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Abstract

Disease mapping is the field of epidemiology that estimates the spatial or spatio-temporal

pattern in disease risk. Approaches in this field are generally based on data collected on a

set of non-overlapping areal units that comprise the study region, and typically utilise counts

of the numbers of disease cases within each areal unit. Conditional autoregressive (CAR)

models are commonly used to capture the spatial autocorrelation present in areal unit disease

count data. The spatial correlation structure that is induced by these models is typically deter-

mined by a neighbourhood matrix based on geographical adjacency, which enforces spatial

correlation between geographically neighbouring areas and assumes a spatially smooth risk

surface. However this may not be realistic in practice, because some pairs of neighbour-

ing areas are likely to exhibit vastly different disease risks. Therefore the aim of this thesis

is to develop methodology that allows for discontinuities in the spatial risk pattern when

estimating disease risk. The first two models proposed are in a purely spatial setting and

account for discontinuities by identifying spatial clusters of areas that have higher or lower

risks than their geographical neighbours, while the third proposed model extends this to the

spatio-temporal domain to identify clusters/discontinuities and estimate the spatial pattern

of disease risk over time. The final piece of work of this thesis allows for discontinuities by

using a boundary analysis approach. This approach identifies the boundaries in the spatial

risk surface that separate pairs of geographically adjacent areas that exhibit large differences

between their risks. Each model is applied to hospital admissions data for respiratory disease

from the Greater Glasgow and Clyde Health Board region. Overall, it has been found that the

respiratory disease risk surface in Greater Glasgow is not globally spatially smooth. There

are numerous pairs of neighbouring areas where a discontinuity in disease risk appears to

exist. In addition, the respiratory disease risk in Glasgow appears to increase over time and

people living in more deprived areas are at higher risk of respiratory hospital admissions than

those living in more affluent areas.
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Chapter 1

Introduction

Disease mapping is the field of statistical epidemiology that studies the spatial or spatio-

temporal distribution of population-level disease risk (Lawson et al., 2016). Quantifying the

spatial variation in disease risk is of great importance for improving public health, as for ex-

ample it allows researchers to identify possible underlying factors explaining the variation, as

well as allowing health authorities to design and evaluate the effect of public health policies

such as the allocation of health care resources. The differences in disease risk across so-

cial groups and between different population groups are known as health inequalities (NHS

Health Scotland, 2016), which are often related to risk factors such as population behaviours

(e.g. smoking, alcohol consumption, exercise) and environmental exposures (e.g. air pol-

lution, water quality) (Lawson and Lee, 2017). Poverty or socio-economic deprivation is

one of the key reasons for these differences, with deprived areas being more likely to ex-

hibit higher disease risks than more affluent areas (McCartney, 2012, NHS Health Scotland,

2016). One of the earliest disease mapping studies can be traced back to the work of Seaman

(1798), who produced a dot disease map of the locations of residences affected by yellow

fever in 1795 in New Slip, New York as shown in Figure 1.1. He mapped the infected cases

as well as the local waste sites, and concluded that yellow fever originated in these waste

areas. In 1854, London was experiencing a deadly cholera epidemic. At the time, people be-

lieved that cholera was caused by bad air. However, Snow (1855) mapped the cholera cases

in Soho, London using small stacked bars (see Figure 1.2), and ultimately determined the

source of the outbreak was an infected public water pump. John Snow is widely considered

to be the father of modern epidemiology for determining how cholera was transmitted and

the statistical mapping methods he initiated.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Seaman’s map of the sources of the 1795 yellow fever outbreak in New York
City, with infected cases marked with dots and waste sites marked with S’s and crosses.
Source: U.S. National Library of Medicine.

Figure 1.2: The original map by Snow (1855) showing the spread of cholera in Soho, Lon-
don in 1855, with infected cases marked using small bars.

Modern disease mapping studies usually illustrate the spatial patterns of differences in ill

health via disease maps, where areas are shaded on a scale in different colours relating to

disease risk. Most disease maps utilise data collected on non-overlapping areal units that

comprise the study region, such as electoral wards, census tracts or health board areas. This

is because individual level data can not be made open to the public due to confidentiality
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reasons, therefore only aggregated data such as counts of the numbers of disease cases or

mortality from the population living in each area are available. Disease counts will depend

on the overall size and demographic structure (e.g. age and sex) of the populations living

within each area, thus an age and sex adjusted measure of disease risk is required to put the

disease risks for different areas on the same scale for proper comparison. This is done by

computing the expected disease counts in each area via indirect standardisation based on its

population demographics and national age-sex specific disease rates. The simplest measure

of disease risk is the standardised incidence ratio (SIR), which is the ratio of the observed

counts to the expected counts of disease cases for each areal unit. Values of SIR less than

1 indicate lower levels of disease risk compared to expected, while values greater than 1

correspond to higher levels of disease risk than expected. For example, an SIR of 1.2 cor-

responds to a risk 20% higher than expected for that area. However, the SIR is an unstable

and sometimes uninformative estimate of disease risk, especially when the population of the

study is small or the disease in question is rare, in which case some areas may have small

values of the expected number of disease cases. Additionally, the naive mapping of SIR ig-

nores the spatial autocorrelation which could be present in the data, and the SIR also ignores

the estimation of covariate effects. These issues thus have led researchers to instead estimate

disease risk patterns using model-based approaches.

Two inferential goals are relevant to modern disease mapping studies (Gelfand et al., 2010):

(i) computing precise estimates of disease risk in small areas; (ii) identifying high/low-risk

areas. Bayesian hierarchical models have been commonly adopted during the last years to

deal with these goals, by incorporating a set of spatially varying random effects that account

for the spatial autocorrelation in the data. These random effects are typically modelled via a

conditional autoregressive (CAR) model (Besag et al., 1991, Leroux et al., 2000), which as-

sumes spatial autocorrelation between neighbouring areas based on the idea that “Everything

is related to everything else, but near things are more related than distant things” (Tobler,

1970). This correlation is represented by a neighbourhood matrix WWW , which summarises the

spatial closeness between each pair of areal units. Typically WWW contains binary elements

{wi j} whose values are determined based on a border sharing specification, where wi j = 1

if areal units (i, j) share a common geographical border and wi j = 0 otherwise. Such CAR

models smooth the SIRs in each area by borrowing information from neighbouring areas to

remove random noise, and as a result, the estimated spatial risk pattern is globally spatially

smooth. However, these models may not be appropriate if the goal is instead to identify
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clusters of high-risk areas or boundaries of rapid changes in the risk surface, because they

assume a constant level of spatial autocorrelation across the entire study region and so force

neighbouring areas to have similar risks, which may prevent the identification of high-risk

areas as discontinuities in the smooth risk become blurred. This can also lead to poorer risk

estimation because in practice, the level of spatial autocorrelation can vary across the study

region. Some pairs of neighbouring areas may display strong spatial smoothness and have

similar risks, while other pairs exhibit weak or no spatial autocorrelation and have vastly dif-

ferent disease risks. Therefore enforcing a constant level of spatial autocorrelation across the

study region may result in incorrect spatial smoothing of disease risk between some neigh-

bouring areas and hence reduce the accuracy of risk estimation. Numerous approaches have

been developed to allow for spatial discontinuities in the disease risk surface, by identifying

either clusters of areas that exhibit elevated or reduced risks compared to their neighbours

(Knorr-Held and Raßer, 2000, Anderson et al., 2014, Adin et al., 2019, Santafé et al., 2021)

or boundaries that separate two geographically adjacent areas with largely different risks (Lu

and Carlin, 2005, Lu et al., 2007, Lee and Mitchell, 2013, Lee et al., 2014, Rushworth et al.,

2017, Lee et al., 2021). The identification of spatial discontinuities in the data is crucial for

social epidemiologists and health policy makers. On the one hand, knowledge of the ge-

ographical extent of high-risk clusters enables disease prevention and health funding to be

targeted appropriately. On the other hand, the locations of boundaries are likely to represent

the demarcation between different communities or neighbourhoods, and reflect changes in

the underlying biological, physical or social processes (Lee et al., 2021, Jacquez et al., 2000).

Estimating risks via spatial smoothing and detecting risk discontinuities are two contradic-

tory goals in disease mapping. Therefore, the main aim of this thesis is to develop spatial

and spatio-temporal methodology that can achieve a trade-off between smoothing and iden-

tifying discontinuities in the spatial pattern of disease risk. In this thesis, models are built

based on aggregated disease count data at the areal unit level, and the study region considered

here is the Greater Glasgow and Clyde Health Board in West Central Scotland, which pro-

vides health care to a population of around 1.2 million people (https://www.nhsggc.

org.uk/). This region is the largest health board in both Scotland and the UK in terms of

population size, which consists of Glasgow, the largest city in Scotland, and the surround-

ing areas including East Dunbartonshire, East Renfrewshire, Inverclyde, Renfrewshire and

West Dunbartonshire. The small areal units for which disease data are available are known

as Intermediate Zones (IZs) (https://statistics.gov.scot/home). The Greater

https://www.nhsggc.org.uk/
https://www.nhsggc.org.uk/
https://statistics.gov.scot/home
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Glasgow and Clyde Health Board contains a total of 257 IZs, whose populations range be-

tween 2,500 and 6,000 in a single IZ with an average population of approximately 4,000

residents. The geographical sizes of these 257 IZs are different and depend on the popula-

tion density of each IZ. Figure 1.3 presents the map of the IZs in the Greater Glasgow study

region, and shows that the densely populated areas in the center of the health board have

much smaller geographical size than the more rural areas with sparse populations.

Figure 1.3: A map of the 257 Intermediate Zones (IZs) in the Greater Glasgow and Clyde
Health Board.

The Greater Glasgow and Clyde Health Board is selected due to a few reasons. Firstly,

Glasgow exhibits some of the poorest health profiles compared to the rest of the United

Kingdom and western Europe, which is known as the “Glasgow effect” (Walsh et al., 2010).

This can be seen in Figure 1.4, which shows the male life expectancy at birth in Glasgow

compared to other major cities in the UK from 1991-2020. The life expectancy estimates

are calculated using abridged period life tables constructed by the established methodology

developed by Chiang et al. (1979). Abridged life tables aggregate deaths and population

data into age intervals, e.g. 0-1, 1-4, 5-9, . . . , 80-84, 85 over. Age-specific mortality rates

are used within the life table to calculate the probability of dying at each age interval. These

probabilities are then applied to a hypothetical population cohort of newborn babies. The
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life expectancy at birth in an area can thus be defined as an estimate of the average number

of years a new-born baby would survive if he or she experienced the age-specific mortality

rates of the given area and time period throughout his or her life, which is computed as the

total number of person-years lived beyond exact age 0 divided by the number of newborns.

One disadvantage of such life table estimates is that they do not account for the migratory

segments of individuals during their lifetime (Chiang et al., 1979). Figure 1.4 shows that

although the male life expectancy in Glasgow has been improving overall over the 29 year

period, it remains the lowest of all major cities in the UK and the gaps between Glasgow and

the other cities are still widening. The figure also illustrates that improvements in male life

expectancy appear to level off in recent years. A sharp reduction in life expectancy for men

across UK cities was observed in 2018-2020, which is likely to result from the increased

mortality caused by the Covid-19 pandemic occurring in early 2020. Figure 1.5 displays

the estimated male life expectancy across Glasgow neighbourhoods between 2015 and 2019,

where large health inequalities can be clearly seen. The life expectancy of males living in

Glasgow ranged from 65.4 years in Govan (a deprived area) to 83 years in Pollokshields

West (an affluent area), which is a gap of around 18 years.

Figure 1.4: Male life expectancy for Glasgow compared to other selected cities in the UK
from 1991-93 to 2018-20. Plot source: The Glasgow Centre for Population Health (2021).
Data source: ONS, National Records of Scotland.



CHAPTER 1. INTRODUCTION 7

Figure 1.5: Estimated male life expectancy across Glasgow neighbourhoods between 2015
and 2019. The estimates are based on Chiang II methodology (Chiang et al., 1979). Plot
source: The Glasgow Centre for Population Health (2021). Data source: National Records
of Scotland.

The methodology proposed in this thesis is applied to hospital admissions data for respiratory

disease (defined using the International Classification of Disease tenth revision by codes J00-

J99 and R09.1) in the Greater Glasgow and Clyde Health Board region. Respiratory disease

is selected due to it being a significant cause of morbidity and mortality in the UK, which

accounts for 6.5% of hospital admissions and 24% of all deaths (Chung et al., 2002, Lozano

et al., 2012). Chronic obstructive pulmonary disease (COPD), lower and upper respiratory

tract infections, occupational lung diseases, reactive airway diseases and lung cancer are the

leading causes of hospital admissions due to respiratory disease in the UK, which lead to

serious public health problems and financial burden (Salciccioli et al., 2018). Factors such

as smoking, air pollution from traffic and industrial sources, low socioeconomic status are

important contributors to most respiratory conditions (Forum of International Respiratory

Societies, 2017, Troeger et al., 2018).

I develop spatial and spatio-temporal modelling approaches for estimating disease risk and

identifying discontinuities in the risk surface in Chapters 3, 4, 5 and 6, the first three of

which identify risk discontinuities by partitioning the entire study region into disjoint clus-

ters of areas exhibiting higher or lower risks than their geographical neighbours, while the

last chapter accounts for discontinuities by identifying the locations of boundaries where ge-

ographically neighbouring areas have very different disease risks. In Chapter 3, a clustering
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method (k-means clustering) is applied to data to produce a set of candidate cluster struc-

tures, and then a separate Bayesian hierarchical model is fitted for each candidate structure.

The most appropriate cluster structure is chosen by model comparison techniques, includ-

ing the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002) and the effective

number of independent parameters. In order to provide more flexibility in cluster identifica-

tion as well as quantifying the uncertainty in the cluster structure, in Chapter 4 I construct

a much bigger set of candidate cluster structures using multiple clustering methods, and fit

a single spatial model in a Bayesian setting, with the optimal cluster structure estimated

as a parameter within that model. This spatial modelling approach is then extended to the

spatio-temporal modelling of data in Chapter 5 to estimate disease risk and clusters over

time, where the spatial clusters either remain fixed or evolve dynamically over time. These

modelling approaches have a common feature of allowing the disease risk to be correlated

for pairs of geographically neighbouring areal units within the same cluster, but condition-

ally independent for neighbouring areas in different clusters.

In Chapter 6 I use a boundary analysis approach to identify discontinuities in the spatial risk

pattern. Rather than seeking for spatial clusters of areas identified as being similar or differ-

ent in disease risk as in the previous chapters, here the differences in disease risk between

each pair of geographically adjacent areal units are of interest. These differences are known

as “boundaries” (large or small) in the risk surface, which can be open and do not necessar-

ily completely enclose an area or group of areal units. I adopt the graph-based optimisation

algorithm proposed by Lee et al. (2021) to estimate a number of candidate neighbourhood

matrices, which represent a range of potential boundary structures for the data. The algo-

rithm treats each element wi j in the neighbourhood matrix WWW as a binary random quantity

if areal units (i, j) share a common geographical border. If wi j is eventually estimated as 0

then a boundary is said to exist between areas i and j in the risk surface, while an estimate of

wi j = 1 suggests no risk boundary between the two areas. Then a spatio-temporal model is

fitted to the data, which jointly estimates disease risk over time and identifies the locations of

boundaries by estimating the neighbourhood matrix for the data. This model does not allow

for the smoothing of disease risk between pairs of neighbouring areas that have a boundary.

The remainder of this thesis is organised as follows. Chapter 2 provides an overview of the

existing statistical methodology which is used throughout this thesis, and the related litera-

ture which particularly focuses on spatial and spatio-temporal modelling, as well as spatial
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clustering and boundary analysis in disease mapping. In Chapters 3 and 4, two spatial mod-

elling approaches are developed for estimating disease risk and identifying the spatial cluster

structure. The approach presented in Chapter 4 is extended to the spatial-temporal domain in

Chapter 5, which either forces the clusters/discontinuities to be the same for all time periods

or allows them to evolve dynamically over time. Chapter 6 discusses an approach that iden-

tifies the locations of boundaries corresponding to large differences in disease risk between

neighbouring areas. Finally, Chapter 7 summarises the work contained in the thesis and

discusses possible avenues for future research. The spatial methodology presented in Chap-

ters 3 and 4 is applied to hospital admissions data for respiratory disease for 2016 across the

Greater Glasgow and Clyde Health Board, while the spatio-temporal methodology presented

in Chapters 5 and 6 is applied to respiratory disease data for the years 2011-2017 for the same

health board region. Inference in all the proposed models is carried out in a Bayesian set-

ting. Inference for the models in Chapters 3, 4 and 5 is based on Markov chain Monte Carlo

(MCMC) simulation, while model inference in Chapter 6 is based on a Metropolis-coupled

Markov chain Monte Carlo algorithm due to the multimodality issue. All the models are

developed and written in R (R Core Team, 2013), while some complex parts are developed

in the more efficient C++ language via the Rccp package (Eddelbuettel et al., 2011).



Chapter 2

Literature review

This chapter provides an overview of the statistical theory and methodology which are used

throughout this thesis as well as the related literature. Section 2.1 introduces Bayesian statis-

tics, which is the statistical framework utilised in this thesis. Section 2.2 introduces gener-

alised linear models (GLMs), and particularly focuses on the Poisson GLMs for count data.

Section 2.3 introduces some commonly used model selection techniques when comparing

multiple statistical models. Section 2.4 gives a brief outline of spatial statistics, focusing on

the field of spatial modelling of areal unit data in a disease context, which is known as disease

mapping. This section forms the basis of the spatial methodology developed in Chapters 3

and 4. Some of the existing spatio-temporal disease mapping literature is explored in Sec-

tion 2.5, which forms the basis of Chapters 5 and 6. Section 2.6 explores existing approaches

which allow for discontinuities in the spatial risk pattern in a disease mapping context, which

is also one of the focuses of this thesis. Finally, Section 2.7 outlines a range of clustering

approaches which form part of the methodology developed in Chapters 3, 4 and 5, and Sec-

tion 2.8 introduces the receiver-operating characteristic (ROC) curves and the area under

the ROC curve which are used to quantify the accuracy of the boundary identification in

Chapter 6.

2.1 Bayesian statistics

2.1.1 Introduction

Bayesian statistics is a branch of statistics that helps people update their prior beliefs about

random events to produce new posterior beliefs after being given additional information such

as new data or related evidence. Bayes’ theorem (Bayes, 1763) was developed by Thomas

10
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Bayes in the 18th century and is stated as follows for random events A and B:

P(A|B) = P(B|A)P(A)
P(B)

,

where P(A) and P(B) are the probabilities of events A and B occurring, and P(A|B) is the

conditional probability of event A occurring given B has occurred. There are two schools of

statistical inference, namely frequentist statistics and Bayesian statistics. In frequentist statis-

tics, the observed data YYY = (Y1, . . . ,Yn) are treated as random samples whereas the unknown

underlying parameters of interest θθθ are assumed fixed. Under this framework, parameters

θθθ are typically estimated from the data YYY by maximizing the likelihood function denoted

by L(θθθ |YYY ) = ∏
n
i=1 f (Yi|θθθ), where f (Yi|θθθ) is the probability distribution function of Yi. The

uncertainty of a point estimate (e.g. the maximum likelihood estimator) is measured by a

a% confidence interval. For example, a 95% confidence interval means that if the data are

repeatedly sampled for 100 times with a confidence interval constructed each time, then 95%

of the resulting 100 confidence intervals will be expected to contain the true value of the pa-

rameter. Unlike frequentist statistics, in Bayesian statistics the observed data YYY = (Y1, . . . ,Yn)

are assumed to remain fixed whereas the model parameters θθθ are treated as random variables

which are estimated in terms of probability statements. Each parameter can be assigned a

probability distribution in advance, which is known as a prior distribution f (θθθ). A prior

distribution expresses our prior belief about a model parameter, which can then be updated

based on the observed data YYY to determine a posterior distribution f (θθθ |YYY ) as follows:

f (θθθ |YYY ) = f (YYY |θθθ) f (θθθ)
f (YYY )

. (2.1)

Here f (θθθ |YYY ) is the posterior distribution of θθθ given the observed data YYY , f (YYY |θθθ) is the data

likelihood and f (YYY ) is the marginal distribution of the data. If θθθ are discrete variables then

f (YYY ) = ∑θθθ f (YYY |θθθ) f (θθθ), otherwise f (YYY ) =
∫

f (YYY |θθθ) f (θθθ)dθθθ for continuous θθθ . However,

since f (YYY ) is usually difficult to estimate and it does not depend on θθθ , the formula (2.1) can

be rewritten up to a constant of proportionality as

f (θθθ |YYY ) ∝ f (YYY |θθθ) f (θθθ).

2.1.2 Prior distributions

A prior distribution f (θθθ) reflects all of the information we have about the unknown model

parameters θθθ before observing the data YYY . This prior distribution is then combined with
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the data likelihood f (YYY |θθθ) to determine the posterior distribution f (θθθ |YYY ). Therefore it is

crucial to choose an appropriate prior in order to make sensible inference for parameters.

There are various types of prior distribution depending on the available information and

the type of data and model. The prior distribution could be specified by using information

from previous studies with similar nature or expert knowledge in the field. Such a prior

is called an informative prior and has influence on the posterior distribution. However, if

little or no information is known about a parameter in advance of the observed data, then

a weakly informative prior, which has little influence on the posterior distribution, could

be assigned. In this case, the posterior distribution is dominated by the likelihood function

and driven by the data rather than the prior. For example, a weakly informative prior for

real valued parameters could be a Gaussian distribution with a very large variance, such as

θ j ∼ N(0, 100000), and a weakly informative prior for a parameter on the unit interval could

be a uniform prior distribution θ j ∼ Uniform(0, 1). Another form of weakly informative

prior is the Jeffreys prior (Jeffreys, 1946), under which any reparameterisation of the prior is

also constant. A Jeffreys prior is formed as

f (θθθ) ∝ ||I(θθθ)||
1
2 ,

where || · || denotes the determinant of a matrix and I(θθθ) is the Fisher Information defined as

I(θθθ) = E

[(
∂ log f (YYY |θθθ)

∂θθθ

)2∣∣∣∣∣θθθ
]
=−E

[
∂ 2 log f (YYY |θθθ)

∂θθθ
2

∣∣∣∣∣θθθ
]
.

The prior that has the same distributional form as the posterior distribution is called a con-

jugate prior to the likelihood. For example, suppose we have a single observation Y ∼

Binomial(n,θ), then the likelihood is

L(θ |Y ) = f (Y |θ) =
(

n
Y

)
θ

Y (1−θ)n−Y
∝ θ

Y (1−θ)n−Y .

If a beta distribution is chosen as the prior for θ , i.e. θ ∼ Beta(α,β ), then we have

f (θ) =
Γ(α +β )

Γ(α)Γ(β )
θ

α−1(1−θ)β−1
∝ θ

α−1(1−θ)β−1.
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The posterior distribution for θ is given as

f (θ |Y ) ∝ f (Y |θ) f (θ)

∝ θ
Y (1−θ)n−Y

θ
α−1(1−θ)β−1

∝ θ
Y+α−1(1−θ)n−Y+β−1.

Thus, the posterior distribution follows the same parametric form as the prior distribution,

that is a beta distribution f (θ |Y )∼ Beta(Y +α,n−Y +β ). Therefore a beta prior distribu-

tion is the conjugate prior for the binomial likelihood. Another example of a conjugate prior

for the Poisson mean parameter would be a Gamma prior. Conjugate priors are mathemat-

ically convenient and thus make inference easier because they allow the posterior to come

from a known standard distributional family. A prior is proper if it can integrate to a finite

number over its range space, otherwise it is an improper prior. For instance, a uniform prior

distribution over all real numbers, Uniform(−∞,∞), is an improper prior. Although an im-

proper prior can lead to a proper posterior distribution, care should be taken because it can

also result in an improper posterior which makes inference impossible.

In this thesis, the modelling approaches are developed in a Bayesian setting, and both conju-

gate and weakly informative priors will be used in the developed models.

2.1.3 Bayesian inference

In order to estimate the parameters in a Bayesian model, Bayesian inference is typically made

based on the posterior distributions which are obtained by updating the priors with the data

likelihood. Some posterior distributions are straightforward to calculate, for example com-

ing from a standard probability distribution family, then posterior samples can be directly

drawn from the distribution of interest. However, in many cases, the posterior distribution

is intractable and not easy to derive, so instead more complex and advanced methods are

required, which generally draw samples from an approximation of the posterior distribution.

Markov chain Monte Carlo (MCMC) simulation is the most commonly used approach when

θθθ can not be directly sampled from f (θθθ |YYY ). MCMC simulation generates a sequence of sam-

ples that are approximately drawn from the posterior distribution, by constructing a Markov

chain whose converging stationary distribution (or equilibrium distribution) is equal to the

target posterior distribution f (θθθ |YYY ) after a number of iterations. In this thesis I make use

of two main algorithms to achieve MCMC simulation, which are Gibbs sampling (Geman
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and Geman, 1984) and the Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings,

1970).

2.1.3.1 Gibbs sampling

Consider a parameter vector θθθ which has been partitioned into d components as θθθ =

(θθθ 1, . . . ,θθθ d). The idea in Gibbs sampling is to cycle through each component θθθ j to sam-

ple from its full conditional distribution given all the other components fixed to their current

values. The Gibbs sampling algorithm for directly drawing S samples from the posterior

distribution is as follows.

1. Set initial values θθθ
(0) = (θθθ

(0)
1 , . . . ,θθθ

(0)
d ) to start the Markov chain.

2. At each iteration i = 1,2, . . . ,S and for each component j = 1, . . . ,d, simulate θθθ
(i)
j in

turn from the conditional distribution given all the other components, f (θθθ j|θθθ (i)
− j,YYY ),

where θθθ
(i)
− j represents the current values of all the components of θθθ apart from θθθ j, that

is

θθθ
(i)
− j = (θθθ

(i)
1 , . . . ,θθθ

(i)
j−1,θθθ

(i−1)
j+1 , . . . ,θθθ

(i−1)
d ).

Gibbs sampling works when f (θθθ j|θθθ (i)
− j,YYY ) is from a known family of distributions and easy

to sample from. For example, if we have a Gaussian conjugate prior for the Gaussian like-

lihood, then the posterior distribution is also Gaussian, therefore we can directly sample at

each step of the Gibbs sampling algorithm. However, when the conditional distribution does

not appear to be of any known form and is too intractable to sample from, a more complex

method should be considered, such as the Metropolis-Hastings algorithm which involves an

acceptance or rejection step.

2.1.3.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is typically used to sample from an intractable target

posterior distribution. The Metropolis-Hastings algorithm for drawing S samples proceeds

as follows.

1. Set starting values θθθ
(0) = (θθθ

(0)
1 , . . . ,θθθ

(0)
d ) to start the Markov chain .

2. At each iteration i = 1,2, . . . ,S and for each component j = 1, . . . ,d, simulate θθθ
(i)
j

using the following steps.

(a) Simulate a set of proposed parameter values θθθ
∗
j from a proposal distribution (or

jumping distribution), g(θθθ ∗
j |θθθ

(i−1)
j ).
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(b) Calculate the acceptance probability

p = min

{
f (θθθ ∗

j |YYY )/g(θθθ ∗
j |θθθ

(i−1)
j )

f (θθθ (i−1)
j |YYY )/g(θθθ (i−1)

j |θθθ ∗
j)
,1

}
.

If the proposal distribution is symmetric, i.e. g(θθθ (i)
j |θθθ (i−1)

j ) = g(θθθ (i−1)
j |θθθ (i)

j ) for

all θθθ
(i)
j , θθθ

(i−1)
j and i, this probability can be reduced to the Metropolis algorithm:

p = min

{
f (θθθ ∗

j |YYY )

f (θθθ (i−1)
j |YYY )

,1

}
.

(c) Generate a uniform random sample U ∼ Uniform(0,1); if U ≤ p, accept the

proposed θθθ
∗
j and set θθθ

(i)
j = θθθ

∗
j ; if U > p, reject the proposed θθθ

∗
j and set θθθ

(i)
j =

θθθ
(i−1)
j .

A common choice of the proposal distribution is a Gaussian distribution with mean being

the current value θθθ
(i−1)
j and variance ΣΣΣ because it is symmetric. A proposal distribution

with a small variance will make the proposed value close to the current value and so the

proposal is more likely to be accepted, resulting in a high acceptance rate. In contrast, if

the proposed value is very different from the current value (the proposal distribution has a

large variance), it is less likely to be accepted, resulting in a low acceptance rate. A very

high acceptance rate indicates that the Markov chain does not explore the full parameter

space, whereas a too low acceptance rate means that the Markov chain is stuck on one

value for a long period of time. Therefore, we need to choose an appropriate proposal

distribution which gives a sensible acceptance rate. Gelman et al. (1996) suggested that

the acceptance rate should be around 44% for univariate parameters and around 23% for

high-dimensional parameters as this can optimize the efficiency of the algorithm. In this

thesis, the acceptance rate will be maintained between 40% and 60% for the parameter of

low dimension and between 20% and 40% for parameters of high dimension by tuning

the proposal variance every 100 iterations. Note that model parameters can be updated

individually in the MCMC simulation, but this would be computationally slow especially

when the Bayesian model is complex and has a large number of parameters. One approach

to tackle this is to simulate several parameters with similar characteristics at the same time

as one block. However, when the block contains a large number of parameters, the sam-

pler may miss some parts of the parameter space and the acceptance rates generally decrease.
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The choice of starting values θθθ
(0) in the Markov chain is likely to affect the perfor-

mance of the simulation (Brooks, 1998). For example, starting values close to the true

values will take a smaller number of iterations to reach the true values than those that are

not. Several methods have been proposed for selecting initial values. One method is to run

multiple Markov chains with different starting values. Alternatively, estimates from simpler

models or methods, e.g. maximum likelihood estimates, can be used as the starting values

(Kass et al., 1998).

2.1.3.3 Model convergence

Inference using MCMC simulation is only valid when the Markov chain has converged

to the target posterior distribution. The chain will take some time to reach convergence,

therefore in order to diminish the influence of posterior samples at early iterations, a general

choice is to discard the samples prior to convergence, which is called a burn-in period.

The remaining samples, which are assumed to have converged, allow us to calculate the

quantities of interest for each of the model parameters.

A number of approaches have been proposed to diagnose the model convergence.

One common method is to examine the trace plot of the MCMC samples for each pa-

rameter. A trace plot displays the values of a parameter for each iteration in a Markov

chain. Figure 2.1 is an example of a trace plot for 2,000 MCMC samples for a parameter.

These successive samples are connected by a line to view the path traversed by the chain.

Convergence is assumed to have achieved when the trace plot shows no trend and looks

weakly stationary. Another graphic tool is to check the trace plot of the running mean for

each parameter in the chain, where the running mean is the mean of all sampled values up to

a specified number of iterations (Smith, 2005). If the chain has converged then the running

mean should stabilize at the posterior mean.
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Figure 2.1: An example of a trace plot.

Geweke (1992) proposed to check the model convergence using a Z statistic. The basic idea

is to divide a Markov chain into two "windows" containing the first and the last part of the

chain, e.g. the first 10% and the last 50%. Ideally, if the chain has reached convergence

the means of the two windows should be nearly the same. A Z statistic is calculated as

the difference between the two means from these two windows divided by the asymptotic

standard error of the difference. As the number of iteration increases, the distribution of

the Z statistic approaches the standard normal distribution N(0,1). Thus a Z statistic with

values between [-1.96, 1.96] suggests convergence.

Alternatively, Gelman et al. (1992) proposed to monitor the convergence of multiple

and parallel chains based on the within-chain and between-chain variances. Specifically,

a potential scale reduction factor (PSRF), which estimates the potential decrease in the

between-chains variability with respect to the within-chain variability, is computed by

PSRF =

√
n−1

n
+

B
nW

,

where B is the variance of the between-chain means for m chains, and W is the average

of the m within-chain variances. As the number of iterations n increases, PSRF should

be close to 1 if the m chains have converged to the target posterior distribution. A value

of PSRF smaller than 1.1 indicates convergence of the Markov chain, while a high value

greater than 1.1 indicates lack of convergence and needs longer iterative simulations. In
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this thesis, convergence will be assessed by examining parameter trace plots as well as by

Geweke (1992) and Gelman et al. (1992) diagnostics. We also want to make sure that the

Markov chain is able to explore the entire parameter space and moves between separate high

probability regions, which is known as mixing. Mixing is related to the acceptance rate and

can also be visually monitored by checking trace plots for individual parameters.

In addition, the samples, especially consecutive samples, generated from MCMC al-

gorithms normally show within chain correlation because each sample is dependent on

the previous one. This autocorrelation can be reduced using the process of thinning, by

only keeping every kth simulation draw (after burn-in) from the posterior distribution and

discarding the remaining samples. However, the practice of thinning can result in a loss of

information and reduce the precision of the MCMC algorithms, and is often inefficient and

unnecessary (Link and Eaton, 2012). However, Gelman et al. (1995) suggested that thinning

is useful when computer storage is a problem in dealing with a large number of parameters.

Link and Eaton (2012) argued that thinning can reduce the autocorrelation between MCMC

samples. After a Markov chain has converged, the effective sample size neff, which is the

approximate number of independent samples for any parameter of interest from the MCMC

chain, can be calculated by

neff =
n

1+2∑
∞
t=1 ρ(t)

,

where n is the total number of samples after discarding the burn-in period, and ρ(t) is the

autocorrelation between the samples in the Markov chain at lag t.

Once a Markov chain has converged, summary statistics such as the posterior mean,

median or mode of the MCMC samples can be reported as the point estimate for each

parameter in question from its posterior distribution. The posterior mean and median can be

used when the posterior distribution is continuous, but the latter is more robust when there

are extreme values (outliers) present. The posterior mode is often used when the posterior

distribution is discrete. Uncertainty in point estimates can be measured by using interval

estimates, which are known as credible intervals in Bayesian statistics. A credible intervals

is often constructed using percentiles of the posterior samples. A 100(1−α)% credible

interval is defined by (100×α/2)th (the lower bound) and (100× (1−α/2))th (the upper

bound) percentiles of the MCMC samples. It means that the parameter will lie in the interval

with posterior probability (1−α).
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2.2 Generalised linear models

Simple linear model is the simplest regression model which estimates a linear relationship

between the response variable and the covariate data. It takes the form of

Yi ∼ N (µi,σ
2), i = 1, . . . ,n,

E(Yi) = µi = xxx⊤i βββ ,

where (Y1, . . . ,Yn) are independent and each response variable Yi is assumed to be Gaussian

distributed with mean µi and variance σ2. xxx⊤i = (1,xi1, . . . ,xip) contains a vector of p known

covariates relating to observation i and a 1 for the intercept term. βββ = (β0,β1, . . . ,βp) is a

column vector of covariate regression parameters including an intercept term β0. This simple

linear model can be extended to a generalised linear model (GLM) (Nelder and Wedderburn,

1972), where the response YYY can be a set of independent random variables from any dis-

tribution in the exponential family, such as the Gaussian, Poisson, Binomial and Gamma

distributions, rather than simply being Gaussian distributed. The exponential family is a

flexible class of statistical distributions which, for a response variable Yi whose probability

distribution function f (·) depends on the parameter θi, takes the form of

f (Yi = yi|θi) = exp [a(yi)b(θi)+ c(θi)+d(yi)], (2.2)

where a,b,c,d are known functions and b(θi) is called the natural parameter. The distribu-

tion is said to be in canonical form if a(yi) = yi.

A generalised linear model describes the relationship between the response and the

linear predictor as

g(µi) = xxx⊤i βββ , (2.3)

where g(·) is a monotone, differentiable function called the link function, which relates the

mean E(Yi) = µi to the linear predictor xxx⊤i βββ . The choice of the link function depends on

the type of the response data. Identity link function g(µi) = µi is used for Gaussian data;

Logit link function g(µi) = ln
(

µi
1−µi

)
can be used for Binomial data; Log link function

g(µi) = ln(µi) is often used for Poisson count data.
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2.2.1 Generalised linear models for count data

In this thesis, all the modelling approaches are developed to model count data, such as counts

of the numbers of hospital admissions. An appropriate and commonly used model to rep-

resent count data is the Poisson distribution. Suppose Yi ∼ Poisson(µi) and are independent

for i = 1, . . . ,n, then the probability mass function is:

f (Yi = yi|µi) =
µ

yi
i exp(−µi)

yi!
(2.4)

= exp(yi ln(µi)−µi − ln(yi!)) ,

where µi = E(Yi). Hence the Poisson distribution is a member of the exponential family of

distributions, and a generalised linear model can be used to model these count data. Because

the response data from the Poisson distribution are non-negative, the natural log function is

a suitable choice of the link function. The Poisson GLM model takes the general form of

Yi ∼ Poisson(µi), i = 1, . . . ,n, (2.5)

ln(µi) = xxx⊤i βββ .

A Poisson model assumes that the mean and variance are the same, that is

µi = E(Yi) = Var(Yi) in our case. However, in many cases, a Poisson-distributed ran-

dom variable can have much greater variance than the mean. This is called overdispersion

and is often addressed by using a quasi-Poisson or negative binomial model (McCullagh

and Nelder, 1989). Both approaches estimate an extra dispersion parameter to account for

the extra variance. The former approach assumes that the variance is a linear function of

the mean, whereas the latter assumes that the variance is a quadratic function of the mean.

When the data contain an excess of zero counts, a zero-inflated Poisson model (Lambert,

1992) should be used, which is a mixture of a Poisson count model and a logit model for

predicting excess zeros.

In the frequentist framework, generalised linear models typically use the iteratively

reweighted least squares algorithm to find the maximum likelihood estimator (Dobson and

Barnett, 2018), while in the Bayesian framework, parameters are often assigned a prior

distribution and inference is typically based on the posterior distribution using Markov chain

Monte Carlo simulation, such as Gibbs sampling and the Metropolis-Hastings algorithm.
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2.3 Model comparison

A number of methods have been proposed to evaluate the relative quality of different statis-

tical models applied to the same data. Likelihood is a measure of how likely one will obtain

the observed data given a model. Although increasing the number of parameters tends to

increase the likelihood, it might result in an overfitting issue. Hence, the best model is

supposed to explain the greatest amount of variation in the observed data using the fewest

independent parameters. Therefore, model selection criteria which attempt to achieve the

trade-off between maximizing the likelihood and minimizing the risk of overfitting are nec-

essary.

2.3.1 Akaike Information Criterion

Akaike Information Criterion (AIC) (Akaike, 1974) is a common criterion for model selec-

tion. The basic AIC is computed as

AIC =−2ln(L̂)+2K, (2.6)

where L̂ is the maximum value of the model likelihood measuring the goodness of model fit,

and K is the number of estimated model parameters which is a penalty term discouraging

overfitting. Adding more parameters is likely to improve the goodness of fit (L̂), but it also

improves the penalty term (K). Therefore, AIC deals with the balance between the model fit

and the model complexity. The model with the lowest AIC is preferred when comparing two

or more models.

2.3.2 Bayesian Information Criterion

Bayesian Information Criterion (BIC) (Schwarz et al., 1978) is another model selection cri-

terion computed as

BIC =−2ln(L̂)+K ln(n), (2.7)

where n is the number of data points. Again, the model with the lowest BIC should be

preferred when comparing multiple models. BIC applies a much larger penalty to complex

models with large n than the AIC, thus it favors simpler models than the AIC.
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2.3.3 Deviance Information Criterion

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) is an alternative compar-

ison method. It is a generalisation of AIC based on the model deviance, and particularly

used in Bayesian model selection. Deviance measures the deviation of a considered model

from the true model which is a perfect fit to the data. In the Bayesian framework, deviance

is defined as

D(θθθ) =−2ln( f (YYY |θθθ)).

Since the deviance tends to decrease as the number of parameters increase, it needs to be

penalized by the independent number of parameters. The model with the minimum DIC

value should be preferred when comparing multiple models. DIC is computed as DIC =

D̄+ pd , where D̄ is the expectation of the posterior deviance, that is

D̄ = Eθθθ |YYY (−2ln f (YYY |θθθ)) . (2.8)

pd is the effective number of parameters measuring the complexity of a model. Consider a

Markov chain with S posterior simulations {θθθ
s,s = 1, . . . ,S} for the model parameters θθθ , D̄

can be computed by

D̄ =−2× 1
S

S

∑
s=1

ln f (YYY |θθθ s),

and pd can be computed by

pd = 2

(
ln f (YYY |θ̄θθ)− 1

S

S

∑
s=1

ln f (YYY |θθθ s)

)
,

where θ̄θθ = 1
S

S
∑

s=1
θθθ

s.

2.4 Spatial statistics

Spatial statistics is the analysis and modelling of data that consist of observations at different

spatial locations. There are three main types of spatial data; geostatistical data, point pro-

cess data and areal data. For a geostatistical process, the spatial data consist of observations

measured at many fixed and precise locations, e.g. the concentration of air pollution mea-

sured at a set of monitor stations within a study region. For a point process, the locations

of the observations themselves are the data of interest. An example would be the locations

of an earthquake. For an areal unit process, the entire study region is split into a set of
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non-overlapping areal units such as census tracts, administrative zones, electoral wards or

ZIP codes, and the areal data are aggregated at the level of spatial units and often available

as summary measurements such as case counts or rates referenced to areal units. For ex-

ample, the percentage of unemployed people or the hospital admission counts in each areal

unit. Areal data usually do not expose the geographical location of the individual residences,

therefore they are frequently used in public health studies due to patient confidentiality con-

cerns. In this thesis, I restrict the attention to the modelling of areal unit count data in a

disease context, which is known as disease mapping.

2.4.1 Disease mapping

Disease mapping is the field of statistical epidemiology focusing on estimating the spatial

pattern in disease risk across a study region (e.g. a city or country), evaluating the evolution

of disease risk over time, as well as detecting areas of high risks. Most disease mapping

studies utilise aggregated data such as counts of disease incidence or mortality collected

from non-overlapping areal units (e.g. census tracts or health board areas) that comprise

the study region, because patient-level data cannot be made publicly available due to

confidentiality issues.

Consider a study region AAA which is partitioned into n non-overlapping areal units

AAA = {A1, . . . ,An}. The response data are collected for each areal unit and are denoted by

YYY = (Y1, . . . ,Yn). In this thesis models are developed based on areal unit count data in a

disease context, so here Yi represents the counts of the numbers of hospital admissions with

a primary diagnosis of a particular disease in areal unit Ai. However, only modelling the

disease risk based on disease counts YYY is misleading because of the deficient consideration

in population size and demographics, which would vary from area to area. For example, an

area that has a high proportion of elderly people tends to have higher counts of heart disease.

In order to overcome the effects of confounding factors such as age and sex, the expected

disease counts in each areal unit, denoted by EEE = (E1, . . . ,En), are constructed by indirect

standardisation based on the population size, age, and sex structure within each areal unit.

They are calculated by stratifying the population living in each areal unit into a number of

non-overlapping strata according to their age and sex demographics (e.g. male 0-9, male

10-19, etc), and then the population in each stratum is multiplied by the disease rate in that

stratum for the whole study region. The sum of these over all strata is the expected disease
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counts for each areal unit. The formula for computing Ei for areal unit Ai is given by

Ei =
m

∑
j=1

ni j × r j, (2.9)

where m is the number of strata, ni j is the population of area Ai in stratum j, and r j is the

overall disease rate in stratum j. The standardised incidence ratio (SIR) is an exploratory

estimate of disease risk calculated by SIRi =
Yi
Ei

, which is the ratio of the observed to the

expected disease counts for each areal unit. An SIR value greater than 1 means that there are

more disease cases observed than expected in the areal unit, suggesting an increased level

of disease risk compared to the average during the study period, while a value less than 1

indicates fewer observed disease counts than expected in the areal unit, which corresponds

to a decreased level of disease risk. For example, an SIR of 1.2 represents a disease risk

which is 20% higher than the average during the study period, and an SIR of 0.9 corresponds

to a 10% decrease in disease risk compared to the average.

