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Abstract

This thesis presents the results of lattice Quantum Chromodynamics (QCD) calculations of

hadronic matrix elements for pseudoscalar to pseudoscalar semileptonic decays involving c → s

and b → s weak interaction transitions. We calculate scalar, vector and tensor form factors,

and use them to test the Standard Model. Most prominently, we use D → K`ν form factors,

calculated on the lattice in the Highly Improved Staggered Quark formalism, to calculate a

much more precise determination of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element

|Vcs|, allowing for more stringent tests of CKM unitarity. We also calculate branching fractions

and other experimentally measurable quantities for the rare B → K`` decay, finding significant

tension with experiment in this one-loop level process, which is sensitive to physics beyond the

Standard Model.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is often lauded for its remarkable accuracy in its

description of nearly everything we observe in the universe. If one turns a blind eye to the

apparent incompatibility with that other great triumph, General Relativity, it really is rather

deluxe. Experiments have confirmed many of its predictions to incredible levels of accuracy, and

discovered the charm and bottom quarks, as well as the Higgs boson. The number of constraints

which can be placed on the unitarity of the CKM matrix (Figure 2.1) is a testament to this

success. And yet all is not as ship shape and Bristol fashion as it might appear. The SM

provides no explanation of dark matter, or dark energy, for a start. And deep down, everyone

knows that it is nothing more than the precocious little brother of some much more handsome

high energy theory, the real McCoy.

After the success of the Higgs Boson discovery, the LHC has plodded along, slowly reducing

the available phase space for new physics, pushing the energies of squarks and all manner of

other hypothetical particles higher and higher - it seems unlikely that there will be any golden

bullet shaped direct detection any time soon. So we find ourselves working in the so called

intensity frontier, striving for ever greater precision in theoretical calculations and experimental

measurements, trying to find the smallest crack in the SM, into which we might drive a wedge.

Fortunately for us, there exist some places where cracks are beginning to appear, notably in the

muon g − 2 [5], and in the flavour sector, which shall be the focus of this thesis.

Flavour anomalies [6, 7], which point to new physics, currently present themselves most openly

in the decays of B mesons [8]. In particular, the apparent violation of Lepton Flavour Uni-

1
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versality (LFU) in rare B → K`+`− decays has now reached a significance of 3.1σ [9]. Better

experimental precision is promised by the high luminosity LHC upgrade, but we also require

improved theoretical inputs, often in the form of hadronic form factors from lattice QCD, in

order to convincingly demonstrate such anomalies.

In this thesis, we will make use of the Highly Improved Staggered Quark (HISQ) action [10] to

enable precise determination of hadronic form factors from lattice QCD. We will develop further

the heavy-HISQ technique for b→ s decays, first establishing its efficacy with a calculation of the

unphysical Bs → ηs decay, and then building on this with a full calculation of the scalar, vector

and tensor form factors of the semileptonic B → K decay. This first fully relativistic calculation

will improve the theoretical perspective on the flavour anomalies observed in this decay.

Another place to hunt for SM deficiencies is in the unitarity of the CKM matrix. Checking this

requires independent determinations of each matrix element. From an improved calculation of

the D → K`ν form factors, we will provide an improvement on the semileptonic determination

of the matrix element Vcs, obtaining a value of |Vcs| = 0.9663(80), the first time this quantity

has been shown to be significantly less than unity, and with a sub percent uncertainty.



Chapter 2

The Standard Model of particle

physics

In the following chapter we will outline the Standard Model (SM) of particle physics, focusing

particularly on areas which will be relevant to the rest of the thesis. We do not intend to

provide a first principles introduction to quantum field theory, for which much literature already

exists e.g. [11, 12]. Below we will broadly follow the treatments of Mark Srednicki in his book

Quantum Field Theory [12], as well as the lecture notes of David Tong [13] and those of Ben

Gripaios [14].

2.1 The basis of the Standard Model

As is well documented, the Standard Model is best described as a Lorentz invariant gauge

quantum field theory, in which fermionic matter fields interact via the exchange of vector bosons.

We begin with a description of spinors, and gauge field theories, which will give us the tools to

develop the SM further. We then progress to a more detailed discussion of the weak interactions

which form the backbone of this thesis.

The basic features of the SM are two types of matter (fermions) and three forces (carried by

bosons). The six flavours of quark, arranged into three generations, interact via the strong force

(Quantum Chromodynamics), weak force and electromagnetism (Quantum Electrodynamics),

which are carried by the gluons, {W+,W−, Z} and γ bosons respectively. The remaining matter

3
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takes the form of three generations of leptons. Of these, the three charged leptons, the e, µ and

τ interact via electromagnetism and the weak force, whilst their three neutrino siblings are only

weakly interacting.

2.1.1 Spin-half fields

Consider a field which transforms under the Lorentz group such that φa(x) → D[Λ]abφ
b(Λ−1x)

for some representation D[Λ] of the Lorentz group, which must satisfy D[Λ1]D[Λ2] = D[Λ1Λ2].

We can write an infinitesimal Lorentz transformation [15] as

Λµν = e
1
2

Ωρσ(Mρσ)µν , (2.1)

where (Mρσ)µν = ηρµδσν−ησµδρν (with Minkowski metric ηµν) are (with anti-symmetric labelling

ρσ) the six generators of rotations and boosts in the Lorentz group, and (anti-symmetric) Ωρσ

are the six real numbers controlling the magnitude of each boost or rotation.

The generators M satisfy the Lie algebra of the Lorentz group,

[Mρσ,Mτν ] = ηστMρν − ηρτMσν + ηρνMστ − ησνMρτ . (2.2)

Consider the four 4× 4 Dirac matrices γµ, which satisfy the Clifford Algebra {γµ, γν} = 2ηµνI4.

The commutator Sµν = 1
4 [γµ, γν ] satisfies the Lie algebra of Equation (2.2) and thus forms a

representation of the Lorentz algebra.

Putting all of this together, we introduce the four component Dirac spinor [16] field ψα(x), which

the α, β components of (Sµν)αβ act upon. Under infinitesimal Lorentz transformations,

ψα(xµ)→ S[Λ]αβψ
β((Λ−1)µνx

ν) = e
1
2

Ωρσ(Sρσ)αβψβ(e−
1
2

Ωτε(Mτε)µνxν). (2.3)

What’s important here is that spacetime transforms under the representation of the Lorentz

group (SO(3, 1)), generated by Mµν , whilst the components of our spin-half fields transform

under a different, spinor representation, generated by Sµν . Demanding that the numbers Ωµν

are the same across both transformations ensures that we are doing the same Lorentz transfor-

mation.

In the Standard Model, spin half fermions (comprising the quarks and the leptons) will be

described by four component spinors, transforming as in Equation 2.3.
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2.1.2 Gauge field theories

The main source of the rich soup of phenomenology in which our universe slowly poaches is

the presence of non-Abelian, that is to say non-commutative, gauge theories in the Standard

Model.

Consider the set of N×N unitary matrices U(N), which can be written as exponentiated N×N
Hermitian matrices; eiH . Expanding H in a basis of Hermitian matrices {T a} with real weighting

εa, we find that in the neighbourhood of the identity, i.e. small εa, eiε
aTa = 1 + iεaT a+ ..., where

summation over a is implied. Adding a different small ε′, we can write,

eiε
aTaeiε

′bT be−iε
cT ce−iε

′dT d =1− εcε′dT cT d + εcε′bT bT c +O((ε+ ε′)3)

= 1− εcε′d[T c, T d] +O((ε+ ε′)3),
(2.4)

where we have expanded to second order in ε and ε′, and relabelled dummy indices in the second

line. This product of group elements must also lie in the group, and so can be expanded in terms

of the basis {T a}. The result is that

[T a, T b] = ifabcT c, (2.5)

where fabc are real constants (structure functions), which are manifestly anti-symmetric in the

first two indices, but may be taken to be anti-symmetric in all three without loss of generality.

This is the Lie algebra of the unitary matrices, and applies equally well to the subgroup SU(N)

in which we shall be interested. These special unitary matrices, which satisfy U †U = δ and have

unit determinant, will be key to the group structure of the SM. The aim of the game is to find

sets of matrices, or representations, which satisfy the Lie algebra of Equation (2.5)1. Matter in

the SM then transforms in some representation of the gauge group.

Quantum Electrodynamics

As a brief exploration of a commuting, or Abelian, gauge theory, we give the familiar example

of Quantum Electrodynamics, QED. Here we have a spin-half Dirac field ψ, the electron, and a

1It’s worth mentioning that the Lorentz group, SO(3,1), cannot be represented by finite dimensional unitary
matrices.
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vector field A, the photon, which posses a local (gauge) symmetry,

ψ → eieα(x)ψ

Aµ → Aµ − ∂µα.
(2.6)

Allowing terms which are at most cubic in the fields, this symmetry, together with Lorentz

invariance, fixes the Lagrangian,

LQED = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (2.7)

where ψ̄ ≡ ψ†γ0, /X ≡ γµX
µ and the covariant derivative Dµ = ∂µ + ieAµ. The field strength

tensor is given by Fµν = ∂µAν−∂νAµ. Putting on our big and shiny group theory hat, we can say

that in fact U = eieα is a 1× 1 unitary matrix, and as such, QED is a U(1) gauge theory.

Non-Abelian gauge theory

Let’s go back to first principles and build a non-Abelian gauge theory, where matter (say

fermions) transforms in a representation r of gauge group G. We shall see that we can recover

QED as above, along with much more.

Under a global G transformation, our fermions transform as,

ψ → Uψ ≡ eigαaTar ψ, (2.8)

where we insert constant g, (which will become the coupling) for convenience. Here T ar is an

nr × nr matrix, and it acts on the length nr vector, ψ. Being a fermion, ψ also carries a spinor

index, which we suppress here. We want to promote G to a local (gauge) symmetry, such that

αa → αa(x) which means that we require a derivative which transforms covariantly. To do this

we follow the principle of minimal coupling and define the covariant derivative,

Dµ = ∂µ + igAµ, (2.9)

where we have introduced the vector gauge field A which transforms as A→ A′. We require that
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Dµψ → UDµψ, (such that ψ̄ /Dψ → ψ̄U−1U /Dψ = ψ̄ /Dψ) which gives us

∂µ + igA′µ = U(∂µ + igAµ)U−1

=⇒ A′µ = UAµU
−1 − i

g
U∂µU

−1

= UAµU
−1 +

i

g
(∂µU)U−1,

(2.10)

where we note that ∂µU
−1 = U−1∂µ + (∂µU

−1) because we are dealing with operators. We can

write this in a way which does not involve the representation by noting that each Aµ must be

an nr × nr matrix, and expanding it in terms of the representation Aµ ≡ AaµT ar .

A′
a
µT

a
r = AcµT

c
r + ig(αbT brA

c
µT

c
r −AcµT crαdT dr )− ∂µαeT er

= AaµT
a
r + igαbAcµ[T br , T

c
r ]− ∂µαaT ar

=⇒ A′
a
µ = Aaµ − gf bcaαbAaµ − ∂µαa.

(2.11)

In analogy with QED, to find a dynamical term for the gauge field in the action, we must

look for a gauge invariant combination. From the covariance property Dµ → UDµU
−1, we

find igF aµνT
a
r ≡ [Dµ, Dν ] → U [Dµ, Dν ]U−1, where we have defined the field strength tensor

Fµν = F aµνT
a
r . Expanding out the commutator gives

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν . (2.12)

This is not gauge invariant, but 1
2g2 tr[Dµ, Dν ][Dµ, Dν ] = −1

4F
a
µνF

aµν is, giving us the desired

term in the Lagrangian.

For the case of Abelian gauge theories, such as QED, fabc = 0 and we recover the familiar

expressions for the transformation of the gauge field and the field strength tensor. The richness

of non-Abelian gauge theories lies in the extra term in Equation (2.12), which gives rise to terms

in the Lagrangian which are cubic and quartic in the gauge field, and thus self interactions.

2.1.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) [17, 18] is a non-Abelian SU(3) gauge theory of the form

discussed in Section 2.1.2. There are N2 − 1 = 8 gauge bosons, the gluons, which couple to
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fermions, the quarks. Quarks transform in the defining2 3-dimensional representation of SU(3),

the three indices (or colours) of which can be called red, green and blue (r, g and b). All of the

6 flavours of quark transform as colour triplets.

The QCD Lagrangian is given by

LQCD = −1

4
GaµνG

aµν +
∑

f∈{u,d,s,c,t,b}

ψ̄

(
i/∂ − gs /Aa

λa

2
−mf

)
ψ. (2.13)

As is often done, we denote the field strength (generically F aµν) as Gaµν here, denoting gluons. gs

is the strong coupling constant, and λa are the eight 3 × 3 Gell-Mann matrices, which provide

an explicit basis for the defining triplet representation.

In Nature, all hadrons are colourless, which means they must comprise a colour singlet. Taking

the example of mesons, we have a quark and antiquark triplet, labelled by quantum numbers Y c,

the colour hypercharge and Ic3, the colour isospin. Combined, these give rise to a coloured octet

and a colourless singlet 3⊗ 3̄ = 8⊕ 1. The singlet has colour combination 1√
3
(rr̄+ gḡ+ bb̄). The

gluons, themselves carrying colour charge, obey the same mathematics, but they comprise the

octet rḡ, rb̄, gr̄, gb̄, br̄, bḡ, 1√
2
(rr̄ − gḡ) and 1√

6
(rr̄ + gḡ − 2bb̄). There are only 8 gluons because

of the SU(3) structure of QCD. Had Nature chosen a U(3) structure, the 9th gluon would be a

colour singlet, and QCD would be an unconfined, long range force.

2.1.4 The electroweak sector

The electroweak sector [19, 20] is the basis for the semileptonic decays studied in this thesis, so

we will introduce it in slightly more detail than QED or QCD. It is also the most nuanced of the

gauge theories we shall discuss, and so it is instructive to piece it together more gradually, as it

was uncovered historically.

Let’s play the same game as with QCD, and try to find a gauge theory that describes the weak

interaction. As we suspect the weak interaction is responsible for the quark flavour changing

observed in β decay, we want a representation with at least two elements, which couples to quarks

and leptons, so we choose the fundamental representation of the simplest non-Abelian Lie group:

SU(2). One set of possible generators for this representation are the Pauli matrices, σi/2, which

2In SU(N) we have a defining representation carried by CN vectors, on which N ×N matrices act by multipli-
cation.
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satisfy the Lie algebra [σ
i

2 ,
σj

2 ] = iεijk
σk

2 . For a 3 component SU(2) gauge field W i
µ, the covariant

derivative is given by,

Dµ = ∂µ + i
g

2
W i
µσ

i = ∂µ + i
g

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
, (2.14)

where we have defined W±µ ≡ 1√
2
(W 1

µ ∓ iW 2
µ). We package the quarks and leptons into doublets

l ≡ (ν, e)T and q ≡ (u, d)T (one for each generation), that the derivative acts upon. Now our

weak Lagrangian can be constructed, containing terms like

L ⊃ l̄i /Dl + q̄i /Dq. (2.15)

Except that weak interactions have been shown experimentally [21] not to conserve parity3,

which is not permitted in this formalism. A simple fix is to introduce the projection operators

PL,R ≡ 1
2(1∓γ5), for γ5 = iγ0γ1γ2γ3. The effect of this is to project Dirac fermions into right (R)

and left (L) handed components ψL,R ≡ PL,Rψ, which can be separated in the Dirac Lagrangian

(noting that ψL ≡ (PLψ)†γ0 = ψPR ≡ ψR).

L = i(ψL/∂ψL + ψR /∂ψR)−m(ψLψR + ψRψL). (2.16)

In such a theory, containing left and right handed components, we can assign the different

components to different representations of the gauge group, but the mass term will no longer be

gauge invariant.

Let’s dictate that only the left handed parts of quarks and leptons couple to Wµ via SU(2),

creating an issue for these fermions having mass, which we shall have to resolve later. Now Equa-

tion (2.15) contains terms like g√
2
νL /W

+
eL which we can identify with the W± boson involved

in beta decay, for example. What about W 3
µ? This appears in terms like ig2 /W

3
(νLνL − eLeL),

which looks like the behaviour of a Z boson; a neutral boson which couples to neutrinos as

well as charged leptons. Except we observe that the Z couples to both right and left handed

fermions.

The solution to this next conundrum is to involve the other neutral boson we have discussed,

the photon, which also couples to left and right handed fermions. We are about to unify the

3The parity operator reflects space: (t, x, y, z)→ (t,−x,−y,−z).
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weak force with electromagnetism. To see how this unfolds, we introduce a new U(1) boson, Bµ.

As before, we have our left handed SU(2) doublets, qL and lL, with coupling constant g. These

doublets now have a weak hypercharge Yq,l under the U(1) gauge transformation gauged by Bµ,

with coupling constant g′. Now the right handed fermions, uR, dR and eR
4 are SU(2) singlets,

with weak hypercharge Yu,d,e. Finally, we write the physical boson eigenstates Aµ and Zµ as

linear combinations of W 3
µ and Bµ,

W 3
µ = cos θWZµ + sin θWAµ

Bµ = − sin θWZµ + cos θWAµ,
(2.17)

introducing the Weinberg angle, θW .

Now let’s look at the covariant derivative part of the Lagrangian,

L ⊃ −ψL(
g

2
/W
i
σi + g′Yψ /B)ψL − ψRg′Yψ /BψR. (2.18)

Focusing on the second part, and expanding Bµ as per Equation (2.17), we find a term which

corresponds to QED; −ψRg′YψcosθW /AψR; meaning g′ cos θW = |e| and Yψ takes the value of the

electric charge in units of |e|.

The first part contains X = −ψL(g sin θW
σ3

2 + g′ cos θWYψ) /AψL, which we can rework,

X = −1

2
g sin θWψL

(
1 0

0 −1

)
/AψL − ψL|e|Yψ /AψL

= −1

2
g sin θW (ψL

1
/Aψ1

L − ψL
2
/Aψ2

L)− |e|Yψ(ψL
1
/Aψ1

L + ψL
2
/Aψ2

L)

= −(
g

2
sin θW + |e|Yψ)ψL

1
/Aψ1

L + (
g

2
sin θW − |e|Yψ)ψL

2
/Aψ2

L.

(2.19)

In both qL and lL, the charge of ψ1
L is one greater than the charge of ψ2

L. Using this, we can

see that g sin θW = |e|. Once we have this, we must choose Yq = +1
6 and Ye = −1

2 to give us

the familiar lepton charges of +2/3(−1/3) for the up(down) type quarks and −1 for the charged

leptons.

Magic - we have created the electroweak theory. Problems remain, however. Firstly, we have

put left and right handed fermions in different representations of SU(2) × U(1), forbidding us

4There is no need for a νR in the SM, as this would not appear in any Lagrangian.
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from writing a mass term for them. We also require masses for our W and Z bosons, which are

forbidden by gauge invariance, but we observe in Nature. Enter Peter Higgs.

The Higgs mechanism

Our salvation comes in the form of the Higgs mechanism [22, 23, 24], by which we shall break

electroweak symmetry and restore boson and fermion masses.

We introduce a scalar Higgs field, H which is an SU(2) doublet with hypercharge YH = 1
2 and

a Lagrangian,

LH = (DµH)†DµH + µ2H†H − λ(H†H)2. (2.20)

The potential part of this forms the celebrated Mexican hat, which is minimised when |H| =
1√
2

µ√
λ
≡ v√

2
, the vacuum expectation value (VEV). Without loss of generality, we may choose

〈H〉 = (0, v√
2
)T , for real v. Expanding out the covariant derivative part of LH and focusing on

the mass terms, we have,

(DµH)†DµH =

((
∂µ + ig

σi

2
W i
µ + i

g′

2
Bµ

)
H

)†(
∂µ + ig

σj

2
W jµ + i

g′

2
Bµ
)
H

⊃ 1

8
(0, v)

(
gW 3

µ + g′Bµ
√

2gW+
µ√

2gW−µ −gW 3
µ + g′Bµ

)(
gW 3µ + g′Bµ

√
2gW+µ

√
2gW−µ −gW 3µ + g′Bµ

)(
0

v

)

⊃ v2

8

(
2g2W−µ W

+µ + (−gW 3
µ + g′Bµ)(−gW 3µ + g′Bµ)

)
,

(2.21)

v2

8

(
2g2W−µ W

+µ + (gW 3
µ − g′Bµ)(gW 3µ − g′Bµ)

)
=

(vg)2

4
W+
µ W

−µ

+
v2

8
(g cos θW + g′ sin θW )2ZµZ

µ

=
(vg)2

4
W+
µ W

−µ +
v2

8
(g2 + g′2)ZµZ

µ,

(2.22)

where we have used sin θW = g′√
g2+g′2

and cos θW = g√
g2+g′2

in the last line, and there is no

AµA
µ term, giving us the massless photons we require. We can read off the mass terms for the
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three bosons:

MW =
vg

2
, MZ =

√
g2 + g′2v

2
=

MW

cos θW
, MA = 0. (2.23)

With the gauge boson masses fixed, let’s turn our attention to the fermions. Adding the Higgs

field allows for (SU(2) and U(1) invariant) Yukawa terms [20, 25] in the Lagrangian,

L ⊃ −λuqLiσ2H∗uR − λdqLHdR − λelLHeR + h.c., (2.24)

from which we can read off the fermion masses

mu =
vλu√

2
, md =

vλd√
2
, me =

vλe√
2
, mν = 0. (2.25)

The interactions of the Higgs boson h itself can also be derived by sending v → v + h(x) and

looking at the terms that appear. These will not be relevant to this thesis so we simply mention

the above for completeness.

2.2 The field content of the Standard Model

We have completed our whistle stop tour of the Standard Model. Summarising everything above,

the fields of the SM belong to representations of

SU(3)c × SU(2)L × U(1)Y , (2.26)

where the c denotes colour - the charge of Quantum Chromodynamics (QCD), L denotes the left

handed particles which experience the weak nuclear force, and Y denotes hypercharge. We have

decomposed the Lorentz group SO(3, 1) into SU(2)L,Lor × SU(2)R,Lor, where we label L(R) for

left(right) handed chirality and the ‘Lor’ label indicates the spinor representation.

The fields of the SM, as well as their SU(3)c × SU(2)L × U(1)Y representations are given in

Table 2.1. Left handed fermions are arranged into six SU(2)L doublets, where we have denoted

the three generations of quark doublets generically as qL = (uL, dL)T , and similarly for the three

generations of lepton lL = (νL, eL)T . Right handed fermions are all singlets, again denoted

generically for each generation. There are no right handed neutrinos, as they do not interact in

the SM, hence there are nine fermion singlets in total. The different representations for left and

right handed fermions forbids mass terms, and lead us to introduce the Higgs model, breaking
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Table 2.1: The fields of the Standard Model and their SU(3)c×SU(2)L×U(1)Y representations.

Field SU(3)c SU(2)L U(1)Y

g 8 1 0

W 1 3 0

B 1 1 0

qL = (uL, dL)T 3 2 +1
6

uR 3 1 +2
3

dR 3 1 −1
3

lL = (νL, eL)T 1 2 −1
2

eR 1 1 −1

H 1 2 +1
2

electroweak symmetry, and instilling mass into the W , Z and fermions.
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2.3 Weak Decays

In this section we will outline the basis for the specific semileptonic decays that will form the

backbone of this thesis.

2.3.1 Flavour changing charged currents

In Equation (2.24) we were sly. We rotated the vectors ψiL → Lijψψ
j
L and ψiR → Rijψψ

j
R so that

Yukawa couplings λ were diagonal and we were able to read off the mass terms directly. In

reality, the mass eigenstates are not the same as the weak eigenstates. That is to say the Yukawa

couplings (in the weak eigenbasis) should have an index for each of the three fermion generations,

giving terms like λdijqL
iHdjR. As we like to work in basis of mass eigenstates, the corollary of

this is that terms coupling to the W boson in Equation (2.18) are no longer diagonal:

LFCCC =
|e|√

2 sin θW

(
VijuL

i /W
+
djL + V ∗ijdL

i
/W
−
ujL + νL

i /W
+
eiL + eL

i /W
−
νiL

)
, (2.27)

where Vij is the celebrated Cabbibo-Kobayashi-Maskawa (CKM) matrix [26, 27] and its proper-

ties will be discussed below. Because neutrinos have no Yukawa mass term, we are free to rotate

them as we please, and so we absorb the rotation of eL so as to make these terms diagonal in

Equation (2.27).

It will be useful to recombine ψ = ψL+ψR and introduce some new notation in Equation (2.27),

Lijµ =
1

2
(ν̄iγµe

j − ν̄iγ5γµe
j),

J ijµ =
1

2
(ūiγµd

j − ūiγ5γµd
j) ≡ V ij

µ −Aijµ ,
(2.28)

LFCCC =
|e|√

2 sin θW

(
VijJ

ij
µ W

+µ + V ∗ijJ
ij†
ζ W−ζ + LiiρW

+ρ + Lii†σ W
−σ
)
. (2.29)

The notation here is irritating, but the meanings of the various Ls and V s should be clear from

their subscripts. J is a flavour changing charged current (FCCC), often referred to as the V −A
current, where the terms are vector and axial-vector respectively.
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The Cabbibo-Kobayashi-Maskawa matrix

The CKM matrix [26, 27] Vij which appears above is unitary by construction (V = L†uLd).

The individual components of the CKM matrix appear in the amplitudes of various leptonic

and semileptonic decays, some of which will be described below. These decays can be used

to determine the components of Vij independently, and thus confirm experimentally that Vij is

indeed unitary. This is considered to be a strong test of the validity of the SM. The obvious

implication of a non-unitary matrix would be to imply a fourth generation of quarks that gets

all its mass from the Higgs like the other three. This is ruled out [28], however, there is still

room for different new heavy quarks that mix with our own. Currently (not including the work

of this thesis), the global average CKM matrix element magnitudes are given by [29],

VCKM =



|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


 =




0.97370(14) 0.22450(80) 0.00382(24)

0.2210(40) 0.987(11) 0.0410(14)

0.00800(30) 0.0388(11) 1.013(30)


 , (2.30)

and are consistent with unitarity, within uncertainty.

Being a 3×3 unitary matrix, VCKM can always be specified with nine real numbers. Five of these

parameters can be absored as phases into the quark fields, leaving behind four physical degrees

of freedom. These can be expressed as three mixing angles and one complex phase. This phase

is responsible for CP violation in the SM.

For our purposes, it is most instructive to talk about the matrix in terms of the magnitude

of the transition elements as above, but other parameterisations make the mixing angles and

phase more explicit. In particular, the standard parameterisation is written in terms of the

mixing angles θ12, θ13, θ23 and the phase δ13, whilst the Wolfenstein parameterisation [30] intro-

duces parameters λ,A, ρ, and η which are related to those of the standard parameterisation. In

particular [31],

λ = 0.22500+0.0085
−0.00022 A = 0.8132+0.0119

−0.0060 ρ̄ = 0.1566+0.0085
−0.0048 η̄ = 0.3475+0.0118

−0.0054, (2.31)

where ρ̄ = ρ × (1 − λ2/2 + ...) and similarly for ρ̄. It is in this parameterisation which CKM

unitarity is most easily visualised, as in Figure 2.1, which is a (somewhat baroque) representation
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Figure 2.1: Unitarity triangle of the CKM matrix (courtesy of CKMfitter [31]).

of CKM unitarity. The unitarity triangle, constructed from angles,

α = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β = arg

(
− VcdV

∗
cb

VtdV
∗
tb

)
, γ = arg

(
− VudV

∗
ub

VcdV
∗
cb

)
, (2.32)

is shown, together with constraints from a variety of different processes. The fact that the lines

meet in the top corner (angle α) indicates that the matrix is unitary and represents one of the

great triumphs of the Standard Model.

One of the goals of the work in this thesis is to provide a more precise determination of the

element |Vcs|, via the semileptonic decay D → K`ν. This is the subject of Chapter 5.
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q1

Vq1q2
q2

M2M1

q3 q3

`−/ν
ν/`+W±

Figure 2.2: Feynman diagram for a FCCC semileptonic weak decay M1 →M2`ν.

b s

u u

`−

`+

t̄ t̄
γ/Z

W+

Figure 2.3: Example of a FCNC Feynman diagram for B+ → K+`+`−.

2.3.2 Flavour changing neutral currents

The FCCC outlined above is a tree level process, and always involves the transition of an up type

quark into a down type quark, or vice versa, leading to the current carrying a charge of ±|e|.
The associated tree level Feynman diagram is shown (in the context of a semileptonic5 decay)

in Figure 2.2.

The other form of decay which we will study in this thesis involves the transition of a up(down)

type quark to another of the same type; specially we focus here on b → s decays, again in

a semileptonic context. In this case Equation (2.27) shows us that there are no such flavour

changing neutral currents (FCNCs) at tree level in the SM, and we must go to loop level to find

examples.

An example of a FCNC loop is given for the B+ → K+`+`− semileptonic decay in Figure 2.3.

FCNC decays are rare on account of the loop suppression, and so they constitute a good place to

look for new physics. For example, a new Z type boson, the Z ′, which couples only to µ and τ ,

could cause the decay rates to vary between different leptons, violating so called Lepton Flavour

5I.e. a meson decaying to another meson and a pair of leptons.
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Universality (LFU) [32, 33]. An alternative explanation for this, if it is definitively observed,

would be to introduce a right handed neutrino, and treat the leptons in the same manner as

the quarks in Equation (2.27). This would introduce neutrino masses, which we do observe, but

their extremely small size means that this effect would be tiny [34, 35], and not a candidate for

the level of LFU violation we already see at our present experimental uncertainty [9].

Alternatively, the existence of leptoquarks [36], coupling leptons to quarks, would completely

change the diagram in Figure 2.3, and with it the measured branching fraction [37]. In order to

search for evidence of these new particles, we must measure such rare FCNC decays experimen-

tally, and also determine the SM expectations, which is what we shall do in this thesis.

Weak effective theory and Wilson coefficients

Treating the Standard Model as as effective field theory (SMEFT), is a large topic in and of

itself, to which we will not even attempt to do justice (for a recent summary, see [38]). We will,

however, use it to outline the purpose of effective theories, which will simplify the description of

weak effective theory (WET) which is required in Chapter 7.

Aware that all good things must come to an end; that the SM, whilst remarkably powerful at

low energies, cannot work up to arbitrarily high energy; we nobly seek to find out what exists

beyond. Being unable to directly access the kind of energies where new physics might start to

appear on shell, we make do by writing,

LSMEFT = LSM +
∞∑

i=5

nj∑

j=1

cij
Λi−4

Oij , (2.33)

where cij are a set of nj Wilson coefficients, each multiplying an operator Oij of dimension i,

and Λ is some large energy cutoff, above which we have integrated out degrees of freedom. In

SMEFT, we set this cut off well above the masses of all known particles.

We have adorned the SM, previously containing only (mass) dimension four operators, with op-

erators of dimension five and above, so called irrelevant operators, which are non-renormalisable.

These operators have running couplings in scale Λ, and are suppressed at low energies E by

(E/Λ)i−4. They allow new physics effects from high energies to leech into the low energy SM

Lagrangian, where they can be picked up by high precision experimental measurements which

differ from the SM.
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Coefficient Value Operator

C1(µb) -0.294(9) Qp1 = (s̄LγµT
apL)(p̄Lγ

µT abL)
C2(µb) 1.017(1) Qp2 = (s̄LγµpL)(p̄Lγ

µbL)
C3(µb) -0.0059(2) Q3 = (s̄LγµbL)

∑
p(p̄γ

µp)

C4(µb) -0.087(1) Q4 = (s̄LγµT
abL)

∑
p(p̄γ

µT ap)

C5(µb) 0.0004 Q5 = (s̄LγµγνγρbL)
∑

p(p̄γ
µγνγρp)

C6(µb) 0.0011(1) Q6 = (s̄LγµγνγρT
abL)

∑
p(p̄γ

µγνγρT ap)

Ceff,0
7 (µb) -0.2957(5) Q7 = e

16π2mb(s̄Lσ
µνbR)Fµν

Ceff
8 (µb) -0.1630(6) Q8 = gs

16π2mb(s̄Lσ
µνT abR)Gaµν

C9(µb) 4.114(14) Q9 = e2

16π2 (s̄LγµbL)
∑

`(
¯̀γµ`)

C10(µb) -4.193(33) Q10 = e2

16π2 (s̄LγµbL)
∑

`(
¯̀γµγ5`)

Table 2.2: Wilson coefficients used in Chapter 7, as well as their corresponding operators [39].
Central values and uncertainties are quoted at µb = 4.2 GeV and taken from [40]. Note that

the operators given for Ceff,0
7 and Ceff

8 are those for C7 and C8, with the effective coefficient
containing contributions from other operators (see text). The sums over p run over all quarks
except the top.

Analogous to this is weak effective theory, which takes the same principle as SMEFT, but inte-

grates out degrees of freedom above the electroweak scale (i.e. t,W,Z, h, for cutoff MW ). These

higher dimensional operators allow for both SM and non SM interactions - with their value in the

SM being determined by calculating Feynman diagrams in the SM and matching the result onto

the effective theory. Any difference from this SM value would indicate new physics contributions

to that operator. In Section 7.4.1 below, we will require certain Wilson coefficients of WET

dimension six operators [39] to construct the SM differential branching fraction for B → K`+`−.

Here we shall discuss these coefficients explicitly.

The effective Hamiltonian for b→ s decays in the SM is given by [40]

Heff =
4GF√

2

(
λ(s)
u

2∑

i=1

CiQ
u
i + λ(s)

c

2∑

i=1

CiQ
c
i − λ(s)

t

10∑

i=3

CiQi − λ(s)
t CνQν + h.c.

)
, (2.34)

where λ
(q)
p = VpbV

∗
pq (with CKM matrix elements Vab) and we have denoted operators Qi and

Wilson coefficients Ci. We focus on `+`− decays, so we ignore the Qν terms for now. The

operators Qi are given in Table 2.2 along with their SM values at scale µ = 4.2 GeV [40].

Under renormalisation, QCD corrections lead to a mixing of operators, governed by the anoma-
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lous dimension matrix γ,

µ
d

dµ
~C = γT ~C. (2.35)

This is required because SM matching to WET occures at the electroweak scale, and coefficients

must then be run down to our scale of choice (in our case µ = 4.2 GeV).

Effective coefficients Ceff
7 and Ceff

8 which are regularisation scheme independent are often defined

as combinations of C7/8 and the other Wilson coefficients (see [40] for details). It is these values

which are given in Table 2.2. We also calculate a Ceff
9 , which is discussed in more detail in

Chapter 7.

2.3.3 Semileptonic decays

In this work, we shall concern ourselves with semileptonic decays of mesons. A generic (FCCC)

semileptonic decay from meson M1 to meson M2 is depicted at tree level in Figure 2.2. The

amplitude is given by,

A =

(
ie√

2 sin θW

)2

Vq1q2 〈M2, `ν| Jq1q2µ

(
gµν

p2 −M2
W

)
Llν |M1〉

≈ −2
√

2GFVq1q2 〈M2, `ν| Jq1q2µ gµνLlν |M1〉
≈ −2

√
2GFVq1q2 〈`ν|Lµ,l |Ω〉 〈M2| Jq1q2µ |M1〉 ,

(2.36)

where θW is the weak mixing angle, |Ω〉 is the vacuum, and Lµ,l and Jq1q2µ are defined in Equa-

tion (2.28). In the second line we have used the fact that p2, the 4-momentum carried by the

W , is much less than its mass. Hence we can ‘integrate out’ the W boson 1
p2−M2

W
≈ −1

M2
W

,

and make use of the definition (in our convention) of Fermi’s constant GF =
√

2e2

8M2
W sin2 θW

. What

we’ve achieved is to factorise the perturbative electroweak part from the QCD part; the hadronic

matrix element 〈M2| Jq1q2µ |M1〉; which we cannot calculate perturbatively. The essence of this

thesis is the calculation of such matrix elements numerically, using lattice QCD, which will be

detailed in the next chapter. In this work we will only consider pseudoscalar to pseudoscalar

decays in which the parity invariance of QCD means that only the vector component V q1q2
µ of

Jq1q2µ contributes.

The hadronic matrix element is parameterised in terms of form factors, and in this work we will

always use the parameterisation in terms of scalar and vector form factors f0(q2) and f+(q2)
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where,

〈M2|V q1q2
µ |M1〉 =

(
pM1
µ + pM2

µ −
M2
M1
−M2

M2

q2
qµ

)
f+(q2) +

M2
M1
−M2

M2

q2
qµf0(q2). (2.37)

Here we define 4-momenta pMi
µ and masses MMi for each meson, and q ≡ (pM1 − pM2). Similar

equations, involving scalar and tensor current insertions, will be given in Section 4.4.

In this thesis, the only decay which involves a FCCC is D → K`ν, which will be discussed in

Chapter 5. For this reason, we will give the differential decay rate for the case M1 = D, M2 = K.

Integrating |A|2 over final state momenta, the expression for this differential decay rate can be

written,

dΓ

dq2
(D → K`ν) =

G2
F

24π3
(ηEW |Vcs|)2(1− ε)2(1 + δEM )×

[
|~pK |3(1 +

ε

2
)|f+(q2)|2 + |~pK |M2

D

(
1− M2

K

M2
D

)2
3ε

8
|f0(q2)|2

]
,

(2.38)

where ε = m2
`/q

2 and the factors ηEW and δEM allow for electroweak and electromagnetic

corrections which are discussed in Chapter 5. It is clear from this equation that the calculation

of hadronic form factors f0 and f+, combined with experimental measurements of Γ, provide a

method to independently determine elements of the CKM matrix, in this case |Vcs|.

For the FCNC in B → K`+`−, which is the topic of Chapter 7, we can also parameterise the

vector matrix element as in Equation (2.37). We will also require scalar and tensor matrix

elements, which will be discussed in Section 4.4. The scalar matrix element will allow us to

separate f0 from f+ in Equation (2.37), whilst the tensor will be required to parameterise new

physics.

2.4 The path integral formalism

The methods we shall need to construct lattice QCD in the next chapter are based on a discreti-

sation of the path integral formalism, which we shall briefly refresh here. What we shall focus

on calculating is the time ordered product of fields, which we can relate to an n point correlation
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function Cn(x1, ..., xn).

Cn(x1, ..., xn) = 〈Ω|TϕH(x1)...ϕH(xn) |Ω〉 , (2.39)

where we define scalar fields in the Heisenberg picture, ϕH , and the ground state of the interacting

theory |Ω〉. We wish to convert between this expression, and one using the vacuum of the free

theory. Below we shall sketch the method for this change.

For interacting Hamiltonian H = H0 +Hint, we have the free theory vacuum H0 |0〉 = 0 and the

interacting theory ground state |Ω〉 satisfying 〈Ω|H |Ω〉 = E0. HI = eiH0(t−t0)Hinte
−iH0(t−t0) is

the interaction Hamiltonian in the interaction picture.

Because HI is a small perturbation, there must be some overlap of the ground state of the

interacting theory with that of the free theory, such that 〈Ω|0〉 6= 0. As such, when we insert a

complete set of states into e−iHT |0〉, the evolution to time T of |0〉, we find,

e−iHT |0〉 =
∑

n

e−iEnT |n〉 〈n|0〉 = e−iE0T |Ω〉 〈Ω|0〉+
∑

n6=0

e−iEnT |n〉 〈n|0〉 . (2.40)

Now because E0 < En 6=0, if we take T → ∞(1 − iε), we can kill off all the n 6= 0 terms faster

than the E0 term. This physically corresponds to saying our fields are non interacting in the far

past (at −T ) and the far future (at +T ) of our interaction.

Using this trick to convert between the interacting ground state and the free theory vacuum, we

can write,

Cn(x1, ..., xn) = 〈Ω|TϕH(x1)...ϕH(xn) |Ω〉 = lim
T→∞(1−iε)

〈0|Tϕ(x1)...ϕ(xn)e−i
∫ T
−T dtHI(t) |0〉

〈0| e−i
∫ T
−T dtHI(t) |0〉

.

(2.41)

A full derivation of this is lengthy and tangential to this thesis, but can be found in [11]. The

important aspect which we shall use later is the origin of the T → ∞(1 − iε) limit, which we

have addressed above.

We have now written Cn as an expression using the vacuum of the free theory |0〉 where ϕ are

in the interaction picture. This can be written in terms of an integral over all possible field
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configurations, the path integral,

Cn(x1, ..., xn) =
1

Z

∫
Dϕϕ(x1)...ϕ(xn)ei

∫
d4xL[ϕ], (2.42)

where Z is the partition function; i.e. the path integral with no field insertions.

It is the path integral which provides many of the challenges in QCD. In QED (and QCD at high

energy), the coupling is small and allows for a convergent expansion of the integral in increasing

powers of the coupling. For QCD, however, the coupling is large at low energies, forbidding such

a perturbative expansion (which is possible at higher energies). This is what drives us to solve

the path integral numerically, and thus to consider lattice QCD.

2.4.1 Correlation functions

Once we have computed an n-point correlation function (Equation (2.41)) in our case on the

lattice (see Section 4.2), we need to derive the fit form required to extract various parameters

from it. In this thesis, we will focus only on two- and three-point correlation functions (C2(x2, x1)

and C3(x3, x2, x1)). We make use of a Wick rotation [41] (t→ −it), to convert from Minkowski

space to Euclidean space. The effect of this is to convert the i in the exponential of the path

integral to a −1. When we come to computing the integral numerically, we shall see that this

removal of the oscillation makes the integral tractable. Note that this also necessitates a change

in the limit: T → −i∞(1− iε).

For a Euclidean two point correlation function C2 with t2 > t1, and where we have made the
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interaction picture ϕI explicit, we have,

C2(x2, x1) = lim
T→−∞(ε+i)

〈0|ϕI(x2)ϕI(x1)e−
∫ T
−T dtHI(t) |0〉

〈0| e−
∫ T
−T dtHI(t) |0〉

=
〈0|ϕI(x2)ϕI(x1) |0〉

〈0|0〉
=
∑

n

〈0|ϕI(x2) |n〉 〈n|ϕI(x1) |0〉

=
∑

n

〈0| eH0(t2−t0)ϕ(t0, ~x2)e−H0(t2−t0) |n〉 〈n| eH0(t1−t0)ϕ(t0, ~x1)e−H0(t1−t0) |0〉

=
∑

n

e−(En−E0)(t2−t1) 〈0|ϕ(t0, ~x2) |n〉 〈n|ϕ(t0, ~x1) |0〉

≡
∑

n

e−Ent 〈0|ϕ(~x2) |n〉 〈n|ϕ(~x1) |0〉 ,

(2.43)

where we have used the fact that our interaction picture ϕI is equal to ϕI = eH0(t−t0)ϕ(t0, ~x)e−H0(t−t0)

for free Hamiltonian H0. In the last line, we have redefined the energy relative to the vacuum

En → En − E0 and taken t = t2 − t1. We see that the two point correlation function time

dependence is simply dependent on the energy relative to the vacuum and the time between the

current insertions, whilst the amplitude gives us matrix elements for the insertions. For large

times t, the ground state E1 dominates. Similarly for three-point correlation functions C3,

C3(x3, x2, x1) =
∑

m,n

e−(Em−E0)(t3−t2)e−(En−E0)(t2−t1) 〈0|ϕ(t0, ~x3) |m〉 〈m|ϕ(t0, ~x2) |n〉 〈n|ϕ(t0, ~x1) |0〉

≡
∑

m,n

e−Em(T−t)e−En(t) 〈0|ϕ(~x3) |m〉 〈m|ϕ(~x2) |n〉 〈n|ϕ(~x1) |0〉 ,

(2.44)

where we again relabel the energies relative to the vacuum and define t = t2− t1 and T = t3− t1.

