

Reilly, Craig (2022) Dynamically weakened constraints in bounded search for
constraint optimisation problems. PhD thesis.

https://theses.gla.ac.uk/83118/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

DYNAMICALLY WEAKENED

CONSTRAINTS IN BOUNDED SEARCH FOR

CONSTRAINT OPTIMISATION PROBLEMS

CRAIG REILLY

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

NOVEMBER 2020

Abstract

Combinatorial optimisation problems, where the goal is to an optimal solution from the set of
solutions of a problem involving resources, constraints on how these resources can be used,
and a ranking of solutions are of both theoretical and practical interest. Many real world
problems (such as routing vehicles or planning timetables) can be modelled as constraint
optimisation problems, and solved via a variety of solver technologies which rely on differing
algorithms for search and inference.

The starting point for the work presented in this thesis is two existing approaches to solving
constraint optimisation problems: constraint programming and decision diagram branch and
bound search. Constraint programming models problems using variables which have domains
of values and valid value assignments to variables are restricted by constraints. Constraint
programming is a mature approach to solving optimisation problems, and typically relies
on backtracking search algorithms combined with constraint propagators (which infer from
incomplete solutions which values can be removed from the domains of variables which
are yet to be assigned a value). Decision diagram branch and bound search is a less mature
approach which solves problems modelled as dynamic programming models using width
restricted decision diagrams to provide bounds during search.

The main contribution of this thesis is adapting decision diagram branch and bound to be
the search scheme in a general purpose constraint solver. To achieve this we propose a
method in which we introduce a new algorithm for each constraint that we wish to include
in our solver and these new algorithms weaken individual constraints, so that they respect
the problem relaxations introduced while using decision diagram branch and bound as the
search algorithm in our solver. Constraints are weakened during search based on the problem
relaxations imposed by the search algorithm: before search begins there is no way of telling
which relaxations will be introduced. We attempt to provide weakening algorithms which
require little to no changes to existing propagation algorithms.

We provide weakening algorithms for a number of built-in constraints in the Flatzinc specifi-
cation, as well as for global constraints and symmetry reduction constraints. We implement a
solver in Go and empirically verify the competitiveness of our approach. We show that our

solver can be parallelised using Goroutines and channels and that our approach scales well.

Finally, we also provide an implementation of our approach in a solver which is tailored
towards solving extremal graph problems. We use the forbidden subgraph problem to show
that our approach of using decision diagram branch and bound as a search scheme in a
constraint solver can be paired with canonical search. Canonical search is a technique for
graph search which ensures that no two isomorphic graphs are returned during search. We
pair our solver with the Nauty graph isomorphism algorithm to achieve this, and explore the
relationship between branch and bound and canonical search.

Acknowledgements

Initial thanks must go to my supervisor Professor Alice Miller for her support and advice
throughout both my time as a PhD student and the writing of this thesis. I would also
like to thank Dr Patrick Prosser, my second supervisor, for his words of encouragement;
without taking his course during my Masters I would not have chosen to do a PhD. For their
guidance and encouragement at my progression meetings I would like to thank Professor
David Manlove, Professor Simon Gay, Dr Kitty Meeks and Dr Simon Rogers. I would also
like to thank my examiners Dr Steven Prestwich and Dr Gethin Norman for their helpful
comments and advice which certainly improved this thesis.

I forgive my brother Dr Colin Reilly for getting assigned the better email address before I did.
Thanks goes to my dad for letting me explain so many of my coding woes to him and to my
mum for putting up with this when it happened at the dinner table.

For professional reasons I should thank Ciaran McCreesh and Ruth Hoffmann for being paper
coauthors, but I would rather thank them for being better friends and whisky connoisseurs.
Still, it was nice of you two to let me be the one to go to San Francisco to present our work.

Thanks to Heather Laughland for the wine, hip hop and psych in the bouldering gym. To
everyone with whom I played Dungeons and Dragons till the wee hours of the morning in
some seminar room or another, I hope to play with most of you again.

Most of all I thank Murphy, Darcy and Lucey. Completing this thesis would have been even
harder without you three.

This work was supported by the Engineering and Physical Sciences Research Council [grant
number EP/M506539/1], and I am grateful to have received conference and summer school
travel grants from AAAI and the School of Computing Science.

Contents

1 Introduction 1

1.1 Combinatorial problems . 2

1.1.1 What are combinatorial problems? 2

1.1.2 Types of combinatorial problem 3

1.1.3 What is constraint programming? 4

1.1.4 Modelling a combinatorial problem 5

1.2 Solving combinatorial problems . 5

1.2.1 Search . 5

1.2.2 Inference and constraint propagation 7

1.2.3 Consistency and levels of consistency 9

1.2.4 How hard is it to solve problems? 9

1.2.5 Heuristic choices during search 10

1.2.6 Approximate methods of search 11

1.3 Graphs . 11

1.4 Decision diagrams . 12

1.5 Experimental setup . 12

1.5.1 Solvers implemented . 12

1.5.2 Hardware used . 13

1.5.3 Instance selection and format . 13

CONTENTS

1.5.4 Performance metrics . 14

1.5.5 Presentation of results . 14

1.6 Thesis outline . 14

2 Weakened constraints for bounding search 17

2.1 Introduction . 17

2.1.1 Definitions and notation . 18

2.2 Related work . 21

2.2.1 Decision diagrams in optimisation science 22

2.2.2 Problem relaxations . 25

2.3 Decision Diagram Branch and Bound . 25

2.4 DDBB search in constraint programming 29

2.4.1 Restricted width truncated search 30

2.4.2 Relaxed width truncated search 31

2.4.3 Merging nodes in relaxed search trees 33

2.4.4 Limitation on cost functions . 35

2.4.5 The DDBB based search algorithm 36

2.4.6 New heuristics introduced through using DDBB 36

2.5 Constraint weakening during search . 37

2.6 Weakening linear summation constraints 39

2.6.1 Weakening sum less than or equal to 39

2.6.2 Weakening sum greater than or equal to 44

2.6.3 Weakening equal to . 45

2.7 Weakening max and min constraints . 45

2.7.1 Weakening the max constraint . 45

2.7.2 Weakening the min constraint . 48

CONTENTS

2.8 (Not) weakening the element constraint 48

2.9 (Not) weakening the absolute value constraint 49

2.10 Weakening reified constraints . 50

2.11 Experimental results . 50

2.11.1 Car factory sequencing problem 51

2.11.2 Evaluating the effects of heuristic choices 52

2.11.3 Comparison with forward checking 56

3 Weakened all different constraints 69

3.1 Introduction . 69

3.2 Background . 69

3.2.1 Regin’s alldifferent propagator . 70

3.3 Weakening all different . 73

3.4 Weakening the Alldifferent except 0 constraint 75

3.4.1 Weakening all different with a single wildcard mask 76

3.5 Weakening the at most n values constraint 76

3.6 Weakening the at least n values constraint 79

3.7 (Not) weakening the allEqual constraint 80

3.8 Experimental results . 81

3.8.1 Optimal Golomb rulers . 81

3.8.2 Cell block assignment . 84

4 Weakening symmetry reduction constraints 91

4.1 Introduction . 91

4.2 Background . 91

4.2.1 Lex-leader . 93

4.2.2 Examples of symmetry breaking 93

CONTENTS

4.3 Weakening lexicographic ordering constraints 94

4.3.1 Weakening lex less than or equal to 94

4.4 A relaxed value proceeds chain constraint 97

4.5 Results . 99

5 Implementing a solver and evaluating performance 101

5.1 Introduction . 101

5.2 Why write a constraint solver in Go? . 101

5.2.1 The other options . 102

5.2.2 Benefits to using Go . 102

5.2.3 Downsides . 102

5.3 Parallelising our solver . 103

5.3.1 Parallel computing . 103

5.3.2 Parallel code in Go . 104

5.3.3 Writing efficient parallel code in Go 105

5.4 Parallel combinatorial search . 106

5.4.1 Approaches parallelising combinatorial search 106

5.4.2 Parallel constraint programming 107

5.4.3 Parallel decision diagram branch and bound 108

5.5 Parallelising our solver . 108

5.5.1 Results . 110

6 Graph search problems 117

6.1 Introduction . 117

6.2 Graphs, Graph Isomorphism and the FSP 118

6.3 Modelling the Forbidden Subgraph Problem 120

6.3.1 A First Model . 120

CONTENTS

6.3.2 Symmetry Breaking . 120

6.3.3 Parallelism . 122

6.3.4 Branch and bound vs Canonicalised Search 124

6.3.5 The Effect of Bounding Search Widths 125

6.3.6 Further optimisations . 125

6.4 Adding Nauty to our Go implementation 128

7 Conclusion 129

7.1 Summary . 129

7.2 Future work . 131

7.2.1 Hybrid approach to search . 131

7.2.2 Provide weakening algorithms for more constraints 132

7.2.3 A more efficient implementation 132

7.2.4 Tuning solver parameters . 132

7.2.5 Better ordering of jobs (in parallel search) 132

References 135

A Problem Models 147

CONTENTS

List of Figures

1.1 An optimal (and perfect) Golomb ruler of order 4. 3

1.2 An example problem. 7

1.3 An example problem with a single alldiff constraint, which is not satisfiable. 8

1.4 The same example problem where the alldiff constraint is decomposed. 8

1.5 The tree and BDD associated with a boolean function on three variables
which evaluates to true if exactly two variables are set to true. Solid lines
represent the variable being assigned the value 1 and dashed 0. 12

2.1 An instance of the MISP. 26

2.2 An exact decision diagram representing the instance of the MISP. 26

2.3 A restricted decision diagram. 27

2.4 A relaxed decision diagrams. 27

2.5 Two partial solutions and the partial solution resulting from merging them
together. 35

2.6 An example completion problem, where an alldiff constraint is weakened
by masking the value of the variable b with the value 6 to ensure that the value
2 has support in the domains of variables d and e. 39

2.7 An example problem involving a lin_le constraint. 40

2.8 Two partial solutions and the partial solution resulting from merging them
together. 41

2.9 A completion problem including a weakened lin_le constraint. 41

2.10 An example problem including a max constraint. 46

LIST OF FIGURES

2.11 Two partial solutions of the problem shown in Figure 2.10 where xmax is
unassigned and the completion problem resulting from merging them together. 46

2.12 Two partial solutions of the problem shown in Figure 2.10 where m is as-

signed and the completion problem resulting from merging them together. . 47

2.13 An example element constraint with an array of integers a and two integer
variables i and e. 49

2.14 An instance of the car factory sequencing problem, a solution and the optimal
solution. The standard form of such instances is that the first line records
the number of cars to be made, the number of options available and the
number of classes of car. The following lines then give each class with its
number proceeded by which options are chosen for the class. This particular
instance instance is given as a motivating example in (Dincbas, Simonis, and
Hentenryck, 1988) and the optimal solution is found by our solver in less than
a tenth of second. 52

2.15 Cumulative number of CSP instances solved in a given time as the width of
restricted search is varied. 54

2.16 Cumulative number of CSP instances solved in a given time as the width of
relaxed search is varied. 55

2.17 Comparing merging low cost nodes versus rightmost nodes when conducting
relaxed search on car factory scheduling problem. 57

2.18 DDBB search versus forward checking on the CFSP, where variables are
chosen in input order and the minimum value is chosen first from variable
domains when branching. 59

2.19 DDBB search versus forward checking on the CFSP, where variables are
chosen in input order and the maximum value is chosen first from variable
domains when branching. 59

2.20 DDBB search versus forward checking on the CFSP, where variables are
chosen in order of domain size and the minimum value is chosen first from
variable domains when branching. 60

2.21 DDBB search versus forward checking on the CFSP, where variables are
chosen in order of domain size and the minimum value is chosen first from
variable domains when branching. 60

LIST OF FIGURES

2.22 DDBB search with and without relaxed search trees on the CFSP, where (from
top left, clockwise) variables and values are chosen in order of domain size
and the minimum value, domain size and maximum value, in a static order
and the maximum value, in a static order and the minimum value. 61

2.23 Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the CFSP. 62

2.24 Cumulative number of MISP instances solved in a given time as the width of
restricted search is varied. 64

2.25 Cumulative number of MISP instances solved in a given time as the width of
relaxed search is varied. 65

2.26 DDBB search versus forward checking on the MISP, where variables are
chosen in order or domain size and the minimum value is chosen first from
variable domains when branching. 66

2.27 DDBB search versus forward checking on the MISP, where variables are
chosen in order or domain size and the maximum value is chosen first from
variable domains when branching. 66

2.28 DDBB with relaxed diagrams or without. 67

2.29 Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the MISP. 68

3.1 An example problem involving a single alldiff constraint. 71

3.2 A maximum cardinality matching on the variable value graph obtained from
the problem modelled in Figure 3.1. The bold edges represent the edges
chosen to be in the matching M . 71

3.3 An example of an unsatisfiable problem involving a single alldiff constraint. 71

3.4 A maximum cardinality matching on the variable value graph constructed
from the problem modelled in Figure 3.3, where |M | < n. From the size of
the matching we can ascertain that the alldiff constraint is not satisfiable. 71

3.5 A flow computed through the augmented variable value graph obtained from
the problem modelled in Figure 3.1. 72

LIST OF FIGURES

3.6 The flow graph from Figure 3.5 with the strongly connected components
x1 → 1 → x2 → 0 → x1 and x3 → 2 → x4 → 3 → x3 highlighted in the
rust coloured boxes. The edges x3 → 0 and x3 → 1 cross both these strongly
connected component and so 0 and 1 can be removed from the domain of x3. 72

3.7 An example problem involving an alldiff constraint. 73

3.8 Two partial solutions and the partial solution resulting from merging them
together, with variables masked to weaken the alldiff constraint. 74

3.9 An example problem involving an AtMost constraint. 77

3.10 Two partial solutions to the problem modelled in Figure 3.9 and the partial
solution resulting from their merger, with n masked to weaken the AtMost
constraint shown in Figure 3.9. 78

3.11 An example problem including an AtLeast constraint. 79

3.12 Two partial solutions to the problem modelled in Figure 3.11 and the partial
solution resulting from their merger, with n set to 2 to weaken the AtLeast
constraint shown in Figure 3.9. 80

3.13 Cumulative number of cell block assignment instances solved in a given time
as the width of restricted search is varied. 85

3.14 Cumulative number of cell block assignment instances solved in a given time
as the width of relaxed search is varied. 86

3.15 DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in input order and the minimum value is chosen
first from variable domains when branching. 87

3.16 DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in input order and the maximum value is chosen
first from variable domains when branching. 88

3.17 DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in order of smallest domain size and the minimum
value is chosen first from variable domains when branching. 88

3.18 DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in order of smallest domain size and the maximum
value is chosen first from variable domains when branching. 89

LIST OF FIGURES

3.19 Using relaxed width truncated search trees versus not on the cell block allo-
cation problem, where variables are chosen in order of smallest domain size
and the minimum value is chosen first from variable domains when branching. 89

3.20 Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the cell block allocation problem. 90

4.1 An example problem involving a lexle constraint. 95

4.2 Two partial solutions of the problem modelled in Figure 4.1 and the comple-
tion problem resulting from merging them together. Masked variables in the
completion problem are underlined. 96

4.3 An example problem . 98

4.4 Two partial solutions to the problem modelled in Figure 4.3 and the comple-
tion problem resulting from merging them together. Masked variables in the
completion problem are underlined. 98

5.1 The effect of adding workers on execution times for the car factory scheduling
problem. 112

5.2 The effect of using 16 workers versus 1 worker for the car factory scheduling
problem and the reproducibility of execution times when using 16 workers. 113

5.3 The effect of using 16 workers vs 1 worker; a reproducibility result; and
improved performance against forward checking using 16 workers for the
MISP problem. 113

5.4 The effect of adding workers on execution times for the MISP. 114

6.1 The search tree for generating all graphs of order three. Each edge is treated
as a variable, and the graphs are presented at the leaf nodes. Each graph
which is the same up to isomorphism is rendered in the same colour. 119

6.2 The largest graph with 6 vertices which does not include a 3-cycle or 4-cycle. 119

6.3 Basic constraint model for extremal graph problems (no cycles of length 4 or
less) with v vertices and e edges . 120

6.4 Comparison of execution times (in milliseconds) when including different
symmetry reduction approaches. 121

LIST OF FIGURES

6.5 Comparison of search space size when including different symmetry reduction
approaches . 122

6.6 Execution times when relaxed search trees are and are not in use. 123

6.7 The size of search space when relaxed search trees are and are not in use. . 123

6.8 Parallel speedups, with runtimes in milliseconds 124

6.9 The effect of the maximum permitted width of a layer during restricted search
on the search space when nodes are merged using Nauty. 126

6.10 Effect of maximum permitted width of relaxed search trees on execution time
of our algorithm . 126

6.11 Bounding conditions from Propositions presented in (Garnick, Kwong, and
Lazebnik, 1993). 127

List of Tables

3.1 Comparison of execution times of our solver when finding optimal Golomb
rulers for differing widths of restricted search. 83

3.2 Comparison of execution times of our solver when finding optimal Golomb
rulers for differing widths of relaxed search. 83

3.3 Comparison of execution times and size of the search space for our DDBB
approach compared with forward checking when solving instances of the
optimal Golomb rulers problem. All runtimes are in seconds. 84

4.1 Comparison of execution times and size of the search space for our DDBB
search based approach to search compared with forward checking. 100

5.1 Comparison of execution times of our solver when finding optimal Golomb rulers for differing numbers of worker

threads. 115

6.1 Comparison of execution times of DDBB search with and without Nauty
compared with forward checking . 128

LIST OF TABLES

List of Algorithms

2.1 Restricted width truncated search for a problem, P = (X ,D, C, f), recorded
at a root node r. 32

2.2 Relaxed width truncated search. 33

2.3 Merging partial solutions with respect to a cost function f 34

2.4 Branch and bound search using width truncated search trees. 37

2.5 An algorithm for weakening the lin_le constraint 42

2.6 An algorithm for weakening the lin_ge constraint 44

2.7 An algorithm which weakens the max constraint. 47

2.8 An algorithm which weakens the min constraint. 48

3.1 An algorithm for masking variables when weakening the alldiff constraint. 75

3.2 An algorithm for masking variables when weakening the alldiff_0 constraint. 76

3.3 An algorithm to weaken the AtMost constraint by increasing the number of
distinct values allowed by the constraint. 78

3.4 An algorithm to weaken the atLeast constraint 79

4.1 An algorithm for weakening the lexle by masking variables. 96

4.2 An algorithm for masking variables to weaken the value proceeds chain constraint. 99

5.1 The task of a worker in parallelised DDBB search. 109

1

Chapter 1

Introduction

The focus of the work presented in this thesis is to adapt a decision diagram branch and
bound, DDBB, search algorithm due to Bergman, Ciré, van Hoeve, et al. (2016) for use as the
search scheme in a constraint optimisation solver. The existing algorithm uses width truncated
decision diagrams to provide bounds during search when solving problems modelled using
dynamic programming models. The DDBB search algorithm uses relaxed decision diagrams
to provide upper bounds (when the objective is to maximise a cost function) and these rely on
merging nodes to maintain a maximum allowed width. The approach to merging nodes (both
the order in which to choose pairs and how to merge them) is provided by the modeller and
must guarantee that the resulting relaxed decision diagrams provide an upper bound.

Our approach to adapting this algorithm for use in a constraint solver is to ensure that
constraint propagators respect problem relaxations introduced by merging nodes. To achieve
this we require an algorithm for each constraint to weaken it, based on problem relaxations
introduced by a single algorithm we provide for merging nodes.

We implement two solvers to empirically evaluate our approach. A general purpose solver
which is written in Go and a C++ implementation which is suitable for graph search problems.

In this chapter we begin by giving an informal overview of many of the core concepts used
throughout the thesis. We leave formal definitions for later chapters and also defer more
careful consideration of related work, handling this within later chapters.

We end this chapter with an overview of the structure of this thesis and a brief summary of
the material included therein.

2 CHAPTER 1. INTRODUCTION

1.1 Combinatorial problems

In this section we give an overview of what combinatorial problems are, what combinatorial
optimisation problems are, how these problems can be modelled and how they can be solved
algorithmically.

1.1.1 What are combinatorial problems?

The goal when solving a combinatorial problem is to find an assignment of a discrete and
finite set of objects which satisfies some given conditions. A combinatorial optimisation
problem extends this idea by aiming to find an optimal assignment of all possible assignments
which satisfy the given conditions (that is, the best assignment with respect to some ordering
of solutions). Informally, a combinatorial problem involves a collection of resources and some
constraints regarding how these resources can be used. As an example, these constraints could
be that resource a must be consumed before resource b, but after resource c. A solution is then
some choice of how these resources are used in a way which satisfies all of the constraints
imposed. For example, we may have a problem where our resources are packages which
have to be delivered within a certain time frame. Such problems are common in industry and
everyday life. As an industrial example, there may be a need to move materials down a supply
chain by boat in the petrochemical industry; Giles and van Hoove (2016) study such a problem
and solved it using Constraint Programming, where the problem is to schedule the movement
of boats such that each location in the supply chain is kept stocked with sufficient materials.
This kind of combinatorial problem is called a satisfaction problem, where all solutions to
the problem are equally valid. In some cases we might be interested in how many solutions
there are to a problem, this is referred to as an enumeration problem. In this work we are most
interested in combinatorial optimisation problems. Finding the “best” solution to a problem
involves scoring solutions so that we can pick the solution which scores highest. Note that this
often does not involve simply enumerating solutions and then ordering them to find the best
answer to a problem. Instead many solver technologies will prune areas of search which have
no chance of containing the best solution. Giles and van Hoove also study the optimisation
variant of this supply chain delivery problem where the size of the fleet of boats is minimised.
In everyday life such pick up and delivery problems are ubiquitous. An individual might take
an Uber home from work to have Deliveroo bring them their dinner. O’Neill and Hoffman
(2018) study these types of dynamic pickup and delivery problems, and compare multiple
solver technologies against one another when solving them. The optimisation criteria for
such problems could be that wait times for customers are kept to a minimum, or the fuel
consumption of an entire fleet of delivery vehicles is minimised.

1.1. COMBINATORIAL PROBLEMS 3

0 1 4 6

1 2

3

4

5

6

Figure 1.1: An optimal (and perfect) Golomb ruler of order 4.

As an example problem consider the problem of finding optimal Golomb rulers. A Golomb
ruler is an ordered sequence of integers ai which represent marks on an imaginary ruler. The
distance between any pair of marks on the ruler must be distinct from the distance between
any other pair. The number of marks n on the ruler is its order and the length of the ruler is
the largest distance between any pair of marks. A Golomb ruler is optimal if no Golomb ruler
of smaller length with the same order exists. Figure 1.1 shows the perfect, optimal Golomb
ruler of order 4 which has length 6.

In this problem the resources are the marks and the spaces in which we can place them and
the constraints are that no mark can share the same space as any other and the gap between
all pairs of marks is unique. We will return to this problem when showing how constraint
optimisation problems can be modelled.

1.1.2 Types of combinatorial problem

There are many different different classes of problems which all fit the definition of a com-
binatorial problem. Examples include constraint satisfaction problems (CSPs), integer pro-
gramming problems, linear programming problems, mixed integer programs (MIP), boolean
programs, pseudo-boolean programs, boolean satisfiability (SAT), quadratic programs, and
more. We will focus on solving CSPs using constraint programming in this thesis, but we will
introduce some of the other classes here.

A constraint satisfaction problem consists of a set of variables X = {x1, x2, . . . , xn} which
take values from a set of finite, non-empty domains D = {D1, D2, . . . , Dn} and a set of
constraints C = {C1, C2, . . . , Cm}. Variables are assigned values from their domains and a
complete assignment is one in which every variable is assigned. Each constraint is imposed
over a (possibly improper) subset of the variables and defines which combinations of value

4 CHAPTER 1. INTRODUCTION

assignments the subset of variables that satisfies the constraint. A complete assignment which
satisfies every constraint in C is a solution to the CSP. A more formal definition is given in
Definition 2.1.6.

An integer programming problem is a CSP where the domains are restricted to be integers.
Often integer programming is assumed to be integer linear programming, where the constraints
and objective function (which allows solutions to be ranked) are linear. In the case where
some of the domains are not discrete, a problem is known as a mixed-integer programming
problem.

In a boolean satisfiability problem the domains are restricted to be boolean values. The
constraints of the problem are expressed as a boolean formula (often expressed in conjunctive
normal form). Each of these classes of problem is solved with a different solver technologies
relying on a different set of underlying algorithms for search and inference.

1.1.3 What is constraint programming?

To solve a problem using constraint programming describes both the process of modelling a
problem and solving it. Modelling a problem using constraint programming involves writing
declarative code which describes the problem using variables, constraints between variables,
an objective function (if one exists) and any search heuristics to guide search. The allowed
types of variables and constraints can vary depending on the constraint solver which is to be
used to find a solution to the problem. A constraint solver then takes this declarative model
and uses a combination of search and inference algorithms to solve the problem. Constraint
programming is often used as a catch all term for this entire process.

Some standard constraint modelling languages exist such as Minizinc (Nethercote et al.,
2007a, Stuckey et al., 2014), Essence (Frisch, Grum, et al., 2007), NumberJack (Hurley
and O’Sullivan, 2016) and JuMP (Dunning, Huchette, and Lubin, 2017). As well as these
dedicated languages often constraint solvers will read models which are declared in programs
written in general purpose computing language, with the model being declared in a format
as set out by the solver’s API. The Choco (Prud’homme, Fages, and Lorca, 2017) constraint
solver is one such solver, which is written using the Java programming language.

Modelling a problem using constraint programming does not tie the modeller down to using a
constraint solver to find solutions. For example if a problem only includes linear constraints
on integer variables then it may be be more efficient to solve the problem using a linear
programming solver. Most of the constraint modelling languages listed above can be used to
interface with other solver technologies such as MIP solvers or SAT solvers.

1.2. SOLVING COMBINATORIAL PROBLEMS 5

1.1.4 Modelling a combinatorial problem

In previous sections we gave a short overview of various classes of combinatorial problems
and a brief overview of constraint programming. In this section we model the problem of
finding optimal Golomb rulers described in Section 1.1.1 as a constraint optimisation problem.

The optimal Golomb ruler problem of a given order n can be modelled by creating a variable
xi for each mark to be placed, and the domain of each variable is then a set of integers
representing the spaces along the ruler in which the mark represented by xi can be placed. We
can then impose that each variable xi must take a unique value to ensure that no two marks
can be placed in the same place. To ensure that the gap between each mark is distinct, we can
create a new variable gi,j to represent each gap and impose the constraint that gi,j = xj − x1
for each i and j such that 1 ≤ i < j ≤ n and require that each gi,j takes a different value. To
find the optimal ruler of order n we also need to ensure that the maximum value taken by any
gi,j is minimised.

1.2 Solving combinatorial problems

In this section we focus on how combinatorial problems are solved, with a particular focus
on Constraint Programming. In Constraint Programming problems are solved by alternating
between search algorithms and inference algorithms (called constraint propagators) which
determine if constraints are satisfiable or not. In the case where constraints are satisfied,
these inference algorithms remove values from the domains of variables which can never be
included any assignment.

1.2.1 Search

Search describes the process of systematically making a sequence of choices to solve a
problem. Although it would be intractable, we could solve an instance of the optimal Golomb
ruler problem by trying out every combination of placement of marks reviewing them to
determine which satisfy all the constraints of the problem. This approach is known as generate
and test and is wildly inefficient for a problem of anything but trivial size.

Another option for solving the problems is to take a small partial solution which we know to
be good and add to that. For example, we could place the first mark on the ruler at position
0 and the next at position 1. We then attempt to place the next mark at the next available
position, but placing it at position 2 breaks the constraint that all distances between marks are
distinct. In this case we backtrack and try a new value for the placement of the third mark.

6 CHAPTER 1. INTRODUCTION

This backtracking continues if there are no more valid options to place a mark, and a new
choice for the subsequent mark is tried. This process continues until a valid solution is found
or there are no variable-value combinations are left to try. A key advantage of this approach
is that we no longer generate assignments which are invalid; every solution presented by
backtracking search satisfies all of the constraints imposed in a problem.

We can view search as a tree, with the root node containing the state of the problem where
no variables have been assigned values. Each valid decision we make regarding a value
assignment to a variable augments the state with this new assignment and creates a child node
with the new state. When there are no variables remaining which have not been assigned a
value then we are at a leaf node of the tree and have found a solution. The order in which the
search tree is constructed is very important when solving problems.

Depth first search chooses the deepest node where all value assignments to a variable have
not yet been tried and attempts to make the next value assignment to a variable. In constraint
programming this means after we assign a variable a value we move on and attempt to assign
another variable a value which does not conflict with any other previous assignments. In
practice this is a very efficient way to conduct search as only the path to the current search
node and a record of previous assignments at each node along the path are needed when
conducting a depth first backtracking search.

Breadth first search (E. F. Moore, 1959) builds the search tree one layer at a time, choosing
the shallowest node to the search tree to continue from. Again, assuming that the order we
choose variables in is fixed, this means we try all possible value assignments for a variable
before continuing with search. This approach is not as efficient as depth first search as it
requires all the nodes in the deepest layer of the search tree to be retained in memory. This
restriction means that it is almost always impractical to conduct search in this way.

An additional drawback to breadth first search is that it has to explore (almost) the whole
search space before it finds any solutions (Kozen, 1992). In contrast depth first search finds its
first solution at the first valid solution it arrives at. For satisfiable decision problems (problems
where a solution exists) the behaviour of depth first search is clearly preferable. However for
unsatisfiable (problems where no solution exists) problems the whole search space has to be
explored to find that a solution does not exist, so it is only the memory requirements that lead
to depth first search being preferable.

A common search scheme in constraint programming is forward checking (Haralick and
Elliott, 1980), where each proceeds in a depth first manner and at each node in the search tree
each constraint involved in the problem being solved is propagated. Constraint propagation
removes values from the domains of unassigned variables if they cannot be included in any
solution. We discuss constraint propagation in the following section.

1.2. SOLVING COMBINATORIAL PROBLEMS 7

A drawback to depth first search is that often choices made early on in search preclude a
solution. Search then thrashes, backtracking to repeatedly try all variable value combinations
deeper in the search tree while the conflicting assignments are higher up the tree. Prosser
(1995) introduces conflict directed backjumping, which seeks to mitigate this problem by
having search backtrack straight to the deepest conflicting assignment rather than to the
previous search node. While this does not remove the prospect of thrashing it does mitigate
the issue in many cases.

1.2.2 Inference and constraint propagation

Often we can do better than just searching by making a sequence of guesses. A success of
constraint programming is that solvers do not treat the state at a search node as a black-box that
can only determine if a variable can be given an assignment. Instead, it may be possible that
there is scope for inference based on the constraints which are imposed on a problem and the
current assignment of values to variables. Consider the problem modelled in Figure 1.2 which
involves two integer variables and a single constraint between them. If we have assigned x the
value 5, then we can tell immediately based on the constraint that the largest value y can take
is 2 (while x = 5), without ever needing to attempt to assign y the values 3, 4 or 5 through
search. This kind of inference which cuts down the search space can be a powerful tool when
we try to solve problems as quickly as possible.

x ∈ {0, . . . 5}
y ∈ {0, . . . 5}
x+ y ≤ 7

Figure 1.2: An example problem.

While inference can be powerful, choosing the wrong constraints to model a problem can
lead to increased search effort. Two equivalent models of the same problem which rely on
different constraints can require different numbers of search nodes (steps where we have to
make a decision about what to value to assign to a variable) to find a solution. Consider the
example in Figure 1.3, which shows a problem on four binary variables which are all expected
to take different values. It is clear that this problem is not satisfiable just by looking at it,
there just are not enough values to go around. Before assigning any variables a value we can
determine that the problem is unsatisfiable. However, while the model given in Figure 1.4
models the same problem as in Figure 1.3 the same level of inference is no longer possible.
Before search proceeds the not-equals constraints do not allow any values to be pruned
from the domains of x1, x2, x3 and x4.