Disease risk varies in space and time and is often affected by risk inducing factors

such as environmental exposures (e.g. contamination of water, air pollution), population

behaviours (e.g. smoking, alcohol consumption) and poverty (or socio-economic depriva-

tion ) (McCartney, 2012). Health agencies routinely produce disease maps to graphically

illustrate such differences in disease risk, by displaying raw disease rates (the SIR) for each

of the areal units. These maps allow to quantify the spatial inequalities in ill health across

the study region and identify high-risk areas, which provide guidance for policy makers in

disease intervention and health resources allocation. However, when the disease of interest

is rare or the study region has small populations, some areal units could have small values

of the expected number of disease cases, therefore the SIR = Yi
Ei

would be extreme and

unstable due to small random fluctuations in Yi (Elliot et al., 2000), leading to unstable and

uninformative disease risk estimates. Furthermore, visually examining maps of the SIR does

not allow for the systematic identification of clusters of areas that exhibit high risks, which

health agencies will want to target for risk reduction strategies. In addition, since data are

collected over space we would expect that spatial correlation exists between areas that are

spatially close to each other. Therefore, naively using the SIR ignores the potential spatial

autocorrelation present in the data, and also does not consider the important covariate risk

factors which could affect the data. In order to address these issues, it is necessary to develop

model-based approaches which can capture the spatial variation in disease risk, separate the



CHAPTER 2. LITERATURE REVIEW 25

variation from random noise and account for the spatial autocorrelation structure in the data.

Bayesian hierarchical models are commonly adopted to estimate the disease risk by using a

combination of the covariates and a set of spatially varying random effects which account

for any residual spatial autocorrelation after adjusting for covariates. These spatial random

effects are typically modelled by using conditional autoregressive (CAR) priors, which will

be discussed in Section 2.4.4.

2.4.2 Neighbourhood matrix

One feature of modelling the spatial data is that the spatial dependence in the data needs to

be considered. The spatial autocorrelation structure for the n areal units is represented by

a non-negative n×n symmetric neighbourhood or adjacency matrix WWW , which specifies the

spatial closeness between pairs of areal units. The elements {wi j} of the neighbourhood ma-

trix WWW can be either continuous or binary, and in both cases a larger value of wi j represents

that areas (Ai,A j) are spatially closer to each other. A continuous WWW matrix is often based

on distance and an example of this is wi j =
1

di j
, where di j is the distance between centroids of

areas (Ai,A j). However, this continuous specification leads to a dense WWW matrix, which can

increase the computational intensity in the model fitting. Consequently, a binary neighbour-

hood matrix WWW is typically adopted, so that wi j = 1 if areas (Ai,A j) are spatially close and

wi j = 0 otherwise. Commonly, the border sharing specification is used in the literature to

determine WWW , where wi j = 1 if areas (Ai,A j) share a common geographical border (denoted

i ∼ j) and wi j = 0 otherwise. As an area cannot be the neighbour of itself, wii = 0 for all i.

Using this specification WWW is a sparse matrix, which makes the fitting of models more effi-

cient. In this thesis, I refer to the neighbourhood matrix constructed from the border sharing

rule defined above as the border sharing WWW .

2.4.3 Moran’s I test

Moran’s I (Moran, 1950) is a common statistic used to measure the strength of spatial auto-

correlation within a set of areal data. The level of spatial autocorrelation in YYY = (Y1, . . . ,Yn)

is given as

I =
n∑

n
i=1 ∑

n
j=1 wi j(Yi − Ȳ )(Y j − Ȳ )

(∑n
i=1 ∑

n
j=1 wi j)∑

n
i=1(Yi − Ȳ )2 ,

where Ȳ = 1
n ∑

n
i=1Yi. The value of Moran’s I ranges from -1 and 1. A value close to 1

indicates strong positive spatial autocorrelation among the data, a value close to -1 indicates

strong negative spatial autocorrelation, and a zero value corresponds to spatial randomness
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and no autocorrelation. In real life applications, Moran’s I statistic is mostly positive because

areas which are close together in space are generally more likely to be spatially correlated

and have similar data values. A permutation test can be conducted to test the null hypothesis

that no spatial autocorrelation exists in the data, and the alternative hypothesis is that there

is some spatial autocorrelation. The permutation test steps are

1. Calculate the observed Moran’s I test statistic, Iobs.

2. Randomly permute the data K times and for each permuted data set calculate the

Moran’s I test statistic, denoted by (I1, . . . , IK).

3. Calculate the estimated two-sided p-value by

p =
2

K +1

K

∑
k=1

I [Ik > |Iobs|] ,

where I[·] denotes an indicator function, and is equal to 1 if Ik > |Iobs| and is zero

otherwise.

2.4.4 Spatial modelling

In this thesis the responses are areal unit count data in a disease context. Areal count data are

generally modelled by extending the Poisson log-linear model (2.5) to account for the spatial

autocorrelation in the data. Consider a study region partitioned into n non-overlapping areal

units indexed by i ∈ {1, . . . ,n}. A response Yi is observed in each of those areal units to give

a set of response data YYY = (Y1, . . . ,Yn). The expected number of disease cases for each areal

unit are denoted by EEE = (E1, . . . ,En), which can be computed via indirect standardisation.

Covariate information, if relevant, is given by XXX = (xxx⊤1 , . . . ,xxx
⊤
n ), where xxx⊤i = (1,xi1, . . . ,xip)

is a row vector of p known covariates relating to areal unit i and a 1 for the intercept

term. Due to the convenient structure of Bayesian hierarchical models, areal count data

YYY = (Y1, . . . ,Yn) are commonly modelled by extending the simple Poisson generalised linear

model (2.5) to a generalised linear mixed model with a set of spatially correlated random

effects φφφ = (φ1, . . . ,φn). A general specification is given by

Yi|Ei,Ri ∼ Poisson(EiRi), i = 1, . . . ,n, (2.10)

ln(Ri) = xxx⊤i βββ +φi,
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where Ri denotes the disease risk in areal unit i and is on the same scale as the SIR. The

spatial random effects φφφ = (φ1, . . . ,φn) account for the spatial autocorrelation in the data

and are typically modelled via a conditional autoregressive (CAR) prior, which can be

specified by a set of univariate full conditional distributions of the form f (φi|φφφ−i), where

φφφ−i = (φ1, . . . ,φi−1,φi+1, . . . ,φn) for i = 1, . . . ,n. The spatial autocorrelation between these

random effects is typically accounted for by a binary neighbourhood matrix WWW based on the

border sharing specification introduced in Section 2.4.2, where wi j = 1 if areas (i, j) share

a common geographical border and wi j = 0 otherwise. Diagonal elements wii = 0 for all i.

Many different CAR models have been proposed to model the spatial random effects φφφ , and

four models that are the most popular are described below.

2.4.4.1 Intrinsic CAR model

The first and simplest CAR prior is the intrinsic model (Besag et al., 1991) and is given by

φi|φφφ−i ∼ N

(
∑

n
j=1 wi jφ j

∑
n
j=1 wi j

,
τ2

∑
n
j=1 wi j

)
. (2.11)

The conditional expectation of φi is the mean of the random effects in its neighbouring areal

units, and thus each areal unit is modelled as being similar to its neighbours. The conditional

variance is inversely proportional to the number of neighbouring units. This is sensible

under the assumption of strong spatial autocorrelation in that the more neighbours an area

has (i.e. ∑
n
j=1 wi j increases), the more information there is in the data about the value of

its random effect, as a result, the conditional variance goes down. This model has several

limitations. The single variance parameter τ2 does not determine the strength of the spatial

correlation between the random effects. This prior is not appropriate when data are weakly

correlated (Lee, 2011), because in such cases an increased number of neighbours would not

necessarily result in more information about the random effect. Additionally, the intrinsic

CAR prior is not appropriate for singleton areas that have no neighbours, because this will

cause ∑
n
j=1 wi j = 0 and so lead to infinite mean and variance for φi. The joint probability

distribution for φφφ corresponds to an improper multivariate Gaussian distribution, which is

given by

φφφ ∼ N
(
000,τ2QQQ(WWW )−

)
.

Here QQQ(WWW )− denotes the Moore–Penrose (Moore, 1920, Penrose, 1955) generalised inverse

of the singular precision matrix QQQ(WWW ), where QQQ(WWW ) = diag(WWW111)−WWW and WWW111 is a vector
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containing the number of neighbours for each areal unit.

2.4.4.2 Convolution CAR model

Besag et al. (1991) also proposed the convolution (or BYM) CAR prior. It combines the

intrinsic CAR model with a set of independent random effects, and is given by

φi = φ
(1)
i +φ

(2)
i

φ
(1)
i |φφφ (1)

−i ∼ N

∑
n
j=1 wi jφ

(1)
j

∑
n
j=1 wi j

,
τ2

1

∑
n
j=1 wi j

 (2.12)

φ
(2)
i ∼ N(0,τ2

2 ),

where φφφ now consists of two components. φφφ
(1) = (φ

(1)
1 , . . . ,φ

(1)
n ) is assigned the intrinsic

CAR prior, and φφφ
(2) = (φ

(2)
1 , . . . ,φ

(2)
n ) is a set of independent and identically normally dis-

tributed random effects, with mean zero and common variance τ2
2 . The ratio of the two

variance parameters τ2
1

τ2
2

controls the strength of spatial autocorrelation between random ef-

fects, which overcomes the limitation of the intrinsic CAR prior inducing too much spatial

smoothness. A very large value of τ2
1

τ2
2

corresponds to strong spatial dependence between

the random effects, whereas a very small value of τ2
1

τ2
2

corresponds to spatial independence.

However, it is difficult to estimate 2×n random effects φφφ = (φ
(1)
1 ,φ

(2)
1 , . . . ,φ

(1)
n ,φ

(2)
n ) given

n data points, and only the sum φ
(1)
i +φ

(2)
i is identifiable.

2.4.4.3 Proper CAR model

Stern and Cressie (2000) adapted the intrinsic model by adding a spatial autocorrelation

parameter ρ , which allows the strength of spatial autocorrelation to be estimated from the

data. The univariate full conditional distribution is given by

φi|φφφ−i ∼ N

(
ρ ∑

n
j=1 wi jφ j

∑
n
j=1 wi j

,
τ2

∑
n
j=1 wi j

)
. (2.13)

Here ρ controls the level of spatial autocorrelation globally across the study region, with a

value close to 1 corresponding to strong spatial dependence, while a value of zero corre-

sponds to spatial independence. One problem with this model is that when ρ = 0 the random

effects are assumed to be independent in space, however according to the formula, the con-

ditional variance still depends on the number of neighbours that an area has. This issue was

addressed by Leroux et al. (2000).
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2.4.4.4 Leroux CAR model

The Leroux CAR model (Leroux et al., 2000) is given by

φi|φφφ−i ∼ N

(
ρ ∑

n
j=1 wi jφ j

ρ ∑
n
j=1 wi j +1−ρ

,
τ2

ρ ∑
n
j=1 wi j +1−ρ

)
. (2.14)

Again, ρ ∈ [0,1] controls the strength of spatial autocorrelation in the data. If ρ = 0, the con-

ditional mean is 0 and the conditional variance remains constant equal to τ2. This suggests

that the neighbouring random effects φφφ−i do not provide any information about φi, thus indi-

cating independence in space. If ρ = 1, the model corresponds to the intrinsic model (2.11),

indicating strong spatial autocorrelation between the random effects. The joint distribution

for φφφ is given by

φφφ ∼ N
(

000,τ2QQQ(ρ,WWW )−1
)
,

where the precision matrix QQQ(ρ,WWW ) = ρ(diag(WWW111)−WWW )+(1−ρ)III, which is an invertible

matrix if ρ ∈ [0,1). Here 111 is an n× 1 vector of ones and III is an n× n identity matrix.

The partial correlation between (φi,φ j) conditioning on the remaining spatial random effects

(denoted φφφ−i j) specified by this model is

Corr
(

φi,φ j|φφφ−i j

)
=

ρwi j√
(ρ ∑

n
v=1 wiv +1−ρ)

(
ρ ∑

n
v=1 w jv +1−ρ

) . (2.15)

Equation (2.15) shows that random effects (φi,φ j) are modelled as partially correlated if

wi j = 1, otherwise, the partial correlation between (φi,φ j) is 0 and they are modelled as

conditionally independent. Hence the neighbourhood matrix WWW controls the spatial autocor-

relation structure between the random effect terms. Thus, given the neighbourhood matrix

WWW defined by the border sharing specification, if areas (i, j) share a common border (wi j = 1)

their random effects are correlated and are smoothed over in the modelling process. Other-

wise (wi j = 0) the random effects (φi,φ j) are conditionally independent and are not smoothed

towards each other. One disadvantage of the Leroux model is that it only has a single spatial

dependence parameter ρ across the study region, assuming that the global level of depen-

dence does not change over space.
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2.5 Spatial-temporal modelling

The spatial models outlined in Section 2.4.4 are applied to data collected at a single time pe-

riod across n areal units. This class of models has also been extended to the spatio-temporal

domain in order to estimate the evolution of disease risk in both space and time. Now con-

sider the areal count data that are collected for t ∈ {1, ...,T} consecutive time periods. The

observed disease counts are denoted by YYY = (YYY 1, . . . ,YYY n), where YYY i = (Yi1, . . . ,YiT ) denotes

the number of observed disease cases in areal unit i over all time periods. The expected num-

ber of disease cases are denoted by EEE = (EEE1, . . . ,EEEn), with EEE i = (Ei1, . . . ,EiT ) denoting the

expected disease counts in areal unit i over all time periods. Modelling such spatio-temporal

data not only needs to account for spatial autocorrelation but also correlation in time. In this

section, I introduce some of the important modelling approaches in the spatio-temporal dis-

ease mapping literature. Note that these models are described without including covariates,

however the addition of covariate information is trivial.

2.5.1 Bernardinelli model

One of the earliest spatio-temporal models was proposed by Bernardinelli et al. (1995). The

model allows for the analysis of risk using spatially correlated linear temporal trends for each

areal unit. The disease risk Rit in areal unit i during time point t is modelled by

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.16)

ln(Rit) = µ +φi +[β +δi]t.

Here µ is a global intercept term common to all areal units and β is an overall slope

parameter for the linear time trend. Different areas are allowed to have different intercepts

by introducing the random effects φφφ = (φ1, . . . ,φn). Likewise, the linear slope can vary in

space via δδδ = (δ1, . . . ,δn). In other words, φi represents the difference between the area

specific intercept for area i, µ + φi, and the overall intercept, µ . Similarly, δi indicates the

difference between the trend slope for area i, β +δi, and the global linear trend slope, β .

The random effects φφφ and δδδ can be either spatially independent unstructured random

effects, modelled by a Gaussian prior distribution with mean zero and constant variance, or

spatially correlated structured random effects, modelled by the intrinsic CAR prior (Besag

et al., 1991). The latter allows for the spatial autocorrelation in both intercepts and slopes.
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Although δi × t gives this model the increased flexibility of allowing for different temporal

trends for different areal units, the time trend in disease variation is restricted to be linear

which may not be appropriate for long time periods of data.

2.5.2 Knorr-Held model

Knorr-Held (2000) proposed an alternative spatio-temporal Bayesian model, which extends

those models only with additively separable space and time main effects such as Knorr-

Held and Besag (1998) by introducing an additional spatio-temporal interaction term. In this

model, the response Yit is assumed to have a binomial distribution, with parameters nit and

Rit being the number of people at risk and the binomial probability (disease risk) in areal unit

i at time period t. The response data are modelled by a binomial generalised linear mixed

model with a logit link function. The modelling framework is outlined as

Yit |nit ,Rit ∼ Binomial(nitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.17)

ln
(

Rit

1−Rit

)
=µ +θi +φi +αt + γt +δit ,

where µ is the overall intercept, θθθ = (θ1, . . . ,θn) and φφφ = (φ1, . . . ,φn) are area specific spatial

effects, and ααα = (α1, . . . ,αT ) and γγγ = (γ1, . . . ,γT ) are temporal effects. δδδ = (δ11, . . . ,δnT )

are spatio-temporal interaction terms which account for the disease variation that cannot

be attributed to the separate space and time main effects. Here θθθ are structured spatial

random effects modelled by a conditional autoregressive (CAR) prior, and ααα are structured

temporal random effects modelled by a prior where neighbouring time points tend to have

similar effects, e.g. a Gaussian first order random walk process given by α1 ∼ N(0,σ2
α) and

αt ∼ N(αt−1,σ
2
α) for t = 2, . . . ,T . φφφ and γγγ are unstructured independent effects respectively

in space and time and can be modelled using a Gaussian prior. Since both the spatial and

temporal effects are divided into structured and unstructured components, this model can

be thought as the extension of the convolution model outlined in Section 2.4.4.2 to the

space-time domain.

Four different types of prior distribution are specified for the space-time interaction

term δit , with each type corresponding to a different degree of autocorrelation in space and

time. The first type is the interaction between the two unstructured space and time main

effects, φφφ and γγγ . This is suitable when the variation explained by δδδ does not contain any

spatial or temporal structure, thus all interaction terms are independent. The second type
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is the interaction between the structured space effects θθθ and unstructured time effects γγγ ,

indicating that δδδ are dependent over space but independent over time and can be modelled

by CAR models. For an interaction between the unstructured φφφ and structured ααα , δδδ are

spatially independent but dependent over time, and each areal unit follows a random walk

process independent of other areas. Finally, for an interaction between the two structured

space and time effects, θθθ and ααα , δδδ are correlated in both space and time and can be modelled

as δit |δδδ−it ∼ N(µit ,vit). The conditional mean is computed as follows:

µit =


1
2(δi,t−1 +δi,t+1)+

∑
n
j=1 wi jδit

∑
n
j=1 wi j

− ∑
n
j=1 wi j(δi,t−1+δi,t+1)

2∑
n
j=1 wi j

, if t ̸= T & t ̸= 1,

δi,t+1 +
∑

n
j=1 wi jδit

∑
n
j=1 wi j

− ∑
n
j=1 wi jδi,t+1

∑
n
j=1 wi j

, if t = 1,

δi,t−1 +
∑

n
j=1 wi jδit

∑
n
j=1 wi j

− ∑
n
j=1 wi jδi,t−1

∑
n
j=1 wi j

, if t = T ,

and the conditional variance is

vit =


1

∑
n
j=1 wi j

, if t = 1 or t = T ,

1
2∑

n
j=1 wi j

, if t ̸= 1& t ̸= T .

This interaction term assumes that neighbouring areas tend to have similar temporal trends,

and for each area spatial patterns near in time also tend to be similar. One advantage of

this model is that it relieves the restrictive linear temporal trend assumption in Bernardinelli

et al. (1995). Secondly, the model can be simplified by removing the spatio-temporal in-

teraction once it turns out to be negligible. However, the increased number of parameters

(five parameters for each data point) leads to more computational burden in the modelling

process.

2.5.3 MacNab and Dean model

MacNab and Dean (2001) proposed a generalised additive mixed model for estimating dis-

ease risk by combining a conditional autoregressive (CAR) model for the spatial pattern and

B-Splines smoothing (De Boor, 1972) for the temporal trend. Compared to Bernardinelli

et al. (1995) and Knorr-Held (2000) who use a linear trend or random walk process to model

the time trend, this model increases the flexibility in capturing a more complex temporal



CHAPTER 2. LITERATURE REVIEW 33

trend by using B-Spline smoothers. The model is of the form:

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.18)

ln(Rit) = µ +φi +S0(t)+Si(t),

where µ is the overall intercept, φi is the spatial random effect for areal unit i, S0(t) is a

fixed temporal effect common to all areal units, and Si(t) is an area specific temporal effect.

The spatial effects φφφ are modelled by a CAR prior and the global temporal trend S0(t)

is modelled using a cubic B-Splines smoother. Two specifications are considered for the

spatio-temporal interaction term Si(t). One approach models Si(t) linearly using Si(t) = Sit,

and the other models Si(t) using cubic B-splines for each areal unit.

Modelling Si(t) using a random linear temporal trend is much simpler than using B-

Splines smoothing which requires a large number of parameters to be estimated. Besides,

the linear expression φi + Sit provides a simple interpretation for the model, where φi is

the spatial random effect and Si represents the localised linear temporal trend above the

overall mean trend. However, using B-Splines smoothers for both S0(t) and Si(t) may

provide a more appropriate fit to data when longer time periods are considered. Alternative

non-parametric smoothing approaches to estimate the time trend include MacNab and

Gustafson (2007) and Torabi and Rosychuk (2011) which are B-Splines based models, and

Ugarte et al. (2010) which uses P-Splines smoother.

2.5.4 Ugarte model

Ugarte et al. (2012) proposed a simplified model of that proposed by Knorr-Held (2000) by

removing the two sets of unstructured spatial and temporal effects. Therefore, the model

only contains three structured components and takes the form

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.19)

ln(Rit) = µ +φi +αt +θit ,

where µ is the overall intercept, φi denotes the spatial random effect in areal unit i, αt denotes

the temporal effect during time t and θit represents a spatio-temporal interaction effect. The

random effects φφφ and ααα are respectively modelled by a Leroux CAR prior (Leroux et al.,

2000) and a first order random walk process, and the interaction term θit is structured by
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a Gaussian distribution with mean zero and precision matrix being the Kronecker product

of the precision matrices for the two main effects, φφφ and ααα . Compared to that proposed

by Knorr-Held (2000), this model is simpler because it has fewer model parameters to be

estimated, however, since the temporal effect does not contain a parameter to determine

the strength of the temporal correlation, the model can only be used for modelling strong

temporal correlation and is not appropriate if the data are temporally weakly correlated.

2.5.5 Rushworth model

Rushworth et al. (2014) proposed to account for the spatio-temporal autocorrelation using a

single set of non-separable random effects in space and time. The model is outlined as

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.20)

ln(Rit) = φit ,

where φit is the spatio-temporal random effect for areal unit i at time point t. The random

effects at time point one, φφφ 1 = (φ11, . . . ,φn1), are specified using the Leroux CAR prior

(Leroux et al., 2000) and have φφφ 1 ∼ N
(

000,τ2QQQ(ρ,WWW )−1
)

, thus the spatial autocorrelation

is induced through the precision matrix QQQ(ρ,WWW )= ρ(diag(WWW111)−WWW )+(1−ρ)III. Temporal

autocorrelation is induced amongst all other random effects via an autoregressive process

of order 1, which is φφφ t |φφφ t−1 ∼ N(αφφφ t−1,τ
2QQQ(ρ,WWW )−1). Therefore, the random effects φφφ t ,

except φφφ 1, are only dependent on the random effects φφφ t−1. α controls the level of temporal

autocorrelation in the data, which relieves the restriction of strong temporal dependence

in the model proposed by Ugarte et al. (2012). This model only uses one set of space-

time random effects to capture the spatio-temporal autocorrelation, thus only one variance

parameter has to be estimated. However, the overall trends in the data can not be captured

due to the absence of separate space and time random effects in the model.

2.5.6 Napier model

Napier et al. (2016) proposed an alternative approach to configure the spatio-temporal struc-

ture, by using an overall temporal trend and separate independent spatial effects for each
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time period. A Poisson log-linear variant of the model is given by

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n, t = 1, . . . ,T, (2.21)

ln(Rit) = φit +θt ,

φit |φφφ−i,t ,WWW ∼ N

(
ρs ∑

n
j=1 wi jφ jt

ρs ∑
n
j=1 wi j +1−ρs

,
τ2

t
ρs ∑

n
j=1 wi j +1−ρs

)
,

θt |θθθ−t ,DDD ∼ N

(
ρθ ∑

T
j=1 dt jθ j

ρθ ∑
T
j=1 dt j +1−ρθ

,
τ2

θ

ρθ ∑
T
j=1 dt j +1−ρθ

)
,

where θθθ = (θ1, . . . ,θT ) is an overall temporal effect common to all areal units, and φφφ t =

(φ1t , . . . ,φnt) denotes a separate spatial risk surface at each time period t. Each spatial sur-

face φφφ t is modelled by the Leroux CAR prior (Leroux et al., 2000), and the corresponding

joint multivariate Gaussian distribution is φφφ t ∼ N
(

000,τ2
t QQQ(ρs,WWW )−1

)
, where ρs is a spatial

autocorrelation parameter and τ2
t is a temporally-varying variance parameter. Spatial auto-

correlation is induced into areal units via the commonly used border sharing neighbourhood

matrix WWW . θt is assigned a one dimension Leroux CAR prior with a temporal autocorrelation

parameter ρθ and variance parameter τ2
θ

. Here DDD = {dt j} is a binary T ×T temporal neigh-

bourhood matrix analogously defined as the border sharing WWW , with dt j = 1 if |t − j|= 1 and

dt j = 0 otherwise. ρs and ρθ respectively control the strength of the spatial and temporal

autocorrelation, with a value of 1 indicating strong dependence and a value of 0 indicating

independence. The model has an advantage of allowing the amount of spatial variation in the

data to change over time, rather than assuming an overall spatial risk surface common to all

time periods as in Knorr-Held (2000). This model can be implemented in the CARBayesST

package (Lee et al., 2018) in R programming.

2.6 Identification of risk discontinuities

There are two primary goals in disease mapping studies (Waller and Carlin, 2010), namely:

(a) providing accurate local disease risk estimates for each area and (b) detecting high/low-

risk areas. Models incorporating spatial random effects with conditional autoregressive

(CAR) priors (see Section 2.4.4) have been the mainstream to achieve the former goal, by

smoothing the disease risks in neighbouring areas towards each other to remove random

noise. In these models, the spatial autocorrelation structure in the data is fixed and typically

induced by the neighbourhood matrix WWW based on the border sharing specification. There-

fore these CAR models assume that there is a constant level of spatial smoothness across



CHAPTER 2. LITERATURE REVIEW 36

the entire study region, in other words, neighbouring areas are forced to have similar risks

and so the spatial pattern in disease risk is modelled to be globally smooth. However, this

assumption is somehow contradictory to the second goal of detecting high-risk areas. In

practice, the level of spatial autocorrelation may vary across the study region and the risk

surface may exhibit localised spatial autocorrelation structure. Some pairs of neighbouring

areas are likely to be independent of each other and exhibit significantly different disease

risks. These abrupt changes in disease risk can be driven by complex reasons such as the

social, economic or environmental characteristics of adjacent neighbourhoods (Mitchell and

Lee, 2014). Hence an excess of smoothing may blur or even conceal any discontinuities in

the risk surface, prevent the identification of areas with elevated risks and lead to biased risk

estimates. A variety of methods concerned with the identification of discontinuities in the

risk surface have been developed in parallel to smoothing methods, including the fields of

spatial clustering and boundary analysis. Spatial clustering approaches allow for discontinu-

ities by identifying local spatially contiguous or non-contiguous clusters of areas that have

elevated or reduced risks compared to their neighbours, while boundary analysis approaches

allow for discontinuities by detecting the locations of risk boundaries that separate pairs of

neighbouring areas of higher and lower disease risks.

2.6.1 Spatial clustering

In this section I introduce some statistical techniques which account for spatial discon-

tinuities in the disease risk pattern by identifying spatial clusters of areas that exhibit

substantially different risks (higher or lower risk) compared to their neighbours. These

methods produce “closed boundaries” which entirely enclose a group of areal units with

similar risks. One of the first approaches is scan statistics (Kulldorff, 1997), which can be

implemented with the SaTScan software. It takes the form of a maximum likelihood ratio

test based on the observed and expected cases inside and outside a potential cluster based

on a search window with a certain shape. However, scan statistics only identify high-risk

clusters and is unable to estimate the disease risk at the same time. Therefore, a number of

Bayesian hierarchical models have been developed.

Knorr-Held and Raßer (2000) proposed to partition all areal units into a set of spatially

contiguous clusters and the risk within each cluster is assumed to be constant. In the model,

a set of areal units are selected as cluster centers and each of the remaining areal units is

assigned to the cluster which has the minimal distance between the cluster center and the

areal unit, where the distance is defined as the minimal boundaries that have to be crossed
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for moving from one to the other unit. This model has its adaptive nature in that the number

of clusters, the location of clusters, the cluster memberships and the constant relative

risk in each cluster are unknown parameters and estimated by the data, which sharply

contrasts to CAR models in Section 2.4.4, where the number of parameters are known and

the spatial smoothing is enforced across all neighbouring areas. However, inference for

this model involves the complex and computationally expensive reversible jump Markov

chain Monte Carlo algorithm (Green, 1995), which is likely to have multimodal problems.

Charras-Garrido et al. (2012) developed a risk partition model for mapping the disease

risk classes (or clusters) based on a discrete hidden Markov random field (HMRF) model.

The observed data are augmented by a set of hidden variables that represent which risk

class each areal unit belongs to. All the classes are naturally ordered by their risk levels

and each areal unit is assigned to one of these classes, with a penalty term penalizing the

neighbouring areas according to their distance between the risk classes. Thus, neighbouring

areas are more likely to be correlated and have similar disease risk if their risk classes are

closer. Parameters are estimated using a Monte Carlo Expectation-Maximisation algorithm,

and the classification is carried out using a post-processing step.

Wakefield and Kim (2013) developed a Bayesian version of the Kulldorff (1997) ap-

proach. It specifies the number of clusters in advance and creates a list of candidate

clusters by taking each areal unit in turn and sequentially adding the geographically closest

neighbouring area (in terms of the distance to its centroid) until a pre-specified maximum

cluster size is reached. The significance of clustering and which clusters have a high (or

low) disease risk are evaluated through a number of posterior summaries on the number of

clusters and cluster configurations. The approach rectifies a number of drawbacks of the

scan statistic approach, such as a p-value threshold for significance has to be specified to test

the presence of clusters, however, the approach is restricted by the requirement for circular

clusters.

Anderson et al. (2014) proposed a two-stage procedure to model discontinuities in

the spatial risk pattern. In the first stage, a set of candidate cluster configurations are elicited

by applying a spatially-adjusted hierarchical agglomerative clustering algorithm to data. In

the second stage, a Bayesian hierarchical model which includes cluster fixed effects and

a CAR spatial random effect is fitted to all cluster configurations, and finally the cluster

configuration leading to the minimum Deviance Information Criterion (DIC) is selected.
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This approach treats the estimation of the cluster structure as a model comparison problem,

which is straightforward and easy to implement. Additionally, the combination of a CAR

model with a piecewise constant cluster model allows similar but not identical disease

risks within one cluster and different risks between clusters, rather than naively assuming

constant disease risk within a cluster as in Knorr-Held and Raßer (2000), Charras-Garrido

et al. (2012) and Wakefield and Kim (2013), which may not be realistic in practice. Adin

et al. (2019) extended the approach of Anderson et al. (2014) by replacing the cluster

fixed effects with random effects and considering a spatio-temporal rather than a spatial

setting. However, both papers have the common computational limitation of fitting multiple

Bayesian models separately, as well as ignoring the uncertainty about the number of clusters

in the data. Anderson et al. (2016) addressed these deficiencies in a purely spatial setting,

by estimating disease risk and the cluster structure simultaneously in a single model, thus

quantifying the uncertainty in the estimated cluster structure. They do this by first using

an agglomerative hierarchical clustering to create a set of candidate cluster structures,

each of which corresponds to a candidate neighbourhood matrix. Then they fit a single

model that treats WWW as a parameter to be estimated, and assign it a discrete uniform prior

whose values are the set of candidate neighbourhood matrices previously constructed.

However, the clustering of this approach relies on a single clustering algorithm, which

means that for each fixed number of clusters only one spatial cluster structure is allowed

as a candidate in the model, thus the true cluster structure may not be identified in stage

one. Anderson et al. (2017) proposed a model to identify clusters of areal units which

are similar in terms of average disease risk and temporal trends during the study period.

This model is an extension of that proposed by Bernardinelli et al. (1995) by introducing

two other sets of parameters, which are cluster-specific intercept terms and cluster-specific

linear trend slopes. Therefore, areas within the same spatial cluster would have similar

disease risks and areas within the same temporal cluster would have similar temporal

trends. The proposed model comes with both strengths and weaknesses. It improves the

Bernardinelli et al. (1995) model by including a clustering mechanism, where a different

intercept and linear slope is assigned to each cluster. In addition, it allows disease risk to

vary within one cluster via the area-specific random effects, which more accords with real

data. However, the number of clusters is required to be defined in advance, rather than being

estimated from the data. Santafé et al. (2021) proposed to first estimate a single cluster

configuration using a density-based clustering algorithm, and then a Bayesian hierarchical

spatial model that takes the cluster configuration into account is fitted. In contrast to the
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previous proposals in Anderson et al. (2014) and Adin et al. (2019), this approach is able

to automatically detect the number of spatial clusters, and is suitable for analysing large

spatial data sets because only one disease mapping model is fitted based on the single

cluster structure. However, the uncertainty in the cluster structure is not quantified, and an

accurate cluster structure is required in the first step in order to provide precise risk estimates.

In Chapters 3, 4 and 5 of this thesis, I will focus on developing methodologies for si-

multaneously estimating the spatial patterns in disease risk and identifying clusters of areas

that exhibited elevated or reduced risks compared to their geographical neighbours in the

Bayesian disease mapping context.

2.6.2 Boundary analysis

The other class of statistical techniques accounts for spatial discontinuities in disease risk

by identifying the locations of boundaries in the spatial surface that separate two geographi-

cally adjacent areas exhibiting vastly different risks. Thus the identified boundaries do not

necessarily enclose an areal unit or group of units, which are known as “open boundaries”.

Lu and Carlin (2005) proposed to calculate the absolute differences in the estimated

disease risk between all pairs of neighbouring areas, which are called boundary likelihood

values (BLVs). The boundaries are detected based upon the posterior distribution of the

BLVs computed using Markov chain Monte Carlo simulation in a Bayesian hierarchical

model. The border between each pair of adjacent areas is identified as a boundary if the

posterior mean of the BLVs is greater than a certain pre-selected cutoff c1. Alternatively,

we can make probability statements by calculating the posterior exceedance probability

of BLVs exceeding some cutoff. An advantage of this model is that it allows for direct

probability statements regarding the likelihood that a geographical border is a boundary.

However, the cutoff value needs to be specified by the user, indicating that the number of

boundaries identified is essentially artificially determined in advance. Li et al. (2011) took a

different approach, by treating the boundary detection as a model comparison problem. They

fit a class of models with different neighbourhood matrices applied. These neighbourhood

matrices represent a set of neighbourhood structures with different potential boundaries, and

the one leading to the smallest Bayesian Information Criterion (BIC) is chosen.

A number of models estimate the local boundaries by treating the elements {wi j} of
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the neighbourhood matrix WWW as a set of binary random variables taking values 0 or 1 if

areas (i, j) share a common border, rather than fixing them at 1. Therefore a boundary

is said to exist between the two adjacent areas (i, j) when estimating wi j = 0, which

implies that the random effects (φi, φ j) are conditionally independent and should not be

smoothed over. If estimating wi j = 1 then there is no boundary between areas (i, j), hence

the two random effects are correlated and should be smoothed towards each other (see

equation (2.15)). One of the first such approaches was proposed by Lu et al. (2007), who

modelled elements {wi j|i ∼ j} through a logistic regression model using a set of covariates

which measure the dissimilarity between areas i and j. The model has the advantage

of estimating the degree of spatial smoothing using both data and the related covariate

information. However, a large collection of sensible covariates would be required in order

to define a rich enough spatial weights matrix. In addition, the number of parameters in the

logistic regression will increase quadratically as a function of the number of spatial units

in the study. This could involve computationally expensive MCMC algorithms and cause

problems of parameter identifiability, which also arise in a similar model proposed by Ma

et al. (2010). Lee and Mitchell (2012) proposed an approach for capturing localized spatial

autocorrelation structure by treating the set of {wi j|i ∼ j} as a deterministic function of a

small number of regression parameters and measures of dissimilarity based on covariate

information. This model has the advantages of being fully automatic and parsimonious

over the existing models. The main drawback is that the approach is crucially dependent

on the existence of good quality dissimilarity measures. This issue has been addressed

by the same authors in Lee and Mitchell (2013). They proposed an iterative algorithm

which cycles between updating WWW and the remaining model parameters ΘΘΘ conditional on

each other until a convergence criterion is met. Conditional on WWW , the estimation of ΘΘΘ

is fully Bayesian, whereas the elements {wi j|i ∼ j} are treated as hyperparameters which

are updated deterministically based on the current marginal posterior distributions of the

random effects φi and φ j. If the two marginal 95% posterior credible intervals for (φi,φ j)

overlap then we set wi j = 1, otherwise we set wi j = 0 and a boundary is found between

areas (i, j). The elements {wi j|i ∼ j} are not updated in a fully Bayesian setting, because

only the estimates are provided rather than full posterior distributions, thus this approach

cannot quantify the level of uncertainty in wi j. Rushworth et al. (2017) proposed to treat the

elements {wi j|i ∼ j} as parameters with support on the unit interval to allow adaptive levels

of spatial smoothing. Lee et al. (2021) developed a graph-based optimisation algorithm for

estimating either static or temporally evolving risk boundaries. The algorithm views the
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areal units as the vertices of a graph and the neighbour relations as the set of edges. Firstly,

the algorithm is applied to the data to estimate which edges in the graph should be removed

via an objective function. An appropriate neighbourhood matrix WWW is then estimated by

setting wi j = 0 if the edge between areas (i, j) is removed, which suggests a boundary

between the two areas. Otherwise, wi j = 1 and no boundary exists between the two areas.

Secondly, a Poisson log-linear model with spatio-temporally correlated random effects is

fitted using the estimated WWW . However this algorithm operates via a local search method and

is not guaranteed to find the global optimal neighbourhood matrix. In addition, the approach

also cannot measure the uncertainty in WWW when estimating disease risk.

In Chapter 6 of this thesis, I will propose an approach for jointly estimating disease

risk and identifying the locations of boundaries that correspond to sizeable changes in

disease risk between geographically adjacent areas.

2.7 Clustering algorithms

In this section, I will introduce a range of classical clustering methods which will be used in

the methodology developed in Chapters 3, 4 and 5.

Initial interests in cluster analysis began in the 1960s, and the first application of

clustering was in the disciplines of biology and ecology (Sneath et al., 1973). Clustering

is the unsupervised classification of a set of unlabeled objects into groups called clusters

according to their similarities on some specified characteristic(s). It has been broadly used

in many fields such as data mining, image analysis, biology, business etc. (Madhulatha,

2012). For example, clustering has been applied to identify groups of genes that have

similar functions. In marketing research, clustering can be used to separate customers into

different clusters of people with different consumption habits. In meteorology, clustering

has been used to find patterns in the atmosphere pressure of polar regions. A cluster is a

collection of objects which are more similar to each other than they are to those belonging

to other clusters. The similarity (or dissimilarity) between objects or clusters are normally

defined by a distance measure. Some examples of usual distance functions are described in

Section 2.7.1, including the Euclidean distance, Manhattan distance, Chebychev distance

and Minkowski distance. A number of clustering approaches using different algorithms to

constitute a cluster have been proposed. Section 2.7.2 discusses some popular clustering
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algorithms which will be used in this thesis.

2.7.1 Dissimilarity metrics

Consider a set of n objects which are described by data ξξξ = {ξξξ 1, . . . ,ξξξ n}, where ξξξ i =

(ξi1, . . . ,ξip) is a data vector of length p which contains the information relating to object

i. The dissimilarity (or distance) between objects i and j is denoted by di j. Four commonly

used distance measures are described below.

• Euclidean distance: It is the most common choice of dissimilarity measurement

which computes the root sum-of-squares of differences between objects. The Eu-

clidean distance between objects (i, j) is computed as

di j =

√
p

∑
v=1

(ξiv −ξ jv)2.

• Manhattan distance: It computes the sum of absolute differences between objects,

which is given by

di j =
p

∑
v=1

|ξiv −ξ jv|.

• Chebyshev distance: It computes the maximum absolute differences between objects,

which is given by

di j = max
{
|ξi1 −ξ j1|, . . . , |ξip −ξ jp|

}
.

• Minkowski distance: It is a generalised metric distance. The Minkowski distance

between objects (i, j) is defined as

di j =

(
p

∑
v=1

|ξiv −ξ jv|q
) 1

q

, q ≥ 1.

Here, q = 1 and q = 2 refer to the Manhattan and Euclidean distance respectively, and

q = ∞ corresponds to the Chebyshev distance.

2.7.2 Clustering methods

Suppose n objects are partitioned into K clusters by a clustering method, and the resultant

cluster structure is denoted by CCCK = (C1
K, . . . ,C

K
K ), where C j

K represents the set of objects

belonging to the jth cluster in CCCK .
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2.7.2.1 K-means clustering

K-means clustering (MacQueen et al., 1967) assigns each object to its closet centroid

(center) by the Euclidean distance, and the collection of objects assigned to the same

centroid forms a cluster. A centroid is defined as the average of all the objects in the

cluster. The goal of this method is to minimize the within-cluster sum-of-squares. The basic

k-means clustering algorithm for generating a cluster structure with K clusters is outlined as

follows.

Algorithm 1: Basic k-means clustering algorithm

1. Randomly select K objects as initial centroids, denoted by OOO = (OOO1, . . . ,OOOK);

repeat

2. Assign each object to its nearest centroid based on the Euclidean distance, which

is di j =
√

∑
p
v=1(ξiv −O jv)2 between object i and centroid OOO j;

3. Recalculate the centroid for each cluster;

until Centroids do not change.

2.7.2.2 K-medoids clustering

In contrast to k-means clustering, k-medoids clustering (Park and Jun, 2009) takes the

object whose average dissimilarity to all the other objects in the cluster is minimal as the

cluster center. k-medoids clustering is more robust than k-means clustering as a medoid is

less influenced by outliers or extreme values than a mean (Madhulatha, 2011). Partitioning

around medoids (PAM) algorithm is one of the earliest realisation of k-medoids clustering,

which is outlined as follows.
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Algorithm 2: Basic k-medoids clustering algorithm

1. Randomly select K objects as initial medoids, denoted by OOO = (OOO1, . . . ,OOOK);

repeat

2. Assign each object to its closet medoid. The Euclidean distance between object i

and medoid OOO j is di j =
√

∑
p
v=1(ξiv −O jv)2;

3. Recalculate the medoid for each cluster. For each object i in cluster C j
K , compute

its average dissimilarity to all the other objects in that cluster as√
1

N j−1 ∑

f∈C j
K

(ξξξ i −ξξξ f )
2, where N j is the number of objects in cluster C j

K . Then

select the object with the minimum average dissimilarity as the new medoid;

until Medoids do not change.

2.7.2.3 Hierarchical agglomerative clustering

Hierarchical agglomerative algorithm (Hastie et al., 2009) begins with each object being in

a separate cluster of its own and then iteratively merges the two least dissimilar clusters

into a larger cluster until only one cluster containing all data points remains. The result of

a hierarchical clustering algorithm is usually a hierarchical set of clusters represented by a

tree diagram or dendrogram, and all the objects can be partitioned into a desired number of

clusters by cutting the dendrogram at a given level. The dissimilarity Di j between clusters Ci
K

and C j
K can be defined by various linkage methods, such as single linkage, centroid linkage,

complete linkage, average linkage and Ward’s linkage.

1. Single linkage (Florek et al., 1951, Sneath, 1957): It measures the dissimilarity as the

minimum distance between any two objects from opposite clusters, which is computed

as

Di j = min
{
||ξξξ v −ξξξ w|| ,v ∈Ci

K,w ∈C j
K

}
,

where || · || denotes a distance metric. However, single linkage has the limitation of

frequently suffering from the chaining effect and producing long straggly clusters that

are difficult to interpret (Hartigan, 1981, Kuiper and Fisher, 1975).

2. Centroid linkage: It measures the dissimilarity as the distance between the centroids

for two opposite clusters, which is computed as

Di j =

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
Ni

∑
v∈Ci

K

ξξξ v −
1

N j
∑

w∈C j
K

ξξξ w

∣∣∣∣∣∣
∣∣∣∣∣∣ ,
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where Ni and N j are the number of objects in clusters Ci
K and C j

K respectively.

3. Complete linkage (Sorensen, 1948): It measures the dissimilarity as the maximum

distance between any two objects from opposite clusters, which is computed as

Di j = max
{
||ξξξ v −ξξξ w|| ,v ∈Ci

K,w ∈C j
K

}
.

4. Average linkage (Sokal and Michener, 1958): It measures the dissimilarity as the

average distance between all pairs of objects from opposite clusters, which is computed

as

Di j =
1

Ni ×N j
∑

v∈Ci
K

∑
w∈C j

K

||ξξξ v −ξξξ w||.

5. Ward’s linkage (Ward Jr, 1963, Murtagh and Legendre, 2014): It measures the dis-

similarity as the increase in the total within-cluster sum-of-squares when joining two

smaller clusters into a larger cluster, which is computed as

Di j = SS
(

Ci
K ∪C j

K

)
−
[
SS
(
Ci

K
)
+SS

(
C j

K

)]
,

where SS(·) denotes the within-cluster sum-of-squares, which is computed as

SS
(
Ci

K
)
= ∑

v∈Ci
K

∣∣∣∣∣
∣∣∣∣∣ξξξ v − 1

Ni
∑

v∈Ci
K

ξξξ v

∣∣∣∣∣
∣∣∣∣∣
2

.