These are the forms which we shall fit our correlation functions to in Section 4.3.



Chapter 3

Lattice Quantum

Chromodynamics

Here we introduce the basic principles of Lattice QCD, from discretising the path integral through

to the Highly Improved Staggered Quark (HISQ) formalism that we will use for all calculations

in this work.

3.1 Motivation

The need for lattice QCD arises because the strong coupling αs = g2
s/4π is large at low energies,

leading to the confinement of quarks [42] and gluons within hadrons. Consequently, whilst high

energy QCD can be treated as a perturbative expansion in the coupling, at low energies, we must

look for a different approach. The approach we choose is to solve the path integral numerically,

which naturally involves discretising the theory in order for it to be treated on a computer.

3.2 Basic principles

A good overview of the basic principles of Lattice QCD is given in [43], and here I will walk

through the key points from that introduction.

25
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3.2.1 Discretising the path integral

Let’s begin with a toy model of a theory with real scalar fields, φ. Starting with the path integral

from Equation (2.42), and Wick-rotating the four vectors x→ (−ix0, ~x) (see Section 2.4.1 above),

we can write the Euclidean correlation function for φ in terms of the Euclidean action S[φ], the

partition function Z =
∫
Dφe−S[φ], and some operator insertion of our choice, which we shall

call Γ[φ],

Cn(x) =
1

Z

∫
DφΓ[φ]e−S[φ]. (3.1)

The purpose of Wick rotating now becomes apparent; we have replaced the oscillating phase in

the integral, which is very difficult to evaluate numerically, with an exponential decay, which is

much more manageable (but still a challenge in a large number of dimensions).

Next, we discretise spacetime onto a 4D torus of points xj = (x0
j , x

1
j , x

2
j , x

3
j ), with spacing a such

that x0 = (0, 0, 0, 0), x1 = (a, 0, 0, 0), ... and so on. j then runs up to the total volume of this

lattice in units of a4; Vol = NtNxNyNz, where Nµ is the total number of lattice sites in the µ

direction. The purpose of this step is to provide regulators (from the finite lattice spacing and

finite total lattice volume), which prevent infrared and ultraviolet divergences. A side effect of

this is that we can treat the problem numerically, as we now have a finite number of degrees

of freedom to simulate. In this discretised world, integrals over space become sums over lattice

sites, and derivatives become finite differences. The measure Dφ becomes,

Dφ =
∏

xj∈lattice

dφ(xj). (3.2)

Now we address the computation of the path integral itself, using Monte Carlo [44, 45] integration.

We generate a number, Ncf, of random field configurations,

φ(α) = {φ(α)(xj=0), ..., φ(α)(xj=Vol)} α = 1, 2...Ncf, (3.3)

where the subscript j again denotes the position on the 4D lattice of spacing a, and the super-

script labels the configuration number. If these configurations are drawn from the probability

distribution P [φ(α)] ∝ e−S[φ(α)], then as Ncf becomes large the correlation function in Equa-
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tion (3.1) can be approximated as,

Cn[φ] ≈ 1

Ncf

Ncf∑

α=1

Γ[φ(α)]. (3.4)

For a two point correlation function on the lattice, we use an operator like Γ(t)Γ(0), where

Γ(t) =
1√
N

∑

~xj

φ(t, ~xj), (3.5)

with the sum enforcing zero three-momentum.

This Monte Carlo method [46, 47, 48, 49, 50, 51] is the basis for lattice calculations. We generate

a large number of configurations according to the distribution specified by the action, and then

take an average over these to estimate the value of the path integral. The basic method for

generating configurations is by a Markov Chain, such as using the Metropolis Algorithm [51].

To update φxj we proceed as follows:

I Send φ(xj) → φ(xj) + ζ, where ζ is a random number drawn from a uniform distribution

in the range (−ε, ε)

I Evaluate the change in the action ∆S caused by the change in φ(xj)

I If ∆S is negative, keep the new value for φ(xj) and proceed to φ(xj+1)

I If ∆S is positive, accept the new value only if e−∆S is greater than a random number

generated between 0 and 1. Otherwise keep the old value and proceed to φ(xj+1).

This algorithm (and improved versions of it [46]) produces configurations obeying the desired

distribution, the key step being that some changes which increase the action are allowed at

random, to ensure that the configurations don’t just settle into a state which minimises the

action or a local minimum.
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3.2.2 The gluon action

For a full QCD simulation, the principle is the same, except we need quark and gluon fields (ψ

and Aµ) in our path integral, which now looks something like

∫
DADψDψ̄e−S[A,ψ,ψ̄], (3.6)

where the action is given by the Euclidean QCD Lagrangian, as discussed in Section 2.1.3,

LQCD = −1

4
F aµνF

aµν +
∑

f∈{u,d,s,c,t,b}

ψ̄

(
/∂ + gs /A

aλa

2
+mf

)
ψ, (3.7)

for coupling gs, and gluon field strength tensor F aµν where summation over repeated colour indices

(Latin) and repeated 4-indices (Greek) is implied.

The simplest QCD calculations we can do are quenched, that is to say involving only gluons,

and no sea quarks. On the lattice, we choose to represent gluon fields not by Aµ(x) at points on

the lattice, but rather by links between lattice sites, defined by

Uµ(x) = Pe−i
∫ x+aµ̂
x gsA·dx ≈ e−iagsAµ , (3.8)

where again a is the lattice spacing, µ̂ is a unit vector in the µ direction, and P denotes path

ordering. This trick enables us to preserve gauge invariance on the lattice. Under an SU(3)

gauge transformation, G(x) = eiα(x),

Uµ(x)→ G(x)Uµ(x)G†(x+ aµ̂)

ψ(x)→ G(x)ψ(x).
(3.9)

We define Uµ(x) as a link from x to x + aµ̂ and U †µ(x) = U−µ(x + aµ̂) as the inverse of this,

from x+ aµ̂ to x. It is clear from the fact that GG† = 1 that in any connected loop of links, or

a chain of links from a ψ̄ to a ψ will always lead to cancellation of all Gs, and so, remarkably,

these quantities are gauge invariant on the lattice.

The simplest such gauge invariant quantity is the plaquette [42, 52], an a× a loop,

Pµν(x) =
1

3
ReTr

(
Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x)

)
, (3.10)
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where the trace is over colour space. To see why this is useful we must expand in powers of a

(i.e. −iagsA) in the limit where we have a slowly varying gauge field centred on x0,

Pµν =
1

3
ReTr

[
1− i

∮
gsA · dx−

1

2

(∮
gsA · dx

)2
...

]
, (3.11)

where, by Green’s theorem, and to first order (no implied summation over indices),

∮
A · dx =

∫ a
2

−a
2

dxµdxν

[
∂µAν(x0 + x)− ∂νAµ(x0 + x)

]

=

∫ a
2

−a
2

dxµdxν

[
Fµν(x0) + (xµDµ + xνDν)Fµν(x0)

+
1

2
(x2
µD

2
µ + x2

νD
2
ν)Fµν(x0) + ...

]

= a2Fµν(x0) +
a4

24
(D2

µ +D2
ν)Fµν(x0) + ... .

(3.12)

This gives1

Pµν =
1

3
Tr
[
1− a4

2
F 2
µν −

g2
sa

6

24
Fµν(D2

µ +D2
ν)Fµν + ...

]∣∣
x0
, (3.13)

from this equation, we can define the Wilson action [42], which differs from the gluon continuum

action Lglue = −1
4TrFµνF

µν at order a2,

SW =
6

g2
s

∑

x,µ>ν

(1− Pµν)

=

∫
d4x

∑

µν

1

2
Tr

[
F 2
µν +

a2

12
Fµν(x0)(D2

µ +D2
ν)Fµν(x0) + ...

]
.

(3.14)

In Equation (3.14), the strength of the coupling gs is the means by which we set the scale of our

lattice. It is usually written in terms of β = 6
g2
s
, which will be discussed more in Section 3.4.

The Wilson action is the naive action of lattice QCD. It can be shown (e.g. [43]) that adding

appropriately chosen combinations of loops of different shapes to this action can cancel this a2

and higher order differences [53], and lead to improved actions, with even better convergence to

the continuum. This process is called Symanzik improvement [54]. For example, if we play the

1Indices here are specified by the plane of the plaquette - there are no sums involved. The trace is over colour.
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same game as above with a 2a× a rectangle, Rµν we find,

Rµν = 1− 4

6
a4Tr(gsFµν)2 +O(a6) (3.15)

which can be combined with the plaquette to cancel the a2 terms in the action, leaving it accurate

up to O(a4)

Simp =
6

g2
s

∑

x,µ>ν

(5Pµν
3
− Rµν +Rνµ

12

)
. (3.16)

This can be repeated to higher orders with different shaped loops.

Even after Symanzik improvement, this action corresponds to pure ‘glue’, with no sea quarks,

and so is not a wholly accurate representation of QCD. Despite this, due to the immense cost of

putting sea quarks on the lattice, for many years calculations were performed with only valence

quarks, the so called quenched approximation.

Finally, we mention in passing the link operator is ‘tadpole improved’ [55]: Uµ → Uµ/u0, where

u0 = 〈0|Pµν |0〉1/4. This procedure cancels ‘tadpoles’; higher order terms in the e−iagAµ expan-

sion, which correspond to vertices with multiple powers of agAµ.

3.3 Staggered quarks and the HISQ formalism

Modern lattice calculations are based on the methods described above, but use more sophisticated

Symanzik improved [54] actions for the gluons than the basic Wilson action described above [42].

They also include both valence and sea quarks (including only valence quarks is often described

as working in the quenched approximation). In this section, we will discuss the addition of

fermions to the gluon action.

Throughout this thesis we will use a staggered quark formalism called Highly Improved Staggered

Quarks (HISQ) which was developed in [10] by the HPQCD collaboration, and which we will

construct below.

3.3.1 The naive quark action and doubling

Quarks appear in the QCD action via the second term of LQCD in (3.7). We can write,

S = Sglue +
∑

x

ψ̄( /D +m)ψ = Sglue + ψ̄Mψ, (3.17)
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where we have defined matrix M = ( /D +m).

As discussed in Section 3.2.2, it’s possible to use various Wilson loops to reduce the discretisation

errors in the gluon part of the action, but we still have to discretise the quark part of the action

Sq = ψ̄Mψ. Naively, we might consider simply transforming the covariant derivative into a

discrete difference, ∆µ, such that,

∆µψ(x) =
1

2a

(
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

)
. (3.18)

This action suffers from a ‘doubling’ symmetry [56, 57], as explained in [10]. Recalling that in

Euclidean space, where {γµ, γν} = 2δµν ,

γ†µ = γµ γ2
µ = 1, (3.19)

we can can define a complete set of 16 spinor matrices, γn, for 4-vectors n such that nµ ∈
{0, 1},

γn ≡
3∏

µ=0

(γµ)nµ . (3.20)

The naive action is symmetric under the transformation

ψ(x)→ ψ̃(x) ≡ γ5γµ(−1)
xµ
a ψ(x) = γ5γµe

(
iπxµ
a

)
ψ(x), (3.21)

which means that any low momentum mode, ψ(x) has an equivalent mode with momentum

pµ ≈ π
a , a so called doubler. We can apply this transformation independently in different

directions, giving the general transformation,

ψ(x)→ Bζ(x)ψ(x)

ψ̄(x)→ ψ̄(x)B†ζ(x)

Bζ(x) ≡ γζ̄(−1)
ζ·x
a

∝
∏

µ

(γ5γµ)ζµe
ix·ζπ
a ,

(3.22)

where ζµ ∈ {0, 1} and

ζ̄µ ≡
∑

ν 6=µ
ζν mod2.
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There are sixteen possible ζs, which provide fifteen doublers in addition to the ‘real’ ζ = (0, 0, 0, 0)

mode. These doublers manifest themselves as sixteen equivalent flavours of quark in the lattice.

We call these flavours tastes to avoid confusion with the flavours we intend to create.

These additional tastes cause a headache for the would be naive action user, however, for identical

tastes, a simple factor of 1
16 in the power of Det(M) will remove the copies. This doesn’t work

in reality, due to taste exchange. The simplest manifestation of this is a quark which emits a

gluon of momentum p ≈ ζπ
a , which is absorbed by another low momentum quark. Both quarks

are not driven far off shell due to the doubling symmetry, and so each changes taste to another

low energy quark. Such an exchange is suppressed by a2, and is a source of discretisation error

on the lattice.

Various solutions to the doubling problem have been tried. One solution was to give the doublers

mass, which causes them to decouple as a→ 0. This lead to the Wilson quark action [42] and from

that the Clover action [58]. Here we will discuss the method employed by the HISQ action.

3.3.2 Symanzik improvement at tree level

Firstly, we can correct the a2 errors in the finite derivative using a so called Naik term [59]

∆µ → ∆µ− a2

6 ∆3
µ. Next, the HISQ action addresses the discretisation errors arising from leading

order taste exchange. This is achieved by introducing a form factor fµ(p) to the gluon quark

vertex ψ̄γµUµψ, which vanishes for gluons of momentum p = ζπ
a for each non-zero ζ, noting that

in the case where ζµ = 1, fµ need not be 0 as the original interaction vanishes anyway. We arrive

at,

fµ(p) =





1 p→ 0

0 p→ ζπ
a , ζ

2 6= 0, ζµ = 0,
(3.23)

which is achieved by replacing,

Uµ(x)→ FµUµ(x)

Fµ ≡
∏

ν 6=µ

(
1 +

a2δ
(2)
ν

4

)∣∣∣∣∣
symm

δ(2)
ν Uµ(x) ≡ 1

a2

(
Uν(x)Uµ(x+ aν̂)U †ν (x+ aµ̂)

+U †ν (x− aν̂)Uµ(x− aν̂)Uν(x− aν̂ + aµ̂)− 2Uµ(x)
)
,

(3.24)
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where F is the smearing operator, which vanishes as δ
(2)
ν Uµ → − 4

a2Uµ, when pσ → π
a , as required.

The ‘symm’ here indicates that the product in Fµ is symmeterised over all possible orderings

of the operators [60]. This smearing process introduces additional O(a2) errors which are then

removed by a further replacement,

FASQTAD
µ = Fµ −

∑

ν 6=µ

a2(δν)2

4

δνUµ(x) ≡ 1

a

(
Uν(x)Uµ(x+ aν̂)U †ν (x+ aµ̂)

−U †ν (x− aν̂)Uµ(x− aν̂)Uν(x− aν̂ + aµ̂).

(3.25)

This procedure results in the celebrated ASQTAD action [61],

∑

x

ψ̄(x)

(∑

µ

γµ

(
∆µ(V )− a2

6
∆3
µ(U)

)
+m0

)
ψ(x)

Vµ ≡ FASQTADµ Uµ(x).

(3.26)

3.3.3 Symanzik improvement at one loop

The ASQTAD action still suffers from taste exchange errors as smearing links introduces other

unsmeared links in orthogonal directions. We counter this by using repeated smearing, in the

form of the HISQ action [10],

∑

x

ψ̄(x)( /D
HISQ

+m)ψ

DHISQ
µ ≡ ∆µ(W )− a2

6
(1 + ε)∆3

µ(X)

Wµ(x) ≡ FHISQ
µ Uµ(x)

Xµ(x) ≡ UFµUµ(x)

FHISQ
µ ≡

(
Fµ −

∑

ν 6=µ

a2(δν)2

2

)
UFµ,

(3.27)

where U unitarises whatever it acts on and the calculation of the Naik ε is discussed below.

This HISQ action is what will be used throughout this work and is corrected for taste exchanges

through order αs(am)2.
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The Naik ε

In lattice units, the tree level pole mass mtree in the HISQ action can be written in terms of the

bare mass m

mtree(m) = m
(

1− 3

80
m4 +

23

2240
m6 +

1783

537600
m8 − 76943

23654400
m10 +O(m12)

)
. (3.28)

The Naik ε [62] is defined at tree level by demanding that the tree level pole mass is equal to

the tree level kinetic mass [63],

εtree(m) =
4−

√
4 + 12mtree

sinh(mtree) cosh(mtree)

sinh2(mtree)
− 1, (3.29)

where we have suppressed the argument of mtree(m). In all the calculations described in this

work εtree is defined to be identically zero for strange and light quarks.

3.3.4 Staggered quarks

As well as the smearing, we also stagger quarks [64]. This is purely to improve the speed of

simulations and staggered quarks are formally equivalent to naive quarks.

Consider transforming the naive quark field

ψ(x)→ Ω(x)χ(x) ψ̄(x)→ χ̄(x)Ω†(x), (3.30)

where

Ω(x) ≡
3∏

µ=0

(γµ)xµ . (3.31)

There are 16 different Ωs, with the following useful properties,

Ω†(x)Ω(x) = 1, (3.32)

Ω(x) = γn for nµ = xµmod2, (3.33)

αµ(x) ≡ Ω†(x)γµΩ(x± µ̂) = (−1)x
<
µ , (3.34)

where x<µ ≡
∑µ−1

ν=0 xν and similarly for x>µ . We also define n̄µ = (
∑

ν 6=µ nν)mod2. Putting this
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together to form the staggered quark action,

ψ̄(x)(γ ·∆ +m)ψ(x) = χ̄(x)(α(x).∆ +m)χ(x), (3.35)

where ∆ is the discretised covariant derivative used in the naive quark action (Equation (3.18)).

This action is diagonal in spinor space, that is to say all components of χ are the same, so we

only need one of them. The same principles apply to the HISQ action. We can write,

〈χ(x)χ̄(y)〉 = g(x, y)1spinor, (3.36)

where g(x, y) is the one-spinor-component staggered quark propagator. Having only one spinor

component to compute reduces the cost by a factor of 4. An additional effect of the staggering

process that follows from this is to reduce the total number of tastes from 16 to 4.

3.3.5 Twisted boundary conditions

Our preferred method for imparting momentum into correlation functions is using twisted bound-

ary conditions [65, 66]. We do this by inserting a factor of ei~p·~x into the sum over space, where

pj = 2πθj/(aNj), with twist θ and aNj the total extent of the lattice in the j direction. Under

the transformation,

ψ(x)→ e−i~p·~xψ(x), (3.37)

we create the boundary conditions [66, 67, 68],

ψ(x+ aNj ĵ) = e2πiθjψ(x). (3.38)

In order to achieve this, we in fact multiply the gauge links by eiapj ,

ψ̄(x)eiapjUj(x)ψ(x+ aĵ) = ψ̄(x)e−i~p·~xUj(x)ei~p·(~x+aĵ)ψ(x+ aĵ). (3.39)

Twist dependent finite volume effects are very small for our work, as the values taken for θ do

not correspond to lattice momenta which are integer multiples of 2π
Nj

[69].
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3.3.6 Quarks on the lattice

Repeating our gluon and quark action from above,

S = Sglue +
∑

x

ψ̄( /D +m)ψ = Sglue + ψ̄Mψ, (3.40)

and recalling that M = ( /D + m), we note that computers can’t deal with the anti-commuting

quark fields, so we have to do this bit of the integral by hand,

Z =

∫
DUDψ̄Dψe−(Sglue+ψ̄Mψ)

=

∫
DUDet(M)e−Sglue

=

∫
DUe−Sglue+ln Det(M).

(3.41)

This Det(M) term is the most costly part of any lattice calculation (see below for details), and

is why people chose to work with quenched lattices for so long. Worse still, the cost grows as

the quark mass shrinks. We need to add a Det(M) for each flavour of quark on the lattice, but

shortcuts can be made by setting mu = md, and including only the u, d and s quarks in the sea.

Light quarks are the main contributions to the sea for low energy processes, and we do not work

on fine enough lattices to include b (let alone t) quarks in the sea, though modern actions (and

the action used throughout this work) include the c.

For a typical lattice calculation, we will create a meson at time t0 and destroy it at time t0 + T .

The combination of γs, Γ, in the operator used to create the meson (here we use generic ‘heavy’

meson H) can be any local operator with the correct spin and parity. Locality means that the

state we will create will not be the ground state but will have overlap with all of the states of

the desired meson. We deal with this when we come to fit the data, discussed below. Like the

partition function above, the correlation function for the meson containing quarks a and b now
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also needs to have the quarks integrated over by hand.

〈0|H†(T + t0)H(t0) |0〉 =

1

Z

∫
DUDψ̄Dψ

∑

~x,~x0

ψ̄a(T + t0, ~x)Γψb(T + t0, ~x)ψ̄b(t0, ~x0)Γψa(t0, ~x0)e−(Sglue+ψ̄Mψ)

=
1

Z

∫
DUTrspin,colour,~x(M−1

a ΓM−1
b Γ)e−Sglue+ln Det(M).

(3.42)

Once we have done the costly process of generating the configurations, involving the Det(M)

term, the inversion of the massive matrix M is the next most expensive part of the calcula-

tion.

Calculating M−1 and Det(M)

The inversion of the matrix M is, as mentioned, very computationally expensive. Because M is

large and sparse, it lends itself to a conjugate gradient algorithm [70], a well known method for

solving systems of linear equations. Consider an equation,

M †Mx = ξ =⇒ x = (M †M)−1ξ (3.43)

where we seek to invert M †M to ensure an Hermitian and positive definite matrix2. ξ here is

the propagator source which will be discussed more in Section 4.2.2. Solving this equation for x

is equivalent to minimising,

f(x) =
1

2
xTM †Mx− ξTx. (3.44)

The conjugate gradient solves this equation by descending in the direction of steepest gradi-

2Applying an M† to (M†M)−1 recovers M−1.
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ent,

xn+1 = xn + αndn

αn =
rTn rn

dTnM
†MdTn

d0 = r0

dn6=0 = rn + βndn−1

rn = ξ −M †Mxn

βn =
rTn rn

rTn−1rn−1
.

(3.45)

After initiating a random x0 and calculating the gradient ∇f(x) = M †Mx0 − ξ = −r0, one

chooses the step direction dn such that it is orthogonal with respect to M †M (dTnM
†Mdm6=n = 0).

The residue, rn tells us how close we are to the solution, so we choose some tolerance in our

calculation based on this, which acts as a stopping point. The cost of this inversion scales

with quark mass as m−2, which is why quarks are also often given artificially heavy masses to

make this process cheaper, and then the results of the lattice calculation are extrapolated to the

physical masses.

Calculating Det(M) is even more expensive, because of the non-local nature of the determinant.

In modern simulations, M can easily have dimension of 108. The evaluation is carried out by

making use of our M †M inversion, with the so called Φ algorithm [71]. Heuristically, we can

introduce an artificial scalar field Φ and add a term to the action,

Det(M †M) =

∫
DΦ†DΦe−Φ†(M†M)−1Φ, (3.46)

which is also evaluated by Monte Carlo sampling. The problem with this is that it creates

two factors of M for each flavour of quark, but this can be resolved by taking the root of the

determinant3.

3In fact we take the 8th root, as staggered quarks have four degenerate tastes, which we shall discuss below.
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3.4 HISQ ensembles

All of the work in this thesis will use some combination of the eight gluon field ensembles listed

in Table 3.1. In lattice QCD, the lattice spacing a is set by choosing a value for the coupling

gs, in the form of β = 6
g2
s
. We do not directly select a spacing. Once β has been chosen, we

determine a by calculating the Wilson flow parameter w0 [72] (actually we calculate w0/a). This

can be straightforwardly determined on the lattice by taking the Wilson flow [73] and smearing

and integrating until a dimensionless observable reaches a chosen value (see [72]). Once we have

this defined, we must match to the continuum value in order to determine the spacing. We do

this using the mass ratios of the Ω baryon, pion and kaon (see [72, 74]). In our case, we use the

continuum value w0 = 0.1715(9)fm [75].

All of the ensembles in Table 3.1 are generated by the MILC Collaboration with an improved

gluon action and HISQ sea quarks [76, 77, 78]. The ensembles are Nf = 2+1+1, which indicates

that there are two degenerate light quarks l in the sea, as well as strange and charm quarks.

Systematic uncertainties from the missing b and t sea quarks are small when working at low

energies, such as this work, though the sea b will become more important for achieving high

precision calculations at the physical valence b mass in future.

Whilst the strange and charm quark masses are approximately physical on each ensemble, the

degenerate light quarks take one of two values. In ensembles which we shall label with a ‘5’,

they are taken to be 1/5 the mass of the strange quark on that ensemble, whilst on ensembles

described as physical (‘phys’), the light quarks will take a value which is close to the physical

average of u and d, which is 1/27.18(10) the strange mass [79].

The valence s and c masses we use are not exactly the same as the sea masses (see Table 3.1) as

we are able to tune them to get them closer to their physical values, as is done in [80]. We further

correct for any remaining mistuning in our final calculation (see Chapters 5, 6 and 7).
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Table 3.1: Gluon ensembles used in this work. In column 3, β is the same one defined in
Section 3.2.2 and is discussed further in the text. The Wilson flow parameter, w0 = 0.1715(9)fm
(also discussed in the text), is determined in [75], and is used to calculate the lattice spacing
a via values for w0/a [72] in column 4. Column 5 gives the spatial (Nx) and temporal (Nt)
dimensions of each lattice in lattice units whilst columns 6-10 give the masses of the valence and
sea quarks, noting that these are the same in the case of the light quark.

Set label β w0/a N3
x ×Nt am

sea/val
l amsea

s amsea
c amval

s amval
c

1 v. coarse phys 5.8 1.1367(5) 323 × 48 0.00235 0.0647 0.831 0.0678 0.8605

2 coarse phys 6.0 1.4149(6) 483 × 64 0.00184 0.0507 0.628 0.0527 0.643

3 fine phys 6.3 1.9518(7) 643 × 96 0.00120 0.0363 0.432 0.036 0.433

4 v. coarse 5 5.8 1.1119(10) 163 × 48 0.013 0.065 0.838 0.0705 0.888

5 coarse 5 6.0 1.3826(11) 243 × 64 0.0102 0.0509 0.635 0.0545 0.664

6 fine 5 6.3 1.9006(20) 323 × 96 0.0074 0.037 0.440 0.0376 0.449

7 superfine 5 6.72 2.896(6) 483 × 144 0.0048 0.024 0.286 0.0234 0.274

8 ultrafine 5 7.0 3.892(12) 643 × 192 0.00316 0.0158 0.188 0.0165 0.194



Chapter 4

Methods for lattice calculations of

form factors

In this chapter we will shed light on the core methods which will be integral to the form factor

calculations discussed in Chapters 5, 6 and 7: the calculation of correlation functions on the

lattice, their subsequent fitting to extract the ground state masses and three-point amplitudes,

the construction of form factors from these results, and finally the heavy-HISQ method which

enables us to perform fully relativistic HISQ calculations up to the physical b mass.

4.1 A note on units

The lattice spacing a is a worthy adversary to anyone who wishes to write about the lattice

without making a mess. In what follows, we shall abuse notation somewhat. The vast majority

of the time, unless physical units (GeV) are expressly stated, we will be working in lattice units

and suppressing a; that is to say energies E and masses M will actually be aE, aM , and so

on. More importantly, times t will refer to integers 0 < t/a < Nt, and similarly for spatial

dimensions. However, to avoid endless as, t will (very occasionally) also refer to the time in

physical units. As most equations are on the lattice, this distinction should be obvious and often

irrelevant, and we will reinstate a for clarity when it is important. Now we’ve done a bit of

housekeeping, let’s begin.

41
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4.2 Calculating correlation functions

Correlation functions are the bread and butter of lattice QCD calculations. Fundamentally, the

simplest object that we might wish to study is the two-point correlation function, as defined in

Equation (2.41) for n = 2. That is to say, we want to create a meson by acting on the vacuum

with creation operators at some point in spacetime on our lattice, x0 = (t0, ~x0), leave it to potter

along on its own for a bit, and then destroy it with annihilation operators at some later time

and place x1 = (t1, ~x1). With different t1 values, and averaging over all possible spatial start and

end locations, we end up mapping out a function C2(t0, t1) which tells us something about the

probability of the meson surviving to that particular time. We have shown in Equation (2.43) that

this correlation function is a sum over exponential decays, with the meson ground state decaying

most slowly. Naturally, we demand that t0 < t1. Using the notation of Equattion 2.41,

C2(t0, t1) =
∑

~x0,~x1

〈Ω|ϕH(x0)ϕH(x1) |Ω〉 . (4.1)

Generalising this to an n-point function Cn(t0, t1, ..., tn−1), we can add other destinations to

our particle’s itinerary besides the start and end point. Perhaps our particle has an interaction

with another particle at time t1 in position ~x1, and then another interaction at some later time

and place. In this work, we will only concern ourselves with two- and three-point functions.

The former, as outlined above, describes a particle minding its own business, whilst the latter

allows for one interaction en route from creation to annihilation. Again, using the notation of

Equattion 2.41,

C3(t0, t1, t2) =
∑

~x0,~x1,~x2

〈Ω|ϕH(x0)ϕH(x1)ϕH(x2) |Ω〉 . (4.2)

In general, we will use the notation x0 = (t0, ~x0) for the origin of our particle. In the case of

two-point functions, the particle will be annihilated at xt = (t0+t, ~xt), giving correlation function

C2((t0 + t)− t0) which will only depend on t, the difference between the origin and the terminus.

For the three-point case, we instead annihilate by convention at xT = (t0 + T, ~xT ), again using

x0 as the origin, and this time using xt to denote the position of some interaction in the form of

a current insertion. Thus we have a three-point function C3(t0, t, T ), which is only meaningful

if our particle interacts after it is created and before it is destroyed, so t0 < t < T 1. For the

purposes of the vast majority of the following discussion, it is simplest to just assume t0 = 0.

This is not true in reality, as we typically increase our statistics by using several different t0

1This is not strictly true, since our lattice has periodic boundary conditions.
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values on each gauge field configuration. Because our lattice has periodic boundary conditions,

we can always just rotate our loop of lattice back around to t0 = 0, effectively just relabelling

all the points. We need to worry about t0 for our discussion of phases below, but otherwise it is

safe to assume t0 = 0 unless explicitly stated.

4.2.1 Phases in staggered quarks

The following is based on the appendices on staggered quarks [64] in [10]. Here we will repeat

some of the necessary formulae from Section 3.3 and derive the phases which are relevant to the

spin-taste combinations used in this work.

Firstly, let’s recall some useful formulae from Chapter 3. We take our Euclidean space hermitian

gamma matrices, (γ†µ = γµ, γ
2
µ = 1, {γµ, γν} = 2δµν) and define γn such that,

γn ≡
3∏

µ=0

(γµ)nµ . (4.3)

Using γ5 = γ0γ1γ2γ3 means γ5 = γn=(1,1,1,1).
2 Taking our naive quark ψ(x) and antiquark ψ̄(x),

we stagger them with the local field transformation,

ψ(x)→ Ω(x)χ(x) ψ̄(x)→ χ̄(x)Ω†(x), (4.4)

where

Ω(x) ≡
3∏

µ=0

(γµ)xµ = γn=(x)mod2. (4.5)

There are 16 different Ωs, with the following useful properties,

Ω†(x)Ω(x) = 1, (4.6)

αµ(x) ≡ Ω†(x)γµΩ(x± µ̂) = (−1)x
<
µ , (4.7)

2Depending on your outlook, there may be an overall phase of -1 here. In reality the MILC code version 7.1.1
(http://www.physics.utah.edu/ detar/milc/milcv7.html) which we use, takes γ4 in place of γ0 which negates this.
We’ll turn a blind eye to this irrelevant overall phase in the interests of using the more familiar γ0.
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where x<µ ≡
∑µ−1

ν=0 xν . The staggered quark action is diagonal in spinor space: we can write,

〈χ(x)χ̄(y)〉 = g(x, y)1spinor, (4.8)

where g(x, y) is the one-spinor-component staggered quark propagator. To return to naive

quarks, we can simply reinstate the Ωs and write the Feynman propagator,

SF (x, y) ≡ 〈ψ(x)ψ̄(y)〉 = g(x, y)Ω(x)Ω†(y), (4.9)

where SF (x, y) = 〈ψ(x)ψ̄(y)〉 is the propagator for a quark moving from y to x, and γ5S
†
F (x, y)γ5 =

〈ψ(y)ψ̄(x)〉 the propagation of an antiquark from y to x. The additional γ5s are a consequence

of the γ5 hermitian symmetry of the action, and act to reverse the arguments in SF .

The basic method for our lattice calculations will be to:

I Construct the correlation functions we are interested in with naive quarks

I Convert these to combinations of staggered quark propagators and lattice site dependent

phases

I Calculate the staggered quark propagators on each configuration by inverting the Dirac

matrix M off source ξ

I Tie together the propagators into the relevant combinations

I Average the resulting correlation functions over the Ncf configurations

Spin-taste

Because of the doubling symmetry addressed in Section 3.3.1, each naive quark operator leads

to 16 different operators, labelled by the 16 possible vectors s consisting only 1s and 0s. These

tastes are defined exactly the same way as the gamma matrix spin structure, but we shall use

ξs in place of γn to distinguish the two. A spin-taste structure might be defined γn ⊗ ξs and the

most important relation we will need is,

γn ⊗ ξsψ(x) = (−1)s̄.xγ†sγnψ(x⊕ (n+ s)), (4.10)
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where ⊕ adds n+ s to x modulo the hypercube x lies in and s̄µ = (
∑

ν 6=µ sν)mod2. If we label

the hypercube x lies in xB then xBµmod2 = 0 and,

(x⊕ (n+ s))µ ≡ xBµ + (xµ − xBµ + (n+ s)µ)mod2. (4.11)

As xµ − xBµ ∈ {0, 1}, provided (n + s)µ 6= 1 (which means sµ = nµ) we will be adding 0 or 2

to this, which is removed by the mod, leaving us with just xµ. The situation if sµ 6= nµ is more

complicated. In this case (s + n)µ = 1. If xµ is even, such that xµ − xBµ = 0, the result is to

add 1 in the µ direction. In the case of odd xµ, xµ − xBµ = 1 and we are left with xBµ which is

equal to xµ − 1.

(x⊕ (n+ s))µ =





xµ (sµ = nµ)

xµ + 1 (sµ 6= nµ, xµmod2 = 0)

xµ − 1 (sµ 6= nµ, xµmod2 = 1)

(4.12)

It should be noted that in Equation (4.10) we have suppressed a link operator. For example, if we

end up with ψ(x+ µ̂), where µ̂ is a unit vector in the µ direction, we in fact mean Uµ(x)ψ(x+ µ̂),

similarly for U †µ(x− µ̂)ψ(x− µ̂). These operators will differ with the cases above so it is simpler

to implicitly include them in ψ. All this means that in the case where s = n and we have the

same spin and taste, sandwiching such a spin-taste combination between two fermions will result

in a local operator (with both fermions at the same point x). Cases where s 6= n however create

non-local or ‘point-split’ operators. In this case the fermions are separated by a number of gauge

links, which require link operators to be inserted. In general point-split operators lead to noisier

correlators so it is best to avoid them where possible.

The MILC code we use [81, 82] takes inputs in the form of spin taste combinations and implements

them as phases which depend on lattice site. Choosing the spin-taste combinations is no great

secret. Firstly, the spin part of the operator needs to marry up with the physical mesons or

currents we want to perform the calculation with. Secondly, the unphysical taste elements

should be self consistent so as to cancel, or the corresponding correlator will vanish, and thirdly,

we seek to minimise the use of point-split operators. Below we will calculate the phases which

will be relevant to us, there’s nothing fantastic to see here, but it’s instructive to go through the

motions. We note that we will not bother to keep track of overall phases - these can easily be

sorted out at the end by correcting the sign of the resulting correlation function.
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H H

Figure 4.1: Schematic of a two-point correlation function.

Two-point correlation functions

Figure 4.1 is a schematic representation of a H = h̄l two-point function. We have a random

colour wall source on timeslice t0, where we initiate the heavy and light propagators, and apply

the relevant spin-taste operator to one of them. We then propagate these quarks to the sink, at

timeslice t0 + t, where they are destroyed. Further discussion of sources and random walls will

follow in Section 4.2.2.

In this work we will require three spin-taste combinations of pseudoscalar two-point function.

We shall consider the case of a meson consisting a heavy anti-quark h̄ and a light quark l, though

these can easily be relabelled as any quarks of our choosing. The first case we will look at is for

the meson with current J5
5 (xt) = ψ̄h(xt)γ5⊗ ξ5ψl(xt) which annihilates a Goldstone meson h̄l at

xt defined above. Using Equation (4.10) and the fact that for γ5, n = s = s̄ = (1, 1, 1, 1) we can

write,

ψ̄h(xt)γ5 ⊗ ξ5ψl(xt) = ψ̄h(xt)(−1)x
0
t+x

1
t+x

2
t+x

3
t γ†5γ5ψl(xt),

= (−1)x̃tψ̄h(xt)ψl(xt),
(4.13)

where we use upstairs notation on xt for clarity; xt = (x0
t , x

1
t , x

2
t , x

3
t ), and we abbreviate the sum

of all x components
∑

µ x
µ = x̃. In order to construct a two-point correlation function we will
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also need to create the same meson at x0, using the creation operator,

J5†
5 (x0) = (−1)x̃0(ψ̄h(x0)ψl(x0))†,

= (−1)x̃0(ψ†h(x0)γ0ψl(x0))†,

= (−1)x̃0ψ†l (x0)γ†0ψh(x0),

= (−1)x̃0ψ̄l(x0)ψh(x0).

(4.14)

Putting this together into a two-point function, we follow a simple recipe,

〈J5
5 (xt)J

5†
5 (x0)〉 = 〈0|T{J5

5 (xt)J
†
5(x0)} |0〉 = (−1)x̃0+x̃t 〈0|T{ψ̄h(xt)ψl(xt)ψ̄l(x0)ψh(x0)} |0〉 .

(4.15)

Once we have the expression for our time ordered fields, we can take the relevant Wick contrac-

tions that correspond to the Feynman diagrams for two-point function we are interested in. In

our case, we simply contract the h̄ and l fields with themselves,

〈J5
5 (xt)J

5†
5 (x0)〉 = (−1)x̃0+x̃t 〈0| ψ̄h(xt)ψl(xt)ψ̄l(x0)ψh(x0) |0〉 ,

= (−1)x̃0+x̃t 〈0|ψh(x0)ψ̄h(xt)ψl(xt)ψ̄l(x0) |0〉 ,
(4.16)

where in the second line we ignore the overall phases resulting from the exchange of fermions3.

These contractions are exactly the propagators defined in Equation (4.9) above for an anti-quark

h̄ moving from x0 to xt and a quark l propagating from x0 to xt,

〈J5
5 (xt)J

5†
5 (x0)〉 = (−1)x̃0+x̃tTr

(
γ5S

h†
F (xt, x0)γ5S

l
F (xt, x0)

)
,

= (−1)x̃0+x̃tTr
(
γ5Ω(x0)Ω†(xt)tr(g

h†(xt, x0))γ5tr(gl(xt, x0))Ω(xt)Ω
†(x0)

)
,

= (−1)x̃0+x̃tTr
(
γ5Ω(x0)Ω†(xt)γ5Ω(xt)Ω

†(x0)
)
tr(gh†(xt, x0)gl(xt, x0)),

(4.17)

where we have used Equation (4.9) in the first step and tr is the trace over colour. The trace over

spinor components (Tr) arises because we have suppressed spinor indices thus far. Reinstating

them we would have something like γαβ5 S†βρF γρδ5 SδαF , giving the trace. Recalling the definition of

Ω in Equation (4.5) and the fact that γµγ5 = −γ5γµ, we can see that γ5Ω(x) = (−1)x̃Ω(x)γ5 and

3We go through this first case in painstaking detail, but will skip steps in later examples.
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similarly for γ5Ω†(x), such that

〈J5
5 (xt)J

5†
5 (x0)〉 = (−1)x̃0+x̃t(−1)x̃0+x̃tTr

(
γ5γ5Ω(x0)Ω†(xt)Ω(xt)Ω

†(x0)
)
tr(gh†(xt, x0)gl(xt, x0)),

= 4tr(gh†(xt, x0)gl(xt, x0)),

(4.18)

where the 4 comes from the spinor trace over the identity. So the γ5 ⊗ ξ5 Goldstone spin-taste

combination requires no phase to be added to the staggered quark propagators.

We will now work though the other two spin-taste combinations we require in this work. The

first is the local J5t
5t (xt) = ψ̄h(xt)γ5γ0 ⊗ ξ5ξ0ψl(xt), where we will require the additional result

that γm ⊗ ξrγn ⊗ ξs = γmγn ⊗ ξrξs. For γ0, s = n = (1, 0, 0, 0) and s̄ = n̄ = (0, 1, 1, 1)4

J5t
5t (xt) = ψ̄h(xt)γ5γ0 ⊗ ξ5ξ0ψl(xt),

= ψ̄h(xt)γ5 ⊗ ξ5γ0 ⊗ ξ0ψl(xt),

= ψ̄h(xt)(−1)x̃t(−1)x̃t−x
0
tψl(xt),

= (−1)x
0
t ψ̄h(xt)ψl(xt),

=⇒ J5t†
5t (x0) = (−1)x

0
0ψ̄l(x0)ψh(x0).

(4.19)

〈J5t
5t (xt)J

5t†
5t (x0)〉 = (−1)x

0
0+x0

t 〈0|ψh(x0)ψ̄h(xt)ψl(xt)ψ̄l(x0) |0〉 ,
= (−1)x

0
0+x0

t (−1)x̃0+x̃t4tr(gh†(xt, x0)gl(xt, x0)),

= (−1)x̃0+x̃t+x0
0+x0

t 4tr(gh†(xt, x0)gl(xt, x0)).

(4.20)

So the correlator from this local spin taste operator has a phase which is dependent on the

spatial components of x0 and xt. Finally, we also require the point split operator J5x
5 (xt) =

ψ̄h(xt)γ5 ⊗ ξ5ξ1ψl(xt). In this case we have spin matrix 1 for which n = n̄ = (0, 0, 0, 0) and ξ1,

for which s = (0, 1, 0, 0) and s̄ = (1, 0, 1, 1), which causes the point splitting. We require the

additional relation γn⊗ ξrξs = (−1)r̄·sγn⊗ ξsξr. In this case r = r̄ = (1, 1, 1, 1), giving an overall

4We can alternatively use γ5γ0 = −γ(0,1,1,1) directly, giving s̄ = n̄ = (1, 0, 0, 0) and thus the same result.
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phase of −1 from this swap. We’re not interested in overall phases, so we shall drop this5.

J5x
5 (xt) = ψ̄h(xt)γ5 ⊗ ξ1ξ5ψl(xt),

= ψ̄h(xt)1⊗ ξ1γ5 ⊗ ξ5ψl(xt),

= (−1)x̃t(−1)x̃t−x
1
t ψ̄h(xt)γ

†
1ψl(xt ⊕ (0, 1, 0, 0)),

= (−1)x
1
t ψ̄h(xt)γ

†
1ψl(xt ⊕ 1̂),

=⇒ J5x†
5 (x0) = (−1)x

1
0ψ̄l(x0 ⊕ 1̂)γ1ψh(x0),

(4.21)

where the U1(xt) link operators are implicit in the x1
t direction, which is required to join the

two fermions, and 1̂ is a unit vector in the same direction. Note that U acts on colour space

and so does not act on γ. Also note that there should be another overall minus in the hermitian

conjugate from the swapping of γ0 and γ1, which we again ignore.

