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Introduction,

The thesis consists of four papers,viz: ( Paper.I.) Flow
through a Grid cqnglg:;n; of Cylindrical Bars of Circular
Cross section, (Paper.Il) Losses at Sudden Enlargement and
Contraction in Two Dimensions, (Paper,III) Flow in a SemiCirculs
Bend of a Channel of Rectangular Section and (Paper,IV, as an
additional paper) Air Torque on a Cylinder Rotating in an Air
Stream, The last mentioned paper had been done in conjunction
with Dr.A,Thom, All these have been done in the Aeronautics
Laboratory of the James Watt Engineering Laboratories of the
Glasgow University, under the direction of Professor J.D.Cormack
Director of Laboratories, The writer wishes to thank Professgor
Cormack for advice and guidance anffi for the facilities given to
him, %Hew The writer is also indebted to Dr.Thom for help and
advice throughout,

The writer wishes to express his indebtedness to the Depart-
ment of Scientific and Industrial Research for the grant of a o
llaintenance Allowance (I93I-33%) which emabled him to<ig;_y)carry
ouézthe work embodied in papers 2,3,and 4 and the major portion
of the work of paper I , Paper I, has been completed with
financial assistence from the Carnegie Trust, and the writer is

also indebted to the Carnegie Trust for gresnting him a Research

Scholarship (1933-34),
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FLOW THROUGH A GRID COMPOSED OF CYLINDRICAL
BARS OF CIRCULAR CROSS~SECTION,



List off Symbols used in Paper I

= diameter of the Cylinder,

=length of the Cylinder,

=density,viscosity, and kinematic viscosity of fluid,

=undisturbed velocity,

= Reynold's Number, _

= distance between centres of cylinders, or distance
between chennel walls,

=distance between two point vortiqﬂés in the same row,

=distance between two rows of point vortices.

= velocity of vorticjyes in channel
increment in the mean velocity of flow past cylinder
due to channel wall interference Mo

=Total drag coefficient for a cylinder of Grid

= Pressure i >3 2 3 2 39

=Viseous o ,,

=Increment in total drag coeff1c1ent due to interferenc

=Total dreg coefficient for single cylinder,

= 5, L s» placed in
channel w1th a parabollc s velocity distribution,




(FLOW THROUGH A GRID CONSISTING OF CYLINDRICAL BARS
OF CIRCULAR CROSSeSECTION)

SULILARY ,

(I) Part I deals with flow of perfect fluid past the Grid
for d/2c = 1/2 and for d/2c=2/3/@8- , ie,with the solution
ofVﬂeO ;

Electrical analogy is applied to check the approximate
solution obtained, Increase of electrical resistance of a
plate of uniform thickness due to the presence of circular hole
is obtained from theory and experiment,

A method of estimating the increased velocity of flow
past cylinder due to interference is given based on perfect
fluid motion,

(2) Part II deals with the arithmetical solution of viscous
flow past the Grid d/2c =1/2 at Reynold's Number 20

There does not seem to exist a stetionary eddy pair at
this Reynold%s Number, This is confirmed by photographing
the wake of the cylinder of the Grid. (cf,case of Single
Cylinder)

Values of Kp, £y and K; are obtained from the above
solution and are found to be higher than those for a single
cylinder in infinite field at the same Reynold@s Number,

(3) Part III deals with the solution of Boundary Layer equation

for the Grid d/2c =14/2 at R =851



The viscous drag coefficient K, for a cylinder of
the Grid d/2c=1/2 is found to be £, 2,41 /R
(4) Part IV gives an approximate estimate of the front
generator pressure of a Cylinder of the Grid d/2c =1/2 based
on Boundary Layer Theory, This is found to be greater than #ee

that Tox. & SIRELY Gl i Approximate estimate of this

for the Grid d/2c = I/2 1is also given from the experimental
pressure curves,
(5) Part VI deals with experiments,

Pressure drag is calculated from pressure measure
ments round a Cylinder of the Grid d/2c =1p2 .

Total dragsof a Cylinder of the Grid d4/2c = I/2
eand d/2c =3/10 are obtained from direct force measurements,

Total drag of Cylinder od the Grid d/2c =1/2
is also obtained by measuring the loss in total head,

The drag coefficients are found to be greater
than those for a single cylinder in infinite field,

The viscous drag coefficients K, for a cylinder
of the Grid d/2c =1/2 as obtained from the experiments is
found to be 3/ Jﬁ as compared to 2/\r§ for single cylinder,
(6) Part VII deals with the Karman Vortex Street behind
the Grid, It is found to be unstable,

(7)In Part VIII, the writer uses Rosenhead and Scwabe's parti-
culars of Karman street behind a cylinder between chhnnel walls
to estimate the total dreg coefficients for a clinder of Grid

for different values off d/2c.



(8) In Part IX an approximate expression for the total drag
the ratio of the total drag coefficients of a cylinder of

the Grid or for a cylinder between parallel walls to that of

a cylinder in infinite field is given,

(9) In Part X sen alternative expression for the increased
velocity of flow past cylinder due to iéterference, is given
based on the increased drag coefficients,

(I0) In Part XI an approximate estimate of the Increased drag

of a cylinder between channel walls, when thee velocity

distribution is parabolic is given.

e B ——— e S e S —— B —



TART .I.

FLOW _OF PERFECT FIUID.

The equation of motion of perfect fluid can be written as

Ty s o o = "9 o o
v’* - ’aﬁg‘ﬁ.’-%ﬁ-: “i"—‘*—o @ ®09 0008 0000 (1)

ag

where Y is the stream function and u and v are the x and y com-
ponents of velocity, respectively. This equation admits of the
introduction of the conjugate velocity potential function ? i
given by

V¢ =o ciudaigwet LE)
such that ¢ and < are conjugate.

A mathematical solution of the problems involving the equations
(1) and (2) is theoretically possible by the use of conjugsate

funetions such as

CP + 1 \}' = f(:c-i—ig) +F(x—i\é)

Such a transformation satisfying the boundary conditions pres-
ents considerable difficulties. The necessary boundsry con-
ditions to be satisfied in this problem are
(1) ¥ = constant say equal to zero,zwhen y= o0, and
2 2 d

when x~ + y = -—4-

(i1) V¥ = constant say K¢ when y = % ©




(1i1) ‘gg P when x = 1 00
and

(iv) %%, = 0, when x = %, y= 0

where 4 = diasmeter of the cylinder.
&¢ = distance between centres of cylinders.
-U = TUndisturbed velocity.

(See Fig. 1).

s
Professor Lamb has given & solution (Ref. 1), which satisfieg
these conditions when the diameter d is small compared to the
distance 2¢ between the centres of neighbouring cylinders.

This can be written as

= —U - Ttdz B ~E-\_é, EEEEERE R (3)
2. = e B T
Cﬁs‘\. T\‘E‘z - Co5 —c—

When d is not smell compared to 2c¢, an approximate solution
can be obtained by the use of Schwarzian transformation, as
has been done by Mr Page (Ref. 2). An alternative transforma-
tion has been suggested by Professor T. M. MacRobert; this

also does not give any better result.



Although several methods have been suggested to get round
curved boundaries by Schwarzian transformation (Refs. 3, 4)

none of these seems to yield perfect circles in the Z-pleane.

The oorrespondigg potential problem has however been recently
solved by Mr. g{iphirﬁ Ochiai (Ref. 5) by expressing the poten-
tial at a point in the form of an integral equation and solved
by choosing a set of orthogonal functions. The evaluation of
these entails certain amount of approximation. The use of
such a method for the present purposes presents formidable

mathematical difficulties.

A mathematical solution giving an oval closely approximating

a circle can be got by the following transformaetion, which
appears to be due to Muller (Ref. 6) and has been recently
used by Richter (Ref. 7) in solving the analogous permeability
problem

. A L’
$+iy = —LU + D coth TE P

where Z2 = x + iy

and D = constant.

Separation of the real and the imaginary parts gives

coshh X L cosTY
. 5\,\,\2\2 TV____X )

CP = U x+ D = =
5;/\/\4,\2 T + 3;‘\1\2 TEC}:

= sees (85)

<
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<

The constant D is determined from the condition that Lo

;0-:3 0
whenx-%, y = o.
w3t X cos WY 4 cay 203
c
6:.( 3 U["’ ‘TE = .
oy x sl T 4 5wt Y
c <
h . 2Ty o 2Ty
(et BE 3 TI 4 5 B 2 )™ ?&l
: 2 TV 2
(st TE o+ 5w T2 ) N §
Equating equation (7) to zero, we get
; . cq TUA
D = QEC- SVV\&\ —LT; ® 5 0 0 00 @ (8)
Thus we finally get
csh TTX cos 9
9e wingd T g < sm"%é'
’\*’.:’—U \j- K LQC 3&/\/\&\2’% N SVV\T_"_C}
LI (9)

Prom equation (9) it is seen that Y = o when y = o0 and
Y = o when

ny o -
zc

smbhr U

=

%

cot ™% sieeaa s kW)
% (S

From equation (10) it may be shown that dl, the minor axis of

R =y

the ovel as obtained from equation (9) is almost equal to the

-



major axis 4 of the same oval. Table (I) gives the approxi-
mate values of al for aifferent ratios of %3.

As seen from the sbove discussiong all these available mathe-

Delaadiawn
matical treatments give approximately circular boundaries.

u\/’ku:x{‘{,uLJ-tA)[D
It was thought necessary, in the interests—of the lat¥er

LIV PN

pert of the paper (Part II) to solve the problem h; meintein-
Jepaaa-Ansn i, Sa ,AJ O Aot

ing the strict boundary conditions by the use of successive

approximations.

There are several methods of approximate treatment
available, such as those due to Bairstow and Berry (Ref. 8),
Thom (Ref. 9) and to Winny (Ref. 10).

Theigns employed is ¢hat due to Thom (Ref. 9)wdPhe ./
method consists in dividing the field into squares of sides 2n
(Fig. 2) and expressing the value of Y} at the centre of a
square in terms of the Y/ values at the corners of the square
by expanding‘%’ in a Taylor series up to the third order terms.
The centre value ﬂg is then given by

'\y -\"\-P '\"\Vc‘f\‘\'p
VAT A ks ALY

where Y , , ¥ 5, Yo, ¥p &re the assumed values of Y at
the four cormners. Such centre values QQ (ég)obtained by using

equation (11) are used as corner values to find the \V values

at the original corners. The process is repeated till the (field
is settled. widetr el ol



\{

Although it has not been possible to give a formsl proof of
convergence of this method o ?olution, it has been found to
W~ s AT Clng A -

gﬁprovided the squares are reasonably small in size.

An approximate proof convergence, however, has been given

be convergen

by Thom and Orr (Ref. 11).

A simple approximate proof of convergence is given below.
For the sake of simplicity it is assumed that the part of the
field teken is divided into four squares (Fig. 2). The sides
BC, CE and GH, HK, coincide with the boundary of the field,
hence the values of \P are definitely known. Then

Yy +Vg +Ye + Vo €Eat+Cp
= +K = ] Sein
\PO‘ I\.PMl : L} H, 00 (12)

where 4)M1 is the value of 'V at the centre of square from
equation (11), \Pol is the correct value of QJ at 0, and K,
is the error and equal to V’ol —’Y’ul , B, and ﬁb are

errors in “P at theTgorners A and D due to neglecting terms
e

of order higher thanlthird in equation (11). Hence,
6,\ = E:p
: 4 * anfoleent- )
€ f " J: j
K 2 - bp = F - ,K3 %7".‘ v _“!,l.‘.w ‘. ¥ ?1 :
Iy

f . f |
Ly hA - Oy Fiany,

Error in using (11) to £ind a better value for 4’D is then

6,\-&&\:
-]

+ PPN RO § ¢

(]
!
£



Using this modified value of \V D to evaluate v ¥y the error

involved is say K: , and then

K: = €p *26€y ¥ Ep = e

Ea
o K
L 32 4
2¢€ € )
K; - §—F -+ eA ki » > ¥ = KB
b 32

Hence, when using the new centre value W’u to evaluate ‘4’3

the error involved ey is

- " €p
e‘ - ‘%2 (6A+€‘-) + —‘g P00 00000 (14)

From equation (13) and (14) it is easily seen that e; / e,
and the process is convergent if

Enx+ € =
S (¢ - + €p A ¥ D
32<”‘1~ ) 6 <

+

3 L
7 - A -
= %2 (o -SEss 16 €

From & consideration of the terms neglected in equation (11)
the quantities &, , By , ﬁb can be assumed to be of the
same order as ; say. Hence e < e if I:LGE <T% &

Hence the process is convergent, since the error term is

convergent.

10. A straightforward method of solving any problem is to assign

o
~ suitable assumed values to corners of squares into which the



11.

\b

il
field is divided and use equation (11) ov;f ;ﬁdvovér again

till the \F values become stationery at each corner. A com-
perstively simple method is to work with differences of Y
values at each corner, when the arithmetic can be done mentally,
gince only small quantities are involved in the calculation.

The method of speeding up as suggested by Thom and Orr (Ref. 11)

can also be profitably employed.

An alternative method of treatment suggests itself in the
present case. For a single cylinder in infinite field the
stream function values V\ are known throughout the field from
the equation

BRPRTAL % e
1 - x? + %1

siessesnvee (28)

The values of ‘Y/ on line y = ¢ in this field can be obtained
by substituting ¢ in equation (15). But in the present case

on line y = ¢, i.e., LLl in Pig. (1) the values stream functions
\Y is constant, say B. Hence the correction e to Y’ values

as obtained from equation (15) on line y = ¢ on the boundaries

is obtained from

y 4(x2+r ¢’ e

e = B + )C‘L..‘.Q?- oo\c'oo-oo..o ‘16)
m&ﬁmfﬁ*w
/ d_z
The value of stream function on y = o, andzxg - yz »
J

4
is zero in equation (15) as well as in the present field. Hence
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11

the correction ¢ is zero on the circle and on y = o.

The field is now divided into squares and corrections e
are assumed for the corners of the squares. Equation (11l) is
then used repestedly till the correction field is settled;
using correction terms e instead of "} values in equation (11).

The correction field for.%_ = % is shown in Fig. (3).
c

The Y values at each cormer of the squares are then
obtained by adding the corrections obtained above. The field
is then solved for %’ values using equation (11). The skele-
ton solution is shown in Fig. (4).

The net advantage of this method is that we are dealing
with small quantities in the correction field and that we have

& reasonably accurate set of values of Y’ while using equation

(11) in the mein field.

The stream lines as obtained from the above solution

are shown in Fig. (5).

As mentioned by Thom (Ref. 12) considerable difficulty arises
at a curved boundary beceuse it is impossible to arrange mat-
ters so that the boundary passes through the corners of all
the squares it cuts. Accordingly some method of interpolation

has to be used to obtain the \f values for successive approxi-



1
1o.

mations on the corners of those boundary squares whose outer
corners feil to fall exactly on the boundary. A method of over-
coming this difficulty in the case of viscous fluid has been
given by Thom (Ref. 12). If squares obtained by the network

of streamlines and equipotential lines, obtained by solving
viay =0, Vz“? = 0o for given boundsries, are used instead

of squares formed by the x - y network, the above difficulty
0 g »’//Z*‘\.C /6\_)

is overcome; since theﬁpquéres then land on the boundary.
This suggests the use of a network such that the inner
boundaery (circle, and line y = o) is transformed into a line,
and the outer boundary y = ¢, also into & line. But this is
the required solution. If however the tramnsformetion for
gingle cylinder in the infinite field, i.e., say W = & + i =
Z + % is used, the inner boundary is transformed into a
straight line and the outer boundary y = ¢, is transformed
into & curve given by the following equation in the W-field
x  xt+ c® +)
e

A S secessscsssss (17)

xec?

g
!

The curvature of this line (See Pig. 6 for &_. = 4 and Pig. 7
a is smal\ 2¢

for—§3 = £ ) and consequently interpolation is much easier.

The line y = ¢ 1is accurately drawn in W-field, and the field

is divided into squares and 'Y values are assigned to the cor-

ners of the squares. Equation (11l) is then used along with

successive interpolation of the " values at the corners of

the squares near the outer boundary y = c.
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This method has been proved to be very quick and the
outline solutions for & - 1 and & = 2 are given in Figures (6)
2 2 s 7
and (7) respectively.
Figures (8) and (9) show the streamlines in the w-field
as obtained from the above solutionms.
Figures (5) and (10) show the V' lines at equal intervals
in the x - y field for & =1 and 4 = 2 respectively. »
2-0- 2 ﬁ B OA_D A A8 o4 IS
The above solutions (Figs. 6, 7, 8, 9) -can be regarded as

that for channels of the shape as shown in the figures.

13.An alternative method of obtaining\P,<P has been suggested by

14.