8 CHAPTER 1. INTRODUCTION

x1 ∈ {0, 1}
x2 ∈ {0, 1}
x3 ∈ {0, 1}
x4 ∈ {0, 1}
alldiff(x1, x2, x3, x4)

{0, 1} {0, 1}

{0, 1} {0, 1}

alldiff

Figure 1.3: An example problem with a single alldiff constraint, which is not satisfiable.

x1 ∈ {0, 1}
x2 ∈ {0, 1}
x3 ∈ {0, 1}
x4 ∈ {0, 1}
x1 6= x2

x1 6= x3

x1 6= x4

x2 6= x3

x2 6= x4

x3 6= x4

{0, 1} {0, 1}

{0, 1} {0, 1}

6= 6=

6=

6=

6= 6=

Figure 1.4: The same example problem where the alldiff constraint is decomposed.

1.2. SOLVING COMBINATORIAL PROBLEMS 9

1.2.3 Consistency and levels of consistency

In the previous section we demonstrated that propagating constraints to remove values from
variable domains can be useful, but in practice the amount of effort that goes into propagation
can have a large effect on the execution times of solvers.

An assignment of a value to a variable is consistent if if does not violate any constraints.
Consider a simplified situation where there exists only binary constraints between pairs of
variables x and y. A value v in the domain of a variable x has support if there exists a value
w in y such that the assignment x = v, y = w satisfies all constraints between x and y. In
the case where every value in the domain of x and y has support, then x and y are said to
be arc-consistent. A problem is arc-consistent if and only if each variable is arc-consistent
with every other variable. This concept extends to constraints which involve any number of
variables, and this case is called generalised arc-consistency.

Often it is advantageous to only keep track of the bounds of an integer variable (that is the
smallest and largest values that it can be assigned), rather than record all of its possible values.
While this has advantages regarding the amount of memory a solver needs to function, many
constraint propagators also work by tightening the bounds of variables and do not remove
all values without support from the variable domains. For example, in the problem shown in
Figure 1.2 setting the value of x to be 5 means that we can immediately determine that the
upper bound of y is 2. Two variables x and y are said to have interval support if there exists a
pair of values s and t between the bounds of x and y respectively such that s and t satisfy all
constraints between x and y. When support is only determined from the bounds of variables
in this way a problem is said to be bounds consistent.

1.2.4 How hard is it to solve problems?

Combinatorial problems are difficult, both in theory and often also in practice. While we will
not cover computational complexity (Goldreich, 2010) and (Garey and Johnson, 1979) could
be used for reference. Many decision problems are NP-complete (Goldreich, 2010), which
means that there (probably1) does not exist an efficient algorithm to solve these problems.
Individual instances of such problems can become exponentially more difficult to solve as
the number of variables involved increases. This could quickly lead to instances which take
very very long to solve. In fact, linear programming and boolean satisfiability are standard
NP-complete problems. To prove that a problem is NP-complete a reduction (a mapping from
one problem to another) to one of these problems suffices.

1Unless P=NP

10 CHAPTER 1. INTRODUCTION

In general optimisation problems are even harder than decision problems. To determine if
an assignment is a solution to a satisfaction problem all that is required is to check all of the
values assigned to all of the variables satisfy each constraint involved in the problem. It might
be very difficult to find this solution but it is simple to check that it is a solution to the problem
being solved. This ease of verification does not extend to optimisation problems. While we
can tell that any solution offered by a solver is in fact a solution, in general there is no reliable
way to prove that it is is the best solution. So there is some trust on the part of the user that a
solver does in fact explore the whole search space to determine which solution is optimal, or
that it is correct when it chooses to prune areas of the search space where it expects to find no
solutions which are better than current best solution found by the solver.

Some solver technologies overcome this issue of having to trust that the solver has correctly
determined a solution to be optimal by producing a log during search. This log can then
be checked to make sure that the solvers reasoning throughout its execution was sound.
While this approach to proving the correctness of solvers is standard practice in SAT solvers,
(Cruz-Filipe, Marques-Silva, and Schneider-Kamp, 2017),(Goldberg and Novikov, 2003)
and (Heule, Hunt, and Wetzler, 2013), it is an currently a new area of research for constraint
solvers (Gocht, McCreesh, and Nordström, 2020).

1.2.5 Heuristic choices during search

One method for combating the hardness of combinatorial problems is by using search heuris-
tics. Search heuristics are choices which guide search in an attempt to find solutions more
quickly. Best first search is a search method like depth first and breadth first approaches
described in Section 1.2.1 where the next node to branch on is chosen by a heuristic which
scores the viability of nodes of the search tree. Best first search branches on the node which is
heuristically determined to be the most likely to lead to a good solution (that is, any solution
for satisfaction problems and a high cost solution for optimisation problems).

In the case of constraint programming the search heuristics cover the order in which variables
and values should be considered. An example variable heuristic could be to choose the
variable with the smallest domain first (Haralick and Elliott, 1980). In practice this heuristic
works well in many cases, and is one of two search heuristics suggested to be included in
all solvers which implement a Flatzinc2 parser (the other is to consider the variables in a
specified static order).

Heuristics are not guaranteed to always lead to the best search order (the order which requires
fewest search nodes to find a solution), but in practice a good choice of heuristic can have

2Models written in Minizinc are compiled to Flatzinc models which are then read by solvers.

1.3. GRAPHS 11

a large affect on the time it takes for a solver to find a solution. For optimisation problems
heuristics can effect the time it takes to find a good incumbent solution (the best solution
found yet as search proceeds). Finding a better incumbent solution sooner can lead to more
pruning of the search space.

1.2.6 Approximate methods of search

One approach to solving optimisation problems is to avoid complete exact search altogether.
There are many incomplete and approximate search algorithms which trade always finding a
solution, or the optimal solution for optimisation problems, with faster execution times than
an exact search. One common incomplete approach to search is local search, which starts
off with a random assignment of values to variables and makes changes to this assignment
that improve its cost. The cost in of an assignment in this context is based on the number
of constraints that it violates. GSAT (Selman, Levesque, and Mitchell, 1992), Tabu Search
(Glover, 1990) and Simulated Annealing (van Laarhoven and Aarts, 1987) are examples of
local search algorithms.

Another type of incomplete search algorithm is an approximation algorithm (Garey and
Johnson, 1981). These algorithms seek solutions which are nearly optimal, which means that
there are guaranteed bounds on how far from the true optimal value their answer will be.

Yet another approach to limiting the difficulty of problems is by Fixed Parameter Tractability
(Downey and Fellows, 1995), which makes assumptions on the structure of the input data to a
problem in an attempt to leverage problem structure.

1.3 Graphs

A graph is a set of vertices together with a set of edges which connect vertices. We will define
graphs more formally in chapter 6. Problems can be modelled by graphs. For example if
we wanted to find the largest group of people who are all friends with each other on a social
media platform we could model each person as a vertex, each friendship as an edge between
vertices. Finding the largest set of vertices such that each vertex is connected to every other
vertex is a problem called the maximum clique problem.

Graphs are not only used to model problems, but can also be the objects that we consider
when solving problems too. We will consider such a graph search problem in chapter 6.

12 CHAPTER 1. INTRODUCTION

1.4 Decision diagrams

This thesis is based around including a decision diagram branch and bound algorithm in a
constraint solver. A binary decision diagram is a special type of graph, called a tree, which
has a root node and two terminal nodes. Nodes in a binary decision diagram are arranged in
layers and each node might have up to two children. Binary decision diagrams found great
success through their use as a compact data structure to represent boolean formulae (Bryant,
1985). Figure 1.5 gives an example of a search tree and a BDD representing the possible
combinations of a small boolean formula involving three variables, which evaluates to true if
and only if example two of the variables take the value true.

x0
x1

x2
0 1 1 0 1 0 0 0 1 0

Figure 1.5: The tree and BDD associated with a boolean function on three variables which
evaluates to true if exactly two variables are set to true. Solid lines represent the variable
being assigned the value 1 and dashed 0.

1.5 Experimental setup

In this section we outline our setup for undertaking empirical evaluation of the performance of
the solvers which we implement to test our algorithms. We cover our choice of both hardware
and software, as well as our experimental workflow from instance generation to solution.

1.5.1 Solvers implemented

We take results from two solvers which we have implemented. One is written in Go and is
a general purpose constraint solver, while the other is focussed specifically on graph search
problems and is written in C++. Our Go solver makes use of Go version 1.12.5 and our C++
solver was implemented using C++14 and compiled using GCC 6.3.0 at optimisation level
-03. We defer in depth discussion of the implementation details of these solvers to chapters 5
and 6.

The use of Go as our choice of language to implement our solver means that we have to take
care when running multiple instances of the solver concurrently on one machine. This is due

1.5. EXPERIMENTAL SETUP 13

to Go’s concurrent garbage collector. To ensure that multiple Go programs do not fight over
resources we can limit the maximum number of processes which our solver can use.

1.5.2 Hardware used

We conducted our empirical analysis of our solvers using a cluster of machines. Each machine
in the cluster is set up with two Intel Xeon E5-2697A v4 processors, 512GBytes of RAM
and was running the Ubuntu 17.10 operating system. Each machine has 32 real processor
cores and 64 hyper-threads. Hyper-threading is a feature on modern Intel processors where
each real core is treated as two cores. When we present results obtained from running parallel
versions of our solvers we often find that scaling drops off once the number of parallel
workers out-strips the number of real cores available. This behaviour is to be expected, since
hyper-threading can often only give an 20-30% improvement in performance (and sometimes
gives none at all) (McCreesh, 2017). We did not make use of another feature of the Intel
CPUs, i.e. turning off their “Turbo Boost” functionality. This feature allows the CPU to ramp
up its clock speed when factors like cooling and system energy consumption allow. While
this feature is useful in a desktop computing context it can skew our results when measuring
the execution times of our algorithms.

1.5.3 Instance selection and format

All of the models which are solved by our Go solver are written in the Minizinc constraint
modelling language (Nethercote et al., 2007b). Minizinc is a high level modelling language
which allows for rich models to be expressed succinctly. The benefit of using the language is
that it allows the modeller to only write a model once, rather than translating into multiple
programming languages to produce programs which interface with solver specific APIs.
Minizinc is not the only such high level language, with Essence (Frisch, Grum, et al., 2007)
also gaining traction. We store data which varies by problem instances as .dzn files, the
Minizinc data file format, and compiled problem instances to Flatzinc with the standard
Minizinc compiler. Flatzinc is a solver input language which lists all constant values and
decision variables, and arrays thereof, as well as all the constraints which define a problem
instance. Although some solvers do implement their own Minizinc to Flatzinc compilers in an
effort to speed up overall execution we have not taken this route. Where possible the models
were also not written by us and we make use of some models from CSPLib (Jefferson et al.,
1999).

Where we have generated random instances the goal was to make sure that, while none were
trivially unsatisfiable, both satisfiable and unsatisfiable instances were generated. To remove

14 CHAPTER 1. INTRODUCTION

trivially unsatisfiable instances we discarded all instances which the Minizinc to Flatzinc
compiler could prove were unsatisfiable.

1.5.4 Performance metrics

When we report execution times for solvers in this thesis we report the time it takes for search
to be conducted. This allows us to focus on improving the performance of search instead of
optimising the reading of models from files, which can be often be large3. Both of our solvers
(written in Go and C++) use a monotonic clock when determining how long search takes.
This clock is guaranteed to be monotonically increasing and is unaffected by changes to the
system’s wall clock during the execution of our solvers.

When we assess the size of the search space we do so by counting the number of search nodes
used. We do not report the amount of memory used by our solvers. Our constraint solver
implemented in Golang at times use a lot of system memory, requiring orders of magnitude
more space in RAM than commercial solvers. We suspect this is partly down to our inability
to write very efficient Go code, so we stick to reporting the size of the search space over the
amount of memory used.

1.5.5 Presentation of results

We commonly use scatter graphs when comparing two methods directly. When reading such
graphs points which lie below the y = x line show that the method being represented on the
y-axis is best, and points above this line show that the method represented on the x-axis is
favourable.

1.6 Thesis outline

The goal of this work adapt an existing branch and bound algorithm which makes use of
decision diagrams for use as the search scheme in a constraint solver. This thesis is arranged
as follows:

1. In Chapter 2 we introduce decision diagram branch and bound search and show how we
adapt it for use as the search scheme in a constraint solver. We give a single algorithm
for merging search nodes during the execution of relaxed width truncated search. We

3Flatzinc models can involve lines which are too long for Go’s buffio package’s Scanner to parse.

1.6. THESIS OUTLINE 15

show that using decision diagram branch and bound as the search scheme in our solver
is not possible without allowing constraint propagators to take into account the problem
relaxations introduced from merging nodes. To overcome this issue we propose a
general strategy for dynamically weakening constraints during search to accommodate
problem relaxations. We demonstrate by example the need for weakening algorithms
for a number of constraints, and give these algorithms. We empirically evaluate the
competitiveness of our approach by comparing against forward checking on the car
factory scheduling problem and the maximum independent subgraph problem.

2. In Chapter 3 we continue to provide weakening algorithms for constraints, this time fo-
cusing on global constraints and constraints in the all different family of constraints. We
again demonstrate by example the need for weakening algorithms for these constraints
and give algorithms which allow them to be used in a constraint solver where the search
scheme is based on decision diagram branch and bound. We use the problem of finding
optimal Golomb rulers as an example problem to empirically verify the correctness of
our approach to weakening alldiff.

3. In Chapter 4 we propose weakening algorithms for symmetry breaking constraints,
again demonstrating by example the need for such algorithms before presenting them.

4. In Chapter 5 we provide a short overview of parallel combinatorial search before
parallelising our own solver using an approach similar to one taken by an exiting
parallel implementation of decision diagram branch and bound.

5. In Chapter 6 we tackle extremal graph problems using the constraint weakening algo-
rithms given in earlier chapters and a graph search solver which includes the graph
isomorphism library Nauty to facilitate canonical search.

6. In Chapter 7 we conclude by providing a summary of the outcomes of this work and
suggestions for the direction of future work.

16 CHAPTER 1. INTRODUCTION

17

Chapter 2

Weakened constraints for bounding
search

2.1 Introduction

In this chapter we introduce a new search scheme for constraint solvers which builds upon the
work of Bergman, Ciré, van Hoeve, et al. (2016) who propose a branch and bound algorithm
which makes use of two different width truncated decision diagrams to solve problems
modelled using dynamic programming models. Inspired by this decision diagram based
branch and bound search algorithm we show that a similar approach using width truncated
search trees can be used in a constraint optimisation solver. An advantage of this approach is
that it allows us to make use of existing constraint propagators. In order to use these existing
propagators we introduce a novel approach of dynamically weakening constraints during
search to allow relaxed width truncated search trees to return supersolutions (“solutions”
whose variable-value assignments do not satisfy all the given constraints in a problem) which
which represent upper bounds on the cost of the true optimal solution.

This chapter begins with an overview of the work which led to the development of the decision
diagram based branch and bound algorithm, with a particular focus towards research on the
use of decision diagrams throughout optimisation science. We follow this with a short and
informal overview of how the existing algorithm works and in the remainder of the chapter we
detail how we modify this algorithm for use as the search scheme in a constraint optimisation
solver. In particular, we focus on a general scheme for constructing restricted and relaxed
search trees which provide bounds during search. Exploring relaxed bounding search trees
involves merging partial assignments to introduce problem relaxations during search. To
respect the outcome of these merge operations we detail a general scheme for dynamically

18 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

weakening constraints. We illustrate our approach by applying it to a number of constraints.
In subsequent chapters we will also apply this approach to a number of global constraints and
symmetry breaking constraints.

2.1.1 Definitions and notation

This section introduces definitions and notations used in the remainder of this thesis.

Although we introduced the concepts of graphs, binary decision diagrams and constraint
satisfaction problems informally in Chapter 1, we now provide more concrete definitions with
appropriate mathematical notation. We begin by defining graphs and decision diagrams.

Definition 2.1.1. A graph is a pair G = (V,E) where V is a set of vertices and E is a set of
pairs of vertices called edges. Pairs of vertices in E are said to be adjacent to one another.

Graphs can have many additional properties, for example in a digraph (also called a directed

graph) E is a set of ordered pairs of edges. That is, each edge has a direction which leaves one
vertex and arrives at another. Graphs which allow multiple edges between pairs of vertices are
called multi-graphs. Graphs which include no loops (where there is an edge (a,a) between
a vertex a and itself) are called simple graphs. The vertices and edges in a graph might
also have associated labels, taken from a set of symbols l (these are often letters or natural
numbers). A vertex labelling of a graph G is a partial function from V to l. Similarly, an
edge labelling of a graph G is a partial function from E to l. Note that a graph can be both
vertex labelled and edge labelled. A path in a graph is a sequence of vertices such that each
neighbouring pair in the sequence is connected by an edge. A path which begins and ends at
the same vertex is known as a cycle, and graphs without cycles are known as ayclic graphs.

Note that when discussing graphs we use the terms vertices and edges, and when discussing
BDDs we use nodes and arcs. This is in line with previous works regarding decision diagrams
in optimisation.

Definition 2.1.2. A binary decision diagram (BDD) B = (N,A, l) is a directed acyclic
multi-graph (N,A) with arcs labelled from the set l. The labelled arcs encode values given to
binary variables. The set of nodes N is partitioned into layers, L1, L2, . . . , Ln+1, where L1

contains a root node ρ and Ln+1 contains a single terminal node t. Each arc a ∈ A is directed
from a node in Lj to a node in the adjacent layer Lj+1 and is labelled with a label from the set
{0, 1} representing the value assigned to a binary variable xj . Arcs leaving the same node
have unique labels, therefore each node in Lj has a maximum of two children in Lj+1.

For our purposes a path through a BDD from the root node to the terminal node represents a
single solution to the optimisation problem being solved using the BDD. Notice that we only

2.1. INTRODUCTION 19

include one terminal node, because when decision diagrams are used to model optimisation
problems only paths which lead to feasible solutions are recorded in the BDD. BDDs typically
have two terminal nodes, corresponding to the values True and False, but when solving
optimisation problems we do not need to keep track of infeasible solutions, so we do not
include a False terminal node.

In the previous Chapter we introduced informally some properties of decision diagrams and
we state them more formally here, giving definitions for the width of a decision diagram,
multivalued decision diagrams, weighted decision diagrams, and exact, relaxed and restricted
BDDs.

Definition 2.1.3. A multivalued decision diagram (MDD) M = (N,A, l) differs from a
BDD in that the set of labels l can be any finite set, and not only {0, 1}. If l ∈ {0, . . . , n− 1}
then each node in a level Lj can have up to n children in the level Lj+1.

When solving optimisation problems where variables are allowed to take more than one value
multivalued decision diagrams can be used. The following definitions involving BDDs can
also apply to MDDs.

Definition 2.1.4. For a BDD B, whose set of nodes is partitioned into layers, the width of a

layer, |Lj|, in a BDD is the number of nodes contained in the layer, and the width of a BDD

is the width of the largest layer contained within the BDD.

Definition 2.1.5. A weighted BDD B = (N,A, l, v) is a BDD in which each arc a ∈ A has
an associated length v(a). The length of a path through a weighted BDD is the sum of the
lengths of the arcs along the path.

Although the algorithm on which we base our approach makes uses dynamic programming
models to model problems, we model problems as constraint optimisation problems. Here we
define more carefully constraint satisfaction problems, constraint optimisation problems and
other required terminology.

Definition 2.1.6. A constraint satisfaction problem P = (X ,D, C) consists of a set of n
variables X = (X1, . . . , Xn), each with a domain of values taken from a set of finite domains
D = (D1, . . . , Dn) and a set of constraints C = (C1, . . . , Cm). Each constraint is a pair
(Xi,Ri) where Xi = Xi1 , . . . , Xin is a subset of variables in X , andRi ⊂ Di1 × · · · × Din is
a relation which defines which values the variables in Xi are allowed to take. An assignment
of values to variables which satisfies all of the constraints in C is a solution to the problem.

Definition 2.1.7. A constraint optimisation problem P = (X ,D, C, f,m) is a constraint
satisfaction problem together with an objective function f : D1 ×D2 × . . .×Dn → R (also

20 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

referred to as a cost function) which is used to score the quality of solutions, and a direction
m which is to either minimise or maximise the cost of solutions under f . An optimal solution

to a constraint optimisation problem has the best (either smallest or largest)) possible cost
when compared to all other solutions.

Throughout this thesis we will assume that the goal of constraint optimisation problems is to
maximise the cost of the objective function. This is done to simplify the presentation of the
material, without loss of generality.

In practice, sometimes when modelling problems not all the variables used to model the
problem need to be given a value to find a solution to a problem. When a variable must have
its value set we call it a decision variable. When we branch during search each new job
created will solve a subproblem of the original problem that was modelled as some variables
will have their values fixed by assignment. We therefore now define partial assignments and
completion problems.

Definition 2.1.8. Given a constraint satisfaction problem P = (X ,D, C), a partial assignment

of a P occurs when some but not all of the variables involved in P are assigned a value (that
is they have singleton domain sets). A partial assignment of P defines a subproblem of P , or
completion problem where only a subset of the variables included in P are yet to be assigned
a value.

Our approach to a creating relaxed width truncated search trees will be to create problem
relaxations during search. To do this we will introduce in some search nodes values which are
incompatible with the constraints being imposed in the problems we solve, and then weaken
constraints to ensure that these values can be chosen as search proceeds. To ensure that this is
the case we have to ensure that the all such values have support.

Definition 2.1.9. Given a constraint satisfaction problem P = (X ,D, C) and a pair of
variables x, y ∈ X , a value in the domain of x, v ∈ Dx, has support if there exists some
value w in the domain of y, Dy, such that the assignment x = v and y = w satisfies all the
constraints including x and y.

When BDDs are used to solve optimisation problems we are interested in exact BDDs which
encode each solution to the problem, restricted BDDs which provide lower bounds on the cost
of optimal solutions, and relaxed BDDs which provide upper bounds on the cost of optimal
solutions. We now define these.

Definition 2.1.10. For an optimisation problem P = (X ,D, C, f), an exact weighted BDD
B encodes as root,ρ, to the terminal node representing true, t, paths precisely the feasible
solutions of P , where the length of each path is the cost of the corresponding solution under
f .

2.2. RELATED WORK 21

In Section 2.3 we will give an example of how an exact BDD can encode the solutions of a
problem. In the previous section we noted the importance of width truncated binary decision
diagrams in optimisation and specifically that relaxed and restricted decision diagrams provide
bounds when used in optimisation. We now define restricted and relaxed BDDs.

Definition 2.1.11. A restricted BDD is a width truncated BDD which represents a subset of
the feasible solutions of P . Path lengths from ρ to t provide lower bounds on the best path
through the corresponding exact BDD.

Definition 2.1.12. For a binary decision diagram B = (N,A, l, v) representing a binary
optimisation problem P , a relaxed BDD B′ = (N,A, l, v) is a width truncated BDD which
represents a superset of the feasible solutions of a binary optimisation problem P . Path
lengths from ρ to t provide upper bounds on the value of the cost of feasible solutions.

The width of restricted BDDs is typically kept under some maximum permitted width W by
deleting nodes from any layer which is wider than W . The width of relaxed BDDs is typically
kept under some maximum permitted width W by merging pairs of nodes in any layer which
is wider than W until its width is less than W . When constructing a relaxed BDD to solve a
problem P , it is the job of the modeller to ensure that the strategy for merging nodes leads
to a relaxed BDD as defined above (that is to ensure that an upper bound on the value of the
cost of feasible solutions). Later in this chapter we will go into greater detail about how these
decision diagrams are constructed, and how the deletion and merge operations work. A node
in a relaxed decision diagram which is the result of a merge operation is known as a relaxed

node (and nodes which are not are known as exact nodes).

2.2 Related work

In this section we cover the related work which led to the development of the decision diagram
data structure; the use of decision diagrams in optimisation science; and constraint relaxation.
Decision diagrams have been widely used throughout many fields in computing science and
mathematics. Therefore, what follows is not an exhaustive review of the related literature
but is focused on the path from the beginnings of decision diagrams to the work that directly
precedes our own research.

The earliest use of an object similar to a binary decision diagram was by Lee (1959) who
developed binary decision programs to represent switching circuits. A switching circuit is a
network of switches, which each have only two states (on or off, true or false). The behaviour
of a switch might depend on the state of switches which precede it in the network. Shannon’s
masters thesis (1940) is the seminal work on switching circuits, where Shannon gives an

22 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

algebraic method of modelling them. Lee’s motivation for providing an alternative method of
modelling switching circuits was to increase the ease with which computer programs which
deal with switching circuits could be written. The first use of binary decision diagrams proper
comes when Akers represents switching circuits (or more precisely the boolean formula they
are equivalent to) in a graphical manner (1978). The binary decision diagrams presented in
(Akers, 1978) are equivalent to Lee’s binary decision programs, however they proved to be
much more useful when developing and implementing algorithms for switching circuits due
to their algebraic approach.

The single most relevant work in the field is (Bryant, 1985) which introduced several key
concepts and algorithms for BDDs. Bryant’s interest was in providing a compact data structure
to represent boolean formulae (which can also by represented switching circuits). Bryant
notes that a boolean formula can be represented by many decision diagrams, depending on
the order in which the variables are considered. An ordered binary decision diagram is a
decision diagram in which the order the variables is specified and each layer of the diagram
corresponds to a single variable. Each boolean formula then has a single canonical binary
decision diagram representation when isomorphic subtrees are superimposed. Figure 1.5
gives an example of how subtrees which lead to equivalent solutions can be superimposed.
Such a binary decision diagram is called a reduced, ordered binary decision diagram, and
Bryant provides efficient algorithms for reducing a given ordered binary decision diagram
(Bryant, 1992). Many of the uses of binary decision diagrams rely on this reduction technique
to encode information in a memory efficient manner.

Wegener (2000) provides a thorough survey of the applications of decision diagrams.

2.2.1 Decision diagrams in optimisation science

There has been substantial research effort regarding the use of decision diagrams in the field
of optimisation. This spans multiple solver technologies such as Integer Programming and
Constraint Programming, and also includes the use of decision diagrams as the basis for a
branch and bound search algorithm.

An early use of binary decision diagrams in combinatorics is for enumerating solutions to
combinatorial problems. To enumerate the solutions of a problem the approach involves
mapping the constraints involved in the problem to a Boolean function, f , which evaluates to
1 if and only if a solution to f is feasible. A binary decision diagram can then be constructed
which represents only the feasible solutions to the problem represented by f by discarding all
paths which lead to 0. The number of solutions is then given by the number of paths through
the binary decision diagram from the root node to the terminal node 1. These paths can be

2.2. RELATED WORK 23

counted with existing graph algorithms. This approach of only keeping paths which lead
to a solution is common among most uses of decision diagrams in optimisation. However,
the method of solution counting is usually not tractable as the size of these binary decision
diagrams can grow exponentially with respect to the number of variables in a problem. Still
the technique finds some uses as a stand alone approach (for example when enumerating the
number of solutions to the forbidden subgraph problem (Nakahata, Kawahara, and Kasahara,
2018)) or when combined with other techniques such as backtracking search and divide and
conquer methods (for example when enumerating the number of knight’s tours (Schröer and
Wegener, 1998)).

Another early use of binary decision diagrams for optimisation problems was by Lai, Pedram,
and Vrudhula (1994). They provide an algorithm to construct binary decision diagrams from
binary integer programs via Boolean functions, and an algorithm which combines these binary
decision diagrams with a branch and bound approach in an effort to reduce execution times
for search. The novel aspect of their approach is to first begin to solve a problem using
existing solution techniques for integer programming before halting search after a number
of branching decisions. The goal is then to create a binary decision diagram which encodes
all feasible completions of the subproblem, from which the optimal solution can be obtained.
More recent work in the field of constraint programming also applies a similar approach. In
(de Uña et al., 2019) the authors also stop search, this time in a constraint solver, and use
multivalued decision diagrams (where each node is allowed more than one child) to solve the
resulting completion problem. Both of these approaches reported improvements in execution
times for certain classes of problem.

Another use of binary decision diagrams in integer programming is given by Hadzic and
Hooker (2006) who enumerate the optimal or near-optimal solutions of an integer program-
ming problem. One of their reasons for enumerating not only the optimal solutions, but also
all near-optimal solutions is to perform cost-based domain analysis. The goal of this analysis
is to assess how the size of the domain of a variable grows as solutions are allowed to move
further from the optimal. This tells the modeller which variables are fixed in all optimal
solutions, Hadiz and Hooker use capital budgeting and network reliability as problems on
which to test the effectiveness of their approach. An alternative view on this approach is that
it could be used to show how far from the optimal solution a solution to a problem needs to
be to provide robustness.

Hadzic and Hooker (2007) follow this work by addressing the issue of minimising the size of
a BDD as problem size grows:. They also take the approach of only considering near-optimal
solutions, under the assumption that these are of most use to the modeller. Armed with an
objective function to score solutions they then prune arcs from the BDD when they are shown
to lead to sub-optimal solutions. These BDDs which only consider nearly optimal solutions

24 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

(that is solutions whose cost is close to the cost of the optimal solution) are shown to be small
compared to BDDs which consider all solutions when the authors conducted computational
experiments conducted on randomly generated binary integer program examples.

In constraint programming Andersen et al. (2007) introduce the concept of limited width
decision diagrams. The concepts introduced are critical for the work undertaken later in
(Bergman et al., 2016), which is the main work on which this thesis builds. Anderson et al
use decision diagrams to represent a superset of the set of feasible solutions to a constraint
satisfaction problem. Instead of enumerating all solutions as in previous works, Anderson et al
introduce relaxed decision diagrams. Relaxed decision diagrams have their size controlled by
having a fixed maximum permitted width (where the width of a decision diagram is the number
of nodes in its largest layer). A larger width in a relaxed decision diagram means a smaller
set of infeasible solutions could be recorded and the closer the diagram is to a representation
of the exact set of solutions. This work also introduces the concept of multivalued decision
diagrams, where each node may have more than two children. The main goal of this work
was to provide an alternative to the traditional domain store in constraint programming. In
constraint programming the domain store records all of the possible domains of each variable.
By replacing the domain store with a multivalued decision diagram Andersen et al. are
able to keep a much smaller set of possible assignments than the domain store approach.
The results given in their paper show that in certain cases this leads to orders of magnitude
reduction of the execution times of a constraint solver. Hadzic, Hooker, et al. (2008) and
Hoda, van Hoeve, and Hooker (2010) develop this approach further by providing a generic
method for propagating constraints over a multivalued decision diagram constraint store.
Their work showed that this general approach also causes orders of magnitude improvement
in execution times.

Bergman, van Hoeve, and Hooker (2011) introduce a decision diagram based approach for
computing bounds for set covering problems. The main contribution of this work that we are
interested in is a top-down compilation method for the construction of relaxed multivalued
decision diagrams. This work is critical for the algorithm Bergman et al propose for dynamic
programming models of discrete optimisation problems, on which our work is based. We defer
discussion of this algorithm to Section 2.3. The similarities between multivalued decision
diagrams and dynamic programming models was the subject of a paper by Hooker (2013).
Hooker views an multivalued decision diagram as being equivalent to the state transition
graph of a dynamic program and shows that there is a unique canonical multivalued decision
diagram for a given optimisation problem and variable ordering. Therefore a canonical
multivalued decision diagram can be used as a smaller representation of the state transition
graph.

