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Abstract

Anabolic androgenic steroids (AAS) are frequently detected doping substances in

competitive sports. In order to detect AAS doping with pseudo-endogenous steroids,

i.e. steroids that are produced in the human body, such as testosterone (T), urinary

concentrations of the athlete’s steroid profile are measured over time in the steroidal

module of the Athlete Biological Passport (ABP). Monitoring the urinary levels

of anabolic steroids can be highly challenging since the distinction between their

natural production and exogenous administration is difficult to ascertain. Current

methods for monitoring AAS are based on a univariate Bayesian model applied

on a single biomarker at a time. The first part of this research work focuses on

extending the current univariate Bayesian model to a multivariate adaptive model,

able to accommodate repeated measurements from various sensitive biomarkers and

their concentration ratios. The developed methodology was applied on data from

urine samples obtained from professional athletes. Among these samples, normal,

atypical, and abnormal values were identified. An anomaly detection technique

based on a one-class classification (OCC) algorithm was carried out to detect the

abnormal values within the athletes’ steroid profiles, either due to AAS misuse,

samples’ exchange or other confounding factors. In a Bayesian context, the main idea

is to construct adaptive decision boundaries around normal concentration values as

new data come, and differentiate them from the abnormal ones (also called outliers

or anomalies). Improved prediction performance was obtained when using the same

data applied on the proposed model and compared to standard methodologies.

Higher values of evaluation metrics suggest that the proposed approach can be used

to improve the accuracy of standard techniques for doping detection. The proposed

model was implemented in an Rshiny app for doping testing purposes. The BioScan

App is a web application which constitutes a user-friendly software for anti-doping

laboratories to use for athletes’ evaluation in real-life casework.

AAS also have the potential to identify metabolic imbalance and pathological con-

ditions such as benign prostatic hyperplasia and prostatic carcinoma. The second

research part focuses on developing novel methodology in statistical modelling to

improve prostate cancer diagnosis by analysing a variety of urinary steroids. The

proposed approach constitutes a non-invasive, low cost and an improved screening

method compared to the widely used PSA test. The thesis uses the Dirichlet process

(DP) models for a mixture of Gaussian distributions in a Bayesian framework as an

https://dimitraelegla.shinyapps.io/doping_shiny_app/
https://dimitraelegla.shinyapps.io/doping_shiny_app/


improved classification tool. This parameter-free model can be applied to both uni-

variate and multivariate data sets providing the flexibility of unknown and possible

infinite number of components. The models introduced by Görür and Rasmussen

(2010) have been extended to models with covariates, which account for possible

patterns within them. The main features of the DP mixture models with and without

covariate information are highlighted in this dissertation. Emphasis is given to the

model structure when covariates are included in the model using a technique to

reduce the number of model parameters. This technique also constitutes an elegant

way to deal with high-dimensional predictors, providing a significant contribution

in dimensionality reduction. The main goal is to compare their predictive perfor-

mance versus model complexity and computational effort. Given the mathematical

and practical convenience, the DP models are defined by specifying conditionally

conjugate priors for their base distributions. Markov chain Monte Carlo (MCMC)

methods, based on the Gibbs sampling and Adaptive Rejection Sampling (ARS),

are the required methods for each variable to generate samples from its conditional

distribution given the rest variables in the system. Clustering and classification

performance of the models are examined on simulated and real data. We focus on

the applications carried out on real clinical data regarding prostate cancer using this

methodology as an aim to classify prostate cancer conditions. The implementation

of DP-GMM using biomarkers only with age as a covariate increases the prediction

accuracy as compared to the corresponding covariate-free model. Finally, the pro-

posed classification model proved to be superior compared to the standard methods

of support vector machines (SVM) and linear discriminant analysis (LDA) on three

out of four applications on different data sets, including prostate cancer data.

Keywords: Adaptive rejection sampling, Anomaly detection, Bayesian nonpara-

metrics, Biomarkers, Dirichlet processes, Doping, Gaussian mixtures, Markov chain

Monte Carlo, Multivariate Bayesian multilevel model, One-class classifier, Predictive

models, Prostate cancer.
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Chapter 1

Introduction

“The important thing in the games is not winning but taking part. The essential thing

is not conquering, but fighting well.”

by the founder of the modern Olympic Games,

Baron Pierre de Coubertin

1.1 The “Steroid Profile”

The “Steroid Profile” (SP) is a long-established analytical method which can identify

and quantify a whole spectrum of steroid metabolites simultaneously in a single

analysis, instead of measuring a single analyte at a time. Steroid profiling has a wide

application in the study of disorders of human steroid biosynthesis and catabolism,

useful in avoiding uncritical and costly molecular diagnostic tests (Wudy et al.,

2018). Metabolic assessment is not only a powerful diagnostic tool, but also allows

for monitoring and studying a variety of conditions such as obesity, cancer, chronic

fatigue syndrome and depression. The technique divides into extraction of free

and conjugated steroids, steroid conjugate hydrolysis, free steroid re-extraction,

derivatisation and analysis by either gas chromatography (GC), gas chromatography-

mass spectrometry (GC-MS) or liquid chromatography tandem mass spectrometry

1
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(LC-MS-MS) (Chapter 17; Wheeler, 2013). All mass spectrometry based methods

are very powerful, however, GC-MS has been the golden standard for many years

(Krone et al., 2010; Kuuranne et al., 2014). These techniques are complementary

and highly sensitive instruments which are employed in analytical chemistry for

analysing, separating and categorising compounds of interest based on their mass in

a given sample (Chan et al., 2008; Wheeler, 2013). The samples analysed by GC

are principally liquids. According to Figure 1.1, reproduced from book of Wheeler

(2013) for Molecular Biology, shows an example of compounds with different chemical

properties separated using a chromatographic method.

Figure 1.1: Chromatographic separation principle (Wheeler, 2013).

In 1968, Horning used the expression “Steroid Profile” for the first time in his

publication about urinary steroid analysis by GC-MS. In addition to urine samples,

steroids can also be determined by using hair follicles or analysing blood samples.

Blood screening is more sensitive and it constitutes the current gold standard for

detecting abnormally elevated levels of synthetic hormones that exist in the human

body. However, urine tests are frequently used, because the samples they require

are easier to obtain and test since they are cheaper, less invasive and have fewer

potential complications than blood testing.
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A steroid profile includes all major metabolites of steroids. It usually consists

of the concentrations of the following markers:

� Testosterone (T),

� Epitestosterone (E),

� Androsterone (A),

� Etiocholanolone (Etio),

� 5α-Androstane-3α, 17β-diol (5α-Adiol),

� 5β-Androstane-3α, 17β-diol (5β-Adiol),

� Dehydroepiandrosterone (DHEA),

together with the specific gravity (SG) of the sample, which is a measure that

compares the density of urine to the density of water and provides information on

the kidneys’ ability to concentrate urine.

1.2 Steroid Profile Components

Testosterone is the primary male sex hormone which has been identified in the

mid-1930s. In men, testosterone plays a significant role as it is responsible for the

development of male reproductive tissues such as the testes and prostate, as well as

in promoting many male characteristics such as growth of muscle mass and body

hair. Testosterone is produced naturally by the human body. Its production affects

the way men store fat in the body, and even men’s mood. Testosterone is primar-

ily produced by the testicles in men. Women’s ovaries also produce testosterone,

though in much lower levels. Furthermore, testosterone is involved in health and

the prevention of osteoporosis. Insufficient testosterone levels in men may lead

to abnormalities including frailty and bone loss (Schulze et al., 2008; Society for

Endocrinology: Testosterone., 2018).

Epitestosterone, also known as isotestosterone, is an endogenous steroid and

the 17-α epimer of the androgen sex hormone testosterone which is excreted in the
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urine in concentrations similar to T. With respect to its structure, epitestosterone

has a similar configuration with testosterone. The only chemical difference is in the

configuration of the hydroxy-bearing carbon, on C17 (Catlin et al., 1997).

Androsterone is also an endogenous steroid hormone with a potency that is

approximately 1/7 that of testosterone. It is included in the human axilla, skin and

in the urine as well. Furthermore, it has been shown that the smell of androsterone

may affect human behaviour (Maiworm and Langthaler, 1992).

Etiocholanolone, also known as 5β-androsterone, is an etiocholane (5β-androstane)

steroid as well as an endogenous 17-ketosteroid that is produced from the metabolism

of testosterone. Etiocholanolone is excreted in the urine and elevated values of it

(along with testosterone and androsterone) can be detected in the urine of men

with androgenic alopecia (male pattern baldness) (Human Metabolome Database:

Etiocholanolone., 2018).

5α-Androstane-3α, 17β-diol (5α-Adiol or dihydroandrosterone) is a major

testosterone metabolite. It is the main steroid produced by the immature ovary.

Testosterone 5a-reduced metabolites, including dihydrotestosterone are produced in

the anterior pituitary and the central nervous system (Human Metabolome Database:

5a-Adiol., 2018).

5β-Androstane-3α, 17β-diol (5β-Adiol) or Etiocholanediol is a major metabo-

lite of dihydrotestosterone and belongs to the class of organic compounds known

as androgens and derivatives (Human Metabolome Database: Etiocholanediol., 2018).

DHEA or dehydroepiandrosterone is a precursor hormone produced from cholesterol

by the body’s adrenal glands, although it is also made by the gonads, the brain,

testes and ovaries in smaller amounts. Natural DHEA levels peak in early adulthood

and then slowly decline as people get older (Human Metabolome Database: DHEA.,

2018).
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Sections 1.3 and 1.4 discuss the key role of steroid profile in both doping con-

trol analysis and clinical diagnosis, respectively.

1.3 Steroid Profile and Doping

1.3.1 Historical Overview of Doping

The issue of doping in sports has been a concern since the 1920s when restrictions

on drug use by athletes were first thought necessary. In 1928 the International

Association of Athletics Federations (IAAF) - the athletics’ world governing body -

became the first international sports federation to forbid the use of specific substances

as doping products (Sottas et al., 2011; International Amateur Athletic Federation.,

2018). Doping has been widely discussed in recent years and it still remains a hot

topic in the athletic world. Assertions of doping have started since 1903 in the

Tour de France, an annual men’s bicycle race primarily held in France. Early Tour

riders used ether and consumed alcohol, among other substances, as a means of

diminishing the pain of competing in endurance cycling. A major drug scandal

happened in 1999 at the Tour de France with the American former professional

road racing cyclist, Lance Armstrong. In 2012, a United States Anti-Doping Agency

(USADA) investigation concluded that Armstrong had used performance-enhancing

drugs over the course of his career and named him as the ringleader of “the most

sophisticated, professionalised and successful doping programme that sport has ever

seen” (USADA: Armstrong L., 2018).

Another famous doping case prior to Armstrong’s confession, Benjamin Johnson,

was probably the world’s highest-profile drugs cheat. The Canadian former sprinter

tested positive for anabolic steroids at the 1988 Summer Olympics in Seoul. Johnson

had won the 100m final, lowering his own world record to 9.79 seconds but was

stripped of his gold medal after his positive urine test for the banned anabolic steroid

stanozolol (Baron et al., 2007).



Chapter 1. Introduction 6

1.3.2 Doping

In competitive sports, doping is the use of prohibited substances or methods by

athletic competitors in order to allow them to train harder, build more muscle and

illegally improve their athletic performance (Van Renterghem et al., 2008). Doping

is also used in endurance sports for improved recovery as overtraining can disrupt

the balance between anabolic and catabolic states of the hormones of the endocrine

system (Snyder and Hackney, 2013). The prevalence of doping in elite sports has

been estimated to be greater than 40%. However, this estimate can differ widely in

various groups of athletes. Steroids refer to the drugs that are closely associated with

the notion of doping (Van Renterghem et al., 2008; Mazzeo and Ascione, 2013; Ulrich

et al., 2018). Doping refers to an athlete’s use of banned drugs, called doping classes

(such as androgens, stimulants, hormones, diuretics, narcotics and cannabinoids) and

also the use of forbidden methods (such as blood transfusions or gene doping). These

are the types of drugs and methods that are banned in sport by sports’ governing

bodies and the World Anti-Doping Agency (WADA), established in November 1999,

due to the damage they can cause to athletes’ health (WADA, 2018b).

Abuse of anabolic steroids may lead to short-term effects such as mental prob-

lems (e.g. paranoid jealousy, extreme irritability, delusions etc.). Anabolic steroid

abuse may also lead to serious, even permanent, health problems. Some of the most

common physiological side effects of anabolic steroid abuse are:

� kidney damage,

� liver problems,

� cardiovascular problems,

� increased aggressiveness,

� male pattern baldness and severe acne,

� depression, and

� insomnia (inability to sleep).

There are also gender-specific effects, such as breast tissue development (gyneco-

mastia), shrinking of the testicles, impotence, reduction in sperm production and
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increased risk for prostate cancer for men. For women, common effects are the

deepening of the voice, cessation of breast development, increased facial hair or

excess body hair and enlarged clitoris (USADA: Side-Effects., 2018). Besides the

risk of athletes’ health, the use of performance-enhancing drugs can also violate the

spirit of sport, affecting fairness and equality for athletes worldwide.

1.3.3 The “Athlete Biological Passport”

In 2006, WADA with the support of several international sports federations recruited

a group of experts to develop a programme based on longitudinal profiling, or serial

analysis of indirect biological markers of doping, that was both scientifically and

legally robust. This culminated in the WADA Athlete Biological Passport (ABP)

Operating Guidelines and Technical Documents, introduced in Pottgiesser and Schu-

macher (2012).

A biological passport is an individual electronic document for professional athletes,

in which profiles of selected biomarkers of doping, relevant information including

training and also the results of doping tests are collated throughout their career. It

is worth noting that athletes have their own metabolism and different responses after

a drug intake, which creates significant inter-individual variation. The method of

ABP steroid profiling fights against doping, overcoming the limitations of population

cut-offs. Subsequently, if these biomarkers’ levels change significantly within the

steroid profile of an athlete, it alerts athlete passport management units (APMUs)

that anomalies have been detected that require further testing (Sottas et al., 2010;

Sottas et al., 2011; Vernec, 2014; WADA, 2021b). However, the ABP mostly aids in

revealing the direct and indirect effects of doping with anabolic agents rather than

detecting the prohibited substance itself (Kuuranne et al., 2014; Piper et al., 2021).
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1.3.4 Steroid Profile of ABP

The steroid profiling of ABP, also known as steroidal module, is used to denote a

follow-up, which essentially is the recording of the concentration levels and ratios

of endogenous steroids in urine over time. WADA and other anti-doping labora-

tories provide harmonised and robust analytical methods for the “steroid profile”,

which according to their technical document (TD) (WADA, 2021a), is composed by

the following endogenous anabolic androgenic steroids (EAAS): testosterone (T),

epitestosterone (E), androsterone (A), etiocholanolone (Etio), 5α-androstane-3α,

17β-diol (5α-Adiol or A5), 5β-androstane-3α, 17β-diol (5β-Adiol or B5), as well as

the ratios of selected steroids; i.e. T/E, A/T, A/Etio, 5α-Adiol/5β-Adiol (A5/B5)

and 5α-Adiol/E (A5/E).

The above mentioned are considered as valuable biological markers for the ad-

ministration of endogenous steroids and they are calculated to detect multiple forms

of steroid doping (Donike et al., 1983; Strahm et al., 2009; Van Renterghem et al.,

2010; WADA, 2018a). Specifically, the use of ratios provides a major benefit because

it can eliminate the dependence between plain markers and urine volume, but also

other factors that affect concentration.

The steroid profile is reported in the Anti-Doping Administration & Management Sys-

tem (ADAMS) by WADA accredited laboratories for all urine samples (Pottgiesser

and Schumacher, 2012). It is worth mentioning that monitoring the SP at individual

level is very important. The reason is the large inter-individual variability in the

urinary steroid concentrations caused by various factors, and thus the reference

values based on the population do not always have the sensitivity to track whether

anabolic drugs have been administered (Sottas et al., 2008; Van Renterghem et al.,

2010).

Furthermore, various confounding factors have been found in the evaluation of

an individual ABP steroid profiling. In 2014, Kuuranne et al. pointed out that

the factors which affect the levels of the main components of the steroid profile
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in urine are divided into two categories, i.e. the endogenous and the exogenous

factors. The major endogenous factors, which may lead to physiological variation

within the long-term steroid profile, are the athlete’s age, gender, ethnicity and

genetic polymorphisms. With regard to the urinary steroid profile, environmental

conditions, medications and diet are the main external factors which may cause

significant variations in the steroids metabolism. Multiple factors of confounding

are stored in the ABP for achieving improved decision making.

1.3.5 Anabolic Androgenic Steroids

Anabolic androgenic steroids (AAS) are natural steroidal hormones like the male sex

hormone testosterone (the most significant androgenic steroid) as well as synthetic

variations of androgens that are structurally related and have similar effects to testos-

terone. The word “anabolic” refers to muscle building, and the word “androgenic”

(i.e. andro = male, genic = formation) refers to the development and maintenance

of male sex characteristics such as the growth of facial and body hair. Figure 1.2 is

a graphical representation of the chemical structure of the natural AAS testosterone,

found in Human Metabolome Database: Testosterone. (2018). According to the

“Prohibited List 2018” of the World Anti-Doping Agency, AAS belong to the class

S1.1 and are banned in and out of competition (WADA, 2018b).

Anabolic androgenic steroids are divided into “Endogenous” and “Exogenous” AAS.

Endogenous anabolic androgenic refers to the administration of steroids that are

capable of being naturally produced by the human body, whereas exogenous AAS

replacement is when androgens enter directly into the body without being ordinarily

produced by it (WADA, 2018b). Exogenous AAS are usually given either orally in a

tablet form or injected into the muscles. Some steroids are also applied to the skin

in creams, gels or patches. Sometimes steroids are used in medicine, but illegal use

of AAS may involve doses 10 to 100 times higher than the normal prescription dose

(Van Renterghem et al., 2008; Mazzeo and Ascione, 2013; Andersen and Linnet,

2014; Davis, 2018).
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“Cycling”, “stacking”, and “pyramiding” are three common ways that anabolic

steroid abusers take their drugs believing that they can avoid unwanted side effects

or optimise the drugs’ effects. “Cycling” refers to taking a steroid for a specific

period of time, stopping thereafter for some time allowing body to rest, and then

restarting again. While “cycling” is associated with taking one type of steroid,

“stacking” is when people use more than one type of anabolic steroids at a time in

high dosages. There is the belief that combining two or more different types of

steroids at a time increases the effectiveness of each, over taking them individually.

“Pyramiding” combines “cycling” and “stacking”. The steroid abusers start taking

one or more steroids in a low dose which is progressively increased till the peak is

reached half way where the amount is maximised and it is then tapered to zero by

the end of the cycle (Mazzeo and Ascione, 2013).

Figure 1.2: Chemical structure of the natural anabolic androgenic testosterone
(androst-4-en-17β-ol-3-one), Human Metabolome Database: Testosterone. (2018).

1.3.6 Doping Control Programmes

Doping control programmes have become synonymous with body-derived tests;

steroid profiling, Adverse Analytical Findings (AAF) and Atypical Passport Find-

ings (ATPF), where longitudinal profiles of high level athletes are collected to

establish population-based comparisons and to test individual endocrine profiles

for miscellaneous hormones such as anabolic androgenic steroids, human growth
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hormone (hGH) and erythropoietin (EPO), through individual reference ranges.

These programmes play an important role in revealing the misuse of illegal substances

at individual level (Vernec, 2014; Kuuranne et al., 2014).

Some drugs such as steroids, often remain in the body for prolonged periods of time

and can be detected by testing urine or blood samples or even using hair follicles.

AAS are the class of substances that still gather a high number of AAF and ATPF,

due to the recent developments in methods of GC-MS and liquid chromatography

with tandem mass spectrometry (LC-MS-MS) that are being applied to detect

synthetic anabolic steroids of the biological passport in urine samples (Catlin et al.,

1997; Sottas et al., 2010; Mazzeo and Ascione, 2013; Andersen and Linnet, 2014; Parr

and Schänzer, 2010; WADA, 2019). Administration of synthetic forms of endogenous

anabolic androgenic steroids (EAAS) may lead to alterations of the urinary steroid

profile (Mareck et al., 2008; WADA, 2018a). For example, each substance the

sample contains has a unique “fingerprint” and as the analysts already know the

properties (e.g. the weight) of many steroids they are able to rapidly detect doping.

However, it is not always easy to perceive when a sample contains doping substances.

Some by-products of doping substances are so small they may not produce a strong

enough signal for detection. Consequently, EAAS have become the most popular

doping drugs, since the distinction between the endogenous or exogenous origin from

the substance remains challenging for the anti-doping laboratories, insomuch that

the EAAS is likely the most abundant misused family of substances in elite sports

(Van Renterghem et al., 2008).

Furthermore, “masking agents” and “diuretics” are included in the class S5 of

the “Prohibited List 2018” (WADA, 2018b). They are designer steroid drugs and

constructed to be less detectable removing fluid from the body. It is possible that

they may escape detection by giving a false negative test. However, the World Anti-

Doping Agency collaborates with many laboratories in order to develop improved

detection techniques for controlling the performance-enhancing drugs in the body.



Chapter 1. Introduction 12

Using blood screening is more likely to detect banned substances and is more

difficult to beat through “masking” methods. On the other hand, urine tests are

easier to obtain and no needle stick is required. Throughout the years of anti-doping

research, several urine tests have been developed to identify steroid abuse, such as

the human growth hormone (hGH) urine test. The hGH represents a hormone that

is naturally produced by the body. hGH stimulates many metabolic processes in

cells and plays an important role in muscle protein synthesis and organ growth. The

hGH test uses nanotechnology to bind and amplify hGH in urine so that it may

be detectable for a longer period of time. Blood screening can only detect hGH,

administered within the previous 24 to 48 hours. Nanotechnology may allow urine

detection out to a two-week range (Pottgiesser and Schumacher, 2012; WADA: HGH

test., 2018).

Other important screening tests for doping are the tests for testosterone abuse,

conducted in urine samples. Specifically, the most commonly used test over the last

years in forensic toxicology uses the ratio of urinary testosterone to epitestosterone

(T/E) due to it being considered a stable markers’ ratio within an athlete’s steroid

profile, but also sensitive to the administration of T. Measuring only the testosterone

levels has proved inadequate due to the small ratio of intra- to inter-individual

variability in the urinary steroid concentrations caused by various factors (Harris,

1974; Brooks et al., 1979; Sottas et al., 2006; Mareck et al., 2008). In 1993, Dehen-

nin and Matsumoto have pointed out that high levels of the ratio of testosterone

to epitestosterone in urine may indicate that an individual has taken exogenous

testosterone, since the administration of testosterone decreases the concentration of

epitestosterone. Since the 1980s, a T/E ratio of initially >6:1 and after 2004 >4:1

is considered suspicious of steroid doping (Donike et al., 1983; Schulze et al., 2008;

Van Renterghem et al., 2010; Andersen and Linnet, 2014). This screening test has

become an indispensable tool in anti-doping laboratories for the identification of

synthetic AAS in urine samples, despite the fact that the method is not sensitive

to indirect androgen doping. It is worth mentioning that a T/E recorded value

lower to this critical value does not necessarily mean that an individual has not
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used testosterone recently. Although, it is reported at the laboratories as a negative

result, it is recognised that it may be a false-negative (Catlin et al., 1997).

Other urine ratios such as testosterone over luteinizing hormone (LH) and the

introduction of sulfoconjugates with biomarkers, such as the ratio testosterone

sulfate/epistestosterone sulfate (Ts/Es), or testosterone glucuronide/testosterone

sulfate (Tg/Ts), or (Tg+Ts)/(Eg+Ts) and many others, have been used largely to

develop sensitive tests for AAS abuse. The major benefit of using the ratios instead

of the plain markers is the independence between ratios and urine volume, and also

other factors that affect concentration (Catlin et al., 1997; Sottas et al., 2010).

1.3.7 Limitations and Further Directions

According to the above, fighting against doping is a matter of high importance in order

to protect athletes’ health and the spirit of sport, but also to beat the sophisticated

network of black market doping programmes that follows the modern sports industry.

Given that the reference values based on the population are not always reliable to

track doping misuse, it is important to develop more robust methods to monitor

the steroid profile at individual level (Sottas et al., 2008; Van Renterghem et al.,

2010). Current approaches receive new measurements of a single biomarker or ratio

and, under a Bayesian framework, progressively adapt population-derived limits,

which are initially used when there are no recorded measurements, to individual

normal boundaries as the number of measurements increases (Sottas et al., 2006).

Multivariate statistical approaches have also been proposed for this purpose, which

are able to combine population information with individual longitudinal monitoring

of multiple biomarkers (Alladio et al., 2016; Amante et al., 2019). In contrast to

the large number of statistical models which analyse a sequence of biomarkers, the

development of robust methods for the detection of abnormal variations of multiple

longitudinal biomarkers has remained limited.
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1.4 Steroid Profile for Prostate Cancer Diagnosis

1.4.1 Prostate Cancer and Benign Prostatic Hyperplasia

Prostate cancer (PCa) is the uncontrolled development of cancer cells in the prostate,

which is currently the most frequently diagnosed non-skin cancer in men and a

frequent cause of morbidity and mortality. In fact, it is the fifth leading cause of

death worldwide among men over the age of 65 (Rawla, 2019). Benign prostatic

hyperplasia (BPH) is also very common urologic condition in older men and can cause

the urinary tract to be obstructed. Unlike prostate cancer, BPH is a non-cancerous

increase in size of the prostate. As men age, their testosterone levels increase, which

in turn causes their prostate to grow in size (Schenk et al., 2011). Early prostate

cancer is often asymptomatic, however the most common early symptoms of PCa

and BPH include difficulty with urination, increased urinary frequency, dribbling,

and frequent night-time urination.

The etiology of prostate cancer remains unknown and there is still no proven pre-

vention strategy for it. Research has shown that African American men, Caribbean

men, Black men in Europe and men with a family history in prostate cancer are

higher risk groups. Their higher prostate cancer incidence and mortality rates are

possibly due to certain genes which are more sensitive to mutations in prostate cancer

(Kheirandish and Chinegwundoh, 2011; Rawla, 2019). Except for age, ethnicity and

genetic factors, other risk factors that are related to PCa are physical activity and

diet. According to various studies, it is possible to reduce the risk of prostate cancer

by making healthy choices, such as exercising and eating healthy (Kolonel et al.,

1999; Fenton et al., 2018; Rawla, 2019).

