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Abstract

Nowadays, information is easily accessible online, from articles by reliable news agencies
to reports from independent reporters, to extreme views published by unknown individu-
als. Moreover, social media platforms are becoming increasingly important in everyday life,
where users can obtain the latest news and updates, share links to any information they want
to spread, and post their own opinions. Such information may create difficulties for infor-
mation consumers as they try to distinguish fake news from genuine news. Indeed, users
may not be necessarily aware that the information they encounter is false and may not have
the time and effort to fact-check all the claims and information they encounter online. With
the amount of information created and shared daily, it is also not feasible for journalists
to manually fact-check every published news article, sentence or tweet. Therefore, an au-
tomatic fact-checking system that identifies the check-worthy claims and tweets, and then
fact-checks these identified check-worthy claims and tweets can help inform the public of
fake news circulating online.

Existing fake news detection systems mostly rely on the machine learning models’ com-
putational power to automatically identify fake news. Some researchers have focused on
extracting the semantic and contextual meaning from news articles, statements, and tweets.
These methods aim to identify fake news by analysing the differences in writing style be-
tween fake news and factual news. On the other hand, some researchers investigated using
social networks information to detect fake news accurately. These methods aim to distin-
guish fake news from factual news based on the spreading pattern of news, and the statistical
information of the engaging users with the propagated news.

In this thesis, we propose a novel end-to-end fake news detection framework that leverages
both the textual features and social network features, which can be extracted from news,
tweets, and their engaging users. Specifically, our proposed end-to-end framework is able
to process a Twitter feed, identify check-worthy tweets and sentences using textual features
and embedded entity features, and fact-check the claims using previously unexplored infor-
mation, such as existing fake news collections and user network embeddings. Our ultimate



aim is to rank tweets and claims based on their check-worthiness to focus the available com-
putational power on fact-checking the tweets and claims that are important and potentially
fake. In particular, we leverage existing fake news collections to identify recurring fake news,
while we explore the Twitter users’ engagement with the check-worthy news to identify fake
news that are spreading on Twitter.

To identify fake news effectively, we first propose the fake news detection framework (FNDF),
which consists of the check-worthiness identification phase and the fact-checking phase.
These two phases are divided into three tasks: Phase 1 Task 1: check-worthiness identifica-
tion task; Phase 2 Task 2: recurring fake news identification task; and Phase 2 Task 3: social
network structure-assisted fake news detection task. We conduct experiments on two large
publicly available datasets, namely the MM-COVID and the stance detection (SD) datasets.
The experimental results show that our proposed framework, FNDF, can indeed identify
fake news more effectively than the existing SOTA models, with 23.2% and 4.0% significant
increases in F1 scores on the two tested datasets, respectively.

To identify the check-worthy tweets and claims effectively, we incorporate embedded enti-
ties with language representations to form a vector representation of a given text, to identify
if the text is check-worthy or not. We conduct experiments using three publicly available
datasets, namely, the CLEF 2019, 2020 CheckThat! Lab check-worthy sentence detection
dataset, and the CLEF 2021 CheckThat! Lab check-worthy tweets detection dataset. The
experimental results show that combining entity representations and language model rep-
resentations enhance the language model’s performance in identifying check-worthy tweets
and sentences. Specifically, combining embedded entities with the language model results in
as much as 177.6% increase in MAP on ranking check-worthy tweets,and a 92.9% increase
in ranking check-worthy sentences. Moreover, we conduct an ablation study on the proposed
end-to-end framework, FNDF, and show that including a model for identifying check-worthy
tweets and claims in our end-to-end framework, can significantly increase the F1 score by as
much as 14.7%, compared to not including this model in our framework.

To identify recurring fake news effectively, we propose an ensemble model of the BM25
scores and the BERT language model. Experiments conducted on two datasets, namely, the
WSDM Cup 2019 Fake News Challenge dataset, and the MM-COVID dataset. Experimen-
tal results show that enriching the BERT language model with the BM25 scores can help the
BERT model identify fake news significantly more accurately by 4.4%. Moreover, the abla-
tion study on the end-to-end fake news detection framework, FNDF, shows that including the
identification of recurring fake news model in our proposed framework results in significant
increase in terms of F1 score by as much as 15.5%, compared to not including this task in
our framework.

To leverage the user network structure in detecting fake news, we first obtain user embed-



dings from unsupervised user network embeddings based on their friendship or follower con-
nections on Twitter. Next, we use the user embeddings of the users who engaged with the
news to represent a check-worthy tweet/claim, thus predicting whether it is fake news. Our
results show that using user network embeddings to represent check-worthy tweets/sentences
significantly outperforms the SOTA model, which uses language models to represent the
tweets/sentences and complex networks requiring handcrafted features, by 12.0% in terms of
the F1 score. Furthermore, including the user network assisted fake news detection model in
our end-to-end framework, FNDF, significantly increase the F1 score by as much as 29.3%.

Overall, this thesis shows that an end-to-end fake news detection framework, FNDF, that
identifies check-worthy tweets and claims, then fact-checks the check-worthy tweets and
claims, by identifying recurring fake news and leveraging the social network users’ connec-
tions, can effectively identify fake news online.
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Chapter 1

Introduction

1.1 Introduction

The Merriam-Webster English Dictionary [44] defines information as “knowledge that you

get about someone or something”. It is the medium of knowing and understanding the world.
Without credible information, one cannot understand the world and society meaningfully and
critically. There are various forms in which information is presented and spread. For exam-
ple, books, archives, published papers, and news are all well used to inform the general pub-
lic. Nonetheless, among all the forms of information, the news serves as the medium where
information about recently occurring events are spread around and obtained by the general
public. A piece of news can include highlights published in newspapers and tabloids, can
be events that concern the local regions read out in radio broadcasts, can be fast-developing
stories that are live on television, and can be anything an individual might want to know from
online articles.

With factual information, there exist non-factual information, where one may genuinely mis-
understand a concept, misremember an event, thus record and spread non-factual informa-
tion as factual information. However, some may aim to deceive and mislead the information
receivers and create false beliefs among the public, which we refer to as fake news. The de-
liberate act of circulating and spreading non-factual information can be malicious, and pose
dangers to the society. The practice of creating non-factual information has been around for
as long as recorded history. For example, evidence has suggested that creating misinforma-
tion and even deliberate disinformation have been a common practice since ancient Greece
and the Roman empire [58], and the influence of such misinformation can be catastrophic
and deadly, even to be the greatest empire in history. More recently, non-factual information
has been used to discredit a range of political ideas, such as climate change [93] or vac-
cine safety and efficacy [42]. Some political scientists and psychologists [51, 65, 86] have
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suggested that a paranoia personality and conspiracy mentality contribute significantly to
creating and spreading fake news online.

Historically, the news has been mainly broadcast through traditional news media, such as
newspapers, radio stations, and TV programs, which helps the general public effectively ac-
cess information reported and selected by journalists. The credibility of these news sources
is guaranteed by the journalists’ names and the news organisation’s reputation. However,
with the rise of the internet, new ways of creating information have become widespread.
Personal blogs, online forums, question and answer communities, social media platforms
(e.g., Twitter, Facebook), etc., have become increasingly popular platforms to create infor-
mation and present personal opinions that people from all over the world have access to
it. The ease of producing information has contributed to the increasing popularity of on-
line information created in the past decade and made the internet increasingly important for
information consumers. There are roughly 500 million tweets created per day1; according
to W3techs2, WordPress has 65.1% of the content management system market share as of
2021, and on average sees 70 million new posts and 77 million new comments each month3.
Moreover, Rosner et al. [149] suggested being able to remain anonymous online encouraged
some individuals to produce and spread non-factual information, because online anonymous
users are less likely to be identified and prosecuted.

The massive amount of information published online is challenging and time-consuming
to verify. Thus, apart from reliable and credible news agencies, users may be exposed to
non-factual information created by known or unknown individuals, independent content cre-
ators, agents using unverifiable identities, etc., which can be hard to identify if it contains
misleading or malicious information [98].

The process of verifying if some information is factual or not is commonly known as fact-

checking. Several websites are dedicated to fact-checking newly published information on-
line. For example, Snopes4 is a well-known website that covers a wide range of topics, where
journalists manually examine the statements in articles of interest; Politifact5 is a website
mainly focusing on political topics and aims to inform the general public about political
facts. These websites all enlist journalists to manually fact-check information submitted to
them by their readers, and thus leave out information that is not noticed by the active users.
However, despite the best effort of journalists and fact-checking websites, it is also not feasi-
ble for journalists to manually fact-check every news article, sentence or tweet online, given
the amount of information generated daily.

1https://www.internetlivestats.com/twitter-statistics/
2https://w3techs.com/technologies/details/cm-wordpress
3https://wordpress.com/activity/
4https://snopes.com
5https://politifact.com

https://www.internetlivestats.com/twitter-statistics/
https://w3techs.com/technologies/details/cm-wordpress
https://wordpress.com/activity/
https://snopes.com
https://politifact.com
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There are various formats where information spread, such as in news articles, personal opin-
ions, podcasts, or speeches/debates. Yet most non-factual news concerning the public gen-
erally refers to statements regarding entities. For example, a person asserts that an event has
happened; an article describes and summarises a governmental bill; a statement mentions an
individual is ill, etc. We define such statements as claims, which is also defined as “an asser-

tion open to challenge” in the Merriam-Webster English Dictionary. In other words, a claim
is a narrower version of information, where a news article discusses information regarding
an event, including several claims related to the event. We argue that a claim is a smaller
granulation of news, where complex information may be present. Thus, in this thesis, we
only focus on detecting non-factual claims, where the small unit of information gives us a
more precise objective in identifying it as factual or not.

Furthermore, Fast & Furious Fact Check Challenge 6 have identified four types of claims that
need to be fact-checked: numerical claims are claims containing numbered facts; verification
of quotes contains claims made about who said what; position statements are claims about
personal stance; objects, properties and events are claims related to objective truth about
existing events and entities. Each type of claim has a different focus and thus may need
different types of models. For example, numerical claims require numerical evidence that
may require calculation; verifications of quotes require finding original audio/video clips and
textual evidence; positional statements are objective and can be interpreted differently. Thus,
this thesis focuses on identifying non-factual information among object, property and event
claims.

Specifically, let us consider a political debate such as the third 2016 US presidential debate
between Hillary Clinton and Donald Trump, where Clinton has said: “... that you (Donald
Trump) encouraged espionage (from Russia) against our people (the United States 2016
presidential election)”. Such a severe accusation from Clinton toward Trump is important to
fact-check, which is presented as if it is a fact that Donald Trump has colluded with Russia
in meddling with the US election. Similarly, let us consider a Tweet from Trump that reads:
“I WON THIS ELECTION, BY A LOT ”after the 2020 presidential election had concluded
that Joe Biden won the election with both more individual votes and electoral votes. In this
case, such a publicised tweet claims that Donald Trump has won the election is contrary to
the fact7. Therefore, this thesis considers the sentence in the debate transcripts and the tweet
mentioned above as important claims that require fact-checking.

The internet era also changed how people access and spread information, as the internet
enables people to access any information faster and easier than ever before and helps indi-
viduals find their preferred social groups and information [14]. For example, social media

6https://www.herox.com/factcheck/teams
7https://www.fec.gov/resources/cms-content/documents/2020presgeresults.

pdf

https://www.herox.com/factcheck/teams
https://www.fec.gov/resources/cms-content/documents/2020presgeresults.pdf
https://www.fec.gov/resources/cms-content/documents/2020presgeresults.pdf
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platforms not only help users create information and post their own opinions, but also help
users to spread and broadcast information and opinions to a broad audience. Moreover,
users that want to obtain the latest news and updates on social platforms are thus easily
presented with the information that their friends, families, and acquaintances spread, which
increases their acceptance of such information[5, 176]. Consequently, according to Nielson
et al. [130], up to 79% of the 18- to 24-year-old from 6 surveyed countries (Argentina, Ger-
many, South Korea, Spain, the UK, and the US) now consider social media platforms alone
as their primary news sources, as of 2020.

Specifically, Twitter has 211 million daily active users8, and most world leaders and foreign
ministries have an official Twitter account9. The prominence of Twitter allows individuals
share information, news, and opinions with other people. Twitter is also widely studied
among researchers, for the ease of obtaining data [43, 47, 48, 49, 64, 166].

Thus, this thesis concerns leveraging the large amount of information circulating on Twitter
to identify fake news that is spreading online. Specifically, we aim to build an automatic
fact-checking system that is able to identify the most check-worthy claims within tweets,

and to fact-check the identified check-worthy claims.

In the following, Section 1.2 presents the motivations of our thesis; Section 1.3 presents the
thesis statement; Section 1.4 lists the contributions of this thesis; the origins of materials are
presented in Section 1.5; and finally Section 1.6 outlines the structure of this thesis.

1.2 Motivations

The current models and websites that aim to fact-check fake news mainly focus on fact-
checking an entire news article which can contain a mixture of factual and non-factual infor-
mation. This thesis argues that identifying non-factual articles is ambiguous, as more than
one statement can appear in the same article, and not all statements are necessarily non-
factual. Thus, we are motivated to reduce ambiguity by fact-checking claims, so that when
fact-checking news articles, tweets, debate transcripts, we can inform the general public not
only if they are misleading and/or non-factual, but especially which specific statement is
misleading or malicious.

Moreover, with the notable impact of non-factual information being created, shared, and
circulating online [148, 185], journalists and scientists are exploring ways to counter their
impact. As mentioned before, snopes.com and politifact.com both employ jour-
nalists to manually fact-check each potential rumour, provide evidence for them and create

8https://www.statista.com/statistics/970920/monetizable-daily-active-
twitter-users-worldwide/

9https://www.statista.com/statistics/281375/heads-of-state-with-the-
most-twitter-followers/

snopes.com
politifact.com
https://www.statista.com/statistics/970920/monetizable-daily-active-twitter-users-worldwide/
https://www.statista.com/statistics/970920/monetizable-daily-active-twitter-users-worldwide/
https://www.statista.com/statistics/281375/heads-of-state-with-the-most-twitter-followers/
https://www.statista.com/statistics/281375/heads-of-state-with-the-most-twitter-followers/
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articles that elaborate on the rumour. Currently, the manual fact-checking process requires
general users to submit suspicious news articles/tweets. Then fact-checking journalists will
determine if each article/tweet may have a high negative impact if it is non-factual and needs
fact-checking. If it is confirmed that it needs fact-checking, the assigned journalists will look
for evidence of whether the information provided by the article is fabricated, misleading, or
true. Finally, fact-checked articles/tweets will be published on the fact-checking website,
and the debunking articles may be posted on Twitter. However, this process of manual fact-
checking is laborious. It not only requires a significant amount of journalists dedicating a vast
amount of time to identify potentially non-factual news/articles/tweets and further fact-check
them, but also requires the general public to be mindful of the information they encounter
and be able to report potential non-factual information to the journalists. In order to reduce
the labour requirement in the fact-checking process, this thesis argues that automatically re-
moving tweets and claims from the fact-checking process, based on whether a tweet may
contain non-factual information, can be effective in the fact-checking process.

Furthermore, Shin et al. [159] and Rosnow [150] have shown that rumours and fake news
often resurface after they are identified as fake news. Some fact-checking websites such as
snopes.com and politifact.com have published their historical data, where existing
debunked fake news, fact-checked tweets, and articles are labelled with reasons for them be-
ing fake. These datasets are not only beneficial to researchers for studying the characteristics
of existing fake news, but can also be used as reference datasets as to whether some fake
news has resurfaced. Thus, we argue that it is important to incorporate external fake news
datasets, in order to effectively identify reappearing fake news on Twitter.

Finally, some newly emerged fake claims primarily circulate on social media. The complex
information within social networks, which includes network information regarding users and
posts and the content information of posts, can be informative [83]. For example, researchers
and journalists can look into the source of the claims and the social group that started the
non-factual information, with the intuition that the echo chamber effect may amplify the col-
lective bias and the belief in fake news. Thus, this thesis argues that the network structure of
Twitter can be informative in identifying echo chamber effects, and thus can help determine
if a check-worthy statement in a tweet is factual or not.

Overall, the goal of this thesis is to build a framework where individuals can search for a
topic and receive trustworthy labels of the search results associated with the topic and query
they searched for.

snopes.com
politifact.com
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Figure 1.1: An overview of the proposed framework, from a user’s perspective.

1.3 Thesis Statement

This thesis states that a two-phased Fake News Detection Framework (FNDF) (as shown
in Figure 1.1) can achieve state-of-the-art performance in effective non-factual information
identification on Twitter. The first phase, the worth-checking ranking (WCR) phase, consists
of identifying and ranking tweets and sentences that contain worth-checking claims,
where tweets and sentences are ranked based on their content’s check-worthiness (Task 1).
The second phase, the fact-checking (FC) phase, determines whether these check-worthy
claims within tweets and sentences are factual or not, using among others, the information
from existing fake news datasets (Task 2) and the network and textual information from
the Twitter platform (Task 3). After these two phases, our framework will return the worth-
checking claims within tweets and sentences, labelled as factual or non-factual. Specifi-
cally, in Task 1, we hypothesise that by analysing embedded entities in texts, we can more
accurately identify check-worthy claims, from tweet content, articles, and debate quotes.
Secondly, in Task 2, by comparing the targeted claim with existing non-factual news collec-
tion, we hypothesise that an ensemble textual model of a BM25 model and a deep neural
network language model can accurately classify if a targeted check-worthy claim is highly
similar to any existing fake news, and thus is a resurfaced fake claim. Thirdly, in Task 3,
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we hypothesise that user network embeddings trained with unlabelled user network data,
can identify the echo chamber effects among users, and can be effective in identifying fake
claims on Twitter. Finally, we hypothesise that by combining all components, our frame-
work can achieve state-of-the-art performance in identifying fake news circulating on Twitter
in an end-to-end fashion.

1.4 Thesis Contributions

The contributions of this thesis are four-fold:

1. In Chapter 4, we demonstrate that a model which combines textual representation with
embedded entities can identify the check-worthiness of tweets more effectively than
the current state-of-the-art text-based models. Specifically:

• We propose a simple yet powerful model to represent sentences or tweets with
rich entity information, by concatenating together a text model representation
with entity pair representations;

• Using the CLEF 2019, 2020 and 2021 CheckThat! Lab datasets, we show that
our entity-assisted neural language models significantly outperform the existing
state-of-the-art approaches in the classification task, and outperform the partici-
pating groups on the CLEF CheckThat! leader board in the ranking task;

• We show that representing entity pairs with embeddings is significantly more
effective than an existing recent technique from the literature that leverages the
similarities and relatedness of the entities;

• We show that simple deep neural language models cannot effectively identify
check-worthy sentences and tweets;

• Finally, our findings show that, among the various knowledge graph embedding
models, ComplEx [180] leads to the best results. For instance, achieving results
as good as the best performing system submitted to the CLEF 2019 CheckThat!
Lab, without the need for labour-intensive feature engineering.

2. In Chapter 5, we show that existing fake news datasets can benefit fake news identifi-
cation. Specifically:

• We draw best practices in using deep learning language model representations to
identify the relationship’s between news titles, by comparing simple-embedding
representations with BiLSTM and BERT;
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• We examine how the traditional BM25 retrieval score can improve the perfor-
mance of state-of-the-art deep neural network (NN) models;

3. In Chapter 6, we demonstrate that network information on social media, even in an
unlabelled manner, is informative and can help our model identify newly emerged
fake news. Specifically:

• We propose a User Network Embedding Structure (UNES) model, which per-
forms fake news classification on Twitter through the use of graph embeddings
to represent Twitter users’ social network structure. Compared to the existing ap-
proach of using user networks with handcrafted features, UNES does not require
any pre-annotated data (e.g., user type (individual users or publishers), users’
stance, and if they have engaged with fake news before);

• We observe that the user embeddings generated by UNES exhibit a clustering ef-
fect between users who engage with fake news and users who solely engage with
factual news, despite not having knowledge of whether the users have engaged
with fake news before;

• We also show that using the social network’s user connections alone to build
network embeddings, and using only users that engaged with the news when
representing such news, can significantly outperform the existing state-of-the-art
fake news detection approaches that use both textual features and complex social
network features.

4. Finally, in Chapter 7, we show that our systematic framework, which combines mul-
tiple steps, can effectively identify tweets that state non-factual information. Specifi-
cally:

• We demonstrate that our proposed FNDF framework in Figure 1.1. We show that
the proposed FNDF is able to effectively detect fake news among tweets, using
the 2 phase framework;

• We show that our FNDF framework is able to detect fake news from another
dataset, demonstrating the robustness of our framework;

• We also show that every component of our framework has distinct functions in
detecting fake news online.

1.5 Origins of Material

Most of the material presented in this thesis has appeared in several conference papers, or
has been submitted to several journals, throughout the author’s PhD programme. We list the
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publications in chronological order, and we group our publications into several focuses:

• research concerning the use of existing articles and fake news datasets was published
in SIGIR2019 [167] ;

• research concerning the ranking of claims in order to prioritise the most damaging
claims was first published in CLEF 2019 [168], and then in another paper submitted
to IPM [169];

• research concerning the impact of social media on fake news detection [171] has been
submitted to the journal Online Social Networks and Media;

• empirical studies that quantify our framework’s effectiveness [170] are to be submitted
to ECIR 2023.

1.6 Thesis Outline

This thesis is structured as follows:

1. Chapter 2 presents the background for fake news detection, a comprehensive and ex-
tensive collection of recent studies on fake news detection and classification, as well
as research advances used in this thesis. We also highlight the gaps within the existing
literature that motivates our thesis.

2. Chapter 3 presents our proposed framework, the motivation for each component, and
the tasks we aim to tackle in the framework. This chapter also formally defines the
three tasks in the framework with designated terminology and equations.

3. Chapter 4 presents our research and experiments related to identifying check-worthy
tweets and debates, where we show that entities are essential aspects that aid in detect-
ing check-worthy tweets and debates more accurately than using only textual features.

4. Chapter 5 presents the research and experiments related to using external datasets for
identifying resurfacing fake news. We show that we can identify recurring fake news
by comparing targeted claims with the previously identified fake news headlines and
claims. We demonstrate that ensemble models of deep NN language models and a
traditional BM25 algorithm are more effective in identifying resurfacing non-factual
claims than using deep NN language models alone.

5. Chapter 6 presents our proposed model that utilises unlabelled network information
on Twitter for fake news identification. We show that user network embedding is an
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important component in identifying the echo chambers that may facilitate the circula-
tion and spreading of fake news online, which is more effective than textual features
extracted from tweets and replies.

6. Chapter 7 presents the end-to-end evaluation of our framework, where we examine
the effectiveness of our framework in identifying fake news on Twitter, conduct an
ablation study, investigate the generalisation ability of our framework, and compare
our framework to other fake news detection systems. We show that our proposed
framework can more effectively identify tweets containing non-factual information
than the individual components, and can be generalised to the unseen topics, in online
fake news identification.

7. Chapter 8 concludes this work and highlights directions for future work.
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Chapter 2

Background and Related Work

Fake news has existed throughout our written history, as history tends to repeat itself through
time. In Section 2.1, we first introduce a brief background of fake news during the internet
era and with the rise of social media platforms. In recent years, there has been an extensive
body of research on fake news detection in social media. Thus, Section 2.2 discusses a
wide range of research that aimed to tackle fake news identification. In Section 1.3, we
argued that a two-phased and three-tasked end-to-end fake news detection framework can
effectively identify fake news online. Thus Section 2.4 surveys the research w.r.t each task
in our proposed framework. Then, we survey the commonly used methods for analysing the
textual features of a news article (presented in Section 2.6), and how both knowledge graphs
and social network features can aid fake news detection (presented in Section 2.7). Finally,
we provide concluding remarks for this Chapter in Section 2.8.

2.1 Fake News, in the era of Social Networks

Information is vital in everyone’s day-to-day life. Taylor [177] stated that information needs
are both conscious and unconscious for any individual or group of people. There are also
multiple types of information, such as knowledge, emergency announcements, and what has
happened around us. Among all the information that aim to states facts, some of them are
indeed factual, but some are non-factual. In this section, we first define fake news as used in
this thesis, and introduce fake news in the era of social networks

2.1.1 Fake News Taxonomy

Non-factual information can also be classified into multiple categories based on their au-
thenticity, intention, and if they can be strictly classify as news [207]. Specifically, Zhou and
Zafarani [207] classified what commonly known as fake news into 8 categories as follows:
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Figure 2.1: An example showing that users are connected on the Twitter platform, while only
a subset of users engage with a specific news article.

1. Rumour is defined as random information that is presented in any format, with no
clear intention, and is not necessarily false.

2. Clickbait is defined as information (article titles/article/sentences) that aims to mislead
the public to increase its popularity, but not necessarily false.

3. Cherry-picking is defined as selectively reporting information with the intention of
misleading the general public, where the information can be either factual or non-
factual.

4. Satire news is a form of non-factual news articles/claims that aims to be entertaining.

5. Misinformation refers to information (news, opinion pieces, personal claims, etc) that
is non-factual with unclear intention.

6. Disinformation is information that is non-factual with clear misleading intention.

7. False news is a generic term used to describe news that is non-factual, regardless of
its intention.

8. Deceptive news is news with non-factual information with the intention to mislead the
general public.

In this thesis, however, we do not distinguish these types of non-factual information, as
intentions can be subjective, and hard to classify. Thus, in this paper, we consider all non-
factual information, regardless of its intention or presentation, as fake news, and thus we aim
to detect all the non-factual information online.
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Next, we present the effects that social media has on the creation and spreading of fake news.

2.1.2 The Rise of Social Networks and their Roles in Spreading
Fake News

After the broad adoption of the internet worldwide, knowledge bases, blogging, and social
media networks are enabling faster and easier access to news than ever before, as well as the
means to create and share any information [14]. Apart from reliable news agencies, inde-
pendent reporters, unknown individuals, and even agents using fake identities can now build
news websites to produce and spread information online. Moreover, social media outlets are
becoming increasingly important in everyday life, where users can stay anonymous, obtain
the latest news and updates, share links to news and information they want to spread, post
and comment their own opinions, and use hashtags to make their opinions appear short and
catchy. The sheer amount of information may create difficulties for information consumers
to distinguish fake news from factual news. Indeed, users may not necessarily be aware that
the information they encounter is false, and they may not have the time or effort to fact-check
all the news and information they encounter online. Furthermore, misinformation online can
render a large amount of information untrustworthy in the public eyes, can easily confuse
and mislead the general public, and can cause public distrust in journalism [88, 173]. Un-
fortunately, such a reality is already unfolding, as news outlets and media reputation are
increasingly in doubt amid a global distrust crisis [90].

For example, polarisation in political and scientific debates is observed more frequently than
in pre-2007 [140, 142], since fake news can be amplified and reinforced through repeated
exposure [135, 141]. Cho et al. [28] showed that one possible reason for the increasing po-
larisation is that the selected contents delivered by search engines (e.g., Google, YouTube)
and social media platforms (e.g., Facebook, Twitter) are individually tailored to the users’
specific interests, thus creating a filter bubble that reinforces their existing beliefs. Such an
observation echoes the findings of Ling [102], who showed that individuals’ false beliefs are
emphasised by repeated exposure and a selective focus because of the confirmation bias. In-
deed, the confirmation bias effect states that individuals are more inclined to read and interact
with information that aligns with or confirms their existing beliefs, while they tend to avoid
confrontational information and sources that challenge their existing beliefs [193, 204]. Fur-
thermore, Yoo [199] identified echo chamber effects in social media platforms and showed
that the echo chamber effects facilitate rumours and fake news being created and circulated
within specific groups before being more widely spread. Echo chamber effects in social me-
dia can be described as a subset of like-minded users grouping together, with little interaction
with dissimilarly-minded users, to preserve their beliefs and avoid confrontation [199]. For
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example, Figure 2.1 illustrates that a news article might only reach a subset of users, with it
being circulated and discussed by like-minded group members.

However, Lewandowsky et al. [94] argued that the misinformation crisis should not be recog-
nised solely as a failure of individual judgements. Instead, they argued that it should be
considered and evaluated as a public concern, especially with the popularity of social media.

Thus, journalists and scholars has been developing and researching methods in fighting the
effects of rapidly spreading fake news. In the next section, we introduce the common prac-
tices among journalists in identifying fake news.

In the following sections, we introduce a set of methods that researchers have developed over
the years to help detect fake news.

2.2 Machine Learning in Fake News Detection

In this section, we provide an overview of the general machine learning approaches regarding
fake news detection. To identify fake news more effectively, researchers have been studying
various ways to leverage the advances of machine learning (ML) models. ML models that
aim to detect fake news online, usually use features extracted from news to classify if a
news article is fake or factual. Some researchers have focused on using textual features
from news articles, statements, and tweets; while some also focused on using social network
information to detect fake news accurately. Regardless of the input type, there are generally
four types of machine learning models that are widely used to detect fake news effectively.

2.2.1 Classic Statistical ML Models

Classic Statistical ML Models include a range of models that use statistical calculations
to classify a given input. For example, the Naive Bayes(NB) classifier (e.g., [133]) is a
probabilistic based model that applies Bayes’ theorem on the input numeric features, to
identify the most likely outcome in a finite given set; the support vector machine (SVM)
classifier (e.g., [200]) uses Vapnik–Chervonenkis theory to separate samples into multiple
categories, by maximising the width between any two categories; a decision tree (DT) aims
to find the decision process where each numeric feature decides the possible route that can
reach a conclusion; whereas the random forest (RF) model consists of multiple DTs, to
be able to incorporate more features and create more complex routes to decide the possible
classification results.
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2.2.2 Deep Learning Models

Deep learning models, such as neural networks, are being recognised as an effective method
for fake news detection [152]. Among all the deep learning methods, recurrent neural
networks (RNN) (i.e., simple RNN, GRU, LSTM) consider time series when classifying the
news, as it can be important to track changes and the emerging fake news. For example,
Ma et al., [108] trained a multi-layer GRU based on the time series of the tweets, with
a 5000 dimension TF.IDF score as input from each tweet to eventually predict an event’s
genuineness. This method yields a 10% performance increase in accuracy compared to non-
deep learning methods (e.g., DT ranking, SVM, RF classification). Similarly, convolutional
neural network (CNN) models have also been deployed in detecting fake news. For example
Wang [188] proposed using a CNN model to analyse textual metadata from news articles,
to identify non-factual news articles. Fang et al. [50] proposed to use self attention-based
CNN based on the news articles’ content, which outperformed RNN-based models on the
identification of non-factual articles detection task. The machine learning approach is usually
used with features extracted based on linguistic methods and static network analysis, where
the most used features are introduced in Sections 2.6 and 2.7, but it lacks usage of dynamic
network information.

2.2.3 Ensemble Models

Ensemble models aim to leverage the benefits from more than one model, where different
models can use different architectures or different sets of features. For example, Reddy et
al. [145] showed that an ensemble of logistic regression, random forest and Adaboost mod-
els trained on textual features outperforms each of the individual models, on the task of
identifying non-factual articles; Liu et al. [105] showed that an ensemble of 25 differently
tuned BERT models outperforms individual BERT, in identifying whether two news titles
agree with each other; Das et al. [37] showed that a heuristic post-process on a selection of
trained models achieved the state-of-art performance in identifying COVID-19 misinforma-
tion; Saeed et al. [153] showed that a conventional majority voting ensemble classifier fitted
with three base learners, can enrich the traditional ensemble learner with deep contextual
semantics from n-gram- based features and a convolutional neural network.

2.2.4 Propagation Models

Propagation models aim to use the propagation pattern of fake news on social media plat-
forms to identify fake news on Twitter. Specifically, replying, liking, and retweeting are all
ways to propagate a tweet to a larger audience on social media. Researchers found that the
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propagation patterns can enrich the features of news spread on social media, and thus can
facilitate the fake news detection task. For example, BranchLSTM [84] proposed to use the
sequential manner of LSTM to analyse tweets threads (tweets, retweets, comments), in order
to identify fake news contained in the tweet threads more accurately; Ma et al. [109] pro-
posed to use kernel learning to study the propagation structures of microblogs platforms(i.e.,
Twitter and Weibo) to detect rumuors online.

2.2.5 Summary

This section introduced four types of machine learning methods for online fake news detec-
tion. Specifically, Classic machine learning models (e.g., NB, SVM, DT, RF) focus on using
classic statistical models to predict if given news is fake or factual; Deep learning models
(e.g., MLP, CNN, RNN) aim to classify news as factual or not using neural network archi-
tectures; ensemble models aim to capture the advantages of multiple models; propagation
models focus on the propagation pattern of news online. In this thesis, we conduct experi-
ments using statistical machine learning models, deep learning models, and ensemble models
to find the best suitable model for each task. However, we do not focus on the propagation
pattern of the news on social media platforms. Thus we do not conduct experiments using
the propagation model.

2.3 Automatic and Human-in-the-Loop Fake News

Detection Models

We have already introduced machine learning models that are widely used in detecting fake
news in Section 2.2. In this section, we discuss two types of end-to-end systems design that
focus on identifying non-factual news: automatic systems and human-in-the-loop systems.
In the following, we describe these two types of systems used both on social media platforms
and on news articles.

2.3.1 Automatic Fact-Checking Systems

To maximise the automation of the fact-checking process, automatic fact-checking systems
aim to replace journalists in detecting fake news, and label news as fake or not directly by
the systems, without the need for human journalists. For example, FakeNewsTracker [161]
collected tweets that are associated with existing fake news proven by Politifact 1 and Buz-

1https://politifact.org

https://politifact.org
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zFeed News 2, and extracted useful textual features to build machine learning models for
fake news detection; FAKEDETECTOR [201] built a deep diffusive network to represent
news articles, creators, and subjects simultaneously, based on a set of explicit and latent fea-
tures extracted from the textual information; ACT [3] proposed to represent an article using
a two-dimensional matrix that combines the aggregated credibility of the claim-article pair
and the textual features from language models, and classify whether the article contains non-
factual information using the two-dimensional matrix; WikiCheck [179] proposed to perform
fact-checking using the Wikipedia Knowledge base by uncovering evidence that supports or
refutes claims; WebChecker [181] used a reinforcement learning-based optimiser to find op-
timal checking plans and leverages various cost-accuracy tradeoffs to efficiently index, filter,
and match news against existing fake news.

2.3.2 Human-in-the-Loop Fact-Checking Systems

Acknowledging the difficulties in building a fully automatic fact-checking system, human-
in-the-loop systems employ journalists to manually check news with information automat-
ically extracted by machine learning models. For example, Scrutinizer [77] reduced the
manual fact-checking time by automatically classifying and highlighting the elements of the
claims to be checked, and organised the specific questions that require human editors to
clarify; ClaimPortal [112] provided an integrated web platform where journalists can tar-
get a specific claim on Twitter, and the models trained on a debunked claims database can
help classify such claim as factual or not; FactCatch [127] proposed to first identify a set of
claims it deemed valuable to be fact-checked from a claims poll and send the valuable claims
to human fact-checkers, then a final judgement for the claim is calculated using the automat-
ically inferred the truthfulness of the claim and the input of the human judges; CoVerifi [85]
provided a platform to combine the classification results from fact-checkers and a GPT-2
model to identify fake news related to the COVID-19 pandemic. The GPT-2 model is trained
with CoAID dataset (a recently constructed COVID-19 dataset [32]) to identify machine-
generated text, and classify if claims are fake or factual. Watch’ n’ Check [22] proposed a
platform that provides a keyword-filtering process where journalists can monitor and follow
the discussion of a specific topic; ClaimHunter [12] adopted a reinforcement learning strat-
egy, where the system sends claims and the machine generated predictions to journalists, and
also uses the journalists’ final verdicts to improve the system; finally, WhistleBlower [143]
proposed to detect fake news using textual features generated by language models, but also
allows fact-checking community members to change the verdict of fake news labelling using
block-chain nodes.

2https://www.buzzfeednews.com/topic/fake-news

https://www.buzzfeednews.com/topic/fake-news
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2.3.3 Summary

Recent advances in developing end-to-end fake news detection systems are plentiful. They
can be classified into automatic fake news detection systems and human-in-the-loop systems.
We acknowledge that human-in-the-loop systems can benefit from human input, but argue
that such a system would still require a large amount of human labour. Thus, this thesis
describes a fully automatic end-to-end fake news detection system based on our proposed
FNDF. In the next section, we survey research related to the three proposed tasks presented
in the thesis statement in Section 1.3.

2.4 Task-by-Task Fake News Identification

As presented in Section 1.3, we propose to tackle the fact-checking task using a two-phased
and three-task framework. That is, we propose to identify fake news online by tackling the
three following tasks: (1) identifying check-worthy sentences and tweets; (2) identifying if
the check-worthy sentences and tweets are resurfacing fake news; and (3) fact-checking the
sentences and tweets using social media platform. Next, we survey related work with regard
to each task.

2.4.1 Task 1: Are these Check-Worthy?

The ClaimBuster system [71] was the first work to target the assessment of the check-
worthiness of sentences. It was trained on data that was manually labelled as non-factual,
unimportant factual, or check-worthy factual, and deployed SVM classifiers with features
such as sentiment, TF.IDF, POS, and named entity linking (NEL). Focusing on debates from
the US 2016 Presidential Campaign, Gencheva et al. [56] used many features from Claim-
Buster, and found that if a sentence is interrupted by one participant in the middle of a
long speech, it was more likely to be selected as check-worthy by at least one news organ-
isation. There are many follow-up works [74, 134, 183] that have focused on deploying
different learning strategies (e.g. SVM with various features, neural networks) in mimicking
the check-worthy sentences selection process of a news organisation.

The CLEF’2019 CheckThat! Labs [6] provided check-worthy sentences from the 2016 US
presidential debate, labelled by factcheck.org. Participants deployed learning mod-
els ranging from neural networks (LSTM [41, 69], feed-forward neural network [52]), to
traditional methods (i.e. SVM [168], naı̈ve Bayes [31], logistic regression [41], regression
trees [4]), with features ranging from embeddings (i.e. word [41, 54], part-of-speech tag-
ging [41], syntactic dependence [69], Standard Universal Sentence Encoder [52]), BoW

factcheck.org
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related (i.e. TF.IDF [31, 54, 168], n-grams [4], named entities [4, 54], POS [4, 54]), sen-
timent [52, 54], topics [4], to readability [52], and sentence context [52]. However, none of
the teams using language models and handcrafted semantic models achieved a mean aver-
age precision higher than 0.19, suggesting that the task is challenging, and that the language
models and handcrafted features can not yield satisfactory results (Gap 1).

Moreover, the CLEF’2020 ChechThat! label [11] expanded on the check-worthy task to
include the task of identifying check-worthy tweets of a given topic. Similar to the check-
worthy sentence detection, participants deployed a range of machine learning models (e.g.,
RF [115], SVM [24],CNN [2]) using textual features (e.g., TF.IDF [115], part-of-speech
tagging [24, 78],and named entity tagging [24]). Deep language models, such as the BiL-
STM [114], pre-trained BERT [2, 24, 78] and RoBERTa [131, 132] are also deployed in
identifying check-worthy tweets. Among all the participating models, team Accenture [132]
achieved the highest mean average precision score of 0.806, by representing tweets use the
pre-trained RoBERTa model.

Identifying entities within sentences to be checked has been used in the suspicious claim
identification literature. For instance, Altun et al. [4] and Ga̧sior et al. [54] used named
entity recognition to identify the types of entities present in a sentence (e.g. person, loca-
tion, organisation, money). However, such methods do not account for the rich information
an entity contains, which can be combined with the language model representations (Gap
2). In contrast, this thesis proposes to use recent advances in dense knowledge graph em-
beddings [16, 100, 129, 180, 194, 195] to provide rich information for suspicious claim
identification. We hypothesise that by integrating entity embeddings with language model
representations, we can improve the performance of our selected language model in iden-
tifying check-worthy sentences and tweets. The following section surveys the studies that
focused on detecting recurring fake news online.