〈J5x
5 (xt)J

5x†
5 (x0)〉 = (−1)x

1
0+x1

t 〈0|ψh(x0)ψ̄h(xt)γ
†
1ψl(xt ⊕ 1̂)ψ̄l(x0 ⊕ 1̂)γ1 |0〉 ,

= (−1)x
1
0+x1

tTr
(
γ5Ω(x0)Ω†(xt)γ5γ

†
1Ω(xt ⊕ 1̂)Ω†(x0 ⊕ 1̂)γ1

)
,

× tr(gh†(xt, x0)gl(xt ⊕ 1̂, x0 ⊕ 1̂)),

= (−1)x
1
0+x1

t (−1)x̃0+x̃t(−1)x
0
t (−1)x

0
0Tr
(
Ω(x0)Ω†(xt)Ω(xt)Ω

†(x0)
)
,

× tr(gh†(xt, x0)gl(xt ⊕ 1̂, x0 ⊕ 1̂)),

= (−1)x
2
0+x2

t+x
3
0+x3

t 4tr(gh†(xt, x0)gl(xt ⊕ 1̂, x0 ⊕ 1̂)),

(4.22)

where we have used the fact that from the definition of Ω(x), Ω(x ⊕ 1̂) = (−1)x
0
γ1Ω(x) and

similarly Ω†(x ⊕ 1̂) = (−1)x
0
Ω†(x)γ†1 (see Equation (4.7)). We see that the phases follow a

similar pattern to the previous case, with components of x that correspond to the γs which

are absent from the current. The point splitting is clear (recalling that the gauge links are

suppressed).

Three-point correlation functions

Figure 4.2 is a schematic representation of a K → H three-point function with a current insertion

J . We have a random colour wall source on timeslice t0, where we initiate the strange and light

propagators, and apply the relevant spin-taste operator to one of them (see 4.2.2). We then

propagate the strange quark to the current, at timeslice t0 + t. The light quark is propagated

5In any case, we could easily have defined these the other way around in the current.
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Figure 4.2: Schematic of a three-point correlation function.

to timeslice t0 + T , where it has a sink phase added and acts as a source for the heavy quark

h which is propagated back to meet the current at t0 + t. This set up is the reverse of what

happens in reality, but is set up this way because it involves calculating the smallest number of

expensive strange propagators. The physics remains unchanged under this time reversal. Again,

further discussion of sources will follow in Section 4.2.2.

In this work we will use three different current insertions, S, V and T which will be combined

with the appropriate spin-taste combination of meson from the three outlined above. We shall

label the quarks as in Figure 4.2, that is an s̄ and h̄ each paired with an l. As before, it is

simple to amend these labels to cover the specific cases in the chapters below. Again we will

work through the first case carefully and the latter two more quickly.

The scalar current insertion S(xt) = ψ̄s(xt)ψh(xt) annihilates an s̄ and creates an h̄ at xt. We’ll
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label the meson operators (formerly J) as H and K to distinguish them.

〈H5
5 (xT )S(xt)K

5†
5 (x0)〉 = (−1)x̃T+x̃0 〈0| ψ̄h(xT )ψl(xT )ψ̄s(xt)ψh(xt)ψ̄l(x0)ψs(x0) |0〉 ,

= (−1)x̃T+x̃0 〈0|ψh(xt)ψ̄h(xT )ψl(xT )ψ̄l(x0)ψs(x0)ψ̄s(xt) |0〉 ,
= (−1)x̃T+x̃0Tr

(
γ5S

h†
F (xT , xt)γ5S

l
F (xT , x0)γ5S

s†
F (xt, x0)γ5

)
,

= (−1)x̃T+x̃0Tr
(
γ5Ω(xt)Ω

†(xT )γ5Ω(xT )Ω†(x0)γ5Ω(x0)Ω†(xt)γ5

)
,

× tr(gh†(xT , xt)g
l(xT , x0)gs†(xt, x0)),

= (−1)x̃T+x̃0(−1)x̃T+x̃0Tr
(
Ω(xt)Ω

†(xT )Ω(xT )Ω†(x0)Ω(x0)Ω†(xt)
)
,

× tr(gh†(xT , xt)g
l(xT , x0)gs†(xt, x0)),

= 4tr(gh†(xT , xt)g
l(xT , x0)gs†(xt, x0)),

(4.23)

where we have used the fact that we can move spinors through one another by picking up an

overall phase which we ignore. We find no position dependent phase in the case of the scalar

current insertion.

The temporal vector current insertion V (xt) = ψ̄s(xt)γ0 ⊗ ξ0ψh(xt) proceeds similarly (noting

s = n = (1, 0, 0, 0), s̄ = n̄ = (0, 1, 1, 1)),

V (xt) = ψ̄s(xt)γ0 ⊗ ξ0ψh(xt),

= (−1)x̃t−x
0
t ψ̄s(xt)ψh(xt),

(4.24)

〈H5t
5t (xT )V (xt)K

5†
5 (x0)〉 = (−1)x

0
T (−1)x̃t−x

0
t (−1)x̃0 〈0|ψh(xt)ψ̄h(xT )ψl(xT )ψ̄l(x0)ψs(x0)ψ̄s(xt) |0〉 ,

= (−1)x
0
T (−1)x̃t−x

0
t (−1)x̃0(−1)x̃T+x̃04tr(gh†(xT , xt)g

l(xT , x0)gs†(xt, x0)),

= (−1)x̃t−x
0
t+x̃T−x0

T 4tr(gh†(xT , xt)g
l(xT , x0)gs†(xt, x0)).

(4.25)

Finally, the tensor current insertion T (xt) = ψ̄s(xt)γ0γ1 ⊗ ξ0ξ1ψh(xt) which uses the point split

K from above,

T (xt) = ψ̄s(xt)γ0γ1 ⊗ ξ0ξ1ψh(xt),

= ψ̄s(xt)γ0 ⊗ ξ0γ1 ⊗ ξ1ψh(xt),

= (−1)x
0
t+x

1
t ψ̄s(xt)ψh(xt),

(4.26)
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〈H5t
5t (xT )T (xt)K

5x†
5 (x0)〉 = (−1)x

0
T (−1)x

0
t+x

1
t (−1)x

1
0 〈0| ψ̄h(xT )ψl(xT )ψ̄s(xt)ψh(xt)ψ̄l(x0 ⊕ 1̂)γ1ψs(x0) |0〉 ,

= (−1)x
0
T (−1)x

0
t+x

1
t (−1)x

1
0 〈0|ψh(xt)ψ̄h(xT )ψl(xT )ψ̄l(x0 ⊕ 1̂)γ1ψs(x0)ψ̄s(xt) |0〉 ,

= (−1)x
0
t+x

1
t+x

1
0+x0

TTr
(
γ5Ω(xt)Ω

†(xT )γ5Ω(xT )Ω†(x0 ⊕ 1̂)γ1γ5Ω(x0)Ω†(xt)γ5

)
,

× tr(gh†(xT , xt)g
l(xT , x0 ⊕ 1̂)gs†(xt, x0)),

= (−1)x
0
t+x

1
t+x

1
0+x0

T+x0
0Tr
(
Ω(xt)Ω

†(xT )γ5Ω(xT )Ω†(x0)γ5Ω(x0)Ω†(xt)
)
,

× tr(gh†(xT , xt)g
l(xT , x0 ⊕ 1̂)gs†(xt, x0)),

= (−1)x
0
t+x

1
t+x

1
0+x0

T+x0
0+x̃0+x̃TTr

(
Ω(xt)Ω

†(xT )Ω(xT )Ω†(x0)Ω(x0)Ω†(xt)
)
,

× tr(gh†(xT , xt)g
l(xT , x0 ⊕ 1̂)gs†(xt, x0)),

= (−1)x
0
t+x

1
t+x

2
0+x3

0+x0
T+x̃T 4tr(gh†(xT , xt)g

l(xT , x0 ⊕ 1̂)gs†(xt, x0)).

(4.27)

In the second line, we have to be careful about moving spinors because of the γ1. Dropping some

labels and reinstating spinor indices we have ψ̄αhψ
α
l ψ̄

β
s ψ

β
h ψ̄

δ
l γ

δσ
1 ψσs , which can be rearranged as

ψβh ψ̄
α
hψ

α
l ψ̄

δ
l γ

δσ
1 ψσs ψ̄

β
s , leading to the second line.

4.2.2 Sources and random walls

We will now elaborate somewhat on the construction of the two- and three-point functions as

outlined at the beginning of the subsections above. From the procedures above, we end up with

an expression for the two-point correlation functions of the generic form

C2(xt, x0) = (−1)α(x0,xt)tr(gh†(xt, x0)gl(xt, x0)), (4.28)

where (−1)α(x0,xt) is some phase peculiar to the spin-taste combination we chose. We are usually

looking for a meson in a momentum eigenstate with 3-momentum ~p, so we Fourier transform,

putting the momentum on one quark (in this case h̄) using the twisted boundary conditions

described in Section 3.3.5 and recalling x0
0 = t0, x0

t = t0 + t,

C̃~p2 (t0, t0 + t) =
1

N3
x

∑

~xt,~x0

e−i~p·(~x0−~xt)C2(xt, x0). (4.29)

In order to calculate this, we need to create staggered propagators g(xt, x0) for each x0 and xt

choice on our lattice, leading to a cost which goes like 2vol2. The cost of the calculation can be

reduced using random wall sources, at the expense of introducing random noise. We first define
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new propagators,

P l,~p(xt, t0) ≡ 1√
N3
x

∑

~x0

ei~p·(~x0−~xt)ξ(~x0)gl(xt, x0),

P h,~p†(xt, t0) ≡ 1√
N3
x

∑

~x0

e−i~p·(~x0−~xt)(−1)α(x0,0)gh†(xt, x0)ξ†(~x0),

(4.30)

where we note that the source phase, like the momentum, is only applied to one of the propaga-

tors. Here ξ( ~x0) [83, 84] is a random field of complex colour vectors across the spatial components

of the source timeslice x0
0 = t0, chosen differently for each gauge field configuration. It has the

property

〈f(~x, ~x′)ξ†(~x′)ξ(~x)〉 = δ~x′~x〈f(~x, ~x′)〉. (4.31)

From this we can see that the construction,

ζ =
∑

~xt

(−1)α(0,xt)tr(P h,~p†(xt, t0)P l,
~0(xt, t0)),

=
1

N3
x

∑

~xt

(−1)α(0,xt)tr
(∑

~x′0

e−i~p·(~x
′
0−~xt)(−1)α(x′0,0)gh†(xt, x

′
0)ξ†(~x′0)

∑

~x0

ξ(~x0)gl(xt, x0)
)
,

=
1

N3
x

∑

~xt

(−1)α(0,xt)
∑

~x′0,~x0

e−i~p·(~x
′
0−~xt)(−1)α(x′0,0)tr(gh†(xt, x

′
0)ξ†(~x′0)ξ(~x0)gl(xt, x0)),

=
1

N3
x

∑

~xt,~x0

(−1)α(x0,xt)e−i~p·(~x0−~xt)tr(gh†(xt, x0)gl(xt, x0)),

= C̃~p2 (t0, t0 + t),

(4.32)

where we give momentum (where necessary) to the heavy quark and note that (−1)α(x,y) =

(−1)α(x,0)(−1)α(0,y). Note that we define the dummy variable x′0 = (x0
0, ~x
′
0), i.e. the first com-

ponent is not a dummy variable as it doesn’t appear in the sum. This ζ is exactly the process

we described above. We have generated quark and antiquark propagators on random colour

walls, applied a source spin-taste phase and momentum to one of them (h̄ in this case) and

then destroyed them at the sink, applying the sink phase here. Averaging over the random wall

effectively ties the propagators together at the source.

This approach is considerably cheaper than calculating the all-to-all propagator g(x, y) in Equa-

tion (4.28)). To compute such an all-to-all propagator would require us to solve a system
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like

g(x0, ~x, y0, ~y) =
∑

z0,~z

D−1(x0, ~x, z0, ~z)δ3(~y − ~z)δ(y0 − z0)

=
∑

~z

D−1(x0, ~x, y0, ~z)δ3(~y − ~z)

=⇒
gac(x

0, y0) = D−1
ab (x0, y0)δbc,

(4.33)

where in the last line we have given each spatial point an index, i.e. a = 0 is (0, 0, 0), a = 1 is

(0, 0, 1) and so on. We can see that for each of the N3
x choices of index c, we have to explicitly

invert the matrix D (using the inversion process of Section 3.3.6) off the source vector where the

only non-zero element is the 1 in position c. However, by introducing the random wall, we only

need compute the propagator,

P (x0, ~x, y0) =
∑

~y

(∑

z0,~z

D−1(x0, ~x, z0, ~z)δ3(~y − ~z)δ(y0 − z0)
)
ξ(~y)

=
∑

~z

D−1(x0, ~x, y0, ~z)ξ(~z)

=⇒
Pa(x

0, y0) = D−1
ab (x0, y0)ξb,

(4.34)

where the random wall vector ξb means that we effectively combine all of the N3
x inversions in

Equation (4.33) into one single inversion, at the cost of introducing random noise.

In the case of three-point functions we proceed similarly to the two-points, with the s̄ propagator

being given a source phase and momentum, and the l not. We use the l propagator as a source

to generate the h̄ one, a so called extended source.

C3(xT , xt, x0) = (−1)α(x0,xt,xT )tr(gh†(xt, xT )gl(xT , x0)gs†(xt, x0)), (4.35)

C̃~p3 (t0, t0 + t, t0 + T ) =
1

N3
x

∑

~xt,~x0,~xT

e−i~p·(~x0−~xt)C3(xT , xt, x0), (4.36)

where we apply momentum only to the s̄ propagator, which means xT doesn’t feature in the
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Fourier transform.

P l,~p(xT , t0) ≡ 1√
N3
x

∑

~x0

ei~p·(~x0−~xT )ξ(~x0)gl(xT , x0)

P s,~p†(xt, t0) ≡ 1√
N3
x

∑

~x0

e−i~p·(~x0−~xt)(−1)α(x0,0,0)gs†(xt, x0)ξ†(~x0)

P h,~ph,~pl†ext (xt, t0, t0 + T ) ≡
∑

~xT

e−i~ph·(~xt−~xT )(−1)α(0,0,xT )gh†(xt, xT )P l,~pl(xT , t0).

(4.37)

ζ =
∑

~xt

(−1)α(0,xt,0)tr(P h,
~0,~0†

ext (xt, t0, t0 + T )P s,~p†(xt, t0))

=
1

N3
x

∑

~xt

(−1)α(0,xt,0)tr
(∑

~xT

(−1)α(0,0,xT )gh†(xt, xT )×

∑

~x′0,~x0

ξ(~x′0)gl(xT , x
′
0)e−i~p·(~x0−~xt)(−1)α(x0,0,0)gs†(xt, x0)ξ†(~x0)

)

=
1

N3
x

∑

~xt,~x0,~xT

(−1)α(x0,xt,xT )e−i~p·(~x0−~xt)tr
(
gh†(xt, xT )gl(xT , x0)gs†(xt, x0)

)

=C̃~p3 (t0, t0 + t, t0 + T ).

(4.38)

Herein lies the reason that we set up the three-point calculation backwards, as in Figure 4.2.

Assuming we have already generated propagators for the h̄l and s̄l two-points, we can reuse these

in the three-point case. However, one set of propagators (h̄ or s̄) must be regenerated off the

extended source l. In this case, the heavier h̄ propagators are much cheaper to generate than

the lighter s̄, so it makes sense to set up the calculation in this way.

4.3 Fitting correlation functions

4.3.1 Fit forms

Once we have our first principles QCD determinations of two- and three-point correlation func-

tions, we can fit them to known forms (Equations (2.43) and (2.44)) in order to extract physics

parameters like masses and amplitudes. The general form of a two-point function for a meson M

of ground state energy EM0 is an exponential decay, with some amplitude AM0 which is related to

the matrix element for the decay. However, the operators we construct on the lattice overlap not

just with the ground state, but with an infinite tower of excited states of energy EMi ∀i > 0 of the
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meson. We must also account for the periodic boundary conditions we impose, which means we

also get mesons effectively travelling backwards from the end of the lattice Nt. Finally, because

of doubling symmetry, staggered quark operators for pseudoscalar mesons couple not only to

0− states as intended, but also to 0+ mesons, with a phase which oscillates in t (see appendix

of [10]). Some mesons are exempt from this behaviour, notably those with the same quark and

anti-quark mass and twist (i.e. which use the same propagator). In our case this applies to the

ηs with zero twist in Chapter 6. Putting all this together into a fit function,

CM2 (t) =

Nexp∑

i=0

(
|AM,n

i |2(e−E
M,n
i t + e−E

M,n
i (Nt−t))− (−1)t|AM,o

i |2(e−E
M,o
i t + e−E

M,o
i (Nt−t))

)
,

(4.39)

where we label (non)oscillating states (n)o and we truncate the sum to Nexp terms, because

computers find it difficult to count to infinity. This truncation is made possible by discarding

some number of data points (for t < tmin) from the start of each correlator. As very heavy states

decay away rapidly in t this enables us to fit to a finite number of exponentials.

Fitting three-point functions follows directly from considering two such two-point functions,

decaying from t0 = 0 and T respectively and meeting at t, where we insert a current J (Equa-

tion (2.44)). The amplitude from the overlap between the different (non)oscillating mesons is

given by parameter J , where were will use J = S(V )[T ] to denote scalar (vector) [tensor] current

insertions. In this case, we do not need to include ‘reflections’ from the ends of the lattice, as

generally T << Nt and the interactions between such terms are negligible6. For a decay of meson

M1 to meson M2

CM1,M2
3 (t, T ) =

Nexp∑

i,j=0

(
AM1,n
i Jnn

ij A
M2,n
j e−E

M1,n
i te−E

M2,n
j (T−t)

− (−1)(T−t)AM1,n
i Jno

ij A
M2,o
j e−E

M1,n
i te−E

M2,o
j (T−t)

− (−1)tAM1,o
i Jon

ij A
M2,n
j e−E

M1,o
i te−E

M2,n
j (T−t)

+ (−1)TAM1,o
i Joo

ij A
M2,o
j e−E

M1,o
i te−E

M2,o
j (T−t)).

(4.40)

6In an extremely high statistics calculation with precision far beyond what is achievable today, such effects may
need to be included. However, at that stage, extending Nt to further suppress these effects would probably be a
simpler option anyway.
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Figure 4.3: Example of two- and three-point correlator data on the ultrafine 5 (set 8) ensemble.
In both cases error bars are too small to be visible. The left hand plot is the log of the (folded)
two-point data for a heavy-light H meson with amh = 0.194 (actually a D meson). ‘BG’
is a Goldstone pseudoscalar with spin-taste γ5 ⊗ ξ5 and ‘BNG’ a non-Goldstone pseudoscalar
(γ5γ0⊗ ξ5ξ0). Oscillations are much larger in the latter case, causing some negative values which
are ignored by the log. On the right is the log of a three-point function for a H → K decay
with a scalar current insertion, for amh = 0.6 and twist θ = 1.529. Three different T values are
shown.

Both C2 and C3 are included as functions in the fitting package we use [85, 86]. It’s worth noting

that, because of the periodic boundary conditions, C2(t) is symmetric about Nt/2. The fitter

takes advantage of this by folding the data before fitting. Figure 4.3 shows an example of the

data for a typical two- and three-point function. We have taken the log and it is clear that the

behaviour is very well described by an exponential fit form (the two-point data has been folded,

and the three-point is plotted only up T ). Note that in the two point function at small t values,

oscillations cause negative values of the correlator on alternating timeslices, which are omitted

from the log plot. Note also that three-point function, which is for a H → K decay with a scalar

current insertion, is in fact arranged K → H, as described above. This is visible in the plot

because the heavier H meson decays faster and oscillates more than the lighter K. Hence the

three-point is larger and has more oscillations towards t = T .

4.3.2 Bayesian fitting

Our correlator fits are carried out using the corrfitter package [86], which bolts onto the lsqfit

package [85] to enable fitting of correlators as discussed above. Both packages make extensive use

of gvar [87] which automatically keeps track of (Gaussian) uncertainties and correlations between

variables throughout the fitting process. The packages use a Bayesian fitting procedure [88]
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outlined in [89].

Because Equations (4.39) and (4.40) can have a very large number of unknown fit parameters

Ai and Ei, it’s easy to end up in a situation with more parameters than data, leading to infinite

uncertainties on parameters. Bayesian fitting requires an a priori estimate of each of the fit

parameters, the prior. Put simply, the prior (P) is a conservative estimate of what the parameter

might be, containing information which is not obtained from the data itself. If the fit does not

have enough data with which to inform a certain parameter, then this parameter’s posterior

will simply be the prior it was given initially, preventing posteriors with infinite uncertainty

from messing up the fit. This is incorporated into standard χ2 least squares regression using

a modification of χ2 which includes the prior. For the example of C2(t) above, and dropping

superscripts on Ai and Ei for simplicity, the χ2 we minimise is [89]

χ2(An, En) =
∑

t,t′

∆C2(t)σ−2
t,t′∆C2(t′)

+
∑

i

(Ai − P[Ai])
2

σ2
P[Ai]

+
∑

i

(Ei − P[Ei])
2

σ2
P[Ei]

,

(4.41)

with

∆C2 = Cdata
2 (t)− Cfit

2 (t;Ai, Ei), (4.42)

where Cdata
2 (t) is the mean of our Monte Carlo values, and Cfit

2 (t;Ai, Ei) is the fit function that

we are trying to minimise χ2 with respect to.

σ2
t,t′ = Cdata

2 (t)Cdata
2 (t′)− Cdata

2 (t) Cdata
2 (t′) (4.43)

is the covarience matrix which is determined in the Monte Carlo averaging process over the

number of configurations. The second and third terms in Equation (4.41) add χ2 terms which

are dependent on the prior means (P[Ai], P[Ei]) and their respective standard deviations (σ),

and so penalise fit parameters which did not reside within their priors. Typically, we quote

χ2/d.o.f. values, where the d.o.f.s (degrees of freedom) are the number of data points, minus the

number of fit parameters. In Bayesian fitting, priors are counted like data points, so these cancel

out the fit parameters, meaning the number of d.o.f.s is just the number of data points. A good

fit should have χ2/d.o.f. ≈ 1, but, as will be explained below, this is modified by priors and SVD

cuts.
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Figure 4.4: Example [2] of estimating priors for the ground state mass, and V nn
00 using Equa-

tions 4.44 and 4.46. Priors in green are based on the data points, whilst the fit result (including
error band) is in blue.

4.3.3 Prior selection

Priors should be selected to include as much information as possible to help with the fit. One

way to get estimates for priors is to use the effective mass, and effective amplitude, which can

be obtained from Equation (4.39) in the limit of large t,

Meff =
1

2
cosh−1

(C2(t− 2) + C2(t+ 2)

2C2(t)

)
, (4.44)

Aeff =

√
C2(t)

e−Meff t + e−Meff(Nt−t)
. (4.45)

These functions can be plotted and the plateau identified, which can then be used to inform the

central value of the ground state energy and amplitude E0 and A0. A similar principle can be

used to obtain an estimate for Jnn
00

7,

Jeff(t, T ) =
CM1,M2

3 (t, T )AM1
eff A

M2
eff

CM1
2 (t)CM2

2 (T − t)
. (4.46)

An example of the effectiveness of these methods for estimating priors from [2] is shown in

Figure 4.4. Here the ground state mass and V nn
00 are shown. In each case, the data points depict

the result of Equations (4.44) and (4.46) respectively, with the green band the prior based off

7Note that it would also be legitimate to use the effective mass instead of the C2 data. In practice we often
find the results from this method to be less stable.
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this (including a generous uncertainty), and the blue band (which includes uncertainty) the final

fit result using this prior.

For non-ground state priors we often don’t have much information beyond the fact that it ought

to have a ‘sensible’ value, usually taking a number based off an effective calculation for the

ground state.

Additional to the actual values of priors, we usually include further information. In all the work

described in this thesis, we enforce Ai > 0 by using a log prior; that is we actually provide a

prior for log(Ai). We know Ai is positive because the source and sink use the same operator in

the cases we discuss. Similarly, for the energy of excited states, we actually provide a prior for

log(Ei+1 −Ei), which ensures that they are ordered with a positive energy gap, as would would

expect.

Finally, in Chapters 5 and 7 ([1, 3]) we use the relativistic dispersion relation to relate the priors

of the mesons at non-zero momentum, ~p to those at zero momentum. Allowing for discretisation

effects which appear at order |a~p|2 we can write (reinstating a for clarity),

P[aE~p
0 ] =

√
(P[aE

~0
0 ])2 + |a~p|2

(
1 + C̃

( |a~p|
π

)2)
, (4.47)

P[A~p0] =
P[A

~0
0]

(1 + (|~p|/P[E
~0
0 ])2)1/4

(
1 + D̃

( |a~p|
π

)2)
, (4.48)

where C̃ and D̃ are order unity coefficients included in the fit to parameterise the discretisation

effects. We include this extra information in the prior.

4.3.4 SVD cuts

This discussion is largely based on appendix D of [90] from which we adopt our notation. Owing

to the large cost of achieving high statistics on most HISQ ensembles, we often find ourselves

working in a regime where we have more data points NG than samples Ns. For example, take

the relatively small D → K calculation [1] (details in Chapter 5), where we only have one heavy

mass, and no tensor form factor. In this case, on the coarse 5 (set 5) ensemble, where we have

highest statistics, we have seven two-point correlators of length ≈ 30 (our data is folded and tmin

points removed) and 40 (four T values times five twists times two current insertions) three-point

correlators of length ≈ 15. This gives NG ≈ 800, which is close to our Ns = 1053 (total number
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of configurations)8.

When we defined χ2 in Equation (4.41) we glossed over the exact role that the covariance matrix

has to play. Consider a sample of Ns values of an (NG dimensional) vector of data G(s), with

mean over samples G and a matching fit function G(p), which takes parameters p as arguments

and contains in its NG elements a corresponding fit value for each data point in G(s). The

covariance matrix is given by,

Mcov ≈
1

Ns(Ns − 1)

∑

s

(G(s) −G)(G(s) −G)T , (4.49)

which can also be defined Mcov ≡ DMcorrD in terms of the correlation matrix and Dij = δijσGi ,

the diagonal matrix of standard deviations.

Ignoring the part of χ2 pertaining to the prior, we can now write,

χ2(p) =

NG∑

n=1

((G−G(p))TD−1vn)2

λn
, (4.50)

where λn and vn are the eigenvalues and eigenvectors of Mcorr respectively.

We can see from Equation (4.49) that if Ns < NG then there will be NG−Ns eigenvalues which

are necessarily zero9. These cause very obvious problems for Equation (4.50). What is not

so obvious is that when Ns is not sufficiently many times larger than NG (10-100 times), the

smallest eigenvalues are underestimated by Equation (4.49) [91], which again causes problems for

our fit, making these parameters more heavily weighted than they ought to be. The eigenvalues

for which this approximation affects χ2 are those where [90],

λapprox
n

λexact
n

< 1−
√

2

NG
, (4.51)

since on average, individual terms in χ2 should contribute approximately 1 ±
√

2/NG to the

total.

8Technically folding the data for the two-points could be interpreted as doubling their statistics, but the point
stands. It’s also worth noting that, for our data, the latter half of the correlator is so highly correlated to the first
half that folding it produces only a very small reduction in uncertainty versus just throwing away the second half
of the data; it is in no way equivalent to a doubling of statistics.

9Each element of the sum is an NG×NG matrix with all rows linearly dependent. If we add Ns such matrices,
we make Ns linearly independent rows, leaving NG −Ns eigenvalues 0.
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Figure 4.5: SVD diagnosis plot for the D → K coarse 5 (set 5) fit described in the text. The

horizontal black dotted line indicates 1 −
√

2
NG

, whilst the vertical red dotted lines gives the

κ = λn/λ
max
n value at which this line is crossed.

The solution to this problem is two-fold. Firstly, we compare our approximated eigenvalues from

Equation (4.49) to the ‘exact’ corresponding eigenvalues. Since we don’t usually know the exact

eigenvalues (otherwise this discussion would all be a bit pointless), we can generate them using

bootstrapped copies of the data, and compare λbstrap
n to λapprox

n to generate a plot like that in

Figure 4.5 which is a good approximation for λapprox
n
λexact
n

(see [90]). This plot, with eigenvalues on

the x axis scaled by the largest value λmax
n shows the value of κ = λn/λ

max
n [91, 92] at which

the approximate eigenvalue drops below 1−
√

2
NG

of its true value (horizontal dotted line). This

point (vertical dotted line) is where we make our Singular Value Decomposition (SVD) cut. The

second part of the process is simply to replace all eigenvalues below this point with this value,

that is to say κλmax
n . All of this process is handled by the corrfitter and lsqfit packages [85, 86]

and more details and examples can be found in the documentation.

Some people view SVD cuts as being a little bit heathen, but we would like to make clear that

the SVD cut is essential to fitting data faithfully, and is a conservative move. Increasing the

SVD cut serves to increase the errors on the final fit results to reflect the weakness in our initial

eigenvalue approximation.
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4.3.5 Goodness of fit

As we’ve discussed above, our Bayesian fitting procedure seeks to minimise χ2 (Equation 4.41),

taking into account our prior expectations for fit parameters. Following this method, we expect a

good fit to be one for which χ2 per degree of freedom (d.o.f.) is approximately unity. This means

that the average deviation squared of the data from the best fit line is equal to the variance of

the data, for each fit parameter.

The parameter Q (sometimes called the p-value) tells us the probability that χ2 could have

been larger by chance if the best fit model is correct. That is to say Q = Pr(χ2 ≤ X|H0), the

probability that we could have drawn a lager χ2 from a distribution X, if the null hypothesis

H0 is true. Fits are deemed acceptable if Q & 0.05. However, we can see that this could be

manipulated with certain prior choices. For example, consider choosing a prior for a parameter

with a central value equal to the (known from a previous fit) fit output10 and/or an unjustifiably

large uncertainty. This will cause the corresponding term in Equation (4.41) to give a negligible

contribution to χ2. Similarly, an unjustifiably precise prior (with smaller uncertainty than the

data is able to resolve) will override information from the data and fix the fit parameter at that

value. These examples might be considered overfitting, as would be providing a model with too

many parameters, on which the priors are too loose.

To test for overfitting we add a second goodness of fit test, the Gaussian Bayes Factor (GBF),

typically quoted as log(GBF). This number is an approximation to the Bayes factor for data D

given models M1 and M2

Bayes Factor =
Pr(D|M1)

Pr(D|M2)
=

Pr(M1|D)Pr(D)
Pr(M1)

Pr(M2|D)Pr(D)
Pr(M2)

=
Pr(M1|D)Pr(M2)

Pr(M2|D)Pr(M1)
, (4.52)

in the limit where our distributions are Gaussian. log(GBF) is calculated automatically by

lsqfit [85] (along with χ2 and Q) and is the probability of obtaining the data by randomly

sampling the model. This isn’t very useful in isolation, but when comparing two fits to the same

data with different models or priors, the log(GBF) tells us which is most likely to be the true

model the data came from. We consider a change in log(GBF) of greater than 3 to be significant.

log(GBF) penalises overfitting, and so can be used in conjunction with χ2 to test a good fit. We

choose fits for which χ2 is minimised (with Q & 0.05), and log(GBF) is maximised.

10This is obviously immoral, as this is not a priori knowledge.



CHAPTER 4. METHODS FOR LATTICE CALCULATIONS OF FORM FACTORS 64

Another legitimate use of log(GBF) is to tune priors for which we have no intuition. Whilst

fine tuning of individual priors should be avoided, the method of empirical Bayes can be used

to justify broad brush adjustments to groups of priors which boost the Bayes factor. We make

limited use of this in the following Chapters, but we do use an empirical Bayes study of all prior

widths to confirm that our priors are conservative (that is to say the GBF favours narrower

priors).

SVD and prior noise

Unfortunately, the χ2 values calculated for fits with broad priors and svd cuts are not always

kosher. We discussed a situation with a broad prior above which could artificially reduce χ2.

Similarly, SVD cuts reduce χ2 because random fluctuations in the uncertainty added by the

SVD cut are not taken into account. For more details of this see appendix D of [90] or the lsqfit

documentation [85]. lsqfit includes an option to nullify these effects by including some noise in

the priors and sampling the SVD cut error distribution. Standard practice in the fits described

in the following Chapters is to find a good fit with noise off, and then to check that χ2 is still

acceptable and the fit results have not moved significantly with the SVD and prior noise on. The

random nature of the noise means that χ2 values and fit results are not identically reproducible

for a fit with noise, so whilst we check that these are acceptable, the fit results quoted will always

be for a fit with noise off. As a final check that the fit is good, we can plot the fit function and

the data, another facility which is built into lsqfit.

4.4 Form factors

In this work we focus on pseudoscalar to pseudoscalar electroweak decays, where the current for

the q1 → q2 quark transition can be written V µ−Aµ in terms of vector V µ = ψ̄q2γ
µψq1 and axial

vector Aµ = ψ̄q2γ
µγ5ψq1 components. Parity invariance means that of these two parts, only the

vector component contributes to decays. We also consider a scalar current S = ψ̄q2ψq1 , which in

the HISQ formalism is also required to non-perturbatively renormalise the vector matrix element,

and a tensor current insertion, Tµν = ψ̄q2σ
µνψq1 where σµν = i

2 [γµ, γν ], which can be relevant

for beyond the SM scenarios.

We can construct scalar, vector and tensor form factors f0, f+ and fT using the matrix elements

calculated with these three current insertions. These matrix elements and form factors (with

different parent and daughter mesons) will be common to all three of the calculations that follow,
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so we will describe them here for a general case which covers all three. Consider the H → L

decay, where H = h̄ι denotes the ‘heavy’ pseudoscalar parent meson, comprised a parent heavy

quark11 h and spectator quark ι and L = s̄ι a ‘light’ pseudoscalar daughter meson comprising

a daughter strange quark s and the same spectator ι (note that ι ∈ {l, s} covers all the work

in this thesis). The spin-taste combinations of H and L will vary between current insertions,

and this has been covered in Section 4.2. We will denote the Goldstone cases H and L and the

non-Goldstone Ĥ and L̂ respectively and restrict ourselves to component T 10, though we write

more generally about T i0 where i = 1, 2, 3. To construct matrix elements from the three-point

amplitudes Jnn
00 we obtained from our correlator fits, we write

〈
(∧)

L | J |
(∧)

H 〉 = 2Zdisc

√
MHELJ

nn
00 , (4.53)

for J = S, V, T , where we always use the Goldstone parent mass and daughter energy. These

differ from the non-Goldstone cases only by discretisation effects, which we discuss and account

for below. Here Zdisc is a normalisation which corrects for discretisation effects at O(mh)4 and

is defined [63],

Zdisc =

√
cosh(mtree)

(
1− 1 + εtree

2
sinh2(mtree)

)
, (4.54)

where mtree and εtree are defined in Equations (3.28) and (3.29) respectively. We suppress m

arguments, but we only need to include mtree(mh), and εtree(mh), as we neglect strange and

light quarks by convention (their contributions are vanishingly small anyway). In principle we

could simply include another quark by multiplying by Zdisc evaluated at that quark mass, as is

necessary for the Bs → D∗s decay in [93].

From these matrix elements we can construct the scalar, vector and tensor form factors,

ZV 〈L|V µ |Ĥ〉 = f+(q2)
(
pµH + pµL −

M2
H −M2

L

q2
qµ
)

+ f0(q2)
M2
H −M2

L

q2
qµ, (4.55)

〈L|S |H〉 =
M2
H −M2

L

mh −ms
f0(q2), (4.56)

ZT 〈L̂|T i0 |Ĥ〉 =
2iMHp

i
L

MH +ML
fT (q2). (4.57)

11Which of these is the anti-quark is of no relevance as our decays do not include QED and our matrix elements
are CP invariant.
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Here, everything is defined on the lattice. Mesons have masses MH and ML and quarks mh

and ms, q
2 ≡ (pH − pL)2 is the squared four-momentum transfer and the multiplicative i in

Equation (4.57) is understood to be
√
−1, not the same as the i index. We also note that

Equation (4.55) demands that f+(0) = f0(0), a constraint which we can enforce in our fits

below, and which helps to improve the (typically noisier) f+ calculation, by correlating it to the

(typically cleaner) f0 one.

4.4.1 ZV and ZT

Equation (4.56) is an application of the partially conserved vector current (PCVC) relation12,

qµ 〈L|Vµ |H〉 = (mh −ms) 〈L|S |H〉 , (4.58)

a continuum expression which also holds on the lattice for the HISQ formalism [10], up to

discretisation effects. In this case, the combination of valence masses and matrix element

(mh − ms) 〈L|S |H〉 is absolutely normalised [94]. Using this and considering the construc-

tion of Equation (4.56) it is clear that no renormalisation is required in order to obtain f0. For

the f+ expression, however, this is not the case. Whilst it is possible to construct a vector cur-

rent which is conserved in the HISQ formalism, this contains both one- and three-link operators

(see appendix A in [95]), which makes it very unattractive for use in lattice calculations. Firstly

because it is very complicated [95], and secondly because point-split current operators can lead

to noisier correlators [96], although this is not universally true [97]. Instead, we proceed with

the simple local vector current insertion defined above, and use Equation (4.58) at zero recoil

(where both the parent and daughter meson are at rest and all four-momentum difference is

carried away by the current) to define on the lattice,

ZV =
(mh −ms) 〈L|S |H〉

(MH −ML) 〈L|V 0 |Ĥ〉

∣∣∣∣∣
~pL=~0

, (4.59)

where ZV can then be applied as a normalisation factor to the vector matrix element, as in

Equation (4.55). Indeed, if we take ~pL = ~0 in Equation (4.55) we recover Equation (4.59). This

method allows fully non-perturbative normalisation of the vector matrix element, eliminating

systematic errors resulting from this matching in earlier methods. ZV is a single normalisation

constant (for each gluon ensemble and mh). This means that we can use the ~pL = ~0 case in

12We drop the Ĥ notation for this continuum expression as taste is unphysical.
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Equation (4.59), which gives us the most precise ZV (because adding momentum to propagators

increases noise) for cases with ~pL 6= ~0 too. These cases differ only by discretisation effects which

we will deal with below. Tests in [98] confirm this. This is also helpful because it means we can

compute just the temporal component of V µ, which we need for f+ anyway, and avoid computing

spatial components, as is the case in Chapters 5 and 6.

The normalisation of the tensor matrix element ZT does not have such a simple calculation

as ZV and until recently was only available perturbatively, with significant errors. However, a

recent HPQCD lattice calculation [99] provides ZT in the RI-SMOM scheme and matched to MS,

correcting for contamination from condensates. Table VIII of [99] gives ZT values on all of the

ensembles we will use in this work, and their correlation matrix is in Table IX. It’s worth noting

that ZT is the only part of the form factor expressions above which carries any dependence on

the renormalisation scheme scale. The running of the normalisation to a desired scale is simple

enough to implement and we will address this when relevant.

4.4.2 The modified z expansion

For each of our different ensembles we can use Equations (4.55), (4.56) and (4.57) to determine

values of f+, f0 and fT on the lattice at different q2 values. We want to fit this data to the full

physical q2 range, from q2 = 0 to q2
max = (MH −ML)2. We also need to tie together our different

gauge field ensembles in order to fit the a dependence and extrapolate to the continuum a = 0.

The data also contains lattice artefacts; discretisation effects that depend on the lattice spacing,

as well as masses in the simulation which are not tuned to their continuum physical values.

We deal with all of these things simultaneously in one fit, using a modified z expansion, which

was first introduced in [94]. For the sake of example, let’s focus on the specific D → K decay. In

the language of z expansions [100, 101, 102], it is very common to refer to q2 as the Mandelstam

variable t. We avoid this notation, for obvious reasons, but it is the origin of the t0 and t±

notation that follows. t0 here should be distinguishable from that discussed in Section 4.2 from

context. The physical range of q2 is 0 ≤ q2 ≤ q2
max = (MD −MK)2 and in the complex (t = q2)

plane we see a branch cut from t+ = (MD +MK)2 upwards. This corresponds to the threshold

for DK production. In general this point reflects the lowest mass combination with the correct

quantum numbers that we can construct from our current with a pair of quarks out of the

vacuum, so B → K and Bs → ηs decays both use t+ = (MB +MK) (actually t+ = (MH +MK)

in the heavy-HISQ method (see Section 4.5)). We map q2 to a function z which lies within the
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unit circle on the complex z plane

z =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, (4.60)

where t0 is the point in q2 space which maps to z = 0. Typically we take t0 = 0, but other cases

and the impact of this choice are discussed below.

Using the Bourreley-Caprini-Lellouch (BCL) parameterisation [102], which has now become the

standard for the heavy to light decays we are investigating, we expand our form factors as

polynomials in z,

f0(q2) =
1

P (q2,M)

N−1∑

n=0

a0
nz(q

2)n, (4.61)

f+(q2) =
1

P (q2,M)

N−1∑

n=0

a+
n

(
z(q2)n − n

N
(−1)n−Nz(q2)N

)
, (4.62)

fT (q2) =
1

P (q2,M)

N−1∑

n=0

aTn

(
z(q2)n − n

N
(−1)n−Nz(q2)N

)
, (4.63)

where we typically find N = 3 is more than sufficient to capture the z dependence. a0,+,T
n are

coefficients which contain fit parameters to account for discretisation effects and quark mistunings

and vary from decay to decay (see Chapters 5, 6 and 7 for details in each case), and P (q2,M) =

1− q2/M2 is a pole function. Removing this pole ensures that the remaining function is analytic

and expressible as a polynomial in z. The pole masses in P (q2,M) vary from decay to decay

and will be detailed in specific cases below. For our D → K example above, D∗s0 is the pole

mass in the f0 expression and D∗s in the f+ and fT cases. In some cases, extra factors will be

added to these expressions to allow for chiral perturbation theory to tune the light quark mass

(see Section 4.4.2). These functions are described in the chapters where they are applied.

We once again perform the fits with the lsqfit package [85] which keeps track of uncertainties

and correlations using gvar [87]. This time we are not dealing with many samples that need a

covariance matrix estimating, and instead with fitting a modest number of data points which

already have uncertainties and a correlation matrix. For this reason we don’t need to conduct

the same precise SVD analysis as with the correlator fits above. We do, however conduct tests

by modifying the SVD cut to check this has no effect on the fit.



CHAPTER 4. METHODS FOR LATTICE CALCULATIONS OF FORM FACTORS 69

0 5 10 15 20
q2[GeV2]

0.9 0.9

1.0 1.0

1.1 1.1

f 0
+/mean(f 0

+)

fmin
+ /mean(f 0

+)

f rev
+ /mean(f 0

+)

Weighted av.

Figure 4.6: f+ for the t0 = 0 (f0
+), ‘minimum’ (fmin

+ ) and ‘reverse’ (f rev
+ ) choice (see text), as

well as the weighted average of the three. In each case, the result is divided by the mean on the
t0 = 0 case.

Choosing t0

A common choice for t0 is t0 = 0. This maps q2 = 0 → z = 0 and makes enforcing the

f+(0) = f0(0) constraint trivial. The maximal value of |z| is at q2
max. Other common choices are

the ‘reverse’ choice, where13 t0 = t− = (MH−ML)2 which reverses |z| with respect to q, so z = 0

at q2
max and z is maximal at q2 = 0, and the ‘minimal’ prescription t0 = t+(1 −

√
1− t−/t+)

which minimises the maximum size of |z| for a given q2 range. In general, our form factors should

be insensitive, within error, to the choice of t0, however, we do find that changes can affect the

uncertainty distribution in q2 space. Figure 4.6 shows an example of the effect of different t0

choices on f+ for the B → K decay (discussed in Chapter 7). The three bands show f+ for the

t0 = 0 (f0
+), ‘minimum’ (fmin

+ ) and ‘reverse’ (f rev
+ ) choice described above, and the hatched band

is the correlated, weighted average. In each case, the result is divided by the mean on the t0 = 0

case. We can see that, whilst the form factors agree within error, there is some variation in the

way the uncertainty is distributed. This effect is most profound in f+.