1.4.2 Screening Programmes and Overdiagnosis

Serum prostate specific antigen (PSA) level and digital rectal examination (DRE)

constitute the major screening tests for PCa diagnosis. The PSA test measures
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the level of PSA (a specific prostate marker) in a man’s blood. For this test, a

blood sample is sent to a laboratory for analysis. The results are usually reported

as nanograms of PSA per milliliter (ng/mL) of blood, where elevated PSA levels

may indicate cancer of prostate (usually for PSA > 4 ng/mL) (Litwin and Tan,

2017). During the last decades since the PSA testing is used, the mortality rate due

to prostate cancer has declined. However, it is not clear whether this is caused by

PSA screening or by improved cancer treatments (Etzioni and Feuer, 2008). It is

noteworthy that PSA levels can also be raised by other non-cancerous conditions such

as BPH (Meigs et al., 1996; Mechergui et al., 2009). In such cases, a tissue biopsy

is the standard of care to diagnose prostate cancer. According to the American

Cancer Society (ACS), which systematically reviewed the literature assessing PSA

performance, the estimated sensitivity of a PSA cut-off of 4.0 ng/mL was 21% for

detecting any prostate cancer. Using a cut-off of 3.0 ng/mL increased the sensitivity

to 32%. The estimated specificity was 91% for a PSA cut-off of 4.0 ng/mL and

85% for a 3.0 ng/mL cut-off. Due to its high false negative error rate, the widely

used PSA testing has poorer discriminating ability, especially in men diagnosed with

symptomatic BPH, and remains somewhat controversial (Wolf et al., 2010).

Another important health problem regarding early detection of PCa is the po-

tential overdiagnosis of cases that would not have caused clinical consequences

during a man’s lifetime if left untreated. Overdiagnosis directly results to overtreat-

ment which can be extremely aggressive and might cause unnecessary side effects

(Wolf et al., 2010). According to the systematic review of Fenton et al. in 2018, PCa

overdiagnosis estimates range from 20.7% to 50.4%.

1.4.3 Relationship between Steroids and Prostate Cancer

Steroid hormones have a potentially important role in the pathogenesis of both

prostate cancer and benign prostatic hyperplasia, since the prostate function depends

on the hormonal physiology, which subsequently depends on several factors, such

as genetic, lifestyle and dietary factors (Kolonel et al., 1999; Albini et al., 2018).
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Especially, prolonged presence of androgens and estrogens in tissue and serum may

also induce significant alterations in the metabolism, which eventually may be a

crucial factor in the prostate enlargement that can play some part in the development

of BPH and PCa (Carruba, 2007). Mass spectrometry (MS) is currently the technique

of choice for the analysis of steroids in various biological samples and its applications

could lead to a diagnostic approach (Yeap, 2014; Adaway et al., 2015; Albini et al.,

2018). It is also very important to evaluate the quantitative ratio of steroids due to

their complex biological pathways and stoichiometry (Zhang et al., 2017). However,

the exact role of steroid hormonal factors has been poorly understood since the

precise mechanisms by which factors affect the process of prostatic carcinogenesis

are unknown.

1.4.4 Limitations and Further Directions

The emphasis should be, therefore, put on the need to investigate the association

between BPH and PCa with the levels of steroids. It is crucial to examine whether

other sensitive biomarkers, more accurate than PSA, can be applied with robust

statistical methods and provide a less invasive addition to the management, diagnosis

and prognosis of prostate cancer, reducing unnecessary prostate biopsies (Carruba,

2007; Kelly et al., 2016).

1.5 Thesis Objectives

This thesis focuses on evaluating urine metabolomic profiles in professional athletes

and patients with prostate cancer and benign prostate hypertrophy for anti-doping

and clinical purposes, respectively. The main objective is to extend standard

statistical methodologies on density estimation and taxonomy problems to propose

novel classification tests, designed for doping control analysis and prostate cancer

detection.
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In anti-doping research, univariate and multivariate statistical approaches have been

previously conducted, but Bayesian hierarchical modelling is still under-explored.

The first part of the thesis presents a Bayesian multilevel model to analyse multi-

variate longitudinal data from athletes. The main goal is to construct an adaptive

model which defines personalised threshold values for the various biomarkers of

each athlete as new observations become available. Semi-supervised classification

algorithms based on prior knowledge for the majority class of healthy individuals

are implemented to determine whether a value from a new urine sample belongs to

the normal class or behaves as an outlier that needs further investigation.

In prostate cancer research, Bayesian multivariate methods remain unexplored

in studying the utility of potential metabolite biomarkers, which could enhance the

prediction performance of prostate cancer. The second part of this work aims to

explore new target biomarkers based on pattern recognition methods to address

challenges in distinguishing patients with PCa from patients with BPH and healthy

individuals. The developed models are able to deal with high-dimensional and highly

correlated datasets and are intended to be used as an improved diagnostic tool in

terms of accuracy for reducing the morbidity and mortality from prostate cancer.

1.6 Thesis Structure

Chapter 1 gave an extensive description of the notions of the Steroid Profile and its

components, the Athlete Biological Passport and the Anabolic Androgenic Steroids

within the context of doping detection. It also collocated the importance of analysing

steroids for both prostate cancer and benign prostatic hyperplasia diagnosis. In

addition, it introduced the motivation behind using statistical modelling to delineate

the mechanism of metabolite biomarkers in the areas of forensic toxicology and

cancer research. Emphasis is given on the limitations and the need for robust

statistical methods, which can contribute significantly in these areas.
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Chapter 2 constitutes the first part of this work, which focuses on the devel-

opment of an improved non-invasive test for classifying athletes’ urine samples

into suspicious and non-suspicious classes. Recordings from athletes with normal

concentration values are easily available compared to doped athletes. Since the

imbalance in size between the two classes is unavoidable, the classification technique

we used is based on a one-class classification method (Khan and Madden, 2014).

The AAS concentration levels from non-doped athletes define the “target” class for

which adaptive decision boundaries are constructed to separate them from abnormal

data. The emphasis is on the flexibility of the proposed model, which takes into

account prior information on inter- and intra-individual variations, but also on

potential correlation between the EAAS markers. The multivariate Bayesian model

is gradually built under the following stages; a) the univariate Bayesian model, b)

the univariate Bayesian multilevel model, and c) the multivariate Bayesian multilevel

model, which are compared to other statistical methods previously used for the same

purpose. Inference and computations, such as the out-of-sample predictive distribu-

tion, were either based on samples from the known joint posterior distributions or

from a non-closed form distribution using the Markov chain Monte Carlo techniques,

depending on the model.

Chapter 3 presents the applications on real athletes’ urinary samples over time

consisting of confirmed normal and abnormal observations, which are carried out

to assess the performance of the models of Chapter 2. Due to its small sample

size, our dataset makes it challenging to estimate the distribution of the abnormal

class. Therefore, the strategy is to estimate the characteristics of the normal class

only and test every athlete’s measurement for deviations. A one-class classification

method is implemented in learning an efficient Bayesian classifier to discriminate

between non-suspicious and suspicious samples, either due to doping misuse or due

to other confounding factors, the results of which are discussed in this chapter. An

Rshiny application, called BioScan App, has been developed to apply the proposed

methodology specifically for athletes’ testing purposes.

https://dimitraelegla.shinyapps.io/doping_shiny_app/
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Chapter 4 focuses on the second part of this research work, in which the steroidal

biomarkers are used for constructing a machine learning Bayesian model to describe

prostate cancer’s behaviour. Novel classification methods are presented based on

Dirichlet Process Gaussian mixture models with and without covariates in a Bayesian

nonparametric framework.

Chapter 5 presents the performance of density estimation, clustering and classi-

fication methods implementing the Dirichlet Process Gaussian mixture models on

simulated and real clinical and non-clinical data. Model comparisons among other

methods suitable for prostate cancer detection demonstrate the superiority of the

developed methodology.

Chapter 6 concludes with a discussion of the research findings presented in this

thesis and provides proposals for future work.



Chapter 2

Adaptive models and anomaly

detection techniques for doping

2.1 Introduction

Many statistical methods have been developed for modelling the steroid profile of ath-

letes over the last years. Most of them are models based on measurements of certain

biological markers or ratios, such as testosterone (T), T/E, A/Etio, DHT/E, which

have been considered to be the most informative and indicative markers for moni-

toring the endogenous steroid abuse (Van Renterghem et al., 2008; Van Renterghem

et al., 2013). Moreover, until recently doping control laboratories used threshold

values to characterise a control sample as suspicious. One of the major problems

with this approach is that these thresholds are based on population measurements,

while physiological values of the urinary module may vary considerably among the

individuals due to many different reasons, such as ethnical variations. This indicates

that there is room for improvement on the methods to detect administration of

endogenous steroids (Saudan et al., 2006; Van Renterghem et al., 2008).

One of the basic tools of the ABP is the statistical model of Sottas et al., published

in 2006, which allows an optimised evaluation of longitudinal data. A major benefit

20
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of this approach is that as we take individual measurements into account we move

towards a subject-specific threshold that is obtained from a combination of the

population distribution and the individual subject’s distribution. When the number

of measurements from the subject is small, this threshold will be closer to the

population threshold, but with an increasing number of measurements, it will shift

towards the subject-specific distribution. This is the main idea behind the work of

Sottas et al. (2006), that is obtaining thresholds for a single and certain marker,

i.e. the T/E ratio, for the detection of abnormal variations. However, multivariate

statistical methods in a Bayesian framework have not yet been attempted.

2.2 Objectives

In this chapter, the three stages of the proposed Bayesian model are presented.

First, the univariate model, secondly, the univariate multilevel model, and lastly, the

multivariate Gaussian multilevel model. Emphasis is put on the process to extract

information from one or higher-dimensional probability distributions to classify the

new “unlabelled” data from athletes either to the normal class (non-suspicious),

if they adapt smoothly in the distribution of the “normals”, or to the abnormal

class (suspicious). In cases where the posterior density functions are not known,

the parameters of the models of normal athletes are estimated by using Markov

chain Monte Carlo (MCMC) sampling methods, which are described in Section

2.3.5. A semi-supervised learning technique using a one-class classification (OCC)

method is described in Section 2.3.8 (Khan and Madden, 2014). The OCC method

was applied to train the models using training sets only from the normal class, i.e.

the majority class. Throughout this chapter, all vector quantities are denoted by

bold-faced characters.
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2.3 Materials and Methods

2.3.1 The Univariate Bayesian Model

This section introduces an expanded version of the univariate Bayesian modelling

for T/E ratio proposed by Sottas et al. (2006) to a univariate Bayesian hierar-

chical method to model any steroidal component or ratio of the ABP. Under a

Bayesian framework, the model receives new measurements and progressively adapts

population-derived limits, when the number of measurements n is zero, to individual

normal boundaries, when n is large.

Let y = (y1, y2, ..., yn) represent the vector with the n log-transformed recorded

EAAS values collected from the same athlete. It is important to mention that the

period between two sequential samples of an athlete is assumed long enough for

them to be considered independent. Hence, we assume the logarithm of EAAS values

to be a vector of n independent and identically distributed draws from a Gaussian

distribution with mean µ and variance σ2, i.e. y
iid∼ N (µ, σ2). Note that we focus on

modelling the logarithm of these EAAS concentrations due to the fact that there

are physical constraints on the measurement values (i.e. all markers are positive)

and taking the logarithm allows us to use a Gaussian distribution to model the

log-transformed markers. Furthermore, we chose the Gaussian distribution allows us

to generalise the model of Sottas et al. (2006), which is also based on a Gaussian

distribution for the T/E ratio, to model any biomarker, as well as to easily extent

to a multivariate model using the Multivariate Gaussian distribution.

To describe our prior knowledge about the unknown parameters, i.e. the mean µ and

the precision τ = 1/σ2, we specified the joint prior distribution as the product of a

conditional and a marginal distribution expressed as p(µ, τ) = p(µ|τ)p(τ). Given

that we have limited prior information on the parameters of the model regarding the

six available biomarkers and their five ratios except for the T/E ratio, we discuss

the case of specifying less informative conditionally conjugate priors on these model
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parameters. The T/E ratio is excluded from the semi-informative prior setting

because there is adequate population information regarding its characteristics in the

paper of Sottas et al. (2006). However, we present its results in both cases of using

more and less informative priors for comparison purposes.

2.3.1.1 The Gaussian-Gamma Conjugate Family

This section is an introduction to the conjugate Gaussian-Gamma family of distribu-

tions where the posterior distribution is in the same family as the prior distribution

and leads to a marginal Student-t distribution for posterior inference for the mean of

the population. This model constitutes the simplest form of the proposed hierarchical

models and can be applied to any single marker or ratio at a time.

The Likelihood function

The probability density function of a generic draw yi is f(yi|µ, σ2) = 1√
2πσ2

e−
1

2σ2 (yi−µ)2 .

Hence, the likelihood for all observations is

L(µ, σ2;y) =
n∏

i=1

f(yi|µ, σ2) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(yi − µ)2
}
, (2.1)

for y, µ ∈ R and σ > 0. With some algebraic computations (see Appendix A; A.1),

the likelihood function for the mean, µ, and the precision, τ = 1/σ2, can be expressed

as

L(µ, τ ;y) ∝ τn/2 exp
{
− τ

2

n∑
i=1

(yi − ȳ)2
}
exp

{
− τ

2
n(ȳ − µ)2

}
, (2.2)

where ȳ is the sample mean. In equation (2.2), the likelihood is proportional to a

product of two parts; that is a term that is a function of τ and the data, and a term

that involves µ, τ and the data.

Conditional conjugate priors for µ and τ

As both the mean µ and the precision τ = 1/σ2, are unknown parameters, we need
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to specify a joint prior distribution, p(µ, τ), to describe our prior knowledge about

them. Based on the factorised likelihood in equation (2.2), and the fact that any

joint distribution can be expressed as the product of a conditional and a marginal

distribution, the joint distribution for µ and τ can be expressed as

p(µ, τ) = p(µ|τ)p(τ), (2.3)

which is the product of the conditional distribution for µ given τ and the marginal

distribution for τ . Therefore, the prior setting is hierarchical. We first specify a prior

to the mean conditional on the inverse variance. As the conjugate prior distribution

for µ given τ is a Gaussian distribution, we will rely on this to assign the Gaussian

distribution to the mean conditional on the precision as

µ|τ ∼ N (µ0, 1/(κ0τ)), (2.4)

with hyper-parameters µ0 (prior mean) and κ0 (prior sample size). The prior sample

size κ0 determines how tight is the prior, that is, how probable we deem µ to be very

close to the prior mean µ0. As the prior sample size becomes larger, 1/κ0τ becomes

smaller, which indicates that we know the mean with more precision (relative to the

variability in observations). On the other hand, smaller prior sample size indicates

less precision or more uncertainty. Hence, a non-informative prior can be specified

when κ0 = 0.

Since the precision τ is also unknown, we assign a prior distribution to describe

the uncertainty about it before seeing the data. This parameter is non-negative,

continuous, and with no upper limit. It turns out that the inverse of the variance

has a conjugate Gamma prior distribution expressed as

τ ∼ Ga(α0, β0), (2.5)

with probability density function

p(τ) ∝ τα0−1 exp{−β0τ}, (2.6)
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where α0 and β0 determine the shape and rate parameters, respectively. From

equation (2.3), the multiplication of both priors gives us the joint distribution for

the pair (µ, τ), which is called Gaussian-Gamma family of distributions

(µ, τ) ∼ NGa(µ0, κ0, α0, β0), (2.7)

with hyper-parameters µ0, κ0, α0 and β0. The joint probability density function is

written as

p(µ, τ) =
βα0
0

Γ(α0)

(
κ0

2π

) 1
2

τα0−1/2 exp

{
− τ

2
[κ0(µ− µ0)

2 + 2β0]

}
. (2.8)

This suggests that the posterior distribution will be the product of two conjugate

distributions, as we can see in equation (2.9).

Conjugate posterior distribution

As a conjugate family, the joint posterior distribution for the pair of parameters

(µ, τ) is in the same family as the prior distribution when the sample data arise from

a Gaussian distribution, i.e. the posterior is also a Gaussian-Gamma distribution

(see Appendix A; A.2)

µ, τ |y ∼ NGa(µn, κn, αn, βn), (2.9)

where the index n on the hyper-parameters indicates the updated values after

seeing the n observations from the sample data. One utility of conjugate families

is in the relatively simple updating rules, which can be used for obtaining the new

hyper-parameters as

κn = κ0 + n (2.10)

µn =
κ0µ0 + nȳ

κn

(2.11)

αn = α0 + n/2 (2.12)

βn = β0 +
1

2

n∑
i=1

(yi − ȳ)2 +
κ0n

2κn

(ȳ − µ0)
2, (2.13)
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where the updated hyper-parameter µn is the posterior mean for µ; it is also the

mode and median. The posterior mean µn is a weighted average of the prior mean µ0

and sample mean ȳ with weights w1 =
κ0

κ0+n
and w2 =

n
κ0+n

that are proportional to

the prior sample size, κ0, and the sample size, n, respectively. The posterior sample

size κn is the sum of the prior sample size κ0 and the sample size n, representing

the combined sample size after seeing the data. The posterior shape parameter

αn is also increased by adding a half of the sample size (n/2) to the prior shape

parameter α0. Finally, the posterior sum of squares, βn, combines the prior sums

of squares, β0, and the sample sum of squares
∑n

i=1(yi − ȳ)2. Similarly, we can

interpret the third term as the discrepancy between the prior mean and sample mean.

The joint posterior distribution is a hierarchical model, where in the first stage of

hierarchy the precision marginally follows a Gamma distribution

τ |y ∼ Ga(αn, βn), (2.14)

and in the second stage, µ given τ has a conditional Gaussian distribution

µ|y, τ ∼ N (µn, (κnτ)
−1). (2.15)

This representation of the model is convenient for generating samples from the

posterior distribution.

Marginal distribution for µ

The marginal inference requires the unconditional or marginal distribution of µ that

“averages” over the uncertainty in τ . To compute the marginal distribution of µ

this averaging is performed by integration, and as we can see below, it leads to a

Student-t distribution with density

p(µ|y) ∝
∫ ∞

0

p(µ, τ |y)dτ
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∝
∫ ∞

0

Ga(a,b)︷ ︸︸ ︷
τ

a︷ ︸︸ ︷
2α0 + n+ 1

2
−1

exp

{
− τ(β0 +

(κ0 + n)(µ− µn)
2

2
+

∑n
i=1(yi − ȳ)2

2
+

κ0n(ȳ − µ0)
2

2(κ0 + n)︸ ︷︷ ︸
b

)

}
dτ

∝ Γ(a)

ba
∝

(
β0 +

(κ0 + n)(µ− µn)
2

2
+

∑n
i=1(yi − ȳ)2

2
+

κ0n(ȳ − µ0)
2

2(κ0 + n)

)− 2α0+n+1
2

∝
(
1 +

1

2(α0 +
n
2
)

(α0 +
n
2
)(κ0 + n)(µ− µn)

2

β0 +
1
2

∑n
i=1(yi − ȳ)2 + κ0n

2(κ0+n)
(ȳ − µ0)2

)− 2α0+n+1
2

. (2.16)

If we write t = (µ− µn)/
√
βn/(αnκn), then we get a density for t proportional to

(
1 +

t2

2αn

)−(2αn+1)/2

, (2.17)

and this is proportional to the density of a standard Student’s-t distribution which

is is centered at µn (the location parameter), scaled at βn/(αnκn) (squared scale

parameter) like in a standard Gaussian, and with 2αn degrees of freedom. We can

thus express the distribution of the parameter µ given the data as

µ|y ∼ t2αn(µn, βn/(αnκn)). (2.18)

The parameters µn and βn play similar roles in determining the centre and dis-

persion of the distribution as in the Gaussian distribution, however, as Student-t

distributions with degrees of freedom less than 3 do not have a mean or variance,

the parameter µn is called the location of the distribution and the βn/(αnκn) is the

scale.

The Student-t and Gaussian distributions are both symmetric about the centre and

unimodal (i.e., single-peaked). The difference between them is that the Student-t

distribution is less concentrated around its peak and its tails are fatter. Figure 2.1

displays the probability density function of Student’s-t distribution with various

degrees of freedom in comparison to the Gaussian distribution.
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Figure 2.1: Standard Gaussian (or Normal) and various Student-t densities.

Posterior approximation

Here, we use a trivial example to examine the sampling performance of Gibbs sampler

compared to sampling from the exact posterior distribution. Therefore, we overlook

the conjugacy for the joint posterior as we described earlier in Section 2.3.1.1, as

well as the information that the distribution of τ given the data is not dependent on

µ, as it is shown in equation (2.14). Consequently, through the introduction of the

data we hierarchically pass from the prior evidence to the revised knowledge (see

Appendix A; A.3), expressed in the posterior density

p(µ, τ |y) ∝ τ
2α0+n+1

2
−1e

− τ
2
[β0+(κ0+n)(µ−κ0µ0+nȳ

κ0+n
)2+

κ0n(ȳ−µ0)
2

κ0+n
+
∑n

i=1(yi−ȳ)2]
. (2.19)

Assuming that we cannot observe whether the joint posterior can be stated in a

closed form, the Gibbs sampling algorithm (Casella and George, 1992) is applied in

order to generate parameter samples from the target distribution. In this case the

joint posterior distribution p(µ, τ |y) can be expressed as

p(µ, τ |y) = p(µ|y)p(τ |µ,y) = p(τ |y)p(µ|τ,y). (2.20)
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To apply the Gibbs sampler and simulate the parameters µ and τ , we need to identify

the full conditional posterior distributions for these parameters (see Appendix A; A.4).

As we can see below in equations (2.21) and (2.22), both conditional distributions

have the same starting point, the full joint posterior distribution. This means that

after a number of Gibbs steps, the sampler finally obtains a sample from the target

distribution without computing any integrals. The conditional distributions for the

mean µ and the variance τ are

p(µ|τ,y) ∝ p(µ, τ |y) ∝ e
− τ(κ0+n)

2
(µ−nȳ+κ0µ0

κ0+n
)2
, (2.21)

which implies that µ|τ,y ∼ N
(

nȳ+κ0µ0

κ0+n
, 1
τ(κ0+n)

)
, and

p(τ |µ,y) ∝ p(µ, τ |y) ∝ τ
2α0+n+1

2
−1e−τ [

∑n
i=1(yi−µ)2

2
+

κ0(µ−µ0)
2

2
+β0], (2.22)

where τ |µ,y ∼ Ga
(

2α0+n+1
2

,
∑n

i=1(yi−µ)2

2
+ κ0(µ−µ0)2

2
+ β0

)
.

Under conditional conjugacy, each simulation step is simple and the sampler gener-

ates a Markov chain (µ(t), τ (t)), where t takes values from 1 up to T , according to the

following steps of Algorithm 2 in Section 2.3.5.2. If yn+1 is the next measurement,

we would subsequently like to compute the probability function of that new test

result given the previous recorded values. This can be found by computing the

following predictive density

p(yn+1|y1, y2, ..., yn) =
∫ ∫

f(yn+1|µ, τ)p(µ, τ |y1, y2, ..., yn)dµ dτ, (2.23)

which is exactly equivalent to the following density after using Bayes’ theorem and

under the assumption of independent measurements

p(yn+1|y1, y2, ..., yn) =
∫ ∫ n+1∏

i=1

f(yi|µ, τ)
p(µ, τ)

p(y1, y2, ..., yn)
dµ dτ. (2.24)
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2.3.1.2 Modelling the T/E Ratio

This section presents the Bayesian model applied on the raw T/E ratio, an approach

proposed by Sottas et al. (2006). One of the main differences between this approach

and the univariate model of section 2.3.1 is that now we model the raw instead

of the log-transformed concentration values of the specific marker ratio T/E. A

second difference is that in this section the prior setting is informative since there is

adequate population information regarding the T/E ratio.

Suppose now that y = (y1, y2, ..., yn) represents the observable vector with the n

recorded values of the raw ratio Y = testosterone/epitestosterone, measured on the

same individual. Let us assume that y1, y2, ..., yn are conditionally mutually indepen-

dent and each yi comes from a Gaussian distribution, yi|µ, σ
iid∼ N (µ, σ2), i = 1, ..., n.

Therefore, the likelihood function for all observations is given by

L(µ, σ;y) =
n∏

i=1

f(yi|µ, σ) =
1

σn(2π)
n
2

exp
{
− 1

2σ2

n∑
i=1

(yi − µ)2
}
, (2.25)

for y, µ ∈ R and σ > 0. We also take into account prior beliefs on the inter-individual

variability, which is expressed by the joint distribution p(µ, σ). We use the joint

prior distribution of µ and σ in equation (2.27), after correcting the formula in

Sottas et al. (2006) p(µ, σ) = p(µ) p(C)µ , (2.26)

where C is the coefficient of variation (C = σ
µ
). We have also used the same values for

hyperparameters, which have been provided in Sottas et al. (2006). It has been found

that there is a strong correlation between µ and σ, but no correlation between µ and

C. Consequently, we could use this knowledge accompanied by the transformation

theorem in order to build the joint distribution of µ and σ as (see Appendix A; A.5)

p(µ, σ) = p(µ) p(C)
1

µ
. (2.27)

We then consider the following prior log-Gaussian distributions

p(C) =
1√

2πv2C
e−

(log C−m)2

2v2 (2.28)
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or

C ∼ LN (m = −1.74, v2 = 0.392), (2.29)

and
µ ∼

2∑
k=1

πk · LN (mk, v
2
k), (2.30)

where m = (−1.96, 0.34) and v2 = (0.362, 0.592) are the mean and the scale param-

eters of the two-component log-Gaussian mixture. Therefore, we have the following

prior distributions for the coefficient of variation expressed on the logarithmic scale

for convenience, and for µ, respectively

log p(C) = −(log C−m)2

2v2
− log C + c (2.31)

p(µ|π1, π2) = π1 · p1(µ) + π2 · p2(µ) = π1 ·
e
− (log µ−m1)

2

2v21

v1
√
2πµ

+ π2 ·
e
− (log µ−m2)

2

2v22

v2
√
2πµ

, (2.32)

where πk is the probability that a unit belongs to subpopulation k of the biomarkers

distribution, with
∑2

k=1 πk = 1, and c includes all the constant terms. The mixing

proportions are given in Sottas et al. (2006) which are π1 = 0.13 and π2 = 0.87.