2.4.2 Task 2: Identifying Recurring Fake News

Given the identified check-worthy tweets and claims, we focus on classifying whether the
identified check-worthy news is indeed non-factual. The WSDM Cup 2019 fake news chal-
lenge addresses the task of matching new articles with previously identified fake news to
identify recurring fake news. In this challenge, the winning group saigonapps [139] used
a BERT-based language representation and handcrafted features to represent each title pair;
these features were then ensembled to produce the final result, obtaining 88.2% accuracy;
team Travel [105] ensembled twenty-five BERT models with six other models to produce
the final verdict on if the news title matches the existing non-factual news; and finally team
IKM lab [196] combined dense RNN and CNN as an ensemble architecture to identify if the
news title aligns with the existing fake news.
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The task of identifying recurring fake news is not heavily investigated in other challenges
or studies, and remains an open research question (Gap 3). Nevertheless, we argue that
recognising if newly emerged fake news are in fact recurrent fake news can be beneficial,
given that fake news can resurface multiple times online [150, 159]. Thus, we consider it an
essential component for an online automatic fake news detection framework, and incorporate
it into our proposed end-to-end automatic fake news detection framework.

2.4.3 Task 3: Fake News Detection on Twitter

Twitter is a prominent social network platform where users around the world can obtain re-
cently publish news and share their thoughts with anyone online. Researchers have used
Twitter to investigate the propagation pattern of fake news, and developed models to use
matadata from tweets and users in fake news detection tasks. For example, Twitter can pro-
vide static information based on a snapshot of the current connections of a specific user,
where each user is treated as a simple node with multiple numeral features unrelated to the
user’s characteristics. Some numerical features used in fake news detection task from users
and tweets are as follows: simple user features (e.g., # of followers, verified or not, descrip-
tion) [97]; relations between users (e.g., followers/followees, in the same region, engaged
with the same tweet/URL) [152]; and relations between tweets (e.g., replies, retweets, likes,
viewpoints conflicts) [75].

As an example of using relationships between tweets, Jin et al., [75] showed that using
the credibility of each tweet calculated through a tweet-tweet relation matrix, their model
can outperform previous models using textual features alone. However, all the methods
mentioned above that include user information as one of the features only consider statistical
information about the users whereas how to best use the rich network information social
networks can provide remains an open research question (Gap 4).

2.4.4 Summary

This section summarised studies that focused on each task in detecting fake news in our
proposed FNDF. As a result, we identify the following general gaps in this section:

Gap 1: Language models and handcrafted features generally perform non-satisfactory, which
are the most common types of features used in detecting fake news online.

Gap 2: Sophisticated language representations are well used in identifying check-worthy
tweets, but there is limited work on whether they can be combined with entity information
in the existing literature.
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Gap 3: The identification of recurring fake news is not well studied and remains an open
research question.

Gap 4: How to effectively use the dynamic social media users’ connections with each other
in detecting fake news is still an open research area.

Combining the above mentioned four gaps, we identify Gap 5: The existing end-to-end fake
news detection systems cited in Section 2.3 largely did not consider the filtering process,
when not all tweets and sentences require fact-checking; they mostly overlooked the recur-
ring fake news detection process; and generally did not leverage the user network structure
to analyse the users engaging in fake news in a graph analysis manner.

This thesis proposes to address Gap 1 by experimenting with a range of large language
models, to identify the most effective language model for the specific task. In Chapter 4,
we propose to address Gap 2 by investigating how to best represent entities within the text,
to more accurately identify check-worthy claims and tweets. In Chapter 5, we propose to
address Gap 3 by identifying the best approach in identifying recurring fake news using
an existing dataset. Chapter 6 proposes to address Gap 4 by using user network analysis
to identify fake news. We present our proposed framework in detail in Chapter 3. Finally,
Chapter 7 combines all the components we proposed in the thesis, and addresses Gap 5. We
also elicit Gap 1, Gap 2, and Gap 4 in the following sections.

In the following sections, we introduce a list of fake news datasets that journalists and re-
searchers have published in related to fake news detection.

2.5 Datasets for Fake News Detection

Journalists and scholars have published a range of fake news datasets, allowing the wider
research communities to analyse common features of fake news and develop tools and mod-
els to help combat them. Thus, this section focuses on introducing a list of datasets that are
made publicly available.

• ClaimBuster [70] contains 30 presidential debates between 1960 and 2012. In total, c
sentences spoken by the presidential candidates are labelled as Non-Factual Sentences,
Unimportant Factual Sentences, and Check-worthy Factual Sentences.

• ChechThat! [6, 34, 124] is a annual challenge, where the 2019 and 2020 datasets con-
sist of transcripts of US political debates and speeches in the time period 2016-2019,
collected from various news outlets3. The organisers manually compare each sentence
with factcheck.org. If the sentence appeared in factcheck.org and is being

3ABC, Washington Post, CSPAN, etc. [11] are in English only.

factcheck.org
factcheck.org
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fact-checked, it is labelled as a check-worthy claim. The CLEF’2021 Task 1a English
dataset consists of tweets collected concerning COVID-19 and manually identified as
either check-worthy or not check-worthy.

• BuzzFeedNews 4 focuses primarily on the 2016 U.S. election. It contains all the news
published from 19th to 23rd, and 26th to 27th September 2021, from 9 news agencies
(ABC news, Addicting Info, CNN, Eagle Rising, Freedom Daily, Occupy Democrats,
Politico, Right Wing News, and The Other 98%). In total, it contains 1627 news arti-
cles, where 826 are from mainstream news sources, 356 from left-wing news sources,
and 545 from right-wing news sources. Furthermore, all articles are fact-checked by
five journalists from BuzzFeed. Following this dataset, BuzzFeed News published two
more datasets related to fake news in the following years, namely Top 50 fake news of

2017 and Top 50 fake news of 2018.

• BuzzFace [154] extends the BuzzFeed dataset by collecting the comments related to
news articles on Facebook. The dataset contains 2263 news articles and 1.6 million
comments discussing news content.

• FacebookHoax [175] also contains posts published on Facebook. Specifically, Face-
bookHoax comprises real scientific news (from scientific pages) and conspiracy hoax
(from conspiracy pages). It contains 15,500 posts on 32 pages, where 14 pages are
conspiracy pages and 18 are scientific.

• CREDBANK [120] is a large-scale crowd-sourced dataset that contains around 60 mil-
lion tweets between 10th October 2014 and 26th February 2015. This dataset contains
more than 1300 events, with credibility ratings and reasons collected via Amazon Me-
chanical Turk.

• PHEME [210] contains tweets and their replies/retweets of five breaking news and
four specific known rumours. We include all the 2,695 rumourous source tweets in our
existing fake news collection.

• CoAID [32] dataset contains claims, news articles, and engaged tweets that are labelled
as fake and not fake. We include the titles of debunked fake news, fake claims and fake
tweets in our existing fake news collection, which amount to 498 debunked fake news.

• FAKENEWSNET [162] contains gossip and political fake news gathered from Politi-

Fact5, and GossipCop6. The dataset contains news articles labelled as fake or real.
The FAKENEWSNET dataset also contains Twitter engagement of collected news by
applying Twitter search on the news article title.

4https://github.com/BuzzFeedNews/2016-10-facebook-fact-check
5https://www.politifact.com/
6https://www.gossipcop.com/

https://github.com/BuzzFeedNews/2016-10-facebook-fact-check
https://www.politifact.com/
https://www.gossipcop.com/


CHAPTER 2. BACKGROUND AND RELATED WORK 23

• LIAR [188] also contains claims gathered from PolitiFact. The Liar dataset differs from
the FAKENEWSNET dataset because they did not collect the news stories being judged
as fake or real. Rather, LIAR gathered the statements made in political speeches and
debates. The statements are labelled as “pants-fire”, “false”, “barely true”, “half-true”,
“mostly-true”, and “true”.

• the WSDM 2019 Cup Fake News Challenge dataset7 consists of human-written Chi-
nese news title pairs, that are labelled either unrelated, agree, or disagree with a given
debunked fake news.

• MM-COVID [96] consists of 2492 non-factual and 5311 factual source contents (news
and tweets) related to COVID-19 that are labelled as fake or not, and related tweets
that have engaged with the source content.

• SD dataset [128] is a fake news dataset focusing on the news being shared on Twitter.
It consists of news article links and human judgements labels denoting if they are fake
or not, as well as engaged tweets, the stance of such tweets, the publisher of the news
article, and article citations by other news outlets on Twitter.

The datasets mentioned above contain different types of information and features in fake
news detection. Specifically, the ClaimBuster dataset concerns claim check-worthy but do
not distinguish between check-worthy false and non-check-worthy false claims. The Check-
That! Challenge datasets provide check-worthiness labels for both U.S. presidential debates
and news related to COVID-19 but lack the factual label. BuzzFeedNews focuses on news
articles from a few selected established news publishers. Buzzface contains both news ar-
ticles and user comments, but does not capture temporal information. The FacebookHoax
dataset contains many Facebook posts from a few instances of pages, while all posts from
conspiracy pages are labelled hoaxes, thus may be biased. The CREDBANK dataset contains
both tweets and events, but tweets and events are separated and not correlated. PHEME con-
tains only fake claims related to five events, making it a narrow-focused fake news dataset.
CoAID contains only fake news on COVID-19, making it narrow-focused. Although FAKE-
NEWSNET contains news articles, related tweets, and other Twitter engagement, they focus
on identifying the entire article as fake and do not focus on claim/sentence/tweet level factu-
alness. Finally, the LIAR dataset contains only short claims with Politifact verdict, without
social media engagements. The WSDM 2019 Cup Fake News Challenge dataset contains
news title matching but does not provide any social media engagement. MM-COVID dataset
focuses on tweets only related to the COVID-19 topics and thus is narrowly focused. The
FANG dataset contains only 1054 fake and real news with Twitter engagement.

7https://kaggle.com/c/fake-news-pair-classification-challenge/data

https://kaggle.com/c/fake-news-pair-classification-challenge/data
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None of those mentioned above datasets satisfies all our requirements of this thesis: claim/sen-
tence/tweet level check-worthiness labels, claim/sentence/tweet level truthfulness labels, and
social media engagement information. Thus, this thesis uses different datasets to evaluate
individual tasks, and we use the SD and MM-COVID datasets for our final end-to-end eval-
uation.

The following section surveys recent studies that focus on extracting textual information
from fake news online, which are related to the methods we propose to address Gap 1.

2.6 Language Models Advances

This section focuses on the existing studies that aim to analyse and understand textual fea-
tures in articles, tweets, or speech transcripts. We describe the methods commonly used in
text analysis in two categories: traditional textual analysis and neural language models. We
first discuss the traditional text analysis methods.

2.6.1 Traditional Text Representations

2.6.1.1 Words Occurrences Analysis

The commonly used methods to represent text in machine learning algorithms include the
bag-of-words (BOW) (e.g., TF.IDF) [76] and the part-of-speech (POS) [20] approaches. The
simplest text representation method, BOW, focuses on the words’ occurrence and frequencies
only, while POS tags are based on lexical cues (i.e., noun, verb, location, time, etc).

On the other hand, tweets are a particular type of text since they are short and contain
hashtags and links. Thus, scholars usually combine the TF.IDF/POS methods with other
occurrence-based linguistic methods and statistical information of tweets especially designed
for tweet content. Some examples are the number of mentions of other users (@), the number
of hashtags (#), the time-span of the tweet’s reply, the tweet location, etc [67].

2.6.1.2 Syntax Analysis

The syntax of text [79], usually viewed as grammar, is also helpful in detecting fake news.
This method transforms text into a syntax tree, such that the grammatical information be-
tween nouns and verbs, subjects and objects, are revealed and used for further analysis. For
example, Feng et al. [53] showed that using features driven by Context Free Grammar parse
trees can achieve 70%-90% accuracy on the deception detection task over four datasets.
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Statement 

Opinions

Subject Verb

Object

Figure 2.2: An example of a news article title.

However, Figure 2.2 shows the title of a news article, which has the subject, verb and object
of a statement, and one opinion-based commentary; while the secondary title is an additional
opinion-based commentary. In this case, the syntax representation methods mentioned above
cannot identify the commentaries from the statement, due to a lack of deep understanding of
the text. Therefore, using syntax analysis alone may not be sufficient in detecting fake news.

2.6.1.3 Semantic Analysis

Semantic analysis produces language-independent meanings of a given text and extends both
word occurrences analysis and syntax analysis. As a result, scholars are able to understand
the underlying information and meanings of a given text using semantic analysis. There are
two types of semantic analysis methods often used in fake news detection, as it shows the
subjective motivation of the authors:

1. Sentiment Analysis. Sentiment analysis aims to answer whether a piece of text ex-
presses positive, neutral, or negative sentiment. It is helpful to understand the senti-
mental opinion, using a single assignment of the sentiment score (usually ranges from
-1 to 1) or a label (i.e., positive, negative, neutral). In fake news detection tasks, senti-
ment is shown to be helpful. For example, Hamidian et al. [66] showed that sentiment
analysis improved the model performance on the fake news detection task. Moreover,
Ghenai and Mejova [57] used information gain (IG) with the greedy backward elimina-
tion method to find the most valuable features in predicting whether a tweet contains
rumours about the Zika virus. They showed that sentiment score is the fourth-best
feature according to IG.

2. Emotion Tagging. Vosoughi et al. [186] found that false rumours-inspired tweets
express emotions very differently compared to truth-inspired tweets. Specifically, sur-
prise and disgust are expressed more often in false rumours, while sadness, anticipa-
tion, joy, and trust are expressed more often in truth-related tweets. This observation
shows that users display different emotions toward non-factual and factual news, but
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whether it is because truthful and fake news affect users’ emotions differently, or be-
cause user groups often express different emotions are gathering around different types
of news, remains unclear. Either way, emotion appears to be a good feature in iden-
tifying fake news. Furthermore, Vosoughi et al. [186] also found that false rumours
contain significantly more novel information than factual news, when compared using
the Latent Dirichlet Allocation (LDA) topics between false rumours to the tweets the
user was exposed to in the previous 60 days.

2.6.2 Neural Language Models

Neural language models have become the most widely used language representation methods
in recent years. Neural language models aim to analyse words’ context better, using the
advances in computational power and practical applications of neural networks. The basic
ideas of using neural language models to represent text are threefold:

1. Representing tokens in a lower-dimensional space. Neural language models aim to
represent a token in a finite-dimensional space rather than encode each token with a
unique id. As a result, the tokens with similar meanings are closer to one another in
such lower-dimensional space.

2. Representing tokens as vectors. To effectively represent tokens in the lower dimen-
sional space, neural language models often use real number vectors that represent the
location of the token in this space, where the dimension of the vectors equals the di-
mension of the lower-dimensional space.

3. Inferring the embedding of a token based on its surrounding or preceding tokens.
The semantic meaning of a token is not isolated from its surrounding tokens. Thus,
neural language models generally aim to pull tokens closer if they occur together fre-
quently or have similar semantic meanings.

For example, in 2013, Mikolov [117] proposed Word2Vec, a shallow neural language model
trained based on the co-occurrence of words in a text, which aims to encapsulate the semantic
meaning of each word, and thus can help machines to better encode the semantic meaning
of the sentences in a single vector. Similarly, the Doc2Vec model [91] embeds documents
using the Word2Vec method, but focuses more on the semantical and contextual information
within each document.

Proposed in 1997, but not widely used until after the popularity of Word2Vec, the RNN based
language models (e.g., the long short term memory model [73] (LSTM)) can be applied to
analyse and process textual features. For example, Ma et al. [108] used LSTM networks
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to represent text sequentially, capturing the semantic meaning of the text based on previous
tokens. LSTMs differ from Word2Vec as the LSTM models encapsulate information of the
long previous sequential tokens, whereas Word2Vec representations are usually based on
immediate surrounding tokens of the token being embedded. However, RNN models do
not consider the future context when predicting language. To address this disadvantage,
researchers have developed bidirectional RNNs [157] (e.g., BiRNN, BiLSTM) that capture
both previous and future tokens in a sentence.

More recently, attention-based [184] neural network models (e.g. ELMO [137], BERT [40],
ALBERT [89], RoBERTa [106], BERTweet [126]) use the attention mechanism to identify
relevant contexts within or between sentences. These attention-based language models com-
bine the advantages of an extensive complex neural network with their pretraining on a large
corpus, to create pre-trained language models (e.g. BERT is trained on Wikipedia, Book-
Corpus, and Common Crawl [40]), where the subjective bias from any small training data is
minimised. Being one of the state-of-the-art pre-trained language models, BERT is shown to
consistently outperform other shallow language models and (Bi)RNN-based language mod-
els in many tasks (e.g., reading comprehension [182], document retrieval [172, 198], question
answering [107]), thanks to its large pretraining data, as well as the flexible representation
of words, based on their surrounding context.

2.6.3 Language Models in Fake News Identification

Textual analysis is the focus of detecting fake news in many studies [56, 71, 75, 139]. How-
ever, the existing studies [2, 24, 78, 114, 131, 132] that applied deep neural network language
models to the task of identifying check-worthiness detection did not compare the perfor-
mance across the popular pre-trained language models to identify the most suitable language
models for the check-worthiness task (Limitation L1). Furthermore, the above mentioned
studies mostly only use language models as the sole embedding features, without consider-
ing other types of information, such as entity information in the text (Limitation L2). Thus,
how to best leverage language models, and how to incorporate other non-semantic informa-
tion with the semantic-focused language models remain open questions.

2.6.4 Summary

Whether delivered as a news article or as a short statement on Twitter, news typically consists
of text – an essential information carrier. Analysing the text is unavoidable in identifying
fake news in articles, debate transcripts, or social media platforms. Recent advances in text
analysis allow us to analyse text using more sophisticated models. However, on eliciting
Gap 1 identified in Section 2.4.4, we identify the following limitations:
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Limitation L1: It’s unclear which deep learning language model is the most suitable for
identifying check-worthy sentences/claims/tweets, and detecting recurring fake news.

Limitation L2: The language models introduced above mainly focus on only the semantic
features, whereas the other features - such as entity-related information - are not considered.

In this thesis, we deploy language models to analyse text and modify some of the models
so they are more tailored and suitable for the tasks at hand. Specifically, we propose the
following to enhance the performance of the language models used in our framework to
detect fake news.

1. We propose to identify the best language model to identify fake news on Twitter, to
address Limitation L1.

2. We propose to combine traditional textual features with neural language models to
identify the entailment of two news titles effectively, to address Limitation L2;

3. We propose to combine neural language models with named entity information to
identify news that needs further fact-checking, to address Limitation L2;

In this thesis, we study the effectiveness of various language models in identifying check-
worthy claims and tweets (Chapter 4) and identifying recurring fake news (Chapter 5). We
also compare the effectiveness of using textual features with using network features in iden-
tifying fake news on Twitter (Chapter 6). However, although textual features are essential
in fake news detection, they may not be sufficient as the only type of information needed
in detecting fake news online. Thus, in the next section, we introduce networks-based (i.e.,
knowledge graph and social networks) features as additional information that can aid the
task of detecting fake news.

2.7 The Rise of Graph Embeddings

Networks, usually represented as a linked graph, have data points linked to other data points
through relationships. Knowledge graphs and social networks are the two main types of net-
works that are particularly rich in conveying additional information that textual features may
not capture when detecting fake news online [163, 206]. To effectively use network informa-
tion in fake news detection, this section describes the recent advances in methods that aim to
embed both knowledge graphs (in Section 2.7.1) and social networks (in Section 2.7.2).
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2.7.1 Knowledge Graph Embeddings

A knowledge base (KB) usually contains entities (nodes) and connections (edges) between
two entities, where there are usually finite types of relationships (different types of edges).
Each edge in a KG is usually represented by a triplet 〈eh, r, et〉, indicating that the head
entity eh and tail entity et are connected by relation r, e.g., 〈Donald Trump, NomineeOf,
United States presidential election 2016〉. Representing a KG in triplets is effective to con-
vey factual and trackable relationships, and thus can facilitate the fact-checking processes
(e.g., [99]). However, a KG is relatively hard to represent in a lower-dimensional vector
space, because of the complex types of nodes and edges associated with it. There are many
existing approaches [15, 16, 129, 189] that learn embeddings from KGs, by training neural
network models based on the co-occurrence of entity pairs and relationships. Generally, two
types of models are widely used to train KG embeddings: distance-based KG embeddings
with “facts alone” models [16, 23, 189] trained on a semantic triplet graph alone (such as
FB15k [16]), while semantic-based entity embeddings [15, 129] also use the information
contained in the corresponding entity descriptions (e.g. Wikipedia pages). We describe these
two types of models in turn below.

2.7.1.1 Facts Alone KG Embedding

Freebase8 [13], Google Knowledge Graph9, GeneOntology10, and Wordnet [119] are widely
used multi-relational knowledge graphs (i.e., contrary to single-relational KG, where there
is only one type of relation that connects two entities), where the entities consist of abstract
concepts and concrete entities of the world, and the relationships are the facts that link each
pair of entities together. Derived from Freebase and WordNet respectively, FB15k [16] and
WN18 [15] are two widely used facts alone knowledge bases in training KG embeddings,
while wikidata [187] has become one of the most popular knowledge bases in recent years.
The structure of a relation triplet (i.e., a triplet in the form of 〈eh, r, et〉, without any addi-
tional descriptions for eh, r, et) in such knowledge bases enables KG to represent information
hierarchically and graphically. Moreover, such representation can be represented in a lower
dimension space using graph embeddings, where the scoring functions are generally based
on distances between entities and relationships.

For example, TransE [16] used the Euclidean distance between two connected entities (i.e.,
eh and et) to project the entities and relationships into a learnt vector space, while TransR [100]
projected the entities and relationships into different spaces (e.g., one space for the entities,
one space for the relations). RESCAL [129] and DistMult [195] projected such distances

8https://freebase.com
9https://google.com/insidesearch/features/search/knowledge.html

10https://geneontology.org

https://freebase.com
https://google.com/insidesearch/features/search/knowledge.html
https://geneontology.org
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into different vector spaces using tensor factorisation. The advances in deep neural networks
also encouraged researchers to deploy deep neural networks on graph-structured data, such
as data encapsulated in a KG. For example, Li and Madden [95] combined a graph embed-
ding method node2vec [61] with a cascade embedding method, achieving better performance
at predicting triplets than using node2vec method alone.

However, such methods did not consider the differences between a symmetrical triplet –
where both entities within a triplet can be considered as either the head or the tail (an example
of a symmetrical triplet is 〈 Barack Obama, married to, Michelle Obama〉, which can also be
represented as 〈 Michelle Obama, married to, Barack Obama〉); and an asymmetrical triplet
– where the triplet’s entity head can not be viewed as the triplet’s tail (e.g., 〈 Stanley Kubrick,

directed, Dr.Strangelove〉 (asymmetrical) which cannot be represented as 〈 Dr.Strangelove,

directed, Stanley Kubrick〉). To allows the binary relationship embeddings to represent both
symmetrical and asymmetrical relationships, ComplEx [180], RotateE [174], QuatE [202]
projected KG into a complex space represented with complex numbers, and thus distinguish
the symmetrical triplets from asymmetrical triplets.

Finally, MuRP [10] and RotH [23] used the hyperbolic space (which consists of a constant
negative curvature that can represent discrete trees in a continuous analogue) to model a KG.
One entity’s multiple possible hierarchical relationships can be modelled simultaneously in
such a hyperbolic space, resulting in fewer dimensions of embeddings, thereby achieving
better performances than those obtained by the Euclidean distance methods.

2.7.1.2 Semantic-based KG Embeddings

Some knowledge bases (e.g., DBpedia) contain more information than just triplets of en-
tities and relationships (e.g. text descriptions for entities, relationships, and their possible
features, such as 〈Stanley Kubrick, directed, Dr.Strangelove, a comedy/war movie〉)). Hence,
a semantic analysis of the available descriptive texts allows algorithms to better capture each
entity and its semantic meaning, where a hyperlink between entities serves as a relationship
between the two linked entities. To this end, jointly training KG embeddings with seman-
tic embeddings can benefit one another. For example, researchers have explored traditional
machine learning methods on jointly trained embeddings, such as random walk [62]. He
et al. [72] used deep neural networks to compute representations of entities and contexts of
mentions from the KB, and Yamada et al. [194] used a skip-gram method, and trained it on
Wikipedia data to obtain the entity embeddings and the associated word embeddings.

More recently, some researchers (e.g., ERNIE [203], KnowBERT [138]) have explored the
use of joint training knowledge graph embeddings along with a BERT language model, and
showed promising results in several downstream tasks. Bosselut et al. [17] explored whether
using the attention mechanism (similar to that for training the BERT model) to enrich a
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knowledge base embedding with “common sense knowledge” embedded in text content is
beneficial for more complete KG embeddings. The resulting model, named Comet, puts
more emphasis on general information represented as entities (e.g., 〈nap, having sub-event,
dosing off 〉).

2.7.1.3 Knowledge Graph in Fake News Detection

Knowledge graphs are able to provide structured information for entities and relations, and
are used for a wide range of downstream tasks, such as entity linking [26, 121], relation pre-
diction [125, 192], and knowledge graph completion [101, 158]. Existing methods that use
knowledge graphs in fake news detection largely focused on named entity linking [24, 71],
constructing facts using Wikipedia [179], and similarities between entities [168]. However,
research are limited on whether embedded entities are beneficial in detecting fake news
(Limitation G1). Thus, how to tailor the entity representations for fake news detection
(Limitation G2), and how to choose the best entity embedding models for fake news detec-
tion (Limitation G3) remain open questions.

2.7.1.4 Summary

This section surveyed types of knowledge graph embedding models that have been proposed
in recent years. We elicit Gap 2 into the following:

Limitation G1: Whether the embedded entities are beneficial in identifying check-worthy
claims/tweets/sentences, and in detecting fake news has not yet been studied.

Limitation G2: The current entity embeddings obtained using knowledge graphs are not
tailored toward fake news detection tasks. How to represent a pair of embedded entities so
that they are the most beneficial in detecting check-worthy tweets and sentences/claims is
still an open research question.

Limitation G3: It is not yet identified which entity embedding method is the best for iden-
tifying check-worthy tweets/sentences/claims.

This thesis proposes to address Limitation G1-3 by conducting experiments that combine
language models together with entity embeddings, on the check-worthy tweets/claims/sentences
identification task. The detailed experiments are presented in Chapter 4. The next section
focuses on surveying the recent research related to social network embedding models and
their usages in fake news identification.
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2.7.2 Social Network Embeddings

Social networks (such as Twitter) are platforms where people can connect with other people
online, and share information and news with their followers and friends. The links between
two users A and B on Twitter can be explicitly categorised into two types: friends or fol-

lowers, that is, if user A follows user B, then A is B’s follower and B is A’s followee. If
B also follows A, A and B are each other’s friends. Researchers have developed a range
of methods that embed the rich social networks’ structure into a lower dimensional space,
and some researchers also conducted experiments that used such network embeddings to
analyse social media platforms. We now present the social network embedding models used
in building embedded social networks.

2.7.2.1 Embedded Social Network Features

Recent advances in constructing graph embeddings most aimed to represent a graph in a
lower-dimensional space, where each node (user) and/or vertex (user’s connection) are rep-
resented as a vector-based on their neighbouring nodes (friends or followers) and the vertices
(friendship or followership) that connect them.

Typically, graph embeddings are achieved by embedding only the topological structure of
graphs [61, 136], or using both the topological structure and the auxiliary information of the
graph, such as the content of nodes [27, 68]. For instance, the node2vec model [61] and
the DeepWalk model [136] are the first two approaches developed to represent the graph
in a lower-dimensional space, with deep learning techniques, based on topological graph
information. These two methods are similar, as they both use a Skip-Gram architecture (that
allows tokens to be skipped while forming adjacent n-grams) with negative sampling to learn
the embeddings of each node within the graph, based on the portion of the graph generated
by random walks/edge sampling.

However, such methods only consider the local context (i.e., closest neighbouring nodes)
for a given node, and cannot obtain a global optimum in representing the complexity of a
graph. To better represent a node within a complete graph structure, graph convolutional
networks [82] (GCNs) were proposed, which aim to capture the global structure of a given
graph. Typically, a GCN model uses several layers of graph convolution operations, where
each layer is built to capture the information of each node’s neighbours, which is then fed to
the next layer, therefore achieving convolutional learning of the graph structure.

However, such GCN models have a very high computational cost [27], as the whole graph’s
structure and each embedding layer’s information have to be stored. Thus, various meth-
ods have been proposed to reduce the consumption of computational time and space, such
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as mini-batch stochastic gradient descent with variance reduction GCN [25], and Cluster-
GCN [27]. For example, the GraphSAGE [68] method was developed to perform parame-
terised random walks and uses recurrent aggregators. It can be used for both unsupervised
and supervised representation learning with a proximity loss between nodes. Moreover, the
model adopts a dynamic inductive algorithm to generate embeddings for unseen nodes and
edges at inference time.

Graph embedding methods have been shown to be effective in many tasks, such as node
classification [136], link prediction [81, 151], and social networks alignment [45]. Embed-
ding social network using graph embedding models are also used to detect fake news on
social media platforms. For example, Röchert et al. [147] studied the user network structure
of YouTube channels. They found that the channels and individuals propagating fake news
on YouTube are usually integrated into heterogeneous discussion networks that involve fac-
tual content more than misinformation. Sosnkowski et al. [165] showed that changes in the
users’ network structure on Twitter can help detect the change in political opinions among
users. The Factual News Graph model (FANG) of Nguyen et al. [128] proposed to use in-
ductive learning for representing social structure, and combined the graphical social network
information with sophisticated textual features. Specifically, Nguyen et al. created a citation
network based on the news citations among publishers, and labelled user engagement with
the news articles with stances (i.e., support, deny, comment (neutral) and comment (nega-
tive)). The additional information needed to construct such a user network in detecting fake
news is labour intensive and time-consuming (Limitation N1). Similarly, Rath et al. [144]
proposed to use the network structure information to identify the potential super spreaders
of fake news, and showed that the proposed model can identify potential spreaders with the
retweet network, the follower-following network, and the timeline data. However, such user
network structure is not tested in detecting fake news, and the type of user network structure
that is most effective in detecting fake news is yet to be identified (Limitation N2).

2.7.2.2 Summary

This section summarised the two groups of features widely used in social network embed-
dings are statistical user features and network features. The limitations that elicit from Gap
5 are as follows:

Limiation N1: Current users embeddings for fake news detection are trained on complex
networks that require additional labelled data. These networks are challenging to collect and
thus impractical in training on a large dataset.

Limitation N2: The most effective type of users connections to use in constructing a user
network in detecting fake news on Twitter is unknown.
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This thesis proposes to use inductive representation learning of social network structures
in a fake news detection task to tackle the disadvantages mentioned above. Specifically, to
address Limitation N1, we aim to use the readily available data that can be obtained directly
through Twitter - without further processing - to construct a user network embedding that can
accurately cluster users into different groups, based on their friendships with other users and
their followers. Building on the users’ network embeddings, we then aim to represent a news
story using the aggregation of the engaging users, to predict where the news story is fake. To
address Limitation N2, we construct two user networks – a user follower network and a user
friendship network, and compare the performances of using user embeddings obtained from
either network structures, in detecting fake news. We present the experiments that address
these two limitation in Chapter 6.

2.8 Conclusions

This chapter presented some previous research focusing on identifying fake news online.
Section 2.1 first introduced the fake news phenomenon in the internet era, why it is dan-
gerous, and how did the public react to them. We also introduced possible psychological
reasons that draw some social media users into believing fake news online. Then Section 2.2
introduced the general practice in identifying fake news online through machine learning
approaches. We introduced the two types of end-to-end systems for tackling fake news in
Section 2.3. Section 2.4 introduced three tasks that can help tasking fake news, and surveyed
related works in each task. We also identified the 5 general gaps (Gaps 1-5) that need to be
addressed, to more accurately identify fake news. Section 2.6 focused on surveying the lan-
guage models and textual features that are widely used in the fake news identification task,
where we presented 2 limitations (Limitations L1 and L2). Section 2.7 presented related
work in constructing and using both knowledge graphs and social networks in fake news
detection. Specifically, Section 2.7.1 surveyed related works w.r.t. knowledge graph and
entity embeddings, where we identified 3 limitations (Limitations G1-G3). Finally, Sec-
tion 2.7.1.2 presented recent studies regarding social network embeddings. Limitations N1
and N2 are identified in this section.

In the next chapter, we formally present our proposed framework, FNDF, to effectively iden-
tify fake news.
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Chapter 3

Framework Overview

3.1 Introduction

In Section 1.3, we argued that the accurate identification of fake news online can be achieved
with a two-phased framework. In the previous chapter, we provided a background review
in the field of fake news detection. Furthermore, we elicited five gaps between the current
techniques in detecting fake news and the new advances needed for tackling such a task. In
this chapter, we introduce our proposed framework introduced in Section 1.3, that can bridge
the five gaps layed out in Section 2.4.4.

In particular, as discussed in Section 2.4.4, Gap 5 states that existing fake news detection sys-
tems have largely overlooked the process of identifying check-worthy tweets and sentences,
so as to focus the limited computational power on identifying whether the check-worthy
tweets and sentences are factual or not. They also failed to identify recurring fake news,
although existing fake news collections can be used to identify resurfacing fake news. And
finally, information from dynamic user networks are overlooked to leveraged the network
structures in fake news detection. This chapter presents our Fake News Detection Frame-
work (FNDF) that aims to address Gap 5. FNDF, consists of two phases and three tasks,
aims to leverage multiple aspects of a sentence/tweet, existing fake news datasets, and user
engagement on social media to identify fake news more effectively than the existing systems
introduced in Section 2.3, which mainly rely on either linguistic features [3, 161, 181] or
statistic network features [179, 201].

Specifically, Task 1 aims to address Gap 2 by combining entity representations with textual
representations, to effectively identify check-worthy sentences and tweets. Task 2 aims to
address Gap 3 by assessing the entailment between a check-worthy tweet or sentence with
existing debunked fake news, to identify recurring fake news. And finally, Task 3 aims to
address Gap 4 by representing a check-worthy tweet or sentence using the embeddings of
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its engaging users, to effectively identify fake news leveraging social network features.

We structure the remainder of this chapter as follows: Section 3.2 provides an overview of
our proposed framework. We lay out the motivation that inspired our framework design, and
present the notations that we use in the remainder of this thesis. Section 3.3 details each task
we tackle and our proposed methods to tackle such tasks. Section 3.4 lays out possible use
cases of our framework, depending on the type of information provided to the framework and
the end-users’ expectations. Finally, in Section 3.5, we provide a summary of our framework
proposed in this chapter.
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Figure 3.1: Our proposed Fake News Detection Framework. Phase 1 is the Check-Worthiness
Detection Phase. Phase 2 is the Fact-Checking Phase. Task 1 in Phase 1 aims to rank tweets
and sentences based on their check-worthiness, Task 2 in Phase 2 is dedicated to identify
recurring fake news, Task 3 in Phase 2 focuses on using Twitter network in identifying fake
news. Finally, the framework return the predicted non-factual information within tweets and
sentences to the end users, i.e., the fact-checking journalists, general public.

3.2 Motivation and Preliminaries

It is infeasible to fact-check every tweet that is being published, as around 9530 tweets
are being published1 every second, while some of these tweets also focus on news arti-
cles being published, and fact-checking all tweets requires a large amount of computational

1https://www.internetlivestats.com/twitter-statistics/

https://www.internetlivestats.com/twitter-statistics/
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power. Moreover, some fake news contains recurring themes and topics, that have been de-
bunked previously [55], while newly emerged fake news can easily spread through conspir-
acy theorists[19]. Inspired by these obstacles, we propose a fake news detection framework
(FNDF). Figure 3.1 illustrates our proposed framework, FNDF, which consists of two phases
and three tasks in total. Specifically, Phase 1 of FNDF contains only Task 1. Task 1 aims to
prioritise tweets and/or claims that require fact-checking, from a large number of published
tweets/claims. Thus, Task 1 allows us to focus more on the tweets and news/sentences that
are potentially spreading false information. Phase 2 of FNDF contains two tasks, Task 2 and
Task 3. Task 2 aims to fact-check the potentially misleading claims in tweets and sentences
by comparing these sentences and tweets with existing fake news, while Task 3 employs the
Twitter network to assist the identification of fake news. Thus, our framework first aims to
reduce the number of claims that needed to be fact-checked, by identifying suspicious and
check-worthy claims, before going through the computationally expensive analysis process.
Then, our framework aims to use textual information from the claims, as well as use features
that are readily available on Twitter to identify fake news. As such, our proposed FNDF does
not require the spreading pattern (how the fake news is spreading on Twitter, such as retweets,
likes, and replies) of news to detect fake news, thus aiding the early detection of fake news
before any fake news is widely spread. Thus, our framework can enable large-scale scan-
ning of information published online to identify the claims that require fact-checking. Our
framework also enables automatic recurring fake news labelling while providing debunking
information based on previously debunked fake news, as well as allowing early detection of
fake news among small conspiracy groups when the misleading information has not spread
widely. Table 3.1 presents the notations we use in this thesis.

3.2.1 Phase One (P1) - Worth-Checking Ranking (WCR) Phase

The number of tweets generated per day would require heavy labour to manually screen
for fact-checking, and similarly, would be difficult for automated fact-checking systems to
cope with. Moreover, Narrowing down a list of claims to further fact-check is a common
practice adopted by fact-checkers [59, 160]. Thus, in order to reduce the number of tweets
that requires fact-checking and to address Gap 2 discussed in Chapter 2, this phase aims
to develop a model to help identify the most check-worthy claims from tweets and news
articles based on the possibility of them being related to false statement. This phase contains
one task (Task 1), which assesses and ranks claims from tweets and articles based on their
check-worthiness.

For example, Figure 3.2 shows that among 70 debates and speeches given by the US presi-
dential candidates between 2012 and 2017, more than 95% of them have less than 0.1% of
check-worthy sentences, while more than half have no more than 0.02% of check-worthy
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Table 3.1: Notations used in this thesis.

Notation Definition
X A set of sentences and tweets
x A sentence or tweet
Xcheckworthy The set of check-worthy claims identified from X
Xfake The set of claims and tweets identified as fake
Tx The set of tweets related to x
T The set of tweets of all Tx for ∀x ∈ X
t A tweet in the set of tweets Tx
e An entity
E A set of entities
epair A pair of two entities
−−→epair The vector representation of a pair of entities extracted from x
FN An existing fake news collection
fn An identified fake news in the set of identified fake news FN
U The set of users who posted the set of tweets T
Ux The users that engaged with x, who posted the tweets Tx
u A user in the set of users U or Ux who posted t
−→u The modelled vector representation of user u
G The graph that consists of users U and their friends or followers on Twitter

sentences, according to the journalists [7, 11]. We do not report the proportion of check-
worthy tweets on the Twitter platform, because there are no reasonable data to perform such
analysis.
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Figure 3.2: In the CLEF CheckThat! 2019 task 1 dataset [7], among some selected 70
debates and speeches transcripts given by the US presidential candidates between 2012 and
2017, 95% of them have less than 0.1% check-worthy sentences.

The process of Phase 1 can be describe as follows:

Xcheckworthy = fcheckworthy(X) (3.1)

The aim of this phase is to identify the best function fcheckworthy() that can be used to score
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claims from tweets and sentences X by their check-worthiness, and identify a set of check-
worthy tweets/sentences Xcheckworthy.

3.2.2 Phase Two (P2) - Fact-Checking (FC) Phase

Each identified check-worthy claim needs to be classified as containing non-factual infor-
mation or not. Recall Sections 2.4.2 and 2.4.3, where we introduced two types of existing
methods in detecting fake news, i.e., identifying recurring fake news, and leveraging Twitter
information in identifying fake news. Similarly, this phase aims to tackle the classification
of check-worthy claims as containing non-factual information or not in two tasks: respec-
tively, Task 2 identifies recurring fake news and Task 3 uses Twitter’s user network structure
to identify fake news. Specifically, the aim of P2 is to classify a claim as fake news or not,
using the textual features and user network features extracted from the claim and its twitter
engagement. The aim of P2 can described as follows:

Ŷx = factcheck(x, Tx, Ux) (3.2)

where Ŷx is the conclusion if the identified check-worthy sentence/tweet x contains a factual
claim or not, while factcheck() is the classification function that fact-checks a tweet or
sentence x, based on the associated tweets/sentences Tx and their engaged users Ux.