Each linkage method defines the distance between two clusters in a unique way. The se-

lected linkage will determine the way in which clusters are merged and so directly affect the

clustering results.

2.7.2.4 Hierarchical divisive clustering

Hierarchical divisive algorithm begins with all objects in one cluster and at each step of

iteration the most heterogeneous cluster is divided into two subclusters, which make up a

so-called bipartition of the former cluster. This process is iterated until each object forms a

singleton cluster. One of the divisive algorithms was proposed by Kaufman and Rousseeuw

(2009). Two main choices should apply in the algorithm, which are outlined below.

1. The choice of the cluster to be split: At each iteration the cluster with the largest

diameter is selected to be split. Here, the diameter of a cluster Ci
K is defined as the

largest dissimilarity between all pairs of objects in the cluster, and is calculated as

max
{
||ξξξ v −ξξξ w|| ,v ∈Ci

K,w ∈Ci
K
}
.
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2. The bipartition of the selected cluster: To divide the selected cluster Ci
K , its object

which has the largest average dissimilarity to the other objects in Ci
K is selected to

initiate one subcluster, denoted by Cl
K+1. Then each of the remaining objects in Ci

K

is assigned to cluster Cl
K+1 as long as its average dissimilarity to Ci

K is greater than

that to Cl
K+1. What remained from the original cluster Ci

K naturally forms the other

subcluster. The average dissimilarity from object v ∈ Ci
K to the other objects in the

same cluster is calculated as 1
Ni−1 ∑

w∈Ci
K ,w̸=v

||ξξξ v −ξξξ w||.

Therefore, a new cluster structure CCCK+1 containing K + 1 clusters is generated from the

original cluster structure CCCK with K clusters. The hierarchical divisive algorithm proposed

by Kaufman and Rousseeuw (2009) can be implemented with the “cluster” package in R

programming (R Core Team, 2013).

In k-means, k-medoids and hierarchical clustering methods, the number of clusters is

chosen based on prior expert knowledge or plotting tools. For example, the elbow method

plots the curve of the within-cluster sum of squares against varying number of clusters

K. The location of an elbow point, after which the curve appears to level off, is generally

considered as an indicator of the appropriate number of clusters. However, the elbow

method would be subjective and ambiguous sometimes. Other objective and robust methods

include the average silhouette method (Rousseeuw, 1987) and the gap statistic (Tibshirani

et al., 2001). Average silhouette method computes the average silhouette statistics of objects

for different values of K, and the value with the maximum average silhouette is the best

choice. Gap statistic method compares the total within-cluster variation for different values

of K with their expected values under the uniform reference distribution of the data. The gap

statistic is estimated as the deviation of the total within-cluster variation from its expected

value for each value of K, and the optimal K is the value that maximizes the gap statistic.

2.7.2.5 Model-based clustering

The clustering methods introduced above generate clusters based on the dissimilarity or

distance between data points rather than probability models. An alternative approach is

model-based clustering (Fraley and Raftery, 2002) which assumes that the data are generated

by a mixture of underlying probability distributions. Each distribution corresponds to a

different cluster and the goal is to estimate the parameters of these distributions. The

parameters can be estimated using the expectation-maximisation (EM) algorithm (Dempster

et al., 1977). A mixture of Gaussian distributions is considered in most occasions, and in
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this context the EM algorithm aims to estimate the mean and variance for each Gaussian

distribution. The EM algorithm works by iteratively performing an E-step, which assigns

each object to its most likely cluster, and an M-step, which then estimates the parameters by

maximising the complete data log-likelihood based on the assigned objects. The algorithm

ends up providing the probabilities that each object belongs to each cluster, and the final

cluster of the object is determined by the maximum probability.

Consider a set of n objects, described by data ξξξ = {ξξξ 1, . . . ,ξξξ n}, are from a mixture

model with K clusters. The data likelihood is given by

L(α1, . . . ,αK;θθθ 1, . . . ,θθθ K|ξξξ 1, . . . ,ξξξ n) =
n

∏
i=1

K

∑
j=1

α j f j(ξξξ i|θθθ j),

where f j(ξξξ i|θθθ j) denotes the probability distribution for the jth cluster, and θθθ j are the param-

eters of that distribution. ααα = (α1, . . . ,αK) denotes the mixing proportions for each cluster

with the constraints ∑
K
j=1 α j = 1 and α j > 0. Let zzzi = {zi1, . . . ,ziK} be the latent variables

with each zi j given as

zi j =

1, if ξξξ i comes from the jth cluster,

0, otherwise.

Suppose the probability density of ξξξ i given zzzi is specified as ∏
K
j=1 f j(ξξξ i|θθθ j)

zi j and each zzzi

is independent and identically distributed from a multinomial distribution with probabilities

ααα = (α1, . . . ,αK), then the complete data log-likelihood is given by

l (zzz1, . . . ,zzzn;α1, . . . ,αK;θθθ 1, . . . ,θθθ K, |ξξξ ) =
n

∑
i=1

K

∑
j=1

zi j log
(
α j f j

(
ξξξ i|θθθ j

))
.

In E-step, since the latent variable zi j is unknown, the conditional expected value ẑi j is sub-

stituted for zi j. By Bayes’ theorem, we have

ẑi j = E
(
zi j|ξξξ i,α1, . . . ,αK,θθθ 1, . . . ,θθθ K

)
=

α̂ j f j(ξξξ i|θ̂θθ j)

∑
K
s=1 α̂s fs(ξξξ i|θ̂θθ s)

.

In M-step, the model parameters are estimated by maximising the log data likelihood given

by

l(ẑzz1, . . . , ẑzzn;α1, . . . ,αK,θθθ 1, . . . ,θθθ K|ξξξ ) =
n

∑
i=1

K

∑
j=1

ẑi j log
(
α̂ j f j

(
ξξξ i|θθθ j

))
.
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Consider a Gaussian mixture model such that each cluster of objects follows a mulitvairate

Gaussian distribution f j(ξξξ i|θθθ j) ∼ N(µµµ j,ΣΣΣ j). The parameters θθθ j consist of a mean vector

µµµ j and a covariance matrix ΣΣΣ j and are estimated by

µ̂µµ j =
∑

n
i=1 ẑi jξξξ i

∑
n
i=1 ẑi j

,

Σ̂ΣΣ j =
∑

n
i=1 ẑi j(ξξξ i − µ̂µµ j)(ξξξ i − µ̂µµ j)

⊤

∑
n
i=1 ẑi j

.

The mixing proportions (α1, . . . ,αK) are updated with

α̂ j =
∑

n
i=1 ẑi j

n
.

These two steps are repeated until convergence is reached. A usual criterion for conver-

gence is that the difference in latent variables zzzi between consecutive iterations is within a

certain tolerance level. This model-based clustering algorithm can be implemented with the

“mclust” package in R programming.

2.7.3 Adjusted rand index

One of the common statistics for measuring the clustering performance is the adjusted

Rand Index (ARI) proposed by (Hubert and Arabie, 1985). It is a measure of the similarity

between two cluster structures, with a larger value indicating a higher agreement between

two cluster structures. A value of 1 indicates complete agreement between two cluster

structures, a value of 0 indicates that the data points are randomly allocated to the two

cluster structures, and a value less than 0 indicates that the level of agreement between two

cluster structures is smaller than that if data points are randomly allocated.

Suppose n objects are partitioned into two different cluster structures, CCCK = (C1
K, . . . ,C

K
K )

with K clusters and SSSV = (S1
V , . . . ,S

V
V ) with V clusters. C j

K and Si
V respectively denote the set

of objects in the jth and ith cluster in structures CCCK and SSSV . Then the overlap between these

two structures can be summarised in Table 2.1, where each entry n ji denotes the number of

objects in common between clusters C j
K and Si

V .
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Table 2.1: A table summarising the number of objects in common between clusters C j
K and

Si
V .

CCCK

SSSV S1
V S2

V . . . SV
V sums

C1
K n11 n12 . . . n1V a1 = ∑

V
i=1 n1i

C2
K n21 n22 . . . n2V a2 = ∑

V
i=1 n2i

...
...

... . . . ...
...

CK
K nK1 nK2 . . . nKV aK = ∑

V
i=1 nKi

sums b1 = ∑
K
j=1 n j1 b2 = ∑

K
j=1 n j2 . . . bV = ∑

K
j=1 n jV

The adjusted Rand Index between cluster structures CCCK and SSSV is computed as

ARI =

K
∑
j=1

V
∑

i=1

(n ji
2

)
−

[
K
∑
j=1

(a j
2

) V
∑

i=1

(bi
2

)]/(n
2

)
1
2

[
K
∑
j=1

(a j
2

)
+

V
∑

i=1

(bi
2

)]
−

[
K
∑
j=1

(a j
2

) V
∑

i=1

(bi
2

)]/(n
2

) . (2.22)

2.8 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve was originally developed by radar

engineers to detect enemy objects in battlefields (Collinson, 1998). A ROC curve is a

graphical plot that evaluates the diagnostic ability of a binary classifier as its discrimination

threshold is varied. For given input data which contain the correct (observed) labels for

all observations, a binary classifier predicts outcomes with two class labels, e.g. 1/0 and

Yes/No, where the classifier boundary between the two classes is determined by a threshold

value. Commonly, the class of interest is denoted as “positive” and the other as “negative”.

A ROC curve is a plot of sensitivity against specificity at various discrimination threshold

values. Here, sensitivity is calculated as the number of correct positive predictions divided

by the total number of true positives, and specificity is calculated as the number of correct

negative predictions divided by the total number of true negatives. Figure 2.2 shows an

example of the ROC curve. The closer an ROC curve is to the upper left corner, the more

accurate is the classifier. A common method to summarise the ROC performance is to

compute the area under the curve, abbreviated AUC (Bradley, 1997), which is a single

scalar value that measures the classifier performance across a number of possible threshold

values. It takes values from 0 to 1, where an AUC of 1 corresponds to perfectly accurate

classification, an AUC of 0.5 implies a random classification such that the ROC curve
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will fall on the diagonal (45-degree line), and an AUC of 0 indicates perfectly inaccurate

classification.

Figure 2.2: An example of the ROC curve.



Chapter 3

Estimating spatial disease risks and

identifying clusters via a k-means

clustering based approach

3.1 Introduction

Conditional autoregressive (CAR) models outlined in Section 2.4.4 are commonly used to

capture the spatial autocorrelation present in areal unit count data when estimating the spatial

pattern in disease risk. In these models spatial autocorrelation relating to n non-overlapping

areal units that comprise the study region is induced by an n × n neighbourhood matrix

WWW = {wi j}, which determines the degree of spatial closeness between pairs of areal units.

As touched on in Section 2.4.2, the values of {wi j} are typically binary and determined by

geographical adjacency in the literature, where wi j = 1 if areal units (i, j) share a common

border and wi j = 0 otherwise (diagonal elements wii = 0 for all i). Using this border sharing

rule data values relating to areas (i, j) will be modelled as being correlated as long as they

border one another. Therefore such models assume a constant level of spatial autocorrelation

across the entire study region, and hence a globally spatially smooth disease risk surface.

However, this may not always be the case in practice because some pairs of geographically

adjacent areas are likely to be independent of each other and exhibit significantly different

disease risks due to factors such as population behaviours and socio-economic deprivation,

for example, poor and rich areas which live side by side. Section 2.6.1 discussed a number

of existing approaches that allow for spatial discontinuities in the disease risk surface,

by identifying clusters of areas that exhibit elevated or reduced risks compared to their

neighbours. Some of them force the clusters to be spatially contiguous, while some

51
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approaches do not. Additionally, some models assume constant disease risk within a cluster,

while others are more flexible by allowing within cluster variation in disease risk.

In this chapter I propose new methodology to estimate the disease risk and identify

spatial clusters of areas with high risks. The approach consists of two stages. In stage one

the entire study region is partitioned into a set of clusters (or classes) of areal units in terms

of their similarity in disease risk via a k-means clustering algorithm. The resultant cluster

structure is used to decide whether or not the risks between geographically neighbouring

areas should be smoothed over. This is achieved by changing the value of wi j in the border

sharing neighbourhood matrix WWW from 1 to 0 if areas (i, j) are geographically adjacent and in

different clusters. With this, a set of candidate cluster structures as well as their correspond-

ing candidate neighbourhood matrices are generated, with each reflecting a more realistic

spatial pattern of disease risk via a different number of clusters. In stage two separate

Bayesian hierarchical models are fitted for each candidate cluster structure/neighbourhood

matrix, and the best model is then chosen using a model selection rule. I propose four

potential approaches to select the best model which gives the most appropriate cluster

structure/neighbourhood matrix from the candidates. The methodology is able to improve

the estimation of the spatial pattern in disease risk, particularly when there are non-smooth

disease risks present, e.g. risk discontinuities exist between neighbouring areas.

The remainder of this chapter is structured as follows. Section 3.2 presents our moti-

vating data set for respiratory disease in Greater Glasgow in 2016. Section 3.3 outlines the

proposed methodology, and its effectiveness is assessed against an existing and still widely

used model by a large simulation study in Section 3.4. Section 3.5 applies the methodology

to the motivating application, a study of respiratory disease risk in the 257 Intermediate

Zones that comprise the Greater Glasgow and Clyde Health Board in 2016. Finally, the

proposed methodology is further discussed in Section 3.6.

3.2 Motivating study

Respiratory disease is one of the leading causes of death in Scotland, and has International

Classification of Disease tenth revision codes J00-J99 (https://www.nrscotland.gov.uk). The

methodology is motivated by a study of respiratory disease risk in Glasgow, Scotland in

2016. As displayed in Figure 3.1, the study region is the Greater Glasgow and Clyde Health

https://www.nrscotland.gov.uk/statistics-and-data/statistics/scotlands-facts/leading-causes-of-death-in-scotland
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Board which contains the city of Glasgow and the surrounding rural areas, and is split in two

by the River Clyde running north west through the region. The study region has a population

of around 1,200,000 people and is split up into n = 257 Intermediate Zones (IZs), each

with an average population of approximately 4,000 residents. The disease data modelled

here are available from Public Health Scotland. The response data, YYY = (Y1, . . . ,Yn), are

the observed counts of the numbers of hospital admissions with a primary diagnosis of

respiratory disease in 2016 for each of the 257 IZs, where Yi represents the disease counts

in IZ i(= 1, . . . ,257). The expected respiratory hospital admission counts for each IZ are

calculated using indirect standardisation to adjust for different population sizes and age and

sex structures across the IZs, and are denoted by EEE = (E1, . . . ,En). These expected counts

are based on Scotland-wide age-sex specific respiratory hospitalisation rates, because it

allows us to examine how the risk of disease in Glasgow compares to the national average,

which is the benchmark often used by Public Health Scotland when examining the spatial

pattern in disease risk. In this study, the observed disease counts range between 21 and 256

in a single IZ with a median of 95, while the expected counts are between 16.59 and 135.55

in a single IZ with a median of 74.61.

The simplest measure of disease risk is the standardised incidence ratio (SIR), which

is calculated as the ratio of the observed to the expected numbers of hospital admissions for

each areal unit, i.e. SIRi =
Yi
Ei

. An SIR value greater than 1 corresponds to an increased level

of disease risk within the areal unit compared to the Scottish average. In contrast a value less

than 1 indicates a decreased level of risk compared to the average over Scotland. Figure 3.2

displays the SIR for respiratory disease hospitalisation in 2016 in Greater Glasgow. The

median SIR over the 257 IZs is 1.28 with the maximum of 2.67 and minimum of 0.43. The

figure shows that higher SIRs are mainly in the East End of Glasgow (the east of the map)

and along the southern bank of the River Clyde. These high risk regions contain a number

of socio-economically deprived areas such as Easterhouse, Govan, Barlanark and Paisley.

However, the areas with low SIRs can be found in the center and far south of the city as well

as in the outlying suburbs, e.g. Dowanhill, Eaglesham, Giffnock, Milngavie and Bearsden,

which are the wealthy areas. These results suggest that the poor areas tend to exhibit higher

SIRs than the affluent areas. In addition, there are numerous pairs of neighbouring areas

where a discontinuity in disease risk appears to exist, suggesting the presence of clusters

of areas that exhibit elevated risks compared with their neighbours. For example, in 2016

Drumchapel to the north west of the city exhibits a vastly higher SIR value (SIR = 2.59)
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compared to its neighbour Bearsden in the north east (SIR = 0.74). Therefore, the common

approach in the literature of assuming that all pairs of neighbouring areal units are correlated

and exhibit similar disease risks is clearly not appropriate, which motivates the spatial

clustering model proposed in Section 3.3. The analysis of these motivating data aims at

achieving a better estimation of the spatial pattern in respiratory disease risk in Greater

Glasgow in 2016, and identifying the spatial extent of clusters of areas with elevated risks.

Figure 3.1: A map of the Greater Glasgow and Clyde Health Board (shaded region) over-
laying on OpenStreetMap.
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Figure 3.2: A map of the standardised incidence ratio (SIR) for respiratory disease in the
Intermediate Zones in the Greater Glasgow and Clyde Health Board in 2016.

3.3 Methodology

I propose a two-stage modelling approach to estimate the spatial pattern in disease risk over

the study region and detect clusters of areas with elevated or reduced disease risks. In the

first stage all the areal units are split into k clusters using a k-means clustering algorithm,

where k is an integer ranging from 1 to K. From this, K cluster structures are generated

and further used to produce K candidate neighbourhood matrices accordingly. The optimal

cluster structure and neighbourhood matrix of these candidates will be selected in the second

stage through a model comparison procedure. In stage 2 a separate Bayesian hierarchical

model is fitted using each candidate neighbourhood matrix that corresponds to a given cluster

structure, and the best model will be selected via a model selection rule. Here, I propose four

approaches, described in Section 3.3.3, to select the best model and their performances are

assessed and compared in the simulation study in Section 3.4.
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3.3.1 Notation

Consider a study region partitioned into n non-overlapping areal units indexed by i ∈

{1, . . . ,n}. YYY = {Yi} and EEE = {Ei} respectively denote the set of observed and expected

disease counts in areal unit i, and a vector of covariates (if needed) is given by xxxi for area i.

This notation will be used in this chapter as well as in Chapter 4.

3.3.2 Stage 1 — Generating candidate neighbourhood matrices via k-

means clustering

Given a value of k, i.e. a specified number of clusters in k-means clustering (MacQueen

et al., 1967), the n non-overlapping areal units are partitioned into k clusters by clustering

the natural log of the standardised incidence ratio (SIR) after adjusting for covariates, that

is
{

ln
(

Yi
Ei

)
− xxx⊤i β̂ββ

}
, where β̂ββ are initially estimated assuming independence via maximum

likelihood estimation. Here, data are clustered on the logarithm scale of SIR because it

corresponds to the linear predictor scale in model (3.1), and the covariate adjustment is

because the clusters identified by our methodology are in the random effects surface in

model (3.1)-(3.2). The resultant cluster structure is denoted by CCCk = (C1
k , . . . ,C

k
k), which

indicates that the n areal units are divided into k clusters with different levels of average

disease risk and C j
k represents the jth cluster in structure CCCk. Note that k-means clustering

is applied to the data without regard to the spatial positions of the areal units, because the

spatial correlation in the data is modelled by the spatial random effects in the proposed

model (3.1). Thus the clusters identified here represent the number of different risk levels

rather than the number of spatially distinct cluster. In addition, the clusters are ordered so

that areal units in cluster C j
k always have a lower average risk level than those in cluster C j+1

k

and a higher average risk level than those in cluster C j−1
k . Each candidate cluster structure

CCCk is used to generate a candidate neighbourhood matrix denoted by WWW (k). The k-means

clustering algorithm and how it works to generate a candidate WWW (k) are as follows:

K-means clustering algorithm

1. Specify the number of clusters k, for k = 1,2, . . . ,K to consider. The value of K is

chosen to be a sensible upper limit for the number of clusters one would expect to find

in the data, which must be specified by the user. In this study I set K = 10 as a conser-

vative overly large choice, because as described above this represents the number of

distinct risk levels and not the number of spatially contiguous clusters.
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2. Randomly select k data points from (ξ1, . . . ,ξn), where ξi = ln
(

Yi
Ei

)
− xxx⊤i β̂ββ , as initial

cluster centers denoted by (O1, . . . ,Ok). The corresponding k clusters are denoted by

(C1
k , . . . ,C

k
k).

3. Calculate the Euclidean distance between each areal unit and each cluster center, and

then assign each areal unit to the cluster with the nearest distance. The Euclidean dis-

tance di j between areal unit i and cluster center O j is computed as di j =
√

(ξi −O j)2.

4. Update the cluster centers (O1, . . . ,Ok) by taking the average of all areal units in each

cluster, that is, O j =
1
n j

∑ f : f∈C j
k
ξ f , where n j is the number of areal units in cluster C j

k

and j = 1, . . . ,k.

5. Iterate steps 3 and 4 until the cluster assignments do not change.

The cluster structure CCCk = (C1
k , . . . ,C

k
k) is used to create a candidate neighbourhood matrix

WWW (k), with each element given as

w(k)
i j =

1, if areal units (i, j) share a common geographical border and are in the same cluster,

0, otherwise.

This algorithm leads to K candidate neighbourhood matrices in total, with each matrix cor-

responding to a cluster structure with a distinct number of clusters (or risk level). The esti-

mation of
(

WWW (1), . . . ,WWW (K)
)

in stage one is based on an Empirical Bayes approach, where

we estimate the hyperparameter WWW from the data first, rather than assigning a hyperprior

distribution to it (Robbins, 1992). In our case, we estimate WWW (k) by clustering the data, and

then apply a Bayesian hierarchical model described in Section 3.3.3 to the data and WWW (k).

3.3.3 Stage 2 — Bayesian spatial modelling and model selection

Each value of k relates to a candidate neighbourhood matrix WWW (k), therefore, we have K

candidate neighbourhood matrices, (WWW (1), . . . ,WWW (K)). WWW (1) is equal to the border sharing WWW

as k = 1, which thus represents no clusters in disease risk. For each candidate neighbourhood

matrix WWW (k), a separate Bayesian hierarchical model is fitted to the data. The first level of
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the proposed spatial model is given by

Yi ∼ Poisson(EiR
(k)
i ), i = 1, . . . ,n,

ln(R(k)
i ) = xxx⊤i βββ

(k)+φ
(k)
i , (3.1)

β
(k)
j ∼ N(0,1000), for j = 0, . . . , p.

Here R(k)
i is the disease risk in areal unit i relating to WWW (k), and it can be estimated

by two components. The first component is a 1 × (p + 1) vector of known covari-

ates xxx⊤i = (1,xi1, . . . ,xip), including an intercept term, with regression parameters

βββ
(k) = (β

(k)
0 ,β

(k)
1 , . . . ,β

(k)
p ). The prior specified for β

(k)
j is a Gaussian prior distribution

with mean zero and variance 1000. Note that the model outlined above is the most general

form that includes covariates, but I do not include any covariate data in the respiratory

disease motivating application in Section 3.5, because the aim of the analysis is to identify

clusters in the disease risk surface, not in the residual surface after covariate adjustment.

Furthermore, as the clusters identified by our methodology are in the random effects surface,

then by not including covariates in the model the random effects surface and the disease risk

surface have the same spatial structure, thus any clusters identified also relate to disease risk.

The second component is a set of spatial random effects φφφ
(k) = (φ

(k)
1 , . . . ,φ

(k)
n ) that

are used to account for the spatial autocorrelation in the data. These random effects can

be modelled by a conditional autoregressive prior as discussed in Section 2.4.4. Here the

random effects φφφ
(k) are modelled by the Leroux CAR prior (Leroux et al., 2000), which is

given by

φ
(k)
i |φφφ (k)

−i ∼ N

 ρ(k)
∑

n
j=1 w(k)

i j φ
(k)
j

ρ(k)
∑

n
j=1 w(k)

i j +1−ρ(k)
,

τ2(k)

ρ(k)
∑

n
j=1 w(k)

i j +1−ρ(k)

 , (3.2)

τ
2(k) ∼ Inverse-Gamma(1,0.01),

ρ
(k) ∼ Uniform(0,1),

where φφφ
(k)
−i = (φ

(k)
1 , . . . ,φ

(k)
i−1,φ

(k)
i+1, . . . ,φ

(k)
n ). The parameter ρ(k) controls the level of

spatial autocorrelation in the data, where ρ(k) = 0 indicates independence in space (as

φ
(k)
i ∼ N(0,τ2(k))), while ρ(k) = 1 indicates strong spatial dependence (corresponding to

the intrinsic CAR prior (Besag et al., 1991)). τ2(k) is a variance parameter that controls

the amount of spatial variation between the random effects. A weakly informative uniform
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prior on the interval [0,1] is assigned to ρ(k) and a conjugate Inverse-Gamma prior,

Inverse-Gamma(1,0.01), is assigned to τ2(k) . To achieve identifiability, the spatial random

effects are zero-mean centred.

The joint multivariate Gaussian distribution for φφφ
(k) corresponding to the above Ler-

oux prior is φφφ
(k) ∼ N

(
000,τ2(k)QQQ(ρ(k),WWW (k))−1

)
, where QQQ(ρ(k),WWW (k)) = ρ(k)(diag(WWW (k)111)−

WWW (k)) + (1− ρ(k))III, 111 is an n× 1 vector of ones and III is an n× n identity matrix. The

variance matrix between random effects (φ
(k)
i ,φ

(k)
j ) conditioning on the remaining random

effects φφφ
(k)
−i j is given by

Var
[
φ
(k)
i ,φ

(k)
j |φφφ (k)

−i j

]
=


ρ(k)

∑
n
v=1 w(k)

iv +1−ρ(k)

τ2(k)

−ρ(k)w(k)
i j

τ2(k)

−ρ(k)w(k)
ji

τ2(k)

ρ(k)
∑

n
v=1 w(k)

jv +1−ρ(k)

τ2(k)


−1

2×2

(3.3)

=
τ2(k)

∆

ρ(k)
∑

n
v=1 w(k)

jv +1−ρ(k) ρ(k)w(k)
i j

ρ(k)w(k)
ji ρ(k)

∑
n
v=1 w(k)

iv +1−ρ(k)


2×2

,

where ∆ is computed as ∆ =
(

ρ(k)
∑

n
v=1 w(k)

iv +1−ρ(k)
)(

ρ(k)
∑

n
v=1 w(k)

jv +1−ρ(k)
)
−

ρ(k)2
w(k)

i j w(k)
ji . The partial correlation between (φ

(k)
i ,φ

(k)
j ) conditioning on the remaining ef-

fects φφφ
(k)
−i j, denoted by Corr

(
φ
(k)
i ,φ

(k)
j |φφφ (k)

−i j

)
, can be derived as

Corr
(

φ
(k)
i ,φ

(k)
j |φφφ (k)

−i j

)
=

Cov
(

φ
(k)
i ,φ

(k)
j |φφφ (k)

−i j

)
√

Var
(

φ
(k)
i |φφφ (k)

−i

)
Var
(

φ
(k)
j |φφφ (k)

− j

)
=

ρ(k)w(k)
i j√(

ρ(k)
∑

n
v=1 w(k)

iv +1−ρ(k)
)(

ρ(k)
∑

n
v=1 w(k)

jv +1−ρ(k)
) . (3.4)

Equation (3.4) shows that (φ (k)
i ,φ

(k)
j ) are only partially correlated if w(k)

i j = 1, otherwise,

the partial correlation between (φ
(k)
i ,φ

(k)
j ) is 0 and they are modelled as conditionally

independent. Hence WWW (k) determines the spatial correlation structure imposed by the model.

The candidate neighbourhood matrices generated in stage one allow the random effects

between neighbouring areas to be smoothed over only if they are in the same cluster,

otherwise, the neighbouring areas are treated as conditionally independent and their values

are not smoothed towards each other, which means that any cluster discontinuities in the
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spatial surface are not smoothed over in the estimation. Note that stage one could produce

a candidate neighbourhood matrix where an areal unit has no neighbours due to it being a

singleton cluster. The spatial random effects for these singletons are not allowed to smooth

towards their geographically neighbours, because ∑
n
j=1 w(k)

i j = 0 for the area i in question

and φ
(k)
i ∼ N(0, τ2(k)

1−ρ(k) ).

The model described above is fitted to the data separately for each WWW (k), with k = 1, . . . ,K.

Then the K models are compared and the best model is selected using a model selection

rule. The only changing variable across these models is the choice of WWW (k) corresponding to

a given cluster structure CCCk, therefore the model comparison procedure can be thought as a

comparison of the candidate cluster structures. When we select the best model we are also

selecting the most appropriate cluster structure, in other words, the most appropriate value

of k. Four approaches are proposed to select the best model. The first three approaches work

by comparing the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002), which

measures the relative fit of a set of Bayesian hierarchical models, and the last approach

compares the effective number of independent parameters (pd) of each candidate model,

which is a measure of model complexity. Each of the four approaches is detailed below.

Suppose DICk and pdk respectively denote the DIC and effective number of parame-

ters for the candidate model with the number of clusters k and neighbourhood matrix WWW (k).

The relative percentage difference in DIC from the model with k to k+1 clusters is denoted

by diffk and computed as diffk =
DICk−DICk+1

DICk
× 100%. k∗ is used to represent the most

appropriate value of k, which implies the choice of the final model.

Approach I: k∗ corresponds to the model with the minimum DIC, that is, k∗ =

argmin
k

(DICk);

Approach II: k∗ corresponds to the model with the maximum relative percentage of

decrease in DIC, that is, k∗ = argmax
k

(diffk)+1;

Approach III: Define a threshold c∗ ∈ (0,1) for the relative percentage of decrease

in DIC; if diffargmax
k

(diffk) ≤ c∗, then k∗ = argmax
k

(diffk); if diffargmax
k

(diffk) > c∗,

we look up each of the values greater than argmax
k

(diffk), i.e. argmax
k

(diffk) +

1, argmax
k

(diffk)+ 2, argmax
k

(diffk)+ 3, . . . ,K, until find the smallest value, say k
′
,

that have diffk′ < c∗, and then k∗ = k
′
. Different values of c∗ are used in the study in
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Section 3.4 to assess the influence of the threshold value on model performance, which

are,

(a) c∗ = 5%;

(b) c∗ = 10%; and

(c) c∗ = 20%.

Approach IV: k∗ corresponds to the model with the smallest pd , that is,

k∗ = argmin
k

(pdk).

The four approaches select the best model from different perspectives. Approach I selects

the model with the cluster structure minimising the DIC. Approach II and III work by

comparing the relative difference in DIC from the model with k to k+ 1 clusters, because

we believe that as k reaches a good number of clusters for the data, increasing k further

would not improve the estimation substantially and could even adversely affect the modelling

performance due to deviation from the true data structure. Approach IV selects the model

with the cluster structure minimising the pd . This approach focuses on model complexity

and aims to explain the data by using as few parameters as possible.

3.3.4 Inference

Model inference is performed in a Bayesian setting via Markov chain Monte Carlo (MCMC)

simulation, using both the Metropolis-Hastings (Metropolis et al., 1953, Hastings, 1970) and

Gibbs sampling steps (Geman and Geman, 1984). The MCMC algorithm is written and

implemented in R (R Core Team, 2013). In order to speed up computation, the updates of

random effects are written in C++ via the Rcpp package (Eddelbuettel et al., 2011, Eddel-

buettel, 2013). In addition, as WWW (k) is a sparse matrix, I exploit its triplet form to improve

computational efficiency. Point estimates of the parameters are taken from the median of

the posterior distribution of each model parameter. Convergence of the posterior samples is

diagnosed by checking parameter trace plots and by Geweke diagnostics (Geweke, 1992).
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3.4 Simulation Study

3.4.1 Aim

In this section, a simulation study is conducted to compare the performance of the model

(3.1)-(3.2) proposed in the previous section when it is used in conjunction with different

model selection rules for selecting the best cluster structure (see Section 3.3.3). Models P1,

P2 and P4 denote the proposed model that uses Approach I, II and IV to choose the best

cluster structure respectively, while models P3(a), P3(b) and P3(c) all use Approach III but

each of them specifies a different threshold value, with c∗ = 5%,10% and 20% respectively.

These models are compared against an existing commonly used model in disease mapping,

which is the Leroux CAR model (Leroux et al., 2000) outlined in Section 2.4.4. This model

induces the spatial autocorrelation structure based on geographical adjacency via the border

sharing WWW .

3.4.2 Data generation

In order to make the simulation study as realistic as possible to the real data, disease data

are simulated for the 257 Intermediate Zones (IZs) comprising the Greater Glasgow and

Clyde Health Board. Clustered disease data are generated according to the template shown

in Figure 3.3, which consists of three clusters of disease risk (high, medium and low risk

levels) across the study region. The cluster structure template is chosen based on the SIR

for respiratory disease admissions for IZs in Greater Glasgow in 2016 (see Figure 3.2).

Specifically, areal units with the SIR above 0.7 quantile and below 0.3 quantile are assumed

to have a high and low level of disease risk respectively and are shaded in red and blue,

while the remaining areal units are in the medium-risk cluster and are shaded in grey.

Disease count data YYY = {Yi} are generated from the Poisson log-linear model (3.5)

for the n = 257 IZs, and as previously described covariates are not included. The size of the

expected disease counts EEE = {Ei} quantifies the disease prevalence and is varied to assess

its influence on model performance. The expected disease counts EEE are uniformly drawn

from three different intervals: EEE ∈ [10,30], [50,100], and [100,150]. The intercept term β0

is fixed at 0, and the set of spatial random effects φφφ = (φ1, . . . ,φn) are generated from a

multivariate Gaussian distribution with a spatially correlated precision matrix proposed by

Leroux et al. (2000) as QQQ(ρ,WWW ) = ρ(diag(WWW111)−WWW )+ (1−ρ)III. Here 111 is an n×1 vector

of ones and III is an n× n identity matrix. WWW is the border sharing neighbourhood matrix
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corresponding to the study region and the spatial dependence parameter ρ is set equal to

0.99, which corresponds to strong spatial dependence. The three disease risk clusters are

achieved by specifying a piecewise constant mean function µµµ = {−1,0,1} for φφφ following

the template shown in Figure 3.3. Values µµµ = {−1,0,1} are multiplied by a constant scalar

Z to adjust the magnitude of the differences between clusters, where larger values represent

larger differences in disease risk. Values of Z = 1,0.5,0 are used in this study, where

Z = 1,0.5 respectively correspond to large and small differences between the clusters in the

spatial surface, and Z = 0 corresponds to a spatially smooth risk surface with no clusters so

that all areal units in the study region have the same expectation of disease risk. Therefore,

the simulation study is split into nine different scenarios comprising pairwise combinations

of Z = 1,0.5,0 and EEE ∈ [10,30], [50,100] and [100,150]. The data are generated by

Yi|Ei,Ri ∼ Poisson(EiRi), i = 1, . . . ,n,

ln(Ri) = β0 +φi, (3.5)

φφφ ∼ N(µµµ,τ2QQQ(ρ,WWW )−1).

Figure 3.3: A map of the simulated cluster structure in the Greater Glasgow and Clyde
Health Board. High-risk, medium-risk and low-risk clusters are respectively shaded in red,
grey and blue.
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3.4.3 Results

Two hundred simulated data sets are generated under each of the nine scenarios, and seven

models, containing models P1, P2, P3(a), P3(b), P3(c), P4 and the Leroux model, are fitted

to each data set. In all scenarios inference for each model is based on 100,000 MCMC

samples with a burn-in period of 80,000. The Markov chain is thinned by 10 due to limited

computer memory capacity and to reduce autocorrelation, which yields a total of 2,000

posterior samples.

The relative performances of the fitted models are compared using five metrics, and

the results of the study for all nine scenarios are respectively summarised in Figures 3.4,

3.5 and 3.6, and outlined in Tables 3.1 and 3.2. The accuracy of disease risk estimation is

quantified by the bias, root mean square error (RMSE) and coverage probabilities of the

95% credible intervals for the corresponding risk estimates, which are outlined as follows.

Bias

Bias measures the average difference between the estimated and the true values. The bias of

the risk estimates of all areal units for each data set is calculated as

Bias(R1, . . . ,Rn) =
1
n

n

∑
i=1

(R̂i −Ri), (3.6)

where R̂i represents the estimate of the true risk Ri for areal unit i.

Root mean square error (RMSE)

RMSE quantifies the average magnitude of the differences between the estimated and the

true values. A lower RMSE value suggests a more accurate estimation. The RMSE of the

risk estimates of all areal units for each data set is calculated as

RMSE(R1, . . . ,Rn) =

√
1
n

n

∑
i=1

(R̂i −Ri)2. (3.7)

Coverage probability

The uncertainty of the estimates can be measured by the coverage probabilities of the 95%

credible intervals. The 95% coverage probability of risk Ri is computed as the proportion of

the 95% credible intervals for Ri that contain the true value for Ri.
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The correctness of the estimated cluster structures of the proposed models is mea-

sured by both the estimated number of clusters and the adjusted Rand Index between the

true and estimated cluster structures. The adjusted Rand Index (ARI) proposed by Hubert

and Arabie (1985) is a measure of the similarity between two cluster structures. A value of

1 indicates complete agreement between two cluster structures, a value of 0 indicates that

the data points are randomly allocated to the two cluster structures, and a value less than 0

indicates that the level of agreement between the two cluster structures is smaller than that

arising from randomly allocated data points. More information on the ARI can be found in

Section 2.7.3.

Figures 3.4, 3.5 and 3.6 display boxplots of the performance metrics by each model

under different scenarios of Z = 1,0.5,0 over all simulated data sets. The results indicate

that Approach III is not a sensible model selection rule, because the model performance

is not robust to the choice of threshold c∗ for all scenarios. Model P3(a) (where c∗ = 5%)

outperforms P3(b) (where c∗ = 10%) and P3(c) (where c∗ = 20%) in terms of risk estimation

when Z = 1,0.5, whereas it exhibits higher RMSE values than the latter two when Z = 0,

suggesting that the accuracy of risk estimates is affected by the threshold value which is

unknown.

Figure 3.4 shows that when Z = 1 the proposed models P1, P2 and P4 perform better

than the Leroux model under all three cases of EEE in terms of lower RMSE values and

negligible bias close to zero; under EEE ∈ [10,30] the median RMSE values are 0.183, 0.178,

0.178 for P1, P2 and P4, and 0.255 for the Leroux model, under EEE ∈ [50,100] the median

RMSE values are 0.091, 0.068, 0.068 for P1, P2 and P4, and 0.134 for the Leroux, and under

EEE ∈ [100,150] the median RMSE values are 0.073, 0.055, 0.055 for P1, P2 and P4, and

0.103 for the Leroux. Models P2, P4 and the Leroux all exhibit good coverage ability since

the 95% credible intervals are able to contain the true risks around 95% of the time, while

model P1 gives a slightly lower coverage probability around 0.85. It should also be noted

that model P1 slightly overestimates the number of clusters with a median of 5 clusters,

which unsurprisingly results in the relatively lower ARI values compared to models P2 and

P4.

For the scenario of Z = 0.5, a more difficult case with smaller differences between

clusters, Figure 3.5 shows that models P1, P2 and P4 outperform the Leroux model under
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larger values of EEE, with the reductions in the median RMSE being 12.07%, 24.14%, 24.14%

when EEE ∈ [50,100] and 16.48%, 37.36%, 37.36% when EEE ∈ [100,150] respectively. In

addition, models P2 and P4 can accurately identify clusters and obtain higher ARI values

close to 1 than model P1. However, when EEE ∈ [10,30], our models have slightly higher

RMSE values, with medians of 0.216, 0.235 and 0.230 for P1, P2 and P4 respectively

compared to 0.202 for the Leroux model, which is likely to be a result of poor clustering

performance (small ARI values).

Table 3.2 shows that when there are clusters present in the data (Z = 1,0.5), models

P1, P2 and P4 generally perform better if the expected disease counts are higher. This is

because YYY ∝ EEE exp(φφφ), and multiplying the fixed φφφ with small values of EEE (e.g. EEE ∈ [10,30])

would make the difference in risk between areas much less prominent in terms of the size

of the difference in YYY . As a result, disease clusters are hard to accurately identify for rare

diseases with small values of EEE, and any incorrect cluster structure could make the smooth

of random effects between neighbours unreliable and influence the veracity of the modelling

results.

When the simulated risk surface is globally spatially smooth with no clusters, that is

Z = 0, Table 3.1 and Figure 3.6 show that model P4 is able to estimate the correct cluster

structure with ARI values equal to 1, and performs as good as the Leroux model under all

three cases of EEE in terms of RMSE, bias and coverage probability. However, models P1

and P2 overestimate the number of clusters and provide slightly higher RMSE values and

poorer coverage probabilities compared with P4 and the Leroux. In summary, the proposed

model P4 performs consistently well, in particular outperforming the Leroux model. The

only slight exception to this is when the disease is rare (EEE ∈ [10,30]) and the clusters are

not large in size (Z = 0.5), which is the case where the clusters are hardest to identify and

hence all the cluster models perform less well. Models P1 and P2 provide less accurate risk

estimates and cluster structures when Z = 0 than model P4, therefore they are only suitable

for the case when there are clusters present in the data, but model P2 is preferable to P1

because it has smaller RMSE values and lower variability in the ARI values. Model P3

is not recommended in any circumstances because its performance has been shown to be

dependent on the unknown threshold value.
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(a) Bias for the estimated disease risks under Z = 1. The dashed lines represent the zero bias.

(b) Root mean square error (RMSE) for the estimated disease risks under Z = 1.

(c) Coverage probability of the 95% credible intervals for the estimated disease risks under Z = 1.
The dashed lines represent the nominal 0.95 coverage levels.
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(d) Estimated number of clusters under Z = 1. The dashed line represents the true number of clusters.

(e) Adjusted Rand Index (ARI) under Z = 1.

Figure 3.4: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms
of bias (3.4(a)), RMSE (3.4(b)), 95% coverage probabilities (3.4(c)), the estimated number
of clusters (3.4(d)) and the adjusted Rand Index (3.4(e)) for each model under the scenario
Z = 1.
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(a) Bias for the estimated disease risks under Z = 0.5. The dashed lines represent the zero bias.

(b) Root mean square error (RMSE) for the estimated disease risks under Z = 0.5.

(c) Coverage probability of the 95% credible intervals for the estimated disease risks under Z = 0.5.
The dashed lines represent the nominal 0.95 coverage levels.
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(d) Estimated number of clusters under Z = 0.5. The dashed line represents the true number of
clusters.

(e) Adjusted Rand Index (ARI) under Z = 0.5.

Figure 3.5: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms
of bias (3.5(a)), RMSE (3.5(b)), 95% coverage probabilities (3.5(c)), the estimated number
of clusters (3.5(d)) and the adjusted Rand Index (3.5(e)) for each model under the scenario
Z = 0.5.
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(a) Bias for the estimated disease risks under Z = 0. The dashed lines represent the zero bias.

(b) Root mean square error (RMSE) for the estimated disease risks under Z = 0.

(c) Coverage probability of the 95% credible intervals for the estimated disease risks under Z = 0.
The dashed lines represent the nominal 0.95 coverage levels.
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(d) Estimated number of clusters under Z = 0. The dashed line represents the true number of clusters.

(e) Adjusted Rand Index (ARI) under Z = 0.

Figure 3.6: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms
of bias (3.6(a)), RMSE (3.6(b)), 95% coverage probabilities (3.6(c)), the estimated number
of clusters (3.6(d)) and the adjusted Rand Index (3.6(e)) for each model under the scenario
Z = 0.
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Table 3.1: Summary of the median bias, RMSE and coverage probability of the 95% credible
intervals of the estimated risk surface for each model. Values in brackets display the standard
deviation. Note that for each of the performance metrics, the best results under each scenario
of EEE and Z are highlighted in bold.

