00 1.00 1.85
16 6 keyboard fountain swentern nfzrbhlr 8 3.64 3.67 .0034 .0101 .0083 .0001 2.40 2.15 2.40 4.00
17 6 piccolo thicket gruzzle tfszjhg 7 2.56 2.55 .0035 .0112 .0018 <.0001 2.30 1.60 1.85 4.00
18 6 banjo kayak tassy mbrcl 5 3.31 3.27 .0057 .0016 .0040 .0009 1.45 1.30 1.00 2.00
19 6 harmonica projector strebbler jtwjmvvvq 9 3.05 3.07 .0072 .0049 .0079 <.0001 2.15 2.05 2.90 6.00
20 6 cymbal amulet fergle psshtr 6 2.59 2.54 .0025 .0043 .0062 .0024 2.15 1.95 1.95 2.30
21 6 tambourine paintbrush sproughlay nmkvtqsnpk 10 3.13 3.17 .0083 .0059 .0048 <.0001 2.55 3.50 3.75 6.00
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B.2 Task-Stimulus Interaction over Right-Hemispheric Occipitotemporal
Electrodes

Considering that effects may differ between hemispheres, I examined the pattern of effects
observed over a right hemispheric occipitotemporal cluster of electrodes (Figure B.3), mirroring
the locations of the left-hemispheric cluster in the main analysis. I estimated sample-level (512
Hz) linear mixed effects models to right-hemispheric occipitotemporal electrodes, as described
for left-hemispheric electrodes (section 4.3.1). Model estimates (Figure B.4) and fixed-effect
predictions (Figure B.5) were similar to those observed over the left hemisphere, and did not
reveal robust N1 effects of the task-stimulus interaction of central interest for the study, nor
a main effect of task. As was observed for left-hemispheric occipitotemporal electrodes, the
interaction between task and category relevance emerged late, after the N1, and was observed
later, as a smaller effect, over the right hemisphere than it was over the left hemisphere. Effects
of stimulus were also similar between the left and right hemisphere, although the estimated
difference between words and pseudowords in the N1 was around .5µV larger in the right
hemisphere.

Figure B.3: The locations of the 13 right-hemispheric occipitotemporal electrodes (red).
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Figure B.4: Time-course of fixed effects estimates from per-sample linear mixed effects models
of right-hemispheric occipitotemporal electrode voltages. (A) Fixed effects estimates from a
model with all variables deviation-coded. (B) Simple effects of task for each stimulus type. In
both panels, solid lines depict estimates for each sample, while shaded regions depict 95%
confidence intervals.

208



APPENDIX B

Task
SCT

LDT
Stimulus Type

Category−Irrelevant Words

Category−Relevant Words

Pseudowords Nonwords

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

−4

−2

0

2

Category−Irrelevant Words Category−Relevant Words

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

−4

−2

0

2

Time (ms)

A
m

pl
itu

de
 (

µV
)

A

−4

−2

0

2

SCT LDT

−200 0 200 400 600 800 −200 0 200 400 600 800

−4

−2

0

2

Time (ms)

A
m

pl
itu

de
 (

µV
)

B

Figure B.5: Fixed-effect predictions of right-hemispheric occipitotemporal ERPs for each
factorial cell, using estimates depicted in Figure B.4. These predictions are equivalent to overall
average ERPs, but with the influence of random intercepts and slopes removed. Panels focus
on (A) the effect of task for each stimulus type, and (B) the effect of category relevance in each
task.
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B.3 Task-Stimulus Interaction over Centroparietal Electrodes

In an exploratory analysis, I examined effects in a centroparietal cluster of electrodes
(Figure B.6), reflecting the typical topography of the N400. I estimated sample-level (512 Hz)
linear mixed effects models to centroparietal electrodes, as described for left-hemispheric
occipitotemporal electrodes (section 4.3.1). Model estimates (Figure B.7) and fixed-effect
predictions (Figure B.8), consistent with the scalp-wide analysis (section 4.3.2), revealed
a large interaction between category relevance and task, peaking around 400 ms. Here,
less negative-going amplitudes, and more positive-going amplitudes, were observed for
category-relevant than -irrelevant words in the SCT after 200 ms, while these differences
were not obsered in the LDT. Effects of stimulus revealed an interesting pattern, where
nonwords and category-irrelevant words elicited similar ERPs, while amplitudes were more
negative-going for pseudowords. Finally, it is notable that although effects peaked at around
400 ms centroparietally, the observed components did not - rather, a negative-going component
peaked around 300 ms, and a positive-going component (possibly a P600) peaked between
550 and 600 ms.

Figure B.6: The locations of the 12 centroparietal electrodes (red).

210



APPENDIX B

Figure B.7: Time-course of fixed effects estimates from per-sample linear mixed effects models
of centroparietal electrode voltages. (A) Fixed effects estimates from a model with all variables
deviation-coded. (B) Simple effects of task for each stimulus type. In both panels, solid lines
depict estimates for each sample, while shaded regions depict 95% confidence intervals.
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Figure B.8: Fixed-effect predictions of centroparietal ERPs for each factorial cell, using
estimates depicted in Figure B.7. These predictions are equivalent to overall average ERPs,
but with the influence of random intercepts and slopes removed. Panels focus on (A) the effect
of task for each stimulus type, and (B) the effect of category relevance in each task.
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C.1 Picture-Word Stimuli

Table C.2: All stimuli for the picture-word task. Column Image IDs are unique file names given to each image in the BOSS, while %Agree reports
the percentage of modal name agreement for the image in the BOSS. Set refers to the assigned stimulus sets. Column Word contains the
matched congruent (C) and incongruent (I) words associated with each image. The remaining columns are as follows, separating values into
those for the congruent (C) and incongruent (I) words where possible: Length = number of characters; Zipf = Zipf frequency in SUBTLEX-UK;
OLD20 = OLD20 values in the LexOPS dataset; BG = mean character bigram probabilities in SUBTLEX-UK; CNC = mean concreteness ratings
in Brysbaert et al. (2014); Cosine PPMI = cosine positive pointwise mutual information values of semantic associative similarity between matched
congruent and incongruent words from the Small World of Words. Rows are numbered for ease of reference.

Image ID %Agree Set Word Length Zipf OLD20 BG CNC Cosine PPMI

C I C I C I C I C I C I

1 joustingspear 7% 2 spear porch 5 5 3.42 3.47 1.20 1.15 .0062 .0047 5.00 4.92 .0071
2 cabasa 10% 1 shaker trough 6 6 3.35 3.32 1.00 1.65 .0092 .0067 4.11 4.17 .0073
3 powerchair 10% 1 scooter missile 7 7 3.63 3.66 1.60 1.70 .0077 .0057 4.96 4.83 .0065
4 pottery 12% 1 pottery rainbow 7 7 4.14 4.18 1.65 2.40 .0070 .0069 4.72 4.57 .0093
5 lbracket01 13% 1 bracket tornado 7 7 3.40 3.49 1.75 2.10 .0036 .0059 4.43 4.53 .0003
6 flail 14% 2 mace knob 4 4 3.37 3.50 1.00 1.35 .0042 .0029 4.81 4.75 .0017
7 plastictube 16% 1 tube chip 4 4 4.28 4.26 1.00 1.00 .0031 .0051 4.82 4.71 .0008
8 paintscraper 16% 2 scraper nightie 7 7 2.80 2.89 1.75 1.85 .0052 .0037 4.23 4.30 .0002
9 pillar 19% 2 pillar sewage 6 6 3.54 3.58 1.60 1.95 .0060 .0041 4.77 4.52 .0016
10 bazooka 19% 1 bazooka sunburn 7 7 2.76 2.86 2.55 1.85 .0015 .0026 4.66 4.57 .0037
11 chocolatecroissant 21% 1 pastry weapon 6 6 4.37 4.29 1.55 1.90 .0057 .0067 4.97 4.76 .0011
12 solderingwire 21% 2 wire pond 4 4 4.29 4.20 1.00 1.00 .0089 .0097 4.72 4.90 .0084
13 hedgeshears 24% 2 shears tendon 6 6 2.94 2.98 1.40 1.55 .0120 .0103 4.61 4.47 .0013
14 pouch01b 26% 1 pouch ledge 5 5 3.36 3.38 1.05 1.10 .0069 .0051 4.50 4.72 0
15 ram 27% 2 ram pup 3 3 3.65 3.74 1.00 1.00 .0037 .0014 4.55 4.61 .0083
16 oats 28% 1 oats lice 4 4 3.33 3.29 1.00 1.00 .0041 .0051 4.78 4.73 .0059
17 bandage 28% 2 bandage whisker 7 7 3.22 3.10 1.80 1.65 .0071 .0087 4.85 4.70 .0087
18 bastingbrush 28% 2 brush stamp 5 5 4.29 4.20 1.35 1.30 .0029 .0050 4.54 4.70 .0021
19 rug01 29% 1 rug soy 3 3 3.57 3.64 1.00 1.00 .0014 .0028 4.79 4.70 0
20 radio01 29% 1 radio smile 5 5 4.82 4.71 1.40 1.00 .0036 .0040 4.74 4.50 .0012
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Image ID %Agree Set Word Length Zipf OLD20 BG CNC Cosine PPMI

C I C I C I C I C I C I

21 tonfa 29% 2 baton yeast 5 5 3.53 3.64 1.00 1.50 .0097 .0076 4.64 4.72 .0036
22 salsa 29% 1 salsa trunk 5 5 3.82 3.93 1.20 1.15 .0038 .0025 4.70 4.71 .0010
23 smokedsalmon 29% 2 salmon tunnel 6 6 4.34 4.23 1.25 1.65 .0058 .0039 4.81 4.82 .0007
24 handmixer01d 31% 2 mixer wedge 5 5 3.45 3.45 1.40 1.25 .0056 .0048 4.33 4.41 .0019
25 videotape01b 31% 1 cassette revolver 8 8 2.94 2.85 1.95 1.75 .0058 .0079 4.60 4.69 .0019
26 woodboard 31% 2 wood ship 4 4 4.78 4.77 1.00 1.00 .0034 .0047 4.85 4.87 .0097
27 jar03 33% 2 jar lip 3 3 3.96 3.91 1.00 1.00 .0055 .0035 5.00 4.96 .0039
28 cuttingpliers02 33% 2 pliers beanie 6 6 2.73 2.80 1.65 1.35 .0070 .0082 4.93 4.74 .0019
29 kalashnikov 33% 2 rifle altar 5 5 3.62 3.58 1.65 1.00 .0042 .0063 4.85 4.85 .0057
30 overalls 33% 1 overalls mongoose 8 8 3.01 2.94 2.00 2.70 .0079 .0070 4.74 4.89 .0025
31 towel01 34% 1 towel spine 5 5 3.87 3.91 1.30 1.00 .0077 .0090 4.86 4.88 .0090
32 branch02 36% 1 branch powder 6 6 4.10 4.17 1.15 1.55 .0064 .0065 4.90 4.76 0
33 ribbon03a 36% 2 lace beak 4 4 3.73 3.83 1.00 1.00 .0041 .0059 4.85 4.96 .0023
34 yarn 36% 1 yarn twig 4 4 3.14 3.22 1.00 1.20 .0041 .0028 4.93 4.75 0
35 napkin 36% 1 napkin weasel 6 6 3.31 3.33 1.90 1.60 .0062 .0076 4.93 4.74 .0028
36 bag 36% 1 bag oil 3 3 4.89 4.98 1.00 1.00 .0021 .0033 4.90 4.93 .0026
37 mussel 36% 2 clam sash 4 4 3.35 3.37 1.00 1.00 .0029 .0050 4.89 4.67 .0033
38 tray 37% 1 tray sail 4 4 4.15 4.17 1.00 1.00 .0038 .0035 4.74 4.59 .0032
39 brainmodel 38% 1 brain river 5 5 4.84 4.93 1.00 1.00 .0086 .0094 4.69 4.89 .0014
40 megaphone 38% 1 megaphone billiards 9 9 2.89 2.89 2.85 2.30 .0050 .0046 4.76 4.61 .0018
41 foodprocessor 38% 2 blender javelin 7 7 3.32 3.35 1.45 1.85 .0098 .0087 5.00 4.90 .0022
42 slide02 38% 2 slide trail 5 5 4.17 4.27 1.15 1.10 .0036 .0038 4.48 4.46 .0078
43 turnip 38% 2 turnip nickel 6 6 3.36 3.27 1.70 1.35 .0024 .0040 4.79 4.79 .0013
44 oyster02 38% 1 oyster canvas 6 6 3.82 3.95 1.55 1.80 .0080 .0068 4.85 4.78 .0017
45 giftbow02b 39% 1 bow jam 3 3 4.22 4.34 1.00 1.00 .0040 .0018 4.61 4.71 .0072
46 mask02a 39% 1 mask pony 4 4 4.04 3.96 1.00 1.00 .0046 .0059 4.96 4.90 .0045
47 bulldozer 40% 1 bulldozer pepperoni 9 9 2.91 2.95 2.50 2.70 .0055 .0067 4.90 5.00 0
48 iceberglettuce 41% 1 lettuce pyramid 7 7 3.81 3.71 2.40 2.50 .0038 .0022 4.97 4.96 .0031
49 leek 42% 1 leek moat 4 4 3.56 3.69 1.00 1.00 .0047 .0045 4.92 4.69 .0013
50 scalpel 43% 1 scalpel tequila 7 7 3.10 3.19 1.85 2.60 .0043 .0034 4.86 4.77 0215
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C I C I C I C I C I C I

51 pipe 43% 2 pipe taxi 4 4 4.26 4.30 1.00 1.00 .0019 .0016 4.88 4.93 .0011
52 glassescase 44% 1 wallet brandy 6 6 3.81 3.83 1.20 1.25 .0074 .0077 4.81 4.81 .0038
53 coaster 44% 2 tile mast 4 4 3.56 3.51 1.00 1.00 .0068 .0080 4.68 4.92 .0057
54 lectern01 45% 2 podium liquid 6 6 4.17 4.25 1.85 1.75 .0018 .0022 4.89 4.72 .0032
55 doorlock 46% 2 lock rail 4 4 4.42 4.40 1.00 1.00 .0028 .0040 4.65 4.90 .0045
56 puzzle 48% 1 puzzle sketch 6 6 3.93 3.85 1.65 1.70 .0018 .0031 4.75 4.56 .0069
57 rhinoceros02 48% 2 rhinoceros aftershave 10 10 3.07 3.14 3.55 3.35 .0084 .0075 4.75 4.56 .0012
58 box01a 49% 1 box sun 3 3 5.12 5.01 1.00 1.00 .0015 .0028 4.90 4.83 .0033
59 star 50% 2 star wall 4 4 5.04 5.05 1.00 1.00 .0086 .0079 4.69 4.86 .0015
60 scanner 50% 1 scanner bedding 7 7 3.46 3.55 1.75 1.35 .0089 .0093 4.79 4.61 0
61 mug05 50% 2 mug wax 3 3 3.93 3.87 1.00 1.00 .0014 .0027 4.80 4.97 .0069
62 ladle02a 51% 1 ladle tiara 5 5 3.21 3.16 1.50 1.45 .0041 .0059 4.90 4.89 .0050
63 humanskeleton 52% 1 skeleton tortoise 8 8 3.78 3.82 2.05 2.60 .0073 .0089 4.97 4.87 .0025
64 gecko 52% 1 lizard barley 6 6 3.73 3.61 1.60 1.00 .0038 .0051 4.68 4.59 .0009
65 boxtrailer 52% 2 trailer receipt 7 7 3.68 3.68 1.70 2.20 .0071 .0049 4.79 4.86 .0058
66 mechanicalpencil02 53% 1 pencil kidney 6 6 3.98 3.94 1.90 1.70 .0047 .0030 4.88 4.96 .0086
67 spatula03 54% 2 spatula airship 7 7 2.95 2.83 2.05 2.35 .0039 .0040 4.96 4.92 .0002
68 fusilli03a 54% 1 pasta motor 5 5 4.19 4.25 1.00 1.60 .0066 .0082 4.86 4.84 .0022
69 bracelet01 54% 2 bracelet postcard 8 8 3.79 3.72 2.60 2.60 .0047 .0048 4.96 4.93 .0047
70 riverotter 55% 2 otter wrist 5 5 3.80 3.84 1.00 1.15 .0090 .0073 4.86 4.93 .0042
71 grandpiano 55% 2 piano salad 5 5 4.36 4.38 1.10 1.00 .0072 .0049 4.90 4.97 0
72 canoepaddle02 55% 2 paddle buzzer 6 6 3.73 3.73 1.30 1.70 .0029 .0046 4.80 4.66 .0039
73 suitcase 56% 2 suitcase pavement 8 8 3.78 3.68 2.85 2.10 .0057 .0070 4.97 4.72 .0014
74 aquarium 57% 1 aquarium textbook 8 8 3.33 3.38 2.45 2.75 .0028 .0028 4.77 4.86 .0026
75 trombone 57% 2 trombone mosquito 8 8 3.27 3.29 2.50 2.55 .0058 .0051 4.90 4.88 0
76 spaghetti01 57% 1 spaghetti underwear 9 9 3.79 3.72 3.25 2.60 .0071 .0084 5.00 4.96 .0061
77 thimble 58% 2 thimble oregano 7 7 2.98 3.00 1.80 2.15 .0106 .0096 5.00 4.81 0
78 syringe01 58% 2 syringe mascara 7 7 3.12 3.05 1.85 1.80 .0080 .0058 4.81 4.93 0
79 antenna 59% 2 antenna sirloin 7 7 3.01 2.95 1.95 2.70 .0087 .0067 4.75 4.66 0
80 notebook03a 59% 1 notebook pendulum 8 8 3.32 3.30 2.75 2.70 .0044 .0049 4.92 4.69 .0001
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81 cleaver01 59% 2 knife album 5 5 4.49 4.55 1.75 1.75 .0021 .0033 4.90 4.69 .0037
82 honeydewmelon 59% 2 melon timer 5 5 3.49 3.40 1.00 1.00 .0084 .0097 4.78 4.69 .0003
83 platypus 60% 2 platypus campfire 8 8 2.82 2.94 2.75 2.55 .0035 .0050 4.83 4.79 .0014
84 shelf 60% 1 shelf trout 5 5 4.02 3.96 1.50 1.00 .0108 .0087 4.96 4.72 <.0001
85 macaroni01 60% 2 macaroni bookcase 8 8 3.08 3.02 1.95 2.70 .0068 .0044 4.97 4.93 .0014
86 apricot 61% 1 peach valve 5 5 3.62 3.53 1.00 1.55 .0054 .0050 4.90 4.83 0
87 seaturtle 62% 1 turtle pelvis 6 6 3.64 3.53 1.65 1.75 .0039 .0048 5.00 4.93 .0012
88 triangle 62% 1 triangle lighting 8 8 3.93 4.00 1.85 1.35 .0072 .0086 4.52 4.38 .0037
89 vulture 62% 1 vulture measles 7 7 3.20 3.12 1.80 1.90 .0052 .0074 4.73 4.69 .0024
90 balcony02 64% 1 balcony seaweed 7 7 3.83 3.83 1.90 1.85 .0056 .0063 4.68 4.89 .0033
91 adjustablewrench01b 64% 2 wrench blouse 6 6 3.15 3.08 1.60 1.75 .0076 .0078 4.93 4.96 .0048
92 cane 64% 2 cane reef 4 4 3.75 3.79 1.00 1.00 .0107 .0087 4.87 4.70 .0053
93 shield02 64% 2 shield packet 6 6 3.80 3.90 1.70 1.45 .0051 .0036 4.66 4.46 0
94 tank 64% 1 tank seed 4 4 4.34 4.24 1.00 1.00 .0086 .0071 4.80 4.71 .0066
95 straw 66% 2 straw badge 5 5 4.17 4.06 1.00 1.00 .0047 .0025 4.77 4.93 .0020
96 pickle01a 66% 2 pickle magnet 6 6 3.66 3.70 1.10 1.70 .0034 .0039 4.64 4.70 .0081
97 axe01 67% 1 axe rum 3 3 3.85 3.91 1.00 1.00 .0001 .0010 5.00 4.93 .0023
98 boat 67% 1 boat card 4 4 4.89 4.89 1.00 1.00 .0044 .0059 4.93 4.90 .0093
99 bowl01 67% 1 bowl neck 4 4 4.69 4.65 1.00 1.00 .0027 .0044 4.87 5.00 .0063
100 plunger02 67% 2 plunger caribou 7 7 3.03 2.93 1.65 1.95 .0072 .0073 4.96 4.92 .0069
101 panda 67% 1 panda lever 5 5 3.73 3.66 1.00 1.00 .0091 .0100 4.75 4.77 .0008
102 toothpick02 67% 2 toothpick periscope 9 9 2.79 2.81 3.35 2.65 .0090 .0069 4.93 4.78 .0011
103 kettle01 67% 2 kettle picnic 6 6 4.02 4.04 1.45 1.90 .0041 .0027 4.75 4.83 0
104 lime 67% 2 lime swan 4 4 4.09 3.98 1.00 1.00 .0061 .0083 4.96 4.96 .0031
105 razor01 68% 1 razor strap 5 5 3.69 3.62 1.75 1.00 .0038 .0049 4.90 4.79 .0021
106 sailboat 69% 1 sailboat knapsack 8 8 2.08 2.04 2.50 3.00 .0034 .0020 4.89 4.90 .0089
107 ribbon04 69% 1 ribbon bunker 6 6 3.58 3.63 1.85 1.30 .0047 .0065 4.89 4.79 .0015
108 barn 69% 2 barn menu 4 4 4.32 4.36 1.00 1.00 .0048 .0070 4.79 4.67 .0009
109 moon 69% 2 moon seat 4 4 4.74 4.78 1.00 1.00 .0072 .0088 4.90 4.78 .0001
110 parrot01 69% 2 parrot sleeve 6 6 3.84 3.88 1.65 1.70 .0053 .0054 5.00 4.84 .0016217
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Image ID %Agree Set Word Length Zipf OLD20 BG CNC Cosine PPMI