Consequently, we can hierarchically pass from the prior evidence to the revised

knowledge, expressed in the log-posterior density, through the introduction of the

data

log p(µ, σ|y) ∝ − 1

2σ2

n∑
i=1

(yi − µ)2 − 1

2v2
(log σ − log µ−m)2 − (n+ 1) log σ − log µ

+ log

(
π1 ·

e
− (log µ−m1)

2

2v21

v1
+ π2 ·

e
− (log µ−m2)

2

2v22

v2

)
.

(2.33)

An alternative and useful way to write out this model is using what is called a

graphical representation. To write a graphical representation of our model as a

Bayesian network, we reverse the order starting with the priors and finishing with

the likelihood. In the graphical representation in Figure 2.2, we draw nodes for µ,

C, σ and the data y. A parameter in a circle means that it is a random variable
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which has its own distribution. Once we have the parameters, we can generate

the data y. The exchangeable data are represented as nodes, which now live in a

double circle, indicating that these are also random variables but they are observed.

Furthermore, the arrows indicate the dependence of the distribution of the data on

µ and σ. This means that σ, which is obtained by the multiplication of the variables

µ and C, influences the distribution of the data and subsequently µ influences the

distributions of both; σ and data.

Figure 2.2: Graphical representation of the Bayesian hierarchical model accom-
panied by the prior distributions for the mean and the coefficient of variation of

yi’s based on knowledge regarding the population.

Posterior approximation

As we can observe in equation (2.33), the joint posterior cannot be stated in a closed

form. Therefore, we apply MCMC sampling to generate draws from the posterior

distribution by constructing a reversible Markov chain that has the target posterior

distribution as its equilibrium distribution. A Metropolis-Hastings algorithm (MH)
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can be used to simulate a Monte Carlo sample from the posterior distribution

(Chib and Greenberg, 1995). Algorithm 1, presented in Section 2.3.5.1, samples

candidates for all the parameters at once and accepts or rejects all of those candi-

dates simultaneously. A second option is to use a hybrid algorithm that combines

Metropolis-Hastings and Gibbs sampling, commonly called Metropolis-within-Gibbs

(MWG). We choose to apply both algorithms; MH and the componentwise MWG

algorithms for a large number of iterations, T . For the first sampling method, only

the joint posterior distribution p(µ, σ|y) is needed. However, for the latter algorithm,

we need to express the joint posterior as the product of the conditional posteriors as

p(µ, σ|y) = p(µ|y)p(σ|µ,y) = p(σ|y)p(µ|σ,y). (2.34)

To apply the Gibbs sampler for µ and σ, the full conditional posterior distributions

for each parameter needs to be specified. In equations (2.35) and (2.36), both

log-scaled conditional distributions have the same starting point; that is the full

joint posterior distribution as

log p(µ|σ,y) ∝ log p(µ, σ|y) ∝ − 1

2σ2
nµ(µ− 2ȳ)− 1

2v2
(log2µ− 2 log σ log µ+ 2m log µ)

+ log

(
π1 ·

e
− (log µ−m1)

2

2v21

v1
+ π2 ·

e
− (log µ−m2)

2

2v22

v2

)
− log µ,

(2.35)

and

log p(σ|µ,y) ∝ log p(µ, σ|y) ∝ − 1

2σ2

n∑
i=1

(yi − µ)2 − (n+ 1) log σ

− 1

2v2
(log2 σ − 2 log µ log σ − 2m log σ).

(2.36)

The MWG sampler generates a Markov chain (µt, σt) according to the steps of

Algorithm 5, presented in Section 2.3.5.3. Similar to the equation (2.24), if yn+1 is

the next observation of that biomarker, the predictive density is

p(yn+1|y1, y2, ..., yn) =
∫ ∫ n+1∏

i=1

f(yi|µ, σ)
p(µ, σ)

p(y1, y2, ..., yn)
dµ dσ. (2.37)
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2.3.2 The Univariate Multilevel Model

This section introduces the Gaussian multilevel model which includes repeated

log-transformed measurements from a single marker for each individual. This model

separates inter-subject and intra-subject variation by dividing the error term εij into

two terms

yij = µ+ εij = µ+ bj + eij, bj
iid∼ N (0, σ2

b ), eij
iid∼ N (0, σ2

e), (2.38)

where yij denotes the logarithm of the ith observation of the jth individual, µ is the

fixed effects term denoting the overall mean of the marker, the subject-level bj is the

random effect, eij is the random variable for other variation of subject j in its ith

measurement, where i = 1, 2, ..., nj (nj : total number of measuremnets of the jth

individual), and j = 1, 2, ..., J . The assumptions here are that bjs are independent,

identically and normally distributed between subjects, and eijs are assumed to

be independent, identically and normally distributed between and within subjects.

Shorthand notation for each of the parameters in this model are µ; b = {bj}Jj=1; the

between-subjects variance σ2
b ; and the within-subjects variance σ2

e . Suppose we have

the following Bayesian hierarchical model for the variable Y

yij|µj, σ
2
e

iid∼ N (µj = µ+ bj, σ
2
e),

µ
iid∼ N (µ0, σ

2
0)

bj|σ2
b

iid∼ N (0, σ2
b )

σ2
e

iid∼ IGa(α1, β1)

σ2
b

iid∼ IGa(α2, β2),

(2.39)

where µ0 and σ2
0 are historical prior information, and α1, α2, β1 and β2 could be

selected such that the priors for inter- and intra-variations will be non-informative.

For more details on mixed effects models and Bayesian hierarchical structures on

these models see Pinheiro and Bates (2000) and Gelman et al. (2013).
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Posterior approximation

Here, the exact joint posterior distribution cannot be calculated, but we can ap-

proximate the posterior parameters given the raw data by using Gibbs sampling.

To implement the Gibbs sampler (see Algorithm 3 in Section 2.3.5.2), we first

need to find the full conditional posterior distribution for all unknown parameters,

θ = (µ, {µj}Jj=1, σ
2
e , σ

2
b ) (see derivations in Appendix A; A.6), which are

µ|{µj}Jj=1, σ
2
b , σ

2
e ,y ∼ N

(∑J
j=1 µj σ

2
0 + µ0σ

2
b

Jσ2
0 + σ2

b

,
σ2
bσ

2
0

Jσ2
0 + σ2

b

)

µj|µ, µ−j, σ
2
b , σ

2
e ,y ∼ N

(∑nj

i=1 yijσ
2
b + µσ2

e

njσ2
b + σ2

e

,
σ2
bσ

2
e

njσ2
b + σ2

e

)

σ2
e |µ, {µj}Jj=1, σ

2
b ,y ∼ IGa

(
shape =

n

2
+ α1, scale =

∑J
j=1

∑nj

i=1(yij − µj)
2 + 2β1

2

)

σ2
b |µ, {µj}Jj=1, σ

2
e ,y ∼ IGa

(
shape = J/2 + α2, scale =

∑J
i=j(µj − µ)2

2
+ β2

)
,

where J is the total number of subjects, and the subscript −j denotes all indices

except j.

Note that this model constitutes an intermediate stage between the univariate

and the multivariate multilevel models. We only intend to present the theoretical

background without using any applications on it, since it is not the focus of this

thesis.

2.3.3 The Multivariate Bayesian Multilevel Model

In Sottas et al. (2006) approach, the T/E marker is modelled by a univariate Gaussian

distribution within a Bayesian context. In this section, we present a multivariate

Gaussian multilevel model (MGMM) as a generalisation of the univariate model,
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which can deal with a wide variety of markers as response variables in their logarithmic

scale. The MGMM model is expressed as

yijk = µk + bjk + eijk, bj
iid∼ NK(0,Ω

−1
b ), eij

iid∼ NK(0,Ω
−1
e ), (2.40)

where yijk denotes the logarithm of the ith observation of kth marker for the jth

athlete, µk is the fixed effect for the overall mean of all observations of kth response

marker, bjk is the random effect of athlete j for the kth marker, and eijk is the random

term for other variation in its ith measurement, while i = 1, 2, ..., nj, j = 1, 2, ..., J

and k = 1, 2, ..., K. The assumptions here are that the random effects bjks are

independent, identically and normally distributed between subjects of the same

variable k, but there is a correlation between the K markers in the same athlete.

The error terms eijks are also independent, identically and normally distributed

between and within subjects. Shorthand notation for each of the parameters in the

model are µ = {µk}Kk=1, b = {bjk}J K
j=1 k=1, and Ωb and Ωe are the precision matrices

for bj and eij, respectively. Ωµ is the unknown precision matrix of the overall mean

µ. Suppose we have the following Bayesian hierarchical multiple response model

yij|µj
iid∼ NK(µj = µ+ bj , Ω

−1
e )

µ |µ0
iid∼ NK(µ0, Ω

−1
µ )

bj
iid∼ NK(0, Ω

−1
b )

Ωe
iid∼ Wi(de, Se)

Ωµ
iid∼ Wi(dµ, Sµ)

Ωb
iid∼ Wi(db, Sb),

(2.41)

where the overall mean µ and the random effects µj have conjugate multivariate

Gaussian priors, while the precision matrices Ωe, Ωµ and Ωb have conjugate Wishart

hyperpriors placed on each of them. Historical prior information about all response

variables is captured by the prior mean vector µ0. Moreover, de, dµ and db denote

the degrees of freedom, and Se, Sµ and Sb are prior covariance matrices which are

selected such that the prior distribution for them will be non-informative. The
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degrees of freedom of the Wishart distribution need to be greater than the data

dimension minus one, i.e. de > K − 1, where the first moment of the Wishart

distribution do exist. Furthermore, the distribution will be non-informative when

the hyperparameter for the degrees of freedom is equal to the dimension K (number

of parameters). For details related to the Wishart distribution see DeGroot (2005).

The prior scale matrices Se, Sµ and Sb are all set equal to (1/1000)IK so that, as we

similarly did for µjs, posterior inferences would be largely driven by the data. The

graphical representation of the MGMM model is depicted in Figure 2.3.

µ bj Ωe

yij

Gaussian Gaussian Wishart

Gaussian

Ωµ Ωb

Sµ dµ

Se de

Sb db

µ0

Wishart Wishart

i = 1, . . . , nj

j = 1, . . . , J

second level
hyperparameters

hyperparameters

parameters

observations

Figure 2.3: A graphical representation of the multivariate Gaussian multilevel
model (MGMM) with conjugate priors. The overall mean, µ, and the precision

matrix, Ωe are assumed to be independent.

Posterior approximation

We approximate the posterior parameters by using Gibbs sampling. As previously,

to apply the Gibbs sampler (see Algorithm 4 in Section 2.3.5.2), the full conditional

posterior distributions for all unknown parameters θ = (µ, {µj}Jj=1,Ωe,Ωµ,Ωb) are

calculated as follows (see details in A; A.7)
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µ |{µj}Jj=1,Ωe,Ωµ,Ωb,y ∼ NK(A
−1
n bn, A

−1
n )

µj|µ,µ−j ,Ωe,Ωµ,Ωb,y ∼ NK(A
−1′

n b′n, A
−1′

n ) ∀ j = 1, ..., J

Ωe|{µj}Jj=1,µ,Ωµ,Ωb,y ∼ Wi(d′e, S
′
e)

Ωµ|{µj}Jj=1,µ,Ωe,Ωb,y ∼ Wi(d′µ, S
′
µ),

Ωb|{µj}Jj=1,µ,Ωe,Ωµ,y ∼ Wi(d′b, S
′
b),

where

An = JΩb + Ωµ

bn = Ωµµ0 + JΩbµ̄

µ̄ =
1

J

J∑
j=1

µj

A′
n = Ωb + njΩe

b′n = Ωbµ+ Ωe

nj∑
i=1

yij

d′e = de + n

n =
J∑

j=1

nj

S ′
e = S−1

e +
J∑

j=1

nj∑
i=1

(yij − µj)(yij − µj)
T

d′b = db + J

S ′
b = S−1

b +
J∑

j=1

(µj − µ)(µj − µ)T .

d′µ = dµ + 1

S ′
µ = S−1

µ + (µ− µ0)(µ− µ0)
T .



Chapter 2. Adaptive models and anomaly detection techniques for doping 39

2.3.4 The Generalised Linear Mixed Model

The generalised linear mixed model (GLMM) is an extension of the generalised

linear model (GLM) to allow response variables from different distributions, such

as binary responses (Breslow and Clayton, 1993; Dobson and Barnett, 2018). For

comparison reasons we aim to implement GLMMs as a standard method for modelling

longitudinal data. GLMMs include both, fixed and random effects, and its general

form is denoted as

Yj = Xjβ +Zjbj + ϵj ,

where Yj in this section is a vector of binary responses for athlete j, which indicates

the class of the nj measurements of the jth athlete (Yij = 0 if the ith measurement

of athlete j is normal, or Yij = 1 if it is abnormal). Xj is a design matrix for the

fixed effects of athlete j (including the biomarkers and/or ratios), β is a vector of

fixed effects, Zj is the design matrix for the random effects of cluster j, bj is a

vector of random effects for athlete j, where E(bj = 0) and Cov(bj) = G, and ϵj

is a vector of residuals of the observations in the steroid profile of athlete j, where

E(ϵj) = 0 and Cov(ϵj) = Rj = (σ2Ij). The parameter vector β represents the

marginal estimates across all athletes and values do not change among athletes. For

this case of binary outcomes, the logit link function is used such that the conditional

probability of the outcome being a success is

P (Yj = 1|Xj ,Zj , bj) =
exp (Xjβ +Zjbj)

1 + exp (Xjβ +Zjbj)
.

2.3.5 Markov Chain Monte Carlo Sampling Methods

In multi-dimensional Bayesian problems, Markov chain Monte Carlo (MCMC)

are very powerful methods, well suited to computing via simulation the posterior

distributions, which are extremely difficult or impossible to evaluate. This is achieved

by constructing a Markov chain, which guarantees the convergence of the chain

to the stationary distribution after a burn-in period, and draws samples which
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are progressively more likely realisations of the distribution of interest; that is the

target distribution. There are different ways to implement MCMC. The two most

commonly used Markov chain simulation techniques are the Gibbs sampler and the

Metropolis-Hastings algorithm. However, it is possible to have a hybrid sampling

technique, such as the Metropolis-within-Gibbs (MWG) that uses combinatorial

steps of Metropolis-Hastings and Gibbs. We implement one of the appropriate

MCMC sampling methods, depending on the model.

2.3.5.1 Metropolis-Hastings Sampling

The Metropolis-Hastings (MH) algorithm is an MCMC algorithm that simulates

samples from a generic probability distribution π, which is called “target” distribution,

by making use of the full joint density and independent proposal distributions (q) for

each of the variables of interest. Algorithm 1 represents the algorithmic rendering of

MH in the context of T/E modelling in Section 2.3.1.

Algorithm 1 Metropolis-Hastings algorithm

Precondition: Generate an initial state θ(0) = (µ(0), σ(0)) from q(θ)

1: for t← 1 to T do

2: Propose a new state: θ∗ from q(θ(t)|θ(t−1))

3: Calculate the acceptance probability: α(θ∗|θ(t−1)) = min
{
1, q(θ(t−1)|θ∗)π(θ∗)

q(θ∗|θ(t−1))π(θ(t−1))

}
4: Take u ∼ U(0, 1) ▷ simulate a Uniform random variable

5: if u < α then

6: θ(t) ← θ∗ ▷ accept the proposal

7: else

8: θ(t) ← θ
(t)
i−1 ▷ reject the proposal

9: end if

10: end for
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2.3.5.2 Gibbs Sampling

The Gibbs sampler constitutes a special case of Metropolis-Hastings algorithm. The

Gibbs sampling is a Monte Carlo simulation method which obtains samples from the

joint posterior distribution, f(θ|y), by successively and repeatedly simulating from

the conditional distributions of each component given the other components. Each

simulation step is usually straightforward under conditional conjugacy. Algorithm

2 describes the steps of the Gibbs sampler under a specific case of the univariate

Gaussian model in Section 2.3.1. Algorithms 3 and 4 refer to the Gibbs sampling

for the univariate and multivariate multilevel models from Sections 2.3.2 and 2.3.3,

respectively. For a more detailed explanation of the Gibbs sampler and the Metropolis-

Hastings algorithm see the papers of Casella and George (1992) and Chib and

Greenberg (1995), respectively.

Algorithm 2 Gibbs sampler

Precondition: Generate an initial state θ(0) = (µ(0), τ (0))

1: for t← 1 to T do

2: draw µ(t) ∼ p(µ | τ (t−1),y)

3: draw τ (t) ∼ p(τ |µ(t),y)

4: end for

Algorithm 3 Gibbs sampler

Precondition: Generate an initial state θ(0) = (µ(0), {µ(0)
j }Jj=1, σ

2(0)
e , σ

2 (0)
b )

1: for t← 1 to T do

2: draw µ(t) ∼ p(µ | {µ(t−1)
j }Jj=1, σ

2 (t−1)
e , σ

2 (t−1)
b ,y)

3: for j ← 1 to J do

4: draw µ
(t)
j ∼ p(µj |µ(t), µ

(t−1)
−j , σ

2 (t−1)
e , σ

2 (t−1)
b ,y)

5: end for

6: draw σ
2 (t)
e ∼ p(σ2

e |µ(t), {µ(t)
j }Jj=1, σ

2 (t−1)
b ,y)

7: draw σ
2(t)
b ∼ p(σ2

b |µ(t), {µ(t)
j }Jj=1, σ

2 (t)
e ,y)

8: end for
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Algorithm 4 Gibbs algorithm

Precondition: Generate an initial state θ(0) = (µ(0), {µj
(0)}Jj=1,Ω

(0)
e ,Ω

(0)
µ ,Ω

(0)
b )

1: for t← 1 to T do

2: draw µ(t) ∼ p(µ |{µ(t−1)j}JJ=1, Ω
(t−1)
e ,Ω

(t−1)
µ ,Ω

(t−1)
b ,y)

3: for j ← 1 to J do

4: draw µj
(t) ∼ p(µj |µ(t),µ

(t−1)
−j , Ω

(t−1)
e ,Ω

(t−1)
µ ,Ω

(t−1)
b ,y)

5: end for

6: draw Ω
(t)
e ∼ p(Ωe |µ(t), {µj

(t)}Jj=1,Ω
(t−1)
µ ,Ω

(t−1)
b ,y)

7: draw Ω
(t)
µ ∼ p(Ωµ |µ(t), {µj

(t)}Jj=1,Ω
(t)
e ,Ω

(t−1)
b ,y)

8: draw Ω
(t)
b ∼ p(Ωb |µ(t), {µj

(t)}Jj=1,Ω
(t)
e ,Ω

(t)
µ ,y)

9: end for

2.3.5.3 Metropolis-within-Gibbs Sampling

The Metropolis-within-Gibbs (MWG) algorithm is another MCMC algorithm which

simulates and updates one parameter at a time from its conditional posterior

distribution, as the Gibbs sampler implements. The algorithm under a specific case

of the univariate modelling of Section 2.3.1 works as follows in Algorithm 5.
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Algorithm 5 Metropolis-within-Gibbs algorithm

Precondition: Generate an initial state θ(0) = (µ(0), σ(0)) (presumably by sampling

from the prior distributions on the variables).

1: for t← 1 to T do

2: for i← 1 to d do ▷ d: # of parameters (d=2)

3: Propose a new state: θ∗i from qi(θ
(t)
i ), where qi is a predefined proposal function

for parameter i.

4: Calculate the acceptance probability: C = min
{
1,

qi(θ
(t) | θ(∗)i , θ

(t)
i−1)π(θ

(∗)
i , θ

(t)
i−1)

qi(θ
(t)
i , θ

(t)
i−1 | θ(t))π(θti)

}
5: Take u ∼ U(0, 1) ▷ simulate a Uniform random variable

6: if u < C then

7: θ(t) ← θ∗ ▷ accept the proposal

8: else

9: θ(t) ← θ(t−1) ▷ reject the proposal

10: end if

11: end for

12: end for

2.3.6 MCMC Convergence Diagnostics

There are a variety of MCMC convergence diagnostics to test whether the Markov

chains resulting from the MCMC sampling algorithms have converged in distribution

to the posterior distribution of interest. The convergence diagnostics of Raftery and

Lewis (1991), of Gelman and Rubin (1992), and of Geweke (1992) are currently the

most popular diagnostic tests, which have also been used throughout this work and

reviewed in this section.

The Gelman-Rubin diagnostic

The Gelman and Rubin (1992) diagnostic evaluates MCMC convergence of a scalar

parameter of interest by analysing the difference between multiple independent

Markov chains. The convergence is assessed by comparing the estimated within

and between variances of the posterior samples for each model parameter using the

potential scale reduction factor (PSRF). Suppose we run M independent chains of
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same length, T , and {θ(mt)}Tt=1 is the posterior parameter drawn from the tth iteration

of the mth chain for the model parameter θ, where t = 1, ..., T and m = 1, ...,M .

The within and between chain variances are given by

W =
1

M(T − 1)

M∑
m=1

T∑
t=1

(θ(mt) − θ̄t.)
2 (2.42)

and
B =

T

M − 1

M∑
m=1

(θ̄t. − θ̄..)
2. (2.43)

Under certain stationary conditions, the PSRF is defined to be the ratio of the

pooled variance, V̂ and W as

V̂ =
T − 1

T
W +

M + 1

MT
B (2.44)

and
R̂PSRF =

T − 1

T
+

M + 1

M

B

W

1

T
. (2.45)

If all chains have converged to the stationary distribution, the variability between

the chains should be relatively small and W ≈ B, then the statistic R̂PSRF → 1

when T →∞.

The Raftery-Lewis diagnostic

The second diagnostic test that we used is the test proposed by Raftery and Lewis

in 1992. The test can be applied to parameter samples coming from a single Markov

chain, and it focuses on achieving a predefined degree of accuracy of specific quantiles

rather than the convergence of the mean. The test reports the T , Tmin, Tburn, and I,

where

� T is the total number of iterations that the chain must run.

� Tmin is the minimum number of iterations required to estimate the quantile

of interest with the predefined accuracy assuming independent samples (i.e.,

with zero autocorrelation).
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� Tburn is the suggested number of burn-in iterations.

� I is the dependence factor given by I = T/Tmin, which indicates the relative

increase of the total sample due to autocorrelations. If I = 1, then the generated

values are independent. High dependence factors (> 5) are worrisome and may

be due to influential starting values, high correlations between coefficients, or

poor mixing. In general, I can be considered roughly as an estimate of the

required thinning interval.

The Geweke diagnostic

The Geweke diagnostic test (Geweke, 1992) assesses the convergence of the mean of

the sampled values for each parameter of interest obtained from a single chain. This

diagnostic performs hypothesis testing to check whether the means estimated from

two distinct sub-chains of the total MCMC draws are equal by applying a simple

Z-test. Usually the comparison is being between samples from the last half (50%)

of the chain against some smaller interval in the beginning of the chain, e.g. the

first 10% of the draws. A p-value < 0.05 indicates that there is enough evidence to

reject the null hypothesis of equal means in favour of the alternative hypothesis that

suggests different means implying non-convergence.

2.3.7 The Effective Sample Size

The effective sample size (ESS) (Kass et al., 1998) is a useful measure that estimates

the number of independent samples obtained from the MCMC chain. The ESS can

quantify how many samples should be taken in a chain to reach a given quality of

posterior estimates. The effective sample size of a sequence is defined in terms of

the autocorrelations with lag k ≥ 0, ρ(k), within the sequence at different lags by

ESS =
T

1 + 2
∑∞

k=1 ρ(k)
, (2.46)

where ρ(k) = Cov(Xt, Xt+k)/V ar(Xt) and X1, ..., Xn are the MCMC sample draws.

Negative autocorrelations may occur due to the noise in the correlation estimates,
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ρ̂(k), as k increases. The ESS estimates for each parameter have been calculated

based on the paired autocorrelation of Geyer (1992) and Geyer (2011), which is

guaranteed to be positive, monotone sequence estimator. Low ESS values indicate

small number of independent MCMC draws, implying a poor mixing or lack of

convergence of the sampler.

2.3.8 One-Class Classification

One-class classification (OCC) algorithms are used in classification modelling when

only one class (known as “target” class) is fully known and the others are either

absent or poorly sampled (Minter, 1975; Bishop, 1994; Khan and Madden, 2014).

Doping detection constitutes a hot topic in forensic toxicology, which can be framed

as a one-class classification problem since measurements from doped athletes can be

difficult to obtain, either due to the elaborate techniques that athletes use to avoid

testing, or due to the undetectable use of banned substances.

One-Class Classifier

For doping analysis, full information about non-doped athletes who have been

voluntarily tested is provided, but limited knowledge is available for athletes who

have received doping regimens. Thus in this case, the samples from athletes with

normal concentration values are treated as the “target” class. The focus is on

answering whether there is evidence that new samples from athletes, whose doping

status is unknown, are compatible with the known normal class of samples, or they

show abnormal behaviour and should be considered as outliers. A classifier, that

is a function which assigns each input data point to a class, accounting for other

confounding factors such as gender, cannot be constructed with known standard

rules in the case of imbalanced classes. In pattern recognition or machine learning,

the main purpose is to infer a classifier from a limited set of training data. Note

that, when having longitudinal data, the classifier has to deal with the complexities

of unbalanced data, their updating nature as well as potential confounders. We

approach the one-class classification problem by using a density estimation method,

which is described in the following section, for OCC models of any dimensionality.
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Note that we control for confounding due to gender, by specifying different prior

distributions for male and female athletes based on their sub-population information.