2.3. DECISION DIAGRAM BRANCH AND BOUND 25

2.2.2 Problem relaxations

This section details adjacent areas of AI where some of the terms given above already have
an ingrained meaning. We include this section to avoid confusion caused by our use of
terminology which is similar to that used in these related, but different fields.

A common question that can be asked if a problem does not admit a solution which satisfies
all the constraints being imposed is: “how many constraints must be removed from the
problem to make it satisfiable?”. More specifically there is a type of optimisation problem
which asks “what is the smallest number of constraints which must be removed to make a
problem satisfiable?”. When a problem has constraints removed from it problem relaxations
are created. This kind of question arises particularly from real world problems, where it is
often more economically advantageous to offer a solution to a problem relaxation than no
solution at all. Gottlieb, Puchta, and Solnon (2003) answer this question for a number of
instances of the car factory sequencing problem, which attempts to schedule the manufacture
of cars in a factory. Gottlieb, Puchta, and Solnon give an upper bound on the number of
constraints which must be removed from various unsatisfiable benchmark instances in order
to output a “solution”. While these problem relaxations are similar to our work, instead of
removing constraints entirely we will seek to weaken them instead.

Problem relaxations are also used when solving mixed integer linear programming models,
specifically when creating linear programming (LP) relaxations of MIP problems by removing
integrally constraints (constrains which enforce that certain variables in the MIP problem
take integer values). The LP relaxation can then be solved, and if all variables that were to
take integer values in the original MIP problem are assigned integer values then the optimal
solution to the MIP problem has been found. Otherwise search branches choosing a variable
which does not have an integer assignment. In one branch the variable is constrained to take a
value which is less than or equal to the floor its value before branching and greater than or
equal to the ceiling of its value in the other branch. Search continues to branch and bound
in this way until all variables which are required to have integer assignments are assigned
integer values.

2.3 Decision Diagram Branch and Bound

In this section we give an overview of decision diagram branch and bound as it appears in the
literature. In Section 2.4 we follow this overview with our own modifications to the algorithm
which allow us to use it as the search scheme in a constraint optimisation solver.

Decision diagram branch and bound (DDBB) search (Bergman et al., 2016) solves problems

26 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

modelled using dynamic programming models. It does so indirectly, recursively constructing
restricted and relaxed decision diagrams such that the entire state space of the dynamic
program is not explored.

a

b c

d e

4

4 1

3

5

Figure 2.1: An instance of the MISP.

We motivate the algorithm by an example. Consider the instance of the maximum independent
set problem shown in Figure 2.1. The goal of the maximum independent set problem (MISP)
is to find a set of vertices in a weighted graph such that none of the vertices in the set are
adjacent to one another (an independent set) and the sum of the weights in the set is the
maximum possible for any independent set.

a

b

c

d

e

0 4

0 4 0

3 0 0 0

0 1 0 0 10

0 5
0

Figure 2.2: An exact decision diagram representing the instance of the MISP.

The exact decision diagram given in Figure 2.2 exactly encodes all of the independent sets of
of the graph shown in Figure 2.1, where each solution is represented as a path from the root
node to the terminal node. Each solid line represents including the vertex in an independent set,
and each dashed line represents not including the vertex in an independent set. Not including
a vertex in an independent set incurs a cost of 0, while including a vertex in an independent
set costs as much as the weight of the vertex. In particular, the maximum independent set
{a, d, e} is represented by a path of weight 10. DDBB search constructs BDDs in a top down
manner, starting at the root node and proceeding layer by layer. Each node, n, records all
possible choices of variable-value assignments that are compatible with previous assignments

2.3. DECISION DIAGRAM BRANCH AND BOUND 27

0

0 4

3 0 0

0 1 0 0

0 5
0

Figure 2.3: A restricted decision
diagram.

0 4

04 0

3 0 0

0 1
0

50

Figure 2.4: A relaxed decision
diagrams.

on the path from the root node to n. Child nodes are created by assigning a single variable a
value and these appear in the succeeding layer to the parent node. For example, in Figure 2.2
the construction of the BDD would start at the root node and proceed by creating a new node
in the second layer corresponding to all possible choices of value assignment of a. In the
following layers another variable is chosen and we create nodes which correspond to all
possible value assignments to this variable in the subsequent layer.

For compactness we collapse equivalent nodes in the figures presented in this section, but in
general the BDDs constructed while using DDBB search are not reduced in this way. As the
size of problems increases (that is the number of variables and values involved in the problem
grows) it becomes infeasible to construct exact decision diagrams, so DDBB search uses two
types of width bounded decision diagrams to solve problems.

Restricted decision diagrams are constructed by deleting nodes from layers that become too
wide while a BDD is being constructed. The choice of what width is chosen by the modeller.
By removing nodes from the BDD not all solutions of the problem will be represented by
the BDD. For problems where we are seeking to maximise some cost function (for example
when we try to find the largest weight independent set in the MISP) restricted BDDs provide
lower bounds on the maximum solution found by the corresponding exact diagram. Figure 2.3
shows a restricted decision diagram for this instance of the MISP presented in Figure 2.1,
where the maximum weight independent found set is {b, e}, providing a lower bound of 9 on
the size of the optimal solution.

Relaxed decision diagrams are constructed by merging nodes together when layers become
too wide while the relaxed BDD is being constructed. DDBB search merges nodes by merging
the state of future compatible variable-value assignments at each relaxed node. In the case of

28 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

the MISP, when nodes are merged the state at the merged node is the union of the states at the
pair of nodes being merged. This allows for assignments which are incompatible with the
problem originally being solved to be represented in a relaxed BDD. For example consider the
relaxations introduced in Figure 2.4 which allow both b and d to be included in a set together
because d is a viable option under leftmost node which is now merged with its neighbour.
In Figure 2.4 we can see that a path representing the set {b, c, d, e} is included in the BDD,
which is not a valid independent set, but does provide an upper bound of 13 for the size of the
optimum set.

In general when constructing relaxed BDDs nodes are merged in pairs, and the modeller
provides a function ⊕ which prescribes how to merge two nodes together, as well as another
function Γ which updates the cost associated with arcs arriving at the merged node. These
functions must be chosen in such a way that they allow relaxed decision diagrams to include
a path which has at least as large a cost as the optimal path found in the corresponding exact
decision diagram built from the same root node — thereby ensuring that they satisfy the
definition of relaxed decision diagrams given in Section 2.1.1. This is not intrinsically ensured
by the approach of Bergman et al and has to be proven on an adhoc basis for each problem
being solved. It is left to the modeller to ensure that the functions ⊕ and Γ allow relaxed
decision diagrams to correctly provide upper bounds for the problem being solved. Since
our approach does not rely on these functions ⊕ and Γ we omit in depth discussion here. In
particular our approach does not require labels to be record on arcs, so we do not make use of
Γ.

In the following sections we will give our approach to search which is heavily inspired by
DDBB in detail. An informal overview of the approach taken by Bergman et al is:

1. Construct a restricted BDD, B, rooted at a node u and if a solution is found that is
larger then the incumbent best solution yet found by DDBB search then it becomes the
incumbent.

2. If B is not exact1 then build a relaxed diagram B′ rooted at u. If the upper bound found
by B′ is larger than the incumbent best solution then collect a cutset of exact nodes in
B′. This cutset is a set of nodes n such that the path from u to n contains no relaxed
nodes. This set of nodes could include all of the deepest such nodes which satisfy this
criteria, such as the last layer in which there are no relaxed nodes, or any layer above
that. Add each of these nodes to a queue Q.

3. While Q is not empty, chose a new node u to branch on and repeat from step 1.

1The width of some layer was reduced during its construction by deleting nodes.

2.4. DDBB SEARCH IN CONSTRAINT PROGRAMMING 29

2.4 DDBB search in constraint programming

In this section we show in detail how we adapt the DDBB search algorithm for use as
the search scheme in a constraint programming solver for solving constraint optimisation
problems. We move away from using decision diagrams and now use two different types of
width truncated search trees. In his section we explain our approach to constructing restricted
and relaxed width truncated search trees and then present a search algorithm which explores
the search space of the problem being solved by recursively exploring restricted and relaxed
search trees while making use of existing constraint propagators.

When using DDBB search as the approach to search in a constraint optimisation solver we no
longer begin by modelling problems as dynamic programming models. We model problems
as constraint optimisation problems (using a set of variables X with finite domains D, a
set of constraints C over these variables and a cost function f to rank solutions2) and solve
them using a combination of search and constraint propagation using existing propagation
algorithms. This change in how we model and solve problems has the following impacts:

• Instead of recording the state at each node and representing solutions as paths through
the decision diagram we record the domains of variables at each node using a traditional
domain store approach. In order for our constraint weakening approach to work we also
record constraints at each node.

• The cost of a solution is determined by the assignments recorded at leaf nodes in restricted
and relaxed width truncated search trees, rather than by annotating arcs in a BDD with
lengths and searching for a maximum length path from the root node to the terminal node.
This has the added benefit that we are no longer required to explicitly keep track of arcs
between nodes in order to represent solutions.

• When continuing search from a node u in a layer Lj , we select a variable x and for each
value a in the domain of x, Dx, we propagate the assignment of x = a against a set of
constraints C. If propagation of the constraints in C does not lead to a contradiction we add a
new node u′ in Lj+1 which includes the assignment x = a. The domains of the unassigned
variables may change between u and u′ due to the propagation stage.

As before, these changes mean that we move away from using decision diagrams explicitly,
but given the close similarity between our approach to the existing algorithm we still refer to
our approach as DDBB search when we use it as the search scheme in a constraint solver.

2Recall that to simplify the presentation of material we assume that the goal of each problem is to maximize
the cost of solutions.

30 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

In the following sections we present algorithms for exploring restricted and relaxed width
truncated search trees; for merging nodes while exploring relaxed width truncated search
trees; and a branch and bound algorithm which uses these search trees to solve constraint
optimisation problems.

2.4.1 Restricted width truncated search

Our approach to creating restricted width truncated search trees is given in Algorithm 2.1
and is very similar to the algorithm given by Bergman et al. which builds restricted decision
diagrams, with changes made to reflect the move to solving constraint optimisation programs
modelled as a constraint program.

The role of restricted width truncated search in our search scheme is twofold: these search
trees determine which search nodes to branch on during search and also perform some limited
search in the hope of improving the incumbent best solution found by our search algorithm.
Search using Algorithm 2.1 begins at a root node r which records the variables and constraints
of a problem P = (X ,D, C, f) and proceeds in a breadth first manner until some layer in
search, which we will call Lc, exceeds the maximum permitted width W (the actual value
of W is determined by the modeller). The nodes in this layer are candidates for branching
and are returned by Algorithm 2.1 to be branched on in Algorithm 2.4. Search continues
from Lc, but no more than W nodes from each subsequent layer are added to the search tree.
When there are no longer any variables to branch on (either we have created h layers or run
out of unassigned variables, which is checked on line 8), Algorithm 2.1 returns the layer of
candidate nodes to branch on, the size of the best solution found, and the node containing
the best solution found. Lines 12-14 are optional and are included to make use of existing
variable and value ordering heuristics. Such heuristics attempt to place good solutions to the
left of the search tree, and lines 12-14 allow us to keep the leftmost W nodes on each layer
without having to compute each node in the entire layer before deleting the rightmost nodes.
The for loop on line 11 takes each node in a layer Lc and attempts to create a new node in
Lj+1 for each possible value assignment from the domain of the branch variable x.

The procedure Propagate called on lines 14 and 16 assigns a value i to a variable x in
a node u and propagates this assignment. This propagation stage works in the same way
as in existing constraint solvers, where constraint propagation algorithms remove values
from the domains of unassigned variables which cannot be compatible with any solution
which includes the existing variable-value assignments. These propagation algorithms remove
values from the domains of unassigned variables until either a fixed point is reached or some
variable’s domain is empty (proving that the current partial assignment cannot possibly be
included in any solution to the problem).

2.4. DDBB SEARCH IN CONSTRAINT PROGRAMMING 31

The procedure selectBranchVariable seeks to find an unassigned variable across
nodes in a layer, Lj , to assign values to when creating the next layer Lj+1. If no variable in
any of the nodes in Lj are yet to be assigned a value the Algorithm 2.1 terminates, reporting
the best solution found. The order in which this procedure returns variables depends on
variable ordering heuristics. Similarly, the order in which nodes are added to Lj+1 depends
on value ordering heuristics (which is why we do not give a particular order to choose values
on line 11 of Algorithm 2.1).

Proposition 2.1. Restricted width truncated search as given in Algorithm 2.1 explores a
subset of the solutions of the (completion) problem P defined at the node r and a lower bound
for the optimal solution of P is found by exploring this subset of solutions.

Proof. Let P = (X ,D, C, f) be a constraint optimisation problem, (or a completion problem
of P where a subset of X are assigned values), which is solved using Algorithm 2.1. If
the width of the search tree never exceeds W then the whole search space is explored by
Algorithm 2.1 and value of lb will be the value of the optimal solution.

If the width of the search tree is truncated, then we are no longer guaranteed to find any
solutions and those that are found cannot be guaranteed to be optimal as the entire search
tree rooted at r has not been explored. The lower bound for the optimal solution of P is set
to − on line 24 of Algorithm 2.1 and if there is no solution found (that is Ll is empty) then
− is returned as the lower bound of P , which is a lower bound for the cost of the optimal
solution of P . If Ll is not empty then this subset of solutions is compared on lines 26-29 and
the highest cost solution is returned along with its cost, lb, on line 30. Since the width has
exceeded W some search nodes have been dropped by line 23, and the whole search space is
no longer explored. Therefore only a subset of the solutions to a problem P defined at the
node r are explored and lb represents a lower bound for the optimal solution of P .

2.4.2 Relaxed width truncated search

Our approach to exploring relaxed width truncated search trees is again similar to the algorithm
given by Bergman et al. We show here how this approach is used to solve problem using
search and existing constraint propagation algorithms.

Our approach is shown in Algorithm 2.2. The role of relaxed width truncated search trees in
our search scheme (which is given in Algorithm 2.4) is to provide upper bounds on the cost of
the optimal solution of the subproblem defined at the input node r. To achieve this we merge
nodes together during search using Algorithm 2.3 to introduce problem relaxations when a
layer in search becomes too wide, rather than deleting nodes as in Algorithm 2.1. To ensure

32 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Algorithm 2.1: Restricted width truncated search for a problem, P = (X ,D, C, f),
recorded at a root node r.

1 solveRestricted (Node r)→ Layer, int, Node
2 begin
3 L1 ← {r}
4 b← ⊥ // flag set if this search tree becomes restricted
5 h← the number of unassigned (decision) variables at r
6 for l = 1 to h do
7 x← selectBranchVariable(Ll)
8 if no variable is found then
9 break

10 Ll+1←∅
11 forall u ∈ Lj and i ∈ Dx do
12 if b then
13 if |Ll+1| < W then

// Propagate returns null if there is a
contradiction

14 u′ ← u.Propagate(x, i)
15 Ll+1 ← Ll+1 ∪ u′
16 break

else
17 u′ ← u.Propagate(x, i)
18 Ll+1 ← Ll+1 ∪ u′

19 while |Ll+1| > W do
20 if !b then

// current layer becomes jobs for branching
21 Lc ← Ll
22 b← >
23 Ll+1 ← the leftmost W nodes in Ll+1

24 lb← −∞
25 incumbent ← null
26 forall u ∈ Ll do
27 if f(u) > lb then
28 b← f(u)
29 incumbent ← u

30 return Lc, lb, incumbent

2.4. DDBB SEARCH IN CONSTRAINT PROGRAMMING 33

that these problem relaxations are included in search, and lead to Algorithm 2.2 returning
upper bounds, we have to take care with the procedures mergeNodes and Propagate. We
require that mergeNodes creates a nodemwhich defines a relaxed subproblem which admits
an optimal solution at least as large as each of the nodes u or v being merged at line 13. We
also require that when Propagate is called on m on line 17 that the relaxations introduced
by mergeNodes are respected. In Section 2.4.3 we detail an algorithm for merging nodes
and throughout this thesis we show how individual constraints can be weakened such that
constraint propagation respects the problem relaxations introduced by merging nodes. The
selectNodesToMerge procedure takes as input a layer and chooses which two nodes in
the layer to merge together using the mergeNodes procedure.

Algorithm 2.2: Relaxed width truncated search.
1 solveRelaxed (Node r)→ int
2 begin
3 L1 ← {r}
4 h← the number of unassigned decision variables at r
5 for l = 1 to h do
6 x← selectBranchVariable(Ll)
7 if no variable is found then
8 break

9 while |Lj| > W do
10 u, v ← selectNodesToMerge(Lj)
11 Lj ← Lj \ {u, v}
12 m← mergeNodes(u, v)
13 Lj ← Lj ∪m
14 Ll+1←∅
15 forall u ∈ Lj and i ∈ Dj do
16 u′ ← u.Propagate(x, i)
17 Ll+1 ← Ll+1 ∪ u′

18 ub← null
19 forall u ∈ Ll do
20 if f(u) > ub then
21 ub← f(u)

22 return ub

2.4.3 Merging nodes in relaxed search trees

In the previous section we gave an algorithm for exploring relaxed width search trees, and
stated that the mergeNodes procedure must merge two nodes together to provide a relaxation
of the problem which admits a solution at least as large as either of the two input nodes.

34 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Note that our approach differs from that of Bergman et al as we provide a single algorithm
for merging nodes during search and then weaken individual constraints, while the existing
DDBB algorithm requires that merge strategies be considered on a problem by problem basis.

Algorithm 2.3: Merging partial solutions with respect to a cost function f .
1 mergeNodes (Node u, Node v)→ Node
2 begin
3 if the partial assignment at u has higher cost than the partial assignment at v, under f then
4 m← u
5 foreach unassigned variable x recorded at v do
6 Dm

x ← Dm
x ∪Dv

x, where Dm
x is the domain of the variable x as recorded at

node m

7 else
8 m← v
9 foreach unassigned variable x recorded at u do

10 Dm
x ← Dm

x ∪Du
x

11 foreach constraint c recorded at m do
12 relax c to ensure that all values in the domains of the variables recorded at m have

support

13 return m

Our approach when merging two nodes u and v to create a new nodem is to first identify which
node, which we will assume for ease of presentation is v, contains the highest cost partial
assignment, with respect to a cost function f . We calculate the cost of a partial assignment
by evaluating the cost function over only the subset of variables which are assigned a value.
The relaxed node m then inherits all of the variable assignments and domains of unassigned
variables from v. To introduce a relaxation of the problem we modify the domains of the
variables in m to also include all of the values in the domains of unassigned variables in the
lower cost node u. We expect that any constraints that are implemented in a solver which uses
DDBB as the search scheme has an associated weakening algorithm, to ensure that each value
introduced in the domains of variables in m from u has support after the merge operation has
been performed.

Since we might have assigned a value to some variables by propagation in one of nodes u and
v but not the other this can lead to nodes which have been assigned a value in v becoming
unassigned again in m. Note that this does not mean that search will fail to terminate, since
when we choose a variable on line 6 of Algorithm 2.2 it is assigned a value in each node in
the following layer.

Through lines 9−14 in Algorithm 2.2, and in particular the use of Algorithm 2.3, we introduce
problem relaxations in relaxed width truncated search trees. Throughout the remainder of this

2.4. DDBB SEARCH IN CONSTRAINT PROGRAMMING 35

thesis we detail how we weaken individual constraints in such a way that the additional values
from u introduced to the domains of variables in m are supported. This is how we ensure that
problem relaxations are introduced during relaxed truncated search trees.

x0 = 0

x1 = {1, 4}
x2 = 2

x3 = 2

x4 = 2

∀5≤i≤8. xi ∈ {0..5}

(a) Domains at u

x0 = 1

x1 = 2

x2 = 5

x3 = 1

x4 = 1

∀5≤i≤8. xi ∈ {1, 3}

(b) Domains at v

x0 = 1

x1 = {1, 4, 2}
x2 = 5

x3 = 1

x4 = 1

∀5≤i≤8. xi ∈ {0..5}

(c) A relaxation at m

Figure 2.5: Two partial solutions and the partial solution resulting from merging them
together.

Figure 2.5 gives an example of two nodes u and v being merged together to create a new
node m, when the cost function being considered is to maximise the sum of the values of all
variables {x0, . . . , x8}. The partial solution at v has higher cost than the partial assignment at
u, so m inherits values for its assigned variables from v. The values in the domains of the
unassigned variables in u are then introduced into the variables recorded at m. The goal of
the constraint weakening algorithms we give in the remainder of this thesis is to ensure that
all of these values introduced from u have support in m. That is, propagating constraints after
a merge operation has taken place should remove no values from the domains of unassigned
variables in m.

2.4.4 Limitation on cost functions

Our approach of providing a single algorithm for merging nodes, and then weakening con-
straints to allow the relaxations introduced to be respected, introduces a limitation on the
cost functions that we can use when modelling problems. When we merge nodes we require
that each completion of the new relaxed problem recorded at the node m has greater cost
when it includes the variable assignments from v than those from u. Note that the highest
cost completion of the new relaxed problem recorded at m might include assignments of
values introduced to the unassigned variables in m from the domains of unassigned variables
in u. Therefore, the optimal solution to this relaxed completion problem at m might not
necessarily be a solution to the problem which is originally being solved (that is, this solution
may violate one or more constraints as specified in the original problem). We will see exactly
this behaviour in examples that we give to motivate weakening algorithms for constraints.

36 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

2.4.5 The DDBB based search algorithm

Our approach to search is again very similar to the algorithm presented in (Bergman et al.,
2016), with small changes made to reflect our constraint programming approach. One change
that we do make is that we use restricted diagrams to determine which nodes to branch on
(while the existing DDBB search algorithm uses relaxed decision diagrams). This allows us
to use the algorithm without creating relaxed width truncated search trees.

The search algorithm we use is given in Algorithm 2.4. We begin by creating a root node
based on constraint optimisation problem P = (V ,D, C, f). We call Algorithm 2.4 on the
variables, constraints and cost function of this problem (as we assume that a variable x records
its own domain Dx) and each node created during search records both the variables and
constraints involved in P . We add this root node to a queue of nodes. Algorithm 2.4 then
explores restricted width truncated search rooted at r using Algorithm 2.1. If this width
truncated search is not exact then Algorithm 2.1 returns a layer of nodes to branch on and we
add these to the queue. If the restricted width truncated search finds an incumbent solution we
update the incumbent and the size of the lower bound on the cost of the optimal solution zopt .

We repeat this process for each node u in the queue until it is empty, with the additional step
of exploring relaxed width truncated search trees to bound search once an incumbent solution
has been found. If the upper bound on the size of the solution of the completion problem
defined at u, found by Algorithm 2.2, is smaller than zopt then we do not branch on u using
Algorithm 2.1.

2.4.6 New heuristics introduced through using DDBB

By using Algorithm 2.4 as the search scheme for a constraint optimisation solver, we in-
troduce new search heuristics to Constraint Programming to join the common variable and
value ordering heuristics (these existing heuristics do still effect the execution times of our
algorithm).

The most obvious heuristic choices that we have introduced are the maximum permitted
widths of both restricted and relaxed width truncated search trees. We expect that wider search
trees lead to tighter bounds and reduced execution times of the algorithm overall, but this is is
not guaranteed. Further complicating matters, the maximum permitted width of restricted
width truncated search effects which nodes Algorithm 2.4 branches on.

The order in which we remove nodes during restricted width truncated search and merge nodes
during relaxed truncated search also matters. Our approach is to compliment the behaviour of
existing variable and value ordering heuristics which attempt to place good solutions on the

2.5. CONSTRAINT WEAKENING DURING SEARCH 37

Algorithm 2.4: Branch and bound search using width truncated search trees.
1 search (Variables V , Constraints C, Cost f)→ Node
2 begin
3 r ← root node containing variables V and constraints C
4 Q← {r}, initalise a queue with the root node
5 incumbent ← null
6 zopt ← −∞
7 while Q 6= ∅ do
8 u← select a node from Q
9 Q← Q \ u

10 if z 6= −∞ then
11 ub ← solveRelaxed(u)

12 if ub > zopt then
13 Lc, lb, candidate ← solveRestricted(u)
14 Q← Q ∪ Lc
15 if lb > zopt then
16 zopt ← lb
17 incumbent ← candidate

18 return incumbent

leftmost branch of the search tree. As a result we assume that nodes towards to leftmost side
of each level are more likely to lead to good solutions. Therefore we only keep the leftmost
nodes when creating restricted width truncated search trees and merge nodes to the right of a
level when creating relaxed width truncated search trees.

The order in which nodes in the queue are visited is also important. We do this in a breadth
first manner. The reasoning behind this is that we do a small amount of work each time we
explore a restricted width truncated search tree to sample throughout the search space, in the
hope of finding a good incumbent solution faster than forward checking.

2.5 Constraint weakening during search

In this section we outline a general approach to ensure that the problem relaxations introduced
when merging nodes can be included in relaxed relaxed width truncated search. The first
merge operation in Figure 2.4 illustrates this issue, because after this merge operation the
resulting node corresponds to both b and c being included in the partial solution, however this
conflicts with the constraints imposed (that at most one of each pair of adjacent vertices is
included in a solution). When we take a constraint programming approach we have to take
care that constraint propagators allow these problem relaxations.

38 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Consider a constraint optimisation problem P = (X ,D, C, f) and let α and β be two partial
assignments of P recorded at nodes u and v which are merged using Algorithm 2.3 to obtain
a partial assignment γ recorded at a new node m, which is a relaxed node resulting from the
merge operation. To ensure that relaxed width truncated search trees return upper bounds
we consider the completion problems for each of these partial assignments. Recall that the
completion problem of a problem P is a subproblem where some of the variables in X have
their values assigned. We require that the completion problem for γ admits a solution which
is greater than or equal to any solution of P which includes the partial assignments α and β,
with respect to the cost function f . To ensure that this is the case we require that each value
which had support in the domains of the unassigned variables in α and β has support in γ.
We achieve this requirement by weakening individual constraints in the set of constraints C,
to ensure that each value in the unassigned domains recorded at m has support. Recall that a
value i in the domain of a variable x has support if there exists some value in the domains
of all other variable which allows the value to be chosen as the assignment while satisfying
C. This constraint weakening is done dynamically during search as prior to merging it is not
known which relaxations of C will need to be introduced when nodes are merged. This is
unlike existing relaxation processes in constraint programming which allow some constraints
to be removed from a problem in order to find a “good enough” solution where an exact
solution might not exist, usually in some predefined order which is determined before search
begins.

The completion problem defined at m should be as tightly constrained as possible. This
means that no value which does not have support at u or v should have support at node m. We
should also make use of existing constraint propagation algorithms with a minimum amount
of modification, so that our new search scheme can be easily used with existing propagation
algorithms.

We relax constraints in one of two ways:

• We modify the constraint itself in some way, for example changing the bound of a linear
summation constraint.

• We modify the value seen by the propagator of the constraint when accessing the value of
variables, for example to allow two variables in an all different constraint to be assigned the
same value.

We refer the processes of modifying the value read by a propagator when accessing the value
of an assigned variable as masking the variable. When we mask assigned variables with a new
value, which we call the variable’s mask or masked value, the new value is always distinct
from the variable’s assigned value. Whenever a propagator attempts to access the value of

2.6. WEAKENING LINEAR SUMMATION CONSTRAINTS 39

a = 1

b = 2 (6)

c = 3

d = {2, 4, 5}
e = {2, 4, 5}

Figure 2.6: An example completion problem, where an alldiff constraint is weakened by
masking the value of the variable b with the value 6 to ensure that the value 2 has support in
the domains of variables d and e.

a variable, if the variable were masked it instead reads the masked value. Note that cost
functions ignore these masked values and read the true value being assigned to the variable.
Figure 2.6 shows how we can apply this approach in the case of the all different constraint. In
this example masking variable b with a value which is not in the domain of any other variable
allows the unassigned variables to continue to be assigned the value 2, and ensures that each
value in the domains of the unassigned variables d and e has support.

In the remainder of this chapter we introduce algorithms which weaken particular constraints
over finite domain integer variables so that they can be used with the branch and bound based
search scheme given in Algorithm 2.4. These constraints represent a subset of the built in
constraints in the Flatzinc specification.

2.6 Weakening linear summation constraints

In this section we describe a how to weaken linear summation constraints. These constraints
have the form

a1x1 + a2x2 + . . .+ anx1 ./ b

where each xi (for 1 ≤ i ≤ n) is an integer variable, ai is an integer constant, ./ ∈ {≤,=,≥}
and the bound b is an integer. Linear summation constraints are often used when modelling
problems, so they are an important candidate for which to provide a weakening algorithm.

2.6.1 Weakening sum less than or equal to

We begin by considering the less than or equal to inequality variation of the linear constraint,
which we will refer to as lin_le . Harvey and Stuckey (1998) present a propagator which
guarantees bounds consistency for linear constraints which runs in linear time. To simplify

40 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

the material slightly we follow Harvey and Stuckey’s lead in assuming that each coefficient ai
is a positive integer3.

Let xi and xi denote the upper and lower bounds of the domain of the variable xi respectively.
The propagator given by Harvey and Stuckey for this constraint relies on the following. If we
define F to be:

F = b−
n∑
i=1

aixi (2.1)

then the upper bound for each xi can be calculated via

xi ≤
F

ai
+ xi (2.2)

Further, if F < 0 then the constraint is unsatisfiable. The propagator requires only two
passes over the summands to update the bounds of each xi; one pass to calculate F and
another to update the bounds of each xi. In follow up work (Harvey and Schimpf, 2002) some
improvements are added to this algorithm allowing bounds consistency to be achieved in less
than two passes over the summands, but these only effect the speed of the propagator, not
which values are deleted from variable domains by propagation.

∀0≤i≤8. xi ∈ {0, . . . , 5}

8∑
i=0

xi ≤ 13

maximise
8∑
i=0

ixi

Figure 2.7: An example problem involving a lin_le constraint.

We motivate our algorithm for weakening the lin_le constraint with an example prob-
lem. Consider the problem modelled in Figure 2.7 which includes a single linear constraint∑8

i=0 xi ≤ 13 over integer variables each with domains {0, . . . , 5}. Figure 2.8a and Fig-
ure 2.8b show two partial solutions α and β, in which the variables x1,x2,x3 and x4 are
assigned values. In α the upper bounds of the unassigned variables (x5,x6,x7 and x8) are
not impacted by applying Equations (2.1) and (2.2) to calculate bounds. However, in β the
upper bound of each unassigned variable can be tightened to 1. When we merge these partial

3This allows us to avoid having to write out cases for when the coefficients are positive and negative. For
example if ai < 0 in Equation 2.1, we would have to consider the value xi rather than xi.

2.6. WEAKENING LINEAR SUMMATION CONSTRAINTS 41

solutions using Algorithm 2.3 to obtain the partial solution γ shown in Figure 2.8c it is clear
that the new domains of the unassigned variables will be impacted if Equations (2.1) and (2.2)
were applied. To overcome this we weaken the constraint by loosening the bound b.

x0 = 0

x1 = 1

x2 = 2

x3 = 2

x4 = 2

∀5≤i≤8. xi ∈ {0..5}

(a) A partial solution α

x0 = 1

x1 = 4

x2 = 5

x3 = 1

x4 = 1

∀5≤i≤8. xi ∈ {0, 1}

(b) A partial solution β

x0 = 1

x1 = 4

x2 = 5

x3 = 1

x4 = 1

∀5≤i≤8. xi ∈ {0..5}

(c) A merged partial solution γ

Figure 2.8: Two partial solutions and the partial solution resulting from merging them
together.