C I C I C I C I C I C I

111 bacon 71% 1 bacon photo 5 5 4.34 4.42 1.00 1.55 .0067 .0063 4.90 4.93 0
112 americangoldfinch 71% 2 bird cake 4 4 4.85 4.81 1.00 1.00 .0021 .0039 5.00 4.81 .0035
113 cheetah 71% 1 cheetah stopper 7 7 3.45 3.39 2.20 1.55 .0090 .0083 4.70 4.83 0
114 seagull 71% 2 seagull apricot 7 7 3.30 3.29 2.50 2.40 .0053 .0045 5.00 4.97 .0008
115 nail 72% 2 nail sofa 4 4 4.18 4.22 1.00 1.00 .0034 .0047 4.93 4.90 .0079
116 starfish01 72% 2 starfish armchair 8 8 3.27 3.31 2.15 2.80 .0065 .0056 4.90 5.00 .0054
117 pill 72% 1 pill knot 4 4 3.81 3.74 1.00 1.05 .0050 .0045 4.72 4.87 .0006
118 acorn 73% 1 acorn bugle 5 5 3.13 3.01 1.65 1.25 .0056 .0033 4.96 4.84 .0065
119 shorts01 74% 1 shorts needle 6 6 3.82 3.93 1.35 1.55 .0052 .0058 4.82 4.93 .0018
120 tripod01 74% 1 tripod seesaw 6 6 3.04 2.97 1.85 1.95 .0029 .0053 4.72 4.92 0
121 cabbage 74% 2 cabbage uniform 7 7 4.07 4.16 1.65 2.00 .0027 .0043 4.75 4.67 .0053
122 raccoon 74% 2 raccoon notepad 7 7 2.57 2.55 2.45 2.80 .0055 .0046 4.67 4.70 .0004
123 dormer 76% 1 window letter 6 6 4.84 4.85 1.40 1.00 .0106 .0087 4.86 4.70 .0094
124 volleyball 76% 1 volleyball chimpanzee 10 10 3.31 3.19 3.80 3.70 .0050 .0052 4.93 4.96 0
125 cocktailshrimp02 76% 2 shrimp tablet 6 6 3.63 3.54 1.80 1.65 .0030 .0045 4.80 4.82 .0042
126 bowrake 76% 1 rake yolk 4 4 3.40 3.52 1.00 1.20 .0035 .0040 4.84 4.78 .0043
127 tulip02 76% 1 tulip llama 5 5 3.21 3.12 1.70 1.60 .0031 .0054 5.00 4.78 .0022
128 tie02 79% 1 tie map 3 3 4.58 4.52 1.00 1.00 .0051 .0031 4.81 4.93 .0008
129 popcorn 79% 1 popcorn luggage 7 7 3.68 3.61 2.60 2.55 .0038 .0017 5.00 4.83 0
130 pigeon 79% 1 pigeon muscle 6 6 4.03 4.11 1.70 1.80 .0048 .0034 4.71 4.50 .0027
131 honeybee 79% 1 bee lid 3 3 4.19 4.16 1.00 1.00 .0063 .0044 4.88 4.96 0
132 callbell 79% 2 bell oven 4 4 4.54 4.54 1.00 1.00 .0073 .0079 4.96 4.97 .0066
133 teapot 79% 1 teapot mousse 6 6 3.78 3.76 1.90 1.35 .0054 .0076 4.96 4.83 .0039
134 rope03 79% 1 rope text 4 4 4.30 4.40 1.00 1.10 .0040 .0035 4.93 4.93 0
135 marble 80% 2 marble puppet 6 6 3.86 3.77 1.50 1.70 .0051 .0027 4.85 4.64 .0094
136 boot02b 82% 2 boot page 4 4 4.43 4.52 1.00 1.00 .0043 .0028 4.96 4.90 .0009
137 plum01 82% 1 plum ramp 4 4 3.79 3.67 1.00 1.00 .0016 .0030 4.85 4.69 .0047
138 tampon 82% 1 tampon poncho 6 6 2.30 2.41 1.80 1.65 .0051 .0059 4.86 4.97 .0076
139 slipper01b 82% 2 slipper warship 7 7 3.19 3.09 1.40 1.85 .0054 .0056 4.86 4.86 0
140 chalk 82% 2 chalk organ 5 5 3.87 3.99 1.30 1.00 .0077 .0080 4.90 4.77 .0018
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141 banjo 83% 2 banjo scalp 5 5 3.31 3.28 1.45 1.35 .0057 .0040 4.90 4.82 .0050
142 peanut01 83% 2 peanut bumper 6 6 3.65 3.53 1.95 1.40 .0078 .0058 4.89 4.96 .0091
143 pillow01a 84% 2 pillow beetle 6 6 3.73 3.72 1.60 1.60 .0050 .0053 5.00 4.83 .0068
144 cigar 85% 2 cigar stump 5 5 3.59 3.52 1.75 1.25 .0041 .0037 4.93 4.78 0
145 jellyfish 86% 2 jellyfish sunflower 9 9 3.56 3.55 3.10 2.95 .0049 .0054 4.93 4.80 .0096
146 calendar 86% 2 calendar medicine 8 8 4.33 4.31 2.30 2.10 .0085 .0084 4.62 4.79 .0017
147 bull 86% 1 bull cave 4 4 4.28 4.19 1.00 1.00 .0052 .0064 4.85 4.96 .0058
148 daddylonglegs 86% 1 spider tongue 6 6 4.24 4.36 1.25 1.75 .0059 .0081 4.97 4.93 .0083
149 chimney 86% 2 chimney bicycle 7 7 3.90 3.92 1.85 2.40 .0047 .0027 5.00 4.89 .0098
150 ashtray01 87% 2 ashtray brownie 7 7 3.20 3.29 2.30 1.75 .0043 .0033 4.97 4.82 .0055
151 binoculars01b 87% 1 binoculars ammunition 10 10 3.59 3.61 3.45 3.00 .0065 .0057 5.00 4.88 .0099
152 baseball01a 87% 2 baseball cinnamon 8 8 3.74 3.78 2.55 2.55 .0057 .0072 4.86 4.85 0
153 broom01 87% 1 broom algae 5 5 3.56 3.44 1.15 1.60 .0045 .0026 4.89 4.93 .0051
154 balloon01b 87% 1 balloon stomach 7 7 4.25 4.28 1.65 1.95 .0073 .0072 4.92 4.89 .0071
155 avocado01 87% 1 avocado sparrow 7 7 3.25 3.38 2.55 1.80 .0031 .0046 4.89 4.85 .0025
156 sock01a 87% 2 sock tuna 4 4 3.77 3.76 1.00 1.00 .0029 .0025 4.91 4.89 .0047
157 jeans01 88% 1 jeans wagon 5 5 3.84 3.73 1.30 1.60 .0078 .0065 5.00 4.89 .0012
158 nose 88% 2 nose mail 4 4 4.72 4.63 1.00 1.00 .0057 .0042 4.89 4.69 .0017
159 knee 88% 2 knee soil 4 4 4.26 4.35 1.35 1.00 .0048 .0039 5.00 4.87 .0075
160 stool01 88% 2 stool weeds 5 5 3.71 3.66 1.05 1.00 .0078 .0054 4.90 4.83 0
161 jeep 88% 1 jeep wick 4 4 3.17 3.16 1.00 1.00 .0023 .0039 4.80 4.69 .0004
162 cannon 88% 2 cannon throat 6 6 4.08 4.16 1.15 1.70 .0092 .0116 4.79 4.97 .0022
163 ostrich 88% 2 ostrich shuttle 7 7 3.52 3.58 2.10 1.80 .0053 .0036 4.71 4.63 .0077
164 porcupine 88% 1 porcupine lawnmower 9 9 3.06 3.11 3.25 3.45 .0064 .0052 5.00 4.97 .0023
165 arrow02 90% 2 arrow jewel 5 5 3.78 3.76 1.00 1.75 .0059 .0035 4.97 4.96 .0006
166 tricycle 90% 2 tricycle songbird 8 8 2.73 2.75 2.60 2.80 .0033 .0053 4.68 4.59 .0062
167 sponge01 90% 2 sponge timber 6 6 4.12 4.05 1.45 1.40 .0068 .0075 5.00 4.90 .0002
168 celery 92% 1 celery tattoo 6 6 3.66 3.78 1.90 1.85 .0082 .0067 4.80 4.71 .0039
169 violin 92% 1 violin burger 6 6 3.82 3.90 1.75 1.15 .0081 .0065 4.96 4.93 .0014
170 iron01b 92% 1 iron soup 4 4 4.52 4.41 1.00 1.00 .0078 .0086 4.59 4.72 .0060219
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171 lamp04a 92% 1 lamp wool 4 4 4.09 4.11 1.00 1.00 .0030 .0036 4.97 4.86 .0093
172 scarf 92% 2 scarf patio 5 5 3.76 3.73 1.05 1.35 .0043 .0058 4.97 4.89 .0026
173 microscope 92% 2 microscope spacecraft 10 10 3.56 3.46 2.50 3.25 .0035 .0025 5.00 4.80 .0083
174 rice 92% 1 rice bomb 4 4 4.42 4.49 1.00 1.00 .0050 .0031 4.86 4.84 .0075
175 rooster 93% 1 rooster serpent 7 7 3.13 3.16 1.50 1.70 .0087 .0088 4.75 4.97 .0008
176 beaver 93% 1 beaver shrine 6 6 3.50 3.53 1.00 1.55 .0098 .0088 4.68 4.47 .0097
177 trophy01 93% 2 trophy jacket 6 6 4.37 4.29 1.90 1.40 .0025 .0032 4.89 4.86 .0032
178 cactus 93% 2 cactus poodle 6 6 3.35 3.27 1.70 1.45 .0037 .0035 5.00 4.89 0
179 snowboard 95% 2 snowboard amplifier 9 9 2.84 2.73 2.65 2.65 .0035 .0051 4.86 4.79 .0076
180 potato02b 95% 1 potato ticket 6 6 4.44 4.51 1.60 1.35 .0071 .0048 4.85 4.70 .0086
181 apple07 95% 1 apple penny 5 5 4.58 4.49 1.40 1.00 .0034 .0044 5.00 4.83 .0080
182 apron 95% 2 apron lager 5 5 3.48 3.56 1.05 1.00 .0062 .0075 4.87 4.64 .0001
183 cigarette 95% 2 cigarette porcelain 9 9 4.11 4.10 2.80 2.90 .0065 .0071 4.88 4.63 .0091
184 skunk 95% 1 skunk quail 5 5 3.36 3.48 1.55 1.45 .0016 .0024 4.88 4.65 .0054
185 barnowl 95% 2 owl jug 3 3 4.07 4.06 1.00 1.00 .0026 .0016 4.93 4.96 .0095
186 lipstick02a 95% 1 lipstick cardigan 8 8 3.62 3.50 2.30 1.90 .0047 .0064 4.90 4.96 .0096
187 brick 95% 1 brick robot 5 5 4.18 4.09 1.00 1.60 .0036 .0040 4.83 4.65 .0017
188 leaf02a 97% 2 leaf pork 4 4 4.29 4.39 1.00 1.00 .0059 .0048 5.00 4.79 0
189 carrot01 97% 2 carrot tissue 6 6 4.08 3.97 1.40 1.75 .0059 .0051 5.00 4.93 .0053
190 kite 98% 2 kite cart 4 4 3.89 3.77 1.00 1.00 .0084 .0064 5.00 4.89 .0004
191 locker 98% 1 locker manual 6 6 3.60 3.70 1.00 1.75 .0064 .0069 4.67 4.45 .0048
192 pumpkin 98% 2 pumpkin trolley 7 7 3.79 3.82 1.70 1.70 .0052 .0055 4.90 4.73 .0025
193 zebra 98% 2 zebra snail 5 5 3.69 3.69 1.80 1.45 .0016 .0026 4.86 4.93 .0062
194 kangaroo 98% 1 kangaroo lemonade 8 8 3.62 3.57 2.75 2.70 .0077 .0055 4.86 4.83 .0058
195 squirrel 100% 1 squirrel passport 8 8 3.94 4.01 2.10 2.25 .0045 .0045 4.89 5.00 .0051
196 mushroom01 100% 2 mushroom carriage 8 8 3.87 3.98 2.60 1.90 .0040 .0044 4.83 4.86 .0003
197 pear01 100% 1 pear lung 4 4 3.83 3.81 1.00 1.00 .0078 .0055 4.93 4.82 .0050
198 snowman 100% 1 snowman pancake 7 7 3.52 3.48 1.90 2.05 .0060 .0059 4.64 4.86 .0054
199 onion 100% 1 onion torch 5 5 4.28 4.21 1.70 1.30 .0086 .0073 4.86 4.76 .0013
200 toothbrush03b 100% 2 toothbrush cheesecake 10 10 3.48 3.54 3.80 3.45 .0084 .0085 5.00 4.97 .0040
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C.2 Details on the Shifted Log-Normal Bayesian Model Analysis of the Stimuli
Validation RT Data

The shifted log-normal Bayesian model was fit to the RT data from the stimulus validation
with brms (Bürkner, 2018), a high-level interface for STAN (STAN Development Team, 2021).
This model estimated the plausibility of values for each parameter of the shifted log-normal
distribution as a function of the maximal hierarchical structure justified by the experiment’s
design. The parameter of µ was modelled with an identity link function, while σ and δ were
modelled with log link functions. The same predictors and random effects structure were used
for each parameter as described for the EEG experiment, though with a key difference being that
predictability was normalised between 12% and 100% rather between than 7% and 100%, due
to different minima in the experiments’ stimuli. The full formula, in brms syntax, was specified
as:

rt ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id),

sigma ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id),

ndt ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id)

Prior distributions were specified to be broad enough as to be uninformative but constrained
to be cover plausible values for response time distributions for a cognitive task (Figure C.9A).
Fixed effects’ slopes’ prior distributions were drawn from N(0,2.5) and fixed effects’ intercepts’
prior distributions from N(0,7.5). The prior distributions for the standard deviations of random
effects were specified as student’s t distributions centred on zero, with 3 degrees of freedom and
a scale parameter of 2. The model was fit with 5 Markov chains, each with 25,000 (17,500 warm-
up and 7,500 sampling) iterations. The adapt_delta parameter was set to .99. The densities of
the posterior distributions, relative to those of the priors, are shown in Figure C.9B.

In addition to the shifted log-normal Bayesian model, a Gamma family (identity link function)
generalised linear mixed effects model (GLMM) was fit to the RT data from the stimulus
validation using lme4 (Bates et al., 2015). The same predictors and random effects structure
were used as in the shifted log-normal distribution and as outlined in the power analysis for
the EEG experiment. The GLMM estimated random intercepts and slopes (but no random
correlations, to deal with non-convergence), using the maximal random effects structure
justified by the experiment’s design. Though less sensitive to changes in the distributions
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Figure C.9: Prior and posterior distributions for all fixed effects estimated in the Bayesian shifted
log-normal model presented in the Stimulus Validation section. (A) Distributions of prior samples
for all fixed effects. For a given fixed effect, priors were identical for all parameters of the shifted
log-normal distribution so are concatenated here for simplicity. (B) Posterior distributions for all
fixed effects, superimposed on the relative densities of the prior distributions (with limits of the
x axis set to increase the visibility of the posterior distributions). For both panels, points below
distributions’ densities depict median posterior estimates, while the whiskers show the extents
of 89% HDIs.
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Figure C.10: Relationship between predictability and average response time. Points depict
individual trial-level observations, while lines depict the linear relationships as estimated by the
Gamma family GLMM. Marginal plots depict the density of each axis’ variable, for congruent
(orange) and incongruent (green) trials.

that do not reflect changes in central tendency, the results generally corroborated those
of the shifted log-normal distribution. The model, and Chi-square model comparisons of
effects, suggested there is a greater effect of predictability for congruent than incongruent
trials (β=125.32, SE=5.12, χ2(1)=24.3, p<.001). Post-hoc tests (with Bonferroni-corrected p
values reported as pbon f ) revealed that predictability is negatively related to response times for
congruent trials (β=-156, SE=4.25, χ2(1)=32.51, p<.001, pbon f <.001), whereas the effect of
predictability for incongruent trials is notably smaller (β=-30.83, SE=12.45, χ2(1)=2.99, p=.084,
pbon f =.336). Conversely, the effect of congruency is large and significant, and in the predicted
direction, at the highest level of predictability, with faster responses to congruent items
(β=-99.75, SE=5.84, χ2(1)=34.99, p<.001, pbon f <.001), but is small and non-significant, and
in the opposite direction, at the lowest level of predictability (β=26.44, SE=4.25, χ2(1)=2.68,
p=.101, pbon f =.406). These linear relationships in the fixed effects are presented in Figure C.10.
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C.3 Word Stimuli for Localiser Task

Table C.3: All word stimuli for the localiser task, and associated values on variables that were matched distribution-wise. False-font strings and
phase-shuffled images are not presented here; false-font strings ware just the words in BACS2serif font, while a unique phase-shuffled image
was generated for each trial. The columns are as follows: Word = words presented in the task; Length = number of characters; Zipf = Zipf
frequency in SUBTLEX-UK; PREV = word prevalence values in Brysbaert et al. (2019); OLD20 = OLD20 values in the LexOPS dataset; BG =
mean character bigram probabilities in SUBTLEX-UK; PoS = dominant part of speech in SUBTLEX-UK; CNC = mean concreteness ratings in
Brysbaert et al. (2014); AoA = mean age of acquisition ratings in Kuperman et al. (2012); VAL, AROU, and DOM = mean valence, arousal, and
dominance ratings, respectively, from Warriner et al. (2013); LDT RT and LDT Acc = average response times (in ms) and accuracies in lexical
decision, from the BLP. Rows are numbered for ease of reference.