Highest posterior predictive density region as a classification rule

The Bayesian model specification allows us to hierarchically pass from the prior

evidence to the revised knowledge, expressed in the posterior density p(θ|y), as the

data arrive. Using a variety of sampling techniques for the Bayesian Gaussian models

described in previous sections, we can estimate the posterior density function and

then we can approximate the predictive density function of a new observable yn+1

given the data y = (y1, y2, ..., yn). In a general case the predictive density function

is calculated as

p(yn+1|y) =
∫
Θ

f(yn+1|θ)p(θ|y)dθ, (2.47)

which is formed by weighting the possible values of θ in the future observation

f(yn+1|θ) by how likely we believe they are to occur p(θ|y). We can use the

predictive distribution to provide a useful range of plausible concentration values

for markers and ratios of a future athlete. Here, y is the training set and consists

of the samples from the “target” class; that is the normal concentration values

from non-EAAS users. To overcome the curse of dimensionality, we need to ensure

a large number of observations in the training set. The main task of the OCC

algorithm is to define a classification boundary, such that it accepts as many samples

as possible from the normal class, while it minimises the chance of accepting the

outlier samples. Hence, the classification is performed by setting a threshold value, γ,

on the approximated densities, in such a way that a target (normal) and a non-target

(outlier/abnormal) region can be obtained ensuring a low predefined Type I error,

i.e. the false positive rate α. Therefore, the (1− α)% prediction interval for yn+1 is

the region of the form
Cα = {yn+1 : p(yn+1|y) ≥ γ}, (2.48)

where γ is chosen to ensure that P (Yn+1 ∈ Cα|y) = 1− α, as shown in Figure 2.4.

A new test result, yn+1, is considered to be an outlier if it is not included in the

(1 − α)% highest posterior density (HPD) interval of the conditional probability

distribution p(yn+1|y1, y2, ..., yn), and normal otherwise. An indicator variable X is
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used to classify each data point i as

Xi =

1 , if yi ∈ Cα

0 , otherwise.

(2.49)

Based on the threshold, γ, the lower and upper limits of the HPD interval are

obtained, which are used to define the normal boundaries of the EAAS concentration

values or ratios at an individual level. These boundaries are used in detecting

any steroids misuse that may cause abnormal high or low concentration values of

biomarkers or ratios as well as in revealing urine samples replacement or the impact

of other confounding factors. For detecting an abnormal sample at time t with the

multivariate approach, we examine whether at least two sample values exceed their

corresponding HPD intervals at time t.

It is worth mentioning that there is the usual trade-off in choosing an appro-

priate α, since low values of α will give large intervals. High α values give narrower

intervals implying that a new measurement yn+1 has a low probability of lying in

it. Furthermore, note that testing the first measurement of an athlete is based on

the population thresholds only, since n = 0. Population thresholds are presented

in Table C.5 obtained by Van Renterghem et al. (2010). Population threshold in-

formation has been considered also in work of Rauth (1994) and Kicman et al. (1995).

Continuity assumption

In this semi-supervised learning process, we assume that the continuity assumption

holds. This is a general assumption in pattern recognition which supports that

points which are close to each other are more likely to share a label. For this purpose,

when the model suggests an outlier, then this observation is automatically excluded

from the set of recordings that are used to compute the HPD intervals. If we do not

discard the proposed outliers, we expect to learn the noise. Any noise measurements

which are considered as normal measurements have a significant impact on the

personalised accepted limits. Hence, we cannot expect to infer a good classification

in such a case.
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Figure 2.4: Highest posterior predictive density region of a unimodal posterior
distribution p(yn+1|y1, y2, ..., yn). The grey shaded area denotes the region Cα

where normal measurements from athletes’ steroid profile are expected to lie with
probability 1− α. Observations which lie outside the (1− α)% HPD interval are

treated as outliers.

Random Oversampling

To treat imbalanced datasets for binary classification problems, we can use several

sampling methods such as undersampling, oversampling, synthetic data generation

and cost sensitive learning. These methods are used to maintain a balance between

the different classes. In our case, we focus on the oversampling, which is a technique

that generates synthetic balanced samples. This method works with the minority

class, where it replicates the observations from this class to balance the data. It is

also known as upsampling, which can also be divided into two types: Random Over-

sampling (ROSE, Random Over-Sampling Examples) and Informative Oversampling.

Random oversampling can balance the data by randomly oversampling the minority

class based on a bootstrap sampling. The random sampling method generates new

samples using the conditional density estimate of the two classes, while Informative

oversampling uses a pre-specified criterion and synthetically generates minority class

observations (Kotsiantis et al., 2006; Lunardon et al., 2014).



Chapter 3

Multilevel adaptive models and

anomaly detection: applications on

doping control analysis

3.1 Introduction

This chapter contains the application of the developed multilevel adaptive models

to analyse the urine steroid profile of athletes. The steroid profile of an athlete

includes multiple biomarkers, and/or ratios of them. Each biomarker has been

repeatedly measured over time. We first apply the univariate model to analyse a

single biomarker at a time, as described in Section 2.3.1, and then the multivariate

model suitable for a set of selected biomarkers, as presented in Section 2.3.3. Thus,

the models provide updates for identifying any outlying observations, which are either

abnormal and merit further investigation, or may be suspicious in the likely scenario

of sample exchange between athletes or due to other confounding factors. Through

the proposed method, we establish personalised thresholds within a multivariate

context, which can distinguish “normal” from “abnormal/anomalous” samples of

“non-doped” and “doped” athletes. The implementation of the analysis has been

conducted using the R statistical software (R 4.1.1). A user-friendly software was

50
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developed to implement the methodology, so that it can be used by practitioners

as widely as possible. The latest version of the application can be found at https:

//dimitraelegla.shinyapps.io/doping_shiny_app/.

3.2 Data Summary

The application of the methodology was based on athletes’ longitudinal steroid profile

data extracted from their ABP. The datasets have been collected by the Institute

of Biochemistry of the German Sport University Cologne, an accredited laboratory

of Anti-Doping Administration and Management System (ADAMS) of WADA,

following all the appropriate ethical approval procedures. Individual steroid profiles

were analysed according to established methods including gas chromatography-mass

spectrometry. Figure 3.1 represents a real GC-MS multiple reaction monitoring

chromatogram produced by an unsuspicious urine sample.

3.2.1 Longitudinal Data

The longitudinal dataset includes six endogenous androgenic steroid concentrations

and five concentration ratios proposed by WADA (testosterone (T), epitestosterone

(E), androsterone (A), etiocholanolone (Etio), 5α-androstane-3β, 17β-diol (5αAdiol

or A5), 5β-androstane-3α, 17β-diol (5βAdiol or B5), T/E, A/T, A/Etio, A5/B5 and

A5/E), which were repeatedly collected from each athlete in or out-of-competition.

A GC-MS analysis, fulfilling all requirements as per TD EAAS (WADA, 2021a),

was initially used to detect the six markers and the five ratios, which compose the

urinary steroid profile of the ABP of 229 athletes. Table 3.1 includes the definitions

we used to describe the three sample categories of athletes’ steroid profiles. Fifty

male and fifty female athletes were negative from each group with normal and

atypical samples, while 15 male and 14 female athletes were positive with at least

one confirmed abnormal sample in their steroid profile, employing Isotope Ratio

Mass Spectrometry (IRMS) in line with WADA regulation (WADA, 2021c).

https://dimitraelegla.shinyapps.io/doping_shiny_app/
https://dimitraelegla.shinyapps.io/doping_shiny_app/
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(a)

Figure 3.1: Extracted chromatograms obtained for an unsuspicious urine sample. Shown are the multiple reaction monitoring (MRM)
ion transitions employed for the quantification of endogenous steroids (upper part) and their deuterated analogues (lower part).
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Table 3.1: Description of possible outcomes of urine samples in the longitudinal
steroid profile (SP).

Urine sample Description
Normal EAAS value in the SP classified as normal.
Atypical EAAS value in the SP classified as atypical.
Abnormal EAAS value in the SP classified as abnormal.

A total of 1433 spot normal urine samples were obtained from 100 athletes, while

2504 spot urine samples obtained from 100 athletes whose longitudinal steroid profiles

contain values classified as atypical, and 462 spot urine samples from 29 athletes

with at least one confirmed abnormal value in the steroid profile. This indicates a

significant imbalance in the information provided between “negative” athletes (with

normal and atypical samples) and “positive” athletes (with abnormal samples) as

also shown in Figure 3.2. Specifically, athletes belonging to the group with normal

samples were tested between 6 and 47 times (14 times on average), athletes with

atypical values were tested between 6 and 69 times (25 times on average), and

between 3 and 35 times (16 times on average) for athletes with abnormal samples.

Sample calibration was carried out prior to the analysis according to the estimated

real limits of the applied methodology. The limit of detection (LOD) values and the

limit of quantification (LOQ) values within the steroid profiles of the athletes have

been replaced by commonly accepted minimum cut-off values for all markers; i.e.

all <LOQ and <LOD values in testosterone and epitestosterone were replaced by 1

ng/mL and 0.1 ng/mL respectively, while for <LOQ and <LOD values in the -diols

were replaced by 5 ng/mL and 1 ng/mL, respectively.

Figures 3.3 and 3.4 depict the variation of the values from the six biomarkers and

their five ratios by gender against the sampling time (red: female, blue: male). Every

trajectory represents measurements from one athlete, the curves are separated into

two classes; negative athletes, where no abnormal measurements are included in

their steroid profiles, and positive athletes, whose steroid profile includes at least

one abnormal measurement (see Table 3.1). Promising biomarkers and ratios can

already be noticed from distinguishable trends in their trajectories. For example

B5, T, T/E, A/T, and A5/E show a distinctive behaviour between the two classes.
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However, there are markers and ratios for which the difference between negative and

positive athletes, either simply doesn’t exist or is less obvious.

Figure 3.2: Number of samples collected from athletes with normal (top left),
atypical (top right), and abnormal (bottom) samples. The majority of these
samples were recorded out-of-competition (3164 urines), while the rest were

recorded throughout competition events (1253 urines).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: Biomarkers by gender over time, separated into two classes; negative athletes (i.e. no abnormal measurements in their
steroid profiles) and positive athletes (i.e. at least one abnormal measurement is included in their steroid profiles). The markers’ profiles
of athletes are presented as follows: for negative athletes (a) A5, (c) B5 (e) A, (g) ETIO, (i) T, (k) E and for positive athletes (b) A5, (d)

B5 (f) A, (h) ETIO, (j) T, (l) E.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.4: Biomarkers’ ratios by gender over time, separated into two classes; negative athletes (i.e. no abnormal measurements in
their steroid profiles) and positive athletes (i.e. at least one abnormal measurement is included in their steroid profiles). The markers’
profiles of athletes are presented as follows: for negative athletes (a) T/E, (c) A/ETIO (e) A/T, (g) A5/B5, (i) A5/E, and for positive

athletes (b) T/E, (d) A/ETIO (f) A/T, (h) A5/B5, (j) A5/E.
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3.2.2 Cross-sectional Data

From the cross-sectional study, single EAAS and ratios measurements of 164 healthy

individuals have been provided representing a baseline population of which 91 were

men and 73 women with age between 18 and 54. The graphs in Figure 3.5 present the

scatter, density and contour plots for men (light blue) and women (coral) for all avail-

able markers and ratios. The levels of markers seem to be slightly separable between

men and women. However, this is not true for the ratios, where the distributions of

both genders seem similar, except for the A/T ratio. The correlation between the

various markers and ratios is presented in Figure 3.6, which shows that plain markers

are more highly correlated compared to the ratios. This also constitutes a reason

of preferring ratios, in addition to their higher sensitivity as discussed in Section 1.3.6.

Table 3.2 summarises the baseline population statistics (minimum, inter-quartile

range; IQ1 and IQ3, mean, median, maximum EAAS values and standard devia-

tion). The mean values of the available metabolites and ratios obtained from both

datasets with 4399 and 164 urine samples respectively, are reported in Figure 3.7.

Gold diamonds signify the WADA threshold limits (lower and upper), which are

available for some metabolites and ratios. According to the descriptive statistics of

the longitudinally-monitored athletes in Tables C.2, C.3 and C.4 in Appendix C,

the maximum values for A, T/E as well as for the A/Etio ratio exceeded WADA’s

thresholds for the three categories, while the maximum for Etio of athletes with

atypical and abnormal samples exceeded WADA’s threshold. With respect to the

levels of epitestosterone (E), all recordings from the three categories were lower than

the relevant upper limit, while higher levels of testosterone compared to WADA’s

threshold limit were found only in athletes with abnormal values.
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(a)

(b)

Figure 3.5: Pairs plot by gender including the scatter, density and contour
plots for (a) the six markers, and (b) their five ratios. Red-coloured distributions

correspond to females, while blue-coloured ones to males.
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(a) (b)

Figure 3.6: Correlograms of (a) the six markers, and (b) the five ratios accom-
panied by the correlation coefficients.

Table 3.2: Descriptive summaries (minimum, inter-quartile range; IQ1 and IQ3,
mean, median, maximum and standard deviation) of the metabolites and ratios
of the baseline healthy population (91 men and 73 women). The names of the

target metabolites are abbreviated as presented in Table C.1.

Target Metabolite Min IQ1 Mean Median IQ3 Max SD

(ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

A5 1.46 14.49 61.7 46.62 84.56 388.14 64.68

B5 1.88 40.46 139.92 89.14 180.92 1, 232.95 164.27

A 187.7 1,315.9 2, 997.3 2, 517.2 4,428.1 16, 674.1 2, 169.41

E 0.47 4.31 33.71 20.52 42.22 252.96 42.94

ETIO 187.5 1,379.8 2, 719.4 2, 337.9 3,614 9, 819.9 1, 803.23

T 0.14 4.17 39.37 20.39 61.43 229.03 46.27

A5/B5 0.03 0.3 0.64 0.46 0.74 15.57 1.22

A5/E 0.24 1.47 3.29 2.73 4.23 17.72 2.54

A/ETIO 0.17 0.78 1.17 1.05 1.47 3 0.53

A/T 13.13 53.97 374.49 125.08 282.92 14, 154.24 1, 269.35

T/E 0.01 0.76 1.63 1.44 2.19 6.48 1.16

3.2.3 Pre-model Testing

Before any modelling procedures, we carried out independence and normality hy-

pothesis testing at level of significance 5% on the data coming from 229 athletes

on their logarithmic scale. We initially computed the sample autocorrelations of all
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EAAS series from athletes and we tested whether their series are white noise, alter-

natively to test the independence using the method of Li (2003). The independence

hypothesis was retained for 94% of the tests, which implied no correlation within

the series. Subsequently, Jarque-Bera tests were used for checking normality (Jarque

and Bera, 1980), where 85% of the tests showed no evidence against the normality

assumption.

Figure 3.7: Mean values of six metabolites concentration levels (ng mL−1) and
five ratios from 229 athletes and the baseline population by gender and doping
status (normal, atypical and abnormal/positive). WADA’s limits are tagged by
the gold diamonds when they are available from Table C.5. Androsterone and
Etiocholanolone share the same population thresholds among females and males.
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3.3 Results

Figure B.6 shows there is evidence of severe imbalance between normal samples

(0: pastel green) and non-normal samples (atypical or abnormal) (1: pastel red),

as well as an unstructured nature of the minority class. Normal samples specify

the majority class (or the “target” class.), while the minority class (or “non-target”

class) consists of atypical and abnormal samples. Out of 4399 urine samples across

all athletes, only 327 (7.43%) were true positive/abnormal values (275 from athletes

with atypical samples and 52 from athletes with abnormal samples). Since we deal

with a severely skewed class distribution, we apply the majority impact learning

technique, known as one-class classification, to all models presented in Sections 2.3.1,

2.3.2 and 2.3.3 as discussed in Section 2.3.8.

3.3.1 Univariate Bayesian Model

To apply the univariate Bayesian model on each athlete and for each biomarker of

the ABP separately, we started by specifying the prior distributions for the model

parameters µ and τ as µ|τ ∼ N (µ0, 1/τκ0) and τ ∼ Ga(α0, λ0), respectively. The

correlation between the empirical mean and precision from all athletes’ values for each

marker was in the range (-0.33, 0.32) denoting a weak relationship. Nevertheless, from

the tests performed on the 11 markers and ratios, we found statistically significant

correlation, hence we consider a priori dependence between the parameters. To

specify non-informative priors with large variances, we set the hyperparameters

κ0 = 1, α0 = 10, λ0 = 1, and µ0 = µjs, that is the mean of the jth marker in its

logarithmic scale for male subjects if s = 0, and for females if s = 1. Then, 5000

draws were sampled for each parameter from the known joint posterior distribution

(Gaussian-Gamma). The out-of-sample predictive distribution of a new test result

yn+1 given previous recordings (y1, y2, ..., yn) is

p(yn+1|y) =
∫ ∫

p(yn+1|µ, τ)p(µ, τ |y)dµdτ ≈
1

T

T∑
t=1

(
τ (t)

2π

)1/2

e−
τ(t)

2
(yn+1−µ(t))2 ,

(3.1)
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where n ≥ 0, (µ(t), τ (t)) is the pair of tth draw obtained through the sampler with to-

tal number of iterations T = 5000. In practice, the integration averaging is performed

using an empirical average based on samples from the posterior distribution. At first,

we simulate many replicates of new data, yn+1, from the posterior predictive distribu-

tion and we derive the 95% HPD interval. The model is applied on the 4399 EAAS

concentrations and ratios of 229 athletes. Since the proportion of non-normal EAAS

for the three groups of athletes is known (0/1433 for normal, 275/2504 for atypi-

cal, and 52/462 for abnormal) we can estimate the predictive accuracy of the method.

In Figures 3.8 and 3.9 (a-k), the EAAS and ratios series of a non-doped and a

doped athlete are depicted, respectively, with the blue-solid lines. The red dotted

lines are the 95% HPD intervals of the predictive distribution, which denote the

posterior normal boundaries at each time point. Before observing any data, the

upper limits are defined by WADA’s population thresholds, when they are available

(see Table C.5). For marker B5 we used the maximum value obtained by the Cau-

casian population in Van Renterghem et al. (2010), while for the remaining ratios;

i.e. A5/B5, A5/E and A/T we chose the values 4, 10 and 10,000, respectively, as

reasonable starting thresholds. The purple dashed lines indicate the usual Z-score’s

upper limits as presented in Sottas et al. (2006). The gold diamonds symbolise the

abnormal values in an athlete’s profile suggested by the model, which need further

investigation. For the T/E ratio, there are two additional green dashed-dotted lines.

These indicate the upper and lower limits of the T/E model with informative priors

introduced by Sottas et al. (2006).

Note that if the model suggests an outlier, we automatically exclude it from the set

of recordings which are used to compute the HPD intervals, because it might have

an impact on the following personalised accepted limits. For example, in Figure

3.8(e), there are two testosterone samples which are lower than the lower boundaries,

and in Figure 3.8(g) Sottas’ model identifies six abnormal T/E tests, while the

general univariate model suggests five. In general, knowing that athlete 7 has not

received any doping substances, there were many false positives leading to a weak
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classification performance. Regarding athlete 202, whose 21st, 22nd and 23rd sample

tests are confirmed as abnormal, only E, T/E and A5/E were sensitive enough to

detect these anomalies in their SP.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k)

Figure 3.8: (a-k) A series of 29 longitudinal values of the six EAAS and their
five ratios (blue solid-dotted line) obtained from a non-doped athlete; upper and
lower limits (red dotted lines) are calculated using the 95% HPD intervals of the
predictive distribution from the univariate Bayesian model; upper limits assuming
a usual Z-score (purple dashed line); suggested abnormal values are denoted by
the gold diamonds. (g) Upper and lower limits (green dashed-dotted lines) are
calculated using the 95% HPD interval of the predictive distribution from the
T/E model of Sottas et al. (2006); suggested abnormal values based on the T/E

model are denoted by the green stars.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k)

Figure 3.9: (a-k) A series of 29 values of 6 EAAS and 5 ratios (blue solid-dotted
line) obtained from a doped athlete; upper and lower limits (red dotted lines) are
calculated using the 95% HPD intervals of the predictive distribution from the
univariate Bayesian model; upper limits assuming a usual Z-score (purple dashed
line); suggested abnormal values are denoted by the gold diamonds. (g) Upper
and lower limits (green dashed-dotted lines) are calculated using the 95% HPD
interval of the predictive distribution from the T/E model of Sottas et al. (2006);
suggested abnormal values based on the T/E model are denoted by the green

stars.

3.3.2 Multivariate Bayesian Multilevel Model

To apply the multivariate Gaussian multilevel model, we initially specified the prior

distributions for the model parameters θ as described in Section 2.3.3. The prior

covariance matrices Se, Sµ and Sb are all set equal to (1/1000)IK, and the degrees of

freedom are de = dµ = db = K − 1, where K is the dimensionality of variables of the

data. We use historical prior information obtained from the baseline cross-sectional

dataset of 164 non-doped athletes (91 men and 73 women), which is captured by
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the prior mean vector µ0. Note that the model accommodates different prior mean

vectors for men and women. Then, 3000 draws were sampled for each parameter

from the posterior distribution p(θ|y) using the Gibbs sampler (Algorithm 4), while

the first 1/3 was discarded. Given the remaining set of samples {θ(t)}T=2000
t=1 , our

estimate for the predictive distribution is

p(yn+1|y) ≈
1

T

T∑
t=1

p(yn+1|θ(t)). (3.2)

We first simulate from the posterior predictive distribution many replicates of the

new data, yn+1, and thus we derive the 95% HPD interval. The model is applied

on the 4399 EAAS and ratios of 229 athletes (100 athletes with normal samples,

100 athletes with atypical samples and 29 athletes with abnormal samples). Data

from athletes, whose samples were all normal, were used to train the model, while

atypical and abnormal samples were used as a test set. The idea is to train the

model with normal data from non-doped athletes, by estimating p(θnormal|ynormal)

and then test how likely is a future unlabelled observation to be generated by this

model. Table 3.3 includes the classification performance of the proposed multivariate

model applied to: a) all markers and ratios; b) markers only; and c) ratios only.

3.3.3 Classification Performance

In this section we present the classification performance of the models applied on

the same dataset for detecting doping cases within athletes’ steroid profiles. In

forensic toxicology, high specificity is important, thus a very low false positive rate

is required in order to prevent the accusation of an innocent athlete. However, the

classification accuracy values and measures regarding the majority class such as

specificity, tend to be pretty high because they are computed under the assumption

of balanced class distributions. Consequently, we need to use appropriate metrics

for evaluating the classification performance of the models which can deal with the

imbalance of the dataset.
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Dealing with the “Accuracy paradox”

Classification accuracy is the most commonly used metric for evaluating classifi-

cation models as the number of correct predictions divided by the total number

of predictions.. When the class distribution is slightly skewed, accuracy can still

be a useful metric. However, when the skew in the class distributions is severe as

happens with the current dataset, accuracy can become an unreliable measure for

assessing the model performance; this point is explored in detail by Glavin and

Madden (2009). Achieving very high classification accuracy as shown in Table 3.3 is

trivial when dealing with imbalanced classes. In this problem, the majority class

represents “normal” urine samples, while the minority class represents “abnormal”

urine samples. In cases like this, where there is a large class imbalance, the simple

univariate models can predict the value of the majority class for most predictions

and achieve a high specificity and classification accuracy, but the problem is that

this is not sufficient in order to select the optimum model for detecting potential

doping abuse. This is because there is no enough information about the minority

class to make an accurate prediction, and the classifiers get biased towards the

majority class. Due to this phenomenon, called “Accuracy Paradox”, we evaluate

the models using the F-Measure (F1 score), precision and sensitivity (Nguyen et al.,

2009; Valverde-Albacete et al., 2013)1. Precision and sensitivity/recall are the two

most common metrics that take into account class imbalance, which are also the

foundation of the F1 score (i.e. the harmonic mean of precision and recall). These

evaluation metrics take into account not only the number of prediction errors that

1

Accuracy =
TP + TN

TP+ TN+ FP + FN
,

F1 = 2× precision× recall

precision + recall
,

precision =
TP

PP
,

recall = sensitivity =
TP

P
,

specificity =
TN

N
,

where TP is true positive, TN is true negative, FP is false positive, FN is false negative, PP is
predicted positive, P is positive and N is negative.
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our model makes, but also look at the type of errors that are made. Hence, a model

with a lower accuracy could be selected because it has a greater predictive power.

Dealing with imbalanced classes

There are a variety of methods used to deal with imbalanced binary classification

problems, widely known as “Sampling Methods”. The main goal of these methods

is to convert the imbalanced dataset into balanced distributions by altering the

size of the original dataset to provide the same proportion of balance in each class.

We chose to work with the method of “Random Oversampling”, which randomly

replicates the observations from the minority class to balance the data (Kotsiantis

et al., 2006). ROSE package in R was used to generate replicates of the data from

each athlete (Lunardon et al., 2014).

Table 3.3: Predictive performance of the univariate and multivariate models on
the athlete’s profiles based on the 95% HPD interval.

Classification Balanced Overall
model Variable F1 score Precision Sensitivity Specificity Accuracy3 Accuracy (95% CI)
Univariate A5 0.16 0.11 0.25 0.84 0.55 0.80 (0.79, 0.81)

B5 0.17 0.12 0.30 0.83 0.56 0.79 (0.78, 0.80)
A 0.13 0.11 0.17 0.86 0.53 0.83 (0.82, 0.84)
ETIO 0.13 0.10 0.16 0.89 0.52 0.84 (0.82, 0.85)
T 0.18 0.13 0.30 0.83 0.57 0.79 (0.78, 0.81)
E 0.16 0.11 0.34 0.78 0.56 0.75 (0.73, 0.76)
T/E1 0.19 0.15 0.26 0.88 0.57 0.84 (0.82, 0.85)
A/ETIO 0.24 0.39 0.17 0.98 0.58 0.92 (0.91, 0.93)
A/T 0.15 0.13 0.17 0.91 0.54 0.86 (0.85, 0.87)
A5/B5 0.18 0.14 0.25 0.88 0.57 0.84 (0.82, 0.85)
A5/E 0.23 0.17 0.35 0.86 0.61 0.82 (0.81, 0.83)

Sottas et al. T/E2 0.20 0.15 0.32 0.85 0.59 0.81 (0.80, 0.82)
pre-oversampling EAAS 0.24 0.18 0.38 0.78 0.58 0.74 (0.72, 0.75)
MGMM ratios 0.35 0.29 0.44 0.87 0.65 0.82 (0.80, 0.83)

all 0.30 0.20 0.55 0.73 0.64 0.71 (0.70, 0.73)
post-oversampling EAAS 0.34 0.50 0.26 0.74 0.50 0.50 (0.49, 0.52)
MGMM ratios 0.29 0.51 0.20 0.81 0.50 0.50 (0.49, 0.52)

all 0.40 0.51 0.33 0.69 0.51 0.51 (0.49, 0.52)
EAAS 0.03 0.18 0.02 0.99 0.50 0.88 (0.87, 0.89)

GLMM ratios 0.03 0.17 0.02 0.99 0.50 0.88 (0.87, 0.89)
all 0.03 0.18 0.02 0.99 0.50 0.88 (0.87, 0.89)

1 This model specifies weakly informative priors.
2 For this model the priors are set to be strongly informative.
3 Balanced Accuracy = sensitivity+specificity

2
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In Table 3.3, the classification using the univariate models with false positive rate

α = 0.05 suggest the T/E, A/ETIO and A5/E ratios as the most sensitive variables

with higher F1 scores (F1T/E1 = 0.19, F1A/ETIO = 0.24 and F1A5/E = 0.23) for

detecting anomalies in the steroidal profile. The results from the T/E model in

the first part of the table are based on semi-informative conjugate priors, whereas

the results from the T/E model in the second part are based on the informative

priors of Sottas et al. (2006). The latter model achieves a slightly better prediction

performance based on the F1T/E2 = 0.20, sensitivityT/E2 = 0.32 and balanced

accuracyT/E2 = 0.59.