Thom (Ref. 13). This consists in solving for x, y in the ‘V, ?
network. The above methods however suit the peculiarities of the

problem and proved more suitable.

The velocity q at any point on the x - y field is obtained from
the w-field from the following equation

(112. = wl¢ ot
S (B ) CwE sl
_ 2 2
=GR
i.e. (T/: Ct/| T;-;Y\ $00ss0 000 (18)

Where q; is the velocity in the w-field for single cylinder due

to the transformation W= Z + %.

LA ]
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15. The pressures and the velocities on the surface at various

",L:-. YA
angles © from the front generator of the cylinder are given

in Table IT for & =21 ana & =2

2c 2 2c 3

These are shown plotted in Figures (11) and (12) respect-
ively, along with those for single cylinder in infinite fluid.

4
A '
/ 2 4 (x}‘éy R~

)
£ 4
; 7 Q‘:. Ohnmin i) O A
00 Q LA DM QA ptf WL A

16. ﬁlow of electric current along a sheet of uniform thickness(ia

o
analogous to that of)irrolational motion in hydrodynamies. If

=@d thenV =(, W=" where V and W are elsctric poten-
tial and current functions; and

Gy eV, oY

Dx C\\é =-€u
r;.-; - bl o¢ - _A9
)X, /’\j
" Se0c0scecesce 19
oot BN (19)

This analogy provides us with a method of checking the above
arithmetical solution.

If two points A and B on the line y = ¢ are taken, then
the drop of potential between A and B can be calculated by in-

tegrating ’%ﬁ; along AB since

o - B B
S_»_ S ej?,.& = - 'E Sfa;/ i
7’3 ox & )
' A

5

cescccscscss (20)

From the solution obtained by the approximate methods QZY

?

&
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18.

9\
13.

is evaluated by careful numerical differentiation and the poten-
tial drop is evaluated by careful mechanical integration. For
%3 =.% the increase in resistance is found to be the same as that
produced by an additional length of n x 2¢ i.e. (n times the
width of plate) added to the plate, where n = 0.4807.

As no data were available for comparison it was decided to carry
out a set of resistance measurements. [lote) Resistance of a
strip of eureka (length 3.327", breadth 1.012" and thickness
0.015") was measured by Wolff Potentiometer, first with no holes
and then with holes of different diameters. The experimental re-

Hhose .
sults are shown in Table III along with that obtained theoretically.

The values of n (0.4791) as obtained experimentally for

%5.='é, is in close agreement with 0.4807 as obtained by the ap-

proximate method.
d

The values of n are shown plotted against 3o in Figure (12)a,

From the above analogy it is seen that the lines of equal velocity
potential are obtained by tracing the electric equipotential lines.
Fig. (13) shows the equipotential lines as traced by the wire
bridge method, for ¢ =% 0.497, magnified four times by means of

2¢c 2

a pantagraph.

Note:- The writer is indebted to Mr. A. J. Small, B.Se., for
helping him with the resistance measurements.
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14.

The presence of equidistant parallel channel walls increases the
| o / LI M
mean velocity past the cylinder by preventing the expanaion or
bulge of the streamlineeJ A provisional method of correcting for
1

this inecrease has been given by Thom (Ref. 9) for %; less than 5

An approximate method of correcting for the increase in
velocity based on perfect fluid motion is obtainable from the
above solutions. It is seen from Fig. (1) that the rows of cyl-
inders may be considered as images on the parallel planes LLl and
nnl, thus producing parallel channel walls, and the cylinder may
be regarded as being placed at the centre of two garallel walls
distance 2¢ apart. For a single cylinder in efner%ect fluid the

velocity on the surface of the eylinder is given by

C1/ = 2U simo cecsvescess (21)

where U is the undisturbed velocity and is maximum and equal to
AR {

2U when ©O= !%vfrom the ffcnyﬁgenerator of the cylinder.

The average velocity on the surface is therefore

T
ts 2 J\ Swmode bt = 2 (2U
(1} - ?T. {2\'_15\“« kh TY( ) A EEEEEEER) (22)
i.e. % times the maximum circumferential veloecity.
»u\-v' .f]:'.“{t

For rows of cylinders }we. for cylinder'}d between parallel

channel walls the circumferential velocity q can be written as

b

-
where ¥ is not a constant, but a function of © and m is equal to

000000000 (23)
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A"

m, when 6 = ',
2
Hence the average velocity on the surface is
i
2 , = 2 sm B d
= S‘W" i RIS
0 0

Hence the increment in the average velocityAUd.ue to the

presence of channel wall is given by

AU - 2 iji%de- zu)
= chr e e4ss TRE
¢ (1 i
Ay - 2 N de-2§
U ¢ 1 J FOPRORIBRRRE

A first approximation to (25) is obtained by assuming

m = constant = "2_1_;‘_2 and then
2

é_}_) oo B M|+ Mg iy
v -~ =« 2 vevesiene (BP)

A good approximation to the correction is obtained if we

assume that the average velocity can be taken as the arithmetiec
nt
mean of the velocity on the i‘:ae generator and of the maximum

velocity (i.e. at 90° ), then the increment in velocity AU ig given
by

Pe00000 00 (28)

where 4y is the maximum velocity on the surface of the cylinder at
90° in the case of the cylinder between parallel walls.
The increase in veloeity & U  as caleculated from (26) and

(28) is shown in Table IV for various ratios of a_,
26
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Figure (14) shows %J plotted on %;. The&r’},ﬁcomecting")

and %_ can be expressed as
(]

U (\-— %c)z (\"%c) 0s000c0s00 e (29)
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PART II.

STUDY OF VISCOUS FLOW AT LOW REYNOLﬁQS NUMBER .

The equations of steady viscous flow in two dimensions reduce to

i 25 1
))V C = w f—b_x, 4+ a9 ’a«_é,
XEEEEEY 30
and Qe 5 2 (30)
where PR .9 = @%{
%

A rigid mathematical solution of the equation (30) has

-_ A

been possible only in a few cases.

A simplified form of the hydrodynamical equations which holds for
infinitely low Reynol&bs number has been given by Oseen (Ref. 14).
A second approximation to Oseen equations has been given by

1 . (Ref. 15), but this also holds for very low Reynoldls

number.

Solutions of flow past a single ceylinder in infinite fluid for
Reynold’s number of the order of o2 have been given by
Lamb (Ref. 16) and by Bairstow, Cave and Lang (Ref. 17). Thom
has given solution of equation (30) by the use of an arithmetical
method, for this problem for ReynoldVs Number 10 (Ref. 9) and
Reynold@s Number 20 (Ref. 12). Thom's solutions are of consider-
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able interest, especially the one at R = 20, where he obtains
a "stationary eddy pair,™ as is experimentally found to exist.
The range of this method of solution is probably up to R = 35
for the single e¢ylinder, above which the motion behind the
eylinder is no longer stable.

There does not appear to be any theoretical solution in existence
for the viscous flow past a row of cylinders. There is, however,
in existence a solution for the allied problem i.e. of flow past
& cylinder between two parallel walls (for 4 = l) by Bairstow,
cave and Lang (Ref. 18). This solution is ggobagly valid up to

Reynold's number of the order of 0'2

The differencesbetween the present problem and that dealt by
Bairstow and Lang are that in the present case the vorticity
values-on the line of symmetry (LI.1 in Fig. (1)) is zero and
that the velocity is uniform in the undisturbed parts of the
field; whereas in the latter, there is‘gﬂfinite vortieity :i:thc
channel walls and the velocity distribution is parabolic in the
undisturbed portion of the channel.[;myb'flow past a row of cyl-
inders may therefore be regarded as/fioq past a'single e¢ylinder
between parallel walls with the agg% iﬂi%aﬁ;ns] |Consequently |
Bairstow's method of solution could have been used, .iut as men-

tioned above such a solution would only be valid up to R % 02
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6. It was, therefore, decided to use Thom's approximate method, which

is quite easy to handle for TY - 0,,633% for Reynold@L number
of the above order. The problem with g;= %, has however been
solved for R = 20 which is of more interest, because a comparison
with the existing R = 20 solution for single eylinder could then
be made, and because it would be less troublesome to give experi-

mental verification at this comparatively high Reynold's number.

Thom's method of solution (Ref. 9) of equation (30) is one of
repeated interpolation in a field of assumed values of < and 1’ .
The field is divided into squares of sides 2n and the values

of C and ﬁ/ are assigned at each corner of the squares. These
assumed values for corners give ic: and \Pc for the centre of the

squares (see Fig. 15), when the following interpolation formulae

are used
- _ ta - b-4" {C-P\)}
E = & . R {La ¢e)(B-D) + ( )
- R cerenes (B1)
Ye = \VM - CC
sseccce (S8)
where (A +B+C+D)+H
- + + + V) <
\PM i 4 diee (DS
and
t. m = (wa+Prc+a) |

ceeeens (34)

and A, B, C, D are the corner values of ¥ and a, b, ¢, 4, are

the corresponding values of e



Having used equations (31) to (34) to find the values at
the centres of all squares, these centre values are”ﬁééd:again}in
thedgﬁg:; equations to find new values atfgriginal ecorners.

A; solid boundaries the valueson the surface are obtained

from the approximate expression

Csf— (_\"G-(\)/s)'%'“‘z

cesssccesss(85)

where Vi and qﬁ are values of "} on the surface and at a point

G, distant n from the surface respectively.

Although it has not been possible to give a general formal proof
of convergence of the above method, involving the repeated use of
equations (31) to (34) in conjunction with equation (35), it

has been found to be convergent and to give results closely in
agreement with experimental results provided the squares used are

not too large (Refs. 9, 12).

Some of the difficulties attending curved boundaries in this
method of solution have been mentioned in Part I ef-thispaper.
In addition to the difficulty of interpolating the values of Y
and Z; at the corners of the squares which do notmfﬁia on the
boundary, there is the further difficulty of evaluating the §
values on the curved surfaces. Thom has shown (Ref. 12) that

both these difficulties are overcome if the squares in the W-
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plane formed by the network of stream lines and equipotential

2
lines obtained by solving V 'v' = 0, v $ =0, for the given
boundary conditions are used with similar interpolation formulae

(31) to (35). These are

g
. Ty -c)(B'D) +(L-d)LC--A)
2:c = S lbv{(a % cevees (36)
e
LA (Vi V\%zc e
\
and - (. - %) Ckz_z ‘it ennn GEN)

Where the subsceript M indicates the mean of the corner values
of G and ¥ of the squares of sides 2n in the W-plane and q

is the velocity of transformation and in equation (38)'44 is
the value of 1" at point G, distance m from the boundary in the
Wi-plane and qp is the mean of the velocities of transformation

at the surface and at the point G.

The work outlined in Part I was undertaken partly with a view to
obtain this network. But as mentioned there, although “P values
obtained by methods in Part I are reasonably accurate, the <#
values could not be regarded as good enough for use in this part
of the paper. When the transformation due to Miller (which could
be taken to represent the irrotational problem)fezgr;railable,
the work outlined here hé% been almost completed, by recourse to

an alternative method.
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11. As in Part I if the transformation W = 2 + t' is used, the circle

12.

and the line y = o transforms into a straight line and y = ¢
transforms into a curved line in the W-field. This transformation
has been used in solving the case when %; =4 . The advantage of
the use of this field instead of the Z-field has been mentioned
partly in Part I. There is also the further advantage due to the
fact that on this curved line (y = ¢) in the W-field the vorticity
is zero and hence we get over the difficulty of evaluation of ﬁ

on the curved outer boundary. Thus part of the advantages of the
use of V'Y = o field satisfying the boundary conditions have
been obtained by this method. There was also the further advan-

tage that qi values as involved in equations (36) to (38) were

directly obtaingble from Dr. Thom's detailed solution.

Ud
The solution is given for R = 20 = 5 using the following values

d = diameter of the cylinder = 2.
U = Undisturbed Velocity = 1.
Y = 0.1

d

o 4

Sheets were prepared for the W-plane so that Ehé/ordinary
squared paper could be used. Values of Z; and ﬂ) were assigned
to the corners of the squares, keeping Thom's solution at R = 20

for a single cylinder as guide. Formulae (36) to (38) were applied
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hundreds of times until the field has reasonably settled. Various
speeding up methods have been employed, some of which have been

communicated by Dr. Thom (Ref. 13).

Skeleton solutions of the front and of the rear portion of the
cylinder are shown in Figures (16) and (17) respectively. It
was found necessary to use very small squares near the front
generator - possibly because this is a singular point in the W-
field. Figure (18) shows the skeleton solution for the greater
part of the field. The various necessary precautions have been
discussed thoroughly elsewhere (Refs. 9, 12), and (as such these
are not mentioned here.

It is to be noticed from Figure (17) that there is no
stationary eddy at the rear part of the eylinder, as exists in
the case of a single cylinder at the same Reynold's ﬁumber
(Ref. 12).

The stream lines as obtained in the above solution are
shown in the W-field in Figure (19). By means of E-ﬂ network

and cross plotting the actual stream lines are obtained and these
are shown in Fig. (20). Eig«—{(3)—ie—the—correspontins—Ftisure
ior—pinete ayringderRety B .

To determine the pressure at any point A in the field it is

necessary to integrate along a line from some point B (where the
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pressure is already known) to the point A. In the present example
B is taken at such a distance from the ¢ylinder that the flow
there is undisturbed by the eylinders. Necessary expressions for
use in the W-field are given by (Refs. 9, 12)

B
B
2 = 2% o

——

crseees (B9)

for a line parallel to ' axis
i

and ] 8
i E L eq? ? 20T S;?—X A%
B * €9, = P+ 2€%g + 20 SA'{{\ AL L

ceeneee. (40)

for a line parallel to E» axis
where Py » Dbp are the pressures and qA 5 q_J3 are the velocities

at points A and B respectively.

The pressure on the front generator was obtained by integrating
along '1 = 0 and also by integrating along '] = 1, £ =2
in the W-field. The mean of these two is 1,386 (‘7_ eUz)

(See Part IV) as compared to 1.33 ('«2 eUz) for single ceylinder

at the same Reynold@s number (Ref. 12).
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Pressures at other points on the eylinder surface were obtained
by integrating along q = %, and E = constant lines in the W-
field. The results are shown in Table V.

These values are shown plotted in dotted lines in Fig.
(26) along with the experimental pressure curves.

The pressure drag is easily obtained by integrating p cos e
round the ecylinder. Expressed as:Eoefficient,Kp = 1.751 for
the present case (E% = ) as comp#red to 0.624 for single cylin-
der (Ref. 12).

It has been shown by Thom (Ref. 9) that the intensity of the tan-
gential force at a point on the surface is ZJWz:o where Co is
the vorticity value at the point. Hence the viscous drag can be
obtained by integrating(z/u 80, 8in6 ) round the cylinder. The
values, obtained from the solution are given in Table V. The
viscous drag coefficient K, is found to be 0.835 as compared to
0.433 for single cylinder (Ref. 12). Thus the total drag co-
efficient Ky at R = 20 for the cylinder in grid is 2.586 as com-
pared to 1.057 for single cylinder in infinite field (Ref. 12).
These coefficients K"D, Kp and K, are shown plotted in Fig.

(30) along with the experimental results.

As seen from figures (17, (19) and (20) there does not seem to
exist any stationary eddy behind the cylinder at R = 20 whereas
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such eddy pair is found to exist theoretically (Ref. 12) and ex-
perimentally for a single cylinder in infinite field at R = 20.
It was therefore decided to photograph the stationary eddy pairs.

These are shown in Plate (I). Rlate{(II)} showstheeddiesas

The first sign of a

very minute eddy seems to appear at R = 25 in the present case,
whereas Thom obtains a fair-sized eddy at R = 12 for single eylin-
der. Hence the absence of eddy pair as indicated in the solution
is Justified in the light of the photographs in Plate (I). It
would therefore appear that one effeect of channel wall constric-

tion is to delay the formation of these stationary eddies.
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PART III.

STUDY AT HIGH REYNOLDOS NUMBER OF
THE BOUNDARY LAYER PROBLEM.

The viscous forces on a body can be predicted at all Reynold@k
number by the theoretical solution of the Prandtl Boundary Layer
Equations at any one Reynol&@b number if the pressure distribution

curve round the body is known at that ReynoldEE number.

The Prandtl Boundary Layer equations can be written as follows

(Ref. 19)
Q29
29 W - _ L 2P Ly 2
95 TP A e s w2 RS
o = 5 E—P
G cereees (42)
and
29 T _ o
'T{g it ':é—‘v\ 2o e 0000 (43)

where n and s are measured normal and tangential to the surface,

the components of velocity being W and g.