We examine this error distribution further in Figure 4.7, which shows the relative error of the

13Note that whilst in some cases t+ and t− use the same masses, and can be written t± = (M1 ±M2)2, this is
not true in general.
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Figure 4.7: The relative error on f+ for the t0 = 0 (f0
+), ‘minimum’ (fmin

+ ) and ‘reverse’ (f rev
+ )

choice (see text). In each case, the data points indicate the z values for the set 8 data points
in [3], with lines joining points of the same mass, which share a symbol.

continuum vector form factor with the pole removed. The points plotted are at the z values

of the data points from set 8 in [3], with different mh values having different symbols (star,

diamond, circle, triangle in order of increasing mass), and different z values at the same mass

joined by a solid line. Values which have q2 < 0 have been excluded. The exercise is repeated

for the three t0 choices above, and we can see that t0 has some effect on the uncertainty. In

particular, the general trend seems to suggest that points which are mapped to smaller values of

z have a lower uncertainty, which supports our observations in Figure 4.6, where t0 = 0 leads to

the lowest uncertainty at q2 = 0 and the reverse case reduces error at q2
max. It is worth noting

that Figure 4.7 represents the clearest example of this effect, which is much less apparent on

coarser ensembles, possibly as a result of the z range being greatly reduced. It’s still not very

clear to us what is driving this, but it potentially warrants future investigation. In the case

we have given, this seems to allow us to make a choice about where we want to minimise our

uncertainty. In general this is at q2 = 0, which also also marries up with our standard (and by far

the most convenient) choice t0 = 0. Alternatively, doing several fits with different t0 choices and

then taking a weighted average of the (correlated) results, is a time consuming, though effective

method to minimise errors across the q2 range as in Figure 4.6.
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Enforcing f+(0) = f0(0)

One of the benefits of the choice t0 = 0 is that we can cleanly impose the constraint f+(0) = f0(0),

because this simply requires a+
0 = a0

0 in the continuum. The way an is further broken down varies

from decay to decay and will be discussed in the relevant chapters below, but in general it will

always be the case that this constraint can be satisfied by setting some coefficients equal to one

another. The real benefit comes in heavy-HISQ below, where an is a function of the heavy quark

mass, and it is trivial to implement this for arbitrary mass, which is a powerful constraint.

For other choices of t0 this is not so simple. The best alternative method is no basket of fruit - we

add an artificial data point equal to zero, and add a model in the fit which says f+(0)− f0(0) is

equal to this data point. One problem with this is philosophical. For an(MH) we have to choose

a value, or values of MH to enforce this, which reduces the potency of a constraint which is true

for all MH . Another issue is numerical. We can’t have a point 0(0) in our fit, so this point has

to be given a small error on the order of 10−4. This uncertainty cannot be too small, and leads

to the requirement of an SVD cut. Happily, the wrong combination of SVD cut and error size

leads to a catastrophic failure of the fit, which is otherwise stable, so, whilst this method isn’t

perfect, it is a reliable implementation of the constraint.

One final method we mention in passing is similar to that above, but is more passively enforced,

without the requirement for an arbitrary data point. This is to redefine f+(q2) → f+(q2) +

f0(0)− f+(0) in the fit. Again, this requires thought about which heavy masses to choose, and

tests with this method found it to be no better than the artificial data point, so it was dropped

in favour of the more intuitive option when fits were required for t0 6= 0. In this thesis, all results

use t0 = 0, so these other constraints are only used in cases where fit stability is tested against

varying t0.

Chiral perturbation theory

In Chapters 5 and 7, we require a further modification to Equations (4.61), (4.62) and (4.63)

to allow for light quark mass mistuning. This involves multiplying by an overall L, a function

derived in chiral perturbation theory (χ-PT).

For the B → K and D → K transitions, which we are interested in, Equation (34) of [103]

gives,

LH→K = 1 +
9

8
g2A(M2

π)

F 2
+
(1

2
+

3

4
g2
)A(M2

K)

F 2
+
(1

6
+

1

8
g2
)A(M2

η )

F 2
, (4.64)
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where,

A(m2) = − m2

(4π)2
log
(m2

µ2

)
. (4.65)

Here, g is the coupling between H, H∗ and light mesons, and F is the pion decay constant as

defined in χ-PT [72] (that is with fπ ≈ 93 MeV, as opposed to the experimental convention

which includes a factor of
√

2). Putting all of this together, we can define xM =
M2
M

(4πfπ)2 , for

meson M, where 4πfπ is the chiral scale, which we also take as a value for µ. Then rewrite

Equation (4.64)

LH→K = 1− 9

8
g2xπ log xπ −

(1

2
+

3

4
g2
)
xK log xK −

(1

6
+

1

8
g2
)
xη log xη. (4.66)

In order to obtain xπ from quantities available in our simulation, we take the ratio of 4πfπ =

1364 MeV to Mphys
ηs = 688.5 MeV [75], (inserting a factor of 2 to account for the different fπ

definitions) and write,

xπ ≈ 2
mspectator

5.63ms
. (4.67)

We can find xM from this using xM = xπM
2
M/M

2
π where we use proxiesM2

π = (mspectator/ms)M
2
ηs

and M2
η = (M2

π + 2M2
ηs)/3.

We also take this opportunity to account for finite volume corrections, arising from the fact that

our lattice is not infinite. These are particularly important for light quarks and are considered

in terms of the value MπL for each gluon ensemble. Following the method in [104], we account

for these by modifying the xπ term in Equation (4.66) with the addition of δFV which is set to

0 in the infinite volume limit,

LH→K = 1− 9

8
g2xπ(log xπ + δFV)−

(1

2
+

3

4
g2
)
xK log xK −

(1

6
+

1

8
g2
)
xη log xη. (4.68)

We calculate δFV using Equation (47) of [105] and the values on each of our 8 ensembles are

listed in Table 4.1. We find that δFV, and indeed L more generally, has very little effect on any

work we present here, as will be discussed below.
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Table 4.1: δFV values used on each ensemble.

Set δFV

1 0.12907825

2 0.04894993

3 0.06985291

4 0.05841163

5 0.018106911

6 0.020801419

7 0.020801419

8 0.027538708

4.5 Heavy-HISQ

So far, we have (hopefully) been careful to talk about the generic ‘heavy’ quark. This is partly to

ensure that the discussion remains applicable to all three of the decays covered below, involving

both b and c parent quarks, but also to allow for a seamless transition to heavy-HISQ.

4.5.1 The problem

As we have already discussed in Chapter 3, the HISQ action has very small discretisation errors.

However, any power series in heavy quark mass amh will cause problems if amh > 1. In practice,

we often take the upper limit for well behaved discretisation effects to be amh ≈ 0.8. This puts

serious constraints on the masses we can reach with ensembles that are computationally feasible.

For example, whilst the charm quark mass is accessible to all ensembles, on the finest ensembles

used in this work, ultrafine 5 (set 8), the physical mass of the b quark corresponds to amb ≈ 0.9.

This means that we cannot simply perform calculations at the b mass.

In the past (and maybe even the present), many calculations used effective theory descriptions

of b quarks, like non-relativistic (NRQCD) [106], in combination with lighter quarks using an

improved action like HISQ. This best of both worlds approach combines the precision of HISQ

for light quarks with the ability to work at the physical b mass. However, like all lunches, it

is not free. The cost is in a matching of the coefficients of the effective theory to continuum

QCD [63, 107, 108], which is done in perturbation theory. Whilst errors are added to account

for this, they are often hard to quantify accurately, as they require estimates of neglected higher

order effects from the matching [108]. These uncertainties were becoming the dominant error for

NRQCD (see e.g. [109] for the case of B → K), signalling the need for a new approach.
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4.5.2 The solution

The solution proffered by HPQCD, and adopted in this work, is heavy-HISQ. We perform our

calculation at a number of heavy masses, typically amc ≤ amh ≤ 0.8 on each ensemble. This

gives us information about the heavy mass dependence of the form factors, in much the same

way that performing a calculation on several different ensembles tells us about the dependence

on lattice spacing. Thus we can combine into the an coefficients of the z expansion, which allow

for discretisation effects in a, extra terms which parameterise the amh dependence of the form

factors, which can then be evaluated at the physical point, i.e. the b mass. The exact structure

of an varies from decay to decay and is given in the dedicated Chapters below, however, the

heavy quark mass dependence is based on Heavy Quark Effective Theory (HQET) [110, 111]

(see e.g. [112] for a good overview).

Similar approaches for extrapolating up to the b mass have also been adopted with other quark

discretisations [113, 114, 115, 116, 117, 118, 119, 120, 121, 122]. These efforts, however, focused

on the b mass and b meson decay constants, whereas here we are extrapolating hadronic form

factors to the physical mass. The works above also do not take data as close to the physical b

mass as we do here, using data points around the charm, and up to half the physical b mass. In

our case, on our finest ensemble, we can get to about 0.9 of the physical b mass.

HQET

HQET [110, 111] takes advantage of the large separation of mass scales between the b (or c)

quark and ΛQCD ≈ 0.5GeV which is associated with the light degrees of freedom. This can

be used to construct an effective theory of decays of heavy mesons like the B, which becomes

increasingly good as mh →∞.

Asmh →∞ the light degrees of freedom experience only the colour field of the heavy quark, which

can be considered at rest in the rest frame of the hadron. This means that the configurations of

light quarks in two systems which differ only in the flavour or spin of the heavy quark will be

the same [123] (in the infinite heavy quark mass limit), allowing us to relate the behaviour of the

B and D meson, for example. Such considerations lead to a power series in the inverse heavy

quark mass, typically with scale set by ΛQCD, and specific examples will be shown in more detail

in the chapters which follow.

As well as the simple power series, there is a logarithmic term, arising from the matching between

HQET and QCD [124, 125], this term will be included in our fits where relevant, and is discussed
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Figure 4.8: Scalar, vector and tensor form factors across the whole physical q2 range evaluated
at different masses MH between MD and MB. This plot contains results from [3] which is the
subject of Chapter 7.

in Chapters 6 and 7.

4.5.3 Heavy-HISQ in action

One offshoot of the heavy-HISQ approach is that we often get a second calculation ‘for free’.

For example, in the case of B → K, we run our heavy mass from the physical charm up to

close to the physical bottom, and extrapolate over this range. This means that we also calculate

D → K14. Figure 4.8 illustrates this point in a 3D plot [3]. We plot scalar, vector and tensor

form factors across the whole physical q2 range, with slices taken periodically to show the result

at different heavy masses between MD and MB. The purpose of this plot is more to give a feel

of the scope of heavy-HISQ, and not to provide accurate numerical values. It shows the form

factors calculated in [3], which are the subject of Chapter 7, where the fit form which is used to

generate this plot can be found.

14At least in the case where QED is ignored. A lattice calculation with QED would make this more complicated
- what charge do you take for the heavy quark if you want it to be both a c and a b?



Chapter 5

D → K form factors: an improved

determination of Vcs

In this chapter we will cover the work which is published in [1]. Many of the techniques used

have been presented in Chapter 4 meaning we will focus primarily on the specific context and

results of the calculation, as opposed to the calculation itself. Where appropriate, we will refrain

from including lengthy numerical details which are tangential to the discussion and can easily

be accessed in [1].

5.1 Introduction

We outlined the SM theory behind the semileptonic D → K`ν decay in Section 2.3. To recap,

flavour changing weak interactions involving the emission of a W boson involve elements of the

CKM matrix [126, 127].

As shown in a Feynman diagram of the decay (Figure 5.1), the specific matrix element in this

case is Vcs, which is an element on the leading diagonal of the matrix, i.e. a strongly favoured

transition, and therefore |Vcs| ≈ 1. In the SM, the CKM matrix is unitary, and so a good way to

look for failures of the SM is via precise, independent determinations of CKM matrix elements,

which we can then use to check for unitarity in the rows and columns of the matrix. As the

leading diagonal elements are all close to unity, with off diagonal elements relatively small, it’s

important to determine these elements very precisely, as even a small relative uncertainty can

76
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Figure 5.1: Feynman diagram for D− → K0`−ν̄

dominate the unitarity test.

The accuracy with which unitarity tests can be performed varies substantially across the matrix.

For example, the unitarity of the first row has been tested to a precision of 0.05% [29]. Tests

of unitarity for other rows and columns of the CKM matrix are much less stringent, either

because of larger experimental uncertainties, larger theoretical uncertainties or both [29]. The

determination of Vcs proceeds most directly, as is similar for Vus, either through a study of

leptonic decays of the Ds meson or through D semileptonic decay to K`ν, which is what we shall

focus on. Our improved determination of Vcs targets a particularly poorly determined element,

which dominates the uncertainty in both of its unitarity tests [29];

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.025(2)Vcd(22)Vcs , (5.1)

|Vus|2 + |Vcs|2 + |Vts|2 = 1.026(22)Vcs , (5.2)

where only 2 significant figures of uncertainty are quoted and the |Vcs| value used here is

the average of the leptonic and semileptonic results before our calculation, as given by the

PDG [29].

5.1.1 Previous status of Vcs

Here we briefly summarise the status of Vcs determinations available prior to our calculation.

For a more detailed summary, see [1].

Leptonic determinations

The leptonic decay Ds → `ν would seem to be the most intuitive way to access |Vcs| as there is

no need for q2 dependent form factors; everything can be parameterised in terms of the decay
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constant. However, the experimental measurement of the branching fraction for Ds leptonic

decay has been challenging, with the average drifting downwards slowly with time as newer

results are added (see [128, 129]). The current situation is reviewed in ‘Leptonic decays of

charged pseudoscalar mesons’ by the PDG [29, 128]. They obtain an average from experiment

of

|Vcs|fDs = 245.7(4.6) MeV, (5.3)

(their Equation (71.24) [29]) with similar findings in HFLAV [129], who do not follow the same

approach to radiative corrections.

Early full1 lattice QCD calculations of the Ds decay constant suffered from large uncertain-

ties. The first calculation for Nf = 2 was done by ETM [130] in 2009 and for Nf = 2 + 1 by

FNAL/MILC [131] in 2005. These have been improved over the years (see Table 34 of [132]), in

particular by making use of the HISQ action [10]. HPQCD used this to obtain a 1% accurate

result for fDs [133, 134] in 2010. Combined with the higher experimental average for the branch-

ing fraction at that time it led to a Vcs result with a central value above 1. More recently, results

from the Fermilab/MILC collaboration [79] using HISQ give a 0.2% uncertainty on fDs . Recent

non-staggered results have also been produced by ETM [135], but they have failed to compete

with the accuracy of the HISQ results, being an order of magnitude less precise. ‘Leptonic decays

of charged pseudoscalar mesons’ [29] then give a leptonic determination,

|Vcs|lept = 0.983(13)(14)(2), (5.4)

where the first uncertainty is from experiment, the second from radiative corrections and the third

from fDs . It is clear that, in the case of leptonic decays, it now is the experimental uncertainty and

radiative corrections which dominate the uncertainty, with the lattice uncertainty insignificant

at the current level of precision.

In the ’CKM Quark-Mixing Matrix’ section of the PDG [29] they quote their leptonic decay

average as,

|Vcs|lept = 0.992(12), (5.5)

though this does not include uncertainties for electroweak (EW) or long distance QED ef-

fects.

1I.e. unquenched - including dynamical sea quarks.
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Semileptonic determinations

The situation with semileptonic D → K decays is somewhat different. Smaller experimental un-

certainties have been available for some time but form factors from lattice QCD calculations have

proved to be more difficult. Additionally, uncertainties from electroweak radiative corrections

have not previously been considered, something we will address in our calculation.

Experimental results for D → K`ν are available from BaBar, Belle, BES III and CLEO-c [129]

and will be discussed in more detail below. They are either given in the form of a differential

distribution in bins of q2 or, following a fit to the distribution combined with an analysis of

radiative bremsstrahlung corrections using PHOTOS [136], a value for ηEW|Vcs|f+(0)2 or the

branching fraction B.

The lattice side of the calculation follows a similar trajectory to the leptonic case above. Full

lattice QCD calculations of the D → K form factors again began before experimental results

were available [137] and were again limited in precision. The use of the HISQ action by HPQCD

brought a big improvement [94] and HPQCD preceded to a determination of f+ across the full

physical q2 range in [138], allowing a 1.6%-accurate determination of |Vcs| using a bin-by-bin

comparison of the differential distribution with experiment. Recently the European Twisted

Mass Collaboration (ETMC) determined the full shape of the D → K form factors [139, 140]

using the twisted mass formalism [141, 142, 143] and combined that with experimental results

to obtain a 3.5% accurate result for |Vcs|. Work is also underway by other groups; see, for

example, [144, 145].

The ETMC result for fD→K+ (0) is used in the ‘CKM Quark-Mixing Matrix’ review in [29] (quot-

ing [146]) to give a semileptonic determination of Vcs as

|Vcs|semi = 0.939(38), (5.6)

where, as noted above for the leptonic case, uncertainties from electromagnetic effects in the final

state, and electroweak radiative corrections have not been considered. Combining their results

over the full range of q2 with experiment, ETMC [140] instead obtains

|Vcs|semi = 0.978(35), (5.7)

with similar uncertainty. We note that these semileptonic determinations are somewhat less

2ηEW is an electroweak correction which is addressed below.
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precise than the leptonic one (Equation (5.5)), which dominates the PDG ‘CKM Quark-Mixing

Matrix’ average (ignoring EW and QED corrections) of |Vcs|average = 0.987(11).

Below we will improve upon the semileptonic determination of Vcs, using new form factor deter-

minations in three semi-independent ways, and taking advantage of the full q2 range and multiple

sources of experimental data. We will arrive at a semileptonic determination of 0.9663(80), which

is more precise even than the existing leptonic average, and a big improvement on the semilep-

tonic one.

5.2 Lattice calculation

Much of the lattice calculation is based on methods outlined in Chapter 4, however, there are of

course peculiarities unique to the production of data and fitting procedure, which will be covered

below.

5.2.1 Simulation details

For this calculation, data from all eight of the MILC Nf = 2 + 1 + 1 gluon ensembles discussed

in Section 3.4 and listed in Table 3.1 were used. In particular, it is worth noting that the first

three ensembles, sets 1, 2 and 3 include physical (though degenerate) light quark masses. These

ensembles are important in the case of calculations such as this one, involving valence light

quarks. For D → K, we require parent (c) and spectator (l) quarks, both at the tuned valence

masses given in Table 3.1. We also require daughter s quarks, again at their tuned valence

masses, but with a number of twists applied, so as to cover the full q2 range of the decay. Charm

and strange masses were tuned in [80] to give physical ηc and ηs masses, and the light quarks are

tuned using mtuned
s /mtuned

l = 27.18(10) [79]. The twists applied on each ensemble, as well as the

T values (i.e. the source sink separation in lattice units) are given in Table 5.1, along with the

statistics used on each ensemble in terms of the number of configurations ncfg and the number

of time source (t0) values nsrc used on each configuration.

5.2.2 Correlation functions

The form factors required to extract Vcs are f0 and f+, as defined in Equations (4.56) and (4.55).

In the language of Chapter 4, we require a Goldstone K and D with spin-taste γ5 ⊗ ξ5, and

also a non-Goldstone D̂, with spin-taste γ5γ0 ⊗ ξ5ξ0. These are combined with currents with

scalar (1 ⊗ 1) and temporal vector (γ0 ⊗ ξ0) spin-taste structure to generate the required two-
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Table 5.1: Details of the statistics, T values and K meson momenta used on each ensemble. The
number of configurations ncfg and time sources nsrc are given, and momenta can be obtained
from twist, θ, via θ = |a~pK |Nx/(

√
3π), where Nx is the spatial dimension of the lattice, given in

Table 3.1.

Set ncfg × nsrc θ T

1 998× 16 0, 2.013, 3.050, 3.969 9, 12, 15, 18

2 985× 16 0, 2.405, 3.641, 4.735 12, 15, 18, 21

3 620× 8 0, 0.8563, 2.998, 5.140 14,17,20

4 1020× 16 0, 0.3665, 1.097, 1.828 9, 12, 15, 18

5 1053× 16 0, 0.441, 1.323, 2.205, 2.646 12, 15, 18, 21

6 499× 16 0, 0.4281, 1.282, 2.141, 2.570 14, 17, 20

7 415× 8 0, 1.261, 2.108, 2.946, 3.624 20, 25, 30

8 375× 4 0, 0.706, 1.529, 2.235, 4.705 24, 33, 40

and three-point functions. See Section 4.2.1 for details on how these operators are implemented

in the MILC code.

5.2.3 Correlator fits

Once we have two- and three-point functions on each ensemble, correlator fits are performed

according to the method outlined in Section 4.3. The fits are performed in a standard way, as

described, however, specific choices are to be made, which we will outline here. Firstly, we must

decide which values of tmin, the number of initial time slices discarded from the fit, and Nexp, the

number of exponentials in the fit, to take. These two values are somewhat related, as discussed

above, and are determined through trial and error, paying attention to the goodness of fit tests

in Section 4.3.5. Across our ensembles, tmin takes values in the range 2 to 5, and Nexp = 4 on

the four coarsest lattices (sets 1, 2, 4 and 5) and 5 elsewhere. Secondly, priors (denoted P[...])

are estimated as described in Section 4.3.3. Those which cannot be estimated using Meff , Aeff

or Jeff (Equations (4.44), (4.45) and (4.46)) must be provided. These are given conservative

widths, and their rough size informed by log(GBF) using the empirical Bayes method described

in Section 4.3.5. In general, from past HPQCD experience of similar fits [147], amplitude priors

are set at O(0.1) and three point amplitudes at roughly 0(1). All energy splitting are always

taken at 0.50(25)GeV in this thesis. Additionally, some amplitudes are adjusted by trial and

error in order prevent the fit finding ‘ghost’ states, with zero amplitude, which interfere with the

ground state. Different prior widths for large groups of priors are then trialled using empirical
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Table 5.2: Priors used in the fit on each set. AD,Ki 6=0 indicates the amplitudes for non-oscillating

and oscillating D mesons and for non-oscillating K mesons. AK,oi is the amplitude for oscillating
K, which we expect to be smaller because the oscillation vanishes at zero momentum when
the quark masses are the same. Parameters denoted S and V refer to the Jklij parameters (see
Equation (4.40)) for the scalar and temporal vector currents respectively. Columns 4 and 5
then give the priors for the ground-state to ground-state parameter cases where at least one
of the states is an oscillating state. For the cases where at least one state is an excited state,
P[Sklij 6=00] = P[V kl

ij 6=00] = 0.0(5) in all cases.

set P[ADi 6=0] P[AK,oi ] P[Skl 6=nn
00 ] P[V kl 6=nn

00 ]

1 0.15(20) 0.05(5) 0.0(1.0) 0.0(1.0)

2 0.15(10) 0.05(5) 0.0(1.0) 0.0(1.0)

3 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5)

4 0.20(20) 0.05(5) 0.0(1.5) 0.0(1.5)

5 0.20(20) 0.03(3) 0.0(1.0) 0.0(1.0)

6 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5)

7 0.05(5) 0.02(2) 0.0(1.0) 0.0(2.0)

8 0.08(10) 0.01(2) 0.0(1.0) 0.0(1.5)

Bayes, for example changing all kaon amplitude priors widths at once. This same procedure is

followed for all the correlator fits in this work. The values taken for most of these priors on each

ensemble are given in Table 5.2, and can be found in [1]. The oscillating ground states are taken

to be 0.4 GeV and 0.25 GeV above the non-oscillating ones for D and K respectively, based

on experimental splittings [29]. Priors which are estimated from effective calculations above are

given an uncertainty of 20−50%. As discussed in Section 4.3.3, we use the relativistic dispersion

relation to inform our K priors, and the C̃ and D̃ coefficients in Equations (4.47) and (4.48) are

given priors 0±1. All priors are confirmed to be much (typically 5-10 times) broader then final fit

parameters, and log(GBF) confirms that they are conservative, favouring narrower choices. The

effect of narrowing and broadening priors on our fit is demonstrated below in Figure 5.2.

As described in Section 4.3, the required SVD cuts are calculated and applied. We also confirm

that all fits have a χ2 value close to 1 when SVD and prior noise is included.

Further to these choices and checks, tests of the fits can confirm they are stable and behaving as

expected. We carry out 4 such tests.
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Figure 5.2: Left: stability plot for our fit on the set 5 (a = 0.12 fm) lattice, with our preferred fit
using N = 4 exponentials, shown as the value at location 0. The different panels show (from the
top) the mass of the D (parameter ED,n0 ), the ground state energy of the K (parameter EK,n0 )
with the largest twist for this set of 2.646, and current matrix element for the temporal vector
current V nn

00 for twist 0.441. Tests 1 and 2 give the results from including one fewer and one more
exponential respectively. Test 3 increases tmin by 1 across the whole fit. Tests 4 and 5 double and
halve the svd cut and tests 6 and 7 double and halve all prior widths. The final test, 8, shows
the results when the single correlator is fit on its own or, in the case of V nn

00 , just with the D
and K two-point correlation functions required, rather than as part of one big simultaneous fit.
Right: for each ensemble, we plot the ratio (E2

K −M2
K)/|~pK |2 from our fit results against |a~pK |2

to check that the K meson energy agrees with that expected from the spatial momentum given
to the meson in the lattice calculation. The points for gluon field configurations with physical
sea u/d quark mass are in black. The ratio agrees with the expected value of 1 throughout the
range of momenta and lattice spacing values. The purple wedge shows 1± |a~pK/π|2.
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Figure 5.3: Left: the difference between the non-Goldstone D̂ and Goldstone D meson masses,
from our fit results, as a function of lattice spacing. The results show clearly that the splitting is
a discretisation effect and is only a few MeV even on the coarsest lattices. Right: the renormal-
isation factor for the local temporal vector current, ZV , plotted as a function of lattice spacing.
The purple hexagons give results for ZV values for the local vector current determined in a sym-
metric momentum-subtraction scheme on the lattice [95]. The two sets of ZV values differ at
finite lattice spacing by discretisation effects. In both cases the points in black correspond to
gluon field configurations with physical u/d sea quark mass.

Figure 5.2 shows on its left hand side the stability of three parameters from one correlator fit

under a variety of changes (see caption). We find that the fit is stable against these changes, and

that log(GBF) favours the fit with narrower priors, indicating that we are being conservative

with our choices. Other correlators are found to be similarly well behaved. On the right of this

figure, we test the relativistic dispersion relation of the K, confirming that the fitted energies

agree with the momenta given to the kaons, up to discretisation effects. This is indeed the case,

with points mostly falling within the purple region of 1 ± |a~p/π|2. This reassures us that our

discretisation effects are small, and that our choice of fit form in Equations (4.47) and (4.48) is

reasonable.

Finally, we look closer at discretisation effects in Figure 5.3, firstly by plotting the mass difference

between the Goldstone and non-Goldstone D masses (left), which confirms that these effects are

small and purely a lattice spacing dependent discretisation effect, as expected. We also confirm

that the vector normalisation ZV differs from that calculated in [95] only by discretisation effects.

All these discretisation effects will be dealt with in our modified z expansion below.

The tabulated numerical results of these correlator fits are given in [1].
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5.2.4 z expansion and continuum extrapolation

The form factors are extracted from the three-point correlator fit results as in Section 4.4, taking

H = D and L = K. Once we have form factors on each ensemble, we need to extrapolate to the

continuum.

The basic form of the modified z expansion that we use to fit the form factors data across the

eight ensembles is that described in Section 4.4.2, and we make the choice t0 = 03. We use the

basic format of Equations (4.61) and (4.62), and modify them for the D → K form factors,

f0(q2) =
1 + L(ml)

1− q2

M2
D∗s0

N−1∑

n=0

a0
nz(q

2)n, (5.8)

f+(q2) =
1 + L(ml)

1− q2

M2
D∗s

N−1∑

n=0

a+
n

(
z(q2)n − n

N
(−1)n−Nz(q2)N

)
. (5.9)

Here MD∗s0
is the mass of the scalar Ds meson, and MD∗s that of the vector. These appear in the

poles as they are the only masses below the MD + MK = 2.36GeV threshold. We obtain these

masses in lattice unit by using the physical splittings [29] e.g. aMD∗s0
= aMD+a(Mphys

D∗s0
−Mphys

D ),

where aMD is the D meson mass obtained from our correlator fits. The PDG [29] gives Mphys
D∗s0

=

2.3178(5)GeV, Mphys
D∗s

= 2.1122(4)GeV and Mphys
D = 1.867240(35)GeV, the average of MD0 and

MD+ . As with all other z expansions in this thesis, we take N = 3.

We must include valence light quark mass dependence, in order to link data from our ensembles

with physical light quark masses (sets 1, 2 and 3) and those with ms/ml = 5, and extrapolate to

the physical light quark limit. This is achieved using chiral perturbation theory, which we outlined

in Section 4.4.2. In this case (following the notation in [1]) we parameterise this dependence using

1 + L(ml), an overall multiplicative factor in the form factor expressions, defined,

L(ml) = −9g2

8
xπ(log xπ + δFV), (5.10)

where we take the DD∗π coupling g = 0.570(6) [148], and xπ and δFV are discussed in more

detail in Section 4.4.2. In this case we write xπ = ml/(5.63mtuned
s ). Here we cover a small range

of light mass values, so we only include the terms of Equation (4.68) associated with the π meson

3Though other cases are tested below.
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mass.

In Equations (5.8) and (5.9)

a0,+
n = (1 +N 0,+

n )×
Nj−1∑

j=0

d0,+
jn

(amval
c

π

)2j
, (5.11)

where we take Nj = 3 and sum allows for different powers of discretisation effects in amval
c .

Mistuning of quark masses is accounted for using

N 0,+
n = cval,0,+

s,n δval
s + cval,0,+

l,n δval
l + csea,0,+

s,n δsea
s + 2csea,0,+

l,n δsea
l + c0,+

c,n

(Mηc −Mphys
ηc

Mphys
ηc

)
. (5.12)

In the first four terms we use,

δq =
mq −mtuned

q

10mtuned
s

, (5.13)

where the tuned strange mass is obtained using Mphys
ηs = 0.6885(20) GeV [75] via

mtuned
s = mval

s

(
Mphys
ηs

Mηs

)2

. (5.14)

Once this has been calculated, we can obtain mtuned
l using mtuned

s /mtuned
l = 27.18(10) [79]. A

detailed discussion of our prior choices for the z expansion follows below. Note that we trivially

impose the constraint f+(0) = f0(0) (see Section 4.4.2) by setting d+
00 = d0

00.

When it comes to evaluating our form factors at physical quark masses, in the continuum, we

simply set the lattice spacing a, and mistuning terms N 0,+
n to nought. We can then obtain the

form factors using the a0,+
n that result from this in Equations (5.8) and (5.9), combined with

physical masses from the PDG [29] where required.

z expansion priors and posteriors

Table 5.3 provides the priors and posteriors for our preferred z expansion. All posteriors fall

within 1σ of their priors, with the exception of cval,0
s,0 , which is slighlty over one standard deviation.

This indicates that our priors are conservative.

Our priors are chosen initally based on an being of order unity in the z expansion, and given values
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Table 5.3: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

d0
00 0.0(2.0) 0.7292(43)
d0

01 0.0(2.0) 0.825(80)
d0

02 0.0(2.0) 0.72(50)
d0

10 0.0(1.0) 0.094(90)
d0

11 0.0(1.0) 0.98(67)
d0

12 0.0(1.0) -0.07(99)
d0

20 0.0(1.0) 0.26(62)
d0

21 0.0(1.0) 0.01(1.00)
d0

22 0.0(1.0) -0.001(1.000)

csea,0
s,0 0.00(50) 0.09(30)

csea,0
s,1 0.00(50) -0.06(50)

csea,0
s,2 0.00(50) 0.005(500)

csea,0
l,0 0.00(50) -0.35(36)

csea,0
l,1 0.00(50) 0.08(47)

csea,0
l,2 0.00(50) 0.003(500)

c0
c,0 0.00(50) 0.06(41)

c0
c,1 0.00(50) -0.02(50)

c0
c,2 0.00(50) 0.002(500)

cval,0
s,0 0.0(1.0) 1.05(84)

cval,0
s,1 0.0(1.0) -0.08(1.00)

cval,0
s,2 0.0(1.0) 0.006(1.000)

cval,0
l,0 0.0(1.0) -0.70(71)

cval,0
l,1 0.0(1.0) 0.17(95)

cval,0
l,2 0.0(1.0) 0.007(0.999)

Parameter Prior Posterior

d+
00 0.0(2.0) 0.7292(43)
d+

01 0.0(2.0) -0.95(10)
d+

02 0.0(2.0) 1.1(1.3)
d+

10 0.0(1.0) 0.088(91)
d+

11 0.0(1.0) 0.05(94)
d+

12 0.0(1.0) 0.01(1.00)
d+

20 0.0(1.0) 0.31(62)
d+

21 0.0(1.0) 0.01(1.00)
d+

22 0.0(1.0) 0.0004(1.0000)

csea,+
s,0 0.00(50) 0.10(39)

csea,+
s,1 0.00(50) -0.007(500)

csea,+
s,2 0.00(50) -0.0006(5000)

csea,+
l,0 0.00(50) -0.35(36)

csea,+
l,1 0.00(50) 0.06(50)

csea,+
l,2 0.00(50) 0.006(500)

c+
c,0 0.00(50) 0.16(41)

c+
c,1 0.00(50) -0.001(500)

c+
c,2 0.00(50) 0.0001(5000)

cval,+
s,0 0.0(1.0) -0.15(93)

cval,+
s,1 0.0(1.0) -0.002(1.000)

cval,+
s,2 0.0(1.0) -0.0002(1.0000)

cval,+
l,0 0.0(1.0) -0.70(71)

cval,+
l,1 0.0(1.0) 0.12(99)

cval,+
l,2 0.0(1.0) 0.01(1.00)
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of 0(1). We then tighten the priors pertaining to sea quark mistuning, as we know this is a small

effect. After such adjustments, we apply the empirical Bayes method discussed in Section 4.3.5

to broad groups of priors that cover different aspects of the fit (for example all priors d0,+
j!=0,n

which pertain to discretistation effects). We find all such groups to be conservative, except d0,+
0,n ,

which we find to be roughly optimal for maximising log(GBF). Taking a more conservative view,

we double the width of these priors, though this has minimal effect on the final fit. This approach

of taking priors of order unity, and adjusting down where they are known to be small, before

checking they are conservative usuing log(GBF) is the standard method we shall use throughout

this thesis to choose z expansion priors. We aim for a light touch here, only adjusting prior

widths down if the empircal Bayes study suggets widths less than half of what they are.

We do not include in Table 5.3 other parameters which do technically appear as priors in the

fit, but have very well informed values (i.e. not priors we have chosen ourselves). For example

the physical meson masses, such as Mphys
D . Because such priors are known to a very high degree

of accuracy, the fit tends not to move them at all - all such posteriors agree with their priors to

within 1σ and most are unchanged by the fit.

Our preferred fit has a χ2/d.o.f. of 0.666, for 64 degrees of freedom, corresponding to a Q value

of 0.982. log(GBF) = 205.35. The continuum form factors resulting from this fit, as well as

tests of the fit stability against reaosnable variations in the fit form and parameters will be given

below in Section 5.3.

5.2.5 A more agnostic approach; cubic splines

As an affirmation of the suitability of our z expansion, we also experiment with the use of a model

independent cubic spline fit to fit the form factors directly in q2 space. This is a much more

intuitive approach, and includes no assumptions about the shape of the form factors, or choices

regarding, for example, t0. We use a Steffen spline [149], which is straightforwardly implemented

using lsqfit [85].

After treating the pole and chiral logarithm identically to those above, we start with the basis

functions g0,+
0 (q2), which will constitute our continuum form factors, and add to these other

splines g0,+
i (q2) to describe the same discretisation effects and quark mistuning terms that we
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considered in our z expansion.

f0(q2) =
1 + L(ml)

1− q2

M2
D∗s0

(
g0

0(q2) +N 0 +

Nj−1∑

j=1

g0
j (q

2)
(amc

π

)2j)
,

f+(q2) =
1 + L(ml)

1− q2

M2
D∗s

(
g+

0 (q2) +N+ +

Nj−1∑

j=1

g+
j (q2)

(amc

π

)2j)
.

(5.15)

We take Nj = 2 but taking Nj = 3 gives no significant difference. For N we use further spline

functions:

N 0,+ = gval,0,+
s δval

s + gval,0,+
l δval

l + gsea,0,+
s δsea

s + 2gsea,0,+
l δsea

l + g0,+
c

(Mηc −Mphys
ηc

Mphys
ηc

)
, (5.16)

where the δs in N take the same form as in the z expansion (Equation (5.13)). We choose the

knots in our splines to span the q2 range of our data evenly, giving {−3.25,−1.5, 0.25, 2.0} GeV,

and provide priors on the spline values at these knots. In the continuum limit, the form factors

(excluding L(ml) and the pole) are represented by g0,+
0 , and we give this a prior of 0.75(15),

based on the raw data with the pole removed, (see Figure 4 in [1]). Priors for gj , gs and gl are

taken as 0.0(5) and for gc we take 0.0(1.0), using the same empiricaly Bayes method as above.

Slightly tighter priors are prefrerred here as the fit form is much less constrained. We also know

that discretisation effects are small in the HISQ action. We will discuss and compare the outcome

from the two fit forms below.

5.3 Form factor results

The form factor results in q2 are shown as coloured bands in Figure 5.4. These results represent

our preferred z expansion fit in the continuum and at physical quark masses. Data from each of

the eight ensembles is included as data points, joined by black lines to guide the eye. The lines

through these data points are the fit result to those points, that is to say the final fit evaluated

at finite lattice spacing with quark mistunings in place. The fact that all these fits are within

error of the continuum result is a testament to the tuning of the quark masses, and the strong

suppression of discretisation effects in the HISQ formalism. There are 64 data points in this fit,

and 180 fit parameters, each with a prior.
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Figure 5.4: D → K f0 and f+ form factors in q2 space using the z expansion, our preferred fit.
Data points from the eight gluon ensembles are included, and are joined by lines corresponding
to the fit at that lattice spacing (Equations (5.8) and (5.9)). The continuum, physical point
results are the coloured bands.

We compare this result with our spline fit in Figure 5.5. We find that the spline fit agrees

well, but is slightly less accurate. This is because the splines explore non-analytic functions of

q2, which we do not expect to contribute. Nonetheless, the good agreement with this model

independent method is an excellent affirmation of our preferred z expansion fit.

We test the stability of our fit against a variety of changes in Figure 5.6. Our preferred fit is

stable against all tests, and in particular we note that setting L(ml) = 0 has almost no effect on

the fit. See figure caption and [1] for finer details of the tests conducted.

A comparison of our results with previous work [94, 138, 139, 140] is given in Figure 5.7 (we

include information on reconstructing our form factors below). We see broad agreement and

a significant improvement in uncertainty over previous work, with the possible exception of a

slight (2σ) tension with ETMC’s q2
max form factors [139] (see Figure 5.7 and Table 7.8 below for

numerical values).

We provide an error breakdown of the form factors in q2 space in Figure 5.8 (left). We see that

the main contribution to uncertainty in both cases is statistics, with discretisation effects and

quark mistunings playing a relatively minor role across the q2 range. This is encouraging, as

it suggests that we have not reached the end of the line with this method, and the form factor

uncertainty could be improved somewhat by simply computing data on more configurations,

perhaps reducing uncertainty by a factor of two in places with enough statistics. The right hand

side of Figure 5.8 further breaks down the statistical error into contributions from each ensemble.



CHAPTER 5. D → K FORM FACTORS: AN IMPROVED DETERMINATION OF VCS 91

0.0 0.5 1.0 1.5
q2[GeV2]

0.8 0.8

1.0 1.0

1.2 1.2

1.4 1.4
f0

f+

f spline
0

f spline
+

Figure 5.5: Comparison between our preferred z expansion fit described in Section 5.2.4 (solid
bands) and the spline fit described in Section 5.2.5 (hatched bands).

The bars here represent the statistical varience contributions from each of the eight ensembles,

normalised by the total statistical varience. Unlike in the B → K calculation (see both B → K

and D → K from this heavy-HISQ calculation in Figure 7.13), there is no clear pattern to the

dominant uncertainties here with the contributions well spread across the ensembles, particularly

at q2 = 0. Nevertheless, a good place to start improving statistics at q2
max would be on fine-

physical (set 3) or coarse-5 (set 5).

Our continuum form factors can be reconstructed from the z expansion coefficients, pole masses,

and chiral logaritm term given in Table 5.4. The correlation matrix for these values is also

provided.

5.3.1 Form factor shape

One simple and important test of QCD is to check the shape of our f+ form factor in q2 space

against that measured experimentally. This is easily achieved by plotting a+
1 /a

+
0 and a+

2 /a
+
0 .

Unfortunately, experimentalists use a different (BGL [100]) form of the z expansion, featuring

a rather baroque ‘outer function’, which means we cannot simply use the a+
n values extracted
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Figure 5.6: Stability test of the z-expansion fit; 0 marks our final result. Test 1 removes all the
results from gluon field configurations with ms/ml = 5, so that only sets 1, 2 and 3 remain. Test
2 removes the results from sets 1, 2 and 3 and fits the others. Test 3 takes t0 in the q2 to z
mapping to the ‘minimum’ prescription described in Section 4.4.2. Test 4 sets t0 to t−. Test 5
includes an extra term in the sums over n up to N and over j up to Nj (Equations (5.8), (5.9)
and (5.11)). Test 6 removes the highest momentum data point for each gluon field ensemble
(and highest two on set 7 so that there are no results included with q2 < 0). Test 7 doubles
the width of all ‘d’ priors (this decreased the Gaussian Bayes Factor), and 8 halves them. Test
9 sets the logarithmic factor L(ml) to zero (Equation (5.10)). Test 10 shows the results of a
completely different kind of fit, a cubic spline fit in q2 discussed in Section 5.2.5. Test 11 removes
the f0(0) = f+(0) constraint, in this case the black point is f0(0) and the red is f+(0).
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Figure 5.7: Comparison of our lattice form factors at q2 = 0 and q2
max with earlier lattice QCD

calculations. The points marked ‘HPQCD ’10’ are from [94]; the points marked ‘HPQCD ’13’
from [138] and the points marked ‘ETMC ’17’ from [139, 140]. A preliminary analysis of the
scalar form factor in [145] gives f0(0) = 0.768(16), but we have not plotted that point. Our new
results are labelled ‘HPQCD ’21’ and demonstrate a significant improvement in uncertainty over
earlier values.