3.3 Individual Tasks and Proposed Methods

In this section, we formally define the three tasks we aim to tackle in each step of our pro-
posed FNDF, as well as introduce the main methods we use in tackling the three tasks.

3.3.1 Task One (T1): Assessing and Ranking Check-Worthiness
of Sentences and Tweets

In order to focus available computing power on the most check-worthy claims, among all the
tweets and sentences fed into our framework, we aim to assess the check-worthiness of all the
tweets and sentences, and rank them in descending order based on their check-worthiness.
Thus, this task aims to address Gap 2 discussed in Chapter 2, which states that there is
limited research on whether language models can be combined with entity information in
identifying check-worthy claims. This task is the only task in P1, thus the task definition is
the same as the P1 definition presented in Equation (3.1).
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Clinton: He (TRUMP) is the first candidate ever to run for president in 
the last 40-plus years who has not released his tax returns…

Figure 3.3: An example showing two entities in a check-worthy sentence that are related to
each other.

To tackle this task, we propose to use deep learning methods and information from entities
presented in a sentence/tweet x. We obtain information about entities using an embedded
knowledge base, and compute the relationships between a pair of entities present in the
text. We then combined the entity pair representation with the textual representation of the
given sentence/tweet x to predict whether x is check-worthy or not. For example, Figure 3.3
illustrates a claim that can be identified as check-worthy by combining entities information
with language model representations, where the entity Donald Trump and Trump’s tax return

are closely related to each other in the Wikipedia knowledge base, and can give important
information within the context of this claim.

To analyse entity information together with the textual information, we first extract a set of
entities E appearing in a given tweet/claim x:

E = Extract(x) (3.3)

Each entity e ∈ E then is presented in a lower-dimensional space as embeddings by function
ent emb():

−→e = ent emb(e) (3.4)

A pair of entities epair is then represented as a vector using a combination method combine():

−−→epair = combine(−→e1 ,−→e2 ) (3.5)

We then compute the check-worthy score of the tweet or claim x using x and the a represen-
tation for a pair of entity extracted from x, as follows:

̂xcheckworthy = cw(x,−−→epair)) (3.6)

where the cw() function decides the check-worthiness ( ̂xcheckworthy) of the input x, and −−→epair
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is the entity pair representation for a pair of entities in x.

3.3.2 Task Two (T2): Assisting Fake News Detection using Pre-
vious Debunked fake News

As suggested by [60], some rumours and fake news may reappear after being debunked.
Thus, this task aims to identify non-factual claims and tweets that have resurfaced after being
debunked (cf. Gap 3 discussed in Chapter 2). The task is formulated as a classification task:

̂RecurringFNx = cls(x, FN) (3.7)

where ̂RecurringFNx is the model output of the classification function cls() for a given
tweet/claim x requiring fact-checking. To tackle Task 2, we propose to identify recurring
fake news by calculating the entailment of xwith every fake news fn in an existing fake news
collection FN . If x entails any known fake news (that is not time-sensitive), we conclude
that x is a recurring fake news, otherwise not. Specifically, for each x, the entailment relation
of x and fake news fn ∈ FN can be classified as agree, unrelated, or disagree2:

entailment(x, fn)→ {agree, unrelated, disagree} (3.8)

The function fentail aims to classify the entailment relationship between x and fn:

entailment(x, fn) = fentail(x, fn) (3.9)

(3.10)

We calculate the entailment relationship between a given x with all fn ∈ FN :

RecurringFNx =

1, if ∃ fn ∈ FN, fentail (x, fn) = agree

0, otherwise
(3.11)

where if a tweet/claim x entails any fn, we conclude that x is indeed non-factual and recur-
ring (RecurringFNx = 1). On the other hand, if x does not entail any fn, we conclude that
x is not a recurring non-factual fake news (RecurringFNx = 0), and will continue to Task
3.

2An example of a claim x agreeing a debunked fake news is as follows: statement A “vaccine causes
autism” agrees with statement B “according to a study published in the Lancet, getting MMR vaccine correlates
to a higher rate of autism observed in children”, thus we consider statement A entails statement B.
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3.3.3 Task Three (T3): Social Network Structure Assisted Fake
News Detection

Fake news can rapidly spread on social media [87] because users are exposed to their con-
necting users’ activities. It may be reasonable to assume that the wisdom of the crowd
may provide us with some information regarding whether a claim is fake. As discussed in
Section 2.1, the echo chamber effect has been observed on social media platforms, which in-
spired us to hypothesise that some non-factual tweets may have originated and spread within
some specific groups that have interests in the topics and theories that the tweets convey.
Moreover, we identified Gap 4 in Section 2.4.4, which stated that we need to identify the
most effective way to use the dynamic social media users’ connections with each other in
detecting fake news. Thus, in Task 3, we focus on identifying newly emerged fake news that
begins circulating on social media. Specifically. we aim to study the user network structure
on social media, and use such user network structure to assist the identification of non-factual
claims and tweets from previously identified check-worthy claims and tweetsXcheckworthy.
Specifically, Task 3 aims to classify if a check-worthy claim x contains non-factual informa-
tion, using a set of engaging users Ux that tweeted the engaging tweets Tx, so as to address
Gap 4. Thus, Task 3 is defined as follows:

Ŷx = cls(x, Tx, Ux) (3.12)

That is, for each check-worthy claim x not containing resurfacing misinformation, we clas-
sify it as being factual or not, using its engaging tweets Tx and engaging Twitter users Ux.
We instantiate the tweet retrieval step in our FNDF using existing methods provided by the
Twitter API3. We propose to use the social network structures of the users to analyse the
set of tweets Tx related or engaged with x. In particular, we first propose to generate user
embeddings from the social network structure. We then use the users’ embeddings of the
users engaged with the tweet/claim x, to classify if the tweet/claim x is indeed fake news.

Specifically, for each x identified as check-worthy, we analyse the users Ux that engaged
with the tweets Tx, using the users’ network (G) to obtain the engaging users social network
embedding

−→
Ux:

−→
Ux = aggregate

u∈Ux

(UserRepresentation(u,G)) (3.13)

where the UserRepresentation() is the model that represents a user u as vector based on
the user network G, and aggregate() is the aggregation model that aggregate all the user
embeddings to obtain a single vector for all the engaging users Ux.

3https://developer.twitter.com/en/docs

https://developer.twitter.com/en/docs
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The final classification result Ŷx is then derived from the classification function SNcls(), with
the social embedding

−→
Ux of the users Ux engaged with x as input:

Ŷx = SNcls(
−→
Ux) (3.14)

3.3.4 End-to-End Evaluation

Finally, we evaluate the end-to-end performance of our proposed FNDF, which classifies
if a tweet/sentence contains fake claims or not, and return the fact-checked results back to
users. Figure 3.1 illustrates our end-to-end user model. The end-to-end use case of FNDF
is to identify the set of fake information Xfake, given a set of tweets and sentences X , using
functions (3.1) and (3.2) in turn. As such, we evaluate the effectiveness of FNDF in correctly
identify the set of Xfake from the set of tweets and sentences X that enters our framework.

Phase 2

g
g’

g’
g’

g

Recurring 
fake news?

A tweet denoted as x

A Check-worthy tweet 
denoted as x

A tweet x’ that engaged with 
similar news as tweet x.

Twitter API

Tweet users

Users’ connection

Tweet content

Existing fake news database

Classification function

Fake news

Factual news

x

x’

x

Figure 3.4: Framework structure for the individual tweet fact-checking scenario. This in-
stance of FNDF uses Task 2 (comparing the current claim with fake news database) and Task
3 (Twitter network analysis) to decide if the given tweet contains fake news.

3.4 Possible Use Cases

As mentioned in Section 3.2, our framework can be used in multiple scenarios, where not
every component is necessary. Our framework can be used to fact-check individual tweets,
or to screen tweets posted daily and identify fake news, depending on the expectations of an
end-user. Thus, we provide the possible use cases one tweet may go through based on the
user requirements as follows:
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Figure 3.5: Framework structure for the query-related fact-checking scenario. This FNDF
instance uses the Twitter API to retrieve a range of tweets that are related to the query, using
Task 2 (comparing the current claim with fake news database) and Task 3 (Twitter network
analysis) to identify fake news contained in the retrieved tweets

• Scenario 1: Batch of tweets fact-checking. The batch of tweets fact-checking sce-
nario is where a user would like to monitor all tweets being created and shared online,
and identify any tweets that contain non-factual information. This is a Twitter mon-
itoring use case, which requires the full framework to work together, thus Figure 3.1
represents the framework used for this scenario.

• Scenario 2: Individual tweet fact-checking. Our platform can also fact-check an
individual tweet. For example, if a user has already identified a tweet they want to
fact-check, they can use our proposed platform to identify if this given tweet contains
fake news or not. When given a single tweet, our platform can omit Phase 1, the Worth-
Checking Ranking Phase - since the user already decided that such tweet requires fact-
checking, and only focus on Phase 2, the Fact-Checking Phase of our FNDF. Figure 3.4
presents the components of our framework that are used for this scenario.

• Scenario 3: Query-based tweets fact-checking. Using the standard Twitter search
function, our framework can also identify fake news within a certain topic. The search
feature provided by the Twitter API allows a user to search for a set of tweets using
a query, and our framework is able to work within this limited set of tweets. Specif-
ically, our framework is able to retrieve a set of tweets using the given query, and
identify if the returned tweets contain any non-factual claims. Figure 3.5 illustrates the
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framework structure that aims to handle such scenario.

3.5 Conclusions

In this chapter, we have introduced our proposed framework, FNDF, which uses a wide
range of features of a tweet/claim to identify if a tweet/claim contains false information. We
introduced the motivation to include two phases and three tasks we aim to focus on in our
framework. We also formally defined these tasks, and presented the possible use cases where
our framework can be used in real-world scenarios. In particular:

• Section 3.2 introduced the motivation and preliminaries of each phase. We showed
that Phase 1 of our FNDF aims to assess a large amount of tweets and claims by their
check-worthiness; if a tweet/claim is check-worthy, it will enter Phase 2 of our FNDF,
which fact-checks if the check-worthy claim contains false information.

• Section 3.3 introduced three tasks in our FNDF. We presented the aim for each task,
defined each task in our framework, and described the high-level description of how
we aim to tackle each task. Specifically, Task 1 aims to address Gap 2 presented
in Section 2.4.4 by combining entity representations with language representations
to more effectively assess the check-worthiness of a given sentence/tweet. Task 2
aims to address Gap 3 by identifying recurring fake news using existing fake news
collections. And Task 3 aims to address Gap 4 by identifying fake news using user
network structure on Twitter.

• Section 3.4 introduced three possible use cases of our framework, FNDF, and demon-
strated how our proposed framework is able to adapt to each one of them.

In the remainder of this thesis, Chapter 4 addresses Task 1, which aims to identify the most
check-worthy tweets and claims; Chapter 5 addresses Task 2, which aims to identify recur-
ring fake news using existing fake news collections; and Chapter 6 addresses Task 3, which
aims to use Twitter’s network structure to identify tweets and claims that contain non-factual
information.

In the next chapter, we describe the experiments that aim to tackle Task 1 – assessing a
sentence/tweet’s check-worthiness, and addressing Gap 2.
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Chapter 4

Assessing and Ranking
Check-Worthiness of Claims

4.1 Introduction

In Section 2.4, we described the task of identifying the most check-worthy sentences and
tweets, and surveyed the recent works that focused on tackling this task. For example, the
ClaimBuster system [71] was trained to label sentences in a news article as “non-factual”,
“unimportant factual”, or “check-worthy factual”. The recent CLEF’ 2019, 2020 & 2021
CheckThat! Labs [6, 34, 124] were introduced as shared evaluation forums where partici-
pants were tasked to rank texts based on their estimated check-worthiness. Section 2.4.1
described how it is common to apply neural language models to represent sentences and
tweets [33, 41, 52, 69, 78, 113, 114, 124, 156].

As described in Section 1.1, to make a claim is to assert that something is true1. A claim
usually contains a subject and/or an object [9], where the subject and the object are often
entities [155]. Thus, the entities presented in claims are vital in analysing the claim, and can
determine if the claim is check-worthy or not. Moreover, claims made by politicians during
debates and by users posted on Twitter often contain information about established entities
(for instance, entities that are documented in Wikipedia) [8]. For example, Figure 3.3 in
Section 3.3.1 shows an example where the two entities highlight the important components of
the sentence, and are related to each other, which can help to identify the sentence as check-
worthy. Thus, in this chapter, we focus on analysing established entities in a claim in our
check-worthiness identification task, as established entities can be verified with documented
information, such as knowledge graphs.

1In everyday usage, a sentence or a tweet usually asserts only one statement, inspiring us to consider a
sentence and a tweet as valid forms of claims.
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As mentioned in Section 2.7.1, knowledge graphs (KGs) are useful sources of information
about entities, particularly how they relate to each other. Typically, entities and their re-
lationships are represented using a triplet structure (〈entityh, r, entityt〉) in a knowledge
graph. An example of such a triplet is 〈Arizona, a state of, the United States〉. Recent
works [16, 180, 194] have shown that learned embeddings can be derived from KGs, allow-
ing for the advantages of word embeddings to be applied to the entities found in the KGs.

Recall the thesis statement introduced in Section 1.3, where we introduced the first phase of
our framework being the identification of check-worthy claims from tweets and sentences,
and hypothesised that analysing embedded entities in texts can help more accurately iden-
tify check-worthy claims, from tweet content, articles, and debate quotes. This chapter
aims to test this hypothesis, by tackling Task 1 (defined in Section 3.3.1), the task that aims
to assess and rank the check-worthiness of sentences/claims and tweets. Specifically, we
propose to combine language models with entity embeddings for enhancing the performance
of identifying check-worthy sentences and tweets.

This chapter aims to address Gap 1 and Gap 2 identified in Section 2.4.4. Specifically,
Gap 1 states that for the task of identifying check-worthy sentences and tweets, there are no
research that have identified the most suitable language model, and Gap 2 states the need for
research on how to combine entity information with sophisticated language representations.
We address these two gaps by addressing the detailed Limitations L1 & 2 identified in
Section 2.6.4 and Limitations G1-3 identified in Section 2.7.1.4.

In particular, Limitation L1 recognises the need to identify the best language model for each
task in this thesis. We address Limitation L1 by conducting experiments using six widely
used text analysis models, to identify the most suitable language model for the identification
of check-worthy sentences and tweets task.

Limitation L2 identifies the need to enrich language models with additional entity informa-
tion, while Limitation G1 identifies the need to test if embedded entities are beneficial, in
the task of detecting fake news. To address these two limitations, we hypothesise that the
embedded entity vectors obtained from KG embeddings (entity embeddings) can improve
the identification and ranking of check-worthy sentences and tweets, and run experiments to
verify such a hypothesis. Thus, we propose a novel model to represent a sentence or a tweet,
by combining a neural language model with an entity pair representation for each pair of
entities in the sentence or tweet. We conduct experiments to test the hypothesis, and show
that enriching language representations with entity representations are indeed beneficial in
detecting check-worthy sentences and tweets.

Limitation G2 states that the current entity embeddings trained from knowledge graphs are
not tailored to be used to represent entity pairs, and are not fine-tuned on the check-worthy
tweets and sentences identification task. To address Limitation G2, we design and study two



CHAPTER 4. ASSESSING AND RANKING CHECK-WORTHINESS OF CLAIMS 48

types of methods to represent a pair of embedded entities together, which calculate the pair-
wise vector product and concatenate two entity embedding together. We show that using
entity pairs to represent a tweet/sentence allows us to capture rich information from both
entities present, and the potential relationships of these two entities.

Finally, Limitation G3 states that it is unclear which KG entity embedding method is the
most effective at representing entities within sentences and tweets, to most accurately iden-
tify the check-worthy sentences and tweets. Thus, to address Limitation G3, we propose
to compare the performances of six different types of KG entity embedding models (rep-
resenting six types of well-used graph embedding methods). We show that the ComplEx
model [180] can produce the most accurate results in identifying check-worthy news from
sentences and tweets through extensive experiments.

The rest of the chapter is structured as follows: Section 4.2 states the task problem, along
with our proposed model to address the task. We present our experimental setup in Sec-
tion 4.3, and show the results of the experiments in Section 4.4. Finally, we provide conclud-
ing remarks in Section 4.5.

4.2 Check-Worthiness Prediction using Entity-Assisted

Language Models (Phase 1 Task 1)

In this section, we expand on the definition of Task 1 presented in Section 3.2.1, to tackle
and introduce our proposed entity-assisted language model in detail.

4.2.1 Check-Worthiness Prediction Task

We aim to tackle the task of identifying the set of check-worthy tweets/sentences from a
given set of tweets/sentences. Table 4.1 presents the notations (a subset of the notations
defined in Table 3.1, and notations specific for this chapter) used in this chapter.

Task 1 is stated in Equation (3.1) as:

Xcheckworthy = fcheckworthy(X) (4.1)

where fcheckworthy() is the function that identifies check-worthy claims Xcheckworthy from X .
Note that this task can be formulated as a classification task, aiming to predict (denoted ŷi),
for each sentence/tweet, whether a human would label it as check-worthy or not (c.f. yi).
In this classification task fcheckworthy() is the classification function that classifies whether a
given sentence/tweet x is check-worthy. The task can also be formulated as a ranking task,
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Table 4.1: Notations used in Chapter 4.

Notation Definition
X A set of sentences and tweets that enter our framework
x A sentence or tweet in the set of sentences and tweets X
Xcheckworthy The set of check-worthy claims identified from X
e An entity
eh The head entity in a triplet 〈entityh, r, entityt〉
et The tail entity in a triplet 〈entityh, r, entityt〉−→x The vector representation of x
−→eh The vector representation of eh−→et The vector representation of et−−→epair The vector representation of the entity pair < eh, et >

such that the predicted most check-worthy x ∈ X are ranked highest – indeed, this is the
task formulation taken by the CLEF’ 2019 and 2020 CheckThat! Labs [6, 11]. In this ranking
task, fcheckworthy() is a ranking function that ranks X based on the check-worthiness of each
x. In our present study, we propose a uniform model, which addresses the estimation of
check-worthiness both as classification and ranking tasks, when measuring the effectiveness
of our models.

Our proposed uniform model for tackling the identification of the check-worthiness of each
sentence/tweet consists of two components: text representation through the use of language
models, and an entity pair2 representation obtained from entity embeddings – discussed fur-
ther in Section 4.2.2. Each sentence/tweet is represented by a single embedding obtained
from a language model (denoted by LM()), which is discussed further in Section 4.2.3.
There are three steps involved in representing a pair of entities appearing in the text:

1. Resolving all entities that appear in the text to the corresponding entity using entity link-
ing [36, 116];

2. Transforming the resolved entities into dense entity embeddings through the application
of KG embeddings (denoted by KG()) – we discuss the choice of KG embeddings in
Section 4.2.4;

3. Each pair of entity embeddings are combined through a combination method (denoted by
COM()) to form a single representation for the entity pair. Note that, for a sentence/tweet
that contains more than two entities, every two entities form an entity pair.

2We also experimented with text representation combined with a single entity, and sentence/tweet combined
with three entities, and neither perform well in this task. For ease of reading, we do not present the equations
and experiments for such structures.
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Figure 4.1: Our proposed Entity-Assisted Language Model.

4.2.2 Overall Structure of Our Proposed Model

In order to leverage the semantic representation of various language models, as well as the
entities in text, for each sentence/tweet, we propose to combine its language representation
along with an entity pair representation for each pair of entities in the text using a language
model.

Firstly, for a sentence/tweet x in which a set of entities E(x) have been identified through
the application of an entity linker, our model forms pairs of entities with every two unique
entities, thus we consider input instances insi, based on pairs of distinct entities:

insi ∈ {〈x, eh, et〉 ∀ 〈eh, et〉 ∈ E(x)× E(x)} (4.2)

where eh and et are the head and tail entities. For ease of notation, let insi ∈ x denote a
particular instance insi obtained from x using Equation (4.2). Then, given an input instance
insi, we develop two separate models for the fcheckworthy() presented in Equation (3.1):
f cls(insi) for text classification and f rank(insi) for ranking. Furthermore, for combining the
embeddings of a given entity pair, we use two different methods as explained below.

In particular, Figure 4.1 shows the architecture of our proposed model. In the input stage,
we use the text as input to a language model LM(), so as to obtain the text representation of
the input text −→x , i.e.:,

−→x = LM(x) (4.3)

For each entity pair eh and et in an input instance, we represent the entity pair as −−→epair in a
high dimensional space. Thus, we firstly use an existing KG embedding model KG() to ex-
tract entity embeddings −→eh and −→et for entities eh and et. Next, we use a combination method
COM() to obtain the entity pair representation −−→epair. Specifically, as combination methods
we use the vector element-wise product operation (denoted by emb prod()), or the vector
concatenation operation (denoted by emb concat()), or the entity similarity and relatedness
score proposed by Zhu and Iglesias [209] for each entity pair3 (denoted by similarity()). This

3For brevity reasons we do not describe these methods in detail, as it is described by Zhu and Iglesias [209].
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process can be represented as follows:

−→eh = KG(eh),
−→et = KG(et) (4.4)

COM() ∈ {emb prod(), emb concat(), similarity()} (4.5)
−−→epair = COM(−→eh ,−→et ) (4.6)

It is of note that we select emb prod() and emb concat() because of their wide use as neural
operators for combining two vectors (e.g., [29, 40]). To address G2, we compare emb prod()
and emb concat()’s performance in combining entities and representing entities in a sen-
tence. As emb prod() and emb concat() aim to tailor the entity pair representation to better
suit the task of identifying check-worthy tweets and sentences.

We combine the text representation and entities pair, to form the input instance representation
−−→
insi, by concatenating the language representation −→x with the entity pair representation
−−→epair4:

−−→
insi =

−→x⊕−−→epair (4.7)

Next,
−−→
insi can be used both as part of a classification fcls() or a ranking frank() task. In

our experiments, fcls() is a fully connected layer with a softmax activation function that
estimates the class likelihood ŷclsinsi

, while frank() is a fully connected layer with a sigmoid

activation function to obtain the check-worthiness score ŷrankinsi
∈ (0, 1) for ranking the texts

in descending order:

ŷclsinsi
= f cls(

−−→
insi) =

e((
−−→
insi⊗k)+b)∑

j e
((
−−→
insi⊗k)+b)

(4.8)

ŷrankinsi
= f rank(

−−→
insi) =

1

1 + e((−
−−→
insi⊗k)+b)

(4.9)

where k denotes a fully connected layer kernel and b denotes bias. The objective of our
experiments is to identify the most effective f cls() and f rank() models, for classifying and
ranking check-worthy texts, respectively.

A sentence/tweet may contain more than one pair of entities, with corresponding different
levels of check-worthiness. For these cases, we assume that as long as at least one pair of
entities is check-worthy within a sentence/tweet, the sentence/tweet is check-worthy. Thus,
the obtained f cls() and f rank() models are applied for each pair of entities in the text. Hence,
to obtain the final check-worthiness of a given text, we take the maximum check-worthiness

4We use a uniform [−1, . . . ,−1] vector to represent any entity not having any embedding in the pre-trained
KG embeddings.
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label/score across all pairs as follows:

ŷclsx = max(f cls(
−−→
insi)) ∀

−−→
insi ∈ x (4.10)

ŷrankx = max(f rank(
−−→
insi)) ∀

−−→
insi ∈ x (4.11)

where insi ∈ x denotes an input instance insi occurring in text x, and max() denotes
that we take the highest score/likelihood among all insi ∈ x as the final check-worthy
score/likelihood for x.

4.2.3 Language Models

As presented in Section 2.6, there are many ways to represent text, such as BoW models
and neural network models. In order to study the effectiveness of using language models in
identifying check-worthy tweets and sentences, and addressing Limitation N1, we evaluate
3 groups of language models. First, TF.IDF vectors are used as a representative of traditional
BoW models. Second, we use a BiLSTM model with an attention mechanism to represent
the non-pre-trained language models. Finally, we use several BERT-related neural language
models (BERT, ALBERT, RoBERTa, and BERTweet) to represent the current state-of-the-
art pre-trained language models. We combine these language model representations with
the entity pair representations, to study the robustness of using entity embeddings across
different types of language models.

4.2.4 Obtaining Entity Embeddings and Similarity from KG Em-
bedding Models

Section 2.7.1 introduced multiple ways to analyse entities appearing in the text. Previ-
ous studies have shown that some entity embedding methods can benefit the identification
of check-worthy material. For example, Ga̧sior et al. [54] used named entity recognition
to identify the types of entities present in a sentence (e.g. person, location, organisation,
money) as hand-crafted features, and showed that it can improve the performance of TF.IDF.
Ciampaglia et al. [30] showed that the graph distance between two entities within a KG
(i.e. the number of steps on the graph to reach one entity from another) could be used to
improve fake news detection accuracy when applying an entity linking method on news arti-
cles. However, using graph distance considers only the number of hops between two entities
within the knowledge graph, and therefore does not address other possible relationships be-
tween the entities (e.g. a person (an entity) being the president of a country (another entity)).
This means that using only the KG’s ontology structure results in less information compared
to using embeddings that may capture more entity relationships.
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Table 4.2: Examples of the most similar entities to Barack Obama, using each of the KG
embedding models.

Embedding Model Most similar entities to Barack Obama, in descending order from left to right
Wikipedia2Vec Michelle Obama John McCain US presidential election

TransE Women’s History Month A Child’s History of ... Thickness network ...
TransR Executive Order 13654 BODY SIZES OF ... ynisca kigomensis

RESCAL Neural representation ... Natalie Grinczer Octavia E. Butler
DISTMult live preview Neonatal peripherally ... KSC - STS-3 Rollout ...
ComplEx Peter B. Olney James Willard Hurst Robert H. McKercher

Thus, to address Limitations L2 and G1, we instead propose to obtain the entity repre-
sentations using a range of KG embedding models (i.e., Wikipedia2Vec [194], TransE [16],
TransR [180], RESCAL [100], DISTMult [129], and ComplEx [195]). We believe that using
KG embedding models allows us to acquire the implicit and hidden KG-based relationships
between two entities that are encoded in the embedding vectors that have been learned by a
particular model. Moreover, following Ciampaglia et al. [30]5, we focus on using pairs of
entities in analyse the sentence – entities informations.

Different KG embedding models can return varying results when given the same entity and
task. For example, Table 4.2 shows the most similar three entities for the United States’
President 〈Barack Obama〉 obtained using six different KG embedding models that we use
in this study. Specifically, Wikipedia2Vec returns the entities that appear closer to the entity
Barack Obama in the sentence, while the other 5 models show a variety of very specific enti-
ties that Barack Obama has a relationship with (e.g., the law he passed, the article he wrote,
the person he attended the same school with). Such differences in the output provided by
the KG embedding models are due to the varying datasets used to train the models. More-
over, the different KG embedding models can result in different performance in identifying
check-worthy sentences and tweets. Thus, to address Limitation G3, we compare the above
mentioned six KG embedding models, to identify the most effective KG embedding model
in identifying check-worthy tweets and sentences.

Therefore, the key argument of this chapter is that by including the entity embeddings −→e
for each entity e (appearing in the sentence) into our models, we are able to consider the
KG-based network relationships of entities in a sentence, when making predictions about
the check-worthiness of a sentence. Indeed, entities that are far apart on a simpler word
embeddings space may be closer on the entity embedding space, and combining the word
embeddings and entity embeddings may be able to bring these two types of information
together. Overall, this provides more evidence about the expected co-occurrence of different
types of entities within a sentence for identifying those sentences requiring fact-checking.

As a baseline comparison, we also calculate the similarity of entities following the method

5Indeed, as we later show in Section 4.3, texts containing 2-4 entites are the most frequent in this dataset.
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described by Zhu and Iglesias [209]. Thus, we obtain two scores for each entity pair –
similarity score and relatedness score – to represent an entity pair.

4.3 Experimental Setup

Our experiments address four research questions that concern both the check-worthy sen-
tences detection and check-worthy tweets detection, as follows:

• RQ 4.1: Do BERT-related language models outperform the TF.IDF and BiLSTM baselines
in identifying check-worthy sentences/tweets? This research question aims to address the
Limitation L1 presented in Section 2.6.4, which concerns finding the best language mod-
els for the identification of check-worthy claims.

• RQ 4.2: Does the use of entity embeddings improve the language models’ F1 score in
identifying check-worthy sentences/tweets? This research question aims to address Lim-
itations L2 & G1 presentend in Section 2.6.4 and Section 2.7.1.4 respectively, which
concern enriching language models with additional embedded entity information.

• RQ 4.3: Which combination method, COM() ∈ {emb prod, emb concat}, performs the
best in improving the performance of text representations at identifying check-worthy sen-
tences/tweets? This research question aims to address Limitation G2, which concerns
tailoring entity embeddings to better assist language models.

• RQ 4.4: Among Wikipedia2Vec, TransE, TransR, RESCAL, DISTMult, and ComplEx,
which KG embedding model KG() provides entity embeddings that best assists the lan-
guage models? This research question aims to address Limitation G3, which concerns
finding the most suitable entity embedding model for the check-worthy sentences and
tweets task.

Moreover, from Section 4.2, the identification of check-worthy sentences/tweets can be con-
sidered either as a classification task, or instead as a ranking task (as defined by the CLEF’
CheckThat! Lab organisers). Hence, in the following experiments, we provide conclusions
for all RQs from both the classification and ranking perspectives. In the remainder of this
section, we describe the experimental setup used to address our four research questions.

4.3.1 Dataset

All our experiments related to detecting check-worthy sentences use both the CLEF’2019
& 2020 CheckThat! datasets. The CLEF’2019 & 2020 datasets consist of transcripts of
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Table 4.3: Statistics of the CLEF’2019 & 2020 CheckThat! datasets.

Training Testing
# of debates/speeches 19 7

2019 # of total sentences 16,421 7,079
# of check-worthy sentences 433 110
% of check-worthy sentences 2.637% 2.554%
# of debates/speeches 50 20

2020 # of total sentences 42,776 21,514
# of check-worthy sentences 487 136
% of check-worthy sentences 1.138% 0.632%

Table 4.4: Statistics of the CLEF’2021 check-worthiness on the tweets dataset.

Training Validation Testing
# of Tweets 822 140 350
# of check-worthy tweets 290 59 19
% of check-worthy tweets 35.28% 42.14 5.43%

US political debates and speeches in the time period 2016-2019, collected from various
news outlets6. Each sentence has been manually compared with factcheck.org by the
organisers. If the sentence appeared in factcheck.org and is being fact-checked, it
is labelled as a check-worthy claim. Table 4.5 shows examples extracted from a speech
by Senator Ted Cruz. The CLEF’ 2019 & 2020 CheckThat! Labs provided data splits for
training and testing purposes, which we also use in this chapter. Table 4.3 shows the statistics
of the training and testing sets. In particular, we observe that the prevalence of check-worthy
sentences is reduced in the 2020 dataset compared to the 2019 dataset.

Our experiments related to detecting check-worthy tweets use the CLEF’2021 Task 1a En-
glish dataset. The CLEF’2021 Task 1a English dataset consists of tweets that are collected in
relation to COVID19, and manually identified as either check-worthy or not check-worthy.
Table 4.4 shows the statistics of the training, validation, and testing sets. In particular, we
observe that the percentage of check-worthy tweets in the testing set is 15.39% of that in the
training set and 12.88% of that in the validation set.

Next, Figure 4.2 shows the distribution of entity types and occurrences. Specifically, Fig-
ure 4.2a shows the proportion of each entity type appearing in the 2019 dataset7. In par-
ticular, it can be seen that the Person and Location types are the most commonly identified
entities in the dataset, and together they account for 90% of all the entities detected. Fig-
ure 4.2b shows the number of entities appearing in each sentence. We observe that sentences
with 0-2 entities account for more than 40% of the sentences, while sentences with 3 enti-
ties account for ∼15% of sentences. The observation of these distributions of the number
of entities presented in each sentence further strengthens the reasons for using entity pairs

6ABC, Washington Post, CSPAN, etc. [11] are in English only.
7Similar distributions were observed for the 2020 and 2021 datasets, and hence are omitted.

factcheck.org
factcheck.org
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Figure 4.2: Distribution of the entity types, and the number of entities per sentence, in the
CLEF CheckThat! 2019 dataset. Entities are detected using DBpedia Spotlight. Note that we
omit the figures for the 2020 and the 2021 datasets, since we observe similar distributions.

Table 4.5: A debate transcript from the CLEF’2019 CheckThat! dataset. Sentences are la-
belled check-worthy (1) or not (0).

Speaker Sentence Label

Cruz
You know, in the past couple of weeks the Wall Street Journal had a very
interesting article about the state of Arizona.

0

Cruz
Arizona put in very tough laws on illegal immigration, and the result was il-
legal immigrants fled the state, and what’s happened there – it was a very
interesting article.

1

Cruz
Some of the business owners complained that the wages they had to pay work-
ers went up, and from their perspective that was a bad thing.

0

Cruz
But, what the state of Arizona has seen is the dollars they’re spending on wel-
fare, on prisons, and education, all of those have dropped by hundreds of mil-
lions of dollars.

1

(described in Section 4.2.4).

4.3.2 Models and Baselines

In this section, we describe the tools and methods we use in our experiments, along with the
baseline approaches.

Debate and 
speech 

transcripts

Pre-processed
Sentences

First person 
Pronouns 
Resolution 

Coreference 
Resolution 

Figure 4.3: The pre-processing procedure. A parallelogram represents input and/or output; a
rectangle represents a process; an arrow represents the relationship flow between two com-
ponents.
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4.3.2.1 Processing

American political debates usually consist of two or more participants, and one or more
moderators, and each debate has different participants. In political debates, it is not explic-
itly apparent to the system which participants are referenced by which pronouns. Similarly,
implicit pronouns can also be used to identify a specific person or a particular entity previ-
ously mentioned or known, leading to possible confusion. To combat the above mentioned
challenges in implicit references, we propose a two-step procedure to resolve the implicit
references found in the debates. In doing so, we aim to ensure that any implied entities in the
text are therefore explicitly available for analysis by the later stages of our model (e.g. the
language models and entity linking). Figure 4.3 illustrates the two steps of our preprocessing
procedure: first-person pronoun resolution, and coreference resolution. Table 4.6 presents
detailed examples of sentences that have gone through the preprocessing procedures. We
describe the two steps procedures as follows:

1. First-person pronouns resolution: In this step, we simply change all the first-person
pronouns in each sentence to the current speaker’s name.

2. Coreference resolution: Coreference resolution is the task of finding the entity ex-
pression that a pronoun refers to within a piece of text. In our proposed procedure, we
use coreference resolution to replace implicit mentions to one of the previously stated
real-world entities. Specifically, we use the implementation of Lee et al. [92]8 of a
higher-order coreference resolution method, applied to pairs of sentences. Therefore,
the span of possible references for a pronoun is from either the current sentence, or the
antecedent of the sentence, regardless of any change in the speaker.

Note that we do not apply the coreference resolution to the tweets datasets, as the CLEF
CheckThat! 2021 tweets dataset does not consider tweet threads that may need coreference
resolution.

4.3.2.2 Entity Linking

To explicitly address the entities that occur in each sentence and tweet, we deploy a named
entity linking method to extract entities from each sentence and sentence. In our experiments,
we use DBpedia Spotlight9 to extract entities from each pre-processed sentence, with the
confidence threshold set to 0.3510. We selected 0.35 as our final confidence score after fine
tuning the confidence score ∈ [[0.1, 0.6] on the training set of the CLEF 2019 dataset.

8https://github.com/kentonl/e2e-coref
9https://www.dbpedia-spotlight.org/

10We note that there are better performing entity linking models. However, to maintain compatibility with
the previous research we only use DBpedia Spotlight as the entity linking method in this study.

https://github.com/kentonl/e2e-coref
https://www.dbpedia-spotlight.org/
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Table 4.6: An example of the results of the pre-processing procedure. Bold denotes the
pronouns that should have been changed to the entity it refers to. Italic denotes the changed
results of the pre-processing procedure. Underline denotes the word is referring to an entity.

Speaker Original text after pre-processing
type of
results

BLITZER
When nearly half of the
delegates ..., and the biggest
prize of the night is Texas.

When nearly half of the
delegates ..., and the biggest
prize of the night is Texas .

No entities
to be

resolved

BLITZER
Immigration is a key issue in
this state, for all voters nation-
wide...

Immigration is a key issue in
Texas , for all voters nation-
wide...

Correct
resolution

BLITZER So, that’s where we begin.
So , Immigration ’s where we
begin .

Correct
resolution

BLITZER

Mr. Trump, you’ve called
for a deportation force
to remove the 11 million
undocumented immigrants from
the United States.

Mr. Trump, you’ve called
for a deportation force
to remove the 11 million
undocumented immigrants from
the United States...

No entities
to be

resolved

BLITZER
You’ve also promised to let what
you call, “the good ones”, come
back in.

You ’ve also promised to let
what you call , “ the good ones
” , come back in .

No entities
to be

resolved

BLITZER
Your words, “the good ones”, af-
ter they’ve been deported.

Your words , “ the good ones ” ,
after they ’ve been deported .

No entities
to be

resolved

BLITZER
Senator Cruz would not allow
them to come back in.

Senator Cruz would not allow
they to come back in .

Incorrect
resolution

BLITZER
He says that’s the biggest differ-
ence between the two of you.

Senator Cruz says that ’s the
biggest difference between the
two of you .

Correct
resolution

BLITZER He calls your plan amnesty.
He calls the two of you plan
amnesty.

Missing
resolution

4.3.2.3 Entity Embeddings and Similarity

We use six entity embeddings methods (introduced in Section 2.7.1) to represent the head
entity eh as −→eh and the tail entity et as −→eh , and combined them represent the entity pairs as
−−→epair11, as follows:

• Wikipedia2Vec [194] uses the extended skip-gram methods with a link-based mea-
sure [190] and an anchor context model to learn the embeddings of entities.

• TransE [16] aims to embed a triplet e = 〈eh, relation, et〉 into the same lower dimen-
sional space, where −→eh +−→r should result in −→et .

11We acknowledge that these entity pair representations can also be used to calculate their similarities. How-
ever our preliminary experiments shows that such methods produce less than satisfactory results, thus we omit
such setup.
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• TransR [100] is built upon TransE, where the relation embedding is projected into
a separate relation space, in order to more accurately represent the rich and diverse
information between entities and relations.

• RESCAL [129] uses a three-way tensor learning method to model the triplet of e =

〈eh, relation, et〉, for a more flexible representation of the relationship and entities.

• DISTMult [195] uses a single vector to represent both entities and the relation by
simplifying the bi-linear interaction between the entity and the relation, where the
relation vector is represented using the diagonal matrix of the interaction.

• ComplEx [180] uses complex embeddings and the Hermitian dot product to represent
the relation between two entities, and yields a better performance than its predecessors
(e.g., TransE, TransR, RESCAL) on the entity-linking task [180].

For the TransE, TransR, RESCAL, DistMult and ComplEx models, we use triplets extracted
from Freebase (FB15K) [16] as training data. These models are trained using code provided
by Zheng et al. [205]12. For the Wikipedia2Vec model we use the pre-trained model provided
by the author13.

To calculate the entity similarity, we use the Sematch [208]14’s KG semantic similarity and
relatedness algorithms, based on the algorithm proposed by Zhu and Iglesias [209], to cal-
culate the similarity and relatedness of an entity pair of entities appearing in each sentence.

4.3.2.4 Language Representations

We use six different text representation models LM() (introduced in Section 2.6.2) to repre-
sent each sentence and/or tweets15, as follows:

• TF.IDF is a commonly used BoW model to represent the text based on the word frequen-
cies. We include TF.IDF as a baseline. We use sci-kit learn implemented TF.IDF model16,
with English stop words removed, and maximum features as 5000.