From (42) it is seen that the pressure gradient along the

fabin 4

normal to the surface at any point inside the boundary layer is

fofee. o
zero. Hence the pressure measured on the surface is the pressure

throughout the entire thickness of the boundary layer.
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3. There are in existence several methods of solving these equations
(for instance Refs. 20, 21). Some of these methods are general
in treatment. The case of a single cylinder has been solved by
Thom (Ref. 22) and by Green (Ref. 23). ,ﬁbé‘_k g;.ﬂﬁﬁ A

The method adopted here is that due to Thom.‘ Although

7\4/1 ,'v'
this me}hod is partly theoretlcal and partly experimental the
4.,“&( t}h} Wl
result obtained by Thom has been found to be in good agreement
o) woandls lj wiaicil |,‘

with experiments of-Thom (Ref. 22) and recent}y»with~%hose of
Linke (Ref. 24).

Apart from the simplicity and speed obtainable in)this ’\
method of solution,Thom's approximation seems to be gquite Jjusti- )

-

fied in the light of Linke's experiments. el i ey _)

4. The method consists in determining sz from the pressure curves

on
in theoretical formulae from & =0 to © = 60° (so long as
(z%; is positive) and experimentally determining (zg\ from
8 =60° to 8 = 90° +to evaluate the visecous forces. The

DA _a—
viscous forces in the rear half of the e¢ylinder is neglected.
The method is Justified by experiments.
The intensity of surface friection at any point on the

front portion of a eylinder can be estimated from the following

yry " /K G- R)

M ’33/ = € —;T; e T whew w3 0

]

F2 (x) DR (44)

equations



R
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where

r = radius of cylinder.

3 2
SR B oo PLs ceeerns (45)

?'*:
"

- A <l
2\{i-p  de ceseees (46)

I
FL'x.): | = 4 x3_3z+2+M+N)
2 \j 3 ( o0 0 L] (47)
1
FQ () = SFZ (=) dx.
.0 e 00 (48)
J-{—Ar-ﬂ W= |
- N ="§' -|®J‘g—(7¢)dx
2
2o A Liiairs (49)
L= X
§(L7: . F G
‘ =D
| seseese (50,
Xz |
M = 3 8 §2 (%) dx
X=x

secoseve (51)

S J
"y
1l

"‘—,— 81 F,l (%) dx.
O,
il ceeress (52)
FI (=) = \/2 l°3 Vi-* (~ V3 - J2)
V3 - Jx+2
Fo= 1= J.Z:; ' -

(%P B2 +2)
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Y Fz (=) (56)

we UG ) IR

These formulae have been used in solving the present case
( %3 =% ) for R = 851. The detailed solution is given in Table
VI and Table VII for ® =0 to 9 = 60°.

o

The sizes of the channel (5" width) and the cylinder (4" dia.)
used do not permit of experimentally determining é;; for B = bo"

to 8 = 90°, as had been done by Thom (Ref. 22).

From the following consideration a method of obtaining ( 2;{) for
any value of 8 at Reynold's number R from a knowledge of (;%&)

wuek
at Reynold's number Ry, both satisfying the same boundary con-

ditions, is apparent.

Equation (44) can be written as

————

%9 . U T o 2k
T At S +5 \jfﬂq, 39 ° _ga) SIBEER | - |

This can be written as
L {
vz J'?
w ¥ - e — ¢
on 2 TR EERE] (59)

/

where ¢ is a constant.
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P, )

The equation (59) is legitimate if J g (“ ; % o ml
may be regarded as constant C. This assumption is not very far
from the truth, as can be seen from the pressure curves at dif-

ferent Reynoldga number.

With this assumption for Reynold's number Rl

) 2
(09 ¥ L B
> o M "r‘i
and R
d% 2 € vry?® C
\ 2w ¢ AL +

for ReynoldVs number R
3Q,
where subseript 1 refers to Reynoldys number Ry, at which (‘gi )

is known. Hence
1

\
o 9. ¥, \ 2 2 1 9q
‘ kf \z\ = <|—-‘> (‘Q> ( T’ﬂ) o0 s00s e (60)
\ ",/\ J ‘)"f’ U‘ \
From Part II, the solution at R = 20 (for %; = 3}) is
known and (Cﬁ/\ can be determined from this field. Hence
V\J|

at R. = 851 can be determined by using equation (60).

This has been done for O = 90° whence@%\)= 5.962
e |
for R = 20 and thus Qﬂ%#» at R = 851 is equal to 155.
)

(19,
The use of (60) to determine \’;k) at R = 851 for higher

values of O , from the solution at R = 20, may not be justifiable
because of the change in the nature of the flow behind the ecylin-

der.
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9

The values of %%\ for R = 851 are shown plotted in Fig. (22).

From this figure it seems that (ég\ is zero when BH approximately
equal to 97°. This suggests that the break away of the boundary
layer takes place at 6 = 97° as compared to 6 = 82° for a gsingle

cylinder (Ref. 23).

The viscous drag is obtained by integrating /u,?gasiné round
the cylinder and the viscous drag coefficient K, 1is found to
be 0.0825.

It has been shown by Thom (Ref. 22) that the skin frietion
drag Kv is proportional to V’?’\fg i.e. inversely proportional

e

to 412 . Hence KV  can be expressed as

K\) = A - 2_13.‘
VR JR

where A £ 2.41, compared to A = 2 for single cylinder (Refs. 22,

R ey

24) .

2
The thickness # of the boundary layer is defined as the distance
from the surface in which the velocity attains 95% of the outside

velocity and it is given in the last column in Table VII.

2.41
The ceurve given by Kv = :T=? is shown in dotted line in Fig.
R

(30) for comparison with experiments. The experiments give
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A = 3 and it is seen that the agreement is not very good. But
it is apparent from equation (61) that for flow past grid ( %; = 1)
the skin frietion drag is also higher than that for a single e¢ylin-

der.



PART 1IV.

FRONT GENERATOR PRESSURE.

l. It has been shown by Thom (Ref. 25) that for & single cylinder
the front generator pressure p, at all speeds unaffected by com-
pressibilitymig gi‘;en by (+ % ) 5@ U®  Whnere C, while dependent
on ReynoldEs number R, can be taken as constant and equal to 8 at
all usual speeds. At first sight 1t'§8€§& ;ﬁgzar that the front
generator pressure should also be the same for flow past?grid.
But from the following consideration:it will be evident that this

need not be so.

\
\
A Bh

2. From the consideration of the Boundary Layer Theory it can be

shown (Ref. 25) that

AH = Ciel &
’1- ® ® 0 0 9 0 0 00 (62)
where
a. = P @ff
. 2 ds2
r = radius
2
aw = p-3el
.: AH‘_ : {t—\\:a-o B C_ REEEEREEEREE) (65)
; Teou? R R
where \
C = Ll\ran tescscvane (64)

From Part I, i.e. solution for ‘Uiﬁ';o , for the flow past
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grid ( %_ = 1) a, = 5.67 and hence C = 9.52, as compared
c

to C = 8 for single cylinder.

For viscous flow the value of &, 213 however less than 5.67. These
have been calculated by finding c%gz from the experimental pressure
curves and C calculated from equation (64). These are shown in
Table VIII along with a value of C for %3 = % (ecalculated from
perfect fluid pressure gradient). Fig. (23) shows C, plotted on

log R for the grid ( &_ = 4 ).
1o 2¢

As seen from Figure (23) the points are widely scattered, and this
2
is not surprising because of uncertainty in finding ééz from the

pressure curves which has got to be eorreoted‘for the size of
pressure holes (See Part V). Hence the value of C can only be
taken as only approximate. It has not been possible to verify

e dore)

these’by direct experiments.
W=D L\-«,( u\‘)

{
It is however‘}A be ngticed that the front generator
pressure as determined above is certainly dlfferenf%;nd higher

than that for a single cylinder.

The value of C as obtained from R = 20, solution in Part IT is also

higher than that for single cylinder.



Hence it seems clear that the front generator presgsure
for flow past grid is in excess of that for flow past single

cylinder.

6.



a7.

PART V.

CORRECTION FOR THE SIZE OF THE PRESSURE HOLES.

The pressure as experimentally determined through pressure holes
on the surface of the eylinder is not the pressure at the centre
of the hole but is the pressure at a point slightly away from the
centre towards the front generator of the eylinder. The exact
amount of this correction has not been determined for flow past
this grid ( %3 = 4 ) but the correction to angle for single
cylinder as given by Thom (Ref. 12) has been ?entatively accepted

Ferae F.

to hold for the flow past grid, -@heweorféetioﬂ~is given by

Ae - 72 ’a‘ ® 9 00000000000 (65)

where h = diameter of the hole.
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PART VI.

EXPERIMENTS .

o~K
Drag forces on a body is due partly to the pressure differences

existing round the body and partly to the fluid friection.
Expressed as coefficients

'Dra%

S Ke + Ko = CAT L
i 2
e_d,\.U

KD - N I A R ) (66)

where

= Total drag coefficient.

= Pressure drag coefficient.
Viscous drag coefficient.
= Cylinder diameter.

= length of c¢ylinder.

4 e pp R
]

= Undisturbed velocity.

Kp can be determined by integrating the component of the measured
pressures round the cylinder and K, by direct measurement of the
velocity gradient on the surface of the c¢ylinder and integrating

Be %ﬂ' sin g round the cylinder. Alternative method of obtain-
own

ing %i, is given by the Boundary Layer Equations (See Part III).

\

Thus K"D is determined by adding Kp and Ky so obtained.

/

An alternative method of finding Ky is to find K"p by direct force
measurement or otherwise (see later part of this part) and sub-

tract Xp from K"p,
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In Part III Ky has been determined from the approximate
gsolution of the Boundary Layer Equations. This part of the paper
deals with the determination of Kp and K"p from direct measure-

ments and thus obtaining K.

Experimental Determination of the Pressure Distribution round a

Cylinder, when the cylinder is one of a row forming the Grid.

The apparatus used consists of a channel having a working
section 5™ x 5" and a form of Chattock Gauge (Ref. 25). The
channel has been modified and description of the modified channel
has been given by the writer elsewhere (Ref. 26).

For low Reynold@é number work oil has been used in the
channel in place of water. The difficulties encountered in ex-
perimenting with oil have been mentioned by Thom (Ref. 12) and

as such are not repeated here.

The arrangement for pressure measurements is shown in

Fig. (24).
Instead of the pressure box, a static tube S, placed up-
stream has been ﬁé?d to act as the reference pressure datum. The

cylinders are housed in holes properly spaced, on 4" thieck strip

b SR

of brass resting on the bottom of the channel. The bevelled brass

plates A, A (6" x 5" x 4") are placed in front and behind this
L 2

strip of brass, holding the cylinders to ensure smoothness of flow
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past the grid. The pressuie dropz&F between S and 0 is first
determined with no cylinder (plates + strips in place). The
cylinders are then placed in situ and pressure measurementé round
the centre cylinder are carried out. The @§E§i§§§¥preasures are
obtained by applying the correction ZSP to the observed pressure
drop between S and the point on the e¢ylinder surface.

The velocity is kept constant by comparison with a cali-
brated inverted U-gauge coupled to up and down-stream ends of
the channel.

i‘“““"#i??f gzggfator pressure is used to-giwe the channel
velocity.~;i5t3b$a%n~th}§kthe methods outlined in Part IV have
been adopted.

The final results are given in Table (IX) and the pressure
curves are shown in Figures (26), (27) and (28) for a range of
Reynold@s number (from 7.9 to 851.)

Figure (29) shows the pressure plotted for constant values

0 0 0 e
of 6 , namely, 6 =40, 80, 120 and 160 on 10%6 R. These

£

show the same characteristics as exhibited by the corresponding

graph for single cylinder (Ref. 12).

Total Drag Measurements.

Total drag has been obtained by directly measuring the
force on two short cylinders ( 0:6324 ““diax 38350 fmg)and
(1:259% em dia x 38735 cm lmg) with a balance. The sketch of the

balance used and the arrangement of c¢ylinders will be found in
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which contains the leading dimensions of the balance.

At low speeds, the velocity has been determined by timing
suspended foreign matters in the liquid over a measured distance;
and a? high speed, the velocity has been obtained by means of

Pitot and Tilting gauge.
(4

PP LAy 1 N\
; PRy Y=
(’)\,{,\&1 ) /\/i [ )

I ‘

Drag forces, deducting fer the/drag due to disged ends of the
cylinders, as obtained by separate experiments, are given in

Table (X) along with the total drag coefficients K"y.

An alternative method of determining total drag suggests itself
from the condition of the problem. This is by measuring the loss
in total head, as in propeller work. From Figure (1) it is
easily seen that if the loss in total head is known between sec-
tions IM and L M’ without the cylinders and with the cylinders
in place then the drag is given by the difference of the two
total head losses integrated over section IM and L;Ml. (This
method has been employed and)the drag coefficients obtained by
this method are given in Table (XI).
Figure (33) shows tﬁ; typical pressure distribution

curvgﬂ’along aection.Llll.

/ To avoid any error due to bad veloecity distribution, the
total head losses have also been measured on two other sections

adjacent to the centre section.
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The total drag coefficients K" as given in Table (XI)
are not in very good agreement with these in Table (X) obtained
by force measurement, except at high Reynold's number. This is
not surprising, when it is borne in mind that the pressure dif-

Corpaafond  anped
ference between points such as L and M #e only éue toffraction

”

of a éhattock turn.

oA o vw‘./’
{

Values of K", as obtained by direct measurement are shown plotted ,

D
on loge.1y R in Figure (31). The points plotted are meanjof many
observations.

Figure (30) shows K"D as obtained by force measurement,

as well as that obtained by loss in total head, plotted on log.;5 R.

Figure (30) also shows Kp as obtained from the pressure measure-
ments. From the difference of the mean K", curve and the mean
Kp curve, the K, curve is Showﬁ4£ﬁ§jti%fiﬁnfull line, on a base of
log.1g R in Figure (30). The law conneeting Ky and R can be

approximately expressed as

3
K : o ® 0 % 0 8 0 0 0
'} \ﬁi (67)
!JJf ﬁ 4”~stq.th«J7w J
as compared o Ky = 2.41 obtained from the boundary layer

TR
Theory in Part III. The latter is shown in dotted lines in the

same Figure (30). Although the agreement between the Yawe comnect-
'YkP/I’J, !/‘4
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ing Ky and R, as determined by experiment and as dedu%fed from
theory is not very close, it is seen that the viscous drag co-

efficient Ky is different from that for a single cylinder.

a
10. Figure (32) shows K", for a cylinder of grid 33 = 0:3, plotted
on log&)le R. The total drag and the coefficients K", are given
in Table (XII).
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PART VII.

sy /f
KARMAN STREET VORTICES.

An attempt has been made to photograph the Karman Street vortices,
but these have been found to be unstable. Plate(IIﬁ shows the
photographs obtained. It is interesting to note that the photo-

&
n{,l oA [ 1i

graph at R = 62.4 shows a wake, and that at R = 66.4 the station-
ary eddies show signs of instability. Hence it is probable that
the transition of the flow pattern behind the e¢ylinder in the

grid takes place at R = 62. For single cylinder this transition
seems to take place at about R = 35 to 40. Hence one effect of
the presence of the neighbouring cylinders, and probably that of
channel wall constriection, is to delay the formation of the Karman
Street vortices. The other photographs in Plate III show that

the vortices are unstable and that they show a tendency to spread

out laterally, to mix and to become annihilated.

e o
The stability of these vortices between parallel channel walls .

has been studied mathematically by L. Rosenhead (Refs. 27, 28, 29).

| The same criterion holds for the present case. His results can

be summarised as follows.

Vortices are stable
(i) only when the axes of vortices coincide with the
axis of channel - i.e. axis of symmetry through the cecylinder in

the present case:



(&)

(b)

(e)

(d)

45.

(ii) only unsymmetrical double row is stable

when i’ is vanishingly small.

When and only when & = 0.281 B.

as'b_inoreases, the stable cases are obtained by increasing
& almost proportionally. This continues till we get to
the case whenb = 0.815 o, a = 0.256 b = 0.208 ¢
(only determine case)

for b greater than 0.815 ¢, & range of values of & is
obtained in which the system is stable.

when 0 > 1.419 c. the system is stable for all values

of a

where a, b, and ¢ are as shown in Fig. (34).

Prom the above results it would seem that the Karman

Street vortices may be stable.

Photographs of Karman Street vortices behind a cylinder between

channel walls satisfying various ratios of %3 have hewewer been

obtained by Rosenhead and Schwabe (Ref. 30). It is found that

a remains constant = 0.32 for all values of %3 up to'% but
d =1, to 4 =2
there appears to be a breakdown between ol 3 T

when g-é 0.45.

found to be unstable (for %E = §).

b

Hence it is not surprising that the vortices have been
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There is further the fact that in a channel of this type, there
is every possibility of three dimensional disturbances, under

the influence of which this double row is unstable (Ref. 31).