Model

Metric EEE Z Leroux P1 P2 P3(a) P3(b) P3(c) P4

[10, 30]
1 -0.015 (0.017) -0.007 (0.017) -0.002 (0.017) -0.002 (0.017) -0.015 (0.018) -0.015 (0.017) -0.002 (0.016)

Bias 0.5 -0.017 (0.015) -0.008 (0.015) -0.008 (0.015) -0.007 (0.015) -0.012 (0.015) -0.012 (0.015) -0.008 (0.015)
0 0.000 (0.013) -0.003 (0.014) -0.004 (0.014) -0.004 (0.014) 0.000 (0.013) 0.000 (0.013) 0.000 (0.013)

[50, 100]
1 -0.005 (0.008) -0.002 (0.008) -0.001 (0.008) -0.001 (0.008) -0.005 (0.008) -0.005 (0.008) -0.001 (0.008)

0.5 -0.005 (0.008) -0.003 (0.008) -0.002 (0.008) -0.002 (0.008) -0.004 (0.008) -0.004 (0.008) -0.002 (0.008)
0 -0.001 (0.007) -0.001 (0.007) -0.001 (0.007) -0.001 (0.007) -0.001 (0.007) -0.001 (0.007) -0.001 (0.007)

[100, 150]
1 -0.002 (0.006) 0.000 (0.006) 0.000 (0.006) 0.000 (0.006) -0.002 (0.006) -0.002 (0.006) 0.000 (0.006)

0.5 -0.003 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) -0.003 (0.006) -0.003 (0.006) -0.001 (0.006)
0 0.000 (0.005) 0.000 (0.005) 0.000 (0.005) 0.000 (0.005) 0.000 (0.005) 0.000 (0.005) 0.000 (0.005)

[10, 30]
1 0.255 (0.014) 0.183 (0.031) 0.178 (0.027) 0.178(0.027) 0.271 (0.040) 0.271 (0.016) 0.178 (0.027)

RMSE 0.5 0.202 (0.009) 0.216 (0.014) 0.235 (0.019) 0.227 (0.019) 0.227 (0.022) 0.227 (0.022) 0.230 (0.018)
0 0.029 (0.007) 0.143 (0.013) 0.141 (0.012) 0.141 (0.020) 0.029 (0.013) 0.029 (0.008) 0.029 (0.016)

[50, 100]
1 0.134 (0.007) 0.091 (0.019) 0.068 (0.007) 0.068 (0.007) 0.134 (0.012) 0.134 (0.007) 0.068 (0.007)

0.5 0.116 (0.006) 0.102(0.014) 0.088 (0.013) 0.088 (0.013) 0.131 (0.008) 0.131 (0.008) 0.088 (0.013)
0 0.024 (0.003) 0.076 (0.006) 0.075 (0.006) 0.075 (0.023) 0.024 (0.003) 0.024 (0.003) 0.024 (0.011)

[100, 150]
1 0.103 (0.006) 0.073 (0.016) 0.055 (0.005) 0.055 (0.005) 0.104 (0.007) 0.104 (0.006) 0.055 (0.005)

0.5 0.091(0.004) 0.079 (0.012) 0.057 (0.009) 0.058 (0.010) 0.096 (0.005) 0.096 (0.005) 0.057 (0.009)
0 0.022 (0.003) 0.060 (0.004) 0.060 (0.004) 0.060 (0.018) 0.022 (0.003) 0.022 (0.003) 0.022 (0.011)

[10, 30]
1 0.953 0.858 0.938 0.938 0.918 0.918 0.938

Coverage probability 0.5 0.949 0.778 0.687 0.759 0.774 0.774 0.743
0 1 0.506 0.469 0.469 1 1 1

[50, 100]
1 0.953 0.848 0.973 0.973 0.946 0.946 0.973

0.5 0.953 0.856 0.946 0.946 0.881 0.881 0.946
0 0.992 0.547 0.537 0.541 0.992 0.992 0.992

[100, 150]
1 0.953 0.844 0.973 0.973 0.949 0.949 0.973

0.5 0.949 0.848 0.965 0.965 0.918 0.918 0.965
0 0.988 0.586 0.564 0.574 0.988 0.988 0.988

Table 3.2: Summary of the median estimated number of clusters and adjusted Rand Index (ARI) for
each proposed model. The true number of clusters is 3 for Z = 1 and Z = 0.5, and 1 for Z = 0. Note
that the best results for each metric under each scenario of EEE and Z are highlighted in bold.

Model

Metric EEE Z P1 P2 P3(a) P3(b) P3(c) P4

[10, 30]
1 5 3 3 2 2 3

Estimated number of clusters 0.5 4 3 3 2 2 3
0 2 2 2 1 1 1

[50, 100]
1 5 3 3 2 2 3

0.5 4 3 3 2 2 3
0 2 2 2 1 1 1

[100, 150]
1 5 3 3 2 2 3

0.5 5 3 3 2 2 3
0 2 2 2 1 1 1

[10, 30]
1 0.737 0.873 0.873 0.423 0.419 0.873

Adjusted Rand Index 0.5 0.446 0.385 0.441 0.297 0.297 0.430
0 0.000 0.000 0.000 1.000 1.000 1.000

[50, 100]
1 0.699 1.000 1.000 0.534 0.534 1.000

0.5 0.702 0.906 0.906 0.389 0.389 0.906
0 0.000 0.000 0.000 1.000 1.000 1.000

[100, 150]
1 0.697 1.000 1.000 0.541 0.541 1.000

0.5 0.670 0.976 0.976 0.467 0.467 0.976
0 0.000 0.000 0.000 1.000 1.000 1.000
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3.5 Application to real data

The simulation study has shown that model P4 (i.e. corresponding to Approach IV which

selects the cluster structure minimising the pd) appears to be the best fitting model, therefore

here I only present the results of applying model P4 to the motivation study described in

Section 3.2, which is a study of the respiratory disease risk in Greater Glasgow in 2016.

The study region is the Greater Glasgow and Clyde Health Board (see Figure 3.1) and the

respiratory disease data were introduced in Section 3.2. Posterior inference is based on a

Markov chain with 100,000 samples, 80,000 of which were discarded for the burn-in period

and the remaining 20,000 samples were thinned by 10.

Figure 3.7 displays both the DIC and pd values for modelling the data by model

(3.1)-(3.2) with the number of clusters k varying from 1 to K = 10. By design, model

P4 identifies the most appropriate cluster structure as the one having 5 distinct clusters,

because it has the minimum pd which is 104.973. As previously stated, by clusters we

mean the number of non-spatial clusters (distinct risk levels) and not the number of spatially

contiguous clusters. The estimated cluster structure also produces a good model fit to the

data due to the relatively low DIC value. Note that although the structure with 6 clusters has

a marginally lower DIC than the estimated structure, it models the data using more effective

parameters.

Figure 3.8 displays the map of the five clusters of areas with different risk levels in

the estimated cluster structure in Greater Glasgow, although from the map it is clear

that there are many more spatially distinct clusters. Areas with darker shading exhibit a

higher level of disease risk and the spatial discontinuities in the risk surface exist between

geographically adjacent areas that are in different clusters. Clusters 4 and 5 have moderately

high and high disease risks, with mean values of 1.66 and 2.24 respectively. The high-risk

clusters are mainly in the east of Glasgow and along the southern bank of the River Clyde

as well as some areas to the south of the river. In contrast, low-risk clusters (clusters 1 and

2) mostly lie in the center of northern Glasgow and in the outlying rural areas, with a mean

risk of 0.69 for cluster 1 and 0.97 for cluster 2.

Figure 3.9 maps the respiratory disease risk estimates in Greater Glasgow in 2016

from model P4, where the arrows in the map identify some typical areas mentioned in this

section. The estimated spatial risk pattern is similar to the SIR map displayed in Figure 3.2.
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In 2016 the mean risk across Greater Glasgow is 1.342, suggesting that on average the

respiratory disease risk in Greater Glasgow is about 34.2% higher than the Scottish average.

The risk surface is not spatially smooth in that some areas exhibit notably different risks

from their neighbours, which suggests the presence of clusters. The four areas with the

highest risk estimates are highlighted in the map, including Yoker, Drumry, Drumchapel

and Nitshill whose risks are 2.56, 2.53, 2.53 and 2.50 respectively. Dowanhill, an upper

middle-class affluent residential district, has the risk as low as 0.652. One of the inducing

factors that explain this spatial variation in risk is socio-economic deprivation, which has

been widely justified to have a non-negligible influence on ill health (McCartney, 2012).

The areas with higher risks are predominantly located in the East End of the city (which

are roughly surrounded by a rectangle in the risk map) such as Springburn, Easterhouse

and Barlanark, and along the southern bank of the Clyde river such as Govan area, which

all typically exhibit high levels of socio-economic deprivation. The lower risk areas are

wealthier and mostly in the affluent West End of Glasgow (just the north of the river)

e.g. Hillhead and Dowanhill, and in the south of the city centre e.g. Newton Mearns and

Clarkston. Rural areas with small populations and good living environment also tend to have

low risks, for example Milngavie, which is a popular retirement place at the northwestern

edge of Glasgow, and Eaglesham to the extreme south east. Figure 3.10 displays the

estimated spatial risk pattern from the Leroux CAR model. The risk estimates from the

proposed model and the Leroux model are similar, with a mean absolute difference in the

posterior median risk estimates of 0.069. In addition, the Leroux model appears to induce

increased levels of smoothing between those neighbouring areas that have been identified

as being in different clusters by model P4. For example, Figure 3.10 shows that the color

shades in the adjacent areas Kilmacolm and Renfrewshire Rural North are more similar to

each other than those in Figure 3.9, with a risk estimate difference between the two areas

of 0.04 for the Leroux model compared to 0.26 for model P4. Other examples include

neighbouring areas Lennoxtown and Torrance, with a risk estimate difference of 0.03

for the Leroux model compared to 0.30 for model P4, as well as areas Kirkintilloch and

Rosebank, with a risk difference of 0.62 for the Leroux model compared to 0.85 for model

P4. This phenomenon is to be expected because in the Leroux model smoothing is with all

neighbouring areas, while in my model the spatial random effects are not allowed to smooth

towards their geographically neighbours that are in different clusters.
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(a)

(b)

Figure 3.7: Plots of the Deviance Information Criterion (DIC) (3.7(a)) and the effective
number of independent parameters (pd) (3.7(b)) for models with the number of clusters k
varying between 1 and K = 10. Figure 3.7(a) also provides the relative percentage of differ-
ence in DIC from k to k+1 clusters, where “-” means a decrease in DIC and “+” means an
increase in DIC.
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Figure 3.8: A map of the five estimated risk clusters from model P4 in Greater Glasgow in
2016. Values in square brackets show the minimum and maximum risk estimates in each
risk cluster.

Figure 3.9: The estimated spatial risk pattern (posterior median) for respiratory disease in
the Greater Glasgow and Clyde Health Board region in 2016 from the proposed model P4.
The arrows in the map identify some typically high or low-risk areas.
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Figure 3.10: The estimated spatial risk pattern (posterior median) for respiratory disease in
the Greater Glasgow and Clyde Health Board region in 2016 from the Leroux CAR model.
The arrows in the map identify some neighbouring areas that have been identified as being
in different clusters by model P4.

3.6 Discussion

The proposed methodology aims to achieve a better performance in capturing the spatial

pattern of disease risk and identifying clusters of areas with high risks. Firstly, I use k-means

clustering to partition all areal units into clusters based on the natural logarithm of the

SIR, and the resulting candidate cluster structures are used to estimate a set of candidate

neighbourhood matrices. Then separate spatial Bayesian hierarchical models are fitted to the

data for each of the candidate matrices/cluster structures, and the choice of the best model

is determined by a model selection rule. Four approaches are proposed in Section 3.3.3

to choose the best model; Approach III is inappropriate due to its great sensitivity to the

threshold value. Approach I and II work by comparing the DIC values of the models with

varying numbers of clusters, while Approach IV focuses on model parsimony and selects

the model with the cluster structure having the smallest effective number of independent

parameters.

The simulation study in Section 3.4 shows that the proposed models P1, P2 and P4 produce

accurate risk estimates when there are clusters in the data (Z > 0), and particularly outper-

form the commonly used non-cluster Leroux model. This improved performance is likely
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because our models attempt to estimate an appropriate neighbourhood matrix from the data

rather than naively using the border sharing WWW , therefore avoiding the incorrect smoothing

of the random effects between pairs of neighbouring areas that have very different disease

risks. Models P1, P2 and P4 can also accurately identify clusters, with high ARI values

being obtained in the presence of clusters. However when Z = 0, model P4 and the Leroux

model perform comparably well and are better than models P1 and P2. The simulation

study also suggests that model P4 performs well in terms of both risk estimation and cluster

identification for diseases with moderate to large values of expected cases. However, when

the number of expected cases is low (e.g. lower than 30 cases) and the cluster differences are

small, the proposed models are less accurate in estimating disease risk and identifying the

correct cluster structure. This is because in this scenario the clusters are hardest to identify

based on their small size and small numbers of disease cases. The motivating application

illustrates that overall the low-risk clusters are in the south of the city center (e.g. Clarkston,

Newton Mearns) and also in the north such as Milngaive and Bearsden. In contrast, the

high-risk clusters are mostly located in the east and west of the city, e.g. Easterhouse,

Clydebank and Drumchapel. These results suggest that people living in the wealthier areas

appear to be at lower risk of respiratory hospital admissions.

The methodology has a nature of estimating the neighbourhood matrix from the data

so that the spatial autocorrelation is not always enforced between the random effects

of neighbouring areas. The estimated neighbourhood matrix is a better representation

of the spatial autocorrelation structure of the risk surface than the border sharing WWW ,

which represents the correlation structure simply based on geographical adjacency. The

methodology also has limitations. Firstly, it generates K fixed candidate neighbourhood

matrices and does not quantify their uncertainty when estimating the risk surface. Secondly,

the approach has to apply k-means clustering to the data K times in the first stage and then

fit the spatial model K times in the model comparison procedure in stage two, which results

in increased computational complexity especially when K is large. Furthermore, similarly to

the approach proposed by Anderson et al. (2014), the generation of the the candidate cluster

structures/neighbourhood matrices simply relies on a single clustering method (k-means

clustering in our context), which means that for each fixed number of clusters only one

spatial cluster structure is allowed as a candidate structure for the data. These issues will

be explored and addressed in Chapter 4, where the spatial pattern in disease risk and the

clusters of areas that exhibit elevated risks can be simultaneously estimated in a single model
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rather than by comparing multiple models as in this chapter. Another limitation to this

work is that the clustering models proposed here are only compared to the non-clustering

Leroux model in the simulation study, but they have not been compared to a method that

accounts for risk clusters such as Anderson et al. (2014), Knorr-Held and Raßer (2000).

This is because software to implement these complex estimation methods is not publicly

available, and also because they use different modelling structures which may affect the

results. However, such a comparison is very useful as it can assess the ability of our method

to identify the correct cluster structure compared to other clustering models. Therefore, a

fair comparison between the proposed methodology and another clustering approach would

be worthwhile to consider in the future. Other avenues for future work include extending

the spatial models to spatio-temporal models and constructing the candidate neighbourhood

matrices using different definitions to that considered here. For example, the elements of

the neighbourhood matrix relating to adjacent areas can be continuous and allowed to vary

between 0 and 1, and in this way we can flexibly control the degree of smoothing between

neighbouring random effects based on some geographical properties, such as the physical

distance between pairs of neighbours.



Chapter 4

Estimating spatial disease risks and

identifying clusters via clustering-based

adjacency modelling

4.1 Introduction

In Chapter 3, a two-stage modelling approach is introduced to estimate disease risk and

spatial clusters/discontinuities in the risk surface. In stage one k-means clustering is used to

partition the entire study region into clusters of areas with different risk levels. With these

clusters, the border sharing neighbourhood matrix WWW (i.e. wi j = 1 if areas (i, j) share a com-

mon border in geography, otherwise, wi j = 0) is locally altered so as to not have neighbours

in different clusters. This creates a set of candidate WWW matrices based on differing numbers

of clusters, which represent a range of possible cluster/discontinuity structures in the data.

In stage two each of the candidate neighbourhood matrices is used to fit a separate Bayesian

hierarchical model to the data. The most appropriate neighbourhood matrix corresponding

to a given cluster structure is selected using model selection rules. This approach accounts

for spatial clusters/discontinuities in the data by removing unnecessary borders between

neighbouring areas through a clustering step, so that risks are not allowed to smooth towards

their geographically neighbours that have significantly different risks in the modelling

process. However, it has limitations such as the uncertainty in WWW not being measured and

the candidate cluster structures all relying on k-means clustering method. To overcome

these issues, an alternative two-stage approach is introduced in this chapter.

The methodology proposed here aims to estimate the spatial pattern of disease risk

81
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and identify spatial clusters/discontinuities in the risk surface by applying clustering to

the data before the Bayesian modelling process, however, it differs from that used in the

previous chapter in two main aspects. Firstly, instead of simply using k-means clustering,

the approach here constructs a much bigger set of candidate cluster/discontinuity structures

using a range of clustering methods, which gives much greater flexibility in cluster identi-

fication. Secondly, instead of choosing the best neighbourhood matrix via a comparison of

multiple models, here the uncertainty in WWW is quantified by treating it as a random parameter

in the modelling process, and the best choice of WWW is mainly informed by the data within a

single model.

The remainder of this chapter is organised as follows. Section 4.2 outlines the pro-

posed methodology. Section 4.3 examines its effectiveness against a commonly used

model in the literature using simulated data. The sensitivity of the methodology to disease

prevalence is assessed in Section 4.4. Section 4.5 applies the methodology to the respiratory

disease data in the Greater Glasgow region in 2016. Finally, Section 4.6 further discusses

the advantages of the approach and the future development.

4.2 Methodology

I propose a two-stage modelling approach for estimating the spatial pattern in disease risk

and simultaneously detecting clusters of areas with elevated or reduced risks compared to

their neighbours. The first stage generates a large collection of cluster structures from apply-

ing different clustering methods to the data of interest. For each clustering method, given a

specified number of clusters k for the data the areal units are split into k clusters, where k is

an integer ranging from 1 to K. From this, K cluster structures are generated and further used

to produce K candidate neighbourhood matrices accordingly. In the second stage, unlike the

approach in Chapter 3 where multiple models are fitted separately to each candidate cluster

structure and the best cluster structure is chosen by a model comparison procedure, here a

single Bayesian hierarchical model is fitted to the disease data, where the disease risks and

the cluster structure implied by the best choice of WWW are estimated simultaneously.
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4.2.1 Stage 1 — Generating candidate neighbourhood matrices via

multiple clustering methods

A collection of candidate cluster structures for disease risk are estimated based on

c = 1, . . . ,M different clustering methods, and the M = 8 methods considered here are

summarised in Table 4.1, which provides a key relating each clustering method to its corre-

sponding value of c in our context. The methods include k-means (MacQueen et al., 1967)

clustering, k-medoids (Park and Jun, 2009) clustering, hierarchical agglomerative (Hastie

et al., 2009) clustering with centroid, complete, average and Ward’s linkage, hierarchical

divisive (Kaufman and Rousseeuw, 2009) clustering and expectation-maximisation (Fraley

and Raftery, 2002) clustering. Note, hierarchical agglomerative clustering with single

linkage is not considered due to its limitation of frequently suffering from the chaining

effect (Yim and Ramdeen, 2015). In single linkage, the merge of two clusters simply

depends on the smallest distance between one pair of data points, irrespective of others,

therefore clusters can be too spread out and not compact enough. Besides, Anderson

et al. (2014) have shown that single linkage exhibits poorer clustering performance than

the other linkage methods. These clustering methods are applied to the data without

regard to the spatial positions of the areal units, thus the clusters identified represent the

number of different risk levels rather than the number of spatially distinct clusters, mean-

ing that a single “cluster” will likely contain groups of areas that are not spatially connected.

Each clustering method c is used to compute k = 1, . . . ,K distinct cluster structures,

where structure k contains k clusters. Note, these K cluster structures are not necessarily

nested, as for example a k-means solution with 4 clusters is not obtained by splitting one

of the clusters from the k-means with 3 solutions into 2. The value K is chosen to be an

upper limit for the number of clusters one would expect to find in the data, which must be

specified by the user. As in Chapter 3, I set K = 10 as a conservative overly large choice,

because this represents the number of distinct risk levels and not the number of spatially

contiguous clusters. These candidate cluster structures are incorporated into the disease risk

spatial model by specifying a set of candidate neighbourhood matrices, which means they

relate to the random effects surface {φi} (as specified by the CAR prior, see Section 2.4.4).

Therefore we initially estimate {φi} from the data and the general model (2.10) by

φ̃i = ln
(
E(Yi)

Ei

)
− xxx⊤i βββ ≈ ln

(
Yi

Ei

)
− xxx⊤i β̂ββ . (4.1)
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This approximation replaces the unknown E(Yi) with the observed data Yi. Finally, the

regression parameters are estimated for this initial stage assuming independence via

maximum likelihood estimation, and are denoted above by β̂ββ . These estimated spatial

random effects {φ̃i} are used to construct candidate cluster structures and corresponding

neighbourhood matrices as described below.

Spatial clusters are obtained by applying each clustering method to φ̃φφ = (φ̃1, . . . , φ̃n).

The cluster structure obtained from method c with k clusters is used to create a candidate

neighbourhood matrix WWW (c,k) as follows:

w(c,k)
i j =

1, if areal units (i, j) share a common border and are in the same cluster,

0, otherwise.
(4.2)

Thus there is a one-to-one relationship between a candidate cluster structure and its corre-

sponding neighbourhood matrix. Since
(

WWW (1,1),WWW (2,1), . . . ,WWW (M,1)
)

all relate to the cluster

structure with a single cluster containing all the areal units, they are the same and all equal to

the border sharing WWW matrix, and this leads to (K−1)×M+1 candidate cluster structures in

total. Altering the border sharing WWW in this way to allow for clusters means that if areas (i, j)

share a border and are in the same cluster (i.e. have similar data values) then their random

effects will be modelled as partially correlated and allowed to be smoothed towards each

other (see equation (2.15)). In contrast, if they share a border but are in different clusters (i.e.

have very different data values) then their random effects will be modelled as conditionally

independent, thus not enforcing spatial smoothing between them.

Table 4.1: A key table for each value of c and its associated clustering method.

c clustering method
c = 1 k-means clustering (kmeans)
c = 2 k-medoids clustering (kmedoids)
c = 3 hierarchical agglomerative clustering with centroid linkage (agg_centroid)
c = 4 hierarchical agglomerative clustering with complete linkage (agg_complete)
c = 5 hierarchical agglomerative clustering with average linkage (agg_average)
c = 6 hierarchical agglomerative clustering with ward linkage (agg_ward)
c = 7 hierarchical divisive clustering (div)
c = 8 expectation-maximisation clustering (EM)
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4.2.2 Stage 2 — Bayesian spatial modelling

The second stage of the approach fits a model to the data that jointly estimates the spa-

tial pattern in disease risk and an appropriate cluster/discontinuity structure. The latter is

achieved by treating the neighbourhood matrix W̃WW as a parameter to be estimated from the

set of candidates generated in stage 1. The overall proposed model is given by

Yi|Ei,Ri ∼ Poisson(EiRi), i = 1, . . . ,n,

ln(Ri) = xxx⊤i βββ +φi, (4.3)

β j ∼ N(0,1000), for j = 0, . . . , p,

φφφ ∼ N
(

000,τ2QQQ(ρ,W̃WW )−1
)
,

W̃WW ∼ Discrete uniform
(

WWW (1,1), . . . ,WWW (1,K),WWW (2,2), . . . ,WWW (2,K), . . . ,WWW (M,2), . . . ,WWW (M,K)
)
,

τ
2 ∼ Inverse-Gamma(1,0.01).

The spatial variation in disease risk is modelled by covariates {xxx⊤i βββ} and spatial random

effects {φi}. The spatial random effects φφφ = (φ1, . . . ,φn) account for the residual variation

in the data after the effects of the covariates have been removed, and are modelled by a mul-

tivariate Gaussian distribution φφφ ∼ N
(

000,τ2QQQ(ρ,W̃WW )−1
)

. The spatially correlated precision

matrix is QQQ(ρ,W̃WW ) = ρ(diag(W̃WW111)−W̃WW )+ (1−ρ)III, which corresponds to the Leroux CAR

model (Leroux et al., 2000). The full conditional distribution of this CAR model for area i is

given by

φi|φφφ−i,W̃WW ∼ N

(
ρ ∑

n
j=1 wi jφ j

ρ ∑
n
j=1 wi j +1−ρ

,
τ2

ρ ∑
n
j=1 wi j +1−ρ

)
, (4.4)

where φφφ−i = (φ1, . . . ,φi−1,φi+1, . . . ,φn). The conditional expectation of φi is a weighted

average of the random effects in neighbouring areas, with binary weights based on the

current choice of W̃WW matrix. The parameter ρ controls the amount of spatial smoothing

(correlation) globally across the study region, with values close to 1 corresponding to strong

spatial autocorrelation while a value of zero corresponds to spatial independence. However,

in our model the spatial autocorrelation structure is modelled locally for each pair of

neighbouring areas by estimating an appropriate neighbourhood matrix for the data, which

may make the estimation of a single global parameter redundant. In addition, as can be seen

from equation (2.15), if ρ is estimated as 0 then two geographically adjacent random effects

(φi,φ j) will be conditionally independent even if areal units (i, j) are in the same cluster and

so have wi j = 1. This is because if ρ = 0 then QQQ(ρ,W̃WW ) = III and hence W̃WW no longer appears
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in the precision matrix. Therefore, I follow Lee and Mitchell (2012) and Lee and Mitchell

(2013), and fix ρ = 0.99 in this model to enforce strong spatial autocorrelation globally,

whose structure is then adjusted locally by estimating the neighbourhood matrix. ρ = 1 is

not used because the approach could produce a candidate neighbourhood matrix where an

areal unit has no neighbours due to it being a singleton cluster. This will cause ∑
n
j=1 wi j = 0

for the area i in question, which leads to an infinite mean and variance for φi from (4.4).

With ρ fixed at 0.99 in the analysis for this section, the partial correlation between

(φi,φ j) conditioning on the remaining effects φφφ−i j is given by

Corr(φi,φ j|φφφ−i j) =
ρwi j√

(ρ ∑
n
v=1 wiv +1−ρ)

(
ρ ∑

n
v=1 w jv +1−ρ

)
=

0.99wi j√
(0.99∑

n
v=1 wiv +1−0.99)

(
0.99∑

n
v=1 w jv +1−0.99

) .
Therefore,

(
φi,φ j

)
are only partially correlated if wi j = 1 (i.e. areas (i, j) are adjacent

and in the same cluster), otherwise, they are modelled as conditionally independent as

Corr(φi,φ j|φφφ−i j) = 0. Hence W̃WW determines the spatial correlation structure imposed by the

model.

Each covariate regression parameter β j is assigned an independent weakly informa-

tive zero-mean Gaussian prior distribution with a large variance, to ensure its value is mainly

informed by the data. The conjugate Inverse-Gamma prior, Inverse-Gamma(1,0.01), is

specified for τ2 to allow the parameter to be updated via Gibbs sampling. Since there is no

prior knowledge about the number of clusters present in the data, W̃WW is assigned a discrete

uniform prior distribution whose possible values are the set of candidates corresponding to

the cluster structures estimated in stage 1. The clustering stage elicits multiple candidate

neighbourhood matrices that are equal to the border sharing WWW , which occur when the

number of clusters k = 1 for each clustering method. Therefore only one of these is included

in the discrete uniform prior to avoid the border sharing WWW being given a larger prior weight

compared to the other candidate values. We include this border sharing WWW in the model

because it corresponds to a globally spatially smooth risk surface with no clusters. To

achieve identifiability, the spatial random effects are zero-mean centred.
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4.2.3 Inference

The posterior summaries of each parameter are obtained by drawing samples from the pos-

terior distribution using Markov chain Monte Carlo (MCMC) simulation, which combines

Metropolis-Hastings (Metropolis et al., 1953, Hastings, 1970) and Gibbs sampling steps

(Geman and Geman, 1984). The MCMC algorithm is written (as part of this thesis) and

implemented in R (R Core Team, 2013). In order to speed up computation, the updates of

the random effects are written in the more efficient language C++ via the R package Rcpp

(Eddelbuettel et al., 2011, Eddelbuettel, 2013). In addition, as W̃WW is a large but sparse matrix

I exploit its triplet form to improve computational efficiency. Inference is based on 300,000

MCMC samples with a burn-in period of 200,000. The chain is thinned by 10, due to limited

computer memory and to make the samples closer to be independent, and so the posterior

estimates are based on a total of 10,000 samples. Convergence is assessed by checking pa-

rameter trace plots. Details of each step of the MCMC sampler for model (4.3) are as follows.

Update βββ

The full conditional distribution for each β j is

f (β j|YYY ) ∝

n

∏
i=1

Poisson(Yi|β j)×N(β j|0,1000)

∝

n

∏
i=1

(
exp(xxx⊤i βββ +φi)

)Yi
exp
(
−Ei exp(xxx⊤i βββ +φi)

)
× exp

(
−β 2

j

2000

)
.

β j is updated via the Metropolis-Hastings algorithm, with a proposal β ∗
j randomly sampled

from the proposal distribution β ∗
j ∼ N(β c

j ,vβ j), where β c
j is the current value of β j. The

proposal variance vβ j can be altered within the algorithm to keep an acceptance rate between

40% and 60% for the parameter of low dimension (Gelman et al., 1996). The acceptance

probability of moving from β c
j to β ∗

j is given by min
{

1,
f (β ∗

j |YYY )
f (β c

j |YYY )

}
.

Update φφφ

The full conditional distribution for φi is

f (φi|Yi) ∝ Poisson(Yi|φi)×N(φi|φφφ−i)

∝

(
exp(xxx⊤i βββ +φi)

)Yi
exp
(
−Ei exp(xxx⊤i βββ +φi)

)
×

N

(
0.99∑

n
j=1 wi jφ j

0.99∑
n
j=1 wi j +1−0.99

,
τ2

0.99∑
n
j=1 wi j +1−0.99

)
.
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Each φi is updated individually via the Metropolis-Hastings algorithm, with a proposal φ∗
i

randomly sampled from the proposal distribution φ∗
i ∼ N(φ c

i ,vφi), where φ c
i is the current

value of φi. The proposal variance vφi can be altered within the algorithm to maintain

an acceptance rate between 40% and 60%. The acceptance probability of φ∗
i is given by

min
{

1, f (φ∗
i |Yi)

f (φ c
i |Yi)

}
.

Update τ2

The full conditional distribution for τ2 is

f (τ2|φφφ) ∝ N
(

φφφ |000,τ2QQQ(ρ,W̃WW )−1
)
× Inverse-Gamma(1,0.01)

∝ exp
(
− 1

2τ2 (φφφ
⊤QQQ(ρ,W̃WW )φφφ)

)
×
(

1
τ2

)(1+ n
2+1)

exp
(
−0.01

τ2

)
∝

(
1
τ2

)(1+ n
2+1)

exp
(
− 1

τ2

(
0.01+

1
2

φφφ
⊤QQQ(ρ,W̃WW )φφφ

))
∼ Inverse-Gamma(a,b),

where a = 1+ n
2 and b = 0.01+ 1

2φφφ
⊤QQQ(ρ,W̃WW )φφφ . Here QQQ(ρ,W̃WW ) = 0.99(diag(W̃WW111)−W̃WW )+

(1−0.99)III as ρ = 0.99 in the model. τ2 is evaluated at each iteration of Gibbs sampling by

directly drawing samples from the above Inverse-Gamma distribution.

Update W̃WW

The full conditional distribution for W̃WW is

f (W̃WW |φφφ) ∝ N
(

φφφ |000,τ2QQQ(ρ,W̃WW )−1
)
× f

(
W̃WW =WWW (c,k)

)
∝ ||QQQ(ρ,W̃WW )||

1
2 exp

(
−1

2
(φφφ⊤QQQ(ρ,W̃WW )φφφ)τ−2

)
,

where || · || denotes the determinant of a matrix. The set of potential W̃WW matrices,

(WWW (1,1), . . . ,WWW (1,K),WWW (2,2), . . . ,WWW (2,K), . . . ,WWW (M,2), . . . ,WWW (M,K)), are generated in stage one

and the Bayesian model in stage two selects which of these candidate matrices, correspond-

ing to a given cluster structure, is the most appropriate for the data. A Metropolis-Hastings

algorithm is used to update the choice of W̃WW , and two approaches are considered for this. Ap-

proach 1 updates W̃WW by using a Metropolis-Hastings step consisting of two MCMC moves,

which are outlined below.

1. If the current value of W̃WW in the Markov chain is WWW (c,k), then a new

value WWW (c,l) is proposed uniformly from the set of candidate matrices
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WWW (c,k−s), . . . ,WWW (c,k−1),WWW (c,k+1), . . . ,WWW (c,k+s)

)
, which correspond to the candi-

date cluster structures generated from the same clustering method as the current

choice but with a different number of clusters. Here s is a parameter controlling the

acceptance rates and mixing of the update, and exploratory model runs suggested that

s = 2 leads to good estimation performance. If k is close to 1 or K(= 10), some of

the theoretical proposal matrices are likely not to exist in practice, as a result, the

number of proposal matrices is reduced and the associated probabilities need to be

adjusted accordingly. Since the proposal distribution is likely to be asymmetric, the

acceptance probability of WWW (c,l) is given by min
{

1,
f (WWW (c,l)|YYY )/g(WWW (c,l)| WWW (c,k))
f (WWW (c,k)|YYY )/g(WWW (c,k)|WWW (c,l))

}
, where

g(WWW (c,l)| WWW (c,k)) is the probability of proposing WWW (c,l) given that the current choice is

WWW (c,k).

2. If the current value of W̃WW after the first move is WWW (c,k
′
), then a new proposal WWW (h,k

′
)

is drawn uniformly from the set
(

WWW (1,k
′
), . . . ,WWW (c−1,k

′
),WWW (c+1,k

′
), . . . ,WWW (M,k

′
)
)

, which

correspond to the candidate cluster structures that have the same number of clusters

as the current choice but are generated from a different clustering method. Since the

proposal distribution is symmetric, the acceptance probability of moving from WWW (c,k
′
)

to WWW (h,k
′
) is calculated by min

{
1, f (WWW (h,k

′
)|YYY )

f (WWW (c,k′ )|YYY )

}
.

Table 4.2 provides an intuitive example illustrating the two MCMC moves under Approach

1. Suppose WWW (3,5) is the current choice of W̃WW , then the candidate matrices highlighted in blue

comprise the sample space from which a proposal matrix is drawn in the first move. If the

current value of W̃WW is WWW (3,3) after the first move, then the candidate matrices highlighted in

red comprise the sample space for proposing a new matrix in the second move.

Table 4.2: An example that illustrates the two MCMC moves under Approach 1.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = K
c = 1 WWW (1,1) WWW (1,2) WWW (1,3) WWW (1,4) WWW (1,5) WWW (1,6) WWW (1,7) WWW (1,8) WWW (1,9) WWW (1,10)

c = 2 WWW (2,1) WWW (2,2) WWW (2,3) WWW (2,4) WWW (2,5) WWW (2,6) WWW (2,7) WWW (2,8) WWW (1,9) WWW (1,10)

c = 3 WWW (3,1) WWW (3,2) WWW (3,3) WWW (3,4) WWW (3,5) WWW (3,6) WWW (3,7) WWW (3,8) WWW (3,9) WWW (3,10)

c = 4 WWW (4,1) WWW (4,2) WWW (4,3) WWW (4,4) WWW (4,5) WWW (4,6) WWW (4,7) WWW (4,8) WWW (4,9) WWW (4,10)

c = 5 WWW (5,1) WWW (5,2) WWW (5,3) WWW (5,4) WWW (5,5) WWW (5,6) WWW (5,7) WWW (5,8) WWW (5,9) WWW (5,10)

c = 6 WWW (6,1) WWW (6,2) WWW (6,3) WWW (6,4) WWW (6,5) WWW (6,6) WWW (6,7) WWW (6,8) WWW (6,9) WWW (6,10)

c = 7 WWW (7,1) WWW (7,2) WWW (7,3) WWW (7,4) WWW (7,5) WWW (7,6) WWW (7,7) WWW (7,8) WWW (7,9) WWW (7,10)

c = 8 WWW (8,1) WWW (8,2) WWW (8,3) WWW (8,4) WWW (8,5) WWW (8,6) WWW (8,7) WWW (8,8) WWW (8,9) WWW (8,10)

Approach 2 updates W̃WW by a Metropolis-Hastings step which only proposes a new

neighbourhood matrix once from a specified sample space for W̃WW at each MCMC it-

eration. The set of candidate matrices are ordered and denoted by (ΛΛΛ1, . . . ,ΛΛΛM×K),
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where ΛΛΛ(c−1)×K+k represents matrix WWW (c,k). We propose a matrix from a maximum of

s-proximity of the current matrix. If the current choice is WWW (c,k), a proposal is drawn from(
ΛΛΛ(c−1)×K+k−s, . . . ,ΛΛΛ(c−1)×K+k−1,ΛΛΛ(c−1)×K+k+1, . . . ,ΛΛΛ(c−1)×K+k+s

)
with equal probability

of selecting each matrix, and likewise s = 2 is used here. When WWW (c,k) is close to an

endpoint (i.e. either ΛΛΛ1 or ΛΛΛM×K), some of these theoretical proposal matrices may not

exist in practice, hence the number of proposal matrices is reduced and the associated

probabilities need to be adjusted accordingly. Since the proposal distribution is likely to

be asymmetric, the acceptance probability of a move from WWW (c,k) to WWW ∗ is calculated by

min
{

1,
f (WWW ∗|YYY )/g(WWW ∗| WWW (c,k))

f (WWW (c,k)|YYY )/g(WWW (c,k)|WWW ∗)

}
, where g

(
WWW ∗| WWW (c,k)

)
is the probability of proposing WWW ∗

given that the current matrix is WWW (c,k).

Since W̃WW follows a discrete distribution and the number of clusters requires an integer

value, the posterior mode value from the posterior distribution of W̃WW , representing the

most likely occurring cluster structure (or neighbourhood matrix) across all the MCMC

samples, can be used to estimate the optimal cluster/discontinuity structure. In contrast,

the remaining parameters are summarised by their posterior medians. Additionally, pilot

runs also suggested that the MCMC moves of W̃WW are more likely to be accepted if their

corresponding candidate cluster structures have higher similarity in terms of the adjusted

Rand Index. If the candidate cluster structures and neighbourhood matrices are very

different from each other, the moves of W̃WW are less easy and longer MCMC runs may be

needed for model convergence.

4.3 Simulation Study

4.3.1 Aim

A simulation study is carried out to assess the performance of the proposed methodology.

The study compares the models where W̃WW is updated using Approach 1 or Approach 2 in

the MCMC sampler as outlined in Section 4.2.3. Their performances are then compared

against the Leroux model (Leroux et al., 2000) described in Section 2.4.4.

4.3.2 Data generation

Clustered disease data are generated in the same way as described in Chapter 3. The tem-

plate for the study region is the set of 257 Intermediate Zones comprising the Greater Glas-
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gow and Clyde Health Board, which is shown in Figure 3.3. The simulated data consists of

three clusters of areas with a high, medium and low level of disease risk, and are generated

via the Poisson model (3.5) outlined in Chapter 3. The expected disease counts EEE quantify

the disease prevalence and are set equal to 100 for the analyses described in this section.

The extent of the differences between clusters, that is the magnitude of the differences be-

tween the three risk levels, is controlled by multiplying the piecewise constant mean values

µµµ = {−1,0,1} for φφφ by a constant scalar Z before generating the data. Larger values of Z

represent larger differences in disease risk between the clusters, which should thus be easier

to identify. Values of Z = 1,0.5,0 are used in this study; Z = 1 indicates large differences

between the clusters, Z = 0.5 corresponds to a case where there are smaller differences in

the spatial surface, and Z = 0 corresponds to a spatially smooth risk surface with no clusters,

thus in this case one would expect to identify a single cluster covering the entire study region.

4.3.3 Results

One hundred data sets are simulated for each of the three scenarios (Z = 1,0.5,0). The

proposed models that respectively use Approach 1 and Approach 2 to update the choice

of W̃WW within the MCMC sampler are compared against the Leroux model with the border

sharing WWW applied, which is commonly used in disease mapping. The results of the study

over all simulated data sets are summarised in Figures 4.1, 4.2, 4.3 and 4.4, and outlined

in Table 4.3. The accuracy of the risk estimation for each modelling approach is quantified

by the bias, root mean square error (RMSE) and 95% coverage probabilities for the overall

risk estimates. The correctness of the identified cluster structure is measured by both the

number of clusters estimated and the adjusted Rand Index between the true and estimated

cluster structures. The adjusted Rand Index (ARI) proposed by Hubert and Arabie (1985) is

a measure of the similarity between two cluster structures. A value of 1 indicates complete

agreement between the two cluster structures, a value of 0 indicates that the data points

are randomly allocated to the two cluster structures, and a value less than 0 indicates

that the level of agreement between the two cluster structures is smaller than that aris-

ing from randomly allocated data points. For more information on the ARI, see Section 2.7.3.

Figures 4.1 and 4.2 respectively summarise the estimated W̃WW over the 100 simulated

data sets for models Approach 1 and Approach 2 for each scenario of Z. In the figures,

each grid square represents a candidate neighbourhood matrix WWW (c,k) corresponding to a

distinct cluster structure, where the horizontal axis denotes the number of clusters k and
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the vertical axis denotes the clustering method c. Note that the grid square on the bottom

left corner corresponds to the border sharing WWW = WWW (1,1), . . . ,WWW (M,1) (i.e. k = 1) which

represents no clusters in disease risk. The figures also provide the percentage of times that

each candidate neighbourhood matrix is identified as the most appropriate choice of W̃WW (i.e.

posterior mode) over all simulated data sets, with darker shading corresponding to a higher

chance (probability) of being the best W̃WW .

The results show that when the differences between the clusters are large in size (Z = 1),

both modelling Approach 1 and Approach 2 estimate the correct number of clusters in the

majority of the simulations. Approach 1 does not show an underestimation of the number

of clusters present, while Approach 2 underestimates the number of clusters as 1 or 2

clusters in about 5% of the simulations. In the scenario where Z = 0.5, underestimation is

more likely for both approaches because the differences between the true clusters are not

very pronounced so that the clusters are more likely to be incorrectly joined together. In the

scenario where Z = 0, models Approach 1 and Approach 2 correctly estimate the cluster

structure, which is a single cluster covering the entire study region, in about 49% and 60%

of the simulations respectively.

The top panel in Figure 4.3 displays boxplots of the number of clusters identified by

each model and scenario, where the true values of 3 for Z = 1,0.5 and 1 for Z = 0 are

represented by dashed lines. The bottom panel shows boxplots of the adjusted Rand Index

(ARI) values between the true and estimated cluster structures over all simulated data sets.

When Z = 1, both modelling Approach 1 and Approach 2 identify the correct number of

clusters for the majority of data sets with a median of 3 clusters. The two models perform

well in cluster identification with ARI values close to 1, while Approach 1 has a lower

standard deviation (0.040) compared with Approach 2 (0.179). Although there are a

number of simulations where the number of clusters is overestimated, they generally obtain

high ARI values, suggesting that the clustering performance is not substantially affected and

the estimated cluster structures overall match with the true cluster structure well even under

slight overestimation.

When Z = 0.5, the differences between the clusters in disease risk are less pronounced

and hence it is more difficult to identify the true cluster structure. As a result, the ARI

values are on average lower than those obtained under Z = 1 and underestimation is slightly
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more likely for Z = 0.5. The unclear boundaries between clusters also explain the slightly

increased number of data sets estimating inaccurate number of clusters. The median number

of clusters identified by both modelling approaches is 3, but Approach 1 has a lower

standard deviation of 1.222 compared to 1.545 for Approach 2. Additionally, Approach

1 produces higher ARI values, with a median of 0.906 compared to 0.806 for Approach

2. However, when there are no clusters in disease risk (Z = 0), Approach 1 overestimates

the number of clusters with a median value of 2 clusters in 51% of the simulations,

which unsurprisingly leads to the very poor performance in terms of cluster identification

with a median ARI of 0. We note that in the case where Z = 0, both approaches tend

to overestimate the number of clusters. This is probably due to the independent random

variation induced into the count data by generating {Yi} from the Poisson model. Although

there are no artificially constructed clusters present, it does not necessarily mean that the

simulated disease data have zero difference and clusters do not exist. The random variation

can cause extra unintended clusters not classified as “true”. Therefore, the two modelling

approaches may partition a theoretically flat risk surface into clusters based on the seeming

differences caused by sampling variation but not the actual risk differences from the spatial

random effects.

Figure 4.4 displays a comparison of the relative performances of the two modelling

approaches proposed here and the Leroux model which is fitted based on the border sharing

WWW . In the scenarios where Z = 1,0.5, both models Approach 1 and Approach 2 outperform

the Leroux model in terms of lower RMSE values and negligible bias of risk estimates close

to zero, with reductions in the median RMSE respectively being 29.6% (Z = 1) and 19.0%

(Z = 0.5) for Approach 1, and being 27.8% (Z = 1) and 15.0% (Z = 0.5) for Approach 2.

This is probably because the Leroux model allows for incorrect smoothing of the random

effects between clusters, which is not enforced by the proposed models. All three models

exhibit good coverage ability since the coverages are close to the nominal 0.95 levels.