Table 5.4: Values and uncertainties for the fit coefficients a0,+
n , pole masses, and chiral logarithmic

term (1 + L(ml)) for the reconstruction of our form factors at the physical point as a function
of q2 from Equations (5.8) and (5.9). The correlation matrix between these parameters is given
below the row with their values. The pole masses are in GeV. The pole masses and L(ml) are
very slightly correlated due to the way the fit function is constructed. These correlations are
too small to have any meaningful effect on the fit, but we include them for completeness in
reconstructing our results.

a00 a01 a02 a+0 a+1 a+2 M
phys
D∗
s0

M
phys
D∗
s

(1 + L(ml))

0.7292(43) 0.825(80) 0.72(50) 0.7292(43) -0.95(10) 1.1(1.3) 2.31780(50) 2.11220(40) 1.01200(26)

1.00000 0.73103 0.51757 1.00000 0.29251 0.02299 -0.00023 -0.00005 -0.04904

1.00000 0.90723 0.73103 0.49742 0.01488 -0.01619 0.00001 -0.00795

1.00000 0.51757 0.52335 0.00600 0.00368 0.00003 -0.00222

1.00000 0.29251 0.02299 -0.00023 -0.00005 -0.04904

1.00000 0.49065 0.00007 -0.01488 0.00553

1.00000 0.00019 0.00362 -0.00017

1.00000 -0.00000 -0.00000

1.00000 0.00000

1.00000
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Figure 5.8: Left: uncertainties for f0 and f+ (for mu = md) as a function of q2. The red
line ‘Inputs’ shows the uncertainties coming from fixed inputs, such as experimental meson
masses used in the analysis. The purple line ‘q mistunings’ adds in uncertainties arising from
mistuning of valence and sea quark masses. The blue ‘Statistics’ line further adds the statistical
uncertainties from the lattice results (correlator fits). Finally, the black line (‘Discretisation’)
gives the total uncertainty, now including the contribution from discretisation effects. These
uncertainties add in quadrature, so we plot the squared percentage error and include an axis
showing the corresponding percentage error on the right for clarity. Right: breakdown of the
contributions to statistical uncertainty of the form factors at extremal q2 values, from each of
the eight ensembles (Table 3.1). The variance σ2

i from each ensemble is added linearly, and
normalised by the total variance.
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from our fit. The BGL form is,

f+(q2) =
1

z(q2, t0 = M2
D∗s

)φ(q2)

N−1∑

n=0

a+
n z

n, (5.17)

where the outer function,

φ(q2, t0) =

√
π

3
mc

(
z(q2, 0)

−q2

)5/2(
z(q2, t0)

t0 − q2

)−1/2

×
(
z(q2, t−)

t− − q2

)−3/4
t+ − q2

(t+ − t0)1/4
.

(5.18)

The q2 to z mapping uses t0 = t+(1 − (1 − t−/t+)1/2) (for t+/− = (MD ± MK)2). This is

the prescription that minimises the maximum value of z over the q2 range of the decay. The

parameter mc = 1.25GeV. We apply the fit form of Equation (5.17) to our form factors at the

physical point, generating synthetic data. We used 20 evenly spaced points but changing the

number of points makes no difference. This gives us the parameters a+
n for this fit form, along

with their correlation matrix and these are the values plotted on the right of Figure 5.9.

The left hand side of Figure 5.9 shows this refitted data alongside the original results, as well as

the ratio of the two, confirming that we are accurately fitting the data points and the uncertainties

are unaffected.

The right hand side of Figure 5.9 compares our form factor shapes directly with experiment [150,

151, 152, 153], and shows good agreement. The agreement with the 2016 HFLAV average [153]

is particularly compelling, and this is a strong test of QCD.
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Figure 5.9: Left: the original f+ form factor, as well as the result using the refitting procedure
described in Section 5.3.1. The black line (and grey uncertainty band, barely visible) is the ratio
of the two. We see that the refitting reproduces the original form factor and its uncertainty
accurately. Right: comparison of the shape of f+(q2) for D → K expressed in terms of ratios of
the z-expansion coefficients a+

1 and a+
2 to a+

0 . Ellipses give the 68% confidence limits (∆χ2 = 2.3).
Experimental results are from [150, 151, 152, 153]. CLEO results are for D0 → K−e+νe (dark
blue) and D+ → K̄0e+νe (light blue); all other experimental data is for D0 → K−e+νe. The
HFLAV experimental average [153] is given as the red ellipse. Our results here are given by the
black ellipse, showing good agreement.

5.4 Extracting the differential decay rate and Vcs determina-

tion

The full expression for the differential decay rate for the D → K`ν decay (see Section 2.3.3) is

given by Equation (2.38):

dΓ

dq2
=

(GF ηEW)2

24π3
|Vcs|2(1− ε)2(1+δEM)

[
|~pK |3(1+

ε

2
)|f+(q2)|2 + |~pK |M2

D

(
1−M

2
K

M2
D

)2 3ε

8
|f0(q2)|2

]

(5.19)

where GF = 1.1663787(6) × 10−5 GeV−2 [29] is the Fermi constant and the f0 contribution is

highly suppressed by the lepton mass m` through ε = m2
`/q

2.

5.4.1 Isospin breaking, ηEW and δEM

Equation (5.19) contains a number of subtleties which require unpacking. The first is to do

with meson charges. In our form factor calculation, we used degenerate light quarks ml =

(mu + md)/2, meaning that our resulting form factors are neither specific to D0 → K− nor
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D+ → K0, but rather a decay with average masses MD = (MD0 +MD+)/2 = 1.867240(35)GeV

and MK = (MK0 + MK−)/2 = 0.4956440(92)GeV [29]. In our Vcs determination, we will wish

to use experimental data which is explicitly from one decay or the other. As such, we will

use the correct D and K masses in Equation (5.19) for the decay we are interested in, and

we also include an uncertainty on the form factors to allow for this isospin breaking. We can

test the effect of having a different light quark mass (corresponding to u or d) by changing the

ratio mtuned
s /mtuned

l = 27.18(10) [79] in our code. We take md/mu ≈ 2 [29] so that mu/ms ≈
2/(3× 27.18) and md/ms ≈ 4/(3× 27.18) and compare to our original form factors. This is an

overestimate of any effects as it changes both valence and sea light quark masses. The result is

a shift of, at most, 0.15% in our form factors, and so we add this conservative uncertainty across

the q2 range to both form factors.

We also include extra corrections ηEW and δEM, which have previously been ignored4, in Equa-

tion (5.19). The first of these corrections,

ηEW = 1 +
αQED

π
log
(MZ

MD

)
= 1.009(2), (5.20)

accounts for universal short-distance corrections to GF from box diagrams in the standard

model [154]. The uncertainty here allows for a factor of two variation in the central value of

MD.

Experimental data is treated using PHOTOS [136], which provides an analysis of radiative

bremsstrahlung corrections, which are then removed, however, final state electromagnetic inter-

actions still need attention. The second correction, δEM, is present to account for these possible

electromagnetic interactions in the final state, and so is expected to be larger in the case of the

charged kaon. We take our cue from the semileptonic decay K → π, where electromagnetic cor-

rections have been calculated [155], and are found to be δEM ≈ 0 for neutral and δEM ≈ 0.7% for

charged final state mesons. We take independent δEM = ±0.5% and δEM = ±1.0% uncertainties

for these cases respectively.

5.4.2 Tests of flavour universality

One test which we can conduct easily using Equation (5.19) is a check of lepton flavour univer-

sality. In the SM, aside from mass effects, the three lepton flavours are treated identically, and

4And indeed are negligible on the scale of previous Vcs uncertainties.
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we can demonstrate this by taking the ratio,

Rµ/e =

∫
dΓµ

dq2 dq
2

∫
dΓe

dq2 dq2
(5.21)

Experimental work in B decays has shown hints of disagreement here [9] (see discussion in

Chapter 7), and the theoretical calculation is extremely precise, as most uncertainties cancel

when the ratio is taken.

Our calculations yields Rµ/e = 0.9779(2)latt(50)EM, the uncertainty being dominated by that

from δEM. This agrees well with the less precise experimental result of 0.974(7)(12) from

BES [156], and is in slight tension with the ETMC lattice determination of 0.975(1)latt [140], if

we neglect the EM uncertainty.

We can also plot Rµ/e in q2 space5, and compare with binned experimental results. This is what

is shown on the left of Figure 5.10, where we again compare with BES [156]. Our uncertainties

here are plotted (black line), but are too small to be seen, whilst the experimental uncertainties

are at present too large to discriminate between our SM model result, and our result with the

added effect of a possible new physics scalar coupling, given as examples in red and blue. These

red and blue lines are just one possible example of new physics, in this case we show the effect of

a scalar coupling in the µ sector, C
(µ)
S , which would multiply a contribution to the Lagrangian

with a scalar s̄c current multiplied by a ν̄µµ. This would feature in Equation (5.19), multiplying

the scalar form factor term by |1 + C
(µ)
S q2/(mµ(ms −mc))|2 [157]. We define,

ζS ≡
C

(µ)
S

ms −mc
(5.22)

and show values of ζS = ±0.1 GeV−1, which roughly covers the possible range of agreement with

the BES results.

Another source of SM tests is to be found in angular variables. In particular, we are able to

access the forward backward asymmetry

A
(`)
FB(q2) = − b`

dΓ(`)/dq2
(5.23)

5I.e. don’t integrate.
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Figure 5.10: Left: lepton flavour universality tests in D → K decay. The solid black curve
as a function of q2 shows the Standard Model ratio of branching fractions for a muon in the
final state to that for an electron obtained from our form factors using Equation (5.19). The
width of the curve gives the (very small) uncertainty from our results. Possible QED effects
are not included here. The points, with error bars, are from the BES experiment [156]. For
illustration the red and blue dashed lines show what the curve would look like in the presence
of a new physics scalar coupling for the µ case (see Equation (5.23) for definition of ζS). Right:
the forward-backward asymmetry of the muon produced in D → K decay. This is defined with
respect to the angle θ` in the W rest-frame. The solid black line shows the SM result derived
from our form factors, including the lattice QCD uncertainty but ignoring any uncertainty from
possible QED corrections. For illustration the red and blue dashed lines show what the curve
would look like in the presence of a new physics scalar coupling for the µ case (see text and
Equation (5.23)).
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where
dΓ(`)

dq2d cos θ`
= a`(q

2) + b`(q
2) cos θ` + c`(q

2) cos2 θ`, (5.24)

and b` is defined in [157]. Here, θ is the angle between the charged lepton momentum in the

W rest frame and the W momentum in the D rest frame (see [1] for diagram). AFB = 0 for

massless leptons, because only the helicity zero component of the W can contribute. We plot

A
(µ)
FB, again including the effects of the scalar coupling ζS = ±0.1 GeV−1, on the right hand side

of Figure 5.10. In this case we can see that negative values of ζS actually change the sign of A
(µ)
FB

at large values of q2.

5.4.3 Vcs determination

Below, we will describe three semi-independent methods for determining |Vcs|. These methods

all use the same form factors (our form factors), but they each make use of different parts of

the q2 range, and different combinations of experimental results, allowing access to different sets

of the four available channels: D+ → K̄0e+νe, D
0 → K−e+νe, D

+ → K̄0µ+νµ and D0 →
K−µ+νµ.

Via the binned differential decay rate

Using Equation (5.19), we can construct the differential decay rate dΓ/dq2 across the whole q2

range from our form factors. We can isolate |Vcs| by comparing this with the experimentally

determined dΓ/dq2, which is available in multiple q2 bins, for multiple experiments [150, 151,

152, 158].

We use experimental results for which a covariance matrix is provided for the partial rates

between q2 bins. We add covariance matrices for statistical and systematic uncertainties where

they are provided separately (effectively adding the uncertainties in quadrature). In some cases

an overall uncertainty on each bin is given along with the percentage breakdown into systematic

and statistical uncertainty. We use this, along with the correlation matrices given, to obtain the

separate covariance matrices and add them.

CLEO results are taken from [150], where both D0 → K−e+νe and D+ → K
0
e+νe differential

rates are measured and the correlations between them given. Partial rates were taken from Table

V, and σstat
i , σsyst

i and their covariance matrices were calculated using these, the percentage error

breakdowns in Tables VII and VIII and the correlation matrices in Tables XVI and XVII. These
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covariance matrices are then easily included in our calculation using the gvar package [87]. Our

determination of Vcs on a bin-by-bin basis is shown for the CLEO results in Figure 5.11. The

fit for the weighted average gives a χ2/d.o.f. of 0.64 in the D0 case and 1.7 in the D+ case. In

both cases there are nine degrees of freedom. The q2 bins with the minimum total uncertainty

are at the small q2 end of the range, where the experiment is most accurate. BaBar results are

taken from [151]; these are for the D0 → K−e+νe decay normalised by the branching fraction

for D0 → K−π+. Table II gives the normalised decay distribution and total correlation matrix.

The leading diagonal values of the matrix give the σi. The distribution has been normalised so

that the sum over all bins equals unity. A value is also given for

R =
B(D0 → K−e+νe)

B(D0 → K−π+)
, (5.25)

which is included in the correlation matrix. Using this value, and multiplying by the global

average for B(D0 → K−π+) = 0.03950(31) [29], we determine B(D0 → K−e+νe). This allows

us to extract the branching fractions per bin from the decay distribution and convert these to

partial rates by dividing by the D0 lifetime τD0 = 4.101(15)× 10−4 ns [29]. We drop the largest

q2 bin from our weighted average fit (because it is equal to one minus the sum of the others from

the normalisation constraint). We include the normalisation uncertainty after averaging to avoid

normalisation bias.

Our determination of Vcs from the BaBar results is shown in Figure 5.12 and has a χ2/d.o.f. of

0.9 with nine degrees of freedom.

BES results are taken from [152] for the D0 decay channel. The data can be found in Table

V, and the breakdown of the percentage errors and correlation matrices for systematic and

statistical uncertainty are given in Tables IX and XI. BES results for the D+ channel are given

in [158] (Table VI). Our determination of Vcs on a bin-by-bin basis is shown for these two sets

of BES results in Figures 5.12 and 5.13, with χ2/d.o.f. 1.1 (d.o.f. = 18) and 0.9 (d.o.f. = 9)

respectively.
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Figure 5.11: Plots of the determination of |ηEWVcs|2(1 + δEM) per q2 bin for CLEO D0 and D+

results [150]. The total uncertainty for each bin is given in black and this is broken down into
experimental (blue) and theoretical (red) contributions, the latter coming from our form factors.
Each data point is centred on the q2 bin it corresponds to. Note that the uncertainties are
correlated between q2 bins. The purple band gives the weighted average for these data points,
with all correlations included.

We integrate over each bin (q2
i , q

2
i+1) using the trapezoidal rule to obtain.

∆iΓ =

∫ q2
i+1

q2
i

dΓ

dq2
dq2

=
G2
F |ηEWVcs|2(1 + δEM)

24π3

∫ q2
i+1

q2
i

dq2

[
|~pK |3(1− ε)2(1 +

ε

2
)|f+(q2)|2

+ |~pK |(1− ε)2M2
D

(
1− M2

K

M2
D

)2
3ε

8
|f0(q2)|2

]
,

(5.26)

and then compare with the experimental binned measurements ∆iΓ to isolate a |Vcs| value for

each experimental q2 bin. We then average over the bins in each experiment, and finally average

these four experimental values to give a final answer for |Vcs|. Figures 5.11, 5.12 and 5.13 show

the |ηEWVcs|2(1 + δEM) values for each q2 bin for each experiment we considered, as well as their

average. We then average these numbers together, not including the BES D+ results [158], as

we are unable to correlate these with the BES D0 [152] results. The |Vcs| value that results from

the average of four other averages is

|Vcs|dΓ/dq2
= 0.9663(53)latt(39)exp(19)ηEW (40)EM, (5.27)
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Figure 5.12: Plots of the determination of |ηEWVcs|2(1 + δEM) per q2 bin for BaBar D0 [151]
and BES D0 [152] results. The total uncertainty for each bin is given in black and this is
broken down into experimental (blue) and theoretical (red) contributions, the latter coming
from our form factors. Each data point is centred on the q2 bin it corresponds to. Note that
the uncertainties are correlated between q2 bins. The purple band gives the weighted average
for these data points, with all correlations included.
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Figure 5.13: Plot of the determination of |ηEWVcs|2(1+δEM) per q2 bin for BES D+ results [158].
The total uncertainty for each bin is given in black and this is broken down into experimental
(blue) and theoretical (red) contributions, the latter coming from our form factors. Each data
point is centred on the q2 bin it corresponds to. Note that the uncertainties are correlated
between q2 bins. The purple band gives the weighted average for these data points, with all
correlations included.
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Figure 5.14: Left: plot of |Vcs| per bin for CLEO, BaBar and BES results from [150, 151, 152].
Each data point is centred on the q2 bin it corresponds to and the error bars plotted include the
uncertainties from ηEW and δEM. The purple line and band give the result from our total weighted
average for |Vcs|2, with all correlations included. Right: comparison plot of the determination of
|Vcs| using the differential decay rate for CLEO, BaBar and BES results from [150, 151, 152, 158]
for D0 and D+ decays. The purple band gives the total weighted average for Vcs, not including
the BES ’17 result.

where the uncertainties are from our form factors, experimental data, ηEW and δEM respectively,

and the result is shown in Figure 5.14. The left hand side of this figure shows the binned |Vcs|
values which contribute to the final result, as well as |Vcs|, the purple band. The right hand side

shows the averages over bins for each of the five experiments, as well as the final |Vcs|, an average

of the four results shown below the dotted line.

As a note on averaging with correlations: it’s important in situations when averaging over

correlated data to proceed with caution. One thing to be aware of is D’Agostini or normalisation

bias [159]. This appears in certain situations when taking correlated, weighted averages of data

which contains a common factor. In our case, this is why we average |ηEWVcs|2(1 + δEM) over

q2 bins, only dividing through by the η2
EW(1 + δEM), which is a overall factor applied to each

experiment, after the bin averaging6. Our final result is obtained by a fit (using [85]) to the four

averages, with |Vcs| as a fit parameter, as well as η2
EW and (1+δ

e,0/+
EM ), the latter two parameters7

with priors of 1.00(1) and 1.000(5) for the charged and neutral K cases respectively. This fit

is formally equivalent to a simple weighted average, but allows us to obtain posteriors for the

corrections η2
EW and (1+δ

e,0/+
EM ), which we find agree well with their priors. η2

EW sits on its prior,

6Due to a subtlety with the BaBar data, (see [1]), we have an overall normalisation for this, which we also keep
out of the average over bins.

7A separate fit parameter is assigned to each of the charges.
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Table 5.5: Total width for D → K semileptonic decay up to a factor of |ηEWVcs|2(1 + δEM ),
determined from our form factors. We give results for all 4 modes that we consider. They differ
slightly in the parent and daughter meson masses and in the mass of the lepton in the final state;
these affect the kinematic factors in the differential rate and the end-points of integration for the
total width. These values can be combined with experimental values of the relevant branching
fraction and D meson lifetime to determine |Vcs|.

Γ/(|ηEWVcs|2(1 + δEM )) (ns−1)

D+ → K
0
µ+νµ 88.30(99)

D+ → K
0
e+νe 90.3(1.0)

D0 → K−µ+νµ 87.57(98)
D0 → K−e+νe 89.5(1.0)

whilst (1 + δe,+EM) = 1.0022(92) and (1 + δe,0EM) = 0.9995(49).

This is our preferred method for determining |Vcs|, as it uses information from across the full q2

range.

Via the total branching fraction

A separate method for determining |Vcs| is to integrate Equation (5.19) across the full q2 range

to determine Γ/(|ηEWVcs|2(1 + δEM)) (shown in Table 5.5), and then convert to the branching

fraction B using the appropriate D meson lifetime [29].

This gives us four different Be/µ,0/+/(|ηEWVcs|2(1 + δ
e/µ,0/+
EM )) values, for the different channels.

We can then compare these directly with experimental B values to isolate |Vcs|. In this case,

there are more experimental determinations, covering all four of the charge-lepton combinations.

In our calculation, we assume 100% correlation of systematic uncertainties on results from the

same experiments, a conservative move as no correlation data is available.

Again, we do the averaging by way of a fit, including the parameters η2
EW and (1 + δ

e/µ,0/+
EM ),

as well as the D lifetimes, and our values for Be/µ,0/+/(|ηEWVcs|2(1 + δ
e/µ,0/+
EM )). The priors for

(1 + δ
e/µ,0/+
EM ) are again 1.00(1) and 1.000(5) for the charged and neutral K cases respectively,

but now we have four distinct fit parameters, allowing for a difference in EM effects not only

with kaon charge, but also with lepton flavour. We obtain posteriors (1 + δe,+EM) = 1.0077(74),

(1+δe,0EM) = 0.9938(45), (1+δµ,+EM ) = 1.0015(68) and (1+δµ,0EM) = 1.0038(46), which are somewhat

more precise than their priors. Whilst the precision on these numbers means it’s impossible to

draw any firm conclusions here, it seems that both the binned and total branching fraction
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methods lean towards δe,+EM being positive and δe,0EM negative.

The result,

|Vcs|B = 0.9686(54)latt(39)exp(19)ηEW (30)EM, (5.28)

agrees well with our differential decay rate method and is shown alongside the experimental data

in Figure 5.15.

Via |Vcs|f+(0)

Finally, many experiments perform a fit and extrapolation to q2 = 0, and provide a value for

|Vcs|f+(0)ηEW

√
1 + δEM. These numbers have helpfully been averaged by HFLAV [129], giving

|Vcs|f+(0)ηEW

√
1 + δEM = 0.7180(33). We can simply divide this average by our value for

f+(0)ηEW

√
1 + δEM to isolate |Vcs|,

|Vcs|f+(0) = 0.9643(57)latt(44)exp(19)ηEW (48)EM, (5.29)

which is shown in Figure 5.15, alongside the equivalent |Vcs| value for each of the experiments

that goes into the average. In this case, as the averaging has already taken place, we simply

allow a 1% uncertainty for δEM. This method agrees well with both of the others.
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Figure 5.15: Left: comparison plot of the determination of |Vcs| using the total branching fraction.

Experimental results are from [160] for D+ → K
0
µ+νµ, [150, 161] for D+ → K

0
e+νe, from [156,

162] for D0 → K−µ+νµ and from [150, 151, 161, 162] for D0 → K−e+νe decays. Note that the
BES results for final state e are the quoted averages for results from [161] and [152, 158]. The
purple band gives the total average for Vcs, assuming 100% correlation of systematic uncertainties
for results from a given experiment. The width of the purple band encompasses all uncertainties,
including those from ηEW and δEM. Right: comparison plot of the determination of |Vcs| using
the extrapolation of experimental results to q2 = 0. Experimental results are from [158, 163]

for D+ → K
0
e+νe, from [156] for D0 → K−µ+νµ and [150, 151, 152, 162] for D0 → K−e+νe.

The purple band gives the weighted average result for Vcs obtained from the HFLAV weighted
average [129] of the experimental results but including a correction for ηEW and an additional
uncertainty from QED corrections.
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5.5 Discussion and conclusions

Our three semi-independent |Vcs| determinations (Equations (5.27), (5.28) and (5.29)) are shown

in Figure 5.16, along side previous determinations. We see that all three methods agree very

well, and provide a considerable improvement in uncertainty over previous work. Indeed, the

uncertainty on our preferred result, |Vcs|B = 0.9686(54)latt(39)exp(19)ηEW (30)EM, is below 1% for

the first time, and is the first |Vcs| determination to be significantly below unity. How’s that for

a slice of fried gold? Importantly, theoretical uncertainty has been brought down in line with

experimental uncertainty, whilst δEM has become a significant error in the final result, which

needs further attention from the theory community. The unitarity constraints,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 0.9826(22)Vcd(155)Vcs(1)Vcb ,

|Vus|2 + |Vcs|2 + |Vts|2 = 0.9859(2)Vus(155)Vcs(1)Vts ,
(5.30)

are still dominated by |Vcs|, but with an improved uncertainty. They are both consistent with

unity.

The left hand side of Figure 5.17 plots the ±1σ band for our determination of Vcs from Equa-

tion (5.27) as the darker blue band. This is compared to the result (red band) from Ds leptonic

decay of 0.983(18) from the ‘Leptonic decays of charged pseudoscalar mesons’ review in [29].

This result uses lattice QCD results for the Ds decay constant and includes uncertainties for

ηEW and long-distance QED effects. The ‘CKM Quark-Mixing Matrix’ [29] review gives a value

of 0.992(12) but without including these effects. This value would then lie in the upper half of

the Vcs leptonic band plotted in Figure 5.17. In either case it is clear that our new result for Vcs

is more accurate than that from leptonic decay and has a lower central value.

The plot also shows the constraints currently available on Vcd. The ‘CKM Quark-Mixing Matrix’

review in [29] quotes a value for Vcd from semileptonic D → π decay from combining experimental

results with the form factor at q2 = 0 determined in Nf = 2+1+1 lattice QCD by ETMC [139].

This gives Vcd = 0.2330(136). The value quoted in the same review from D+ leptonic decays

is 0.2173(51). This combines experimental results with the D+ decay constant determined in

Nf = 2+1+1 lattice QCD by the Fermilab/MILC collaboration [79]. Another constraint follows

from the ratio of Ds to D leptonic decay rates [118] combined with the ratio of Ds and D decay

constants. Using ratios of VcsfDs and VcdfD+ averaged over experimental results from [29] and

the lattice QCD result for fDs/fD+ from [79] gives the constraint |Vcd|/|Vcs| = 0.2209(56) if we

assume that electromagnetic corrections to the leptonic rates will largely cancel.
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B

Figure 5.16: Our |Vcs| result compared with other Nf = 2 + 1 + 1 and Nf = 2 + 1 results using
lattice QCD. Different symbols indicate different lattice calculations, whilst different colours
indicate the method used. Blue indicates use of the differential rate in q2 bins, red indicates
use of the f+(0) method and green indicates use of the total branching fraction for the decay.
Points marked ‘HPQCD ’21’ come from this work, ‘ETMC ’17’ is from [139, 140], ‘HPQCD ’13’ is
from [138], ‘HPQCD ’10’ is from [94] and ‘Fermilab/MILC ’04’ is from [137]. For comparison we
give at the bottom the value currently quoted in the Particle Data Tables [29] from semileptonic

D → K decay. The blue band carries our preferred result, V
dΓ/dq2

cs , down the plot.
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Figure 5.17: Left: a comparison of constraints on Vcs and Vcd with the expectation from CKM
unitarity. Red bands show the ±1σ range for the determination of Vcs and Vcd from leptonic
decays of Ds and D+ combined with decay constants from lattice QCD. The diagonal red band
is the constraint from the ratio of leptonic rates for Ds and D+ combined with the lattice QCD
ratio of decay constants. The solid light blue band shows the result for Vcd from the D → π`ν
decay combined with lattice QCD form factor results. See text for a discussion of the values
used. The darker blue band shows our new determination here of Vcs from D → K`ν with
±1σ uncertainties. For comparison the black dashed line gives the unitarity constraint curve of
|Vcd|2 + |Vcs|2 + |Vcb|2 = 1. Right: a similar comparison to above, this time of constraints on
Vcs and Vus. Red bands show the ±1σ range for the determination of Vcs and Vus from leptonic
decays of Ds and K+ combined with decay constants from lattice QCD. The light blue band
shows the result for Vus from K → π`ν decay combined with lattice QCD form factor results. See
text for a discussion of the values used. The darker blue band again shows our new determination
of Vcs and the black dashed line gives the unitarity constraint curve, |Vus|2 + |Vcs|2 + |Vts|2 = 1.
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The black dashed line in the left hand Figure 5.17 corresponds to the unitarity constraint |Vcd|2 +

|Vcs|2 + |Vcb|2 = 1. Vcb has little impact on this curve; we use the average value of 0.0410(14)

from [29]. Our result for Vcs is in good agreement with the unitarity curve for values of Vcd in

the range given by the leptonic and semileptonic constraints.

The right hand side of Figure 5.17 gives the same picture for the Vus, Vcs, Vts column of the

CKM matrix, showing constraints in the |Vcs| − |Vus| plane. |Vcs| values are as for the left hand

figure but plotted over a smaller range because of the higher accuracy of |Vus| (we scale x and y

axis ranges together).

We take |Vus| values from the review ‘Vud, Vus, Cabibbo angle and CKM unitarity’ in [29]. This

gives |Vus| = 0.2252(5) from leptonic decays of K+ and 0.2231(7) from K → π semileptonic

decay. The leptonic result uses an average [164] of lattice QCD results for the K decay constants

dominated by that from [79]. The semileptonic result uses an average [164] of lattice QCD results

for the K → π form factor at q2 = 0 from [165, 166]. The current most accurate lattice QCD

results for the form factor are given in [167].

The right hand side of Figure 5.17 shows the tension developing between leptonic and semileptonic

determinations of Vus [29, 167]. The black dashed line in the figure shows the unitarity constraint

|Vus|2 + |Vcs|2 + |Vts|2 = 1. |Vts| has little impact on this curve; we use the current most accurate

determination of |Vts| = 0.04189(93) from the measured oscillation rate of Bs mesons [29] and

HPQCD’s lattice QCD determination [90] of the matrix elements of the 4-quark operators that

give the mass difference between the Bs eigenstates. Our improved accuracy for |Vcs|, along with

the unitarity curve, is not sufficient to distinguish between the two values for |Vus|.



Chapter 6

Bs→ ηs form factors

In this chapter, we will cover the work published in [2], which represents a progression of the

heavy-HISQ method from b→ c to b→ s semileptonic decays, ultimately leading to the B → K

calculation outlined in Chapter 7. Whilst the Bs → ηs calculation presented here was actually

published before the D → K work discussed in Chapter 5, it embodies a transition from lattice

calculations at a fixed, physical heavy mass (mc), to the heavy-HISQ method, using multiple

non-physical heavy masses mh. For this reason it is natural to present these chapters in the order

that we do, and not chronologically. We also note at this point that the ηs = s̄s is not a physical

particle, but is straightforwardly constructed on the lattice. If this is causing an irresistible

raising of your eyebrows, consider the ηs a kaon with an artificially heavy light quark - there’s

nothing fantastic here.

6.1 Introduction

The heavy-HISQ technique, which is described in detail in Section 4.5, is a method which allows

all HISQ calculations of b meson form factors, even though the b mass is too high to be reached

on almost all of our ensembles. To briefly recap Section 4.5, the method involves calculating

form factors at a variety of heavy masses, mh, typically such that amc ≤ amh ≤ 0.8 on each

ensemble. A HQET inspired fit form (see Section 4.5.2) can then be folded into the z expansion,

allowing an extrapolation in heavy mass to take place at the same time as the extrapolation to

a = 0. The result is the form factors for b mesons without the matching errors associated with

other methods such as NRQCD. There is a logarithmic matching between HQET and QCD, (see

112
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Section 4.5.2) which we take account of in our fits. Whilst others [113, 114, 115, 116, 117, 118,

119, 120, 121, 122] have used a similar approach to calculate decay constants, we apply it to

hadronic form factors.

At the time of the Bs → ηs calculation we will discuss here, heavy-HISQ had only recently been

developed, and had only been used for b→ c transitions, where it had been very successful [93,

147, 168, 169]. In order to proceed to b → s decays such as B → K, it was important to check

that the method performed equally well for lighter daughter quarks. Whilst the ηs is unphysical,

Bs → ηs provides an intermediate step, with the b→ s transition, but with a s spectator quark,

which is much cheaper to compute than light quarks, and does not require costly ensembles with

physical light sea quark masses in order to perform a good calculation. Additionally, strange

quarks are less noisy than light quarks, and so a calculation with lower statistics can provide

small enough uncertainties to check that the method has been successful.

As an additional bonus, once it was confirmed that heavy-HISQ was an appropriate method

to study b → s decays, the Bs → ηs data calculated here was readily included in the B → K

calculation detailed in Chapter 7, recycling the core hours expended, as well as improving the

light quark mass extrapolation in B → K.

6.2 Calculation details

As in the previous chapter, most of the general form of the calculation here is outlined in

Chapter 4, so we will focus on details which are unique to Bs → ηs

6.2.1 Simulation details

For this calculation, data from the three finest of the MILC Nf = 2 + 1 + 1 gluon ensembles

discussed in Section 3.4 and listed in Table 3.1 were used, that is fine 5, superfine 5 and ultrafine

5, sets 6, 7 and 8. Note that in [2] these sets are labelled 1, 2 and 3 respectively. The twists

applied on each ensemble, as well as the T values (i.e. the source sink separation in lattice units)

are given in Table 6.1, along with the statistics used on each ensemble in terms of the number

of configurations ncfg and the number of time source (t0) values nsrc used on each configuration.

Additionally, we now have four different heavy mass (amh) values on each ensemble, in each case

with the smallest being the tuned charm mass, and the largest being 0.8.
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Table 6.1: Details of the statistics, T values, heavy masses, and ηs meson twists used on each
ensemble. The number of configurations ncfg and time sources nsrc are given, and momenta can
be obtained from twist, θ, via θ = |a~pηs |Nx/(

√
3π), where Nx is the spatial dimension of the

lattice, given in Table 3.1. In each case, the smallest amh value corresponds to the tuned amc

mass on that ensemble.

Set ncfg × nsrc θ amh T

6 504× 16 0, 0.4281, 1.282, 2.141, 2.570 0.449, 0.566, 0.683, 0.8 14, 17, 20

7 454× 8 0, 1.261, 2.108, 2.946, 3.624 0.274, 0.45, 0.6, 0.8 20, 25, 30

8 118× 4 0, 0.706, 1.529, 2.235, 4.705 0.194, 0.45, 0.6, 0.8 33, 40

6.2.2 Correlation functions

As in the chapter above, the form factors calculated here are f0 and f+, as defined in Equa-

tions (4.56) and (4.55). As before, in the language of Chapter 4, we require a Goldstone ηs and

Hs with spin-taste γ5 ⊗ ξ5, and also a non-Goldstone Ĥs, with spin-taste γ5γ0 ⊗ ξ5ξ0. These are

combined with currents with scalar (1⊗ 1) and temporal vector (γ0⊗ ξ0) spin-taste structure to

generate the required two- and three-point functions. See Section 4.2.1 for details on how these

operators are implemented in the MILC code.

6.2.3 Correlator fits

Two- and three-correlator fits are, as usual, performed using the recipe in Section 4.3, using the

standard goodness of fit metrics of the χ2 and log(GBF) value described there. A difference with

the previous chapter, (and indeed the next chapter) is that here we make use of chained and

marginalised fits, which are variations on the naive simultaneous fits, and are easily facilitated

in our fitting packages [85, 86].

Chained and marginalised fits

Chaining and marginalisation are two methods to speed up large fits with many models. We will

give an overview of both methods here, but they are detailed extensively in the documentation

for corrfitter [86] and we direct the reader there for further details.

Chaining is perhaps the most obvious way to break up large fits. In our case, we have a large

number of models which we wish to fit at once. We have four mh values, each of which has a

Hs and Ĥs, giving a total of eight Hs type two-point correlators. We then have five different
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daughter momenta, giving five ηs two point correlators. In terms of three-points, there is a scalar

and vector current insertion for each mass-twist combination and T , giving 2× 4× 5× 3 = 120

three-point functions in total1. Large numbers of models drive up the required SVD cut (see

Section 4.3.4) and can be very slow to fit (in our case taking days on a standard machine). A

solution is to break the fit down into smaller chunks, for example fitting the two points first, and

then the scalar three-points, and then the vector three-points. At each stage in this chain, the

fit parameters from the previous fit are included, even if not required, with their best fit values

as priors. This allows their correlations to other fit parameters to be (approximately) accounted

for, but speeds the fit up because the data is not included. In the limit of large statistics, the

results from chained fits are identical to those from simultaneous fits.

Marginalisation is a different approach, aimed at reducing the number of fit parameters without

changing the number of models. In marginalised fits, one effectively integrates out non-leading

parameters. As a concrete example, let’s imagine we want to fit a correlation function to N = 6

exponentials labelled n = 0, 1, ..., 5. We need to include all six exponentials in order to get

a good fit, but higher order terms are poorly determined, and we are only actually interested

in the ground state results (n = 0). Marginalising this case, we could take the priors for the

n = 3, 4, 5 exponentials, and subtract the fit function evaluated using these priors from the

data. We could then fit this modified data to a fit form with N = 3 exponentials, giving what

is effectively a N = 6 exponential fit, but in the time (and with the resources) taken to do a

N = 3 exponential fit. The obvious limitation to this method is that we are effectively forcing

the marginalised fit parameters to take their prior values. This could lead to large uncertainties,

however, with correlator fits, where the higher order exponentials die off rapidly and the priors

can be reasonably well determined, this approach can be effective.

Chaining and marginalisation are readily combined, and this is the technique we employ here.

On each ensemble, we have a two link chain, with the first link including models for all two-point

fits, and the second for all three-points. The two-point fits are fitted to N2pts
exp , which is 5 for set

6 and 6 for sets 7 and 8. These two-point fits are then chained into the three-point fits, which we

apply marginalisation to. We fit to N3pts
exp exponentials, which is 2, 3 and 2 in the cases of sets

6, 7 and 8 2 respectively, and then marginalise over the higher order exponentials up to N2pts
exp

on each ensemble. This is effective because the two-point data are typically much more precise

180 for set 3 where there are only 2 T values.
2Set 8 contains only 2 T values, so the ratio of statistics in the two- to three-points is less than on the other

ensembles, which explains why our goodness of fit tests prefer a fit to 2 exponentials, which is not in line with
what might be expected based on the two-points.
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Table 6.2: Priors used in the fit on each set. Priors are based on previous experience of similar
fits [147] (see text) and given conservative widths. In some places, adjustment is made for lattice
spacing, and priors are tuned using an increase in the GBF. The effect of doubling and halving
the standard deviation on all priors on the final fit result is shown in Figure 6.1.

Set P[An
i 6=0] and P[Ao

i ] P[Skl 6=nn00 ] P[V kl 6=nn
00 ] P[Sklij 6=00] P[V kl

ij 6=00]

6 0.10(10) 0.0(8) 0.2(1.0) 0.0(3) 0.0(3)

7 0.10(10) 0.0(8) 0.0(1.0) 0.0(3) 0.0(4)

8 0.05(05) 0.0(8) 0.0(1.0) 0.0(3) 0.0(4)

than three-points, and have fewer fit parameters, meaning that a larger number of exponentials

is required for a good fit (for the same tmin).

As in the previous chapter, the recommended SVD cut (see Section 4.3.4) is applied, and

priors for ground state energies and amplitudes are estimated using Meff , Aeff or Jeff (Equa-

tions (4.44), (4.45) and (4.46)). All energy spacings between excited states are given a prior of

ΛQCD = 0.5GeV ± 50%, (this is common to all correlator fits in this thesis) and the oscillating

ground states are taken to be 0.5 GeV above the non-oscillating ones. It is worth noting that

unlike in D → K and B → K, we do not make use of the dispersion relation to constrain the

priors for ηs mesons (as in Equations (4.47) and (4.48)), though there is no reason we could

not have done this. The remaining priors are listed in Table 6.2. As in Chapter 5, based on

experience of similar fits [147], these are taken initially as being 0.1(1) for two-point amplitudes

and 0(1) for three-points. They are then adjusted to the values in Table 6.2 using empirical

Bayes.

Fit results and tests

We present in Figure 6.1 an example of fit stability and a test of the relativistic dispersion

relation. The fit is tested against a variety of changes (see caption) and the stability of a

particular parameter V nn
00 (amh = 0.45, a|~pηs | = 0.143) (set 7) is plotted as an example. We also

include the χ2/d.o.f. for each fit, though it should be noted that this is artificially reduced by

prior widths and SVD cuts (see Section 4.3.5) and so is only of use in a relative sense for fits with

the same priors and data. The energies of the ηs mesons of different momenta are also plotted,

and found to agree well with the relativistic dispersion relation, with no discernible discretisation

effects at this level of uncertainty.
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Figure 6.1: Left: stability tests of the chained, marginalised fit used on a typical three-point
correlator. Test 0, the final result, shows the value of V nn

00 for amh = 0.45, a|~p| = 0.1430 on set
7, with N3pts

exp = 3 exponential terms and three additional states marginalised (as discussed in
the text), with tmin = 2, the number of data points removed from the fit at the start and end
of the data. Tests 1 and 2 show the effects of increasing and decreasing the number of fitted
exponentials by 1, tests 3 and 4 show the effect of doubling and halving the SVD cut, and 5 and
6 show the effect of doubling and halving the error on all priors. Test 7 shows the effect of an
increase on tmin by 1, and test 8 shows the reduction of the marginalised exponentials from 6
to 5. Finally, test 9 shows the result of just fitting the vector 3 point correlator for this mass
and twist, and the relevant 2 points; this gives a reduced error since the smaller fit requires a
smaller SVD cut. Fitting like this does not preserve correlations, however, so we use a global fit.
Other two and three-point correlators behaved similarly well under the same tests. The χ2/d.o.f.
values (purple ×s) are also plotted for reference. Note that these are the raw values and hence
artificially small (see text) and the degrees of freedom are not the same across all tests. Right:
we plot the ratio (E2

ηs−M2
ηs)/|~pηs |2 from our fit results against |a~pηs |2 to check that the ηs energy

in our final fit results agrees with the momentum given to the meson in the lattice calculation.



CHAPTER 6. BS → ηS FORM FACTORS 118

Numerical details of all correlator fit results are given in the Appendix to [2].

6.2.4 z expansion: incorporating heavy mass dependence

The z expansion used this time will again be based on that described in Section 4.4.2, and we

again make the choice t0 = 0. We use the basic format of Equations (4.61) and (4.62), as with

D → K, but there are key differences from Equations (5.8), (5.9) and (5.11). The first is that

we don’t need a chiral logarithm term, as we have no valence light quark. All our valence quarks

are well tuned, so any slight mistuning can be accounted for in the quark mistuning term N .

The second is that we now have to fold in an extrapolation in the heavy mass, which is inspired

by HQET. Taking this into account we arrive at the prescription that follows:

f0(q2) =
1

1− q2

M2
H∗s0

N−1∑

n=0

a0
nz(q

2)n, (6.1)

f+(q2) =
1

1− q2

M2
H∗s

N−1∑

n=0

a+
n

(
z(q2)n − n

N
(−1)n−Nz(q2)N

)
. (6.2)

Here we take N = 3 and we have modified the labelling of the heavy-strange scalar and vector

meson pole masses from those appearing in [2] to be consistent with other notation in this

thesis. The subtlety here is that we can’t simply use a fixed pole mass, we need one that

slides with our heavy mass. The mass MH∗s0
is taken as MHs + 0.4 GeV, which is consistent

with lattice results in [170] and experimental results [29] for the axial vector–vector splitting,

MBs(1
+)−MBs(1

−).

The position of the MH∗s pole can be estimated, as in [147], using the fact that MH∗s −MHs → 0

as mh → ∞, with the ansatz MH∗s = MHs + x/MHs . We find x from the Particle Data Group

(PDG [29]) value of Mphys
B∗s
−Mphys

Bs
= x/Mphys

Bs
= 0.0489(15) GeV. We go one step further to

ensure that this ansatz also gives the correct PDG value for Mphys
D∗s

= 2.1122(4) GeV, using

MH∗s = MHs +
Mphys
Ds

MHs

∆(Ds)

+
Mphys
Bs

MHs

[ MHs −Mphys
Ds

Mphys
Bs
−Mphys

Ds

(
∆(Bs)−

Mphys
Ds

Mphys
Bs

∆(Ds)
)]
,

(6.3)
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with splittings ∆(Bs) = 0.0489(15) GeV and ∆(Ds) = 0.14386(41) GeV, from the PDG.

Another subtlety is the masses which appear in t+, which goes into z (Equation 4.60). t+ =

(M1 +M2)2, where M1 and M2 are the mesons with the lowest mass combination and the same

quantum numbers as the current. That is to say, we have a h → s current, so we can combine

this with light quarks to get the lowest mass combination. In the case of D → K and B → K,

the mesons here are exactly those used in the decay MH (or MD) and MK , so we already have

values for these masses. For Bs → ηs, however, these masses are also MH and MK , which

we do not determine in our calculation. Hence, we use MH = MHs + a(Mphys
B −Mphys

Bs
) and

MK = Mηs + a(Mphys
K −Mphys

ηs ) using the PDG and Mphys
ηs = 0.6885(20) GeV [75].