We have also presented in Figure 3.11 the ROC (Receiver Operating Characteristics)

curves and the Precision-Recall curves to measure the accuracy of the classification

predictions in the various models. The ROC curve is created by plotting the

sensitivity against the false positive rate (FPR) or 1-specificity at various threshold

settings, while the precision-recall curve shows the relationship between precision

(or positive predictive value) and recall (or sensitivity) for every possible cut-off.

According to the ROC curves, the model for the A5/E ratio showed superiority

compared to the other univariate models in Figure 3.11(a), while the model for

A/ETIO ratio showed superiority in the Precision-Recall plot. The curve of Sottas

et al. (2006) model for T/E is higher in Figure 3.11(b), which verifies its higher

predictive performance.

The proposed Bayesian model (MGMM) has been applied on the original data

and the data after over-sampling using (i) the markers only, (ii) the ratios only,

and (iii) the markers and the ratios together. The values of the metrics of the

pre-oversampling multivariate models presented in Table 3.3 are overall higher

compared to the values corresponding to the univariate models. Comparing further

between the three applications of these MGMMs, the five available ratios were

found to be the most powerful set of variables with the highest metric values

F1ratios = 0.35, precisionratios=0.29, sensitivityratios=0.44, specificityratios=0.87 and

highest balanced accuracyratios=0.65. Same conclusions regarding the superiority of

the pre-oversampling multivariate model using the ratios are depicted in the diagrams

from Figure 3.11, where blue lines show better relationship between sensitivity and
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1-specificity, and between precision and recall. In Figure 3.10 all classification metrics

are plotted over the various combinations of modelling, i.e. each marker and ratio

separately, markers only (EAAS), ratios only, and all markers and ratios together.

Again we conclude that an overall best classification performance is achieved by

applying the multivariate model (MGMM) on the ratios only without oversampling.

The issue regarding the class skewness of the dataset has been eliminated after

applying the oversampling technique, and this is reflected by the values of the

balanced accuracy and overall accuracy which have been equivalent. However, in this

example it seems that applying the method of random oversampling does not show

any better overall classification performance of the model. It is worth mentioning that

F1 scores and sensitivity values obtained from the various applications of generalised

linear mixed-effects models (GLMMs) were quite low. This happens because GLMMs

can be unstable when sample sizes across groups are highly unbalanced.

Figure 3.10: Classification metrics per component; i.e. markers and ratios
separately, only EAAS, only ratios, all markers and ratios. T/E1 corresponds to
the T/E model from Section 2.3.1, while T/E2 corresponds to the T/E model by

Sottas et al. (2006).
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(a)

(b)

(c)

Figure 3.11: ROC curves obtained from (a) the univariate models (m1: A5, m2:
B5, m3: A, m4: ETIO, m5: T, m6: E, m7: T/E, m8: A/ETIO, m9: A/T, m10:
A5/B5, m11: A5/E), (b) m1: Sottas’ model for T/E vs m2: T/E model, and (c)

the multivariate models (m1: all markers, m2: EAAS, m3: ratios).
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3.3.4 MCMC Results

3.3.4.1 MCMC for the Univariate Bayesian Model

Gibbs vs Exact Sampling

This section constitutes an example where we test the sampling performance of

Gibbs sampler compared to the exact sampling as discussed in Section 2.3.1. Both

sampling techniques have been applied using the recorded measurements on the

logarithmic scale of each biomarker separately for every athlete, as discussed in

Sections 2.3.5.2 and 3.3.1.

For implementing the Gibbs sampler, we set the same hyperparameters as for

the exact sampling method, that is κ0 = 1, α0 = 10, λ0 = 1, and µ0 = µjs, which is

the mean of the jth marker on its logarithmic scale for male subjects if s = 0, and

for females if s = 1. Using the Gibbs algorithm 2, 5,000 draws of the parameters µ

and τ were generated from the posterior distribution after a burn-in period of 1,000

iterations. To visualize the draws of the parameters, we present their traceplots

obtained from the analysis of the A5 series of a single athlete (see Figure 3.12a).

Informally, the convergence of the sampler is achieved since the posterior means

for both parameters have settled around a certain value (Figure 3.12b). Figure

3.13 shows the points after complete sweeps through both parameters. Both are

valid samples from the posterior distribution. Also, the starting point (red dot)

and a two-dimensional 95% credible region with a dark red line are displayed here.

Specifically, the latter is a bivariate region of highest marginal posterior density

for the two variables µ and τ , given the sample from the posterior distribution.

This region has been calculated using the HPDregionplot function in R, which uses

the two-dimensional kernel density estimation to calculate a bivariate density, then

normalizes the plot and calculates the contour corresponding to a contained volume

of probability level of the total volume under the surface (a two-dimensional Bayesian

credible region).
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(a) (b)

Figure 3.12: (a) Histograms, traceplots and (b) running averages of the param-
eters µ and τ over the iterations using the Gibbs sampler and semi-informative
priors for A5 of an athlete. The posterior means for µ and τ can be approximated
by the averages E[µ|y] ≈ 1

N

∑N
i=1 µ

(i) and E[τ |y] ≈ 1
N

∑N
i=1 τ

(i), respectively.

Figure 3.13: Scatter plot of µ and τ with the 95% highest posterior region in
red using the Gibbs sampler and semi-informative priors for A5 of one athlete.

Now suppose we want to forecast a new observable ynew = yn+1 for this certain

marker of athlete 1 by using the out-of-sample predictive distribution given by the

equation (3.1). Consequently, we compute the (1− α)% highest predictive density

interval (HPD). For each pair (µ(t), τ (t)) drawn from the Gibbs sampler, we draw a

value of ynew = log(A5new) from N (µ(t), 1/τ (t)) distribution. Then, we compute the

corresponding HPD intervals as shown in Table 3.4.
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Table 3.4: The 95% and 99% HPD intervals using the Gibbs sampler with
semi-informative priors for A5 of athlete 1.

logA5 A5

L U exp (L) exp (U)

95% HPD 1.39 3.07 4.0 21.64

99% HPD 1.07 3.36 2.91 28.77

Figure 3.14 represents the histogram of predictive densities of log(A5new) and A5new

accompanied by the 95% HPD intervals for each case denoted by the dark red lines.

We conclude that the most likely upcoming values of biomarker A5 for this athlete

are in the range (4, 21.64). Values outside this range are considered as abnormal

observations that should be examined further.

(a) (b)

Figure 3.14: Histograms of the predictive densities with the 95% HPD intervals
for ynew = log(A5new) and A5new symbolised by the dark red lines. The black
curves represent the probability densities (kernel densities) of future observations.

Table 3.5 presents the results extracted from the sampling methods used; that is the

Gibbs sampler using semi-informative priors, and exact sampling from the known

posterior distribution. Estimates of the posterior means for both parameters as

well as the 95% HPD intervals for A5 were fairly close. We can finally compare

their predictive densities by overlaying the two curves and their 95% HPD intervals

in a single plot (see Figure 3.15). Again we derive the same conclusions that the
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Gibbs and Exact predictive densities look similar particularly in the right plot where

more draws (10,000) have been sampled compared to the left plot (5,000). The

Kolomogorov-Smirnov test (Conover, 1971), applied on the 10,000 samples, also

supports that there is no statistically significant deviation in distribution between the

samples from Gibbs and Exact sampling methods with test statistic D = 0.0151 and

p-value = 0.2043. All the above indicate that a large number of Gibbs sweeps can

provide reliable estimates in situations where the posterior distribution is unknown

and it cannot be stated in a closed form.

Table 3.5: Posterior estimates and the 95% HPD intervals of A5 obtained from
Gibbs sampler and Exact sampling.

E(µ|y) E(τ |y) L(A5) U(A5) CPU time

Gibbs 2.25 5.87 4.0 21.64 0.28
Exact 2.28 5.62 4.33 23.34 ≈ 0

(a) (b)

Figure 3.15: Predictive distributions of future observations A5new and their
95% HPD intervals from each sampling method (Gibbs and Exact) using a) 5,000

and b) 10,000 draws.

Table 3.6: Two-sample Kolmogorov-Smirnov tests

Sample size D p-value

5,000 0.0484 1.638× 10−5

10,000 0.0151 0.2043



Chapter 3. Adaptive models and anomaly detection techniques: applications for
doping control analysis 77

MH vs MWG Sampling

In this section we examine the performance of Metropolis-Hastings (MH, algorithm

1) and Metropolis-within-Gibbs (MWG, algorithm 5) sampling algorithms applied

on the T/E ratio for every single athlete as discussed in Sections 2.3.1.2, 2.3.5.1

and 2.3.5.3. To perform both algorithms we first specify initial values for the model

parameters, θ0. Then, new parameter values, θ∗, are proposed at iteration t by

adding some noise, s. Since the parameter vector θ = (µ, σ) is strictly positive,

the proposed values are θ∗ =| θt−1 + s |, where s ∼ N (0, 0.05). Implementing

the remaining algorithmic steps of MH and MWG samplers T = 6, 000 times with

a burn-in of 1,000 iterations, we have finally generated 5,000 realisations from

the joint posterior distribution. Figures 3.16 and B.2 contain the histograms, the

traceplots and the running averages of the sampled draws for both parameters from

the analysis performed on the T/E ratios of a single athlete. The running averages

plot have settled around certain values for both parameters giving us an informal

impression of convergence. Figure B.1 in Appendix B shows the points after complete

sweeps through both parameters confirming that both are samples from the posterior

distribution. In both algorithms the acceptance rates for µ and σ were the same, i.e.

66% for µ and 53% for σ. The HPD intervals are also computed and presented in

Table 3.7.

Table 3.7: The 95% and 99% HPD intervals using the MH and MWG sampling
methods with informative priors for the T/E ratio for athlete 1.

T/EMH T/EMWG

L U L U

95% HPD 0.31 1.27 0.34 1.16

99% HPD 0.15 1.39 0.21 1.31



Chapter 3. Adaptive models and anomaly detection techniques: applications for
doping control analysis 78

(a) (b)

Figure 3.16: (a) Histograms, traceplots and (b) running averages of the param-
eters µ and σ over the iterations using the MH sampling algorithm and Sottas’
informative priors (Sottas et al., 2006) for T/E of athlete 1. The posterior means
for µ and σ can be approximated by the averages E[µ|y] ≈ 1

N

∑N
i=1 µ

(i) and

E[σ|y] ≈ 1
N

∑N
i=1 σ

(i), respectively.

Figure 3.17 represents the histogram of predictive densities for ynew =T/E for both

sampling algorithms, accompanied by the 95% HPD intervals for each case denoted

by the dark red lines. Values outside the normal boundaries, which are defined by

the 95% HPD intervals, are considered as abnormal observations that should be

re-examined.

(a) (b)

Figure 3.17: Histograms of the predictive densities using a) MH and b) MWG
with the 95% HPD intervals symbolised by the dark red lines. The black curves

represent the probability densities (kernel densities) of future observations.
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Table 3.8 presents the results extracted from both sampling methods; MH and

MWG algorithms using informative priors. Estimates of the posterior means for

both parameters as well as the 95% HPD intervals for T/E were quite close. We

then compare their predictive densities by overlaying their two curves and their 95%

HPD intervals in a single plot (see Figure 3.18). The MH and MWG predictive

densities do not differ much.

Table 3.8: Posterior estimates and the 95% HPD intervals of T/E obtained from
MH and MWG sampling algorithms.

E(µ|y) E(σ|y) L(T/E) U(T/E)

MH 0.77 0.21 0.31 1.27
MWG 0.77 0.207 0.34 1.16

Figure 3.18: Predictive distributions of future observations T/Enew and their
95% HPD intervals from each sampling method (MH and MWG).

3.3.4.2 MCMC using the Multivariate Bayesian Model

For the multivariate Gaussian multilevel model, we have estimated multiple parame-

ters via the Gibbs sampler (algorithm 4) of 5,000 iterations. Because of the large

number of the model parameters, in the following sections we provide a part of

the diagnostics plots produced for the evaluation of the MCMC convergence. All

diagnostic plots are available in the supplementary folder titled “Diagnostics” on

Github.

https://gitfront.io/r/user-5513340/d6f5297866f35b762789389fa0e3167ce35d348d/Convergence-Diagnostics/
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3.3.4.3 MCMC Convergence and Efficiency Diagnostics

Traceplots can help to visually assess the mixing of the Markov chains. However,

MCMC convergence and efficiency diagnostics were implemented for all sampling

methods used for the various models, which all showed good mixing. Table 3.9

presents the results based on the Gelman-Rubin test, the Raftery-Lewis test, the

Geweke test, and the Effective Sample Size (ESS) applied on the T/E ratio using

the univariate model. The Gelman-Rubin tests return PSRF values below 1.1 for

all algorithms using 5 independent chains. All Geweke tests registered a p-value

greater than 0.05, suggesting that there was no evidence of a difference between

the mean of the first 10% samples and the last 50% samples of the Markov chain.

The small estimates of the dependence factors and ESS/T suggest that there is

correlation between MCMC draws for MH and MWG sampling methods. However,the

dependence factors and ESS/T values are close to 1 for Gibbs sampler. This indicates

that there is independence between the MCMC samples and our Markov chain as

well as the sampler has converged to the stationary distribution.

Table 3.9: MCMC convergence diagnostics for parameters µ and τ corresponding
to the the Gibbs algorithm 2 results: Gelman-Rubin test (PSRF), Raftery-Lewis
test (dependence factor, IR−L), Geweke test, and sampler efficiency (ESS nor-

malised by the number of T = 10, 000 samples) for all parameters.

Sampler Parameters R̂PSRF IR−L P-valueGeweke ESS/T

Gibbs [2] µ 1.035 1.01 0.239 1

τ 1.097 1.01 0.237 0.93

MH [1] µ 1 4.03 0.347 0.0053

σ 1 3.56 0.519 0.0032

MWG [5] µ 1 3.93 0.34 0.007

σ 1 3.14 0.45 0.008

The evaluation of the MCMC samples obtained from the multivariate Gaussian

multilevel model (MGMM) was based on the “multivariate PSRF” or MPSRF. The

MPSRF was 1 which is a strong evidence of convergence. The Gelman plots in



Chapter 3. Adaptive models and anomaly detection techniques: applications for
doping control analysis 81

Figures 3.19 and 3.20 of a specific set of model parameters (i.e. the overall means

for each biomarker out of the eleven available) verify the good mixing.

Figure 3.19: Gelman plots for the overall means of biomarkers A5, B5, A, ETIO,
T, and E.
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Figure 3.20: Gelman plots for the overall means of biomarkers’ ratios T/E,
A/ETIO, A/T, A5/B5, and A5/E.

3.4 Conclusions

Our major goal in this research work was to develop a methodology which is able to

examine the behaviour of a multivariate Bayesian multilevel model by exploiting

repeated measurements of several biomarkers and their ratios such as Testosterone,

Androsterone, Epitestosterone, the T/E ratio etc. Such methodology can prove

helpful as an improved screening test suitable to analyse the selected biomarkers,

and to monitor the “level of trust” of an athlete by taking into account: a) the

population distribution of these biomarkers, b) the individual’s own history; i.e.

previous measurements of the athlete’s biomarkers and c) other demographic charac-

teristics. Specifically, we aimed to validate measurements of endogenous substances

that are able to reveal the presence of toxic substances, drugs of abuse, and/or
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doping agents. The developed multivariate adaptive model makes a contribution in

proposing personalised normal limits of the longitudinal steroid profile of athletes

in and out of competition compared to other standard approaches. The tools for

applying the proposed model are incorporated in a user-friendly software we have

designed for use by anti-doping laboratories.

It is also worth mentioning that the proposed screening method is non-invasive,

easily accessible, reliable, quickly quantifiable and reproducible. It also has low

financial burden, low risk level, and achieves an improved predictive performance

regardless of the imbalance of the data. These characteristics contribute effectively in

sports drug testing laboratories for doping detection. Moreover, since the imbalanced

classification is not a “solved” problem, we would ideally need more information

regarding the class with doping cases. However, to improve the performance of the

algorithm one can use other techniques such as undersampling, or a combination of

undersampling and oversampling or boosting algorithms that are able to convert

weak learners to strong learners (Kotsiantis et al., 2006; Schapire, 2013). In Figure

3.21, a very coarse overview is given which shows a proposal of the applicability of

different classification approaches to different situations. For small differences in

distribution between majority and minority class, standard classification techniques

work well for most of the cases regardless the sample size. For adequate sample

sizes and moderate distribution differences simple, one-class classification can work

well with respect to the predictive performance. For larger distribution differences,

random oversampling in the OCC framework may work better when the sample

size is small compare to the random subsampling, which can work better for larger

sample sizes.

Lastly, this research work examines the predictive performance of a multivari-

ate adaptive model applied to eight biomarkers and five ratios. Applications on

more, but also sensitive, markers and ratios is another direction which is worth

investigating. An attempt of this idea is presented in Wilkes et al. (2018). Including

the age of athletes as a covariate in the model might enhance the model performance
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Figure 3.21: Different classification methods for different sample sizes and for
low, moderate and high values of difference in distribution between majority and

minority class.

since the biosynthesis of endogenous androgenic anabolic steroids (EAAS) varies

with age.



Chapter 4

Dirichlet Process Gaussian

Mixtures for prostate cancer

“We look to medical research to discover remedial measures to insure better health

and more happiness for mankind.”

Thomas Hunt Morgan

4.1 Introduction

In cancer biology, advances in high performance technologies have made it possible

to study complex multivariate physical and psychological characteristics and their

simultaneous associations with high-dimensional biomarker data. This problem

can be studied with multi-response regression, where the response variables are

potentially highly correlated. Steroid hormones can play a significant role in normal

and cancerous prostate physiology, as stated in Section 1.4.3. However, there is

little information that steroidal biomarkers clearly delineate their function in the

pathogenesis of prostate cancer and benign prostatic hyperplasia. Previous research

studies, for example the endogenous androgenic steroids in Amante et al. (2018),

various metabolites like sarcosine by Wu et al. (2011), as well as the serum steroid

85
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ratio profiles by Albini et al. (2018), have explored male urinary hormones to build

a screening tool for early stage prostate cancer and compare its performance with

the widely used PSA test.

The steroid metabolites have been previously analysed for cancer detection purposes

using both frequentist and Bayesian statistical approaches. However, Bayesian

inference is commonly used in cancer biology as a means of updating prior knowledge

with new observables in order to construct a better model for our understanding

of cancer’s behavior. In this work, we are interested in analysing biomarkers and

their ratios, which appear to be multimodal data (see Figure B.12). To deal with

data multimodality and to provide a useful summary of the data, we can often use

mixture models. Therefore, we focused on implementing Dirichlet Process Gaussian

Models (DP-GMMs) as a classification tool to model biomarkers for prostate cancer

prediction.

The Dirichlet process (DP) is a stochastic process commonly used in Bayesian

nonparametrics, particularly in Dirichlet process mixture models (DPMMs) because

of its flexibility and computational simplicity. The term nonparametric in this

context means that the DP model has in principle an infinite number of parameters.

Due to the lack of clear knowledge about the data-generating mechanism, we can

only make minimal assumptions. Thus, a large part of the mechanism can be

left unspecified, meaning that the distribution of the data is not restricted by a

predefined finite number of mixture components.

There are various representations of DPs whose formulation differs because they

examine the problem from different points of view. The first definition of DPs was

provided by Ferguson (1973), who described the Posterior Dirichlet process using

the Kolmogorov Consistency Theorem. Blackwell et al. (1973) continued to prove

the existence of such a random probability measure based on the Pólya urn scheme,

which satisfies the DP properties. In 1982, Sethuraman and Tiwari introduced an ad-

ditional definition of constructing a DP, which is characterised as the stick-breaking
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construction. Finally, another representation was provided by Aldous (1983), who

introduced the Chinese Restaurant Process (CRP) as an effective way to construct

a Dirichlet Process assuming that there is a Chinese restaurant with infinite number

of tables. The main idea is that as customers enter the restaurant, they randomly

choose any of the occupied tables to sit, or they choose the first available empty

table. The CRP is explicitly described in Section 4.3.3.

The hierarchical Bayesian models, which use a DP as a prior distribution over

the possible component parameters, are known as Dirichlet process mixtures (Anto-

niak, 1974; Escobar and West, 1995; Jara, 2017). It has become common to use a

countably infinite DPMM for data assumed to come from a finite mixture with an un-

known number of components, not only for kernel density estimation and clustering,

but also for inference regarding the mixture parameters. For practical reasons, the

number of mixture components in this model is usually bounded by a reasonably high

upper boundary. Hence, a DPMM can be seen as an infinite-dimensional generalisa-

tion of a parametric mixture model. One of its main advantages is that the model

selection for defining the optimal number of mixtures is avoided. Another advantage

is that the extension to multivariate data is easier and guarantees that the proposed

covariance matrices are positive definite compared to the mixture modelling based on

the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm due to the diffi-

culty in the split or in the combine moves (Green, 1995; Richardson and Green, 1997;

Rasmussen, 2000; Dellaportas and Papageorgiou, 2006; Görür and Rasmussen, 2010).

The DP is a distribution over probability measures which are distributions. The basic

DP model has two parameters: the base distribution G0, which is a random proba-

bility measure and serves as a prior mean, and the concentration parameter α, which

is a strictly positive real number and serves as a prior inverse variance. A widely

used unsupervised machine learning algorithm for Gaussian Mixture Model (GMM)

was introduced by Rasmussen in 2000. Görür and Rasmussen (2010) examined

both conjugate prior specification and conditionally conjugate prior specification,

which were used for the base function of DP, and the paper included a sequence of
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comparisons between them, showing that the conditionally conjugate case resulted

in no or modest amount of complexity loss, and equally good predictive accuracy.

Inference for Dirichlet process mixture models is frequently performed using Markov

chain Monte Carlo (MCMC) methods. There is a variety of MCMC algorithms

developed for conjugate and conditional conjugate base distributions. Conditional

methods impute the Dirichlet process and update it as a component of the Gibbs

sampler.

This chapter presents the use of DPs to construct infinite Gaussian mixture mod-

els (DP-GMMs) with and without covariates for multivariate density estimation

problems. Through DP modelling, the inference procedure focuses on identifying

the hidden associations of the data points to the infinite number of parameters.

The main application of the method has been conducted on two high-dimensional

datasets which are composed by urinary biomarkers, as well as their biomarkers’

ratios, measured for three classes of individuals; healthy individuals, benign prostatic

hyperplasia and prostate cancer patients. Supervised learning techniques are used

in order to train the models of each distinct class separately by using training sets

from each class. Specifically, the supervised classification, also known as “predictive

discriminant analysis” (Huberty, 1984; Huberty, 1994), is used based on DP-GMMs

to correctly assign future data to existed and already known classes (Johnson et al.,

2002). The DP-GMMs can be used to extract information from the high-dimensional

probability distribution and classify the new unlabelled data to the class which

corresponds to the most likely model. An empirical Bayes approach is used to

evaluate the predictive posterior distributions between the models which describe

each class for the data classification (Brown and Greenshtein, 2009; Greenshtein

and Park, 2009). However, these models are flexible enough to be used with any

countably infinite dimensionality; either univariately or multivariately.

For the DP models, we also assume conditionally conjugate base distribution G0 by

removing the dependency of the distributions between the mean and the covariance

parameters. Hence, each mixture parameter can be integrated out given the other.
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In the following sections, formulations of the DP models with and without covariates

are presented. The hierarchical structure for both models is complete by setting hy-

perpiors to express uncertainty on the hyperparameters α and G0 (Rasmussen, 2000).

The computer code for DP-GMM modelling is provided as a completed package in the

statistical language R (R 4.1.1). In addition, Collapsed Gibbs sampling and Adaptive

Rejection Sampling (ARS) are required for drawing realisations from the desired

conditional posterior distributions (Geman and Geman, 1984; Gilks and Wild, 1992).

It is worth mentioning that the implementation of the sampling algorithms has been

carried out with predetermined initial number of Gaussians and fixed priors on the

model parameters. After specifying the DP models, we implement the DP models on

real prostate cancer data, and inferencing the model parameters. A simulation study

is also carried out to assess and compare their clustering performance. Three publicly

available datasets have also been used to examine the classification performance

of the proposed model; the iris data by Fisher (1936), the crabs data collected at

Fremantle, W. Australia and analysed by Campbell and Mahon (1974), and breast

cancer data, which can be found here.

4.2 Objectives

The aim of this study is to investigate whether the urinary steroid profile might be

an improved clinical tool, suitable for early stage prostate prognosis and predictions.