Approach 1 performs marginally better than Approach 2 for providing a bit more precise

risk estimates. When Z = 0, the three models generally perform well with the bias close to

0 and the coverage probabilities close to 0.95, while the Leroux model performs the best of

the three in terms of RMSE, with a median of 0.008 compared with 0.023 for Approach 1

and 0.019 for Approach 2 respectively. The less accurate risk estimation of the proposed

approaches might result from the poor cluster identification for Z = 0. Figure 4.3 shows

that both approaches tend to overestimate the number of clusters when Z = 0, and this
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overestimation comes from a split in a true cluster. As touched on previously, the random

variation induced into the simulated count data by the Poisson data model could make the

risk surface less smooth than it is designed, thus the proposed approaches with a clustering

mechanism are attempting to find non-smooth patterns based on the random variation and

so are very likely to incorrectly split the theoretically zero-difference risks into different

clusters. These inaccurate clusters lead to false smoothing between neighbours and thus

reduce the modelling accuracy. It appears that the proposed approaches have slightly higher

standard deviations in the performance metrics than the Leroux model. This is likely to be

because they treat the neighbourhood matrix W̃WW as a parameter to be estimated from the data,

however, in the Leroux model the neighbourhood matrix WWW is fixed based on the sharing a

common border specification, thus the uncertainty in WWW is not measured in the modelling

process, which results in less variability.

In summary, when there are clusters present in the data (Z = 1,0.5), both modelling

Approach 1 and Approach 2 generally outperform the Leroux model in terms of risk

estimation. Approach 1 provides better risk estimates and also identifies more accurate

cluster structures than Approach 2 especially for the scenario of Z = 0.5. When there is a

spatially smooth risk surface (Z = 0), the two approaches tend to overestimate the number

of clusters and provide less accurate risk estimates than the Leroux model.
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(a) Z = 1. (b) Z = 0.5.

(c) Z = 0.

Figure 4.1: Summary of the estimated W̃WW over 100 simulated data sets from the proposed
modelling Approach 1. Each grid square shows the percentage of times that each candidate
neighbourhood matrix is identified as the most appropriate choice of W̃WW (i.e. the posterior
mode) over 100 simulations for each scenario of Z.
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(a) Z = 1. (b) Z = 0.5.

(c) Z = 0.

Figure 4.2: Summary of the estimated W̃WW over 100 simulated data sets from the proposed
modelling Approach 2. Each grid square shows the percentage of times that each candidate
neighbourhood matrix is identified as the most appropriate choice of W̃WW (i.e. the posterior
mode) over 100 simulations for each scenario of Z.



CHAPTER 4. SPATIAL MODEL BASED ON ADJACENCY MODELLING 97

Figure 4.3: A comparison of the results between the proposed modelling Approach 1 and
Approach 2 in terms of the estimated number of clusters and the adjusted Rand Index (ARI)
between the true and estimated cluster structures under each value of Z. In the top panel the
dashed lines represent the true number of clusters.
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Figure 4.4: A comparison of the proposed modelling approaches and the Leroux model
in terms of the bias, root mean square error (RMSE) and 95% coverage probabilities for
risk estimates over all simulated data sets. The results relate to Z = 1 (left column panels),
Z = 0.5 (middle column panels) and Z = 0 (right column panels). In the bias boxplots the
dashed lines represent the zero bias. In the coverage probability boxplots the dashed lines
represent the nominal 0.95 levels.
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Table 4.3: Summary of the median number of clusters, adjusted Rand Index (ARI), bias,
RMSE and 95% coverage probabilities of the estimated risk surface for each model and
scenario. Values in brackets display the standard deviation.

Model

Performance metric Z Approach 1 Approach 2 Leroux

Estimated number of clusters
1 3 (1.189) 3 (1.474) −−

0.5 3 (1.222) 3 (1.545) −−
0 2 (0.992) 1 (1.877) −−

ARI
1 1 (0.040) 1 (0.179) −−

0.5 0.906 (0.252) 0.806 (0.362) −−
0 0 (0.502) 1 (0.492) −−

Bias
1 -0.002 (0.007) -0.002 (0.007) -0.003 (0.007)

0.5 -0.002 (0.007) -0.003 (0.007) -0.004 (0.007)
0 0.001 (0.005) 0.001 (0.006) 0.001 (0.006)

RMSE
1 0.081 (0.006) 0.083 (0.011) 0.115 (0.006)

0.5 0.081 (0.018) 0.085 (0.017) 0.100 (0.004)
0 0.023 (0.019) 0.019 (0.026) 0.008 (0.003)

Coverage probability
1 0.977 (0.016) 0.977 (0.021) 0.951 (0.015)

0.5 0.949 (0.056) 0.946 (0.047) 0.949 (0.014)
0 0.996 (0.115) 1 (0.214) 1 (0.000)

4.4 Sensitivity analysis to disease prevalence

In this section, an additional simulation study is carried out to assess the sensitivity of the

proposed modelling approaches to the size of the expected disease counts EEE which quantify

the disease prevalence. Modelling Approach 1 and Approach 2 are applied to disease data

where the expected disease counts EEE are uniformly drawn from three different intervals:

EEE ∈ [10,30], [50,100] and [100,150]. The simulated data are generated as described in

Section 4.3.2. Likewise, three values of Z = 1,0.5,0 are used in this study. One hundred

simulated data sets are generated under each of the nine scenarios comprising pairwise

combinations of Z = 1,0.5,0 and EEE ∈ [10,30], [50,100] and [100,150]. The results of this

analysis are summarised in Figures 4.5 (Z = 1), 4.6 (Z = 0.5) and 4.7 (Z = 0), and outlined

in Table 4.4 respectively.

For Z = 1, Figure 4.5 shows that the two models estimate the correct number of clus-

ters (3 clusters) on average under EEE ∈ [50,100] and EEE ∈ [100,150] and identify the correct

cluster structure with median ARI values of 1 in both cases. Both modelling Approach

1 and Approach 2 perform much better than the Leroux model in terms of lower RMSE
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values. Under EEE ∈ [50,100] the median RMSE values are 0.089, 0.090 for the proposed

approaches and 0.132 for the Leroux, and under EEE ∈ [100,150] the median RMSE values

are 0.070 for our approaches and 0.098 for the Leroux. All three models have approximately

zero bias of risk estimates and exhibit good coverage probabilities close to their nominal

0.95 levels. Whereas in the case of EEE ∈ [10,30], the proposed models have a high number of

simulations either overestimating or underestimating the number of clusters and perform less

well in cluster identification with low median ARI values of 0.604 and 0.642 respectively.

This is probably because the observed disease counts YYY are Poisson distributed with mean

equal to EEE × RRR, and given risks RRR fixed, small values of EEE would make the differences

between clusters less prominent in terms of the size of YYY , which thus makes the cluster

identification more difficult and less accurate. Although Approach 1 and Approach 2

produce less accurate cluster structures and relatively lower coverage probabilities than

the Leroux approach in this case, they still have lower RMSE values (0.228 and 0.223

respectively) compared with the Leroux approach (0.260).

For Z = 0.5, the proposed approaches perform very poorly in identifying the correct

cluster structures under EEE ∈ [10,30], with median ARI values as low as 0.021 for

Approach 1 and 0.272 for Approach 2. Both modelling Approach 1 and Approach 2

exhibit slightly higher RMSE values than the Leroux model, with median values of 0.216

and 0.214 respectively compared to 0.203. Besides, the coverage probabilities of our

approaches (around 0.86) are much lower than those of the Leroux model (0.95). This

is because, given the poor clustering performance, the candidate neighbourhood matrices

being fed into the Bayesian spatial model are inherently inaccurate before even being

modelled. Thus, the estimation from the proposed approaches is going to be poor and so

the coverage is low. Under EEE ∈ [50,100], our approaches generally perform as well as the

Leroux approach in terms of both bias and RMSE (see Figure 4.6). However, I note that

Approach 1 and Approach 2 obtain lower ARI values under EEE ∈ [50,100] with a median

around 0.5 than those under EEE ∈ [100,150] with a median close to 1. Again, larger values

of EEE would make the differences between clusters more pronounced in terms of the size

of YYY , which hence makes it much easier to obtain the cluster structures close to the truth.

Under EEE ∈ [100,150], all three models perform well with the bias close to zero and the

coverage close to the nominal 0.95 levels, while the approaches developed here outperform

the Leroux model for having lower RMSE values, with reductions in the median of 44.44%

for Approach 1 and 40% for Approach 2.
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For Z = 0, Figure 4.7 shows that the Leroux model generally performs best of the three in

terms of the lowest RMSE values for all scenarios of EEE. This also backs up the findings from

Figures 4.3 and 4.4 that the proposed approaches behave slightly less well in estimating a

smooth risk surface and identifying the true cluster structure. As explained previously in

Section 4.3.3, when the disease risk surface is spatially smooth our approaches are very

likely to identify false cluster structures due to the random variation induced into the count

data, and the ARI values could be as low as 0. These wrong clusters identified would result

in incorrect smoothing of disease risks between neighbouring areal units, hence reducing

the estimation accuracy.

The simulation results reported above suggest that the performance of the proposed

approaches appears to be affected by the type of disease data to be applied. The two

approaches overall perform well and are typically superior to the commonly used Leroux

model when the disease is not rare (i.e. the expected disease counts EEE are not very small).
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Figure 4.5: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms of
the estimated number of clusters, adjusted Rand Index (ARI), bias, RMSE and 95% coverage
probability of risk estimates for each model under Z = 1.
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Figure 4.6: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms of
the estimated number of clusters, adjusted Rand Index (ARI), bias, RMSE and 95% coverage
probability of risk estimates for each model under Z = 0.5.
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Figure 4.7: Simulation study results from EEE ∈ [10,30], [50,100] and [100,150] in terms of
the estimated number of clusters, adjusted Rand Index (ARI), bias, RMSE and 95% coverage
probability of risk estimates for each model under Z = 0.
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Table 4.4: Summary of the median number of clusters, adjusted Rand Index (ARI), bias,
RMSE and 95% coverage probabilities of the estimated risk surface for each model under
each scenario of EEE and Z. Values in brackets display the standard deviation.

Model

Performance metric EEE Z Approach 1 Approach 2 Leroux

[10, 30]
1 3 (2.076) 4 (1.994) −−

Number of clusters 0.5 2 (1.937) 2 (2.290) −−
0 3 (2.123) 2 (2.475) −−

[50, 100]
1 3 (1.131) 3 (1.487) −−

0.5 3 (1.385) 2 (1.654) −−
0 2 (1.443) 1 (1.633) −−

[100, 150]
1 3 (1.049) 3 (1.228) −−

0.5 3 (1.039) 3 (1.736) −−
0 2 (1.427) 1 (1.085) −−

[10, 30]
1 0.604 (0.167) 0.642 (0.216) −−

ARI 0.5 0.021(0.198) 0.272 (0.184) −−
0 0 (0.402) 0 (0.456) −−

[50, 100]
1 0.995 (0.034) 1.000 (0.245) −−

0.5 0.524 (0.244) 0.541 (0.329) −−
0 0(0.488) 1 (0.476) −−

[100, 150]
1 1 (0.029) 1 (0.149) −−

0.5 0.964 (0.184) 0.951 (0.298) −−
0 0 (0.423) 1 (0.490) −−

[10, 30]
1 -0.008 (0.015) -0.009 (0.016) -0.016 (0.015)

Bias 0.5 -0.009 (0.015) -0.008 (0.015) -0.014 (0.015)
0 -0.003 (0.014) -0.002 (0.014) -0.002 (0.014)

[50, 100]
1 -0.003 (0.008) -0.003 (0.008) -0.004 (0.008)

0.5 -0.003 (0.008) -0.004 (0.007) -0.005 (0.007)
0 -0.002 (0.005) -0.002 (0.005) -0.002 (0.005)

[100, 150]
1 -0.003 (0.006) -0.002 (0.006) -0.003 (0.006)

0.5 -0.001 (0.006) -0.001 (0.006) -0.002 (0.006)
0 0.000 (0.006) 0.000 (0.006) 0.000 (0.006)

[10, 30]
1 0.228 (0.039) 0.223 (0.036) 0.260 (0.016)

RMSE 0.5 0.216 (0.021) 0.214 (0.023) 0.203 (0.011)
0 0.083 (0.047) 0.121 (0.053) 0.029 (0.008)

[50, 100]
1 0.089 (0.022) 0.090 (0.025) 0.132 (0.029)

0.5 0.119 (0.030) 0.111 (0.021) 0.116 (0.017)
0 0.027 (0.016) 0.021 (0.016) 0.023 (0.003)

[100, 150]
1 0.070 (0.020) 0.070 (0.020) 0.098 (0.027)

0.5 0.063 (0.014) 0.065 (0.012) 0.091 (0.005)
0 0.033 (0.016) 0.024 (0.019) 0.022 (0.003)

[10, 30]
1 0.877 (0.120) 0.875 (0.087) 0.953 (0.015)

Coverage probability 0.5 0.866 (0.151) 0.860 (0.152) 0.949 (0.016)
0 0.981 (0.148) 0.947 (0.211) 1 (0.020)

[50, 100]
1 0.981 (0.018) 0.984 (0.022) 0.957 (0.022)

0.5 0.877 (0.085) 0.930 (0.066) 0.953 (0.020)
0 0.988 (0.070) 0.994 (0.072) 0.934 (0.048)

[100, 150]
1 0.984 (0.017) 0.984 (0.017) 0.961 (0.025)

0.5 0.965 (0.045) 0.965 (0.027) 0.949 (0.014)
0 0.975 (0.114) 0.988 (0.138) 0.988 (0.021)
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4.5 Application to real data

This section continues the analysis of the respiratory hospitalisation data presented in

Chapter 3. As displayed in Section 4.3, modelling Approach 1 slightly outperforms

Approach 2 in terms of estimating more accurate risks and cluster structures, as well as

providing less varied results (lower standard variations) in the presence of clusters, therefore

Approach 1 is applied to the respiratory disease data in Greater Glasgow in 2016 which are

introduced in Section 3.2, aiming to provide improved risk estimation and identify clusters

of areas with different risk levels. The model is run ten times to generate MCMC samples

for ten independent Markov chains, and these posterior samples are combined together for

overall inference. Each chain is run for 300,000 samples with a burn-in period of 200,000

and thinned by 10. This gives a total of 100,000 samples, with 10,000 samples for each

chain. Convergence is checked via visually examining parameter trace plots.

Figure 4.8 presents the estimated spatial risk pattern (posterior median) in Greater

Glasgow for 2016. The estimated risks vary between 0.65 and 2.5 over all IZs in the

study region with a mean risk of 1.34, suggesting that on average the respiratory disease

risk in Greater Glasgow is 34% higher than the overall Scotland in 2016. In addition, it

appears that some areas exhibit remarkably different disease risks from their neighbours.

For example, the West End area has lower risks than some of its surrounding areas such

as Drumchapel and Drumry. Lennoxtown and Milton of Campsie in the north of the

city have much lower risks than their neighbour Kirkintilloch. This spatial variation is

likely attributed to the socio-economic deprivation, which has been widely evidenced

to be linked with disease risks (McCartney, 2012). The high-risk areas in Figure 4.8

generally suffer high levels of socio-economic deprivation as measured by Scottish index of

Multiple Deprivation (SIMD), whereas the low-risk areas are wealthier and more prosperous.

In order to illustrate the uncertainty in the estimated cluster structure, Figure 4.9 summarises

the posterior samples of W̃WW over 10 Markov chains. In the figure each grid square represents

a candidate neighbourhood matrix WWW (c,k) corresponding to a distinct cluster structure for

the data, where the horizontal axis denotes the number of clusters k and the vertical axis

denotes the clustering method c. The grid square on the bottom left corner corresponds to

the candidate matrices with k = 1, representing no clusters in disease risk. The posterior

probability of each candidate matrix being identified as the best choice of W̃WW (i.e. the

posterior mode) is also provided. It can be seen that the matrices with the top three highest

https://simd.scot/
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probabilities correspond to the cluster structures generated by k-medoids clustering with

k = 2 clusters and average-linkage agglomerative clustering with k = 3 and k = 4 clusters,

whose probabilities are 0.291, 0.277 and 0.197 respectively. Figure 4.10 displays these

three most likely cluster structures selected by the proposed model, which are denoted by

(a), (b) and (c). The blue dots in maps represent the discontinuities detected by the model,

which occur between geographical neighbours that are assigned to different clusters due to

them exhibiting remarkably different disease risks. As a result, high risks are not smoothed

towards their neighbouring areas that have low risks. The cluster structures (b) and (c) show

the largest agreement with the highest adjusted Rand Index of 0.880. However, cluster

structure (a) is the least similar to the other two structures, with ARI values of 0.492 ((a) vs

(b)) and 0.377 ((a) vs (c)) respectively.

The three cluster structures in Figure 4.10 have a number of similarities. They gener-

ally identify the same spatially distinct clusters of areas exhibiting high and low risks. The

areas of higher risks are predominantly located in the East End of Glasgow containing

deprived areas such as Springburn, Easterhouse and Barlanark, and also along the southern

bank of the Clyde river including Govan area. The areas of lower risks are mostly less

deprived which mainly lie in the affluent West End e.g. Dowanhill, in the far north and

north-east of the city e.g. Milngavie and Milton, and to the south e.g. Whitecraigs and

Newton Mearns. Cluster structures (a) and (b) have the similar posterior probabilities which

are both close to 0.3. The main difference between them is that structure (b) identifies

more spatially distinct clusters and discontinuities. In structure (a), all IZs are split into

two clusters with a high and low level of disease risk, and the discontinuities occur where

the high-risk areas are geographically adjacent to the low-risk areas. However, in cluster

structure (b), all IZs are split into three cluster levels containing low, high and very high risk

levels. The discontinuities are detected not only where the high/very high risk areas and

low risk areas are neighbouring but also where the high risk and very high risk areas are

adjacent. For instance, the East End of the city as a whole belongs to the high-risk cluster

in structure (a), while in structure (b) some particular areas in the high-risk East End such

as Easterhouse and Shettleston are further picked out and identified as being in the very

high-risk cluster. In addition, the areas of Inverclyde (e.g. Quarriers, Greenock) in the far

west are in a low-risk cluster in cluster structure (a), but they belong to a high-risk cluster

in structure (b). Cluster structure (c) has the lowest posterior probability of the three and it

partitions the risk surface into four distinct cluster levels. This slightly higher number of
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clusters would make the average risk levels over these clusters closer to each other, thus

some noisy discontinuities are likely to be identified between neighbouring areas that are

in different clusters but their risks are not substantially different, e.g. in the north of the

map for structure (c). Therefore, cluster structures (a) and (b) are preferable to (c) in this

application.

Figure 4.8: Map of the risk estimates (posterior median) for respiratory disease in Greater
Glasgow for 2016

Figure 4.9: Summary of the posterior distribution of W̃WW over ten Markov chains from mod-
elling Approach 1
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(a) (b)

(c)

Figure 4.10: The three most likely cluster structures selected by modelling Approach 1,
with clusters/discontinuities indicated by blue dots. The three structures (a), (b) and (c)
respectively identify 2, 3 and 4 cluster risk levels for the data, with the posterior probabilities
being 0.291, 0.277 and 0.197. The colour shading for the areas denotes posterior median
disease risk in 2016.

4.6 Discussion

In this chapter, I developed the methodology that simultaneously estimates the disease risk

surface and identifies clusters of areas with high risks. The basic framework is to elicit a

set of cluster structures by partitioning all the areal units into groups based on their SIR

values. Each candidate cluster structure is then used to produce a candidate neighbourhood

matrix through adapting the border sharing WWW by setting each element wi j = 0 if areas

(i, j) are geographically adjacent and in different clusters. The neighbourhood matrix W̃WW

is treated as a univariate parameter which is estimated from the set of candidate matrices

within the modelling process. Similarly to the method proposed in the previous chapter, the
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methodology only enforces spatial autocorrelation between neighbouring areas that are in

the same cluster, while not allowing for any spatial smoothing of random effects for areas in

different clusters. However, unlike the method presented in Chapter 3 where only k-means

clustering is used to generate cluster structures in stage one and the neighbourhood matrix is

fixed when estimating the other model parameters, the modelling approach introduced here

uses a wide range of clustering methods to allow for more flexibility in cluster identification.

Furthermore, the uncertainty in W̃WW , and hence in the cluster structure identified, is quantified

by treating W̃WW as a random parameter whose value is informed mainly by the data. In

addition, the methodology has the advantage of reducing the computational time. Rather

than fitting multiple Bayesian models separately and then comparing them according to a

model selection rule as proposed in Chapter 3, both risk estimation and cluster identification

are able to be realised in one single Bayesian spatial model in this chapter.

The simulation studies presented in Section 4.3 and 4.4 show that modelling Approach 1

and Approach 2 have advantages over the existing Leroux model fitted based on the border

sharing WWW in certain circumstances. In the presence of discontinuities and clusters in the

data, our approaches generally perform well, in particular outperforming the Leroux model

in terms of improved performance for estimating risks and identifying clusters of areas with

elevated or reduced risks. This is because in contrast to the Leroux model which is set up to

estimate a spatially smooth risk surface by always enforcing spatial autocorrelation between

geographically neighbours, the proposed methodology accounts for clusters/discontinuities

in the spatial autocorrelation structure of the random effects, and attempts to estimate the

correlation structure as accurate as possible by ruling out any redundant and incorrect

spatial smoothing of the random effects between neighbours. When the disease data are

smooth and do not show obviously high or low risk areas, both approaches show slightly

poorer accuracy in risk estimation than the Leroux model. This is unsurprising since our

approaches would still impose the clustering on the data and expect to find non-smooth

patterns from a smooth risk surface. Thus in this case the estimated clusters would be very

likely to be incorrect, which further affects the accuracy of risk estimates. Moreover, the

simulation studies also suggest that the methodology performs well typically for non-rare

diseases with moderate to large number of expected cases. When the expected disease

counts are small, e.g. less than 30 cases in each areal unit, the approaches are likely to

estimate less accurate risks and cluster structures. Therefore, modelling Approach 1 and

Approach 2 are more suitable for studying a prevalent or moderately prevalent disease.
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Modelling Approach 1 is applied to the respiratory disease data in Greater Glasgow in

2016 in Section 4.5. The cluster structure with the highest posterior probability partitions

the spatial risk pattern into two clusters of areas with a high and low level of disease risk.

It identifies the high-risk IZs and differentiates them from the low-risk IZs. The cluster

structure with the second highest probability contains three clusters (risk levels), which can

also identify the IZs with extremely high risks besides clusters of high- and low-risk areas.

One avenue for future work is to extend the spatial methodology proposed here into the

spatio-temporal domain. This would help to evaluate the effect of public health policies, and

also allow heath authorities to identify clusters of areas that exhibit an increasing disease

risk over time. Therefore, in Chapter 5 I will introduce a spatio-temporal model which

allows us to estimate how the risk surface and clusters change over time.



Chapter 5

Estimating spatio-temporal disease risks

and identifying clusters via

clustering-based adjacency modelling

5.1 Introduction

The Bayesian models presented in Chapters 3 and 4 are designed in a purely spatial context

to identify the cluster structure and estimate the disease risk for each area at a specific

time period. However, since areal unit disease data are typically available for a range of

consecutive non-overlapping time periods, investigating the changing nature of disease

risk over time has also gained increased popularity. Here I extend the spatial methodology

introduced in Chapter 4 to the spatio-temporal domain, with the goal of capturing the

spatial pattern of disease risk over time and identifying the, possibly temporally evolving,

cluster/discontinuity structures in disease risk. Understanding the temporal trend in disease

risk is important because it would allow health authorities to identify groups of areal units

where the disease risk has increased over time, and to investigate the potential causes for

such deterioration in health. It would also help to design localised disease intervention and

evaluate the effect of public health policies. The methodology is motivated by a study of

respiratory disease risk in the 257 Intermediate Zones that comprise the Greater Glasgow

and Clyde Health Board during the time period from 2011 to 2017.

The remainder of this chapter is organised as follows. Section 5.2 presents the moti-

vating data set, as well as giving a brief review of spatio-temporal disease risk models.

Section 5.3 presents the new methodology, while the efficacy and sensitivity of this approach
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are evidenced using simulations in Section 5.4 and Section 5.5. Section 5.6 applies the

methodology to the motivating application, while Section 5.7 provides a discussion on the

main findings from the model fitting and ideas for future work.

This chapter is based on the published paper Spatio-temporal disease risk estimation

using clustering-based adjacency modelling, by Xueqing Yin, Gary Napier, Craig An-

derson and Duncan Lee - Statistical Methods in Medical Research (March 14, 2022).

DOI: 10.1177/09622802221084131. https://journals.sagepub.com/doi/10.

1177/09622802221084131.

5.2 Background

5.2.1 Motivating study

The methodology proposed in Section 5.3 is motivated by a study of respiratory disease

(defined using the International Classification of Disease tenth revision by codes J00-J99) in

the Greater Glasgow and Clyde Health Board region in Scotland between 2011 and 2017,

and the study region is shown in Figure 3.1 which consists of n = 257 Intermediate Zones

(IZs). The disease data, YYY = {Yit}, available from Public Health Scotland, are the yearly

counts of the numbers of hospital admissions with a primary diagnosis of respiratory disease

for i = 1, . . . ,n(= 257) IZs for t = 1, . . . ,T (= 7) years. Additionally, the expected number of

respiratory hospitalisations is calculated for each year and IZ using indirect standardisation

to adjust for different population sizes and age and sex structures across the IZs, and are

denoted here by EEE = {Eit}. Specifically, Eit = ∑
m
j=1 nit jr j, where nit j is the population size

in IZ i, year t and strata j (e.g. females 0-5, females 6-10, etc), and r j is the Scotland-wide

disease rate in strata j. These expected counts are based on Scotland-wide age-sex specific

respiratory hospitalisation rates, because it allows us to examine how the disease risk in

Glasgow compares to the national average, which is the benchmark often used by Public

Health Scotland when examining the spatial patterns in disease risk.

The standardised incidence ratio, SIRit =
Yit
Eit

is an exploratory (noisy) estimate of dis-

ease risk, where a value greater than 1 corresponds to an increased level of risk compared

to the Scottish average while a value less than 1 indicates a decreased level of risk than

the Scottish average. The spatial patterns in the SIR for 2011 (the first year of data) and

2017 (the last year of data) are displayed in the top and middle panels of Figure 5.1.

https://journals.sagepub.com/doi/10.1177/09622802221084131
https://journals.sagepub.com/doi/10.1177/09622802221084131
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They show that higher respiratory disease risks are mainly in the East End of Glasgow

(the east of the map) and along the southern bank of the River Clyde, which includes the

socio-economically deprived areas of Easterhouse and Govan respectively, both of which

are well known to suffer from multi-generational poverty (Glasgow City Council, 2020). In

addition, there are numerous pairs of neighbouring areas where a discontinuity in disease

risk appears to exist, suggesting the presence of clusters of areas that exhibit elevated risks

compared with their neighbours. For example, in 2017 Drumchapel and Drumry to the north

west of the city exhibits a vastly higher SIR value (SIR = 1.85) than its neighbour Bearsden

(SIR = 0.53). Therefore, the common approach in the literature of assuming that all pairs

of neighbouring areal units exhibit similar disease risks is clearly not appropriate, which

motivates the spatio-temporal clustering model proposed below.

The spatial patterns in the SIR are fairly similar for each year, with an average Pear-

son’s correlation coefficient of 0.844 between each pair of years. This suggests that while

any clusters identified in disease risk may evolve slightly over time, one would not expect a

large change in the clusters from year to year. This gradual change is likely to be because

respiratory related hospitalisations are a marker of chronic rather than epidemic disease,

and hence any change would likely be gradual and due to factors such as the gentrification

of an area. The temporal trend in the SIR is shown in the bottom panel of Figure 5.1,

which shows that overall there has been a slight increase in the SIR over the 7 year period,

with a mean value of 1.10 in 2011 compared to 1.28 in 2017. There also appears to be

increased spatial variation in risk in the later years, with standard deviations over space of

0.39 in 2011 and 0.46 in 2017. Finally I do not collect any covariate data for this study,

because the aim is to estimate the spatio-temporal trend in disease risk and its spatial cluster

structure, rather than the drivers of elevated disease risks. Furthermore, as the clusters

identified by the methodology are in the random effects surface, including covariates in

the model would mean that the clustering/discontinuities relate to the residual risk surface

after covariate adjustment. In contrast, by not including covariates in the model the random

effects and risk surfaces have the same spatial structure (see Section 5.3), and thus any

clusters/discontinuities identified also relate to disease risk.
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Figure 5.1: Maps of the SIR for respiratory disease in the Intermediate Zones in the Greater
Glasgow and Clyde Health Board in 2011 (the top panel) and 2017 (the middle panel). The
bottom panel shows boxplots of the SIR over time.
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5.2.2 Review of spatio-temporal modelling of areal unit count data

5.2.2.1 Notation and data likelihood

Consider a study region partitioned into n non-overlapping areal units indexed by i ∈

{1, . . . ,n}, where data are collected for t ∈ {1, . . . ,T} consecutive time periods. As pre-

viously described, YYY = {Yit} and EEE = {Eit} denote the set of observed and expected disease

counts respectively, while a vector of covariates (if needed) is given by xxxit for area i and

time period t. The model outlined in this chapter is the most general form that includes co-

variates, but as previously mentioned the application only includes an intercept term in the

model. As the response variable is a count the data likelihood model commonly used is given

by Yit |Eit ,Rit ∼ Poisson(EitRit), where Rit represents disease risk in areal unit i during time

period t and is on the same scale as the SIR.

5.2.2.2 Spatio-temporal risk model

The spatio-temporal structure in risk {Rit} is typically modelled by both covariates and ran-

dom effects, and a large number of different random effects structures have been proposed.

An appropriate choice of structure depends on both the aims of the analysis and the trends

observed in the data, and the first paper in this area proposed using spatially correlated linear

time trends (Bernardinelli et al., 1995) for each area. Probably the most widely used structure

to date was proposed by Knorr-Held (2000), which decomposes disease risk into separate

spatial and temporal main effects and an additional spatio-temporal interaction term. More

recently, two popular spatio-temporal structures were proposed by Rushworth et al. (2014)

and Napier et al. (2016) respectively. Rushworth et al. (2014) modelled the risk surface as

a spatially autocorrelated multivariate first order autoregressive process, while Napier et al.

(2016) built on the model of Waller et al. (1997) by using a region-wide temporal trend and

separate spatial processes for each year. In this chapter the latter of these is used, because

it is the only one of the aforementioned approaches to have a separate spatial process with

a potentially different neighbourhood matrix WWW for each time period. Having a separate WWW

for each time period is crucial for the methodology proposed in the next section, because it

is the mechanism by which we estimate the temporally evolving clusters/discontinuities in

disease risk. The risk model proposed by Napier et al. (2016) that our approach is based on
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is given by the Poisson log-linear specification

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n; t = 1, . . . ,T,

ln(Rit) = xxx⊤it βββ +φit +θt , (5.1)

where βββ is a vector of regression parameters. The residual spatio-temporal structure (af-

ter covariate adjustment) is modelled by an overall temporal trend θθθ = (θ1, . . . ,θT ) and a

separate spatial surface at each time period t, φφφ t = (φ1t , . . . ,φnt). Each spatial surface φφφ t is

modelled by the Leroux CAR prior (Leroux et al., 2000) which induces spatial autocorrela-

tion into the random effects via a neighbourhood matrix WWW that determines which pairs of

areal units are close together. Here the commonly used sharing a common border specifica-

tion is adopted, where wi j = 1 if areal units (i, j) share a common geographical border, and

wi j = 0 otherwise. Based on this matrix the Leroux CAR prior (Leroux et al., 2000) for φφφ t

is specified by n univariate full conditional distributions, which for area i is given by

φit |φφφ−i,t ,WWW ∼ N

(
ρs ∑

n
j=1 wi jφ jt

ρs ∑
n
j=1 wi j +1−ρs

,
τ2

t
ρs ∑

n
j=1 wi j +1−ρs

)
, (5.2)

where φφφ−i,t = (φ1,t , . . . ,φi−1,t ,φi+1,t , . . . ,φn,t). The strength of the spatial autocorrelation is

controlled by a temporally invariant parameter ρs, where a value of 1 indicates strong depen-

dence in space (corresponding to the intrinsic CAR model (Besag et al., 1991)) and a value

of 0 indicates spatial independence (as φit ∼ N(0,τ2
t )). Additionally, τ2

t is a temporally-

varying variance parameter, thus allowing the amount of spatial variation in the data to

change over time. The joint multivariate Gaussian distribution for φφφ t corresponding to the

above is φφφ t ∼ N
(
000,τ2

t QQQ(ρs,WWW )−1), where QQQ(ρs,WWW ) = ρs (diag(WWW111)−WWW )+(1−ρs) III, 111 is

an n× 1 vector of ones and III is an n× n identity matrix. The partial correlation between(
φit ,φ jt

)
conditioning on the remaining spatial random effects (denoted φφφ−i jt) specified by

this model is

Corr
(

φit ,φ jt |φφφ−i jt

)
=

ρswi j√
(ρs ∑

n
v=1 wiv +1−ρs)

(
ρs ∑

n
v=1 w jv +1−ρs

) . (5.3)

Equation (5.3) shows that
(
φit ,φ jt

)
are modelled as partially correlated if wi j = 1, otherwise,

the partial correlation between
(
φit ,φ jt

)
is 0 and they are modelled as conditionally indepen-

dent. Hence the neighbourhood matrix WWW determines the spatial autocorrelation structure

imposed by the model. Thus using the border sharing rule the spatial random effect φit is
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forced to be correlated with its geographical neighbours if ρs is estimated as close to one,

meaning that any discontinuities in the spatial surface are smoothed over in the estimation.

This not only leads to poorer risk estimation in the presence of discontinuities as shown in

Section 5.4, but also does not allow a mechanism for identifying these discontinuities that

correspond to cluster boundaries. Finally, Napier et al. (2016) modelled the temporal trend

θθθ = (θ1, . . . ,θT ) by a one dimensional Leroux CAR prior, and further details can be found

in Section 2.5.

5.3 Methodology

This chapter proposes a two-stage modelling approach for spatio-temporal clustering that

jointly estimates the spatio-temporal pattern in disease risk and identifies clusters of areas

with elevated or reduced risks compared to their geographical neighbours. In stage one

a range of clustering methods are used to identify a large collection of plausible candidate

cluster structures for the data, each of which is then used to create a candidate neighbourhood

matrix. In stage two, a Bayesian hierarchical model is proposed for the data, which jointly

estimates the spatio-temporal pattern in disease risk and the most appropriate neighbourhood

matrix corresponding to a given cluster structure. I propose two different variants of the

model, with variant A having spatial clusters that remain fixed during the entire study period,

while in variant B the clusters vary dynamically over time.

5.3.1 Stage 1 — Generating neighbourhood matrices representing clus-

ters/discontinuities

As in Chapter 4, a collection of candidate cluster structures for disease risk are estimated

based on c = 1, . . . ,M different clustering methods, and the M = 8 methods considered

here are summarised in Table 4.1. Again, the cluster methods include k-means (MacQueen

et al., 1967) clustering, k-medoids (Park and Jun, 2009) clustering, hierarchical agglom-

erative (Hastie et al., 2009) clustering with centroid, complete, average and Ward linkage,

divisive (Kaufman and Rousseeuw, 2009) clustering and expectation-maximisation (Fraley

and Raftery, 2002) clustering. These clustering methods are applied to the data without re-

gard to the spatial positions of the areal units, because the spatial correlation in the data is

modelled by random effects as described above. Thus the clusters identified represent the

number of different risk levels and not the number of spatially distinct clusters, meaning that

a single “cluster” will likely contain groups of areas that are not spatially connected by WWW .
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Each clustering method c is used to compute k = 1, . . . ,K distinct cluster structures, where

structure k contains k clusters. As in the previous chapters, the value of K is the upper limit

for the number of clusters that is expected to find in the data, and it has to be specified by

the user. Here I set K = 10 again as a conservative overly large choice, because as described

above this represents the number of distinct risk levels and not the number of spatially con-

tiguous clusters. These candidate cluster structures are incorporated into the disease risk

model by specifying a set of candidate neighbourhood matrices, which means they relate

to the random effects surface {φit}. Therefore the first step to estimating an appropriate

neighbourhood matrix is to estimate {φit} from the data and the general model (5.1) by

φ̃it = ln
(
E(Yit)

Eit

)
− xxx⊤it βββ −θt ≈ ln

(
Yit

Eit

)
− xxx⊤it β̂ββ . (5.4)

This approximation replaces the unknown E(Yit) with the observed data Yit , and the tem-

poral random effects are removed as they do not vary over space and hence do not affect

the spatial cluster structure. The regression parameters are estimated for this initial stage

assuming independence via maximum likelihood estimation, and are denoted above by β̂ββ .

These estimated spatial random effects {φ̃it} are used to construct candidate cluster struc-

tures and corresponding neighbourhood matrices as described below for variants A (static)

and B (dynamic) of our model.

5.3.1.1 Variant A: Constant cluster structure over time

Temporally constant clusters are obtained by applying each clustering method to φ̃φφ =

(φ̃φφ 1, . . . , φ̃φφ n), where φ̃φφ i = (φ̃i1, . . . , φ̃iT ). The cluster structure obtained from method c with k

clusters is used to create a candidate neighbourhood matrix WWW (c,k) as follows:

w(c,k)
i j =

1, if areal units (i, j) share a common border and are in the same cluster,

0, otherwise.
(5.5)

Thus there is a one-to-one relationship between a candidate cluster structure and its cor-

responding neighbourhood matrix, and as trivially the border sharing matrix equals all of

{WWW (1,1), . . . ,WWW (M,1)} and this leads to (K − 1)×M + 1 candidate cluster structures in total.

Altering the border sharing WWW in this way to allow for clusters means that if areas (i, j) share

a border and are in the same cluster (i.e. have similar data values) then their random ef-

fects will be modelled as partially correlated (see equation (5.3)). In contrast, if they share
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a border but are in different clusters (i.e. have very different data values) then their random

effects will be modelled as conditionally independent, thus not enforcing spatial smoothing

between them.

5.3.1.2 Variant B: Temporally varying cluster structures

In variant A the spatial clusters do not change over time, which allows one to estimate an

overall average cluster structure in the data across the entire study period. However this

may not be realistic in practice, because different areas can have different temporal trends in

disease risk leading to evolution in the spatial cluster structure over time. To account for this

I adjust the clustering method in variant A by estimating a separate spatial cluster structure

for each time period. This is achieved by applying clustering method c with k clusters to

φ̃φφ t = (φ̃1t , . . . , φ̃nt) separately for each time period t, yielding a candidate neighbourhood

matrix WWW (c,k,t) defined as follows:

w(c,k,t)
i j =

1, if areal units (i, j) share a common border and are in the same cluster at time t,

0, otherwise.
(5.6)

This algorithm leads to (K − 1)×M ×T + 1 candidate cluster structures in total, including

(K −1)×M for each time period t and the additional border sharing specification.

5.3.2 Stage 2 — Bayesian spatio-temporal modelling

The second stage of the methodology fits a model to the data that jointly estimates the spatio-

temporal trend in disease risk and an appropriate cluster/discontinuity structure(s), the latter

being achieved by treating the neighbourhood matrix as a parameter to be estimated from the

set of candidates generated in stage 1. The model structure proposed here is based on Napier

et al. (2016) described in Section 5.2.2, because its separate random effects surfaces for each

time period allow for different neighbourhood matrices to be specified in each case, which

is necessary under variant B of the model. The first level of the model is given by

Yit |Eit ,Rit ∼ Poisson(EitRit) i = 1, . . . ,n; t = 1, . . . ,T,

ln(Rit) = xxx⊤it βββ +φit +θt , (5.7)

β j ∼ N(0,1000), for j = 0, . . . , p.
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The residual spatio-temporal variation in the data is decomposed into an overall temporal

trend common to all areal units and separate spatial surfaces for each time period. The

former is denoted by θθθ = (θ1, . . . ,θT ) and modelled by the first order autoregressive process

θt |θt−1 ∼ N
(
αθt−1,σ

2) for t = 2, . . . ,T,

θ1 ∼ N
(
0,σ2) , (5.8)

α ∼ Uniform(0,1),

σ
2 ∼ Inverse-Gamma(1,0.01).

Here α ∈ [0,1] is the temporal autoregressive parameter, with α = 1 indicating strong tempo-

ral dependence (a first order random walk), while α = 0 corresponds to independence across

time. A uniform prior on the interval [0,1] is assigned to α , while a conjugate Inverse-

Gamma prior is assigned to the process variance σ2. The spatial surface at time period t is

captured by φφφ t = (φ1t , . . . ,φnt), which is modelled by a separate Leroux CAR prior (Leroux

et al., 2000) for each time period. Different spatial variances for each time period are allowed

because the exploratory analysis in Section 5.2.1 suggested that the level of spatial variation

may change over time. For both model variants A and B the neighbourhood matrix is treated

as a parameter to be estimated, and the model specifications are given below.

5.3.2.1 Variant A: Constant cluster structure over time

In this model variant there is a single neighbourhood matrix W̃WW that is common to all time

periods, and the spatial random effects φφφ t are modelled by:

φφφ t ∼ N
(

000,τ2
t QQQ(ρs,W̃WW )−1

)
,

W̃WW ∼ Discrete uniform
(

WWW (1,1),WWW (1,2), . . . ,WWW (1,K),WWW (2,2), . . . ,WWW (2,K), . . . ,WWW (M,2), . . . ,WWW (M,K)
)
.

Here QQQ(ρs,W̃WW ) is the spatial precision matrix corresponding to the Leroux CAR prior,

which is defined in the previous section. This matrix depends on the neighbourhood ma-

trix W̃WW , which is assigned a discrete uniform prior whose possible values are the set of

candidates corresponding to the cluster structures estimated in stage 1. Finally, the vari-

ance and spatial dependence parameters are assigned weakly informative Inverse-Gamma

(τ2
t ∼ Inverse-Gamma(1,0.01)) and uniform (ρs ∼ Uniform(0,1)) priors respectively.
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5.3.2.2 Variant B: Temporally varying cluster structures

In this model variant there is a different neighbourhood matrix W̃WW t for each time period t,

and the spatial random effects φφφ t are modelled by:

φφφ t ∼ N
(

000,τ2
t QQQ(ρst ,W̃WW t)

−1
)
,

W̃WW t ∼ Discrete uniform
(

WWW (1,1,t),WWW (1,2,t), . . . ,WWW (1,K,t),

WWW (2,2,t), . . . ,WWW (2,K,t), . . . ,WWW (M,2,t), . . . ,WWW (M,K,t)
)
. (5.9)

Here QQQ(ρst ,W̃WW t) again corresponds to the Leroux CAR prior, where in this model variant

the spatial dependence parameter ρst changes over time as the neighbourhood matrix also

varies over time. As before the set of candidate neighbourhood matrices at time t that make

up the discrete uniform prior for W̃WW t are obtained from the candidate cluster structures

generated in stage 1. In common with variant A the model specification is completed with

τ2
t ∼ Inverse-Gamma(1,0.01) and ρst ∼ Uniform(0,1).

For both model variants the clustering stage elicits multiple candidate neighbourhood

matrices that are equal to the border sharing WWW , which occur when the number of clusters

k = 1 for each clustering method. Therefore only one of these is included in the discrete

uniform prior to avoid the border sharing WWW being given a larger prior weight compared

to the other candidate values. This border sharing WWW is included in the model because it

corresponds to a globally spatially smooth risk surface with no clusters. Additionally, to

achieve identifiability, all sets of spatial and temporal random effects are zero-mean centred.

Here (ρs,ρst ) control the level of spatial autocorrelation globally across the study re-

gion, with values close to 1 corresponding to strong spatial autocorrelation while a value of

zero corresponds to spatial independence. However, in the two model variants the spatial

autocorrelation structure is modelled locally for each pair of neighbouring areas by estimat-

ing an appropriate neighbourhood matrix for the data, which may make the estimation of a

single global parameter redundant. Thus in the simulation study in Section 5.4 I compare

the performance of both model variants when estimating (ρs,ρst ) in the model and also

when fixing them at ρs,ρst = 0.99. The latter is chosen because it is close to one and hence

enforces strong spatial autocorrelation globally, whose structure is then adjusted locally by

estimating the neighbourhood matrix. Note, ρs,ρst = 1 is not used because our model could

produce a candidate neighbourhood matrix where an areal unit has no neighbours due to it
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being a singleton cluster. This will cause ∑
n
j=1 wi j = 0 for the area i in question, which leads

to an infinite mean and variance for φit from (5.2).