In Equations (6.1) and (6.2), we have a more complicated expression for a0,+
n than in the case of

D → K,

a0,+
n = (1 +N 0,+

n )
(

1 + ρ0,+
n log

(MHs

MDs

))Nijk−1∑

j=i,j,k

d0,+
ijkn

(aΛQCD

MHs

)i(amval
h

π

)2j(aΛQCD

π

)2k
, (6.4)

where we take Nijk = 3 (after trialling different values using empirical Bayes) and the sum allows

for different powers of discretisation effects in amval
h as well as mass independent discretisation

effects in aΛQCD. The fit to the heavy mass is taken care of via the (HQET inspired) polynomial

in
aΛQCD

MHs
, with an additional logarithmic term ρ0,+

n log
(
MHs
MDs

)
, which allows for the matching of

HQET to QCD [124, 125]. From [125], we expect the coefficient of the log term to be of order

unity, so we use a prior of 0 ± 1. Initial guesses for priors for d0,+
ijkn coefficients are taken as

0(1), with the exception of P[di10n] = 0.0(5), which multiplies the second order mass depended

discretisation effects, highly suppressed in the HISQ formalism. These are then adjusted using

empirical Bayes (the standard procedure for priors in this thesis), which is described in more

details below, with all priors being given in Tables 7.2-7.4. The constraint f+(0) = f0(0) (see

Section 4.4.2) is again trivial to implement by setting d+
i000 = d0

i000 and ρ+
0 = ρ0

0.

Mistuning of quark masses is accounted for using

N 0,+
n = cval,0,+

s,n δval
s + csea,0,+

s,n δsea
s + 2csea,0,+

l,n δsea
l + c0,+

c,n

(Mηc −Mphys
ηc

Mphys
ηc

)
, (6.5)

where δq and mtuned
s are the same as usual (Equations (5.13) and (5.14)). Further detail on prior

choices is given in [2].
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Additional data point

In our fit, we also include a continuum data point. This is not necessary, but it helps to re-

duce uncertainty considerably at q2
max, and testing our fit with and without the additional data

confirms that our continuum extrapolation and heavy-HISQ method is working properly. We

take the result f+(q2
max) = 0.811(17) from a previous HPQCD calculation [171]. Whilst this

data point was obtained using NRQCD, and so would ordinarily contain matching errors which

would not make it suitable to include in our calculation, it was constructed using a ratio, so as

to eliminate these errors, and hence can be included in our fit without additional uncertainty.

In Chapter 7, we shall see that we can match this data point almost exactly, by evaluating our

B → K results at spectator mass mspectator = ms, but let’s not get ahead of ourselves.

z expansion priors and posteriors

Tables 7.2-7.4 provide prior and posterior values for our final z expansion fit. We use our

standard method for determining such priors, introduced in Chapter 5 above: the z expansion

is constructed such that we expect an values to be of order unity. Thus, we take most priors

as 0(1). In some cases we tighten up priors, for example when they relate to terms containing

discretisation effect which go like a2 (in this case d0,+
i,1,0,n). We know such effect are highly

suppressed in the HISQ action, so we give them narrower priors. Similarly, see quark mistuning

effects are expect to be small, so their priors are narrowed. After such adjustments, we apply the

empirical Bayes method discussed in Section 4.3.5 to broad groups of priors, for example csea.

Generally, we do not narrow priors unless the width favoured by log(GBF), is less than half of

what we are using, which in this case leaves all priors as they were. The effect of broadening and

narrowing priors on the final form factors will be discussed in the next section.

All but one of our priors and posteriors (d0
0001 is slightly over 1σ from its prior) agree to within 1

standard deviation, indicating that our priors are indeed conservative. We do not include other

parameters which do technically appear as priors in the fit, but have very well informed values.

For example the physical meson masses, such as Mphys
Bs

. Because such priors are known to a very

high degree of accuracy, the fit tends not to move them at - all such posteriors agree with their

priors to within 1σ, with most not moved off their priors.

Our preferred fit has a χ2/d.o.f. of 0.14, for 109 degrees of freedom, corresponding to a Q value

of 1.00. log(GBF) = 298.22. The continuum form factors resulting from this fit, as well as tests

of the fit stability against reasonable variations in the fit form and parameters will be given
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Table 6.3: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

ρ0
0 0.0(1.0) -0.582(48)
ρ0

1 0.0(1.0) -0.63(49)
ρ0

2 0.0(1.0) -0.20(82)
ρ+

0 0.0(1.0) -0.582(48)
ρ+

1 0.0(1.0) 0.13(33)
ρ+

2 0.0(1.0) -0.03(98)
d0

0000 0.0(1.0) 0.690(70)
d0

0001 0.0(1.0) 0.36(21)
d0

0002 0.0(1.0) 0.35(57)
d0

0010 0.0(1.0) -0.60(72)
d0

0011 0.0(1.0) 0.07(1.00)
d0

0012 0.0(1.0) -0.005(1.000)
d0

0020 0.0(1.0) -0.004(1.000)
d0

0021 0.0(1.0) 0.0005(1.0000)
d0

0022 0.0(1.0) -2e-05 +- 1
d0

0100 0.0(1.0) 0.08(19)
d0

0101 0.0(1.0) 0.20(80)
d0

0102 0.0(1.0) -0.16(96)
d0

0110 0.0(1.0) 0.02(1.00)
d0

0111 0.0(1.0) -0.0005(1.0000)
d0

0112 0.0(1.0) -0.0001(1.0000)
d0

0120 0.0(1.0) 0.0001(1.0000)
d0

0121 0.0(1.0) -6e-06 +- 1
d0

0122 0.0(1.0) 5e-07 +- 1
d0

0200 0.0(1.0) 0.51(93)
d0

0201 0.0(1.0) -0.007(0.997)
d0

0202 0.0(1.0) -0.01(1.00)
d0

0210 0.0(1.0) 0.003(1.000)
d0

0211 0.0(1.0) -0.0002(1.0000)
d0

0212 0.0(1.0) -9e-06 +- 1
d0

0220 0.0(1.0) 2e-05 +- 1
d0

0221 0.0(1.0) -1e-06 +- 1
d0

0222 0.0(1.0) 5e-08 +- 1
d0

1000 0.0(1.0) 0.25(45)
d0

1001 0.0(1.0) 0.46(77)
d0

1002 0.0(1.0) 0.15(98)
d0

1010 0.0(1.0) -0.17(98)
d0

1011 0.0(1.0) 0.02(1.00)
d0

1012 0.0(1.0) -0.001(1.000)
d0

1020 0.0(1.0) -0.001(1.000)
d0

1021 0.0(1.0) 0.0001(1.0000)
d0

1022 0.0(1.0) -9e-06 +- 1
d0

1100 0.00(50) -0.07(49)
d0

1101 0.00(50) 0.01(50)
d0

1102 0.00(50) -0.004(500)

Parameter Prior Posterior

d0
1110 0.0(1.0) 0.0003(1.0000)
d0

1111 0.0(1.0) 6e-05 +- 1
d0

1112 0.0(1.0) -1e-05 +- 1
d0

1120 0.0(1.0) 6e-06 +- 1
d0

1121 0.0(1.0) 1e-09 +- 1
d0

1122 0.0(1.0) 8e-08 +- 1
d0

1200 0.0(1.0) 0.08(1.00)
d0

1201 0.0(1.0) -0.002(1.000)
d0

1202 0.0(1.0) -0.001(1.000)
d0

1210 0.0(1.0) 0.0005(1.0000)
d0

1211 0.0(1.0) -3e-05 +- 1
d0

1212 0.0(1.0) 1e-07 +- 1
d0

1220 0.0(1.0) 3e-06 +- 1
d0

1221 0.0(1.0) -2e-07 +- 1
d0

1222 0.0(1.0) 1e-08 +- 1
d0

2000 0.0(1.0) -0.26(77)
d0

2001 0.0(1.0) 0.25(95)
d0

2002 0.0(1.0) 0.03(1.00)
d0

2010 0.0(1.0) -0.04(1.00)
d0

2011 0.0(1.0) 0.007(1.000)
d0

2012 0.0(1.0) -0.0004(1.0000)
d0

2020 0.0(1.0) -0.0004(1.0000)
d0

2021 0.0(1.0) 4e-05 +- 1
d0

2022 0.0(1.0) -3e-06 +- 1
d0

2100 0.00(50) -0.03(50)
d0

2101 0.00(50) 0.003(500)
d0

2102 0.00(50) -0.0004(5000)
d0

2110 0.0(1.0) -0.0005(1.0000)
d0

2111 0.0(1.0) 6e-05 +- 1
d0

2112 0.0(1.0) -2e-06 +- 1
d0

2120 0.0(1.0) -3e-06 +- 1
d0

2121 0.0(1.0) 3e-07 +- 1
d0

2122 0.0(1.0) -1e-09 +- 1
d0

2200 0.0(1.0) 0.01(1.00)
d0

2201 0.0(1.0) -0.0005(1.0000)
d0

2202 0.0(1.0) -9e-05 +- 1
d0

2210 0.0(1.0) 8e-05 +- 1
d0

2211 0.0(1.0) -4e-06 +- 1
d0

2212 0.0(1.0) 2e-07 +- 1
d0

2220 0.0(1.0) 5e-07 +- 1
d0

2221 0.0(1.0) -3e-08 +- 1
d0

2222 0.0(1.0) 2e-09 +- 1

csea,0
l,0 0.00(30) 0.001(212)

csea,0
l,1 0.00(30) 0.004(300)

csea,0
l,2 0.00(30) -0.001(300)
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Table 6.4: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

csea,0
s,0 0.00(30) 0.03(26)

csea,0
s,1 0.00(30) -0.002(300)

csea,0
s,2 0.00(30) 0.0002(3000)

c0
c,0 0.00(30) -0.008(299)

c0
c,1 0.00(30) 0.001(300)

c0
c,2 0.00(30) -0.0001(3000)

cval,0
s,0 0.0(1.0) 0.11(99)

cval,0
s,1 0.0(1.0) -0.008(1.000)

cval,0
s,2 0.0(1.0) 0.0002(1.0000)

d+
0000 0.0(1.0) 0.690(70)
d+

0001 0.0(1.0) -1.07(26)
d+

0002 0.0(1.0) 0.87(83)
d+

0010 0.0(1.0) -0.35(75)
d+

0011 0.0(1.0) -0.01(1.00)
d+

0012 0.0(1.0) 0.005(1.000)
d+

0020 0.0(1.0) -0.003(1.000)
d+

0021 0.0(1.0) -6e-05 +- 1
d+

0022 0.0(1.0) 3e-05 +- 1
d+

0100 0.0(1.0) 0.009(196)
d+

0101 0.0(1.0) -0.08(97)
d+

0102 0.0(1.0) 0.03(1.00)
d+

0110 0.0(1.0) -0.003(1.000)
d+

0111 0.0(1.0) -0.001(1.000)
d+

0112 0.0(1.0) 0.0002(1.0000)
d+

0120 0.0(1.0) -2e-05 +- 1
d+

0121 0.0(1.0) -7e-06 +- 1
d+

0122 0.0(1.0) 1e-06 +- 1
d+

0200 0.0(1.0) -0.04(98)
d+

0201 0.0(1.0) -0.002(1.000)
d+

0202 0.0(1.0) 0.0008(1.0000)
d+

0210 0.0(1.0) -9e-05 +- 1
d+

0211 0.0(1.0) -6e-05 +- 1
d+

0212 0.0(1.0) 9e-06 +- 1
d+

0220 0.0(1.0) -3e-07 +- 1
d+

0221 0.0(1.0) -4e-07 +- 1
d+

0222 0.0(1.0) 6e-08 +- 1
d+

1000 0.0(1.0) 0.25(45)
d+

1001 0.0(1.0) -0.15(95)
d+

1002 0.0(1.0) 0.22(99)
d+

1010 0.0(1.0) -0.12(98)
d+

1011 0.0(1.0) -0.0007(1.0000)
d+

1012 0.0(1.0) 0.001(1.000)
d+

1020 0.0(1.0) -0.0008(1.0000)
d+

1021 0.0(1.0) -4e-06 +- 1
d+

1022 0.0(1.0) 6e-06 +- 1

Parameter Prior Posterior

d+
1100 0.00(50) -0.02(49)
d+

1101 0.00(50) -0.006(500)
d+

1102 0.00(50) 0.002(500)
d+

1110 0.0(1.0) -0.001(1.000)
d+

1111 0.0(1.0) -0.0002(1.0000)
d+

1112 0.0(1.0) 5e-05 +- 1
d+

1120 0.0(1.0) -9e-06 +- 1
d+

1121 0.0(1.0) -1e-06 +- 1
d+

1122 0.0(1.0) 3e-07 +- 1
d+

1200 0.0(1.0) -0.003(0.999)
d+

1201 0.0(1.0) -0.001(1.000)
d+

1202 0.0(1.0) 0.0003(1.0000)
d+

1210 0.0(1.0) -1e-05 +- 1
d+

1211 0.0(1.0) -1e-05 +- 1
d+

1212 0.0(1.0) 2e-06 +- 1
d+

1220 0.0(1.0) -7e-08 +- 1
d+

1221 0.0(1.0) -7e-08 +- 1
d+

1222 0.0(1.0) 1e-08 +- 1
d+

2000 0.0(1.0) -0.26(77)
d+

2001 0.0(1.0) 0.02(99)
d+

2002 0.0(1.0) 0.05(1.00)
d+

2010 0.0(1.0) -0.04(1.00)
d+

2011 0.0(1.0) 0.0003(1.0000)
d+

2012 0.0(1.0) 0.0003(1.0000)
d+

2020 0.0(1.0) -0.0002(1.0000)
d+

2021 0.0(1.0) 2e-06 +- 1
d+

2022 0.0(1.0) 1e-06 +- 1
d+

2100 0.00(50) -0.01(50)
d+

2101 0.00(50) -0.001(500)
d+

2102 0.00(50) 0.0004(5000)
d+

2110 0.0(1.0) -0.0005(1.0000)
d+

2111 0.0(1.0) -3e-05 +- 1
d+

2112 0.0(1.0) 1e-05 +- 1
d+

2120 0.0(1.0) -3e-06 +- 1
d+

2121 0.0(1.0) -2e-07 +- 1
d+

2122 0.0(1.0) 5e-08 +- 1
d+

2200 0.0(1.0) -0.0004(1.0000)
d+

2201 0.0(1.0) -0.0004(1.0000)
d+

2202 0.0(1.0) 7e-05 +- 1
d+

2210 0.0(1.0) -3e-06 +- 1
d+

2211 0.0(1.0) -2e-06 +- 1
d+

2212 0.0(1.0) 4e-07 +- 1
d+

2220 0.0(1.0) -2e-08 +- 1
d+

2221 0.0(1.0) -1e-08 +- 1
d+

2222 0.0(1.0) 2e-09 +- 1
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Table 6.5: Priors and their posterior values for the z expansion fit.

csea,+
l,0 0.00(30) 0.002(214)

csea,+
l,1 0.00(30) 0.003(300)

csea,+
l,2 0.00(30) 0.002(300)

csea,+
s,0 0.00(30) 0.03(26)

csea,+
s,1 0.00(30) -0.00009(29998)

csea,+
s,2 0.00(30) -0.0002(3000)

c+
c,0 0.00(30) -0.004(299)

c+
c,1 0.00(30) 0.0006(3000)

c+
c,2 0.00(30) 0.0003(3000)

cval,+
s,0 0.0(1.0) 0.07(99)

cval,+
s,1 0.0(1.0) -0.002(1.000)

cval,+
s,2 0.0(1.0) -0.0006(1.0000)

below.
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6.3 Results and discussion

6.3.1 Form factor results

The heavy-HISQ method is clearly demonstrated in Figure 6.2, which show the continuum,

physical point f0 and f+ form factors in z space, with their poles removed, alongside the data.

Both plots show the data on each ensemble, with lines joining points of fixed mh, cascading down

the page as the heavy mass increases, towards the continuum result (solid band). In both cases

the closest data point to the continuum is that on the finest ensemble (set 8) at the highest mass,

which is close to the physical b mass. We can see that the z expansions are nearly linear in both

cases, justifying our choice of N = 3 as being somewhat conservative. We can also see that the

data points at the lowest mass on each ensemble (shown in dark blue), which is the charm mass

in each case, are very consistent with each other. This suggest that the form factors3 do not

have strong lattice spacing dependence, equivalent to saying that discretisation effects are small

in the HISQ action, as is expected. Additionally, the continuum data point is plotted in the case

of f0, providing a visual link between the data points at finite lattice spacing and unphysical

heavy mass, and the continuum physical point.

The top of Figure 6.3 shows our Bs → ηs form factors, evaluated in continuum and at physical

masses. They compare well with the results in [104], though f+ is significantly less precise at

large q2, something which could straightforwardly be improved with more statistics, as will be

demonstrated below. The agreement with [104], which is a calculation using an NRQCD b quark

at the physical mass, is an excellent affirmation of the suitability of heavy-HISQ for carrying out

b→ s calculations such as this one.

At the bottom, Figure 6.3 presents tests of the stability of the z expansion against a variety of

changes (see caption for detail). Most notably, we see that the removal of the continuum data

(Test 4) only affects f0(q2
max), and whilst the error at this point roughly doubles without the

external input, the central value remains within 1σ of the final result. We find that f0 and f+

are stable against all of the changes.

A breakdown in the error on the form factors across the q2 range is given in Figure 6.4. We can see

that statistics is the dominant source of uncertainty in both cases, followed by the extrapolation

in heavy quark mass used to reach MBs . Improving statistics is straightforward (though costly),

3At least at the Ds → ηs end.



CHAPTER 6. BS → ηS FORM FACTORS 125

−0.2 −0.1 0.0 0.1
z

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

( 1
−

q2

M
2 H

0 s

)
f 0

(z
)

Set 6 m0.449

Set 6 m0.566

Set 6 m0.683

Set 6 m0.8

Set 7 m0.274

Set 7 m0.450

Set 7 m0.6

Set 7 m0.8

Set 8 m0.194

Set 8 m0.45

Set 8 m0.6

Set 8 m0.8

arXiv :1510.07446

−0.2 −0.1 0.0 0.1
z

0.0 0.0

0.5 0.5

1.0 1.0

1.5 1.5

( 1
−

q2

M
2 H
∗ s

)
f +

(z
)

Set 6 m0.449

Set 6 m0.566

Set 6 m0.683

Set 6 m0.8

Set 7 m0.274

Set 7 m0.450

Set 7 m0.6

Set 7 m0.8

Set 8 m0.194

Set 8 m0.45

Set 8 m0.6

Set 8 m0.8

Figure 6.2:
(

1 − q2

M2
H∗s0

)
f0(z) (top) and

(
1 − q2

M2
H∗s

)
f+(z) (bottom) data points and final result

at the physical point (coloured bands). Data points are labelled by mass for sets 6, 7 and 8
respectively, where e.g. m0.8 indicates amh = 0.8 on that ensemble. Lines between data points
of a given heavy mass over the full z range are there to guide the eye. For f0, the additional
continuum data point from [171] is shown in purple, and helps to pin down the form factor in
the high q2 limit.
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Figure 6.3: Top: final form factor results for f0(q2) and f+(q2). Results from [104] at q2 = 0 and
q2 = q2

max are also shown. Bottom: stability tests of the fit of the form factors f0,+(0), f0(q2
max)

and f+(q2
max). Test 0 is the final result, shown throughout by the blue band. Tests 1, 2 and 3

are the results if the fine, superfine and ultrafine data are removed respectively. Test 4 is the fit
without the data point from [171]. Test 5 adds a cubic term in the z expansion (Equations (6.1)
and (6.2)). Test 6 shows the effect of extending the i, j, k sum in Equation (6.4) Tests 7 and 8
remove the highest masses and momenta for all lattice spacings respectively. Test 9 is without the
log term in Equation (6.4), here we find that di000 terms change to mimic the Taylor expansion
of the log, and we require much larger priors (0.0(5.0)) to account for this. Test 10 shows the
effect of doubling the width of all dijkn priors. We see that our extrapolation is stable to all of
the above modifications. GBF values again tell us that our priors are conservative.
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Figure 6.4: The contributions to the total percentage error (black line) of f0(q2) (top) and f+(q2)
(bottom) from different sources, shown as an accumulating error. The red dashed line (‘inputs’)
includes values for masses taken from the PDG [29] and used in the fit as described above. The
purple dotted line (‘q mistunings’) adds, negligibly, to the inputs the error contribution from the
quark mistunings associated with c fit parameters, whilst the solid green line (‘statistics’) further
adds the error from our correlator fits. The blue dot-dash line (‘HQET’) includes the contribution
from the expansion in the heavy quark mass, and, finally, the thick black line (‘Discretisation’),
the total error on the form factor, also includes the discretisation errors. The percentage variance
adds linearly and the scale for this is given on the left hand axis. The percentage standard
deviation, the square root of this, can be read from the scale on the right-hand side.
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Figure 6.5: The form factors f0,+(0), f0(q2
max) and f+(q2

max) over the range of heavy masses from
the physical Ds to the physical Bs. Results are included for f0,+(0), f0(q2

max) and f+(q2
max) (in

their respective colours) for several other decays related by SU(3) flavour symmetry [104, 138,
139, 172, 173]. Data points are plotted at the x axis values corresponding to their physical heavy
meson mass, not the mass that would result from their heavy quark and a strange quark (which
would put them all at MDs or MBs). In the case of MB and MD some of the points are offset
slightly either side of the mass for clarity.

and a reduction in the uncertainty from the heavy mass would be a similar exercise, running data

for extra heavy mass values, and perhaps pushing the highest value on the finest lattice closer to

the b mass. As the form factors are unphysical, and acting as a test bed for heavy-HISQ, we did

not invest more computer time in reducing these uncertainties - the fact that the uncertainty is

dominated by sources which are easily addressed is what we wanted to take from this.

Whilst the dependence on heavy mass is apparent in Figure 6.2, the heavy-HISQ method allows

us to be even more explicit. Instead of fixing the MHs mass (at MBs) and plotting the form

factors in q2, we can fix q2 and plot the form factors against varying MHs . Given the range

of our mc ≤ mh values used to extract the data, we can reasonably do this over the range

MDs ≤MHs ≤MBs , giving the form factors across the range Ds → ηs to Bs → ηs. This is what

is shown in Figure 6.5, taking extremal q2 values of the form factors. These results are compared

with other decays which are related by SU(3) flavour symmetry at both end of the mass range:



CHAPTER 6. BS → ηS FORM FACTORS 129

Table 6.6: Values of fit coefficients a0,+
n and pole masses at the physical point for the Bs → ηs

decay with correlation matrix are given below. Form factors can be reconstructed by evaluating
Equations (6.1) and (6.2) using these coefficients and pole masses. Note that MBs0 is set to
MBs + 0.4 GeV. Masses are in GeV. The pole masses are very slightly correlated due to the way
the fit function is constructed. These correlations are too small to have any meaningful effect on
the fit, but we include them for completeness in reconstructing our results.

a0
0 a0

1 a0
2 a+

0 a+
1 a+

2 MB∗s0
MB∗s

0.296(25) 0.15(20) 0.29(47) 0.296(25) −1.22(32) 0.9(1.2) 5.76688(17) 5.4158(15)

1.00000 0.90818 0.72266 1.00000 0.30483 0.09764 −0.00042 0.00021

1.00000 0.93763 0.90818 0.38642 0.09064 0.00002 −0.00009

1.00000 0.72266 0.40724 0.07271 0.00012 −0.00036

1.00000 0.30483 0.09764 −0.00042 0.00021

1.00000 0.51317 0.00179 −0.01229

1.00000 −0.00045 0.00248

1.00000 0.00000

1.00000

Bs → K, B → K, D → K and D → π. (Spoiler alert: a more robust comparison, across the

full q2 range, will be carried out in Chapter 7). We note that changing the spectator quark from

strange to light (B → K, D → K) has almost no effect on form factors, whilst the same change

in the daughter quark (Bs → K) has a modest effect, pushing up f+(q2
max) and down f0/+(0),

but not significantly. Changing both the spectator and daughter quarks to light (D → K) makes

a much larger difference, showing a clear breaking of SU(3) flavour symmetry. B → π results

are in even worse agreement, and are not included.

Finally, Table 6.6 provides the continuum z expansions coefficients and pole Masses required to

reconstruct our form factors, together with their correlation matrix.

6.3.2 Tests of HQET

Using our form factors, we can perform a number of tests of Heavy Quark Effective Theory

(HQET), which is outlined in Section 4.5.2. The fact that the heavy mass is a knob we can

twiddle in our results makes them particularly suited to this endeavour. A caveat to all of this

is that our fit form was of course motivated by HQET, so our form factors implicitly contain

polynomial M−1
H dependence. This does not prevent us from exploring some HQET predictions,
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Figure 6.6: Left: the quantities α, β−1 and δ, defined in Equations (6.6), (6.7) and (6.8), over
the range of heavy masses from the physical Ds to the physical Bs. Right: the form factor ratio,
f0(q2)
f+(q2)

(
1 − q2

M2
B∗s

)−1
over the range 0 ≤ q2 ≤ M2

Bs
(blue band), as compared with the HQET

expectation in the limit q2 →M2
Bs

(red band), defined in Equation (6.9).

however.

The first thing we can address is the form factor shape, characterised by the quantities α, δ and

β−1 [174, 175], which are related to the slope of the form factors at q2 = 0 and the value at high

q2,

1

1− α =
1

M2
H∗s

Resq2=M2
H∗s

f+(q2)

f+(0)
, (6.6)

δ = 1−
M2
Hs
−M2

ηs

f+(0)

(
df+

dq2

∣∣∣∣
q2=0

− df0

dq2

∣∣∣∣
q2=0

)
, (6.7)

1

β
=
M2
Hs
−M2

ηs

f+(0)

df0

dq2

∣∣∣∣
q2=0

, (6.8)

where in Equation (6.6) the residue is defined in the usual way, in this case the effect being to

remove the pole at q2 = M2
H∗s

.

The shape of form factors for physical processes where experimental measurements exist is a

strong test of QCD, as we saw for D → K in Figure 5.9, and in this case we can use our full

QCD calculation to test HQET.

The left hand side of Figure 6.6 shows our results for these quantities, plotted across the full

range of heavy masses from Ds to Bs. Our results for α and β are qualitatively in agreement
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with expectations from HQET [174] with α and β close to unity at the heaviest masses and

differing further from one as the heavy quark mass falls. We also see that δ is close to nought at

the Bs end of the plot but clearly nonzero at the Ds end. For numerical results, see [2].

The form factor ratio f0(q2)
f+(q2)

(
1− q2

M2
B∗s

)−1
is also shown in Figure 6.6 (on the right), where it is

compared with the HQET expectation [176]

lim
q2→M2

Bs

f0(q2)

f+(q2)

(
1− q2

M2
B∗s

)−1
=
(fBs
fB∗s

) 1

gB∗sBsηs
. (6.9)

This is included in [176] as a B → π expectation; to test it here in Bs → ηs we replace B

with Bs. We take the coupling gB∗sBsηs ≈ gB∗Bπ = 0.56(8) [177], because again the light quark

mass dependence seen in [177] is mild. This leads us to expect little impact from SU(3) flavour

symmetry breaking in our test of Equation (6.9). This is also consistent with our observation

in Figure 6.5 that SU(3) flavour symmetry breaking effects in the daughter quark affect both f0

and f+ at large q2, and so there will be some cancellation of the effects in their ratio. The right

hand side of Figure 6.6 shows reasonable agreement with Equation (6.9) in the limit q2 →M2
Bs

,

as is found for B → π in [172]. It is worth noting that this q2 value is of course larger than q2
max

and so extrapolating our form factors to this point is somewhat questionable, though reasonable

in this context of a rough comparison.

The left hand side of Figure 6.7 tests the relationships between form factors for a changing initial

state mass, (Hs) but fixed final state (ηs) with a fixed energy. In [174] it is shown that the f0

form factor for a pseudoscalar heavy meson decay to a pseudoscalar light meson at fixed energy

is inversely proportional to the square root of the heavy meson mass. This scaling should work

both at small energy, close to zero recoil, and also at large energy, high recoil. In [174] this is

used to compare B → π and D → π decay. Here we compare Bs → ηs to Hs → ηs for variable

Hs mass from Ds upward.

Figure 6.7 (left) compares f0(Hs → ηs(E))/f0(Bs → ηs(E)) to the expectation
√
MBs/MHs given

by the black line. We include an error in the HQET expectation from higher-order HQET terms of

±
√

MBs
MHs

ΛQCD|M−1
Hs
−M−1

Bs
|. Results are shown at two energies: the blue line and error band give

results at zero recoil (Emin = Mηs) and the red line and error band give results at a higher energy,

the maximum energy available to an ηs in a Ds decay [Emax = (M2
Ds

+M2
ηs)/2MDs = 1.105 GeV].

Our results at both energies are flatter than the
√

1/MHs expectation, indicating that sizeable
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Figure 6.7: Left: the form factor ratio
fHs0 (q2(E))

fBs0 (q2(E))
evaluated at ηs energy E = Emin = Mηs =

0.6885(22) GeV (blue line and error band) and at Emax corresponding to the largest energy
available to the ηs in a Ds decay (red line and error band). Both ratios are plotted over a range
of inverse heavy meson masses up to M−1

Ds
. The black dashed line marks M−1

Hs
= M−1

Bs
. Results

are compared with the expectation of
√

MBs
MHs

[174], given by the black band (see text). Right:

the form factor ratio
fBs+ (0)

fHs+ (0)
plotted against the meson mass ratio MHs/MBs in a log-log plot.

Our results are shown as a blue curve with error band. The HQET expectation that the form
factor ratio should depend on the 3/2 power of the mass ratio is shown as a black dashed line.
In contrast, the red dashed line shows linear dependence on the mass. Results for the Ds meson
correspond to the left-hand end of the plot, log(MDs/MBs) = −1.003.
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corrections are needed to this expectation to describe the physical behaviour, possibly owing to

SU(3) symmetry breaking.

Finally, large-recoil scaling laws [178, 179] give the prediction
fBs+ (0)

fHs+ (0)
= (

MHs
MBs

)3/2 at leading order.

We examine this on the right hand side of Figure 6.7, showing our results as a blue band and the

HQET expectation as a black dashed line. We see that indeed the HQET expectation is borne

out in the large heavy mass region close to the MBs . There are large corrections away from

this region, however. We find
fBs+ (0)

fDs+ (0)
= 0.402(33) which is almost twice the size of the expected

(
MDs
MBs

)3/2 = 0.222 [29].

As an additional observation, we find that the n = 0 coefficient of the HQET-QCD match-

ing, ρ0,+
0 = −0.582(48) is well determined and O(1), as expected [125]. Other ρ0,+

n values are

consistent with 0.

6.4 Conclusions

To conclude, we have performed a fully relativistic heavy-HISQ calculation of the scalar and

vector form factors for the unphysical Bs → ηs decay, which provides a proof of concept for the

extension to other b → s decays with light spectators. We find that our modified z expansion

and HQET inspired fit form suitably describes the data, and the final form factor uncertainties

are statistics dominated and of the order 10% and below. All of this provides the reassurance

necessary to proceed with a much more expensive, higher statistics calculation of the B → K

form factors, which is outlined in the next Chapter.

Additionally, our form factors allow for some examination of SU(3) symmetry breaking in the

daughter and spectator quarks; which we shall examine further in the next Chapter; As well as

comparisons with HQET predictions, mainly for B → π, with which we find varying degrees of

agreement.



Chapter 7

B → K form factors

As with the previous two chapters, the basis of this chapter is published [3] and [4]. The B → K

calculation presented here draws heavily on the D → K calculation in Chapter 5, with which it

shares data, as well as parallels in the chiral perturbation theory used. Additionally, the heavy-

HISQ set up used in the Bs → ηs decay (Chapter 6) is exactly analogous to that used here, and

we will not describe it again. Indeed, the Bs → ηs decay was treated as a feasibility study for

this very calculation, and we are able to incorporate the data from that calculation here, via the

chiral extrapolation.

7.1 Introduction

Fundamentally, our heavy-HISQ approach here relies on the smooth transition in heavy mass

from c → s to b → s. Whilst this is a legitimate way to calculate form factors for heavy mass

b s

u u

`−

`+

t̄ t̄
γ/Z

W+

Figure 7.1: Example of a Feynman diagram for B+ → K+`+`−.

134
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c ≤ h ≤ b, it’s interesting to note that the physics does change significantly. This is because

there are no flavour changing neutral currents in the SM, equivalent to saying that there is no

Vbs element in the CKM matrix. Because of this, whilst our calculation for D → K (FCCC) and

B → K (FCNC) is identical, the process we are describing is somewhat different. Compare the

straightforward Feynman diagram for D → K in Figure 5.1 with that1 for B → K in Figure 7.1

This is often referred to as a penguin diagram, owing to what I’m sure you’ll agree is its uncanny

resemblance to everyone’s favourite order of flightless Austrodyptornithes. Rather than a simple

weak decay involving one instance of a CKM element, we have a process involving loops. As

a result of this, the B → K is a highly suppressed ‘rare’ decay in the Standard Model. This

means that the branching fractions are very small, and that any new physics, for example in

the form of lepto-quarks or a Z’, could have a relatively large effect on them. Historically, the

phenomenology associated with B → K decays has been in strong tension with the experimental

results, but lattice calculations have been hampered by large uncertainties, owing to the double

whammy of the presence of heavy and light quarks.

The most precise, up to date results come on the theory side from two places. HPQCD ’13 [180],

uses form factors calculated on the lattice in [173], using HISQ light valence quarks, the MILC

Nf = 2 + 1 asqtad ensembles, and a nonrelativistic QCD (NRQCD) prescription for the b quark.

FNAL/MILC ’15 [181] use form factors they calculated in [182], a lattice calculation using the

Nf = 2 + 1 MILC ensembles, with light Asqtad valence and sea quarks, and the Fermilab

interpretation for the b quark. Away from the lattice, other theoretical work [183, 184, 185, 186,

187, 188, 189] uses form factors from light cone sum rules [190, 191] and combinations of light

cone sum rules with lattice QCD [173, 182], also including dispersive bounds [192].

On the experimental side, the most recent results, to which we will compare, come from Belle

’19 [193], LHCb ’14A [194], LHCb ’16 [195] and LHCb ’21 [9]. Previous determinations are also

available [196, 197, 198, 199, 200, 201, 202, 203, 204], many of which have been superseded by

the above.

1This is just one example.
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Table 7.1: Details of the statistics, T values, heavy masses, and K meson twists used on each
ensemble. The number of configurations ncfg and time sources nsrc are given, and momenta can
be obtained from twist, θ, via θ = |a~pK |Nx/(

√
3π), where Nx is the spatial dimension of the

lattice, given in Table 3.1. In each case, the smallest amh value corresponds to the tuned amc

mass on that ensemble, i.e. the D → K data in Chapter 5.

Set ncfg × nsrc θ amh T

1 998× 16 0, 2.013, 3.050, 3.969 0.8605 9, 12, 15, 18

2 985× 16 0, 2.405, 3.641, 4.735 0.643 12, 15, 18, 21

3 998× 16 0, 0.8563, 2.998, 5.140 0.433, 0.683 0.8 14, 17, 20

4 985× 16 0, 0.3665, 1.097, 1.828 0.888 9, 12, 15, 18

5 1053× 16 0, 0.441, 1.323, 2.205, 2.646 0.664, 0.8, 0.9 12, 15, 18, 21

6 499× 16 0, 0.4281, 1.282, 2.141, 2.570 0.449, 0.566, 0.683, 0.8 14, 17, 20

7 413× 8 0, 1.261, 2.108, 2.946, 3.624 0.274, 0.45, 0.6, 0.8 20, 25, 30

8 375× 4 0, 0.706, 1.529, 2.235, 4.705 0.194, 0.45, 0.6, 0.8 24, 33, 40

7.2 Calculation details

7.2.1 Simulation details

For this calculation, data from all eight of the MILC Nf = 2 + 1 + 1 gluon ensembles discussed

in Section 3.4 and listed in Table 3.1 was included. That means five ensembles where ms/ml = 5

and three (with approximately the same lattice spacings as the coarsest of the five), where

ml is physical. As with D → K above, these physical ensembles are important as we have a

valence light quark, the mass of which will need to be extrapolated to the physical point using

chiral perturbation theory, more details of which will be given below. The twists applied on

each ensemble, as well as the T values (i.e. the source sink separation in lattice units) are

given in Table 7.1, along with the statistics used on each ensemble in terms of the number of

configurations ncfg and the number of time source (t0) values nsrc used on each configuration.

As in Chapter 6, we have various different heavy mass (amh) values on each ensemble, in each

case with the smallest being the tuned charm mass, data at this mass is identical to that used

for D → K, with the exception that we calculate the tensor form factor here as well as the scalar

and vector2.

2No tensor data was calculated on sets 1 and 2.
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7.2.2 Correlation functions

Here we calculate f0, f+ and additionally, the tensor form factor fT (Equations (4.56), (4.55)

and (4.57)). As before, in the language of Chapter 4, we require a Goldstone K and H with

spin-taste γ5⊗ ξ5, and also a non-Goldstone Ĥ, with spin-taste γ5γ0⊗ ξ5ξ0. These are combined

with currents with scalar (1⊗ 1) and temporal vector (γ0 ⊗ ξ0) spin-taste structure to generate

the required two- and three-point functions. Additionally, we now require a non-Goldstone K̂

with spin-taste γ5⊗ ξ5ξ1, which is combined with Ĥ and the T 10 tensor current γ1γ0⊗ ξ1ξ0. See

Section 4.2.1 for details on how these operators are implemented in the MILC code.

7.2.3 Spatial and temporal vector components

In the chapters above, we have always calculated matrix elements only for the temporal element

of the vector current, V 0. This is because this element is sufficient to calculate ZV at zero recoil

(see Equation (4.58) and (4.59)). However, this component presents challenges towards q2
max,

owing to the construction of Equation (4.55), which can be rewritten (for B → K),

f+(q2) =
1

Aµ −Bµ
(ZV 〈K|V µ|Ĥ〉 − f0(q2)Bµ) (7.1)

where Aµ = pµH + pµK and Bµ =
M2
H−M

2
K

q2 qµ. As the kaon momentum vanishes (i.e. towards

q2
max), A0 and B0 both → MH + MK . The numerator of Equation (7.1) also vanishes, thanks

to Equations (4.59) and (4.55). The problem with this is that the numerator becomes a small

number with a large relative uncertainty, which is then divided by a small number, causing the

uncertainty on f+ to blow up. This is clear in Figure 6.2 in the above chapter, and will be

demonstrated again here. It is the main reason that our uncertainty in the Bs → ηs and D → K

calculations above is at its maximum for f+(q2
max).

If we take a spatial component of the vector current, say V 1, then as momentum vanishes, A1

and B1 both vanish also. However, this does not happen as fast as for V 0. The numerator

does not suffer from the same problem of shrinking rapidly and ending up with a large relative

uncertainty, either, and both these effects lead to much smaller uncertainties in f+(q2
max). To

this end, we include additional V 1 data for the lowest two twists on sets 7 and set 8, for the

largest two and three masses respectively (see appendix of [3] for numerical results).

The comparison between f+ values for the spatial and temporal data is made in Figure 7.2. We

see that the spatial data is much more precise, but that the central values of both components
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Figure 7.2: Left: a comparison of values and their statistical errors for the vector form factor
derived from matrix elements for the spatial and temporal vector currents on ensembles where
both are available. The filled symbols are the temporal vector results and the open symbols the
spatial vector results. We have offset spatial vector results slightly on the q2-axis for clarity.
Right: the ratio of the f+ values for the spatial and temporal vector cases. We see no evidence
of any differences between them (within our uncertainties) that would indicate discretisation
effects.

agree very well, indicating that discretisation effects separating them are very small.

To include the V 1 elements, we simply use a current insertion with spin-taste γ1 ⊗ ξ1, which is

combined with the K̂ and H defined above.

7.2.4 Correlator fits

As usual, two- and three-point correlator fits are performed using the recipe in Section 4.3, using

the standard goodness of fit metrics of the χ2 and log(GBF) value described there. Priors are

estimated in the same way as the chapters above, making use of the relativistic dispersion relation

of the kaon (Equations (4.47) and (4.48)), as was done in Chapter 5. Details of priors and other

fit parameters, as well as correlator fit stability, are all presented in [3]. This is all very similar

to the previous chapters, so we do not present it here in the interests of succinctness. There

are, however, some subtleties which are unique to this calculation which we will address. For

numerical results from correlator fits, see [3].

Unbinning ultrafine timesources

On all ensembles, with the exception of the very finest, set 8, averaging over t0 takes place before

the covariance matrix is calculated (as per Section 4.3.4). That is to say we have ncfg samples,
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each of which is an average of the data from the nsrc source times used on that ensemble. This

averaging takes place before the covariance matrix is calculated, as the gvar [87] function which

generates the covariance matrix requires that the samples are uncorrelated in order to calculate

the covariance matrix, and this is not necessarily the case for different source times on a single

configuration. On set 8, however, we have a very large Nt = 192, and small nsrc = 4, meaning

that t0 values are very widely spaced. Testing on this ensemble confirms that data from different

t0 values is not correlated, so we choose not to average over time sources. Evidence of this is

presented in Figure 7.3, which shows the first 20 data points of four two-point correlators (see

caption for details), spanning the range of masses and twists. The correlators are normalised by

e−Mt (for fit result M) and have had their error bars inflated 500 times for clarity. We see in

each case that the uncertainties with and without binning over timesources are nearly identical.

Quantitatively, averaging the ratio of the unbinned to binned uncertainties over all t values for all

two-point correlators gives 0.994. This indicates that the unbinning procedure has not neglected

any correlations, that is to say that the different t0 values are not correlated. As an aside, this

plot also nicely demonstrates the prevalence of oscillations in Ĥ and the increasing error for K

at large twist.

This procedure is equivalent, in the context of the other ensembles, to saying that we have

ncfg × nsrc configurations each with one source. In terms of the actual numbers going into the

fit, this makes no difference to anything - we’re still ultimately averaging over the same exact

data, we’re just calculating the covariance matrix with more uncorrelated samples. The main

benefit is that by increasing the sample size, we are able to reduce the SVD cut, and so improve

the uncertainties on the final fit. I repeat that this is only possible because these time sources

are uncorrelated. This approach is particularly required here, where we have relatively poor

statistics. For D → K, the situation was not so bad, but for B → K, where there are many

more fit parameters on account of the variable heavy mass, this unbinning is essential. Without

it, the fit behaves well enough, but some parameters have very large uncertainties. This is

because the SVD cut has affected these eigenvalues particularly. Unbinning the data, and the

accompanying reduction in SVD cut, gives these fit parameters much more sensible values, whilst

the fit parameters which were accurately determined in the binned fit are unaffected.

This is demonstrated in Figure 7.4, where we plot the form factor data points (with the pole

removed) in z space. The data points shown in red (labelled ‘ub’) result from correlator fits

to the unbinned data on set 8, as described above. This is the data we use in our calculation.

The points in black (‘b’), meanwhile, are from identical fits, but where the data is binned over
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Figure 7.3: Comparison of raw correlation function data from binned and unbinned data on set
8. In each case, data is normalised by e−Mt, offset from integer t/a values and has errors inflated
500 times for clarity. Clockwise from top left, we have plots for H(amh = 0.194), Ĥ(amh = 0.8),
K(θ = 0), K̂(θ = 4.705).
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Figure 7.4: f0,f+ and fT results in z space for B → K on set 8. In red are the results we use,
from the unbinned (‘ub’) data. For comparison in black are the results from the binned (‘b’)
data.
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the nsrc = 4 time sources on each configuration before the covariance matrix is calculated3, and

hence we have fewer samples, and so require a larger SVD cut. As is clear from these plots,

whilst both fits agree to within error, the large SVD cut required for the binned data results in

large uncertainties, particularly at large z values.