For this purpose, we introduce the Dirichlet Process Gaussian Mixture Models

(DP-GMMs) applied on multiple biomarkers and their ratios, capable to capture the

heterogeneity of the data and to classify individuals into healthy, benign prostatic

hyperplasia or cancer cases. In the multivariate mixture Bayesian framework, as we

consider simultaneously multiple responses and several predictors for each mixture

component, the analysis of joint associations between multiple correlated response

variables becomes challenging. We finally compare the applications of the proposed

model on two available datasets of prostate cancer, while including or excluding age

as a covariate and using PSA levels as a response variable. We show that convergence

https://archive-beta.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+diagnostic
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and mixing is achieved for the DP-GMMs, while their predictive performance exceeds

the one using the test based on the PSA levels. Applications of the methodology

on additional datasets have been conducted to enhance the evidence of the good

performance of the developed model. All mathematical derivations are presented in

detail in Appendix A.

4.3 Materials and Methods

4.3.1 Dirichlet Process Mixtures

The Dirichlet Process is an infinite dimensional generalisation of Dirichlet distri-

butions (Ferguson, 1973; Antoniak, 1974). In practice, it might be unclear how to

specify a family of distributions for probability distribution F , which generates the

observations y1, ..., yn. Thus, the Dirichlet Process mixture model is hierarchically

defined as

yi|θi ∼ F (θi)

θi|G ∼ G

G ∼ DP (α,G0),

(4.1)

where G is defined as G =
∑∞

k=1 πkδθ∗k , δθ∗k indicates a delta function that takes 1 if

θ = θ∗k and 0 elsewhere, and πk represents the mixing proportions. The argument

θ = {θ1, ..., θn} are the mixture parameters randomly drawn from G. It basically

represents a distribution over finite-dimensional distributions on some probability

space Θ. Thus, draws from a DP can be interpreted as random distributions with

hyperparameters α and G0, a positive scalar and a distribution over the same support

of G, respectively. The base distribution acts as the prior mean of the DP, where

for any finite measurable set S ⊂ Θ we have that E[G(S)] = G0(S). On the other

hand, the concentration parameter can be considered as a prior inverse variance

(precision), where V [G(S)] = G0(S)(1−G0(S))
α+1

.



Chapter 4. Dirichlet Process Gaussian Mixtures for prostate cancer 91

Since draws from a Dirichlet Process are discrete distributions with probability

one, we can represent this model as a countably infinite mixture of distributions.

Using Bayes rules and the conjugacy between Dirichlet and Multinomial distributions

we have that θ ∼ G0. Then, the Posterior Dirichlet Process as discussed by Ferguson

(1973) is

G|θ ∼ DP

(
α + n,

αG0 +
∑n

i=1 δθi
α + n

)
, (4.2)

where δθi indicates a point-mass concentrated at θi.

4.3.2 Gaussian Mixture Model

The Gaussian mixture model (GMM) is the most widely used modelling for K finite

parametric mixtures, but also for nonparametric approaches. In a DP mixture model

context, we specify the hierarchical GMM, and then we explore the limit as the

number of mixture components K tends to infinity. Throughout the chapter, all

vector quantities are denoted by bold-faced characters. Hence, the Gaussian mixture

model with K mixture components can be written as

p(y1, ...,yn|θ) =
n∏

i=1

K∑
j=1

p(ci = j|π)pj(yi|θj , ci = j) =
n∏

i=1

K∑
j=1

πjNd(yi|µj , S
−1
j ),

(4.3)

where θj = {πj,µj , Sj} is the parameter set for the jth component, π denotes the

vector with the mixing proportions (which are positive and
∑K

j=1 πj = 1), µj is

the mean vector for the jth component, and Sj is its precision (inverse covariance)

matrix. The setting of the allocation variable ci = j means that the data point yi

was generated from the d-variate Gaussian j. For a DP mixture model construction,

we specify jointly a conditionally conjugate prior distribution, G0, on the component

parameters and use allocation variables, ci, for all observations i = 1, ..., n. Therefore,
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the DP-GMM is a limiting case of the finite GMM model and can be expressed as

yi|ci,θ ∼ Nd(µci , S
−1
ci

)

ci|π ∼Multinomial(π1, ..., πK)

(µj , Sj) ∼ G0

π|α ∼ Dirichlet(α/K, ..., α/K).

(4.4)

Analytically, the prior for the occupation number, nj, which represents the number

of observations belonging to jth component given the mixing proportions, π, is

Multinomial and the joint distribution of indicators, ci, is defined by

p(c1:n|π) =
K∏
j=1

πj
nj , where nj =

n∑
i=1

δKronecker(ci, j). (4.5)

The mixing proportions, π, are given a symmetric Dirichlet prior, and for mathe-

matical convenience all mixing proportions share the same concentration parameter

α/K such that

p(π|α) = Γ(α)

Γ(α/K)K

K∏
j=1

πj
α/K−1. (4.6)

Using equations (4.5) and (4.6), we can integrate out the mixing proportions, π,

and then obtain the probability of a particular set of assignments, c1:n, as follows
1

p(c1:n|α, n) =
∫

p(c1:n|π)p(π|α)dπ =
Γ(α)

Γ(n+ α)

K∏
j=1

Γ(nj + α/K)

Γ(α/K)
. (4.7)

Keeping all the allocation variables fixed except for a single one, the conditional

prior for this allocation given the rest is given by1

p(ci = j|c−i, α) =
n−i,j + α/K

n− 1 + α
, (4.8)

where the subscript −i denotes all indices except i, and n−i,j is the number of

observations, excluding the ith observation, that are associated with component j.

1The derivation of equations (4.7) - (4.10) are presented in more detail in Appendix A; A.8.4 -
A.8.6.
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4.3.3 Chinese Restaurant Process for Infinite Mixture

Models

Chinese Restaurant Process (CRP) is a useful analogy for helping to understand

the Dirichlet Process introduced by Aldous (1983). Consider a Chinese restaurant

with infinite series of tables. In this analogy, every possible cluster corresponds to a

“table” in this infinitely large Chinese restaurant. Each observation corresponds to a

“customer” entering the restaurant and sitting at a table. According to the notation

we used in Section 4.3.2, suppose there are currently n− 1 customers sitting in the

restaurant. Then a new customer i comes in and either randomly chooses to sit at

an occupied table (e.g. jth table) with probability proportional to the number of

customers they already sit there n−i,j
1

p(ci = j|c−i, α) =
n−i,j

n− 1 + α
, (4.9)

or to sit at the first available, currently empty, table (e.g. a new table K + 1) with

probability proportional to the concentration parameter α/K1

p(ci = K + 1|c−i, α) =
α

n− 1 + α
. (4.10)

Hence, we observe that a greater value of the parameter α tends to encourage the

use of a new unoccupied table, especially when the table size (i.e. the number of

customers sitting in a table) is small. This observation can alternatively result from

the Dirichlet Process in the expression (4.2), where the concentration parameter α

specifies how strong the discretisation of clusters is. This means that for large values

of α, most data are likely to be distinct and concentrated on the base distribution

G0, but for small values of α, the number of clusters is likely inferred a posteriori

from the data. Specifically, tables with many customers become popular and tend to

attract more customers. The latent variable, ci, stores the table number of the ith

customer and takes values from 1 to K. K is the total number of currently occupied

tables, when n− 1 customers are in the restaurant, and the constrain that K < n

should be also satisfied. Equations (4.9) and (4.10) provide a characterisation of the
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CRP derived from the limit of equation (4.8) as K →∞.

The diagram in Figure 4.1 represents an illustration of the CRP, where the numbered

rectangles denote customers. Ten customers enter the restaurant one by one and

choose to sit at a table (shown as shaded circles). Note that there are component

parameters (θj), which are not related in principle to the CRP, but due to they are

associated with the jth table (component) belong to the overall mixture modelling.

According to the CRP, the first customer of the restaurant is always assigned at

the first table. When the second customer arrives, either sits at the first table with

probability 1
1+α

, or at the second table with probability α
1+α

. Similarly for the next

customers up to the 10th customer, who has a probability of sitting at the already

occupied tables 1 to 4 proportional to the vector n−10,j = (4, 2, 2, 1), respectively.

It is also worth noting that the DP processes are “exchangeable” meaning that the

induced distribution does not depend on the order in which the customers arrive

or the labels of the tables, but only on the cardinality of the clusters. This results

in the customers’ arrivals being independent, which is a useful property for Gibbs

sampling in DPs that uses the conditional probabilities in equations (4.9) and (4.10)

instead of the joint distribution in equation (4.7).
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T1

1 3 5 6

T2

2 9

T3

4 7

T4

8 10

T5 · · ·

T1 T2 T3 T4 T5

p(c1 = j|c−1, α) 1 0 0 0 0

p(c2 = j|c−2, α)
1

1+α
α

1+α 0 0 0

p(c3 = j|c−3, α)
1

2+α
1

2+α
α

2+α 0 0
...

p(c10 = j|c−10, α)
4

9+α
2

9+α
2

9+α
1

9+α
α

9+α

Figure 4.1: The Chinese restaurant process where the numbered rectangles
represent 10 customers assigned at the attached tables (shaded circles). The
illustration of CRP is accompanied by the table of probabilities of each customer
(data entry) being placed at either any of the currently occupied or unoccupied

(empty) tables.

4.3.4 Conditionally Conjugate DP-GMM

A Dirichlet Process Gaussian Mixture Model (DP-GMM) is equivalent to the infinite

limit of the Gaussian mixture model as we described in model (4.4). To entirely

delineate this model, the base distribution G0 needs to be specified. Specifically, G0

corresponds to the joint distribution of its mixture parameters (the means µjs and

precision matrices Sjs in this case), which for mathematical convenience are usually

conjugate. However, we choose to set a conditionally conjugate base distribution,

not only because it is free of the property of prior dependency between the mean and

covariance, but it has also showed better modelling performance compared to the

conjugate base distribution (Görür and Rasmussen, 2010). In this semi-conjugate
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case, the prior distributions for each parameter are defined independently as

G0(µj , Sj) = Nd(µj|µ0, S
−1
0 ) W(Sj|β0, (β0W0)

−1), (4.11)

where the prior of µj is a Gaussian distribution centred at µ0 with precision matrix

S0, and the prior of Sj is a Wishart distribution with β0 degrees of freedom and mean

W−1
0 . Also, the parameter set ϕ = {µ0, S0, β0,W0} includes the hyperparameters

which are common to all mixture components. This implies that the prior of each

model parameter is conjugate to the likelihood conditional on the other. Next, we

choose conjugate-style hyperpriors (second level priors) on the hyperparameters of

the model to enhance its flexibility and robustness. These are very broad prior

distributions in line with the model of Görür and Rasmussen (2010); a Gaussian for

mean µ0 and a Wishart for precision S0

µ0 ∼ Nd(µy,Σy), S0 ∼ W(d, (dΣy)
−1), (4.12)

where µy and Σy are, respectively, the empirical mean and covariance matrix of

the data. For the hyperparameter W0 a Wishart hyperprior is given, whereas the

hyperprior for β0 is defined indirectly by a Gamma distribution for the parameter

(β0 − d + 1)−1 with shape and rate parameters 1/2 and d/2, respectively. It is

important to note the presence of the restriction β0 ≥ d − 1. Lastly, a Gamma

hyperprior is specified for α−1. Specifically, we specify

W0 ∼ W(d, (dΣy)
−1), (β0 − d+ 1)−1 ∼ G(1/2, d/2), α−1 ∼ G(1/2, 1/2). (4.13)

A visual representation of the hierarchical Dirichlet process Gaussian mixture model

is depicted in Figure 4.2.

4.3.5 Inference, Gibbs and ARS Sampling

Inference in the hierarchical DP-GMM model is carried out using Collapsed Gibbs

sampling, one of the basic forms of MCMC which is based on the conditional con-

jugacy. The Collapsed Gibbs sampler obtains a sample from the joint posterior
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µ0 S0 (β0 − d+ 1)−1 W0 α−1
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variables
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DP(α,G0)

GMM

Figure 4.2: A graphical representation of the infinite hierarchical DP-GMM
model with conditionally conjugate priors, where there is no dependency between
the component means and precisions. The dashed nodes denote the indirect prior
assignment on some of the model hyperparameters, including the transformed

parameters on which a prior has been assigned.

distribution p({µj}Kj=1, {Sj}Kj=1,µ0, S0, β0,W0, c1:n, α|y1:n) by successively and re-

peatedly simulating from the full conditional distributions of each parameter given

the others. The conditional distribution of each parameter has been derived in

reference to the likelihood from equation (4.3) and the prior setting in Section 4.3.41.

It should be noted that due to the fact that there is no direct prior on the parameter

β0, but for z = β0 + d− 1, we obtain the conditional posterior distribution for z and

transform its samples to generate realisations from p(β0|{Sj}Kj=1,W0).

The DP-GMM model starts with K(0) = 10 components and a large number of

Gibbs iterations. Due to the fact that not all priors are (conditionally) conjugate, we

need to utilise the Adaptive Rejection Sampling method, among the Gibbs sweeps,

to generate independent samples from p(z|{Sj}Kj=1,W0) and p(log(α)|K,n) using

1The derivation of the conditional posterior distributions are presented in more detail in
Appendix A; A.8.1, A.8.2, and A.8.3.
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the log-concavity property1 (further details in Appendix A.8.8). Each sampling step

is straightforward under conditional conjugacy and Algorithm 6 details a generic

summary of the Gibbs sampling process in conjunction with ARS (see Algorithm 7)

(Casella and George, 1992; Gilks and Wild, 1992). Sampling from the conditional

posterior of a new cluster K + 1 under fully conjugate priors is easier because the

posterior can be computed analytically. Nevertheless, under partial conjugacy the

integral in the posterior cannot be evaluated because it is intractable (see equations

(A.1), (A.2)). Consequently, we face this difficulty by implementing numerical

integration with Algorithm 8 of Neal (2000), which makes use of auxiliary variables

(auxiliary tables in terms of the CRP). We call these auxiliary variables γ and

we create them by sampling from the base distribution with means and precision

matrices µγ and Sγ, respectively, sampled from their priors (equation (4.11)). The

γ variables represent the effect of the unoccupied auxiliary clusters, and using the

equation (4.10), the prior for each is then defined as

α/γ

n− 1 + α
. (4.14)

The algorithm has been written in the statistical package R 4.1.1, which can be

easily used for any data dimensionality d. Specifically, when d = 1 the model reduces

to the univariate hierarchical infinite Gaussian mixture model (Rasmussen, 2000).

1A function f(x) is logarithmically concave (or log-concave) if and only if log f(λx+(1−λ)y) ≥
λ log f(x) + (1− λ) log f(y) for all 0 ≤ λ ≤ 1 and for all x, y.
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Algorithm 6 Collapsed Gibbs and ARS Sampling (Neal’s Algorithm 8)

Precondition: Generate an initial state for each of the model parameters/hyper-

parameters/indicators {µ(0)
j }K

(0)

j=1 , {S
(0)
j }K

(0)

j=1 ,µ0
(0), S

(0)
0 , β

(0)
0 ,W

(0)
0 , c(0) and α(0).

1: K(1) ← K(0)

2: for t← 1 to T do
3: for j ← 1 to K(t) do
4: draw µj

(t) ∼ p(µj|c(t−1), S
(t−1)
j ,µ0

(t−1), S
(t−1)
0 ,y)

5: draw S
(t)
j ∼ p(Sj|c(t−1), β

(t−1)
0 ,W

(t−1)
0 ,µj

(t),y)
6: end for
7: draw µ0

(t) ∼ p(µ0|S(t−1)
0 , {µj

(t)}K(t)

j=1 )

8: draw S
(t)
0 ∼ p(S0|µ0

(t), {µj
(t)}K(t)

j=1 )

9: draw W
(t)
0 ∼ p(W0|β(t−1)

0 , {S(t)
j }K

(t)

j=1 )

10: draw z(t) ∼ p(z|{S(t)
j }Kj=1,W

(t)
0 )

11: update β
(t)
0 = z(t) + d− 1

12: for i← 1 to n do
create γ auxiliary variables from the base distribution with means and precision
matrices:

13: µγ ∼ Nd(µ0, S
−1
0 ) and Sγ ∼ W(β0, (β0W0)

−1)
14: if n−i,j > 0 then

15: evaluate n−i,j ×Nd(µj
(t), S

−1 (t)
j ) (∝ to the likelihood of jth cluster)

16: update c
(t)
i

17: else (i.e. c
(t)
i is a singleton)

18: for κ← 1 to γ do
19: evaluate (α(t)/γ) × Nd(µκ, S

−1
κ ) (∝ to the likelihood of κth auxiliary

cluster)

20: update c
(t)
i

21: end for
22: end if
23: choose randomly one of the K(t) + γ clusters with the previously evaluated

probabilities
24: if an auxiliary cluster is chosen then
25: assign label K(t) + 1 to this new cluster
26: update K(t)

27: end if
28: if old cluster is empty then
29: remove the empty cluster
30: update K(t)

31: end if
32: end for
33: draw u(t) ∼ p(u|K(t), n) (ARS algorithmic steps - see algorithm 7)
34: update α(t) = exp(u(t))
35: K(t+1) ← K(t)

36: end for



Chapter 4. Dirichlet Process Gaussian Mixtures for prostate cancer 100

Algorithm 7 Adaptive Rejection Sampling

Given a univariate non-normalised probability density p(u), perform the following
initialisation, sampling and update steps:

1: Initialise an abscissa set Tk, such that p′(u1) > 0 and p′(uk) < 0, the correspond-
ing envelope and squeezing functions gh and gl. This can be efficiently achieved
by starting from an initial guess and stepping out in steps of exponentially
increasing size.

2: Draw u′ ∼ gh(u)∫
gh(u′)du′ and w ∼ Uniform(0, 1)

perform the following squeezing test:
3: if w ≤ gl(u

′)
gh(u′)

then

4: accept u′

5: else
perform the following rejection test:

6: if w ≤ log p(u′)
gh(u′)

then

7: accept u′

8: else
9: reject u′

10: end if
11: end if
12: if u′ was accepted at the squeezing test then
13: go to step 2
14: else
15: insert u′ into Tk to obtain Tk+1

16: update the piecewise exponential functions gl and gh accordingly
17: return to step 2
18: end if

4.3.6 Covariate Dependent DP-GMM

We now turn our attention to a generalisation of the Dirichlet Process Gaussian

Mixture Model (DP-GMM) in which we are flexible to cluster sampling units ac-

cording to possible patterns of covariates, such as the Dirichlet Process mixtures

of Generalised Linear Models (DP-GLM) specified by Hannah et al. (2011). There

is a variety of formulations of DPMMs that allow covariate information, however

DP-GLM of a broader GLM framework have proved better density estimation and

prediction performance compared to other DP mixture regression models.

Dirichlet Process Gaussian Mixture Models with covariates (DP-GMMx). Sup-

pose that (xi,yi) are the observed regression data pair, where xi ∈ X ⊆ Rp is

a p-dimensional vector of covariates, and yi denotes the d-dimensional vector of
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response variables for the ith sampling unit (yi ∈ Y ⊆ Rd). This leads to models of

the form

yi|xi, ci,θ ∼ Nd(µi, S
−1
ci

)

µij = Ajx
T
i = rj

Tqjx
T
i

ci|π ∼ Discrete(π1, ..., πK)

(qj , rj , Sj) ∼ G0

π|α ∼ Dirichlet(α/K, ..., α/K),

(4.15)

where θj = {πj, Aj, Sj} is the parameter set for the jth component, and π denotes

the vector with the mixing proportions (which are positive and
∑K

j=1 πj = 1). In this

GLM framework, each observation i has its mean vector µij , which results from the

linear relationship between the covariates vector xi and the regression coefficients

matrix Aj. We make the assumption that the regression coefficients consist of two

sources of coefficients, qj ∈ Rp and rj ∈ Rd, that clearly separate the effect of p

covariates from the effect of the d-variate response, respectively. In order to make the

parameters qj and rj identifiable, we specify Gaussian distributions with their own

hyperparameters as priors. The prior distributions for each parameter are defined

independently as

G0(qj, rj , Sj) = Np(qj|µq, S
−1
q ) Nd(rj|µr, S

−1
r ) W(Sj|β0, (β0W0)

−1), (4.16)

where the prior of qj is a Gaussian distribution centred at µq with precision matrix Sq,

the prior of rj is a Gaussian distribution centred at µr with precision matrix Sr, and

the prior of Sj is a Wishart distribution with β0 degrees of freedom and mean W−1
0 .

Also, the parameter set ϕ = {µq,µr, Sq, Sr, β0,W0} includes the hyperparameters

which are common to all mixture components. This implies that the prior of each

model parameter is conjugate to the likelihood conditional on the other. Next, we

choose conjugate-style hyperpriors (second level priors) on the hyperparameters of

the model to enhance its flexibility and robustness. These are very broad prior

distributions in line with the model of Görür and Rasmussen (2010); Gaussians for



Chapter 4. Dirichlet Process Gaussian Mixtures for prostate cancer 102

means µq and µr, and Wishart distributions for precisions Sr and Sq

µq ∼ Np(1,Σ0), Sq ∼ W(p, (pΣ0)
−1), (4.17)

µr ∼ Nd(µy,Σy), Sr ∼ W(d, (dΣy)
−1), (4.18)

where µy and Σy are, respectively, the empirical mean and covariance matrix of

the data, and Σ0 is initially set equal to Ip. For the hyperparameter W0 a Wishart

hyperprior is given, whereas the hyperprior for β0 is defined indirectly by a Gamma

distribution for the parameter (β0−d+1)−1 with shape and rate parameters 1/2 and

d/2, respectively. It is important to note the presence of the restriction β0 ≥ d− 1.

Lastly, a Gamma hyperprior is specified for α−1. Specifically, we specify

W0 ∼ W(d, (dΣy)
−1), (β0 − d+ 1)−1 ∼ G(1/2, d/2), α−1 ∼ G(1/2, 1/2). (4.19)

Sj is the precision (inverse covariance) matrix of the jth cluster. A visual repre-

sentation of the hierarchical Dirichlet process Gaussian mixture model is depicted

in Figure 4.3. A similar algorithmic procedure to Algorithm 6 of the covariate-free

DP-GMM is followed for inference1.

1The derivation of the conditional posterior distributions are presented in more detail in
Appendix A; A.9.1 and A.9.2.
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Figure 4.3: A graphical representation of the infinite hierarchical DP-GMMx
model with covariates and conditionally conjugate priors, where there is no
dependency between the component means and precisions. The dashed nodes
denote the indirect prior assignment on some of the model hyperparameters,

including the transformed parameters on which a prior has been assigned.

4.3.7 Predictive Distribution

In the covariate-free case the predictive distribution of a new data vector ỹ given the

training data y = (y1, . . . , yn) is obtained by marginalising over the parameters

sampled by the Markov chain with their posterior distributions as

p(ỹ|y) =
∫

p(ỹ|µ, S)p(µ, S|µ0, S0, β0,W0)dµ dS. (4.20)

Mixture modelling leads to a mixture representation of the posterior predictive

distribution consisting of two segments, the finite mixture of Gaussians for which

observations have been assigned (occupied clusters), and the infinite mixture of
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Gaussians for which there were no observations assigned (unoccupied/empty clusters)

with weights n/(n+ α) and α/(n+ α) for each segment, respectively. The integral

in equation (4.20) cannot be evaluated analytically because the use of conditional

conjugate priors generates a posterior of a non tractable form. Consequently, we

focus on approximately calculating the predictive distribution using the parameters

drawn from the T Gibbs iterations as follows

p(ỹ|y) ≈ 1

T

T∑
t=1

[
α(t)

n+ α(t)
Nd(ỹ|µ(t)

0 , S
−1 (t)
0 ) +

K(t)∑
j=1

nj

n+ α(t)
Nd(ỹ|µ(t)

j , S
−1 (t)
j )

]
.

(4.21)

Notice that the posterior predictive distribution is a combination of the infinite and

finite mixtures of Gaussians, whose parameters are based on the prior and the data,

respectively. Similarly, we compute the predictive distribution for DP-GMMx1.

1See Appendix A; A.9.3.



Chapter 5

Dirichlet Process Gaussian

Mixture Models: applications on

prostate cancer prediction

5.1 Experiments

In this section the covariate-free DP-GMM model has been employed first on

simulated data to compare its clustering performance with other two clustering

methods. We then use the iris, crabs and breast cancer data to evaluate the

classification performance of the developed methodology.

5.1.1 Clustering Performance

Initially, a simulation study is carried out to assess the performance of DP-GMM

modelling in terms of density estimation. A set of 1000 simulated bivariate data

points are generated from a mixture of three Gaussians and the weights of com-

ponents are π1 = 0.2, π2 = 0.3 and π3 = 0.5 (see Figure 5.1). The actual sample

sizes in each cluster were n1 = 200 , n2 = 320, and n3 = 480. A large number of

Gibbs sweeps for DP-GMM clustering on the simulated data is initially performed,

105
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sampling the parameters and hyperparameters of the model in turn from their

conditional distributions derived in previous sections. To the left of Figure 5.2, the

autocorrelation for several quantities is plotted, which is dropped close to zero after

the 30th iteration time of lag 1. Then, we performed 3000 iterations of which the

first 100 draws were discarded as a burn-in period being based on the first Gibbs

implementation in which the algorithm converges after the 100th iteration (Figure

B.8). The remaining 2,900 draws are used to generate 100 independent samples

from the posterior (equally spaced).

The results of the DP-GMM clustering are summarised in Table 5.1 compared

to the results of other two techniques of clustering using the Dirichletprocess and

mclust packages (Ross and Markwick, 2018; Scrucca et al., 2016). The main difference

between the two DP methods is that in the DP-GMM model we use conditionally

conjugate priors, while the Dirichletprocess package is based on conjugate priors.

All techniques indicate three clusters with similar data allocations. On the other

hand, the Adjusted Rand Index, a common metric to evaluate clustering methods,

shows that all methods have similar grouping with the known true grouping (Gates

and Ahn, 2017). In terms of clustering, DP mixture modelling with conditionally

conjugate priors and a smaller sample proved its superiority over the corresponding

model with conjugate priors and the mclust method. The DP-GMM performs well

in estimating the true parameters of the model of three Gaussian mixtures with

no use of any prior information. For this particular sample, the median of the

concentration parameter α over the MCMC iterations is approximately 0.45, where

the three occupied clusters account for n
n+median(α)

≃ 99.96 % of the mass, and only

the 0.04% of the mass of the predictive distribution belongs to unoccupied clusters.