There is also the fact that the velocity past neighbouring cylin-
der in the channel is not absolutely uniform and that any lack
of uniformity in velocity would tend to make the vortices un-
stable.
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PART VIII.

INCREASE IN Kp OF A CYLINDER DUE TO CHANNEL WALL.

It has been mentioned in the earlier parts of the paper (Parts
I and II) that the flow past the grid of cylinders can also be
looked upon as flow past a single cylinder between two parallel
channel walls distant ¢ from the centre of the cylinder.

Thig is legitimate when the fluid is regarded as perfect fluid.
Hence the Karman Street vortices in the wake of a cylinder of
this grid may be regarded as identical for the same cylinder
between parallel walls.

This assumption enables us to determine the increase in
drag due to channel wall interference from a study of the Kar-
man Street vortices behind a cylinder of the grid or conversely
the increase in drag due to the presence of neighbouring ey-
linders from observation on Karman Street behind a single

cylinder between channel walls.

Glauert (Ref. 32) has given an approximate method for calcu-
lating this inereased drag. Let the increased drag coefficient
be K"p and let the drag coefficient for single cylinder in in-
finite field be Kp (obtained from Karman's Theory or otherwise)

then

_ K'
K.D ~ KD e P (68)

where,

Ko o= 32 ‘L.%.(ﬂ\z |
a u) PR T 3
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1
where K pp is the increase in the drag coefficient due to
channel wall interference and u is the velocity of vortices

in the corresponding Karman Street in infinite fluid.

A better approximation to K"D has been given by Rosenhead
(Ref. 29) by adopting an empirical value for the extent of anni-
hilation of the vorticity. This can be written as

" 1 e 3
Ky = 48 o 22 [U_- _Z% 2] paR LT
a U |

sssea (70)

where
na
TR LR . o,
X Sih 0C L cak 2
v ks o W
K = . BOE o W )
b (st T o ol T2Y2
; s =
IR . *- S NIl o i g | o TEAGIE 2
2b i swg? T (c+a) ceA? TT (c-a) K
‘ 2b zb'_
and

U1 = velocity of vortices in the rear of the body

provided % < 0.815.
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For a flat plate equation (70) gives results in closer agree-
ment to those obtained experimentally. If however U, is
written in equation (69) instead of U, Glauert's equation
gives results closely in agreement to the experimental results
than by the use of -5’ in (69). Hence it was decided to use
U; 1in equation (68),(69) which is now

2

" = a- ek
Kp = Kp+ 32 = \U) aovs {¥1)

A

P

It is seen from either (70) or (71) that to find K"p it is

necessary to find % ’ bg , and gl experimentally.

AS mentioned in Part VII the writer has been unable to

obtain these particulars for %;-- 4+ for reasons mentioned there.
/ kI

Rosenhead and Schwabe (Ref. 30) have however given these par-
ticulars for a wide range of values of E%- These have been
used by the writer to evaluate K';, by using (71), instead of
(70) since %- is not generally less than 0.815, which is the
necessary condition for using (70).

The values of Kp for use in equation (71) have been
obtained from the experiments off%ﬁif. 33) and of Wieselbaerger

(Ref. 34).

"
The values of K , and K'D along with other particulars
from Rosenhead and Schwabe's experiments are given in Table

(XIII).
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d
Figure (35) shows K"D plotted on E; for four different

values of Reynoldﬁh number. This figure also includes the

" d = d‘ =
values of K", for = 4+ and = 0.3 as obtained by
the writer in Part V. From this figure it is seen that the
assumption made in this part of the paper is legitimate.

o ;wf*"
"

K
Figure (36) shows —2 plotted /aﬁ & and K'p
Kp Ky

can be expressed by the following approximate equation for
\
Reynoldvs number higher than 80.

1

] E .
< [oos o2 _ oy
p—— - \+ 2 \ ) ( d !

K« | [‘~d.. \ < GV T e ) L1

J © . 2C 20/

[ g
+ (Lr.‘{ + f',Q_Q.d - 0_3‘ |
( L ‘i * ( - a \ ‘

" - ‘k ok . EQ' /l )
Ky , o b "
<. = Qo . o, CAE o 4_0-3\} sl

¥ \2 / A \

- \‘ ) [ L~ = ~
ZC N 2¢ EEEER] (72)

Figure (37) shows K"p for d = 0.5 and 4 = 0.3
B 2c , &6

At e’
as obtained in the present experiments plot;edlgé’log&)R. It

", Lt
is seen from this figure that no simple ldn:ﬁblds oonneotghg

K" and R.

db
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PART IX.

DRAG OF GRID.

l. Drag forces on a single cylinder of the grid or of a ce¢ylinder
between channel walls can be obtained from the approximate expres-

sion (72), which holds for R 2 80
" 1 U2
Drag= erd e v 000000 (73)

Substituting the value of K"y #5F (72)

Kp
2 a ) L 2
Dro.g-:_ K)" 4\\] !%0' 1 ‘-’L"“ 8 - 0 s\ki—\ 3
L&k}-i'f L - 1
" 2 4 R / CC éc LC) ® 0000000 (74)
N\
74 e

2. A rigida form of (74) would be obtained by introducing the para-
meter R in the equation (74), as can be seen from Fig. (37). -But
it is almost impossible to give a simple expression to allow for

variations of K"D with Reynol&lb number.
Kp
For a grid Eﬁ = 4, and %— = 0.3, the drag forces
e c

can be calculated by reading off K"p from Figures (31) and (32).
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3. At low ReynoldQ% number the velocity distribution in the channel

e

tends to become parabolic and s sucﬁ}some sort of corrections

are necessary to find K"p from the observed K", given in Figure

(31) for use in equation (73). (See Part XI).
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PART X.

METHOD OF CORRECTING THE VELOCITY DUE TO CHANNEL

WALL CONSTRICTION.

A method of correcting for the increased velocity of flow past
eylinder due to the presence of the channel walls based on per-
feet fluid motion has been given in Part I. General methods of
correcting this effect, applicable to bodies of different shapes
have been given by Lamb (Ref. 35), Watson (Ref. 31), and Lock
and Johans;t;h (Ref. 37).

{ Ao AAN B
; (4

An alternative way of lnging“at'the increase in velocity is to
regard the 1ncreased total drag coefficient at any ReynoldLh

number as belng caused by the increased velocity. Thus increased

velocity U+aU ig given by

U+au K D &
U - KL\ ® 0 @ 000 0 00 0o ( 5)
AU
The values of IF are given in Tables (X), (XII), and (XIII) for
different values of EQ .
¢

mr“”’/
d
These are shown plotted in Fig. (38) on 3o ° Exoeg%Aft low
W LJ\(,' tu,u /(.P«QQWW AU +

Reynoldbs number ( < 80) the lew conneeting T ~o8n be approxi-

mately expressed as

AU _ o0-09 0-22

R -

kT (\ ,— 2 (“}) ' ®se0 00 e (76)
<

‘2.<:/




by

4, A more general form of (76) would be obtained.‘allowing for

aAyu
variation of TJ— with Reynold@s number.

’

& i %M/-
5. Figure (39) shows 1 for == %, af@ 0.3,plotted o log‘s Re
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PART XI.

APPROXIMATE ESTIMATE OF K"p FOR A SINGLE CYLINDER IN

A STREAM WITH PARABOLIC DISTRIBUTION OF VELOCITY.

From the preceding parts of the paper the drag coefficients K"D
for a cylinder between channel walls having uniform velocity dis-
tribution is known. An approximate method of estimating/ﬁef/the
increase in the drag coefficient due to parabolic veloeity dis-
/(‘_Mfa o 1,) \ L h A=A

tribution in the same channel is ‘obtained by finding the average
velocity of the fluid meeting the e¢ylinder. If UB be this velo-
city and U the average velocity in the channel, then it is easily

found that

i ok
B 2 \’ .}C / 800000000 (77)

Let K"'py be the drag coefficient of the cylinder in parabolie

stream then

K P /. 2
Z2 = & @- 12) ey LR

Thesé are evaluated for different values of %3 and are given in
)
Table (XIV). It is seen that wnenm d_ = 1, K j51.00.

2 )
N o K"D

This may appear anomalous, but this is not so, because in such a

case the average velocity of fluid meeting the cylinder is the

same as the average velocity of the channel

1
K'p are shown plotted in Figure (40).
K"p




Part XiI.,
CONCLUSION,

A summary of the results is given at the beginning of the
paper., The g Flow past Grid ( also the flow past a cylinder
in between parallel channel walls ) differ&éfrom that of Flow
past a Single Cylinder in infinite field in the following ways:-
(i) The drag coefficients KE,KP and K, for a cylinder off the Grid
is higher than those for a single cylinder,
(ii) The formation of Stationary eddy pair behind the cylinder
of a Grid #» takes place at a higher Reynoldé Number than
that behind a single cylinder,
(iii) The formation of the Karmén Street Vortices is also delayed
in the case of the Grid,

(iv) The front generator pressure of cylinder of the Grid appears

to be slightly different from that of a single cylinder.

The major portion of thés-pspe® work of this paper has been
carried out with the D,S,1.R. maintenance allowance and the
work heas been completed with the Carnegie Research Scholarship
The writer wishes to express his indebtedness to these authoritied

The work has been carried out in the James Watt Engineering
Laboratories of the Glasgow University, under the direction of
Professor J,D,Cormack ,Director of Laboratories, and the writer
wishes to thsnk him for advice, guidance and facilities given to

him,
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To Dr.,Thom the writer is indebted for the loan of the

detailed solution for Single Cylinder in infinite field, as

referred to in the Part II of the paper,

advice throughout,

and also for help and
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Table I.

a o a _al at
2¢c 2¢ 2¢ 3Zc a
2
% 0.4926 0.0074 0.987
3

. 0.2988 0.0012 0.997
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Table II.

. e = 3 a = 2
t ) 2c 2c 3
q P q P,
2 0 0 +1 0 +1
1% 29.0 1.160 -0.345 1.872 -0.62
14 40.3 1.579 -1.491 1.825 -2.32
1 60.0 2.203 -3.853 2.620 -5.84
0 90.0 2.712 -6.389 3.580 -11.80
Angle at which P =0 . ' p=0 "
P =0 o = 25° 15 o = 22° 24

71



Table III.

¥ A

Experiments. Theory
Hole d
diameter Zc Remarks
Resistance| Increase in
in ohms. Resistance n. n
in ohms.
0 0 0.001578 0 0 0
0.125 0.124 0.001592 0.000014 0.0291 -
0.250 0.247 0.001621 0.000043 0.0896 -
- 0.300 - - - 0.1513 from (5)
0.500 0.494 0.001808 0.000230 0.4791 -
- 0.500 - - - 0.4807 from approx
imate
solution.
- 0.666 - - - 0.9930 from (5)




Table IV.
d é’g ég' Remarks.
2c from (26) from (28)
0.05 - 0.005 from (3)
0.10 - 0.017 .
0.20 - 0.017 "
0.30 ~ 0.081 from (7)
0.50 - 0.272 "
0.50 0.309 0.356 Arithmetical solu-
tion.
0.66 | 0.677 0.790 "
0.66 - 0.652 grom (7)

"3



Table V.

13 ) Qe P~ P
T2

+2 0 0 +1.386
+1% 29.0 3.60 +0.302
+13 40.3 4,40 -0.430
+1 60.0 4.00 -2.620
0 90.0 2.00 -4.630

-1 120.0 0.80 -4.330
-1% 139.7 0.40 -3.870
-1 151.0 0.06 -3.850
-2 180.0 0 -3.780

U
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. Sadikhi g AN T

9 D dp, /de

S WPV, v s
10 0870 ~F048
20| 0°'s561 ~2¢ 307
30° | 0°+043 - 34615
40 | -9 +707 =5°800
50 | =I 718 -3807
60°| =2+305 -2 692
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Table VIII.

¢ i (1+ ) yeV”
189 6.62
197 7.60
220 7.04
230 9.20
417 8.54
457 9.14
628 8.64
809 10.8
20 7.72 - from Part II
= 9.52 - Perfect flow d = %
2c
- 10.52 - X n a 2
%2 3

T4
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Table IX,
QIL OIL OIL
R=7,9 R =18,9 R: 25,6
d= 0,6350111 (I) d:I,2660m (2) d=I,2660m ( )
U=4,93 can/sec U=4,79 cm/sec U=8,3 cm/sec 5
v=0,39 c.g.s. v=0,320 c,g.8. v=0,4I0 c.g.8.
AD =4 degrees AD= 4 degrees AD =4 degrees
R B aiton BN o8 PR e 0.0 S
0 14520 1,300 1,234
36 - 0,245 - 0,366 0,450
76 - 2,9 - 2,064 - 3,00
116 - 6,16 - 4,79 - 4,01
156 - 5,84 - 4,10 - F ol
180 - 5,84 - 4,10 - 3,48
WATER (4) WATER (5) WATER (6)
R =58 B=171 R =IBH
d=0,3I75 cm d=0,3I75 cm d =0,3175 em
U=2,0 cm/sec U=2,4 cm/sec U=5,2 cm/sec
A 9= 2 degrees A Q=2 degrees A Q=2 degrees
0 1,15 i 1,06
18 0,88 0,77 0,57
38 - 0,06 - 0,13 - 0,66
58 = 1358 - 1, &/ w 2,37
78 » 2,45 ol 1§ . » 589
98 - 2,70 - 2,8% - 4,29
118 - 2,46 - 2,66 - 3,85
138 - 2,06 - 2,48 - 3,58
158 “ 2,83 st il 3:48
180 - 2,2% - 2,31 - 3,43
WATER (7) WATER (8) WATER (9)
R = 189 R = I9I R = 194
d = 0,3I75cm d = 0,3I75cm d = 0,3I75cnm
U = 6,5cm/sec U = 6,8cm/sec U = 7,Icm/sec
4 © =2 degrees A © =2 degrees 40 = 2 degrees
0 1505 1,04 1,04
8 0,95 e 9 0,9
28 0,253 6;2 s
48 - 1,23 - 1,28 - 1,27
68 - 2,78 - 3,05 - 2,84
38 ks P bt £ 305 - 5,88
108 w By 17 - T =3 21D
i28 bl il * 35208
148 s Y e ol 1 = 5917
168 - 3,06 & 3,32 - 3,12
180 - 3,06 - 3,32 - 3,12



Table Ix ( Contd)

d= 0,31I75 cm
A 6= 2 degrees
©-40 D, bo) ©-40 D,
(I10) (I0) (I1) (12) (12)
R = 220 R o= 228 R= 230
U = 7,762cm/sec U = 8,5 cm/sec U=8,1 cm/sec
0 1,04 1,04 0 1,04
8 0,94 0,95 18 0,71
28 0,15 0,18 38 - 0,32
48 - 1,33 e 1,20 58 ol P
68 - 2,89 - 2,22 78 v By 1
88 » 5585 - 5,09 98 =5 ,54
108 - 3,68 - 3,62 118 - 3,16
128 - 3,24 - 3,2% 138 - 2,87
148 - 3,17 ~ 3,02 158 - 2,81
168 - 3,15 - 2,94 180 - 2,82
180 - 3,14 - 2,94
WATER
d = 0,6347 cm
0 =4 degrees
8 = A0 D, 8 = A9 P,
(I3) (14)
R = 295 R =457
U - 5,4 cm/sec U =7,98 cm/sée
0 1,03 0 1,02
5 0,99 I5 0,71
25 0,25 35 - 0,36
45 - 1,26 55 “ 3370
85 » B9 95 = 2,44
105 - 3,50 115 - 2,18
125 » 3,28 135 -y l7
145 - 2,69 155 - 2,19
165 - 3,19 180 - 2,19
180 - 3,10

|
I
!
|
|
1
i
|
|
|
|
1
|
|
I
{
!
4
!
1
!
{
!
{
|
!
1
|
|
l
|
{
|
!
{
!
!
|
!
!
[
!
!
!
!
!
f
|
i
|
1
!
!
!
{
!
!
!
!
{
1
|
|
!
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Table IX ( Contd)

2 WATER

d = I,2659 cm
A ©= 4 degrees
il p' pl pn
(I5) (16) (17)
R =417 R =573 R=BBZ
U =3,99 cm/sec U-=5,3 cm/s;c U - 7,6 cm/sec
0 1,08 1.0 1,01
23 0,36 0,17 0,36
45 -1,17 -1,1I0 -0, 88
6 -2, 71 -2, 50 -2, 36
83 -3,19 -3,00 ~2,75
103 -2,76 -2,51 -2, 36
123 -2,43 -2, 32 2,19
143 -2,4b ~2,44 ~-2,19
163 ~2,46 —-2,42 ~2,19
180 ~2,46 2,42 -2,19
@ -46 P, P, & o D,
18) (19) (20)
R- 628 R = 809 R= 85I
U =5,6 cm/sec U-7,8 cm/sec U .- 8,3 cm/sec
0 1,01 I,0I s 1
6 0,94 0,92 0,96
26 0,20 0,20 9,27
46 - 3527 -'1,25 - 1138
66 - 2,64 - 2,70 -~ 2,55
86 - 3,01 - 3,09 “ hiD
106 - 2 52 - 2,62 - 2,75
126 - 2,41 b 2,55 ~ 2,68
146 - 2,45 o 2,55 - 2,66
166 - 2,43 - 2,56 - 2,66
180 - 2,43 - 2,56 - 2,66