Word Length Zipf PREV OLD20 BG PoS CNC AoA VAL AROU DOM LDT RT LDT Acc

1 tracker 7 3.12 2.58 1.45 .0062 noun 3.89 9.61 4.87 4.59 5.00 583.21 .98
2 tablespoonful 13 1.97 1.40 5.30 .0045 adjective 4.24 7.58 - - - - -
3 curricular 10 2.50 1.61 2.85 .0042 adjective 2.77 10.10 - - - - -
4 sheathed 8 1.74 1.45 1.95 .0195 verb 3.04 - - - - 699.78 .68
5 wasabi 6 2.74 1.74 2.00 .0041 noun 4.67 13.95 - - - - -
6 persecute 9 2.43 1.80 2.65 .0068 verb 2.53 10.06 3.11 5.11 4.09 - -
7 enlarge 7 2.70 2.16 2.35 .0053 verb 3.17 8.26 5.33 3.87 5.89 568.70 .95
8 harvester 9 3.15 2.12 2.60 .0107 noun 4.21 9.53 - - - - -
9 campaign 8 4.90 2.44 2.20 .0027 noun 3.00 12.55 4.55 3.50 5.14 561.37 .98
10 menacingly 10 2.20 1.79 3.25 .0078 adverb 1.93 - - - - - -
11 footwork 8 3.40 2.13 2.15 .0044 noun 3.32 10.63 5.74 3.96 5.58 680.59 .88
12 respective 10 3.20 2.10 2.65 .0067 adjective 1.79 10.78 5.90 3.76 6.42 - -
13 layperson 9 1.65 1.35 2.85 .0068 noun 3.44 13.74 - - - - -
14 microcomputer 13 1.30 1.82 4.45 .0055 noun 4.55 13.89 - - - - -
15 flatterer 9 2.32 1.32 1.85 .0104 noun 2.89 12.44 - - - - -
16 chilled 7 3.63 2.35 1.75 .0074 verb 3.22 - - - - 566.50 1.00
17 blackheads 10 1.93 2.07 2.35 .0065 noun 4.79 - - - - 742.83 .97
18 fortunate 9 4.06 2.24 2.50 .0056 adjective 2.04 10.17 7.33 3.81 5.83 635.46 .95
19 screeching 10 2.81 2.24 2.55 .0092 verb 3.71 - - - - 621.72 .93
20 chimp 5 3.42 2.23 1.35 .0048 noun 4.96 7.17 6.00 3.80 4.95 605.63 .88
21 payroll 7 3.10 2.43 2.40 .0042 noun 3.70 12.79 6.19 3.82 5.11 632.25 .97
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22 seer 4 2.48 1.26 1.00 .0110 noun - 10.56 5.35 3.77 5.41 752.86 .53
23 coexist 7 2.00 1.99 2.45 .0053 verb 2.25 11.56 5.95 3.48 5.92 - -
24 smelly 6 3.87 2.43 1.45 .0057 adjective 3.07 4.32 2.68 5.43 4.00 533.24 1.00
25 discouraging 12 2.69 2.33 3.25 .0084 verb 1.83 9.11 2.89 4.17 4.22 - -
26 exotic 6 4.10 2.43 1.85 .0039 adjective 2.11 10.42 7.55 6.90 5.65 - -
27 snow 4 4.79 2.33 1.00 .0040 noun 4.85 4.11 6.78 4.57 5.62 506.10 1.00
28 takeoff 7 2.84 1.92 2.45 .0035 noun 3.41 7.35 5.50 3.77 5.11 - -
29 milkman 7 3.08 1.98 1.90 .0054 noun 4.61 6.37 5.75 2.73 5.54 626.19 1.00
30 intelligent 11 4.09 2.58 3.15 .0094 adjective 2.46 8.28 7.60 5.67 6.77 - -
31 creak 5 2.69 1.40 1.30 .0078 verb 3.61 8.10 4.68 4.40 4.61 599.59 .85
32 punchy 6 3.03 1.51 1.55 .0024 adjective 2.21 13.18 4.78 4.32 3.96 657.00 .76
33 glutinous 9 2.09 1.53 2.70 .0089 adjective 2.62 14.32 - - - - -
34 monsieur 8 3.70 1.35 2.75 .0046 noun 3.54 10.12 5.50 3.30 5.89 - -
35 sympathetic 11 3.70 2.58 3.50 .0105 adjective 1.77 9.39 6.67 3.29 6.30 - -
36 neurotoxin 10 1.95 1.72 3.10 .0071 noun 3.12 13.58 - - - - -
37 singular 8 3.00 2.27 2.45 .0086 adjective 2.21 9.80 4.89 3.12 5.24 - -
38 snip 4 3.64 2.00 1.00 .0012 noun 3.68 7.24 4.32 4.74 4.95 569.42 .95
39 bewildered 10 3.14 2.43 3.30 .0080 verb 1.80 11.63 4.32 4.57 4.42 - -
40 devote 6 3.16 2.03 1.55 .0045 verb 2.00 9.58 5.53 4.05 7.05 600.51 .97
41 handily 7 2.30 1.62 1.90 .0101 adverb 2.08 - - - - - -
42 orally 6 2.41 2.23 1.90 .0076 adverb 3.00 - - - - - -
43 prerecorded 11 1.60 2.10 3.45 .0096 verb 2.58 10.22 - - - - -
44 yodel 5 3.11 1.49 1.55 .0054 name 4.20 8.16 6.10 3.33 5.90 703.75 .50
45 impertinently 13 1.17 1.38 3.90 .0082 adverb - - - - - - -
46 vacation 8 3.36 2.58 1.85 .0063 noun 3.14 5.22 8.53 5.22 7.11 - -
47 extravagance 12 2.86 2.20 3.85 .0038 noun 1.73 10.74 5.74 5.40 5.79 - -
48 thud 4 3.01 2.26 1.00 .0139 noun 3.20 8.06 4.24 5.05 4.52 582.36 .83
49 forewarn 8 1.74 1.90 2.10 .0076 verb 2.20 11.16 - - - 703.91 .66
50 fatherhood 10 2.73 2.44 3.20 .0130 noun 2.76 8.50 6.77 4.57 5.61 - -
51 correlate 9 2.20 2.04 2.60 .0083 verb 1.63 13.35 - - - - -
52 watercraft 10 1.54 1.61 2.90 .0056 noun - - - - - - -
53 sunk 4 3.73 2.43 1.00 .0026 verb 3.46 - - - - 611.78 .93
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54 flawlessness 12 1.39 1.58 3.30 .0042 noun 2.16 - - - - - -
55 tranquilizer 12 1.47 2.02 2.30 .0054 noun 4.55 11.58 4.86 3.12 4.85 - -
56 pituitary 9 2.47 1.52 3.70 .0065 adjective 3.33 13.06 4.79 4.40 4.91 - -
57 courtside 9 1.81 2.00 2.85 .0059 noun 3.65 12.32 6.00 4.24 6.00 - -
58 wicked 6 4.16 2.33 1.15 .0047 adjective 2.11 8.33 2.63 5.86 3.61 579.31 .93
59 regard 6 4.19 2.24 1.55 .0067 noun 1.79 10.20 5.70 3.39 6.38 545.31 .98
60 infidelity 10 2.71 2.33 3.55 .0072 noun 2.07 13.89 2.10 5.70 3.86 - -
61 bumping 7 3.29 2.34 1.55 .0074 verb 4.00 - - - - 660.94 .97
62 cannibal 8 2.60 2.31 2.45 .0058 adjective 3.82 9.11 2.90 6.10 3.20 - -
63 texting 7 3.51 2.58 1.80 .0093 verb 4.23 - - - - - -
64 apache 6 3.15 1.75 1.75 .0091 name 3.88 10.50 5.20 3.70 4.95 747.23 .68
65 generational 12 2.98 1.88 2.90 .0084 adjective 1.96 12.68 - - - - -
66 squint 6 2.79 2.33 1.75 .0075 noun 4.30 8.05 4.40 3.71 4.62 586.76 1.00
67 torture 7 4.00 2.43 1.80 .0089 verb 3.59 10.70 1.40 5.09 2.76 530.51 1.00
68 shattering 10 3.10 2.32 1.75 .0115 verb 3.43 8.00 3.67 5.00 4.63 - -
69 freckled 8 1.30 2.43 1.90 .0061 adjective 3.86 6.58 - - - 645.19 .98
70 perversion 10 2.35 2.07 2.70 .0087 noun 2.04 13.11 3.55 5.48 3.85 - -
71 shag 4 3.37 2.00 1.00 .0073 noun 3.15 10.53 5.38 4.95 4.86 546.18 .98
72 stifle 6 2.68 1.97 1.70 .0058 verb 2.59 10.26 - - - 659.20 .82
73 syllable 8 2.89 2.25 2.00 .0038 adjective 3.26 8.10 4.95 2.50 5.70 - -
74 ionic 5 2.50 1.79 1.40 .0063 adjective 2.14 14.19 - - - - -
75 explicable 10 1.65 2.20 2.65 .0037 adjective 1.58 12.25 - - - - -
76 dashboard 9 3.06 2.33 2.65 .0038 noun 4.61 9.21 5.25 3.15 5.32 651.98 1.00
77 concessionary 13 2.78 1.37 3.25 .0064 adjective 2.15 14.43 - - - - -
78 retort 6 2.40 2.03 1.80 .0103 noun 2.75 11.50 - - - 628.15 .87
79 extent 6 4.40 2.34 1.70 .0063 noun 1.44 10.72 5.57 3.68 5.00 573.03 .97
80 mutual 6 3.72 2.14 1.85 .0038 adjective 2.21 8.90 6.48 3.50 6.45 598.86 .95
81 problematic 11 3.43 2.32 3.15 .0050 adjective 2.11 11.63 2.58 4.80 4.65 - -
82 shiftless 9 1.30 1.62 2.40 .0047 adjective 2.27 12.12 - - - 693.12 .70
83 pleasantness 12 1.47 1.59 3.55 .0072 noun 2.00 8.44 - - - - -
84 nonpayment 10 1.17 1.71 3.60 .0064 noun 2.83 10.00 - - - - -
85 context 7 4.28 2.24 1.85 .0068 noun 2.17 10.00 5.00 3.18 5.60 597.95 .98
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86 shifting 8 3.73 2.34 1.65 .0088 verb 2.86 - - - - 605.50 1.00
87 creamer 7 2.65 1.92 1.45 .0101 noun 4.66 8.72 5.47 2.81 6.09 738.38 .88
88 felicity 8 3.44 1.49 2.10 .0052 name 1.56 - - - - - -
89 deferred 8 2.97 2.05 1.75 .0080 verb 2.00 - - - - 666.58 .95
90 gyroscope 9 2.19 1.67 2.75 .0028 noun 4.25 12.69 - - - - -
91 recalculate 11 1.81 2.15 2.95 .0064 verb 2.93 11.53 - - - - -
92 frosty 6 3.51 2.35 1.80 .0046 adjective 3.90 6.33 6.15 4.61 5.00 607.38 .98
93 cohesiveness 12 1.60 1.85 3.85 .0088 noun 2.62 - - - - - -
94 meld 4 2.19 1.34 1.00 .0060 verb 2.86 11.63 - - - 601.62 .34
95 awfulness 9 2.37 1.67 2.80 .0031 noun 2.20 9.67 - - - - -
96 rolled 6 4.16 2.25 1.45 .0069 verb 3.64 - - - - 546.38 .97
97 orange 6 4.64 2.26 1.40 .0101 noun 4.66 3.26 6.81 4.04 5.58 519.53 .98
98 easily 6 4.69 2.43 1.75 .0061 adverb 1.80 - - - - - -
99 reestablish 11 1.70 1.67 3.40 .0077 verb 2.54 10.33 6.14 4.00 6.18 - -
100 lacquer 7 3.06 1.56 1.85 .0050 noun 4.28 13.19 4.95 3.30 5.00 699.11 .75
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C.4 Power Analysis Random Effects Correlations

The power analysis in section 5.3 assumed that random effects correlations were all equal
to zero. To examine whether this assumption impacted estimates of the statistical power
associated with different sample sizes, I examined re-ran the simulations with random effects
correlations all set to 0, .2, .4, .6, and .8. The results (Figure C.11) indicated that similar
patterns in the sample size-power relationship should be expected across different random
effect correlations.
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Figure C.11: Power curves when all random effect correlations are set to 0, .2, .4, .6, and .8.
Each line depicts the predicted relationship between number of participants and power from a
single loglinear binomial GLM. As in the original power analysis, results were simulated with N of
10 to 100 in steps of 5, though here with only 100 simulations at each step rather than 500. The
overall relationship between the number of participants and the statistical power for finding the
predicted interaction remains mostly unchanged across different random effects correlations.
As in Figure 7, both one-tailed and two-tailed power are presented, though the p value used in
the experiment is one-tailed. The dashed horizontal line highlights the 80% power target.
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C.5 Task Instructions for the Localiser and Picture-Word Tasks

Instructions for the localiser and picture-word tasks, shown below, were presented multiple
times: at the start of each task, after practice trials, and before the start of each block. The
words AFFIRMATIVE and NEGATIVE below were replaced with the text "Left Control" or "Right
Control" respectively, depending on which response group the participant was assigned to.
In the practice trials, an additional line of text read, "For the practice trials, you will be given
feedback on your accuracy for each trial.". For all other trials, this line instead read, "Unlike the
practice trials, you will not be given feedback on your accuracy for each trial.".

The instructions for the localiser task were as follows:

In each trial, the following things will happen:

1) You will be shown a picture of a word, nonword, or noise image.

2) The image will turn green.

3) When the image turns green:

Press the AFFIRMATIVE key if the image is of a real word.

OR

Press the NEGATIVE key if it is not of a real word.

Once the image changes colour, try to respond as quickly and accurately as possible.

When you have read these instructions, press the space key to begin...

The instructions for the picture-word task were as follows:

In each trial, the following things will happen:

1) You will be shown a picture of an object for 2 seconds.

2) There will be a short delay.

3) You will be shown a word.

4) The word will turn green.

5) When the word turns green:

Press the AFFIRMATIVE key if the word describes the object you saw.

OR

Press the NEGATIVE key if it does not.

Once the word changes colour, try to respond as quickly and accurately as possible.

When you have read these instructions, press the space key to begin...
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C.6 Picture-Word Planned Analysis Using the Word-Noise Maximal Electrode

In the planned analysis for the picture-word task, maximal electrodes were identified as those
that showed the greatest sensitivity to the word vs. false font difference in the localiser task.
For comparison, I also examined the pattern of results for electrodes that showed maximal
sensitivity in the localiser task to the difference between words and phase-shuffled words. The
results (Figure C.12) revealed a similar pattern of results. The model intercept, reflecting the
average N1 amplitude at the lowest level of predictability, was estimated to be β=-4.432 µV
(SE=.54), and the effect of predictability across both congruency conditions was estimated to
be β=.62 µV (SE=.3). The predictability-congruency interaction (β=-1.19, SE=.5), where the
effect of predictability, leading to less negative-going N1 amplitudes as predictability increases,
was larger for picture-incongruent words than it was for picture-congruent words. A likelihood-
ratio Chi-square model comparison revealed that this effect, although in the opposite direction
to that hypothesised in the power analysis, had a two-tailed p value of .018 (χ2(1)=5.6). In
decomposing the interaction, I report two-tailed p values from likelihood ratio Chi-square model
comparisons, and report Bonferroni-corrected p values as pbon f . For picture-incongruent words,
the difference between the most and least predictable items was estimated to be β=1.2 µV
(SE=.38, χ2(1)=9.04, p=.004, pbon f =.008), while this difference for picture-congruent words was
estimated to be β=-.01 (SE=.4, χ2(1)=.001, p=.971, pbon f >.999).
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Figure C.12: Fixed effect predictions from an analysis of the picture-word task using electrodes
that in the localiser task show maximal sensitivity to the difference between words and phase-
shuffled words. (A) Model-derived fixed-effect predictions, visualised over results from all trials
(individual points). (B) Fixed-effect predictions visualised alone for visibility, where dashed lines
depict the bounds of 95% bootstrapped prediction intervals (estimated from 5,000 iterations),
where bootstrapped predictions were generated using the bootMer() function of lme4. For
feasibility, bootstrapped predictions were generated from a version of the model that lacked
random slopes.
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C.7 Details on the Shifted Log-Normal Bayesian Model Analysis of the EEG
Experiment Picture-Word RT Data

A shifted log-normal Bayesian model was fit to the RT data from the picture-word task in the
EEG experiment with brms (Bürkner, 2018). No trials were here excluded, such that there
were 13,374 observations in total. The model was specified to be comparable to the stimulus
validation analysis (Appendix C.2), estimating the plausibility of values for each parameter of
the shifted log-normal distribution as a function of the maximal hierarchical structure justified by
the experiment’s design. The parameter of µ was modelled with an identity link function, while σ

and δ were modelled with log link functions. The same predictors and random effects structure
were used for each parameter as described for the EEG analysis and stimulus validation. The
full formula, in brms syntax, was specified as:

rt ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id),

sigma ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id),

ndt ~ 1 + congruency * predictability +

(1 + congruency * predictability | subject_id) +

(1 + congruency | image_id) +

(1 | word_id)

Prior distributions for both fixed and random effects were based on the posterior distributions
of the stimulus validation analysis. However, prior distributions were not simply specified to be
match posterior distributions exactly, as I anticipated that the 500 ms preview prior to response
(see subsection 5.4.2), that was absent in the stimulus validation experiment, may vastly reduce
the effect. Instead, I specified priors with more uncertainty than that observed in the stimulus
validation posteriors, to reflect my expectation that results may change, although I did not
know to what extent. Specifically, fixed and random effect prior distributions for the µ and σ

parameters, and random effect priors for δ , were specified such that they were centred on
the median estimate from the stimulus validation analysis, but with variance of the random
effects multiplied to be ten times that observed in the stimulus validation posterior distributions.
The fixed effect prior distributions for the δ parameter were specified to be more uninformative
than this, as I expected this parameter to change the most. The prior distribution for the δ

intercept was drawn from ∼ N(0,7.5); while the fixed effect slopes’ priors also had SDs of 7.5,
but were centred on the posterior estimates from the stimulus validation analysis. Priors for
all correlations of effects were kept as the brms default of a flat distribution between -1 and 1.
The model was fit with 5 Markov chains, each with 10,000 (7,500 warm-up and 2,500 sampling)
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Figure C.13: Prior and posterior distributions for all fixed effects estimated in the Bayesian
shifted log-normal model fit to describe RT data from the EEG experiment’s picture-word task,
for the µ, σ , and δ parameters. Points depict median estimates, while whiskers depict the extent
of 89% HDIs, for prior (black ) and posterior (red) distributions.

iterations. The adapt_delta parameter was set to .99, and the max_treedepth parameter was
set to 10. Summaries of the fixed effect posterior distributions, relative to those of the priors,
are shown in Figure C.13. Similar results are shown for all random effects in Figure C.14.

The impact of these estimates on RT distributions are described in the chapter’s main text
(section 5.5.2). One notable finding from the model’s posterior distributions is that there is a
high degree of uncertainty in the fixed effect posteriors for the δ parameter (Figure C.13). This
is likely due to the large reduction in non-decision time observed in the EEG experiment but not
in the stimuli validation experiment. Indeed, the posterior median for the δ intercept was equal
to -10.07, which, since δ was modelled on a log scale, is equivalent to a non-decision time of
4.23e-5 ms (i.e., e−10.07), indicating that shift in the RT distribution was so close to zero that the
model struggled to describe it. As previously mentioned, this is likely due to participants being
provided with 500 ms of preview for the stimulus, and only having to respond to a low-level
change in stimulus colour that had consistent and predictable timing.

Posterior distributions for the SDs of random effects were more different from the specified
priors than expected. One notable finding observed was that the SDs of random slopes
for µ were estimated to be smaller in the EEG experiment than for the stimulus validation
experiment, while SDs of random slopes for σ were estimated to be larger. For random
intercepts, meanwhile, the opposite pattern was observed.
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Figure C.14: Prior and posterior distributions for all random effects estimated in the Bayesian
shifted log-normal model fit to describe RT data from the EEG experiment’s picture-word task,
for the µ, σ , and δ parameters. Results are separately for (A) participant, (B) image, and (C)
word random effects. Points depict median estimates, while whiskers depict the extent of 89%
HDIs, for prior (black ) and posterior (red) distributions.
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C.8 Sample-Level Analysis of Right-Hemispheric Occipitotemporal Effects in
the Picture-Word Task

In addition to analysing sample-level effects on the left-lateralised occipitotemporal electrodes,
I analysed data from a right-hemispheric occipitotemporal cluster (Figure C.15). Linear mixed
effects models were fit to sample-level data (256 Hz), using the same model formula as
that estimated for the left-hemispheric electrodes (section 5.5.2). Results revealed no clear
predictability-congruency interaction before around 300 ms (Figure C.16).

Figure C.15: Locations of right-hemispheric occipitotemporal electrodes. The selected
electrodes were simply the right hemisphere homologues of the left-hemispheric
occipitotemporal locations analysed elsewhere in Chapter 5.
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Figure C.16: Time-course of fixed effects from the sample-level analysis of the right-lateralised
occipitotemporal region of interest. (A) Time-course of fixed effects estimates, with shaded
regions depicting 95% confidence intervals. The model intercept (reflecting average amplitudes
at the lowest level of predictability) is depicted as a grey line on each panel to provide a reference
for the timing and magnitude of effects. (B) Fixed-effect predictions for picture-congruent and
-incongruent words at levels of predictability from 10 to 100%, in steps of 10%. (C) Same data
as (B), but split by predictability rather than congruency.
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C.9 Sample-Level Analysis of Congruency * Predictability * Frequency
Interaction

Much previous research on effects of predictions on early ERP components also examined
whether there was an interaction with word frequency (e.g., Dambacher et al., 2012;
Kretzschmar et al., 2015; Penolazzi et al., 2007; Sereno et al., 2003; Sereno et al., 2019),
often arguing that, assuming effects of frequency index lexical access, an interaction between
predictability and word frequency would provide evidence for top-down modulation of lexical
access. For comparison to these results, I examined whether the interaction between
congruency and predictability was frequency-dependent.

In the picture-word task stimuli, word frequency spanned a broad distribution, from 2.04
to 5.12 Zipf (from .11 to 132.5 occurrences per million), such that any clear interaction with
word frequency could be expected to emerge for the given stimuli, assuming this interaction
is linear. I fit sample-level linear mixed effects models to picture-word data, using the same
model formula as that described for Section 5.5.2, but additionally estimating the effect of
frequency, and interactions between frequency, congruency, and predictability. Here, frequency
was parameterised as mean-centred Zipf, normalised such that there was a distance of
1 between the maximum and minimum, for comparability with the effect of predictability.
Results (Figure C.17) revealed that while there may be a main effect of frequency, with more
negative-going N1s observed as predictability increases, no clear interaction with congruency
or predictability was found, although the broad confidence intervals and high variability in the
baseline period for these interactions suggest a high degree of error in the estimates, likely due
to a lack of statistical power.
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Figure C.17: Time-course of fixed effects from the sample-level analysis of the left-lateralised
occipitotemporal region of interest, including interactions with word frequency. Shaded regions
depict 95% confidence intervals for fixed effect estimates.
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C.10 Details on the Behavioural Analysis of the Localiser Task

A logit-link binomial model of accuracy data was fit to data from the localiser task (Figure C.18A)
with an informative prior for the model’s logit intercept of ∼ N(5,1) (centred on average accuracy
of .993), reflecting the expectation that accuracy overall would be very high. Weakly informative
priors were defined for fixed effect slopes (∼ N(0,5)) and for the SDs of random effect
distributions (∼ t(5,0,1)). Prior distributions for correlations within the model were specified to
be flat. The model was fit with 5 chains, each with 10,000 iterations (7,500 warmup, 2,500
sampling). The adapt_delta parameter was set to .99, and the max_tree_depth was set to 10.
In brms syntax, the model estimated coefficients from the following formula:

correct ~ 1 + false_font + noise +

(1 + false_font + noise | participant_id) +

(1 + false_font + noise | match_set) +

(1 | item_id)

Intercept

4 5 6

A
µ σ δ
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B

Words Vs.
Phase−Shuffled
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False Font

−5 0 5
Accuracy Model

Estimate

−1 0 1 −1 0 1
RT Model Estimate

Prior Posterior

Figure C.18: Prior and posterior distributions for all fixed effects estimated by the (A) logit-
link Binomial model to describe accuracies and (B) Bayesian shifted log-normal model fit to
describe RT data from the localiser task. Estimates in (A) are in logit units. Estimates in (B) are
depicted for each shifted log-normal parameter separately. In both panels, points depict median
estimates, while whiskers depict the extent of 89% HDIs, for prior (black ) and posterior (red)
distributions.