Recall that when weakening constraints our goal is to ensure that some completion of γ is
at least as large (with respect to the cost function) as the optimal completion of both α and
β. Since we weaken constraints independently of the objective, we want to ensure that all
completions of α and β are still found in the set of completions of γ. Note that in general we
do not expect to explore a search space which is as large as the search space of both of the

x0 = 1

x1 = 4

x2 = 5

x3 = 1

x4 = 1

∀5≤i≤8. ai ∈ {0..5}
8∑
i=0

xi ≤ 19

maximise
8∑
i=0

ixi

Figure 2.9: A completion problem including a weakened lin_le constraint.

completion problems of α and β, as we expect to bound the completion problem of γ again
later in search. A naïve approach would be to weaken the lin_le constraint by setting the
bound b to be very large, thus allowing all the unassigned variables to take any value in their
domain. This is very inefficient (in this case leading to there being 1296 completions of γ,

42 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

with the optimal completion of the relaxed problem having a cost of 141) and is equivalent
to deleting the constraint from the model altogether. Instead we seek to modify the bound
such that the size of the set of completions is as small as possible while supporting all values
in the domain of γ. We do so by increasing the bound by the difference between the sum of
the assigned variables in α and the bound. This approach is described in Algorithm 2.5. The
weakened constraint is given in Figure 2.9 which shows the relaxed completion problem for
γ.

In checking that our approach to relaxing the subproblem by way of weakening the constraint
is successful, we find that the largest cost completion of α, γ and β have costs 66, 41 and 68.
Note that weakening the constraint, rather than relaxing the problem by removing it, leads to
a much tighter upper bound on the cost of the optimal solution (+2 rather than +75).

Algorithm 2.5 shows our approach to weakening the lin_le constraint. In general our
weakening algorithms take as input search nodes, at which we record both variables (with
their domains) and constraints. In the case of the linear constraint we expect that the constraint
is represented by a data type which includes as a member each summand xi, each coefficient
ai and the bound b. In Algorithm 2.5 we determine the sum of the variables at u (the lower
cost input node to the merge operation), su and modify the bound of the constraint recorded
at m by adding to it the difference between su and the bound recorded at u. Modifying the
bound in this way ensures that all combinations of values which had support in the input
nodes are able to be assigned in the relaxed node.

Algorithm 2.5: An algorithm for weakening the lin_le constraint
1 weakenLinLe (Node u , Node m)
2 begin
3 su, sv ← 0, 0
4 bu ← the bound from the lin_le constraint at u
5 bm ← the bound from the lin_le constraint at m
6 foreach summand xi involved with lin_le at lu do
7 if xi is assigned in lu then
8 x← the value assigned to xi
9 a← the coefficent of xi

10 su ← su + xa

11 t← bu − su
12 bm ← bm + t
13 update the bound of the lin_le constraint with bm

Proposition 2.2. Relaxing the less than or equal to variant of the linear constraint using
Algorithm 2.5 allows for the use of the linear constraint propagator as described and DDBB
search.

2.6. WEAKENING LINEAR SUMMATION CONSTRAINTS 43

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), and a search node
r which records a completion problem of P , which we will call P ′. Let C include linear
summation constraints, and assume that f satisfies the limitations set out in Section 2.4.4. We
show that relaxed width truncated search using Algorithm 2.2 returns an upper bound on the
cost of the completion problem P ′. There are two cases to consider. These are when the path
through the search tree from r to the optimal solution of the completion problem is included
in the relaxed width truncated search tree (regardless of whether or not the width of the search
tree has been bounded), and when it is not.

If the path to the optimal solution is included in the relaxed width truncated search tree then
Algorithm 2.2 returns a value at least as large as the cost of the optimal solution.

If the path to the optimal solution does not appear in the relaxed width truncated search
tree, we know that there exists some path containing nodes which are the result of a merge
operation on two search nodes using Algorithm 2.3. We assume that v has high cost under
the objective function f than u, without loss of generality. We now show that Algorithm 2.5
ensures that no values in m are without support due to the linear summation constraint, and
therefore admits a locally optimal solution which is at least as large as the locally optimal
solutions under u and v.

When we merge nodes using Algorithm 2.3 all values which had support in v are still supported
in m by construction. We must show that any value introduced from u is given support via
Algorithm 2.5. By including support for these values in u we go not guarantee that a “solution”
found by Algorithm 2.2 will be a solution to P ′, and the cost of the solutions found by
Algorithm 2.2 may be greater than the optimal solution to P ′. Therefore Algorithm 2.2 returns
an upper bound for the cost of the optimal solution of P ′, as required.

Consider a value k introduced to the domain of a variable xi from u, which does not have
support in m after merging v and u via Algorithm 2.3. We know that k had support at u,
otherwise the linear_le propagator would have removed k from the domain of xi at u. If
bu is the bound of the linear_le constraint at u, and su is the sum of the variables which
have been assigned values at u, then the inequality aixi|k ≤ bu − su holds. Therefore, by
adding bu − su to the bound of the linear_le constraint as recorded at m, we ensure that
each value k introduced to m from u has support.

The proofs that follow for all of our other weakening algorithms are similar to the proof of
Proposition 2.2, until the step where we show that the weakening algorithm provides support
for values which have none in m. For these proofs we start at the stage of proving that each
value introduced from u to m has support via the weakening algorithm being considered, to

44 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

avoid repetition.

2.6.2 Weakening sum greater than or equal to

Our approach to weakening the greater than or equal to variant of the linear summation
constraint (which we will denote lin_ge to ease presentation) is similar to the approach
taken for the less than or equal version. Harvey and Stuckey (1998) also provide a propagator
for this variant, which relies on the following equation

E =
n∑
i=1

aixi − b (2.3)

from which the lower bound for each xi can be calculated via

xi ≥ xi −
E

ai
(2.4)

Similarly to the lin_le constraint, the lin_ge constraint not satisfiable if E < 0. Again
the lower bound of each of the summands can be updated in only two passes; one which
calculates E and another which sets the bound of each xi.

Our approach to weakening the lin_ge constraint is given in Algorithm 2.6. We again move
the bound to weaken the constraint, but in this case we decrease the value of b.

Algorithm 2.6: An algorithm for weakening the lin_ge constraint
1 weakenLinGe (Node u , Node m)
2 begin
3 su, sv ← 0, 0
4 bu ← the bound from the lin_ge constraint at u
5 bm ← the bound from the lin_ge constraint at m
6 foreach summand xi involved with lin_ge at lu do
7 if xi is assigned in lu then
8 x← the value assigned to xi
9 a← the coefficent of xi

10 su ← su + x× a

11 t← bu + su
12 bm ← bm − t
13 update the bound of the lin_ge constraint with bm

Proposition 2.3. Weakening the greater than or equal to variant of the linear constraint using
Algorithm 2.6 allows for the valid simultaneous use of the linear constraint propagator as
described and DDBB search.

2.7. WEAKENING MAX AND MIN CONSTRAINTS 45

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes linear
summation constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
The proof of Proposition 2.3 is similar to the proof of Proposition 2.2 and differs only when
considering how we ensure that all values added to m from u are have support.

Any value recorded at the node u has support at u because for all unassigned xi and for any
value in their domain x, aix ≥ bu + su, where bu is the bound of the linear_le constraint
and su is the sum calculated over the assigned variables, both as recorded at u. By subtracting
bu + su from the bound of the linear_ge constraint as recorded at m, bm, we ensure that
all of the values introduced to m from u have support.

2.6.3 Weakening equal to

The equal to variant of the linear summation constraint (which we will denote lin_eq to
ease presentation) can be propagated by simultaneously updating the lower and upper bounds
of the summands by the inequalities given in Equation 2.3 and Equation 2.4.

Our approach to weakening the lin_eq constraint is to impose both a lin_le constraint
and a lin_ge constraint simultaneously over the same summands with the same bound.
Weakening these constraints is then equivalent to weakening the corresponding lin_eq con-
straint by allowing a ball of acceptable values around b.

2.7 Weakening max and min constraints

In this section we will provide weakening algorithms for both the max and min constraints.
While we can weaken the constraint to get limited use out of it in some cases, for both of
these constraints the best approach is sometimes to remove the constraint from the problem
altogether. This is to avoid calling the propagator when we know that it will never prune any
values from unassigned variables.

2.7.1 Weakening the max constraint

The max(X, xmax) constraint requires that the variable xmax takes the maximum value as-
signed to a set of integer variablesX = {x0, ..., xn}. Beldiceanu (2001), provides propagators
for the max and min constraints that achieve bounds consistency in the following way:

• If xmax is not assigned this constraint can be propagated by iterating over the set of variables

46 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

X , and setting the lower bound of xmax to be the largest value assigned to any variable in
X . Similarly min can be propagated by iterating through X and setting the upper bound of
xmin to be the smallest value in X .

• On the other hand, if xmax is assigned then the max constraint can be propagated by iterating
over the set of variables X and setting the upper bound of all unassigned variables to the
value of xmax. Similarly for min if xmin is assigned then the constraint can be propagated
by iterating over the set of variables X and setting the lower bound of all unassigned
variables to be the value of xmin

∀0≤i≤5. xi ∈ {1, . . . , 9}

xmax ∈ {1, . . . , 9}

max(X, xmax)

maximise
5∑
i=0

ixi − xmax

Figure 2.10: An example problem including a max constraint.

We motivate the need to weaken the max constraint by example. Figure 2.10 shows an
example problem which includes a single max constraint and Figure 2.11 includes two partial
solutions to this problem, α and β, and the partial solution, γ, obtained from merging them
together using Algorithm 2.3. Since xmax was unassigned in both nodes the domain of xmax
in γ is the union of the domains of xmax in α and β. However, there is no support for xmax to
take the values 4, 5 and 6 in γ. This is because x0 is already assigned the value 7 and xmax is

x0 = 4

x1 = 2

x2 = 3

x3 = 1

x4,5 ∈ {1..9}
xmax ∈ {4..9}

(a) A partial solution α

x0 = 7

x1 = 3

x2 = 1

x3 = 4

x4,5 ∈ {1..9}
xmax ∈ {7..9}

(b) A partial solution β

x0 = 7

x1 = 3

x2 = 1

x3 = 4

x4,5 ∈ {1..9}
xmax ∈ {4..9}

xmax is masked with 9

(c) A partial solution γ

Figure 2.11: Two partial solutions of the problem shown in Figure 2.10 where xmax is
unassigned and the completion problem resulting from merging them together.

2.7. WEAKENING MAX AND MIN CONSTRAINTS 47

x0 = 6

x1 = 2

x2 = 3

x3 = 1

x4,5 ∈ {1..6}
xmax = 6

(a) A partial solution α

x0 = 4

x1 = 3

x2 = 1

x3 = 4

x4,5 ∈ {1..4}
xmax = 4

(b) A partial solution β

x0 = 4

x1 = 3

x2 = 1

x3 = 4

x4,5 ∈ {1..6}
xmax = 4

xmax is masked with 6

(c) A partial solution γ

Figure 2.12: Two partial solutions of the problem shown in Figure 2.10 where m is assigned
and the completion problem resulting from merging them together.

required to be assigned the maximum value assigned to any xi. In this case, where the lower
bound of xmax is not equal in α and β, we mask xmax with the largest value in its domain.

Next we consider the case where xmax was assigned a value in both partial solutions α and
β. Figure 2.12 gives an example of merging two such partial solutions. The need for a
weakening algorithm is made apparent by Figure 2.12c, where the variables x4 and x5 do not
have support for the values 5 and 6, since the maximum allowed value is 4. We overcome this
issue by masking xmax with the largest value assigned to it across both input nodes α and β.

Algorithm 2.7 shows our approach to weakening the max constraint. We assume that the
constraint is represented by a data type which includes as members each variable xi and the
variable xmax. First we check which of the cases, described above, is relevant (on line 3),
and if xmax is unassigned in either α or β and their lower bounds are distinct we remove the
constraint from the model (line 5). In the case where xmax is assigned in both α and β we
mask xmax with the smallest value assigned to xmax across both partial solutions (lines 7 and
8).

We conclude our treatment of the max constraint with the following proposition:

Algorithm 2.7: An algorithm which weakens the max constraint.
1 maskMax (Node u , Node v, Node m)
2 begin
3 umax ← xmax at node u
4 vmax ← xmax at node v
5 if the lower bounds of umax and vmax are not equal then
6 ub ← the largest value in the domain of umax and vmax
7 mask xmax at node m with the value ub

48 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Proposition 2.4. Weakening the max constraint using Algorithm 2.7 allows for the valid
simultaneous use of the max together with DDBB search.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes max
constraints, and assume that f satisfies the limitations set out in Section 2.4.4. Again, the
proof of Proposition 2.4 is similar to the proof of Proposition 2.2, until we have to show that
values introduced to m from u are ensured support by Algorithm 2.7, after nodes u and v are
merged to create a new node m.

Let xi be a variable involved in the max constraint whose domain, Dxi , includes a value
k which is does not have support at the node m after the merge has occurred. All values
introduced to m from v have support by construction via Algorithm 2.3, so k has been
introduced to m from u and k is greater than the maximum value in the domain of xmax . By
masking xmax at node m with the value of the upper bound of xmax at node u, we ensure that
k has support when max is propagated.

2.7.2 Weakening the min constraint

The approach to weakening the min constraint is very similar to the approach to weakening
the max constraint, but where we previously considered the lower bounds of xmax we now
modify the lower bounds of xmin. Algorithm 2.8 details these changes.

Algorithm 2.8: An algorithm which weakens the min constraint.
1 maskMin (Node u , Node v, Node m)
2 begin
3 umin ← xmin at node u
4 vmin ← xmin at node v
5 if the upper bounds of umin and vmin are not equal then
6 lb ← the smallest value in the domain of umin and vmin
7 mask xmin at node m with the value lb

2.8 (Not) weakening the element constraint

In this section we discuss the element constraint and show that when merging nodes using
Algorithm 2.3 there there is no need to provide an algorithm to weaken the constraint.

2.9. (NOT) WEAKENING THE ABSOLUTE VALUE CONSTRAINT 49

The element constraint requires that, for an array of integers a and integer variables i and e,
a[i] = e.

An example element constraint is shown in Figure 2.13, where, as an example, setting i = 1

forces e = 1. This constraint can be propagated by removing values from e which do not
correspond to a value in the array indexed by some value in the domain of i, or by removing
values v from i if a[v ∈ Di] does not appear in the domain of e.

a = [1, 0, 0, 1, 1]

i ∈ {1, . . . , 5}
e ∈ {0, 1}

Figure 2.13: An example element constraint with an array of integers a and two integer
variables i and e.

Proposition 2.5. The element constraint can be used with the branch and bound algorithm
given in Algorithm 2.4 without needing to be weakened during construction of relaxed width
truncated search trees.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes
element constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 2.5 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support by construction, after
nodes u and v are merged to create a new node m.

By propagating the constraint as described above, either both the variables i and e will be
assigned a value or both i and e are unassigned at each of the nodes u and v. Consider a value
k introduced to the domain of i at m from u. If the constraint is propagated as described
above then there will be a value l in the domain of e at m introduced from u which supports k.

2.9 (Not) weakening the absolute value constraint

In this section we discuss the absolute value constraint and show that it too does not require
a weakening algorithm in order for it to be used during search using DDBB as given in
Algorithm 2.4.

The absolute value constraint requires that a variable x be assigned a value which is the
absolute value of the value assigned to y, that is x = |y|. This constraint can be propagated

50 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

by iterating through the values in the domain of x, v ∈ Dx, and removing v from Dx if the
domain of y does not contain v or −v. Similarly, iterating through the values in the domain of
y, w ∈ Dy, allows the removal of any w from Dy such that the domain of x does not contain
|w|.

Proposition 2.6. The absolute value constraint may be used to model problems which are
solved using with Algorithm 2.4 without the need for the constraint to be weakened after the
creation of relaxed nodes using Algorithm 2.3.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes
absolute value constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 2.6 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support, after nodes u and v
are merged to create a new node m.

When u and v are merged together to create m, all values introduced from v have support at
m by construction. Consider a value k in the domain of x introduced at node m from node u.
If the absolute value constraint is propagated as described above then another value l in the
domain of y is introduced at node m from node u which supports k at m. This value l is in
turn also supported by the inclusion of k.

2.10 Weakening reified constraints

Constraint reification involves assigning a boolean variable a value dependant on whither or
not a constraint is satisfied.

We weaken a constraint reification by weakening the constraint being considered. The boolean
variable is set to true if the weakened constraint is satisfied.

2.11 Experimental results

In this section we show empirically that using decision diagram branch and bound search as
the search scheme in a constraint solver, together with our constraint weakening algorithms,
at times outperforms a forward checking approach. Recall that forward checking search
proceeds in a depth first manner and at each search node constraints are propagated such
that inconsistent values are removed from the domains of unassigned variables. To compare
these two approaches to search we have implemented forward checking in our own solver,

2.11. EXPERIMENTAL RESULTS 51

in order to isolate the change of search scheme as the only difference. Adding in our search
scheme in an existing constraint solver could lead to us comparing our experimental code
against optimised industrial codes. Neither our DDBB or forward checking search schemes
compares favourably to industrial quality constraint solvers, which on many problem instances
outperform our code by orders of magnitude.

2.11.1 Car factory sequencing problem

The constraints for which we have proposed weakening algorithms for in this chapter allow
us to tackle the car factory sequencing problem. In this problem there are n cars which must
be produced by the factory, and these cars are not identical since customers can pay more for
extra options to be added to a base model. The factory consists of an assembly line of stations
at which workers install the various optional parts (e.g. air-con, spoilers, rear diffusers). These
stations have varying throughput, with some stations taking longer to complete the installation
of their parts than others. Each station’s throughput is recorded as the fraction of the total cars
passing along the assembly line which it can handle, for example 1 in every 2 or 2 in every 5.
The sequence of cars passing along the assembly line must be built so that these constraints
are satisfied.

This problem has been studied widely. Dincbas, Simonis, and Hentenryck (1988) show that
combining logic programming with constraint programming techniques leads to a tool which
can solve instances of the car factory sequencing problem much more efficiently than the state
of the art techniques of the time. Regin and Puget (1997) introduce a new filtering algorithm
for propagating sequence constraints (i.e. that 3 in every 5 cars passing along the assembly
line must not stop at a particular station). They use the car factory sequencing problem as
an illustrative example of the competitiveness of their approach and offer a difficult set of
benchmark problems. Both of these previous works stress that the car factory sequencing
algorithm is difficult and the problem was proven to be NP-complete by Gent (1998). The
problem was the focus of the 2005 ROADEF challenge and was proposed to the challenge by
the French car manufacturer Renault. Solnon et al. (2008) review the exact and approximation
approaches taken by submissions to the challenge. Siala, Hebrard, and Huguet (2014) give an
algorithm for propagating the kinds of sequence constraints found in the car factory scheduling
problem in linear time and follow this work with a study of heuristics for the problem (2015).
There has also been interest in using SAT solvers for the problem (Mayer-Eichberger and
Walsh, 2013).

The model for the car factory sequencing problem is given as a Minizinc code listing in Ap-
pendix A. It makes use of all three types of linear summation constraint, lin-le, lin-ge
and lin-eq as well as the element constraint and the reified lin-eq constraint. Fig-

52 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

10 5 6
1 2 1 2 1
2 3 3 5 5
0 1 1 0 1 1 0
1 1 0 0 0 1 0
2 2 0 1 0 0 1
3 2 0 1 0 1 0
4 2 1 0 1 0 0
5 2 1 1 0 0 0

(a) The problem instance

0 1 0 1 1 0
1 0 0 0 1 0
5 1 1 0 0 0
2 0 1 0 0 1
4 1 0 1 0 0
3 0 1 0 1 0
3 0 1 0 1 0
4 1 0 1 0 0
2 0 1 0 0 1
5 1 1 0 0 0

(b) A solution

0 1 0 1 1 0
2 0 1 0 0 1
5 1 1 0 0 0
1 0 0 0 1 0
4 1 0 1 0 0
3 0 1 0 1 0
2 0 1 0 0 1
4 1 0 1 0 0
3 0 1 0 1 0
5 1 1 0 0 0

(c) The optimal solution

Figure 2.14: An instance of the car factory sequencing problem, a solution and the optimal
solution. The standard form of such instances is that the first line records the number of cars
to be made, the number of options available and the number of classes of car. The following
lines then give each class with its number proceeded by which options are chosen for the
class. This particular instance instance is given as a motivating example in (Dincbas, Simonis,
and Hentenryck, 1988) and the optimal solution is found by our solver in less than a tenth of
second.

ure 2.14 shows an example instance of the car factory scheduling problem and its solution.

2.11.2 Evaluating the effects of heuristic choices

In this section we study the effect that altering some search heuristics has on the time it takes
our solver to find optimal solutions and then terminate having proved that they are optimal
(that no better solution can be found).

Search heuristics are commonly employed in order to improve execution times of solvers.
In particular, altering the order in which variables are chosen to branch on during search
(variable ordering heuristics) and altering the order in which these variables are assigned
values (value ordering heuristics) can have a huge effect both the number of nodes visited
during search and the execution time of a solver. Ordering heuristics can be static, where the
order is fixed before search, or dynamic, where the order is chosen during search based on
how search proceeds. Common variable ordering heuristics include static orderings such as
input order and occurrence (where we choose branch variables in descending order of the
number of constraints they are involved in). An example of a dynamic variable ordering is
first fail, where the variable with the smallest domain is chosen as the next branch variable.

We will compare our approach of using DDBB as the search scheme in a constraint solver
against forward checking for multiple different variable-value ordering combinations, but we
begin by examining a heuristic choice introduced in DDBB. When using decision diagram

2.11. EXPERIMENTAL RESULTS 53

branch and bound as the search scheme in our solver is the choice of what value the maximum
width of width restricted truncated search trees are set to. The effects of altering the permitted
width of truncated decision diagrams in optimisation settings are well known. Larger permitted
widths allow for stronger bounds, with the trade off being that it takes more time to find these
bounds due to the larger number of nodes being explored. A wider restricted search might
include more leaf nodes, and this improves the chance of finding a good incumbent solution
and quickly improving bounds during search. However, doing more work by exploring a
wider search tree does not guarantee that a better solution will be obtained. Therefore there is
a balance to be found by doing enough work to improve the quality of solutions found without
needlessly adding to the number of search nodes required to find them.

A further complication is that in Algorithm 2.4 we make use of restricted width truncated
search trees to decide which nodes to branch on during search. This leads to the situation
where there are multiple “good” choices of width, as larger widths will improve the quality of
solution found but while branching deeper in the search tree. At times we find that having
more branching is instead beneficial.

Figure 2.15 shows a plot of the cumulative number of CSP instances solvable in a given time.
The very worst performing width is the smallest chosen and the next worst is the maximum
chosen. We would expect this behaviour, as when the width is too large the restricted search
trees rarely have their width truncated, and very many restricted searches for larger widths are
then essentially just breadth first search. Similarly, when the maximum permitted width is too
small search tends towards a depth first approach, only in this instance we do not backtrack to
branch but branch at the layer of search where the maximum permitted width is first exceeded.
Neither of these situations are ideal. The best possible choice of width for each individual
instance varies, which is why we see that when counting the number of problems solvable
cumulatively in a given under time very many choices of width perform similarly.

Another heuristic choice we introduce is the maximum permitted width of relaxed width
truncated search. We should expect that varying the width of relaxed search has a similar
effect to varying the width of restricted search. Wider search trees more closely approximate
the exact tree rooted at the same subproblem, and this can lead to stronger bounds as less
merge operations occur. However this is again not guaranteed to be the case and in an ideal
case we would not want to visit more search nodes than necessary to get good bounds.

We again show cumulative results for the CSP, showing how many instance can be solved in
a given time in Figure 2.16 when we vary the maximum permitted width of relaxed search.
While we do see an some limited improvement when using greater widths it is mostly the
smaller choices which perform best.

The last heuristic choice we introduced in Algorithm 2.4 is the order in which nodes are

54 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Runtime (s)

10-3 10-2 10-1 100 101 102 103

0

500

200

300

100

400

Width

0

200

400

600

800

N
u

m
b
e

r
o

f
in

st
a

n
ce

s
so

lv
e

d

Figure 2.15: Cumulative number of CSP instances solved in a given time as the width of
restricted search is varied.

2.11. EXPERIMENTAL RESULTS 55

Runtime (s)

10-3 10-2 10-1 100 101 102 103

0

500

200

300

100

400

Width

0

200

400

600

800
N

u
m

b
e

r
o

f
in

st
a

n
ce

s
so

lv
e

d

Figure 2.16: Cumulative number of CSP instances solved in a given time as the width of
relaxed search is varied.

56 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

to be merged during construction of relaxed width truncated search trees constructed via
Algorithm 2.2. We consider two options for selecting nodes to merge. The first is to merge
nodes to the right of the layer being reduced. The reasoning behind this choice is that the
variable and value ordering heuristics, if chosen properly, should lead to lower cost nodes
being towards the right of layers. The second choice is that we search through each layer
and pick the two lowest cost nodes every time a merge operation occurs. This would lead to
the best possible reduction of the layer (the merged nodes are kept as low cost as possible)
but the extra effort of finding these nodes may not be worth it. Figure 2.17 shows that
the effect this choice has on execution times is often minimal when solving the car factory
scheduling problem. Even for instances where there is a larger difference in execution times,
which approach is faster can depend on the maximum permitted width chosen for relaxed
search. When we compare DDBB against forward checking, we take the approach of merging
rightmost nodes first to ensure that the merge ordering compliments variable and value
ordering heuristics.

It is worth considering that our heuristic choices are not independent of each other. For
example changing the maximum permitted width of restricted search might change the level
on which branching occurs in the search tree, but equally changing the variable ordering could
also change the level at which a layer becomes too wide. This lack of independent parameters
makes it very difficult to find a single best choice of heuristics and parameters for a given
family of instances or problems. As we continue to compare DDBB against forward checking
we will do so against "good" choices of maximum permitted widths, but these will be fixed
for all instances.

2.11.3 Comparison with forward checking

To evaluate our approach we chart the execution time and number of search nodes used by
our DDBB search approach against the execution time and number of search nodes used by
forward checking. We do this for both an input order and first fail variable orderings and
minimum and maximum value orderings. We choose these in particular because they are the
suggested ordering heuristics for solvers which interface with Flatzinc, and in this case all
of them actually impact the order in which variables and values are chosen. When using the
forward checking approach an input order variable ordering branches on variables in the static
order in which they appear in the model being solved. A first fail variable ordering branches
on variables in order of which unassigned variable has the smallest domain, which changes
dynamically as search proceeds. In the context of DDBB we can use these variable orderings
to

These figures also include a chart showing the relative speed with which these approaches

2.11. EXPERIMENTAL RESULTS 57

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 1

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 2

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 3

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 4

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 5

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 10

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 25

Runtime (s) when lowest cost nodes merged

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

h
e

n
 r

ig
h

tm
o

st
 n

o
d
e

s
m

e
rg

e
d

Width 50

Figure 2.17: Comparing merging low cost nodes versus rightmost nodes when conducting
relaxed search on car factory scheduling problem.

58 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

explore the search space, confirming that we are not just comparing our DDBB approach
against a hobbled forward checking approach and that both approaches manage to evaluate a
similar number of nodes per second. choose which variable to assign values to when creating
a new layer of search.

Figure 2.18, Figure 2.19, Figure 2.20, and Figure 2.21 show the relative execution times
and search nodes used when using an input order and minimum value order, input order and
maximum value order, first fail and minimum value order and first fail and maximum value
order. For each variable-value ordering combination the DDBB approach outperforms forward
checking in around half of the instances we solve, and sometimes by orders of magnitude.
While both of these methods of search use the same variable and value ordering heuristics,
the different sequence they visit each node in the search tree means that a direct comparison
between DDBB search and forward checking for a particular choice of variable-value ordering
only tells part of the story.

For each variable-value ordering pair we include charts which show the relative size of the
search space when using DDBB versus forward checking, where finding a better incumbent
solution more quickly allows for greater pruning of the search space based on the cost of
the incumbent. However this benefit of pruning the search space does not always come
via relaxed width truncated search. Figure 2.22 shows that for the overwhelming majority
of instances, using relaxed width truncated search trees to bound the problem leads to an
increase in execution times of our solver. While there is often no benefit in using relaxed
width truncated search trees, we can still assert that we are able to prune large parts of the
search space due to more quickly finding better solutions than forward checking.

When DDBB performs well, and why

To investigate why DDBB has faster execution times than forward checking for some instances
of the car factory scheduling problem, we can focus on how the cost of the incumbent best
solution changes over time. Figure 2.23 shows the cost of the best known solution yet found
during search against time, for both DDBB and forward checking for a single instance of the
CFSP where DDBB completes its execution before forward checking. From this figure we
can notice two things, DDBB finds fewer improvements than forward checking, but these
improvements are more significant than those found by forward checking. For this instance,
forward checking finds a good solution, then backtracks to find improving solutions that are
closely related to the initial good solution. DDBB instead continues search by branching at
some node at a (comparitively) low depth in the search tree and continues to find under this
node a new solution in a different region of the search space from the first. Finding these
new solutions requires some luck, but when we do find large improvements on the current

2.11. EXPERIMENTAL RESULTS 59

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.18: DDBB search versus forward checking on the CFSP, where variables are chosen
in input order and the minimum value is chosen first from variable domains when branching.

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.19: DDBB search versus forward checking on the CFSP, where variables are chosen
in input order and the maximum value is chosen first from variable domains when branching.

60 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.20: DDBB search versus forward checking on the CFSP, where variables are chosen
in order of domain size and the minimum value is chosen first from variable domains when
branching.

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.21: DDBB search versus forward checking on the CFSP, where variables are chosen
in order of domain size and the minimum value is chosen first from variable domains when
branching.

2.11. EXPERIMENTAL RESULTS 61

Runtime (s) with relaxed search

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

o
u

t
re

la
xe

d
 s

e
a

rc
h

Runtime (s) with relaxed search

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

o
u

t
re

la
xe

d
 s

e
a

rc
h

Runtime (s) with relaxed search

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

o
u

t
re

la
xe

d
 s

e
a

rc
h

Runtime (s) with relaxed search

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

o
u

t
re

la
xe

d
 s

e
a

rc
h

Figure 2.22: DDBB search with and without relaxed search trees on the CFSP, where (from
top left, clockwise) variables and values are chosen in order of domain size and the minimum
value, domain size and maximum value, in a static order and the maximum value, in a static
order and the minimum value.

62 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

solution the gains can be significant. On some instances it leads to orders of magnitude faster
performance for DDBB. In this instance too the proof is much shorter. This may be due to
relaxed width truncated search trees determining that a number of the remaining nodes to be
branched on define completion problems whose optimal cost cannot possibly be larger than
the cost of the incumbent solution.

Cost of best solution found

0 1 2 3 4 5 6 7 8 9 10

dds
fc

Color

120

130

140

150

160

170

180

190

200

Ti
m

e

Figure 2.23: Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the CFSP.

Maximum independent set problem

Recall that the MISP problem is to find the largest weight set of independent vertices in a
vertex weighted graph. The MISP problem includes makes use of lin_le constraints, and a
model for the problem is given as a Minizinc code listing in Appendix A.

To evaluate the performance of our solver we generate instances of the MISP by randomly
assigning weights to vertices in the subgraph isomorphism instances collected from the
Stanford Graph Database by Larrosa and Valiente (2002). We choose these benchmark
instances as they are have a range of properties: some are connected, some planar, some
bipartite. For each of these benchmark instances we create multiple MISP instances by
varying both the seed to our generation procedure and the distribution of weights. We consider
the clique problem on the compliment graph (where every vertex has weight 1), an even
distribution of small weights (1 to a tenth order of the graph), and even distribution of large

2.11. EXPERIMENTAL RESULTS 63

weights (1 to half the order of the graph) and an uneven distribution where only a few vertices
are given large weights (most weight 1, but can weigh up to half the order of the graph).