Figure 5.2 (b) represents the clustering from the samples of DP-GMM on the last

iteration, which agrees with the clustering of mclust and Dirichletprocess (Figures

B.9, B.10, B.11).
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Figure 5.1: (a) Scatterplot of the 1000 simulated 2D data points drawn from
0.2N2

(
µ1 = (0, 0),Σ1 =

[
1 0
0 1

])
+ 0.3N2

(
µ2 = (1, 5),Σ2 =

[
1 0
0 1

])
+ 0.5N2

(
µ3 =

(8, 10),Σ3 =
[
1 0
0 1

])
with the 95th percentile ellipsoids for each component distri-

bution. (b) Density estimate of the mixture of three Gaussians.

Table 5.1: Summary table of the clustering results from DP-GMM model in
comparison to Dirichletprocess (applied on the scaled simulated data) and mclust

packages.

Package iterations Clusters π̂1 π̂2 π̂3 ARIe

DP-GMMa 100d 3 0.199 0.321 0.480 0.9934

Dirichletprocessb 1000 3 0.201 0.319 0.480 0.9846

mclustc 1000 3 0.201 0.319 0.480 0.9823

a The DP-GMM package uses conditionally conjugate priors.
b The Dirichletprocess package is based on conjugate priors.
c The mclust package is based on Gaussian finite mixture modelling fitted by EM algorithm.
d 100 independent samples have been generated after thinning.
e Adjusted Rand Index: ARI = RI−E(RI)

max(RI)−E(RI) , where the raw Rand Index is given by

RI = count of pairs in agreement
total number of possible pairs .



Chapter 5. Dirichlet Process Gaussian Mixture Models: applications in prostate
cancer prediction 108

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration lag time

au
to

co
rr

el
at

io
n 

co
ef

fic
ie

nt

log(K)

log(α)

log(β)

mean(µ0)

log(det(S0))

log(det(W0))

(a)

(b)

Figure 5.2: (a) Autocorrelation length for various parameters in the Markov
chain, based on 103 iteration. Only the number of occupied clusters, K, shows a
small correlation; the effective sample size is approximately 30. (b) The samples
from the last (3000th) iteration of Algorithm 2 separates the data points into
three distinct clusters. Coloured ellipses are centered at the posterior mean µj

and covariance matrix S−1
j for each cluster j. The big black ellipse is the one

created by the prior hyperparameters µ0 and S−1
0 .

5.1.2 Classification Performance

To evaluate the classification performance of the DP-GMM, we used three publicly

available datasets to classify different species of flowers and crabs, and the two

classes of breast cancer (benign and malignant). First, we modelled Fisher’s iris

data as a four-dimensional example to classify 150 flowers into the three species of iris

(Setosa, Versicolor and Virginica) (Fisher, 1936). The data consist of measurements
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in centimetres on four variables (sepal length and petal width, petal length and

petal width) and 50 flowers are recorded from each species. Secondly, we fitted crabs

data as a mixture of six-variate Gaussian distributions. The data frame contains

50 crabs from each species (Blue and Orange) and both sex, along with their five

morphological measurements (Campbell and Mahon, 1974). Finally, we modelled 32

features from the breast data (BCa) applying the DP-GMM to distinguish between

benign and malignant classes. More information about this dataset can be found here.

We start by splitting each dataset into a training set and a test set, 70%/30%,

respectively. We train the conditionally conjugate DP-GMM without covariates to

approximate the predictive density of each class, estimate the mixing proportions

and the parameters of the model. We run 3000 Gibbs sampling iterations, where the

first 1000 are removed, and then we evaluate the predictive posterior distributions

for each distinct class on the test set. For example, for breast cancer classification

we calculate p(ytest|MBenign) and p(ytest|MMalignant) to categorise “unlabelled” data

to the most likely class; i.e. benign or malignant. Convergence and mixing for

all samplers is achieved fast. Table 5.2 presents the good predictive performance

of the DP-GMM classification model on each dataset. Overall accuracy for iris

and crabs data classification are 0.98, 95% CI (0.88,1) and 1, 95% CI (0.93,1),

respectively. Benign and malignant classes of the breast cancer dataset seemed to be

slightly difficult to separate, because they might have similar densities. To achieve

a better classification accuracy, we might investigate which of the 32 variables we

have available are the most powerful and useful to model. For comparison reasons,

we also present the classification results obtained from SVM and LDA classification

methods in Table 5.2 (Cortes and Vapnik, 1995; McLachlan, 2005). Compared to

the classification performance of SVM and LDA, the Dirichlet-Process Gaussian

mixture model (DP-GMM) was equally accurate, achieving very high values of

overall accuracy, however for breast cancer data, SVM and LDA methods achieved

higher values; 0.96, 95% CI (0.92,0.98) and 0.94, 95% CI (0.89,97), respectively.

https://archive-beta.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+diagnostic
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Table 5.2: Predictive performance of the classification methods DP-GMM, SVM
and LDA on the iris, crabs and breast cancer datasets. “Blue” and “Malignant”
were set as the positive classes in the classification process. “Dim” denotes the

dimensionality of the Gaussian components.

Balanced Overall
Dataset Dim Class Sensitivity Specificity Accuracy Accuracy (95% CI)

DP-GMM

Iris Setosa 1 1 1
4 Versicolor 0.93 1 0.97 0.98 (0.88, 1)

Virginica 1 0.97 0.98

Crabs 6 Orange-Blue 1 1 1 1 (0.93, 1)

BCa 32 Benign-Malignant 0.57 0.93 0.75 0.72 (0.62,0.78)

SVM

Iris Setosa 1 1 1
4 Versicolor 0.80 1 0.90 0.93 (0.82, 0.99)

Virginica 1 0.90 0.95

Crabs 6 Orange-Blue 1 1 1 1 (0.94, 1)

BCa 32 Benign-Malignant 0.92 0.98 0.95 0.96 (0.92,0.98)

LDA

Iris Setosa 1 1 1
4 Versicolor 0.93 0.97 0.95 0.96 (0.85, 1)

Virginica 0.93 0.97 0.95

Crabs 6 Orange-Blue 1 1 1 1 (0.94, 1)

BCa 32 Benign-Malignant 0.86 0.98 0.92 0.94 (0.89,0.97)

5.2 Applications on Prostate Cancer Data

5.2.1 Data Description

In this section, we present the results of the proposed methodology on real prostate

cancer datasets of different dimensionality for three classes of individuals; healthy

(H), benign prostatic hyperplasia (BPH) and prostate cancer (PCa) patients. The

first study (dataset 1) included 96 healthy males, 127 patients with BPH and 83

patients with confirmed PCa. The second study (dataset 2) included 212 healthy

males, 144 patients with BPH and 140 patients with confirmed PCa. The range

of age of all individuals in the dataset 2 was from 16 to 83 years. The mean age

in each class was 54 for healthy men and 67 for both BPH and PCa patients. The

mean serum PSA level was 4.11 ng/mL for BPH patients and 8.40 ng/mL for PCa
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patients. PSA values were not available for healthy men. The ultimate goal of the

DP-GMM and DP-GMMx models is to find appropriate distributions to delineate

the underlying distributions of the training data, and then predict the categorical

class labels of new coming data.

5.2.2 Results

For both datasets, we initially split them randomly into 70% train and 30% test,

while preserving relative ratios of different labels in variable “Class”. Then, the

conditionally conjugate DP-GMMs with and without covariates are applied to model

the predictive density of each class using its training set, and estimate its mixing

proportions and model parameters. Convergence and mixing of all samplers is fast for

both datasets. The first 1000 draws out of 3000 iterations of the sampling process are

discarded as a burn-in period. Based on the parameters drawn from the remaining

Gibbs sweeps, we use Bayes’ factors evaluating the predictive posterior distributions

between the three models p(ytest|MH), p(ytest|MBPH) and p(ytest|MCAP ) in order

to classify the “unlabelled” data points to the most likely model class.

The challenging part here is to achieve good classification for all classes. It is

very important to detect the BPH and PCa cases, but also crucial to correctly iden-

tify healthy individuals as healthy. The DP-GMMx model applied on the dataset 2

with age as a covariate achieves the best overall predictive performance for the three

groups, showing superiority compared to the other models we applied (see Table

5.3). The covariates seem to add important information into the model and make it

a more powerful tool for classification.

We have also attempted to investigate whether using a subset of individuals over 60

years old could be more representative for detecting BPH and PCa patients, taking

into account that PCa mostly occurs in individuals older than 60 years. However,

the results did not show any improvement compared to the model with the full set

included. The densities of BPH and PCa patients seem to be similar, which creates
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an extra level of difficulty in discriminating between these two classes (see Figure

B.12).

Lastly, we applied the model on the subset with benign prostatic hyperplasia

and prostate cancer patients, adding the serum prostate specific antigen as a sec-

ond covariate. We also present the classification performance using two standard

classification techniques, SVM and LDA, applied on the same training and test sets

in Table 5.4. It is obvious that classification via DP-GMM was superior to the

classification from SVM and LDA.

Table 5.3: Predictive performance of various DP-GMM models applied on
markers only from both available datasets. In all binary classifications “PCa” was

set as the positive class.

Balanced Overall

Dataset∗ Covariates Class Sensitivity Specificity Accuracy Accuracy (95% CI)

1 H 1 0.94 0.97

BPH 0.78 0.87 0.82 0.81 (0.70, 0.89)

PCa 0.62 0.89 0.76

2 H 0.81 0.79 0.80

BPH 0.72 0.83 0.76 0.69 (0.60, 0.77)

PCa 0.46 0.90 0.69

2 Age H 0.81 0.96 0.88

BPH 0.86 0.84 0.85 0.79 (0.71, 0.86)

PCa 0.68 0.90 0.79

2 Age≥ 60 H 0.79 0.85 0.82

BPH 0.74 0.84 0.79 0.73 (0.63, 0.81)

PCa 0.64 0.90 0.77

2∗∗ Age BPH-PCa 0.84 0.75 0.80 0.80 (0.68, 0.89)

2∗∗ Age≥ 60 BPH-PCa 0.85 0.76 0.80 0.80 (0.67, 0.90)

∗ Table C.6 represents the variables included in each dataset.

∗∗ Including PSA levels as an additional response variable.
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Table 5.4: Predictive performance of SVM and LDA classification methods
applied on markers only from both available datasets. In all binary classifications

“PCa” was set as the positive class.

Additional
Dataset∗ Response Balanced Overall
(Method) Variable Class Sensitivity Specificity Accuracy Accuracy (95% CI)

1 H 0.83 0.94 0.88
(SVM) BPH 0.79 0.74 0.77 0.69 (0.58, 0.78)

PCa 0.36 0.84 0.60

1 H 0.83 0.94 0.88
(LDA) BPH 0.71 0.74 0.73 0.66 (0.56, 0.76)

PCa 0.40 0.81 0.60

2 H 0.91 0.62 0.76
(SVM) BPH 0.47 0.84 0.66 0.59 (0.49, 0.69)

PCa 0.41 0.92 0.67

2 H 0.69 0.70 0.69
(LDA) BPH 0.62 0.72 0.67 0.54 (0.44, 0.64)

PCa 0.31 0.89 0.60

2 Age H 0.92 0.54 0.73
(SVM) BPH 0.61 0.87 0.74 0.63 (0.55, 0.71)

PCa 0.20 0.98 0.59

2 Age H 0.89 0.48 0.69
(LDA) BPH 0.47 0.87 0.67 0.59 (0.50, 0.67)

PCa 0.23 0.96 0.59

2 Age≥ 60 H 0.78 0.71 0.75
(SVM) BPH 0.53 0.83 0.68 0.57 (0.47, 0.67)

PCa 0.41 0.82 0.61

2 Age≥ 60 H 0.59 0.71 0.65
(LDA) BPH 0.53 0.75 0.64 0.48 (0.38, 0.58)

PCa 0.31 0.76 0.54

2∗∗ Age BPH-PCa 0.68 0.76 0.72 0.72 (0.61, 0.82)
(SVM) PSA

2∗∗ Age BPH-PCa 0.55 0.82 0.68 0.68 (0.57, 0.79)
(LDA) PSA

2∗∗ Age≥ 60 BPH-PCa 0.52 0.90 0.84 0.71 (0.57, 0.82)
(SVM) PSA

2∗∗ Age≥ 60 BPH-PCa 0.45 0.93 0.69 0.69 (0.56, 0.80)
(LDA) PSA
∗ Table C.6 represents the variables included in each dataset.
∗∗ Including PSA levels as an additional response variable.
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5.3 Conclusions

The infinite Dirichlet process model for a mixture of Gaussians in a Bayesian

framework has been presented and extended into a more flexible model which uses

covariate information. It has been shown that DP-GMMs with and without covariates

achieve remarkable clustering and classification performances on multivariate datasets

compared to the widely used PSA diagnostic test and other multivariate statistical

approaches, such as support vector machines (SVM) and linear discriminant analysis

(LDA) or approaches used by Wolf et al. (2010) and Amante et al. (2019). Gaussian

mixture models of adequate mixture components work also well when applied on

the raw data due to their power to approximate any smooth density with any

specific non-zero amount of error (Goodfellow et al., 2016). The implementation

of the DP-GMM model on biomarkers only, while accounting for the age as a

covariate, and the PSA levels as an additional response variable, showed increased

prediction accuracy. It is also worth noting that the model with covariates proved

computationally faster, possibly because this additional information results in a

more accurate density estimation with reasonable number of components, which

makes the MCMC algorithm converge faster.



Chapter 6

Discussion

6.1 On Doping Detection

6.1.1 Conclusions

Doping is a global problem in both vulnerable athletic and non-athletic populations.

This research work is an attempt to improve tools to stop the spread of this problem

enhancing the decisions by International sports federations, while sophisticated

models for doping detection have been developed. In the first part of this thesis,

we extended the standard univariate model to a multivariate model for identifying

anomalous values within the steroidal profile of athletes. Non-longitudinal and

longitudinal data are used to train the proposed multivariate Bayesian model for

the majority class of non-doped athletes. We then investigated the performance of

the one-class classifier applied on a variety of univariate and multivariate models.

We focused on answering the following questions:

� How prior information about the population of the majority class (or the“target”

class) is specified in the model?

� How the classifier is constructed, trained and evaluated based on data from

the majority class?
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� What is the decision rule for classifying a sample obtained from an athlete as

belonging to the majority class?

� What is the measure to minimise the probability of accepting abnormal (or

outlier) samples as normal?

� How the model deals with the population- and individual-based information

in order to pass from population biomarker thresholds to individual level

thresholds?

� What metrics are suitable for the evaluation of the one-class classifier when

limited or no outlier samples are available?

� Which model is proposed for doping control analysis?

First, we conclude that ratios appear to be more sensitive in detecting abnormal

samples within the athlete’s steroid profiles. Specifically, the best one-class classi-

fication performance among the univariate models achieved when using the ratios

T/E (with weak informative priors and with strong informative priors from Sottas

et al. (2006) modelling), A/ETIO and A5/E.

Secondly, among the T/E models, the model of Sottas et al. (2006), which is

based on strongly informative priors, showed slightly better prediction compared to

the T/E model where semi-informative conjugate priors were used.

Applying the multivariate Gaussian models based on all biomarkers and ratios,

only biomarkers and only ratios with and without oversampling, the values of the

metrics are overall higher compared to the corresponding ones from the univariate

models. We also conclude that among all the applications of the MGMMs without

oversampling, the five available ratios (T/E, A/T, A/Etio, A5/B5 and A5/E) were

the most powerful set of variables for detecting abnormal concentration samples.

However, the best overall classification performance after applying oversampling is

achieved by the multivariate model where all biomarkers and ratios are included.
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Furthermore, we compared the classification performance of these models with

the results obtained from the applications of generalised linear mixed-effects models.

Their predictive performance was not satisfactory, which might be a result of the

large imbalance in the normal and abnormal distributions.

The classification and evidence evaluation procedures are implemented into an

online web application, which outputs the corresponding results for a given set of

measurements from an athlete’s steroid profile. The BioScan App contributes a

quick and easy-to-use tool for athletes’ evaluation and better decision making by

forensic scientists.

6.1.2 Limitations and Future Work

1. This research work used non-informative priors for all parameters of the

Bayesian hierarchical model. Nevertheless, the use of more informative priors

may provide a more accurate predictive distribution. For example, prior

knowledge on the model parameters related to each biomarker can be very

useful, as well as information on the correlation between the markers can be

also included in the prior setting.

2. Another important challenge that has been raised is that of multiple statistical

tests, which increases the probability of false positives. Therefore, multiple

testing corrections, such as Bonferroni correction, should be also considered in

order to adjust p-values derived from the tests.

3. Potential weaknesses of the one-class classifiers that we used might be hidden.

The model performance could be further improved by implementing several

classifiers and decision rules, or by combining them.

4. Single-component Gaussian distributions might be too restrictive to model

biological markers in our attempt to capture patterns between them. More

flexible modelling, such as Gaussian mixtures, could be useful in fitting high-

dimensional data and, therefore, in improving the classification accuracy.

https://dimitraelegla.shinyapps.io/doping_shiny_app/
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5. In summary, the classification performance of the proposed model depends not

only on the scaling of the variables, preprocessing, the sample size in comparison

with the dimensionality, but also on time and computation constraints, and

what target rejection rate is acceptable. Furthermore, to avoid learning the

noise, when the model suggests an outlier, then this observation is automatically

excluded from the set of recordings that are used to compute the HPD intervals.

On the other hand, leaving out samples which are assumed to be abnormal

based on the 95% HPD interval criterion generates the issue of discarding 5 out

of 100 false positive samples truncating the tails of the distribution over time.

Therefore, all such constraints should be taken into account before selecting

the best model, which is able to distinguish between normal and abnormal

concentration values of EAAS of athletes.

6.2 On Prostate Cancer Prediction

6.2.1 Conclusions

Prostate cancer (PCa) is one of the most frequent cancer diagnosis made and leading

cause of death worldwide after lung cancer (Litwin and Tan, 2017). The serum

prostate specific antigen (PSA) is the most commonly used screening programme

for prostate disease. However, its low sensitivity of detecting prostatic malignancies

is a matter of concern. In this research work we focused on studying multiple

urinary biomarkers and ratios to improve prognosis of prostate cancer. We are

interested in identifying patterns between several metabolite biomarkers such as

testosterone and androsterone in order to understand their correlation with the

diagnosis of the conditions of prostate cancer and benign prostatic hyperplasia (BPH).

A machine learning model has been developed and trained by data coming from

three condition groups; patients with PCa, patients with BPH, and healthy men. We

demonstrated the performance of the model in terms of clustering and classification

on both, simulated and real datasets. Various applications of Dirichlet Process
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Gaussian mixture models with and without covariates (DP-GMM and DP-GMMx)

were conducted under a Bayesian nonparametric framework in order to classify

new unlabelled data points. We finally presented the classification results from

the applications of the DP-GMMs including the steroids with highest significance

(e.g. testosterone, epitestosterone and etiocholanolone) and the PSA levels. All

models yielded high sensitivity and specificity scores, resulting significantly higher

than PSA itself. Specifically, the best performance was given by the models on the

markers including the PSA levels as a (d+ 1)th response variable with sensitivity

and specificity of 84% and 75% (for all men), and 85% and 76% (for men ≥ 60 years

old).

The DP-GMM classification model contributes to the following domains:

� The model proved a powerful tool in terms of density estimation, clustering

and classification performance for both, applications on real and artificial data.

� The extension of the DP-GMM model controlling for any potential covariates

enhances the model performance and provides the ability of making inference

on the model parameters.

� The addition of covariates in the model showed a significant decrease of

the computational cost. A possible cause for this observation is that fewer

mixture components were created compared to the model without covariates

which reduces the complexity of the model due to the additional information.

However, this statement should be further examined.

� DP-GMMx uses two distinct sources for the effect of the p covariates and the

effect of the d−variate response as regression coefficients. The assumption we

made about the structure of these coefficients reduces significantly the model

parameters which are needed to adjust for covariates.

� The DP-GMM and DP-GMMx models using urinary biomarkers were suitable

for prostate cancer prognosis and showed superiority compared to the widely

used PSA test, but also to other multivariate statistical methods, such as SVM

and LDA.
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� It is worth mentioning that the developed model is flexible to use data obtained

only from a non-invasive procedure. It is also a low cost and easy to apply

screening tool.

6.2.2 Limitations and Future Work

This work has some limitations based on which the DP-GMM model could be further

examined and developed.

� Exploring additional covariate information as potential risk factors such as

ethnicity, family history and genetic factors, dietary factors, alcohol and coffee

consumption, smoking status, obesity and physical activity and medications,

would potentially enable the model to capture hidden patterns and increase

its power for prediction.

� It would also be useful if a variable selection technique is incorporated in

the analysis, so it will take into account only the highly significant variables

automatically.

� If repeated recordings from men across various time points were available,

it would be a great addition for monitoring the progress of prostate cancer

therapy in the context of personalised medicine. This aspect requires that the

DP-GMM can be easily extended to a model with fixed and random effects

terms.
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Derivation of technical details

A.1 Likelihood function
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∝
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A.2 Conjugate Joint Posterior Distribution

p(µ, τ |y) ∝ f(y|µ, 1/τ)p(µ, τ) ∝ N (y|µ, τ)×NGa(µ0, κ0, α0, β0)

∝ τ 1/2e−
τκ0
2
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∝ τ 1/2τα0+n/2−1e−β0τe
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Therefore, the joint posterior distribution is a product of Gaussian and Gamma

distributions as

p(µ, τ |y) ∝ τ 1/2e
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with mean µn, variance (κnτ)
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A.3 Non-Conjugate Joint Posterior Distribution

p(µ, τ |y) ∝ f(y|µ, τ)p(µ, τ) = N (y|µ, τ)×NGa(µ0, κ0, α0, β0)
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A.4 Conditional Posterior of parameter µ

p(µ|τ,y) ∝ p(µ, τ |y) ∝ e−
τ
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A.5 Deriving the joint distribution of µ and σ

Let θ = (µ,C) be a 2-dimensional vector of the population characteristics, denoting

the mean and coefficient of variation with probability density function

p(θ) = p(µ,C) = p(µ)p(C|µ) = p(µ)p(C),

where C =
σ

µ
.

Also, let the transformation g : R2 → R2,

θ⊤ 7→ g(θ⊤) = g
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C · µ
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,
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 .

As we are interested in obtaining the distribution of θ′, we first need to compute the

Jacobian term. Therefore, the joint distribution is given by
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A.6 Full Conditional Posterior Distributions for

the parameters of the univariate multilevel

model

Joint posterior:
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Conditional distributions:
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A.7 Full Conditional Posterior Distributions for

the parameters of the multivariate multilevel

model

Joint posterior:
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where
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A.8 Technical details for Inference of DP-GMM

A.8.1 Conditional posterior distributions for the means µjs

The conditional posterior distributions for the means µjs are derived by the multi-

plication of the likelihood given the variable c of indicators from equation (4.3) by

the prior for the means from equation (4.11) as follows:

p(µj|c, Sj,µ0, S0,y) ∝
nj∏
i=1

Nd(yi|µj , S
−1
j )×Nd(µj|µ0, S

−1
0 )

∝
nj∏
i=1

e−
1
2
(yi−µj)

TSj(yi−µj) × e−
1
2
(µj−µ0)TS0(µj−µ0)

∝ e−
1
2
(−2µj

TSjnj ȳj+njµj
TSjµj) × e−

1
2
(µj

TS0µj−2µj
TS0µ0)

= exp

(
− 1

2
(−2µj

T b1 + µj
TA1µj)

)
× exp

(
− 1

2
(µj

TA0µj − 2µj
T b0

)

= exp

(
µj

T (b0 + b1)−
1

2
µj

T (A0 + A1)µj)

)
= exp

(
µj

T bn −
1

2
µj

TAnµj)

)
,

where

b0 = S0µ0, A0 = S0, b1 = njȳjSj, ȳj =
( 1

nj

nj∑
i=1

yi[1], ...,
1

nj

nj∑
i=1

yi[d]

)

A1 = njSj, bn = b0 + b1 = S0µ0 + njȳjSj, An = A0 + A1 = S0 + njSj

=⇒ µj |c, Sj,µ0, S0,y ∼ Nd

(
µn = A−1

n bn,Σn = A−1
n

)
∀ j = 1, ..., K,
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where

µn = A−1
n bn = (S0 + njSj)

−1(S0µ0 + njȳjSj)

Σn = A−1
n = (S0 + njSj)

−1

A.8.2 Conditional posterior distributions for precisions Sj

We obtain the conditional posteriors for precisions Sjs by multiplying the likelihood

conditioned on the indicators from equation (4.3) by the prior for precisions from

equation (4.11) as:

p(Sj|c,µj , β0,W0,y) ∝
nj∏
i=1

Nd(yi|µj , S
−1
j )×W(Sj|β0, (β0W0)

−1)

∝
nj∏
i=1

|S−1
j |−

1
2 e−

1
2
(yi−µj)

TSj(yi−µj) × |Sj|
β0−d−1

2 e−
tr((β0W0)Sj)

2

∝
(

1

|Sj|

)−
nj
2

e−
1
2

∑nj
j=1(yi−µj)

TSj(yi−µj) × |Sj|
β0−d−1

2 e−
1
2
tr((β0W0)Sj)

∝ |Sj|
(nj+β0)−d−1

2 e−
1
2
tr(S

′
Sj),

where

S
′
=

nj∑
j=1

(yi − µj)(yi − µj)
T + β0W0

=⇒ Sj|c,µj , β0,W0,y ∼ W(nj + β0, S
′−1)
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A.8.3 Conditional posterior distributions for the hyperpa-

rameters µ0, S0, W0 and y

The conditional posterior distributions for the hyperparameters µ0, S0, W0 and

z = β0 − d+ 1 are obtained from the corresponding distributions in equation (4.11),

which acts as likelihood, and the hyperpriors from equations (4.12) and (4.19) as:

p(µ0|{µj}K
j=1, S0) ∝

K∏
j=1

Nd(µj |µ0, S
−1
0 )×Nd(µ0|µy,Σy)

∝
K∏
j=1

e−
1
2
(µj−µ0)TS0(µj−µ0) × e−

1
2
(µ0−µy)TΣ−1

y (µ0−µy)