RT data were modelled with a shifted log-normal model (Figure C.18B). The parameter of µ

was modelled with an identity link function, while σ and δ were modelled with log link functions.
The maximal random effects structure was estimated for the distributional parameters µ and
σ , whereas the δ parameter was modelled with a global intercept only. This decision was
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taken based on persistent divergent transitions in the Hamiltonian Monte Carlo sampler used
to explore the model’s parameter space. These divergences were caused by the extremely low
shift (non-decision time) in the RT data from the EEG experiment, which approached 0 (−∞ on
a log scale). This problem is also the likely cause of the high uncertainty for the δ intercept,
and also for the parameter coefficients in the analysis of the RT data from the picture-word
task (Appendix C.7). Priors for fixed-effect intercepts were specified to be centred on posterior
averages from the picture-word study RT analysis, though with additional uncertainty specified
in the distributions to reflect the expectation that RT distributions would differ somewhat from
the picture-word task. Specifically, the intercept for µ was specified as ∼ N(5.3,1), σ as ∼
N(−.56,1), and δ as ∼ N(−9,5). Priors for fixed effect slopes were specified as ∼ N(0,1). Prior
distributions for the SDs of random effects were drawn from Student’s t distributions centred
on 0, with 5 degrees of freedom and a σ parameter of 1. Prior distributions for all correlations
were flat. As with the model of accuracies, the RT model was fit with 5 chains, each with
10,000 iterations (7,500 warmup, 2,500 sampling). The adapt_delta parameter was set to .9,
and the max_tree_depth was set to 10. In brms syntax, the model estimated coefficients from
the following formula:

bf(

rt ~ 1 + false_font + noise +

(1 + false_font + noise | participant_id) +

(1 + false_font + noise | match_set) +

(1 | item_id),

sigma ~ 1 + false_font + noise +

(1 + false_font + noise | participant_id) +

(1 + false_font + noise | match_set) +

(1 | item_id),

ndt ~ 1

)
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D.1 Separating Analysis of Simpson et al. (2013) Results by Letter Case

Rumelhart-Siple characters (Rumelhart & Siple, 1974) have only one case, resembling typical
upper-case characters more than they resemble lower-case characters. To examine whether
the quality of models predicting character similarity ratings (collected by Simpson et al., 2013),
using the bit-wise approach outlined Rumelhart-Siple characters, differs between lower- and
upper-case characters, I reran the analysis described in Section 6.2.1 for lower- and upper-
case character pairs separately (Figure D.19. For comparison, I also fit separate versions of all
other model variants to upper- and lower-case pairs.
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Figure D.19: Results from the analysis of the relationship between calculated Jaccard similarity
and subjective ratings of character similarity collected by Simpson et al. (2013), where upper-
and lower-case character pairs were analysed separately. (A1) AIC values for all models using
Jaccard similarities to predict lower-case similarity ratings. (A2) Estimated relationship between
Jaccard similarity and character similarity ratings for the lower-case model derived from Arial
font, permitting all geometric transformations. (B1) AIC values for all models using Jaccard
similarities to predict upper-case similarity ratings. (B2) Estimated relationship between Jaccard
similarity and character similarity ratings for the best performing upper-casemodel derived from
Arial font, permitting all geometric transformations. In all panels, layout and styling matches that
used in Section 6.3.1. As the models were fit to separate data, AICs are only comparable within,
and not between, panels A1 and B1.
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Results revealed that, as expected, all pixel-based measures outperformed the bit-wise
approach implemented for Rumelhart-Siple characters, for both upper- and lower-case
character pairs. Two unexpected findings were also observed. First, the superiority of
Arial-derived Jaccard similarity values was observed less clearly for upper-case characters
than it was for lower-case characters, with models using Calibri- and Droid Sans-derived
Jaccard similarities outperforming Arial in some cases (although the best performing model
overall was that fit using Arial-derived values; Figure D.19A1). Second, for lower-case
characters, the optimal model was not that permitting all geometric transformations, but
rather that permitting all transformations except rotation (Figure D.19B1). However, it is also
notable that the seven best models for lower-case character pairs, all fit using Arial-derived
Jaccard similarities, performed very similarly. A key difference between upper- and lower-case
characters that may contribute to this finding is that both Jaccard similarities and ratings for
upper-case characters show less spread in their distributions for upper-case characters.

Finally, the effect of Jaccard similarity on character similarity ratings was estimated to be
very similar across lower- (Figure D.19A2) and upper-case characters (Figure D.19B2).
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D.2 Predicting BLP Behaviour from OLD20 and SCOLD20

In addition to examining model performance of models predicting lexical decision RTs and
accuracies from the English Lexicon Project (ELP; Balota et al., 2007) as a function of OLD20
and SCOLD20, I also examined how well these metrics predict lexical decision behaviour for
words in the British Lexicon Project (BLP; Keuleers et al., 2012). Trials were excluded from
both the RT and accuracy analyses the BLP if responded to faster than 3000 ms (a lower upper
bound than for ELP data, due to overall faster responses in the BLP). Trials were additionally
excluded from the accuracy analysis if responded to incorrectly. Finally, trials were only included
if the presented word was a member of the pool of ELP words from which OLD20 and SCOLD20
metrics were calculated. Following these exclusions, there were 722,039 trials in the accuracy
analysis, and in the RT analysis, 614,915.

Models were fit exactly as described for the ELP analysis (see section 6.4.3), with logit-
link GLMMs fit to describe accuracies, and linear mixed effects models predicting inverse RTs
to summarise changes in RT distributions. Results (Figure D.20) showed a similar pattern of
results as that observed for the ELP, with the OLD20 model outperforming all SCOLD20 models,
for both accuracy and RT data.
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Figure D.20: AIC differences between models predicting BLP lexical decision behaviour using
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difference indicates superior performance in the OLD20 model.
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D.3 Effect of OLD20 on ERP data from Chapter 4

The effect of OLD20 in data from chapter 4 was estimated to compare the relative predictive
utilities of OLD20 and SCOLD20 metrics over time. However, before examining the relative
predictive abilities of models fit to ERPs with the SCOLD20 metrics, I first examined the pattern
of observed effects. Following previous findings of interactions between orthographic similarity
and lexical status (Baeck et al., 2015), and anticipating that task effects may interact with
orthographic variables like OLD20, I estimated the original model formula from Chapter 4, as
well as both the main effect of OLD20, and all possible interactions between OLD20 and other
variables in the fixed effects structure. Because of the large number of models that needed to be
fit, no random slopes were estimated, the only random effects estimated were per-participant,
per-item, and per-match-set random intercepts. The specific model formula was specified, in
lme4 (Bates et al., 2015) syntax, as:

amplitude ~ 1 + (category_relevant + pseudoword + nonword) * task * measure +

(1 | participant) +

(1 | match_set) +

(1 | item)

Here, measure reflected the OLD20 (or in later models, SCOLD20) values, scaled by
standard deviation, while all variables except measure match those described in Chapter 4.
Models were estimated for three distinct clusters of electrodes, in left occipitotemporal,
centroparietal, and right occipitotemporal regions (Figure D.21A).

Notable model findings include effects of OLD20 in the left and right hemispheric N1
components elicited by words (Figure D.21B). Smaller OLD20 values (larger orthographic
neighbourhoods) elicited less negative-going left hemispheric N1 components (Figure D.22A).
Over the right hemisphere, however, although effects were less pronounced, model estimates
suggest that smaller OLD20 values elicited less negative amplitudes at the component’s
peak, smaller OLD20 values also more negative amplitudes during the component’s onset
(Figure D.22C). The models also revealed possible interactions between OLD20, stimulus, and
task - especially in the ERP observed centroparietally. However, considering the post-hoc
nature of this analysis, and the high standard errors observed for interaction estimates
(reflected in their broad confidence intervals; Figure D.21E), care should be taken not to
over-interpret these exploratory results.
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Figure D.21: Model estimates from the exploratory OLD20 analysis of data from Chapter 4.
(A) The locations of electrodes included in each region of interest. Subsequent panels match
the order of regions in (A), depicting the following model estimates (lines) and 95% confidence
intervals (shaded regions): (B) the effect of OLD20, (C) interactions between stimulus and
OLD20, (D) the interaction between task and OLD20, and (E) three-way interactions between
task, stimulus, and OLD20. In all panels from (B) to (E), the grey line depicts the model
intercept (i.e., predicted amplitude of all category-irrelevant words across both tasks), to provide
reference for the timing and size of effects.
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Figure D.22: Fixed effect predictions from the exploratory OLD20 analysis of data from
Chapter 4. Results depict the predicted ERPs for all factorial cells in Chapter 4, where the
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Dzigiel-Fivet, G., Plewko, J., Szczerbiński, M., Marchewka, A., Szwed, M., & Jednoróg, K.
(2021). Neural network for Braille reading and the speech-reading convergence in the
blind: Similarities and differences to visual reading. NeuroImage, 231, 1–11. https://doi.
org/10.1016/j.neuroimage.2021.117851

Eaton, J. W., Bateman, D., Hauberg, S., & Wehbring, R. (2020). {GNU Octave} version 6.1.0
manual: a high-level interactive language for numerical computations. https://www.gnu.
org/software/octave/doc/v6.1.0/

Eberhard-Moscicka, A. K., Jost, L. B., Fehlbaum, L. V., Pfenninger, S. E., & Maurer, U. (2016).
Temporal dynamics of early visual word processing - Early versus late N1 sensitivity
in children and adults. Neuropsychologia, 91, 509–518. https : / / doi . org / 10 . 1016 / j .
neuropsychologia.2016.09.014

Eisenhauer, S., Gagl, B., & Fiebach, C. J. (2022). Predictive pre-activation of orthographic and
lexical-semantic representations facilitates visual word recognition. Psychophysiology,
59(3), 1–26. https://doi.org/10.1111/psyp.13970

Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual
cortex and the spatial precision of functional MRI. Cerebral Cortex, 7 (2), 181–192.

Engelthaler, T., & Hills, T. T. (2018). Humor norms for 4,997 English words. Behavior Research
Methods, 50(3), 1116–1124. https://doi.org/10.3758/s13428-017-0930-6

eSpeak version 1.48.15. (2015). http://espeak.sourceforge.net/
Fan, C., Chen, S., Zhang, L., Qi, Z., Jin, Y., Wang, Q., Luo, Y., Li, H., & Luo, W. (2015). N170

changes reflect competition between faces and identifiable characters during early visual
processing. NeuroImage, 110, 32–38. https://doi.org/10.1016/j.neuroimage.2015.01.
047

Feng, X., Monzalvo, K., Dehaene, S., & Dehaene-lambertz, G. (2022). Evolution of reading and
face circuits during the first three years of reading acquisition. Neuroimage, in press.
https://doi.org/10.1016/j.neuroimage.2022.119394

Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal
involvement in memory target maintenance by posterior brain areas during distracter
interference of visual working memory. PNAS, 108(42), 17510–17515. https://doi.org/
10.1073/pnas.1106439108

Fernandino, L., Humphries, C. J., Conant, L. L., Seidenberg, M. S., & Binder, J. R. (2016).
Heteromodal cortical areas encode sensory-motor features of word meaning. Journal of
Neuroscience, 36(38), 9763–9769. https://doi.org/10.1523/JNEUROSCI.4095-15.2016

256

https://doi.org/10.2466/pms.1968.26.2.659
https://doi.org/10.2466/pms.1968.26.2.659
https://doi.org/10.3758/BF03195595
https://doi.org/10.3758/BF03195595
https://doi.org/10.1016/j.neuroimage.2021.117851
https://doi.org/10.1016/j.neuroimage.2021.117851
https://www.gnu.org/software/octave/doc/v6.1.0/
https://www.gnu.org/software/octave/doc/v6.1.0/
https://doi.org/10.1016/j.neuropsychologia.2016.09.014
https://doi.org/10.1016/j.neuropsychologia.2016.09.014
https://doi.org/10.1111/psyp.13970
https://doi.org/10.3758/s13428-017-0930-6
http://espeak.sourceforge.net/
https://doi.org/10.1016/j.neuroimage.2015.01.047
https://doi.org/10.1016/j.neuroimage.2015.01.047
https://doi.org/10.1016/j.neuroimage.2022.119394
https://doi.org/10.1073/pnas.1106439108
https://doi.org/10.1073/pnas.1106439108
https://doi.org/10.1523/JNEUROSCI.4095-15.2016


REFERENCES

Ferrand, L., & Grainger, J. (1994). Effects of orthography are independent of phonology in
masked form priming. The Quarterly Journal of Experimental Psychology Section A,
47 (2), 365–382. https://doi.org/10.1080/14640749408401116

Fischer, J., & Whitney, D. (2009). Attention narrows position tuning of population responses in
V1. Current Biology, 19(16), 1356–1361. https://doi.org/10.1016/j.cub.2009.06.059

Fischer-Baum, S., Bruggemann, D., Gallego, I. F., Li, D. S., & Tamez, E. R. (2017). Decoding
levels of representation in reading: A representational similarity approach. Cortex, 90,
88–102. https://doi.org/10.1016/j.cortex.2017.02.017

Fodor, J. (1983). Input Systems as Modules. In The modularity of mind (pp. 47–101). MIT Press.
Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W.

Cooper & E. Walker (Eds.), Sentence processing: Psycholinguistic essays presented to
merrill garrett (pp. 27–85). Erlbaum.

Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in
Cognitive Sciences, 6(2), 78–84. https://doi.org/10.1016/S1364-6613(00)01839-8

Friederici, A. D., & Weissenborn, J. (2007). Mapping sentence form onto meaning: The syntax-
semantic interface. Brain Research, 1146(1), 50–58. https://doi.org/10.1016/j.brainres.
2006.08.038

Frisson, S., Bélanger, N. N., & Rayner, K. (2014). Phonological and orthographic overlap
effects in fast and masked priming. Quarterly Journal of Experimental Psychology,
67 (9), 1742–1767. https://doi.org/10.1080/17470218.2013.869614

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews
Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Gagl, B., Richlan, F., Ludersdorfer, P., Sassenhagen, J., Eisenhauer, S., Gregorova, K.,
& Fiebach, C. J. (2022). The lexical categorization model: A computational model
of left ventral occipito-temporal cortex activation in visual word recognition. PLoS
Computational Biology, 18(6), e1009995. https://doi.org/10.1371/journal.pcbi.1009995

Gagl, B., Sassenhagen, J., Haan, S., Gregorova, K., Richlan, F., & Fiebach, C. J. (2020).
An orthographic prediction error as the basis for efficient visual word recognition.
NeuroImage, 214(August 2019), 116727. https://doi.org/10.1016/j.neuroimage.2020.
116727

Gentner, D., & Asmuth, J. (2019). Metaphoric extension, relational categories, and abstraction.
Language, Cognition and Neuroscience, 34(10), 1298–1307. https://doi.org/10.1080/
23273798.2017.1410560

Gervais, M. J., Harvey, L. O., & Roberts, J. O. (1984). Identification confusions among letters of
the alphabet. Journal of Experimental Psychology: Human Perception and Performance,
10(5), 655–666. https://doi.org/10.1037/0096-1523.10.5.655

Giglio, L., Ostarek, M., Weber, K., & Hagoort, P. (2022). Commonalities and asymmetries in
the neurobiological infrastructure for language production and comprehension. Cerebral
cortex (New York, N.Y. : 1991), 32(7), 1405–1418. https : / / doi . org /10 .1093 / cercor /
bhab287

Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews
Neuroscience, 14(5), 350–363. https://doi.org/10.1038/nrn3476

257

https://doi.org/10.1080/14640749408401116
https://doi.org/10.1016/j.cub.2009.06.059
https://doi.org/10.1016/j.cortex.2017.02.017
https://doi.org/10.1016/S1364-6613(00)01839-8
https://doi.org/10.1016/j.brainres.2006.08.038
https://doi.org/10.1016/j.brainres.2006.08.038
https://doi.org/10.1080/17470218.2013.869614
https://doi.org/10.1038/nrn2787
https://doi.org/10.1371/journal.pcbi.1009995
https://doi.org/10.1016/j.neuroimage.2020.116727
https://doi.org/10.1016/j.neuroimage.2020.116727
https://doi.org/10.1080/23273798.2017.1410560
https://doi.org/10.1080/23273798.2017.1410560
https://doi.org/10.1037/0096-1523.10.5.655
https://doi.org/10.1093/cercor/bhab287
https://doi.org/10.1093/cercor/bhab287
https://doi.org/10.1038/nrn3476


REFERENCES

Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M., & Tan, L. C. (2016). Semantic richness effects
in spoken word recognition: A lexical decision and semantic categorization megastudy.
Frontiers in Psychology, 7, 1–10. https://doi.org/10.3389/fpsyg.2016.00976

Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding.
Psychological Review, 115(3), 1–52. https://doi.org/10.1037/a0012667

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action.
Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8

Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face
like stimuli by newborn infants. Pediatrics, 56(4), 544–549. https://doi.org/10.1542/peds.
56.4.544

Gosselin, F., & Schyns, P. G. (2003). Superstitious perceptions reveal properties of internal
representations. Psychological Science, 14(5), 505–509. https://doi.org/10.1111/1467-
9280.03452

Grainger, J., & Jacobs, A. M. (1996). Orthographic Processing in Visual Word Recognition: A
Multiple Read-Out Model. Psychological Review, 103(3), 518–565. https://doi.org/10.
1037/0033-295X.103.3.518

Grainger, J., & van Heuven, W. J. (2004). Modelling letter position coding in printed word
perception. In P. Bonin (Ed.), Mental lexicon: "some words to talk about words"
(pp. 1–23). Nova Science Publishers.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R.,
Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data
analysis with MNE-Python. Frontiers in Neuroscience, 7, 1–13. https://doi.org/10.3389/
fnins.2013.00267

Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in
humans and monkeys. Journal of Anatomy, 207 (1), 3–17. https:/ /doi.org/10.1111/j .
1469-7580.2005.00426.x

Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of
Neuroscience, 27, 649–677. https://doi.org/10.1146/annurev.neuro.27.070203.144220

Groppe, D. M., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components
via split-half comparisons. NeuroImage, 45(4), 1199–1211. https://doi.org/10.1016/j.
neuroimage.2008.12.038

Grühn, D., & Scheibe, S. (2008). Age-related differences in valence and arousal ratings of
pictures from the International Affective Picture System (LAPS): Do ratings become
more extreme with age? Behavior Research Methods, 40(2), 512–521. https://doi.org/
10.3758/BRM.40.2.512

Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in
psychological science. Perspectives on Psychological Science, 16(4), 789–802. https:
//doi.org/10.1177/1745691620970585

Gutiérrez-Sigut, E., Marcet, A., & Perea, M. (2019). Tracking the time course of
letter visual-similarity effects during word recognition: A masked priming ERP
investigation. Cognitive, Affective and Behavioral Neuroscience, 19(4), 966–984.
https://doi.org/10.3758/s13415-019-00696-1

258

https://doi.org/10.3389/fpsyg.2016.00976
https://doi.org/10.1037/a0012667
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1542/peds.56.4.544
https://doi.org/10.1542/peds.56.4.544
https://doi.org/10.1111/1467-9280.03452
https://doi.org/10.1111/1467-9280.03452
https://doi.org/10.1037/0033-295X.103.3.518
https://doi.org/10.1037/0033-295X.103.3.518
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1111/j.1469-7580.2005.00426.x
https://doi.org/10.1111/j.1469-7580.2005.00426.x
https://doi.org/10.1146/annurev.neuro.27.070203.144220
https://doi.org/10.1016/j.neuroimage.2008.12.038
https://doi.org/10.1016/j.neuroimage.2008.12.038
https://doi.org/10.3758/BRM.40.2.512
https://doi.org/10.3758/BRM.40.2.512
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1177/1745691620970585
https://doi.org/10.3758/s13415-019-00696-1


REFERENCES

Gwilliams, L., Lewis, G. A., & Marantz, A. (2016). Functional characterisation of letter-specific
responses in time, space and current polarity using magnetoencephalography.
NeuroImage, 132, 320–333. https://doi.org/10.1016/j.neuroimage.2016.02.057

Hahne, A., & Friederici, A. D. (1999). Electrophysiological evidence for two steps in syntactic
analysis. Journal of Cognitive Neuroscience, 11(2), 194–205. https://doi.org/10.1162/
089892999563328

Hahne, A., & Friederici, A. D. (2002). Differential task effects on semantic and syntactic
processes as revealed by ERPs. Cognitive Brain Research, 13(3), 339–356.
https://doi.org/10.1016/S0926-6410(01)00127-6

Hannagan, T., Agrawal, A., Cohen, L., & Dehaene, S. (2021). Emergence of a compositional
neural code for written words: Recycling of a convolutional neural network for reading.
Proceedings of the National Academy of Sciences of the United States of America,
118(46), 1–12. https://doi.org/10.1073/pnas.2104779118

Hannagan, T., & Grainger, J. (2013). The lazy visual word form area: Computational insights
into location-sensitivity. PLoS Computational Biology, 9(10), 1–12. https://doi.org/10.
1371/journal.pcbi.1003250

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E.
(2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/
10.1038/s41586-020-2649-2

Hauk, O., Coutout, C., Holden, A., & Chen, Y. (2012). The time-course of single-word reading:
Evidence from fast behavioral and brain responses. NeuroImage, 60(2), 1462–1477.
https://doi.org/10.1016/j.neuroimage.2012.01.061

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time
course of visual word recognition as revealed by linear regression analysis of ERP data.
NeuroImage, 30(4), 1383–1400. https://doi.org/10.1016/j.neuroimage.2005.11.048

Hauk, O., & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-
related potential. Clinical Neurophysiology, 115(5), 1090–1103. https://doi.org/10.1016/
j.clinph.2003.12.020

Hauk, O. (2016). Only time will tell - why temporal information is essential for our neuroscientific
understanding of semantics. Psychonomic Bulletin and Review, 23(4), 1072–1079.
https://doi.org/10.3758/s13423-015-0873-9

Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An
example using the Stroop task. Psychological Bulletin, 109(2), 340–347. https://doi.org/
10.1037//0033-2909.109.2.340

Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & de Lange, F. P. (2020). Word contexts
enhance the neural representation of individual letters in early visual cortex. Nature
Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-019-13996-4

Helenius, P., Tarkiainen, A., Cornelissen, P., Hansen, P. C., & Salmelin, R. (1999). Dissociation
of normal feature analysis and deficient processing of letter-strings in dyslexic adults.
Cerebral Cortex, 9(5), 476–483. https://doi.org/10.1093/cercor/9.5.476