Evaluating heuristic choices

Again we evaluate the impact of varying the maximum permitted widths of restricted and
relaxed width truncated search trees. Figure 2.24 and Figure 2.25 show the expected behaviour
(just as with the CFSP): that the best choice of width for each search is neither too large nor
too small.

Comparison with forward checking

Again we evaluate our DDBB based approach against forward checking for different value
ordering heuristics (since each decision variable in this problem has {0, 1} as its domain).
Figure 2.26 and Figure 2.27 compare our approach to forward checking for a minimum value
ordering and maximum value ordering respectively. For this problem we do not see then
positive results that were seen for the car factory sequencing problem.

Only a handful of instances using the maximum value ordering do we see an improvement in
execution time when using DDBB search compared with forward checking. The instances
where our approach compares favourable with forward checking are all in the uneven weights
class, and through inspecting individual problem instances we see that in these cases we do
more quickly find better incumbent solutions than forward checking, but not to the same
extent as was the case with the car factory scheduling problem. We again include in each of
these figures a chart confirming that both DDBB and forward checking visit a comparable
number of nodes per second, to confirm that we are not just comparing against a poorly
performing forward checking implementation.

In Figure 2.28 we again compare using relaxed search trees against not using these. The
results here are more promising than for the CFSP, with the execution time of a number of
instances benefiting from the use of relaxed search trees, but still in many cases using these
search trees to bound search only leads to an increase in execution times.

When DDBB performs poorly, and why

Our approach of using DDBB as the search scheme in a constraint programming solver
does not perform nearly as well for the MISP as it did for the CFSP. Only for a handful of
instances do we see any improvement in execution times using DDBB. Figure 2.29 shows

64 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Runtime (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

300

400

100

500

200

0

Width

0

200

400

600

800

N
u
m

b
e
r

o
f

in
st

a
n
ce

s
so

lv
e
d

Figure 2.24: Cumulative number of MISP instances solved in a given time as the width of
restricted search is varied.

2.11. EXPERIMENTAL RESULTS 65

Runtime (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

300

400

100

500

200

0

Width

0

200

400

600

800
N

u
m

b
e
r

o
f

in
st

a
n
ce

s
so

lv
e
d

Figure 2.25: Cumulative number of MISP instances solved in a given time as the width of
relaxed search is varied.

66 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.26: DDBB search versus forward checking on the MISP, where variables are chosen
in order or domain size and the minimum value is chosen first from variable domains when
branching.

Runtime (s) with forward checking

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 2.27: DDBB search versus forward checking on the MISP, where variables are chosen
in order or domain size and the maximum value is chosen first from variable domains when
branching.

2.11. EXPERIMENTAL RESULTS 67

Runtime (s) without relaxed search

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 r
e

la
xe

d
 s

e
a

rc
h

Nodes used without relaxed search

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 r
e

la
xe

d
 s

e
a

rc
h

Figure 2.28: DDBB with relaxed diagrams or without.

the cost of the best known solution yet found during search against time, for both DDBB and
forward checking for a single instance of the MISP where forward checking completes its
execution before DDBB. Here both algorithms use a static variable ordering and minimum
value ordering. From Figure 2.29 we can see that while forward checking follows the leftmost
branch of search straight to the solution that includes no vertices in milliseconds, DDBB
takes seconds to find the same solution, as DDBB does much more work before exploring any
leaf nodes. For the instances of the MISP investigated we seldom see the behaviour where
DDBB happens upon good solutions earlier than forward checking due to the different order
in which it explores the search space. What is shown in Figure 2.29 is typical across many of
these instances. These quick incremental improvements made by forward checking mean that
it more quickly reduces the search space based on the cost of the current best solution than
DDBB can.

The instances which DDBB performs well on are never from the clique complement instances
and often from the instances with an uneven distribution of vertex weights, where the same
behaviour as outlined for the CFSP is exhibited and DDBB can find larger improvements than
forward checking can.

68 CHAPTER 2. WEAKENED CONSTRAINTS FOR BOUNDING SEARCH

Time (s)

0 10 20 30 40 50 60

dds
fc

Color

0

25

50

75

100

125

150

175

C
o

st
 o

f
b

e
st

 s
o

lu
ti

o
n

 f
o

u
n
d

Figure 2.29: Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the MISP.

69

Chapter 3

Weakened all different constraints

3.1 Introduction

In this chapter we consider the all different constraint and other constraints in the “all different”
family. We provide weakening algorithms so that these constraints can be used in our decision
diagram influenced branch and bound search scheme inside a constraint optimisation solver.

3.2 Background

The all different constraint (which we will refer to as alldiff) requires that a set of
variables all take distinct values. It is widely used when modelling problems for solution via
a constraint solver, appearing in models for quasigroup completion (Pesant, Quimper, and
Zanarini, 2014) and balance quasigroup with holes (Kautz et al., 2001), and sports scheduling
(Schaerf, 1999). In this section we outline how the alldiff constraint is propagated, so that
we can understand how our approach to weakening the alldiff constraint works together
with a propagator for the constraint.

Perhaps the most simple way of propagating the alldiff constraint is via its pairwise
not-equals decomposition (Figure 1.4 shows such a decomposition of the problem modelled in
Figure 1.3). This decomposition works by imposing a not-equal constraint for every pair
of variables involved in the alldiff constraint. In Chapter 1 we used this decomposition of
the alldiff constraint to show the effect that inference can have when solving problems. It
was clear that the decomposition lead to very little inference, failing to determine that 2 values
could not be shared across 4 variables which were required to take distinct value assignments.

The amount of time spent at each node inferring which values can be deleted from the domains

70 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

of unassigned variables by propagation can have a profound effect on the execution times of
solvers across different problems and problem instances. Stergiou and Walsh (1999) show that
using the correct strength of inference is important to solve problems efficiently, comparing
different levels of consistency. In his survey van Hoeve (2001), also explores the effect of
various strengths of inference, pairwise decomposition, bound and range consistency and
generalised arc consistency.

The standard algorithm for maintaining generalised arc consistency for the alldiff con-
straint was given by Régin (1994). Régin’s algorithm is not simple, relying on several results
from graph theory. We will explain the algorithm here at a high level, but in enough detail to
ensure that it is clear how our weakening algorithm interacts with this alldiff propagator.

Gent, Miguel and Nightingale (2008), survey various optimisations proposed for improving
the performance of algorithms which maintain general arc consistency for the alldifferent
constraint. In particular they consider domain counting (introduced by Quimper and Walsh
(2005) and further developed by Lagerkvist and Schulte (2007) as an optimisation. They also
provide in depth implementation details regarding Régin’s algorithm.

3.2.1 Regin’s alldifferent propagator

For a problem with n variables whose domains share values {1, . . . , d}, Régin (1994)’s
algorithm begins by constructing a bipartite variable-value graph, B. A graph is bipartite if
its vertices can be arranged into two sets such that no two vertices in either set are connected
by an edge. This graph has a vertex for each variable and each value, giving a set of vertices
V = {x1, . . . , xn, 1, . . . , d}. An edge is added to the graph between a vertex corresponding
to a variable and a vertex corresponding to a value if a variable’s domain includes the value. It
follows that this graph is bipartite as there is never an edge between two vertices which both
represent either variables or values. After the graph B is constructed a maximum cardinality
matching of B is then sought. A matching of a bipartite graph is a set of edges in the graph
such that not more than 1 edge is incident on any vertex. A maximum cardinality matching

M is a matching with the greatest number of edges. M is said to have size |M | (where |M |
is the number of edges in the matching M). When |M | < n not all variables can be given
distinct values and so the constraint is not satisfiable. Figure 3.2 shows such a matching for
the problem modelled in Figure 3.1. Figure 3.4 gives an example of problem instance where
the size of the matching tells us that an alldiff constraint is not satisfiable.

To find a maximal matching M of the bipartite variable value graph B the problem is
transformed into a corresponding maximal flow problem. The graph B is augmented with
source and terminal vertex, with the source vertex being connected to each variable vertex,

3.2. BACKGROUND 71

x1,2 ∈ {0, 1}
x3 ∈ {0, 1, 2, 3}
x4 ∈ {2, 3}

alldiff(x1, x2, x3, x4)

Figure 3.1: An example problem involving a single alldiff constraint.

x1

x2

x3

x4

0

1

2

3

Figure 3.2: A maximum cardinality matching on the variable value graph obtained from
the problem modelled in Figure 3.1. The bold edges represent the edges chosen to be in the
matching M .

x1,2,3 ∈ {0, 1}
x4 ∈ {1, 2}

alldiff(x1, x2, x3, x4)

Figure 3.3: An example of an unsatisfiable problem involving a single alldiff constraint.

x1

x2

x3

x4

0

1

2

Figure 3.4: A maximum cardinality matching on the variable value graph constructed from
the problem modelled in Figure 3.3, where |M | < n. From the size of the matching we can
ascertain that the alldiff constraint is not satisfiable.

72 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

similarly the terminal vertex is connected to each value vertex. A digraph is produced from
this augmented version of B where each variable-value edge in B is directed from the variable
vertex to the value vertex. Edges are from s are directed towards the variable vertices and edges
from the value vertices are directed towards t. The maximum flow through this augmented
graph can be determined using existing algorithms, for instance the Ford-Fulkerson method
(Ford and Fulkerson, 2009). Figure 3.5 shows a graph which ensures the maximum flow
through the augmented graph.

x1

x2

x3

x4

s t

0

1

2

3

Figure 3.5: A flow computed through the augmented variable value graph obtained from the
problem modelled in Figure 3.1.

The matching found in the flow graph is partitioned into strongly connected components. A
strongly connected component of a graph is a subgraph in which each vertex is connected
to each other vertex via a cycle. Tarjan’s algorithm (Tarjan, 1972) can be used to find all
strongly connected components in linear time. Any variable-value edge in the flow graph
which crosses two strongly connected components and is not part of the matching corresponds
to an value which can be removed from the domain of a variable. Figure 3.6 highlights the
strongly connected components of the graph in Figure 3.5. The edges x3 → 0 and x3 → 1

cross both of these strongly connected components, which proves that the values 0 and 1 can
be removed from the domain of x3.

x1

x2

x3

x4

s t

0

1

2

3

Figure 3.6: The flow graph from Figure 3.5 with the strongly connected components x1 →
1→ x2 → 0→ x1 and x3 → 2→ x4 → 3→ x3 highlighted in the rust coloured boxes. The
edges x3 → 0 and x3 → 1 cross both these strongly connected component and so 0 and 1 can
be removed from the domain of x3.

In summary, Régin’s algorithm follows the following steps:

3.3. WEAKENING ALL DIFFERENT 73

1. Construct a bipartite variable-value graph;

2. Find a maximal cardinality matching in the augmented variable-value graph, return
false if the size matching is smaller then the number of variables;

3. Find all strongly connected components in the augmented variable-value graph;

4. Remove values from variable domains which correspond to edges which; cut across
strongly connected components, and are not included in the matching.

3.3 Weakening all different

In this section we give an algorithm for weakening the alldiff constraint. Section 3.2 gave
an overview of how the alldiff constraint constraint is typically propagated in a constraint
solver. As before we begin by providing a motivating example for why an algorithm which
weakens the constraint is necessary before considering the algorithm itself.

∀0≤i≤7. xi ∈ {1, . . . , 9}

alldiff(xi)

maximize
3∑
i=0

x2i − x2i+1

Figure 3.7: An example problem involving an alldiff constraint.

Consider the problem shown in Figure 3.7 which imposes a single alldiff constraint across
eight integer variables taking values from 1 to 9. The cost function, f , we want to maximise
in this example takes the sum of variables with even index minus the variables with odd index.

Figure 3.8 shows two partial assignments (with costs −1 and 5) and the resulting merged
partial assignment. In this case rather than altering the constraint, we mask variables which
have values that will impact the domains of the unassigned variables in the new partial
assignment. In Figure 3.8c we can see that assigning x3 to 7 would result in the removal of 7

from the domains of the unassigned variables were the alldiff constraint to be propagated
to GAC. For the alldiff constraint we mask variables with a value which appears in the
domain of any variable, or has already been used to mask another variable. To achieve this we
mask variables using wildcard values, starting with a wildcard value one larger than the largest
value involved in the alldiff constraint. In this way we ensure that the new completion
problem returns a value at least as large as any completion of the input partial assignments.

74 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

x0 = 1

x1 = 5

x2 = 2

x3 = 3

x4 = 4

∀5≤i≤7. xi ∈ {6, 7, 8, 9}

(a) A partial solution α

x0 = 1

x1 = 3

x2 = 5

x3 = 7

x4 = 9

∀5≤i≤8. xi ∈ {2, 4, 6, 8}

(b) A partial solution β

x0 = 1

x1 = 3

x2 = 5

x3 = 7 masked with 10

x4 = 9 masked with 11

∀5≤i≤8. ai ∈ {2, 4, 6, 7, 8, 9}

(c) A partial solution γ

Figure 3.8: Two partial solutions and the partial solution resulting from merging them
together, with variables masked to weaken the alldiff constraint.

In this case the optimal completion of α (with x5 = 6, x6 = 9 and x7 = 7) has cost −5;
the optimal completion of β (with x5 = 2, x6 = 8 and x7 = 4) has cost 7; and the optimal
completion of γ (with x5 = 2, x6 = 9 and x7 = 4) has cost 8. This approach is superior to
removing the constraint, as we still require that all unassigned variables are different from
each other. If the constraint were to be removed from the completion problem of γ then its
optimal solution would have cost 10 (with x5 and x7 both assigned the value 2).

Our algorithm for masking variables to weaken the alldiff constraint is given in Algo-
rithm 3.1. In this case we assume that the constraint is represented by a data structure which
includes each variable which is required to take distinct values, a boolean flag to denote if each
variable is masked and an integer for each variable which records the value of that variable’s
masked value. For each assigned variable which is not already masked we check if its value
appears in the domain of any unassigned variable. If it is then we mask the variable with the
next available wildcard value (on line 10) and increment the wildcard value. Once variables
are masked using Algorithm 3.1 we expect that algorithms that propagate alldiff treat
masked variables as if their value is the wildcard value with which the variable is masked.

Proposition 3.1. Weakening the alldiff constraint by masking variables using Algo-
rithm 3.1 allows for the use of the alldiff constraint with DDBB.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes
allDiff constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 3.2 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support, after nodes u and v
are merged to create a new node m.

Consider a value k introduced the domain of a variable x ∈ X at node m from node u, and
let k be without support at m. Since all values at u and v had support before merging, and

3.4. WEAKENING THE ALLDIFFERENT EXCEPT 0 CONSTRAINT 75

Algorithm 3.1: An algorithm for masking variables when weakening the alldiff
constraint.

1 maskAllDifferent (Node m)
2 begin
3 D ← the set of variable domains recorded at m which are involved in the constraint
4 w ← 1 + largest value across all domains in D
5 foreach domain of variable x,Dx ∈ D do
6 foreach domain of variable x′, Dx′ ∈ D \Dx do
7 if x is assigned a value and x is not masked then
8 a← the value assigned to x
9 if a ∈ Dx′ then

10 mask x with the value w
11 w ← w + 1

all values inherited in m from v have support by construction, the value k must already be
assigned to some other variable at m. If this variable is masked with a value w which is not
yet included in the domain of any variable at m, k is given support. When the bipartite graph
B is constructed a new edge from the variable to w is introduced, allowing the propagation of
the relaxed subproblem at m.

3.4 Weakening the Alldifferent except 0 constraint

In this Section we discuss the “AllDifferent except zero” (which we will refer to as
alldiff_0) constraint and provide an algorithm to weaken it so that it can be used in our
constraint solver.

The alldiff_0 constraint is similar to alldiff, but now any number of variables under
the constraint are allowed to take the value 0 while all others are required to take distinct
values. It is unsurprising that our method for weakening the alldiff_0 constraint is similar
to the method for weakening alldiff, but for alldiff_0 all variables which need to
have their value masked are now masked with the value 0. Algorithm 3.2 shows our approach
to masking alldiff_0 with the main differences being only masking variables if their
assignment is nonzero (line 6), and masking variables with the single allowed wildcard value
(line 9).

Proposition 3.2. Weakening the alldiff_0 constraint by masking variables using Algo-
rithm 3.2 allows for the use of the alldiff constraint with DDBB.

76 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

Algorithm 3.2: An algorithm for masking variables when weakening the alldiff_0
constraint.

1 maskAllDifferentExcept0 (Node m)
2 begin
3 D ← the set of variable domains recorded at m which are involved in the constraint
4 foreach domain of variable x,Dx ∈ D do
5 foreach domain of variable x′, Dx′ ∈ D \Dx do
6 if x is assigned a value and x is neither masked nor assigned the value 0 then
7 a← the value assigned to x
8 if a ∈ Dx′ then
9 mask x with the value 0

Proof. The proof of Proposition 3.2 is similar to the proof of Proposition 3.1, but rather than
causing a new edge to be added to the bipartite variable-value graph when we mask variables
with a unique wildcard value, masking variables using the value 0 allows them to be ignored
by the propagator.

3.4.1 Weakening all different with a single wildcard mask

We could use this approach of using a single wildcard to weaken the alldiff constraint.
We could weaken the standard alldiff constraint by masking variables which have value
assignments which appear in the domains of some unassigned variables with a single wildcard
value, and allow the variables to take all different values except the wildcard value. This single
wildcard value would have to be chosen so that it is not among the initial values in the domain
of any variable involved in the alldiff constraint. Masking variables with this one wildcard
value instead of one value per masked variable does not make our masking algorithm any
more efficient, but it would allow for more efficient propagation of the weakened constraint.
This is because the single wildcard approach allows us to disregard masked variables, rather
than simply adding enough edges to the initial variable-value bipartite graph to support all of
the unassigned values in the weakened constraint.

3.5 Weakening the at most n values constraint

In this section we provide an algorithm for weakening the “at most n values” constraint (which
we will call AtMost).

The AtMost(X,n) constraint requires that an array of variables X take at most n distinct

3.5. WEAKENING THE AT MOST N VALUES CONSTRAINT 77

values. We will again demonstrate that there is a need for our algorithm for weakening the
constraint by an example. Consider the problem modelled in Figure 3.9 which imposes that a
set of 10 integer variables taking values ranging from 1 to 7 should contain at most 3 distinct
values. In Figure 3.10 we have two partial solutions which are merged to obtain a partial
solution γ. In the case of AtMost we need to consider the assignments which have been
made in each of the partial solutions α and β contained at nodes u and v.

∀0≤i≤9. xi ∈ {1, . . . , 7}

AtMost(X, 3)

maximize
9∑
i=0

xi

Figure 3.9: An example problem involving an AtMost constraint.

Let cαX(v) be the number of values in the set of variables X which are assigned the value v in
the partial solution α. Let dαX be the number of distinct values assigned to variables in X in
the partial solution α, and let sα,βX denote the number of values which appear in both α and β.
Using Iversen bracket notation1 we can write this as:

cαX(v) =
n−1∑
i=0

[xi = v] (3.1)

dαX =
∑
v

[cαX(v) 6= 0] (3.2)

sα,βX =
∑
v

[cαX(v) 6= 0 ∧ cβX(v) 6= 0] (3.3)

In order to ensure that the completion problem of γ admits a suitably large solution (that is, a
solution at least as large as α and β), we change the number of distinct values allowed by the
constraint,n, to be the value

o = dαX + dβX − s
α,β
X + max(n− dαX , n− d

β
X) (3.4)

The first three terms of this expression ensure that all of the values which appear in assignments
across both partial solutions have support in the domains of the unassigned variables in γ.
The final term ensures that as many further values can be added to X as might have been
in either α or β. In the case presented in Figure 3.10 we weaken AtMost by changing the
number of distinct values allowed by the constraint from 3 to 5 by assigning n the value 5.

1[P] = 1 if P is true, [P] = 0 if P is false

78 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

x0 = 1

x1 = 2

x2 = 1

x3 = 1

x4 = 2

∀5≤i≤7. xi ∈ {1, . . . , 7}
AtMost(X, 3)

(a) A partial solution α

x0 = 5

x1 = 5

x2 = 6

x3 = 5

x4 = 6

∀5≤i≤8. xi ∈ {1, . . . , 7}
AtMost(X, 3)

(b) A partial solution β

x0 = 5

x1 = 5

x2 = 6

x3 = 5

x4 = 6

∀5≤i≤9. xi ∈ {1, . . . , 7}
AtMost(X, 5)

(c) A completion problem γ

Figure 3.10: Two partial solutions to the problem modelled in Figure 3.9 and the partial
solution resulting from their merger, with n masked to weaken the AtMost constraint shown
in Figure 3.9.

This accounts for there being 4 distinct value assignments across both partial solutions and
each partial solution having support for 1 further value. This process is given in Algorithm 3.3

Algorithm 3.3: An algorithm to weaken the AtMost constraint by increasing the number
of distinct values allowed by the constraint.

1 maskAtMost (Node u, Node v, Node m)
2 begin
3 p← calculate o using Equation (3.4) over the partial solutions at u, v and m
4 n← the number of distinct values allowed by the AtMost constraint at m
5 if p > n then
6 set the maximum number of distinct values allowed at m to p

Proposition 3.3. Weakening the atMost constraint by masking variables using Algo-
rithm 3.3 allows for the use of the atMost constraint in problems solved using Algorithm 2.4.

Proof. Consider a constraint optimisation problem P = (X ,D, C, f), where C includes
atMost constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 3.3 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support, after nodes u and v
are merged to create a new node m.

Consider that after merging there are some unassigned variablesX ′ ⊂ X at nodem. To ensure
that the completion problem recorded at m is at least as large as the completion problem at
either u and v, we have to ensure that all variable assignments to X ′ at u and v are allowed at
m. Assume that some completion of u is not allowed at m after merging. Let k be the number
of unique values assigned to variables across u and v, and let l be the largest number of values

3.6. WEAKENING THE AT LEAST N VALUES CONSTRAINT 79

yet to be used in either u and v. Setting the maximum number of unique values allowed at m
to k + l allows any completion of u to be included as completions at m.

3.6 Weakening the at least n values constraint

In this section we present an approach to weaken the at least n values constraint (which we
will refer to as the AtLeast constraint) after merging nodes during search.

The AtLeast(X,n) constraint requires that each variable in an array of variables X takes
values at least as large as an integer n. The process of weakening the AtLeast constraint
is similar to weakening AtMost, in so far as we concentrate on assigned variables rather
than the domains of unassigned variables. In this case though our approach is to weaken the
constraint by removing it entirely from the problem. The problem shown in Figure 3.11 is
similar to that shown in Figure 3.9, with the difference being that we now require a smaller
set of variables X to take at least 3 distinct values in any solution. Figure 3.12 shows a partial
solution α being merged with a partial solution β. The set of possible completions of α
includes the assignment x4 = 5 and x5 = 5, but no completion of γ could include both these
assignments (before we weaken the constraint). Our approach is then to weaken the constraint
by setting n to the number of distinct values in γ. This allows all the unassigned variables to
take any value in their domain.

∀0≤i≤5. xi ∈ {1, . . . , 7}

AtLeast(X, 3)

maximize
5∑
i=0

xi

Figure 3.11: An example problem including an AtLeast constraint.

Algorithm 3.4: An algorithm to weaken the atLeast constraint
1 maskAtLeast (Node m)
2 begin
3 p← the number of distinct values assigned to variables involved in AtLeast at m
4 n← the number of distinct values required by the AtLeast constraint at m
5 if p < n then
6 set the minimum number of distinct values allowed at m to p

80 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

x0 = 1

x1 = 2

x2 = 3

x3 = 4

x4,5 ∈ {1, . . . , 7}

(a) A partial solution α

x0 = 6

x1 = 6

x2 = 5

x3 = 6

x4,5 ∈ {1, . . . , 7}

(b) A partial solution β

x0 = 6

x1 = 6

x2 = 5

x3 = 6

x4,5 ∈ 1, . . . , 7

AtLeast(X, 2)

(c) A completion problem γ

Figure 3.12: Two partial solutions to the problem modelled in Figure 3.11 and the partial
solution resulting from their merger, with n set to 2 to weaken the AtLeast constraint shown
in Figure 3.9.

Proposition 3.4. Weakening the atLeast constraint by masking variables using Algo-
rithm 3.4 allows for the use of the atLeast constraint in problems solved using Algo-
rithm 2.4.

Proof. Consider a constraint optimisation problem P = (X ,D, C, f), where C includes
atLeast constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 3.4 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support, after nodes u and v
are merged to create a new node m.

Consider that after merging there are some unassigned variablesX ′ ⊂ X at nodem. To ensure
that the completion problem recorded at m is at least as large as the completion problem at
either u and v, we have to ensure that all variable assignments to X ′ at u and v are allowed
at m. Assume that some completion of u is not allowed at m after merging. Setting the
maximum number of unique values allowed at m to the current number of unique values
assigned to variables at m allows any completion of u to be included as completions at m.

3.7 (Not) weakening the allEqual constraint

In this section we describe the allEqual constraint and show that it does not require a
weakening algorithm if partial solutions are merged using Algorithm 2.3. In the case of the all
equal constraint, we do not need to do any work when merging nodes to weaken the constraint.
Here we outline why this is the case.

3.8. EXPERIMENTAL RESULTS 81

The allEqual constraint requires that a set of variables X all take the same value. It can be
propagated removing all values in the symmetric difference of the domains of each variable
in X from each variable’s domain.

Proposition 3.5. The allEqual constraint may be used to model problems which are
solved using with Algorithm 2.4 without the need for the constraint to be weakened after the
creation of relaxed nodes using Algorithm 2.3.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes
allEqual constraints, and assume that f satisfies the limitations set out in Section 2.4.4.
Again, the proof of Proposition 3.5 is similar to the proof of Proposition 2.2, until we have to
show that all values introduced to m from u and v are ensured support, after nodes u and v
are merged to create a new node m.

When u and v are merged together to create m, all values introduced from v have support at
m by construction. Consider a value k in the domain of x introduced at node m from node
u. If the allEqual constraint is propagated as described above then another value l in the
domain of y is introduced at node m from node u which supports k at m. This value l is in
turn also supported by the inclusion of k.

3.8 Experimental results

In this section we present empirical results from a solver which implements the search scheme
given in Algorithm 2.4 and the weakening algorithm for the AllDiff constraint. We test our
solver using the problem of finding optimal Golomb rulers as well as an allocation problem.

3.8.1 Optimal Golomb rulers

Recall that a Golomb ruler is an ordered sequence of integers ai which represent marks on an
imaginary ruler. The distance between any pair of marks on the ruler must be distinct from
the distance between any other pair. The number of marks n on the ruler is its order and
the length of the ruler is the largest distance between any pair of marks. A Golomb ruler is
optimal if no Golomb ruler of smaller length with the same order exists.

Golomb rulers are named after the mathematician Solomon Golomb. They are not only
interesting mathematical objects, but have various real world applications. They can be used
in radio communications to place channels throughout a radio spectrum to reduce distortion
between channels (Babcock, 1953); in x-ray crystallography to resolve instances when two

82 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

different lattices produce the same diffraction pattern (Bloom and Golomb, 1977); in fibre
optic communications (Gagliardi, Robbins, and Taylor, 1987); and in radio astronomy to
position arrays of sensors (Biraud, Blum, and Ribes, 1974).

The search for optimal Golomb rulers of particular order remains an active area of research.
Dollas, Rankin, and McCracken (1998) find optimal rulers up to order 19 using an exact
search algorithm. While optimal Golomb rulers are known to order 27, the later orders are
found by a massively distributed search organised by distributed.net, which is a project which
allows the public to donate their computer’s idle time towards large searches (Hayes, 1998).
Currently, as of October 2019, distributed.net are searching for an optimal Golomb ruler of
order 28. Galinier (2001) consider the use of constraint programming to search for optimal
Golomb rulers. Kocuk and van Hoeve (2019) compare linear integer programming, constraint
programming and quadratic integer programming approaches for the Golomb ruler problem
and find that while quadratic integer programming performs best for proving optimality at
low orders, constraint programming is favourable when the order of the ruler grows. This is
due to the ability to more easily parallelise the constraint programming approach.

A model for finding optimal Golomb rulers is given as a Minizinc code listing in Appendix A.
This model relies only on the lin-le and lin-eq linear summation constraints as well as
an alldiff constraint to ensure that no distance is measured more than once.

In Tables 3.1 and 3.2 we evaluate the effect of changing the maximum permitted width of
restricted and relaxed search trees for the problem of finding optimal Golomb rules. As
expected (and explained in Section 2.11.2 using either a width width is too small or too large
results in a much larger search space being explored than is necessary. However, for this
problem however we do not see an instance by instance difference in the best width, with
each instance visiting the fewest number of nodes with the same maximum permitted widths.
We also see that as the width increases there is not a monotonic increase in the number of
nodes used, while for some widths the number of search nodes used is the same. This first
point is likely due to different amounts of branching occurring for differing widths, and the
second being due to some choices of maximum permitted width will resulting in the same
layers in search being bounded. The large variability in execution time for smaller widths is
due to noise. For

We also compare our approach to using DDBB as the search scheme in a constraint optimi-
sation solver against a forward checking approach, the results of which are shown in Table
3.3, where the execution times are reported with a timeout of ten minutes. For the problem of
finding optimal Golomb rulers we find that our approach is beaten by forward checking. This
is true for all of the choices of variable and value ordering heuristics considered. By reviewing
the order in which optimal solutions are found by search it is clear that the DDBB approach

3.8. EXPERIMENTAL RESULTS 83

Width Order 3 Order 4 Order 5 Order 6 Order 7

Nodes Runtime Nodes Runtime Nodes Runtime Nodes Runtime Nodes Runtime
0.1 20 0.002985 286 0.046508 3276 0.924470 42964 29.775549 344777 418.706665
0.5 21 0.002095 154 0.022211 686 0.260199 2426 3.710149 10762 36.540497
1 22 0.002071 160 0.021127 696 0.302193 2445 3.629534 10590 36.740383
2 21 0.000763 229 0.026542 716 0.298703 2345 3.684064 7923 31.884909
3 21 0.000686 232 0.025871 1665 0.461398 8052 8.763066 9534 32.315067
4 21 0.000681 235 0.025604 1676 0.549792 8075 8.492616 28886 81.824463
5 21 0.000747 238 0.026288 1672 0.540431 8098 8.616967 28934 82.305412
6 21 0.000677 241 0.030577 1680 0.549969 8857 8.550164 28982 83.530128
7 21 0.000691 244 0.029855 1688 0.558217 8876 8.823674 36378 88.529007
8 21 0.000732 247 0.024942 1696 0.557772 8895 8.916242 36420 88.299889
9 21 0.000739 250 0.027646 1704 0.564427 8914 8.704473 36461 86.931641
10 21 0.000767 253 0.024884 1712 0.530516 8933 9.269555 36501 86.552330
15 21 0.001072 227 0.022841 1752 0.569316 9028 8.988946 36491 89.047020
20 21 0.000683 227 0.020382 1792 0.545889 9123 9.373609 36661 87.417046
25 21 0.000759 227 0.016766 1832 0.551636 9218 8.943694 36831 87.425377
30 21 0.001074 227 0.020117 3120 0.826003 9300 9.714022 37001 92.780319
35 21 0.001044 227 0.026461 3140 0.732748 9395 9.292076 37171 92.798294
40 21 0.000667 227 0.024857 3160 0.790835 9490 9.933311 37341 93.651543
45 21 0.001163 227 0.025243 3180 0.964897 9585 9.648463 37511 89.069046
50 21 0.001062 227 0.016395 3200 0.763184 28953 18.966980 37681 79.698898
100 21 0.000731 227 0.016405 3400 0.816030 29453 19.083916 178798 251.891632

Table 3.1: Comparison of execution times of our solver when finding optimal Golomb rulers
for differing widths of restricted search.