5.3.3 Inference

Inference is carried out in a Bayesian setting via Markov chain Monte Carlo (MCMC) sim-

ulation, using both the Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings,

1970) and Gibbs sampling (Geman and Geman, 1984). The only non-standard step is the

updating of the neighbourhood matrix W̃WW or W̃WW t , which is achieved by using a Metropolis-

Hastings step consisting of two MCMC moves. This is initially introduced in Chapter 4 and

briefly outlined below. Note, the step is outlined for variant A of the model, and the updating

step for variant B is analogous.

1. If the current value of W̃WW in the Markov chain is WWW (c,k), then a new

value WWW (c,l) is proposed uniformly from the set of candidate matrices(
WWW (c,k−s), . . . ,WWW (c,k−1),WWW (c,k+1), . . . ,WWW (c,k+s)

)
, which is the candidate cluster

structures generated from the same clustering method but with a different number

of clusters. Here s is a parameter controlling the acceptance rates and mixing of the

update, and exploratory model runs suggested that s = 2 leads to good estimation

performance.

2. If the current value of W̃WW after the first move is WWW (c,k
′
), then a new proposal WWW (h,k

′
) is

drawn uniformly from the set
(

WWW (1,k
′
), . . . ,WWW (c−1,k

′
),WWW (c+1,k

′
), . . . ,WWW (M,k

′
)
)

, which is

the candidate cluster structures with the same number of clusters but generated from a

different clustering method.

Since the neighbourhood matrix follows a discrete distribution, the posterior mode of

(W̃WW , W̃WW t), representing the most likely occurring cluster structure across all the MCMC

samples, is used to estimate the optimal cluster/discontinuity structure. In contrast,

the remaining parameters are summarised by their posterior medians. The MCMC

algorithm for fitting the model was developed and implemented in R (R Core Team,

2013) and C++ via the R package Rcpp (Eddelbuettel et al., 2011) and is available from

https://github.com/XueqingYin/ST-model. Details of each step of the

MCMC sampler for the model are given as follows.

https://github.com/XueqingYin/ST-model
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Update βββ

The full conditional distribution for βββ is

f (βββ |YYY ) ∝

n

∏
i=1

T

∏
t=1

Poisson(Yit |βββ )×
p

∏
j=0

N(β j|0,1000)

∝

(
n

∏
i=1

T

∏
t=1

(
exp(xxx⊤it βββ +φit +θt)

)Yit

)
exp

(
−

n

∑
i=1

T

∑
t=1

Eit exp(xxx⊤it βββ +φit +θt)

)
×

p

∏
j=0

exp

(
−β 2

j

2000

)
.

βββ = (β0, . . . ,βp) is drawn as a block for all p covariates, including the intercept term β0, via

a Metropolis-Hastings step.

Update φit

Each φit is sampled separately using a Metropolis-Hastings step. The full conditional

distribution for φit is

f (φit |Yit) ∝ Poisson(Yit |φit)×N(φit |φφφ−it)

∝

(
Eit exp(xxx⊤it βββ +φit +θt)

)Yit
exp
(
−Eit exp

(
xxx⊤it βββ +φit +θt

))
×

N

(
ρs ∑

n
j=1 wi jφ jt

ρs ∑
n
j=1 wi j +1−ρs

,
τ2

t
ρs ∑

n
j=1 wi j +1−ρs

)

Note, this updating step is outlined for variant A of the model and the step for variant B is

analogous by simply replacing ρs with ρst .

Update θt

The joint distribution for θθθ = (θ1, . . . ,θT ) can be written as

f (θ1, . . . ,θT ) = f (θ1) f (θ2|θ1) f (θ3|θ2,θ1) . . . f (θT |θT−1, . . . ,θ1).

Since θ1 ∼ N(0,σ2), we get

f (θ1) =
1√

2πσ2
exp
(
−

θ 2
1

2σ2

)
∝ exp

(
−

θ 2
1

2σ2

)
.
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Since θt |θt−1 ∼ N
(
αθt−1,σ

2), we get

f (θt |θt−1) =
1√

2πσ2
exp
(
−(θt −αθt−1)

2

2σ2

)
∝ exp

(
−(θt −αθt−1)

2

2σ2

)
.

Therefore the joint probability distribution for θθθ = (θ1, . . . ,θT ) is given by

f (θ1, . . . ,θT ) = f (θ1)
T

∏
t=2

f (θt |θt−1)

∝ exp
(
−

θ 2
1

2σ2

) T

∏
t=2

exp
(
−(θt −αθt−1)

2

2σ2

)
∝ exp

(
−1

2

(
θ 2

1
σ2 +

T

∑
t=2

(θt −αθt−1)
2

σ2

))

∝ exp
(
−1

2
θθθ

T RRRθθθ

)
∼ N(000,RRR−1),

where RRR is a T ×T precision matrix, with element Rts given as

Rts =



1+α2

σ2 , if t = s ̸= T ,

1
σ2 , if t = s = T ,

− α

σ2 , if |t − s|= 1,

0, if |t − s| ≥ 2.

According to multivariate Gaussian theory, the conditional expectation of the distribution

θt |θθθ−t ∼ N(E[θt |θθθ−t ],Var[θt |θθθ−t ]) is

E[θt |θθθ−t ] =


α

1+α2 θt+1, if t = 1,

α

1+α2 (θt−1 +θt+1) , if t = 2, . . . ,T −1,

αθt−1, if t = T .

The conditional variance Var[θt |θθθ−t ] is

Var[θt |θθθ−t ] =


σ2

1+α2 , if t ̸= T ,

σ2, if t = T .
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Each θt is sampled via a Metropolis-Hastings step. The full conditional distribution for θt is

f (θt |YYY ) ∝

n

∏
i=1

Poisson(Yit |θt)×N(E[θt |θθθ−t ],Var[θt |θθθ−t ]) .

When t = 1:

f (θt |YYY ) ∝

(
n

∏
i=1

(
exp(xxx⊤it βββ +φit +θt)

)Yit

)
exp

(
−

n

∑
i=1

Eit exp(xxx⊤it βββ +φit +θt)

)
×

exp


(

θt − α

1+α2 θt+1

)2

−2 σ2

1+α2

 .

When t = 2, . . . ,T −1:

f (θt |YYY ) ∝

(
n

∏
i=1

(
exp(xxx⊤it βββ +φit +θt)

)Yit

)
exp

(
−

n

∑
i=1

Eit exp(xxx⊤it βββ +φit +θt)

)
×

exp


(

θt − α

1+α2 (θt−1 +θt+1)
)2

−2 σ2

1+α2

 .

When t = T :

f (θt |YYY ) ∝

(
n

∏
i=1

(
exp(xxx⊤it βββ +φit +θt)

)Yit

)
exp

(
−

n

∑
i=1

Eit exp(xxx⊤it βββ +φit +θt)

)
×

exp

(
(θt −αθt−1)

2

−2σ2

)
.

Update α

α is drawn using a Gibbs sampler. The full conditional probability distribution for α is

f (α|θθθ) ∝

T

∏
t=2

N(θt |αθt−1,σ
2)×Uniform(0,1)

∝

T

∏
t=2

exp
(
−(θt −αθt−1)

2

2σ2

)
∝ exp

(
T

∑
t=2

−(θt −αθt−1)
2

2σ2

)
∼ N(m,v),

where m = ∑
T
t=2 θtθt−1

∑
T
t=2 θ 2

t−1
, and v = σ2

∑
T
t=2 θ 2

t−1
.
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Update σ2

σ2 is drawn using a Gibbs sampler. The full conditional probability distribution for σ2 is

f (σ2|θθθ) ∝ N
(
θ1|0,σ2) T

∏
t=2

N
(
θt −αθt−1|0,σ2)× Inverse-Gamma(1,0.01)

∼ Inverse-Gamma(ã, b̃),

where ã = 1 + T
2 , and b̃ = 0.01 + 1

2

(
θ 2

1 +∑
T
t=2(θt −αθt−1)

2). σ2 is evaluated at each

iteration of Gibbs sampling by directly drawing samples from the above Inverse-Gamma

distribution.

Update τ2
t

τ2
t is drawn using a Gibbs sampler. The full conditional distribution for τ2

t is

f (τ2
t |φφφ t) ∝ N

(
φφφ t |000,τ2

t QQQ(ρs,W̃WW )−1
)
× Inverse-Gamma(1,0.01)

∼ Inverse-Gamma(ã, b̃),

where ã = 1 + n
2 and b̃ = 0.01 + 1

2φφφ
⊤
t QQQ(ρs,W̃WW )φφφ t . τ2

t is evaluated at each iteration of

Gibbs sampling by directly drawing samples from the above Inverse-Gamma distribution.

Note, this updating step is outlined for variant A of the model and the step for variant B is

analogous by replacing ρs with ρst and W̃WW with W̃WW t .

Update W̃WW or W̃WW t

W̃WW or W̃WW t is sampled via a Metropolis-Hastings step. For variant A of the model, the full

conditional distribution for W̃WW is

f (W̃WW |φφφ) ∝

T

∏
t=1

N
(

φφφ t |000,τ2
t QQQ(ρs,W̃WW )−1

)
× f

(
W̃WW =WWW (c,k)

)
∝ ||QQQ(ρs,W̃WW )||

T
2 exp

(
−1

2

T

∑
t=1

(
φφφ
⊤
t QQQ(ρs,W̃WW )φφφ t

)
τ
−2
t

)
,

where || · || denotes the determinant of a matrix. For variant B of the model, the full condi-

tional distribution for W̃WW t is

f (W̃WW t |φφφ t) ∝ N
(

φφφ t |000,τ2
t QQQ(ρst ,W̃WW t)

−1
)
× f

(
W̃WW t =WWW (c,k,t)

)
∝ ||QQQ(ρst ,W̃WW t)||

1
2 exp

(
−1

2

(
φφφ
⊤
t QQQ(ρst ,W̃WW t)φφφ t

)
τ
−2
t

)
.
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Update ρs or ρst

For variant A of the model, the full conditional distribution for ρs is

f (ρs|φφφ) ∝

T

∏
t=1

N
(

φφφ t |000,τ2
t QQQ(ρs,W̃WW )−1

)
×Uniform(0,1)

∝ ||QQQ(ρs,W̃WW )||
T
2 exp

(
−1

2

T

∑
t=1

(
φφφ
⊤
t QQQ(ρs,W̃WW )φφφ t

)
τ
−2
t

)
.

For variant B of the model, the full conditional distribution for ρst is

f (ρst |φφφ t) ∝ N
(

φφφ t |000,τ2
t QQQ(ρs,W̃WW t)

−1
)
×Uniform(0,1)

∝ ||QQQ(ρst ,W̃WW t)||
1
2 exp

(
−1

2

(
φφφ
⊤
t QQQ(ρst ,W̃WW t)φφφ t

)
τ
−2
t

)
.

5.4 Simulation

In this section a simulation study is presented to comprehensively quantify the performance

of the proposed methodology. The study assesses the performance of both model variants (A

- static and B - time varying), and in both cases I compare models where the global spatial

dependence parameters (ρs,ρst ) are fixed at 0.99 or estimated within the model. Thus in the

study five different models are compared, where ST-A and ST-B denote model variants A

and B where ρs,ρst = 0.99, while ST-A* and ST-B* denote model variants A and B where

(ρs,ρst ) are estimated within the model. Finally, model ST-N is the existing non-cluster

model proposed by Napier et al. (2016) (see Section 5.2.2). The aims in this study are to

illustrate the improved risk estimation delivered by our models compared to a similar non-

clustering alternative, and also to quantify the accuracy of the resulting cluster identification.

5.4.1 Data generation

Simulated disease count data {Yit} are generated from the Poisson log-linear model (5.7)

for the n = 257 IZs that comprise the Greater Glasgow study region for T = 7 time periods.

The template for the expected disease counts {Eit} is based on the motivating study data,

whose values range between 12.61 and 160.15 in a single IZ and year with a median of

74.09. However, to explore the impact of disease prevalence on model performance, these

{Eit} values are divided by the scale factors (SF) of 1, 2 and 4. Thus SF = 1 corresponds

to the motivating study data, SF = 2 corresponds to having a smaller number of expected

counts, while SF = 4 represents a rare disease that has very small expected counts.
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Disease risks {Rit} are generated by simulating both spatial ({φit}) and temporal ({θt})

random effects, and as previously described covariates are not included. The temporal

random effects are generated from the Gaussian AR(1) model given by (5.8), where we

fix α = 0.9 and σ2 = 0.1. The spatially correlated random effects for each time period

φφφ t = (φ1t , . . . ,φnt) are generated from a multivariate Gaussian distribution with the spatially

correlated precision matrix proposed by Leroux et al. (2000) where τ2
t is fixed at 0.001 for

each t. To assess model performance with different degrees of spatial correlation in the

risk surface, the spatially correlated random effects φφφ t are generated by varying the spatial

dependence parameters over ρs,ρst = 0.9,0.6,0.3,0. Here a value of 0.9 corresponds to

strong spatial dependence, values of (0.6, 0.3) correspond to moderate and weak dependence

respectively while a value of 0 corresponds to spatial independence.

Clustering is induced into these spatial surfaces by the mean of the multivariate Gaussian

distribution used to generate φφφ t , which is denoted by µµµ t = (µ1t , . . . ,µnt). At each time

period we consider high, medium and low risk levels, which are generated by specifying

a piecewise constant mean function so that each µit ∈ {−Z,0,Z}. Thus geographically

neighbouring areal units that have the same mean value are in the same cluster as their

disease risks will be similar, while those pairs that have different mean values will exhibit a

step-change in their risks and hence are in different clusters. The value of Z is varied in the

different scenarios of our simulation design as either Z = 0.5 or Z = 1, which respectively

correspond to small and large differences in disease risk between neighbouring areal units

in different clusters. Two cases are considered for this clustering, which respectively favour

variants A (Case 1) and B (Case 2) of our model.

• Case 1 - the simulated clusters remain constant during the study period, which is

achieved by setting µit = µil for all t ̸= l.

• Case 2 - the simulated clusters evolve over time, which is achieved by µit ̸= µil for

some pairs of time periods (t, l).

Figure 5.2 provides maps of the cluster structures simulated for both Case 1 and Case 2,

where areal units in the high-risk, medium-risk and low-risk clusters are respectively shaded

in black, grey and white. Under Case 1 the simulated clusters are common to all time periods,

while under Case 2 the cluster structures at time periods t = 1,4,7 are shown here. For Case

2 the temporal evolution of the clusters is achieved by randomly selecting a small number of

areal units and changing their cluster membership for each time period. The chosen cluster
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structure template is based on the motivating study, by partitioning the set of IZs into three

groups based on their SIR values. Finally, a scenario where Z = 0 is also considered, which

corresponds to a spatially smooth risk surface with no clusters for each time period. Note,

in this case as there are no clusters in the simulated risk surfaces then there is no difference

between Case 1 and Case 2. The simulation study thus has 30 sub-scenarios in its design,

which are summarised in Table 5.1. Thus in this study we vary the following quantities: (i)

constant and time-varying clusters via Case 1 and Case 2; (ii) varying cluster magnitudes

via Z = 1,0.5,0; (iii) varying disease prevalences via SF = 1,2,4; and (iv) varying levels of

spatial autocorrelation via ρs,ρst = 0.9,0.6,0.3,0.

Table 5.1: Description of the scenarios in the simulation study. SF indicates the scale factor
used for the expected values.

Cluster cases Z SF (ρs,ρst )

Case 1 / 2 Z ∈ {1,0.5} SF ∈ {1,2,4} ρs,ρst = 0.9
- - Z = 0 SF ∈ {1,2,4} ρs,ρst = 0.9

Case 1 / 2 Z ∈ {1,0.5} SF = 1 ρs,ρst ∈ {0.6,0.3,0}
- - Z = 0 SF = 1 ρs,ρst ∈ {0.6,0.3,0}
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Case 2 : t = 4 Case 2 : t = 7

Case 1 Case 2 : t = 1

Figure 5.2: Maps of the simulated cluster structures under Case 1 (top-left) and Case 2 (top-
right and bottom). High-risk, medium-risk and low-risk clusters are respectively shaded in
black, grey and white.

5.4.2 Results

One hundred simulated data sets are generated under each of the 30 scenarios shown in

Table 5.1, and the five models ST-A, ST-A*, ST-B, ST-B* and ST-N are fitted to each data

set. In all cases inference is based on a single Markov chain with 100,000 MCMC samples,

80,000 of which were discarded for the burn-in period and the remaining 20,000 samples

were thinned by 10 to reduce their autocorrelation. The main results are shown below, while

the sensitivity of these results to the choice of prior distribution is assessed in Section 5.5.

The results are shown in Tables 5.2 and 5.3, which summarise the modelling perfor-

mance using three metrics. The accuracy of disease risk estimation is quantified by the

root mean square error (RMSE) of the risk estimates and the corresponding coverage prob-

abilities of the 95% credible intervals. The correctness of the estimated cluster structures

is measured by the adjusted Rand Index (Hubert and Arabie, 1985) between the true and
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estimated cluster structures over all time periods. For this metric a value of 1 indicates

complete agreement between two cluster structures, a value of 0 indicates that the data

points are randomly allocated to the two cluster structures, and a value less than 0 indicates

that the level of agreement between the two cluster structures is smaller than that arising

from randomly allocated data points. Table 5.2 displays these performance metrics for each

model under different scenarios of Cases 1 / 2, Z = 1,0.5,0 and SF = 1,2,4, but in this table

the spatial random effects are simulated under the strong spatial dependence scenario with

ρs,ρst = 0.9.

The non-cluster model ST-N mainly performs poorly in terms of risk estimation com-

pared to the clustering models proposed here, having mostly larger RMSE values and

coverage probabilities as low as 0.8. An exception to this is when there are no clusters in

disease risk (Z = 0), and in this case the ST-N model performs similarly to the constant

cluster models ST-A and ST-A*. The other scenario in which ST-N performs comparably to

the cluster models is when the disease is rare (SF = 4) and the cluster boundaries are small

in magnitude (Z = 0.5), which is because in this scenario the clusters are hard to identify

based on their small size and small numbers of disease cases.

The four clustering models perform best when the disease prevalence is high (SF =

1) and the clusters are large in size (Z = 1) as expected, which is because in these scenarios

there are more disease cases from which to identify more prominent clusters. In this

situation the RMSE values are very low compared to the range of the true risks, coverage

probabilities are close to their nominal 0.95 levels, and cluster identification is very good

with ARI values either very close to or equal to one. When the disease prevalence decreases

(SF > 1) and the clusters are less pronounced the models perform less well, but the ARI

values are still relatively close to one in most scenarios unless the disease is rare (SF =

4) and the clusters are small in magnitude (Z = 0.5). Additionally, the models identify

temporally static clusters better than temporally varying ones, as the results for models ST-A

and ST-A* in Case 1 are generally better than those for models ST-B and ST-B* in Case 2.

This improved performance in the static cluster case is because the temporal replication in

the true cluster structure yields more data from which to identify clusters, thus resulting in

improved model performance.

When the clusters are temporally constant (Case 1) then as expected models ST-A



CHAPTER 5. SPATIO-TEMPORAL CLUSTERING MODEL 133

and ST-A*, which assume static clusters, produce more accurate risk estimates (lower

RMSE) than models ST-B and ST-B* in all cases, as well as producing adjusted Rand

indices that are generally very close to one. Similarly, when the clusters evolve over time

(Case 2) then as expected models ST-B and ST-B*, which allow for dynamic clusters,

perform better than ST-A and ST-A* in most scenarios. The only slight exception to this is

when the disease is rare (SF = 4) and the clusters are not large in size (Z = 0.5), which is

the case where the clusters are hardest to identify and hence all the cluster models perform

less well (small ARI values). Estimating (ρs,ρst ) (ST-A*, ST-B*) rather than fixing them at

0.99 (ST-A, ST-B) produces better results overall, with lower RMSE values and higher ARI

values in almost all scenarios.

Table 5.3 summarises model performance under different levels of spatial autocorrela-

tion (values of ρs,ρst ), and the results are based on the expected disease counts from the

motivating data (SF = 1). The results show that reducing the spatial dependence in the data

does not seem to have any substantial effect on the ability of the proposed cluster models

to estimate disease risk or identify the correct cluster structure, as the ARI results do not

differ greatly as the spatial dependence parameters (ρs,ρst ) vary. Additionally, the coverage

probabilities are also largely unaffected by this change, and the RMSE values increase very

slightly (suggesting worse estimation) as (ρs,ρst ) gets closer to zero, due to a reduction

in the borrowing of strength spatially when doing the estimation. In Case 1 ST-A* again

outperforms ST-A across the board, suggesting that estimating ρs leads to better model

performance regardless of the level of spatial autocorrelation in the data. This effect is also

seen when comparing ST-B* and ST-B in Case 2 in terms of RMSE, but for the ARI results

the two models are very similar. Finally, the globally smooth non-clustering model ST-N

again performs uniformly badly when there are clusters in the data (Z > 0) as expected.
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Table 5.2: Median values of the RMSE, 95% credible interval coverages and adjusted Rand
Index (ARI) for each model and scenario. In the scenarios considered here ρs = ρst = 0.9 is
used to simulate the spatial random effects for each time period.

Performance metric Cluster case Z SF
Model

ST-A ST-A* ST-B ST-B* ST-N

RMSE Case 1 1 1 0.087 0.068 0.091 0.074 1.175
0.5 1 0.071 0.060 0.099 0.096 0.119
1 2 0.115 0.094 0.130 0.116 1.155
0.5 2 0.097 0.082 0.159 0.158 0.157
1 4 0.150 0.128 0.207 0.192 1.109
0.5 4 0.151 0.120 0.225 0.224 0.204

Case 2 1 1 0.135 0.132 0.091 0.074 0.904
0.5 1 0.114 0.111 0.101 0.099 0.113
1 2 0.188 0.181 0.142 0.126 0.864
0.5 2 0.153 0.148 0.155 0.155 0.150
1 4 0.267 0.249 0.217 0.209 0.817
0.5 4 0.204 0.196 0.218 0.217 0.195

- - 0 1 0.025 0.034 0.083 0.070 0.026
0 2 0.029 0.040 0.112 0.095 0.028
0 4 0.091 0.049 0.145 0.131 0.033

Coverage probability Case 1 1 1 0.975 0.975 0.969 0.955 0.801
0.5 1 0.974 0.974 0.928 0.920 0.951
1 2 0.979 0.973 0.948 0.931 0.805
0.5 2 0.972 0.974 0.843 0.842 0.949
1 4 0.981 0.969 0.907 0.897 0.843
0.5 4 0.937 0.959 0.777 0.764 0.947

Case 2 1 1 0.935 0.942 0.964 0.969 0.811
0.5 1 0.937 0.930 0.900 0.884 0.950
1 2 0.915 0.938 0.921 0.923 0.851
0.5 2 0.928 0.913 0.827 0.819 0.948
1 4 0.862 0.929 0.885 0.860 0.881
0.5 4 0.901 0.878 0.783 0.785 0.942

- - 0 1 0.991 0.993 0.694 0.905 0.996
0 2 0.992 0.997 0.759 0.893 0.998
0 4 0.979 0.998 0.829 0.891 0.999

Adjusted Rand Index (ARI) Case 1 1 1 1 1 0.986 0.976 - -
0.5 1 1 1 0.843 0.853 - -
1 2 1 1 0.891 0.893 - -
0.5 2 0.983 1 0.514 0.589 - -
1 4 1 1 0.740 0.787 - -
0.5 4 0.617 0.937 0.319 0.367 - -

Case 2 1 1 0.353 0.409 0.987 0.987 - -
0.5 1 0 0.412 0.711 0.655 - -
1 2 0.351 0.393 0.608 0.907 - -
0.5 2 0 0.360 0.383 0.426 - -
1 4 0.359 0.395 0.504 0.600 - -
0.5 4 0 0.290 0.235 0.267 - -

- - 0 1 1 0 0 0 - -
0 2 1 0 0 0 - -
0 4 0 0 0 0 - -
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Table 5.3: Median values of the RMSE, 95% credible interval coverages and adjusted Rand
Index (ARI) for each model and scenario. In the scenarios considered here the expected
counts from the motivating application are used to generate disease data.

Performance metric Cluster case Z ρs/ρst
Model

ST-A ST-A* ST-B ST-B* ST-N
RMSE Case 1 1 0.9 0.087 0.068 0.091 0.074 1.175

0.5 0.9 0.071 0.060 0.099 0.096 0.119
1 0.6 0.088 0.068 0.090 0.074 1.172
0.5 0.6 0.076 0.059 0.097 0.094 0.117
1 0.3 0.089 0.071 0.092 0.077 1.191
0.5 0.3 0.100 0.061 0.099 0.095 0.118
1 0 0.094 0.078 0.097 0.084 1.246
0.5 0 0.102 0.064 0.101 0.100 0.117

Case 2 1 0.9 0.135 0.132 0.091 0.074 0.904
0.5 0.9 0.114 0.111 0.101 0.099 0.113
1 0.6 0.134 0.128 0.089 0.075 0.892
0.5 0.6 0.114 0.110 0.102 0.100 0.113
1 0.3 0.131 0.128 0.092 0.076 0.868
0.5 0.3 0.116 0.113 0.101 0.101 0.115
1 0 0.134 0.129 0.094 0.081 0.884
0.5 0 0.116 0.112 0.105 0.103 0.115

- - 0 0.9 0.025 0.034 0.083 0.070 0.026
0 0.6 0.026 0.030 0.084 0.071 0.024
0 0.3 0.029 0.032 0.085 0.071 0.026
0 0 0.035 0.038 0.085 0.073 0.033

Coverage probability Case 1 1 0.9 0.979 0.975 0.969 0.955 0.801
0.5 0.9 0.974 0.974 0.928 0.920 0.951
1 0.6 0.978 0.971 0.969 0.954 0.791
0.5 0.6 0.973 0.972 0.930 0.925 0.952
1 0.3 0.978 0.968 0.968 0.952 0.797
0.5 0.3 0.947 0.969 0.922 0.921 0.949
1 0 0.974 0.946 0.964 0.934 0.781
0.5 0 0.947 0.950 0.909 0.899 0.949

Case 2 1 0.9 0.935 0.942 0.964 0.969 0.811
0.5 0.9 0.937 0.930 0.900 0.884 0.950
1 0.6 0.932 0.943 0.961 0.967 0.809
0.5 0.6 0.935 0.929 0.898 0.889 0.949
1 0.3 0.934 0.943 0.957 0.962 0.810
0.5 0.3 0.936 0.930 0.900 0.894 0.949
1 0 0.936 0.943 0.951 0.941 0.793
0.5 0 0.935 0.930 0.877 0.869 0.949

- - 0 0.9 0.991 0.993 0.694 0.905 0.996
0 0.6 0.987 0.997 0.710 0.884 0.998
0 0.3 0.977 0.995 0.683 0.885 0.996
0 0 0.934 0.984 0.705 0.861 0.982

Adjusted Rand Index (ARI) Case 1 1 0.9 1 1 0.986 0.976 - -
0.5 0.9 1 1 0.843 0.853 - -
1 0.6 1 1 0.985 0.975 - -
0.5 0.6 0.992 1 0.847 0.846 - -
1 0.3 1 1 0.985 0.975 - -
0.5 0.3 0.541 1 0.846 0.856 - -
1 0 1 1 0.988 0.976 - -
0.5 0 0.541 1 0.828 0.839 - -

Case 2 1 0.9 0.353 0.409 0.987 0.987 - -
0.5 0.9 0 0.412 0.711 0.655 - -
1 0.6 0.367 0.412 0.987 0.988 - -
0.5 0.6 0 0.411 0.645 0.699 - -
1 0.3 0.358 0.409 0.980 0.987 - -
0.5 0.3 0 0.388 0.691 0.735 - -
1 0 0.357 0.397 0.981 0.987 - -
0.5 0 0 0.387 0.618 0.687 - -

- - 0 0.9 1 0 0 0 - -
0 0.6 1 0 0 0 - -
0 0.3 1 0 0 0 - -
0 0 1 0 0 0 - -
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5.5 Sensitivity analysis to changing the prior distribution

for τ2
t

In Section 5.4 an Inverse-Gamma(1,0.01) prior is specified for the spatial random effects

variance τ2
t in the proposed models. To assess the impact of this prior for τ2

t on model

performance, I re-run part of the simulation study by fitting the clustering models separately

with both Inverse-Gamma(0.001,0.001) and Inverse-Gamma(0.5,0.0005) priors, which

are two commonly used alternatives in the literature (see Anderson et al. (2014) and

Spiegelhalter et al. (1996)). One hundred simulated data sets are generated as described

in Section 5.4.1, where Z = 1,0.5,0 and both Cases 1 (static clusters) and 2 (time-varying

clusters) are considered. In generating the data (ρs, ρst ) are fixed at 0.9, and the expected

number of disease cases from the motivating data are used (i.e. SF = 1). The proposed

models ST-A, ST-B, ST-A* and ST-B* are respectively applied to the data using the three

different choices of prior Inverse-Gamma distribution for τ2
t , and the results are summarised

in Table 5.4.

The results show that changing the hyperparameters of the Inverse-Gamma prior for

τ2
t does not seem to have any substantial effect on the ability of the cluster models to

estimate disease risk or identify the correct cluster structure, as the differences in RMSE,

95% coverage probabilities and ARI values are very minimal when the prior varies. When

the clusters are temporally constant (Case 1) ST-A and ST-A* generally produce lower

RMSE values and higher ARI values (very close to one) than models ST-B and ST-B*,

excepting the scenario when Z = 0.5 and Inverse-Gamma(0.001,0.001) is used. When the

clusters evolve over time (Case 2) ST-B and ST-B* perform better than ST-A and ST-A*.

When there are no clusters in disease risk (Z = 0), models ST-A and ST-A* produce lower

RMSE values than ST-B and ST-B* regardless of the choice of the prior, and ST-A is the

best of the four in terms of cluster identification, with a median ARI of 1. In addition,

estimating (ρs,ρst ) (ST-A*, ST-B*) rather than fixing them at 0.99 (ST-A, ST-B) produces

better results overall in terms of both risk estimation and cluster identification in almost

all scenarios. These conclusions are consistent with those provided in the simulation study

in Section 5.4. Therefore, our methodology appears to be robust to the choice of the

hyperparameters of the prior Inverse-Gamma distribution for τ2
t .
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Table 5.4: Median values of the RMSE, 95% credible interval coverages of the risk estimates
and adjusted Rand Index (ARI) for each model and scenario.

Performance metric Cluster case Z Inverse-Gamma (IG) prior
Model

ST-A ST-A* ST-B ST-B*

RMSE Case 1 1 IG(1,0.01) 0.088 0.070 0.090 0.075
1 IG(0.001,0.001) 0.088 0.067 0.090 0.074
1 IG(0.5,0.0005) 0.088 0.066 0.090 0.072
0.5 IG(1,0.01) 0.074 0.059 0.098 0.095
0.5 IG(0.001,0.001) 0.100 0.057 0.099 0.095
0.5 IG(0.5,0.0005) 0.073 0.056 0.099 0.095

Case 2 1 IG(1,0.01) 0.132 0.128 0.090 0.076
1 IG(0.001,0.001) 0.132 0.126 0.091 0.075
1 IG(0.5,0.0005) 0.132 0.127 0.090 0.076
0.5 IG(1,0.01) 0.115 0.111 0.102 0.101
0.5 IG(0.001,0.001) 0.115 0.111 0.099 0.102
0.5 IG(0.5,0.0005) 0.115 0.110 0.102 0.101

- - 0 IG(1,0.01) 0.024 0.034 0.082 0.071
0 IG(0.001,0.001) 0.023 0.034 0.070 0.071
0 IG(0.5,0.0005) 0.023 0.033 0.069 0.072

Coverage probability Case 1 1 IG(1,0.01) 0.975 0.973 0.968 0.954
1 IG(0.001,0.001) 0.976 0.958 0.970 0.936
1 IG(0.5,0.0005) 0.976 0.942 0.969 0.919
0.5 IG(1,0.01) 0.968 0.974 0.927 0.922
0.5 IG(0.001,0.001) 0.939 0.958 0.927 0.893
0.5 IG(0.5,0.0005) 0.969 0.946 0.926 0.876

Case 2 1 IG(1,0.01) 0.932 0.942 0.964 0.969
1 IG(0.001,0.001) 0.933 0.942 0.963 0.952
1 IG(0.5,0.0005) 0.934 0.942 0.964 0.934
0.5 IG(1,0.01) 0.930 0.928 0.901 0.887
0.5 IG(0.001,0.001) 0.930 0.930 0.904 0.845
0.5 IG(0.5,0.0005) 0.931 0.931 0.899 0.817

- - 0 IG(1,0.01) 0.989 0.994 0.703 0.911
0 IG(0.001,0.001) 0.961 0.978 0.720 0.843
0 IG(0.5,0.0005) 0.925 0.955 0.698 0.803

Adjusted Rand Index (ARI) Case 1 1 IG(1,0.01) 1 1 0.986 0.976
1 IG(0.001,0.001) 1 1 0.986 0.976
1 IG(0.5,0.0005) 1 1 0.985 0.975
0.5 IG(1,0.01) 0.995 1 0.851 0.846
0.5 IG(0.001,0.001) 0.541 1 0.855 0.841
0.5 IG(0.5,0.0005) 0.994 1 0.847 0.846

Case 2 1 IG(1,0.01) 0.367 0.386 0.987 0.987
1 IG(0.001,0.001) 0.347 0.384 0.987 0.987
1 IG(0.5,0.0005) 0.367 0.384 0.987 0.987
0.5 IG(1,0.01) 0 0.390 0.671 0.707
0.5 IG(0.001,0.001) 0 0.388 0.733 0.687
0.5 IG(0.5,0.0005) 0 0.389 0.628 0.667

- - 0 IG(1,0.01) 1 0 0 0
0 IG(0.001,0.001) 1 0 0 0
0 IG(0.5,0.0005) 1 0 0 0
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5.6 Results from the Greater Glasgow respiratory disease

study

5.6.1 Model fitting and inference

The four spatio-temporal models ST-A, ST-A*, ST-B and ST-B* proposed in Section 5.3

are applied to the Greater Glasgow respiratory disease study introduced in Section 5.2.1,

with the aims of estimating the spatio-temporal patterns in disease risk and identifying the

locations of any high and low risk clusters. Model ST-N without clustering is also fitted to

the data, to observe how its model fit compares with the clustering models proposed here. In

all cases covariate information is not included in the models, because our aim is to identify

clusters in the risk surface rather than clusters in the residual risk surface after covariate

adjustment. Posterior inference for all models is based on ten independent Markov chains,

where each chain is run for 100,000 samples. The first 80,000 samples from each chain were

removed as the burn-in period and the remaining samples were thinned by 10, which yields

a total of 20,000 samples across all 10 chains. These MCMC samples were deemed to have

converged, which was assessed both by examining parameter trace plots and by Geweke

(Geweke, 1992) diagnostics.

5.6.2 Overall model fit

The overall fit of each model is summarised in Table 5.5 by the Deviance Information Cri-

terion (DIC; Spiegelhalter et al., 2002) and the effective number of independent parameters

(pd). The table shows that the four clustering models proposed here fit the data better than

the non-clustering model ST-N, as the latter has a DIC value that is higher by between 0.7%

and 4.9% than those from the clustering models. The time-varying clustering models ST-B

and ST-B* have lower DIC values than the static clustering models ST-A and ST-A*, while

allowing (ρs,ρst ) to be estimated (ST-A*, ST-B*) rather than fixed at 0.99 (ST-A, ST-B) also

produces a better model fit. Additionally, our models are also preferred because they model

the data using fewer effective parameters, with reductions in pd varying between 16.0% and

33.6% compared to ST-N. This reduced effective number of parameters is due to a reduction

in the spatial random effects variance τ2
t for the cluster models, which can be seen clearly in

Table 5.6. This reduction in the random effects variation is because by our approach the spa-

tial random effects are only forced to smooth towards their neighbours in the same cluster,

i.e. those neighbours that have similar random effects values. In contrast, in model ST-N this
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smoothing is with all neighbouring areas, even those that have very different random effect

values which hence inflates the variance.

Table 5.5: Deviance Information Criterion (DIC) and the effective number of independent
parameters (pd) for each model.

ST-A ST-A* ST-B ST-B* ST-N

DIC 14 631 14 587 14 272 14 040 14 730
pd 1 344 1 362 1 268 1 183 1 580

5.6.3 Temporal trends in disease risk

The estimated temporal trends in disease risk from model ST-B* is presented in Figure 5.3,

because it is the best fitting model in terms of DIC. However, the results from the other

models are similar, as the mean absolute differences in the posterior median risk estimates

between each pair of models range between 0.009 and 0.083 over all years and IZs. Fig-

ure 5.3 displays boxplots of the risk estimates from all the areal units over time, and shows a

generally increasing trend in risk. These risk estimates are relative to the expected numbers

of hospitalisations computed using national respiratory hospitalisation rates for the whole

of Scotland between 2011 and 2017, because national rather than Greater Glasgow rates

are used by Public Health Scotland when quantifying disease risk. In 2011 the average risk

across Greater Glasgow is 1.10, suggesting that on average respiratory disease risk in Greater

Glasgow is about 10% higher than the Scottish average. This rises to 1.28 in the final year

2017, which is thus 28% higher than the overall Scotland average. Thus an elevated risk is

observed in Glasgow for the entire time period of this study, which corroborates the well-

known Glasgow effect (Walsh et al., 2010) which is the phenomenon that Glasgow exhibits

some of the poorest health in western Europe.
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Table 5.6: Summary of the estimated number of clusters with 95% credible intervals and
spatial random effects variance τ2

t at each time period.

Time period

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

# clusters

ST-A 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3)
ST-A* 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5)
ST-B 4 (2, 7) 5 (3, 9) 4 (4, 9) 4 (3, 8) 4 (2, 7) 3 (3, 8) 4 (2, 7)
ST-B* 5 (4, 6) 6 (3, 8) 6 (4, 8) 5 (4, 8) 5 (3, 5) 5 (3, 7) 5 (4, 9)
ST-N – – – – – – –

τ2
t

ST-A 0.056 0.088 0.069 0.083 0.084 0.083 0.075
ST-A* 0.061 0.081 0.069 0.077 0.078 0.081 0.075
ST-B 0.006 0.004 0.004 0.004 0.003 0.004 0.004
ST-B* 0.004 0.003 0.003 0.003 0.003 0.003 0.003
ST-N 0.265 0.291 0.292 0.268 0.254 0.283 0.297
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Figure 5.3: Boxplots of the risk estimates (posterior median) from model ST-B* for all the
areal units over time.
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5.6.4 Spatio-temporal cluster structure

The previous section highlighted that the risk estimates from the clustering and non-

clustering models are similar, and so the main advantage of using the clustering models is the

additional inference they provide on the locations of clusters of areas that exhibit elevated or

reduced disease risks compared to their neighbours. The top panel of Table 5.6 displays the

posterior mode for the number of clusters estimated by each cluster model for each year, with

uncertainty measured by the 95% credible intervals. If there are multiple modes present in

the Markov chain, then the one yielding the fewer effective number of parameters is chosen

in the interests of model parsimony. Note that by clusters we mean the number of non-spatial

clusters (distinct risk levels) that correspond to the posterior mode of (W̃WW ,W̃WW t), rather than

the number of spatially distinct clusters observable in the risk maps presented below. Mod-

els ST-A and ST-A* have selected the same cluster structure with 2 distinct clusters or risk

levels, and that by design this structure is common to all time periods. In contrast, model

ST-B identifies between 3 and 5 different cluster levels depending on the year, although most

years have 4 different clusters, and model ST-B* detects 5 distinct clusters for most years. I

now present the estimated cluster structures from the models, focusing on both the posterior

mode clusters that are static (ST-A*) and dynamic (ST-B*) over time, as well as illustrating

posterior uncertainty in the cluster structures for ST-A*.

5.6.4.1 Static and time-varying clusters based on the posterior mode cluster structure

Here I present the results from models ST-A* and ST-B* as Table 5.5 shows that they have

lower DIC values than models ST-A and ST-B. The top left panel in Figure 5.4 displays

the estimated spatial pattern in disease risk from model ST-A* for 2014, which is chosen

because it is the middle year of the study. The blue dots relate to the cluster boundaries as

defined by the posterior mode of W̃WW , which in this static clustering case are common to all

time periods. The remaining three panels of the figure present the estimated risk surfaces

from model ST-B* for 2011, 2014 and 2017, the first, middle and last years of the study

period. In these cases the clusters/discontinuities denoted by blue dots vary over time and

are specific to the year in question, and are again determined by the posterior mode of W̃WW t .

These cluster boundaries (discontinuities) represent two IZs that are geographically adjacent

but are in different clusters, suggesting they have substantially different risks.

The figure shows that there are a number of similarities between the selected cluster

structures from the two cluster models, with the same areas being identified as having very
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different risks compared to their neighbours. For example, both models identify the large

high-risk cluster in the East End of Glasgow (far east of the map), which contains a number

of socio-economically deprived areas such as Easterhouse and Barlanark. Additionally,

the models identify a cluster of areas to the north of the city containing Springburn and

Summerston, as well as another along the southern bank of the River Clyde including Govan

and Hutchesontown. They also pick out some high risk areas in the north west including

the deprived areas of Drumchapel and Drumry, which are bordered to the north by the more

affluent and low-risk Bearsden area. Additionally, another large region of low risk areas

identified by both models is the affluent West End of the city such as Dowanhill, which is

just to the south of Bearsden. Note, as all the clustering methods were used to adjust the

border sharing neighbourhood matrix, clusters cannot be found between areas on opposite

banks of the river Clyde, which runs north-west through the study region.

In addition, there is some evidence of a changing cluster structure over time estimated by

model ST-B* that is worth noting. For example, the large rural areas of Inverclyde in the

far west of the study region exhibit low risks in 2011, whereas by 2017 they have joined

a moderately high risk cluster. However, comparing the clustering results from the two

modelling approaches we find that while ST-B* is very flexible in capturing the temporal

evolution of clusters, it can also be susceptible to identifying discontinuities (clusters)

caused by random noise that are present for some years but not for others, which thus make

the interpretation of an evolving cluster structure less clear cut. This happens because in the

ST-B* model each candidate cluster structure in stage one is elicited using data for a single

year, which thus could be affected by random noise in the data. However, model ST-A*

is less vulnerable to this phenomenon, because the clustering is applied to the data from

multiple time periods. Thus despite model ST-A* having a higher DIC than model ST-B*,

its consistency of clustering may lead to robust and reliable clusters, as can be visually

observed in Figure 5.4. Finally, the cluster discontinuities identified here are determined

by the posterior modes of W̃WW from model ST-A* and W̃WW t from ST-B*. Alternatively, we

can make inferential statements about the probability that there is a discontinuity between a

certain pair of geographically adjacent areas (i, j), by calculating the probability of element

wi j in W̃WW or W̃WW t being 0 across all the posterior samples.
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ST-A* : 2014 ST-B* : 2011

ST-B* : 2014 ST-B* : 2017

Figure 5.4: Maps of the disease risk estimates (posterior median) in Greater Glasgow for
2011, 2014 and 2017 from models ST-A* and ST-B*. The dots on the map indicate the
identified cluster discontinuities, which are determined using the posterior mode of (W̃WW ,W̃WW t).

5.6.4.2 Posterior uncertainty in the estimated cluster structure

To illustrate the uncertainty in the estimated cluster structure, Figure 5.5 summarises the

posterior distribution of W̃WW obtained from the ten Markov chains for model ST-A*, which

assumes a single cluster structure for all time periods. In the figure each grid square repre-

sents a candidate neighbourhood matrix WWW (c,k) corresponding to a distinct cluster structure,

where the horizontal axis denotes the number of clusters and the vertical axis denotes the

clustering method. The grid square on the bottom left corner corresponds to the border shar-

ing WWW = WWW (1,1), . . . ,WWW (M,1) (i.e. k = 1) which represents no clusters in disease risk. The

figure shows that this no cluster solution is not supported by the data, with a posterior prob-

ability of zero. The figure also shows that the posterior distribution is mainly centered on 8

different cluster structures, which each have posterior probabilities above 0.06. The top four
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of these cluster structures have posterior probabilities of 0.3, 0.138, 0.1 and 0.1 respectively,

and are displayed in Figure 5.6 and denoted by (a), (b), (c) and (d). Cluster structure (a),

which has the highest posterior probability, identifies 2 spatial clusters (risk levels), although

from the map it is clear that this corresponds to many more spatially distinct clusters. In

contrast, structures (b) to (d) identify 4 or 5 distinct cluster levels, which is why there are

more spatially distinct clusters identified in panels (b) to (d) in the figure. The adjusted Rand

Index values between these four cluster structures range between 0.49 and 0.77, suggesting

moderate agreement between them. The figure shows that all four cluster structures appear

to mostly correspond to sizeable changes in disease risk between adjacent IZs, suggesting

that the clustering model can identify such spatially distinct clusters.
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Figure 5.5: Summary of the posterior distribution of W̃WW over 10 Markov chains from model
ST-A*.
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(a) (b)

(c) (d)

Figure 5.6: The four most likely cluster structures selected by model ST-A*, which are
represented by blue dots. The colour shading for the areas denotes posterior median disease
risk in 2014 (the middle of the study period).