———— e - —— T Ty T—— - - - - ————————— —-— o ——-—" - = - S - —— 1 ———— - — - ———— - — - — - " - - -
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Table IX ( Contd)
Pressure Drag Coefficients

P e —— ———— . — - —— - ——— ——————— ] t—————————_— S ——— o —— . ——

R Kﬁ‘ Note

(Y, P OIL
18’9 1596 3
25’6 1,57 23
58 1,07 WATER
7I IJIS b .
155 1,44 pe
189 s It s
181 1,47 s3
194 1,3 ’s
220 I,}Z »3
229 1;3%2 o
230 1,26 s3
&95 I,2Z 23
417 0,9 A
457 Q0,92 25
573 0:99 i
628 1,02 s
837 0,98 »s
809 1,06 L
851 1,00 5

—— —————— S ——— ] Wt G S G G G —— " S W W S S W ——————— -
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Table X

T v ———— — — T o ) o D W W ) oy W W Y, o W - T — D O —— — Y V— U ——— I —— T ——— - -, ———— —— ——— e — " —

T v —— - —— — T — ——— " " — W — —— V- — - B N - —V— Y, . - — W —— Y- -V " —— " " ——— -

T v e o W . - — ] - O —— - — T ——— N — — — - —— —— e ——— i ——————— — ——— " " -~ -

——— T — W oV Vo f——— W N — —— —-—— V- — T ——— —— W — w———— o S—-—————"————— — " ——, v

v ——— . T ——— - T . - — e ———— i ————— ) — o ————— Y ——— . ————— ———— v ——— - —— v, o_—-

0,93 21,13 3398 0,99
1,37 21,53 5,58 I,36
2,08 14,59 4,71 1,17
2,21 12,95 4,46 i
3529 7,96 3,62 0,91
3,66 8,17 3,71 0,93
4,03 8,02 3.8 0,95
4,94 5,86 528 0,80
5,20 5,89 3,37 0,84
Experiments in Water
112 1,64 2,34 0,53
I59 1,66 2,52 0,58
209 5" 1,54 2)37 0,54
229 1,46 2,28 0,5I
257 1,38 2,19 0,48

- ———— - —— . T S - — - —— - A S e e e S G T S - o ——— T —— — T ——— ———— ——— ——— A, - —— — " — -
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Table X ( Contd)

S — . —— - ———— " — — — T ——— T —— — — - - — -, ——— - ——— ——————— ——— — o ———"—— - - - — - v Y- -

lenghh-3,873 cm

3

1,2598 cm

—
-

Cylinder dia
) o - S——— v " — o o — -~ —— " . - " ——— - -, - - J" - ——— - - - - v ) ) -y i - o) ) )P e s -1

e —— - ] -V —— " —— S — — W ) - —— —— ) ——— — ——— - ———— ——— ") " —  ———— W —— v — ., — ————. -

AU/U

11
Kp'/%p

Experaments in 0il
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IaNTaYTaNIa e LA A Ny

T S T ) A i T U — - — T —— ] —, N ——— o —— Y — . ————— ——_— —— — —— —— _——————— —. v———— -

Experiments in Water
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OO0 NN < F i < < i
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IN\NO <t O -0 0 O 00 O L-MO LNNO
OO MANNANNNOONO WO ONHHWN
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-
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M\~ O~ OO MAIHHOONO HO
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Table XI
___________________________________ o i min St do
R KL R KR!
R 0,316 cm dia Cylinder

75 195 156 1,06
82 1,31 168 .15
87 170 1,14
94 I.58 191 1,27
104 1,54 2p3 1,18
136 1,10 225 1,33
140 1,02 246 1,36

152 .31

0,632 em dia Cylinder

211 1,15 401 1,22
251 1,28 405 1,06
314 I,3I 434 I,33
329 1,08 442 1,09
340 1,28 506 1,03

395 0,98

1,254 cm dia Cylinder

526 0,99 807 1,30
565 1,01 824 1,23
567 I,14 860 1,24
635 1,23 885 1,19
664 1,19 964 1:35
766 1,08 986 1,29

T - - ————— " ————— T ————— — — T — - — —— ——— - ——_—— — =" ——— ——— —— T ——————— ——, ——————— - —

Note:-= All Experiments done in Water,
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Table XII d/2c = 0,3

W ——————————— TV ———— T — —— —_— Y ———————— —— ] ———— — —— ——— o — ————— " —————— " = {——— v —————

T — . — - ——— T — ——— N ———— V——— ——— T o — — " — — ——— ———— N — ——— ——_— YY) —————, - —" o o———— -

191 1,16 1,78 0,33
288 0,870 1,43 0,20
239 0,89 1,48 0,22
407 0,76 I,3I 0,I5
457 0,72 1,30 0,14
479 8.97 1,40 0,18
501 0,74 %30 0,16
Cylinder dia 1,2598cm length 3,873 cm
503 0,79 1,43 0,20
581 0,73 1,37 0,17
671 0,79 1,51 0,23
760 0,77 1,54 0,24
818 0,74 1,49 0,22
865 0,79 L 57 0,25
1058 0,72 1,48 0,22
1138 0,78 1,65 0,28

Note:~ All Experiments done in Water,
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Table XIII

a/2¢ R Uj/U a/d a/c KL AL £ hi'/KD ald/u
0,060 82 0,05 0,9 . 0,108 0,0078. . 0,738 1,01 0,006
0,098 78 0,08 1,3 0,855 ©,0679".0,798 1,09 0,046
,» 82 0,08 1,2 0,255 0,0578 0,783 1,08 0,040
0,192 49 0,06 0,9 0,345 0,0341 0,83%4 1,04 0,020
PP e 0,8 0,307 0,0385 0,814 1,05 0,025
ys 90 0,05 0,7 0,269 0,0I49 0,725 1,02 0,020
,, 168 0,12 0,7 0,269 0,0854 0,725 151% 0,064
0,333 109 0,16 0,6 0,400 0,1966 0,862 1,30 0,139
1s 0D 10,13 0,6 0,400 0,1297 0,770 1,20 0,096
»s 525 0,18 0,6 0,400 0,2489 0,859 1,41 0,185
0,667 102 0,46 0,45 0,600 1,8281 2,5I3 3,67 0,915
,, 207 0,54 0,5 0,667 35,1117 3,742 5,94 1,437
,» 386 0,55 0,4 0,534 2,0683 2,641 4,59 1,142
ss  POONHOGHE 0,5 0,667 2,8853 3,386 6,77 1,502



Table XIV.
d. Km D
Zc E;S
0 2.250
1 2.236
10
i 2.086
3
1 1,891
2
10 1.633
15
9
10 1.99
1 1.000

%7 -
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LOSSES AT SUDDEN ENLARGEMENT AND CONTRACTION

IN TWO DIMENSIONS.

!
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=pressure eerree- 10ss in enlargement

= A ss  ss comtractionm,
= Reynold's Number,
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LOSSES AT SUDDEN ENLARGEMENT AND CONTRACTION

IN
TWO DIMENSIONS.

SUMMARY : -

(1) Part I of this paper gives an expression for the
end correction, which might be used in viscometry by flow be-
tween parallel plates.

(2) Part IT gives the arithmetical solution of flow at
sudden enlargement and sudden contraction for infinitely low
Reynold@E Number. The end correction n is found to be 0,322.

(3) The arithmetical solution at R-20,25 is given. The
values of n (the Couette correction) and that of m (the factor
of the Kinetic energy term) are found to be 0,322 and 1,022
respectively.

(4) A stationary eddy is found to be developed at each
corner.

(5) Part III deals with the experiments and gives support
to the theoretical values of n and m in enlargement and con-
traction.

(6) Values of n and m are given for use in the thg;et—
g§;i formula for viscometry. |
” (7) It is shown that probably below R = 145 periodie
eddies are not shed from the enlargement.

(8) Appendix I gives experimental verification of

. Gopalin-
Poiseu}le's)‘a’dhfor a ratio (B/h)-25 and also shows the effect
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on measurements of pressure drop, when one of the gauge pointg
is near the disturbed region.

(9) Appendix II gives a solution forVZ'Y= 0, for the en-
largement ratio r = 4. Increment in the electrical resistance
of a similar conducting sheet of uniform thickness is found. The
good a.greement found. with the existi)ng ;a‘él;et;;ﬁc:ih;;)fution v
supplies a Juet»iﬁcation of the éﬁ%ﬁﬂtcst method of solution

used.



4.
1.

Part I.

The steady motion of incompressible viscous fluid between

two stationary parallel plates of infinite width is given by

(Ref. 1).
P N fx-z)%_f
W= am ( ox
- L Z(&s-Z) E Q@90 00 0 0000000 00 (1)
20
/
where
u = velocity in the x-direction

v=w=0, velocities in y and z directions

z = distance from one of the planes, taken as
the x-y plane of reference
h = distance between the planes

¢, u are the density and the viscosity of the liguid
p = drop in pressure over a length 1 along x

and Eﬁi constant along x axis p/1.

Unit width of the plane is considered. The quantity of
fluid passing per second through each section (h x 1) is there-

fore

cecsssscsssssccs (8)

It is seen that the distance h between the planes enters

into the equation (2) to the third power. Hence, the distance



i W

h does not need to be measured with quite so high an accuracy as
is needed for the determination of the diameter of the capillary
tube which enters to the fourth power in the absolute determina-
tion of viscosity by means of capillary tubing. This suggests the
use of flow between parallel plates for the measurement of viscos-
ity. Further, there is the possible advantage of securing more
uniformity of distance between the plates than that of the diameter
in the case of capillary tubes. The surface can be ground with

precision and examined.

If Q@ is measured and the pressure difference between two
points unaffected by the entry and the exit conditions, are meas-
ured, theg}k can be determined from equation (2). 0l

Appendix I of this paper shows that this izéjﬁéida within
experimental accuracy, for a ratio (B/h)= 25, where B is the
depth of the channel. Flow through pipes of rectangular section
has been investigated for a wide range of the ratio B/h, from
2,92 to 169,3 (Ref. 2, 3, 4). For a low ratio of B/h the follow-

LL y TOPN

ing'inﬁ holds (Ref. 4) and can be used,

92 [ dowh MB L taer 3T2 o .)}

3 r Ob\ )
Q - "8& ( }i} S 2

\\_- ns \ 2% 3

tessccscsscsccsse (3)

The usual practice of viscometry is to use a capillary

tube attached to a wide reservoir, and to time a measured quan-

tity/



B
quantity of discharge. The same method can be adopted for par-
allel plates if similar correction terms are determined. One of

the objects of the present investigation is to determine these

corrections.

A good discussion of the nature of these corrections for
a capillary tube has been given in Dr. Guy Barr's "Monograph of
viscometry™ (Ref. 5).

The ligquid must enter the capillary tube or channel in a
converging stream from the wider supply vessel. This 1njolves
a lBas of pressure and the necessary correction to Poiseégle's
;;#""go‘”é's by the name of Couette, who first suggested it. This
is done by the hypothetical addition of (n;x d) to the length of
the tube, where n is a sonilneantenal fweter and 4 is the diameter.
The corresponding Couette Correction in two dimensional case is
given by (nl.h) .

The liquid when discharging from the exit end of the chan-

nel or tube similarly diverges and requires an additional correc-

tion nc X h.

Dr. W. N. Bond (Ref. 6) has given a method of viscosity
determination with short tubes and orifices. The value of n as
experimentally determined by Dr. Bond has been found to be in
good agreement with that obtained by arithmetical solution of the

equations of viscous flow at sudden enlargement in pipes by Dr.

A/



A. Thom (Ref. 7). Dr. Thom's paper was available to the writer

in its rough proof and the first portion of the Part II of this
Y

paper, dealing with the solution ofVY = 0, was undertaken at

his suggestion.

In addition to this correction to the length a further
correction is required at higher ReynoldE% number for the extra
energy carried away by the emergent fluid.

This energy is dissipated in the~form~of~hoe#*éuo~%o eddy forma-
tion, | \Tl;\is(‘;;n:egtﬂig: {4 weunlly saplidh Viitas & veriaviieh
factor gyto the energy of the liquid-o§§a¥fng'iqkthe portion of

1
the channel where the flow is governed by Poiseulle's Law.
A

Kinetic energy imparted to the liquid is retained by the
liquid until it leaves the channel and is equal to the sum of
the kinetic energies of the elements of the liquid which passes

any cross section per second. (For tubes see Ref. 5)

Volume of liquid passing through dz, = u dz. Kinetie

energy of this volume elementAis“ﬁkﬂme futn Ll TﬁfJ

'

E ( l‘-'\-f(/'2-> [.\.2 S99 000000000000 00 (4)

\

(L

?I,fﬁs,ﬁ.‘)\r'..,e_J o B IO e

Kinetic energy of—the-tiquid flrowing—through the whole cross
r

section per secoad is therefore

.E/ W dn

‘—&0 $60000000000000 00 (5)
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5.

Substituting the value of\;T ) from equation (2) in equation (5)
we get,

L -/ .00 Q’
k._/_ 7 © %
N3

/}L/ﬁ"‘ {)(f -

The kinetic energy /carried away by the emergent liquid is therefore

]

RO PR B T

e/ 27 o &
S ‘el & M :;5 © &2

cessssscccssces (T7)

{

ks d

{

o
The total work done per-second must be equal to th

ok
e . work
.d%p%Lagainst the viiz?gs forces plus the kinetie energy/@?ﬂgﬁz
Luwwas by i ¥
., liquid nhenfi? leaves %he channel.
| VN

The work done against the viscous forces is therefore
/

{per-sec) ﬂ :
-— P S nwaz - YA 2‘1( . b‘ L‘R“
- 39 1;7'
9/
_ _ -ag 21 e &a
- be e ,

*00000000s000e (8’

Hence the pressure (%i)effective in overcoming viscous re-
sigtaice is given by

| N #ﬁ w 21 e f%?
AAbE - 35 g
*lv: r,fUJ"v;QQ 3 ﬁ
\\“’Ti/+ 2h) where n = nj + np
Thus ('\3 b‘

B = ik @9

cecessssssesses (9)

N
! A
: YA

o —a : ot S
Due~%d)the end effects we haveﬁnew an effective length of

e9 000000 d00e 00 (10)
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Substituting for p, from equation (9) in equation (10) we get

S e

0000000000000 00 (ll)

Equation (11) mew gives the necessary formula for the determina-

tion or/u., with parallel plates, corresponding to that with
capillary tubes.

Parts II and IIXI of this paper give valuejof n and m to
be used in applying equation (11) to viscometric purposes.

6.
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7.
Part II.

The problem of steady viscous flow between two parallel
planes of infinite width, originally at a distance of 8 units,
the distance suddenly enlarging to 32 units is solved for low
Reynold?s Number by the use of a method due to Dr. Thom (Refs.
7, 8, 9, 10).

The general equations of steady two dimensional viscous
flow reduce to

2% 0%
Yortl = u = v 5
where 92 _ My _ 0%
Pl - LR °Z gasdnaeiisne LK)
r ) IR C_:‘i
and A - P L T

The method of solution of equation (12) is one of repeated
interpolation in a field of initially assumed values of Ei and\y .
The field is divided into squares of side 2n and the values of
are assumed for each corner. These assumed values for corners
give E; and"Yg for the centre of the aquare,'ggggfthe following
interpolation formulae -are—used. d ol :

. = B - S LAy c B B (b-a) (-A)
R £ b dah il R

. 2,
\-\/ = k'VM - EC,

-

AT .



where,
’\‘/M = (AA—-B*C“'_‘{) !‘_L’ 00000000 (15)
EM = (a'+ b‘\'C“'Ci)%L{' 9 9 00900000 (16)

and A, B, C, D are the corner values of Y and a, b, ¢, and d are
the corresponding values of ¢,

Having used equations (13) and (14) to find the values at
the centres of all squares they are used again to find new value
at the original corners. The process is repeated till all the
values over the field have settled. At solid boundaries the

-
value of ©><¢ on the surface are obtained from the approximate

-

expression.

T
. R X B
- - T/(., ‘yo - \5 @9 00000000 00 (17)

where"{’s value of V' on surface and ‘K;value of ¥ at a point G

distant msfrom the surface.
The process involving the repeated use of formulae (13)
to (16) in conjunction with (17) has been found to be convergent,

provided the squares used are not too large (Refs. 7, 8, 9, 10).