Width Order 3 Order 4 Order 5 Order 6 Order 7

Nodes Runtime Nodes Runtime Nodes Runtime Nodes Runtime Nodes Runtime
0.1 22 0.001940 160 0.018493 696 0.246356 2445 2.947325 10590 28.250847
0.5 22 0.002330 160 0.026524 901 0.339994 3099 3.895968 13482 45.018528
1 22 0.002019 201 0.027217 1238 0.384766 4837 6.068108 17919 64.961304
2 22 0.001942 224 0.023845 1676 0.446129 7037 8.269117 24861 86.597992
3 22 0.001859 235 0.032501 1942 0.531748 8519 9.672113 29470 105.233551
4 22 0.002066 236 0.019952 2071 0.532100 9623 9.824576 33002 109.017548
5 22 0.002171 236 0.028671 2169 0.549625 10591 10.186145 36074 116.133514
6 22 0.002302 236 0.027799 2232 0.593757 11396 11.264503 39438 122.611206
7 22 0.002244 236 0.028740 2300 0.600656 12097 11.101996 42394 131.901337
8 22 0.002346 236 0.020678 2365 0.607488 12825 11.941392 44976 136.044769
9 22 0.001754 236 0.024749 2425 0.653021 13491 12.202990 47416 139.618851
10 22 0.002385 236 0.032573 2479 0.648015 14199 12.580430 50176 140.983368
15 22 0.002314 236 0.026828 2697 0.611372 17214 14.343936 63403 160.305588
20 22 0.002038 236 0.031104 2870 0.685898 19750 14.855579 75516 178.294510
25 22 0.002184 236 0.028591 2983 0.658672 21852 16.781200 86418 192.665878
30 22 0.002039 236 0.020304 3055 0.540537 23709 13.336346 96321 185.245026
35 22 0.001620 236 0.020089 3085 0.547713 25199 14.234142 105557 199.135483
40 22 0.002112 236 0.020197 3085 0.555695 26455 14.414518 114282 209.404922
45 22 0.001947 236 0.020478 3085 0.540736 27417 14.968359 122489 219.352493
50 22 0.001750 236 0.020523 3085 0.546124 28213 15.140100 130126 228.230103
100 22 0.001983 236 0.020429 3085 0.524751 32690 16.063148 182399 288.428619

Table 3.2: Comparison of execution times of our solver when finding optimal Golomb rulers
for differing widths of relaxed search.

84 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

Order
3 4 5 6 7 8

Runtime DDBB 0.002093 0.021789 0.259210 2.982404 29.984241 280.420898
Input order/min value Space DDBB 22 160 696 2445 10590 48610

Runtime FC 0.000306 0.002789 0.029246 0.375646 5.807307 89.925438
Space FC 9 5 18 94 857 5568
Runtime DDBB 0.001326 0.016747 0.192924 2.165610 40.541050 –

Input order/max value Space DDBB 19 69 224 1118 9380 67536
Runtime FC 0.000421 0.003900 0.043045 0.649819 10.288877 212.142807
Space FC 11 19 50 292 1931 17836
Runtime DDBB 0.001838 0.018601 0.244221 2.955035 28.915529 276.317169

First fail/min value Space DDBB 22 69 698 2432 10282 46742
Runtime FC 0.000341 0.002801 0.029858 0.362931 5.870193 89.835159
Space FC 9 5 18 94 857 5568
Runtime DDBB 0.001311 0.020695 0.202024 2.259621 40.443085 –

First fail/max value Space DDBB 19 69 224 1116 9140 66918
Runtime FC 0.000402 0.003773 0.042179 0.701993 11.129051 224.506592
Space FC 11 19 50 312 2022 19114

Table 3.3: Comparison of execution times and size of the search space for our DDBB
approach compared with forward checking when solving instances of the optimal Golomb
rulers problem. All runtimes are in seconds.

explores the search tree in a suboptimal manner when compared with forward checking. This
allows forward checking find good solutions more quickly and in turn more effectively prune
the search space based on the size of the incumbent best solution found by search. In Chapter
5 we will return to the problem of finding optimal Golomb rulers to explore the effect of
varying additional solver parameters.

3.8.2 Cell block assignment

The goal of the cell block assignment problem is ensure that a number of prisoners are interned
in a grid of cells such that female and male prisoners are interned only in their allocated half
of the grid and that no cells adjacent to “dangerous” prisoners occupied. Interring someone in
a cell has an associated cost and the overall cost of interring all prisoners is to be minimised.
This problem appears in the Basic Modelling for Discrete Optimisation course run by The
University of Melbourne on the Coursera platform (Stuckey, 2016). The cell block assignment
problem makes use of lin_le, lin_ge and allDiff constraints and a model for the
problem is included in Appendex A.

When varying the width of restricted and relaxed width truncated search trees, we expect that
widths that are too small or too large will lead to poor performance when compared to widths
inbetween. Figure 3.13 and Figure 3.14 confirm that for the cell block assignment problem
we see this expected behaviour.

We again test our approach of using DDBB as the search scheme in a constraint optimisation
solver against the use of forward checking. Figure 3.15, Figure 3.16, Figure 3.17 and

3.8. EXPERIMENTAL RESULTS 85

Runtime (s)

10-3 10-2 10-1 100 101 102 103

0

500

200

300

100

400

Width

0

20

40

60

80
N

u
m

b
e

r
o

f
in

st
a

n
ce

s
so

lv
e

d

Figure 3.13: Cumulative number of cell block assignment instances solved in a given time as
the width of restricted search is varied.

86 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

Runtime (s)

10-3 10-2 10-1 100 101 102 103

0

500

200

300

100

400

Width

0

20

40

60

80

N
u

m
b
e

r
o

f
in

st
a

n
ce

s
so

lv
e

d

Figure 3.14: Cumulative number of cell block assignment instances solved in a given time as
the width of relaxed search is varied.

3.8. EXPERIMENTAL RESULTS 87

Figure 3.18 compare the execution times, size of the search space and number of nodes visited
per second for various combination of variable and value ordering heuristics. Although in
many instances, across all combinations of heuristic choices, we see a number of instances
for which DDBB outperforms forward checking, the effect is not as pronounced as it was for
the car factory scheduling problem as shown in Chapter 2. On some instances we do see that
DDBB explores a smaller search space than forward checking, however for many instances
this is not the case. The charts showing the relative speed of each approach give an insight
into why exploring a larger search space does not hamper DDBB search as it often visits more
nodes per second than forward checking for the cell block allocation problem. We also check
if using relaxed search makes a positive impact on execution times or not. In Figure 3.19
once again find that there is a mixed outlook, with some instances benefiting from the use of
relaxed search trees while many more do not.

Runtime (s) with forward checking

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
2

10
3

10
4

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 3.15: DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in input order and the minimum value is chosen first from variable
domains when branching.

Why DDBB performs well, and why

To investigate why DDBB has faster execution times than forward checking for some instances
of the cell block allocation problem, we again focus on how the cost of the incumbent best
solution changes over time. Figure 3.20 shows the cost of the best known solution yet found
during search against time, for both DDBB and forward checking for a single instance of

88 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

Runtime (s) with forward checking

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
2

10
3

10
4

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 3.16: DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in input order and the maximum value is chosen first from variable
domains when branching.

Runtime (s) with forward checking

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
2

10
3

10
4

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 3.17: DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in order of smallest domain size and the minimum value is chosen
first from variable domains when branching.

3.8. EXPERIMENTAL RESULTS 89

Runtime (s) with forward checking

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 D
D

B
B

 s
e

a
rc

h

Nodes used with forward checking

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

N
o

d
e

s
u
se

d
 w

it
h

 d
d

 s
e

a
rc

h

Nodes/s achieved with forward checking

10
2

10
3

10
4

10
2

10
3

10
4

N
o

d
e

s/
s

a
ch

ie
v

e
d
 w

it
h
 d

d
 s

e
a

rc
h

Figure 3.18: DDBB search versus forward checking on the cell block allocation problem,
where variables are chosen in order of smallest domain size and the maximum value is chosen
first from variable domains when branching.

Runtime (s) with relaxed search

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

o
u

t
re

la
xe

d
 s

e
a

rc
h

Figure 3.19: Using relaxed width truncated search trees versus not on the cell block allocation
problem, where variables are chosen in order of smallest domain size and the minimum value
is chosen first from variable domains when branching.

90 CHAPTER 3. WEAKENED ALL DIFFERENT CONSTRAINTS

CBA where DDBB completes its execution before forward checking. We can again notice
that DDBB and forward checking do not find the same solutions, and the improvements
DDBB makes are better than those made by forward checking. Again this is due to forward
checking finding a good solution, then backtracking to find improving solutions that are more
closely related to this initial good solution. DDBB instead continues search in a new area of
the search space. We again note that finding such candidate solutions involves some luck,
that DDBB can “skip” intermediate incumbent solutions found by forward checking is not
inherently guaranteed by the approach. For the problem studied in Figure 3.20 we do not see
any advantage in when proving that the solution is optimal, therefore we can determine that
relaxed decision diagrams do not always help then pruning the search space while proving
that a solution is optimal.

Time (s)

0 5 10 15 20 25

dds
fc

Color

25

30

35

40

C
o

st
 o

f
b

e
st

 s
o

lu
ti

o
n

 f
o

u
n
d

Figure 3.20: Comparing the cost of the best solution found by search against time for both
DDBB and FC for an instance of the cell block allocation problem.

91

Chapter 4

Weakening symmetry reduction
constraints

4.1 Introduction

In this chapter we focus on providing relaxations to a number of symmetry reduction con-
straints. Lexicographic and ordering constraints are commonly used as symmetry breaking
constraints (Gent, Petrie and Puget, 2006). In problems where multiple solutions are sym-
metrically equivalent (that is they are equivalent up to renaming variables or values), these
constraints help to reduce the size of the search space and often lead to vastly improved
execution times. One particular area in which symmetry reduction is particularly useful is in
graph search problems. Some of the symmetry breaking constraints that we introduce in this
chapter we will use in Chapter 6 when solving extremal graph problems.

There are many lexicographic and ordering constraints but we choose to focus on lexle and
valueProceedsChain.

4.2 Background

When we search to find a solution to a problem, it can be the case that due to symmetries
inherent in the problem that multiple solutions are equivalent to one another. If multiple
subspaces of the search space lead to equivalent solutions then not taking symmetries into
account leads to needless repetition of work during search, which ultimately slows down the
execution times of constraint solvers.

In the Handbook of Constraint Programming (Gent, Petrie, and Puget, 2006) (which provides

92 CHAPTER 4. WEAKENING SYMMETRY REDUCTION CONSTRAINTS

a survey of the field) it is claimed that the problem of reducing symmetries in Constraint
Programming is solved in theory, meaning that the methods by which symmetries can be
reduced are now well known. Solutions to reducing symmetries in combinatorial problems
involve either:

Remodelling problems to eliminate symmetries.

Adding symmetry breaking constraints to models of problems to eliminate symmetries.

Symmetry breaking during search by building up information about the symmetry group
of a problem instance while a solver searches for a solution to the problem.

However research continues because of the difficulty in applying these solutions in practical
algorithms. The reduction of execution times of solvers through the use of symmetry reduction
is also a lure for researchers. There are two main branches of symmetry reduction techniques:
symmetry breaking during search (SBDS) and symmetry breaking before search (SBBS).
SBDS makes use of results from group theory to build up the symmetry group of a problem
while search runs, and excludes subspaces of search which lead to equivalent solutions by
exploiting knowledge of the symmetry group. SBBS takes the alternative approach of applying
constraints to the model of a problem and then solving the problem using standard approaches
to search.

SBBS is by far the most common technique in practice. Constraints which are added to a
model with the intention to break some symmetry in the problem are known as symmetry
breaking constraints. As an example consider the problem of finding optimal Golomb rulers.
In this problem permutation symmetries can also be broken, requiring that each mark in the
ruler is placed at a smaller value than the succeeding marks.

While this type of ad-hoc approach to symmetry reduction using symmetry breaking con-
straints is common, there do exist some general techniques for reducing symmetry when
modelling problems using constraint programming. Following standard techniques mitigates
the chance of over constraining a model when adding symmetry breaking constraints. In the
context of enumeration problems this would lead to lost solutions which are not equivalent
to any solutions found during search. In the context of optimisation problems incorrectly
throwing out areas of the search space might lead to the optimal solution not being found. For
optimisation problems this type of bug would only be apparent from checking against the
output of another solver, very rarely be apparent, making detection of this type of bug quite
difficult.

4.2. BACKGROUND 93

4.2.1 Lex-leader

One particular standard technique for adding symmetry breaking constraints to a model is the
lex-leader method. To apply the lex-leader method the equivalence classes of solutions under
the symmetries of the problem are identified and then a single representative from each class is
defined as the canonical solution. The symmetries of the problem are then broken by applying
extra constraints to the model such that only canonical solutions satisfy these constraints. In
practice it can be useful to apply constraints that break most but not all of the symmetries of a
problem, and then determine which canonical solutions are actually equivalent after search.

The development of this technique grew from work by Puget (1993) who proved that if a
CSP has symmetry then it is possible to add constraints to a model to reduce the symmetries.
Puget showed that reduced models could be solved more quickly than the models they were
based on. Crawford et al. (1996) built on Puget’s work with a technique for generating
symmetry constraints for breaking variable symmetries. They also coined the term “lex-
leader”. These early works broke symmetries in SAT problems, but the results apply to
constraint programming and other solution technologies.

Gent, Harvey, and Kelsey (2002) note that caution must be taken when using the lex-leader
method together with search heuristics, noting that using the wrong heuristic can lead to an
increase in the execution times of solvers when symmetry breaking constraints are imposed.

A particular example of the lex-leader constraint is in problems which admit models which are
defined on matrices of variables (Flener et al., 2002). The rows and columns of the matrix of
variables can be lexicographically ordered. Examples of these kinds of lexicographic ordering
constraints of variables include extremal graph search. Codish et al. (2019) introduce special
lexicographic ordering constraints for problems where the matrix of variables represents the
adjacency matrix of a graph.

4.2.2 Examples of symmetry breaking

The Handbook of Constraint Programming lists several successful applications of symmetry
breaking to solving combinatorial problems. Here we pick a few examples.

The maximum density still life problem is based on Conway’s Game of Life (Gardner, 1970).
A still life is a stable pattern which is not impacted by the iteration of the game. The problem
is then to find the most dense possible stable pattern, the pattern with the most live cells, which
fits in an n× n game board. Two stable patterns might be equivalent up to rotating the game
board, or flipping it about the horizontal, vertical or diagonal axis, or any combination of
rotations and flips producing a total of 8 symmetries. The maximum density still life problem

94 CHAPTER 4. WEAKENING SYMMETRY REDUCTION CONSTRAINTS

has seen applications of remodelling and symmetry breaking constraints (B. M. Smith, 2002,
Bosch and Trick, 2004).

The social golfers problem is to find a schedule of games which allows for a number of golfers
to play in groups of a given size over a number of weeks such that no golfer plays in the same
group twice. The symmetries of this problem are much more complicated than in Conway’s
Game of Life with vastly more symmetries, as we can permute the golfers, the groups and the
order the games are played in to move between solutions. One state of the art algorithm for
the social golfers problem makes use of symmetry breaking constraints (Harvey and Winterer,
2005).

The peaceable coexisting armies of queens problem problem is to place two armies of queens
on a chessboard, such that no queen attacks another queen in the opposing army. The goal is
to find the maximum size of the armies for an n× n board. The symmetries in this problem
are similar to those in Conway’s game of life, as we can rotate the board or flip it about an
axis to move between solutions. Smith, Petrie and Gent (2004) use symmetry breaking during
search to help solve this problem.

4.3 Weakening lexicographic ordering constraints

In this section we provide algorithms for weakening lexicographic ordering constraints. In
Section 4.2 we explained how constraints of this type are often used to enforce that only a
canonical member of a class of symmetrically equivalent solutions is found during search.

4.3.1 Weakening lex less than or equal to

In this section we provide an algorithm which weakens the lexicographically less than or
equal to constraint (which we call lexle).

The constraint
lexle(A,B)

enforces that the arrayA be less than or equal to arrayB lexicographically when considered as
strings of integers. Frisch, Hnich, et al. (2002) give an algorithm which propagates lexle to
maintain generalised arc-consistency. This constraint occurs in models over binary variables
more often than integer variables. Our algorithm for weaking the constraint works in both of
these cases, but for ease of understanding our example problem for this constraint will involve
binary variables.

4.3. WEAKENING LEXICOGRAPHIC ORDERING CONSTRAINTS 95

First consider a motivating example shown in Figure 4.1, which models a problem using two
arrays of boolean variables A and B with A required to be lexicographically less than or equal
to B.

A = (a0, a1, ..., a7)

∀0≤i≤7. ai ∈ {0, 1}

B = (b0, b1, ..., b7)

∀0≤i≤7. bi ∈ {0, 1}

lexle(A,B)

maximise
7∑
i=0

(ai − bi)

Figure 4.1: An example problem involving a lexle constraint.

Figure 4.2 illustrates the need for a weakened version of lexle, giving two partial solutions
to the problem modelled in Figure 4.1 and the completion problem resulting from them being
merged. Notice that we have not assumed that the variables will be assigned values in any
logical order (the most sensible being from left to right). This causes the value of b1 to
be unassigned in the partial solution α while it is assigned in the partial solution β due to
propagation. In the completion problem the variable b1 again has domain {0, 1} but in order
for the lexle constraint to be satisfied it can only take the value 1. To overcome this we
weaken the constraint by masking the variable a1 with the smallest value in the domain of b1.
However, we are not finished. In this case, if we were to assign b1 the value 0, while a1 is
masked with the value 0, there would be no support for the assignment a3 = 1. We resolve
this issue by masking b1 with the largest value in the domain of a1. We would continue to
mask variables in this way, until bi > ai for some pair of assigned ai and bi.

Algorithm 4.1 shows our strategy for masking variables in merged nodes to weaken lexleq.
The algorithm steps through the arrays from left to right and compares each ai and bi pair. If
both are assigned and the value given to ai is less than that given to bi then we know that the
constraint is satisfied and propagation will have no effect on any unassigned variables to the
right of index i, so the algorithm can terminate (line 10). If both variables are assigned and
the value give to ai is greater than the value given to bi then the constraint is not satisfied and
we mask ai with the value given to bi (line 12). In the case where ai is assigned and bi is not,
if the value given to ai is greater than the smallest value in the domain of bi, s, we mask ai
with s (lines 13− 17). In the case where ai is not assigned but bi is, if the value given to bi is
smaller then the largest value in the domain of ai, t, we mask bi with t (lines 18− 22).

96 CHAPTER 4. WEAKENING SYMMETRY REDUCTION CONSTRAINTS

A : 0 0 0 a3 0 0 0 0
B : 0 b1 0 0 0 0 0 0

a3 ∈ {0, 1} b1 ∈ {0, 1}
(a) A partial solution α

A : 1 1 0 0 1 0 1 0
B : 1 1 0 0 1 1 0 1

a3 ∈ {0, 1}
(b) A partial solution β

A : 1 1 0 a3 1 0 1 0
B : 1 b1 0 0 1 1 0 1

a3 ∈ {0, 1} b1 ∈ {0, 1}
a1 is masked with the value 0
b1 is masked with the value 1

(c) A relaxed completion problem for partial solution γ

Figure 4.2: Two partial solutions of the problem modelled in Figure 4.1 and the completion
problem resulting from merging them together. Masked variables in the completion problem
are underlined.

Algorithm 4.1: An algorithm for weakening the lexle by masking variables.
1 maskLexLe (Node m)
2 begin
3 (a0, . . . , an−1)← the array of variables A at node m
4 (b0, . . . , bn−1)← the array of variables B at node m
5 for i← 0 to n do
6 if ai and bi are assigned and not masked then
7 x← the value assigned to ai
8 y ← the value assigned to bi
9 if x < y then

10 return
11 if x > y then
12 mask ai at node m with the value y

13 else if aiis assigned and not masked then
14 x← the value assigned to ai
15 y ← the lower bound of bi
16 if x > y then
17 mask ai at node m with the value y

18 else if biis assigned and not masked then
19 x← the upper bound of ai
20 y ← the value assigned to bi
21 if x < y then
22 mask bi at node m with the value x

4.4. A RELAXED VALUE PROCEEDS CHAIN CONSTRAINT 97

Weakening the lexle constraint using Algorithm 4.1 allows for the valid simultaneous use
of the lexle constraint propagator as described and DDBB search in a constraint solver.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes lexle
constraints, and assume that f satisfies the limitations set out in Section 2.4.4. Again, the
proof of Proposition 4.1 is similar to the proof of Proposition 2.2, until we have to show that
all values introduced to m from u and v are ensured support, after nodes u and v are merged
to create a new node m.

Consider a value k in the domain of a variable ai which is introduced to node m from node u,
and let k be without support at m. If k doesn’t have support then it is greater than the upper
bound of the corresponding bi at node m. Masking bi with the upper bound of ai provides
support for k. Similarly, consider a value l in the domain of a variable bi which is introduced
to node m from node u, and let l be without support at m. If l doesn’t have support then it
is less than the upper bound of the corresponding ai at node m. Masking ai with the lower
bound of bi provides support for l.

Weakening lex greater than or equal to

To weaken the lex greater than or equal to constraint, we only have to construct the lex less
than or equal to constraint by swapping the order of the arrays A and B.

4.4 A relaxed value proceeds chain constraint

In this section we provide an algorithm for weakening the value proceeds chain (VPC)
constraint. This constraint enforces that an array of integer variables X satisfies xi ≤
max(x0, . . . , xi−1) + 1. That is, the value assigned to a variable is not greater than one more
than the maximum value assigned to any variable to the left of its position in the array.

Again we lead with an example. Consider the problem modelled in Figure 4.3 which includes
a single VPC constraint over an array of 7 integer variables which take values from 0 to
6. Figure 4.4 gives as example of two partial solutions α (cost −3) and β (cost −2) being
merged with respect to the cost function to give a partial solution γ. The completion problem
of γ requires that the x1 is assigned either the value 1 or 2, and both these assignments are
supported. However the next unassigned variable in the array which is unassigned does not
have support for all of the values in its domain. Without masking variables in the partial

98 CHAPTER 4. WEAKENING SYMMETRY REDUCTION CONSTRAINTS

X = (x0, x1, ..., x6)

∀0≤i≤6. xi ∈ {0, 6}

VPC(X)

maximise
6∑
i=4

xi −
3∑
i=0

xi

Figure 4.3: An example problem

solution γ, x5 cannot take the value 5 (and as a consequence x6 will never be assigned 6). Our
method for dealing with these cases is to mask xi−1 with the value which is one less than the
largest value in xi (this is done on lines 12-15 of Algorithm 4.2. In the case of Figure 4.4c this
means masking x4 with the value 4 so that all the values in the domain of x5 have support.

1 x1 2 3 4 x5 x6
x1 ∈ {1, 2}

x5 ∈ {1, 2, 3, 4, 5}
x6 ∈ {1, 2, 3, 4, 5, 6}
(a) A partial solution α

1 1 2 1 3 x5 x6
x5 ∈ {1, 2, 3}
x6 ∈ {1, 2, 3, 4}

(b) A partial solution β

1 x1 2 1 3 x5 x6
x1 ∈ {1, 2}

x5 ∈ {1, 2, 3, 4, 5}
x6 ∈ {1, 2, 3, 4, 5, 6}
x4 is masked with 4

(c) A relaxed completion problem for partial solution γ

Figure 4.4: Two partial solutions to the problem modelled in Figure 4.3 and the completion
problem resulting from merging them together. Masked variables in the completion problem
are underlined.

Algorithm 4.2 shows how we mask variables to weaken the VPC constraint. Lines 7 − 10

keep v updated to be the largest assignment in the array, and p to be the index of the rightmost
assigned variable. In lines 11− 15, if an unassigned variable has values which are too large
to have support, we mask the rightmost assigned variable at index p with a value large enough
to provide this support. Finally, v is updated to take the value that xp was masked with.

Proposition 4.2. Weakening the VPC constraint using Algorithm 4.2 allows for the valid
simultaneous use of the VPC constraint and DDBB search in a constraint solver.

Proof. Consider a constraint optimisation problem P = (V ,D, C, f), where C includes VPC
constraints, and assume that f satisfies the limitations set out in Section 2.4.4. Again, the

4.5. RESULTS 99

Algorithm 4.2: An algorithm for masking variables to weaken the value proceeds chain
constraint.

1 maskValueProceedsChain (Node m)
2 begin
3 (x0, . . . , xn−1)← the array of variables in VPC at node m
4 v ← 0
5 p← 0
6 for i← 0 to n do
7 if xiis assigned and not masked then
8 a← the value assigned to xi
9 if a = v + 1 then v ← a

10 p← i

11 ub ← the upper bound of xi
12 if ub > v + 1 + (i− p) then
13 n← ub − (i− p)
14 v ← n
15 mask xp at node m with n

proof of Proposition 4.2 is similar to the proof of Proposition 2.2, until we have to show that
all values introduced to m from u and v are ensured support, after nodes u and v are merged
to create a new node m.

Consider a value k in the domain of some xi at node m which is introduced from node u, and
let k be without support at m. Masking xi−1 with the value k − 1 provides support for k in
the domain of xi.

4.5 Results

In this section we present results from using our solver to solve the forbidden subgraph
problem, a problem which we return to in Chapter 6 to investigate using canonical graph
search with DDBB search.

The goal of the forbidden subgraph problem is to find the maximum number of edges which
can exist in a graph of a given order subject to some set of constraints on the properties of
the graph. We will consider the case where the constraints impose that the graph includes no
cycles of length three or four. The forbidden subgraph problem involves lin_le, lin_eq
and lexle constraints. A model for the forbidden subgraph problem is given in Figure 6.3,
to which we add constraints that each row of the adjacency matrix of the graph should be

100 CHAPTER 4. WEAKENING SYMMETRY REDUCTION CONSTRAINTS

Order
6 5 7 8 9 10 11

Runtime DDBB 0.002116 0.015202 0.123717 0.813164 5.335966 30.736689 140.292831
Min value Space DDBB 92 322 1363 6315 25695 85180 238312

Runtime FC 0.001525 0.008419 0.039647 0.223612 1.291028 8.535055 75.985458
Space FC 31 89 269 936 3747 16412 101523
Runtime DDBB 0.002048 0.018906 0.175279 0.742474 2.651785 10.060629 94.026543

Max value Space DDBB 94 359 1640 4653 9136 20775 127247
Runtime FC 0.001080 0.006202 0.029673 0.177567 0.978722 5.421451 65.995232
Space FC 16 62 192 681 2745 10035 87430

Table 4.1: Comparison of execution times and size of the search space for our DDBB search
based approach to search compared with forward checking.

lexicographically less than the succeeding row.

The results shown in Table 4.1 show that for the FSP DDBB does not beat forward checking
an inspecting an single instance of the FSP we see that forward checking and DDBB find the
same cost solutions, but forward checking finds these more quickly than DDBB. The nature
of the FSP means that DDBB is unlikely to find good solutions early, because, for each order
of graph, there are many more solutions which admit n edges than n+ 1 edges.

101

Chapter 5

Implementing a solver and evaluating
performance

5.1 Introduction

In this chapter we give an overview of the implementation details of a solver which which we
have written to empirically evaluate the effectiveness of the approach laid out in the preceding
chapters. We focus on the specifics of how we implement this solver such that it can be
executed in parallel and make use of multicore CPUs. We give results which motivate the
effectiveness of this parallelisation.

Our solver is written in Golang, a programming language developed at Google with contribu-
tions from the open source community. The language is also commonly called “Go”. For a
introduction to Go and a history of its early development see (Meyerson, 2014). Our solver
makes use of Algorithm 2.4 as its search scheme, as well as the weakening algorithms given
in Chapters 2, 3 and 4 to ensure that constraint propagators can be used together with relaxed
width truncated search.

5.2 Why write a constraint solver in Go?

In this section we justify our choice of Go as the language in which we implement our solver.
We also discuss some downsides to using Go to write a constraint solver which became
apparent throughout our time working with it.

102 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

5.2.1 The other options

Before implementing a general purpose constraint solver, our main research interest was in
solving graph search problems by using the decision diagram branch and bound algorithm
introduced in Chapter 2. In Chapter 6 we will revisit this work to show that the approach is
reasonably competitive for solving a particular graph search problem, the forbidden subgraph
problem, but here we cover some implementation details from this work.

Our initial efforts to implement a forbidden subgraph problem solver used the Java program-
ming language (Arnold, Gosling, and Holmes, 2000). This solver was written in such a way
that it only could be used for graph problems where edges are added to a graph with no edges,
until the largest graph that satisfied some constraints was found. After our initial prototyping
we wished to implement a parallel version, but this is not easy in Java where the programmer
is expected to explicity deal with threading processes. This led us to develop a similar solver
in C++, and the goal of changing languages was to make use of Intel’s Cilk++ job scheduler.
Providing that the programmer implements their code in a sensible way, adding parallelisation
using Cilk++ can be as easy as editing a single line of code. This was the case for us. However,
we chose to stop working in C++ due to Cilk++’s deprecation during our research.

5.2.2 Benefits to using Go

After our initial work writing a forbidden subgraph problem solver in Java and C++ we knew
what we were looking for in a programming language, namely a built in job scheduler for
parallelisation. Go’s Goroutines make it easy to evaluate functions concurrently, and its
channel type allows for communication between concurrently executed functions.

5.2.3 Downsides

The main downside to using Go is that it is garbage collected. In languages which are not
garbage collected the onus is on the programmer to ensure that memory is allocated and
deallocated properly throughout the execution of a program. In a garbage collected language
the burden of deallocating memory is lifted from the programmer and handled by the garbage
collector.

Go’s garbage collector has two main downsides that hamper the performance of our solver
and our ability to evaluate its performance on many problem instances. The first downside
is that Go’s garbage collector is designed for high uptime, concurrent (probably distributed)
microservices and is optimised for latency at the cost of throughput. We would instead prefer

5.3. PARALLELISING OUR SOLVER 103

less overall time spent on garbage collection. Go’s garbage collector is also concurrent, and we
have to take this into account when running experiments. For example, on a 32 core machine
we cannot simply run 16 individual problem instances simultaneously as each instance of our
solver will attempt to use up to 32 cores when in the garbage collection phase. In this case
care must be taken to ensure that each instance of the solver can utilise at maximum 2 cores.

5.3 Parallelising our solver

The DDBB search algorithm that we use as the inspiration for our approach is shown to be
easily adapted to run in parallel by processing multiple jobs from the queue concurrently
when branching (Bergman, Ciré, Sabharwal, et al., 2014). Given this, and since multicore
hardware is now ubiquitous, we feel that it is reasonable to utilise parallelism to see if the
benefits seen when parallelising DDBB in the literature carry over to our approach and can
reduce the execution times of our solver.

In this section we begin by giving a short review of just some of the research effort which
has been put into parallel constraint solvers, an existing parallel decision diagram branch and
bound algorithm, as well as parallel combinatorial search in general. We then detail how we
make use of Go’s built in Goroutines and its primitive channel type to parallelise our solver.

5.3.1 Parallel computing

For decades software developers could expect that the processors on which their code ran
would roughly double in performance every one to two years. This phenomenon is famously
known as Moore’s law, named after Gordon Moore noted the trend in his 1965 article
(2006). However this trend has stopped, slowing down in early 2000s as issues such as
processor energy consumption and difficulties with manufacturing smaller transistors took
effect. Nowadays multicore processors are the norm, which combine multiple processors
known as cores on a single chip. To take advantage of this multicore hardware to speed up
the execution time of programs the developer can write concurrent code, where multiple
computations and subroutines are executed at the same time (usually on distinct processor
cores). Writing code which is parallelised in this way is, however, in general more difficult
than writing a sequential program and in some cases not possible at all Sutter (2005), Sutter
and Larus (2005).