Bs → ηs data

As it stands, we have data with two different light masses. On sets 1, 2 and 3, ml = mphys
l and on

the others ml = ms/5. These values will both be used in the chiral extrapolation below (as for

D → K) to tune the light quark to its physical value. This extrapolation could be improved with

a third light mass, and it just so happens that we have one. Our data for Bs → ηs in Chapter 6

is just the same as B → K data with ml = ms. Indeed, this is no great secret, being exactly

why we used that unphysical decay as a test for B → K in the first place. In order to include

this data faithfully, we must ensure it is properly correlated with our ml = ms/5 data on the

same ensembles. This means using exactly the same configurations, and performing simultaneous

correlator fits. For this reason, we only use Bs → ηs data for sets 6 and 7, as this had all the

same configurations available. We left out the Set 8 data as many fewer configurations were used

for Bs → ηs, which resulted in large uncertainties anyway. For clarity, in some figures the set 6

and set 7 Bs → ηs data will be labelled as set 9 and 10 respectively. The Bs → ηs and B → K

data is fitted simultaneously, but the enormous size of the fits require a form of chaining, which

we outline below.

Separated mass fits

On sets 6, 7 and 8, we have very large fits, owing to the number of twists and masses, the number

of t values on the ensembles, and the presence of ‘extra’ spatial vector and Bs → ηs data. This

makes these fits intractable in any reasonable time, and so they must be split up, but in such a

way that correlations are respected. Firstly, we run the fits without any ‘extra’ data and at a

smaller number of exponentials (such that is is possible to run a fit), to generate control data. We

then plot a distribution of the correlations between matrix elements of different mass and twist.

This gives us an idea of the size of correlations, and we can compare this with the correlations

in a comparable fit which is split up.

The left hand side of Figure 7.5 shows these correlations for set 8. The correlations between

3As is the case for all other ensembles in this calculation
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Figure 7.5: Correlations between matrix elements for a simultaneous fit (left) and one which is
split up according to heavy mass (right) on set 8. Correlations between different twists at fixed
mass are shown in blue, and different masses at fixed twist in red. The bars are additive (i.e.
blue sits above red, not behind it). See text for more details.

Jnn
00 matrix elements for different currents, masses and twists are shown. For example, ‘twist’

(in blue) includes correlations between currents of the same mass and different twists, such as

Snn
00 (mh = 0.194, θ = 0), Snn

00 (mh = 0.194, θ = 0.706), Snn
00 (mh = 0.194, θ = 1.529), e.t.c. and

similarly for V 0,nn
00 and T nn

00 (but not correlations between the different currents S,V 0,T ). Simi-

larly, correlations between masses at fixed twist are shown in red. We do not show correlations

between different matrix elements, or those with different masses and twists, as these are small,

and mask the important correlations.

From this plot, it is clear that correlations between different masses are in general smaller than

those between different twists (and in this case all less than 0.4), so we split our fits up according

to heavy mass. We fit each heavy mass sequentially, and then average any shared parameters

(e.g. the kaon). This process is almost identical to the chaining described in the previous chapter,

except that posteriors never appear as priors in the fit. It greatly speeds up the fits and makes

them tractable.

To check that this approach preserves correlations, we repeat the above procedure to produce a

plot for the case where the fit is split up according to heavy mass. This is shown on the right of

Figure 7.5. We see that the correlations between different twists are well preserved, whilst the

correlations between different masses have been increased somewhat, though they are still quite

small4. As increasing correlations is generally a conservative move, this means that doing the fit

4A good rule of thumb is that correlations below about 0.8 do not affect the form factors too much.
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in this way will not invalidate our results, though it may increase our uncertainties. As with the

SVD cuts described earlier, sometimes it is necessary to take a small increase in uncertainty as

a price to make a large, correlated fit possible.

7.2.5 z expansion

As usual, our z expansion is based on Section 4.4.2, with t0 = 0, and we use the basic format

of Equations (4.61), (4.62) and (4.63), once again finding N = 3 to be sufficient. This time

however, we need to include both chiral logarithm terms, as in Chapter 5, and account for the

heavy mass dependence, as in Chapter 6.

f0(q2) =
L

1− q2

M2
H∗s0

N−1∑

n=0

a0
nz

n

f+(q2) =
L

1− q2

M2
H∗s

N−1∑

n=0

a+
n

(
zn − n

N
(−1)n−NzN

)

fT (q2) =
L

1− q2

M2
H∗s

N−1∑

n=0

aTn

(
zn − n

N
(−1)n−NzN

)
.

(7.2)

We take MH∗s0
to be MH + ∆ with ∆ = 0.45GeV. As discussed in [2], the exact value used here

is unimportant, as the pole is very far from q2
max, so any change is easily absorbed into the shape

of the z expansion. The value of ∆ is taken from experimental results for the D system [29];

there are no experimental results for the B system but we expect the splitting to be largely

independent of mh. The vector mass MH∗s can be estimated, as in [2, 147], with the PDG [29]

values Mphys
D∗s

= 2.1122(4)GeV, Mphys
B∗s

= 5.4158(15)GeV. For this we use a mass dependent

expression like that in Chapter 6,

MH∗s = MH +
Mphys
D

MH
∆(D) +

Mphys
B

MH

( MH −Mphys
D

Mphys
B −Mphys

D

(
∆(B)− Mphys

D

Mphys
B

∆(D)
))
, (7.3)

where ∆(H) = Mphys
H∗s
−Mphys

H
5.

Within Equation (7.2) our an expressions again take a slightly different form to that seen previ-

5The physical masses used are (K0 + K±)/2, (B0 + B±)/2 and (D0 + D±)/2 (all from [29]), as our lattice
results have mu = md = ml.
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ously.

a0,+,T
n =

(MD

MH

)ζn(
1 + ρ0,+,T

n log
(MH

MD

))
(1 +N 0,+,T

n )

×
Nijkl−1∑

i,j,k,l=0

d0,+,T
ijkln

(ΛQCD

MH

)i(amval
h

π

)2j(aΛQCD

π

)2k
(xπ − xphys

π )l,

(7.4)

where Nijkl ≡ (Ni, Nj , Nk, Nl) = (3, 2, 2, 3). We will address the different elements of this

separately below.

Discretisation Effects

Discretisation effects are accounted for in two ways in Equation (7.4). We allow for heavy quark

mass dependent effects through the terms in amh with power 2j. The size of these terms will

vary between results for different mh on a given ensemble, and of course between different form

factors. Discretisation effects that do not vary with heavy quark mass but instead are set by

some other scale (for example associated with the K mesons) are allowed for in the powers of

aΛQCD and do not carry heavy mass dependence.

Dependence on heavy quark mass

We also include several terms in Equation (7.4) to model the physical dependence of the form

factors on heavy quark mass, as we did with Bs → ηs in Chapter 6. This time we will be connect-

ing the form factors for D → K to those for B → K, and we include the same polynomial terms

in
ΛQCD

MH
, as well as the logarithmic term to account for the matching of HQET to QCD.

The main difference is the addition of a multiplicative prefactor (MD/MH)ζn , with fitted power

ζn. This (MD/MH)ζn term models behaviour predicted by Large Energy Effective Theory

(LEET) [205], and the extra prior knowledge is especially helpful here because it links the tensor

form factor, which has the largest uncertainties, to the better determined scalar and vector form

factors.

The LEET expectation is for all form factors for a specific heavy to light transition to exhibit

common v M
−3/2
H behaviour in the region of q2 = 0 (where the light meson energy is close to

MH/2). This behaviour was in fact observed for Bs → ηs in Figure 6.7, with an MHs power

between −1.5 and −1 towards q2 = 0. In that case, this dependence was absorbed in the fit by

the logarithmic term, but here we fit it explicitly.
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Because we have taken t0 = 0, q2 = 0 maps to z = 0. We therefore include the LEET ex-

pectation at q2 = 0 via a prior P [ζ0] = 1.5(5) as a common factor for the a0 coefficients and

set ζn6=0 = 0 for an6=0. MK/MH corrections to LEET can be accounted for in the form factor

dependent (ΛQCD/MH)i terms in our fit, as MK ≈ ΛQCD. We find that including this term

in our fit increases log(GBF), reduces uncertainty at q2 = 0, particularly for fT , and returns a

posterior of ζ0 = 1.43(12). Allowing a broader prior P [ζ0] = 1.0(1.0) returns an almost identical

posterior consistent with 1.5 (1.42(12)) and does not change the form factor result. Allowing ζ

to vary between form factors simply increases the uncertainty on fT (0), whilst leaving the cen-

tral values unchanged. These tests of the form factors, along with others, will be shown below

(Figure 7.6).

Dependence on spectator quark mass

As in D → K (Chapter 5), we here must perform an extrapolation in spectator quark mass, to

allow for the the fact that some of our data does not have physical light quarks. The additional

change here is that we not only have ml = mphys
l and ml = ms/5 data, but also some ml = ms

data (Bs → ηs), as discussed in Section 7.2.4.

As with D → K, we include this dependence via a chiral logarithm, as outlined in Section 4.4.2.

The difference is that, owing to the larger range of light masses to include the Bs → ηs data, we

include more terms. We also adopt the notation L to be consistent with [3].

L = 1− 9g2

8
xπ

(
log xπ + δFV

)
−
(1

2
+

3g2

4

)
xK log xK −

(1

6
+
g2

8

)
xη log xη, (7.5)

where xM =
M2
M

(4πfπ)2 as usual, and g is the coupling between H, H∗ and the light mesons. This

is now mass dependent. The form of L is appropriate for the vector and scalar form factors and,

as in [104], we make use of the fact that fT and f+ in HQET are the same up to O(1/MH) terms

to use the same L for the tensor form factor. Any corrections to this are easily absorbed by our

HQET expansion. We take xπ = 2
mspectator

5.63ms
where the factor of 2 accounts for the definition of f2

π

in [103] and we construct xK and xη similarly. δFV is discussed in more detail in Section 4.4.2.

In order to capture the heavy mass dependence of g, we take

g(MH) = g∞ + C1
ΛQCD

MH
+ C2

Λ2
QCD

M2
H

, (7.6)

including this dependence in the z expansion fit, with data points g∞ = 0.48(11) [206], g(MD) =
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0.570(6) [148] and g(MB) = 0.500(33), an average of the values in [177, 207, 208]. Priors

P[C1] = 0.5(1.0) and P[C2] = 0.0(3.0) are broad and based on a trial fit to just the g data

points given above. Our final fit has a tighter value for g∞, giving posterior g∞ = 0.457(56) with

coefficients C1 = 0.73(62) and C2 = −1.2(1.7). g(MD) and g(MB) are not significantly changed.

For more details on all priors, see Section 7.2.5.

As well as the chiral logarithm term L that is common to all terms in the z-expansion, we

include analytic terms in the spectator quark mass that can vary for different form factors and

with the power of z, n. These appear through powers of (xπ − xphys
π ) in Equation (7.4), where

xphys
π = 2

mphys
l

5.63mphys
s

.

Mistuning effects for other quark masses

The pattern for quark mistuning here should by now be very familiar, and we will simply state

the form used in this case, noting that the mass of the strange daughter quark is always the

valence s quark mass, listed in Table 3.1. We take

N 0,+,T
n = cval,0,+,T

s,n δval
s + csea,0,+,T

s,n δsea
s + 2csea,0,+,T

l,n δl

+ csea,0,+,T
c,n δsea

c .
(7.7)

Everything has been defined before (Equations (5.13) and (5.14)), save for the sea charm quarks,

where we define

δsea
c =

msea
c −mtuned

c

mtuned
c

, (7.8)

with mtuned
c = mval

c , which is fixed in [80].

z expansion priors and posteriors

Tables 7.2-7.6 provide prior and posterior values for our final z expansion fit. We use our standard

method for determining such priors, introduced in Chapter 5: the z expansion is constructed

such that we expect an values to be of order unity. Thus, we take most priors as 0(1). In some

cases we tighten up priors, for example when they relate to terms containing discretisation effect

which go like a2. We know such effect are highly suppressed in the HISQ action, so we give

them narrower priors. After such adjustments, we apply the empirical Bayes method discussed

in Section 4.3.5 to broad groups of priors, for example csea
l . We then adjust the widths if the

study suggests they are overly conservative, in this case down to 0.0(5). Generally, we do not



CHAPTER 7. B → K FORM FACTORS 148

Table 7.2: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

g∞ 0.48(11) 0.457(56)
C1 0.5(1.0) 0.73(62)
C2 0.0(3.0) -1.2(1.7)
ρ0

0 0.0(1.0) 0.87(29)
ρ0

1 0.0(1.0) -0.62(13)
ρ0

2 0.0(1.0) -0.92(26)
ρ+

0 0.0(1.0) 0.87(29)
ρ+

1 0.0(1.0) -0.01(27)
ρ+

2 0.0(1.0) -0.22(92)
ρT0 0.0(1.0) 0.99(53)
ρT1 0.0(1.0) -0.03(33)
ρT2 0.0(1.0) 0.06(98)

d0
00000 0.0(1.0) 0.61(15)
d0

00001 0.0(1.0) 0.55(17)
d0

00002 0.0(1.0) 0.63(35)
d0

00010 0.0(1.0) -0.53(12)
d0

00011 0.0(1.0) -0.60(38)
d0

00012 0.0(1.0) 0.04(78)
d0

00020 0.0(1.0) 0.54(23)
d0

00021 0.0(1.0) -0.25(79)
d0

00022 0.0(1.0) -0.02(97)
d0

00100 0.00(30) -0.21(23)
d0

00101 0.00(30) 0.03(30)
d0

00102 0.00(30) -0.002(300)
d0

00110 0.00(30) -0.04(30)
d0

00111 0.00(30) 0.002(300)
d0

00112 0.00(30) -0.00003(30000)
d0

00120 0.00(30) -0.01(30)
d0

00121 0.00(30) -0.0004(3000)
d0

00122 0.00(30) 0.00007(30000)
d0

01000 0.00(30) 0.123(73)
d0

01001 0.00(30) -0.03(25)
d0

01002 0.00(30) 0.01(30)
d0

01010 0.00(30) 0.08(17)
d0

01011 0.00(30) -0.03(30)
d0

01012 0.00(30) 0.005(300)
d0

01020 0.00(30) 0.002(281)
d0

01021 0.00(30) -0.009(299)
d0

01022 0.00(30) 0.002(300)
d0

01100 0.0(1.0) -0.23(92)
d0

01101 0.0(1.0) 0.02(1.00)
d0

01102 0.0(1.0) -0.002(1.000)
d0

01110 0.0(1.0) 0.02(1.00)
d0

01111 0.0(1.0) -0.003(1.000)

Parameter Prior Posterior

d0
01112 0.0(1.0) 0.0005(1.0000)
d0

01120 0.0(1.0) 0.009(1.000)
d0

01121 0.0(1.0) -0.002(1.000)
d0

01122 0.0(1.0) 0.0002(1.0000)
d0

10000 0.0(1.0) -0.29(57)
d0

10001 0.0(1.0) 0.50(59)
d0

10002 0.0(1.0) 0.004(932)
d0

10010 0.0(1.0) 0.32(49)
d0

10011 0.0(1.0) -0.08(83)
d0

10012 0.0(1.0) -0.03(99)
d0

10020 0.0(1.0) 1.05(78)
d0

10021 0.0(1.0) -0.14(97)
d0

10022 0.0(1.0) -0.006(0.999)
d0

10100 0.00(30) -0.06(29)
d0

10101 0.00(30) 0.01(30)
d0

10102 0.00(30) -0.0008(3000)
d0

10110 0.00(30) -0.02(30)
d0

10111 0.00(30) 0.001(300)
d0

10112 0.00(30) -0.0001(3000)
d0

10120 0.00(30) -0.004(300)
d0

10121 0.00(30) 0.0001(3000)
d0

10122 0.00(30) -7e-06 +- 0.3
d0

11000 0.00(30) -0.12(27)
d0

11001 0.00(30) 0.01(30)
d0

11002 0.00(30) 0.0008(2999)
d0

11010 0.00(30) 0.01(30)
d0

11011 0.00(30) -0.006(300)
d0

11012 0.00(30) 0.001(300)
d0

11020 0.00(30) 0.003(299)
d0

11021 0.00(30) -0.003(300)
d0

11022 0.00(30) 0.0004(3000)
d0

11100 0.0(1.0) -0.09(99)
d0

11101 0.0(1.0) 0.009(1.000)
d0

11102 0.0(1.0) -0.0009(1.0000)
d0

11110 0.0(1.0) 0.0004(1.0000)
d0

11111 0.0(1.0) -0.0001(1.0000)
d0

11112 0.0(1.0) 5e-05 +- 1
d0

11120 0.0(1.0) 0.0009(1.0000)
d0

11121 0.0(1.0) -0.0003(1.0000)
d0

11122 0.0(1.0) 4e-05 +- 1
d0

20000 0.0(1.0) 0.35(87)
d0

20001 0.0(1.0) 0.21(93)
d0

20002 0.0(1.0) -0.03(99)
d0

20010 0.0(1.0) -0.53(83)
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Table 7.3: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

d0
20011 0.0(1.0) 0.12(98)
d0

20012 0.0(1.0) -0.03(1.00)
d0

20020 0.0(1.0) 0.16(95)
d0

20021 0.0(1.0) -0.004(0.997)
d0

20022 0.0(1.0) -0.006(1.000)
d0

20100 0.00(30) -0.02(30)
d0

20101 0.00(30) 0.003(300)
d0

20102 0.00(30) -0.0003(3000)
d0

20110 0.00(30) -0.005(300)
d0

20111 0.00(30) 0.0005(3000)
d0

20112 0.00(30) -0.00004(30000)
d0

20120 0.00(30) -0.001(300)
d0

20121 0.00(30) 0.00007(30000)
d0

20122 0.00(30) -7e-06 +- 0.3
d0

21000 0.00(30) -0.07(30)
d0

21001 0.00(30) 0.008(300)
d0

21002 0.00(30) -0.0005(3000)
d0

21010 0.00(30) -0.004(300)
d0

21011 0.00(30) -0.0004(3000)
d0

21012 0.00(30) 0.0001(3000)
d0

21020 0.00(30) -0.0007(3000)
d0

21021 0.00(30) -0.0005(3000)
d0

21022 0.00(30) 0.00007(30000)
d0

21100 0.0(1.0) -0.03(1.00)
d0

21101 0.0(1.0) 0.003(1.000)
d0

21102 0.0(1.0) -0.0003(1.0000)
d0

21110 0.0(1.0) -0.0009(1.0000)
d0

21111 0.0(1.0) 0.0001(1.0000)
d0

21112 0.0(1.0) -5e-06 +- 1
d0

21120 0.0(1.0) -5e-05 +- 1
d0

21121 0.0(1.0) -3e-05 +- 1
d0

21122 0.0(1.0) 5e-06 +- 1

csea,0
s,0 0.00(50) -0.07(44)

csea,0
s,1 0.00(50) 0.005(497)

csea,0
s,2 0.00(50) -0.004(500)

csea,0
l,0 0.00(50) 0.015(81)

csea,0
l,1 0.00(50) -0.15(47)

csea,0
l,2 0.00(50) 0.03(50)

csea,0
c,0 0.00(10) 0.049(51)

csea,0
c,1 0.00(10) 0.003(98)

csea,0
c,2 0.00(10) -0.002(100)

cval,0
s,0 0.0(1.0) 0.62(90)

cval,0
s,1 0.0(1.0) -0.03(1.00)

cval,0
s,2 0.0(1.0) 0.0008(1.0000)

Parameter Prior Posterior

dT00000 0.0(1.0) 0.59(23)
dT00001 0.0(1.0) -0.68(27)
dT00002 0.0(1.0) 0.34(76)
dT00010 0.0(1.0) -0.06(32)
dT00011 0.0(1.0) -0.15(94)
dT00012 0.0(1.0) 0.03(1.00)
dT00020 0.0(1.0) 0.02(1.00)
dT00021 0.0(1.0) -0.01(1.00)
dT00022 0.0(1.0) 0.002(1.000)
dT00100 0.00(30) -0.06(30)
dT00101 0.00(30) 0.004(300)
dT00102 0.00(30) -0.0004(3000)
dT00110 0.00(30) -0.003(300)
dT00111 0.00(30) 0.0002(3000)
dT00112 0.00(30) -2e-05 +- 0.3
dT00120 0.00(30) -0.0002(3000)
dT00121 0.00(30) 7e-06 +- 0.3
dT00122 0.00(30) -7e-07 +- 0.3
dT01000 0.00(30) -0.16(15)
dT01001 0.00(30) -0.001(296)
dT01002 0.00(30) 0.001(300)
dT01010 0.00(30) -0.01(30)
dT01011 0.00(30) -1e-06 +- 0.3
dT01012 0.00(30) 0.00006(30000)
dT01020 0.00(30) -0.0006(3000)
dT01021 0.00(30) -1e-05 +- 0.3
dT01022 0.00(30) 5e-06 +- 0.3
dT01100 0.0(1.0) -0.05(1.00)
dT01101 0.0(1.0) 0.004(1.000)
dT01102 0.0(1.0) -0.0004(1.0000)
dT01110 0.0(1.0) -0.003(1.000)
dT01111 0.0(1.0) 0.0002(1.0000)
dT01112 0.0(1.0) -2e-05 +- 1
dT01120 0.0(1.0) -0.0001(1.0000)
dT01121 0.0(1.0) 1e-05 +- 1
dT01122 0.0(1.0) -1e-06 +- 1
dT10000 0.0(1.0) -0.31(84)
dT10001 0.0(1.0) -0.04(93)
dT10002 0.0(1.0) 0.04(99)
dT10010 0.0(1.0) 0.07(95)
dT10011 0.0(1.0) -0.04(1.00)
dT10012 0.0(1.0) 0.005(1.000)
dT10020 0.0(1.0) 0.01(1.00)
dT10021 0.0(1.0) -0.003(1.000)
dT10022 0.0(1.0) 0.0004(1.0000)
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Table 7.4: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

dT10100 0.00(30) -0.02(30)
dT10101 0.00(30) 0.001(300)
dT10102 0.00(30) -0.0001(3000)
dT10110 0.00(30) -0.0008(3000)
dT10111 0.00(30) 0.00006(30000)
dT10112 0.00(30) -6e-06 +- 0.3
dT10120 0.00(30) -0.00004(30000)
dT10121 0.00(30) 3e-06 +- 0.3
dT10122 0.00(30) -3e-07 +- 0.3
dT11000 0.00(30) -0.06(29)
dT11001 0.00(30) 0.002(300)
dT11002 0.00(30) -0.00008(30000)
dT11010 0.00(30) -0.004(300)
dT11011 0.00(30) 0.00009(30000)
dT11012 0.00(30) -2e-06 +- 0.3
dT11020 0.00(30) -0.0002(3000)
dT11021 0.00(30) 3e-06 +- 0.3
dT11022 0.00(30) 2e-07 +- 0.3
dT11100 0.0(1.0) -0.01(1.00)
dT11101 0.0(1.0) 0.001(1.000)
dT11102 0.0(1.0) -0.0001(1.0000)
dT11110 0.0(1.0) -0.0008(1.0000)
dT11111 0.0(1.0) 7e-05 +- 1
dT11112 0.0(1.0) -7e-06 +- 1
dT11120 0.0(1.0) -4e-05 +- 1
dT11121 0.0(1.0) 3e-06 +- 1
dT11122 0.0(1.0) -3e-07 +- 1
dT20000 0.0(1.0) -0.30(94)
dT20001 0.0(1.0) 0.05(99)
dT20002 0.0(1.0) -0.001(1.000)
dT20010 0.0(1.0) 0.03(99)
dT20011 0.0(1.0) -0.008(1.000)
dT20012 0.0(1.0) 0.0008(1.0000)
dT20020 0.0(1.0) 0.003(1.000)
dT20021 0.0(1.0) -0.0005(1.0000)
dT20022 0.0(1.0) 6e-05 +- 1
dT20100 0.00(30) -0.004(300)
dT20101 0.00(30) 0.0004(3000)
dT20102 0.00(30) -0.00005(30000)
dT20110 0.00(30) -0.0002(3000)
dT20111 0.00(30) 2e-05 +- 0.3
dT20112 0.00(30) -2e-06 +- 0.3
dT20120 0.00(30) -1e-05 +- 0.3
dT20121 0.00(30) 9e-07 +- 0.3

Parameter Prior Posterior

dT20122 0.00(30) -1e-07 +- 0.3
dT21000 0.00(30) -0.02(30)
dT21001 0.00(30) 0.001(300)
dT21002 0.00(30) -0.0001(3000)
dT21010 0.00(30) -0.001(300)
dT21011 0.00(30) 0.00005(30000)
dT21012 0.00(30) -5e-06 +- 0.3
dT21020 0.00(30) -0.00005(30000)
dT21021 0.00(30) 2e-06 +- 0.3
dT21022 0.00(30) -2e-07 +- 0.3
dT21100 0.0(1.0) -0.004(1.000)
dT21101 0.0(1.0) 0.0004(1.0000)
dT21102 0.0(1.0) -4e-05 +- 1
dT21110 0.0(1.0) -0.0002(1.0000)
dT21111 0.0(1.0) 2e-05 +- 1
dT21112 0.0(1.0) -2e-06 +- 1
dT21120 0.0(1.0) -1e-05 +- 1
dT21121 0.0(1.0) 1e-06 +- 1
dT21122 0.0(1.0) -1e-07 +- 1

csea,T
s,0 0.00(50) 0.08(50)

csea,T
s,1 0.00(50) 0.01(50)

csea,T
s,2 0.00(50) 0.0005(5000)

csea,T
l,0 0.00(50) 0.44(36)

csea,T
l,1 0.00(50) 0.02(50)

csea,T
l,2 0.00(50) 0.001(500)

csea,T
c,0 0.00(10) 0.021(97)

csea,T
c,1 0.00(10) 0.003(100)

csea,T
c,2 0.00(10) 0.0002(1000)

d+
00000 0.0(1.0) 0.61(15)
d+

00001 0.0(1.0) -0.72(24)
d+

00002 0.0(1.0) 0.39(65)
d+

00010 0.0(1.0) -0.51(12)
d+

00011 0.0(1.0) -0.36(44)
d+

00012 0.0(1.0) 0.10(96)
d+

00020 0.0(1.0) 0.66(26)
d+

00021 0.0(1.0) -0.07(92)
d+

00022 0.0(1.0) 0.03(99)
d+

00100 0.00(30) -0.09(24)
d+

00101 0.00(30) 0.002(300)
d+

00102 0.00(30) 0.0003(3000)
d+

00110 0.00(30) -0.02(30)
d+

00111 0.00(30) 0.0002(3000)
d+

00112 0.00(30) 0.00005(30000)
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Table 7.5: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

d+
00120 0.00(30) -0.001(300)
d+

00121 0.00(30) 0.0001(3000)
d+

00122 0.00(30) 1e-05 +- 0.3
d+

01000 0.00(30) 0.063(93)
d+

01001 0.00(30) 0.01(29)
d+

01002 0.00(30) -0.0007(2999)
d+

01010 0.00(30) -0.12(24)
d+

01011 0.00(30) -0.003(300)
d+

01012 0.00(30) 0.0004(3000)
d+

01020 0.00(30) -0.01(29)
d+

01021 0.00(30) -0.001(300)
d+

01022 0.00(30) 0.0001(3000)
d+

01100 0.0(1.0) 0.06(93)
d+

01101 0.0(1.0) 0.002(1.000)
d+

01102 0.0(1.0) 0.0002(1.0000)
d+

01110 0.0(1.0) -0.02(1.00)
d+

01111 0.0(1.0) -8e-05 +- 1
d+

01112 0.0(1.0) 3e-05 +- 1
d+

01120 0.0(1.0) -0.001(1.000)
d+

01121 0.0(1.0) -1e-05 +- 1
d+

01122 0.0(1.0) 7e-06 +- 1
d+

10000 0.0(1.0) -0.29(57)
d+

10001 0.0(1.0) 0.002(901)
d+

10002 0.0(1.0) 0.14(98)
d+

10010 0.0(1.0) 0.18(51)
d+

10011 0.0(1.0) 0.02(96)
d+

10012 0.0(1.0) 0.02(1.00)
d+

10020 0.0(1.0) 0.38(90)
d+

10021 0.0(1.0) 0.02(99)
d+

10022 0.0(1.0) 0.005(1.000)
d+

10100 0.00(30) -0.03(30)
d+

10101 0.00(30) 0.0009(3000)
d+

10102 0.00(30) 0.00007(30000)
d+

10110 0.00(30) -0.006(300)
d+

10111 0.00(30) 0.00008(30000)
d+

10112 0.00(30) 1e-05 +- 0.3
d+

10120 0.00(30) -0.0003(3000)
d+

10121 0.00(30) 0.00004(30000)
d+

10122 0.00(30) 2e-06 +- 0.3
d+

11000 0.00(30) -0.01(29)
d+

11001 0.00(30) 0.001(300)
d+

11002 0.00(30) 0.0004(3000)
d+

11010 0.00(30) -0.03(30)
d+

11011 0.00(30) -0.0004(3000)
d+

11012 0.00(30) 0.00008(30000)
d+

11020 0.00(30) -0.003(300)
d+

11021 0.00(30) -0.00008(30000)

Parameter Prior Posterior

d+
11022 0.00(30) 2e-05 +- 0.3
d+

11100 0.0(1.0) 0.01(99)
d+

11101 0.0(1.0) 0.0007(1.0000)
d+

11102 0.0(1.0) 5e-05 +- 1
d+

11110 0.0(1.0) -0.006(1.000)
d+

11111 0.0(1.0) 5e-06 +- 1
d+

11112 0.0(1.0) 6e-06 +- 1
d+

11120 0.0(1.0) -0.0004(1.0000)
d+

11121 0.0(1.0) 4e-06 +- 1
d+

11122 0.0(1.0) 1e-06 +- 1
d+

20000 0.0(1.0) 0.35(87)
d+

20001 0.0(1.0) 0.10(97)
d+

20002 0.0(1.0) 0.03(1.00)
d+

20010 0.0(1.0) 0.10(90)
d+

20011 0.0(1.0) 0.02(99)
d+

20012 0.0(1.0) 0.004(1.000)
d+

20020 0.0(1.0) 0.14(98)
d+

20021 0.0(1.0) 0.01(1.00)
d+

20022 0.0(1.0) 0.0009(1.0000)
d+

20100 0.00(30) -0.009(300)
d+

20101 0.00(30) 0.0003(3000)
d+

20102 0.00(30) 1e-05 +- 0.3
d+

20110 0.00(30) -0.002(300)
d+

20111 0.00(30) 3e-05 +- 0.3
d+

20112 0.00(30) 2e-06 +- 0.3
d+

20120 0.00(30) -0.00007(30000)
d+

20121 0.00(30) 1e-05 +- 0.3
d+

20122 0.00(30) 3e-07 +- 0.3
d+

21000 0.00(30) -0.01(30)
d+

21001 0.00(30) 0.0006(3000)
d+

21002 0.00(30) 0.0001(3000)
d+

21010 0.00(30) -0.009(300)
d+

21011 0.00(30) -2e-05 +- 0.3
d+

21012 0.00(30) 2e-05 +- 0.3
d+

21020 0.00(30) -0.0006(3000)
d+

21021 0.00(30) 9e-06 +- 0.3
d+

21022 0.00(30) 4e-06 +- 0.3
d+

21100 0.0(1.0) 0.002(1.000)
d+

21101 0.0(1.0) 0.0002(1.0000)
d+

21102 0.0(1.0) 9e-06 +- 1
d+

21110 0.0(1.0) -0.002(1.000)
d+

21111 0.0(1.0) 6e-06 +- 1
d+

21112 0.0(1.0) 1e-06 +- 1
d+

21120 0.0(1.0) -0.0001 +- 1
d+

21121 0.0(1.0) 2e-06 +- 1
d+

21122 0.0(1.0) 2e-07 +- 1
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Table 7.6: Priors and their posterior values for the z expansion fit.

Parameter Prior Posterior

csea,+
s,0 0.00(50) 0.14(44)

csea,+
s,1 0.00(50) 0.0002(4993)

csea,+
s,2 0.00(50) -4e-05 +- 0.5

csea,+
l,0 0.00(50) -0.08(12)

csea,+
l,1 0.00(50) -0.03(50)

csea,+
l,2 0.00(50) 0.0004(5000)

csea,+
c,0 0.00(10) 0.027(63)

csea,+
c,1 0.00(10) 0.0008(993)

csea,+
c,2 0.00(10) 5e-06 +- 0.1

cval,+
s,0 0.0(1.0) -0.11(96)

cval,+
s,1 0.0(1.0) -0.002(1.000)

cval,+
s,2 0.0(1.0) -0.0002(1.0000)

narrow priors unless the width favoured by log(GBF), is less than half of what we are using,

which in this case leaves most priors at 0(1). The effect of broadening and narrowing priors on

the final form factors will be discussed in the next section.

All but one of our priors and posteriors (d0
10020 is slightly over 1σ from its prior) agree to within

1 standard deviation, indicating that our priors are indeed conservative. We do not include other

parameters which do technically appear as priors in the fit, but have very well informed values.

For example the physical meson masses, such as Mphys
B . Because such priors are known to a very

high degree of accuracy, the fit tends not to move them at - all such posteriors agree with their

priors to within 1σ, and most are not changed from their priors by the fit.

Our preferred fit has a χ2/d.o.f. of 0.193, for 333 degrees of freedom, corresponding to a Q value

of 1.00. log(GBF) = 791.36. The continuum form factors resulting from this fit, as well as tests

of the fit stability against reasonable variations in the fit form and parameters will be given

below.
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Figure 7.6: Stability tests for the z expansion fit evaluated at the physical B mass. Test 0 is the
final result, 1 and 2 take different priors for ζ0, test 3 allows ζ0 to vary between the form factors
and test 4 drops the term containing ζ entirely. Test 5 increases N by 1 (to 4) and test 6 does
the same for each component of Nijkl. Test 7 doubles the width of ζn and all d and ρ priors,
and 8 halves them. Test 9 removes the chiral logarithm term by setting L = 1, and 10 tightens
the prior on the ρ coefficients considerably (from 0(1)). Test 11 removes the f0(0) = f+(0)
constraint; here the black point is f0(0) and the red is f+(0). Tests 12, 13 and 14 remove all the
lattices with physical light masses, all of set 8 data, and results with ml = ms respectively. Test
15 removes the spatial vector data, and 16 removes the largest mass from all ensembles with
multiple masses. The χ2 per degree of freedom and log(GBF) value for each test are shown in
the bottom pane in blue and red respectively. For the latter tests, data is removed from the fit,
resulting in a log(GBF) which is not comparable with others and so not displayed. As discussed,
χ2 values are only meaningful relatively. χ2 values for tests 7 and 8, which change widths on
many priors, are not directly comparable with other tests.
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Figure 7.7:
(

1 − q2

M2
H∗s0

)
f0(z) data points and final result at the physical point (blue band).

Data points are labelled by heavy quark mass, where e.g. m0.8 indicates amh = 0.8 on that
ensemble. Lines between data points of a given heavy mass are the result of the fit evaluated on
this ensemble and mass with all lattice artefacts present. Sets 9 and 10 are the Hs → ηs data
from sets 1 and 2 in [2], which were fitted simultaneously with sets 6 and 7 respectively.

7.3 Form Factor results

7.3.1 B → K form factors

The stability of our z expansion against a variety of tests is shown in Figure 7.6. These tests are

described in detail in the caption. We see that the fit is stable against all tests. Of particular

interest are tests 1-3, which show that the fit is very stable to changes in ζ0, the largest change

being in test 3, where we give each form factor an independent ζ0. This removes the tie between

fT (0) and f0/+(0) and increases uncertainty, though still less than in test 4, which removes the

ζ0 term completely. Indeed, test 4 highlights the fact that it is principally fT which benefits from

the extra prior information contained within ζ0. Figures 7.7, 7.8 and 7.9 show the form factors
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Figure 7.8:
(

1− q2

M2
H∗s

)
f+(z) data points and final result at the physical point (red band). Data

points are labelled by heavy quark mass, where e.g. m0.8 indicates amh = 0.8 on that ensemble.
Lines between data points of a given heavy mass are the result of the fit evaluated on this
ensemble and mass with all lattice artefacts present. Sets 9 and 10 are the Hs → ηs data from
sets 1 and 2 in [2], which were fitted simultaneously with sets 6 and 7 respectively. At large
|z| (large q2), data obtained from both temporal and spatial components of V µ are shown, the
latter with end caps specifying the associated uncertainty. As discussed in Section 7.2.3, errors
for f+ at large q2 are significantly smaller when obtained from spatial vector components.
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fT (z) data points and final result at the physical point (green band).

Data points are labelled by heavy quark mass, where e.g. m0.8 indicates amh = 0.8 on that
ensemble. Lines between data points of a given heavy mass are the result of the fit evaluated on
this ensemble and mass with all lattice artefacts present.
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Table 7.7: Values of fit coefficients a0,+,T
n , pole masses, and the L term with correlation matrix

below, evaluated at the physical point and the B mass. Note that a+
0 = a0

0. Masses are in GeV.
The pole masses and L are very slightly correlated due to the way the fit function is constructed.
These correlations are too small to have any meaningful effect on the fit, but we include them
for completeness.

a
0/+
0 a01 a02 a+1 a+2 aT0 aT1 aT2 M

phys
B∗
s0

M
phys
B∗
s

L

0.2545(90) 0.210(76) 0.02(17) -0.71(14) 0.32(59) 0.255(18) -0.66(23) 0.36(84) 5.729495(85) 5.4158(15) 1.304(10)

1.00000 0.80619 0.56441 0.30543 0.04776 0.42939 0.19136 0.06240 -0.00032 -0.00197 -0.19815

1.00000 0.91180 0.35256 0.06186 0.31091 0.16899 0.05677 0.00006 -0.00250 0.02839

1.00000 0.28531 0.08655 0.18297 0.09938 0.04827 0.00005 -0.00181 0.03245

1.00000 0.84649 0.06813 0.09633 0.05829 0.00074 -0.01316 0.09126

1.00000 -0.02470 0.02366 0.04442 -0.00054 0.00963 0.00353

1.00000 0.59841 0.32316 -0.00030 0.00167 -0.11487

1.00000 0.85349 0.00032 -0.00574 0.04788

1.00000 -0.00046 0.00825 0.00184

1.00000 0.00003 -0.00003

1.00000 0.00052

1.00000

in z space, with the poles removed, along with the data on all ensembles6. As was observed

in previous chapters, the z expansion here is almost linear, justifying our N = 3 choice. In

Figure 7.8, the benefit of the spatial vector data points (which have error bar caps to distinguish

them) is extremely apparent. The contributions to the total uncertainty in each of the B → K

form factors, across the full q2 range, is shown in Figure 7.10. One of the important findings from

the Bs → ηs calculation, which provided reassurance that a heavy-HISQ B → K calculation was

viable, was that the uncertainty was statistics dominated (see Figure 6.4). Here we observe a

similar pattern, with statistics the largest contribution, followed by the heavy mass extrapolation.

This suggests that our heavy-HISQ method is not a limit to the precision at this level of statistics.

We also note that discretisation effects are tiny. The B → K form factors are shown together in

Figure 7.11. The similarity of fT and f+ is striking.

We provide values for the continuum z expansion coefficients, pole masses, and L, along with

correlations, in Table 7.7. Using these, and Equation (7.2), one can reconstruct our form fac-

tors.

7.3.2 Form factors and uncertainties across the MH range

Because of the sliding heavy mass in our heavy-HISQ approach, we are able to look at the form

factors across the whole heavy mass range from B → K down to D → K. Whilst the scalar and

vector D → K form factors we produce here are highly correlated to those in Chapter 5, sharing

6Note that the Bs → ηs data on sets 6 and 7 is labelled sets 9 and 10.
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Figure 7.10: The contributions to the total percentage error (black line) of B → K form factors
f0(q2) (top) and f+(q2) (middle) and fT (q2) (bottom) from different sources, shown as an accu-
mulating error. The red dashed line (‘inputs’) includes values for parameters, such as masses,
taken from the PDG [29] and used in the fit as described above. The purple dotted line (‘q
mistunings’) adds, negligibly, to the inputs the error contribution from the quark mistunings
associated with c fit parameters and errors from the light quark chiral extrapolation, whilst the
solid blue line (‘statistics’) further adds the error from our correlator fits. The green dot-dash
line (‘HQET’) includes the contribution from the expansion in the heavy quark mass, and, fi-
nally, the thick black line (‘Discretisation’), the total error on the form factor, also includes the
discretisation errors. In the case of the tensor form factor, the difference here is so small as to
obscure the HQET line. The percentage variance adds linearly and the scale for this is given on
the left hand axis. The percentage standard deviation, the square root of this, can be read from
the scale on the right-hand side.
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Figure 7.11: Final B → K form factor results at the physical point across the full q2 range.

all the mh = mc data, the tensor form factor is presented for the first time here.

Running fT (q2, µ)

One subtlety in the straightforward extrapolation in MH is the scale dependence of fT (q2, µ). In

our calculation of the tensor form factor, we used ZT (µ = 4.8 GeV), calculated in [99] in the RI-

SMOM scheme [209] and matched to the MS scheme [210, 211] through O(α3
s) in the continuum,

with uncertainties from O(α4
s) accounted for via a floating fit parameter (see Equation (16)

of [99]). This process involves the removal of contamination from nonperturbative condensates,

which would otherwise give a systematic error of 1.5%.

For our calculation, the scale µ is taken to be approximately equal to the b quark pole mass.

Whilst this is appropriate for the B → K results, we use a smaller scale, µ = 2 GeV, for D → K

for consistency with previous results. In order to produce results at arbitrary MH , we use a

linear interpolation of µ between these two values,

µ(MH)[GeV] = 2 +
2.8

Mphys
B −Mphys

D

(MH −Mphys
D ). (7.9)

Following [99], we then run from µ(MB) = 4.8 GeV to our desired µ scale. The maximal extent

of this running is down to 2 GeV (i.e. for MH = MD), and this results in a factor of 1.0773(17)

multiplying fT (q2, 4.8 GeV).
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Figure 7.12: The form factors at q2
max and q2 = 0 evaluated across the range of physical heavy

masses from the D to the B. Other lattice studies [140, 173, 182, 212] of both D → K and
B → K are shown for comparison. We also include some B → K results at q2 = 0 from
Gubernari et al. [213], a calculation using light cone sum rules. We do not include Chapter 5’s
D → K results that share data with our calculation here. At the B end, data points are offset
from MB for clarity. Note that we have run ZT to scale µ in this plot, where µ is defined linearly
between 2 GeV and mb = 4.8 GeV, according to Equation (7.9).