The spacing of the stream lines between the parallel walls
beyond the region of the enlargement are calculated for the two
portions of the channel and the stream lines are roughly sketched.

The field is now divided into suitable squares and 5 and 'V

values are assigned to the corners. Repeated use of the formulae
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(13) to (17) is made till the field is settled.

At first it was assumed that viscosity was indefinitea %}L@i
4
that is, V V==0, so that the equation (13) now simplifies to
RN
S " P00 000000000 (18)
This enables the use of various speeding up processes,
some of which have been communicated to the Aeronautical Research
Committee by Dr. Thom (Ref. 11).
) skl

WY A
The difficulties of the infruding corner and a method of

overcoming %ﬁigwhave been égﬁpioned by Dr. Thom (Refs. 7, 11).
The corner is enlarged several times and the size of the squares
reduced. Although the vorticity at the corner is probably infin-
{39, the errors have little effect on the rest of the field, pro-
vided sufficient enlargement is made. The corner is separated
out by dotted lines and the rest of the field is treated and.
settled. Then the values near the corner are modified as affect-
ed by the change in the field outside.

The important part of the fielth¥= 0, as solved ,is shown
in Fig. (1). The figures on the top of a cormer of a square give
the E value and the bottom figure the ‘V/value.

The figure (2) shows the stream lines corresponding to
this solution, and Fig. (3) shows the contours of vorticity.

The/
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The formula necessary for calculating the pressure distri-
bution can be derived from the fundamental hydrodynamical equa-
tions of viscous flow. (Ref. 8) The pressure along a line parallel

to the x-axis is given by
B

-B
a2 . | * >Y 'af» dx — 2€ S/“)J&-'d"'
RN L A e Ak Sm A
A @ 90 00000000 000 (19)
where
12:: u,?'+//3L

In calculating the pressure difference between such points
A, B for‘VRQ’ 0, the following reasoninf is employed. (Ref. 7)
Since the viscosity has been assumed infinite, it is evident that
1nfinite pressure will be necessary to cause motion. (Hence, it is
necessary to think of viscosity as large but not infinite.

Equation (19) then simplifies to

;D —L\ o She I R EEE R X (20)

The values of E are known in the entire field and ‘%EZ is found
by numerical differentiation by the Gregory-Newton Formula (Ref.
12). Figure (4) shows %_ along z = h/2, i.e. the median.

EThe pressure loss 1s calculated by evaluating the integral
2¢ )-fz lx along the median by careful mechanical integration.
The ﬁ;;ssure logs for sudden enlargement is found to be the same
as that which would take place with an sdditional length of
(0,322/
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(0,322 x h) of the small channel.

At zero Reynold@b number the solution for the flow in the
reverse direction is exactly identical and so gives the same equi-
valent increase in the length of the small channel.

Thus at low Reynolds Number the value of n giving the
corrections for contraction and enlargement together is 0,644, this
figure is of the same order as (1,132) for tubes as found by Dr.
Bond (Ref. 6) experimentally and of (2 x 0,588) as determined by
Dr. Thom (Ref. 7) by the above arithmeticsl method. Dr. Bond's
experiments indicate that up to Reynold@h Number lo)n is constant.
It is suggested that this figure (n = 0,644) can be taken for
channels up to Reynoldgb Number 5, along with m = 0 for use in
equation (11).

Section II.

Dr. Thom has shown that this method of solution is capable
of showing;yﬁ:stationary eddies behind cylinders (Ref. 10). As
a point of interest and also with a view to determining a value
of m in equation (11l) theoretically, the solution has been repeated
for ReynoldQS Number 20,25. Equations (13) to (17) are used with
Y = 12,25 giving the above value of R.

Starting with the figures obtained from the R = 0 solution,
the abqve formulae are applied hundreds of times till only small

{
L aNAAAMAA

movements are obtained. Pigure (5) shows part of the field, and

Figure/
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12.
Figure (6) shows the stream lines obtained.

Both figures (5) and (6) show a stationary eddy at the
corner. It is possible that such an eddy exists as in the case
of eylinders. It has been shown by Davies and White (Ref. 2)
that below R = 140, all disturbances are damped down. Hence
periodic eddies are not shed from the enlargement below R = 140.
But this does not preclude the formation of stationary eddies as
obtained arithmetically.

Farren (Ref. 13) has demonstrated the periodic eddies as
they develop and detach themselves by smoke photographs. These
are shown in Plate I. The shape of the eddy here obtained seems
to be different from that obtained by Farren. But this is not

surprising, when the nature of the Kidney eddies and Karman Street

vortices are considered.

Figure (7) shows the velocity profile at various sections
for R = 20,25 as obtained in the solution.

The pressure drop between two points A and B on the undis-
turbed parts of the two channels is calculated by using equation
(19) which reduce to

‘:‘2 00 00000000000 (21)

But ug = ruy, where r = hy/hp and h) and hy are the distances

between the channel walls in the two parts. Then
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where u, is the average velocity in the narrow channel and is
two thirds of the maxipgm veloeity Uy.

The term 2.;7‘>?22A1then gives the total loss in pressure
due to viscosity and kuetic energy.

The term involving the kinetic energies in the two channels
would remain the same if the flow althrough in the two channels
were laminar. But in that case there would have been some vis-
cous loss as given by equation (1). If 1, and 1, are the dist-
ances of the points A and B from the enlargement, respectively)
and \f4;>n and (ﬁéi)l are the pressure gradients in the two
channels, then such viscous loss is given by

) 1. + | vj; by

. 0x /9 - 0000 svscne (23)

xauogﬁﬁ/
Hence, the extra.igia_caused by the enlargement is given by
-8

A

3

N

diaras in iy - EGS

?’\2 &uu--a«/ “T=
This loss includes the pressure—4rop due to divergence of

vieR . bod ¢+~
the emergent jet and the excess of energyfgver thatégiﬁgn-hy

Q, hpn - -
Poiaeulle's " oarried away by the emerging liquid. 4
o ! ¢x{~m F })’b

'/
Theé 8 now expressed in terms of the pressure IUEE

\

in the narrow channel & given by Poiseuile's , by the follow-

ing/
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following equation,

12 M &

(S N, &
e QP il chs drsinin URO)

0., Nlhl' gives the sdditional length to be added to the channel.
(’C‘%
22
numerical differentiation as before. 2¢ ?S % dx is now obtained

Figure (8) shows along x, ?Ez being obtained by

by careful mechanical integration. Nl is found to be 0,351.

This extra pressure loss as indicated before is due to the

7 additional lengthyh (divergence loss) and to the excess energy

2
11088 QM ‘) . %,_ Hence
\
o \2a e m\_{}w m-1) 2 o &
R = ""“‘Q" + 5 - ceveessess (26)
4 b Cedtof

wWe¢ o 111\ L8t etV

Now equating equations (25) and (26) we get

\‘_2_;* & N, \2 m a My kw\ ”\> e *
:’- 2 e T {\‘2 ® e 09 008 008 0 ° (27)

L

Hence

1
p

4 (’VV\"\) _i_ e g

N, \ (c

ssssssncess (88)

A

where R = Reynold(‘)s Number =

]1 as found above is 0,351. Assuming that the effect of divergence
is the same at all ReynoldVs Number, i. e.,,x’l = 0,322 m1 is found
to be 1,022 from equation (28),

Q N fhls value of m, howewer will not apply to contraction.

The value of mlﬂl,ozzkrm for enlargement in
channels/
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channels compares well with the figure m=1,08 for tube visco-
hay frode paamnd
metry g§ given by Schiller (Ref. 5, 14) from theoretical consid-

erations and from his weighted mean of experimental results.

Part III of this paper gives experimental confirmation of

the values of n and m.
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\ { 'MM}LUV’
ry of Experiments:- 2
2 ¢ .
Substitute dI‘or zey S 5y 4* from equation (24) in equation

A
(28) the following equation is obtained

RN P B ) *% -H!"“\U\lef
sesescvscsssase (29)

- This equation gives a method of determining Pes the enlarge-
ment ;i;;;;T}provided the difference of pressure (PA - pB) on the
median of the channel, the pressure gradients, and the average
velocity are shown. If the gauge points are situated far enough
away from the disturbed portion of the channel then (PA - pB) will
be the same as that obtained from observations at the corresponding
points on the walls of the channels. And <§£>)and \%ifgpan
either be calculated from equation (2) or deduced from measure-
ments of pressure drop along the undisturbed parts of the channels.

P can now be expressed according to the equation (25) and

N; found. Then using equation (28) n‘and m can be found.

The corresponding expression for pressure losses in sudden
contraction is similarly

j . \ C : ‘ (b | )5
P' - t\;A = FZ" = % e wy (- £?) - ‘LC%\;), L+t LR 2
(~% > :

e 000000000000 (30)
and mp and n, can be found by using equations (25) and (28) as

before.
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gggeriments:-

The sketch of the apparatus used is given in Figure (9).
It was arranged so that the distance between the plates could be
ad justed. The apparatus consists of four similar pieces of brass
plates, three inches wide and 3/4" thieck with a flange. These
pieces are bolted together. The top and bottom are closed by
means of thick rubber insertion held secure by two 1/4" thiek
brass plates screwed down. The ends are also similafly closed.
These cover plates and end plates are all slotted to allow for ad-
justment. The two flanges are first bolted giving the required
enlargement ratio and the distances between them are measured
with a microscope. The top and bottom plates are then fixed.
Pressure measurements in the narrow section give a check to the
measurement of the distance h when water or any liquid of known
viscosity is used.

There are 46 pressure holes of diameter 0,014".—Phese—

) i

connect the pressure box as shown. The apparatus is supplied

from a constant head reservoir and discharges through the jacket
of the pressure box into a glass tube. This end of the discharge
pipe is kept submerged in the water in a glass tube and the level
in the glass tube is kept adjusted to a fixed mark. Any variation
of this level indicates a change in the rate of flow. At low
speed it is impossible to adjust the flow with valves. Different
constant speeds were obtained by fitting nozzles of different dia-
meters at the exit end. The pressure box is used to avoid yd/
error due to temperature changes. Thermometers are fixed at the

inlet/
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inlet and the outlet. Two holes are provided for sucking out any
air in the apparatus. The pressure differences are measured by
a sensitive Tilting Gauge (Ref. 15). The average velocity is
measured by timing the discharge from the outlet required to fill

a graduated cylinder.

The flow is reversed and the effeect of a sudden contrac-
tion is studied.

The dimensions as measured are given below

h, = 0,3034 em. (direct measurement) 0,304 cm. (from pressure

measurements)
hp, = 1,209 em., B = 7,597 em.

Ratio of B/h = 25

Enlargement ratio = hg/h; 3,98.

The coefficient of viscosity is taken from standard Tables

(Ref. 16).

The results of experiments are shown in Table I and II for
enlargement and contraction respectively.

Figure (10) shows the variation of pressure along the wall
of the channel for enlargement. The corresponding figure for con-
traction is the Figure (11).

Figure (11) shows a region of high pressure at contraction
as is to be expected, since these points are on the walls near
the contraction, where the liquid comes to rest.

Table III gives the maximum excess of pressure, from the

smooth/
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smooth curve which is probably the curve of pressure variation
along the median of the channel. Figure (12) shows this excess
pressure plotted on Reynoldig Number.
ol qamal”

Figure (13) shows p and N for enlargement U!&t:ﬁtil-vf R.
For reasons mentioned later the points above R = 145 cannot be

On. o880t —of

used for the calculation of n and m. (Bue-3o-eddying)

Figure (14) shows Q;and N, for contraction. The flow in
the wide channel approaching the section is probably not laminar
and hence Figure (14) shows scattered points, and as—susk the

values of mp and np can be taken as approximate only.

Results.

For sudden enlargement n‘and m are found to be 0,33 and

1,01 respectively. These compare well&with the values 0,322 and

1,022 as obtained from the thoogz;i;;£ solutions givens

For sudden contraction n and m,are found to be 0,400 and
0,680 respectively.

Bond's experiments for tubes (Ref. 6) indicate that up to
R = 10, n is constant and m = 0. Above this n tends to vanish
and m tends to unity. Bond's value of n for both enlargement
and contraction is 1,132.

The present experiments for channels gives n and m &8s
constant é;ﬁigdz;%g;w:xpected from the theory, whereas for con-
traction n seems to increase for high Reynolds Number. It must

however be mentioned that the results of the contraction exper-

iments/
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experiments are liable to error owing to possible turbulence
in the enlarged part of the channel.

For use for viscometriec purposes the values of n and m
to be taken are 0,644 and 1,022, respectively. Since the fluid
in the wide supply vessel is more or less stationary, mp is not
to be taken into account in equation (11).

Thus equation (11l) now is

¢ A &
o b i _ 1022 L ‘f—w C‘iﬁ—k)
= o e 0023
\2 q ‘\g*-n‘t““‘ff\) ) 5 teecer 0o (31)

Another interesting result obtained is the Reynold's
Number at which eddies (periodic) are first shed from the en-
largement. The eddies as shed travel down the wide channel. A
graduated capillary tube was fitted on to a hole on the enlarged
channel. The level of water is seen to oscillate as the eddies
travel down. The frequency and the maximum amplitude of osecil-
lation were observed and these are shown in Tables IV and V. The
frequency and the amplitude both inecrease with Reynold's Number.
Figure (15) shows these plotted on Reynold's Number. From the
oscillation experiments it is seen that probably at R = 145 the
periodic eddies are first shed. Below R = 145 these eddies are
probably damped down. The experiments of Davies and White (Ref.
2) irdicate that below R = 140 the effect of entrant econditions
is probably damped down and below this value of R the flow is
always stable. The present experiments support this view. And

as/
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as seen, it is likely that below R = 140 no periodic eddies are
shed, although a stationary eddy probably exists at each corner
as shown in Pigures (5) and (6) of Part II.

21.
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Appendix I.

Lﬁgjgw The verification of the equation (2), i.e. Poiseuéle's
%;§£>is given here, for B/h 25. Table VI gives F/eva for differ-
ent values of Reynoldég Number {i%fi . Figure (16) shows log.
F/gu° plotted against log. R. :

It is seen that the expe;imental gﬁints lie on the
theoretical line given by Poiseu}le's §i£4ﬁ§ﬂfo Reynold®s Number
183. Beyond this the experimental points lie above this line.
This is due to one of the gauge points Dbeing near the entry,
as is also seen from the experiments of Davies and White (Ref.2).
That this is so is confirmed from the Figure (17) in which L/h
(where L is the distance of the gauge point) is plotted against
R. The value of L/h lies on this curve as given by Davies and
White.

The experiments on frequency and amplitude of oscillation
due to eddies indicate that below R = 145, disturbances do not
travel dowﬁ}y%ﬁus lend support to Davies and White's result
(R = 140) as obtained from the Figure (17). Hence it is probably
quibde right to assume that below R = 140, the motion is always

Mt
stable, as proposed by Davies and White.



Appendix II.

It has been shown by Dr. Thom (Ref. 10) that the use of
the method indicated in Part II for solution of viscous fluid
motion is considerably facilitated if a conformal grid is used

A g gund

in the case of curved boundaries. The same applies to the (9;ru¢;

corners.

This involves an initial solution of Yﬁ%= 0. This can be
done by Schwarzian Transformations. The writer's attention was
drawn by Dr. B. Hague to the fact that the corresponding electri-
cal problem has been solved by many writers (Refs. 19, 20, 21).

Thus C. H. Lees obtains the same transformation as given by

e, = =
; ( - [ Xcdi-u { & ¢ t+a \’5
Z-= ZA v v-l—\ + W o L. AA T
- - \/ A4 f¢ CaR -\ ()
el | [ T +\ C I
L—.{ \ \& V ® 000000000 (32)
= C lgyv aesssessas (8859

L ,_(a’él
VY = 0 for this problem has also been;ég;ﬁvby the arith-
metical method, indicated in Part II.

Figure (18) shows this solution and Figure (19) the stream
lines. The egquipotential lines are not shown.

This solution is used to find the inecrease in electrical
resistance of a conducting sheet of uniform thickness, due to

sudden enlargement, for an enlargement ratio of 4.

Flow/
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Flow of electric current along a sheet is analogous to
that of irrotational motion in hydrodynamiec. The analogy has

been extended by G. I. Taylor (Ref. 22) to cases of compressible
fluids.

SRR Gl T e T S
N\
_:J! - J {\E = ?u'
™ S 2T
“,j. = - W ) :{’ PLE
x D2
; - o\
L - - t“g - {’ :_—L te0c20900c020060 (34)
h |
3y e \l’— 2 \eetvi ¢  Sred ol g:._\,u_kj:m
W - leeinc Gt Famchon
4 - hickweas

= SFL,cj;\'c ; R‘L;\' stoancae .