The type of parallelism we are interested in is task-parallel programs. Task-parallel programs
are written as a number of multiple tasks, where each task is a subroutine. Tasks might

104 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

communicate with other tasks, have ordering constraints (task A runs before task B) and tasks
might create new tasks. There exist a number of off the shelf task-parallel frameworks which
assist software developers when writing parallel code by handling task scheduling. Some
examples include Intel’s Cilk++ (Leiserson, 2009) and Thread Building Blocks (Reinders,
2007) , HPX (Kaiser et al., 2014), OpenMP (Dagum and Menon, 1998) and the Golang
runtime task scheduler (Deshpande, Sponsler, and Weiss, 2012). Since these frameworks take
care of task scheduling the software developer is freed up to concentrate on the structure of
each task and the program as a whole.

5.3.2 Parallel code in Go

In this section we review what tools Go includes for running concurrent code in parallel on
modern multicore processors. Our parallel implementation of our solver makes use of each of
the following tools.

Mutexes When multiple workers require access to the same variable care must be taken
to ensure that no conflicts arise. If worker A reads a variable it might be the case that that
variable’s value is updated by one or more other workers while worker A continues to make
use of the old value of the variable in subsequent calculations. Restricting the variables to be
used by one worker at a time is a software design pattern known as mutual exclusion. The
data structures which enforce this restriction are often called mutexes. Go’s standard library
includes the sync.Mutex data structure which has member functions lock and unlock.
A call to lock allows a single single worker exclusive access to a block of code which lasts
until a call to unlock. We make use of mutexes in our parallel implementation of our solver
when ensuring that the node representing the incumbent best solution can be communicated
between all workers.

Goroutines Goroutines are threads whose execution is managed by the Go runtime. Any
function in Go can be run on its own thread by prepending the go keyword to a call to the
function. All of the Goroutines in a program share the same address space, and so care must
be taken to ensure that there are no conflicts arising from two goroutines accessing shared
memory. While mutexes are a useful way to achieve this, Go also provides another method,
namely channels.

Channels Typically the memory issues where multiple workers simultaneously access the
same variable are not handled in Go programs through the use of mutexes. Instead channels

5.3. PARALLELISING OUR SOLVER 105

are used. Channels are primitive types in Go which are used as pipelines for communicating
data between Goroutines. Goroutines can push data to a channel or pull data from it. These
push and pull operations are blocking. If a worker is to pull data from a channel it must wait
till some other worker to push data to that channel. Similarly if a worker is to push data to
a channel then there must be some other worker ready to pull that data. Channels may be
buffered, which allows channels to store data pushed to them so that push operations are no
longer blocking, until the buffer is full. We make use of channels when communicating nodes
to branch on between worker processes and the supervisor process which keeps track of the
queue of jobs.

Go’s select statement Go includes a special type of control flow statement to allow a
Goroutine to listen to multiple channels at the same time. The select statement is similar to a
more typical switch statement but its cases can include pushing data to a channel or pulling
data from a channel. The body of each case is only executed if the channel operation can be
done. This gets around the blocking nature of channels when a single worker is to listen to
more than one simultaneously.

5.3.3 Writing efficient parallel code in Go

As parallel programs become more common, and frameworks for parallelising code (such
as those mentioned in Section 5.3.1) gain traction, the practice of writing parallel code
is no longer solely left to experts. Nanz, West, and da Silveira (2013) give code written
by non-expert users of several of these parallelisation frameworks to expert users and the
expert users then made comment on this code and provide their own implementations for
comparison. In the case of code written using Go, the trend for non-expert implementations
was to write recursive divide and conquer implementations which start one Goroutine per
recursion. Meanwhile the expert implementations followed a distribute-work-synchronise
design pattern with one worker Goroutine per processor core. Although the Go runtime can
cope with scheduling many thousands of Goroutines, in general a more efficient approach is
to write code which uses as many worker Goroutines as there are processor cores available.
Nanz, West, and da Silveira do note, however, that the more efficient expert implementations
required more effort on the part of the author.

106 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

5.4 Parallel combinatorial search

Parallelising combinatorial search so that solvers can make use of multiple processor cores
concurrently can lead to speed ups in the execution time of such solvers. This has a real
impact on all real world applications which are time sensitive. In the setting of the dynamic
delivery problems mentioned in Section 1.1.1 proving delivery drivers with their optimal jobs
every hour makes little practical sense, in practice we would want to be able to update the jobs
available to drivers much more quickly than this. Another motivating factor for parallelisation
might be the distributed nature of a problem across several localities (Prosser, Conway, and
Muller, 1992).

In this section we cover at a high level what the existing methods of parallelising search are,
what solvers have implemented which strategies, and cover the parallel version of the decision
diagram branch and bound algorithm and finally present a parallel version of our decision
diagram branch and bound constraint solver. While we focus on reviewing the literature
necessary to understand the position of parallel decision diagram branch and bound search
within the wider field of parallel combinatorial search, Archibald’s (2018) thesis provides a
more in depth review of combinatorial search in general.

5.4.1 Approaches parallelising combinatorial search

In general there are three main approaches to parallelising combinatorial search, which
are outlined by Gendron and Crainic (1994) in their survey paper. Here we use the same
terminology as Gendron and Crainic. The following approaches need not be used in isolation;
parallel node processing can be used in a solver which also uses space-splitting and portfolio
approaches might uses solvers that use either, or both, parallel node processing and space-
splitting. For the purposes of parallelising our own solver we will use a space splitting
approach.

Parallel node processing

The parallel node processing approach to parallelising combinatorial search works by par-
allelising the inference algorithms which run at each node. In constraint programming this
means exploiting parallelism for either individual constraint propagators or by propagating
constraints concurrently. Nguyen and Deville (1998) take the latter approach and introduce
a distributed algorithm for maintaining arc-consistency. In a wider sense this approach also
includes the bounding algorithms in a branch and bound setting. The goal of this approach is
to minimise the time it takes to process each node in the search space, without altering how

5.4. PARALLEL COMBINATORIAL SEARCH 107

the space is explored.

Space-Splitting

The space-splitting approach to parallelising combinatorial search takes the search space and
splits it up. Searching each subspace forms a task which is explored by a worker and these
workers may or may not communicate information, such as the current best known solution
when solving optimisation problems.

Portfolio

The portfolio approach to parallelising combinatorial search concurrently runs (typically,
but not always, sequential) core solvers (where a core solver is a solver which is not a
portfolio solver). The aim of the portfolio approach is to make use of multicore hardware
by speculatively running many different core solvers, or many instances of the same solver
but with different search heuristics, simultaniously. For this approach each solver individual
search must differ in some way, otherwise there is a doubling up of tasks between workers
(Balyo, Sanders, and Sinz, 2015). The portfolio approach can be quite successful, so much
so that solver competitions have banned solvers which just repackage other core solvers in
a portfolio. The SAT competition enforces such a ban, with the portfolio solver SATzilla
being a previous winner in 2007 and 2009 (Xu et al., 2011). SATzilla packages multiple
core solvers and uses machine learning to determine which solvers from its portfolio to give
as tasks to workers. The feeling within some parts of the SAT community is that portfolio
solvers stifle research progress. Weidenbach (2017) explores this and concludes that portfolio
solvers which use reasoning to determine which individual solvers to use, with which input
parameters, as tasks or includes communication between solvers should continue to be an
area of focus for research efforts. The constraint solver Choco takes the portfolio approach in
the parallel tracks of the Minizinc Challenge (achieving a speed up of around 3 compared to
their sequential implementation).

5.4.2 Parallel constraint programming

Constraint programming solvers are, compared to other solver technologies, often suitable for
parallelisation. The commercial mixed integer programming solver Gurobi often struggles
to achieve further speedups when using three or more threads. In its distributed version it
manages a speedup of two to three times on eight machines (Gurobi promotional material,
2019). Parallel SAT solvers also struggle to scale well, achieving speedups of around three

108 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

when using 32 cores (Järvisalo et al., 2012). In constraint programming various strategies have
been used to parallelise search to better effect. These include recursively applying search goals
(Perron, 1999), work stealing (Chu, Schulte, and Stuckey, 2009), embarrassingly parallel
search (Régin, Rezgui, and Malapert (2014), Yasuhara et al. (2015), Malapert, Régin, and
Rezgui (2016)) and parallel limited discrepancy search (Moisan, Gaudreault, and Quimper,
2013).

5.4.3 Parallel decision diagram branch and bound

The particular parallel search that we are interested in is a parallel version of the decision
diagram branch and bound algorithm on which our work is based. Bergman, Ciré, Sabharwal,
et al. (2014)1 propose a centralised dynamic space-splitting strategy based on DDBB. Their
approach involves a supervisor worker which records a pool of nodes which are to be processed.
The supervisor worker distributes these nodes to workers starting with the most promising
nodes which construct relaxed and restricted BDDs based at the node. The workers reply to
the supervisor with a set of nodes to explore or communicate the to supervisor and all other
workers an improvement to the lower bound of the objective. The workers also send the upper
bound found from constructing relaxed diagrams to the supervisor, so it might prune nodes
from the pool.

5.5 Parallelising our solver

To parallelise our solver based on Algorithm 2.4 we follow the centralised work balancing
approach taken in (Bergman, Ciré, Sabharwal, et al., 2014) and described in Section 5.4.3.
A benefit of following this approach is that it allows us to write code which fits the one
Goroutine per processor core approach advocated for in (Nanz, West, and da Silveira, 2013)
which we described in Section 5.3.3. Note though that in our implementation the supervisor
thread only distributes nodes to workers in a breadth first order, it does not attempt to rank
nodes to pass out the most promising nodes to workers first.

In our parallel implementation we have a single supervisor thread which organises tasks
and a single type of worker thread. The task completed by the worker threads is given in
Algorithm 5.1 and is very similar to the body of the while loop in Algorithm 2.4. The key
differences are that line 4 is now blocking, as the worker waits to receive a node u from the
supervisor thread. The worker thread then explores relaxed width truncated search to provide

1(Bergman, Ciré, Sabharwal, et al., 2014) parallelises the approach of the later paper (Bergman, Ciré,
van Hoeve, et al., 2016)

5.5. PARALLELISING OUR SOLVER 109

an upper bound to the optimal solution of the subproblem defined at the node u, if search has
already found an incumbent solution. If this upper bound is greater than the cost of the current
incumbent solution then the worker continues by exploring restricted width truncated search.
In the case where the width of the search tree is restricted, the nodes in Lc are communicated
to the supervisor thread so that these can be added to the pool of jobs. If when exploring the
restricted width truncated search tree the worker finds a solution which is has a higher cost
than the cost of the incumbent it updates the value of the incumbent, which is kept as a global
variable to which all workers and the supervisor thread have access. A mutex is used to avoid
race conditions when workers interact with this shared variable.

Updates to the incumbent are kept thread safe by use of a mutex, and in our implementation
we make use of channels to keep track of which workers threads are currently doing work as
well as for passing nodes between the supervisor and worker threads. The supervisor thread
keeps a buffered channel of length equal to the number of worker threads, and “punches in”
each worker by pushing a value to this channel before passing it a node to work on. When the
worker is finished exploring relaxed and restricted width truncated search trees for the node
it “punches out” by pulling from the channel. The purpose of this is so that we know when
search is complete. It is no longer enough to stop search then the pool of jobs is empty, as we
might have worker threads still exploring search. However when there are no more jobs left
in the supervisor thread’s pool and there are no values in the buffered channel we know that
search is complete.

Algorithm 5.1: The task of a worker in parallelised DDBB search.
12 begin
3 while true do
4 u← a node u sent from the supervisor thread
5 ub ← −∞
6 if search has found an incumbent best solution then
7 ub ← solveRelaxed(u)

8 zopt ← the cost of the incumbent best solution
9 if ub > zopt then

10 Lc, lb, candidate ← solveRestricted(u)
11 communicate each node in LC to the supervisor thread
12 if lb > zopt then
13 zopt ← lb
14 incumbent ← update the shared incumbent with candidate

110 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

5.5.1 Results

We again return to the problems discussed earlier in this dissertation, on this occasion to show
effect that parallelising search has on the time it takes our solver to find optimal solutions. We
show that the method of splitting the search space up between different worker threads when
branching in DDBB search leads to a constraint optimisation solver which scales well as
workers are added. This agrees with the findings in (Bergman, Ciré, Sabharwal, et al., 2014)
showing that DDBB scales well when more worker threads are added (this is not necessarily
the case for all approaches to search). We also verify that these speed ups are consistent and
reproducible (that is, each time the solver is run the deviation in execution times is small). We
want to do check this reproducibility to show that we can avoid race conditions which lead to
an unfavourable branching order. If we assume that we would rather branch towards the left
of search trees (due to variable and value ordering heuristics trying to place good solutions at
this side of the search tree) then we could see that workers branching on nodes further right in
search returning their solutions early disturbing the ordering in which the whole search tree is
explored.

Note that we do not compare our results to a parallel approach to forward checking. This is
due to the choices this introduces when deciding how to parallelise forward checking (do we
branch on some level of search or run a portfolio approach using multiple variable and value
ordering heuristics concurrently?) and how to tune the extra parameters that parallelising
forward checking would introduce.

Figure 5.1 shows the effect that doubling the number of workers has on the execution times
of the solver when solving the car scheduling problem for numbers of workers ranging from 1
to 32. Although the charts shown in Figure 5.1 do show improvements in execution time for
many instances we do see some instances for which performance degrades as more workers
are added to the problem. This is due to the addition of workers creating race conditions when
workers report back nodes to branch on to the supervisor thread. The order in which workers
report back nodes to branch on is affecting the order in which the search space is explored.

Even though we do see slow downs when doubling the number of workers Figure 5.2 shows
that for instances which take more than 1 second to complete we achieve up to an order of
magnitude speed up when using 16 workers compared with 1 worker. For these instances with
shorter executions times it is either simply not worth the effort to bring up multiple workers,
or another instance of our solver reporting variable times for instances which are solved very
quickly. Figure 5.2 also includes a chart showing that multiple runs using 16 worker threads
give runtimes which do not show much deviation.

Our scalable and reproducable parallel speed ups are not only found when solving the car

5.5. PARALLELISING OUR SOLVER 111

factory scheduling problem. Figure 5.4 shows the effect of adding workers when solving
the maximum independent subgraph problem. The results for the MISP are similar to the
car factory scheduling problem, again showing that we may sometimes see a slow down
when doubling the number of workers. However in Figure 5.3 we see that, for this problem,
our approach scales well for all the instances solved when comparing the execution times
achieved by 1 and 16 workers. Figure 5.3 also confirms that our parallel solver produces
reproducable execution times and that scaling to 16 worker threads allows us to solve more
instances faster than forward checking than we had previously managed with 1 worker.

Parallelising search has similar results for the optimal Golomb rulers problem. Table 5.2
shows that for multiple choices of variable and value heuristics we achieve good scaling for
up to 16 worker threads.

112 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

Runtime (s) with 1 worker

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 2
 w

o
rk

e
rs

Runtime (s) with 2 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 4
 w

o
rk

e
rs

Runtime (s) with 4 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 8
 w

o
rk

e
rs

Runtime (s) with 8 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Runtime (s) with 16 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 3
2

 w
o

rk
e

rs

Figure 5.1: The effect of adding workers on execution times for the car factory scheduling
problem.

5.5. PARALLELISING OUR SOLVER 113

Runtime (s) with 1 worker

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Runtime (s) with 16 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Figure 5.2: The effect of using 16 workers versus 1 worker for the car factory scheduling
problem and the reproducibility of execution times when using 16 workers.

Runtime (s) with 1 worker

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Runtime (s) with 16 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Runtime (s) using forward checking

10-3 10-2 10-1 100 101 102 103

10-3

10-2

10-1

100

101

102

103

R
u
n

ti
m

e
 (

s)
 u

si
n

g
 D

D
B

B
 w

it
h
 1

6
 w

o
rk

e
rs

Figure 5.3: The effect of using 16 workers vs 1 worker; a reproducibility result; and improved
performance against forward checking using 16 workers for the MISP problem.

114 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

Runtime (s) with 1 worker

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 2
 w

o
rk

e
rs

Runtime (s) with 2 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 4
 w

o
rk

e
rs

Runtime (s) with 4 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 8
 w

o
rk

e
rs

Runtime (s) with 8 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 1
6

 w
o

rk
e

rs

Runtime (s) with 16 workers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n

ti
m

e
 (

s)
 w

it
h

 3
2

 w
o

rk
e

rs

Figure 5.4: The effect of adding workers on execution times for the MISP.

5.5. PARALLELISING OUR SOLVER 115

H
eu

ri
st

ic
s

W
or

ke
rs

O
rd

er
3

O
rd

er
4

O
rd

er
5

O
rd

er
6

O
rd

er
7

O
rd

er
8

N
od

es
R

un
tim

e
N

od
es

R
un

tim
e

N
od

es
R

un
tim

e
N

od
es

R
un

tim
e

N
od

es
R

un
tim

e
N

od
es

R
un

tim
e

in
pu

to
rd

er
/m

in
va

lu
e

1
22

0.
00

20
93

16
0

0.
02

17
89

69
6

0.
25

92
10

24
45

2.
98

24
04

10
59

0
29

.9
84

24
1

48
61

0
28

0.
42

08
98

2
22

0.
00

14
52

19
3

0.
01

21
21

87
2

0.
17

13
98

33
35

2.
04

87
05

12
88

2
18

.9
26

02
5

53
25

9
16

2.
69

77
54

4
19

0.
00

08
45

22
6

0.
00

88
05

12
86

0.
13

01
43

49
11

1.
66

14
15

17
50

7
13

.3
11

58
8

67
63

5
10

5.
18

43
41

8
22

0.
00

09
27

19
1

0.
00

71
76

12
09

0.
09

37
32

64
80

1.
52

25
09

23
79

3
10

.4
92

38
0

87
88

8
71

.9
58

67
9

16
22

0.
00

10
01

21
7

0.
00

76
32

11
47

0.
10

32
40

55
48

1.
15

94
00

24
85

8
7.

61
09

66
11

32
91

55
.7

15
73

3
in

pu
to

rd
er

/m
ax

va
lu

e
1

19
0.

00
13

26
69

0.
01

67
47

22
4

0.
19

29
24

11
18

2.
16

56
10

93
80

40
.5

41
05

0
67

53
6

60
0.

00
02

44
2

17
0.

00
09

99
75

0.
01

04
99

22
4

0.
10

88
33

11
43

1.
24

81
51

97
57

24
.0

96
24

1
91

78
6

37
3.

24
68

87
4

19
0.

00
09

90
89

0.
00

82
75

22
4

0.
07

79
67

11
43

0.
72

66
13

98
67

13
.5

37
81

1
91

94
3

19
2.

77
38

04
8

17
0.

00
10

28
76

0.
00

70
33

21
9

0.
06

41
00

15
19

0.
76

89
75

97
78

8.
41

62
17

92
04

7
10

3.
24

08
91

16
17

0.
00

09
67

79
0.

00
68

54
25

5
0.

05
92

78
14

58
1.

00
04

39
10

06
4

6.
57

97
18

92
61

4
62

.5
25

74
2

fir
st

fa
il/

m
in

va
lu

e
1

22
0.

00
18

38
16

0
0.

01
86

01
69

8
0.

24
42

21
24

32
2.

95
50

35
10

28
2

28
.9

15
52

9
46

74
2

27
6.

31
71

69
2

22
0.

00
13

94
19

7
0.

01
31

88
95

9
0.

17
96

84
33

34
2.

04
72

55
12

73
5

19
.0

72
64

1
50

83
7

15
5.

89
64

69
4

22
0.

00
08

10
23

0
0.

00
89

30
13

09
0.

13
24

85
48

49
1.

64
22

57
17

44
6

13
.6

62
83

0
59

18
7

95
.5

55
60

3
8

21
0.

00
09

45
19

8
0.

00
71

47
12

23
0.

09
25

67
65

60
1.

54
69

53
23

57
3

10
.4

84
47

5
89

67
6

72
.9

93
21

7
16

20
0.

00
11

06
21

5
0.

00
81

75
11

07
0.

10
68

21
54

73
1.

14
40

00
24

86
3

7.
57

84
67

11
01

78
54

.7
46

40
3

fir
st

fa
il/

m
ax

va
lu

e
1

19
0.

00
13

11
69

0.
02

06
95

22
4

0.
20

20
24

11
16

2.
25

96
21

91
40

40
.4

43
08

5
66

91
8

60
0.

00
02

44
2

17
0.

00
09

40
70

0.
01

32
26

22
3

0.
13

08
12

11
42

1.
24

91
29

95
12

23
.8

26
37

6
90

45
4

37
4.

38
15

00
4

23
0.

00
10

19
76

0.
00

83
47

23
0

0.
08

52
10

11
56

0.
73

24
58

96
53

13
.5

08
55

2
91

26
0

19
4.

29
42

96
8

17
0.

00
09

88
75

0.
00

70
92

22
3

0.
06

40
28

15
47

0.
75

83
30

96
93

8.
12

69
02

91
60

4
10

4.
24

73
83

16
19

0.
00

10
32

82
0.

00
69

97
26

9
0.

05
70

01
14

54
1.

00
50

92
98

74
6.

12
83

21
92

06
5

63
.4

53
54

8

Ta
bl

e
5.

1:
C

om
pa

ri
so

n
of

ex
ec

ut
io

n
tim

es
of

ou
rs

ol
ve

rw
he

n
fin

di
ng

op
tim

al
G

ol
om

b
ru

le
rs

fo
rd

iff
er

in
g

nu
m

be
rs

of
w

or
ke

rt
hr

ea
ds

.

116 CHAPTER 5. IMPLEMENTING A SOLVER AND EVALUATING PERFORMANCE

117

Chapter 6

Graph search problems

In this chapter we return to using our approach of weakening constraints to use DDBB to
solve the forbidden subgraph problem. The forbidden subgraph problem is a is a graph search
problem and we pair the approach given in earlier chapters with a common technique for
graph search known as canonical graph search. We make use of an existing tool Nauty to
ensure that we do not introduce equivalent graphs during search.

6.1 Introduction

A graph search problem is a decision problem where the goal is to find if there exists a
graph which satisfies some set of constraints (for example maximum degree, minimum girth,
maximum circumference). A common extension of these problems is to find the maximum or
minimum solution with respect to some cost function. It is these optimisation problems that
this chapter focuses on. A closely related problem is the enumeration variant which counts the
number of graphs which satisfy the desired constraints. In this chapter we use the Forbidden
Subgraph Problem (where, for a given order of graph, we try to maximise the number of
edges present while not including one or more specified subgraphs) as a running example
throughout.

Graph search problems are difficult in part due to the high number of potential symmetries.
A naïve search will find multiple copies of the same graph up to isomorphism, which can
lead to a vast amount of repeated work during search. One way to overcome this issue is to
use an approach which only stores one canonical graph for each isomorphism class, using a
tool like Nauty (McKay and Piperno, 2014). However, although such graph isomorphism
tools often perform well in practice, repeated calls to them can cause the approach of in-
cluding them in search to be uncompetitive. Another option is to use incomplete symmetry

118 CHAPTER 6. GRAPH SEARCH PROBLEMS

breaking constraints or predicates as discussed in Chapter 4. Codish et al. (2019) use such
an approach when they proposed an enhanced lexicographical ordering constraint for the
forbidden subgraph problem. The downside to this approach is that these constraints often
admit multiple solutions which represent graphs in each isomorphism class. However the
additional computational effort at each node is small, making the approach attractive, even
though it does not ensure that no symmetrically equivalent solutions are found.

While testing new ideas to tackle graph search problems researchers will often write simple
dynamic programs. However, these do not scale well and are often only used for limited
validation of results. The DDBB search algorithm (Bergman, Ciré, van Hoeve, et al., 2016)
that we have based our own work on solves dynamic programming models indirectly, and
without exploring the whole search space of the dynamic program.

This chapter proposes a method for solving graph optimisation problems using the decision
diagram branch and bound approach to search in a constraint solver proposed in Chapter 2.
We make use of the work in earlier chapters which weakens constraints. In this chapter we
make use of a C++ implementation of Algorithm 2.4 so that we may include Nauty in our
solver, which we also parallelise by using Intel’s Cilk++ C++ language extension. We explore
the relationship between branch and bound search and canonicalised search, which are two
techniques which conflict with each other.

6.2 Graphs, Graph Isomorphism and the FSP

Recall that a graph G = (V,E) is a set of vertices V (which we will sometimes write as V (G)

for clarity) together with set of adjacent pairs of vertices, called edges, E (and if two vertices
v and w are adjacent we write v ∼ w; that a path in a graph is a sequence of vertices such that
each consecutive pair are connected by an edge; and that a cycle is a path that begins and ends
at the same vertex. The girth of G is the length of the smallest possible cycle contained in G.

A graph isomorphism between graphs G and H is a bijective mapping φ : V (G) → V (H)

such that v ∼G w if and only if φ(v) ∼H φ(w). If there is an isomorphism between G
and H , we say that G and H are isomorphic. In this chapter we make use of Nauty to
check if two graphs are isomorphic. For each class of isomorphic graphs Nauty can return a
unique canonical representation. Figure 6.1 shows why considering isomorphisms in search is
important. Even in the simple problem of enumerating all graphs of order 3, there are multiple
symmetrically equivalent graphs found.

A (non-induced) subgraph isomorphism from a graph P (typically called the pattern) to a
graph T (the target) is an injective mapping V(P) � V(T) which maps adjacent vertices

6.2. GRAPHS, GRAPH ISOMORPHISM AND THE FSP 119

Figure 6.1: The search tree for generating all graphs of order three. Each edge is treated as a
variable, and the graphs are presented at the leaf nodes. Each graph which is the same up to
isomorphism is rendered in the same colour.

in P to adjacent vertices in T . An extremal graph is a graph which, for some given number
of vertices and some set of constraints, C, contains the maximum number of edges possible
while satisfying C. The Forbidden Subgraph Problem, (FSP), is to find an extremal graph
which does not admit as a non-induced subgraph any member of some set of graphs P . The
size of the largest graph of order v with minimum girth n+ 1 is denoted by fn(v). Figure 6.2
shows an example of an extremal graph on 6 vertices with no 3- or 4-cycle.

The maximum number of edges permitted in graphs of order v for this instance of the FSP have
been determined by Garnick, Kwong, and Lazebnik (1993) up to v = 24, using mathematical
proof. They also use a local search approach to provide bounds for v ≤ 200. Codish et
al. (2019) use this variant of the FSP as a motivating example to show the impact of new
symmetry breaking constraints and use a SAT solver to provide empirical results for the
minimum girth 5 variant of the FSP for orders of graph from 11− 24, 26, 31 and 32. Their
approach is to view the problem as a sequence of decision problems and they report runtimes
for both the decision problem for the optimal solution and the proof that it is optimal. Note
that the execution times for our approach are not competitive with the work of Codish et al.
annealing (annealing) also make use of local search techniques, using simulated annealing
to provide bounds for both the minimum girth 5 and minimum girth 6 variations of the FSP.

Figure 6.2: The largest graph with 6 vertices which does not include a 3-cycle or 4-cycle.

120 CHAPTER 6. GRAPH SEARCH PROBLEMS

∀1≤i<j≤v. (A[i, j] = A[j, i] and A[i, i] = 0) (6.1)

∀i,j,k. A[i, j] + A[j, k] + A[k, i] < 3 (6.2)

∀i,j,k,l. A[i, j] + A[j, k] + A[k, l] + A[l, i] < 4 (6.3)

∀i,j. maximise
∑
i

∑
j

A[i, j] (6.4)

Figure 6.3: Basic constraint model for extremal graph problems (no cycles of length 4 or
less) with v vertices and e edges

6.3 Modelling the Forbidden Subgraph Problem

In this section we progressively build upon a simple model for finding extremal graphs of
minimum girth 5. We show how we can include optimisations from the literature in our
implementation and that we can make use of Nauty to only keep a single graph from each
isomorphism class when building layers of our search trees. We include an overview of how
well DDBB parallelises for this problem. We also show how parallelisation and canonical
search interact when both are used together.

6.3.1 A First Model

Following the approach set out in Chapter 2 means that we can start with the same constraint
model shown in (Codish et al., 2019). We model the problem using a binary variable for each
edge, representing G by an n× n adjacency matrix A where A[i, j] = A[j, i] and A[i, j] = 1

if i ∼G j, and A[i, j] = 0 otherwise. Figure 6.3 shows the model for this minimum girth 5
instance of the FSP as given in (Codish et al., 2019). We also require a cost function, and this
is added to the model as a fourth condition. Constraint 6.1 ensures that A represents simple
undirected graphs. Constraints 6.2 and 6.3 enforce that A cannot admit three- or four-cycles.

6.3.2 Symmetry Breaking

To make use of Nauty during search, we enhance each node by also recording the canonical
representative of the partial solution recorded at the node. We pass to Nauty an adjacency
matrix where each assigned variable takes its assignment and each unassigned variable has the
value 0. When adding a newly created node to a layer, we first check that no node currently in
the layer is labelled with the same canonical representative.

6.3. MODELLING THE FORBIDDEN SUBGRAPH PROBLEM 121

We also make use of a degree sequence based symmetry breaking constraint and add it to the
model as an example of the use of a partial symmetry breaking constraint. This additional
constraint requires that:

∀1≤i≤v−1
∑
i

A[i] ≥
∑
i

A[i+ 1] (6.5)

whereA[i] is the ith row in the adjacency matrix. Figure 6.4 shows the relative execution times
when we include this constraint, canonicalised search using Nauty and both approaches
together in search for a range of graph orders. Similarly, Figure 6.5 shows the effect of
each approach and their combination on the size of the search space. From these figures it
is apparent that while adding Nauty to search gives the greatest single improvement it is
advantageous to use partial symmetry breaking constraints together with canonicalised search.
We also make sure that including ether symmetry reduction technique speeds up execution
times and reduces the size of the search space.

Number of vertices

5 6 7 8 9 10 11 12 13

none

deg+nauty

deg

nauty

Symmetry

10
0

10
1

10
2

10
3

10
4

10
5

E
xe

cu
ti

o
n
 t

im
e
 i
n
 m

ill
is

e
co

n
d

s

Figure 6.4: Comparison of execution times (in milliseconds) when including different
symmetry reduction approaches.

As a sanity check to ensure that we are not just slowing down a canonical search, we ran the
algorithm without using relaxed search trees to provide bounds during search. Without bounds
we perform a parallelised breadth first search. Figure 6.6 and Figure 6.7 show that we do gain
benefit from using relaxed search trees to provide bounds during search. These relaxed search
trees allow us to prune search such that a smaller number of search nodes are explored overall

122 CHAPTER 6. GRAPH SEARCH PROBLEMS

Number of vertices

5 6 7 8 9 10 11 12 13

none

deg+nauty

deg

nauty

Symmetry

10
0

10
2

10
4

10
6

10
8

N
u
m

b
e
r

o
f

se
a
rc

h
 n

o
d

e
s

Figure 6.5: Comparison of search space size when including different symmetry reduction
approaches

(including those in bounding search trees) which in turn leads to reduced execution times.
The results for graphs of order 8 appear to be the opposite of the other orders with respect to
execution times, but this is due to noise inherent in trying to measure experiments which last
only a very short time. When considering the number of nodes used, we see that then benefit
given by including relaxed nodes is apparent for all orders of graph chosen.