5.6.5 Computational time

Table 5.7 displays the time taken to fit each of the five models to the motivating Greater

Glasgow and Clyde Health Board respiratory disease data. The run times relate to a single

Markov chain containing 100,000 samples with a burn-in period of 80,000, which is then

thinned by 10. All models are run on an HP computer with an Intel Core i7-7700 CPU 3.60

GHz processor and 16GB of RAM. The table shows that model ST-N is the fastest of the five

models, which is because it uses the border sharing WWW and so does not need to estimate the

neighbourhood matrix within the modelling process as the other models do. However, the

clustering models only have to be fitted once to the data to estimate the cluster structure. In

contrast, if model ST-N was fitted separately with each candidate cluster structure generated

in stage one of our approach, and then the best structure was chosen via a model comparison
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rule, then it would have to be fitted around 70 times. Thus using model ST-N in this fashion

would be much computationally slower than using any of the cluster models proposed here.

When comparing the speed of the clustering models, the table shows that models ST-B and

ST-B* are slower than ST-A and ST-A*, which is because they need to estimate a separate

neighbourhood matrix for each time period. Additionally, models ST-A* and ST-B* that

estimate the spatial dependence parameters (ρs,ρst ) from the data are naturally slower than

models ST-A and ST-B that treat these parameters as fixed.

Table 5.7: Comparison of the computational time required to apply each model to the moti-
vating data.

Model Inference Elapsed Time
ST-A MCMC (with C++) 826.31s
ST-A* MCMC (with C++) 866.00s
ST-B MCMC (with C++) 1358.05s
ST-B* MCMC (with C++) 2345.14s
ST-N MCMC (with C++) 169.52s

5.7 Discussion

Smoothing models based on geographical adjacency are commonly used to estimate risk

in disease mapping studies, and they force geographical neighbours to have similar disease

risks. However, this smoothing will mask any discontinuities present in the risk surface,

leading to sub-optimal risk estimation and no cluster identification. The latter is important

because health agencies often target additional resources at communities with the greatest

need, thus they need to identify the spatial extent of a cluster of high-risk areas. This chapter

has proposed a novel clustering-based adjacency modelling approach in the spatio-temporal

domain, which can simultaneously estimate disease risk and identify the locations of clusters

of high/low risk areas that may be static or evolve dynamically over time. The methodology

first constructs a large collection of candidate cluster structures for the data, which each

corresponds to a candidate neighbourhood matrix. Then a spatio-temporal model is fitted to

the data that jointly estimates disease risk and the cluster structure, the latter by treating the

neighbourhood matrix as a parameter to be estimated from the set of candidate structures

constructed in stage 1. As this matrix determines the spatial correlation structure in the

data, the approach extends the standard practice in areal unit modelling that naively assumes

the border sharing neighbourhood matrix provides a suitable spatial correlation structure

for the data. In fact, the methodology parallels the standard practice in geostatistics,
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where an appropriate spatial dependence structure is identified for the data (e.g. by var-

iogram analysis) rather than a single structure being assumed without assessing its suitability.

Existing cluster based methods (Anderson et al., 2016, Adin et al., 2019) as well as

the approach introduced in Chapter 3 fit a separate model to each candidate cluster structure,

and identify the optimal cluster structure by model comparison approaches. In contrast,

the approach here has the advantages of having substantially reduced computational time

(it only fits a single spatio-temporal model), and allowing the uncertainty in the cluster

structure to be quantified when estimating disease risk in the second step. For example,

although the computational time of model ST-A* is almost 60% longer than that of the

same model with a fixed neighbourhood matrix (or cluster structure), the latter would have

to be fitted 73 times in a model comparison setting because we have 73 candidate cluster

structures to consider. One approach that does allow for cluster uncertainty is Anderson

et al. (2016) and I have extended this approach by considering a spatio-temporal rather than

a spatial domain and proposing cluster models where the spatial clusters either remain fixed

or evolve dynamically over time. The simulation study shows that the proposed models

provide accurate risk estimates in the presence of clusters (discontinuities), particularly

performing better than a similar non-cluster model. This improved performance is because

our models account for the clusters in risk by estimating an appropriate neighbourhood

matrix, which better represents the spatial autocorrelation structure in the data, therefore

removing any redundant smoothing of the spatial random effects between neighbours. The

study also shows that our models can accurately identify both static and temporally dynamic

clusters, with high ARI values being obtained in both cases. However, as expected cluster

identification is more accurate for static rather than dynamic clusters, which is due to the

former having more data with which to identify the high-risk clusters due to them recurring

for multiple time periods. Additionally, the simulation results suggest that our models are

less accurate at estimating disease risk and identifying the correct clusters when the number

of expected cases in each areal unit is very small (SF = 4), because there are not sufficient

data from which to identify more prominent clusters. Therefore, I recommend using the

proposed models for non-rare diseases with moderate to large numbers of expected cases,

e.g. greater than 40 expected cases in each areal unit.

Here a range of classical clustering techniques are used to identify the candidate clus-

ter structures rather than scan statistics (Kulldorff, 1997, Takahashi et al., 2008, Kulldorff
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et al., 2009) because the latter only identify a relatively small number of clusters of areas

exhibiting high-risks rather than partitioning the risk surface into different risk levels,

which is required here for constructing candidate neighbourhood matrices. In our method

the maximum number of clusters K denotes the maximum number of risk levels and not

the maximum number of spatially distinct clusters, which is illustrated in Figure 5.4. In

this chapter I have chosen K = 10, which has been shown to be a conservative (overly

large) choice because the posterior distribution in Figure 5.5 has no posterior mass above

5 clusters. Note that the choice of K does not depend on the number of areas, because it

does not relate in any way to the maximum number of spatially connected clusters that can

be identified. Thus the factors to consider when choosing K is that if K is too small then

the true cluster structure may not exist in the candidates, whereas if K is too large then

the computational cost increases because longer MCMC runs are likely to be needed for

convergence with such a large number of candidates.

The motivating application also illustrates the superiority of the clustering-based models

compared to non-clustering alternatives, with the proposed models able to produce a better

model fit to the data and provide additional insight as to the locations of high-risk clusters.

In regard to the latter, the majority of the identified cluster discontinuities occur between

geographical neighbours that exhibit very different disease risks, which will allow health

agencies to better identify these high-risk areas and target additional resources where they

are most needed. Each of the cluster models has its own appealing features, and the choice

between them will depend on the aim of the analysis. The model with constant clusters over

time may be more appropriate if the disease data have a high correlation in time and the main

aim is to identify overall clusters/discontinuities for the entire study period. In contrast, if

the disease data are less correlated in time and the cluster structures in particular years are

of interest, then the model with temporally evolving clusters is likely to be the better choice.

However, the latter model can sometimes pick out apparently erroneous clusters, due to the

presence of random year to year fluctuations in the observed disease counts. Therefore in

future work I will investigate a hybrid approach of the two considered here based on a 2q+1

years moving window, where the candidate cluster structures for a given year constructed

in stage 1 are obtained by clustering the data for the year in question and the q years

before and after. Additional potential extensions of the approach developed here include

adapting it for use with different spatio-temporal random effects structures, such as those

of Knorr-Held (2000) and Rushworth et al. (2014) as well as utilising it in the context of a
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spatio-temporal multivariate disease model, which allows for simultaneously estimating the

risk of multiple diseases in space and time. So far, the methodology that has been proposed

in this thesis allows for discontinuities in the spatial risk pattern, by identifying clusters of

areas that exhibit substantially different risks compared to their neighbours. In Chapter 6, I

will introduce a boundary analysis approach to allow for such discontinuities in disease risk.



Chapter 6

Estimating spatio-temporal disease risks

via a boundary analysis approach

6.1 Introduction

Research on detecting the spatial discontinuities in disease risk includes the fields of

spatial clustering (Knorr-Held and Raßer, 2000, Anderson et al., 2014, Adin et al., 2019)

and boundary analysis (Lu et al., 2007, Lee and Mitchell, 2013, Lee et al., 2021). The

previous chapters focus on spatial clustering and develop approaches that allow for spatial

discontinuities in the disease risk surface by partitioning the study region into disjoint

clusters of areas with elevated or reduced risks compared to their geographical neighbours.

In Chapter 3, the method identifies spatial clusters by eliciting a set of candidate cluster

configurations using k-means clustering and then fitting separate Bayesian hierarchical

models to all configurations. The most appropriate cluster structure is chosen by model

comparison techniques. In Chapter 4, I propose a Bayesian spatial model with the optimal

cluster structure estimated as a parameter during the modelling process, which allows us

to quantify the uncertainty in the cluster structure. The model has been extended to the

spatio-temporal domain in Chapter 5, where the spatial clusters either remain fixed or evolve

dynamically over time. These approaches produce closed boundaries which enclose an

area or groups of areas that have very different risks from their neighbours. By contrast,

boundary analysis, rather than looking for spatial clusters, aims to find the locations where

geographically adjacent areas have very different disease risks. These locations correspond

to “boundaries” (large or small) in the risk surface, which can be open and do not necessarily

completely enclose an area or group of units. The majority of the boundary analysis

approaches treat each wi j element in the neighbourhood matrix as a binary random quantity

150
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if areas (i, j) share a common geographical border, rather than assuming it is fixed at 1. If

wi j = 0 then a boundary is said to exist between the two adjacent areas in the risk surface,

while wi j = 1 corresponds to no risk boundary. One of the most recent such approaches is

proposed by Lee et al. (2021), who estimate an appropriate neighbourhood matrix for the

data using a graph-based optimisation algorithm, and then fit a Bayesian spatio-temporal

model based on this estimated matrix. However, a potential limitation to this approach is

that since the optimisation algorithm only automatically provides a single neighbourhood

matrix in the first step, it does not take the uncertainty associated with the neighbourhood

matrix into account when estimating disease risk. To overcome this issue, in this chapter

I extend the approach of Lee et al. (2021) by obtaining multiple candidate neighbourhood

matrices via the graph-based optimisation algorithm, and then allowing for variation

in the neighbourhood matrix, and hence in the boundaries identified in the modelling

procedure. In addition, model inference is based on a Bayesian setting via a Metropolis-

coupled Markov chain Monte Carlo algorithm due to the multi-modal posterior distributions.

The methodology is motivated by a study of respiratory disease risk in the Greater

Glasgow and Clyde Health Board during the time period from 2011 to 2017. The remainder

of this chapter is organised as follows. Section 6.2 discusses the background spatio-temporal

risk model. Section 6.3 presents the proposed methodology, which identifies boundaries in

the risk surface via estimation of the neighbourhood matrix. The efficacy of this approach

is evidenced using simulations in Section 6.4, while the sensitivity of the approach to the

choice of hyperpriors is examined in Section 6.5. Section 6.6 applies the methodology to the

motivating data introduced in Section 5.2.1, while Section 6.7 summarises the main findings

in this chapter and discusses the ideas for future work.

6.2 Spatio-temporal modelling of areal unit count data

The observed and expected disease counts for areal unit i = 1, . . . ,n and time period

t = 1, . . . ,T are denoted by {Yit} and {Eit} respectively. Covariate information (if rele-

vant) is given by {xxxit}, where xxx⊤it = (1,xit1, . . . ,xit p) contains a vector of p known covari-

ates relating to areal unit i during time period t and a 1 for the intercept term. As the

response variable is a count, the most commonly used data likelihood model is given by

Yit |Eit ,Rit ∼ Poisson(EitRit), where Rit represents the overall disease risk in areal unit i dur-

ing time period t relative to the expected count Eit , and is on the same scale as the SIR. A
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general Bayesian hierarchical model commonly specified for these data is given by

Yit |Eit ,Rit ∼ Poisson(EitRit), i = 1, . . . ,n; t = 1, . . . ,T,

ln(Rit) = xxx⊤it βββ +φit , (6.1)

β j ∼ N(0,1000), for j = 0, . . . , p.

The spatio-temporal pattern in disease risk is modelled by known covariates {xxxit} with re-

gression parameters βββ = (β0, . . . ,βp), and random effects {φit}. The latter are included in

the model to account for any residual spatio-temporal autocorrelation after adjusting for co-

variates. Here I utilise the spatio-temporal structure proposed by Rushworth et al. (2014),

which has the autoregressive decomposition

φφφ t |φφφ t−1 ∼ N
(

αφφφ t−1,τ
2QQQ(ρ,WWW )−1

)
, t = 2, . . . ,T, (6.2)

φφφ 1 ∼ N
(

000,τ2QQQ(ρ,WWW )−1
)
,

ρ,α ∼ Uniform(0,1),

τ
2 ∼ Inverse-Gamma(1,0.01),

where φφφ t = (φ1t , . . . ,φnt) represents the spatial surface for time period t. Temporal autocor-

relation is induced amongst φφφ t via a multivariate first order autoregressive process. α ∈ [0,1]

is the temporal dependence parameter, with a value of 0 corresponding to temporal indepen-

dence while a value of 1 indicates strong temporal autocorrelation. The random effects at

time point 1, φφφ 1 = (φ11, . . . ,φn1), are specified using the Leroux CAR prior (Leroux et al.,

2000), thus the spatial autocorrelation is induced through the precision matrix QQQ(ρ,WWW )=

ρ(diag(WWW111)−WWW )+ (1−ρ)III, where 111 is an n× 1 vector of ones and III is an n× n identity

matrix. In Rushworth et al. (2014), the spatial autocorrelation structure in the data is fixed

and represented by the n× n border sharing neighbourhood matrix WWW , where wi j = 1 if ar-

eas (i, j) share a common geographical border (denoted i ∼ j) and is 0 otherwise (diagonal

elements wii = 0). The univariate full conditional distribution corresponding to the Leroux

prior for area i at time point one is given by

φi1|φφφ−i1 ∼ N

(
ρ ∑

n
j=1 wi jφ j1

ρ ∑
n
j=1 wi j +1−ρ

,
τ2

ρ ∑
n
j=1 wi j +1−ρ

)
, (6.3)

where φφφ−i1 = (φ11, . . . ,φi−1,1,φi+1,1, . . . ,φn1). Here ρ is the spatial dependence parameter,

with a value of 1 corresponding to strong spatial autocorrelation whereas a value of 0 corre-



CHAPTER 6. SPATIO-TEMPORAL MODEL VIA BOUNDARY ANALYSIS 153

sponds to independence in space (as φi1 ∼ N(0,τ2)). However, since this model uses the bor-

der sharing WWW to represent the spatial correlation structure, it enforces spatial autocorrelation

between all pairs of geographically neighbouring areas, which may lead to over-smoothing

of the estimated disease risk maps and hinder the detection of boundaries in the risk surfaces.

Therefore in the next section I utilise the above spatio-temporal structure to model the data,

with the difference that the neighbourhood matrix WWW is treated as a parameter to be estimated

from the data, rather than being determined simply based on geographical adjacency.

6.3 Methodology

I propose a two-stage extension of the approach proposed by Lee et al. (2021), which can

jointly estimate disease risk and identify the locations of boundaries in the spatial surface

that separate two geographically adjacent areas exhibiting very different risks. The approach

consists of two stages. In stage 1, the graph-based optimisation algorithm proposed by Lee

et al. (2021) is applied to the data M times to obtain M candidate neighbourhood matrices

that allow for spatial boundaries in the data. In stage 2, a spatio-temporal model is fitted

to the data, in which the neighbourhood matrix W̃WW is treated as a parameter to be estimated

from the set of candidates constructed in stage 1. This stage allows for uncertainty in W̃WW and

hence the boundaries, which is our main methodological contribution compared to Lee et al.

(2021).

6.3.1 Stage 1 — Generating neighbourhood matrices that account for

boundaries in disease risk

6.3.1.1 Estimating the residual spatial risk surface

The random effects φφφ t model the residual spatial variation in the data at time period t after

adjusting for covariates. By our approach, boundaries are incorporated into the model via

the neighbourhood matrix, which means that they relate to the random effects {φit} (see

model (6.2)). Hence the fist step is to estimate {φit} from the data and the general model

(6.1) by

φ̃it = ln
(
E(Yit)

Eit

)
− xxx⊤it βββ ≈ ln

(
Yit

Eit

)
− xxx⊤it β̂ββ . (6.4)

As in Chapter 5, the above approximation replaces the unknown E(Yit) with the observed

data Yit , The regression parameters are estimated for this initial stage by assuming indepen-

dence via maximum likelihood estimation, and are denoted by β̂ββ . Since the residual spatial
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surfaces from the motivating data are similar over time, with an average Pearson’s correlation

coefficient of 0.84 between each pair of years, here I only consider the scenario of constant

risk boundaries over time. In this case, a single residual spatial risk surface is estimated by

averaging the random effects for each areal unit over the T time periods, which is

φ̃i =
1
T

T

∑
t=1

φ̃it , for i = 1, . . . ,n. (6.5)

This average residual spatial surface φ̃φφ = {φ̃i} is used in the graph-based optimisation algo-

rithm described in the next section to estimate candidate neighbourhood matrices.

6.3.1.2 Graph-based optimisation

Lee et al. (2021) proposed a graph-based optimisation algorithm for estimating an appro-

priate neighbourhood matrix for the data. The algorithm views the entire study region as

a graph G, whose vertex-set V(G) is the set of n areal units that comprise the study region,

and whose edge-set E(G) is defined by the border sharing WWW = {wi j} of the graph G via

E(G) = {(i, j)|wi j = 1}. The goal of the algorithm is to estimate which edges in E(G) should

be removed (or retained) based on an objective function. Suppose G̃ is a subgraph of G (i.e.

a graph G̃ whose vertex set and edge set are subsets of those of G), and the neighbourhood

matrix corresponding to this subgraph G̃ is denoted by WWW G̃ = {wG̃i j
}. Given the input φ̃φφ and

the border sharing WWW , the algorithm estimates an optimised neighbourhood matrix WWW G̃ by

finding a suitable spanning subgraph G̃ of G (i.e. G̃ is a subgraph of G and they also have the

same vertex set) that maximises the value of an objective function S(φ̃φφ). If the edge between

vertices/areas (i, j) is removed in the optimal graph G̃ then we set wG̃i j
= 0, which suggests

that a boundary exists between areas i and j as the random effects between them are con-

ditionally independent in space given wG̃i j
= 0 (as specified by the objective function, see

below). If the edge is retained in G̃ then we have wG̃i j
= 1, suggesting no boundary between

areas (i, j) as their random effects are conditionally correlated. The objective function is built

on the natural log of the product of full conditional distributions f (φ̃i|φ̃φφ−i) from the intrinsic

CAR prior (Besag et al., 1991), because this is a commonly used spatial correlation model

that uses the neighbourhood matrix to determine the correlation structure. The objective

function with respect to a spanning subgraph H of G with the corresponding neighbourhood
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matrix WWWH = {wHi j} is given by

S(φ̃φφ ,H) = ln

[
n

∏
i=1

f (φ̃i|φ̃φφ−i)

]

= ln

 n

∏
i=1

N


n
∑
j=1

wHi j φ̃ j

n
∑
j=1

wHi j

,
τ2

n
∑
j=1

wHi j




∝ −n
2

ln(τ2)+
1
2

n

∑
i=1

ln

(
n

∑
j=1

wHi j

)
−

1
2τ2

n

∑
i=1

(
n

∑
j=1

wHi j

)φ̃i −

n
∑
j=1

wHi j φ̃ j

n
∑
j=1

wHi j


2

. (6.6)

The unknown variance parameter τ2 is estimated by maximising S(φ̃φφ ,H) with respect to

τ2, which gives τ̂2 =
n
∑

i=1

(
n
∑
j=1

wHi j

)φ̃i −

n
∑

j=1
wHi j φ̃ j

n
∑

j=1
wHi j

2/
n. This variance estimator τ̂2 is

plugged into equation (6.6) to produce the final objective function, which is

S(φ̃φφ ,H) ∝
1
2

n

∑
i=1

ln

(
n

∑
j=1

wHi j

)
− n

2
ln

 n

∑
i=1

(
n

∑
j=1

wHi j

)φ̃i −

n
∑
j=1

wHi j φ̃ j

n
∑
j=1

wHi j


2 . (6.7)

To reduce the computational burden, the algorithm operates via an iterative local search

method, in which the vertices of the original graph G are considered in some fixed order.

At the first step the algorithm considers the first vertex i (i.e. area i) and uses the original

graph G to decide whether each of the edges linked to i (i.e. each neighbour relation of area

i) should be removed or not. If deleting an edge can increase the objective function then

it should be deleted from the graph G. Based on the edges that have been deleted a new

subgraph G
′
is obtained. Then the algorithm continues with the next vertex and considers the

objective function with respect to G
′

this time. It continues in this way, returning to the first

vertex when reaching the last vertex, until all remaining feasible vertices are passed through

without identifying any deletions that increase the objective function. The algorithm ensures

every vertex in V(G) must retain at least one edge linked to it. For more details on the

graph-based optimisation algorithm, see Lee et al. (2021). This optimisation algorithm is

implemented using the spatio-temporal modelling package CARBayesST (Lee et al., 2018)

in R (R Core Team, 2013).
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In order to quantify the uncertainty in the neighbourhood matrix when modelling spatio-

temporal areal unit count data, I apply the above graph-based optimisation algorithm M

times to the average residual spatial surface φ̃φφ = {φ̃i} estimated from equation (6.5), with

each time considering the vertices of the graph G in a different order in the algorithm.

Finally, this leads to M candidate neighbourhood matrices, denoted by
(
WWW 1

G,WWW
2
G, . . . ,WWW

M
G
)
.

These candidate matrices correspond to a range of possible boundaries in the data, where

some edges are present and the corresponding random effects are smoothed towards

each other, whereas other edges are removed so smoothing is not enforced between the

corresponding neighbouring random effects.

The value of M determines the size of the sample space for W̃WW in the proposed model

(6.8). As each candidate in the set
(
WWW 1

G,WWW
2
G, . . . ,WWW

M
G
)

corresponds to a different ordering

of the vertices applied in the algorithm, and the motivating data have a total of 257 vertices

(IZs), theoretically the maximum number of candidate matrices is up to 257!, which is

infeasible to obtain computationally. Here I choose M = 100 and the 100 different orderings

of the vertices are obtained by randomly sampling 100 permutations from the 257! possible

permutations. The graph-based optimisation algorithm takes around two hours to obtain the

100 candidate neighbourhood matrices for the Glasgow disease data analysed in Section 6.6.

6.3.2 Stage 2 — Bayesian spatio-temporal modelling

The second stage of the approach fits a model to the data that simultaneously estimates the

spatio-temporal trend in disease risk and identifies the boundaries in the risk surface. The

proposed model is given by

Yit |Eit ,Rit ∼ Poisson(EitRit) i = 1, . . . ,n; t = 1, . . . ,T,

ln(Rit) = xxx⊤it βββ +φit , (6.8)

β j ∼ N(0,1000), for j = 0, . . . , p,

φφφ 1 ∼ N
(

000,τ2Q̃QQ(W̃WW )−1
)
,

φφφ t |φφφ t−1 ∼ N
(

αφφφ t−1,τ
2Q̃QQ(W̃WW )−1

)
, t = 2, . . . ,T,

W̃WW ∼ Discrete Uniform
(
WWW 1

G, . . . ,WWW
M
G
)
,

α ∼ Uniform(0,1),

τ
2 ∼ Inverse-Gamma(1,0.01).



CHAPTER 6. SPATIO-TEMPORAL MODEL VIA BOUNDARY ANALYSIS 157

This model differs from the model proposed by Rushworth et al. (2014) (see Section 6.2)

in two main ways. Firstly, here I treat the neighbourhood matrix W̃WW as a parameter, and as-

sign it a discrete uniform prior whose values are the set of candidate neighbourhood matrices

(WWW 1
G, . . . ,WWW

M
G ) which are previously constructed via the graph-based optimisation algorithm,

rather than naively using the border sharing WWW . Secondly, the Leroux CAR prior in the

model of Rushworth et al. (2014) is replaced by the intrinsic CAR prior (where ρ = 1) in the

proposed model. This is because our approach models the spatial autocorrelation structure

locally for each pair of neighbouring areas by estimating W̃WW for the data, which may make

the estimation of a single global spatial dependence parameter redundant. The intrinsic CAR

model enforces strong spatial autocorrelation globally, so that the spatial correlation struc-

ture can be adjusted locally by estimating W̃WW , rather than globally by a dependence parameter

ρ . The precision matrix corresponding to the intrinsic CAR prior is QQQ(W̃WW ) = diag(W̃WW111)−W̃WW ,

which is singular. However, the invertibility of the precision matrix is required because its

determinant needs to be calculated when updating the parameter W̃WW . Therefore, in order to

ensure the precision matrix is diagonally dominant and hence invertible, the singular preci-

sion matrix QQQ(W̃WW ) is replaced by an invertible precision matrix Q̃QQ(W̃WW ) = diag(W̃WW111)−W̃WW +εIII

(Lee et al., 2014), which adds a small positive constant ε onto the diagonal terms of QQQ(W̃WW ).

Rushworth et al. (2017) have shown that a small value of ε (ε < 0.01) does not affect esti-

mation results, hence I set ε = 0.00001 when implementing the model. The random effects

φφφ = {φφφ 1, . . . ,φφφ T} are modelled by a spatially autocorrelated multivariate first order autore-

gressive process, where temporal autocorrelation is modelled via the mean αφφφ t−1, and spa-

tial autocorrelation in the data is modelled by the precision matrix Q̃QQ(W̃WW ). Finally, each

regression parameter β j is assigned a Gaussian prior distribution with mean zero and vari-

ance 1000. The temporal autocorrelation parameter α ∈ [0,1] and the variance parameter τ2

are assigned a weakly informative uniform prior, α ∼ Uniform(0,1), and an Inverse-Gamma

prior, τ2 ∼ Inverse-Gamma(1,0.01). To achieve identifiability, the random effects are zero-

mean centred. As in previous chapters, the model is outlined in its most general form that

includes covariate information, but covariates are not included in the application study in

Section 6.6, in other words, xxx⊤it βββ = β0. This is because the aim of the analysis is to identify

spatial boundaries in the disease risk surface, rather than in the residual risk surface after

adjusting for covariate factors.
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6.3.3 Inference

As in the previous chapters, I initially carried out model inference in a Bayesian setting via

Markov chain Monte Carlo (MCMC) simulation, using both the Gibbs sampling (Geman

and Geman, 1984) and Metropolis-Hastings steps (Metropolis et al., 1953, Hastings, 1970).

However, initial simulations showed that standard implementations of MCMC simulation

lead to poor mixing of W̃WW in the Markov chain, which is because the posterior probability

distribution of W̃WW contains multiple modes. These modes represent high probability regions,

and when they are separated by low probability regions, a Markov chain currently exploring

a peak of high probability may experience difficulty crossing the low probability regions to

explore other peaks (Altekar et al., 2004). As a result, the updates of W̃WW often get trapped in

a local mode. To address this problem, I adopt the Metropolis-coupled Markov chain Monte

Carlo ((MC)3) algorithm used by Napier et al. (2019). The (MC)3 algorithm runs multiple

Markov chains in parallel at different temperature levels and then couples the chains together

to prevent them from becoming stuck in a local mode. A higher temperature level makes a

chain accept more proposed moves, thus allowing it to more readily jump between multiple

modes in the posterior distribution.

6.3.3.1 (MC)3 algorithm

Suppose the (MC)3 algorithm runs V Markov chains in parallel, where each chain is labeled

by v ∈ (1,2, . . . ,V ). The temperature level for chain v is denoted by Tv, and we have 0 <

TV < TV−1 <,. . . ,< T2 < T1 = 1. The first chain with T1 = 1 is also known as the cold chain,

and the posterior samples from the cold chain are used for model inference. ΩΩΩvl denotes the

collection of model parameters at the lth iteration of the Markov chain v and in our context

ΩΩΩvl = (βββ vl,φφφ vl,W̃WW vl,τ
2
vl,αvl). The (MC)3 algorithm is presented as follows.

1. Set starting values ΩΩΩv0 = (βββ v0,φφφ v0,W̃WW v0,τ
2
v0,αv0) in each chain for v = 1,2, . . . ,V .

2. Repeat the following steps for each sampling iteration l = 1,2, . . . ,L .

(a) At iteration l repeat the following steps for each Markov chain for v = 1,2, . . . ,V ,

and each model parameter ωvl ∈ ΩΩΩvl .

i. Propose a new value for ωvl , called ω∗
vl , from a proposal distribution

g(ω∗
vl|ωvl).
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ii. Accept ω∗
vl with probability p1,

p1 = min

{
f (ω∗

vl|YYY )Tv/g(ω∗
vl|ωvl)

f (ωvl|YYY )Tv/g(ωvl|ω∗
vl)

,1

}
,

where f (·) represents the full conditional distribution of ωvl or ω∗
vl .

iii. Generate a random variable, U1, that is uniformly distributed on the interval

[0,1]; If U1 ≤ p1, accept ω∗
vl as the next value in the chain v, i.e. ωv,l+1 =ω∗

vl .

Otherwise, ωv,l+1 = ωvl .

(b) Randomly select two of the chains to couple the chains, e.g. chains j and k, and

exchange their values.

i. Swap chains j and k with probability p2, where

p2 = min

{
f (ΩΩΩkl|YYY )Tj f (ΩΩΩ jl|YYY )Tk

f (ΩΩΩ jl|YYY )Tj f (ΩΩΩkl|YYY )Tk
,1

}
.

ii. Generate a uniform random sample U2 ∼ Uniform(0,1); If U2 ≤ p2, then the

proposed swap is accepted and chains j and k exchange their values.

The (MC)3 algorithm is not applied to the parameters that are sampled using Gibbs sampling.

The temperatures are determined by a geometric progression, which is a common choice in

the literature (Kofke, 2002, Earl and Deem, 2005). The geometrically spaced temperatures

are given by Tv+1 = c ∗ Tv, with a scale factor c ∈ (0,1). The value of c is altered within

the algorithm to ensure the swaps of two chains are accepted between 20 % and 30% of the

time, thereby providing a sufficient amount of mixing (Napier et al., 2019). The number

of chains needed for adequate mixing can depend on the complexity of the data (Altekar

et al., 2004). In this chapter I run V = 5 coupled chains, which appears to result in good

mixing for both simulated and real application data. The (MC)3 algorithm is written and

implemented in R (R Core Team, 2013) and C++ via the R package Rcpp (Eddelbuettel et al.,

2011, Eddelbuettel, 2013). The posterior distributions for each of the model parameters are

described in the next section.
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6.3.3.2 Posterior distributions for each parameter

Update βββ

The full conditional distribution for βββ is

f (βββ |YYY ) ∝

n

∏
i=1

T

∏
t=1

Poisson(Yit |βββ )×
p

∏
j=0

N(β j|0, 1000)

∝

(
n

∏
i=1

T

∏
t=1

(
exp(xxx⊤it βββ +φit)

)Yit

)
exp

(
−

n

∑
i=1

T

∑
t=1

Eit exp(xxx⊤it βββ +φit)

)
×

p

∏
j=0

exp

(
−β 2

j

2000

)
,

where βββ = (β0, . . . ,βp) is drawn as a block for all p covariates, including an intercept term

β0.

Update φit

The joint distribution for φφφ = (φφφ 1, . . . ,φφφ T ) can be written as

f (φφφ) = f (φφφ 1, . . . ,φφφ T ) = f (φφφ 1) f (φφφ 2|φφφ 1) f (φφφ 3|φφφ 2,φφφ 1) . . . f (φφφ T |φφφ T−1, . . . ,φφφ 1).

Since φφφ 1 ∼ N
(

000,τ2Q̃QQ(W̃WW )−1
)

, φφφ t |φφφ t−1 ∼ N
(

αφφφ t−1,τ
2Q̃QQ(W̃WW )−1

)
for t = 2, . . . ,T , and de-

note τ2Q̃QQ(W̃WW )−1 by RRR−1, we get

f (φφφ 1, . . . ,φφφ T ) = f (φφφ 1)
T

∏
t=2

f (φφφ t |φφφ t−1)

∝ N
(
φφφ 1|000,RRR−1) T

∏
t=2

N
(
φφφ t |αφφφ t−1,RRR

−1)
∝ exp

(
−1

2
φφφ
⊤
1 RRRφφφ 1

) T

∏
t=2

exp
(
−1

2
(
φφφ t −αφφφ t−1

)⊤RRR
(
φφφ t −αφφφ t−1

))
∝ exp

(
−1

2

(
φφφ
⊤
1 RRRφφφ 1 +

T

∑
t=2

(
φφφ
⊤
t RRRφφφ t +α

2
φφφ
⊤
t−1RRRφφφ t−1 −2αφφφ

⊤
t RRRφφφ t−1

)))

∝ exp
(
−1

2
φφφ
⊤ (DDD⊗RRR)φφφ

)
,

where DDD is a T ×T matrix, with each element Dts given as

DDDts =



1+α2, if t = s ̸= T ,

1, if t = s = T ,

−α, if |t − s|= 1,

0 if |t − s| ≥ 2.
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Hence φφφ follows a multivariate Gaussian distribution φφφ ∼ N
(
000,(DDD⊗RRR)−1), where

φφφ =



φφφ 1

φφφ 2

...

φφφ T


nT×1

=



φ11

φ21

...

φn1

...

φ1T

...

φnT


nT×1

.

According to the conditional distribution property of a multivariate Gaussian distribution,

the distribution of φit conditional on the remaining random effects φφφ−it is

φit |φφφ−it ∼ N
(
E
[
φt |φφφ−it

]
,Var

[
φit |φφφ−it

])
,

where the conditional expectation is given by

E[φit |φφφ−it ] =



(1+α2)
n
∑

j=1
wi jφ jt−α

n
∑

j=1
wi jφ j,t+1+α

n
∑

j=1
wi jφi,t+1

(1+α2)
n
∑

j=1
wi j

, if t = 1,

(1+α2)
n
∑

j=1
wi jφ jt−α

n
∑

j=1
wi jφ j,t−1+α

n
∑

j=1
wi jφi,t−1−α

n
∑

j=1
wi jφ j,t+1+α

n
∑

j=1
wi jφi,t+1

(1+α2)
n
∑

j=1
wi j

, if t = 2, . . . ,T −1,

n
∑

j=1
wi jφ jt−α

n
∑

j=1
wi jφ j,t−1+α

n
∑

j=1
wi jφi,t−1

n
∑

j=1
wi j

, if t = T .

The conditional variance is given by

Var[φit |φφφ−it ] =


τ2

(1+α2)
n
∑

j=1
wi j

, if t ̸= T ,

τ2
n
∑

j=1
wi j

, if t = T .
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Hence the full conditional distribution for φit can be computed by

f (φit |Yit) ∝ Poisson(Yit |φit)×N(φit |φφφ−it)

∝

(
exp(xxx⊤it βββ +φit)

)Yit
exp
(
−Eit exp(xxx⊤it βββ +φit)

)
×N

(
E
[
φt |φφφ−it

]
,Var

[
φit |φφφ−it

])
.

Update α

The full conditional distribution for α is

f (α|YYY ) ∝

T

∏
t=2

N
(

φφφ t |αφφφ t−1,τ
2Q̃QQ(W̃WW )−1

)
×Uniform(0,1)

∝ N(m,v),

where

m =

T
∑

t=2
φφφ
⊤
t Q̃QQ(W̃WW )φφφ t−1

T
∑

t=2
φφφ
⊤
t−1Q̃QQ(W̃WW )φφφ t−1

,

v =
τ2

T
∑

t=2
φφφ
⊤
t−1Q̃QQ(W̃WW )φφφ t−1

.

Update τ2

The full conditional distribution of τ2 is given as

f (τ2|YYY ) ∝ N
(

φφφ 1|000,τ2Q̃QQ(W̃WW )−1
) T

∏
t=2

N
(

φφφ t |αφφφ t−1,τ
2Q̃QQ(W̃WW )−1

)
× Inverse-Gamma(1,0.01)

∼ Inverse-Gamma(ã, b̃),

where ã= 1+ nT
2 and b̃= 0.01+ 1

2

(
φφφ
⊤
1 Q̃QQ(W̃WW )φφφ 1 +

T
∑

t=2

(
φφφ t −αφφφ t−1

)⊤ Q̃QQ(W̃WW )
(
φφφ t −αφφφ t−1

))
.

Update W̃WW

The full conditional distribution for W̃WW is given as

f (W̃WW |YYY ) ∝ N
(

φφφ 1|000,τ2Q̃QQ(W̃WW )−1
) T

∏
t=2

N
(

φφφ t |αφφφ t−1,τ
2Q̃QQ(W̃WW )−1

)
× f

(
W̃WW =WWW m

G

)
∝ ||Q̃QQ(W̃WW )||

T
2 exp

(
−1

2

(
φφφ
⊤
1 Q̃QQ(W̃WW )φφφ 1 +

T

∑
t=2

(
φφφ t −αφφφ t−1

)⊤ Q̃QQ(W̃WW )
(
φφφ t −αφφφ t−1

))
τ
−2

)
,
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where || · || denotes the determinant of a matrix.

In the model, W̃WW is assigned a discrete uniform prior whose values are the M candi-

date neighbourhood matrices (WWW 1
G,WWW

2
G, . . . ,WWW

M
G ) previously constructed. However, these

candidate matrices do not have a natural ordering, thus when updating the choice of W̃WW in

the (MC)3 algorithm, a new matrix is uniformly sampled from the s candidate matrices

that are most similar to the current matrix. Here the similarity between two candidate

neighbourhood matrices is measured by the percentage of edges that are removed from both

matrices. s is a parameter controlling the acceptance rates and mixing of the update, and

pilot runs suggest s = 4 is appropriate within this chapter.

6.4 Simulation study

This section quantifies the performance of the methodology outlined in Section 6.3 on sim-

ulated data under a range of scenarios, and compares its performance against two alterna-

tives. The two existing models are those proposed by Lee et al. (2021) (denoted LM) and

Rushworth et al. (2014) (denoted RL), where the former estimates the disease risk and local

boundaries based on a single neighbourhood matrix that is estimated in advance, while the

latter enforces a global level of spatial smoothness on the random effects surface, which does

not involve any boundary identification. The aims of this study are to illustrate the improved

risk estimation delivered by the proposed model in the presence of boundaries in the risk

surface, and also to measure the accuracy of the identified boundaries.

6.4.1 Data generation

The study region is the set of n = 257 Intermediate Zones (IZs) that comprise the Greater

Glasgow and Clyde Health Board region, which matches the motivating application

described in Section 6.6. Simulated disease counts {Yit} are generated from the Poisson

log-linear model (6.1) for T = 7 time periods, where the expected disease counts {Eit}

are based on the motivating study data, whose values range between 12.61 and 160.15 in

a single IZ and year with a median of 74.09. In order to explore the impact of disease

prevalence on estimation performance, these {Eit} values are divided by the scale factors

(SF) of 1, 2 and 4. Thus SF = 1 corresponds to the motivating data, SF = 2 corresponds to

having a smaller number of expected counts, while SF = 4 represents a rare disease that has

very small expected counts. Disease risks {Rit} are generated by simulating spatio-temporal
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random effects {φit}, and as previously described covariates are not included. The intercept

term β0 is fixed for all simulations at 0.01. The random effects are generated for each time

period from a multivariate Gaussian distribution, whose precision matrix is defined by the

Leroux prior (Leroux et al., 2000) with QQQ(ρ,WWW ) = ρ(diag(WWW111)−WWW )+ (1−ρ)III. Here WWW

is the border sharing neighbourhood matrix, the variance parameter τ2 is fixed at 0.001,

whereas the spatial dependence parameter ρ is varied in the simulation design to explore

model performance with different levels of spatial correlation in the risk surface. Two

values of ρ = 0.9,0.6 are used to generate spatially correlated random effects φφφ t , which

respectively represent strong and moderate spatial dependence. Lower values of ρ are not

considered because they rarely appear in real life applications.

To simulate spatial boundaries in the risk surface, a piecewise constant mean function

is specified for the mean of φφφ t , which we denote by µµµ t = (µ1t , . . . ,µnt). The piecewise

constant mean function contains three distinct values, so that each µit ∈ {−Z,0,Z}. Thus

geographically neighbouring areal units that have the same mean value will have no bound-

ary between them as their disease risks will be similar, while those pairs that have different

mean values will have a boundary between their risks. The value of Z controls the size of

the boundaries, and larger values represent boundaries that correspond to larger differences

in disease risk between neighbouring areas. Three separate values Z = 1,0.5,0.25 are

considered in the different scenarios of the simulation design, which respectively correspond

to large, moderate and small boundaries in disease risk between neighbours. As touched

on previously, in this study I only consider the case that the simulated boundaries remain

constant during the study period, which is achieved by enforcing µit = µil for all t ̸= l.

Figure 6.1 provides the template used for generating data with boundaries, which are shown

by the blue dots. There are 338 boundaries in total, which correspond to approximately

50% of the set of edges in the study region. The template is designed based on the

motivating respiratory disease data, where areas with low, medium and high SIR values

are assigned a mean value of −Z,0,Z respectively, and are shaded in white, grey and

black in the map. Table 6.1 summarises the 18 sub-scenarios considered in the simulation

study, where the following quantities are varied: (i) varying boundary magnitudes via

Z = 1,0.5,0,25; (ii) varying disease prevalences via SF = 1,2,4; and (iii) varying degrees

of spatial autocorrelation via ρ = 0.9,0.6.
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Figure 6.1: Locations of the true boundaries (which are highlighted by blue dots following
the borders between the selected areal units) in the simulated random effects surfaces.

Table 6.1: Description of the scenarios considered in the simulation study.

Scenario Z SF ρ

1 1 1 0.9
2 0.5 1 0.9
3 0.25 1 0.9
4 1 2 0.9
5 0.5 2 0.9
6 0.25 2 0.9
7 1 4 0.9
8 0.5 4 0.9
9 0.25 4 0.9
10 1 1 0.6
11 0.5 1 0.6
12 0.25 1 0.6
13 1 2 0.6
14 0.5 2 0.6
15 0.25 2 0.6
16 1 4 0.6
17 0.5 4 0.6
18 0.25 4 0.6
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6.4.2 Results

One hundred simulated data sets are generated under each of the 18 scenarios shown in

Table 6.1, and for each scenario the proposed model is compared to the LM model (Lee

et al., 2021) and the RL model (Rushworth et al., 2014). These three models are fitted

to each data set, and inference for each model is based on 2,000 samples obtained from

generating 100,000 samples, the first 80,000 of which are discarded as the burn-in period

and the remaining 20,000 are thinned by 10 due to limited computer memory capacity and

to reduce autocorrelation. The convergence is assessed both by checking parameter trace

plots and by Geweke (1992) diagnostics for a selection of the simulated data sets.

The results are summarised in Tables 6.2, 6.3 and 6.4. The accuracy of disease risk

estimation is quantified by the root mean square error, RMSE =
√

1
nT ∑i,t(R̂it −Rit)2, and

the coverage probabilities of the 95% credible intervals of the risk estimates. The overall fit

of each model to each data set is summarised by the Deviance Information Criterion (DIC;

Spiegelhalter et al., 2002), where a smaller value represents a better fitting model, and the

effective number of independent parameters (pd), where a smaller value indicates a more

parsimonious model. The correctness of the boundary identification is measured by the

receiver-operating characteristic (ROC) curves and the area under the ROC curve, abbrevi-

ated AUC (Bradley, 1997, Hanley and McNeil, 1982), which are based on the sensitivity

and specificity of the proposed model at identifying true boundaries/non-boundaries. Firstly,

to estimate this I compute the probability of each edge being removed (i.e. the probability

of each element w̃i j in W̃WW being 0 for all i ∼ j) across all the posterior samples of W̃WW , that is

p(w̃i j = 0|YYY ) = 1
G

G

∑
g=1

(1− w̃(g)
i j ), for all i geographically adjacent to j, (6.9)

where w̃(g)
i j represents the value of element w̃i j in the gth posterior sample of W̃WW . Then

I define a threshold p∗ for identifying a boundary, and compare it to p(w̃i j = 0|YYY ). If

p(w̃i j = 0|YYY ) ≥ p∗ then a boundary is identified between the random effects of the two

adjacent areas (i, j), whereas if p(w̃i j = 0|YYY ) < p∗ no boundary is detected between them.