If now A and B are two points far away from the disturbed

region, then drop of potential between A and B can be calculated
by integrating Ei'z. along AB, since

B

B__
. _i AN = g ‘) I‘-:{: ;‘L.
b A
A 0000000000000 (35)

o

is obtained by careful mumerical differentiation and the

drop in potential is evaluated by mechanical integration.
Figure/
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Figure (20) shows é;;_ plotted on x
And the increase in resistéﬁce is due to 0,690 x h, where h is
the width of the narrow part of the sheet. This compares well
with the figure (,650 as given by C. H. Lees (Ref. 19) for the

enlargement ratio of 4.

Appendix III.

In the above experiments, the flow cannot be considered
as strictly two dimensional and as such it is necessary to ex-
amine how far this affects the equation (29) used in deducing
the experimental results. The maximum velosity in the narrow

channel from formula corresponding to equation (3)

ﬁ: % LA
The maximum velocity in the wide channel is
__‘__: 0" ‘_»111"{%- \A,_) - 6. 424 \55 ~ru..)

Hence the kinetic energy term in equation (29) is hardly affected.
Pressure gradients \gé)\ ,&f)lhnve also to be corrected if

0%

these are calculated from equation (2). Thea for narrow channel

or = [ [ 12 m 8
&), = (&) | %%°)

N

And for the wide channel

\;L)z = \9qoo/ \ ~
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Laboratories of the Glasgow University, where the work was carried
out, for advice and for the facilities given to him. He is also

indebted to Dr. A. Thom for generous help and adviece throughout.
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Table I. Table IX.
1
R Pe N R Pe Ny
17,98 0,098 0,345 18,3 0,140 0,466
33,8 0,191 0,366 72,4 -1,500 -1,23
59,7 0,371 0,399 183,0 -6,74 -2,24
81,2 0,557 0,427 237,0 -20,07 -5,17
115,6 0,903 0,476 303,8 -37,72 -7,60
132,0 1,042 0,500 385,9 -63,33 -10,00
234,6 2,350 0,596 469,3 -94,95 -12,20
305,9 3,540 0,690
Table III.
Excess pressure
R Chattoeck Turns
over mean curve.
18,30 0,20
32,61 0,40
48,68 0,58
72,40 1,10
117,30 2,00




Table IV.

- 28.

Table V.

Frequency of

Maximum Amplitude

R Oscillation
due to eddies.
199,5 0,91
228,9 0,85
258,2 0,9
317,0 1,00
381,5 1,00
457,8 1,20
548,1 1,36
551,7 1,30

R of oseillation

due to eddies
156,2 0,015 em.
199,5 0,020 "
275,8 0,030 "
289,9 0,050 "
381,5 0,300 "
397,9 0,300 "
423,17 0,450 "
4742 0,600 "
501,2 0,600 "
536,4 0,70 "
569,3 0,800 "
581,1 0,800 *©




Table VI.

R F/ev? R F/ev®
18,20 0,335 117,5 0,053
32,36 0,180 163,2 0,038
47,86 0,128 234 4 0,028
48,98 0,128 2692 0,027
72,44 0,084 309,0 0,023
75,86 0,078 316,2 0,024
81,28 0,073 354,8 0,020

112,20 0,058 467,7 0,017

29,
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13 1.

FLOW IN A SEMICIRCULAR BEND

OF A CHANNEL OF RECTANGULAR SECTION.

Summary.
In the first part the paper gives a summary of the

more important investigation on the flow of fluid through
curved passages as published by other investigators.
In the writer's experiments four different stages are
observed to exist, these being
(I) Stage during which the internal circulation is
absent.

(II) Stage during which the bottom circulation only
is important.

(III) Stage during which the top circulation is
prominent.

(IV) Beyond the critical speed, a stage during which
the top circulation appears to exist.

The ceritical velocity for the bend is found to be less
than that in the straight portion of the channel.

The paper proposes a criterion for the transition of
flow from (I) to stage (II) for curved tubes.

A confirmation of James Thomson's Theory of Meander-
ings of Rivers in alluvial plains is shown.

In the second part of the paper an arithmetical solution
of <7{Y= © for this curved passage is given and similarity of
the flow pattern for irrotational motion and very viscous flow

is discussed.
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INTRODUCTION.

This investigation has been carried out in the James
Watt Engineering Laboratories of the Glasgow University under
the directiong of Professor J. D. Cormack.

The problem of the effects of curvature on the flow of
fluids has received m%t attentiong. The flawh 3f’/ff}?}}ﬁs¢in
a curved /pen/tqpped channel of rectangular section, is of spec-
ial interest because of its engineering applications. The
phenomenon of the meanderings of rivers in alluvial plains has
been explained through studies of flow in a curved channel by
Professor James Thomson. (Ref. 1).

Recently, an 0il and water channel had been constructed
in this laboratory for the study of various Hydrodynamical prob-
lems at low Reynold's number. The channel in its present shape
is shown disgrammatically in Fig. (1), the 0ld channel has been
described in full by Dr. A. Thom. (Ref. 2).

It was thought that an investigation of the nature of
the flow in the curved portion of the channel was necessary to
understand the probable effects of using a semicircular bend
as an entrance to or an exit from the straight portion of the
channel, which forms the working section.

Part I of this paper deals with the nature of the flow
in the curved path and also includes a summary of the available
information on the subject.

Part II of this paper gives an arithmetical solution
of the flow for this bend for perfect fluid.

e e S M e e e W e WS e e W
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Genersl Survey.

A comprehensive survey is beyond the scope of this
paper, but a brief oﬁtline of certain essential points is
thought necessary for the proper comprehension.

Professor James Thomson (Ref. 1) has explained the
cause of protection of the convex bank of the river, from the

erosive action,

A OTA, ,) )

t@g@g, The water near the concave bank accel-

erates itself due taymhe centrifugal force; whereas near the -

convex bank it does not do so. This gives rise to cross
gradient of the free level across the section, rising up from
the convex to the concave bank. The water adjacent to the

bed of the channel is least affected by the centrifugal force

| due to viscous effects and tends to rise up between the con-

- vex bend and the streamlines. The pet effect is the scouring

of the concave bank asnd the protection of the inner bank.
There is further protection due to the deposition of silt
carried by the water from the concave to the convex bank.
The current engineering idea (Ref. 3) about the flow
pattern across the section is shown in Fig. (2) which is for

90° in a semicircular bend.

? O X
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Gibson further states that the linear speed at the
concave bank is grester than that at the convex bank and during
the flooding period when erosion is maximum, the scouring
action is further intensified énafgo the impact of water omn
the concave bank.

The other investigations of flow in curved channel
during steady motion are those of Eustice (Refs. 4, 5, 6, 7)
and of Hinderks (Ref. 8). Both these observers and others have
noticed spiral vortices. A physical explanation of this double
spiral flow has been given by Eustice for pipes.

The case of a tube of circular section bent into an
anchor ring has been dealt with mathematically by W. R. Dean.
The cross pressure gradient produced by the centrifugal force,
sets up an internal circulaf'ion7 Pig. (3) indieatee-the-nature
of cirgulation, as given by W. R. Dean (Ref. 9) in his diagram |
showing the path of a particle iprthe plane of cross section. \

GV\V?A( Cowvs Carve.

F\Cx 3

Such a path has been indicated by J. Eustice (Ref. 5) and exper-
imentally demonstrated by G. I. Taylor (Ref. 11). The second
paper of W. R. Dean (Ref. 10) gives a mathematical form in
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which the pressure losses in a curved pipe may be expressed.
[/ This is different from the Reynoldba Criterion which is used

| as @bscissa for plotting pressigéfdrOPS in straight path.

C. M. White (Ref. 12) has given experimental verification of
Dean's theory, which shows that for curved pipes (according to

notation used by C. M. White).
) LN L “evd  (d \3 s .
Pa =02 < B2 = DIENE ($P] oo 0

sz | T D!

where F is the resistance.
\' ” mean velocity.
d » diam. of the pipe.
D L4 diam. of the coil.

Ol § , ‘ ,/‘/ L Sede
This % ‘\3,3 (S 1" is called by Mr. C. M. White
Lt M) et Dean's Criterion.

The case of pure two dimensional flow (or at any rate
of the flow through a curved rectangular tube has been investi-
gated by the German workers ( Keg, |3, omd '5)
from the point of view of the effects of centrifugal force on
the boundary layers associated with the concave and convex sur-
faces. Dr. J. W. Maccoll's paper (Ref. 13) gives & physical
interpretation of the comparative thickening of the boundary
layer on the concave side to that of the convex side, in the
light of Prandtl's theory.

W. R. Dean (Ref. 16) has also deduced mathematically
a Criterion ¢ : the Reynoléih number at which transition

to turbulent flow takes place in the case of flow under pressure
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through the annular space formed by two coaxial cylinders, the
flow being in the plane of eross section. This will be discussed
later on in the paper.
This more or less gives a survey of the field covered.
A comprehensive biblisgraphy is given in the Bulletin (Ref. 14)
mentioned.
It was felt that although sufficient data exist for curved
pipes - the available data for curved channels are comparatively
\amall. Further, the flow in a channel should be intermediate

\between that of purely two-dimensional cases and that of three

!dimensional cases like that of a pipe, because of the existence
of the bottom of the channel and of the free water surface. A
double helical flow should exist even in the case of a channel.
It is shown in this paper that the existence of the free
surfaces in the case ocf a curved channel introduces complexity.
fThe cross gradient of the water surface set up by the centri-
j‘ft:Lga.l force plag’s a dominating part in the internal circulation.
Although some writers (Ref. 17) seem to think that this trans-
verse inclination is only noticed in small experimental channels
due to cross strain; it has been however shown that in the case

of the Mississipi river the difference of elevation on two sides

of a bend during flood may amount to as much as one foot (Ref. 18).
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EXPERIMENTS.

L oA ) I/ul//
The experiments consist of photographing of/filamenﬁg

Iines and fixing their positionstiq three dimensions.

The channel used is éﬁa;hfiéiiﬁxthe same as that employed
and desceribed in full by Dr. A. Thom (Ref. 2). It has been how-
ever lengthened to get over the surging effects otherwise felt at
the bend near the propeller. The inlet end to the working sec-
tion is now of rectangular shape as compared to the original
semicircular end. Fig. (1) shows the channel. The length of the
straight portion is now 84" as compared to 42" previously.

The water is circulated by a small propeller driven by a } H.P.
D.C. Shunt Motor through belt drive. Guide vanes are used at the
right angled bends. Previously 90° cireular arcs were tried as
guide vanes. Now 105° adjustable vanes are used. These seem t0
give a more uniform flow in the working portion of the channel.
Three sets of honey-comb, one 23" wide with 100 cells, one 53"
wide with 100 cells, and the third 23" wide with 225 cells are
used to guide and straighten the flow. Fig. (1) shows their
optimum positions. To get a constant speed it is necessary to
run the motor at its normal speed and to gear down the propeller.
Several perforated plates are used in the channel as resistances.
Throughout the whole circuit the channel is 5" wide and water of
about 5" depth is used. The semicircular bend has an inner radius
(a) of 2%“ and an outer radius of 74". Thus mean diameter (D) of

the curve is 15" and width (H) is 5"™. Variation of velocity is
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B ot S
f’”“
detected by coupling one side of an inverted U-gauge to a pilot

head at the upstream end, and the other end to a pressure box.
Coloured filaments were obtained by introducing aniline
dye into the channel water from a reservoir shown in-Pig—{4).
Fig. (1) shows the approximate position of this reservoir as
used. The reservoir consists of a half inch diameter (of length
4%") brass tube, with a cross piece at the centre. It is sup-
ported by two spring clips fixed to the bottom of a plate of
length 53". A thin (bent into shape) tube 3/32" dia. communi-
cates with the reservoir at two ends. Five holes 0.014" diameter
are drilled on the upstream side of the transverse piece of the
thin tube. The plate rests across the channel. The reservoir
contains the dye - and the level of the dye is so adjusted that
the dye just escapes through the five holes. The level of the
dye in it is kept constant by feeding it through a capillary
tubing from another vessel containing the dye, of the required
concentration. The end of the capillary tube is kept submerged
into the reservoir so as to prevent osecillation of surface other-
wise to be caused by dripping. The plate is slotted and the
cross piece is turned along the slot to fix the level at which
the filament is to be introduced. The dilution of the dye had
to be adjusted for different speeds, so that the filaments do not
sink. This sets a limitation to the lowest speed at which photo-
graphs could be taken. At lowest speeds the dye had to be made
80 thin that photographs did not show the filaments. An idea of
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the speed is necessary to understand the difficulty. Thus for

Reynold's number %? = 87 where V is mean speed, m is the hydraulic
Area

Wetted perimeter ’

to 0.098 inches per sec. At lower Reynold's Numbers, say for

the velocity is approximately equal

mean depth

%? = 40, and the speed of the order of 0.04"/sec., the dye was
almost invisible and the slightest disturbance in the room upset
the flow.

To provide a white background for photographiec purposes
the channel floor was lined with white cartridge paper which was
covered with glass sheets of the required shape. An ordinary %
plate camera of focal length 10.5 em. was used for photographing
the filament lines with Ilford Panchromatic plates.

The average speed of the liquid flowing along the channel
was obtained by taking the mean value of the speeds of water at
the working section. The speed was measured by a Tilting Gauge
devised and used previously by Dr. A. Thom (Ref. 2).

At certain speeds the water in the channel tended to osci-
llate - this was o#ercome by dividing the channel into compart-
ments by means of perforated resistance plates. To prevent the
surging of the water surface near the propeller a sheet of stiff
cartridge paper was placed just touching the water surface there.

The effeet of the propeller was noticeable before the
extra length was added to the channel. The effect was tested by
reversing the direction of the flow and feeding ink from the pro-

peller end of the channel. This seems to have little or no effect

after the channel has been lengthened.
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The rise and the depression of a filament was measured by
means of a point gauge by observing the filament at the straight
portion and at seven sections throughout the bend. The gauge ie

skowacin-figr—{6)~and consists of a fine needle carried on an arm

which slides over a graduated stand. As soon as the needle

touches any filament it starts to waver. o Tori
pe ety Lo
Photographs are numbered A, B, C, D depending-on the depth®

of the filament at the point of introduction, Phe—ones-marked A
i

ot \L\,kﬂ’(

is for filament which is 4™ above the floor of the channel erigi

{4

pally« B. &8 for 3", C for 2", and D for 1T.

Photographs for five different Reynol&% number are attached
(Plates 1, 2, 3, 4, 5). The Reynold% number for these vary from
467 to 103.

Table 1 gives the value of the lateral shift at 90° as
obtained by measuring the photographs and of the vertical shifts
as obtained by measuring the photographs and of the verticeal
shifts as obtained by the point gauge. The filaments are numbered
from 1 to 5, the one near the convex side being No. 1. The
lateral shift is marked (+ ) when the filament moves towards the
concave side of the channel and the vertical side of the channel
is marked (+) and fall ( - ).

At Reynoléé number approximately 40 the filaments seemed
to retain their original levels throughout the course. Photo-

graphs could not be obtained at such low Reynold@s number since

the average velocity required was of the order of 0.04" per sec.
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DISCUSSION OF RESULTS.

At Reynold;s number approximately equal to 40 the filaments
show little sign of helical movement and the vertical movement is
also negligible, showing that probably the internal circulation
does not start until this Reynoldﬁﬁ number, say N. So up to this
we should expect the pressure gradient in the curves generally
to correspond to that in the straight channel. This is probably
the case as can be seen by comparing this figure with those of
Grindley and Gibson, and of C. M. White for curved pipes.

These are shown in Table (2) under the column headed N for dif-
ferent values of % where 4 is the diameter of the pipe and D
is the diameter of the coil. N is plotted on the base of 3
logarithmically in Fig. (6). The graph is a straight line and
the relation of (D/d) and N can be expressed as

N = ¢
-— \ —
G I
N\

where C is approximately =%,12.

This also shows that the effect of curvature is to decrease
the value of Reynol&Qs number at which the circulation begins to
develop, i.e., the point of the departure from the parabolic dis-
tribution of velocity. If this law holds then we should expect
(D/d) equal to 25,120, where this graph cuts Reynold's Criterion
to mark the point at which the flow in the curved pipe immediately

departs from the viscous state to the turbulent state without



passing through the stage during which the internal circulation
begins to develop. 1In other words the effect of ecurvature is
absent beyond (D/d)=24,120 and then the ordinaiy Reynold's Criter-
jon will hold. Hence, Dean's Criterion ' = § [e¥2 . (5]
would hold for curved pipes up to (D/d):ziblzo.