259

https://doi.org/10.1016/j.neuroimage.2016.02.057
https://doi.org/10.1162/089892999563328
https://doi.org/10.1162/089892999563328
https://doi.org/10.1016/S0926-6410(01)00127-6
https://doi.org/10.1073/pnas.2104779118
https://doi.org/10.1371/journal.pcbi.1003250
https://doi.org/10.1371/journal.pcbi.1003250
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.neuroimage.2012.01.061
https://doi.org/10.1016/j.neuroimage.2005.11.048
https://doi.org/10.1016/j.clinph.2003.12.020
https://doi.org/10.1016/j.clinph.2003.12.020
https://doi.org/10.3758/s13423-015-0873-9
https://doi.org/10.1037//0033-2909.109.2.340
https://doi.org/10.1037//0033-2909.109.2.340
https://doi.org/10.1038/s41467-019-13996-4
https://doi.org/10.1093/cercor/9.5.476


REFERENCES

Holcomb, P. J., Grainger, J., & O’Rourke, T. (2002). An electrophysiological study of the effects
of orthographic neighborhood size on printed word perception. Journal of Cognitive
Neuroscience, 14(6), 938–950. https://doi.org/10.1162/089892902760191153

Hollis, G., & Westbury, C. (2016). The principals of meaning: Extracting semantic dimensions
from co-occurrence models of semantics. Psychonomic Bulletin and Review, 23(6),
1744–1756. https://doi.org/10.3758/s13423-016-1053-2

Hollis, G., & Westbury, C. (2018). When is best-worst best? A comparison of best-worst scaling,
numeric estimation, and rating scales for collection of semantic norms. Behavior
Research Methods, 50(1), 115–133. https://doi.org/10.3758/s13428-017-1009-0

Hsieh, P. J., Vul, E., & Kanwisher, N. (2010). Recognition alters the spatial pattern of fMRI
activation in early retinotopic cortex. Journal of Neurophysiology, 103(3), 1501–1507.
https://doi.org/10.1152/jn.00812.2009

Hsu, C. H., Lee, C. Y., & Marantz, A. (2011). Effects of visual complexity and sublexical
information in the occipitotemporal cortex in the reading of Chinese phonograms:
A single-trial analysis with MEG. Brain and Language, 117 (1), 1–11. https :
//doi.org/10.1016/j.bandl.2010.10.002

Huang, X., Wong, W. L., Tse, C.-Y., Sommer, W., Dimigen, O., & Maurer, U. (2022). Is there
magnocellular facilitation of early neural processes underlying visual word recognition?
Evidence from masked repetition priming with ERPs. Neuropsychologia, 170(April),
108230. https://doi.org/10.1016/j.neuropsychologia.2022.108230

Huettig, F. (2015). Four central questions about prediction in language processing. Brain
Research, 1626, 118–135. https://doi.org/10.1016/j.brainres.2015.02.014

Huettig, F., & Mani, N. (2016). Is prediction necessary to understand language? Probably not.
31(1), 19–31. https://doi.org/10.1080/23273798.2015.1072223

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. https://doi.org/10.
1109/72.761722

Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component
analysis. Neural Computation, 9(7), 1483–1492. https://doi.org/10.1162/neco.1997.9.7.
1483

Jack, R. E., & Schyns, P. G. (2017). Toward a social psychophysics of face communication.
Annual Review of Psychology, 68, 269–297. https://doi.org/10.1146/annurev-psych-
010416-044242

Jastorff, J., & Orban, G. A. (2009). Human functional magnetic resonance imaging reveals
separation and integration of shape and motion cues in biological motion processing.
Journal of Neuroscience, 29(22), 7315–7329. https: / /doi .org/10.1523/JNEUROSCI.
4870-08.2009

Johns, B., Mewhort, D. J. K., & Jones, M. N. (2017). Small worlds and big data: Examining
the simplification assumption in cognitive modeling. In Big data in cognitive science.
(pp. 227–245). Routledge/Taylor & Francis Group.

260

https://doi.org/10.1162/089892902760191153
https://doi.org/10.3758/s13423-016-1053-2
https://doi.org/10.3758/s13428-017-1009-0
https://doi.org/10.1152/jn.00812.2009
https://doi.org/10.1016/j.bandl.2010.10.002
https://doi.org/10.1016/j.bandl.2010.10.002
https://doi.org/10.1016/j.neuropsychologia.2022.108230
https://doi.org/10.1016/j.brainres.2015.02.014
https://doi.org/10.1080/23273798.2015.1072223
https://doi.org/10.1109/72.761722
https://doi.org/10.1109/72.761722
https://doi.org/10.1162/neco.1997.9.7.1483
https://doi.org/10.1162/neco.1997.9.7.1483
https://doi.org/10.1146/annurev-psych-010416-044242
https://doi.org/10.1146/annurev-psych-010416-044242
https://doi.org/10.1523/JNEUROSCI.4870-08.2009
https://doi.org/10.1523/JNEUROSCI.4870-08.2009


REFERENCES

Jonas, K. G., & Markon, K. E. (2019). Modeling response style using vignettes and person-
specific item response theory. Applied Psychological Measurement, 43(1), 3–17. https:
//doi.org/10.1177/0146621618798663

Joyce, C., & Rossion, B. (2005). The face-sensitive N170 and VPP components manifest the
same brain processes: The effect of reference electrode site. Clinical Neurophysiology,
116(11), 2613–2631. https://doi.org/10.1016/j.clinph.2005.07.005

Kanske, P., & Kotz, S. A. (2010). Leipzig Affective Norms for German: A reliability study.
Behavior Research Methods, 42(4), 987–991. https://doi.org/10.3758/BRM.42.4.987

Katz, L., & Frost, R. (1992). The Reading Process is Different for Different Orthographies: The
Orthographic Depth Hypothesis. Advances in Psychology, 94(100), 67–84. https://doi.
org/10.1016/S0166-4115(08)62789-2

Kay, K. N., & Yeatman, J. D. (2017). Bottom-up and top-down computations in word- and face-
selective cortex. eLife, 6, 1–29. https://doi.org/10.7554/eLife.22341

Keuleers, E. (2013). vwr: Useful functions for visual word recognition research. https://cran.r-
project.org/package=vwr

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior
Research Methods, 42(3), 627–633. https://doi.org/10.3758/BRM.42.3.627

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical
decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research
Methods, 44(1), 287–304. https://doi.org/10.3758/s13428-011-0118-4

Khanna, M. M., & Cortese, M. J. (2021). How well imageability, concreteness, perceptual
strength, and action strength predict recognition memory, lexical decision, and reading
aloud performance. Memory, 29(5), 622–636. https://doi.org/10.1080/09658211.2021.
1924789

Kherif, F., Josse, G., & Price, C. J. (2011). Automatic top-down processing explains common left
occipito-temporal responses to visual words and objects. Cerebral Cortex, 21, 103–114.
https://doi.org/10.1093/cercor/bhq063

Kim, A., & Lai, V. (2012). Rapid interactions between lexical semantic and word form
analysis during word recognition in context: Evidence from ERPs. Journal of Cognitive
Neuroscience, 24(5), 1104–1112. https://doi.org/10.1162/jocn_a_00148

Kim, A. E., & Gilley, P. M. (2013). Neural mechanisms of rapid sensitivity to syntactic anomaly.
Frontiers in Psychology, 4, 1–15. https://doi.org/10.3389/fpsyg.2013.00045

Kim, H. (2021). A k-mismatch string matching for generalized edit distance using diagonal
skipping method. PLOS ONE, 16(5), 1–18. https : / / doi . org / 10 . 1371 / journal . pone .
0251047

Kim, S. G., Richter, W., & UÇ§urbil, K. (1997). Limitations of temporal resolution in functional
MRI. Magnetic Resonance in Medicine, 37 (4), 631–636. https://doi.org/10.1002/mrm.
1910370427

Kinoshita, S., Robidoux, S., Guilbert, D., & Norris, D. (2015). Context-dependent similarity
effects in letter recognition. Psychonomic Bulletin and Review, 22(5), 1458–1464.
https://doi.org/10.3758/s13423-015-0826-3

261

https://doi.org/10.1177/0146621618798663
https://doi.org/10.1177/0146621618798663
https://doi.org/10.1016/j.clinph.2005.07.005
https://doi.org/10.3758/BRM.42.4.987
https://doi.org/10.1016/S0166-4115(08)62789-2
https://doi.org/10.1016/S0166-4115(08)62789-2
https://doi.org/10.7554/eLife.22341
https://cran.r-project.org/package=vwr
https://cran.r-project.org/package=vwr
https://doi.org/10.3758/BRM.42.3.627
https://doi.org/10.3758/s13428-011-0118-4
https://doi.org/10.1080/09658211.2021.1924789
https://doi.org/10.1080/09658211.2021.1924789
https://doi.org/10.1093/cercor/bhq063
https://doi.org/10.1162/jocn_a_00148
https://doi.org/10.3389/fpsyg.2013.00045
https://doi.org/10.1371/journal.pone.0251047
https://doi.org/10.1371/journal.pone.0251047
https://doi.org/10.1002/mrm.1910370427
https://doi.org/10.1002/mrm.1910370427
https://doi.org/10.3758/s13423-015-0826-3


REFERENCES

Kinoshita, S., Robidoux, S., Mills, L., & Norris, D. (2014). Visual similarity effects on masked
priming. Memory and Cognition, 42(5), 821–833. https://doi.org/10.3758/s13421-013-
0388-4

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). "What’s new
in Psychtoolbox-3?". Perception 36 ECVP Abstract Supplement. https://doi.org/10.1068/
v070821

Kok, P., & De Lange, F. P. (2014). Shape perception simultaneously up- and downregulates
neural activity in the primary visual cortex. Current Biology, 24(13), 1531–1535. https:
//doi.org/10.1016/j.cub.2014.05.042

Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale
dell’Istituto Italiano degli Attuari, 4, 83–91.

Kondrak, G., & Dorr, B. (2006). Automatic identification of confusable drug names. Artificial
Intelligence in Medicine, 36(1), 29–42. https://doi.org/10.1016/j.artmed.2005.07.005

Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The
representation of abstract words: Why emotion matters. Journal of Experimental
Psychology: General, 140(1), 14–34. https://doi.org/10.1037/a0021446

Kovesi, P. (2003). Phase congruency detects corners and edges. In C. Sun, H. Talbot, S.
Ourselin, & T. Adriaansen (Eds.), Digital image computing: Techniques and applications:
Proceedings of the viith biennial australian pattern recognition society conference - dicta
2003 (pp. 309–318). Csiro Publishing.

Krafnick, A. J., Tan, L. H., Flowers, D. L., Luetje, M. M., Napoliello, E. M., Siok, W. T., Perfetti, C.,
& Eden, G. F. (2016). Chinese Character and English Word processing in children’s
ventral occipitotemporal cortex: FMRI evidence for script invariance. NeuroImage, 133,
302–312. https://doi.org/10.1016/j.neuroimage.2016.03.021

Kretzschmar, F., Schlesewsky, M., & Staub, A. (2015). Dissociating word frequency and
predictability effects in reading: evidence from coregistration of eye movements and
EEG. Journal of Experimental Psychology : Learning, Memory, and Cognition, 41(6),
1648–1662. https://doi.org/10.1037/xlm0000128

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -
connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,
2, 1–28. https://doi.org/10.3389/neuro.06.004.2008

Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The
visual word form area and the frequency with which words are encountered: Evidence
from a parametric fMRI study. NeuroImage, 21(3), 946–953. https://doi.org/10.1016/j.
neuroimage.2003.10.021

Kuennapas, T., & Janson, A. J. (1969). Multidimensional similarity of letters. Perceptual and
motor skills, 28(1), 3–12. https://doi.org/10.2466/pms.1969.28.1.3

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language
comprehension? Language, Cognition and Neuroscience, 31(1), 32–59. https :
//doi.org/10.1080/23273798.2015.1102299

262

https://doi.org/10.3758/s13421-013-0388-4
https://doi.org/10.3758/s13421-013-0388-4
https://doi.org/10.1068/v070821
https://doi.org/10.1068/v070821
https://doi.org/10.1016/j.cub.2014.05.042
https://doi.org/10.1016/j.cub.2014.05.042
https://doi.org/10.1016/j.artmed.2005.07.005
https://doi.org/10.1037/a0021446
https://doi.org/10.1016/j.neuroimage.2016.03.021
https://doi.org/10.1037/xlm0000128
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.neuroimage.2003.10.021
https://doi.org/10.1016/j.neuroimage.2003.10.021
https://doi.org/10.2466/pms.1969.28.1.3
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1080/23273798.2015.1102299


REFERENCES

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for
30,000 English words. Behavior Research Methods, 44(4), 978–990. https://doi.org/10.
3758/s13428-012-0210-4

Kurita-Tashima, S., Tobimatsu, S., Nakayama-Hiromatsu, M., & Kato, M. (1991). Effect of check
size on the pattern reversal visual evoked potential. Electroencephalography and Clinical
Neurophysiology/Evoked Potentials Section, 68(3), 219–222. https://doi.org/10.1016/
0168-5597(87)90029-3

Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400
component of the event-related brain potential (ERP). Annual Review of Psychology, 62,
621–647. https://doi.org/10.1146/annurev.psych.093008.131123

Kuwahata, H., Adachi, I., Fujita, K., Tomonaga, M., & Matsuzawa, T. (2004). Development of
schematic face preference in macaque monkeys. Behavioural Processes, 66(1), 17–21.
https://doi.org/10.1016/j.beproc.2003.11.002

Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid
syntactic analysis. Brain and Language, 98(1), 74–88. https://doi.org/10.1016/j.bandl.
2006.02.003

Lee, C. Y., Liu, Y. N., & Tsai, J. L. (2012). The time course of contextual effects on visual word
recognition. Frontiers in Psychology, 3, 1–13. https://doi.org/10.3389/fpsyg.2012.00285

Lewis, G., Solomyak, O., & Marantz, A. (2011). The neural basis of obligatory decomposition of
suffixed words. Brain and Language, 118(3), 118–127. https://doi.org/10.1016/j.bandl.
2011.04.004

Li, J., Osher, D. E., Hansen, H. A., & Saygin, Z. M. (2020). Innate connectivity patterns drive
the development of the visual word form area. Scientific Reports, 10(1), 1–12. https :
//doi.org/10.1038/s41598-020-75015-7

Li, X., Harbottle, G., Zhang, J., & Wang, C. (2003). The earliest writing? Sign use in the seventh
millennium BC at Jiahu, Henan Province, China. Antiquity, 77 (295), 31–44. https://doi.
org/10.1017/S0003598X00061329

Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could
possibly go wrong? Journal of Experimental Social Psychology, 79(August), 328–348.
https://doi.org/10.1016/j.jesp.2018.08.009

Lien, M. C., Allen, P. A., & Ruthruff, E. (2021). Multiple routes to word recognition: evidence
from event-related potentials. Psychological Research, 85(1), 151–180. https://doi.org/
10.1007/s00426-019-01256-5

Ling, S., Lee, A. C. H., Armstrong, B. C., & Nestor, A. (2019). How are visual words
represented? Insights from EEG-based visual word decoding, feature derivation
and image reconstruction. Human Brain Mapping, 40(17), 5056–5068. https :
//doi.org/10.1002/hbm.24757

Lo, S., & Andrews, S. (2015). To transform or not to transform: using generalized linear mixed
models to analyse reaction time data. Frontiers in Psychology, 6(1171), 1–16. https :
//doi.org/10.3389/fpsyg.2015.01171

Locke, L. L. (1912). The ancient Quipu, a Peruvian knot record. American Anthropologist, 14(2),
325–332.

263

https://doi.org/10.3758/s13428-012-0210-4
https://doi.org/10.3758/s13428-012-0210-4
https://doi.org/10.1016/0168-5597(87)90029-3
https://doi.org/10.1016/0168-5597(87)90029-3
https://doi.org/10.1146/annurev.psych.093008.131123
https://doi.org/10.1016/j.beproc.2003.11.002
https://doi.org/10.1016/j.bandl.2006.02.003
https://doi.org/10.1016/j.bandl.2006.02.003
https://doi.org/10.3389/fpsyg.2012.00285
https://doi.org/10.1016/j.bandl.2011.04.004
https://doi.org/10.1016/j.bandl.2011.04.004
https://doi.org/10.1038/s41598-020-75015-7
https://doi.org/10.1038/s41598-020-75015-7
https://doi.org/10.1017/S0003598X00061329
https://doi.org/10.1017/S0003598X00061329
https://doi.org/10.1016/j.jesp.2018.08.009
https://doi.org/10.1007/s00426-019-01256-5
https://doi.org/10.1007/s00426-019-01256-5
https://doi.org/10.1002/hbm.24757
https://doi.org/10.1002/hbm.24757
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.3389/fpsyg.2015.01171


REFERENCES

López-Barroso, D., Thiebaut de Schotten, M., Morais, J., Kolinsky, R., Braga, L. W.,
Guerreiro-Tauil, A., Dehaene, S., & Cohen, L. (2020). Impact of literacy on the
functional connectivity of vision and language related networks. NeuroImage, 213,
1–12. https://doi.org/10.1016/j.neuroimage.2020.116722

Lopukhina, A., Konstantin, L., & Laurinavichyute, A. (2021). Morphosyntactic but not lexical
corpus-based probabilities can substitute for cloze probabilities in reading experiments.
PLOS ONE, 16(1), 1–26. https://doi.org/10.1371/journal.pone.0246133

Lu, C., Li, H., Fu, R., Qu, J., Yue, Q., & Mei, L. (2021). Neural representation in visual word
form area during word reading. Neuroscience, 452, 49–62. https://doi.org/10.1016/j.
neuroscience.2020.10.040

Luke, S. G., & Christianson, K. (2015). Predicting inflectional morphology from context.
Language, Cognition and Neuroscience, 30(6), 735–748. https : / / doi . org / 10 . 1080 /
23273798.2015.1009918

Luke, S. G., & Christianson, K. (2016). Limits on lexical prediction during reading. Cognitive
Psychology, 88, 22–60. https://doi.org/10.1016/j.cogpsych.2016.06.002

Luke, S. G., & Christianson, K. (2018). The Provo Corpus: A large eye-tracking corpus with
predictability norms. Behavior Research Methods, 50, 826–833. https://doi.org/10.3758/
s13428-017-0908-4

Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus
set of faces and norming data. Behavior Research Methods, 47 (4), 1122–1135. https:
//doi.org/10.3758/s13428-014-0532-5

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of
dichotomization of quantitative variables. Psychological Methods, 7 (1), 19–40. https :
//doi.org/10.1037/1082-989X.7.1.19

Madec, S., Le Goff, K., Anton, J.-L., Longcamp, M., Velay, J.-L., Nazarian, B., Roth, M., Courrieu,
P., Grainger, J., & Rey, A. (2016). Brain correlates of phonological recoding of visual
symbols. NeuroImage, 132, 359–372. https://doi.org/10.1016/j.neuroimage.2016.02.010

Madec, S., Le Goff, K., Riès, S. K., Legou, T., Rousselet, G., Courrieu, P., Alario, F. X., Grainger,
J., & Rey, A. (2016). The time course of visual influences in letter recognition. Cognitive,
Affective and Behavioral Neuroscience, 16(3), 406–414. https : / / doi . org / 10 . 3758 /
s13415-015-0400-5

Maier, M., & Abdel Rahman, R. (2019). No matter how: Top-down effects of verbal and semantic
category knowledge on early visual perception. Cognitive, Affective and Behavioral
Neuroscience, 19(4), 859–876. https://doi.org/10.3758/s13415-018-00679-8

Mangini, M. C., & Biederman, I. (2004). Making the ineffable explicit: Estimating the information
employed for face classifications. Cognitive Science, 28(2), 209–226. https://doi.org/10.
1016/j.cogsci.2003.11.004

Marcet, A., & Perea, M. (2018). Can I order a burger at rnacdonalds.com? Visual similarity
effects of multi-letter combinations at the early stages of word recognition. Journal of
Experimental Psychology: Learning Memory and Cognition, 44(5), 699–706. https://doi.
org/10.1037/xlm0000477

264

https://doi.org/10.1016/j.neuroimage.2020.116722
https://doi.org/10.1371/journal.pone.0246133
https://doi.org/10.1016/j.neuroscience.2020.10.040
https://doi.org/10.1016/j.neuroscience.2020.10.040
https://doi.org/10.1080/23273798.2015.1009918
https://doi.org/10.1080/23273798.2015.1009918
https://doi.org/10.1016/j.cogpsych.2016.06.002
https://doi.org/10.3758/s13428-017-0908-4
https://doi.org/10.3758/s13428-017-0908-4
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/10.1037/1082-989X.7.1.19
https://doi.org/10.1037/1082-989X.7.1.19
https://doi.org/10.1016/j.neuroimage.2016.02.010
https://doi.org/10.3758/s13415-015-0400-5
https://doi.org/10.3758/s13415-015-0400-5
https://doi.org/10.3758/s13415-018-00679-8
https://doi.org/10.1016/j.cogsci.2003.11.004
https://doi.org/10.1016/j.cogsci.2003.11.004
https://doi.org/10.1037/xlm0000477
https://doi.org/10.1037/xlm0000477


REFERENCES

Martin, L., Durisko, C., Moore, M. W., Coutanche, M. N., Chen, D., & Fiez, J. A. (2019). The
VWFA is the home of orthographic learning when houses are used as letters. eNeuro,
6(1), 1–13. https://doi.org/10.1523/ENEURO.0425-17.2019

Martín-Loeches, M., Nigbur, R., Casado, P., Hohlfeld, A., & Sommer, W. (2006). Semantics
prevalence over syntax during sentence processing: A brain potential study of noun-
adjective agreement in Spanish. Brain Research, 1093(1), 178–189. https://doi.org/10.
1016/j.brainres.2006.03.094

Masson, M. E., & MacLeod, C. M. (2002). Covert operations: Orthographic recoding as a
basis for repetition priming in word identification. Journal of Experimental Psychology:
Learning Memory and Cognition, 28(5), 858–871. https://doi.org/10.1037/0278-7393.
28.5.858