• BiLSTM+attention (denoted as BiLSTM+att) is widely used in the literature to learn a
language model from the training data. It appeared in several solutions [69], which were
deployed in the CLEF’2019 CheckThat! Lab, where it was shown that an LSTM-based

12https://github.com/awslabs/dgl-ke
13https://wikipedia2vec.github.io/wikipedia2vec/pre-trained/
14https://github.com/gsi-upm/sematch
15all models except BERTweet model are used for both sentences and tweets, BERTweet model is exclusively

used for tweets)
16https://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfVectorizer.html

https://github.com/awslabs/dgl-ke
https://wikipedia2vec.github.io/wikipedia2vec/pre-trained/
https://github.com/gsi-upm/sematch
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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language model can effectively represent the sentences in the check-worthiness identifica-
tion task. Thus, in this chapter, we use BiLSTM+att as a non-pre-trained language model
baseline, in order to obtain a fair comparison among all the language representation meth-
ods.

• BERT [40] is a pre-trained language model that has been shown to be effective in many
information retrieval and natural language processing tasks [110, 167, 198]. In this study,
we are also interested in determining if the BERT model also performs well on the very
specific task of check-worthy sentence identification, or if it can be enhanced by supple-
mentary information such as entity embeddings (as discussed in the next section).

• ALBERT [89] is a derivative of the original BERT model that aims to reduce the number of
parameters. Specifically, ALBERT uses a factorised embedding parameterisation method
to decompose the vocabulary size and the hidden layer size, by projecting the vocabulary
twice rather than once. Moreover, cross-layer parameter sharing and inter-sentence coher-
ence loss are used to further reduce the need of parameters updating. ALBERT achieved
a new SOTA performance with fewer parameters and shorter training time on SQuAD and
MNLI datasets, compared to the original BERT model [89].

• RoBERTa [106] aims to improve over BERT by training the model for more iterations,
using longer sentence sequences, with bigger batches over more data. RoBERTa also
removes the next sentence prediction objective in training. Similar to the ALBERT model,
RoBERTa results in improved performance over the standard BERT model [106].

• BERTweet [126] is a pre-trained language model that deploys RoBERTA architecture on
850M English tweets. The main objective of BERTweet is to build a pre-trained language
model specifically for analysing tweets. We use BERTweet as a language model only for
the CLEF CheckThat! 2021 dataset, where the task is to identify the most check-worthy
tweets.

We use the HuggingFace language model implementations [191]17. Specifically, we use the
BERT-Cased English model (12-layer, 768-hidden, 12-heads, 110M parameters); the Albert-
base-v2 English model (12-layer, 128-hidden, 12-heads, 1M parameters); the RoBERTa-
base English model (12-layer, 768-hidden, 12-heads, 125M parameters); and the BERTweet-
base model (12-layer, 768-hidden, 12-heads, 135M parameters). We fine-tune all the BERT-
related language models on the training datasets as presented in Section 4.3.1. All other
parameters remain at their recommended settings.

17https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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4.3.2.5 Baselines

We compare our generated Entity-Assisted models to the following baselines:

• Random classifier: We apply a random classifier using the stratified strategy, as the weak-
est baseline.

• SVM(TF.IDF: We apply an SVM text classifier using TF.IDF features, as a weak base-
line using the traditional text representation methods and the statistical machine learning
model. We select our hyperparameters by applying cross-validation on the training data.
Specifically, we use the sci-kit learn SVM implementation with an RBF kernel, a C penalty
of 10, and a γ of 0.1 in our trained SVM classifier. We use class weights based on the train-
ing data to prevent the imbalanced data from compromising our experimental results. For
the classification task we obtain the predicted class label for each sentence from f cls()

(as per Equation (4.8)), while for the ranking task we obtain a score for each sentence in
the range (0, 1) from f rank() (as per Equation (4.9)). We use the same SVM settings for
SVM(TF.IDF) similarity (introduced below).

• SVM(TF.IDF) + Entity Similarity and Relatedness: As a baseline method, we append
two graph-based entity similarity and relatedness scores – obtained using Sematch [208],
to the TF.IDF feature vectors of the SVM model. We introduce this baseline to compare
the use of entity similarity and relatedness scores with using embedded entity vectors in
identifying check-worthy sentences and tweets.

• BiLSTM + Att: We deploy a BiLSTM + Att model (100 hidden units) with an attention
mechanism, implemented using Tensorflow. We initialise the embedding layer of BiLSTM
using the pre-trained GloVe embeddings (300 dimensions). We introduce this baseline to
compare the performances between pre-trained deep learning language model with locally
trained deep learning language model.

• CLEF’2019, 2020 & 2021 CheckThat! Lab leaderboards: For the ranking task, we
additionally compare the performances of our models with the runs of the top three groups
on the official CLEF’2019, 2020 & 2021 leaderboards18.

4.3.3 Evaluation Metrics

For evaluating the classification task, we use the standard classification metrics (Precision,
Recall, F1). Significant differences are measured using the McNemar’s test.19 On the other

18From https://github.com/apepa/clef2019-factchecking-task1 for the 2019 results,
https://github.com/sshaar/clef2020-factchecking-task5 for the 2020 results, and the
overview paper [124] for the 2021 results.

19We evaluate the classification task only using the CLEF’2019 CheckThat! Lab dataset, and 2021 Tweet
dataset, as our prior results found that it is not possible to derive meaningful results from the 2020 dataset, due

https://github.com/apepa/clef2019-factchecking-task1
https://github.com/sshaar/clef2020-factchecking-task5
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hand, for evaluating the ranking effectiveness, we apply the ranking metrics used by the
CheckThat! Lab organisers, namely Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Mean Precision at rank k (P@k, k={1,5,10,20,50}) 20. Means are calculated
over the seven and twenty debates and speeches (equivalent to 7 and 20 queries) in the
CheckThat! 2019 and 2020 test sets, respectively - therefore, due to the small number of
rankings being evaluated, significance testing is not meaningful. Finally, note that it is not
possible to evaluate the CLEF’2019 & 2020 CheckThat! Lab participants’ approaches using
the classification metrics – this is because the participants’ runs have scores rather than pre-
dicted labels, and do not contain predictions for all sentences in the dataset. Moreover, it is
also not possible to combine our approach with the participants’ runs, since we do not have
the predicted scores of the participants’ runs on the training sets.

Table 4.7: Classification performances on the CheckThat! 2019 and 2021 datasets, alter-
nating language models LM() only. Bold indicates the best performance in the respective
dataset; Numbers in the Significance column indicate that the model is significantly better
than the numbered model (McNemar’s Test, p<0.01).

# LM() P R F1 Significance
CLEF’2019 CheckThat! results

1 Random Classifier 0.01 0.01 0.01 -
2 SVM(TF.IDF) 0.01 0.01 0.01 -
3 BiLSTM+att 0.12 0.07 0.09 1,2
4 BERT 0.12 0.09 0.10 1-3
5 ALBERT 0.14 0.11 0.12 1-4
6 RoBERTa 0.14 0.11 0.11 1-4

CLEF’2021 CheckThat! results
7 Random Classifier 0.05 0.05 0.05 -
8 SVM(TF.IDF) 0.05 0.11 0.07 7
9 BiLSTM+att 0.05 0.11 0.07 7

10 BERT 0.08 0.16 0.10 7-9
11 ALBERT 0.08 0.16 0.11 7-9
12 RoBERTa 0.09 0.16 0.11 7-9
13 BERTweet 0.16 0.47 0.23 7-12

4.4 Experimental Results

In this section, we present the results of the experiments that address RQs 4.1 - 4.4. In par-
ticular, for both the check-worthy sentence classification and ranking tasks, Sections 4.4.1
- 4.4.4 respectively address: the effectiveness of the BERT-related language models LM()

to the small number of positive data in the test set.
20For the CLEF’2021 CheckThat! Lab Tweet dataset, we use MAP, MRR for consistency, although the

ranking task is to rank all check-worthy tweet in a single run, equivalent to a single query retrieval task.
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Table 4.8: Ranking performances on the CheckThat! 2019, 2020, and 2021 dataset, alternat-
ing language models LM() only. Bold indicates the best performance in each group.

# LM() MAP MRR P@1 P@5 P@10 P@20 P@50
CLEF’2019 CheckThat! Experimental results

1 SVM(TF.IDF) 0.1193 0.3513 0.1429 0.2571 0.1571 0.1714 0.1086
2 BiLSTM+att 0.1453 0.2432 0.1429 0.1429 0.1429 0.1857 0.1343
3 BERT 0.0715 0.2257 0.1429 0.2000 0.1286 0.0857 0.0600
4 ALBERT 0.1332 0.4176 0.3098 0.2000 0.1429 0.1286 0.0929
5 RoBERTa 0.1011 0.3158 0.2286 0.2000 0.1429 0.1286 0.0929

CLEF’2019 CheckThat! Submitted Runs
6 Copenhagen-primary 0.1660 0.4176 0.2857 0.2571 0.2286 0.1571 0.1229
7 Copenhagen-contr.-1 0.1496 0.3098 0.1429 0.2000 0.2000 0.1429 0.1143
8 Copenhagen-contr.-2 0.1580 0.2740 0.1429 0.2286 0.2429 0.1786 0.1200
9 TheEarthIsFlat-primary 0.1597 0.1953 0.0000 0.2286 0.2143 0.1857 0.1457

10 TheEarthIsFlat-contr.-1 0.1453 0.3158 0.2857 0.1429 0.1429 0.1357 0.1171
11 TheEarthIsFlat-contr.-2 0.1821 0.4187 0.2857 0.2286 0.2286 0.2143 0.1400
12 IPIPAN-primary 0.1332 0.2865 0.1429 0.1430 0.1715 0.1500 0.1171

CLEF’2020 CheckThat! Experimental results
13 SVM(TF.IDF) 0.0946 0.1531 0.0000 0.0600 0.0400 0.0450 0.0240
14 BiLSTM+att 0.0151 0.0320 0.0000 0.0100 0.0150 0.0075 0.0090
15 BERT 0.0262 0.0819 0.0500 0.0300 0.0250 0.0125 0.0110
16 ALBERT 0.0537 0.2145 0.2000 0.0800 0.0500 0.0250 0.1600
17 RoBERTa 0.0424 0.1315 0.1000 0.0600 0.0400 0.0200 0.1400

CLEF’2020 CheckThat! Submitted Runs
18 NLP IR@UNED-primary 0.0867 0.2770 0.1500 0.1300 0.0950 0.0725 0.0390
19 NLP IR@UNED-contr.-1 0.0849 0.2590 0.1500 0.1200 0.0900 0.0675 0.0370
20 NLP IR@UNED-contr.-2 0.0408 0.1170 0.0500 0.0700 0.0450 0.0275 0.0180
21 UAICS-primary 0.0515 0.2247 0.1500 0.0700 0.0500 0.0375 0.0270
22 UAICS-contr.-1 0.0431 0.1735 0.1000 0.0500 0.0550 0.0450 0.0250
23 UAICS-contr.-2 0.0328 0.1138 0.0500 0.0300 0.0350 0.0175 0.0190
24 TobbEtuP-primary 0.0183 0.0326 0.0000 0.0200 0.0100 0.0100 0.0060
25 TobbEtuP-contr.-1 0.0417 0.0784 0.0500 0.0300 0.0150 0.0150 0.0180

CLEF’2021 CheckThat! Experimental results
26 SVM(TF.IDF) 0.0608 0.1111 0.0000 0.0000 0.1000 0.0500 0.0400
27 BiLSTM+att 0.0635 0.1429 0.0000 0.0100 0.1000 0.0500 0.0400
28 BERT 0.0757 0.1429 0.0000 0.0000 0.1000 0.1000 0.0600
29 ALBERT 0.0777 0.1429 0.0000 0.0000 0.1000 0.1000 0.0600
30 RoBERTa 0.0806 0.1429 0.0000 0.0000 0.2000 0.1000 0.0600
31 BERTweet 0.1326 0.5000 0.0000 0.2000 0.1000 0.1500 0.1800

CLEF’2021 CheckThat! Submitted Runs
32 NLP&IR@UNED 0.2240 1.0000 1.000 0.4000 0.3000 0.2000 0.1600
33 Fight for 4230 0.1950 0.3333 0.000 0.4000 0.4000 0.2500 0.1600
34 UPV 0.1490 1.0000 1.000 0.2000 0.2000 0.1000 0.1200

(presented in Section 4.3.2.4); the usefulness of entity embeddings; the most effective com-
bination method COM() for representing entity pairs (presented in Equation (4.8)); and the
most effective KG embedding model KG() from which to obtain the entity embeddings
(presented in Section 4.3.2.3).



CHAPTER 4. ASSESSING AND RANKING CHECK-WORTHINESS OF CLAIMS 64

4.4.1 RQ 4.1: BERT-related Language Models vs. Baselines

RQ 4.1 answers the research question that whether BERT-related language models outper-
form the TF.IDF and BiLSTM baselines in identifying check-worthy sentences/tweets. RQ
4.1 to address the Limitation L1 presented in Section 2.6.4, which concerns finding the
best language models for the identification of check-worthy claims. Table 4.7 presents clas-
sification results on CLEF CheckThat! 2019 & 2021 datasets, and Table 4.8 presents the
baselines, and the attained ranking performances using the language models only, on the
CLEF CheckThat! 2019, 2020 & 2021 datasets.

We firstly consider Table 4.7, which reports the attained precision, recall, and F1 scores
when treating check-worthy sentence identification as a classification task, on the CLEF
CheckThat! 2019 and 2021 datasets. Firstly, in terms of F1 on the 2019 dataset, we note the
relative weak performance of a classical SVM classifier with TF.IDF features (row 2), which
performs equivalently to a random classifier. Indeed, while the SVM classifier has been
trained using class weights to alleviate the issue of class imbalance, the low performance of
SVM illustrates the difficulty of this task, and underlines that simply matching on what is

being said by the speakers is insufficient to attain high accuracies on this task. Next, the BiL-
STM+att classifier (row 3) markedly outperforms the random classifier, demonstrating that
the deployment of pre-trained (i.e., GloVe) word embeddings allows a more flexible classi-
fier not tied to the exact matching of tokens. Moreover, the use of the attention mechanism in
BiLSTM also emphasises the importance of the context of each word. Finally, the state-of-
the-art BERT-related models (BERT model, row 4; ALBERT model, row 5, and RoBERTa
model, row 6) significantly (McNemar’s Test, p<0.01) outperform the random classifier, the
SVM classifiers, and the BiLSTM+att classifiers. Thus, we conclude that, when treating
the task as a classification task, all of the BERT-related language models can significantly
outperform the SVM and BiLSTM+att classifiers. Among all the BERT-related models, AL-
BERT exhibits the highest performance. This is expected from the literature, as ALBERT
outperforms all other tested language models on a range of benchmarks [89], such as GLUE,
RACE, and SQuAD.

Similarly, when tested on the CLEF CheckThat! 2021 tweets dataset, SVM(TF.IDF), BiL-
STM, BERT, ALBERT, and RoBERTa all perform significantly better than the random clas-
sifier, but remain relatively ineffective. Indeed, the BERTweet model (row 13) performs
significantly and markedly better than all the other models, while more than doubling the
F1 score of the next best score (0.11 from row 11 and 12). Thus, we conclude that the
BERTweet model, a language model trained on tweets, indeed outperforms all the other tra-
ditional and BERT related models, and exhibits the best performance, in identifying the most
check-worthy tweets.

Moving next to the ranking task on the 2019 dataset, Table 4.8 shows that the BERT model
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(row 3) underperforms the classical SVM classifier using TF.IDF features (row 1). Both
ALBERT (row 4) and RoBERTa (row 5) outperform SVM(TF.IDF) and BiLSTM+att (rows
1, 2) in terms of MRR. However, in terms of MAP, both ALBERT and RoBERTa only
outperform SVM(TF.IDF) (row 1), and still underperform compared to BiLSTM+att (row
2). Next, when considering the results of the ranking task on the 2020 dataset, BERT (row
15), ALBERT (row 16) and RoBERTa (row 17) models all outperform BiLSTM+att (row 14)
and SVM(TF.IDF) (row 13) on both MAP and MRR. Similar to that of the ranking task on
the 2021 dataset, all the BERT related models (BERT, row 28; ALBERT, row 29; RoBERTa,
row 30, and BERTweet, row 31) outperform BiLSTM+att (row 27) and SVM(TF.IDF) (row
26) on both MAP and MRR.

While the contrast between the F1 classification and the ranking results on the 2019 dataset
is notable, the low classification recall for all models suggests that BERT, ALBERT, and
RoBERTa (c.f. rows 4, 5, 6 in Table 4.7) cannot retrieve the most difficult check-worthy
sentences among the 2019 dataset, and hence also exhibit low MAP performances in the
ranking task. However, we observe that BERT-related language models indeed outperform
SVM(TF.IDF) and BiLSTM+att in both classification (rows 10-13 vs. rows 8, 9 in Table 4.7)
and ranking on the 2021 dataset (rows 28-31 vs. rows 26,27 in Table 4.8), especially when
using the BERTweet language model. This suggests that the BERTweet language model is
well suited to identify check-worthy tweets from the 2021 Tweets dataset. From Table 4.21
we observe the inconsistent performances for the same language model across the 2019 and
2020 ranking datasets (i.e., row 1 vs. 16, row 4 vs. 18, row 7 vs. 20, row 10 vs. 22, row
13 vs. 24). We postulate that this may be caused by the markedly different proportion of
positive examples in the two test sets (as illustrated by the percentage of the check-worthy
sentences in Table 4.3).

Overall, in answer to RQ 4.1, we conclude that the BERT, ALBERT, RoBERTa, and BERTweet
models perform well at classifying and ranking check-worthy sentences/tweets. Specifically,
BERT-related models are most effective at higher rank sentences/tweets. On both tasks,
ALBERT performs the best among the BERT-related language models at classifying and
ranking the most check-worthy sentences, while BERTweet performs the best at classifying
and ranking the most check-worthy tweets.

4.4.2 RQ 4.2: Using Entity Embeddings

RQ 4.2 aims to answer the question that whether combing entity embeddings with language
models can improve the classification and ranking performance on identifying check-worthy
tweets and sentences, than using language models alone. This research question addresses
Limitations L2 & G1 discussed in Section 2.6.4 and Section 2.7.1.4 respectively, which
concern enriching language models with additional embedded entity information.
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Table 4.9: Classification performances on the CheckThat! 2019 dataset, alternating language
models LM() and entity embedding models KG(), and entity representation combination
models COM(). Bold indicates the best performance; Numbers in the Significance column
indicate that the model is significantly better than the numbered model (McNemar’s Test,
p<0.01).

# LM() KG() COM() P R F1 Significance
1 SVM(TF.IDF) - - 0.01 0.01 0.01 -
2 SVM(TF.IDF) Wikipedia2Vec similarity() 0.04 0.03 0.03 1
3 SVM(TF.IDF) Wikipedia2Vec emb concat() 0.06 0.05 0.05 1,2
4 SVM(TF.IDF) Wikipedia2Vec emb prod() 0.05 0.04 0.04 1,2
5 BiLSTM+att - - 0.12 0.07 0.09 1-4
6 BiLSTM+att Wikipedia2Vec similarity() 0.12 0.08 0.1 1-5
7 BiLSTM+att Wikipedia2Vec emb concat() 0.13 0.1 0.11 1-6
8 BiLSTM+att Wikipedia2Vec emb prod() 0.12 0.09 0.1 1-5
9 BERT - - 0.12 0.09 0.1 1-5

10 BERT Wikipedia2Vec similarity() 0.12 0.1 0.11 1-6
11 BERT Wikipedia2Vec emb concat() 0.19 0.11 0.14 1-10, 13
12 BERT Wikipedia2Vec emb prod() 0.18 0.11 0.13 1-10, 13
13 ALBERT - - 0.14 0.11 0.12 1-10
14 ALBERT Wikipedia2Vec similarity() 0.14 0.14 0.14 1-10, 13
15 ALBERT Wikipedia2Vec emb concat() 0.22 0.15 0.18 1-14, 17-20
16 ALBERT Wikipedia2Vec emb prod() 0.20 0.14 0.16 1-14, 17, 18
17 RoBERTa - - 0.14 0.11 0.12 1-10
18 RoBERTa Wikipedia2Vec similarity() 0.14 0.13 0.13 1-10
19 RoBERTa Wikipedia2Vec emb concat() 0.21 0.15 0.17 1-14, 17, 18
20 RoBERTa Wikipedia2Vec emb prod() 0.19 0.14 0.16 1-14, 17, 18

To address RQ 4.2 for the classification task, Table 4.9 presents the results obtained on
the CLEF CheckThat! 2019 dataset, and Table 4.10 presents the results on the 2021 tweets
dataset. For the ranking task, Tables 4.11 and 4.12 present the results obtained from the
CLEF CheckThat! 2019 dataset, and the 2021 tweet dataset, respectively.

Firstly, from Table 4.9, we note that the F1 performance of the SVM classifier is improved
by adding the entity similarity scores using similarity() (row 2 vs row 1). Similarly, con-
catenating entity representation −−→epair (either by −−→epair = emb prod(−→eh ,−→et ), or by −−→epair =

emb concat(−→eh ,−→et ), presented in Secion 4.2.2) with language representation −→x also im-
proves the SVM classifier’s performance (rows 3, 4 vs. row 1), using the 2019 dataset, in
terms of precision, recall and F1 compared to SVM(TF.IDF) without entity information.
Next, we observe that all of the neural language models (i.e., BiLSTM+att, BERT, ALBERT,
RoBERTa) also exhibit a significantly improved F1 when combined with entity embeddings
(rows 7 & 8 vs. 5; rows 11 & 12 vs. 9; rows 15 & 16 vs. 13; rows 19 & 20 vs 17). On the
contrary, even though we do observe an improvement when the neural models are combined
with entity similarities (row 6 vs. 5; row 10 vs. 9, row 14 vs. 13; row 18 vs. 17), the improve-
ment is not significant. Moreover, combining the neural models with the entity embedding
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Table 4.10: Classification performances on the CheckThat! 2021 Tweets dataset, alternating
language models LM() and entity embedding models KG(), and entity representation com-
bination models COM(). Bold indicates the best performance; Numbers in the Significance
column indicate that the model is significantly better than the numbered model (McNemar’s
Test, p<0.01).

# LM() KG() COM() P R F1 Significance
1 SVM(TF.IDF) - - 0.05 0.11 0.07 -
2 SVM(TF.IDF) Wikipedia2Vec similarity() 0.05 0.11 0.07 -
3 SVM(TF.IDF) Wikipedia2Vec emb concat() 0.08 0.16 0.10 1,2,4,5
4 SVM(TF.IDF) Wikipedia2Vec emb prod() 0.05 0.11 0.007 -
5 BiLSTM+att - - 0.05 0.11 0.07 -
6 BiLSTM+att Wikipedia2Vec similarity() 0.10 0.21 0.13 1-5, 9,13,17
7 BiLSTM+att Wikipedia2Vec emb concat() 0.10 0.21 0.14 1-5, 9,13,17
8 BiLSTM+att Wikipedia2Vec emb prod() 0.10 0.21 0.14 1-5, 9,13,17
9 BERT - - 0.08 0.16 0.10 1,2,4,5

10 BERT Wikipedia2Vec similarity() 0.10 0.21 0.13 1-5, 9,13,17
11 BERT Wikipedia2Vec emb concat() 0.11 0.21 0.14 1-6, 9,10,13,17
12 BERT Wikipedia2Vec emb prod() 0.11 0.21 0.14 1-6, 9,10,13,17
13 ALBERT - - 0.08 0.16 0.11 1-5
14 ALBERT Wikipedia2Vec similarity() 0.11 0.21 0.14 1-6, 9,10,13,17
15 ALBERT Wikipedia2Vec emb concat() 0.11 0.21 0.14 1-6, 9,10,13,17
16 ALBERT Wikipedia2Vec emb prod() 0.11 0.21 0.14 1-6, 9,10,13,17
17 RoBERTa - - 0.09 0.16 0.11 1-5
18 RoBERTa Wikipedia2Vec similarity() 0.11 0.21 0.14 1-6, 9,10,13,17
19 RoBERTa Wikipedia2Vec emb concat() 0.11 0.21 0.14 1-6, 9,10,13,17
20 RoBERTa Wikipedia2Vec emb prod() 0.11 0.21 0.14 1-6, 9,10,13,17
21 BERTweet - - 0.16 0.47 0.23 1-20
22 BERTweet Wikipedia2Vec similarity() 0.16 0.53 0.25 1-21
23 BERTweet Wikipedia2Vec emb concat() 0.18 0.58 0.27 1-22,24
24 BERTweet Wikipedia2Vec emb prod() 0.16 0.53 0.25 1-21

information (using either of the entity combination methods) significantly outperforms the
corresponding language model combined with entity similarity scores. Indeed, our proposed
entity-assisted ALBERT classifier using the emb concat() method (row 16) attains the high-
est overall classification performance (an F1 score of 0.18). Table 4.9 further shows that
almost all neural models with all types of entity embeddings outperform the corresponding
language models alone, in terms of F1.

Table 4.10 shows similar results on classifying check-worthy tweets. Specifically, the F1
performance of all language models improved when the language models are combined with
entity representations (rows 2-4 vs. 1; rows 6-8 vs. 5; rows 10-12 vs. 9; rows 14-16 vs. 13;
rows 18-20 vs. 17; and rows 22-24 vs. 21). We note that representing entities as embeddings
improve upon using the similarity scores significantly only when the language models are
one of the SVM(TF.IDF) (row 3 vs. 2), BERT (row 11 vs. 10), and BERTweet (row 23 vs. 22)
models. Thus, we conclude that the entity information can indeed improve the classification
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performance in the identification of check-worthy sentences.

Turning to the ranking task, in Table 4.11, we observe that the use of entities (i.e., similarity(),
emb concat(), and emb prod(), presented in Section 4.2.2 and Equation (4.5)), enhances
most of the approaches: the effectiveness of the SVM(TF.IDF) model is enhanced on MAP,
P@1, and P@10. On the other hand, while BiLSTM+att is enhanced for MRR and P@1,
when combined with , the MAP performances are damaged by the any type of entity infor-
mation (rows 6-8 vs. 5). Finally, the BERT-related models (i.e., BERT, ALBERT, RoBERTa)
are enhanced by all three types of entity information, regardless of the entity embedding
combination model used, in terms of MAP, MRR, and P@1 (rows 10-12 vs. 9; rows 14-16
vs. 13; rows 18-20 vs. 17). When tested on the 2021 tweets dataset, Table 4.12 shows that all
types of entities information enhanced the language models’ performance, regardless of the
entity combination model, while BERTweet together with the emb concat() method obtained
the best performance on all metrics. Thus, we conclude that entity embeddings can consis-
tently enhance the BiLSTM+att models for ranking sentences and tweets on high precision
metrics such as MRR and P@1, as well as enhance the SVM(TF.IDF) and neural language
models (i.e., BERT, ALBERT, RoBERTa, and BERTweet) across all the evaluation metrics.

Therefore, in response to RQ 4.2, we conclude that using entity embeddings – regardless
of the KG embedding model – does help to improve the BERT-related language models’
performance, on both precision and recall for the classification task, and on MAP, MRR and
P@1 for the ranking tasks.

Table 4.11: Ranking performances on the CheckThat! 2019 dataset, alternating language
models LM() and entity embedding models KG(), and entity representation combination
models COM(). Bold indicates the best performance.

# LM() KG() COM() MAP MRR P@1 P@5 P@10 P@20 P@50
CLEF’2019 CheckThat! Experimental results

1 SVM(TF.IDF) - - 0.1193 0.3513 0.1429 0.2571 0.1571 0.1714 0.1086
2 SVM(TF.IDF) Wikepedia2Vec similarity() 0.1263 0.3254 0.2857 0.2000 0.2000 0.1286 0.0915
3 SVM(TF.IDF) Wikepedia2Vec emb concat() 0.1332 0.3361 0.3254 0.2000 0.2000 0.1286 0.0915
4 SVM(TF.IDF) Wikepedia2Vec emb prod() 0.1332 0.3361 0.3254 0.2000 0.2000 0.1286 0.0915
5 BiLSTM+att - - 0.1453 0.2432 0.1429 0.1429 0.1429 0.1857 0.1343
6 BiLSTM+att Wikepedia2Vec similarity() 0.0715 0.2857 0.2432 0.1429 0.1286 0.0714 0.0314
7 BiLSTM+att Wikepedia2Vec emb concat() 0.0659 0.3361 0.2857 0.1429 0.1429 0.0714 0.0314
8 BiLSTM+att Wikepedia2Vec emb prod() 0.0659 0.3158 0.2000 0.1429 0.1286 0.0714 0.0714
9 BERT - - 0.0715 0.2257 0.1429 0.2000 0.1286 0.0857 0.0600

10 BERT Wikepedia2Vec similarity() 0.0826 0.3158 0.3098 0.2000 0.1286 0.0929 0.0600
11 BERT Wikepedia2Vec emb concat() 0.1011 0.6196 0.3361 0.1714 0.1429 0.0929 0.0686
12 BERT Wikepedia2Vec emb prod() 0.0826 0.3361 0.3361 0.1429 0.1429 0.0929 0.0929
13 ALBERT - - 0.1332 0.4176 0.3098 0.2000 0.1429 0.1286 0.0929
14 ALBERT Wikepedia2Vec similarity() 0.1453 0.4176 0.3361 0.2286 0.2000 0.1286 0.1286
15 ALBERT Wikepedia2Vec emb concat() 0.1580 0.6196 0.3098 0.2857 0.2571 0.2286 0.2286
16 ALBERT Wikepedia2Vec emb prod() 0.1332 0.4187 0.3361 0.2571 0.2571 0.2000 0.1286
17 RoBERTa - - 0.1011 0.3158 0.2286 0.2000 0.1429 0.1286 0.0929
18 RoBERTa Wikepedia2Vec similarity() 0.1263 0.4176 0.3361 0.2286 0.2000 0.1286 0.0929
19 RoBERTa Wikepedia2Vec emb concat() 0.1453 0.4176 0.3361 0.2857 0.2571 0.2000 0.2286
20 RoBERTa Wikepedia2Vec emb prod() 0.1332 0.4187 0.3361 0.2571 0.2000 0.2000 0.1286
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Table 4.12: Ranking performances on the CheckThat! 2021 Tweets dataset, alternating lan-
guage models LM() and entity embedding models KG(), and entity representation combi-
nation models COM(). Bold indicates the best performance.

# LM() KG() COM() MAP MRR P@1 P@5 P@10 P@20 P@50
CLEF’2019 CheckThat! Experimental results

1 SVM(TF.IDF) - - 0.0608 0.1111 0.0000 0.0000 0.1000 0.0500 0.0400
2 SVM(TF.IDF) Wikepedia2Vec similarity() 0.0658 0.1429 0.0000 0.0000 0.1000 0.0500 0.0400
3 SVM(TF.IDF) Wikepedia2Vec emb concat() 0.0635 0.1429 0.0000 0.0100 0.1000 0.0500 0.0400
4 SVM(TF.IDF) Wikepedia2Vec emb prod() 0.0846 0.5000 0.0000 0.2000 0.1000 0.0500 0.0400
5 BiLSTM+att - - 0.0635 0.1429 0.0000 0.0100 0.1000 0.0500 0.0400
6 BiLSTM+att Wikepedia2Vec similarity() 0.1402 0.5000 0.0000 0.4000 0.3000 0.1500 0.0800
7 BiLSTM+att Wikepedia2Vec emb concat() 0.1149 0.5000 0.0000 0.2000 0.2000 0.1500 0.0800
8 BiLSTM+att Wikepedia2Vec emb prod() 0.1147 0.5000 0.0000 0.2000 0.2000 0.1500 0.0800
9 BERT - - 0.0757 0.1429 0.0000 0.0000 0.1000 0.1000 0.6000

10 BERT Wikepedia2Vec similarity() 0.1317 0.5000 0.0000 0.4000 0.3000 0.1500 0.0800
11 BERT Wikepedia2Vec emb concat() 0.1813 1.0000 1.0000 0.6000 0.3000 0.1500 0.0800
12 BERT Wikepedia2Vec emb prod() 0.1550 0.5000 0.0000 0.6000 0.3000 0.1500 0.0800
13 ALBERT - - 0.0777 0.1429 0.0000 0.0000 0.1000 0.1000 0.0600
14 ALBERT Wikepedia2Vec similarity() 0.1556 0.5000 0.0000 0.6000 0.3000 0.1500 0.0800
15 ALBERT Wikepedia2Vec emb concat() 0.1823 1.0000 1.0000 0.6000 0.3000 0.1500 0.0800
16 ALBERT Wikepedia2Vec emb prod() 0.1816 1.0000 1.0000 0.6000 0.3000 0.1500 0.0800
17 RoBERTa - - 0.0806 0.1429 0.0000 0.0000 0.2000 0.1000 0.0600
18 RoBERTa Wikepedia2Vec similarity() 0.1638 1.0000 1.0000 0.0400 0.3000 0.1500 0.0800
19 RoBERTa Wikepedia2Vec emb concat() 0.2182 1.0000 1.0000 0.0600 0.4000 0.2000 0.0800
20 RoBERTa Wikepedia2Vec emb prod() 0.1997 1.0000 1.0000 0.0600 0.3000 0.1500 0.0800
21 BERTweet - - 0.1326 0.5000 0.0000 0.2000 0.1000 0.1500 0.1800
22 BERTweet Wikepedia2Vec similarity() 0.3124 1.0000 1.0000 0.6000 0.3000 0.3000 0.2000
23 BERTweet Wikepedia2Vec emb concat() 0.3268 1.0000 1.0000 0.8000 0.4000 0.3500 0.2200
24 BERTweet Wikepedia2Vec emb prod() 0.2495 0.5000 0.0000 0.6000 0.3000 0.3000 0.2000

4.4.3 RQ 4.3: Entity Representation

RQ 4.3 identifies the most effective combination method,COM() ∈ {emb prod, emb concat},
in improving the performance of text representations at identifying check-worthy sentences/tweets.
This research question addresses Limitation G2, which concerns tailoring entity embed-
dings to better assist language models. To address RQ 4.3, we use Table 4.9 and Table 4.10
for the classification task, and Table 4.11 and 4.12 for the ranking task.

When considering identifying check-worthy sentences as a classification task, Table 4.9
shows that all of the SVM(TF.IDF) and BERT-related language models are significantly
improved when combined with entity embeddings, over the language models alone or with
entity similarities. Similarly, on the identifying check-worthy tweets task, Table 4.10 shows
that all language models are significantly improved when combined with entity embeddings,
while emb concat() only significantly outperforms the similarity() model on SVM(TF.IDF)
model, BERT, and Tweet model. Meanwhile, from both Table 4.9 and 4.10, we observe
that using emb concat() only marginally outperforms emb prod(), without significant differ-
ences (row 3 vs. 4, row 7 vs. 8, row 11 vs. 12, row 15 vs. 16, row 19 vs. 20 in Table 4.9;
row 3 vs. 4, row 7 vs. 8, row 11 vs. 12, row 15 vs. 16, row 19 vs. 20, and row 23 vs. 24 in
Table 4.10).

Next, when considering the ranking task, Table 4.11 shows that the BiLSTM+att, and BERT-
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related languages models all exhibit improved MRR and P@1 when combined with entity
embeddings using the concatenation method, outperforming the entity similarity method us-
ing similarity() (rows 3 & 4 vs. 2; 7 & 8 vs. 6; 11 & 12 vs. 10; rows 15 & 16 vs. 14;
rows 19 & 20 vs. row 18). In terms of the entity representation methods for the embedded
entities, emb concat() and emb prod() perform similarly for SVM and BiLST+att (rows 3
& 4, rows 7 & 8). However, for the BERT models emb concat() exhibits an 84% increase
over emb prod() (row 11 vs. 12). When combining the embedded entities with ALBERT
and RoBERTa, we also observe that emb concat() consistently exhibits a performance in-
crease over emb prod() (row 15 vs. 16; row 19 vs. 20). When tested on the CLEF Check-
That! 2021 dataset, Table 4.12 shows that all language models are markedly enhanced when
combined with entity embedding models, compared to using the respective language model
alone. Moreover, emb concat() outperforms emb prod() on all BERT-related language mod-
els (row 7 vs. 8,;row 11 vs. 12; row 15 vs. 16; row 19 vs. 20; row 23 vs. 24). When combined
with SVM(TF.IDF), emb prod() also outperforms emb concat(). Thus, we conclude that for
the ranking task, the emb concat() model is more effective than emb-prob, and both embed-
ding methods are more effective than the entity similarity baseline using similarity() (rows
2, 6, 10, 14, 18 in Table 4.11 and rows 2, 6, 10, 14, 18, 22 in Table 4.12).

Overall, in answer to RQ 4.3, we conclude that using embedding entities obtained from
the KG embedding models, regardless of the representation method, improves all three
BERT-based language representations better than the entity similarity information using
similarity(), with emb concat() exhibiting the highest effectiveness on both for the classi-
fication task (using the CheckThat! 2019 and 2021 dataset) and the ranking task (using the
CheckThat! 2019, 2020, & 2021 datasets).

4.4.4 RQ 4.4: KG Embedding Model

RQ 4.4 identifies the most effective KG embedding model KG() among Wikipedia2Vec,
TransE, TransR, RESCAL, DISTMult, and ComplEx in assisting the language models to
identify check-worthy claims. This research question addresses Limitation G3, which con-
cerns finding the most suitable entity embedding model for the check-worthy sentences and
tweets task. To address RQ 4.4, Tables 4.13 and 4.14 present the classification results ob-
tained on the CLEF CheckThat! 2019 dataset and on the 2021 tweets dataset, respectively;
while Tables 4.15 and 4.16 present results on the ranking task, on the CLEF CheckThat!
2019 dataset and on the 2021 tweet dataset, respectively.

Table 4.13 shows the results obtained by combining different KG entity embedding models
with the various language representations for the classification task on the 2019 dataset.
We observe that ComplEx does not significantly outperform Wikipedia2Vec when com-
bined with SVM(TF.IDF) (row 6 vs. 1), but consistently and significantly outperforms
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Table 4.13: Classification performances on the CheckThat! 2019 dataset, using emb concat()
as entity representation combination method, while alternating language models LM() and
entity embedding models KG(). Bold indicates the best performance; Numbers in the Sig-
nificance column indicate that the model is significantly better than the numbered model
(McNemar’s Test, p<0.01).