Comparisons

Figure 7.12 plots the forms factors at extremal q2 values against MH , giving a smooth transition

between D → K and B → K results. We see that our form factors are in good agreement

with previous work, except for fD→KT (q2
max), which is addressed below. In most cases, our result

represents a reduction in uncertainty over previous work, with the exception being fB→K+ (q2
max)

and fB→KT (q2
max), where our results are slightly less precise than those of [182]. Table 7.8 gives

our B → K and D → K form factor results at extremal q2 values. Also included are the D → K

results described in Chapter 5. As discussed, these results share data and so are not wholly

independent. However, as should be clear from this Chapter and Chapter 5, the correlator fits

and z expansions used in each case are very different. As such, the agreement between the two
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Table 7.8: Form factor results at the q2 extremes. As described in the text, the fD→K0 and
fD→K+ share data with the results in [1] (included for comparison) so should not be viewed as
an independent calculation.

q2 = 0 q2 = q2
max

This work

fB→K0 (q2) 0.332(12) 0.849(17)

fB→K+ (q2) 0.332(12) 2.78(11)

fB→KT (q2, µ = 4.8 GeV) 0.332(24) 2.72(15)

fD→K0 (q2) 0.7441(40) 1.0136(36)

fD→K+ (q2) 0.7441(40) 1.462(16)

fD→KT (q2, µ = 2 GeV) 0.690(20) 1.374(33)

c.f. D → K [1]

fD→K0 (q2) 0.7380(44) 1.0158(41)

fD→K+ (q2) 0.7380(44) 1.465(20)

Table 7.9: Bs → ηs form factor results at the q2 extremes. As described in the text, the f0 and
f+ share data with the results in [2] (included for comparison) so should not be viewed as an
independent calculation.

q2 = 0 q2 = q2
max

This work

fBs→ηs0 (q2) 0.3191(85) 0.819(17)

fBs→ηs+ (q2) 0.3191(85) 2.45(19)

fBs→ηsT (q2, µ = 4.8 GeV) 0.370(78) 2.32(56)

c.f. Bs → ηs [2]

fBs→ηs0 (q2) 0.296(25) 0.808(15)

fBs→ηs+ (q2) 0.296(25) 2.58(208)

c.f. Bs → ηs [171]

fBs→ηs0 (q2) - 0.811(17)
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Figure 7.13: Breakdown of the contributions to the statistical uncertainty of the form factors
at their extremes from data on each ensemble. Uncertainty from each ensemble σi is added in
quadrature, normalised by the total uncertainty squared

∑
i σ

2
i . Sets 6 and 7 include contri-

butions from Hs → ηs data. Left: evaluated at MH = MB (B → K). Right: evaluated at
MH = MD (D → K).

results is a strong affirmation of both calculations.

Another interesting test to consider is to evaluate our B → K results at a spectator quark mass

ml = ms. This is made possible by the chiral extrapolation (Equation (7.5)), which enabled

us to include the Hs → ηs data in the first place (Section 7.2.4). By setting ml = ms and

adjusting the physical meson masses appropriately, we can produce Bs → ηs results to compare

with Chapter 67. This is what is given in Table 7.9. Again, there is some data overlap between

these results, however, they differ markedly in their correlator and z expansion fits. Furthermore,

the continuum data point (from [171]) included in [2] (Chapter 6) is not included here. Without

this data point, our result agrees well with that in [2], and indeed with [171], which is also given

in Table 7.9. This is another strong affirmation of our results.

Whilst Figure 7.10 tells us that the overall uncertainty is statistics dominated, we can go further,

analysing the contributions to this statistical uncertainty from each of our eight ensembles. This

breakdown is shown in Figure 7.13, which shows the contributions from each ensemble to the

form factors at extremal q2 values for both B → K (left) and D → K (right). We can see a clear

difference between the two. Whilst the uncertainty in the B → K case is dominated by the finest

ensembles, which reach masses closest to the physical mh = mb, the D → K end has mh = mc

masses available on all ensembles, and so the three ensembles with physical light masses (sets

7We also give the tensor form factor, which was not calculated there.
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Figure 7.14: The green band gives our D → K tensor form factor at µ = 2 GeV, across the
physical q2 range. Results from [212] are included for comparison.

1, 2 and 3) contribute most to the uncertainty. If we compare this with the equivalent plot for

the D → K calculation in Chapter 5 (Figure 5.8), we note that in this case the uncertainty is

much more evenly spread across the ensembles, owing to the more constrained chiral logarithm

adopted there.

D → K tensor form factor

Our result for the D → K tensor form factor, fT (q2, µ = 2 GeV) which was not calculated in

Chapter 5 is presented in Figure 7.14 (and numerical results are given in Table 7.8). Results

from [212] are included for comparison, and we find our form factor to be roughly twice as precise,

and in good agreement at q2 = 0, but in considerable tension at larger q2 values (up to 3.1σ

at q2
max). Additionally, we report the ratio fD→KT (0, µ = 2 GeV)/fD→K+ (0) = 0.928(27), which

agrees with the 0.898(50) given in [212].

7.3.3 Spectator quark dependence of form factors

We can compare our form factors with others sharing the same b→ s current, but with different

spectator quarks. In the case of B → K, we compare our form factors with our own Bs → ηs

form factors from Chapter 6 ([2]), as well as Bc → Ds [214]. This comparison is shown for f0

and f+, with and without the pole factors, in Figure 7.15. We see very mild spectator quark

dependence for the light and strange quarks, at most a deviation of ≈ 1σ, which is roughly

consistent with the modest effect of setting L = 1 in Figure 7.6. The transition to a heavy c

spectator leads to a much larger change. The heavier spectator gives a smaller form factor at
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Figure 7.15: Comparison of our B → K scalar and vector form factors with those of Bs → ηs [2]
and Bc → Ds [214] to show the impact of changing the spectator quark mass. In the right
pane, we have multiplied the form factors by their common pole factors for clarity. We take

P 0(q2) = 1− q2

M2
B∗s0

, P+(q2) = 1− q2

M2
B∗s

, using PDG masses [29].

q2 = 0 that rises more steeply to q2
max (which has a considerably smaller value). The behaviour

of fT shown on the left of Figure 7.16 is similar, but with a smaller shift at q2 = 0. The right

hand side of Figure 7.16 shows an equivalent plot for the scalar and vector D → K form factors,

compared with the form factors for Bc → Bs [98], as well as our Ds → ηs form factors from

Chapter 6. As for B → K, we see a very gentle dependence when we change the spectator from

light to strange. This agrees with the conclusions of [138] but is much more compelling here

because of the high precision of both sets of form factors. The biggest deviation is for f0, at the

maximum q2 for Ds → ηs, where Ds → ηs is larger than D → K by ≈ 2σ (or about 2%). When

we take the spectator quark mass all the way up to b, however, we unsurprisingly see a much

larger change. The form factors for Bc → Bs have smaller values at q2 = 0 (but only by ∼20%)

and rise much more steeply with q2 than is the case with lighter spectator quarks. This trend is

exactly the same, but magnified by the larger quark mass change, as that seen for the B → K

case as we change from a light to a charm spectator (compare Figure 7.15).
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Figure 7.16: Left: comparison of our B → K tensor form factor (at µ = 4.8 GeV) with those
of Bc → Ds [214] to show the impact of changing the spectator quark mass. Right: a similar
comparison of our D → K scalar and vector form factors with those for Ds → ηs [2] and
Bc → Bs [98].

7.4 Key phenomenology

The form factors calculated above, and presented in [3] can be used to produce SM values

for experimentally measurable quantities pertaining to B → K ¯̀̀ decays, most obviously the

branching fraction B. In [4], our results are given in exhaustive detail, and numerical values

are tabulated extensively. Here, we will report the key results from that paper, relevant to the

search for new physics, and tabulate numerical results, but we direct the reader there for further

detail.

7.4.1 B → K`+`−

Differential decay rate

The SM differential decay rate for B → K`+`− for lepton ` is constructed as follows, where we

follow the notation in [109, 215]:
dΓ`
dq2

= 2a` +
2

3
c`, (7.10)
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where a` and c` are given by

a` = C
[
q2|FP |2 +

λ(q,MB,MK)

4
(|FA|2 + |FV |2)

+ 4m2
`M

2
B|FA|2 + 2m`(M

2
B −M2

K + q2)Re(FPF
∗
A)
]
,

c` = −Cλ(q,MB,MK)β2
`

4
(|FA|2 + |FV |2),

(7.11)

with

C =
(ηEWGF )2α2

EW |VtbV ∗ts|2
29π5M3

B

β`
√
λ(q,MB,MK),

β` =
√

1− 4m2
`/q

2, (7.12)

λ(a, b, c) = a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2).

FP,V,A are constructed from the scalar, vector and tensor form factors f0, f+ and fT respectively,

by

FP = −m`C10

[
f+ −

M2
B −M2

K

q2
(f0 − f+)

]
,

FV = Ceff,1
9 f+ +

2mMS
b (µb)

MB +MK
Ceff,1

7 fT (µb),

FA = C10f+,

(7.13)

where the Wilson coefficient Ceff,1
9 = Ceff,0

9 + ∆Ceff
9 + δCeff

9 includes nonfactorisable corrections

in ∆Ceff
9 , as well as O(αs) and more heavily suppressed corrections in δCeff

9 . Similarly, Ceff,1
7 =

Ceff,0
7 + δCeff

7 contains O(αs) corrections in δCeff
7 . The size and effect of these corrections has

not been addressed in previous work, and we go into further detail below.
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Ceff,0
9 = C9 + Y (q2) is a function of q2 through

Y (q2) =
4

3
C3 +

64

9
C5 +

64

27
C6

− 1

2
h(q2, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)

+ h(q2,mc)

(
4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(q2,mb)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
,

(7.14)

where

h(q2,m) = −4

9

(
ln
m2

µ2
− 2

3
− x
)
− 4

9
(2 + x)

×





√
x− 1 arctan 1√

x−1
, x > 1

√
1− x

(
ln 1+

√
1−x√
x
− iπ

2

)
, x ≤ 1,

(7.15)

with x = 4m2/q2.

The Wilson coefficients used here are given in Table 7.10 and discussed in Section 2.3.2. The

numerical values for other inputs used here are also given in Table 7.10. Below we discuss a

couple of subtleties which have not been well described previously.

Additionally, it is worth noting that the expressions above do not describe the somewhat baroque

behaviour of the differential decay rate in certain q2 regions. uū resonances appear below q2 =

1 GeV2, and cc̄ resonances at higher values of q2. For this reason, experimentalists typically

designate two vetoed regions, which we shall take as 8.68 ≤ q2/GeV2 ≤ 10.11 (labelled J/Ψ) and

12.86 ≤ q2/GeV2 ≤ 14.18 (labelled Ψ(2S)) [220]. In fact, where relevant, we linearly interpolate

our differential decay rate across the whole of this region 8.68 ≤ q2/GeV2 ≤ 14.18. Further

more, when quoting integrated results for the decay rate or branching fraction, it’s conventional

to focus on two reliable regions of q2, far from these resonances: 1.1 ≤ q2/GeV2 ≤ 6 and

15 ≤ q2/GeV2 ≤ 22. This is where we shall give our main results.
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Parameter Value Reference

ηEWGF 1.1745(23)× 10−5 GeV−2 [216], Eq. (5.20)

mMS
c (mMS

c ) 1.2719(78) GeV See caption

mMS
b (µb) 4.209(21) GeV [217]
mc 1.68(20) GeV -
mb 4.87(20) GeV -
fK+ 0.1557(3) GeV [75, 132, 135, 218]
fB+ 0.1894(14) GeV [79]
τB0 1.519(4) ps [129]
τB± 1.638(4) ps [129]

1/αEW(MZ) 127.952(9) [216]
sin2 θW 0.23124(4) [216]
|VtbV ∗ts| 0.04185(93) [90]
C1(µb) -0.294(9) [40]
C2(µb) 1.017(1) [40]
C3(µb) -0.0059(2) [40]
C4(µb) -0.087(1) [40]
C5(µb) 0.0004 [40]
C6(µb) 0.0011(1) [40]

Ceff,0
7 (µb) -0.2957(5) [40]
Ceff

8 (µb) -0.1630(6) [40]
C9(µb) 4.114(14) [40]

Ceff,0
9 (µb) C9(µb) + Y (q2) -
C10(µb) -4.193(33) [40]

Table 7.10: Input parameters used to calculate SM observables. Details of the error on the Wilson
coefficients are given in [40], and these are quoted at µb = 4.2 GeV. For more details on Wilson

coefficients, see Section 2.3.2. mMS
c (mMS

c ) is obtained using mMS
c (3 GeV) = 0.9841(51) [219] and

running the scale to its own mass. mc and mb are the c and b quark pole masses obtained from
the masses in the MS scheme at three loops (see Section 7.4.1 for details).
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Calculating pole masses

The first subtlety above is the values which we take for masses mc and mb. These are pole

masses. The three loop relation between quark masses in the MS scheme and the pole mass

scheme is [221]

m(m)

m
= 1 +A

(αs
π

)
+B

(αs
π

)2
+ C

(αs
π

)3
,

A = −4

3
,

B = 1.0414NL − 14.3323,

C = −0.65269N2
L + 26.9239NL − 198.7068,

(7.16)

where m is the MS mass, m is the pole mass and NL is the number of active light quarks. We

evaluate αs at scale m and use NL = 3 for c and NL = 4 for b.

Inverting (7.16) gives

m =m(m)
[
1−A

(αs
π

)
+ (A2 −B)

(αs
π

)2

+ (−A3 + 2AB − C)
(αs
π

)3]
.

(7.17)

We solve Equation (7.17) iteratively, making an initial guess for m then evaluating αs(m) by

running from αs(5.0 GeV) = 0.2128(25) [80] and m(m) by running from the mMS
c (µ = mMS

c ) or

mMS
b (µ = mMS

b ) (values in [4]). Plugging these results into Equation (7.17) results in an updated

value for m. The initial guess for m is adjusted to reduce the difference between it and the value

obtained from Equation (7.17). This process is repeated until the values of m converge.

Using this method, we obtain the pole masses mc = 1.684(22) GeV and mb = 4.874(32) GeV.

The perturbation series in this expression suffers from the presence of a renormalon in the pole

mass [222], so we take a 200 MeV uncertainty on both numbers. We note that 4m2
c = 11.34 GeV2

falls within the vetoed resonance region.

Investigation of corrections to Ceff,0
7 and Ceff,0

9

The second subtlety mentioned above is that corrections need to be applied to Ceff,0
7 and Ceff,0

9

to obtain the values of Ceff,1
7 and Ceff,1

9 that enter Equation (7.13). The corrections are defined
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by

Ceff,1
7 = Ceff,0

7 + δCeff
7 , (7.18)

Ceff,1
9 = Ceff,0

9 + ∆Ceff
9 + δCeff

9 , (7.19)

where Ceff,0
7 and C9 = Ceff,0

9 − Y (q2) are constants, given in [4]. The corrections are discussed

in Appendix B of [181], which compiles results from [184, 185, 223, 224, 225, 226, 227, 228, 229,

230, 231, 232, 233, 234]. We direct the reader there for more detail. Below we outline the form

of the corrections, plot them against q2 and discuss their sizes relative to Ceff,0
7 and Ceff,0

9 . All

numerical inputs not explicitly stated below can be found in [4].

The leading contribution to the correction δCeff
7 is from O(αs) effects,

δCeff
7 = −αs

4π

(
(C1 − 6C2)F

(7)
1,c + C8F

(7)
8

)
. (7.20)

The expression for F
(7)
1,c is lengthy and provided in the C++ header files of [224], whilst F

(7)
8 is

given in Appendix B of [181]. We use αs(4.2 GeV) = 0.2253(28), which is run from αs(5.0 GeV) =

0.2128(25) [80]. The next higher order contribution, which we neglect, is suppressed by a factor

of λ
(s)
u = V ∗usVub

V ∗tsVtb
= 0.01980(62) and is O(αsλ

(s)
u ).

The leading order contributions to the correction δCeff
9 are given by

δCeff
9 = −αs

4π

(
C1F

(9)
1,c + C2F

(9)
2,c + C8F

(9)
8

)

+λ(s)
u

(
h(q2,mc)− h(q2, 0)

) (4

3
C1 + C2

)
.

(7.21)

We neglect the O(αsλ
(s)
u ) term, which is even smaller (see Equation (B11) of [181] for more

details). The function h(q2,m) is defined in Equation (7.15) and F
(9)
8 is given in Appendix B

of [181]. Expressions for F
(9)
1,c and F

(9)
2,c are also provided in the C++ header files of [224]. The

corrections δCeff
7 and δCeff

9 are applicable across the full q2 range.

We plot the real and imaginary parts of δCeff
7 and δCeff

9 in Figure 7.17, showing separately

the O(αs) and O(λ
(s)
u ) contributions to δCeff

9 . The correction Re[δCeff
7 ] is approximately 20% of

Re[Ceff,0
7 ] ≈ −0.3 [40]. The magnitude of Im[δCeff

7 ] is small in comparison to |Ceff,1
7 |. The O(λ

(s)
u )

contributions to δCeff
9 are negligible in comparison to Ceff,0

9 , which is approximately 4 across all

q2.
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Figure 7.17: The real and imaginary parts of δCeff
7 and of the O(αs) and O(λ

(s)
u ) contributions

to δCeff
9 , as defined in Equations (7.21) and (7.20).

The O(αs) contributions to δCeff
9 peak at q2 ≈ 10 GeV2, owing to the behaviour of the functions

F
(7)
1,c , F

(7)
2,c , F

(9)
1,c and F

(9)
2,c . This peak occurs within the experimentally vetoed J/Ψ resonance

region and is largely contained within the region of q2 between the J/Ψ and Ψ(2S) resonances,

outside of which, the contributions are modest. As a result, it has minimal impact on results in

the well behaved regions of q2 below the J/Ψ and above the Ψ(2S). Uncertainty in the O(αs)

contribution to Re[δCeff
7 ] and Re[δCeff

9 ] grows rapidly towards q2
max, an effect that is suppressed

in observables by the fact that the differential decay rate vanishes at q2
max. This effect is not

noticeable in plots of observables versus q2 or in uncertainties of observables in the largest q2

bins (see [4] and results below).

Non-factorisable corrections are accounted for via ∆Ceff
9 . Following the notation of [181],

∆Ceff
9 =

2π2mbfBfK
3M2

Bf+
×

∑

±

∫ ∞

0

dω

ω
ΦB,±(ω)

∫ 1

0
duΦK(u)

[
T

(0)
K,± +

αs
4π
CFT

(nf)
K,±
]
,

(7.22)

where CF = 4/3, and T
(0)
K,+ = 0. The functions ΦB,±(ω), ΦK , and T

(0/nf)
K,± are given in [223] and

Equation (7.22) is discussed in detail in Appendix B of [181]. We evaluate the expressions for

ΦB,±(ω), ΦK , and T
(0/nf)
K,± using the following inputs: ω−1

0 = 3(1) GeV−1 [223], aK1 = 0.0453(30),

and aK2 = 0.175(50) [235] (we take ΦK to second order). The non-factorisable corrections are

valid for small q2, and we turn them off at q2 = 8.68 GeV2, the start of the vetoed J/Ψ resonance

region. We do not calculate through this region. Instead, we linearly interpolate, beginning from
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Figure 7.18: The real (left) and imaginary (right) parts of the contributions to f+∆Ceff
9 from

each of the three non-zero terms, T
(0)
K,− and T

(nf)
K,± (Equation (7.22)). A decay channel-specific

factor of eq ∈ {2/3,−1/3} is removed from T
(0)
K,− and T

(nf)
K,−.

the point where the corrections are turned off through the Ψ(2S) resonance, so the differential

branching fraction is a smooth function of q2.

The contribution from ∆Ceff
9 to observables is via the term f+∆Ceff,1

9 in Equation (7.13). This

has the effect of cancelling the dependence of f+∆Ceff
9 on the form factor f+. The real and

imaginary parts of the three nonzero contributions to f+∆Ceff
9 in Equation (7.22), corresponding

to T
(0)
K,− and T

(0/nf)
K,± , are plotted in Figure 7.18. In these plots we remove a decay channel-specific

factor of the light quark charge, eq, which is 2/3 for B+ → K+ and −1/3 for B0 → K0. Among

these terms, the T
(0)
K,− contribution is dominant, especially for q2 . 1 GeV2.

The combined effect of these terms to f+∆Ceff
9 is shown in Figure 7.19, where the real and

imaginary parts are plotted separately for both the B0 and B+ cases. Both the real and imaginary

parts are smooth functions of q2 in the region below the J/Ψ resonance where they are considered

(4m2
` ≤ q2 ≤ 8.68 GeV2), and are small for q2 > 1 GeV2. The differential decay rate is suppressed

by at least β =
√

1− 4m2
`/q

2 at low q2 where the nonfactorisable corrections are largest. As a

result, the corrections do not make a significant contribution, as can be seen in the plots of the

differential branching fraction.

The overall modest contributions of the above corrections are shown for Ceff
7 in Figure 7.19 and

Ceff
9 in Figure 7.20. In each plot, both corrected and uncorrected values are plotted. Cusps

in Ceff
7 and Ceff

9 either occur within the vetoed J/Ψ resonance region near q2 ≈ 10 GeV2 or

at q2 = 4m2
c ≈ 11.3 GeV2, between the J/Ψ and Ψ(2S) resonances. In this region between
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Figure 7.19: Left: the real and imaginary parts of f+∆Ceff
9 for both the B0 and B+ cases. Right:

the real and imaginary parts of Ceff,0
7 and Ceff,1

7 (see Equation (7.18)), showing the combined
effect of the nonfactorisable and O(αs) corrections. Corrected values are shown with solid lines
and dark fill colour, while uncorrected values are shown with dotted lines and light fill colour.
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Figure 7.20: The real and imaginary parts of Ceff,0
9 and Ceff,1

9 (see Equation (7.19)), for B0 →
K0`+`− (left) and B+ → K+`+`− (right), showing the combined effect of the nonfactorisable
and O(αs) corrections. Corrected values are shown with solid lines and dark fill colour, while

uncorrected values are shown with dotted lines and light fill colour. C9 = Ceff,0
9 − Y (q2) =

4.114(14) [40] is included for comparison.
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Figure 7.21: Left: differential branching fraction for B+ → K+`+`−, with our result in blue,
compared with experimental results [9, 193, 194, 200, 202, 204]. Note that Belle ’19, and LHCb
’14C and ’21 have ` = e, whilst otherwise ` = µ. Horizontal error bars indicate bin widths.
Right: the total branching fraction for B0 → K0`+`−. Our result (HPQCD ’22) is given by the
black band, as compared with experimental results [193, 194, 196, 199, 200, 201]. Dashed lines
indicate the effect of adding QED uncertainty (see [4]) to our result.

the resonances, we linearly interpolate the differential decay rate and are therefore unaffected

by the cusps. The most significant effect of the corrections is an approximately 20% shift to

Re[Ceff,1
7 ] arising from Re[δCeff

7 ]. The growth of corrections and in their uncertainties at high

and low q2 is suppressed by kinematic factors in the decay rate, resulting in minimal impact in

the well-behaved regions of q2 where we will give our main results.

We also note in Figure 7.20, that there is a slight channel dependence to Ceff,1
9 , particularly at

low q2. This causes a slight difference in the shape of the differential branching fractions between

B0 → K0`+`− and B+ → K+`+`−.

Results

Comprehensive results for different combinations of meson charges and final state leptons are

presented in [4] and tabulated below in Section 7.5. Here we shall plot the most important of

these results.

Figure 7.21 shows on the left the differential branching fraction for B+ → K+`+`− (where

` = e, µ) across the full q2 range, as well as binned experimental results. The vetoed regions

discussed above are shown by black bands, and we linearly interpolate through and between

them. We see that our result, the blue band, is considerably higher than experiment across
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Channel Result q2/GeV2 range B × 107 Tension

B+ → K+e+e− LHCb ’21 (1.1, 6) 1.401+0.074
−0.069 ± 0.064 −3.3σ

B+ → K+e+e− HPQCD ’22 (1.1, 6) 2.07± 0.17 -

B0 → K0µ+µ− LHCb ’14A (1.1, 6) 0.92+0.17
−0.15 ± 0.044 −3.6σ

B0 → K0µ+µ− HPQCD ’22 (1.1, 6) 1.74± 0.15 -

B0 → K0µ+µ− LHCb ’14A (15, 22) 0.67+0.11
−0.11 ± 0.035 −3.2σ

B0 → K0µ+µ− HPQCD ’22 (15, 22) 1.16± 0.10 -

B+ → K+µ+µ− LHCb ’14A (1.1, 6) 1.186± 0.034± 0.059 −4.7σ
B+ → K+µ+µ− HPQCD ’22 (1.1, 6) 2.07± 0.17 -

B+ → K+µ+µ− LHCb ’14A (15, 22) 0.847± 0.028± 0.042 −3.4σ
B+ → K+µ+µ− HPQCD ’22 (15, 22) 1.26± 0.11 -

Table 7.11: Comparison of branching fractions with recent experimental results [9, 194] in well
behaved regions of q2. Note that the B+ → K+e+e− result quoted here from LHCb ’21 is
obtained using the B+ → K+µ+µ− result from LHCb ’14A, combined with the ratio determined
in LHCb ’21. In the fifth column, the tension with our result is given by mean(Experiment -
HPQCD)/sdev(Experiment - HPQCD).

most of the q2 range. On the right we see the total branching fraction (i.e. the integral of the

plot on the left), for B0 → K0`+`−. Here, dotted lines indicate an additional QED uncertainty

from final-state interactions of the charged leptons of 5%(2)% for the e (µ) cases. Including this

uncertainty is a conservative move, as it is well accounted for [236, 237] in experimental results

using PHOTOS [238], but we shall see that it has minimal effect on our results. ` is the average

of the µ and e cases (see [4]). We see considerable tension with experimental results.

In Table 7.11, we compare our branching fractions with the most precise experimental results

available for B → Ke+e− and B → Kµ+µ−, in both cases looking only at the well behaved

regions below and above the cc̄ resonances. We find our branching factions to be significantly

higher than experiment, even just considering these theoretically clean regions. These same

results, plotted in the form of a ratio of the branching fractions, are shown in Figure 7.22, with

error bars indicating 1, 3 and 5 σ. It is worth noting that the corrections to Ceff,0
7 and Ceff,0

9

discussed above have made a difference of between 0.3 and 1 σ to these results.

In [4], we also calculated a new theoretical value for Rµe = Bµ/Be = 0.99954(26)lat(1000)QED.

Whilst this represents an improvement in the theoretical determination, it is dominated by QED

uncertainty [239] and irrelevant for the tension with the recent LHCb result Rµe = 0.846(44) [9],

which is almost entirely driven by experimental error.
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Figure 7.22: Comparison of branching fractions with recent experimental results [9, 194] in
well behaved regions of q2. Here we show the ratio of the experimental branching fraction to
our results, meaning our results correspond to the line at 1. The error bars are 5σ long, with
markers at 1, 3 and 5 σ. Note that the σ here are different from those calculated in Table 7.11.
On the right, labels indicate q2 bins in units of GeV2.

7.4.2 B → Kνν̄

We can also study the rare decays B → Kνν̄, which are of phenomenological interest [240].

There is limited experimental data at the present time, but we anticipate more will be collected

in future [241]. We can calculate the short distance contribution to the differential branching

fraction (summed over neutrino flavours) [181, 242, 243], which depends only on the vector form

factor.
dB(B → Kνν̄)SD

dq2
= τB|VtbV ∗ts|2

(ηEWGF )2α2
eX

2
t

32π5 sin4 θW
|~pK |3f2

+(q2), (7.23)

with Xt = 1.468(17) [244], and other quantities given in [4]. This short distance expression is

correct in the case of B0 → K0νν̄ decays and dominates in B+ → K+ν`ν̄` decays, except in the

case ` = τ . In this case, long distance effects can come into play. These effects are calculated

in Equation (2.27) of [181]. We repeat this calculation using some updated values. |Vub| =

0.00370(10)(12) is given from exclusive B → π`ν decays in [129, 216], based on experimental data

and lattice QCD form factors from [172, 245]. Other values, |Vus|fK+ = 0.03509(4)(4) GeV [128,

216, 246], fB+ = 0.1894(8)(11)(3)(1) GeV [79] and ττ = 0.2903(5) ps [216] are used to obtain

B(B+ → K+ντ ν̄τ )LD = 6.26(55)× 10−7, roughly 10% (≈ 1σ) of the short distance contribution.

We plot the short distance contribution (Equation 7.23) against q2 on the left hand side of

Figure 7.23. Our total branching fraction results have ≈ 10% uncertainty. Current experimental
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Figure 7.23: Left: the short distance contribution to dB(B → Kνν̄)/dq2, for both the charged
and neutral cases. Right: our result for B+ → K+νν̄, including long distance effects, as compared
with current 90% confidence limits from BaBar [247] and Belle II [248]. Theoretical uncertainties
achieved by Belle II with 5 ab−1 and 50 ab−1 [241], assuming our central value, are also included.

bounds are roughly an order of magnitude larger, but our uncertainty complements the ≈ 10%

error expected from Belle II with 50 ab−1 [241], allowing for a more stringent test of this quantity

in future. This is demonstrated on the right hand side of Figure 7.23, which compares our result

with the current 90% confidence limits set by BaBar [247] and Belle II [248], as well as the

theoretical future precision achieved by Belle II with 5 ab−1 and 50 ab−1 [241], assuming a result

centred on our value.

7.5 Numerical results

q2 bin (0.001, 4) (4, 8) (8, 12) (12, 16) (16, 20) (20, q2max)

106B(B+ → K+νν̄ SD) 1.189(97) 1.155(90) 1.071(84) 0.905(72) 0.597(48) 0.127(11)

106B(B0 → K0νν̄ SD) 1.102(90) 1.071(83) 0.992(78) 0.837(66) 0.550(44) 0.1149(97)

Table 7.12: Short distance contributions to branching fractions B(0/+) = B(B0/+ → K0/+νν̄)SD

for the rare decay B → Kνν̄ (Equation (7.23)) integrated over various q2 bins. Numerical values
for q2 bins are in units of GeV2.
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q2 bin (4m2
` , q

2
max) (0.05, 2) (1, 6) (2, 4.3) (4.3, 8.68) (14.18, 16) (16, 18) (18, 22)

107B(B+ → K+e+e−) 7.04(55) [6.06(47)] 0.815(71) 2.11(18) 0.978(82) 1.77(16) 0.533(48) 0.478(43) 0.496(45)

107B(B0 → K0e+e−) 6.28(49) [5.39(42)] 0.710(62) 1.78(15) 0.814(70) 1.56(14) 0.493(44) 0.442(39) 0.454(41)

107B(B → Ke+e−) 6.66(52) [5.73(44)] 0.763(66) 1.94(16) 0.896(75) 1.67(14) 0.513(46) 0.460(41) 0.475(43)

107B(B+ → K+µ+µ−) 7.03(55) [6.06(47)] 0.809(70) 2.11(18) 0.978(82) 1.77(16) 0.533(48) 0.479(43) 0.498(45)

107B(B0 → K0µ+µ−) 6.26(49) [5.36(42)] 0.703(61) 1.78(15) 0.815(70) 1.56(14) 0.493(44) 0.442(39) 0.456(41)

107B(B → Kµ+µ−) 6.64(51) [5.71(44)] 0.756(65) 1.94(16) 0.896(75) 1.67(14) 0.513(46) 0.461(41) 0.477(43)

107B(B+ → K+`+`−) 7.04(55) [6.06(47)] 0.812(70) 2.11(18) 0.978(82) 1.77(16) 0.533(48) 0.479(43) 0.497(45)

107B(B0 → K0`+`−) 6.27(49) [5.38(42)] 0.707(62) 1.78(15) 0.815(70) 1.56(14) 0.493(44) 0.442(39) 0.455(41)

107B(B → K`+`−) 6.65(51) [5.72(44)] 0.759(66) 1.94(16) 0.896(75) 1.67(14) 0.513(46) 0.460(41) 0.476(43)

q2 bin (0.1, 2) (2, 4) (4, 6) (6, 8) (15, 17) (17, 19) (19, 22) (1.1, 6) (15, 22)

107B(B+ → K+e+e−) 0.798(69) 0.852(71) 0.825(72) 0.803(72) 0.537(48) 0.412(37) 0.308(28) 2.07(17) 1.26(11)

107B(B0 → K0e+e−) 0.690(60) 0.708(60) 0.713(61) 0.713(63) 0.496(44) 0.380(34) 0.281(26) 1.74(15) 1.16(10)

107B(B → Ke+e−) 0.744(64) 0.780(65) 0.769(65) 0.758(66) 0.517(46) 0.396(35) 0.294(27) 1.90(16) 1.21(11)

107B(B+ → K+µ+µ−) 0.795(69) 0.852(71) 0.826(72) 0.803(72) 0.538(48) 0.413(37) 0.309(28) 2.07(17) 1.26(11)

107B(B0 → K0µ+µ−) 0.687(60) 0.708(60) 0.714(61) 0.714(63) 0.497(44) 0.381(34) 0.282(26) 1.74(15) 1.16(10)

107B(B → Kµ+µ−) 0.741(64) 0.780(65) 0.770(65) 0.759(66) 0.518(46) 0.397(35) 0.296(27) 1.90(16) 1.21(11)

107B(B+ → K+`+`−) 0.796(69) 0.852(71) 0.825(72) 0.803(72) 0.538(48) 0.412(37) 0.308(28) 2.07(17) 1.26(11)

107B(B0 → K0`+`−) 0.688(60) 0.708(60) 0.713(61) 0.713(63) 0.497(44) 0.380(34) 0.282(26) 1.74(15) 1.16(10)

107B(B → K`+`−) 0.742(64) 0.780(65) 0.769(65) 0.758(66) 0.517(46) 0.396(35) 0.295(27) 1.90(16) 1.21(11)

q2 bin (0.1, 4) (4, 8.12) (10.2, 12.8) (14.18, q2max) (10.09, 12.86) (16, q2max)

107B(B+ → K+e+e−) 1.65(14) 1.68(15) 0.918(76) 1.52(13) 0.979(81) 0.987(88)

107B(B0 → K0e+e−) 1.40(12) 1.47(13) 0.837(69) 1.40(12) 0.893(74) 0.906(81)

107B(B → Ke+e−) 1.52(13) 1.57(13) 0.878(72) 1.46(13) 0.936(77) 0.946(85)

107B(B+ → K+µ+µ−) 1.65(14) 1.68(15) 0.919(76) 1.52(13) 0.980(81) 0.990(88)

107B(B0 → K0µ+µ−) 1.39(12) 1.47(13) 0.838(69) 1.40(12) 0.894(74) 0.909(81)

107B(B → Kµ+µ−) 1.52(13) 1.57(13) 0.878(72) 1.46(13) 0.937(77) 0.949(85)

107B(B+ → K+`+`−) 1.65(14) 1.68(15) 0.918(76) 1.52(13) 0.979(81) 0.988(88)

107B(B0 → K0`+`−) 1.40(12) 1.47(13) 0.838(69) 1.40(12) 0.893(74) 0.908(81)

107B(B → K`+`−) 1.52(13) 1.57(13) 0.878(72) 1.46(13) 0.936(77) 0.948(85)

Table 7.13: Branching fractions integrated over some commonly used q2 binning schemes for the
electron, muon and `, which is the average of the two. In the first bin of the top panel, giving
the branching fraction integrated over the full q2 range, the first number is the whole integral,
whilst the one which follows in square brackets is the result when the ranges 8.68-10.11 GeV2

and 12.86-14.18 GeV2 are excluded. Numerical values for q2 bins are in units of GeV2. QED
corrections are not included here.
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q2 bin (4m2
µ, q

2
max) (0.05, 2) (1, 6) (2, 4.3) (4.3, 8.68) (14.18, 16) (16, 18) (18, 22)

103(R
µ(+)
e − 1) -0.08(28) -7.84(95) 0.39(30) 0.41(30) 0.62(25) 1.43(23) 1.91(25) 3.81(37)

103(R
µ(0)
e − 1) -0.81(29) -10.30(96) 0.44(34) 0.47(33) 0.65(27) 1.43(23) 1.92(25) 3.85(37)

103(Rµe − 1) -0.44(26) -9.03(90) 0.41(32) 0.44(31) 0.63(26) 1.43(23) 1.92(25) 3.83(37)

q2 bin (0.1, 2) (2, 4) (4, 6) (6, 8) (15, 17) (17, 19) (19, 22) (1.1, 6) (15, 22)

103(R
µ(+)
e − 1) -3.29(76) 0.40(30) 0.54(27) 0.65(25) 1.63(24) 2.31(27) 4.57(42) 0.40(30) 2.57(29)

103(R
µ(0)
e − 1) -4.25(82) 0.46(34) 0.58(29) 0.68(26) 1.64(24) 2.32(27) 4.63(43) 0.45(33) 2.59(29)

103(Rµe − 1) -3.75(79) 0.43(32) 0.56(28) 0.66(25) 1.63(24) 2.32(27) 4.60(42) 0.43(32) 2.58(29)

q2 bin (0.1, 4) (4, 8.12) (10.2, 12.8) (14.18, q2max) (10.09, 12.86) (16, q2max)

103(R
µ(+)
e − 1) -1.35(50) 0.60(26) 0.98(23) 2.50(29) 0.97(23) 3.08(32)

103(R
µ(0)
e − 1) -2.30(54) 0.63(27) 0.99(23) 2.51(29) 0.99(23) 3.10(32)

103(Rµe − 1) -1.80(52) 0.61(26) 0.98(23) 2.50(29) 0.98(23) 3.09(32)

Table 7.14: The ratio for B → Kµ+µ− and B → Ke+e− branching fractions, Rµe , integrated
over some commonly used q2 binning schemes. We give results for the charged meson case, the
neutral meson case and the charge-averaged case (defined as the ratio of the two charge-averaged
integrals). Numerical values for q2 bins are in units of GeV2. A 1% uncertainty from QED
effects [239] is not included in these numbers.

q2 bin (4m2
τ , q

2
max) (14.18, q2max) (14.18, 16) (16, 18) (18, 22) (15, 17) (17, 19) (19, 22) (15, 22)

107B(B+ → K+τ+τ−) 1.83(13) 1.62(11) 0.388(28) 0.462(33) 0.712(50) 0.454(32) 0.449(32) 0.492(34) 1.396(97)

107B(B0 → K0τ+τ−) 1.68(12) 1.49(10) 0.359(26) 0.427(30) 0.655(46) 0.420(30) 0.415(29) 0.452(31) 1.288(90)

107B(B → Kτ+τ−) 1.75(12) 1.55(11) 0.374(27) 0.445(31) 0.683(48) 0.437(31) 0.432(30) 0.472(33) 1.342(94)

Table 7.15: Branching fractions for decays to τ leptons, integrated over some commonly used
q2 bins. Numerical values for q2 bins are in units of GeV2. No uncertainty to allow for QED is
included in these numbers.

q2 bin (4m2
τ , q

2
max) (14.18, q2max) (14.18, 16) (16, 18) (18, 22) (15, 17) (17, 19) (19, 22) (15, 22)

R
τ(+)
e 0.902(34) 1.065(42) 0.729(26) 0.966(36) 1.434(62) 0.846(31) 1.091(42) 1.600(74) 1.111(44)

R
τ(0)
e 0.902(35) 1.066(42) 0.730(26) 0.967(36) 1.441(63) 0.847(31) 1.094(42) 1.610(74) 1.113(44)

Rτe 0.902(35) 1.065(42) 0.729(26) 0.967(36) 1.438(63) 0.847(31) 1.092(42) 1.605(74) 1.112(44)

R
τ(+)
µ 0.900(34) 1.063(42) 0.728(26) 0.964(36) 1.429(62) 0.845(31) 1.089(42) 1.592(73) 1.108(44)

R
τ(0)
µ 0.900(34) 1.063(42) 0.729(26) 0.966(36) 1.436(62) 0.846(31) 1.091(42) 1.603(73) 1.110(44)

Rτµ 0.900(34) 1.063(42) 0.728(26) 0.965(36) 1.432(62) 0.845(31) 1.090(42) 1.597(73) 1.109(44)

R
τ(+)
`

0.901(34) 1.064(42) 0.729(26) 0.965(36) 1.432(62) 0.845(31) 1.090(42) 1.596(73) 1.110(44)

R
τ(0)
`

0.901(34) 1.064(42) 0.729(26) 0.967(36) 1.438(63) 0.846(31) 1.092(42) 1.606(74) 1.112(44)

Rτ` 0.901(34) 1.064(42) 0.729(26) 0.966(36) 1.435(62) 0.846(31) 1.091(42) 1.601(74) 1.111(44)

Table 7.16: The ratio of branching fractions, R for the τ case to the electron, muon and `, (which
is the average of the two) cases, integrated over some commonly used q2 bins. Numerical values
for q2 bins are in units of GeV2. No uncertainty to allow for QED effects is included in these
numbers.
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7.6 Conclusions

We have performed the first fully relativistic calculation of the semileptonic B → K decay, using

the heavy-HISQ technique on MILC Nf = 2 + 1 + 1 ensembles. We have obtained scalar, vector

and tensor form factors which are roughly three times as precise as previous work at q2 = 0 and

used our them to illustrate spectator quark mass dependence in b → s and c → s semileptonic

decays.

With an eye to phenomenology, we have calculated the differential branching fractions for B →
K`+`− decays, paying special attention to corrections to the Wilson coefficients C7 and C9

which we have calculated, plotted and shown to be relatively small. We have further confirmed

previously measured tensions between theory and experiment in the q2 regions which are free of

resonances, finding a tensions of 3− 5σ for different channels. This provides a strong indication

of new physics, or at least of a lack of understanding of the systematic errors present in this

system. The latter option is somewhat disfavoured because of the exisiting tension in Rµe , which

is theoretically cleaner.

We have provided updated differential braching fractions for B → Kνν̄ decays, which have

similar levels of uncertainty to those expected for Belle II at 50 ab−1.



Chapter 8

Conclusions

The Standard Model must surely break eventually, but from which direction will the fatal stroke

come? In this thesis we have presented lattice QCD updates on two areas within flavour physics

where the SM can be tested.

Firstly, in Chapter 5, we presented a precise new determination of the scalar and vector form

factors for the semileptonic decay D → K`ν using the HISQ action on MILC Nf = 2 + 1 + 1

ensembles. Using these form factors, we determined the CKM matrix element Vcs using three

semi-independent methods, with our preferred result giving |Vcs| = 0.9663(80), the first time this

quantity has been shown to be significantly less than one, and with sub percentage uncertainty.

This new result significantly reduces the uncertainty on the new physics sensitive unitarity con-

straints it is involved in, and they remain consistent with unity. This new value has now been

appropriately averaged with other semileptonic determinations, and with their leptonic counter-

parts, by the PDG review [29], halving the uncertainty on the global average value of |Vcs|, which

will in turn feed into CKM fits and other work, tightening the screw on the SM.

In Chapter 6, we sought to explore the viability of a heavy-HISQ B → K form factor calculation,

via a heavier spectator mass proxy, giving rise to the unphysical Bs → ηs calculation presented

there. We found heavy-HISQ to be effective for b → s decays with light spectators, with our

resulting scalar and vector form factors’ errors dominated by statistical uncertainty. We showed

that the spectator quark mass dependence of the form factors was mild for light quarks, exhibiting

only slight breaking of SU(3) flavour symmetry, and we also used our form factors to test some

predictions from heavy quark effective theory, with mixed results.

181
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Building on the heavy-HISQ work of Chapter 6, we presented the first fully relativistic deter-

mination of the B → K semileptonic form factors in Chapter 7, providing results free from the

matching uncertainties of previous effective theory calculations. Again, we used the HISQ action

on MILC Nf = 2 + 1 + 1 ensembles, this time calculating scalar, vector and tensor form factors.

We made use of the Bs → ηs data from Chapter 6 by folding this in to the chiral logarithm

expansion in the spectator quark mass. We used our new form factors to update the theoretical

determinations of the branching fraction for B → K`+`− and other quantities, which are good

places to look for new physics. We found tensions of between 3 and 5 σ with experimental

results from LHCb, in resonance free parts of the q2 range; a strong indication of new physics,

also hinted at by the tension in the theoretically cleaner ratio Rµe .
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