The above conclusion may seem arbitrary, but the following
consideration of Dean's paper on the stability of flow between
coaxial eylinders lends weight to the argument. Dean considers
the flow between the coaxial cylinders of radius a and A H and

P .

= X

assume that R e CCr)

where r - radius, ©P-pressure and K, 4 | and finds

the exact solution for U=W =0 V=V, and P-P. The constants,
to satisfy boundaries of the c¢ylinder x -0 and x-H; are deter-

mined. Neglecting the terms of the relative order of H/a

N, = o (xh =H) T e

This formula corresponds to Pois#euille's law. The effect of
the curvature turn is only in the factor 1/a which is a constant
for any one channel. Then he considers the stability for small
disturbances of exactly type found by G. I. Taylor (Ref. 20)

to answer for the instability of motion between two rotating
c¢ylinders.

The method is to consider small disturbance such that
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U =u, V=V, + v, W=w P=P + D, where w, v, u are

independent of e Neglecting such terms as i——hgi- Qf172
2 A+x D= (A+x)

in comparison with foz he simplified the four hydrodynamical
Ox

equations expressed in e¢ylindrical coordinates. Then he finds
out the non-zero solution of these equations subject to the bound-
ary conditions u-v-w- 0 where x -0, H . He gives the

Criterion as

®

~
(L

w
o
z|P

Below this value of N the disturbance is shown to be damped out.

He suggests the form

as the possible form which will indicate the critical Reynold's
number for the breakdown of the steady flow in a curved pipe.
That this form does not hold true is seen when from the graph
of Log: R the critical ReynoldCh number for curved pipes is
plotted against Log, (D/a). C. M. White (Ref. 12) has shown

that the critical speed for the curved pipes is given by

nga = Oroou ¥

and does not depend on either Reynol&gs or Dean's Criterion.

It is clear from the methods employed by Dean as indicated above
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that this Criterion really marks the transition from steady vis-
cous flow to steady double helical flow in the case of curved
pipes, whereas in the case of puretwo-dimensionsl flow since
there could be no helical flow it must be the point of breakdown.
It is thought that if disturbance of this type is considered on
the flow

v - __‘_ i 22_ .‘r'lg T';'fi
‘+ " o

and above simplifying assumptioms made the Criterion should be

got corresponding to

N - Q’\‘L*D.Yz'

C =12 seems to be a round figure which such analysis may yield.
The difficulty of the analysis of helical flow has been pointed
out by Dean (Ref. 16).

The value N for this channel calculated according to
this Criterion is approximately 25 calculated on two-dimensional
basis; and as read from Fig. (6) it is 23. The value obtained
from the present experiments if 40, but it must be remembered
that the above Criterion applies when D/d or a/H is large.

Fig. (7) shows the paths of the filaments projected on
the eross section for 90° turn for various Reynold's number.
The paths are drawn approximately to show’yg’the nature of the
flow. The exact positions at the inlet end in the straight path
and the final positions after 90° turn are accurate enough. These

show the existence of a double circulation. Figs. (8) and (9)
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show the nature of the circulation existing at 90° as drawn from
the approximate slopes of the filaments at this section. The
gense of the filaments is shown in full and the circulation in

dotted lines.

L flocid
3 ‘
( ) Ol \ ;
o N\ “,/ | G
| S~ £
+ 0
+0, p)
L i
F\ G 1)

Fig. (10) shows the general position of this cireulation.
If such a circulation exists then the filaments near the concave
end will tend to be lifted up and go towards the convex side;
or to be depressed and go further towards the convex side, depend-
ing on the position occupied by the filaments with respect to the
circulation. Near the convex side the reverse effects are to be
noticed. The maximum lateral shift will occur in the region A
and there will be no movement of the filaments in the regions 0|
and 05 As these movements are all shown in the measurements the
circulation diagrams 8 and 9 probably represent the actual state

of flow.
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Comparing the diagrams in Fig. (7) and 8 and 9, it is
to be noticed that the two circulations seem to divide the ecross
section approximately into trapezoidal parts instead of rectangles.

A probable explanation of this is to be seen by comparing
Fig. (3) for circular tubes. The line of separation of these two
circulations is the line joining the points furthest away and
nearest, i.e. where the centrifugal force is greatest to the ori-
gin of reference where the centrifugal force is the least. The
origin of reference lies on the plain of symmetry, which is also
the plane of maximum ;ixiggophy. In the case of a channel taking
the plane of reference as the plane in which the filament of
maximum velocity lies - this plane is somewhat below the free sur-
face of water - Th&g point furthest away from the centre of the
curve of the channel is the corner at the concave end and the
nearest point is on the convex side. The centrifugal force is
the greatestzzzzzﬁve edge and the least near the convex surface.
Thus the separation of the circulations takes place in a line
inclined to horizontal.

Comparing Figs. (8) and (9) it will be noticed that the
bottom circulation is more important than the top circulation as
the speed diminishes. This is also seen from a study of diagrams
in Fig. (7). This demonstrates the fact that the transverse in-

¢clination of the free level is the main driving foree in causing

the top eirculation. Otherwise we should get a comparatively

small region of top circulation at all speeds like that in Fig. (9).
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At high speed the top circulation is more strong and the water

as it were runs down the hill. At low speeds the transverse inclin-
ation of the free surface is small and so the bottom cireulation

is more important.

Another conclusion to be drawn from comparison of the dia-
gram of parts of filaments as shown in Fig. (7) is that the circu-
lation gets weaker as the speed diminishes. The rise and the
depression of the filaments form a surer guide to show this fact
than lateral shift - because even with pure two-dimensional flow
there is certain amount of lateral shift of the filament lines
from the original positions in the straight part. That this is
the case will be shown in the solution given in Part II of this
paper for irrotational motion. At any rate a comparison of plates
(5) which is for R = 103 with others will show that the top cir-
culation is negligibly smaller as compared to the bottom cirecula-
tion which is also weak as compared to that for other values of R.

Plates (5) 4 shows the diffusion of the dye in the viscous
layer near the floor of the channel.

The existence of the slow-rising water from the bottom
between the water of comparatively high velocity and the convex
bank is to be noticed from Figs. (8) and (9); that this exists
at all speeds between Reynold's Number 40 and the eritical can
be observed from a study of the Plates 1-5. Even in Plate (1)
for R = 467 the filaments leave a clear space near the convex side

before they start on their downward journey. This is more marked
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at lower speeds. Beyond the critical still there exists this
cushion of water near the convex side. Fig. (11) gives rough
sketeh of the eross profile of the water surface. The hump near
the convex edge shows the existence of this slow-moving water; so
it seems that James Thomson's theory of Meanderings of Rivers in

Alluvial Plains is true. (Ref. 1).

H\\““\\mNm\ \»/A
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There is a further effect. The filament of maximum velocity
will shift its position due to this top circulation. The filament
of maximum veloeity will be depressed at all times between the
convex bank and the central line and raised at all points between
the concave side and the central line due to the existence of this
top circulation.

From Plate (5A,R=103) it is to be noticed that the flow
pattern is almost symmetrical. This shows an approach to two-
dimensional states. A comparison of this plate with that of Fig.
(13) will show the resemblance of these two.

The Critical flow for the channel as obtained by the
determination of the speed at which a single filament of dye

starts waving with growing amptitude is found to occur at
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R = Y%? ' = 757 for the straight portion, and
at R==V$9:647 for the curved channel. This is quite contrary to

that found by C. M. White (Ref. 12) and G. I. Taylor (Ref. 11)
for curved pipes. The effect of curvature seems to be to raise
the Critical speed for turbulence in curved pipes as seen from
the column headed R_ in Table 11. C. M. White's experimental

Criterion for turbulence in curved pipe is

F = Q:roous
/ev? ‘
irrespective of curvature. The Critical flow should occur at

R = 4,000 instead of observed 647 if the law for curved pipe
could be applied to the curved channel. Here again we should
bear in mind that the case for channel is intermediate between
pure two-dimensional flow and the three-dimensional flow. In-
stability sets in at R = 25 for pure two-dimensional flow as
indicated before. The %Z;T 647 seems to be a reasonable figure
seeing that the channel is intermediate between these two extreme
cases. There is the further point that at high Reynold's Number
the top circulation is by far out of balance in comparison with
the bottom circulation and the probable net effect is to lower

the Critical velocity below that for a straight channel.
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Conclusions.

From the above discussions the fluid flow in a channel
bend may be divided into four stages, viz.:-
(1) Stage during which the pressure lost is the same as
that for a straight channel and the flow is probably

of two-dimensional nature.

(2) Stage during which the bottom circulation is more
pronounced than the top cireculation.

(3) Stage with dominating top eirceculation.

(4) Stage beyond the Critical speed during which it is
believed that the top eirculation still exists
because of the inclination of the free surface;
contrary to that for pipes where no internal circu-
lation exists beyond the Critical speed.

From the photographs it is evident that a Yaw Head is
necessary to investigate the velocity distribution in the curved
path of the channel. Since the channel is so small a three-
dimensional Yaw Head will upset the flow.

The use of this bend at the exit end of the straight
portion of the channel does not seem to affect the flow pattern
beyond a distance of the order of 2H to 3H. This varies a
little with Reynold's number. The stream lines start converging
then. The vertical movement is not noticeable just at the en-
trance to the bend. The circulation seems to develop at above
10 - to 15 degrees away downstream from the entrance to the bend.

The straight length up to which the use of the bend as

entrance space will affect the velocity distribution could not
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be determined. The filaments lost their identity after travel-
ling about 10" from the exit of the channel. Up till then the
filaments had not regained their original configurations. This
certainly does not commend the use of this bend as an entrance

to such a channel.
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PART II.

This part deals with the arithmetical method of solving
the stream function field for the semicireular bend in question.
The solution given here is for irrotational motion of perfect
fluid.

The equations of steady motion for perfeect fluid in two

dimensions are:-

- ~ (or\
u 9 ow _ _ b £t o
W :E‘_l- + = «,5 e (s &
9 | cke 8)
W ; + oy B TIRR a &
and the equation of eontinuity is:-
2w N , v . (EC

= o = = )
g 0y

®

Introdueing the function \ the stream function,for irrota-

tional motion such that

W = - (Cj,j_/
O\ !

y |

- oV \
= = )

x

~

4
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e/
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the equations of motion reduce to:-

. ~1, 0
q . .1’ = -:’..«.*/— + % ‘E * . i . ., Moy { 11)
- Ll :“ 2 \ -

The solution involves satisfying the boundary conditions.

The method of solution adopted is due to Dr. A. Thom.(Ref. 22).
The method consists in dividing the field of flow into squares,
assigning the proper boundary values and assuming corner values

to these squares. Then the centre values of these squares are
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calculated from the formuls

Yo = “m L AN A Ll o &)

where Y. is the value of the stream funection at the centre

Pu = (h + Vo r g+ fu) + 4 12 the mean of the corner

values of the stream functions.

" |
. |
\y;‘) | \‘12

These centre values which also lie at the corners of
squares are treated in the same way to find a better value for
the original corners of the squares to be used in turn again.
The convergence of this method has been demonstrated by Dr. A.
Thom by applying this method for several cases of fluid flow
and torsion problems.

The bend is accurately drawn on a square paper. The

[ for the outer wall

"

boundary values are assumed to be Y
and "/ = 1oo for the inner wall. The values on the axis of
symmetry of the bend are calculated from the Rankine Vortex
formula.

The stream lines are roughly sketched joining the points

on the axis of symmetry and a few equally spaced points far out
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in the straight portion. The corner values are then read off.
This gives a start for applying equation (12) to improve the
field further. The process of successive approximation is re-
peated until the stream function values at the corner of the
squares do not move appreciably. The difficulty presented in
the present case is due to the existence of carved boundaries.
The corner values of squares falling near the boundaries are
improved by extrapolation after two or three rounds. The field
is then divided into smaller squares and the procedure is re-
peated. This eventually gives a fairly good solution of the
field. If the process is repeated far enough a solution of
great accuracy can be obtained. Fig. (12) shows the portion of
the field as divided into squares with ei;;:;B funetion values.
Fig. (13) shows the stream lines as drawn for this field. The
equipotential lines are alsc shown. These however have been
drawn by meohanical‘construotion and the writer does not pro-
fess to give them:zgi same accuracy as the stream lines.

It is to be noted that the "V values on the axis of sym-
metry are quite different from those of the Rankine Vortex.

The bend does not seem to affect the field on the straight
portion to a great length. The stream function values are not
affected more than 0.1 per cent at a distance of about 2 H
where H is the distance between the walls.

A glance at the diagram shows that the stream lines tend
to eonverge as it enters the bend and diverges and finally is

Sf "; k\h'n\-l.»ir

d»iven out at the exit end.
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A comparison of Fig. (13) and Plate (5a) shows that at
R = 103 for the semicircular channel the flow patterns closely
resemble each other. At R=40 for the channel the flow
pattern was almost identical.

Hele Shaw (Ref. 23) experiments have shown that the
flow pattern for infinitely viscous flow and that calculated for
perfect fluid are identical in form. These have been shown to
be mathematically correct by Sir George Stokes (Ref. 24). If
this is so then the field shown in Fig. (13) is the same as that
for vﬁy:cﬁ only the values of Y for the stream lines are
different. These values can be obtained by the knowledge of the

N 4 values at the straight portion and can be calculated
from the equation of visecous flow between parallel walls. At any
rate Plate (5a) certainly shows the stage at whieh internal cir-
culation is dying out..

In conclusion the writer wishes to thank Professor J. D.
Cormack for granting him facilities for work in connection with
this paper. To Dr. A. Thom the writer is indebted for criticisms
and suggestions during the experiments and the writing up of the
paper. The writer is also indebted to the Trustees of the Depart-
ment of Scientific and Industrial Reseasrch for the grant which
enabled him to carry out this and other works during the year

1931-1932.
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0,72 0,80 1,75 1,40 I,22 -1,10 =0,90 -0,50 0,10
2 1,60 0,53 1,28 0,87 0,80 -0,60 =0,20 -0,I10 -0,I0
3 2,50 -0,95 0,8I 0,38 0,27 ~0,20 00,70 0,60 =0,20 467
4 3,40 =2,10 0,09=0, 32=0,49 -0,70 1,20 1,00 =0,80
5 4,30 =3,45=0,38-0,84~1,14 -0,70 0,90 2,00 -I,00
I 0,70 1,70 1,90 2,20 1,73 ~-1,61 =0,91I =0,2I 0,I9
2 1,60 O,Z6 1,64 1,67 1,40 0,16 0,04 0,12 «0,00
3 2,50 =0,60 1,30 1,22 0,63 0,43 0,95 0,08 =0,20 390
4 3,40 -2,24 0,14 0,62-0,36 -1,15 1,20 0,80 =0,80
5 4,30 =3,09 -0,01I~1,50 -0,16 0,71 0,91 =0,64
I 0,70 1,74 1,74 2,10 1,82 -1,55 -1,10 -0,70 0,I0
2 1,60 0,64 1,50 1,76 1,50 -1,30 =0,60 0,60 =0,I5
3 2,50 =0,I2 1,02 1,26 1,10 ~1,I0 0,20 © ~0,60 376
4 3,40 -1,91 0,09 0,80 C,I4 0,08 1,50 0,28 0,71
5 4,30 =~3,21~1,3%0 0,18~I,32 -0,20 2,10 2,00 =0,35
I 0,70 2,15 2,24 0,74 0,40 -1,05 =0,90 —0,47 =0,20
2 1,60 0,90 1,77 1,40 1,00 -0,24 =0,36 =0,I16 0,20
3 2,50 =0,I6 1,27 1,16 0,64 0,5I 0,16 =0,04 0,55 324
4 3,40 -I1,50 0,14 0,60 =0,I6 0,24 -0,47 =0,98 0,12
5 4,30 =2,96-2,39 0,02-1,24 0,43 1,10 1,42 =0,75
1 0,70 0,17 0,51 0,75 0,42 0,65 =0,67 =0,I18 2,40
2 1,60 =0,47 0,22 0,67-0,80 -0,08 =0,67 =0,35 -~1,78
b 2,50 =0,97«0,25 0,27s1,21 0,16 -0,59 -0,67 ~-1,03 103
4 ,40 =1,28-0,85 0,0I-2,22 0,32 0,83 0,32 =0,13
5 4,30 -I1,48-1,00~0,17-3,86 0,04 =0,39 -1,50 3,60
Note:= A 4'' above floor

B ke 202 2

C at’ 2 20

D I'l

2

22



Table 11

D/d Critical N Critical K, Remarks
[
15,15 o 50 9000 (7590% White
18,70 - 7100 (5830% Teylor
51,90 6350 (5010) ’s
50,00 80 6000 (6020) White
112,00 130 Grindley and
Gibson
2050, 550 2250 (2270) White
3,00 40 647 Present
Experiments

for channel,




(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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