# LM() KG() P R F1 Significance
1 SVM(TF.IDF) Wikipedia2Vec 0.06 0.05 0.05 -
2 SVM(TF.IDF) TransE 0.06 0.05 0.05 -
3 SVM(TF.IDF) TransR 0.06 0.05 0.05 -
4 SVM(TF.IDF) RESCAL 0.06 0.05 0.05 -
5 SVM(TF.IDF) DistMult 0.07 0.05 0.06 -
6 SVM(TF.IDF) ComplEx 0.07 0.05 0.06 -
7 BiLSTM+att Wikipedia2Vec 0.13 0.10 0.11 1-6
8 BiLSTM+att TransE 0.11 0.08 0.09 1-6
9 BiLSTM+att TransR 0.12 0.08 0.09 1-6

10 BiLSTM+att RESCAL 0.12 0.08 0.10 1-6,8,9
11 BiLSTM+att DistMult 0.13 0.12 0.12 1-10
12 BiLSTM+att ComplEx 0.14 0.13 0.13 1-10
13 BERT Wikipedia2Vec 0.19 0.11 0.14 1-11
14 BERT TransE 0.19 0.10 0.13 1-11
15 BERT TransR 0.19 0.11 0.14 1-11
16 BERT RESCAL 0.19 0.11 0.14 1-11
17 BERT DistMult 0.19 0.12 0.15 1-16
18 BERT ComplEx 0.20 0.13 0.15 1-16
19 ALBERT Wikipedia2Vec 0.22 0.15 0.18 1-18
20 ALBERT TransE 0.22 0.14 0.17 1-18
21 ALBERT TransR 0.23 0.14 0.18 1-18
22 ALBERT RESCAL 0.24 0.15 0.19 1-21, 25-28
23 ALBERT DistMult 0.24 0.15 0.19 1-21, 25-28
24 ALBERT ComplEx 0.25 0.16 0.20 1-22, 25-30
25 RoBERTa Wikipedia2Vec 0.21 0.15 0.17 1-18
26 RoBERTa TransE 0.21 0.14 0.16 1-18
27 RoBERTa TransR 0.21 0.15 0.17 1-18
28 RoBERTa RESCAL 0.20 0.14 0.16 1-18
29 RoBERTa DistMult 0.23 0.15 0.18 1-18, 25-28
30 RoBERTa ComplEx 0.24 0.14 0.18 1-18 25-28

Wikipedia2Vec, TransE, TransR and RESCAL (row 12 vs. rows 7-10; row 18 vs. 13-16;
row 24 vs. 19-21; row 30 vs. 25-28) for all the neural language representation models we
use. However, while ComplEx does not significantly outperform DistMult, across all lan-
guage representation models, it does exhibit an average of 1% absolute improvement in F1
over the DistMul KG embeddings (see row 12 vs. 11, row 18 vs. 17, row 24 vs. 23, row 30
vs. 29). The results are expected, given previous reported results in the literature [180, 195],
since ComplEx and DistMult indeed outperform other KG embedding models on the link
prediction task. Similarly, Table 4.14 shows the results of a combination of the KG embed-
ding models with the language models, for the classification task on the 2021 tweets dataset.
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Table 4.14: Classification performances on the CheckThat! 2021 tweets dataset, using
emb concat() as entity representation combination method, while alternating language mod-
els LM() and entity embedding models KG(). Bold indicates the best performance; Num-
bers in the Significance column indicate that the model is significantly better than the num-
bered model (McNemar’s Test, p<0.01).

# LM() KG() P R F1 Significance
1 SVM(TF.IDF) Wikipedia2Vec 0.08 0.16 0.10 -
2 SVM(TF.IDF) TransE 0.08 0.16 0.10 -
3 SVM(TF.IDF) TransR 0.07 0.16 0.11 -
4 SVM(TF.IDF) RESCAL 0.08 0.16 0.11 -
5 SVM(TF.IDF) DistMult 0.08 0.16 0.11 -
6 SVM(TF.IDF) ComplEx 0.08 0.16 0.11 -
7 BiLSTM+att Wikipedia2Vec 0.10 0.21 0.13 1-6
8 BiLSTM+att TransE 0.10 0.21 0.14 1-6
9 BiLSTM+att TransR 0.10 0.21 0.14 1-6

10 BiLSTM+att RESCAL 0.11 0.21 0.14 1-6
11 BiLSTM+att DistMult 0.11 0.21 0.14 1-6
12 BiLSTM+att ComplEx 0.12 0.26 0.17 1-11, 13,19,25
13 BERT Wikipedia2Vec 0.10 0.21 0.13 1-6
14 BERT TransE 0.10 0.21 0.14 1-6
15 BERT TransR 0.11 0.21 0.14 1-6
16 BERT RESCAL 0.12 0.26 0.17 1-11,13-15, 19,25
17 BERT DistMult 0.13 0.26 0.17 1-11,13-15, 19,25
18 BERT ComplEx 0.13 0.32 0.18 1-11,13-17, 19,25
19 ALBERT Wikipedia2Vec 0.11 0.21 0.14 1-6
20 ALBERT TransE 0.12 0.26 0.17 1-11,13-15, 19,25
21 ALBERT TransR 0.13 0.26 0.17 1-11,13-15, 19,25
22 ALBERT RESCAL 0.13 0.32 0.18 1-11,13-17, 19-21,25
23 ALBERT DistMult 0.13 0.32 0.18 1-11,13-17, 19-21,25
24 ALBERT ComplEx 0.14 0.32 0.19 1-23
25 RoBERTa Wikipedia2Vec 0.11 0.21 0.14 1-6
26 RoBERTa TransE 0.12 0.26 0.17 1-11,13-15, 19,25
27 RoBERTa TransR 0.12 0.26 0.17 1-11,13-15, 19,25
28 RoBERTa RESCAL 0.12 0.32 0.17 1-11,13-15, 19,25
29 RoBERTa DistMult 0.13 0.32 0.18 1-11,13-17, 19-21,25
30 RoBERTa ComplEx 0.13 0.32 0.18 1-11,13-17, 19-21,25
31 BERTweet Wikipedia2Vec 0.18 0.58 0.27 1-30
32 BERTweet TransE 0.17 0.58 0.26 1-30
33 BERTweet TransR 0.18 0.58 0.27 1-30
34 BERTweet RESCAL 0.17 0.63 0.27 1-33
35 BERTweet DistMult 0.18 0.63 0.28 1-33
36 BERTweet ComplEx 0.18 0.63 0.28 1-33

We observe that when combined with SVM(TF.IDF), different KG embedding models do
not perform significantly (McNemar’s Test, p<0.01) differently from each other (rows 1-
6). When combined with BERTweet, DistMult and ComplEx outperform Wikipedia2Vec,
TransE, TransR and RESCAL (rows 35 & 36 vs. rows 31-34), and obtain the equal best
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Table 4.15: Ranking performances on the CheckThat! 2019 dataset, using emb concat()
as entity representation combination method, while alternating language models LM() and
entity embedding models KG(). Bold indicates the best performance.

# LM() KG() MAP MRR P@1 P@5 P@10 P@20 P@50
1 SVM(TF.IDF) Wikepedia2Vec 0.1332 0.3361 0.3254 0.2000 0.2000 0.1286 0.0915
2 SVM(TF.IDF) TransE 0.1332 0.3361 0.3254 0.2000 0.2000 0.1286 0.0915
3 SVM(TF.IDF) TransR 0.1263 0.5714 0.2857 0.1714 0.1429 0.0929 0.0929
4 SVM(TF.IDF) RESCAL 0.1453 0.4176 0.3361 0.2857 0.2571 0.2000 0.2286
5 SVM(TF.IDF) DISTMult 0.1453 0.3158 0.2857 0.2857 0.2000 0.2286 0.2000
6 SVM(TF.IDF) ComplEx 0.1496 0.4187 0.3098 0.2857 0.2571 0.2000 0.1286
7 BiLSTM+att Wikepedia2Vec 0.0659 0.3361 0.2857 0.1429 0.1429 0.0714 0.0314
8 BiLSTM+att TransE 0.0659 0.3158 0.2857 0.1429 0.1429 0.1429 0.0714
9 BiLSTM+att TransR 0.0715 0.3158 0.2432 0.1429 0.1286 0.0714 0.0314

10 BiLSTM+att RESCAL 0.0659 0.3361 0.2857 0.1429 0.1429 0.0714 0.0314
11 BiLSTM+att DISTMult 0.0659 0.3158 0.2000 0.1429 0.1429 0.1286 0.0714
12 BiLSTM+att ComplEx 0.0715 0.2257 0.1286 0.1429 0.1429 0.1857 0.1343
13 BERT Wikepedia2Vec 0.1011 0.6196 0.3361 0.1714 0.1429 0.0929 0.0686
14 BERT TransE 0.1011 0.5714 0.3098 0.2000 0.1714 0.1286 0.0929
15 BERT TransR 0.1011 0.6196 0.3098 0.1714 0.0929 0.0929 0.0686
16 BERT RESCAL 0.1263 0.5714 0.2857 0.1714 0.1429 0.0929 0.0929
17 BERT DISTMult 0.1263 0.6196 0.3098 0.2571 0.1429 0.0929 0.0929
18 BERT ComplEx 0.1453 0.6196 0.3361 0.2857 0.1714 0.1286 0.0929
19 ALBERT Wikepedia2Vec 0.1580 0.6196 0.3098 0.2857 0.2571 0.2286 0.2286
20 ALBERT TransE 0.1332 0.4176 0.3361 0.1429 0.1429 0.1286 0.0929
21 ALBERT TransR 0.1263 0.3158 0.3098 0.2000 0.2286 0.1286 0.0929
22 ALBERT RESCAL 0.1332 0.5714 0.3098 0.2286 0.2000 0.1286 0.0929
23 ALBERT DISTMult 0.1580 0.4176 0.2857 0.2000 0.1429 0.1429 0.0929
24 ALBERT ComplEx 0.1821 0.6196 0.3361 0.3098 0.2857 0.2571 0.1286
25 RoBERTa Wikepedia2Vec 0.1453 0.4176 0.3361 0.2857 0.2571 0.2000 0.2286
26 RoBERTa TransE 0.1332 0.4176 0.2857 0.2571 0.2000 0.2000 0.1286
27 RoBERTa TransR 0.1263 0.4176 0.2000 0.2857 0.2000 0.2286 0.2000
28 RoBERTa RESCAL 0.1453 0.3158 0.2857 0.2857 0.2000 0.2286 0.2000
29 RoBERTa DISTMult 0.1496 0.4187 0.3098 0.2857 0.2571 0.2000 0.1286
30 RoBERTa ComplEx 0.1660 0.5714 0.3361 0.3098 0.2000 0.2571 0.2286

performances among all the language models and KG embedding combinations. For the
BiLSTM+att, BERT, ALBERT, and RoBERTa language models, the ComplEx model signif-
icantly outperforms all other KG entity embeddings (rows 7-11 vs. 12; rows 13-17 vs. 18;
rows 19-23 vs. 24; and rows 25-29 vs. 30).

For the ranking task, Table 4.15 shows that ALBERT + ComplEx achieves the best perfor-
mance among our experiments, obtaining 0.1821, a tie with the best performing run in the
official leaderboard, on the 2019 dataset. Moreover, it also shows that ALBERT + Com-
plEx obtains the highest MAP in the 2020 dataset among all the models we tested, as well
as the models in the leaderboard[34]. Under further investigation, we found that ALBERT
+ ComplEx successfully identified the single check-worthy sentence within one debate of
the test set, and therefore obtained the highest improvement on MAP. For the ranking task
on the 2021 dataset, Table 4.16 shows that BERTweet + ComplEx achieves the best perfor-
mance among our experiments, obtaining 0.3681 (row 36), a remarkable improvement over
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Table 4.16: Ranking performances on the CheckThat! 2021 Tweets dataset, using
emb concat() as entity representation combination method, while alternating language mod-
els LM() and entity embedding models KG(). Bold indicates the best performance.

# LM() KG() MAP MRR P@1 P@5 P@10 P@20 P@50
1 SVM(TF.IDF) Wikepedia2Vec 0.0635 0.1429 0.0000 0.0100 0.1000 0.0500 0.0400
2 SVM(TF.IDF) TransE 0.1147 0.5000 0.0000 0.2000 0.3000 0.1000 0.0600
3 SVM(TF.IDF) TransR 0.1203 0.5000 0.0000 0.2000 0.3000 0.1500 0.0600
4 SVM(TF.IDF) RESCAL 0.1205 0.5000 0.0000 0.2000 0.3000 0.1500 0.0600
5 SVM(TF.IDF) DISTMult 0.1295 0.5000 0.0000 0.4000 0.3000 0.1500 0.0600
6 SVM(TF.IDF) ComplEx 0.1824 1.0000 1.0000 0.4000 0.3000 0.1500 0.0600
7 BiLSTM+att Wikepedia2Vec 0.1149 0.5000 0.0000 0.2000 0.2000 0.1500 0.0800
8 BiLSTM+att TransE 0.1215 0.3333 0.0000 0.2000 0.3000 0.1500 0.1000
9 BiLSTM+att TransR 0.1303 0.5000 0.0000 0.2000 0.3000 0.1500 0.100

10 BiLSTM+att RESCAL 0.1391 0.5000 0.0000 0.4000 0.3000 0.1500 0.1000
11 BiLSTM+att DISTMult 0.1654 1.0000 1.0000 0.4000 0.3000 0.1500 0.1000
12 BiLSTM+att ComplEx 0.2015 0.5000 0.0000 0.6000 0.5000 0.2500 0.1000
13 BERT Wikepedia2Vec 0.1813 1.0000 1.0000 0.6000 0.3000 0.1500 0.0800
14 BERT TransE 0.2030 1.0000 1.0000 0.4000 0.3000 0.2000 0.1000
15 BERT TransR 0.2034 1.0000 1.0000 0.4000 0.3000 0.2000 0.1000
16 BERT RESCAL 0.2197 1.0000 1.0000 0.4000 0.4000 0.2500 0.1000
17 BERT DISTMult 0.2550 1.0000 1.0000 0.6000 0.4000 0.2500 0.1000
18 BERT ComplEx 0.2614 1.0000 1.0000 0.6000 0.4000 0.2500 0.1000
19 ALBERT Wikepedia2Vec 0.1823 1.0000 1.0000 0.6000 0.3000 0.1500 0.0800
20 ALBERT TransE 0.2486 1.0000 1.0000 0.6000 0.4000 0.2000 0.1000
21 ALBERT TransR 0.2493 1.0000 1.0000 0.6000 0.4000 0.2000 0.1000
22 ALBERT RESCAL 0.2836 1.0000 1.0000 0.6000 0.4000 0.3000 0.1200
23 ALBERT DISTMult 0.2839 1.0000 1.0000 0.6000 0.4000 0.3000 0.1200
24 ALBERT ComplEx 0.2887 1.0000 1.0000 0.6000 0.5000 0.3000 0.1200
25 RoBERTa Wikepedia2Vec 0.2182 1.0000 1.0000 0.0600 0.4000 0.2000 0.0800
26 RoBERTa TransE 0.2675 1.0000 1.0000 0.6000 0.4000 0.2500 0.1000
27 RoBERTa TransR 0.2680 1.0000 1.0000 0.6000 0.4000 0.2500 0.1000
28 RoBERTa RESCAL 0.2766 1.0000 1.0000 0.6000 0.4000 0.3000 0.1200
29 RoBERTa DISTMult 0.2742 1.0000 1.0000 0.0600 0.4000 0.2000 0.1000
30 RoBERTa ComplEx 0.2787 1.0000 1.0000 0.6000 0.4000 0.3000 0.1200
31 BERTweet Wikepedia2Vec 0.3268 1.0000 1.0000 0.8000 0.4000 0.3500 0.2200
32 BERTweet TransE 0.3660 1.0000 1.0000 0.6000 0.5000 0.3500 0.2200
33 BERTweet TransR 0.3584 1.0000 1.0000 0.6000 0.4000 0.3500 0.2200
34 BERTweet RESCAL 0.3578 1.0000 1.0000 0.4000 0.4000 0.2500 0.1000
35 BERTweet DISTMult 0.3607 1.0000 1.0000 0.6000 0.4000 0.3500 0.2200
36 BERTweet ComplEx 0.3681 1.0000 1.0000 0.6000 0.4000 0.3500 0.2400

the best performing run in the official leaderboard (row 32 in Table 4.8). This result suggests
that entities embeddings obtained from the ComplEx model can indeed help language model
identify the most check-worthy tweets. We further conducted a case study in order to un-
derstand why ComplEx can achieve the best performance consistently. Table 4.17 presents
2 cases where the ComplEx model togehter with the ALBERT language model successfully
identified the check-worthy sentences, while other entity embedding models did not. Upon
further investigation, we found that in these two cases, the two entities presented in the sen-
tences are not directly related to each other. We therefore postulate that ComplEx is able
to identify hidden relations between two weakly associated entities better than other entity
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embedding models.

Overall, we conclude that among all 6 KG embedding models we tested, ComplEx produces
consistently the highest performance.

Table 4.17: Two sentences that are correctly identified as check-worthy using ALBERT,
ComplEx entity embedding model, and emb concat() model, but are otherwise not identified.

Speaker Sentence Entity 1 Entity 2

Donald Trump
They want to take away your good health care, and es-
sentially use socialism to turn America into Venezuela and
Democrats want to totally open the borders.

Venezuela Democrat

Donald Trump

And one state said – you know, it was interesting, one of
the states we won, Wisconsin – I didn’t even realize this
until fairly recently – that was the one state Ronald Reagan
didn’t win when he ran the board his second time.

Wisconsin Ronald Reagan

4.4.5 Failure Analysis

In this section, we aim to identify the bottleneck of our model, on the task of check-worth
sentences identification.

Table 4.18 shows that there are different numbers of transcripts and check-worthy sentences
from different parties that participated in the debate. That is, check-worthy sentences from
interviews and speeches given by Trump make up as much as 60% of the total number of
check-worthy sentences. Moreover, we observe sentences from Democrat candidates are
classified more accurately, than sentences from Republic candidates. For example, our best
performing classification (ALBERT + ComplEx) achieves 0.31 on the Democratic debates,
which have a much higher number of entities detected per check-worth sentences (2.6), com-
pared to the 0.15 recall on Republican candidates, which have only 2 entities per check-
worthy sentence. Furthermore, transcripts considering Trump alone has only 1.16 entities on
average, with a recall of 0.11.

To illustrate where our system fails, Table 4.19 shows 6 sentences, with the number of iden-
tified entities from each sentence, and if the ALBERT + ComplEx classifier correctly iden-
tified the sentence as check-worthy. We observe that in three of false negative cases (row

Table 4.18: Descriptive analysis of the test set of 2020 dataset. Note, this table consist of only
check-worthy sentences (denoted as CW). The results we investigate here is obtained using
ALBERT language model, ComplEx entity embedding method, and emb comcat method.

debate type # of transcript # of cw cw/transcript # of entities/CW Recall (classification)
Democratic 4 26 6.5 2.62 0.31
Republican 1 7 7 2 0.15
Mixed 2 23 11.5 2.57 0.17
Trump alone 13 83 6.38 1.16 0.11
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Table 4.19: A selected cases of check-worthy sentences, the identified entities, and if AL-
BERT + ComplEx successfully identified it as check-worthy. Bold denotes the identified
entities.

Speaker Sentence
# of

entities
Predicted
correctly

Trump Trump was totally against the war in Iraq. 2 Y

Trump

But when you make your car or when you make your air condi-
tioner, and you think you’re going to fire all of our workers and
open up a new place in another country, and you’re going to come
through what will be a very strong border, which is already – you
see what’s happened; 61 percent down now in terms of illegal
people coming in.

1 N

Cruz Bernie helped write Obamacare. 2 Y

Cruz

There are many people in America struggling with exactly what
you are, in the wreckage of Obamacare, with skyrocketing pre-
miums, with deductibles that are unaffordable, and with really
limited care.

2 N

Clinton
Trump’s on record extensively supporting intervention in Libya,
when Gadhafi was threatening to massacre his population.

3 Y

Clinton
And I do think there is an agenda out there, supported by my
opponent, to do just that.

0 N

2,4, and 6), there are only less than or equal to 2 entities, whereas the correctly identified
check-worthy sentences have more than 2 entities. Therefore, we postulate that the number
of entities per sentence can indeed affect the performance of our proposed model.

4.4.6 Recap of Main Findings

In this section, we recap our main findings for RQs 4.1-4.4 and indicate the implications of
our study. Tables 4.20 and 4.21 summarise the performance of a salient subset of approaches
on the classification and ranking tasks, respectively.

For each language model, the summarising tables present results obtained using three con-
ditions: language model only; with entity pair representation using the Wikipedia2Vec KG
embedding model and using the emb concat() method; and with entity pair representation
using the ComplEx embedding and using the emb concat() method. We do not include
the emb prod() method in our summarising tables, as our results for RQ 4.3 showed that
emb concat() consistently outperforms emb prod() across the CheckThat! 2019 and 2020
datasets on both the classification and ranking tasks (see Section 4.4.3).

For the classification task (Table 4.20, on the 2019 and 2021 datasets), we highlight our con-
clusion from RQ 4.1 (see Section 4.4.1) that the ALBERT language model (rows 11 - 13)
significantly outperforms all other language models for check-worthy sentences classifica-
tion. For the check-worthy tweets classification task, BERTweet performs the best among all
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Table 4.20: Summary of classification performances on the CheckThat! 2019 and 2021
datasets. Bold indicates the best performance; Numbers in the column Significance indicate
that the model is significantly better than the numbered model (McNemar’s Test, p<0.01).

# LM() KG() COM() P R F1 Significance
CLEF’2019 CheckThat! results

1 Random Classifier - - 0.01 0.01 0.01 -
2 SVM(TF.IDF) - - 0.01 0.01 0.01 -
3 SVM(TF.IDF) Wikipedia2Vec emb concat() 0.06 0.05 0.05 1,2
4 SVM(TF.IDF) ComplEx emb concat() 0.07 0.05 0.06 1-2
5 BiLSTM+att - - 0.12 0.07 0.09 1-4
6 BiLSTM+att Wikipedia2Vec emb concat() 0.13 0.10 0.11 1-5
7 BiLSTM+att ComplEx emb concat() 0.14 0.13 0.13 1-6
8 BERT - - 0.12 0.09 0.10 1-5
9 BERT Wikipedia2Vec emb concat() 0.19 0.11 0.14 1-8

10 BERT ComplEx emb concat() 0.20 0.13 0.15 1-9
11 ALBERT - - 0.14 0.11 0.12 1-6,8
12 ALBERT Wikipedia2Vec emb concat() 0.22 0.15 0.18 1-10,13
13 ALBERT ComplEx emb concat() 0.25 0.16 0.20 1-12,14-16
14 RoBERTa - - 0.14 0.11 0.11 1-6,8
15 RoBERTa Wikipedia2Vec emb concat() 0.21 0.15 0.17 1-11,14
16 RoBERTa ComplEx emb concat() 0.24 0.14 0.18 1-12,14,15

CLEF’2021 CheckThat! results
17 Random Classifier - - 0.05 0.05 0.05 -
18 SVM(TF.IDF) - - 0.05 0.11 0.07 -
19 SVM(TF.IDF) Wikipedia2Vec emb concat() 0.08 0.16 0.105 1,2
20 SVM(TF.IDF) ComplEx emb concat() 0.08 0.16 0.11 1-2
21 BiLSTM+att - - 0.05 0.11 0.07 1-4
22 BiLSTM+att Wikipedia2Vec emb concat() 0.10 0.21 0.14 1-5
23 BiLSTM+att ComplEx emb concat() 0.12 0.26 0.17 1-6
24 BERT - - 0.08 0.16 0.10 1-5
25 BERT Wikipedia2Vec emb concat() 0.11 0.21 0.14 1-8
26 BERT ComplEx emb concat() 0.13 0.32 0.18 1-9
27 ALBERT - - 0.08 0.16 0.11 1-6,8
28 ALBERT Wikipedia2Vec emb concat() 0.11 0.21 0.148 1-10,13
29 ALBERT ComplEx emb concat() 0.14 0.32 0.19 1-12,14-16
30 RoBERTa - - 0.09 0.16 0.11 1-6,8
31 RoBERTa Wikipedia2Vec emb concat() 0.11 0.21 0.14 1-11,14
32 RoBERTa ComplEx emb concat() 0.13 0.32 0.18 1-12,14,15
33 BERTweet - - 0.16 0.47 0.23 1-6,8
34 BERTweet Wikipedia2Vec emb concat() 0.18 0.58 0.27 1-11,14
19 BERTweet ComplEx emb concat() 0.18 0.63 0.28 1-12,14,15

language models. We also confirm our conclusion from RQ 4.2 (see Section 4.4.2) that en-
tity embeddings improve the language models performance at identifying check-worthy sen-
tences (row 3 & 4 vs. 2, rows 6 & 7 vs. 5, rows 9 & 10 vs. 8, rows 12 & 13 vs. 11, rows 15 &
16 vs. 14). Finally, we reiterate our conclusion from RQ 4.4 (see Section 4.4.4) that the Com-
plEx embedding method (rows 4, 7, 10, 13 & 16) – which uses the facts-alone KG embedding
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Table 4.21: Summary of ranking performance on CLEF’ 2019, 2021, & 2020 CheckThat!
dataset. Bold denotes the best performance for a given measure in a given year.

# LM() KG() COM() MAP MRR P@1 P@5 P@10 P@20 P@50
Experimental Results using CLEF’2019 CheckThat! dataset

1 SVM(TF.IDF) - - 0.1193 0.3513 0.1429 0.2571 0.1571 0.1714 0.1086
2 SVM(TF.IDF) Wikepedia2Vec emb concat() 0.1332 0.3361 0.3254 0.2000 0.2000 0.1286 0.0915
3 SVM(TF.IDF) ComplEx emb prod() 0.1332 0.3158 0.3098 0.2000 0.2571 0.1429 0.0929
4 BiLSTM+att - - 0.1455 0.2432 0.1429 0.1429 0.1429 0.1857 0.1343
5 BiLSTM+att Wikepedia2Vec emb concat() 0.0659 0.3361 0.2857 0.1429 0.1429 0.0714 0.0314
6 BiLSTM+att ComplEx emb concat() 0.0715 0.2257 0.1286 0.1429 0.1429 0.1857 0.1343
7 BERT - - 0.0715 0.2257 0.1429 0.2000 0.1286 0.0857 0.0600
8 BERT Wikepedia2Vec emb concat() 0.1011 0.6196 0.3361 0.1714 0.1429 0.0929 0.0686
9 BERT ComplEx emb concat() 0.1011 0.6196 0.3361 0.2857 0.1714 0.1286 0.0929
10 ALBERT - - 0.1332 0.4176 0.3098 0.2000 0.1429 0.1286 0.0929
11 ALBERT Wikepedia2Vec emb concat() 0.1580 0.6196 0.3098 0.2857 0.2571 0.2286 0.2286
12 ALBERT ComplEx emb concat() 0.1821 0.6196 0.3361 0.3098 0.2857 0.2571 0.0929
13 RoBERTa - - 0.1011 0.3158 0.2286 0.2000 0.1429 0.1286 0.0929
14 RoBERTa Wikepedia2Vec emb concat() 0.1453 0.4176 0.3361 0.2857 0.2571 0.2000 0.2286
15 RoBERTa ComplEx emb concat() 0.1660 0.5174 0.3361 0.3098 0.2000 0.2571 0.2286

Experimental results using CLEF’2020 CheckThat! dataset
16 SVM(TF.IDF) - - 0.0946 0.1531 0.0000 0.0600 0.0400 0.0450 0.0240
17 SVM(TF.IDF) ComplEx emb concat() 0.0923 0.1170 0.0000 0.0200 0.0500 0.0675 0.0270
18 BiLSTM+att - - 0.0151 0.0320 0.0000 0.0100 0.0150 0.0075 0.0090
19 BiLSTM+att ComplEx emb concat() 0.0183 0.0320 0.0000 0.0200 0.0100 0.0100 0.0090
20 BERT - - 0.0262 0.0819 0.0500 0.0300 0.0250 0.0125 0.0110
21 BERT ComplEx emb concat() 0.0373 0.0819 0.0500 0.0500 0.0350 0.0175 0.0130
22 ALBERT - - 0.0537 0.2145 0.2000 0.0800 0.0500 0.0250 0.1600
23 ALBERT ComplEx emb concat() 0.1036 0.2644 0.2500 0.0900 0.0550 0.0275 0.0170
24 RoBERTa - - 0.0424 0.1315 0.1000 0.6000 0.0400 0.0200 0.1400
25 RoBERTa ComplEx emb concat() 0.0923 0.1814 0.1500 0.0700 0.0450 0.0225 0.0150

Experimental results using CLEF’2021 CheckThat! dataset
26 SVM(TF.IDF) - - 0.0608 0.1111 0.0000 0.0000 0.1000 0.0500 0.0400
27 SVM(TF.IDF) ComplEx emb concat() 0.1824 1.0000 1.0000 0.4000 0.3000 0.1500 0.0600
28 BiLSTM+att - - 0.0635 0.1429 0.0000 0.0100 0.1000 0.0500 0.04000
29 BiLSTM+att ComplEx emb concat() 0.2015 0.5000 0.0000 0.6000 0.5000 0.2500 0.1000
30 BERT - - 0.0757 0.1429 0.0000 0.0000 0.1000 0.1000 0.0600
31 BERT ComplEx emb concat() 0.2614 1.0000 1.0000 0.6000 0.4000 0.2500 0.1000
32 ALBERT - - 0.0777 0.1429 0.0000 0.0000 0.1000 0.1000 0.0600
33 ALBERT ComplEx emb concat() 0.2887 1.0000 1.0000 0.6000 0.5000 0.3000 0.1200
34 RoBERTa - - 0.0806 0.1429 0.0000 0.0000 0.2000 0.1000 0.0600
35 RoBERTa ComplEx emb concat() 0.2787 1.0000 1.0000 0.6000 0.4000 0.3000 0.1200
36 BERTweet - - 0.1326 0.5000 0.0000 0.2000 0.1000 0.1500 0.1800
37 BERTweet ComplEx emb concat() 0.3681 1.0000 1.0000 0.6000 0.4000 0.3500 0.2400

– significantly outperforms the semantic KG embedding method (i.e., Wikipedia2Vec, rows
3, 6, 9, 12 & 15).

For the ranking task (Table 4.21, on 2019, 2020 & 2021 datasets), we draw similar con-
clusions as for the classification task: the ALBERT language model (rows 10 - 12 for the
2019 dataset, rows 22 & 23 for the 2020 dataset) consistently outperforms all other language
models on ranking check-worthy sentences, and BERTweet outperforms all other language
models (including ALBERT) on ranking check-worthy tweets. The ComplEx embedding
model (rows 3, 6, 9, 12, 15 for the 2019 dataset, 17, 19, 21, 23, 25 for the 2020 dataset)
consistently outperforms all other KG embedding models. Moreover, ALBERT + ComplEx
+ emb concat() (row 11 for the 2019 dataset, row 20 for the 2020 dataset) obtains the best



CHAPTER 4. ASSESSING AND RANKING CHECK-WORTHINESS OF CLAIMS 79

performance among all tested models on ranking check-worthy sentences, while BERTweet
+ ComplEx + emb concat() performs the best on ranking check-worthy tweets.

Thus, we conclude that ALBERT + ComplEx + emb concat() can best identify and rank
check-worthy sentences in a given speech or debate transcript. On the other hand, BERTweet
+ ComplEx + emb concat() can best identify and rank check-worthy tweets among a sample
of tweets. In short, the findings of our study can thus be summarised as follows:

• In response to RQ 4.1, we conclude that deep neural language models help identify the
sentences/tweets that require further manual fact-checking;

• In response to RQ 4.2, we conclude that embedded entities within sentences/tweets
help identify the sentences/tweets that require further manual fact-checking;

• In response to RQ 4.3, we conclude that the most effective way to combine an entity
pair representation with a text representation is to concatenate the two vectors together;

• In response to RQ 4.4, we conclude that the tested facts-alone KG embedding models
perform better than tested semantic KG embedding method (i.e., Wikipedia2Vec). The
best performing KG embedding model in our study is the ComplEx model.

• Finally, failure analysis shows that the performance of our model is affected by the
number of entities present in the sentence.

4.5 Conclusions

In this chapter, we proposed a uniform model for the task of check-worthy sentence/tweet
identification in Section 4.2, formulated as either a classification or a ranking task. We
proposed to use BERT-related pre-trained language representations, and, in a novel manner,
integrated entity embeddings obtained from knowledge graphs into the classifier and ranker.
Our proposed model addressed several limitations we identified in Chapter 2. Namely, the
proposed model directly addressed Gap 2, where we aim to identify check-worthy tweets and
sentences, to fact-check only a subset of all the tweets circulation online. To answer RQ 4.1
and address Limitation L2, Section 4.4.1 concluded that in the specific task of identifying
check-worthy sentences/tweets, the most effective language model among our tested models
is ALBERT for sentence embedding and BERTweet for tweet embedding. To answer RQ 4.2
and RQ 4.3, and address the Limitation L1 & G2, in Sections 4.4.2 and 4.4.3 we concluded
that we have identified that entity embeddings can improve both classification and ranking
tasks, and the effective way to represent a pair of entities in a text is to concatenate two entity
embeddings together. To answer RQ 4.4. and address Limitation G3, in Section 4.4.4 we
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concluded that the KG embedding model ComplEx is the most effective entity embedding
model in the task of identifying check-worthy sentences/tweets.

In our thesis statement in Section 1.3, we hypothesised that analysing embedded entities
within sentences/claims or tweets can help language models to identify the check-worthy
ones more accurately, from tweet content, articles, and debate quotes. In this chapter, we
conclude that our model, which combines deep learning language models with embedded
entity representations in a novel manner, can achieve better performances in identifying
check-worthy sentences than using language models and handcrafted features alone (such
as syntactic dependence [69] and Standard Universal Sentence Encoder [52]). We note that
the aim of Task 1 is to identify check-worthy claims for further fact-checking, where only the
identified check-worthy sentences will be further fact-checked. Thus, higher P@K metrics
in the ranking task and higher Recall in the classification task is especially important. We
also note that our proposed model achieves better performances on sentences/claims/tweets
that contains more than 1 entities, where cautions should be paid to sentences without enti-
ties, when using our proposed entity assisted check-worthy detection model. Our extensive
experiments using three public datasets from the CLEF CheckThat! 2019, 2020 and 2021
Labs demonstrate that our proposed model – based on pre-trained language models – yields
state-of-the-art performances (especially in P@K metrics and Recall) in automatically iden-
tifying check-worthy sentences in political debates and speech transcripts, and check-worthy
tweets spreading or commenting on the current news.

In the next chapter, we focus on task 2 in our Tweets Fact-Checking (TFC) phase. Specifi-
cally, we aim to match check-worthy claims and news titles with existing fake news datasets,
in order to spot the easy to identify and recurring fake news, that are labelled as check-worthy
by the WCTR phase.
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Chapter 5

Assisting Fake News Detection using
an Existing Fake News Collection

5.1 Introduction

In the last chapter we presented experiments in relation to Phase 1 Task 1 of our proposed
framework FNDF, namely, how to identify check-worthy tweets and claims. With check-
worthy tweets and sentences identified, we enter the second phase of our framework: the fact-
checking phase. In this phase, we propose two tasks focusing on fake news detection, where
the first task (Phase 2 Task 2) focuses on analysing the semantics of fake news and aims
to detect recurrent fake news, while the second task (Phase 2 Task 3) focuses on identifying
fake news using Twitter user network features. This chapter focuses on Phase 2 Task 2 of our
proposed framework FNDF, and aims to tackle the task of effectively identifying recurrent
fake news.

Recall the thesis statement introduced in Section 1.3, where we hypothesised that we can
identify fake news by comparing a targeted claim/tweet with a set of previously debunked
fake news. In Section 2.4.2, we argued that some fake news can reappear on social me-
dia and news platforms after being debunked [150, 159], and presented research on using
existing fake news collection to identify recurring fake news. We also identified Gap 3 in
Section 2.4.4, which states that identifying fake news using existing fake news collections is
an important but understudied task for effectively detecting fake news circulating online.

The WSDM Cup 2019 Fake News Challenge aimed to address the task of identifying re-
current fake news. This challenge required researchers to develop models that are able to
predict if a given news title is agreeing with a previously debunked rumour. Inspired by
this challenge, we aim to identify recurrent fake news, by comparing tweets and news ar-
ticles with known fake news from existing fake news collections, to effectively identify al-
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ready debunked fake news. We note that this task is similar to natural language inference
(NLI) [18, 111] in natural language processing (NLP), where sentences are predicted to be
logically related or not. Similarly, we also draw parallels to the task of learning seman-
tic matching between queries and documents, where research [39, 197] have shown that a
classical BM25 document weighting model can improve the performance of using semantic
approaches alone.

Therefore, in this chapter, we argue that Gap 3 can be addressed by building upon recent
advances in language models for text processing, and combining the NLI task with semantic
matching models. Specifically, this chapter addresses the detailed Limitations L1 & L2
identified in Section 2.6.4. Limitation L1 states the need to identify the most suitable lan-
guage model in identifying recurring fake news. We address this limitation by comparing a
range of language models in the task of identifying recurring fake news. Our experiments
show that the BERT language model outperforms any other language model. Limitation
L2 states the need to combine language models with other types of features for better per-
formances in individual tasks, such as the identification of recurring fake news. We address
this limitation by combining a range of language models with the BM25 model, to build an
ensemble model that account for both the semantic meanings of the texts and the seman-
tic matching scores between the two texts. This is because the BM25 document weighting
model can improve the performance of using semantic approaches alone in the task of se-
mantic matching task [39, 197]. Our experiments show that an ensemble model of the BM25
score and the language representations indeed improve the performance of using a language
model alone, on using existing fake news datasets in detecting recurring fake news.

We test our proposed ensemble mode (BM25 + language model) on two datasets – the
WSDM 2019 Cup Fake News Challenge Chinese dataset and the MM-COVID English
dataset. Our experiments show that the BERT language model significantly outperforms
BiLSTM, which in-turn significantly outperforms a simpler embedding-based representa-
tion. Furthermore, we show that a simple BM25 feature can improve the state-of-the-art
BERT approach in identifying recurring fake news. Thus, in answering the hypothesis pre-
sented in the thesis statement in Section 1.3, we show that our proposed ensemble model of
the BM25 scores and language representations can accurately classify if a targeted check-
worthy claim is highly similar to any existing fake news, and thus identify it as a resurfaced
fake claim.

The rest of the chapter is structured as follows: Section 5.2 states the task problem, along
with our proposed model to address the task. We present our experimental setup in Sec-
tion 5.3, and discuss the results of the experiments in Section 5.4. Finally, we provide con-
cluding remarks in Section 5.5.
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5.2 Ensemble Model for Recurring Fake News Detec-

tion

Building upon the objective of Task 2 presented in Section 3.3.1, we describe the task we
aim to tackle, and introduce our proposed ensemble model in detail.

5.2.1 Recurring Fake News Detection Task (Phase 2 Task 2)

As highlighted in Section 5.1, this chapter aims to identify the relationship between a check-
worthy tweet, sentence, or news title and a debunked fake news. Table 5.1 presents the
notations (a subset of the notations defined in Table 3.1) we use in this chapter:

Table 5.1: Notations used in Chapter 5.

Notation Definition
Xcheckworthy The set of check-worthy claims identified from X
x A sentence or tweet
FN A collection of previously identified fake news
fn An identified fake news in the set of identified fake news FN

We define text a entails text b as text a can be inferred from text b, according to the definition
proposed by Dagan et. al. [35]. Specifically, if a tweet or sentence x entails any fn ∈ FN ,
we identify x as a recurring fake news. Thus, we define the task as Equation (3.11) introduced
in Section 3.3.2, and repeated below:

RecurringFNx =

1, if ∃ fn ∈ FN, fentail (x, fn) = agree

0, otherwise
(5.1)

In particular, given fn, a known fake news, and x that needs to be fact-checked, a classifier
fentail() should classify if x agrees (x talks about the same news as fn), disagrees (x refutes
the news in fn), or is unrelated1, to the fn, shown as follows:

fentail(x, fn)→ {unrelated, agree, disagree} (5.2)

Among these, the agree label indicates that x contains non-factual information that is similar
to fn, while the unrelated and disagreement relationships indicate that x is not a reappearing
fake news that is similar to fn, and may need to be further fact-checked. Moreover, the
decision of unrelated vs. (agree ‖ disagree) is equivalent to identifying relevance. We build

1We use these three class following the WSDM 2019 Cup Fake News Challenge dataset. In essence, these
three class are similar to the contradicts, entail, and neutral, widely used in the NLI tasks.
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upon standard text similarity approaches, as well as customised classifiers, to determine if
the model RecurringFNx() can make the agree vs. disagree decision more effectively than
using the language models alone.

Data
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Figure 5.1: The structure and components of our model.

5.2.2 Ensemble Model for Recurring Fake News Detection

Figure 5.1 illustrates an outline of our approach, in three steps: representing terms and titles;
similarity calculations; classifiers and ensembles. Note that one of the dataset this chapter
uses is the WSDM Cup 2019 Fake News Challenge dataset, which is in Chinese language.
We use character-level tokenisation to pre-process Chinese, because the Chinese language
does not naturally have word-wise tokens. Table 5.2 shows the combinations of various used
representations of terms and titles, similarity calculations and classifiers, leading to differ-
ent model instantiations. The table also lists the abbreviation names given to the resulting
models. For example, the BSC model uses the BERT approach to represent x and fn, the
subtraction similarity (discussed in detail in Section 5.2.2.2), and the CNN classifier. Note
that the ensemble models are not listed in Table 5.2, but are denoted as model abbr. + BM25.
We now introduce each step separately.