Matar, S., Pylkkänen, L., & Marantz, A. (2019). Left occipital and right frontal involvement in
syntactic category prediction: MEG evidence from Standard Arabic. Neuropsychologia,
135. https://doi.org/10.1016/j.neuropsychologia.2019.107230

MATLAB. (2020). MATLAB Version 9.9.0 (R2020b). The MathWorks Inc.
Mattavelli, G., Rosanova, M., Casali, A. G., Papagno, C., & Lauro, L. J. R. (2013). Top-down

interference and cortical responsiveness in face processing: A TMS-EEG study.
NeuroImage, 76, 24–32. https://doi.org/10.1016/j.neuroimage.2013.03.020

Maurer, U., Brandeis, D., & McCandliss, B. D. (2005). Fast, visual specialization for reading in
English revealed by the topography of the N170 ERP response. Behavioral and Brain
Functions, 1, 1–12. https://doi.org/10.1186/1744-9081-1-13

Maurer, U., Brem, S., Bucher, K., & Brandeis, D. (2005). Emerging neurophysiological
specialization for letter strings. Journal of Cognitive Neuroscience, 17 (10), 1532–1552.
https://doi.org/10.1162/089892905774597218

Maurer, U., Rossion, B., & McCandliss, B. D. (2008). Category specificity in early perception:
Face and word N170 responses differ in both lateralization and habituation properties.
Frontiers in Human Neuroscience, 2, 1–7. https://doi.org/10.3389/neuro.09.018.2008

Maurer, U., Zevin, J. D., & McCandliss, B. D. (2008). Left-lateralized N170 effects of visual
expertise in reading: Evidence from Japanese syllabic and logographic scripts. Journal
of Cognitive Neuroscience, 20(10), 1878–1891. https : / /doi .org /10 .1162/ jocn .2008.
20125

McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise
for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7 (7), 293–299. https:
//doi.org/10.1016/S1364-6613(03)00134-7

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects
in letter perception: Part 1. An acccount of basic findings. Psychological Review, 88(5),
375–407. https://doi.org/10.1037/0033-295X.88.5.375

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical
Society: Series B (Methodological), 42(2), 109–127. https:/ /doi.org/10.1111/j .2517-
6161.1980.tb01109.x

265

https://doi.org/10.1523/ENEURO.0425-17.2019
https://doi.org/10.1016/j.brainres.2006.03.094
https://doi.org/10.1016/j.brainres.2006.03.094
https://doi.org/10.1037/0278-7393.28.5.858
https://doi.org/10.1037/0278-7393.28.5.858
https://doi.org/10.1016/j.neuropsychologia.2019.107230
https://doi.org/10.1016/j.neuroimage.2013.03.020
https://doi.org/10.1186/1744-9081-1-13
https://doi.org/10.1162/089892905774597218
https://doi.org/10.3389/neuro.09.018.2008
https://doi.org/10.1162/jocn.2008.20125
https://doi.org/10.1162/jocn.2008.20125
https://doi.org/10.1016/S1364-6613(03)00134-7
https://doi.org/10.1016/S1364-6613(03)00134-7
https://doi.org/10.1037/0033-295X.88.5.375
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x


REFERENCES

McManus, J. N., Li, W., & Gilbert, C. D. (2011). Adaptive shape processing in primary visual
cortex. Proceedings of the National Academy of Sciences of the United States of
America, 108(24), 9739–9746. https://doi.org/10.1073/pnas.1105855108

Molinaro, N., Barber, H. A., & Carreiras, M. (2011). Grammatical agreement processing in
reading: ERP findings and future directions. Cortex, 47 (8), 908–930. https: / /doi .org/
10.1016/j.cortex.2011.02.019

Molko, N., Cohen, L., Mangin, J. F., Chochon, F., Lehéricy, S., Le Bihan, D., & Dehaene, S.
(2002). Visualizing the neural bases of a disconnection syndrome with diffusion tensor
imaging. Journal of Cognitive Neuroscience, 14(4), 629–636. https://doi.org/10.1162/
08989290260045864

Momma, S., & Phillips, C. (2018). The relationship between parsing and generation. Annual
Review of Linguistics, 4, 233–254. https://doi.org/10.1146/annurev-linguistics-011817-
045719

Moulton, E., Bouhali, F., Monzalvo, K., Poupon, C., Zhang, H., Dehaene, S., Dehaene-Lambertz,
G., & Dubois, J. (2019). Connectivity between the visual word form area and the parietal
lobe improves after the first year of reading instruction: a longitudinal MRI study in
children. Brain Structure and Function, 224(4), 1519–1536. https: / /doi .org/10.1007/
s00429-019-01855-3

Mueller, S. T., & Weidemann, C. T. (2012). Alphabetic letter identification: Effects of
perceivability, similarity, and bias. Acta Psychologica, 139(1), 19–37. https :
//doi.org/10.1016/j.actpsy.2011.09.014

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Percie Du Sert, N.,
Simonsohn, U., Wagenmakers, E. J., Ware, J. J., & Ioannidis, J. P. (2017). A manifesto
for reproducible science. Nature Human Behaviour, 1(1), 1–9. https://doi.org/10.1038/
s41562-016-0021

Muneaux, M., & Ziegler, J. C. (2004). Locus of orthographic effects in spoken word recognition:
Novel insights from the neighbour generation task. Language and Cognitive Processes,
19(5), 641–660. https://doi.org/10.1080/01690960444000052

Neath, I., & Surprenant, A. M. (2020). Concreteness and disagreement: Comment on Pollock
(2018). Memory and Cognition, 48, 683–690. https: / /doi .org /10.3758/s13421- 019-
00992-8

Neisser, U. (1967). Cognitive Psychology. Prentice-Hall. https : / / doi . org / 10 . 4324 /
9781315736174

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, 7 (4), 308–313. https://doi.org/10.1093/comjnl/7.4.308

Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based
sentence processing classes: Evidence from event-related brain potentials. Journal of
Cognitive Neuroscience, 3(2), 151–165. https://doi.org/10.1162/jocn.1991.3.2.151

Nieuwland, M. S. (2019). Do ’early’ brain responses reveal word form prediction during
language comprehension? A critical review. Neuroscience and Biobehavioral Reviews,
96, 367–400. https://doi.org/10.1016/j.neubiorev.2018.11.019

266

https://doi.org/10.1073/pnas.1105855108
https://doi.org/10.1016/j.cortex.2011.02.019
https://doi.org/10.1016/j.cortex.2011.02.019
https://doi.org/10.1162/08989290260045864
https://doi.org/10.1162/08989290260045864
https://doi.org/10.1146/annurev-linguistics-011817-045719
https://doi.org/10.1146/annurev-linguistics-011817-045719
https://doi.org/10.1007/s00429-019-01855-3
https://doi.org/10.1007/s00429-019-01855-3
https://doi.org/10.1016/j.actpsy.2011.09.014
https://doi.org/10.1016/j.actpsy.2011.09.014
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1080/01690960444000052
https://doi.org/10.3758/s13421-019-00992-8
https://doi.org/10.3758/s13421-019-00992-8
https://doi.org/10.4324/9781315736174
https://doi.org/10.4324/9781315736174
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1162/jocn.1991.3.2.151
https://doi.org/10.1016/j.neubiorev.2018.11.019


REFERENCES

Nobre, A. C., Allison, T., & McCarthy, G. (1994). Word recognition in the human inferior temporal
lobe. 372, 260–263. https://doi.org/10.1038/372260a0

Norris, D. (2013). Models of visual word recognition. Trends in Cognitive Sciences, 17 (10),
517–524. https://doi.org/10.1016/j.tics.2013.08.003

Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there’s nothing special
about the perception of orthography. Psychological Review, 119(3), 517–545. https :
//doi.org/10.1037/a0028450

Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration
revolution. Proceedings of the National Academy of Sciences of the United States of
America, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114

Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F.,
Hilgard, J., Kline Struhl, M., Nuijten, M. g. l. B., Rohrer, J. M., Romero, F., Scheel, A. M.,
Scherer, L. D., Schönbrodt, F. D., & Vazire, S. (2022). Replicability, Robustness, and
Reproducibility in Psychological Science. Annual Review of Psychology, 73, 719–748.
https://doi.org/10.1146/annurev-psych-020821-114157

Parker, A. J., Egan, C., Grant, J. H., Harte, S., Hudson, B. T., & Woodhead, Z. V. (2021). The
role of orthographic neighbourhood effects in lateralized lexical decision: a replication
study and meta-analysis. PeerJ, 9, 1–25. https://doi.org/10.7717/peerj.11266

Parr, L. A., Hecht, E., Barks, S. K., Preuss, T. M., & Votaw, J. R. (2009). Face processing in the
chimpanzee brain. Current Biology, 19(1), 50–53. https://doi.org/10.1016/j.cub.2008.11.
048

Parviainen, T., Helenius, P., Poskiparta, E., Niemi, P., & Salmelin, R. (2006). Cortical sequence
of word perception in beginning readers. Journal of Neuroscience, 26(22), 6052–6061.
https://doi.org/10.1523/JNEUROSCI.0673-06.2006

Pastore, M. (2018). Overlapping: a R package for estimating overlapping in empirical
distributions. Journal of Open Source Software, 3(32), 1023. https://doi.org/10.21105/
joss.01023

Pastore, M., & Calcagnì, A. (2019). Measuring distribution similarities between samples: A
distribution-free overlapping index. Frontiers in Psychology, 10(1089), 1–8. https://doi.
org/10.3389/fpsyg.2019.01089

Pattamadilok, C., Morais, J., Colin, C., & Kolinsky, R. (2014). Unattentive speech processing is
influenced by orthographic knowledge: Evidence from mismatch negativity. Brain and
Language, 137, 103–111. https://doi.org/10.1016/j.bandl.2014.08.005

Pattamadilok, C., Perre, L., & Ziegler, J. C. (2011). Beyond rhyme or reason: ERPs reveal task-
specific activation of orthography on spoken language. Brain and Language, 116(3),
116–124. https://doi.org/10.1016/j.bandl.2010.12.002

Pattamadilok, C., Planton, S., & Bonnard, M. (2019). Spoken language coding neurons in the
Visual Word Form Area: Evidence from a TMS adaptation paradigm. NeuroImage, 186,
278–285. https://doi.org/10.1016/j.neuroimage.2018.11.014

Pecher, D., De Rooij, J., & Zeelenberg, R. (2009). Does a pear growl? Interference from
semantic properties of orthographic neighbors. Memory and Cognition, 37 (5), 541–546.
https://doi.org/10.3758/MC.37.5.541

267

https://doi.org/10.1038/372260a0
https://doi.org/10.1016/j.tics.2013.08.003
https://doi.org/10.1037/a0028450
https://doi.org/10.1037/a0028450
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1146/annurev-psych-020821-114157
https://doi.org/10.7717/peerj.11266
https://doi.org/10.1016/j.cub.2008.11.048
https://doi.org/10.1016/j.cub.2008.11.048
https://doi.org/10.1523/JNEUROSCI.0673-06.2006
https://doi.org/10.21105/joss.01023
https://doi.org/10.21105/joss.01023
https://doi.org/10.3389/fpsyg.2019.01089
https://doi.org/10.3389/fpsyg.2019.01089
https://doi.org/10.1016/j.bandl.2014.08.005
https://doi.org/10.1016/j.bandl.2010.12.002
https://doi.org/10.1016/j.neuroimage.2018.11.014
https://doi.org/10.3758/MC.37.5.541


REFERENCES

Pecher, D., Wagenmakers, E. J., & Zeelenberg, R. (2005). Enemies and friends in the
neighborhood: Orthographic similarity effects in semantic categorization. Journal
of Experimental Psychology: Learning Memory and Cognition, 31(1), 121–128.
https://doi.org/10.1037/0278-7393.31.1.121

Pegado, F., Comerlato, E., Ventura, F., Jobert, A., Nakamura, K., Buiatti, M., Ventura, P.,
Dehaene-Lambertz, G., Kolinsky, R., Morais, J., Braga, L. W., Cohen, L., & Dehaene, S.
(2014). Timing the impact of literacy on visual processing. Proceedings of the National
Academy of Sciences of the United States of America, 111(49), E5233–E5242.
https://doi.org/10.1073/pnas.1417347111

Peirce, J. W. (2007). PsychoPy - Psychophysics software in Python. Journal of Neuroscience
Methods, 162(1-2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017

Penolazzi, B., Hauk, O., & Pulvermüller, F. (2007). Early semantic context integration and
lexical access as revealed by event-related brain potentials. Biological Psychology,
74(3), 374–388. https://doi.org/10.1016/j.biopsycho.2006.09.008

Perna, A., Tosetti, M., Montanaro, D., & Morrone, M. C. (2008). BOLD response to spatial phase
congruency in human brain. Journal of Vision, 8(10), 1–15. https://doi.org/10.1167/8.
10.15

Perre, L., Bertrand, D., & Ziegler, J. C. (2011). Literacy affects spoken language in a non-
linguistic task: An ERP study. Frontiers in Psychology, 2, 1–8. https://doi.org/10.3389/
fpsyg.2011.00274

Perre, L., & Ziegler, J. C. (2008). On-line activation of orthography in spoken word recognition.
Brain Research, 1188(1), 132–138. https://doi.org/10.1016/j.brainres.2007.10.084

Perrin, F., Pernier, J., & Bertrand, O. (1989). Spherical splines for scalp potential and current
density mapping. Electroencephalography and clinical Neurophysiology, 72, 184–187.
https://doi.org/10.1016/0013-4694(89)90180-6

Perry, L. K., Perlman, M., Winter, B., Massaro, D. W., & Lupyan, G. (2018). Iconicity in the
speech of children and adults. Developmental Science, 21(3), 1–8. https://doi.org/10.
1111/desc.12572

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission
tomographic studies of the cortical anatomy of single-word processing. Nature,
331(6157), 585–589. https://doi.org/10.1038/331585a0

Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The Calgary semantic decision project:
Concrete/abstract decision data for 10,000 English words. Behavior research methods,
49(2), 407–417. https://doi.org/10.3758/s13428-016-0720-6

Pexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., & Yap, M. J. (2019). Quantifying
sensorimotor experience: Body-object interaction ratings for more than 9,000 English
words. Behavior Research Methods, 51(2), 453–466. https://doi.org/10.3758/s13428-
018-1171-z

Pfeuffer, J., McCullough, J. C., Van De Moortele, P. F., Ugurbil, K., & Hu, X. (2003). Spatial
dependence of the nonlinear BOLD response at short stimulus duration. NeuroImage,
18(4), 990–1000. https://doi.org/10.1016/S1053-8119(03)00035-1

268

https://doi.org/10.1037/0278-7393.31.1.121
https://doi.org/10.1073/pnas.1417347111
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.biopsycho.2006.09.008
https://doi.org/10.1167/8.10.15
https://doi.org/10.1167/8.10.15
https://doi.org/10.3389/fpsyg.2011.00274
https://doi.org/10.3389/fpsyg.2011.00274
https://doi.org/10.1016/j.brainres.2007.10.084
https://doi.org/10.1016/0013-4694(89)90180-6
https://doi.org/10.1111/desc.12572
https://doi.org/10.1111/desc.12572
https://doi.org/10.1038/331585a0
https://doi.org/10.3758/s13428-016-0720-6
https://doi.org/10.3758/s13428-018-1171-z
https://doi.org/10.3758/s13428-018-1171-z
https://doi.org/10.1016/S1053-8119(03)00035-1


REFERENCES

Phillips, J. A., Humphreys, G. W., Noppeney, U., & Price, C. J. (2002). The neural substrates of
action retrieval: An examination of semantic and visual routes to action. Visual Cognition,
9(4-5), 662–685. https://doi.org/10.1080/13506280143000610

Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and
review. Psychological Bulletin, 144(10), 1002–1044. https://doi.org/10.1037/bul0000158

Pickering, M. J., & Garrod, S. (2007). Do people use language production to make predictions
during comprehension? Trends in Cognitive Sciences, 11(3), 105–110. https://doi.org/
10.1016/j.tics.2006.12.002

Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production
and comprehension. Behavioral and Brain Sciences, 36(4), 329–347. https :
//doi.org/10.1017/S0140525X12001495

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS (J. Chambers,
W. Eddy, W. Härdle, S. Sheather, & L. Tierney, Eds.). Springer-Verlag New York. https:
//doi.org/10.1007/b98882

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated
electroencephalographic independent component classifier, dataset, and website.
NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026

Planton, S., Chanoine, V., Sein, J., Anton, J. L., Nazarian, B., Pallier, C., & Pattamadilok, C.
(2019). Top-down activation of the visuo-orthographic system during spoken sentence
processing. NeuroImage, 202(June). https://doi.org/10.1016/j.neuroimage.2019.116135

Pleisch, G., Karipidis, I. I., Brem, A., Röthlisberger, M., Roth, A., Brandeis, D., Walitza, S.,
& Brem, S. (2019). Simultaneous EEG and fMRI reveals stronger sensitivity
to orthographic strings in the left occipito-temporal cortex of typical versus
poor beginning readers. Developmental Cognitive Neuroscience, 40, 1–13.
https://doi.org/10.1016/j.dcn.2019.100717

Podgorny, P., & Garner, W. R. (1979). Reaction time as a measure of inter- and intraobject
visual similarity: Letters of the alphabet. Perception & Psychophysics, 26(1), 37–52.
https://doi.org/10.3758/BF03199860

Polk, T. A., & Farah, M. (2002). Functional MRI evidence for an abstract, not perceptual, word-
form area. Journal of Experimental Psychology: General, 131(1), 65–72. https://doi.org/
10.1037/0096-3445.131.1.65

Pollock, L. (2018). Statistical and methodological problems with concreteness and other
semantic variables: A list memory experiment case study. Behavior Research Methods,
50(3), 1198–1216. https://doi.org/10.3758/s13428-017-0938-y

Ponsot, E., Burred, J. J., Belin, P., & Aucouturier, J. J. (2018). Cracking the social code of speech
prosody using reverse correlation. Proceedings of the National Academy of Sciences of
the United States of America, 115(15), 3972–3977. https : / / doi . org / 10 . 1073 / pnas .
1716090115

Popov, V., Ostarek, M., & Tenison, C. (2018). Practices and pitfalls in inferring neural
representations. NeuroImage, 174(March), 340–351. https : / / doi . org / 10 . 1016 / j .
neuroimage.2018.03.041

269

https://doi.org/10.1080/13506280143000610
https://doi.org/10.1037/bul0000158
https://doi.org/10.1016/j.tics.2006.12.002
https://doi.org/10.1016/j.tics.2006.12.002
https://doi.org/10.1017/S0140525X12001495
https://doi.org/10.1017/S0140525X12001495
https://doi.org/10.1007/b98882
https://doi.org/10.1007/b98882
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2019.116135
https://doi.org/10.1016/j.dcn.2019.100717
https://doi.org/10.3758/BF03199860
https://doi.org/10.1037/0096-3445.131.1.65
https://doi.org/10.1037/0096-3445.131.1.65
https://doi.org/10.3758/s13428-017-0938-y
https://doi.org/10.1073/pnas.1716090115
https://doi.org/10.1073/pnas.1716090115
https://doi.org/10.1016/j.neuroimage.2018.03.041
https://doi.org/10.1016/j.neuroimage.2018.03.041


REFERENCES

Posner, M. I., Sandson, J., Dhawan, M., & Shulman, G. L. (1989). Is word recognition automatic?
A cognitive-anatomical approach. Journal of Cognitive Neuroscience, 1(1), 50–60. https:
//doi.org/10.1162/jocn.1989.1.1.50

Posner, M. I., & Keele, S. W. (1968). On the Genesis of Abstract Ideas. Journal of Experimental
Psychology, 77 (3), 354–363. https://doi.org/10.1037/h0025953

Posse, S., Ackley, E., Mutihac, R., Rick, J., Shane, M., Murray-Krezan, C., Zaitsev, M., & Speck,
O. (2012). Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI
using multi-slab echo-volumar imaging. NeuroImage, 61(1), 115–130. https://doi.org/10.
1016/j.neuroimage.2012.02.059

Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without
derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge,
26–46. https://doi.org/10.1.1.443.7693

Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard
speech, spoken language and reading. NeuroImage, 62(2), 816–847. https://doi.org/10.
1016/j.neuroimage.2012.04.062

Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19(3),
473–481. https://doi.org/10.1016/S1053-8119(03)00084-3

Price, C. J., & Devlin, J. T. (2011). The Interactive Account of ventral occipitotemporal
contributions to reading. Trends in Cognitive Sciences, 15(6), 246–253. https :
//doi.org/10.1016/j.tics.2011.04.001

Pugh, K. R., Shaywitz, B. A., Shaywitz, S. E., Constable, R. T., Skudlarski, P., Fulbright, R. K.,
Bronen, R. A., Shankweiler, D. P., Katz, L., Fletcher, J. M., & Gore, J. C. (1996). Cerebral
organization of component processes in reading. Brain, 119(4), 1221–1238. https://doi.
org/10.1093/brain/119.4.1221

Purcell, J. J., Shea, J., & Rapp, B. (2014). Beyond the visual word form area: The orthography-
semantics interface in spelling and reading. Cognitive Neuropsychology, 31(5-6),
482–510. https://doi.org/10.1080/02643294.2014.909399

Qu, J., Pang, Y., Liu, X., Cao, Y., Huang, C., & Mei, L. (2022). Task modulates the orthographic
and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain
Imaging and Behavior, 1–13. https://doi.org/10.1007/s11682-022-00641-w

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. Vienna, Austria. https://www.r-project.org/

Rahimi, S., Farahibozorg, S. R., Jackson, R., & Hauk, O. (2022). Task modulation
of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study.
NeuroImage, 246, 118768. https://doi.org/10.1016/j.neuroimage.2021.118768

Ramsey, R., & Ward, R. (2020). Challenges and opportunities for top-down modulation research
in cognitive psychology. Acta Psychologica, 209(June), 103118. https://doi.org/10.1016/
j.actpsy.2020.103118

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1),
79–87. https://doi.org/10.1038/4580

270

https://doi.org/10.1162/jocn.1989.1.1.50
https://doi.org/10.1162/jocn.1989.1.1.50
https://doi.org/10.1037/h0025953
https://doi.org/10.1016/j.neuroimage.2012.02.059
https://doi.org/10.1016/j.neuroimage.2012.02.059
https://doi.org/10.1.1.443.7693
https://doi.org/10.1016/j.neuroimage.2012.04.062
https://doi.org/10.1016/j.neuroimage.2012.04.062
https://doi.org/10.1016/S1053-8119(03)00084-3
https://doi.org/10.1016/j.tics.2011.04.001
https://doi.org/10.1016/j.tics.2011.04.001
https://doi.org/10.1093/brain/119.4.1221
https://doi.org/10.1093/brain/119.4.1221
https://doi.org/10.1080/02643294.2014.909399
https://doi.org/10.1007/s11682-022-00641-w
https://www.r-project.org/
https://doi.org/10.1016/j.neuroimage.2021.118768
https://doi.org/10.1016/j.actpsy.2020.103118
https://doi.org/10.1016/j.actpsy.2020.103118
https://doi.org/10.1038/4580


REFERENCES

Rauschecker, A. M., Bowen, R. F., Parvizi, J., & Wandell, B. A. (2012). Position sensitivity in the
visual word form area. Proceedings of the National Academy of Sciences of the United
States of America, 109(24). https://doi.org/10.1073/pnas.1121304109

Rauss, K., & Pourtois, G. (2013). What is bottom-up and what is top-down in predictive coding.
Frontiers in Psychology, 4(276), 1–8. https://doi.org/10.3389/fpsyg.2013.00276

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin, 124(3), 372.