The sensitivity and specificity of the boundary identification are computed at different values

of p∗, which is varied from 0 to 1.01 at intervals of 0.01 in the study, and a ROC curve is a

plot of sensitivity against specificity. The sensitivity is computed as the percentage of the

true boundaries that are correctly identified, while the specificity is the percentage of the

non-boundaries correctly identified. The closer an ROC curve is to the upper left corner,
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the more accurate is the identification. Thus in order to summarise the “overall” location

of the entire ROC curve, the area under the curve (AUC) is computed, which provides an

aggregate measure of boundary identification performance across all possible threshold

values. It takes values from 0 to 1, where an AUC of 1 corresponds to perfectly accurate

boundary identification, an AUC of 0.5 implies a random identification such that the ROC

curve will fall on the diagonal (45-degree line), and an AUC of 0 indicates perfectly

inaccurate identification. Note that the ROC curve and AUC statistics are only available for

the proposed model, because the neighbourhood matrix is fixed when estimating disease

risk in the other two models LM and RL.

Table 6.2 displays the RMSE, 95% coverage probabilities, DIC and pd associated

with each model and each scenario when the spatial dependence in the simulated data is

strong (ρ = 0.9). The table clearly illustrates that estimating an appropriate neighbourhood

matrix that accounts for the boundaries in the data provides improved estimation compared

to simply using the border sharing WWW . The RL model overall performs the worst of three

in terms of the largest RMSE, DIC and pd , which is due to it enforcing global spatial

smoothing of disease risk across the region, so it does not allow neighbouring areas to have

very different values (or boundaries), resulting in poorer risk estimation and model fit. Both

the proposed model and the LM model perform very well in terms of risk estimation, but

the former seems to have slightly smaller RMSE values and higher coverages. However,

the proposed model exhibits a higher DIC and pd than the LM model in most scenarios.

This is likely to be because the neighbourhood matrix in the LM model is estimated in

advance via an optimisation algorithm, so it is fixed during the estimation procedure. In

contrast, our model estimates W̃WW from a set of possible candidate values as part of the

modelling approach, which thus results in an increase in pd and DIC. Credible interval

coverages are generally good for all three models, with values varying between 0.92 and

0.96. The improved performance of our model becomes less noticeable when the magnitude

of the boundaries decreases (Z gets smaller) compared to the RL model, which is likely

the result of less accurate boundary identification as shown in Table 6.4. For all models,

RMSE increases as the disease prevalence decreases (SF > 1), which is due to a reduction

in the amount of data. Table 6.3 summarises model performance when reducing the spatial

dependence (ρ = 0.6) in the simulated data. The results from all metrics for each model

and each scenario are very close to those in Table 6.2, thus the main findings outlined above

are unaffected by reducing the level of spatial dependence from ρ = 0.9 to ρ = 0.6. The
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proposed model and the LM model produce a better estimation of disease risk and model fit

than the globally smooth RL model across all scenarios.

An ROC curve is a two-dimensional depiction of the boundary identification perfor-

mance. Thus for ease of presentation, only the AUC statistics are presented here rather than

the full ROC curves. Table 6.4 displays the median AUC values as well as the corresponding

95% credible intervals across the set of ROC curves calculated for each scenario for the

proposed model. In general, the model performs well in identifying the true boundaries

and non-boundaries. When the size of the boundaries is large (Z = 1), the model exhibits

outstanding boundary identification, with median AUC values close to the maximum value

of 1. When the boundaries are less pronounced (Z < 1) and the disease prevalence decreases

(SF > 1), the model performs slightly less well but the AUC values are still relatively high,

which range between 0.818 and 0.951. The exception to this is the scenario when the

disease is rare (SF = 4) and the boundaries are very small in magnitude (Z = 0.25), which

obtains lower AUC values (around 0.75). The reason for this is that in this scenario the

boundaries are difficult to correctly identify based on their small size and small numbers of

disease cases. Finally, the AUC statistics obtained when ρ = 0.9 are very similar to those

obtained when ρ = 0.6, which also suggest that the ability of the model to identify the

correct boundaries is robust to the level of spatial dependence in the data.
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Table 6.2: Median values of the RMSE, 95% credible interval coverages associated with the
estimated risks, Deviance Information Criterion (DIC), and the effective number of param-
eters (pd) for each model and scenario when ρ = 0.9 is used to simulate the spatial random
effects for each time period. Here LM and RL refer to the models proposed by Lee et al.
(2021) and Rushworth et al. (2014) respectively.

Metric Z SF
Model

Proposed LM RL

RMSE 1 1 0.100 0.101 0.121
0.5 1 0.074 0.075 0.089
0.25 1 0.062 0.062 0.068
1 2 0.131 0.132 0.161
0.5 2 0.098 0.099 0.113
0.25 2 0.080 0.081 0.084
1 4 0.174 0.174 0.209
0.5 4 0.127 0.128 0.141
0.25 4 0.103 0.103 0.104

Coverage probability 1 1 0.963 0.960 0.954
0.5 1 0.958 0.956 0.954
0.25 1 0.951 0.944 0.948
1 2 0.961 0.957 0.952
0.5 2 0.952 0.949 0.951
0.25 2 0.949 0.931 0.942
1 4 0.953 0.951 0.949
0.5 4 0.950 0.941 0.947
0.25 4 0.953 0.919 0.934

DIC 1 1 13714.99 13701.59 14123.56
0.5 1 13473.27 13456.07 13770.36
0.25 1 13268.14 13259.73 13454.56
1 2 12328.81 12319.42 12692.48
0.5 2 12099.90 12087.15 12342.82
0.25 2 11908.75 11896.97 12060.67
1 4 10948.64 10940.93 11254.94
0.5 4 10736.03 10723.66 10924.71
0.25 4 10567.33 10542.44 10675.29

pd 1 1 992.45 988.89 1345.70
0.5 1 721.27 730.13 1007.26
0.25 1 521.50 509.29 653.65
1 2 846.93 844.98 1175.94
0.5 2 599.94 605.26 819.69
0.25 2 433.99 398.49 499.04
1 4 712.76 720.97 991.77
0.5 4 507.93 495.56 643.36
0.25 4 376.80 313.91 366.86
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Table 6.3: Median values of the RMSE, 95% credible interval coverages associated with the
estimated risks, Deviance Information Criterion (DIC), and the effective number of param-
eters (pd) for each model and scenario when ρ = 0.6 is used to simulate the spatial random
effects for each time period. Here LM and RL refer to the models proposed by Lee et al.
(2021) and Rushworth et al. (2014).

Metric Z SF
Model

Proposed LM RL

RMSE 1 1 0.101 0.101 0.122
0.5 1 0.075 0.076 0.089
0.25 1 0.062 0.063 0.069
1 2 0.132 0.133 0.160
0.5 2 0.098 0.099 0.113
0.25 2 0.080 0.081 0.084
1 4 0.174 0.175 0.210
0.5 4 0.128 0.129 0.142
0.25 4 0.103 0.103 0.104

Coverage probability 1 1 0.963 0.961 0.954
0.5 1 0.957 0.956 0.954
0.25 1 0.946 0.939 0.947
1 2 0.959 0.957 0.953
0.5 2 0.951 0.949 0.952
0.25 2 0.948 0.931 0.943
1 4 0.953 0.952 0.950
0.5 4 0.951 0.940 0.947
0.25 4 0.949 0.917 0.932

DIC 1 1 13717.41 13710.03 14122.91
0.5 1 13461.56 13450.71 13763.70
0.25 1 13259.48 13250.67 13437.23
1 2 12319.30 12311.37 12686.15
0.5 2 12090.22 12083.78 12334.35
0.25 2 11921.21 11906.64 12068.50
1 4 10932.32 10923.13 11236.89
0.5 4 10730.95 10715.64 10914.66
0.25 4 10576.64 10542.19 10681.83

pd 1 1 992.40 987.48 1346.29
0.5 1 717.32 727.01 1005.38
0.25 1 517.14 503.34 654.19
1 2 845.26 847.54 1174.93
0.5 2 609.95 606.38 819.71
0.25 2 437.51 402.88 502.37
1 4 721.48 720.27 991.15
0.5 4 514.07 496.90 644.61
0.25 4 372.89 312.70 365.94
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Table 6.4: Median values of the area under the ROC curve (AUC) for boundary identification
for the proposed model for each scenario. Values in brackets correspond to the 95% credible
intervals.

Z SF ρ AUC

1 1 0.9 0.977 (0.960, 0.985)
0.5 1 0.9 0.951 (0.933, 0.965)
0.25 1 0.9 0.876 (0.846, 0.902)
1 2 0.9 0.966 (0.944, 0.978)
0.5 2 0.9 0.919 (0.896, 0.942)
0.25 2 0.9 0.819 (0.790, 0.856)
1 4 0.9 0.945 (0.926, 0.962)
0.5 4 0.9 0.877 (0.850, 0.903)
0.25 4 0.9 0.748 (0.706, 0.778)
1 1 0.6 0.977 (0.960, 0.986)
0.5 1 0.6 0.949 (0.925, 0.965)
0.25 1 0.6 0.869 (0.841, 0.900)
1 2 0.6 0.966 (0.953, 0.978)
0.5 2 0.6 0.918 (0.894, 0.942)
0.25 2 0.6 0.818 (0.786, 0.859)
1 4 0.6 0.944 (0.920, 0.959)
0.5 4 0.6 0.875 (0.836, 0.900)
0.25 4 0.6 0.748 (0.704, 0.783)

6.5 Sensitivity analysis

The model developed here uses an Inverse-Gamma(1,0.01) prior for the variance parameter

τ2. To assess the impact of the prior for τ2 on model performance, I compare the choice with

two alternatives, which are Inverse-Gamma(0.001,0.001) and Inverse-Gamma(0.5,0.0005).

One hundred simulated data sets are generated as described in Section 6.4 for each value

of Z = 1,0.5,0.25, where ρ = 0.9 is used to simulate the random effects φφφ t at each time

period and the expected numbers of cases are taken from the motivating data. The proposed

model is fitted to each data set using the three different choices of Inverse-Gamma (IG)

prior distribution for τ2, and the results are summarised in Figures 6.2, 6.3 and 6.4, which

display boxplots of RMSE, 95% coverage probabilities for risk estimates, DIC, pd and the

AUC over all simulated data sets.

The figures show that the model yields very similar results in terms of both risk esti-

mation and boundary identification using the three different priors. A slight difference is

observed in the scenario of Z = 0.25, where IG(1,0.01) yields slightly higher pd values

with a median of 538 compared to 530 for the other two priors. Therefore the proposed
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model appears to be robust to the choice of the hyperparameters of the prior Inverse-Gamma

distribution for τ2.

Figure 6.2: Summary of the simulation results from changing the hyperparameters of the
Inverse-Gamma (IG) prior distribution for τ2 when Z = 1.
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Figure 6.3: Summary of the simulation results from changing the hyperparameters of the
Inverse-Gamma (IG) prior distribution for τ2 when Z = 0.5.
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Figure 6.4: Summary of the simulation results from changing the hyperparameters of the
Inverse-Gamma (IG) prior distribution for τ2 when Z = 0.25.

6.6 Glasgow respiratory disease study results

This section continues to analyse the respiratory admission data presented in Section 5.2.1.

As in the previous chapters, the study region is the Greater Glasgow and Clyde Health Board

displayed in Figure 3.1, which consists of n= 257 non-overlapping Intermediate Zones (IZs).

The data in each IZ are collected for 7 years from 2011 to 2017. The disease data YYY = {Yit}

are the yearly counts of hospital admissions with a primary diagnosis of respiratory disease

for i = 1, . . . ,n(n = 257) IZ in year t = 1, . . . ,T (T = 7), and range between 17 and 282. The

expected numbers of respiratory hospitalisations EEE = {Eit} are calculated for each year and

IZ to adjust for different population sizes and demographic structures across the IZs using

indirect standardisation. The standardised incidence ratio (SIR) is the simplest measure of

disease risk calculated by SIRit = Yit
Eit

. The middle panel in Figure 5.1 displays the spatial

pattern in the SIR for 2017, and shows that the respiratory disease risks are highest in the
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East End of Glasgow (the east of the map) and along the southern bank of the River Clyde,

which contains a number of heavily deprived areas. It also shows that the spatial risk surface

is not globally smooth and contains numerous pairs of geographically adjacent areas where

there appear to be discontinuities in their risks, suggesting the presence of boundaries.

6.6.1 Model choice and inference

The methodology outlined in Section 6.3 is applied to the respiratory disease data in the

Greater Glasgow and Clyde Health Board during the time period from 2011 to 2017. For

comparison purpose, the model of Lee et al. (2021) (denoted LM) and the global smoothing

model of Rushworth et al. (2014) (denoted RL) are also fitted to the data to observe which one

best fits the data and hence will likely produce the best estimates of disease risk. The goals in

analysing these data are two-fold: on the one hand, providing the best estimate of the spatio-

temporal patterns in respiratory disease risk, on the other hand, estimating the locations of

any boundaries in the spatial risk surface, so that the areas that exhibit excessively high risks

compared to their neighbours can be identified. Posterior inference for all models is based on

five independent Markov chains, where each chain is run for 100,000 samples with a burn-in

period of 80,000 and the remaining 20,000 samples are then thinned by 5, yielding a total of

20,000 samples across all five chains.

6.6.2 Overall model fit

Table 6.5 summarises the overall fit of each model to the data by presenting both the DIC

and the effective number of independent parameters pd . It shows that the proposed model

fits the data better than the global smoothing RL model in terms of DIC, with a value of

14,080 compared to 14,141. Our model also has a markedly smaller pd than the RL model,

which is due to its lower estimate of the random effects variance τ2 as seen in Table 6.5.

Our model does not allow any smoothing of random effects between pairs of geographically

adjacent IZs that exhibit largely different risks, which thus makes the random effects smooth

more strongly elsewhere in the spatial surface and reduces the amount of variation between

{φit}. This suggests a greater level of penalisation of the random effects and hence leads to a

reduction in the overall pd . The proposed model has a slightly higher DIC and pd value than

the LM model, which is due to it estimating W̃WW in the modelling process rather than fixing it

when estimating disease risk as in the LM model.
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Table 6.5: A summary of the overall fit of each model and the estimated (posterior median)
random effects variance τ2.

Proposed LM RL

DIC 14,080.41 14,072.72 14,140.90
pd 849.69 830.17 1054.90
τ2 0.015 0.014 0.070

6.6.3 Temporal trends in disease risk

The proposed model and the LM model have the most similar risk estimates, with a mean

absolute difference in the posterior median risk estimates of 0.010 compared to 0.030

(Proposed vs RL) and 0.034 (RL vs LM) over all years and IZs. Here I present the estimated

risks from the proposed model in Figure 6.5, because it performs a better fit to the data

than the RL model, and it also has the advantage of being able to quantify the uncertainty

in the locations of boundaries in the spatial risk surface through the posterior distribution

of W̃WW compared to the LM model. Figure 6.5 displays boxplots of the risk estimates from

all the areal units over time. These risk estimates are broadly similar to those obtained in

Section 5.6. An increasing trend in risk is observed for the entire time period. In 2011 the

average risk across Greater Glasgow is 1.10, suggesting that on average respiratory disease

risk in Greater Glasgow is about 10% higher than the Scottish average. This rises to 1.28 in

the final year 2017, which is thus 28% higher than the overall Scotland average. In addition,

the health inequalities across Glasgow in respiratory disease have widened over time, as the

difference between the largest and smallest disease risk is 1.36 in 2011 and 2.13 in 2017.

There are some small evolution in the estimated spatial risk patterns over the 7-year

period, with the Pearson’s correlation coefficient between any pair of years ranging between

0.90 and 0.98. Figure 6.6 presents the spatial patterns of the estimated disease risks across

Greater Glasgow in 2011, 2014 and 2017. The increasing trend in risk over time can also

be seen in the figure as the shading gets darker from 2011 to 2017. In all three maps there

are common IZs having darker shading, indicating higher respiratory disease risk. The

areas with higher risks tend to be in the east (e.g. Easterhouse, Parkhead), and the north of

Glasgow city centre (e.g. Springburn, Possilpark), as well as in the south of the Clyde river

(e.g. Nitshill, Priesthill, Govan), the north-west (e.g. Drumchapel) and the south-west (e.g.

Castlemilk). In contrast, the areas of lower risks are located in the West End (just the north

of the Clyde river) and the south-west of the city centre, such as Hyndland, Kelvinside,
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Jordanhill and Newton Mearns, and also in the far south such as Eaglesham. These results

show that people living in deprived areas are more likely to be hospitalised for respiratory

disease than those living in affluent areas, which are consistent with the findings reported

in the previous chapters. Furthermore, the maps also suggest that the risks in the areas that

have high risks at the beginning of the time period appear to increase more quickly over

time than in the areas with low risks at the start.

Figure 6.5: Boxplots of the risk estimates (posterior median) for all the areal units over time
from the proposed model.
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2011 2014

2017

Figure 6.6: Maps of the respiratory disease risk estimates (posterior median) in Greater
Glasgow for 2011, 2014 and 2017 from the proposed model.

6.6.4 Boundary identification

The proposed model provides additional inference on the locations of boundaries in the risk

surface, which separate areas that are geographically adjacent and exhibit very different

risks. Identifying these boundaries is important for social epidemiologists because their

locations are likely to reflect “underlying biological, physical, and/or social processes”

(Jacquez et al., 2000). I quantify the evidence for a boundary between adjacent areas (i, j)

using p(w̃i j = 0|YYY ), that is the probability of element w̃i j in W̃WW being 0, which is computed

by equation (6.9). Table 6.6 summarises the number of spatial boundaries identified by the

model, based on p(w̃i j = 0|YYY ) values greater than or equal to a threshold p∗. Three different

threshold values p∗ = 1,0.99,0.975 are considered here, where p∗ = 0.99 was used by Lu

and Carlin (2005) and Rushworth et al. (2017). The results indicate that the boundaries
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are almost unchanged by reducing the value of p∗ from 1 to 0.975. Values of p∗ = 1,0.99

identify the same number of boundaries (41% of all the edges in this study region), with

complete agreement between their locations, and p∗ = 0.975 identifies one more boundary

than the other two threshold values. Figure 6.7 maps the average risk estimates (posterior

median) over 2011-2017 from the proposed model. The grey-scale lines denote the locations

of the boundaries that are identified using a threshold of p(w̃i j = 0|YYY ) = 1 in equation

(6.9). These boundaries are detected in the random effects surface, but since covariates

are not included in the model, the random effects and risk surfaces have the same spatial

structure as Rit = exp(β0+φit), and thus any boundaries identified also relate to disease risk.

The identified boundaries are shaded based on their size of the differences in disease risk

between geographically adjacent IZs. Specifically, I compute the time averaged absolute

differences in disease risk between adjacent IZs for each identified boundary. Then I rank

the boundaries from smallest to largest by their mean absolute differences, and normalize

the ranks by dividing them by the total number of boundaries. This ensures the ranks after

transformation fall in the range [0,1] and the transformed values suggest the relative strength

of the identified boundaries. Therefore, boundaries with darker shading in Figure 6.7

correspond to larger differences in disease risk between pairs of neighbouring IZs, which

may need more attention and investigation from health authorities. According to the model

design, the identified boundaries are common to all time periods.

Figure 6.7 suggests that the respiratory disease risk surface in Greater Glasgow is far

from being globally spatially smooth, which is the reason why the proposed model performs

better than the global smoothing model. Boundaries that have been identified appear to

mainly correspond to sizeable changes in disease risk between adjacent IZs. The model

identifies the largest boundaries in the north-west between Drumchapel and its neighbour

Bearsden, in the north between Springburn and Bishopbriggs as well as in the East End of

the city between Easterhouse and Garrowhill. The mean risk in the deprived Drumchapel

(which is 2.05) is about three times as high as that in the affluent Bearsden (which is 0.72).

Springburn and Easterhouse have vastly higher mean risks of 1.92 and 2.17 compared to

0.8 for Bishopbriggs and 1.07 for Garrowhill. Other prominent boundaries are found in the

south-west of the city and also in the south-east. For example, Househillwood is separated

from its neighbour Roughmussel with a mean risk of 2 compared to 0.98, and the mean risk

in Castlemilk is about 60% higher than its surrounding area Carmunnock. I also notice that

some boundaries are near motorways, railways or big roads (e.g. the North Clyde Line,
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A82). This is probably because such physical barriers prevent people who live on either side

from mixing and thus may result in different population behaviour. Note that adjacencies

are not assumed between pairs of areas across the river in the border sharing WWW , therefore

boundaries cannot be identified between these areas.

Table 6.6: A summary of the number of boundaries/non-boundaries identified at different
values of the threshold p∗.

Value of p∗ Number of boundaries Number of non-boundaries

1 277 394
0.99 277 394

0.975 278 393

Figure 6.7: A map of the average respiratory disease risk surface in Greater Glasgow over
2011-2017 from the proposed model. The grey-scale lines in the map correspond to the
boundaries that have been identified using a threshold of p∗= 1 in equation (6.9). Boundaries
with darker shading represent larger differences in risk between geographically adjacent IZs.
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6.6.5 Sensitivity analysis

In order to examine the sensitivity of the above results to the choice of hyperparameters, the

Inverse-Gamma(1,0.01) prior for the random effects variance parameter τ2 is changed to

Inverse-Gamma(0.001,0.001) and Inverse-Gamma(0.5,0.0005). Figure 6.8 presents scatter

plots of the risk estimates over 2011-2017 among different choices of prior Inverse-Gamma

distribution for τ2. It shows that the estimated risks are very similar for all three prior choices,

with data points lying on the diagonal line and the correlation coefficients between the risk

estimates for any two priors being close to 1. Therefore, the results reported above are robust

to the choice of the hyperpriors for τ2.

Figure 6.8: Scatter plots of the estimated risks (posterior median) between different choices
of prior Inverse-Gamma distribution for τ2.

6.6.6 Convergence diagnostic

The convergence of the posterior distributions is diagnosed both by examining parameter

trace plots and by Gelman–Rubin diagnostic (Gelman et al., 1992). It is infeasible to check

the convergence for all parameters in practice because there are a large number of parameters

in the model. Therefore here I only select four parameters, which are (β0,τ
2,φ100,1,φ129,3),
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to check their convergence. Figure 6.9 shows trace plots of the posterior samples for

(β0,τ
2,φ100,1,φ129,3), where each Markov chain is represented in a different color. The figure

shows that there is no clear pattern in the trace plots for all selected parameters, which sug-

gest that all the chains appear to have converged. In addition, the Gelman-Rubin diagnostic is

also used to check the convergence for multiple chains, with a value less than 1.1 indicating

convergence of the chains. Here the Gelman-Rubin statistics for the selected parameters are

all smaller than 1.1 with a maximum value of 1.01, which mean that the posterior samples

appear to have converged.

β0 τ2

φ100,1 φ129,3

Figure 6.9: Trace plots of the posterior samples for selected parameters
(β0,τ

2,φ100,1,φ129,3) from the proposed model.
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6.7 Discussion

In this chapter I propose an approach for estimating the disease risk pattern over time by

using CAR priors, and also identifying the locations of boundaries in the risk surface by

estimating the neighbourhood matrix for the data rather than assuming it is fixed on the

basis of geographical adjacency. The model is an extension of Lee et al. (2021) by allowing

to account for the uncertainty in the neighbourhood matrix in the modelling process. The

methodology first uses the graph-based optimisation algorithm developed by Lee et al.

(2021) to obtain multiple possible candidate neighbourhood matrices, which represent a

range of possible boundary structures in the data. Then a Bayesian spatio-temporal model

is fitted to the data, in which the neighbourhood matrix W̃WW is treated as a random quantity

to be estimated from the set of candidates previously constructed. To perform inference, a

Metropolis-coupled Markov chain Monte Carlo algorithm is used to yield posterior samples

for model parameters, which overcomes the multimodality issue in the posterior distribution.

The simulation study in Section 6.4 has shown strong evidence that the model devel-

oped here outperforms the global smoothing model developed by Rushworth et al. (2014) in

the presence of boundaries, in terms of both risk estimation and model fit. This improved

performance results from our model having the flexibility to represent a range of localised

spatial autocorrelation structures that account for the risk boundaries. In contrast, the global

smoothing model induces spatial autocorrelation structure based on geographical adjacency

and hence smooths the disease risk over such boundaries, which leads to poorer estimation

of disease risk. The study also shows that the proposed model and the LM model developed

by Lee et al. (2021) produce very similar results in terms of risk estimation. This is probably

because the candidate neighbourhood matrices
(
WWW 1

G,WWW
2
G, . . . ,WWW

M
G
)

obtained in stage one

do not differ vastly from each other. Although the proposed model has the advantage of

allowing for uncertainty in W̃WW in theory, it does not make a large difference in risk estimation

compared to the LM model. The model developed here is also successful at identifying the

locations of true boundaries in simulated data, with AUC statistics close to 1 for a set of

different scenarios. The model tends to obtain higher AUC values if the magnitude of the

boundaries gets larger and the disease in question is not rare.

The motivating application also establishes the superiority of the proposed model compared

to the global smoothing model. Our model produces a better model fit with a smaller

number of effective parameters, due to its increased levels of smoothing in locations where
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boundaries are not present. Although the model has a marginally higher DIC value than the

LM model, it is able to measure the uncertainty of each edge being identified as a boundary.

Figure 6.7 provides substantial evidence of boundaries in the unexplained spatio-temporal

risk pattern for respiratory disease in Greater Glasgow. Most of the identified boundaries

correspond to sizeable discontinuities in the risk surface, and are very likely to occur where

poor and wealthy areas border or be close to geographical barriers such as railways or big

roads. The application results appeared to be robust when the proposed model was re-run

for another M = 100 different candidate neighborhood matrices in stage one, with similar

risk estimates and boundaries obtained as those in Section 6.6.

In the analysis of this chapter I do not consider any covariates, but the approach can

be used in ecology studies to explore the risk factors that might explain the spatio-temporal

variation in respiratory disease risk, such as environment exposures, smoking, socio-

economic deprivation, etc. Furthermore, the graph-based optimisation algorithm (Lee et al.,

2021) used to generate candidate neighbourhood matrices has limitations. Firstly, the current

implementation makes use of a local search method that is not guaranteed to find the global

optimal matrix. Secondly, the running-time of the algorithm depends exponentially on the

number of edges, which could be very high when dealing with a large number of edges.

Therefore, care should be taken when choosing the value of M, i.e. the number of candidate

matrices to be generated in stage one. If M is too small then the best neighbourhood matrix

may not exist in the candidates, whereas if M is too large then the computational burden

could be huge. An optimisation algorithm with provable guarantees of a global optimum

solution and higher efficiency can be investigated in more details in a future study. If a

global optimal neighbourhood matrix can be found, then fitting a model based on this global

optimum would be much simpler and faster than the method proposed here that estimates an

appropriate value from a set of candidates based on many local optima, although it does not

allow to make probability statements such as calculating the probability of each edge being a

boundary. Other avenues for future work include extending the proposed model from count

data to model Gaussian or binomial type data, allowing the boundaries in disease risk to

evolve dynamically over time, and extending the spatio-temporal model to the multivariate

domain to consider multiple diseases simultaneously.
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Conclusion

This thesis focused on estimating the spatial and spatio-temporal patterns in disease risk, and

identifying discontinuities in the risk surface. In most disease mapping studies that assess

the extent and pattern of disease risk, the study region is split into non-overlapping areal

units and then disease risk is estimated for each of these areal units. Disease maps can be

used to quantify the spatial inequalities in ill health and provide a visual representation of the

risk patterns for policy makers, by shading the areal units in different colours based on their

disease risks. The standardised incidence ratio (SIR) is an unstable estimate of disease risk

when the population at risk is small or the disease in question is rare. Therefore, model-based

approaches to the analysis of disease maps are beneficial. Bayesian hierarchical modelling

is mostly used to estimate disease risk patterns by utilising a Poisson log-linear generalised

linear mixed model, which includes known covariate risk factors that impact on disease risk

and a set of random effects that account for the spatial autocorrelation present in the dis-

ease data. The random effects are most commonly modelled by conditional autoregressive

(CAR) models introduced in Section 2.4.4, which assume spatial autocorrelation between

pairs of geographically neighbouring areal units by typically inducing a neighbourhood ma-

trix defined using the border sharing rule. These CAR models smooth the random effects (or

disease risks) in geographically adjacent areas towards each other. However in practice, real

spatial data are likely to contain areas of smooth evolution in disease risk as well as neigh-

bouring areas that exhibit substantially different disease risks. Thus enforcing a constant

level of spatial smoothness across the entire spatial region may obscure any discontinuities

in the disease risk surface, hinder the identification of high-risk areas and produce poor risk

estimates. As a consequence, there has been growing interest in developing modelling ap-

proaches which allow for discontinuities in the spatial risk pattern. Two fields are related to

this, namely spatial clustering and boundary analysis (see Section 2.6). The former allows

185
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for discontinuities by identifying clusters of areas that exhibit an elevated risk of disease

compared to their surrounding areas, while the latter allows for discontinuities by detect-

ing the locations of boundaries where there are large step-changes in disease risk between

geographically adjacent areal units. In this thesis I developed spatial and spatio-temporal

methodology that can carry out both risk estimation and discontinuity identification.

7.1 Spatial clustering approaches

Chapter 3 outlined a spatial modelling approach for estimating the spatial pattern in disease

risk and identifying clusters of high (or low) risk areas. In the first stage the approach

uses k-means clustering to create a set of candidate cluster structures, each of which is

used to construct a candidate neighbourhood matrix. In the second stage separate Bayesian

hierarchical models are applied to the data for each candidate neighbourhood matrix. The

most appropriate neighbourhood matrix, which corresponds to the most appropriate cluster

structure, is chosen using model selection rules such as the Deviance Information Criterion

and the effective number of independent parameters. A simulation study has shown that the

model with the cluster structure minimising the effective number of parameters exhibited

consistently good performance in terms of both risk estimation and cluster identification, and

particularly performed better than the Leroux model (Leroux et al., 2000). This modelling

approach treats the identification of the cluster structure as a model comparison problem. It

always identifies a single optimal cluster structure for the data, which is straightforward to

implement and understand for non-specialist users. However the approach does not quantify

the uncertainty in the cluster structure, because the neighbourhood matrix is fixed during the

modelling procedure when fitting each model.

Chapter 4 introduced an alternative spatial model which allows for uncertainty in the

cluster structure when estimating disease risk in the second stage. Here a variety of

clustering methods are used in stage one to construct a much bigger set of candidate cluster

structures than that in Chapter 3, including k-means clustering, k-medoids clustering,

hierarchical agglomerative clustering with centroid, complete, average and Ward linkage,

divisive clustering and expectation-maximisation clustering. The near 8-fold increase in

the set of candidate cluster structures gives much greater flexibility in cluster identification.

Likewise, each potential cluster structure is used to generate a candidate neighbourhood

matrix. In stage two, a single Bayesian spatial model is fitted to jointly estimate the disease
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risk across the study region and an appropriate cluster/discontinuity structure. The latter

is achieved by directly modelling the spatial correlation structure in the random effects,

where the neighbourhood matrix W̃WW is treated as a parameter to be estimated from the set

of candidates generated in stage one. This methodology does not require a comparison

of multiple models, which substantially reduces the computational time. In addition the

model may select a different neighbourhood matrix at each iteration of MCMC simulation,

thus the uncertainty in the cluster structure can be quantified and propagated through the

model. Two approaches were proposed for updating the choice of W̃WW in MCMC simulation.

Approach 1 updates W̃WW by using a Metropolis-Hastings step consisting of two MCMC

moves. Specifically, the first move uniformly draws a new proposal matrix from the

candidate neighbourhood matrices whose corresponding cluster structures are generated

from the same clustering method as the current matrix but with a different number of

clusters, while the second move proposes a new value from the candidate matrices whose

corresponding cluster structures have the same number of clusters as the current choice

but are generated from a different clustering method. In contrast, Approach 2 updates W̃WW

via a Metropolis-Hastings step which only proposes a new neighbourhood matrix once

at each MCMC iteration. The simulation study presented in Section 4.3 showed that the

first approach performed better than the second approach due to it providing slightly more

accurate risk estimates and less varied results. The study also illustrated that in the presence

of clusters and a relatively high number of expected cases (i.e. greater than 30), the proposed

model overall exhibited improved performance for estimating risks compared to the Leroux

model, and also behaved well in identifying accurate cluster structures with high adjusted

Rand Index (ARI) values being obtained in most cases. This is because the proposed model

accounts for the clusters in risk by estimating an appropriate neighbourhood matrix, which

better represents the spatial autocorrelation structure in the data.

The approach outlined in Chapter 4 is in a purely spatial setting, which was then ex-

tended to the spatio-temporal domain in Chapter 5. Here the spatio-temporal variation in the

data is decomposed into an overall temporal trend common to all areal units and separate

spatial surfaces for each time period. The temporal trend is modelled by a first order

autoregressive process, while the spatial surface is modelled by a separate Leroux CAR

prior. Two different model variants are considered, where the spatial clusters either remain

fixed or evolve over time. In model ST-A* the spatial clusters remain fixed during the entire

study period, thus a neighbourhood matrix W̃WW common to all time periods is estimated.
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In model ST-B* the clusters are allowed to vary dynamically over time, thus a separate

neighbourhood matrix W̃WW t is estimated for each time period. A simulation study was carried

out to comprehensively assess the performance of the cluster models and compare them to

an existing non-clustering model proposed by Napier et al. (2016). The proposed models

provided better risk estimates than the Napier et al. (2016) model in the cases where there

are clusters present in the data, and also identified accurate clusters as measured by the

adjusted Rand Index. When the risk surface is spatially smooth for each time period, model

ST-A* performed as well as the Napier et al. (2016) model. The cluster models performed

less well when the clusters are not pronounced and the expected disease counts are very

small, because in this scenario the clusters are hardest to identify based on their small size

and small numbers of disease cases. Comparing models ST-A* and ST-B*, the former with

constant clusters over time is more appropriate if the disease data have a high correlation in

time, whereas if the disease data are less temporally correlated and the cluster structures in

particular years are of interest, then the latter with temporally evolving clusters is a better

choice. In addition, in Chapter 4 the spatial dependence parameter ρ is fixed at 0.99 to

enforce strong spatial autocorrelation globally, so that the spatial correlation structure can be

modelled locally by estimating an appropriate neighbourhood matrix for the data. However,

whether we should fix the spatial dependence parameter or estimate it in the model is a

good question that should be considered. Therefore, in Chapter 5 I compared the modelling

performance when fixing the global spatial dependence parameters (ρs,ρst ) at 0.99 and

also when estimating them within the model. The simulation study showed that estimating

(ρs,ρst ) produced better results overall than fixing them at 0.99, although the latter needed

less computational time. Based on this result, I recommend estimating (ρs,ρst ) as part of

the model rather than fixing them when estimating disease risk.

The approaches described above have a common characteristic of accounting for clusters via

the spatial autocorrelation structure of the random effects. These approaches estimate the

disease risk and the cluster structure by only allowing for correlation between neighbouring

areal units that lie in the same cluster. If two adjacent areas are in different clusters then

spatial autocorrelation is not enforced between them and thus the estimated risks in these

areas are not smoothed towards each other. Furthermore, the clusters identified by our

approaches represent the number of distinct risk levels rather than the number of spatially

contiguous clusters. This is because each clustering method is applied to the data without

regard to the spatial positions of the areal units when generating the candidate cluster
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structures. Therefore, the identified clusters can contain areal units which are far apart

geographically but exhibit similar disease risks during the study period.

7.2 Boundary analysis

Unlike the approaches in Chapters 3, 4 and 5 that allow for risk discontinuities by seeking

for clusters of areas with similar or different disease risks, Chapter 6 introduced an approach

focusing on identifying the boundaries in the risk surface that separate geographically ad-

jacent areas that have very different risks. This two-stage approach is an extension of Lee

et al. (2021) by allowing for variation in the neighbourhood matrix, and hence in the bound-

aries identified, in the modelling process. In stage 1, a graph-based optimisation algorithm

is used to estimate multiple candidate neighbourhood matrices, which represent a range of

possible boundary structures in the data. The algorithm views the areal units as the vertices

of a graph and the neighbour relations as the set of edges. It estimates whether each edge

in the graph should be removed or not based on an objective function. If the edge between

adjacent areas (i, j) has been removed, then the value of the element wi j in the border shar-

ing WWW is changed from 1 to 0, suggesting the presence of a boundary between the two areas.

In stage 2, a Bayesian model is fitted to the data, where the spatio-temporal risk pattern is

represented with a multivariate first order autoregressive process with a spatially correlated

precision matrix. The neighbourhood matrix W̃WW , representing a boundary structure for the

data, is estimated from the set of candidates constructed in stage 1 when estimating dis-

ease risk, rather than naively being fixed based on geographical adjacency. The simulation

study in Section 6.4 showed that the proposed model exhibited much better risk estimation

and model fit than the global smoothing model developed by Rushworth et al. (2014) in the

presence of boundaries/discontinuities. This improved estimation is because our model can

flexibly capture either spatial smoothness or a boundary of step change in the data between

adjacent areas, while the global smoothing model enforces inappropriate spatial smoothing

between these areas that have very different data values, which leads to less accurate risk

estimates. The proposed model also performed well in terms of detecting the true locations

of boundaries in simulated data as measured by the AUC (area under the curve) statistics. In

addition, the study showed that the proposed model and the model developed by Lee et al.

(2021) performed broadly similarly in terms of risk estimation. This is probably because the

candidate neighbourhood matrices obtained in stage one do not differ much from each other,

thus the contribution of the model allowing for uncertainty in W̃WW to risk estimation is not very
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pronounced.

7.3 Results from applications to the Greater Glasgow res-

piratory disease data

Both of the spatial models introduced in Chapters 3 and 4 were applied to respiratory

disease data for the Greater Glasgow and Clyde Health Board region for 2016 to estimate

the spatial pattern in disease risk and identify possible clusters of areas of higher and lower

risks. Model P4 in Chapter 3 identified a cluster structure containing 5 distinct clusters

or risk levels, which produces the lowest effective number of parameters, while modelling

Approach 1 in Chapter 4 favoured a cluster structure with 2 clusters, which corresponds

to the posterior mode of W̃WW . Both models picked out the high-risk clusters in the east and

north of Glasgow city center such as Easterhouse, Drumchapel, Springburn and Possilpark.

They also identified some high risk areas to the south of the Clyde river, containing Govan,

Nitshill and Priesthill. Conversely, the low-risk clusters were found in the north east of

the city (e.g. Bearsden and Lennoxtown), in the prosperous West End of Glasgow (e.g.

Kelvinside and Jordanhill), as well as to the extreme south (e.g. Clarkston, Newton Mearns

and Eaglesham). In addition, model P4 also detected a cluster of areas with a medium level

of disease risk, for example the large rural areas of Inverclyde in the far west. These results

suggested that people living in deprived areas tend to have higher respiratory risks than

those living in affluent areas.

The spatio-temporal models proposed in Chapter 5 were applied to respiratory hospi-

tal admission data in the Greater Glasgow and Clyde Health Board from 2011 to 2017,

with the aim of estimating the spatial disease risk pattern over time and identifying the,

possibly temporally evolving, cluster/discontinuity structures in disease risk. Model ST-A*

assumes that the spatial clusters are constant over time, whereas model ST-B* allows them

to evolve over time. The two models produced similar disease risk patterns and showed

a generally increasing trend in risk over the 7-year period, with the average disease risk

increasing by 16%. Model ST-A* selected a cluster structure with 2 distinct clusters (or

risk levels) and this structure is common to all time periods. In contrast, model ST-B*

detected 5 or 6 different cluster levels depending on the year. The two models identified

a number of the same areas that have a high level of disease risk, and many of them are

the same areas that were identified as having high risks in 2016 in Chapters 3 and 4, such
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as Easterhouse, Govan, Drumchapel and Summerston. They also captured the locations

of cluster discontinuities, the majority of which occurred between neighbourhoods that

exhibited very different disease risks. For example, the high-risk areas Drumchapel and

Drumry to the north west of the health board are bordered to the north by the more affluent

and low-risk Bearsden area. The single IZ in the north east of the city near Kirkintilloch

had an elevated risk compared to its geographical neighbours. Model ST-B* captured the

evolution of clusters over time. For example, areas of Inverclyde were in a low-risk cluster

in 2011, whereas by 2017 they joined a moderately high-risk cluster.

The methodology presented in Chapter 6 was applied to the same respiratory disease

data as in Chapter 5. This approach produced broadly similar risk surfaces to those

estimated from Chapter 5, and also provided additional insight as to the locations of

boundaries corresponding to sizeable changes in disease risk between adjacent IZs. The

model identified 277 boundaries in the spatial risk pattern common to all time periods, which

comprise 41% of the total number of edges in the study region. The largest boundaries were

identified between Drumchapel and its neighbour Bearsden in the north-west, as well as

between Easterhouse and Garrowhill in the East End of the city. The results also showed

that some identified boundaries were close to physical barriers e.g. motorways, railways or

big roads, which are difficult to cross and make people living on either side hard to mix.

7.4 Limitations and future work

This thesis provided new approaches for estimating the disease risk and identifying

discontinuities in the spatial risk pattern in both spatial and spatio-temporal data. The

approaches proposed in Chapters 3, 4 and 5 identify clusters of areas that have elevated

or reduced risks compared to their neighbours. Here the clusters identified represent the

number of distinct disease risk levels and so are not spatially contiguous. However, it is

straightforward to induce spatial contiguity in the sets of clusters by a post-processing step

that simply relabels the non-contiguous parts as new clusters. Alternatively, the clustering

methods used in the first stage can be adapted to respect the spatial contiguity structure

of the study region. Note that the clustering approaches proposed here require the user to

define the maximum number of clusters (risk levels) appropriately when generating the

candidate cluster structures. One limitation to the spatio-temporal model with temporally

evolving clusters in Chapter 5 is that it might pick out some erroneous discontinuities,



CHAPTER 7. CONCLUSION 192

which is because each candidate cluster structure is elicited using data for a single year

and thus could be affected by random noise in the observed disease counts. Therefore

future work could consider estimating the candidate cluster structures for a given year

by clustering the data for the year in question and the q years before and after. The

spatio-temporal models in Chapters 5 and 6 were applied to the data collected for only

7 time points (2011-2017). If the data could be available for a longer time period, more

complex modelling of the temporal trend could be considered. The analysis of this thesis

only focuses on a single disease, thus it would be of interest to extend the proposed models

to spatial or spatio-temporal multivariate disease models. Models based on multiple diseases

allow for a more comprehensive and better understanding of the health profiles in Greater

Glasgow. Such a model could be ln(Ritd) = xxx⊤it βββ + φitd + θtd . Here Ritd represents the

disease risk in areal unit i during time period t for disease d, which is modelled by a disease

specific space-time effect φitd and a disease specific temporal effect θtd . The former can

account for spatial and between disease correlation in data by a multivariate space-time

CAR model proposed by Gelfand and Vounatsou (2003), while the latter can account for

temporal autocorrelation by a first (AR(1)) or a second (AR(2)) order autoregressive process.

The proposed models in this thesis can also be applied to an ecological regression

analysis which estimates the health impact of both good and bad exposures, by including co-

variates that are thought to be relevant in the explanation of disease risk variation over space

and time, such as socio-economic deprivation, demography, air pollution concentrations and

greenspace. The methods proposed in this thesis are based on aggregated disease count

data at the areal unit level, and they assume that the level of disease risk is constant within

each areal unit. Such methods are preferable in certain contexts, for instance, when disease

interventions and public health policies are employed on small areas and thus public health

experts and stakeholders are interested in areal-based estimates. However, in ecological

studies the aggregation of data causes the loss or concealment of certain details about

individuals. This may result in the ecological fallacy (Wakefield and Salway, 2001), which

occurs when an inference at the individual level is made simply based on aggregated data

for a group that those individuals belong to. Furthermore, the unknown spatial confounding

is likely to be driven by quantities that vary continuously in space (e.g. temperature, air

pollution, etc). Therefore, another area for future work could be to address the problems by

developing continuous domain models for disease mapping. Such an approach could create

a set of grid squares over the study region and then transform the areal unit data to the grid
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level scale, so that we can make continuous inference in disease risk at the fine grid level.

When the grid squares become smaller, the inference will get closer to an individual level

and the disease risk on a spatially continuous risk pattern will be estimated.
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