5.2.2.1 Text Representation

For the WSDM 2019 Cup Fake News Challenge dataset, which is in Mandarin Chinese, we
use a character-level segmentation method to transform each title into a series of tokens2.
For the MM-COVID dataset, which is in English, we omit the segmentation step.

For all datasets, we represent each title, tweet and claim as a vector, using a range of language
representation models (e.g, TF.IDF, BiLSTM, pre-trained BERT model). Thus, the textual

2Because we identified the character-level segmentation as the most effective in initial experiments.
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Table 5.2: Models and their components used in this work.

# Abbr. Term/Title rep. Similarity Classifier

1 BL Emb-Concat Cosine MLP (15 layers)
2 LR(BM25) TF.IDF BM25 LR
3 Emb-BiLSTM Emb-BiLSTM - SoftMax layer
4 ESM Emb-BiLSTM Subtraction MLP (2 layers)
5 ESC Emb-BiLSTM Subtraction CNN
6 ECM Emb-BiLSTM Cosine MLP (2 layers)
7 ECC Emb-BiLSTM Cosine CNN
8 BERT BERT - SoftMax layer
9 BSM BERT Subtraction MLP (2 layers)
10 BSC BERT Subtraction CNN
11 BCM BERT Cosine MLP (2 layers)
12 BCC BERT Cosine CNN

representations of the title, tweet and claim are obtained as such:

−→x = LanguageModel(x) (5.3)
−→
fn = LanguageModel(fn) (5.4)

5.2.2.2 Text Similarity

Using the text representations−→x and
−→
fn, we measure the similarity between x and fn using

the following three methods:

1. Cosine similarity (denoted as Cosine). Cosine similarity measures the angle be-
tween two representations, which represents the orientation of the subjects between
two text inputs [164]. The cosine similarity between x and fn is calculated as follows:

Sim(x, fn) = cos(θ) =
−→x ·
−→
fn

|−→x ||
−→
fn|

(5.5)

2. Vector Subtraction (denoted as Subtraction). As mentioned in Section 2.6.2, an
embedding model is able to capture the semantic information of terms. Therefore, we
use a subtraction function between two titles’ representations to measure the semantic
distance. Note that although subtraction is not a commutative operation, it is appropri-
ate for this task, as the relationship between x and fn is an ordered relationship3. The

3I.e., fn is existing fake news, which appeared earlier than x, thus we only classify if x agrees with fn,
and not the other way around
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subtraction between x and fn is calculated as follows:

Sim(x, fn) = Subtraction(x, fn) = −→x −
−→
fn (5.6)

3. BM25. BM25 [146] is a weighting model that is traditionally used to score documents
based on the query terms appearing in each document. In this task, we consider the
claim x as a query and the existing fake news collection FN as a set of documents. We
aim to find the similar fn for a given x from the existing fake news collection FN .
Thus, we use BM25 to measure text similarities between x and fn, using the term
frequencies rather than the vector representations of x and fn. The BM25 similarity
between x and fn is calculated as follows:

BM25(x, fn) =
n∑

i=1

IDF (xi) ·
f (xi, fn) · (k1 + 1)

f (xi, fn) + k1 ·
(
1− b+ b · |fn|avgdl

) (5.7)

where xi is the ith term in x, f(xi, fn) is xi’s term frequency in fn, |fn| is the number
of tokens in fn, and avgdl is the average token length in FN . We use the default
k1 = 1.2 and b = 0.75 in calculating the BM25. IDF(xi) is the inverse document
frequency (IDF) weight of the x term xi, where IDF (xi) = ln(N−n(xi)+0.5

n(xi)+0.5
+ 1), N is

the total number of fn ∈ FN , and n(xi) is the number of fn ∈ FN , that contains xi.

5.2.2.3 Final Classifiers & the Ensemble Model

For the classification layer, we compare experiment results of using a dense layer with a
SoftMax activation function (denoted as SoftMax), a multilayer perceptron classifier (de-
noted as MLP), and a convolutional neural network classifier (denoted as CNN) to classify
the relationship of x and fn, and to output the predicted class. Recall Figure 5.1, where we
show the outputs of the text similarities are used as inputs in the final classifier. Thus, this
function is defined as follows:

fentail(x, fn) = cls(sim(x, fn)) (5.8)

where cls() is the classification function, being either SoftMax, MLP, or CNN.

Finally, we note that integrating BM25 directly into a neural network classifier is not prac-
tical, because BM25 measures the relevance of texts at the text level and produces single
scores, and the inputs to the final stage of neural networks measures the relationship of x
and fn and produce vectors. Therefore, we use a logistic regression classifier (LR), which
combines the BM25 score and the class posteriors of the classifier cls() as input, to predict
the relationship between x and fn. In particular, we choose LR because it performs the best
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Table 5.3: Statistics of the WSDM 2019 Cup Fake News Challenge dataset.

Dataset # Unrelated # Agree # Disagree # Total
Training 198416 84626 7511 276025

Validation 8831 5406 291 14528
Testing 20897 8347 755 29999

after testing other conventional classifiers (e.g. support vector machine and Naive Bayes).
Thus, the ensemble model can be defined as follows:

fentail(x, fn) = LR(cls(sim(x, fn)), BM25(x, fn)) (5.9)

5.3 Experimental Setup

Our experiments aim to address three research questions, namely:

• RQ 5.1: Which model is the most effective in learning to accurately predict the re-
lationship between pairs of news article titles? This RQ addresses Limitation L1,
which concerns finding the best language models for the task of identifying recurring
fake news, by comparing tweets and news titles with existing fake news.

• RQ 5.2: Does combining the BM25 relevance score with a language model improves
accuracy in predicting the relationship between pairs of news article titles? This RQ
addresses Limitation L2 presented in Section 2.6.4, which concerns enriching lan-
guage models with additional information such as BM25 scores.

• RQ 5.3: Can our model identify recurring fake news by comparing check-worthy news
with a set of debunked news? This RQ addresses Gap 3 identified in Section 2.4.4, to
validate the hypothesis that we can effectively identify recurring fake news by com-
paring claims, tweets, or news titles with an existing fake news collection.

5.3.1 Datasets

We use the WSDM 2019 Cup Fake News Challenge dataset4 for RQ 5.1 and RQ 5.2, which
consists of human-written Chinese news title pairs, that are labelled either unrelated, agree,
or disagree with a given debunked fake news. All the titles are pooled from Chinese news
providers or content creators. The size of the dataset, along with the number of news title
and debunked fake news pairs in each class, are listed in Table 5.3.

4https://kaggle.com/c/fake-news-pair-classification-challenge/data

https://kaggle.com/c/fake-news-pair-classification-challenge/data
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Table 5.4: Statistics of the MM-COVID dataset and the existing fake news collection.

Dataset # Fake news Factual news # Total
MM-COVID Training 2056 4448 6504

MM-COVID Validation 104 218 322
MM-COVID Testing 332 645 977

Existing fake news collection 497 - 497

To answer RQ 5.3, which is identifying tweets containing recurring fake news, we use a large
scale dataset called MM-COVID [96] as the experimental dataset. The MM-COVID dataset
contains the source content (news articles, or original tweet making a claim) that need to be
fact-checked. We construct a set of 7803 check-worthy tweets/claims Xcheckworthy, consist
of tweet contents and news title from the MM-COVID source content. We randomly assign
80% of the extracted source content from MM-COVID as training set, 15% as test set, and
5% as validation set. We also construct an existing fake news collection using the CoAID
dataset [32]. Specifically, the CoAID dataset contains claims, news articles, and engaged
tweets, that are labelled as fake and not fake. We collect the all the claims, news article
titles, and engaged tweets that are labelled as fake to build the existing fake news collection
FN . The constructed existing fake news collection FN contains 497 debunked fake news.
Table 5.4 lists the statistics of the MM-COVID dataset and the existing fake news collection.

5.3.2 Tokenisation Method for Chinese Language

We use the WordPiece segmenter (implemented in BERT5) to segment each Chinese title
into characters. Note that any English words in the titles remain as words. We remove the
stopwords before tokenisation. We trim each title to be exactly 45 words/characters, in order
to enhance the BiLSTM performance (only 11 titles in the training set exceed this length).

5.3.3 Embedding Models

BiLSTM. We use the Keras6 implementation of bidirectional LSTMs. Each BiLSTM model
has 2 layers, with 64 hidden units per layer, and a dropout rate of 0.01. We apply a Siamese
style [122] embedding layer in BiLSTM approaches for x and fn, where each token is
embedded into 128 dimensions, and x and fn share the same embedding layer.

BERT model. We apply the BERT-base Chinese model (12-layer, 768-hidden, 12-heads,
110M parameters) on the WSDM 2019 Cup Fake News Challenge dataset, and BERT-base-
uncased English model (12-layer, 768-hidden, 12-heads, 110M parameters) on the MM-
COVID dataset. Following standard practice [40], we fine-tune the BERT model on the

5https://github.com/google-research/bert/blob/master/tokenization.py
6https://keras.io

https://github.com/google-research/bert/blob/master/tokenization.py
https://keras.io
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training dataset. All other parameters (e.g., learning rate, drop out rate) remain at their rec-
ommended settings. Moreover, when integrating the output of BERT into the final classifi-
cation function cls(), we use the first token output as the input to the classification layer. For
the model denoted “BERT” in Table 5.2, we use the dense layer with a SoftMax activation
function as the classification layer, similar to the standard BERT model.

5.3.4 Classifiers, Baselines, and Evaluation Metrics

Classifiers: We tune all the hyper-parameters for the classifiers on the validation set of the
WSDM 2019 Cup Fake News Challenge dataset. Specifically, we use the Adam optimiser
with a learning rate of 0.001, and ReLU [123] as the activation function, for both the MLP
and the CNN classifiers. For MLP, we use 2 layers with 64 and 16 units in each respective
layer. We use 32 filters, 3 kernels, and stride 1 for CNN. We implement our models using
the MarchZoo deep text matching toolbox [46]7. We use the Sage solver, the L2 penalty, and
a C regularisation score of 10 for LR.

Baseline: We train a neural network with an embedding layer, concatenate the words’ vectors
initiated using Word2Vec [117, 118] in a claim/tweet x into a 2D matrix, and use Cosine
similarity as the similarity function, and apply a 15 layers MLP as the final classifier. We
denote this baseline as BL.

Finally, we train an LR model using only BM25 scores (denoted as LR(BM25)), to demon-
strate the effectiveness of using the BM25 similarity scores only.

Evaluation Metrics: We report accuracy, balanced accuracy (BAC), precision, recall, and
F1 scores as evaluation metrics. Note that as presented in Table 5.3, the WSDM 2019 Cup
Fake News Challenge dataset is unbalanced, where the agree and disagree classes are more
important, but are smaller in size than the unrelated class. Therefore, we report the BAC
metrics on both the WSDM 2019 Cup Fake News Challenge dataset and the MM-COVID
dataset. We also report the accuracy metrics of the agree and disagree classes on the WSDM
2019 Cup Fake News Challenge dataset, and the accuracy metrics of both identifying fake
news and real news on the MM-COVID dataset.

5.4 Results and Analysis

To answer RQ 5.1 & 5.2 presented in Section 5.3, we present the results of our news title
relationship classification experiments. Table 5.5 presents the classification results of each
model tested on the test set of the WSDM 2019 Cup Fake News Challenge dataset. To

7https://github.com/NTMC-Community/MatchZoo/

https://github.com/NTMC-Community/MatchZoo/
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Table 5.5: Classification scores for WSDM 2019 Cup Fake News Challenge dataset. Bold
denotes the best result in the table. †† denotes that an ensemble model significantly outper-
forms both the corresponding RNN/BERT model as well as LR(BM25) (McNemar’s test,
p < 0.01).

Model Acc BAC P R F1 Agree Acc Disagree Acc
BL 0.632 0.692 0.71 0.62 0.67 0.712 602

LR(BM25) 0.758 0.544 0.80 0.76 0.77 0.794 0.294
ESM 0.696 0.704 0.77 0.70 0.72 0.763 0.665

+ BM25†† 0.765 0.736 0.80 0.76 0.78 0.783 0.678
ESC 0.703 0.715 0.78 0.70 0.72 0.791 0.656

+ BM25†† 0.778 0.743 0.81 0.78 0.79 0.800 0.686
ECM 0.752 0.779 0.82 0.75 0.77 0.847 0.729

+ BM25†† 0.762 0.782 0.83 0.76 0.78 0.879 0.804
ECC 0.789 0.758 0.83 0.79 0.80 0.809 0.687

+ BM25†† 0.779 0.760 0.82 0.78 0.79 0.828 0.756
BERT 0.885 0.735 0.88 0.89 0.88 0.822 0.458

+ BM25†† 0.875 0.815 0.88 0.87 0.88 0.858 0.697
BSM 0.863 0.825 0.88 0.86 0.87 0.877 0.736

+ BM25†† 0.851 0.847 0.88 0.85 0.86 0.892 0.826
BSC 0.859 0.816 0.87 0.86 0.86 0.873 0.717

+ BM25†† 0.856 0.823 0.87 0.86 0.86 0.877 0.804
BCM 0.763 0.657 0.81 0.76 0.78 0.657 0.497

+ BM25†† 0.770 0.665 0.82 0.77 0.79 0.796 0.499
BCC 0.851 0.815 0.87 0.85 0.86 0.877 0.715

+ BM25†† 0.845 0.826 0.88 0.85 0.86 0.886 0.767

answer RQ 5.3 presented in Section 5.3, which concerns whether the proposed method can
identify recurring fake news, we present the results of the classification experiments on the
MM-COVID dataset. Table 5.7 presents the classification results of each model tested on the
test set of the MM-COVID dataset.

5.4.1 RQ 5.1: Which Language Model?

Firstly, we evaluate the classification performances8 of the Emb-BiLSTM models (rows 3-7
in Table 5.2) and the BERT-related models (rows 8-12 in Table 5.2). Table 5.5 shows that all
of the Emb-BiLSTM and BERT-related models outperform the baseline model. They also
outperform LR(BM25) in terms of both BAC and accuracy on the agree & disagree classes.
However, the BERT-based models marginally outperform the Emb-BiLSTM models. We
postulate that this is because learning an embedding on a small dataset results in biased
textual embeddings for representing terms.

8We test our models on a portion of the training data, since the authors of the WSDM 2019 Cup Fake News
Challenge dataset never publisehd the ground truth of the test set. Hence, we do not compare our results to the
winning group in the WSDM 2019 Cup Fake News Challenge.
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Table 5.6: Case study with two examples from the WSDM 2019 Cup Fake News Challenge
dataset, where both the LR(BM25) model and the BERT model give the wrong prediction,
but our ensemble model gives the correct prediction. Zh denotes the text is in Chinese.

Title1 (Zh) Title2	(Zh) Title1	(Eng) Title2	(Eng) LR(BM25) BERT Ensemble True label

10个孩子空
腹吃荔枝死
亡？医生的
呼吁为所有
人敲响警钟！

热传空腹吃
荔枝会致人
死亡，哈尔
滨专家辟谣

10	children	died	after		
eating	lychees	on	an				
empty	stomach?										
Doctors	call	for	every-
one	to	be	alarmed!	

eating	lychee	on	an	em
pty	stomach	can	lead			
to	death?	Harbin										
doctor	debunk	the								
rumor.

Ag
re
e

Un
re
la
te
d

Di
sa
gr
ee

Di
sa
gr
ee

2018年后，
农村将“统
一住房”,
两项补贴10
万元

2018年农村
要统一修建
新房子！直
接拎包入住！
农民有福了！

Afte 2018,	government	
will	provide	social								
housing	to	countryside	
families, as	well	as	two	
subsidies	worth	¥100k.

In	2018,	the	govern-
ment will	build	social			
housing	for	villegers to	
move	in	directly!	Good	
news	for	farmers!	

Un
re
la
te
d

Un
re
la
te
d

Ag
re
e

Ag
re
e

Meanwhile, we observe that ECC (accuracy of 0.789) outperforms ECM (accuracy of 0.752)
while ESC (accuracy of 0.703) outperforms ESM (accuracy of 0.696). Moreover, ECM
and ECC outperform ESM and ESC, respectively. Therefore, for the Emb-BiLSTM-related
models, we conclude that the cosine similarity performs better than subtraction, and that
using a CNN classifier performs better than MLP. On the contrary, the performances of the
two similarity methods used with the BERT-related models are the opposite of that using
Emb-BiLSTM (i.e., BSM/BSC outperform BCM/BCC). We do not observe the same perfor-
mances with the MLP and CNN methods, as BSM outperforms BSC, but BCC marginally
outperforms BCM.

Of all the models presented in Table 5.5, the BERT model achieves the best accuracy and
F1 score. However, the BSM model achieves the best BAC, as well as the best accuracy on
the agree and disagree classes. Therefore, in response to RQ 5.1 and Limitation L1, we
conclude that the BSM model most accurately predicts the agree and disagree classes in this
Chinese news title relationship classification task.

5.4.2 RQ 5.2: Does BM25 Help?

Now, we turn our attention to RQ 5.2. Table 5.5 shows that the BSM ensemble model with
BM25 achieves the best BAC score (0.847), and the best agree and disagree class accura-
cies (0.892 and 0.826, respectively). Indeed, the BACs of all models increase when BM25
is ensembled, but the accuracy scores do not increase consistently. Specifically, the perfor-
mances of the ESC, ECM, BERT, and BSM models increase significantly when ensembled
with BM25 score, compared to the use of the respective models only.

The observation of increasing BAC is particularly interesting, as the BM25 model alone
does not achieve a high BAC, but assists other models to perform better for the agree and
disagree classes. Indeed, Table 5.6 presents examples where both the BERT model and the
LR(BM25) model predict incorrectly, while the ensemble model predicts correctly.
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Table 5.7: Classification scores for the MM-COVID dataset. Bold denotes the best result in
the table. †† denotes that an ensemble model significantly outperforms both the correspond-
ing RNN/BERT model as well as LR(BM25) (McNemar’s test, p < 0.01).

Model Acc BAC P R F1 Fake Acc Real Acc
BL 0.892 0.885 0.88 0.88 0.88 0.864 0.905

LR(BM25) 0.906 0.901 0.89 0.90 0.90 0.886 0.916
ESM 0.898 0.891 0.88 0.89 0.89 0.870 0.912

+ BM25†† 0.905 0.901 0.89 0.90 0.90 0.886 0.915
ESC 0.901 0.894 0.89 0.89 0.89 0.873 0.915

+ BM25†† 0.908 0.904 0.89 0.90 0.90 0.889 0.918
ECM 0.903 0.898 0.89 0.90 0.90 0.880 0.915

+ BM25†† 0.906 0.904 0.89 0.90 0.89 0.898 0.910
ECC 0.915 0.911 0.90 0.91 0.91 0.898 0.924

+ BM25 0.914 0.912 0.90 0.91 0.91 0.907 0.918
BERT 0.945 0.942 0.94 0.94 0.94 0.934 0.950

+ BM25†† 0.940 0.942 0.93 0.94 0.93 0.949 0.935
BSM 0.934 0.931 0.92 0.93 0.93 0.919 0.943

+ BM25 0.930 0.930 0.92 0.93 0.92 0.931 0.930
BSC 0.931 0.930 0.92 0.93 0.92 0.928 0.933

+ BM25†† 0.933 0.935 0.92 0.93 0.93 0.940 0.930
BCM 0.920 0.917 0.91 0.92 0.91 0.907 0.927

+ BM25 0.919 0.920 0.91 0.92 0.91 0.922 0.918
BCC 0.920 0.918 0.91 0.92 0.91 0.910 0.926

+ BM25†† 0.922 0.924 0.91 0.92 0.91 0.928 0.919

Therefore, regarding RQ 5.2 and Limitation L2, we conclude that including the BM25
scores does improve the performances of using the classifiers with the neural network lan-
guage models, especially improving the performances on the agree and disagree classes.

5.4.3 RQ 5.3: Identifying Recurring Fake News

Table 5.7 presents the classification results of each tested model on the MM-COVID dataset.
We observe that the BERT language model achieves the highest accuracy (0.945), BAC
(0.942), and F1 score (0.94) in identifying recurring fake news, among all tested models.
However, BERT + BM25 achieves the highest accuracy on the fake news class, significantly
better than the BERT model alone. Similarly, although combining with the BM25 model
decreases the overall accuracy for ECC,BERT, BSM, and BCM, the accuracy on the fake
news class increases consistently over all the language models, albeit not always signifi-
cantly. Moreover, we observe inconsistent results in terms of BAC. That is, the BAC scores
increased for all language models except the BERT and the BSM models, when ensembled
with BM25, where BSM+BM25 has insignificantly lower BAC than the BSM model, while
the BERT model achieves the same BAC as BERT+BM25.

This observation echoes the findings from RQ 5.2, which also shows that the BM25 scores



CHAPTER 5. ASSISTING FAKE NEWS DETECTION USING AN EXISTING FAKE
NEWS COLLECTION 93

Table 5.8: Case study with two examples from the MM-COVID dataset, where both the
LR(BM25) model and the BERT model give the wrong prediction, but our ensemble model
gives the correct prediction.

Check-
worthy
claim

Debunked fake news LR(BM25) BERT Ensemble True Label

deficiency
oxygen
fatigue

prolonged
cause masks

Wearing masks for the coron-
avirus “decreases oxygen intake
increases toxin inhalation shuts
down immune system increases
virus risk scientifically inaccu-
rate effectiveness not studied.

Real Real Fake Fake

Dolores
Cahill

nutrition
vitamins

Dolores Cahill claims in an
interview on TheHighWire that
there is already a preventive
strategy and treatment for
COVID-19 through “nutrition
vitamins and hydroxychloro-
quine

Fake Real Fake Fake

assist the language models in more accurately identifying the agree and the disagree classes,
than using the respective language models alone. We postulate that when a check-worthy
tweet/sentence is being compared with existing fake news, the BM25 scores can help dis-
tinguish the unrelated cases more easily, thus reducing the potential errors language mod-
els make in misclassifying unrelated cases as the agree cases. Indeed, Table 5.8 presents
two examples, where the first example shows a case where both the BERT model and the
LR(BM25) model predict incorrectly, while the ensemble model predicts correctly. We can
observe from this case that the two sentences do not have many overlapping words. Thus,
LR(BM25) is not very effective, whereas the semantic similarities between the two sentences
are not strong either, due to the check-worthy claim’s keywords style of presentation. How-
ever, the ensemble model can combine the BM25 similarity and semantic analysis to predict
the check-worthy claims as fake. On the other hand, the second case presented shows that the
BM25 score can overpower the BERT model, and the ensemble model can correctly predict
the check-worthy claims as fake.

Therefore, regarding RQ 5.3, we conclude that including the BM25 scores does improve the
classification performance of the language model based-classifiers, in identifying recurring
fake news.
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5.5 Conclusions

In this chapter, we addressed a core task needed for fake news detection, which aims to
leverage an existing fake news collection in identifying recurring fake news. In particular,
we investigated various neural network-based language representations for detecting the re-
lationships between check-worthy claims/tweets and debunked fake news, such as BiLSTM
approaches, BERT-based approaches [105], and the jointly trained BERT model and BM25
approaches [105].

Our thorough experiments (presented in Section 5.4.1) showed that using BERT for text rep-
resentation, using the subtraction similarity method and MLP as the classifier predicted the
agree and disagree classes most accurately among tested language model approaches. More-
over, Section 5.4.2 showed that, when the neural network language models are combined in
an ensemble manner with the BM25 similarity, it resulted in improvements (albeit not always
significant) to the effectiveness of all language model approaches. Finally, in Section 5.4.3,
we showed that such classification models are useful in identifying recurring fake news, us-
ing the MM-COVID dataset, where we aimed to identify fake news from a set of claims, by
comparing each claim with the set of existing fake news. Specifically, we showed that the
BERT model performs the best in terms of accuracy and F1 score, in the recurring fake news
detection task. Furthermore, the BM25 model again can improve all tested language models
in terms of accuracy on the fake news class.

In answering RQs 5.1 & 5.3 and Limitation L1 (Section 2.6.4), Table 5.5 demonstrated that
the BSM approach (i.e., BERT model, subtraction similarity, and MLP classifier) outper-
forms other tested approches, in classifying the relations between news titles, while Table 5.7
showed that the BERT model outperforms other language model approaches in identifying
recurring fake news. Thus, we conclude that the BERT model is the most suitable language
model representing news titles, tweets and claims, in identifying recurring fake news.

In answering RQ 5.2 & 5.3 and Limitation L2 (Section 2.6.4), Table 5.5 & 5.7 showed that
the BM25 model can aid language models, in accurately classifying the agree and disagree

relations between two news titles, and further helps language model to more accurately pre-
dict the fake news class.

In answering RQ 5.3 and Gap 3 (Section 2.4.4), Table 5.7 showed that an ensemble model
of BM25 and the BERT language model can effectively identify recurring fake news, by
comparing tweets and claims needed to be fact-checked with previously debunked fake news,
compared to using either the BM25 scores or the BERT language model alone.

These findings suggest that a BM25 matching score can aid neural language model ap-
proaches, and ensemble methods can perform better than each component used alone, ar-
guably because BM25 can better identify similarities that are difficult for the language mod-
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els to learn. Thus, in addressing the hypothesis presented in the thesis statement in Sec-
tion 1.3, we conclude that our proposed ensemble model of the BM25 scores and language
representations can accurately classify if a targeted check-worthy claim is highly similar to
any existing fake news, and thus is a resurfaced fake claims.

We note that when identifying recurring fake news using existing fake news dataset, both the
quality and the quantity of existing fake news are important in achieving better performance
in identifying recurring fake news. Thus in practical settings, it is important to obtain an
extensive fake news dataset.

Finally, we summarise the contributions of this chapter as follows:

1. Comparing simple-embedding representations, BiLSTM and BERT, we draw best prac-
tices in using BERT language model representations in classifying the relationship
between Chinese news titles, and between claims/tweets and debunked fake news.

2. We showed the traditional BM25 retrieval scores can improve the performance of deep
neural network models, such as the BiLSTM model and the BERT model.

3. In answering RQ 5.3, Table 5.7 showed that the NLI relations between tweets/claims
and previously debunked fake news can effectively identify recurring fake news from
a set of check-worthy tweets and claims.

In the next chapter, we discuss our proposed model in identifying fake news by leveraging
social media networks.
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Chapter 6

Social Network Structure Assisted
Fake News Detection

6.1 Introduction

In Section 2.1, we provided an overview of the role social media platforms play in the spread-
ing of fake news online. We surveyed research that aim to study the spreading pattern of news
on social media platforms [28, 102], and recognised that repeated exposure of news could
make users believe in what their relatives and friends have shared [193, 204]. Yoo [199]
identified the echo chamber effect as one of the main reasons that fake news is prominent on
social media platforms, as like-minded people tend to gather in small groups, where others
in the same group confirm their existing beliefs, and amplify each other’s opinions.

To combat the rapid spread of fake news on social media platforms, Section 2.4.3 surveyed
several methods to leverage social media platforms’ information in fake news detection,
where both static features and social network embeddings are used in fake news detection
on Twitter. For example, numeric features such as numbers of followers, verified or not, and
user descriptions [97] are used as hand-crafted features in fake news detection. The relations
between users engaging in the same news can also be useful to determine the truthfulness
of the news, such as if two users follow each other, in the same region, engaged with the
same tweet/URL [152]. Moreover, the propagation of tweets can be an important attribute
in identifying non-factual information on Twitter, such as replies, retweets, likes, viewpoints
conflicts of a tweet in need of fact-checking [75]. Similarly, some researchers [128, 147, 165]
aimed to study the users’ connection on social media and leverage the users’ connection to
detect fake news. For example, the network of YouTube channels and individuals propagat-
ing fake news is usually integrated with heterogeneous discussion networks that involve fac-
tual content more than misinformation [147]. On the Twitter platform, Nguyen et al. [128]
proposed the Factual News Graph model (FANG) to use embedded network information
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to identify untrustworthy news stories. Furthermore, Sosnkowski et al. [165] showed that
changes in the users’ network structure on Twitter could help detect the change in political
opinions among users.

Section 1.3 presented our thesis statement, where we hypothesised that in the fact-checking
phase (Phase 2), user network embeddings trained with unlabelled user network data, can
identify the echo chamber effects among users, and is effective in identifying fake claims on
Twitter. This chapter aims to test this hypothesis, by leveraging the users’ network structure
on Twitter to build a model that effectively identifies fake news on Twitter. That is, we aim
to tackle Task 3 (defined in Section 3.3.3), to determine whether the content of a tweet is
truthful or not, using the Twitter user’s user information. In this chapter, we propose a novel
fake news detection model that uses network embeddings to accurately identify fake news
on Twitter. In particular, we propose the User Network Embedding Structure (UNES) model
to represent each Twitter user in a lower-dimensional space, based on their connections with
other users within the platform, and projecting the social network structure as a linked graph.
We argue that this graph structure can aid in detecting clusters of users engaging in fake news
and assist the fake news detection task on Twitter.

This chapter aims to address Gap 4 identified in Section 2.4.4, which states that the social
media users’ connections with each other are largely overlooked in fake news detection sys-
tems. Thus, this chapter addresses Limitations N1 and N2 introduced in Section 2.7.2.2,
which elicit on Gap 4.

Limitation N1 identifies the need to learn user embeddings from the readily available net-
work information in order to conduct large scale fake news detection on Twitter, compared
to using complex network structure that requires labourious preprocessing. To address Lim-
itation N1, we propose to build an extensive user network, using only users’ followers and
friends, which can be easily acquired using the Twitter API. Our experiments show that our
user embeddings learnt using unsupervised models can outperform the SOTA model [128]
that uses a sophisticated hand labelled network.

Limitation N2 aims to find the most effective type of users connections to use in the con-
struction of a user network in detecting fake news on Twitter. To address this limitation, we
propose to compare the user networks constructed with the users’ friendship relations against
the user network constructed with the users’ follower relations. Our experiments show that
the users’ friendship network is more effective at separating users engaged with fake news,
and helps identify fake news more effectively, than the users’ follower network.

We test our proposed UNES on the SD datasets [128]. Our experiments show that the un-
supervised user network embeddings can indeed separate users into different groups, based
on their engagement with fake news. Furthermore, our experiments show that our proposed
UNES model using user embeddings obtained from the users’ friendship network signifi-
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cantly outperforms the SOTA model, which in-turn significantly outperforms the language
models based- fake news detection methods. Thus, in answering the hypothesis presented in
the thesis statement in Section 1.3, we show that our proposed user embedding assisted fake
news detection model UNES can effectively classify whether a targeted check-worthy claim
is fake or not based on the engaged user embeddings.

This chapter is structured as follows: Section 6.2 formally states the task to be tackled and
describes our proposed UNES model for fake news detection; The experimental setup and
obtained results for fake news detection using the UNES model are provided in Sections 6.3
and 6.4, respectively; Concluding remarks follow in Section 6.5.

6.2 Using Social Network Embedding for Fake News

Detection (Phase 2 Task 3)

This section builds upon the objective of Task 3 presented in Section 3.3.3, describes the task
we aim to tackle, and introduces our proposed UNES model in detail.

6.2.1 Twitter Users-Based News Article Classification

In order to develop a model that allows accurate classification of a claim/tweet/news x as fake
or not, we propose to calculate the truthfulness of a given claim/tweet based on its engaging
tweets, and the corresponding users that posted the engaging tweets.

Table 6.1 shows the set of notations (a subset of notions defined in Section 3.2, and a set of
newly defined notations) we use in this chapter.

Table 6.1: Notations used in Chapter 6.

Notation Definition
Xcheckworthy The set of check-worthy claims and tweets
x A sentence or tweet in the set of sentences and tweets Xcheckworthy

Tx The set of tweets related to x
T The set of tweets of all Tx for ∀x ∈ Xcheckworthy

t A tweet
Ux The Twitter users that engaged with x, who posted the tweets Tx

U The set of users who posted the set of tweets T
u A Twitter user who posted t
G The graph that consists of users U and their friends or followers on Twitter
−→
t The modelled vector representation of tweet t
−→u The modelled vector representation of user u
ax The text content of x
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Recall the definition of Task 3 presented in Section 3.3.3:

Ŷx = cls(x, Tx, Ux) (6.1)

The main objective of this task is to classify whether a claim/tweet/news article x is fake news
or not, given the engaged tweets Tx and engaged users Ux of x. We expand the definition of
the classification task as follows:

Ỹx = cls(x) = cls(ax, Tx, Ux) (6.2)

In particular, for each news article/claim/tweet x requires fact-checking, we aim to predict
whether x is fake or not, Ỹx, based on the text of the news article/claim/tweet ax, the tweets
Tx that engaged with x (e.g. tweeted the same news/claims; retweeted/commented on the
news/tweet), as well as the users Ux that tweeted Tx, where u ∈ Ux posted the tweet t ∈ Tx.
Hence, the objective of this study is to identify the best cls() for fake news detection using
such information – next, we describe our proposed UNES model, which identifies fake news
on Twitter based on the network structure, G, of Twitter users.

6.2.2 Proposed Model - UNES

We now describe our proposed User Network Embedding Structure (UNES) model for fake
news detection on Twitter, which represents engaging users with their user embeddings ob-
tained from network embedding methods. To demonstrate our proposed UNES, Figure 6.1(a)
presents the structure of the UNES model, while Figure 6.1(b) shows a BERT-based model
as an example of the state-of-the-art language model for fake news detection.

To obtain a prediction for a given claim/tweet/news article x, we make use of the social
network connections of each engaged users u ∈ Uc. We consider each user as a node in a
directed graph, and their relationships (i.e. following, friendship) as vertices connecting with
other users. To this end, we introduce follows(ui, uj) as a binary function that returns 1 if
user ui follows uj , and 0 otherwise. Moreover, Twitter users can be friends – i.e. follow each
other – for which we use two edges that have different directions but connecting the same
two nodes: follows(u1, u2) ∧ follows(u2, u1).

For all users U , the social network graph can be expressed as an adjacency matrix G. Specif-
ically, let Gfo denote the follower graph, and Gfr the friend graph. Entries in these adjacency
matrices for any pair of users ui, uj ∈ U are defined as follows():

Gfo
i,j = follows(ui, uj) (6.3)

Gfr
i,j = follows(ui, uj) ∧ follows(uj, ui) (6.4)
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�⃗� Vector representing a check-
worth tweet/claim x

User embedding obtained from 
user network embedding (users 1, 
2, …, n engaged with tweet/news x)

Attention mechanism 
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𝑌!$
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(a) Our proposed UNES model for fake news detection.

�⃗� Vector representing a check-
worth tweet/claim x

Tokens from concatenate tweets 
that engaged with news/tweet x

BERT model

t1 t2 tn

Classification model

𝑌!$
Prediction of whether 

x is fake or not 

(b) Language model (BERT) baseline for fake news detection.

Figure 6.1: Comparison between our proposed UNES model and a text-based (BERT) base-
line classifier.

In the following, we use G to represent either Gfo or Gfr.

To make use of the large social network graphs within a classifier, we convert the sparse
network structure into dense graph embeddings. In particular, the connections of u are de-
fined as all users that user u is connected to (i.e., as either a follower or a friend). Thus, we
represent each user u by their connections to other users through the application of a graph
embedding function1 fu(), to obtain embeddings for each user u, as follows:

−→u = fu(Gu) (6.5)

1In the remainder of this chapter, we will use graph embedding and network embedding interchangeably,
unless it is required otherwise by the context of the section, as we apply graph embedding to the user network
structure.
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Table 6.2: Statistics of the SD dataset. Note that the avg., max., and min. numbers are per
news article.

Overall Fake Factual
# of news 1054 448 606
# w/o tweets 11 4 7
avg. # tweets 46.30 52.31 41.89
max. # tweets 1054 750 1054
avg. # users 34.10 47.48 35.95
max. # users 1028 645 1027

Table 6.3: Statistics of the edges users have in our friendships and follower networks, for the
SD dataset2. # > 5000 denotes the users with more than 5000 friends/followers shown in
their profile.

# edges of Gfr # edges of Gfo

Avg 1388.37 1565.16
Max 14012 18255
Std. 1614.43 1891.05
25%l 181 147
50%l 674 621
75%l 2017 2498
# > 5000 3808 6263

Note that we employ unsupervised graph embedding models. Specifically, users are not
labelled with their engagement with fake news or factual news. This is a realistic setup,
since a large number of users may not have engaged with any news articles on Twitter, fake
or factual.

In our proposed UNES, we represent each news article, by applying the multi-head attention
mechanism [184] on all the engaged users’ embeddings (i.e., users who tweeted about x) to
capture the rich information among a group of users. Thus, Equation (6.2) can be instantiated
as follows:

Ỹx = cls(x) = cls(Attention
u∈Ux

(fn(Gu))) (6.6)

where ax and Tx are optional in the classification function cls(), and Attention is the multi-
head attention function.

In particular, we use three types of graph embedding methods for the fake news classification
task, representing the basic graph embedding models (i.e., DeepWalk), graph cluster-based
graph embedding models (i.e., Cluster-GCN), and the existing state-of-the-art graph embed-
ding models (i.e., GraphSAGE), namely:

1. DeepWalk [136]. This was the first deep learning-based method to address a graph
210 users missing, as 2 accounts are set as private, and 8 accounts were deleted.
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embedding task, in a manner inspired by Word2Vec [117]. DeepWalk takes truncated
random walks on a graph to learn embedded representations of nodes.

2. Cluster-GCN [82]. Given a graph, Cluster-GCN uses a graph convolution operation
(GCN) [82] to obtain node embeddings, by aggregating the neighbouring nodes’ em-
beddings of each node, applying CNN layers for each aggregation. Moreover, Cluster-
GCN identifies a subgraph using a graph clustering algorithm, and restricts the neigh-
bourhood search within this subgraph, thus presenting a more efficient and effective
graph embedding model than a plain GCN.

3. GraphSAGE [68]. This method performs parameterised random walks and uses re-
current aggregators. It can be used for both unsupervised and supervised representa-
tion learning, and it can generate embeddings for unseen nodes and edges at inference
time.

Thus, using the graph embeddings from these three methods, we can represent a news article
in a hyper-dimensional space based on the social network structure of its engaged users (ag-
gregated using the multi-head attention mechanism as per Equation (6.6)), without needing
textual information, or a more sophisticated analysis of each users’ account (e.g., account
type, stance on the topic). Furthermore, in order to compare the effectiveness of our UNES
model with widely-used textual features for detecting fake news on Twitter, in our experi-
ments, we use classifier models learned using social network graph embedding features (as
in Figure 6.1(a)), as well as those using textual features (as in Figure 6.1(b)) – such as the
state-of-the-art language model BERT. [40] Next, we detail our research questions and the
setup for our experiments.

6.3 Experimental Setup

We address three research questions as follows:

• RQ 6.1: Can our proposed UNES model allow to identify clusters of users who engage
with fake news on Twitter?

• RQ 6.2: How effective is UNES in identifying fake news on Twitter and which graph
embedding method is the most effective? This RQ aims to address Limitation N1 pre-
sented in Section 2.7.2.2, which concerns the effectiveness of using user embeddings
in the detection fake news, and the effectiveness of each graph embedding model.

• RQ 6.4: Which type of social network structure (i.e., followers or friendship networks)
provides the most effective information in allowing to accurately identify fake news on
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Twitter? This RQ aims to address Limitation N2, which concerns the identification of
the most effective type of users connections in detecting fake news on Twitter.

In the following, we describe the used dataset, the approaches we use to represent both tweets
and news articles, the user network embedding models, the baselines, and the evaluation
metrics we use in reporting our results.