Rayner, K., Schotter, E. R., Masson, M. E., Potter, M. C., & Treiman, R. (2016). So much to read,
so little time: How do we read, and can speed reading help? Psychological Science in the
Public Interest, Supplement, 17 (1), 4–34. https://doi.org/10.1177/1529100615623267

Reich, L., Szwed, M., Cohen, L., & Amedi, A. (2011). A ventral visual stream reading center
independent of visual experience. Current Biology, 21(5), 363–368. https://doi.org/10.
1016/j.cub.2011.01.040

Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z reader model of eye-movement
control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4),
445–476. https://doi.org/10.1017/S0140525X03000104

Rodd, J. M. (2004). When do leotards get their spots? Semantic activation of lexical neighbors
in visual word recognition. Psychonomic Bulletin and Review, 11(3), 434–439. https :
//doi.org/10.3758/BF03196591

Rodrigues, A. P., Rebola, J., Pereira, M., Van Asselen, M., & Castelo-Branco, M. (2019). Neural
responses of the anterior ventral occipitotemporal cortex in developmental dyslexia:
Beyond the visual word form area. Investigative Ophthalmology and Visual Science,
60(4), 1063–1068. https://doi.org/10.1167/iovs.18-26325

Rose, M., Schmid, C., Winzen, A., Sommer, T., & Büchel, C. (2005). The functional and
temporal characteristics of top-down modulation in visual selection. Cerebral Cortex,
15(9), 1290–1298. https://doi.org/10.1093/cercor/bhi012

Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation
tuning for face, word, and object processing in the visual cortex. NeuroImage, 20(3),
1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010

Rossion, B., & Lochy, A. (2022). Is human face recognition lateralized to the right hemisphere
due to neural competition with left-lateralized visual word recognition? A critical review.
Brain Structure and Function, 227 (2), 599–629. https://doi.org/10.1007/s00429-021-
02370-0

Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for
estimating response time distributions. Psychonomic Bulletin & Review, 12(2), 195–223.
https://doi.org/10.3758/BF03257252

Rousselet, G. A. (2012). Does filtering preclude us from studying ERP time-courses? Frontiers
in Psychology, 3, 1–9. https://doi.org/10.3389/fpsyg.2012.00131

Rousselet, G. A., Gaspar, C. M., Wieczorek, K. P., & Pernet, C. R. (2011). Modeling single-
trial ERP reveals modulation of bottom-up face visual processing by top-down task
constraints (in some subjects). Frontiers in Psychology, 2(137), 1–19. https://doi.org/10.
3389/fpsyg.2011.00137

271

https://doi.org/10.1073/pnas.1121304109
https://doi.org/10.3389/fpsyg.2013.00276
https://doi.org/10.1177/1529100615623267
https://doi.org/10.1016/j.cub.2011.01.040
https://doi.org/10.1016/j.cub.2011.01.040
https://doi.org/10.1017/S0140525X03000104
https://doi.org/10.3758/BF03196591
https://doi.org/10.3758/BF03196591
https://doi.org/10.1167/iovs.18-26325
https://doi.org/10.1093/cercor/bhi012
https://doi.org/10.1016/j.neuroimage.2003.07.010
https://doi.org/10.1007/s00429-021-02370-0
https://doi.org/10.1007/s00429-021-02370-0
https://doi.org/10.3758/BF03257252
https://doi.org/10.3389/fpsyg.2012.00131
https://doi.org/10.3389/fpsyg.2011.00137
https://doi.org/10.3389/fpsyg.2011.00137


REFERENCES

Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in
multiple regression: A bad idea. Statistics in Medicine, 25(1), 127–141. https : / / doi .
org/10.1002/sim.2331

Rumelhart, D. E. (1977). Toward an interactive model of reading. In S. Dornic (Ed.), Attention
and performance vi (pp. 573–606). Lawrence Erlbaum.

Rumelhart, D. E. (1989). The architecture of mind: A connectionist approach. In M. I. Posner
(Ed.), Foundations of cognitive science (pp. 133–159). The MIT Press.

Rumelhart, D. E., & Siple, P. (1974). Process of recognizing tachistoscopically presented words.
Psychological Review, 81(2), 99–118. https://doi.org/10.1037/h0036117

Rust, N. C., & DiCarlo, J. J. (2010). Selectivity and tolerance ("invariance") both increase as
visual information propagates from cortical area V4 to IT. Journal of Neuroscience,
30(39), 12978–12995. https://doi.org/10.1523/JNEUROSCI.0179-10.2010

Salmon, J. P., McMullen, P. A., & Filliter, J. H. (2010). Norms for two types of manipulability
(graspability and functional usage), familiarity, and age of acquisition for 320
photographs of objects. Behavior Research Methods, 42(1), 82–95. https :
//doi.org/10.3758/BRM.42.1.82

Salverda, A. P., & Tanenhaus, M. K. (2010). Tracking the time course of orthographic information
in spoken-word recognition. Journal of Experimental Psychology: Learning Memory and
Cognition, 36(5), 1108–1117. https://doi.org/10.1037/a0019901

Sampson, G. (2016). Writing systems: Methods for recording language. In K. Allan (Ed.), The
routledge handbook of linguistics (pp. 47–61). Routledge.

Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J.,
Gaab, N., Gabrieli, J. D., & Kanwisher, N. (2016). Connectivity precedes function in the
development of the visual word form area. Nature Neuroscience, 19(9), 1250–1255.
https://doi.org/10.1038/nn.4354

Schacht, A., Sommer, W., Shmuilovich, O., Martíenz, P. C., & Martín-Loeches, M. (2014).
Differential task effects on N400 and P600 elicited by semantic and syntactic violations.
PLOS ONE, 9(3), 1–7. https://doi.org/10.1371/journal.pone.0091226

Schoenmakers, S., Barth, M., Heskes, T., & van Gerven, M. (2013). Linear reconstruction of
perceived images from human brain activity. NeuroImage, 83, 951–961. https://doi.org/
10.1016/j.neuroimage.2013.07.043

Schuster, S., Hawelka, S., Richlan, F., Ludersdorfer, P., & Hutzler, F. (2015). Eyes on words:
A fixation-related fMRI study of the left occipito-temporal cortex during self-paced silent
reading of words and pseudowords. Scientific Reports, 5(July), 1–11. https://doi.org/10.
1038/srep12686

Scott, G. G., Keitel, A., Becirspahic, M., Yao, B., & Sereno, S. C. (2019). The Glasgow Norms:
Ratings of 5,500 words on nine scales. Behavior Research Methods, 51(3), 1258–1270.
https://doi.org/10.3758/s13428-018-1099-3

Scott, G. G., O’Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word
processing: Evidence from event-related potentials. Biological Psychology, 80(1),
95–104. https://doi.org/10.1016/j.biopsycho.2008.03.010

272

https://doi.org/10.1002/sim.2331
https://doi.org/10.1002/sim.2331
https://doi.org/10.1037/h0036117
https://doi.org/10.1523/JNEUROSCI.0179-10.2010
https://doi.org/10.3758/BRM.42.1.82
https://doi.org/10.3758/BRM.42.1.82
https://doi.org/10.1037/a0019901
https://doi.org/10.1038/nn.4354
https://doi.org/10.1371/journal.pone.0091226
https://doi.org/10.1016/j.neuroimage.2013.07.043
https://doi.org/10.1016/j.neuroimage.2013.07.043
https://doi.org/10.1038/srep12686
https://doi.org/10.1038/srep12686
https://doi.org/10.3758/s13428-018-1099-3
https://doi.org/10.1016/j.biopsycho.2008.03.010


REFERENCES

Segalowitz, S. J., & Zheng, X. (2009). An ERP study of category priming: Evidence of early
lexical semantic access. Biological Psychology, 80(1), 122–129. https : / / doi . org /10 .
1016/j.biopsycho.2008.04.009

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word
recognition and naming. Psychological Review, 96(4), 523–568. https : / / doi . org / 10 .
1037/0033-295X.96.4.523

Selker, R., van den Bergh, D., Criss, A. H., & Wagenmakers, E. J. (2019). Parsimonious
estimation of signal detection models from confidence ratings. Behavior Research
Methods, 51(5), 1953–1967. https://doi.org/10.3758/s13428-019-01231-3

Sereno, S. C., Brewer, C. C., & O’Donnell, P. J. (2003). Context effects in word recognition:
Evidence for early interactive processing. Psychological Science, 14(4), 328–333. https:
//doi.org/10.1111/1467-9280.14471

Sereno, S. C., Hand, C. J., Shahid, A., Mackenzie, I. G., & Leuthold, H. (2019). Early EEG
correlates of word frequency and contextual predictability in reading. Language,
Cognition and Neuroscience, 35(5), 625–640. https://doi.org/10.1080/23273798.2019.
1580753

Sereno, S. C., & Rayner, K. (2000). The when and where of reading in the brain. Brain and
Cognition, 42(1), 78–81. https://doi.org/10.1006/brcg.1999.1167

Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a time-line of word recognition:
Evidence from eye movements and event-related potentials. NeuroReport, 9(10),
2195–2200. https://doi.org/10.1097/00001756-199807130-00009

Sereno, S. C., Scott, G. G., Yao, B., Thaden, E. J., & O’Donnell, P. J. (2015). Emotion word
processing: Does mood make a difference? Frontiers in Psychology, 6, 1–13. https :
//doi.org/10.3389/fpsyg.2015.01191

Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2019). Deep image reconstruction from
human brain activity. PLoS Computational Biology, 15(1), 1–23. https://doi.org/10.1371/
journal.pcbi.1006633

Siero, J. C., Petridou, N., Hoogduin, H., Luijten, P. R., & Ramsey, N. F. (2011). Cortical depth-
dependent temporal dynamics of the BOLD response in the human brain. Journal of
Cerebral Blood Flow and Metabolism, 31(10), 1999–2008. https : / / doi .org /10 .1038 /
jcbfm.2011.57

Siew, C. S. (2018). The orthographic similarity structure of English words: Insights from network
science. Applied Network Science, 3(1), 1–18. https://doi.org/10.1007/s41109-018-
0068-1

Simon, G., Petit, L., Bernard, C., & Rebaï, M. (2007). N170 ERPs could represent a logographic
processing strategy in visual word recognition. Behavioral and Brain Functions, 3, 1–11.
https://doi.org/10.1186/1744-9081-3-21

Simpson, I. C., Mousikou, P., Montoya, J. M., & Defior, S. (2013). A letter visual-similarity matrix
for Latin-based alphabets. Behavior Research Methods, 45(2), 431–439. https://doi.org/
10.3758/s13428-012-0271-4

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals
of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256

273

https://doi.org/10.1016/j.biopsycho.2008.04.009
https://doi.org/10.1016/j.biopsycho.2008.04.009
https://doi.org/10.1037/0033-295X.96.4.523
https://doi.org/10.1037/0033-295X.96.4.523
https://doi.org/10.3758/s13428-019-01231-3
https://doi.org/10.1111/1467-9280.14471
https://doi.org/10.1111/1467-9280.14471
https://doi.org/10.1080/23273798.2019.1580753
https://doi.org/10.1080/23273798.2019.1580753
https://doi.org/10.1006/brcg.1999.1167
https://doi.org/10.1097/00001756-199807130-00009
https://doi.org/10.3389/fpsyg.2015.01191
https://doi.org/10.3389/fpsyg.2015.01191
https://doi.org/10.1371/journal.pcbi.1006633
https://doi.org/10.1371/journal.pcbi.1006633
https://doi.org/10.1038/jcbfm.2011.57
https://doi.org/10.1038/jcbfm.2011.57
https://doi.org/10.1007/s41109-018-0068-1
https://doi.org/10.1007/s41109-018-0068-1
https://doi.org/10.1186/1744-9081-3-21
https://doi.org/10.3758/s13428-012-0271-4
https://doi.org/10.3758/s13428-012-0271-4
https://doi.org/10.1214/aoms/1177730256


REFERENCES

Solomyak, O., & Marantz, A. (2010). Evidence for early morphological decomposition in visual
word recognition. Journal of Cognitive Neuroscience, 22(9), 2042–2057. https://doi.org/
10.1162/jocn.2009.21296

Stadthagen-Gonzalez, H., & Davis, C. J. (2006). The Bristol norms for age of acquisition,
imageability, and familiarity. Behavior Research Methods, 38(4), 598–605. https://doi.
org/10.3758/BF03193891

STAN Development Team. (2021). Stan Modeling Language Users Guide and Reference
Manual, 2.28. https://mc-stan.org

Staub, A. (2015). The effect of lexical predictability on eye movements in reading: Critical review
and theoretical interpretation. Language and Linguistics Compass, 9(8), 311–327. https:
//doi.org/10.1111/lnc3.12151

Staub, A., White, S. J., Drieghe, D., Hollway, E. C., & Rayner, K. (2010). Distributional effects of
word frequency on eye fixation durations. Journal of Experimental Psychology: Human
Perception and Performance, 36(5), 1280–1293. https://doi.org/10.1037/a0016896

Steinhauer, K., & Drury, J. E. (2012). On the early left-anterior negativity (ELAN) in syntax
studies. Brain and Language, 120(2), 135–162. https://doi.org/10.1016/j.bandl.2011.07.
001

Striem-Amit, E., Cohen, L., Dehaene, S., & Amedi, A. (2012). Reading with sounds: Sensory
substitution selectively activates the visual word form area in the blind. Neuron, 76(3),
640–652. https://doi.org/10.1016/j.neuron.2012.08.026

Strijkers, K., Bertrand, D., & Grainger, J. (2015). Seeing the same words differently: The
time course of automaticity and top-down intention in reading. Journal of Cognitive
Neuroscience, 27 (8), 1542–1551. https://doi.org/10.1162/jocn_a_00797

Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings
of the National Academy of Sciences of the United States of America, 105(1), 394–398.
https://doi.org/10.1073/pnas.0706079105

Sun, C. C., Hendrix, P., Ma, J., & Baayen, R. H. (2018). Chinese lexical database (CLD): A large-
scale lexical database for simplified Mandarin Chinese. Behavior Research Methods,
50(6), 2606–2629. https://doi.org/10.3758/s13428-018-1038-3

Taha, H., Ibrahim, R., & Khateb, A. (2013). How does arabic orthographic connectivity modulate
brain activity during visual word recognition: An ERP study. Brain Topography, 26(2),
292–302. https://doi.org/10.1007/s10548-012-0241-2

Takamiya, N., Maekawa, T., Yamasaki, T., Ogata, K., Yamada, E., Tanaka, M., & Tobimatsu, S.
(2020). Different hemispheric specialization for face/word recognition: A high-density
ERP study with hemifield visual stimulation. Brain and Behavior, 10(6), 1–17. https :
//doi.org/10.1002/brb3.1649

Tanaka-Ishii, K., & Terada, H. (2011). Word familiarity and frequency. Studia Linguistica, 65(1),
96–116. https://doi.org/10.1111/j.1467-9582.2010.01176.x

Tanenhaus, M. K., Flanigan, H. P., & Seidenberg, M. S. (1980). Orthographic and phonological
activation in auditory and visual word recognition. Memory & Cognition, 8(6), 513–520.
https://doi.org/10.3758/BF03213770

274

https://doi.org/10.1162/jocn.2009.21296
https://doi.org/10.1162/jocn.2009.21296
https://doi.org/10.3758/BF03193891
https://doi.org/10.3758/BF03193891
https://mc-stan.org
https://doi.org/10.1111/lnc3.12151
https://doi.org/10.1111/lnc3.12151
https://doi.org/10.1037/a0016896
https://doi.org/10.1016/j.bandl.2011.07.001
https://doi.org/10.1016/j.bandl.2011.07.001
https://doi.org/10.1016/j.neuron.2012.08.026
https://doi.org/10.1162/jocn_a_00797
https://doi.org/10.1073/pnas.0706079105
https://doi.org/10.3758/s13428-018-1038-3
https://doi.org/10.1007/s10548-012-0241-2
https://doi.org/10.1002/brb3.1649
https://doi.org/10.1002/brb3.1649
https://doi.org/10.1111/j.1467-9582.2010.01176.x
https://doi.org/10.3758/BF03213770


REFERENCES

Tanner, D., Morgan-Short, K., & Luck, S. J. (2015). How inappropriate high-pass filters can
produce artifactual effects and incorrect conclusions in ERP studies of language and
cognition. Psychophysiology, 52(8), 997–1009. https://doi.org/10.1111/psyp.12437

Tarkiainen, A., Helenius, P., Hansen, P. C., Cornelissen, P. L., & Salmelin, R. (1999). Dynamics
of letter string perception in the human occipitotemporal cortex. Brain, 122(11),
2119–2131. https://doi.org/10.1093/brain/122.11.2119

Taylor, J. S., Davis, M. H., & Rastle, K. (2019). Mapping visual symbols onto spoken language
along the ventral visual stream. Proceedings of the National Academy of Sciences of
the United States of America, 116(36), 17723–17728. https:/ /doi.org/10.1073/pnas.
1818575116

Taylor, J. E., Beith, A., & Sereno, S. C. (2020). LexOPS: An R package and user interface for
the controlled generation of word stimuli. Behavior Research Methods, 52, 2372–2382.
https://doi.org/10.3758/s13428-020-01389-1

Thaler, L., Schütz, A. C., Goodale, M. A., & Gegenfurtner, K. R. (2013). What is the best
fixation target? The effect of target shape on stability of fixational eye movements. Vision
Research, 76, 31–42. https://doi.org/10.1016/j.visres.2012.10.012

The British National Corpus, version 3 (BNC XML Edition). (2007). http://www.natcorp.ox.ac.uk/
Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., Felsovalyi, O.,

Girard, H., Barr, W., Devinsky, O., Kuzniecky, R., & Halgren, E. (2012). Sequential
then interactive processing of letters and words in the left fusiform gyrus. Nature
Communications, 3, 1–8. https://doi.org/10.1038/ncomms2220

Tinker, M. A. (1928). The relative legibility of the letters, the digits, and of certain mathematical
signs. Journal of General Psychology, 1(3-4), 472–496. https : / / doi . org / 10 . 1080 /
00221309.1928.9918022

Tobimatsu, S., Kurita-Tashima, S., Nakayama-Hiromatsu, M., Akazawa, K., & Kato, M.
(1993). Age-related changes in pattern visual evoked potentials: Differential effects
of luminance, contrast and check size. Electroencephalography and Clinical
Neurophysiology/ Evoked Potentials, 88(1), 12–19. https : / / doi . org / 10 . 1016 / 0168 -
5597(93)90023-I

Tootell, R. B., Hadjikhani, N. K., Vanduffel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., & Dale,
A. M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings
of the National Academy of Sciences of the United States of America, 95(3), 811–817.
https://doi.org/10.1073/pnas.95.3.811

Turkeltaub, P. E., Goldberg, E. M., Postman-Caucheteux, W. A., Palovcak, M., Quinn, C., Cantor,
C., & Coslett, H. B. (2014). Alexia due to ischemic stroke of the visual word form area.
Neurocase, 20(2), 230–235. https://doi.org/10.1080/13554794.2013.770873

Uttal, W. R. (1970). Masking of alphabetic character recognition by ultrahigh-density dynamic
visual noise. Perception & Psychophysics, 7 (1), 19–22. https : / / doi . org / 10 . 3758 /
BF03210125

Valenza, E., Simion, F., Cassia, V. M., & Umiltà, C. (1996). Face preference at birth. Journal of
Experimental Psychology: Human Perception and Performance, 22(4), 892–903. https:
//doi.org/10.1037/0096-1523.22.4.892

275

https://doi.org/10.1111/psyp.12437
https://doi.org/10.1093/brain/122.11.2119
https://doi.org/10.1073/pnas.1818575116
https://doi.org/10.1073/pnas.1818575116
https://doi.org/10.3758/s13428-020-01389-1
https://doi.org/10.1016/j.visres.2012.10.012
http://www.natcorp.ox.ac.uk/
https://doi.org/10.1038/ncomms2220
https://doi.org/10.1080/00221309.1928.9918022
https://doi.org/10.1080/00221309.1928.9918022
https://doi.org/10.1016/0168-5597(93)90023-I
https://doi.org/10.1016/0168-5597(93)90023-I
https://doi.org/10.1073/pnas.95.3.811
https://doi.org/10.1080/13554794.2013.770873
https://doi.org/10.3758/BF03210125
https://doi.org/10.3758/BF03210125
https://doi.org/10.1037/0096-1523.22.4.892
https://doi.org/10.1037/0096-1523.22.4.892