∝ e−
1
2
(−2µ0

TS0
∑K

j=1 µj+Kµ0
TS0µ0) × e−

1
2
(µ0

TΣ−1
y µ0−2µ0

TΣ−1
y µy)

= exp

(
− 1

2
(−2µ0

T b1 + µ0
TA1µ0)

)
× exp

(
− 1

2
(µ0

TA0µ0 − 2µ0
T b0

)

= exp

(
µ0

T (b0 + b1)−
1

2
µ0

T (A0 + A1)µ0)

)
= exp

(
µ0

T bn −
1

2
µ0

TAnµ0)

)
,

where

b0 = Σ−1
y µy, A0 = Σ−1

y , b1 = Kµ̄S0, µ̄ =
( 1

K

K∑
j=1

µj[1], ...,
1

K

K∑
j=1

µj[d]

)

A1 = KS0, bn = b0 + b1 = Σ−1
y µy +Kµ̄S0, An = A0 + A1 = Σ−1

y +KS0

=⇒ µ0|{µj}K
j=1, S0 ∼ Nd

(
µn = A−1

n bn,Σn = A−1
n

)
,
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where

µn = A−1
n bn = (Σ−1

y +KS0)
−1(Σ−1

y µy +Kµ̄S0)

Σn = A−1
n = (Σ−1

y +KS0)
−1

p(S0|{µj}K
j=1,µ0) ∝

K∏
j=1

Nd(µj |µ0, S
−1
0 )×W(S0|d, (dΣy)

−1)

∝
K∏
j=1

|S−1
0 |−

1
2 e−

1
2
(µj−µ0)TS0(µj−µ0) × |S0|

d−d−1
2 e−

tr(dΣyS0)

2

∝
(

1

|S0|

)−K
2

e−
1
2
(
∑K

j=1(µj−µ0)TS0(µj−µ0) × |S0|
d−d−1

2 e−
1
2
tr(dΣyS0)

∝ |S0|
(K+d)−d−1

2 e−
1
2
tr(S

′
S0),

where

S
′
=

K∑
j=1

(µj − µ0)(µj − µ0)
T + dΣy

=⇒ S0|{µj}K
j=1, µ0 ∼ W (K + d, S ′−1)
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p(W0|{Sj}Kj=1, β0) ∝
K∏
j=1

W(Sj|β0, (β0W0)
−1)×W(W0|d, (dΣy)

−1)

∝ |β0W0|
Kβ0
2

K∏
j=1

e−
tr(β0W0Sj)

2 × |W0|
d−d−1

2 e−
tr(dΣyW0)

2

∝ |W0|
Kβ0
2 e−

1
2

∑K
j=1 tr(β0W0Sj) × |W0|

d−d−1
2 e−

tr(dΣyW0)

2

= |W0|
(Kβ0+d)−d−1

2 e−
1
2
tr
(
(β0

∑K
j=1 Sj+dΣy)W0

)
∝ |W0|

(Kβ0+d)−d−1
2 e−

1
2
tr(S

′
W0),

where

S
′
= β0

K∑
j=1

Sj + dΣy

=⇒ W0|{Sj}Kj=1, β0 ∼ W (Kβ0 + d, S ′−1)

p(z|{Sj}Kj=1,W0)
(β0=z+d−1)
∝

K∏
j=1

W(Sj|z + d− 1,
W−1

0

z + d− 1
)× IG(z|1/2, d/2)

∝ z−
3
2 e−

d
2z |W0|

(z+d−1)K
2

K∏
j=1

|Sj|
z
2 e−

z+d−1
2

tr(W0Sj)∏d−1
i=0 Γd

(
z+i
2

) ,

where

Γd(ϕ) = πd(d−1)/4

d∏
i=1

Γ
(
ϕ+

i− d

2

)
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log(p(z|{Sj}Kj=1,W0)) ∝ −
3

2
log z − d

2z

+
(z + d− 1)K

2
log |W0|+

Kd

2
(z + d− 1)(log(z + d− 1)− log 2)

+
z

2

K∑
j=1

[log |Sj| − tr(W0Sj)]−K

d−1∑
i=0

log(Γd

(z + i

2

)
)

∂ log(p(z|{Sj}Kj=1,W0))

∂z
∝ − 3

2z
+

d

2z2
+

K

2
log |W0|+

Kd

2
(log(z + d− 1)− log 2)

+
Kd

2
+

1

2

K∑
j=1

[log |Sj| − tr(W0Sj)]−
K

2

∂

(∑d−1
i=0 log(Γd

(
z+i
2

)
)

)
∂z

Note. Inverse Gamma and Wishart distributions are log-concave functions. Since

the product of log-concave functions is log-concave, therefore the probability density

function p(z|{Sj}Kj=1,W0), which is proportional to the product of K independent

Wishart distributions and an Inverse Gamma distribution, is log-concave. Hence, its

logarithm, i.e. log(p(z|{Sj}Kj=1,W0)) is concave and ARS method can be applied to

sample from the posterior distribution for z (Gilks and Wild, 1992).

A.8.4 Prior probability of the assignments c1:n

Using equations (4.5) and (4.6) along with the standard Dirichlet integral, we

can integrate out the mixing proportions, π, and then obtain the probability of a

particular set of assignments, c1:n, as follows:

p(c1:n|α, n) =
∫

p(c1:n|π)p(π|α)dπ =
Γ(α)

Γ(α/K)K

∫ K∏
j=1

π
nj+α/K−1
j dπj =

Γ(α)

Γ(α/K)K
B(n+α)

=
Γ(α)

Γ(α/K)K

∏K
j=1 Γ(nj + α/K)

Γ(
∑K

j=1(nj + α/K))
=

Γ(α)

Γ(n+ α)

K∏
j=1

Γ(nj + α/K)

Γ(α/K)
.

Note that n =
∑K

j=1 nj, n = (n1, ..., nk) and α = (α/K, ..., α/K).
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A.8.5 Conditional prior of the assignment ci

Keeping all the allocation variables fixed except for a single one, the conditional

prior for this allocation given the rest is described by:

p(ci = j|c−i, α) =
p(c1:(i−1), ci = j)

p(c1:(i−1))
=

Γ(α)
Γ(n+α)

∏K
j=1

Γ(nj+α/K)

Γ(α/K)

Γ(α)
Γ(n−1+α)

∏K
j=1

Γ(n−i,j+α/K)

Γ(α/K)

=
Γ(n− 1 + α)

Γ(n+ α)

K∏
j=1

Γ(nj + α/K)

Γ(n−i,j + α/K)

Γ(x+1)=xΓ(x)
=

Γ(n− 1 + α)

Γ(n+ α)

(n−i,j + α/K)Γ(n−i,j + α/K)

Γ(n−i,j + α/K)

Γ(x)=(x−1)!
=

(n+ α− 2)!

(n+ α− 1)!
(n−i,j + α/K) =

n−i,j + α/K

n− 1 + α
,

where the subscript −i denotes all indices except i, and n−i,j is the number of

observations excluding the ith observation that are associated with component j; i.e.

n−i,j = nj − 1.

A.8.6 Probability distributions of allocations in CRP

In the CRP context, when the number of clusters (tables) approaches the infinity

(K →∞), a new customer i, who enters the restaurant, either randomly chooses to

sit at an occupied table (e.g. jth table) with probability proportional to the number

of customers they already sit there n−i,j.:

p(ci = j|c−i, α) =
n−i,j

n− 1 + α
,

or to sit at the first available currently empty table (e.g. a new table K + 1) with

probability proportional to the concentration parameter α/K:
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p(ci = K + 1|c−i, α) = 1−
∑K

j=1 n−i,j

n− 1 + α
=

α

n− 1 + α
.

A.8.7 Probability distribution of the occupation numbers

n1:K

The probability of the occupation numbers {ni}Ki=1, conditioned on α and the number

of occupied components K, is derived by equation (4.7) and denotes the likelihood

function of α:

p({ni}Ki=1|α,K) = αK

n∏
i=1

1

i− 1 + α
=

αKΓ(α)

Γ(n+ α)
.

A.8.8 Conditional posterior for the hyperparameter α

The conditional posterior distribution for the hyperparameter α is obtained from the

likelihood p({ni}Ki=1|α,K) and the hyperprior p(α) (derived by p(α−1) in 4.19) as:

p(α|K,n) ∝ p({ni}Ki=1|α,K)× p(α) =
αKΓ(α)

Γ(n+ α)
× α− 3

2 e−
1
2α =

αK− 3
2 e−

1
2αΓ(α)

Γ(n+ α)

log(p(u|K,n))
(u=log(α))
∝ (K − 3

2
)u− 1

2eu
+ log Γ(eu)− log Γ(n+ eu) + u.

Note. Since the distribution p(log(α)|K,n) is log-concave, the distribution log(p(log(α)|K,n))

is concave, thus the adaptive rejection sampling technique can be applied to draw

independent samples from this posterior distribution for log(α) (Gilks and Wild,

1992).
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A.8.9 Conditional posterior of the assignment ci

To define the conditional posterior density of a single indicator ci, we multiply

the likelihood function given the rest indicators c−i from equation (4.3) with the

prior distribution from equations (4.9) and (4.10). Therefore, when n−i,j > 0 the

conditional posterior is:

p(ci = j|c−i,µj , Sj, α) ∝ p(ci = j|c−i, α)× pj(yi|µj , Sj, c−i)

∝ n−i,j

n− 1 + α
×Nd(yi|µj , S

−1
j )

∝ n−i,j

n− 1 + α
× |Sj|

1
2 e−

1
2
(yi−µj)

TSj(yi−µj),

(A.1)

otherwise

p(ci = K + 1|c−i,µ0, S0, β0,W0, α) ∝ p(ci = K + 1|c−i, α)×
∫

pj(yi|µj , Sj)G0(µj , Sj)dµjdSj

∝ α

n− 1 + α
×

∫
Nd(yi|µj , S

−1
j )Nd(µj|µ0, S

−1
0 ) W(Sj|β0, (β0W0)

−1)dµjdSj.

(A.2)

A.9 Technical details for Inference of DP-GMMx

A.9.1 Conditional posterior distributions for the coefficients

qjs and rjs

Let xi be the (p+ 1)-dimensional vector including the covariate information, where

p denotes the number of covariates, and yi is the d-dimensional response variable

for the ith unit. The conditional posterior distributions for the effect due to the p

covariates qjs are derived by the multiplication of the likelihood given the variable

c of indicators from equation (4.3) and the prior for qjs from

G0(qj , rj , Sj) = N(p+1)(qj|µq, S
−1
q ) Nd(rj|µr, S

−1
r ) W(Sj|β0, (β0W0)

−1) (A.3)
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as follows:

p(qj|c, Sj,µq, Sq,x,y) ∝
nj∏
i=1

Nd(yi|µij = qjxi
Trj , S

−1
j )×N(p+1)(qj|µq, S

−1
q )

1

=

nj∏
i=1

Nd(yi|λi,Λi)×N(p+1)(qj |ξ,Ξ) ∝ N(p+1)(qj |ξ,Ξ)

Initialise: Ξ−1
0 = Sq; ξ0 = µq; z0 = µqSq

Iterate: Λi = S−1
j +MT

i Ξi−1Mi, where Mi = xi
Trj and i = 1, . . . , nj

λi = ξi−1Mi

Ξ−1
i = Ξ−1

i−1 +MiSjM
T
i

zi = zi−1 + yiSjM
T
i

ξi = ziΞi

Finish: Ξ = Ξnj
and ξ = ξnj

The conditional posterior distributions for the effect due to the d response variables

rjs are derived by the multiplication of the likelihood given the variable c of indicators

from equation (4.3) and the prior for rjs from equation (A.3) as follows:

1Make use of the mathematical derivations made in Hogg et al. (2020).
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p(rj|c, Sj,µr, Sr,x,y) ∝
nj∏
i=1

Nd(yi|µij = rj
Tqjxi

T , S−1
j )×Nd(rj |µr, S

−1
r )

ai=qjxi
T

=

nj∏
i=1

e−
1
2
(yi−airj)

TSj(yi−airj) × e−
1
2
(rj−µr)TSr(rj−µr)

∝ e−
1
2

∑nj
i=1(yi−airj)

TSj(yi−airj) × e−
1
2
(rj

TSrrj−2rj
TSrµr)

= e−
1
2
[−2

∑nj
i=1(airj)

TSjyi
T+

∑nj
i=1(airj)

TSj(airj)] × e−
1
2
[rj

TA0rj−2rj
T b0]

= e−
1
2
[−2

∑nj
i=1 rj

T aTi Sjyi
T+

∑nj
i=1 rj

T aTi Sjairj ] × e−
1
2
[rj

TA0rj−2rj
T b0]

= e−
1
2
[−2rj

T
∑nj

i=1 a
T
i Sjyi

T+rj
T
∑nj

i=1 a
T
i Sjairj ] × e−

1
2
[rj

TA0rj−2rj
T b0]

= exp

(
− 1

2
(−2rjT b1 + rj

TA1rj)

)
× exp

(
− 1

2
[rj

TA0rj − 2rj
T b0]

)
= exp

(
rj

T (b0 + b1)−
1

2
rj

T (A0 + A1)rj)

)
= exp

(
rj

T bn −
1

2
rj

TAnrj)

)
,

where

b0 = Srµr, A0 = Sr, b1 = Sj

nj∑
i=1

aTi yi
T , A1 = Sj

nj∑
i=1

a2i

bn = b0 + b1 = µr + Sj

nj∑
i=1

aTi yi
T , An = A0 + A1 = Sr + Sj

nj∑
i=1

a2i

=⇒ rj|c, Sj,µr, Sr,x,y ∼ Nd

(
µn = A−1

n bn,Σn = A−1
n

)
∀ j = 1, ..., K,

where

µn = A−1
n bn = (Sr + Sj

nj∑
i=1

a2i )
−1(µr + Sj

nj∑
i=1

aTi yi
T )

Σn = A−1
n = (Sr + Sj

nj∑
i=1

a2i )
−1
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A.9.2 Conditional posterior distributions for the hyperpa-

rameters µq, Sq, µr and Sr

The conditional posterior distributions for the hyperparameters µq, Sq, µr and Sr

are obtained from the corresponding distributions in equation (A.3), which acts as

likelihood, and the hyperpriors µq ∼ Np(µq|µ0,Σ0), Sq ∼ W(Sq|p, (pΣ0)
−1), µr ∼

Nd(µr|µy,Σy) and Sr ∼ W(Sr|d, (dΣy)
−1), for all hyperparameters respectively, as:

p(µq|{qj}K
j=1, Sq) ∝

K∏
j=1

Np(qj|µq, S
−1
q )×Np(µq|µ0,Σ0)

∝
K∏
j=1

e−
1
2
(qj−µq)TSq(qj−µq) × e−

1
2
(µq−µ0)TΣ−1

0 (µq−µ0)

∝ e−
1
2
(−2µq

TSq
∑K

j=1 qj+Kµq
TSqµq) × e−

1
2
(µq

TΣ−1
0 µq−2µq

TΣ−1
0 µ0)

= exp

(
− 1

2
(−2µq

T b1 + µq
TA1µq)

)
× exp

(
− 1

2
(µq

TA0µq − 2µq
T b0

)

= exp

(
µq

T (b0 + b1)−
1

2
µq

T (A0 + A1)µq)

)
= exp

(
µq

T bn −
1

2
µq

TAnµq)

)
,

where

b0 = Σ−1
0 µ0, µ0 = 1(1×(p+1)), Σ0 =


100 · · · 0
...

. . .
...

0 · · · 100



A0 = Σ−1
0 , b1 = Kq̄Sq, q̄ =

( 1

K

K∑
j=1

qj[1], ...,
1

K

K∑
j=1

qj[p]

)
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A1 = KSq, bn = b0 + b1 = Σ−1
0 µ0 +Kq̄S;, An = A0 + A1 = Σ−1

0 +KSq

=⇒ µq|{qj}K
j=1, Sq ∼ Np

(
µn = A−1

n bn,Σn = A−1
n

)
,

where

µn = A−1
n bn = (Σ−1

0 +KSq)
−1(Σ−1

0 µ0 +Kq̄Sq)

Σn = A−1
n = (Σ−1

0 +KSq)
−1

p(Sq|{qj}K
j=1,µq) ∝

K∏
j=1

Np(qj |µq, S
−1
q )×W(Sq|p, (pΣ0)

−1)

∝
K∏
j=1

|S−1
q |−

1
2 e−

1
2
(qj−µq)TSq(qj−µq) × |Sq|

p−p−1
2 e−

tr(pΣ0Sq)

2

∝
(

1

|Sq|

)−K
2

e−
1
2
(
∑K

j=1(qj−µq)TSq(qj−µq) × |Sq|
p−p−1

2 e−
1
2
tr(pΣ0Sq)

∝ |Sq|
(K+p)−p−1

2 e−
1
2
tr(S

′
Sq),

where

S
′
=

K∑
j=1

(qj − µq)(qj − µq)
T + pΣ0

=⇒ Sq|{qj}K
j=1, µq ∼ W (K + p, S ′−1)
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Similarly, the conditional posteriors of µr and Sr are given below:

p(µr|{rj}K
j=1, Sr) ∝

K∏
j=1

Nd(rj|µr, S
−1
r )×Nd(µr|µy,Σy)

∝ exp

(
µr

T (b0 + b1)−
1

2
µr

T (A0 + A1)µr)

)
= exp

(
µr

T bn −
1

2
µr

TAnµr)

)
,

where

b0 = Σ−1
y µy, A0 = Σ−1

y , b1 = Kr̄Sr, r̄ =
( 1

K

K∑
j=1

rj[1], ...,
1

K

K∑
j=1

rj[d]
)

A1 = KSr, bn = b0 + b1 = Σ−1
y µy +Kr̄Sr, An = A0 + A1 = Σ−1

y +KSr

=⇒ µr|{rj}K
j=1, Sr ∼ Nd

(
µn = A−1

n bn,Σn = A−1
n

)
,

where

µn = A−1
n bn = (Σ−1

y +KSr)
−1(Σ−1

y µy +Kr̄Sr)

Σn = A−1
n = (Σ−1

y +KSr)
−1

p(Sr|{rj}K
j=1,µr) ∝

K∏
j=1

Nd(rj|µr, S
−1
r )×W(Sr|d, (dΣy)

−1) ∝ |Sr|
(K+d)−d−1

2 e−
1
2
tr(S

′
Sr),

where

S
′
=

K∑
j=1

(rj − µr)(rj − µr)
T + dΣy

=⇒ Sr|{rj}K
j=1, µr ∼ W (K + d, S ′−1).

The rest hyperparameters maintain the same conditional posteriors of the DP-GMM

without covariates.



Appendix A Derivation of technical details 144

A.9.3 Predictive distribution of DP-GMMx

p(ỹ|y) ≈ 1

T

T∑
t=1

[ α(t)

n+ α(t)
Nd(ỹ|µ(t)

r , S−1 (t)
r ) +

K(t)∑
j=1

nj

n+ α(t)
Nd(ỹ|µ(t)

ij , S
−1 (t)
j )

]
,

where µ
(t)
ij = q

(t)
j xT

i r
(t)
j
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Figures

(a) (b)

Figure B.1: Scatter plot of µ and σ and the 95% highest posterior region using
the sampling algorithms a) MH and b) MWG and informative priors for T/E
ratio of athlete 1. The red dot denotes the starting point, and a two-dimensional

95% credible region is displayed by the dark red line.
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(a) (b)

Figure B.2: (a) Histograms, traceplots and (b) running averages of the param-
eters µ and σ over the iterations using the MWG sampling algorithm and the
informative priors from Sottas et al. (2006) for T/E of athlete 1. The posterior
means for µ and σ can be approximated by the averages E[µ|y] ≈ 1

N

∑N
i=1 µ

(i)

and E[σ|y] ≈ 1
N

∑N
i=1 σ

(i), respectively.

(a) (b)

Figure B.3: Autocorrelation plot of µ and τ parameters - Gibbs sampler for the
univariate model.
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(a) (b)

Figure B.4: Autocorrelation plot of µ and σ parameters - MWG sampler for
the T/E model.

Figure B.5: Traceplots from five chains of Metropolis-Hastings algorithm for
parameters µ and σ .
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(a)

(b)

Figure B.6: Pairs plot of normal (0: pastel green) vs abnormal (1: pastel red)
samples including the scatter, density and contour plots for (a) the six markers,

and (b) their five ratios in the logarithmic scale.
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Figure B.7: Scatter plot of µ and σ2
e and the 95% highest posterior region using

the Gibbs sampler and informative priors.
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Figure B.8: Traceplots and density plots of a) number of clusters, concentration
parameter α and hyperparameter µ0, and b) |S0|, |W0| and β0 to verify the good

mixing of Algorithm 2.
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Figure B.9: The number of mixing components and the covariance parameterisa-
tion are selected using the Bayesian Information Criterion (BIC) with the mclust
package. This is a plot of the BIC traces for all the models considered. There is a

clear indication of a three-component mixture from all models.
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Figure B.10: Scatter plots of the three mixture densities estimated with (a)
Diricletprocess and (b) mclust methods on the simulated dataset.
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(a)

(b)

(c)

Figure B.11: Predictive densities of simulated data modelled by (a) DPGMM,
(b) Dirichletprocess, and (c) mclust packages.
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(a)

(b)

Figure B.12: Density estimates of a) biomarkers and b) ratios for each class;
healthy males (green), males with BPH (blue), and males confirmed with PCa

(red).
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Tables

Table C.1: Urinary steroid metabolites quantitated in this study.

Trivial name Abbreviation Systematic name Formula

5α-Adiol A5 5α-Androstane-3α,17β-diol C19H32O2

5β-Adiol B5 5β-Androstane-3α,17β-diol C19H32O2

Androsterone A 3α-Hydroxy-5α-androstan-17-one C19H30O2

Epitestosterone E 17α-Hydroxy-androst-4-en-3-one C19H28O2

Etiocholanolone ETIO 3α-Hydroxy-5β-androstan-17-one C19H30O2

Testosterone T 17β-Hydroxy-androst-4-en-3-one C19H28O2

5α-Adiol/5β-Adiol A5/B5

5α-Adiol/Epitestosterone A5/E

Androsterone/Etiocholanolone A/ETIO

Androsterone/Testosterone A/T

Testosterone/Epitestosterone T/E
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Table C.2: Descriptive summaries (min, inter-quartile range; IQ1 and IQ3,
mean, median and max) of the metabolites and ratios of 100 athletes with normal

samples.

Min IQ1 Mean Median IQ3 Max
Target Metabolite (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

A5 1 11 35.08 25 49 210
B5 1 34 96.25 64 120 910
A 100 1,200 2, 097 1, 800 2,600 16, 000
E 0.10 4 17.48 11 26 130
ETIO 98 1,100 1, 863 1, 700 2,400 7, 200
T 0.10 3.30 20.17 9.60 31 150
A5/B5 0.013 0.24 0.49 0.40 0.61 4.8
A5/E 0.13 1.41 4.77 2.54 4.65 160
A/ETIO 0.06 0.80 1.21 1.11 1.48 8.16
A/T 6.25 72.41 365.25 159.46 412.7 23, 000
T/E 0.012 0.75 1.35 1.0 1.6 13

Table C.3: Descriptive summaries (min, inter-quartile range; IQ1 and IQ3,
mean, median and max) of the metabolites and ratios of 100 athletes with atypical

samples.

Min IQ1 Mean Median IQ3 Max
Target Metabolite (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

A5 1.0 14 36.61 28.0 50 250
B5 3.3 43 105.1 73 140 1, 400
A 100 1,200 2,318 2, 000 3,000 13, 000
E 0.10 4.50 18.53 12.0 27 160
ETIO 270 1,300 2,199 1, 900 2,700 14, 000
T 0.10 3.3 19.44 9.25 33 150
A5/B5 0.02 0.19 0.48 0.35 0.65 4.6
A5/E 0.08 1.42 3.38 2.37 4.6 53.33
A/ETIO 0.014 0.7 1.16 1.04 1.46 6.91
A/T 6.252 67.66 454.63 183.33 525.65 9, 200
T/E 0.01 0.62 1.46 1 1.64 35
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Table C.4: Descriptive summaries (min, inter-quartile range; IQ1 and IQ3,
mean, median and max) of the metabolites and ratios of 29 athletes with abnormal

samples.

Min IQ1 Mean Median IQ3 Max
Target Metabolite (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

A5 3.7 21 50.53 39.5 65 270
B5 4.9 24 82.69 50 97 2, 200
A 210 1,600 3, 152 2, 400 3,900 16, 000
E 1 5.90 14.41 11 19 120
ETIO 100 932.5 1, 747 1, 500 2,175 11, 000
T 0.50 1 12.51 3.50 15 220
A5/B5 0.085 0.47 0.76 1 1.42 4.2
A5/E 0.46 1.83 5.59 3.55 5.91 72.22
A/ETIO 0.50 1.17 1.92 1.69 2.53 5.08
A/T 13.18 177.55 1, 262.99 632.46 1,800 14, 828
T/E 0.03 0.15 1.58 0.34 1.3 61.11

Table C.5: Maximum EAAS values and their ratios measured in a Cau-
casian population consisting of 2,027 male (M) and 1,004 female (F) athletes
(Van Renterghem et al., 2010) along with the available WADA’s threshold limits
by gender (WADA, 2018; WADA, 2021b). Plausible initial limits (IL) have been

assumed for the ratios with no information regarding the population.

Target Metabolite Max (M) Max (F) WADA TD 2021 (M) WADA TD 2021 (F)
(ng/mL) (ng/mL) (ng/mL) (ng/mL)

A5 652 263 250 150
B5 1,260 471
A 20,700 17,500 10,000 10,000
E 391 51.9 200 50
ETIO 11,400 9,030 10,000 10,000
T 249 219 200 50
A/ETIO 4 4
T/E 4 4

Target Metabolite IL (M) IL (F)
(ng/mL) (ng/mL)

A5/B5 4 4
A5/E 10 10
A/T 10000 10000
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Table C.6: Variables which compose the available prostate cancer datasets.

Dataset Variables

1 A5, B5, A, DHEA,
DHT, E, ETIO, T

2 T, F, E, DHT, DHEA
7b-OH-DHEA, AND5,
A5, B5, ETIO, A

∗ Variable names are the abbreviated names of the metabolites
of the datasets as presented in Table C.1.
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