6.3.1 Dataset

In our conducted experiments, we use the stance detection (SD) dataset provided by Nguyen
et al. [128]3. The SD dataset consists of news article links and human judgements labels
denoting if they are fake or not, as well as engaged tweets, the stance of such tweets, the
publisher of the news article, and article citations by other news outlets on Twitter. We
download all the available tweets in the dataset, along with the tweet authors’ friends and
followers. We limit this to a maximum of 5000 for friends and 5000 for followers, which
is the maximum number we can download as per the limit of Twitter API calls. We also
remove those users who are connected to only five other user in the graph (provided they
have not engaged with any news article) in order to reduce the size of the graph and allow for
tractable experiments. In Table 6.2 we provide the statistics of the dataset in terms of news
articles, tweets and users; Table 6.3 details statistics of the friendship and follower networks
of the users. One can argue that information such as likes, replies, and retweet relations can
also be viewed as possible types of relationships on Twitter. However, due to the difficulties
in obtaining data concerning likes, replies, and retweet relationships from the Twitter API,
we do not use these types of relationships in our work.

6.3.2 Semantic Representation

In order to investigate the effectiveness of social network structure in detecting fake news,
we also deploy textual-based classifiers as baselines. In particular, we employ two language
processing methods, namely, a TF.IDF representation and a BERT representation for both
tweets and news articles. The experimental setup for these two language processing methods
are as follows:

• TF.IDF: We use NLTK’s TweetTokenizer4 to tokenise tweets. Scikit-Learn’s Tfid-
fVectorizer5 is used to extract the TF.IDF representation for both news content ax and

3https://github.com/nguyenvanhoang7398/FANG
4https://www.nltk.org/api/nltk.tokenize.html
5https://scikit-learn.org/

https://github.com/nguyenvanhoang7398/FANG
https://www.nltk.org/api/nltk.tokenize.html
https://scikit-learn.org/
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tweets Tx. We limit the maximum number of tokens per text entry to 10k, to include
all the tweets and news article tokens.

• BERT: We fine-tune the BERT-base English model (uncased, 12-layer, 768-hidden,
12-heads, 110M parameters) using the validation set. We maintain the suggested
learning rate [40], with a drop out rate of 0.05. The maximum token length for the
concatenation of news article and engaged tweets is 512 (i.e., as the maximum number
of tokens that BERT can encode is 512 [40]).

6.3.3 User Network Embedding Methods

As mentioned in Section 6.2.2, we instantiate the UNES model with three graph embedding
methods, namely DeepWalk, Cluster-GCN, and GraphSAGE. Each of these graph embed-
ding methods allows two sets of features per node: node network structures and additional
node features. In order to address RQ 6.3, we deploy our models without textual node
features. The only information we pass to the graph embedding methods are the network
connection features. Moreover, the two types of relationships we use to initiate the graph
embedding methods are friendship and followers. The detailed setup of each graph embed-
ding method is as follows:

• DeepWalk. We train DeepWalk with 50 hidden units, a window unit of 10. Each node
has a maximum of 10 walks, with a maximum of 80 steps per walk, and results in a 64
dimension vector to represent each user, as per the original DeepWalk paper [136].

• Cluster-GCN. We train Cluster-GCN with 1000 epochs each, with 16 hidden units,
and results in a 100 dimension vector to represent each user, as per Nguyen et al. [128].

• GraphSAGE. We train GraphSAGE with 30 epochs, 16 hidden units, and 2 layers. It
results in a 100 dimension vector for each user, as per Nguyen et al. [128].

Note that we represent the users who do not have any followers or friends using an embed-
ding vector of [-1, ..., -1].

6.3.4 Classifiers

We use SVM as our baseline classifier model. This model uses the TD.IDF model to rep-
resent the article content ax and tweets Tx concatenation. We use the Scikit-Learn’s imple-
mentation of SVM, with the standard parameters (i.e., RBF kernel, a C penalty of 10, and a γ
of 0.1). For all the deep learning models (both network based and language based), we use a
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fully connected dense layer to classify a news article as fake or factual, which is trained end-
to-end with the user embedding vectors. For instance, for the BERT model, we fine-tune the
pre-trained BERT model with a fully connected dense layer; for our proposed UNES model,
we train the fully connected dense layer as fn(), as per Equation (6.2).

6.3.5 Baselines

We report two groups of baselines, 5 baselines in total – in order to test the effectiveness of
our UNES model.

The first group of baselines consists of models that only use textual features. The second
group of baselines are the current state-of-the-art models proposed by Nguyen et al. [128],
namely the GCN model and GraphSage model using the FANG network. These five base-
lines are as follows:

1. Textual features only:

1.1. SVM classifier with a TF.IDF representation of tweet and news article, denoted
as SVM TF.IDF(ax and tx);

1.2. Fine-tuned BERT model, using the news content ax, denoted as BERT(ax);

1.3. Fine-tuned BERT model, using the content of the engaged tweets Tx, denoted as
BERT(Tx);

2. FANG Models proposed by Nguyen et al. [128]:

2.1. GCN with FANG network information, as well as TF.IDF representation for the
tweets and news, denoted as GCN (GFANG);

2.2. GraphSage model using FANG network information, as well as TF.IDF repre-
sentation for the tweets and news, denoted as GraphSage(GFANG.

6.3.6 Evaluation Metrics

We evaluate our methods using the SD dataset, with existing training and testing splits,
where the training set is 10%, 30%, 50%, 70%, and 90% of all data, provided by Nguyen et
al. [128]. Hence, we test all the models’ performances using the same testing sets, and the
performances are therefore comparable to those numbers reported by Nguyen et al. [128].

As evaluation metrics, we report macro Accuracy, Precision, Recall, and F1, as well as Area
under the ROC Curve (AUC) – indeed, we go further than previous work on the SD dataset,
which focused solely upon AUC. Moreover, in order to visualise the effectiveness of the
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(a) Friendship network. (b) Follower network. (c) Random user network.

Figure 6.2: Unsupervised embedded users shown in PCA mapping. Figures 6.2(a) and 6.2(b)
are trained using DeepWalk, while Figure 6.2(c) uses randomly generated user network em-
beddings.

users’ embeddings in identifying groups of people engaged with fake news versus factual
news, we apply the PCA dimension reduction technique to the users’ embeddings. For the
PCA technique, we also report the cumulative explained variation (CEV), which analyses
the variation for individual components, and sums up the variation of the k (k = 50 in our
experiments) most varied principal components. This metric shows the variation between
two groups of users (i.e., users that have engaged with fake news vs. users that have never
engaged with fake news) that are embedded using the friendship/follower networks.

6.4 Results and Analysis

In this section, we present the results from our experiments to answer our three research
questions presented in Section 6.3. Furthermore, we conduct a case study and discuss the
implications of the obtained results.

6.4.1 RQ 6.1: Clustering Effect of Users’ Network Embeddings

To gauge the effectiveness of unsupervised user network embeddings in identifying clusters
where users engage with fake news, we visualise the distributions of users in our embed-
ded user networks, using the PCA dimensionality reduction technique6, and measure the
cumulative explained variation (CEV) between users who engage with fake news and users
who engage with factual news. Specifically, we visualise the users’ embeddings trained
with the DeepWalk graph embedding method, since DeepWalk provides a lower bound in
user embeddings performance, due to its simplicity compared to the Cluster-GCN and the
GraphSAGE methods.

6Plots using the tSNE dimensionality reduction technique produced similar observations, and hence are
omitted for brevity reasons.
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Figures 6.2(a) and 6.2(b) illustrate the distribution of user embeddings (learned from the
friendship network and the follower network with the DeepWalk graph embedding method)
when reduced to 2 dimensions using a PCA. The red dots denote users that have engaged with
at least one fake news article, while the teal dots denote users that only engaged with factual
news articles. Note that as mentioned earlier, during the training session, we did not label
users as engaged with factual news or engaged with fake news, hence the embeddings are
learned in an unsupervised fashion. In Figure 6.2(c), we also show randomly generated user
embeddings plotted using PCA, where, unlike in Figures 6.2(a) and 6.2(b), the distributions
of users engaging with fake news and with factual news are more uniform.

Specifically, from Figure 6.2(b), it can be observed that for the user embeddings learned
from the friendship network, users who are engaged with fake news are more tightly clus-
tered together. That is, the PCA mapping shows that users who engaged with fake news
are tightly gathered around the top left corner, which suggests that the users who engage
in fake news are more tightly grouped into smaller echo chambers than the users who do
not engage in fake news. This echoes the findings of Yoo [199], who coined the term echo
chamber. Moreover, the CEV analysis shows that the top 50 principal components achieved
a cumulative explained variation of 0.8474, which indicates that the two groups of users
have a variance of 0.8474 from the embeddings learnt from the friendship network. In Fig-
ure 6.2(b), we observe similar trends from the user embeddings learned from the follower
network, with the CEV for the 50 principal components being 0.8472, which indicates that
there are valid differences between the two user groups, in comparison to the randomly gen-
erated user embeddings, where the CEV is 0.5863. Our results echo the findings reported
by Törnberg [178], namely that users tend to form a more tightly grouped community when
they are more heavily influenced by fake news, and show that echo chamber effects indeed
exist in social media.

Thus, in response to RQ 6.1, we conclude that the unsupervised Twitter user network em-
beddings can indeed cluster users into different groups (i.e., users who have engaged with
fake news, versus users who only engaged with factual news), with a cumulative explained
variation of around 85%, using either the follower network or the friendship network. Recall
thesis statement in Section 1.3, where we hypothesised that the unsupervised user network
embedding can help identify the echo chamber effects among users. Based upon the exper-
iments shown in this chapter, we conclude that unsupervised user network embedding can
indeed show users grouping among Twitter users.

6.4.2 RQ 6.2: UNES Model for Fake News Classification

To address RQ 6.2, we compare our unsupervised user network embeddings with language
models and user embeddings trained from sophisticatedly labelled social networks FANG.
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Table 6.4: Performance comparison among the models using 90% training data. Numbers
in the significance column indicates that the model is significantly better than the numbered
model (McNemar’s Test, p<0.01).

# Model Accuracy P R F1 AUC Significance
Textual Baselines – Textual features only

1 Random 0.4737 0.3205 0.5000 0.3906 0.5000 -
2 SVM TF.IDF(an and Tn) 0.6068 0.6010 0.6095 0.5962 0.6095 1, 4
3 BERT(an) 0.5897 0.5584 0.5595 0.5588 0.5595 1, 4
4 BERT(Tn) 0.5299 0.5410 0.5443 0.5249 0.5443 1

FANG models– Complex network features and texutal features
(publisher, citation, follower network, stance and TF.IDF features)

5 GCN(GFANG) 0.6458 0.6328 0.6250 0.6262 0.7125 1-4, 7
6 GraphSage(GFANG) 0.6875 0.6799 0.6821 0.6807 0.7518 1-5, 7,9

UNES variants – Unsupervised network features only
7 DeepWalk(Gfr) 0.6410 0.5717 0.5052 0.4122 0.5052 1-4
8 Cluster-GCN(Gfr) 0.7083 0.7083 0.7142 0.7062 0.7071 1-7,9
9 Cluster-GCN(Gfo) 0.6667 0.6556 0.6500 0.6515 0.7000 1-5,7
10 GraphSAGE(Gfr) 0.7708 0.7650 0.7607 0.7625 0.7498 1-9,11
11 GraphSAGE(Gfo) 0.7292 0.7222 0.7250 0.7233 0.7365 1-9
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(c) ROC AUC.

Figure 6.3: Performances of GraphSAGE(Gfr), GraphSAGE(Gfo), Cluster-GCN(Gfr),
Cluster-GCN(Gfo), GCN(GFANG), and the FANG model, on accuracy, F1, and AUC. § in
the legend denotes that our corresponding model variant significantly outperforms FANG,
on all training percentages.

Specifically, we evaluate whether our proposed UNES model is more effective in detecting
fake news on the SD dataset w.r.t. the baseline models. We also identify the most effective
graph embedding method for fake news detection on Twitter, by comparing our UNES using
various instantiations.

Table 6.4 shows how the models perform when trained with 90% of all data, validated with
5% of the data, and tested on 5% of the data. Indeed, we use the pre-partitioned training-
testing sets provided by Nguyen et al. [128], thus the results shown in Table 6.4 are compa-
rable to the GCN(GFANG) and the GraphSage(GFANG) models (row 5 and 6 in Table 6.4). To
analyse the effect of the size of the training data on the results, we also evaluate the various
models across different training data size percentages, and present the results in Figure 6.3,
in terms of Accuracy, F1 and ROC AUC.
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On analysing Table 6.4, we firstly observe that the text-based baselines (i.e., the TF.IDF and
BERT models, lines 2-4 in Table 6.4) can identify fake news significantly better than the
random baseline. However, a simple SVM(TF.IDF) model outperforms both BERT models,
indicating the difficulties for contextual features to analyse news and tweets on Twitter, with
the SD dataset. Moreover, all models that use network features (lines 5-11) significantly out-
perform the textual features only models (lines 1-4). This observation suggests that network
features are more successful at identifying fake news on Twitter than textual features alone.

Secondly, we observe that with only the network information, our UNES model, with the
simpler DeepWalk graph embedding (line 7 in Table 6.4) does not outperform either of the
network baselines (lines 5 & 6). On the other hand, contrary to DeepWalk, the use of the
UNES model along the advanced graph embedding models (i.e., Cluster-GCN and Graph-
SAGE), can achieve better accuracy and F1 performances, compared to the GCN(GFANG) and
GraphSage(GFANG), respectively. Indeed, Cluster-GCN with friendship/follower networks
(lines 8 & 9) can significantly outperform GCN(GFANG) (line 5), while GraphSAGE with the
friendship/follower networks (lines 10 & 11) significantly outperforms GraphSage(GFANG)
(line 6). However, GraphSage(GFANG) (line 6) obtained the highest ROC AUC performance
among all the tested models. A further inspection on the output of all of the evaluated UNES
variants (i.e., lines 7-11 in Table 6.4) shows that while they are accurate, they are generally
less certain in their predictions. Specifically, the dense neural network layer outputs poste-
rior probabilities for each class closer to 0.5 rather than 0 or 1 for our binary classification
task (i.e., classifying a given news as fake or not), while the GraphSage(GFANG) model tends
to produce probability outputs closer to 0 and 1 rather than 0.5. We argue that this is because
the UNES model uses a network structure data with no textual information on the content of
the news or tweets, unlike GraphSage(GFANG), which uses both the textual data (such as the
stance of a tweet and TF.IDF representations of the news articles and the tweets) along with
the network data. We leave to future work to investigate of how best to integrate the textual
data into the UNES model.

Furthermore, Figure 6.3 shows the performances of the UNES variants and the FANG base-
lines (GCN(GFANG) and GraphSage(GFANG)) when tested with all possible training data size
percentages. From the figure, we observe that the UNES variant using the GraphSAGE(Gfr)
graph embeddings consistently significantly outperforms GraphSage(GFANG) in terms of the
accuracy and F1 metrics, regardless of the used training data size. However, similar to the
observation that GraphSage(GFANG) achieved the highest ROC scores in Table 6.4, we ob-
serve that all the variants of our UNES model (i.e., Cluster-GCN(Gfr), Cluster-GCN(Gfo),
GraphSAGE(Gfr), and GraphSAGE(Gfo)) do not outperform GraphSage(GFANG) consistently,
due to the aforementioned issue, namely that model GraphSAGE(Gfr) tends to predict pos-
terior probabilities closer to 0.5 rather than 0 or 1.

Moreover, from Figure 6.3 we observe that all the GCN-based models (i.e., Cluster-GCN(Gfr),
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Cluster-GCN(Gfo), and GCN(GFANG)) suffer from instability when trained using different
percentages of training data. Specifically, the models using the Cluster-GCN(Gfr) and the
Cluster-GCN(Gfo) models both exhibit performance drops when trained with 30% and 70%
of the data. One of the baseline models, GCN(GFANG), shows a drop in the Accuracy and F1
performances when trained with 50% of the data, and the ROC AUC drops when trained with
70% of the data. Indeed, the GCN-based models have unstable performances when tested
on the different training percentages. This suggests that the GCN graph embedding model
might represent nodes (i.e., users in our experiments) inaccurately as embeddings, as GCN
and Cluster-GCN both identify subgraphs before computing the embeddings of each node,
while the subgraphs are not updated throughout the training session, contrary to the Graph-
SAGE model, which aims to perform graph embeddings without any subgraph partitioning.

Overall, in response to RQ 6.2 and Limitation N1, we conclude that the models that use
the users’ network embeddings alone significantly outperform the language model baselines
in classifying fake news on the SD dataset. Moreover, our models that use unsupervised
users’ network embeddings can identify fake news on the SD dataset more accurately than
the FANG models (GCN(GFANG) and the GraphSage(GFANG)), which uses complex users’
network embeddings that include additional relations such as the publisher network and the
citation network, as well as the textual information from the tweets and news articles. Among
the variants of our proposed UNES model, the variant using the GraphSAGE graph embed-
dings is the most effective. Thus, in response to the hypothesis (presented in Section 1.3)
that user embeddings can be effective in identifying fake claims on Twitter, we conclude that
unsupervised users embeddings can indeed assist the fake news detection on Twitter, and that
the UNES variants GraphSAGE(Gfr) significantly outperform all other tested models and all
the baselines, using all the training-testing split.

6.4.3 RQ 6.3: Followers or Friends?

To address RQ 6.3, we compare the experiment results between using a follower network
and a friends network. Recall that users can have two types of relations with other users,
namely through the following relation (Equation (6.3)) or through the friendship relation
(Equation (6.4)), where the latter requires both users to follow each other. As discussed
before, we instantiate the UNES model using user embeddings obtained from either the
follower network (Gfo) or the friendship network (Gfr) for both the GraphSAGE and Cluster-
GCN graph embedding models. Their respective performances are included in Table 6.4
and Figure 6.3. On analysing Table 6.4, we observe that with 90% of the data as training
data, GraphSAGE(Gfr) outperforms GraphSAGE(Gfo) on all metrics, and Cluster-GCN(Gfr)
outperforms Cluster-GCN(Gfo) on all metrics. Figure 6.3 shows that GraphSAGE(Gfr) out-
performs GraphSAGE(Gfo) consistently on all metrics, regardless of the portion of training
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Figure 6.4: PCA mapping of the users engaged with 2 news articles related to immigration
issues, on Friendship network. Red dots represent users who engaged with fake news “Il-
legal Immigrant Deported 6 Times Charged in Felony Hit-and-Run of Family that Injured
Children”, while teal dots represent users that engaged in factual news “At Trump hotel site,
immigrant workers wary”.

data used.

To understand this result, we analyse the statistical differences between the friendship net-
work and the follower network in the SD dataset to investigate the dissimilarity of their em-
beddings. Recall Table 6.3, where it can be seen that, on average, users have a higher num-
ber of edges in the follower network than in the friendship network (1565.16 vs. 1388.37),
echoing the fact that the friendship network on Twitter forms a more sparse network than the
follower network. Although, intuitively speaking, the denser the network, the more infor-
mation we can collect, we argue that the denser follower network may introduce more noise
due to the lack of shared interests between followers and followees, compared to friends that
share more interests and similar opinions, as represented by the friendship network.

Furthermore, the higher accuracy of the friend graph is advantageous from a data point of
view: as noted in Section 6.3.1, we are limited in terms of possible Twitter API calls, which
reduces the observable portion of the users’ friends or follower networks. Indeed, from
Table 6.3 it can be observed that the friendship network has a smaller proportion of users
with more than 5000 friends (i.e., 10.64% of all news-engaging users in the SD dataset do
not have all their friends downloaded); in contrast, the follower network has 6263 users with
more than 5000 followers (17.50% of all news-engaging users).

Overall, in response to RQ 6.3 and Limitation N2, we conclude that in our experiments,
with a limited number of Twitter API calls available, the users’ friendship network is the
most effective type of social network relationships, when used to construct the users’ graph
embeddings and for detecting fake news circulating on Twitter.
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Table 6.5: Case study examples. The Fake? column indicates if the news article is fake news
(Y) or not (N); # Tn describes the number of tweets are associated with the news article.

Case Fake? News article title # Tn

UNES correct, BERT incorrect
1 N At Trump hotel site, immigrant workers wary 462
2 N Charlie Hebdo : Le témoignage de la dessinatrice Coco. 132
3 N Coldsip.com — News 155

4 Y
Illegal Immigrant Deported 6 Times Charged in Felony Hit-and-
Run of Family that Injured Children.

588

5 Y Sasha Obama Just Crashed Her Expensive New Car Into A Lake. 246

6 Y
Hundreds of people died after eating the Patti LaBelle brand Patti
Sweet Potato Pie.

227

UNES incorrect, BERT correct

7 N
UCLA Students protest after partygoers wear blackface at frater-
nity party.

246

8 N Killer to face firing squad. 539
9 N Caitlyn Jenner to receive courage award at ESPY’s 797

10 Y
Obama Orders Chicago School to Let ‘Transgender’ Boy Use
Girls’ Locker Room.

398

11 Y Peanut Butter and Jelly Deemed Racist. 835

12 Y
UPDATE: Second Roy Moore Accuser Works For Michelle
Obama Right NOW.

3913

6.4.4 Case Study

In order to better demonstrate the successes and failures of our proposed UNES model,
Table 6.5 presents a case study. Specifically, it shows that the UNES model makes correct
predictions in cases 1-6, while the BERT model does not. Cases 7-12 shows the opposite
examples, where the BERT model predicts correctly and UNES model does not. Table 6.5
also reports the number of tweets discussing each news article.

Indeed, we observe that our UNES model can classify the news correctly regardless of the
language (case 2), or if the title is redacted (case 3) in cases 1-3. These cases show that
our proposed model can be used universally across different languages, and when the news
content is corrupted. Cases 4-6 in Table 6.5 show that the language used in the news title can
mislead the language models into misclassifying the news as genuine, while our proposed
UNES model can correctly classify the news as fake using the user embeddings from users
engaged in such news.

On the other hand, cases 7-12 show difficult cases for the UNES model. These cases are
mostly related to significant and controversial topics (such as racism, politician scandals,
transgender right, immigrants), where people with different views can be easily drawn to-
gether and voice their opinions. We believe these cases are indeed difficult to identify with a
user cluster-based model.
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Furthermore, case 1 (factual) and case 4 (fake) are two news articles related to immigration
issues in the US, that the UNES model correctly classified. Figure 6.4 shows the PCA pro-
jection of the embeddings of users engaged in these two cases. We observe two embedding
clusters from Figure 6.4, one among users who commented on the fake news (case 4) and one
among users who commented on the factual news (case 1). These two user clusters illustrate
a clearer echo chamber effect on the immigration issue, in contracts to the lack of separation
among the clusters observed in Figure 6.2(a). We believe these two clearly separated user
clusters explain why UNES accurately classified these two cases. In order to further improve
accuracy of identifying fake news, in the future we aim to combine UNES with language
models to enhance the classification accuracy in such difficult examples.

6.5 Conclusions

In this chapter, we proposed a fake news detection model that leverages the network structure
of Twitter. Our proposed model uses readily available friends/followers information of a set
of users to build a social network structure. We first learnt user embeddings unsupervised
from the user friendship/follower network, thus avoiding additional labelling requirements.
We then used the user embeddings to classify news as fake or factual. Our proposed model
UNES directly addresses Gap 4, where we stated that most fake news identification systems
do not use user connections effectively.

We also demonstrated that a range of user network embedding methods, unsupervisedly
trained on the users’ relationships (i.e., followers, friends), can identify the user’s clusters
that engage with fake news, when tested on a large recent Twitter dataset. We observe a
tighter cluster for the users who engaged in fake news than users who only engaged with
factual news (shown in Figure 6.2) with CEV = 0.8474 for friendship network and CEV =

0.8472 for follower network, using PCA mapping. We conclude that the echo chamber
effects are more pronounced in users engaging in fake news than in factual news.

When testing the effectiveness of user embeddings obtained using the readily available infor-
mation (i.e., only the followers/friendship networks) on identifying fake news, we show that
the UNES model can more accurately identify fake news than the existing SOTA models, as
shown in Table 6.4 and Figure 6.3. Moreover, the current SOTA model GraphSage(GFANG)
uses both complex network information that requires additional labelling and text-based
models. This finding addresses Limitation N1, as we show the readability available net-
work features can be more information than the labour-intensive network features that need
further labelling, and tackle the task of identifying fake news on Twitter more effectively.

Finally, we identified that the friendship network could more accurately help identify fake
news than the follower network, within the limited access afforded to the Twitter social
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networks given the limited Twitter API call rate. This observation is informative, because
users tend to have fewer friends than followers (demonstrated in Table 6.3), thus helping
us construct a smaller users’ graph, and reduce computational cost. This finding addresses
Limitation N2, because we show that the friendship network consistently outperforms the
follower network in identifying fake news.

We note that our UNES model can best identify newly emerged fake news when users are
within echo chambers, thus fake news published and spread by users that have few friends
or followers might not be identified. In practical settings, we note the difficulty in training a
large user network with limited resource, thus efficiency focused network embedding models
maybe more practical in production.

Hence, in conclusion to the hypothesis presented in (Section 1.3), we conclude that unsuper-
vised user network embedding can help identify echo chamber effects among Twitter users,
and more accurately identify fake news than the SOTA model that uses complex network
information. Thus, the main contributions of this chapter are as follows:

• We proposed to incorporate the idea of the echo chamber effect into the automatic fake
news detection task. Specifically, we showed that training user network embeddings
without prior knowledge of users’ engagements with fake news can help identify user
communities that frequently engage in and spread fake news and facilitate fake news
detection in social media.

• We proposed a User Network Embedding Structure (UNES) model, which performs
fake news classification on Twitter through the use of graph embeddings to repre-
sent Twitter users’ social network structure. Compared to the approach of Nguyen et
al. [128], UNES does not require any pre-annotated data (e.g., user type (individual
users or publishers), users stance, and if they have engaged with fake news before).

• We observed that the user embeddings generated by UNES exhibit a clustering effect
between users who engage with fake news and users who solely engage with factual
news, despite not knowing if the users have engaged with fake news before.

• We also showed that using the social network’s user connections alone to build net-
work embeddings and using only users who engaged with the news when representing
such news can significantly outperform the existing state-of-the-art fake news detec-
tion approaches that use both textual and complex social network features.

In the next chapter, we conduct an end-to-end study to demonstrate the effectiveness of our
entire framework, and show that using the entire framework is more effective than using the
individual models.
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Chapter 7

End-to-End Evaluation

7.1 Introduction

In the previous chapters, we presented individual components of our proposed framework,
FNDF. Specifically, Chapter 4 discussed how to identify check-worthy tweets/claims, and
presented the experimental results using a range of language models and entity represen-
tation methods. We concluded that concatenating entity embeddings obtained using a KG
embedding model, with language representations obtained using a language model, can most
accurately identify check-worthy sentences and tweets. Chapter 5 discussed the task of iden-
tifying recurring fake news using an existing fake news dataset. We conducted experiments
that combined a range of language models with the BM25 model to identify the recurring
fake news. We concluded that the BM25 scores could indeed enhance the BERT language
models in identifying the statements and tweets that agree with the existing fake news. Chap-
ter 6 presented the task of using social network connections to identify fake news on the
Twitter platform. We combined the embedded user representations of the engaging Twit-
ter users to represent news, and detect the news that contains non-factual information. Our
detailed experiments showed that our proposed user network embedding model UNES can
more accurately identify fake news on Twitter than language models and is more accurate
than sophisticated network models.

Recall the thesis statement presented in Section 1.3, where we hypothesised that by com-
bining all three components, our proposed framework FNDF could effectively identify fake
news circulating on Twitter in an end-to-end fashion. This chapter aims to test this hypothesis
by conducting experiments using all three components according to the proposed framework
presented in Section 3.2. At the same time, such end-to-end experiments allow us to address
Gap 5 identified in Section 2.4.4, which states that existing end-to-end fake news detection
systems largely did not consider the filtering process, when not all tweets/claims/sentences
require fact-checking; indeed, they generally overlooked the recurring fake news detection
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process, and mostly did not apply dynamic user network information. Together, Gaps 1-4
have been addressed.

In addition to the end-to-end evaluation, we also conduct an ablation study and report exper-
imental results on the framework’s performance if we omit any of the three components, to
study the effectiveness of the individual components in our framework. We also conduct the
experiments using two different datasets that focus on two different topics with different en-
gaging users, thereby permitting to demonstrate the robustness of our framework to datasets
involving unseen users.

This chapter is structured as follows: Section 7.2 presents the research questions we aim to
answer in this chapter, and describes the methodologies of conducting the experiments that
answer these research questions; Section 7.3 describes the experimental setup; Section 7.4
presents the experimental results and analysis; Concluding remarks follow in Section 7.5.

7.2 Methodology

We aim to address three research questions as follows:

• RQ 7.1: How does the Phase 1 Task 1 model, the check-worthiness ranking model,
affect the FNDF’s performance?

• RQ 7.2: What are the performance differences between the two tasks (Phase 2 Task 2
and Phase 2 Task 3) in the fact-checking phase of FNDF when detecting fake news?

• RQ 7.3: How robust is FNDF to news from an additional dataset that involves previ-
ously unseen users?

In the following, we describe the experimental datasets, and the construction of existing
fake news collection and user networks in Section 7.2.1; the models we use in the end-to-
end experiments are described in Section 7.2.2; Section 7.2.3 describes the workflow of our
framework; the experimental designs are presented in Section 7.2.4.

7.2.1 Datasets Construction

In this chapter, we use three types of input data, namely, the experimental data, the existing
fake news collection, and the user networks. We describe these datasets as follows:
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7.2.1.1 Experimental Datasets

To study the effectiveness of our end-to-end framework, we use two experimental datasets
as follows:

• We use the MM-COVID dataset provided by Li et.al. [96], which consists of source
contents (news and tweets) related to COVID-19 that are labelled as fake or not, and
their related tweets. Please refer to Table 5.4 in Section 5.3.1 for detailed statistics for
this dataset.

• We use the stance detection (SD) dataset provided by Nguyen et al. [128]1. This is the
same dataset used in Chapter 6. Please refer to Table 6.2 in Section 6.3.1 for detailed
statistics for the dataset.

For the MM-COVID dataset, we use the same training, validation, and test set split as pre-
sented in Section 5.3.1. For the SD dataset, we use the author provided 70% training, 15%
evaluation, and 15% testing splits.

7.2.1.2 Existing Fake News Collection

We construct an existing fake news collection that contains previously identified fake news.
The experimental datasets are compared against this collection to identify recurring fake
news using the Phase 2 Task 2 model. We construct the existing fake news collection by
combining all of the claims, tweets, and news titles labelled as fake news from the following
published datasets:

1. FAKENEWSNET [162] contains gossip and political fake news gathered from Politi-

Fact2, and GossipCop3. The dataset contains news articles labelled as fake or real. We
collect the news titles from the fake news in the FAKENEWSNET as debunked fake
news in our existing fake news collection.

2. LIAR [188] also contains claims gathered from PolitiFact. The Liar dataset differs from
the FAKENEWSNET dataset because they did not collect the news stories being judged
as fake or real. Rather, LIAR gathered the statements made in political speeches and
debates. The statements are labelled as “pants-fire”, “false”, “barely true”, “half-true”,
“mostly-true”, and “true”. In our existing fake news collection, we include statements
labelled as “pants-fire”, “false”, and “barely true” as debunked fake news4.

1https://github.com/nguyenvanhoang7398/FANG
2https://www.politifact.com/
3https://www.gossipcop.com/
4We acknowledge that by treating fake news as only a binary classification task we lose information, but

multi-class fine grained fake news identification is out of scope for this thesis.

https://github.com/nguyenvanhoang7398/FANG
https://www.politifact.com/
https://www.gossipcop.com/
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3. PHEME [210] contains tweets and their replies/retweets of five breaking news and
four specific known rumours. We include all the 2,695 rumourous source tweets in our
existing fake news collection.

4. CoAID [32]. As described in Section 5.3.1, the CoAID dataset contains claims, news
articles, and engaged tweets that are labelled as fake and not fake. We include the
titles of debunked fake news, fake claims and fake tweets in our existing fake news
collection, which amount to 498 debunked fake news.

In total, we collected 13,891 claims/tweets/news titles that are labelled as fake.

7.2.1.3 User Friendship Networks

We construct a user friendship network for each experimental dataset (the MM-COVID
dataset and the SD dataset). We use the same friendship network for the SD dataset as de-
scribed in Section 6.3.1 – please refer to Table 6.3 for the statistics of the SD user friendship
network. For the MM-COVID dataset, we follow the user network construction procedure
laid out in Section 6.3.1. First, we download all the available tweets and their authors’
friends. The number of downloaded friends is limited to a maximum of 5000 (the maximum
number we can download as per the Twitter API limit) for each engaged user. Then, we re-
move the downloaded friends with less than five edges in the friend graph to reduce the size
of the graph, which is able to be trained on a single RTX 3090 GPU with 24 GB memory.

In addition to the user friendship networks for each dataset, we also construct 2 incremen-

tal user friendship networks from the MM-COVID user friendship network and the SD user
friendship network. That is, for the incremental MM-COVID user friendship network, only
the engaged users of the SD data are added to the existing MM-COVID user friendship net-
work, and the other way around. Finally, we create a combined user friendship network,
where engaging users and their friends from both networks are used together in constructing
the combined user friendship network. These three user friendship networks are constructed
to study the robustness of our proposed framework, FNDF, in classifying news mostly dis-
cussed by unseen users. Thus, we list the following five user friendship networks we use in
our evaluation:

• MM-COVID user friendship network: The user friendship network built with users
present in the MM-COVID dataset and their friends.

• SD user friendship network: The user friendship network built with users present in
the SD dataset and their friends.
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Table 7.1: Statistics of the engaged users (EU) in the friendship networks, in five constructed
user networks. EU denotes engaged users.

User network
# total nodes

of Gfr
# total edges

of Gfr

% of EU in
MM-

COVID
connected

% of EU in
SD

connected

MM-COVID 58176 54,968,634 99.98 -
SD 31725 34,046,038 - 99.87
MM-COVID incremental 90169 65,712,042 99.98 8.6%
SD incremental 90169 34,052,734 1.6% 99.87
Combined 90169 80,342,653 99.98% 99.87%

• Incremental MM-COVID user friendship network: The user friendship network
built with users presented in the MM-COVID dataset and their friends. Engaging
users present in the SD dataset are added to the MM-COVID user friendship network,
while the edges between the SD users and the existing nodes in the MM-COVID users’
network are added incrementally, depending on if the SD engaging users are friends
with the MM-COVID engaging users.

• Incremental SD user friendship network: This network is similar to the Incremental
MM-COVID user friendship network, but the MM-COVID users are added to the SD
user friendship network, and connections between the engaging MM-COVID users
and engaging users in the SD user friendship network are added incrementally.

• Combined user friendship network: Finally, we construct a complete user friendship
networks with both the SD dataset users and the MM-COVID dataset users, along with
all their friends.

Table 7.1 presents the statistical information of the above mentioned 5 user friendship net-
works. The small number of engaged users in the MM-COVID dataset connected to the users
in the SD dataset (1.6%), and vice versa (8.6%), indicates that the two datasets (MM-COVID
and SD) have very different sets of engaging users. Note that some engaging users (0.02%
and 0.13% in the MM-COVID dataset and the SD dataset respectively) have restricted access
to their accounts, deleted their accounts, or have been suspended from Twitter, thus we can
not access their accounts and collect their friendship lists.

7.2.2 Component Models

We describe the three models proposed in this thesis, presented in Chapters 4 - 6, and used
in our end-to-end framework as follows:
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1. Task 1 model (denoted as T1): Identified as the most effective model in Chapter 4,
we use the ALBERT language model to represent sentences and the BERTweet model
to represent tweets, and use the ComplEx model to represent the entities identified.
We concatenate two entity embeddings to represent an entity pair, and use the ranking
model to rank all tweets and claims in the dataset. Finally, we retain 50% of the
top-ranked claims and tweets as check-worthy and pass them on to the next models.
We choose to pass 50% of the top-ranked claims and tweets to maximise Recall and
minimise the additional tweets and claims going through T2 and T3, because there are
42.50% fake news in the SD dataset and 31.91% fake news in the MM-COVID dataset.

2. Task 2 model (denoted as T2): Identified as the most effective model in Chapter 5,
we use the combination of language representations of sentences and tweets with their
BM25 scores to identify the recurring fake news. We use the BERTweet model to
represent check-worthy tweets obtained from T1 and use the ALBERT language model
(instead of the BERT model used in Chapter 5) to represent check-worthy sentences
and claims obtained from T1. The sentences/claims and tweets identified as recurring
fake news are assigned a final label as fake news, while the sentences/claims and tweets
(along with the engaging users’ ids and the user friendship network embeddings) that
are not identified as recurring fake news are passed on to the next model.

3. Task 3 model (denoted as T3): Identified as the most effective model in Chapter 6, we
use the UNES model with user embeddings obtained using the GraphSage model to
represent users that engaged with the check-worthy sentences/claims and tweets. We
use the attention model [184], as described in Section 6.2.2, to obtain the final repre-
sentation for the check-worthy sentences/claims and tweets using the user embeddings.
Finally, we apply a dense layer to classify if the check-worthy sentences/claims and
tweets are fake or not.

7.2.3 Framework Workflow

Building upon Figure 3.1 in Section 3.2, Figure 7.1 illustrates a simplified version of the
workflow for our proposed framework, FNDF. Specifically, a group of tweets/sentences enter
the framework as input data to T1 – the check-worthiness ranking model. T1 ranks the
tweets/sentences according to their check-worthiness, and the sentences and tweets deemed
check-worthy will then be sent to T2 – the recurring fake news detection model. T2 compares
the check-worthy sentences/tweets against the existing fake news collection, to identify any
recurring fake news. The check-worthy sentences and tweets identified as recurring fake
news are directly labelled as fake news as their final label, while those non-recurring fake
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Figure 7.1: An illustration of the workflow of our proposed framework, FNDF. Phase 1 is
the Check-Worthiness Detection Phase. Phase 2 is the Fact-Checking Phase. Task 1 in Phase
1 aims to rank tweets and sentences based on their check-worthiness, Task 2 in Phase 2 is
dedicated to identifying recurring fake news, Task 3 in Phase 2 focuses on using the Twitter
network in identifying fake news.

news will enter T3 as input data, along with the user friendship network, to be classified as
fake news or not.

7.2.4 Experimental Designs

In order to study the role each component plays in our end-to-end framework, FNDF, and
answer RQs 7.1 and 7.2, we perform an ablation study on the framework. We remove one
component of the framework at a time, resulting in three variations of the FNDF using two
components (i.e., T1 + T2, T1 + T3, T2 + T3). We also compare the results from using only
one of the Phase 2 task models at a time (i.e., T1, T2), to observe the performance differences
between these two task models.

To study the robustness of our proposed framework, FNDF, and answer RQ 7.3, we further
conduct experiments that apply the five user networks presented in Section 7.2.1.3 to the
two experimental datasets, and observe the performance differences from using these five
different user networks.

7.3 Experimental Setup

In the following, we describe the approaches we use to represent both tweets and news
articles, the user network embedding models, and the various baseline approaches and eval-
uation metrics we use in reporting our results.



CHAPTER 7. END-TO-END EVALUATION 122

7.3.1 Semantic Representations

In Chapter 4, we identified BERTweet as the most effective language model to represent
tweets, while ALBERT is the best language model to represent sentences. Thus, in this
chapter, we use BERTweet as the tweet embedding model and ALBERT as the sentence
embedding model. We maintain the training settings for ALBERT and BERTweet as men-
tioned in Section 4.3.2.4. Specifically, we use the HuggingFace language model implemen-
tations [191]5. We use the ALBERT-base-v2 English model (12-layer, 128-hidden, 12-heads,
1M parameters); and the BERTweet-base model (12-layer, 768-hidden, 12-heads, 135M pa-
rameters). We fine-tune ALBERT and BERTweet on the training datasets. All other hyper-
parameters remain at their recommended settings.

7.3.2 Entity Representations

In this section, we describe the methods we use to identify named entities from text, and the
entity embedding model we use to represent entities as vectors.

Named entity linking: To address the entities that occur in each sentence explicitly, we
deploy a named entity linking method to extract entities from each sentence. In our experi-
ments, we use DBpedia Spotlight6 to extract entities from each sentence, with the confidence
threshold set to 0.35. This setting is identical to the setting we used in Section 4.3.2.