REFERENCES

Van der Stigchel, S., Belopolsky, A. V., Peters, J. C., Wijnen, J. G., Meeter, M., & Theeuwes, J.
(2009). The limits of top-down control of visual attention. Acta Psychologica, 132(3),
201–212. https://doi.org/10.1016/j.actpsy.2009.07.001

Van Overschelde, J. P., Rawson, K. A., & Dunlosky, J. (2004). Category norms: An updated and
expanded version of the Battig and Montague (1969) norms. Journal of Memory and
Language, 50(3), 289–335. https://doi.org/10.1016/j.jml.2003.10.003

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace. https://doi.
org/10.5555/1593511

van Casteren, M., & Davis, M. (2007). Match: A program to assist in matching the conditions of
factorial experiments. Behavior Research Methods, 39(4), 973–978.

van Heuven, W. J., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and
improved word frequency database for British English. Quarterly Journal of Experimental
Psychology, 67 (6), 1176–1190. https://doi.org/10.1080/17470218.2013.850521

van Paridon, J., Ostarek, M., Arunkumar, M., & Huettig, F. (2021). Does neuronal recycling result
in destructive competition? The influence of learning to read on the recognition of faces.
Psychological Science, 32(3), 459–465. https://doi.org/10.1177/0956797620971652

VanRullen, R. (2011). Four common conceptual fallacies in mapping the time course of
recognition. Frontiers in Psychology, 2, 1–6. https://doi.org/10.3389/fpsyg.2011.00365

Varga, V., Tóth, D., & Csépe, V. (2020). Orthographic-Phonological mapping and the
emergence of visual expertise for print: A developmental event-related potential study.
Child Development, 91(1), e1–e13. https://doi.org/10.1111/cdev.13159

Veale, J. F. (2014). Edinburgh Handedness Inventory - Short Form: A revised version based
on confirmatory factor analysis. Laterality, 19(2), 164–177. https : / /doi .org /10 .1080/
1357650X.2013.783045

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. Statistics and Computing, 27 (5), 1413–1432. https:
//doi.org/10.1007/s11222-016-9696-4

Vejdemo, S., & Hörberg, T. (2016). Semantic factors predict the rate of lexical replacement of
content words. PLoS ONE, 11(1), 1–15. https://doi.org/10.1371/journal.pone.0147924

Vidal, C., Content, A., & Chetail, F. (2017). BACS: The Brussels Artificial Character Sets for
studies in cognitive psychology and neuroscience. Behavior Research Methods, 49(6),
2093–2112. https://doi.org/10.3758/s13428-016-0844-8

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical
coding of letter strings in the ventral stream: Dissecting the inner organization of the
visual word-form system. Neuron, 55(1), 143–156. https://doi.org/10.1016/j.neuron.
2007.05.031

Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming. Kibernetika, 4, 52–57.
https://doi.org/10.1007/BF01074755

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J.,
Millman, K. J., Mayorov, N., Nelson, A. R., Jones, E., Kern, R., Larson, E., . . . Vázquez-

276

https://doi.org/10.1016/j.actpsy.2009.07.001
https://doi.org/10.1016/j.jml.2003.10.003
https://doi.org/10.5555/1593511
https://doi.org/10.5555/1593511
https://doi.org/10.1080/17470218.2013.850521
https://doi.org/10.1177/0956797620971652
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.1111/cdev.13159
https://doi.org/10.1080/1357650X.2013.783045
https://doi.org/10.1080/1357650X.2013.783045
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1371/journal.pone.0147924
https://doi.org/10.3758/s13428-016-0844-8
https://doi.org/10.1016/j.neuron.2007.05.031
https://doi.org/10.1016/j.neuron.2007.05.031
https://doi.org/10.1007/BF01074755


REFERENCES

Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Vogel, A. C., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2012). The putative visual word
form area is functionally connected to the dorsal attention network. Cerebral Cortex,
22(3), 537–549. https://doi.org/10.1093/cercor/bhr100

Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: It’s not just for words
anymore. Frontiers in Human Neuroscience, 8, 1–10. https://doi.org/10.3389/fnhum.
2014.00088

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the
ACM (JACM), 21(1), 168–173. https://doi.org/10.1145/321796.321811

Walker, C. B. F. (1987). Reading the Past: Cuneiform. British Museum Press.
Walsh, K. S., McGovern, D. P., Clark, A., & O’Connell, R. G. (2020). Evaluating

the neurophysiological evidence for predictive processing as a model of
perception. Annals of the New York Academy of Sciences, 1464(1), 242–268.
https://doi.org/10.1111/nyas.14321

Wang, F., & Maurer, U. (2017). Top-down modulation of early print-tuned neural activity in
reading. Neuropsychologia, 102, 29–38. https://doi.org/10.1016/j.neuropsychologia.
2017.05.028

Wang, F., & Maurer, U. (2020). Interaction of top-down category-level expectation and bottom-
up sensory input in early stages of visual-orthographic processing. Neuropsychologia,
137, 107299. https://doi.org/10.1016/j.neuropsychologia.2019.107299

Wang, J., Deng, Y., & Booth, J. R. (2019). Automatic semantic influence on early visual word
recognition in the ventral occipito-temporal cortex. Neuropsychologia, 133, 107188.
https://doi.org/10.1016/j.neuropsychologia.2019.107188

Wang, S., Planton, S., Chanoine, V., Sein, J., & Anton, J.-l. (2022). Graph theoretical analysis
reveals the adaptive role of the left ventral occipito-temporal cortex in the brain networks
during speech processing. bioRxiv Neuroscience, 1–46. https://doi.org/10.1101/2022.
02.03.478936

Wang, X., Xu, Y., Wang, Y., Zeng, Y., Zhang, J., Ling, Z., & Bi, Y. (2018). Representational
similarity analysis reveals task-dependent semantic influence of the visual word form
area. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-21062-0

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal,
and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4),
1191–1207. https://doi.org/10.3758/s13428-012-0314-x

Weide, R. (2014). The Carnegie Mellon pronouncing dictionary version 0.7b. http://www.speech.
cs.cmu.edu/cgi-bin/cmudict

Whaley, M. L., Kadipasaoglu, C. M., Cox, S. J., & Tandon, N. (2016). Modulation of orthographic
decoding by frontal cortex. Journal of Neuroscience, 36(4), 1173–1184. https://doi.org/
10.1523/JNEUROSCI.2985-15.2016

White, A. L., Palmer, J., Boynton, G. M., & Yeatman, J. D. (2019). Parallel spatial channels
converge at a bottleneck in anterior word-selective cortex. Proceedings of the National

277

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/cercor/bhr100
https://doi.org/10.3389/fnhum.2014.00088
https://doi.org/10.3389/fnhum.2014.00088
https://doi.org/10.1145/321796.321811
https://doi.org/10.1111/nyas.14321
https://doi.org/10.1016/j.neuropsychologia.2017.05.028
https://doi.org/10.1016/j.neuropsychologia.2017.05.028
https://doi.org/10.1016/j.neuropsychologia.2019.107299
https://doi.org/10.1016/j.neuropsychologia.2019.107188
https://doi.org/10.1101/2022.02.03.478936
https://doi.org/10.1101/2022.02.03.478936
https://doi.org/10.1038/s41598-018-21062-0
https://doi.org/10.3758/s13428-012-0314-x
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://doi.org/10.1523/JNEUROSCI.2985-15.2016
https://doi.org/10.1523/JNEUROSCI.2985-15.2016


REFERENCES

Academy of Sciences of the United States of America, 116(20), 10087–10096. https:
//doi.org/10.1073/pnas.1822137116

Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The seriol
model and selective literature review. Psychonomic Bulletin and Review, 8(2), 221–243.
https://doi.org/10.3758/BF03196158

Whitney, C., Ross, P., Zhou, Z., & Strother. (2019). A novel hypothesis for the original
functionality of the Visual Word Form Area: Processing shape sequences. psyArxiv,
1–24. https://doi.org/10.31234/osf.io/g3n2m

Wicke, J. D., Donchin, E., & Lindsley, D. B. (1964). Visual evoked potentials as a function of flash
luminance and duration. Science, 146(3640), 83–85. https://doi.org/10.1126/science.
146.3640.83

Wieser, M. J., & Brosch, T. (2012). Faces in context: A review and systematization of contextual
influences on affective face processing. Frontiers in Psychology, 3, 1–13. https://doi.org/
10.3389/fpsyg.2012.00471

Wilcox, R. R., & Muska, J. (1999). Measuring effect size: A non-parametric analogue of ω2.
British Journal of Mathematical and Statistical Psychology, 52(1), 93–110. https://doi.
org/10.1348/000711099158982

Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Bosch, A. V. D. (2016). Prediction
During Natural Language Comprehension. Cerebral Cortex, 26, 2506–2516. https://doi.
org/10.1093/cercor/bhv075

Wilson, S. M., Rising, K., Stib, M. T., Rapcsak, S. Z., & Beeson, P. M. (2013). Dysfunctional
visual word form processing in progressive alexia. Brain, 136(4), 1260–1273. https://doi.
org/10.1093/brain/awt034

Woodhead, Z. V., Barnes, G. R., Penny, W., Moran, R., Teki, S., Price, C. J., & Leff, A. P. (2014).
Reading front to back: MEG evidence for early feedback effects during word recognition.
Cerebral Cortex, 24(3), 817–825. https://doi.org/10.1093/cercor/bhs365

Woolnough, O., Donos, C., Rollo, P. S., Forseth, K. J., Lakretz, Y., Crone, N. E., Fischer-
Baum, S., Dehaene, S., & Tandon, N. (2021). Spatiotemporal dynamics of orthographic
and lexical processing in the ventral visual pathway. Nature Human Behaviour, 5(3),
389–398. https://doi.org/10.1038/s41562-020-00982-w

Xiang, D., Dien, J., & Bolger, D. J. (2019). Testing models of the visual word form area using
combined ERP and fMRI using the special properties of Chinese characters. bioRxiv.
https://doi.org/10.1101/841817

Yao, B., Keitel, A., Bruce, G., Scott, G. G., O’Donnell, P. J., & Sereno, S. C. (2018).
Differential emotional processing in concrete and abstract words. Journal of
Experimental Psychology: Learning Memory and Cognition, 44(7), 1064–1074.
https://doi.org/10.1037/xlm0000464

Yao, P., Staub, A., & Li, X. (2022). Predictability eliminates neighborhood effects during Chinese
sentence reading. Psychonomic Bulletin and Review, 29(1), 243–252. https://doi.org/
10.3758/s13423-021-01966-1

278

https://doi.org/10.1073/pnas.1822137116
https://doi.org/10.1073/pnas.1822137116
https://doi.org/10.3758/BF03196158
https://doi.org/10.31234/osf.io/g3n2m
https://doi.org/10.1126/science.146.3640.83
https://doi.org/10.1126/science.146.3640.83
https://doi.org/10.3389/fpsyg.2012.00471
https://doi.org/10.3389/fpsyg.2012.00471
https://doi.org/10.1348/000711099158982
https://doi.org/10.1348/000711099158982
https://doi.org/10.1093/cercor/bhv075
https://doi.org/10.1093/cercor/bhv075
https://doi.org/10.1093/brain/awt034
https://doi.org/10.1093/brain/awt034
https://doi.org/10.1093/cercor/bhs365
https://doi.org/10.1038/s41562-020-00982-w
https://doi.org/10.1101/841817
https://doi.org/10.1037/xlm0000464
https://doi.org/10.3758/s13423-021-01966-1
https://doi.org/10.3758/s13423-021-01966-1


REFERENCES

Yao, Z., & Wang, Z. (2013). The effects of the concreteness of differently valenced words on
affective priming. Acta Psychologica, 143(3), 269–276. https://doi.org/10.1016/j.actpsy.
2013.04.008

Yap, M. J., & Balota, D. A. (2009). Visual word recognition of multisyllabic words. Journal of
Memory and Language, 60(4), 502–529. https://doi.org/10.1016/j.jml.2009.02.001

Yarkoni, T. (2022). The generalizability crisis. Behavioral and Brain Sciences, 45, e1. https :
//doi.org/10.1017/S0140525X20001685

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of
orthographic similarity. Psychonomic Bulletin and Review, 15(5), 971–979. https://doi.
org/10.3758/PBR.15.5.971

Yeatman, J. D., Rauschecker, A. M., & Wandell, B. A. (2013). Anatomy of the visual word
form area: Adjacent cortical circuits and long-range white matter connections. Brain and
Language, 125(2), 146–155. https://doi.org/10.1016/j.bandl.2012.04.010

Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal
cortex in top-down modulation of visual processing and working memory. Nature
Neuroscience, 14(5), 656–663. https://doi.org/10.1038/nn.2773

Zhao, J., Kipp, K., Gaspar, C., Maurer, U., Weng, X., Mecklinger, A., & Li, S. (2014). Fine neural
tuning for orthographic properties of words emerges early in children reading alphabetic
script. Journal of Cognitive Neuroscience, 26(11), 2431–2442. https://doi.org/10.1162/
jocn_a_00660

Zhao, J., Maurer, U., He, S., & Weng, X. (2019). Development of neural specialization for print:
Evidence for predictive coding in visual word recognition. PLoS Biology, 17 (10), 1–17.
https://doi.org/10.1371/journal.pbio.3000474

Zhao, L., Chen, C., Shao, L., Wang, Y., Xiao, X., Chen, C., Yang, J., Zevin, J., & Xue, G. (2017).
Orthographic and phonological representations in the fusiform cortex. Cerebral Cortex,
27, 5197–5210. https://doi.org/10.1093/cercor/bhw300

Zhou, W., Wang, X., Xia, Z., Bi, Y., Li, P., & Shu, H. (2016). Neural mechanisms of dorsal and
ventral visual regions during text reading. Frontiers in Psychology, 7 (1399), 1–10. https:
//doi.org/10.3389/fpsyg.2016.01399

Zhou, Z., Vilis, T., & Strother, L. (2019). Functionally Separable Font-invariant and Font-
sensitive Neural Populations in Occipitotemporal Cortex. Journal of Cognitive
Neuroscience, 31(7), 1018–1029. https://doi.org/10.1162/jocn_a_01408

Zhou, Z., Whitney, C., & Strother, L. (2019). Embedded word priming elicits enhanced fMRI
responses in the visual word form area. PLoS ONE, 14(1), 1–18. https:/ /doi .org/10.
1371/journal.pone.0208318

Ziegler, J. C., Muneaux, M., & Grainger, J. (2003). Neighborhood effects in auditory word
recognition: Phonological competition and orthographic facilitation. Journal of Memory
and Language, 48(4), 779–793. https://doi.org/10.1016/S0749-596X(03)00006-8

Zou, L., Desroches, A. S., Liu, Y., Xia, Z., & Shu, H. (2012). Orthographic facilitation in Chinese
spoken word recognition: An ERP study. Brain and Language, 123(3), 164–173. https:
//doi.org/10.1016/j.bandl.2012.09.006

279

https://doi.org/10.1016/j.actpsy.2013.04.008
https://doi.org/10.1016/j.actpsy.2013.04.008
https://doi.org/10.1016/j.jml.2009.02.001
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.1016/j.bandl.2012.04.010
https://doi.org/10.1038/nn.2773
https://doi.org/10.1162/jocn_a_00660
https://doi.org/10.1162/jocn_a_00660
https://doi.org/10.1371/journal.pbio.3000474
https://doi.org/10.1093/cercor/bhw300
https://doi.org/10.3389/fpsyg.2016.01399
https://doi.org/10.3389/fpsyg.2016.01399
https://doi.org/10.1162/jocn_a_01408
https://doi.org/10.1371/journal.pone.0208318
https://doi.org/10.1371/journal.pone.0208318
https://doi.org/10.1016/S0749-596X(03)00006-8
https://doi.org/10.1016/j.bandl.2012.09.006
https://doi.org/10.1016/j.bandl.2012.09.006


REFERENCES

Zweig, E., & Pylkkänen, L. (2009). A visual M170 effect of morphological complexity. Language
and Cognitive Processes, 24(3), 412–439. https://doi.org/10.1080/01690960802180420

280

https://doi.org/10.1080/01690960802180420

	Thesis Cover Sheet
	2022TaylorPhD
	Abstract
	Acknowledgements
	Declaration
	Abbreviations
	Publications
	General Introduction
	Introduction
	Defining Orthography
	The "Visual Word Form Area" and the N1
	Neural Recycling and Visual Word Form Specificity
	Visual Processing of Orthography
	Meta-Modal Linguistic Processing
	Non-Linguistic Processing
	Summary of vOT and its Word Form Specificity

	Top-Down Modulation of Orthographic Processing
	Questions Permitted by Temporal and Spatial Perspectives
	Biasing Predictions to Causally Investigate Top-Down Modulation of Orthographic Processing
	Summary of Top-Down Modulation of Occipitotemporal Orthographic Processing

	Methodological Considerations
	Controlling for Confounding Variables
	Consideration of Statistical Approaches
	(Re-)defining Orthographic Similarity

	Thesis Layout

	LexOPS: An R Package and User Interface for Stimulus Selection
	Introduction
	Functionality Overview
	The Generate Pipeline
	Generating more Complex Experimental Designs
	Matching Individual Words

	Inbuilt Variables
	Lexical Variables
	Orthographic Variables
	Phonological Variables
	Semantic Variables
	Behavioural Variables

	The Shiny App: An Interactive User Interface
	Example Applications
	Psycholinguistic Stimuli
	Applications Beyond Psycholinguistic Stimuli

	Validation
	Contributions to Replicability and Reproducibility
	An Alternative Approach: Distribution-Wise Matching
	Parametric Distribution-Wise Matching
	Assumption-Free Distribution-Wise Matching

	Discussion

	Rating Norms should be Calculated from Cumulative Link Mixed Effects Models
	Introduction
	Simulations
	Simulation 1: CLMMs with Item Random Effects
	Simulation 2: CLMMs with Item and Participant Random Effects
	Simulation 3: CLMMs Estimating Latent Variance
	Simulation 4: Robustness of the Normal Assumption

	Application to Real Data
	Simpson et al. Analysis
	Glasgow Norms Analysis

	Discussion

	Category-Level Top-Down Modulation of the N1 via Task Manipulation
	Introduction
	Methods
	Design
	Participants
	Stimuli
	Procedure
	Recording
	Preprocessing

	Results
	Occipitotemporal EEG Activity
	Scalp-Wide Analysis of the Time-Course for the Effect of Interest
	Behavioural Results

	Discussion
	Replication of Bottom-Up Sensitivity to Orthography
	Lack of Sensitivity to Category-Level Top-Down Modulation
	Main Effect of Task
	Lack of Sensitivity to Top-Down Modulation of Lexical or Orthographic Processing
	Possible Limitations
	Conclusions


	The Effect of Predictability on Top-Down Modulation of the N1
	Introduction
	Stimuli
	Picture-Word Task Stimuli
	Localiser Task Stimuli

	Power Analysis
	Methods
	Participants
	Procedure
	Recording
	Preprocessing

	Results
	Planned Picture-Word Analysis
	Exploratory Picture-Word Analysis
	Exploratory Localiser Analysis

	Discussion
	Evidence Consistent with Top-Down Modulation
	Bottom-Up Sensitivity to Orthography
	On the Content of Predictions
	Summary


	SCOLD: Sub-Character Orthographic Levenshtein Distance
	Introduction
	Character Similarity
	Rumelhart-Siple Character Similarity
	Pixel-Based Character Similarity

	Character Similarity Validation
	Predicting Character Similarity Judgements
	Replicating Font Specificity

	Sub-Character Orthographic Similarity and Orthographic Neighbourhood Density
	SCOLD
	SCOLD20
	Validation

	Discussion

	General Discussion
	Sensitivity to Orthography in the N1
	Sensitivity to Top-Down Modulation in the N1
	Generation and Recoding of Predictions
	Processing during the N1 is Heterogeneous
	Timing Differences
	Hemispheric Differences

	Orthographic and Predictive Processing Prior to the N1 and vOT
	Methodological Contributions
	Summary and Conclusions

	Appendices
	Chapter 3 Appendices
	CLMMs offer no Additional Accuracy in Estimating Rank Order
	Within-Participant Z-Scores of Raw Responses do not Account for the Ordinal Nature of Likert Responses

	Chapter 4 Appendices
	LDT and SCT Stimuli
	Task-Stimulus Interaction over Right-Hemispheric Occipitotemporal Electrodes
	Task-Stimulus Interaction over Centroparietal Electrodes

	Chapter 5 Appendices
	Picture-Word Stimuli
	Details on the Shifted Log-Normal Bayesian Model Analysis of the Stimuli Validation RT Data
	Word Stimuli for Localiser Task
	Power Analysis Random Effects Correlations
	Task Instructions for the Localiser and Picture-Word Tasks
	Picture-Word Planned Analysis Using the Word-Noise Maximal Electrode
	Details on the Shifted Log-Normal Bayesian Model Analysis of the EEG Experiment Picture-Word RT Data
	Sample-Level Analysis of Right-Hemispheric Occipitotemporal Effects in the Picture-Word Task
	Sample-Level Analysis of Congruency * Predictability * Frequency Interaction
	Details on the Behavioural Analysis of the Localiser Task

	Chapter 6 Appendices
	Separating Analysis of Simpson et al. (2013) Results by Letter Case
	Predicting BLP Behaviour from OLD20 and SCOLD20
	Effect of OLD20 on ERP data from Chapter 4


	References