Entity embedding model: We use ComplEx to represent entities as entity vectors, as it was
identified as the most effective entity embedding method in Chapter 4. We use the same
ComplEx model as in Section 4.3.2.3, where the ComplEx model is trained with triplets
extracted from Freebase (FB15K) [16], using the code provided by Zheng et al. [205]7.

7.3.3 User Network Embedding Methods

As mentioned in Chapter 6, using the GraphSAGE [68] model on the user friendship net-
work yields the best performance in identifying fake news on Twitter. Thus, we only use the
GraphSage model to train the embedded user networks in this chapter. Specifically, we de-
ploy the GraphSage model on the five user friendship networks described in Section 7.2.1.3.
In particular, we train a GraphSAGE model for 30 epochs on each user friendship network,
with 16 hidden units and 2 layers. The resulting models use a 100 dimension vector to repre-
sent each user. All the hyper-parameters we use in this chapter are the same as described in

5https://github.com/huggingface/transformers
6https://www.dbpedia-spotlight.org/
7https://github.com/awslabs/dgl-ke

https://github.com/huggingface/transformers
https://www.dbpedia-spotlight.org/
https://github.com/awslabs/dgl-ke
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Table 7.2: Performance comparison on the MM-COVID dataset using different framework
variations. The user network model used in T3 is trained on the MM-COVID users’ net-
works. Numbers in the significance column indicate that the model is significantly better
than the numbered model (McNemar’s Test, p<0.05).

# Model Accuracy P R F1 Significance
Individual component framework variations

1 T2 0.9396 0.8824 0.9488 0.9144 2,7,8
2 T3 0.8669 0.8024 0.8072 0.8048 7

Two components framework variations
3 T1 + T2 0.9406 0.9344 0.9331 0.9337 1,2,3,7,8
4 T1 + T3 0.8792 0.8794 0.7831 0.8150 7
5 T2 + T3 0.9191 0.8286 0.9608 0.8898 1-4,7,8

End-to-end framework
6 End-to-end 0.9468 0.9364 0.9473 0.9414 1-4,7,8

Baselines
7 Random 0.6602 0.4358 0.6602 0.5251 -
8 dEFEND 0.9103 0.9024 0.9072 0.9048 8, 2, 4

Section 6.3.3. Note that we represent the users who do not have any connections with other
users in the network using an embedding vector of [-1, ..., -1].

7.3.4 Baselines

We report the performance of a random classifier using the stratified strategy for both the SD
dataset and the MM-COVID dataset. We also report the performance of the current state-of-
the-art models proposed by Nguyen et al. [128], namely the FANG model, for the SD dataset.
We report the performance of the social context-based model dEFEND [161] as the baseline
model for MM-COVID, following the MM-COVID paper [96]. The dEFEND model uses
the user’s reply sequences for fake news detection.

7.3.5 Evaluation Metrics

We report Precision, Recall, and F1 on the fake news class, and macro Accuracy as evaluation
metrics.

7.4 Results and Analysis

In this section, we present the results of the experiments that address RQs 7.1-7.3. In partic-
ular, Tables 7.2 and 7.3 present the experimental results of using the FNDF variations on the
MM-COVID dataset and the SD dataset, respectively. Tables 7.4 and 7.5 present the results
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Table 7.3: Performance comparison on the SD dataset using different framework variations.
The user network model used in T3 is trained on the SD users’ networks. Numbers in the
significance column indicate that the model is significantly better than the numbered model
(McNemar’s Test, p<0.05).

# Model Accuracy P R F1 Significance
Individual component framework variations

1 T2 0.6948 0.6852 0.5522 0.6116 2, 7
2 T3 0.6558 0.6429 0.8060 0.7152 2, 7, 8

Two components framework variations
3 T1 + T2 0.7143 0.7447 0.5224 0.6140 1, 2, 7
4 T1 + T3 0.7143 0.6620 0.7015 0.6812 2, 7, 8
5 T2 + T3 0.6883 0.6067 0.8060 0.6923 1-4, 7, 8

End-to-end framework
6 End-to-end 0.8247 0.8125 0.7761 0.7939 1-5 7, 8

Baselines
7 Random 0.4351 0.3192 0.5649 0.4079 -
8 FANG 0.6689 0.6392 0.6495 0.6443 1,3

for the robustness of our proposed framework, FNDF, on the MM-COVID dataset and the
SD dataset, respectively. Figure 7.2 presents the number of tweets/sentences entering T3 in
framework variations versus the F1 score, on the MM-COVID and the SD datasets.

7.4.1 RQ 7.1: The Effectiveness of the Check-Worthy Ranking
Phase

First, we evaluate the effectiveness of the Phase 1 Task 1 model. Tables 7.2 and 7.3 show the
classification results of several framework variations and the end-to-end framework, on the
MM-COVID and SD datasets, respectively. Note that we can not include the experimental
results of using T1 alone in Tables 7.2 or 7.3, because T1 aims to filter a large number of
sentences/claims and tweets, and has to be combined with either T2 or T3 to be able to detect
fake news. Figure 7.2 shows the numbers of claims entering T3 for each variant, and their
corresponding F1 scores.

Table 7.2 shows that all the tested models outperform the random baseline. T1 + T2 (row 3)
and T1 + T3 (row 4) both outperform their single fact-checking tasks (T2 alone, row 1; and
T3 alone, row 2) counterparts. In particular, we observe that T1 + T2 (row 3) significantly
improves T1’s (row 1) performance on Accuracy (0.9406 vs. 0.9396), Precision (0.9344
vs. 0.8824), and F1 (0.9337 vs. 0.9144), but shows a slight decrease in Recall (0.9331 vs.
0.9488). Similarly, T1 + T3 (row 4) also significantly outperforms T3 alone, on the accuracy,
Precision, and F1 metrics. Table 7.2 shows that the end-to-end framework (row 6) outper-
forms T2 + T3 (row 5), and achieves the best performance on the accuracy, Precision, and
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Figure 7.2: Figures of the number of claims as input in T3 in framework variants versus the
F1 score, and their corresponding baseline on the MM-COVID dataset and the SD dataset,
respectively. * denotes that the variation/baseline model significantly outperforms T3 alone.

F1 scores, among all the tested framework variations.

When tested on the SD dataset, we observe similar trends from Table 7.3. That is, adding T1
to T2, T1 to T3, or T1 to T2 + T3 helps improve their respective Accuracy, Precision, and
F1 scores, while also hurting the Recall.

We postulate that since the filtering model (T1) removed 50% of the input tweets and claims
as non-check-worthy, our framework can identify non-fake news more accurately, resulting
in significantly higher Precision scores. However, T1 also identified a small number of fake
news as not check-worthy, causing lower performances in Recall.

Moreover, Figure 7.2(a) shows that including T1 not only reduces the number of claims
and tweets entering T3, but also increases the F1 performance on the MM-COVID dataset.
However, from Figure 7.2(b) we observe that including T1 alone (the T1+ T3 variant) does
not improve the F1 score than using T3 alone, but the end-to-end framework nonetheless
significantly outperforms both T3 and T1 + T3.

Thus, in response to RQ 7.1, we conclude that T1, the check-worthiness identification model,
can successfully filter out uncheck-worthy statements, resulting in better Accuracy and Pre-
cision performance in identifying fake news, while only affecting Recall by 1.4% on the
MM-COVID dataset (row 5 vs. 6 in Table 7.2) and by 3.7% on the SD dataset(row 5 vs. 6
in Table 7.3). T1 also helps reduce the number of claims using computational expansive T3,
while improving the F1 scores for the fake news identification task.
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7.4.2 RQ 7.2: The Effectiveness of Components in Phase 2 of
FNDF

To study the effectiveness of the Phase 2 components in the proposed framework, FNDF, we
compare the performances of the T2 and T3 models.

We first compare the effectiveness of T2 and T3 on the MM-COVID dataset. Table 7.2
shows that using T2 alone (row 1) significantly outperforms using T3 alone (row 2) on all
metrics (i.e., Accuracy: 0.,9396 vs. 0.8792; Precision: 0.8824 vs. 0.7635; Recall: 0.9488
vs. 0.8072; and F1: 0.9144 vs. 0.8491) in detecting fake news. We observe similar results
by comparing using T1 + T2 (row 3) with using T1 + T3 (row 4). That is, on all metrics,
using T1 + T2 significantly outperforms using T1 + T3. However, when comparing T2 +
T3 (row 5) against using either T2 or T3 alone (row 1 and row 2), we observe that T2 + T3
significantly outperform using either one of the models on the Recall metrics. That is, T2 +
T3 (0.9608) outperforms both T2 (0.9488) and T3 (0.8072) on Accuracy, Precision, Recall,
and F1. This is likely due to the higher Precision (row 2 vs. 1, row 4 vs. 3) T2 obtained in
detecting recurring fake news, while T3 obtained higher recall in identifying fake news that
is not present in the existing fake news collection, based on the engaged user embeddings.
This indicates that T2 and T3 are complementary to each other, and are both important in
our end-to-end framework, FNDF.

When evaluating using the SD dataset in Table 7.3, we observe similar results. That is, T2
(row 1) significantly outperforms T3 (row 2) on Accuracy (0.6948 vs. 0.6558), and Preci-
sion (0.6852 vs. 0.6429). However, different from the results on the MM-COVID dataset
presented in Table 7.2, T3 outperforms T2 in terms of Recall (0.6964 vs. 0.5804) and F1
(0.7152 vs. 0.6116) on the SD dataset. We observe similar differences between T1 + T2
(row 3) and T1 + T3 (row 4). Moreover, T2 + T3 (row 5) outperforms using either model
alone on all metrics. Similar to the results obtained on the MM-COVID dataset, these re-
sults indicate that T2 focuses on the precise classification of recurring fake news, when the
check-worthy claims and tweets are similar to previously encountered fake news, while T3
can identify fake news that is not present in our existing fake news datasets.

Furthermore, we note that T2 consistently outperforms T3 in terms of F1 on the MM-COVID
dataset but not on the SD dataset. We postulate that this is because of the differences in
the topic scope of the two datasets. Specifically, COVID-19 related fake news datasets are
extensive due to the relatively narrow focus and high popularity of the COVID-19 topic,
which is the only focus of the MM-COVID dataset. However, the SD dataset contains a
wide range of fake news that is difficult to include in the existing fake news datasets.

In addition, Figure 7.2(a) shows that combing T2 and T3 can reduce the number of claims
and tweets entering T3, while also increase the F1 performance significantly on the MM-
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Table 7.4: Performance comparison on the MM-COVID dataset using different user net-
works. Numbers in the significance column indicate that the model is significantly better
than the numbered model (McNemar’s Test, p<0.05).

# User network Accuracy P R F1 Significance
1 MM-COVID 0.9468 0.9364 0.9473 0.9414 2, 4
2 SD 0.9396 0.8824 0.9488 0.9144 -
3 MM-COVID incremental 0.9478 0.9003 0.9518 0.9253 1, 2, 4
4 SD incremental 0.9417 0.8873 0.9488 0.9170 -
5 Combined 0.9519 0.9083 0.9548 0.9310 2, 3, 4

Table 7.5: Performance comparison on the SD dataset using different user networks. Num-
bers in the significance column indicate that the model is significantly better than the num-
bered model (McNemar’s Test, p<0.05).

# User network Accuracy P R F1 Significance
1 MM-COVID 0.6948 0.6852 0.5522 0.6116 -
2 SD user 0.8247 0.8125 0.7761 0.7939 1,3
3 MM-COVID incremental 0.7338 0.7167 0.6418 0.6772 1
4 SD incremental 0.8442 0.8413 0.7910 0.8154 1-3
5 Combined 0.8701 0.8730 0.8209 0.8462 1-4

COVID dataset, than using T3 alone. However, similar to including T1 on the SD dataset,
Figure 7.2(b) shows that including T2 on the SD dataset does not improve the F1 score
of T3, but the end-to-end framework that combines all three models indeed significantly
outperforms both T3 and T2 + T3.

Thus, in response to RQ 7.2, we conclude that T2 – which aims to identify recurring fake
news – can identify fake news more precisely than T3; while T3 – the social network assisted
fake news identification model – can identify newly emerged fake news that is not recorded
in the existing fake news datasets, resulting in higher recall. Thus, T2 and T3 can comple-
ment each other and achieve better performances when used together than those provided by
individual models.

7.4.3 RQ 7.3: Robustness of the framework FNDF

Finally, we investigate the robustness of the proposed framework, FNDF, by conducting end-
to-end evaluation using 5 different user networks presented in Section 7.2.1.3.

Table 7.4 presents the experimental results on the MM-COVID dataset, while varying the
training data for the user network embeddings. We first observe that user network trained
with the SD user network information (row 2) performs the worst among all tested user
network embeddings. Similarly, using the SD incremental user network (row 4) does not
significantly improve the end-to-end framework’s performance. The poor robustness of our
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proposed framework, when applied to news that involves unseen users, can be explained by
the limited overlapping between the MM-COVID and SD users. Moreover, Table 7.1 shows
that the MM-COVID users are not heavily interconnected with of the SD users network, as
only 1.6% of the MM-COVID users are connected in the SD incremental set, which suggests
that most of the MM-COVID users are represented as [-1, ..., -1], rendering T3’s performance
similar to random. However, we do observe that the end-to-end framework, FNDF, which
applies user embeddings trained with both the MM-COVID incremental user network (row
3) and the combined user network (row 5), outperforms all the other models. This suggests
that a larger and more interconnected user network can provide better user embeddings, and
is essential for a robust performance from our framework in detecting the fake news.

Moving on to the experimental results on the SD dataset, Table 7.5 shows that, similar to
that of the MM-COVID dataset, the end-to-end framework using the MM-COVID user net-
work alone (row 1) significantly underperforms using the SD user network (row 2) alone,
indicating poor robustness of our framework. However, using the MM-COVID incremental
user network (row 3) significantly outperforms using only the MM-COVID user network.
We postulate that the 9% of the SD users connected to the MM-COVID network (observed
in Table 7.1) may have helped T3 identify a small number of fake news among the commu-
nity, in addition to the fake news identified by T2 that identifies recurring fake news. Similar
to the MM-COVID dataset, using user embeddings trained with the SD incremental user
network and the combined user network significantly improves the framework performance
than using the SD user network alone, over all the metrics.

These results indicate that our end-to-end framework is not robust when being applied to
a news dataset, whose engaging users are very different from the user network the end-to-
end framework is trained on. However, the framework’s performance can be improved by
including the unseen users (and their friends) from the new dataset in the user network, rather
than using only the users’ friendship network built on the old dataset, as shown by the results
in Tables 7.4 and 7.5.

Thus, in response to RQ 7.3 and Gap 5, we conclude that our proposed end-to-end frame-
work, FNDF, is robust in identifying fake news in a new dataset, only when the user network
embeddings are updated to include the new engaging users and their friends.

7.5 Conclusions

This chapter conducted an ablation study on the framework components to analyse the effec-
tiveness of each task model in our proposed framework, FNDF, using two publicly available
datasets. We also investigated the robustness of the framework by alternating the user net-
works available to the framework.
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Specifically, results from the ablation study (see Tables 7.2 and 7.3) showed that the Phase
1 Task 1 model, which aims to filter out the non-check-worthy sentences and claims, can
indeed increase the overall Accuracy, Precision, and F1 performances of the framework, as it
filters out some claims that the fact-checking models might misclassify. However, T1 cannot
identify all the check-worthy sentences and claims, leading to a slightly lower Recall for the
overall framework. Moreover, Figure 7.2 shows that including the check-worthiness ranking
model can reduce the number of claims/sentences/tweets needing fact-checking, while also
improving the F1 score of the end-to-end framework. Thus, we conclude that T1 is an
important component of the end-to-end framework, FNDF, because it can successfully filter
out uncheck-worthy statements, and improve Accuracy and Precision, as well as the F1
scores of the framework.

Phase 2 contains two models: T2 identifies recurring fake news, and T3 identifies fake news
using social network user connections. Our experimental results from Tables 7.2 and 7.3
showed that T2 can identify recurring fake news with high Precision by comparing sen-
tence/tweets with the existing fake news collection, while T3 can effectively identify newly
emerged fake news that is not collected in the existing fake news collection, leading to a
higher Recall than T2. Moreover, combining T2 and T3 leads to better Accuracy and F1
scores on both datasets. Thus, we conclude that T2 and T3 complement each other in detect-
ing fake news online, and are both important components in FNDF.

Finally, the experimental results (see Tables 7.4 and 7.5) on the proposed FNDF showed
limited robustness when the users engaging in the news are not well connected in the existing
user networks (see Table 7.1). However, combining the engaged users and their friends in
the two datasets makes the user friendship network denser and more connected, thus leading
to better performance on both datasets. Thus, in answering Gap 5, we concluded that to
best use FNDF, we need to update the user network periodically, to allow better connections
among users and better fake news detection performances.

In the thesis statement presented in Section 1.3, we hypothesised that by combining all three
components, our proposed FNDF framework could effectively identify fake news in an end-
to-end fashion. Based on the experiments of this chapter, we conclude that combining all
three proposed components indeed helps us identify fake news effectively, as the end-to-
end framework achieved an Accuracy and F1 score above 0.94 for the MM-COVID dataset
(see Table 7.2) and above 0.79 for the SD dataset (see Table 7.3), outperforming the SOTA
models FANG on the SD dataset, and the dENFEND model on the MM-COVID dataset.
Furthermore, Tables 7.4 and 7.5 showed that our framework could be robust when applied to
unseen users, given a large enough user network.

In the next chapter, we close this thesis by summarising the results and conclusions from
each chapter and providing possible new research directions uncovered by this work.
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Chapter 8

Conclusions

In this chapter, Section 8.1 first provides the conclusions drawn from this thesis. Section 8.2
summarises the contributions of this thesis. We discuss possible future research directions
for fake news detection online in Section 8.3. Finally, we present our closing remarks in
Section 8.4.

8.1 Conclusions

In this thesis, we addressed the challenge of identifying fake news online with our proposed
Fake News Detection Framework consisting of two phases and three tasks, namely, (1) Phase
1 Task 1, which combines embedded entities with language models to identify tweets and
sentences that require fact-checking; (2) Phase 2 Task 2 uses an existing fake news collection
for effective recurring fake news detection; (3) Phase 2 Task 3 leverages unsupervised Twitter
users’ network connections for identifying fake news.

In particular, in Chapter 4 (concerning Phase 1 Task 1), we proposed to capture the entity
information and semantic information of a sentence/tweet/claim, by concatenating the em-
bedded entity pair with its language model representation, for identifying check-worthy sen-
tences/tweets. We observed that the ALBERT + ComplEx model – which uses the ALBERT
model for sentence embeddings and the ComplEx model for entity embeddings – outper-
forms all other tested KG embedding models and language models combinations in both
the sentences check-worthy ranking and the classification task. Similarly, the BERTweet +
ComplEx model – which uses BERTweet for tweet embeddings and ComplEx for entity em-
beddings – outperforms all other tested KG embedding models and language models in both
the tweets check-worthy ranking task and the classification task.

Chapter 5 (w.r.t. Phase 2 Task 2) proposed an ensemble model to classify the entailment of a
check-worthy claim against existing debunked fake news in identifying recurring fake news
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online. We showed that the classification model using the BERT language model could be
enhanced with simple BM25 scores, classifying whether the two pieces of text agree with
each other, using the WSDM 2019 Cup Fake News Challenge dataset. When tested on the
MM-COVID dataset, the ensemble model of the BM25 scores and the BERT model can
identify recurring fake news significantly more accurately than using the language model or
the BM25 scores alone.

Chapter 6 (Phase 2 Task 3) proposed the UNES model that can effectively classify whether a
tweet/news is fake based on its Twitter engagement. Specifically, UNES represents a check-
worthy tweet/news as a vector, using the embedded entities of Twitter users who engaged
with the tweet/news/claim. Our experiments showed that the UNES model outperforms
many language models and complex network models that require handcrafted features.

Finally, in Chapter 7, we integrated all the proposed models to build the proposed end-to-end
fake news detection framework. Our results show that our proposed framework, FNDF, can
effectively identify fake news on two datasets, and demonstrate reasonable robustness when
applied to the fake news dataset with unseen users engagement.

Next, we validate our thesis statement, proposed in Section 1.3, based on our empirical
studies in Chapters 4 - 7. In summary, the key statement of this thesis is that effective fake
news detection can be achieved in a two phases and three tasks framework (FNDF). Phase 1
Task 1 focuses on identifying check-worthy tweets and claims by enhancing language models
with embedded entities. Phase 2 Task 2 identifies recurring fake news by an ensemble model
of BM25 scores and language model representations to compare check-worthy claims and
tweets with existing fake news. Phase 2 Task 3 focuses on identifying fake news with Twitter
information by representing check-worthy tweets and news with user embeddings. Finally,
our end-to-end framework can effectively identify fake news and be robust when applied
to news involving previously unseen users. We present the hypotheses made in our thesis
statement, and the evidence used to validate them, as follows:

• We hypothesised that by analysing entities in texts using an embedded knowledge
graph, we could more accurately identify check-worthy claims from tweet content,
articles, and debate quotes. We argue that we have validated this hypothesis in Chap-
ter 4, where we showed that concatenating embedded entities with the pre-trained deep
learning language model BERT can improve both the classification and the ranking
tasks for identifying check-worthy tweets and sentences (see Tables 4.20 and 4.21).
Furthermore, we also showed that among all the tested language models (i.e., TF.IDF,
BiLSTM, BERT [40], ALBERT [89], RoBERTa [106], and BERTweet [126]), the
ALBERT model performs the best at identifying check-worthy sentences, and that the
BERTweet model performs the best at identifying check-worthy tweets. Among all the
tested KG embedding models (i.e., Wikipedia2Vec [194], TransE [16], TransR [180],
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RESCAL [100], DISTMult [129], and ComplEx [195]), Tables 4.21 and 4.20 showed
that the ComplEx model performs the best in combination with the ALBERT model
at identifying check-worthy sentences and the BERTweet model at identifying check-
worthy tweets. Therefore, we have shown that enriching language models with embed-
ded entity pair representations can indeed improve the language models’ performances
for identifying check-worthy tweets and sentences.

• We hypothesised that by comparing the targeted claim with an existing fake news col-
lection, an ensemble model of a BM25 model and a deep neural network language
model can accurately classify if a targeted check-worthy claim is highly similar to any
existing fake news and thus is a resurfaced fake claim. Our experiments in Chapter 5
validated this hypothesis, with Table 5.5 showing our proposed ensemble model using
the BM25 scores and the BERT language model representations can classify the en-
tailment between two news titles more accurately than using either the BM25 scores or
any pre-trained language models alone. Moreover, Table 5.7 showed that the ensemble
model of BM25 and the BERT language model can effectively identify recurring fake
news, by comparing tweets and claims that needed to be fact-checked with previously
debunked fake news, compared to using either the BM25 scores or the BERT language
model alone. Thus, we have shown that the BM25 scores can indeed enhance the lan-
guage models in detecting the entailment among pairs of text, and thus improve the
performance of language models in detecting recurring fake news.

• We hypothesised that user network embeddings trained with unlabelled user network
data can identify the echo chamber effects among users and effectively identify fake
claims on Twitter. We validated this hypothesis in Chapter 6, where Figure 6.2 showed
that user embeddings trained with unlabelled user friendship networks have a CEV of
0.8474 between users who have engaged with fake news and users who have never en-
gaged with fake news. This indicates that users who have and have never engaged with
fake news can be distinguished, in the user friendship network. Furthermore, on a per
topic basis, Figure 6.4 showed a more apparent separation among people who engaged
with fake news and people who engaged with factual news w.r.t. the immigration issues
in the US. Moreover, when testing the effectiveness of user embeddings obtained using
the readily available information from the followers/friendship networks in identifying
fake news, Table 6.4 and Figure 6.3 showed that our proposed UNES model can signif-
icantly (McNemar’s Test, p<0.01) more accurately identify fake news than the existing
SOTA model, which uses complex network including handcrafted features. Thus, we
have shown that the unsupervised user embeddings learnt from Twitter users’ friend-
ship connections can indeed distinguish users who engage with fake news from users
who have never engaged with fake news. We have also shown that using the engaged
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users’ embeddings to represent check-worthy tweets/sentences can identify fake news
more effectively than using language models and Twitter networks with handcrafted
features to represent check-worthy sentences/tweets.

• Finally, we hypothesised that our proposed framework, FNDF, which combines all
the components, can effectively identify fake news circulating on Twitter end-to-end.
We validated this claim in Chapter 7, where Tables 7.2 and 7.3 showed that our pro-
posed FNDF outperforms the SOTA model FANG on the SD dataset, and the dEFEND
model on the MM-COVID dataset. Moreover, combining the three tasks in our pro-
posed framework FNDF achieved the highest accuracy in detecting fake news among
all other framework variations with one or two components, using the MM-COVID
and the SD datasets, indicating that the three tasks complement each other in our pro-
posed framework FNDF. Furthermore, Tables 7.4 and 7.5 showed that our framework
is robust even when applied to a new dataset involving unseen users, if we train the
user embeddings on a combined network, where the user network involving unseen
users is combined with the old user network.

Thus, all hypotheses have been validated, the thesis statement is thereby shown to have been
upheld.

8.2 Contributions

The main contributions of this thesis are as follows:

• In Chapter 4, we represented tweets using language models that go beyond the bag of
words and LSTM methods by leveraging the latest developments in deep neural lan-
guage models (BERT [40], ALBERT [89], RoBERTa [106], and BERTweet [126]).
We experiment with incorporating entity information within sentences and tweets,
from the simple similarity and relatedness scores between the entities in a sentence
to a more sophisticated entity representation obtained from KG embeddings. Our pro-
posed model does not require the joint training of the language model and the entity
representations, thereby providing greater flexibility for instantiating and deploying
the model in fact-checking tasks.

• In Chapter 5, we compared a range of models in representing text, such as simple-
embedding representations, BiLSTM and BERT, and identified the best practices in
using BERT language model representations in classifying the relationship between
Chinese news titles and between claims/tweets and debunked fake news. Our exper-
iments showed that traditional BM25 retrieval scores can improve the performances
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of deep neural network models in classifying whether a news title entails debunked
fake news, such as the BiLSTM model and the BERT model. In answering our hy-
pothesis that existing fake news collections can assist recurring fake news detection,
we showed that using an ensemble model – which combines the BM25 scores and the
BERT language model – in classifying the entailment relations between tweets/claims
and previously debunked fake news can effectively identify recurring fake news from
a set of check-worthy tweets and claims.

• Chapter 6 proposed to incorporate the idea of the echo chamber effect into the auto-
matic fake news detection task. Specifically, we showed that training user network
embeddings without prior knowledge of the users’ engagements with fake news could
help identify user communities that frequently engage in and spread fake news and
thereby facilitating fake news detection in social media. We proposed a User Net-
work Embedding Structure (UNES) model, which performs fake news classification
on Twitter through graph embeddings to represent the Twitter users’ social network
structure. Compared to the approach of Nguyen et al. [128], UNES does not require
any pre-annotated data, such as the user type (individual users or publishers), user’s
stance, and/or whether they have engaged with fake news before. We observed that the
user embeddings generated by UNES exhibit a clustering effect between users who
engage with fake news and users who solely engage with factual news, despite not
knowing if the users have engaged with fake news before. We also showed that us-
ing the social network’s user connections alone to build the network embeddings, and
using only users who engaged with the news when representing such news, can signif-
icantly outperform an existing state-of-the-art fake news detection approach that uses
both textual and complex social networks features.

• Chapter 7 conducted end-to-end experiments to investigate the effectiveness of our
proposed framework, FNDF. IT also reported an ablation study to examine the effec-
tiveness of each task model in identifying fake news, and conducted experiments to
investigate the robustness of our proposed framework, FNDF. Specifically, FNDF out-
performed the dEFEND model on the MM-COVID dataset by 4.0% and the FANG
model by 23.2% in terms of F1 scores. Furthermore, regarding the individual task
models, including the T1 – check-worthiness ranking model – in the end-to-end frame-
work not only reduced the number of tweets and claims going to the check-worthy
phase, but also resulted in 5.8% and 14.7% increases in terms of the F1 scores on the
MM-COVID and the SD dataset, respectively. Similarly, including T2 –the recurring
fake news identification model – in the end-to-end framework resulted in 15.5% and
16.5% increases in the F1 score on the MM-COVID and the SD dataset, respectively.
Finally, including T3 – the user network assisted fake news detection model – in the
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end-to-end framework resulted in a 0.8% and 29.3% increase of the F1 score on the
MM-COVID and the SD dataset, respectively. Moreover, we observe that using the
user network embedding trained on a combined user network of two datasets is on
par with or outperforms the user network embedding trained for the single experimen-
tal dataset on the MM-COVID and the SD datasets, respectively, which indicates the
robustness of our proposed framework, FNDF. Thus, we showed that the three task
models are all important components of our end-to-end fake news detection frame-
work, and that the FNDF is robust when applied to news involving unseen users, if the
user friendship network embedding is updated with the unseen users and their friends.

8.3 Directions for Future Works

This section discusses possible directions for future research related to fake news detection.
In particular, we discuss future research directions that have become apparent as a direct
result of the work presented in this thesis.

• Representing entities effectively in identifying check-worthy sentences and tweets:
In Chapter 4, we showed that an entity pair in a sentence can be represented by concate-
nating their respective embedded vectors together. Our experiments showed that this
method can effectively represent entity pairs in sentences and tweets, and is effective
in identifying check-worthy sentences and tweets when concatenated with language
model embeddings. However, we limited the number of entities in each input instance
to two and create more than one instance for each entity pair whether the sentence
has more than two entities. In such cases, the current entity analysis setup becomes
less than ideal. Thus, research on how to incorporate entities into language embedding
representations, regardless of the number of entities that existed in the sentence/tweet,
is an interesting future work that could be explored to support and facilitate check-
worthy sentences/tweets identification and a range of other tasks (e.g., commonsense
reasoning [38, 103], reasoning driven question answering [1, 21]) that can benefit from
entity information.

• Creating a large scale existing fake news collection: In Chapter 5, we used an exist-
ing fake news collection to identify recurring fake news from check-worthy claims
and tweets. In Chapter 7, we combined a range of publicly available fake news
datasets [32, 162, 188, 210] to build an existing fake news collection, and compared a
set of tweets and claims needing fact-checking to our constructed existing fake news
collection. We showed that identifying recurring fake news can significantly improve
the accuracy of identifying fake news in general. However, a systematic existing fake
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news collection that includes all types of identified fake news retrospectively while up-
dated periodically with newly emerged fake news does not exist. Thus, building such
a collection is an important task in the research of fake news identification. In the fu-
ture, we will explore providing an up-to-date large scale existing fake news collection
to both journalists and researchers.

• Integrating user descriptions into user network embeddings: In Chapter 6, we
proposed UNES, which uses user embeddings from unsupervised user network em-
beddings to represent news, and classify them as fake news or not. Our experiments
showed significant improvements over the language model-based classifiers in identi-
fying fake news on Twitter. However, the UNES model uses only the network structure
of the Twitter network, which omits some important features that may help identify
fake news, such as user descriptions [63], location information [80], or profile pic-
tures [104]. In the future, we will explore how to best incorporate such user infor-
mation into the network embedding models, so as to represent users more accurately,
based on their description as well as their network connections on Twitter.

• Combining textual features from the news with network features from the en-
gaging users: Figure 6.2 in Chapter 6 showed that the unsupervised user network
embeddings can help us distinguish users who have commented on fake news from
users who have never engaged in fake news, while Figure 6.4 showed a more apparent
separation among the two groups of users on a single topic. In this case, identifying
the topic of the check-worthy news and thus using the subset of the user embeddings
related to the identified topic may provide more definitive and accurate classification
results. Moreover, the textual analysis of the tweets and user embeddings may reduce
the classification error rate in our proposed UNES model, especially when the check-
worthy tweet/claim has sparked a large scale discussion from both the users who have
engaged with fake news and users who never engage with fake news. Thus, in the fu-
ture, we will research how to combine textual analysis models effectively with the user
network-based fake news detection model for a more effective and accurate model for
identifying fake news online.

• Improving the Recall for the check-worthiness ranking model: In Chapter 7 we
conducted experiments to investigate the effectiveness of individual components of
the framework. Tables 7.2 and 7.3 showed that including T1 – the check-worthiness
ranking model – improved the F1 scores by 5.8% and 14.7% on the MM-COVID and
the SD dataset, respectively. However, despite the improvement in the F1 scores, in-
cluding T1 results in slight decreases in Recall for the end-to-end framework. It is im-
portant to retrieve as much fake news as possible in a fake news detection framework.
Thus future works should focus on how to improve the Recall of the check-worthiness
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ranking model.

• Developing better strategy to leverage each model in our proposed framework:
Figure 7.1 in Section 7.2.3 demonstrated the workflow of our proposed framework. In
Phase 2, T2 first predicts whether the check-worthy tweets/sentences/claims are recur-
ring fake news. Then, if they are not identified as recurring fake news, T3 is used in
predicting if they are fake news. Our results showed that this workflow can reduce the
number of tweets going through the Twitter user network-assisted fake news detection
model, UNES, while also improving the performance in identifying fake news. How-
ever, the simple if/then condition of deciding which model to use in detecting fake
news could have been more intelligent. Thus, we recognise two strategies that could
be investigated and developed in future studies: (1) one model that can achieve both
identifying fake news as the T2 model and using the network assisted nature of the T3
model; (2) an ensemble model to combine the predictions of the T2 and T3 models.

8.4 Closing Remarks

In this thesis, we have addressed a challenging and important task, namely identifying fake
news online. Effectively identifying fake news is an important task for several reasons. First,
it is easy for anyone with Internet access to post any information online, with little to no
consequences, which can spread worldwide very quickly. Secondly, there are not enough
fact-checking websites and resources to fact-check all the online claims. Thirdly, users may
encounter such false information, believe such information, and form small communities
which reinforce false beliefs. Identifying fake news online is also a challenging task. For
example, there is too much information created daily to fact-check all of them; fake news
online can spread faster due to the timely fashion in which online data can be accessed
worldwide.

We have shown that effectively identifying fake news online can be achieved by an end-to-
end framework (FNDF), consisting of two phases and three tasks, which uses the language
information from sentences/tweets, entities identified from the sentences/tweets/claims, and
the Twitter users’ engagement. Specifically, our comprehensive and extensive empirical ex-
periments showed that our prosed framework, FNDF, can identify fake news more effec-
tively than the SOTA models on two publicly available datasets. Moreover, we showed that
the three task models are all important component in FNDF, as the end-to-end model sig-
nificantly outperform and other framework variations, leading to more accurate fake news
identification than using single models or two models combinations. Furthermore, we show
that our proposed FNDF is robust when applied to fake news involving unseen users, by
training user embeddings on a more extensive user network.
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We have progressed in addressing some of the main gaps in identifying fake news online.
However, there are still exciting aspects and complex challenges in the task of identification
of fake news, which we highlighted in Section 8.3. In our discussions throughout this the-
sis, it has become apparent that pre-trained deep learning language models are effective in
detecting fake news, while various other features, such as entities mentioned in the text, and
users that engaged with the text, can be beneficial to tackling the task of fake news identi-
fication. We argue that pre-trained deep learning language models, and important features
such as entities and users, will continue to be an essential trend in future research on online
fake news detection.
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[29] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the ACL Conference on Empirical

Methods in Natural Language Processing, pages 1724–1734.

[30] Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J., Menczer, F., and Flam-
mini, A. (2015). Computational fact checking from knowledge networks. PloS One,
10(6):e0128193.

[31] Coca, L., Cusmuliuc, C.-G., and Iftene, A. (2019). CheckThat! 2019 UAICS. In
Proceedings of the International Conference of the Cross-Language Evaluation Forum

for European Languages in CEUR Workshop.

[32] Cui, L. and Lee, D. (2020). CoAid: COVID-19 healthcare misinformation dataset.
arXiv preprint arXiv:2006.00885.

[33] Cusmuliuc, C.-G., Coca, L.-G., and Iftene, A. (2020). UAICS at CheckThat! 2020:
Fact-checking claim prioritization. In Proceedings of the International Conference of the

Cross-Language Evaluation Forum for European Languages in CEUR WorkshopWork-

shop.

[34] Da San Martino, G., Hasanain, M., Suwaileh, R., Haouari, F., Babulkov, N., Hamdan,
B., Nikolov, A., Shaar, S., and Ali, Z. S. (2020). Overview of CheckThat! 2020: Au-
tomatic identification and verification of claims in social media. In Proceedings of the

International Conference of the Cross-Language Evaluation Forum for European Lan-

guages in CEUR Workshop.

[35] Dagan, I., Glickman, O., and Magnini, B. (2005). The pascal recognising textual en-
tailment challenge. In Proceedings of the Machine Learning Challenges Workshop in

Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual

Entailment, pages 177–190.

[36] Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N. (2013). Improving efficiency and
accuracy in multilingual entity extraction. In Proceedings of the International Conference

on Semantic Systems (I-Semantics), pages 121–124.

[37] Das, S. D., Basak, A., and Dutta, S. (2021). A heuristic-driven ensemble framework for
COVID-19 fake news detection. In Proceedings of the International Workshop on Com-

bating Online Hostile Post in Regional Languages during Emergency Situation, pages
164–176.

[38] Davis, E. and Marcus, G. (2015). Commonsense reasoning and commonsense knowl-
edge in artificial intelligence. Communications of the ACM, 58(9):92–103.



BIBLIOGRAPHY 143

[39] Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and Croft, W. B. (2017). Neural
ranking models with weak supervision. In Proceedings of the ACM International Confer-

ence on Research and Development in Information Retrieval, pages 65–74.

[40] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the

ACL Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 4171–4186.

[41] Dhar, R., Dutta, S., and Das, D. (2019). A hybrid model to rank sentences for check-
worthiness. In Proceedings of the International Conference of the Cross-Language Eval-

uation Forum for European Languages in CEUR Workshop.

[42] Dib, F., Mayaud, P., Chauvin, P., and Launay, O. (2021). Online mis/disinformation and
vaccine hesitancy in the era of COVID-19: Why we need an ehealth literacy revolution.
Human Vaccines and Immunotherapeutics, pages 1–3.

[43] Dickerson, J. P., Kagan, V., and Subrahmanian, V. (2014). Using sentiment to de-
tect bots on Twitter: Are humans more opinionated than bots? In Proceedings of the

IEEE/ACM International Conference on Advances in Social Networks Analysis and Min-

ing, pages 620–627.

[44] Dictionary, M.-W. (2002). Merriam-webster. On-Line at http://www. mw. com/home.

htm, 8.

[45] Du, X., Yan, J., and Zha, H. (2019). Joint link prediction and network alignment via
cross-graph embedding. In Proceedings of the ACM International Joint Conference on

Artificial Intelligence, pages 2251–2257.

[46] Fan, Y., Pang, L., Hou, J., Guo, J., and Lan, Y. (2019). MatchZoo: A toolkit for deep
text matching. In Proceedings of the ACM International Conference on Research and

Development in Information Retrieval, pages 1297–1300.

[47] Fang, A., Macdonald, C., Ounis, I., and Habel, P. (2016a). Examining the cohernece of
the topic ranked Tweets topics. In Proceedings of the ACM International Conference on

Research and Development in Information Retrieval, pages 825–828.

[48] Fang, A., Macdonald, C., Ounis, I., and Habel, P. (2016b). Topics in tweets: A user
study of topic coherence metrics for Twitter data. In Proceedings of the European Con-

ference on Information Retrieval, pages 492–504.



BIBLIOGRAPHY 144

[49] Fang, A., Macdonald, C., Ounis, I., and Habel, P. (2016c). Using word embedding
to evaluate the coherence of topics from Twitter data. In Proceedings of the ACM In-

ternational Conference on Research and Development in Information Retrieval, pages
1057–1060.

[50] Fang, Y., Gao, J., Huang, C., Peng, H., and Wu, R. (2019). Self multi-head attention-
based convolutional neural networks for fake news detection. PloS One, 14(9):e0222713.
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