6.3.3 Parallelism

As stated previously, our implementation of DDBB is easily parallelised. For each node
in a layer that is not pruned when branching, we start a new job that proceeds with search
from the node. This happens recursively, with each job also branching in the same way if
its initial exact search becomes too wide. The only communication that occurs is when jobs
compare solutions to update the incumbent solution. Using Intel’s Cilk++ to schedule and
execute jobs in parallel and this requires only that we use a cilk_for loop to iterate over
the nodes that are to be branched on. However, the use of Cilk Plus does not come without
a cost. While in general we do get good speedups as shown in Figure 6.8, using Cilk Plus
leads to variable execution times. Intermittently for some instances the execution time for 32
workers would approach the single threaded execution time. Similar behaviour when using
Cilk Plus is reported in (McCreesh and Prosser, 2015). We can also see that it takes several
graph orders for the expected sequence of the lines in Figure 6.8 to emerge. For these lower

6.3. MODELLING THE FORBIDDEN SUBGRAPH PROBLEM 123

Graph order

7 8 9 10 11 12 13 14 15

yes
no

Bounding

10
-4

10
-2

10
0

10
2

10
4

R
u
n
ti

m
e
 (

s)

Figure 6.6: Execution times when relaxed search trees are and are not in use.

Graph order

7 8 9 10 11 12 13 14 15

yes
no

Bounding

10
0

10
5

10
10

N
o
d

e
s

u
se

d

Figure 6.7: The size of search space when relaxed search trees are and are not in use.

124 CHAPTER 6. GRAPH SEARCH PROBLEMS

orders the benefit from running more workers does not outweigh the cost of starting them up
and communicating via shared data.

Number of vertices

5 6 7 8 9 10 11 12 13 14 15

1
2
4
8
16
32

Workers uses

10
0

10
1

10
2

10
3

10
4

10
5

10
6

E
xe

cu
ti

o
n
 t

im
e
 i
n
 m

ill
is

e
co

n
d

s

Figure 6.8: Parallel speedups, with runtimes in milliseconds

6.3.4 Branch and bound vs Canonicalised Search

There is an inherent conflict between using canonicalised search as a symmetry reduction
technique and branch and bound search. Through splitting up the search space when branching
we expect that we dilute the effectiveness of this approach to symmetry reduction. When we
determine that branching should occur at a layer in a restricted search tree, subsequent layers
are split between multiple workers and we do not communicate what canonical solutions have
been found across multiple workers. Given that layers of search are split between multiple
workers we can only reduce symmetries with Nauty locally on the search space being
explored by each individual job given to a worker. In this way we localise the effectiveness of
the canonical search approach to symmetry breaking to each individual subproblem being
tackled in a single job. Note that incomplete symmetry breaking constraints are not adversely
affected by splitting the search space up in this way.

However, Figure 6.9 shows that diluting the effectiveness of symmetry reduction using Nauty
has only a limited effect on the size of the search space. The results produced throughout this
chapter have been obtained by branching when a layer is as wide as the expected maximum
height of the restricted search tree(the number of unassigned variables). In Figure 6.9 we

6.3. MODELLING THE FORBIDDEN SUBGRAPH PROBLEM 125

instead branch when the width of a layer is some multiple w of the height, and plot w against
the size of the search space for a range of sizes of graph. We would expect that branching
at a lower layer during search leads to fewer jobs being created and stronger pruning from
Nauty as more isomorphism solutions are found in larger layers, however Figure 6.9 paints
a more complicated picture. While it is clear that larger maximum permitted search widths
perform better, there is once again not a monotonic relationship between varying search width
and performance of our solvers. This shows that making better choices about which nodes
to branch on can overcome the lack of search space reduction via isomorphisms. For many
instances the smallest possible search space is found when a balance is struck between the
amount of branching done (the width of restricted search) and having wide enough layers
such that Nauty is impactful.

6.3.5 The Effect of Bounding Search Widths

As well as in the search width, there are two further locations in DDBB search where there is
a heuristic choice to be made regarding the width of the search tree (in both restricted and
relaxed search). As we have shown, changing each of these widths has an effect on both
execution times and the size of the search space. In Sections 4.2 and 4.3 we have fixed the
maximum width permitted to be equal to the height of the search tree (that is, the number of
variables still to be assigned when the subproblem is first constructed). Here we consider how
altering the maximum width of relaxed and restricted search trees affects execution times.

In the relaxed search trees which provide bounds during search, increasing the maximum
width increases the strength of the bounds. A tighter bound will be found by a wider relaxed
search that includes fewer relaxed nodes, and therefore more closely resembles the search tree
rooted at the same node. However, there is a trade-off to be made regarding the strength of the
bounds and execution times. A narrower search three might give weaker bounds, but these
bounds are computed much more quickly. Bounding search using a relaxed search that closely
resembles search means that we are approximately doubling our workload. Figure 6.10 shows
the impact on performance that comes from doing too much or too little work in relaxed
search. As expected there is a sweet spot between not having wide enough relaxed search
trees to get good bounds and This is why we see this wing like behaviour in the lines in
Figure 6.10.

6.3.6 Further optimisations

Throughout this chapter we have built on a simple model with symmetry reduction techniques
that we introduce as novel improvements to DDBB search in the case where the problem

126 CHAPTER 6. GRAPH SEARCH PROBLEMS

Max width of search as multiple of BDD height

1 2 3 4 5 6 7 8 9 10

11
12
13
14
15

Vertices

10
4

10
5

10
6

10
7

10
8

N
u
m

b
e
r

o
f

se
a
rc

h
 n

o
d

e
s

Figure 6.9: The effect of the maximum permitted width of a layer during restricted search on
the search space when nodes are merged using Nauty.

w, where max width of search is BDD height/w

100 50 25 20 15 10 9 8 7 6 5 4 3 2 1

7
8
9
10
11
12
13
14

Vertices

10
0

10
1

10
2

10
3

10
4

10
5

10
6

E
xe

cu
ti

o
n
 t

im
e
 i
n
 m

ill
is

e
co

n
d

s

Figure 6.10: Effect of maximum permitted width of relaxed search trees on execution time of
our algorithm

6.3. MODELLING THE FORBIDDEN SUBGRAPH PROBLEM 127

v ≤ 1 + δ∆ ≤ 1 + δ2

δ ≤ e− f4(v − 1)

∆ ≤ 2× e
v

Figure 6.11: Bounding conditions from Propositions presented in (Garnick, Kwong, and
Lazebnik, 1993).

being modelled is a graph search problem.

For the variant of the FSP that we have used to illustrate our approach we have not ex-
ploited some useful propositions presented in (Garnick, Kwong, and Lazebnik, 1993). These
propositions bound the maximum and minimum degree of a vertex belonging to a graph of
order v if the value of the optimal solution for v − 1 and e, the expected number of edges
for a graph of order v, are known. Figure 6.11 shows these bounding conditions. These
additional constraints are of use when solving the forbidden subgraph decision problem (i.e.
does there exist a graph with v vertices and e edges which does not include some family of
forbidden subgraphs?). In order to make use of these additional constraints (Codish et al.,
2019) addresses the optimisation variant of the FSP as a sequence of decision problems and
reports the execution times for both e equals the optimal value value and e equals the optimal
value plus one (which is an unsatisfiable instance of the decision problem, and the proof of
the optimal size of graph).

We cannot make full use of these results when solving the optimisation problem with our
approach as we do not know a value for e at the top of search. However, we can use these
propositions to provide an upper bound for bound of the size of the optimal solution and ∆.
This allows us to seed our algorithm with the upper bound for the optimal solution. We can
also can set that the maximum degree of the first row in A is less than or equal to ∆. We can
also terminate computation of relaxed search trees if a partial solution of size e+ 1 is found
and terminate the entire algorithm if search finds a candidate solution of size e. For some
instances where the bound we calculate for e is tight this greatly improves execution times.
The problem for v = 15 is solved by our solver in less than 1 second.

128 CHAPTER 6. GRAPH SEARCH PROBLEMS

Order
6 5 7 8 9 10 11

Runtime DDBB 0.002116 0.015202 0.123717 0.813164 5.335966 30.736689 140.292831
Space DDBB 92 322 1363 6315 25695 85180 238312
Runtime DDBB+Nauty 0.002153 0.014643 0.120640 0.802695 5.382084 28.446503 105.735497
Space DDBB+Nauty 92 322 1363 6020 22839 67807 152032
Runtime FC 0.001525 0.008419 0.039647 0.223612 1.291028 8.535055 75.985458
Space FC 31 89 269 936 3747 16412 101523

Table 6.1: Comparison of execution times of DDBB search with and without Nauty compared
with forward checking

6.4 Adding Nauty to our Go implementation

By using CGo, Go’s library that allows Go code to make use of C libraries, we can see
if adding Nauty to our solver makes our code any more competitive when compared with
forward checking. The results given in Table 6.1 were recorded using a model which includes
the lexicographic ordering constraints from Chapter 4. We can see that with this stronger
partial symmetry break (than the degree based symmetry used elsewhere in this chapter)
that using Nauty has no effect on reducing the size of the search space for smaller orders.
However, even when using Nauty does begin to reduce the size of the search space it still
does not beat a forward checking approach. However, when considering the execution times
for including Nauty in our solver written in Go we have to consider that calls to CGo are
slow. Even though forward checking still uses less search nodes than our approach combined
with Nauty this is still an interesting result that the use of Nauty reduces the size of the
search space when used with DDBB search. It might be that for some other graph search
problems our approach is more performant.

129

Chapter 7

Conclusion

In this chapter we summarise the work presented in this thesis. We then suggest the direction
that future work building on this thesis could take.

7.1 Summary

Chapter 2

In Chapter 2 we introduce decision diagram branch and bound search, after first reviewing
relevant literature regarding the use of decision diagrams in the field of optimisation. We
detail how we adapt decision diagram branch and bound search to be used in a constraint
solver in Algorithm 2.1, Algorithm 2.2, Algorithm 2.3 and Algorithm 2.4. To use these
algorithms as as the search scheme in a solver we accommodate the problem relaxations
introduced during by using Algorithm 2.3 by weakening individual constraints. Our goal
when weakening constraints is to ensure that propagating constraints after a node is created
by merging to search nodes does not cause the deletion of any values from the domains of
the unassigned variables in the newly created node. In general we achieve this by masking
variables involved in the constraint with a value which differs from their assignment, such
that all values in the domains of variables at the newly created node have support.

However, this method of weakening constraints is not a “one size fits all” approach and we
show how to weaken a number of constraints. In some instances we instead show that there is
no need to weaken a particular constraint.

We end Chapter 2 with an empirical evaluation which shows that for some instances of the
car factory sequencing problem our approach to using DDBB search as the search scheme

130 CHAPTER 7. CONCLUSION

in a constraint solver performs well when compared with forward checking. We zoom in
on one instance to show the reasons why DDBB outperforms forward checking on some
instances, namely that better solutions can be found more quickly and the search space can be
agressively pruned using relaxed width truncated search. We also evaluated the performance
of our solver using the maximum independent subgraph problem, for which our approached is
outperformed by forward checking for all but a few instances due to the nature of the problem
for most distributions of vertex weights we investigate.

Chapter 3

In Chapter 3 we continue to provide weakening algorithms for constraints, in this instance
weakening a number of global constraints in the all different class of constraints. We begin
by considering the alldiff constraint and we explain, in high level terms, how Regin’s
alldiff propagator works to determine if an alldiff constraint is unsatisfiable and, if
it is not, to prune values from the domains of unassigned variables which cannot appear in
any solutions. Our approach to weakening the alldiff constraint is to mask any variable
assignment which is in conflict with a value in the domain of any unassigned variable with
a wildcard value. We give an algorithm for this masking procedure which weakens the
alldiff constraint in a way which requires no modifications to the propagation algorithm.

We provide yet more weakening algorithms for global constraints in the remainder of this
chapter and again end with a short empirical evaluation of our solver, using the optimal
Golomb rulers problem and the cell block allocation problem. For Golomb rulers our solver
is outperformed by forward checking, but outperforms forward checking on a number of
instances of the cell block allocation problem.

Chapter 4

In Chapter 4 we turn our attention to proving weakening algorithms for symmetry breaking
constraints. These are of particular interest to us, given that our first attempts to use deci-
sion diagram branch and bound as the search scheme for a constraint solver came in our
implementation of a solver focused on extremal graph problems (we return to this problem in
Chapter 6). We begin by giving a short review of symmetry breaking constraints, and cover
the popular lex-leader method for introducing symmetry reduction to the model of a problem.

We provide weakening algorithms for lexicographic ordering constraints and the
valueProcedesChain constraint and evaluate our the performance of our solver on the
forbidden subgraph problem, for which forward checking outperforms DDBB search.

7.2. FUTURE WORK 131

Chapter 5

In Chapter 5 we conduct the bulk of our experimental work. We also give implementation
details about our solver. We provide a study into how altering the maximum width of the
restricted and relaxed width truncated search trees used in Algorithm 2.3 effect both the
execution times and size of the search space used by DDBB search.

We parallelise our solver in an attempt to improve its performance by exploiting modern
multicore processors. We give a brief overview of parallel computing and approaches to
parallel search. When parallelising our solver we make use of Goroutines and channels
to schedule tasks and communicate between workers which conduct search. We provide
empirical evidence to support that our approach both scales well (more workers leads to faster
execution times of our solver) and gives reproducable execution times.

Chapter 6

In Chapter 6 use DDBB search together with canonical graph search by implementing a solver
in C++ which makes use of the graph isomorphism library Nauty. Though using Nauty we
can remove all nodes from a search tree which represent a graph which has already appeared
at some node we have already considered. We also parallelise this solver and explore the
conflicting relationship between canonical search and branch and bound.

7.2 Future work

In this section we give our suggestions for possible areas of focus for work which builds on
this thesis.

7.2.1 Hybrid approach to search

It might be that using width truncated search trees to provide bounds during search is useful,
but that it is better paired with more traditional search schemes. For example in the context of
embarrassingly parallel search it might be useful to use bounding search to prune jobs before
parallel search begins. Decision diagram branch and bound may also pair well with clause
learning and restarts.

132 CHAPTER 7. CONCLUSION

7.2.2 Provide weakening algorithms for more constraints

To truly say that we have an approach which is appropriate for a general purpose constraint
solver we should provide weakening algorithms for more constraints. An goal could be to
provide a weakening algorithm for each constraint in the Minizinc language by working on the
benchmark problems provided by the language developers. In particular the implementation
of implications constraints would open up a number of new problems on which we could
benchmark our solver.

7.2.3 A more efficient implementation

Although we report that our approach of using DDBB search as the search scheme in a
constraint solver performs well against forward checking, it still lags behind industrial quality
solvers. Although the comparative assessment against forward checking is useful as it limits
the only difference between the approach to the way in which the search tree is explored,
to truly ascertain the competitiveness of our approach we should implement a solver with
performance in mind. For example, our current approach struggles to allow the garbage
collector in Golang to work efficiently at times for both DDBB search or forward checking.
We also do not do any preprocessing of the input models, which is a standard approach for
industrial solvers.

7.2.4 Tuning solver parameters

We saw that for some problems there was a sweet spot where our choice widths improved the
execution time of our solver the most. However for other problems the best choice of width
changes on an instance by instance basis. When this is the case it is very difficult to tune these
parameters by hand, but we could make use of machine learning to tune parameters, perhaps
making use of a tool such as SMAC (Hutter, Hoos, and Leyton-Brown, 2011).

7.2.5 Better ordering of jobs (in parallel search)

Throughout our experiments we have explored jobs when branching in a depth first manner,
in an attempt to find better incumbent solutions more quickly than forward checking through
the limited amount of search explored by restricted width truncated search trees. We also
saw that adding more workers in parallel could change the order in which nodes were visited,
impacting the execution time of our solver adversely for some instances of multiple problems

7.2. FUTURE WORK 133

(although when using 16 workers when compared to 1 worker this behaviour was all but
eliminated). We should follow the approach of Bergman, Ciré, Sabharwal, et al. (2014) in
allowing the supervisor thread to order jobs in a best first manner, which would mitigate the
impact of these race conditions.

134 CHAPTER 7. CONCLUSION

135

References

Akers, Sheldon (June 1978). “Binary Decision Diagrams”. In: IEEE Transactions on Com-

puters 27.06, pp. 509–516. ISSN: 0018-9340. DOI: 10.1109/TC.1978.1675141 (cit. on
p. 22).

Andersen, Henrik R., Tarik Hadzic, John N. Hooker, and Peter Tiedemann (2007). “A Con-
straint Store Based on Multivalued Decision Diagrams”. In: Principles and Practice of

Constraint Programming - CP 2007, 13th International Conference, CP 2007, Providence,

RI, USA, September 23-27, 2007, Proceedings, pp. 118–132. DOI: 10.1007/978-3-540-
74970-7_11 (cit. on p. 24).

Archibald, Blair (2018). “Algorithmic Skeletons for Exact Combinatorial Search at Scale”.
PhD thesis. University of Glasgow (cit. on p. 106).

Arnold, Ken, James Gosling, and David Holmes (2000). The Java Programming Language.
3rd. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. ISBN: 0201704331
(cit. on p. 102).

Babcock, Wallace C (1953). “Intermodulation interference in radio systems frequency of
occurrence and control by channel selection”. In: The Bell System Technical Journal 32.1,
pp. 63–73 (cit. on p. 81).

Balyo, Tomás, Peter Sanders, and Carsten Sinz (2015). “HordeSat: A Massively Parallel
Portfolio SAT Solver”. In: Theory and Applications of Satisfiability Testing - SAT 2015 -

18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
pp. 156–172. DOI: 10.1007/978-3-319-24318-4_12 (cit. on p. 107).

Beldiceanu, Nicolas (2001). “Pruning for the Minimum Constraint Family and for the Number
of Distinct Values Constraint Family”. In: Principles and Practice of Constraint Program-

ming - CP 2001, 7th International Conference, CP 2001, Paphos, Cyprus, November 26 -

December 1, 2001, Proceedings, pp. 211–224. DOI: 10.1007/3-540-45578-7_15 (cit. on
p. 45).

Bergman, David, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat,
and Willem Jan van Hoeve (2014). “Parallel Combinatorial Optimization with Decision
Diagrams”. In: Integration of AI and OR Techniques in Constraint Programming - 11th

136 REFERENCES

International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
pp. 351–367. DOI: 10.1007/978-3-319-07046-9_25 (cit. on pp. 103, 108, 110, 133).

Bergman, David, André A. Ciré, Willem Jan van Hoeve, and John N. Hooker (2016). “Discrete
Optimization with Decision Diagrams”. In: INFORMS Journal on Computing 28.1, pp. 47–
66. DOI: 10.1287/ijoc.2015.0648 (cit. on pp. 1, 17, 24, 25, 36, 108, 118).

Bergman, David, Willem Jan van Hoeve, and John N. Hooker (2011). “Manipulating MDD
Relaxations for Combinatorial Optimization”. In: Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems - 8th International

Conference, CPAIOR 2011, Berlin, Germany, May 23-27, 2011. Proceedings, pp. 20–35
(cit. on p. 24).

Biraud, F, E Blum, and J Ribes (1974). “On optimum synthetic linear arrays with application
to radioastronomy”. In: IEEE Transactions on Antennas and Propagation 22.1, pp. 108–
109 (cit. on p. 82).

Bloom, Gary S. and Solomon W. Golomb (1977). “Applications of numbered undirected
graphs”. In: Proceedings of the IEEE 65.4, pp. 562–570 (cit. on p. 82).

Bosch, Robert and Michael A. Trick (2004). “Constraint Programming and Hybrid Formu-
lations for Three Life Designs”. In: Annals OR 130.1-4, pp. 41–56. DOI: 10.1023/B:
ANOR.0000032569.86938.2f (cit. on p. 94).

Bryant, Randal E. (1985). “Symbolic manipulation of Boolean functions using a graphical
representation”. In: Proceedings of the 22nd ACM/IEEE conference on Design automation,

DAC 1985, Las Vegas, Nevada, USA, 1985. Pp. 688–694. DOI: 10.1145/317825.317964
(cit. on pp. 12, 22).

Bryant, Randal E. (1992). “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams”. In: ACM Comput. Surv. 24.3, pp. 293–318. DOI: 10.1145/136035.136043
(cit. on p. 22).

Chu, Geoffrey, Christian Schulte, and Peter J. Stuckey (2009). “Confidence-Based Work
Stealing in Parallel Constraint Programming”. In: Principles and Practice of Constraint

Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal,

September 20-24, 2009, Proceedings, pp. 226–241. DOI: 10.1007/978-3-642-04244-7_20
(cit. on p. 108).

Codish, Michael, Alice Miller, Patrick Prosser, and Peter J. Stuckey (2019). “Constraints for
symmetry breaking in graph representation”. In: Constraints 24.1, pp. 1–24 (cit. on pp. 93,
118–120, 127).

Crawford, James M., Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy (1996).
“Symmetry-Breaking Predicates for Search Problems”. In: Proceedings of the Fifth Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR’96),

Cambridge, Massachusetts, USA, November 5-8, 1996. Pp. 148–159 (cit. on p. 93).

REFERENCES 137

Cruz-Filipe, Luís, João Marques-Silva, and Peter Schneider-Kamp (2017). “Efficient Certified
Resolution Proof Checking”. In: Tools and Algorithms for the Construction and Analysis of

Systems - 23rd International Conference, TACAS 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April

22-29, 2017, Proceedings, Part I. Ed. by Axel Legay and Tiziana Margaria. Vol. 10205.
Lecture Notes in Computer Science, pp. 118–135. DOI: 10.1007/978-3-662-54577-5_7
(cit. on p. 10).

Dagum, Leonardo and Ramesh Menon (January 1998). “OpenMP: An Industry-Standard API
for Shared-Memory Programming”. In: IEEE Comput. Sci. Eng. 5.1, pp. 46–55. ISSN:
1070-9924. DOI: 10.1109/99.660313 (cit. on p. 104).

Deshpande, Neil, Erica Sponsler, and Nathaniel Weiss (2012). Analysis of the Go runtime

scheduler (cit. on p. 104).

De Uña, Diego, Graeme Gange, Peter Schachte, and Peter J. Stuckey (2019). “Compiling CP
subproblems to MDDs and d-DNNFs”. In: Constraints 24.1, pp. 56–93. DOI: 10.1007/
s10601-018-9297-2 (cit. on p. 23).

Dincbas, Mehmet, Helmut Simonis, and Pascal Van Hentenryck (1988). “Solving the Car-
Sequencing Problem in Constraint Logic Programming”. In: 8th European Conference

on Artificial Intelligence, ECAI 1988, Munich, Germany, August 1-5, 1988, Proceedings.

Pp. 290–295 (cit. on pp. 51, 52).

Dollas, Apostolos, William T Rankin, and David McCracken (1998). “A new algorithm
for Golomb ruler derivation and proof of the 19 mark ruler”. In: IEEE Transactions on

Information Theory 44.1, pp. 379–382 (cit. on p. 82).

Downey, Rodney G. and Michael R. Fellows (1995). “Fixed-Parameter Tractability and
Completeness I: Basic Results”. In: SIAM J. Comput. 24.4, pp. 873–921. DOI: 10.1137/
S0097539792228228 (cit. on p. 11).

Dunning, Iain, Joey Huchette, and Miles Lubin (2017). “JuMP: A Modeling Language
for Mathematical Optimization”. In: SIAM Review 59.2, pp. 295–320. DOI: 10.1137/
15M1020575 (cit. on p. 4).

Flener, Pierre, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh (2002). “Breaking Row and Column Symmetries in Matrix Models”.
In: Principles and Practice of Constraint Programming - CP 2002, 8th International

Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, pp. 462–476.
DOI: 10.1007/3-540-46135-3_31 (cit. on p. 93).

Ford, Lester R. and Delbert R. Fulkerson (2009). “Maximal flow through a network”. In:
Classic papers in combinatorics. Springer, pp. 243–248 (cit. on p. 72).

Frisch, Alan M., Matthew Grum, Christopher Jefferson, Bernadette Martínez Hernández, and
Ian Miguel (2007). “The Design of ESSENCE: A Constraint Language for Specifying

138 REFERENCES

Combinatorial Problems”. In: IJCAI 2007, Proceedings of the 20th International Joint

Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp. 80–87
(cit. on pp. 4, 13).

Frisch, Alan M., Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh (2002). “Global
Constraints for Lexicographic Orderings”. In: Principles and Practice of Constraint

Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA,

September 9-13, 2002, Proceedings, pp. 93–108. DOI: 10.1007/3-540-46135-3_7 (cit. on
p. 94).

Gagliardi, R, J Robbins, and Herbert Taylor (1987). “Acquisition sequences in ppm commu-
nications (corresp.)” In: IEEE Transactions on Information Theory 33.5, pp. 738–744
(cit. on p. 82).

Galinier, Philippe (2001). “A constraint-based appproach to the Golomb ruler problem”. In:
Third International Workshop on the Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems (CPAIOR) (cit. on p. 82).

Gardner, Martin (1970). “Mathematical games”. In: Scientific American 222.6, pp. 132–140
(cit. on p. 93).

Garey, M. R. and David S. Johnson (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman. ISBN: 0-7167-1044-7 (cit. on p. 9).

Garey, M. R. and David S. Johnson (1981). “Approximation Algorithms for Bin Packing
Problems: A Survey”. In: Analysis and Design of Algorithms in Combinatorial Optimiza-

tion. Ed. by G. Ausiello and M. Lucertini. Vienna: Springer Vienna, pp. 147–172. ISBN:
978-3-7091-2748-3. DOI: 10.1007/978-3-7091-2748-3_8 (cit. on p. 11).

Garnick, David K, YH Kwong, and Felix Lazebnik (1993). “Extremal graphs without three-
cycles or four-cycles”. In: Journal of Graph Theory 17.5, pp. 633–645 (cit. on pp. 119,
127).

Gendron, Bernard and Teodor Gabriel Crainic (1994). “Parallel Branch-and-Branch Al-
gorithms: Survey and Synthesis”. In: Operations Research 42.6, pp. 1042–1066. DOI:
10.1287/opre.42.6.1042 (cit. on p. 106).

Gent, Ian P. (1998). Two results on car-sequencing problems (cit. on p. 51).

Gent, Ian P., Warwick Harvey, and Tom Kelsey (2002). “Groups and Constraints: Symmetry
Breaking during Search”. In: Principles and Practice of Constraint Programming - CP

2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002,

Proceedings, pp. 415–430. DOI: 10.1007/3-540-46135-3_28 (cit. on p. 93).

Gent, Ian P., Ian Miguel, and Peter Nightingale (2008). “Generalised arc consistency for the
AllDifferent constraint: An empirical survey”. In: Artif. Intell. 172.18, pp. 1973–2000.
DOI: 10.1016/j.artint.2008.10.006 (cit. on p. 70).

REFERENCES 139

Gent, Ian P., Karen E. Petrie, and Jean-Francois Puget (2006). “Symmetry in Constraint
Programming”. In: Handbook of Constraint Programming, pp. 329–376. DOI: 10.1016/
S1574-6526(06)80014-3 (cit. on p. 91).

Giles, Katherine and Willem Jan van Hoeve (2016). “Solving a Supply-Delivery Scheduling
Problem with Constraint Programming”. In: Principles and Practice of Constraint Pro-

gramming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,

2016, Proceedings. Ed. by Michel Rueher. Vol. 9892. Lecture Notes in Computer Science.
Springer, pp. 602–617. ISBN: 978-3-319-44952-4. DOI: 10.1007/978-3-319-44953-1_38
(cit. on p. 2).

Glover, Fred W. (1990). “Tabu Search - Part II”. In: INFORMS J. Comput. 2.1, pp. 4–32. DOI:
10.1287/ijoc.2.1.4 (cit. on p. 11).

Gocht, Stephan, Ciaran McCreesh, and Jakob Nordström (2020). “Subgraph Isomorphism
Meets Cutting Planes: Solving With Certified Solutions”. In: Proceedings of the Twenty-

Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. Ed. by Chris-
tian Bessiere. ijcai.org, pp. 1134–1140. DOI: 10.24963/ijcai.2020/158 (cit. on p. 10).

Goldberg, Evguenii I. and Yakov Novikov (2003). “Verification of Proofs of Unsatisfiability
for CNF Formulas”. In: 2003 Design, Automation and Test in Europe Conference and

Exposition, 3-7 March 2003, Munich, Germany. IEEE Computer Society, pp. 10886–
10891. DOI: 10.1109/DATE.2003.10008 (cit. on p. 10).

Goldreich, Oded (2010). P, NP, and NP-Completeness: The basics of computational complex-

ity. Cambridge University Press (cit. on p. 9).

Gottlieb, Jens, Markus Puchta, and Christine Solnon (2003). “A Study of Greedy, Local Search,
and Ant Colony Optimization Approaches for Car Sequencing Problems”. In: Applica-

tions of Evolutionary Computing, EvoWorkshop 2003: EvoBIO, EvoCOP, EvoIASP, Evo-

MUSART, EvoROB, and EvoSTIM, Essex, UK, April 14-16, 2003, Proceedings, pp. 246–
257. DOI: 10.1007/3-540-36605-9_23 (cit. on p. 25).

Hadzic, Tarik and John N. Hooker (2006). Postoptimality analysis for integer programming

using binary decision diagrms. Tech. rep. Carnegie Mellon University (cit. on p. 23).

Hadzic, Tarik and John N. Hooker (2007). “Cost-Bounded Binary Decision Diagrams for
0-1 Programming”. In: Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007,

Brussels, Belgium, May 23-26, 2007, Proceedings, pp. 84–98. DOI: 10.1007/978-3-540-
72397-4_7 (cit. on p. 23).

Hadzic, Tarik, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann (2008). “Approximate
Compilation of Constraints into Multivalued Decision Diagrams”. In: Principles and

Practice of Constraint Programming, 14th International Conference, CP 2008, Sydney,

140 REFERENCES

Australia, September 14-18, 2008. Proceedings, pp. 448–462. DOI: 10.1007/978-3-540-
85958-1_30 (cit. on p. 24).

Haralick, Robert M. and Gordon L. Elliott (1980). “Increasing Tree Search Efficiency for
Constraint Satisfaction Problems”. In: Artif. Intell. 14.3, pp. 263–313. DOI: 10.1016/0004-
3702(80)90051-X (cit. on pp. 6, 10).

Harvey, Warwick and Joachim Schimpf (2002). Bounds Consistency Techniques For Long

Linear Constraints (cit. on p. 40).

Harvey, Warwick and Peter J. Stuckey (1998). “Constraint Representation for Propagation”. In:
Principles and Practice of Constraint Programming - CP98, 4th International Conference,

Pisa, Italy, October 26-30, 1998, Proceedings, pp. 235–249. DOI: 10.1007/3-540-49481-
2_18 (cit. on pp. 39, 44).

Harvey, Warwick and Thorsten Jan Winterer (2005). “Solving the MOLR and Social Golfers
Problems”. In: Principles and Practice of Constraint Programming - CP 2005, 11th

International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings. Ed. by
Peter van Beek. Vol. 3709. Lecture Notes in Computer Science. Springer, pp. 286–300.
ISBN: 3-540-29238-1. DOI: 10.1007/11564751_23 (cit. on p. 94).

Hayes, Brian (1998). “Computing science: Collective wisdom”. In: American Scientist 86.2,
pp. 118–122 (cit. on p. 82).

Heule, Marijn, Warren A. Jr. Hunt, and Nathan Wetzler (2013). “Verifying Refutations
with Extended Resolution”. In: Automated Deduction - CADE-24 - 24th International

Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings.
Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
pp. 345–359. DOI: 10.1007/978-3-642-38574-2_24 (cit. on p. 10).

Hoda, Samid, Willem Jan van Hoeve, and John N. Hooker (2010). “A Systematic Approach
to MDD-Based Constraint Programming”. In: Principles and Practice of Constraint

Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews, Scotland,

UK, September 6-10, 2010. Proceedings, pp. 266–280. DOI: 10.1007/978-3-642-15396-
9_23 (cit. on p. 24).

Hooker, John N. (2013). “Decision Diagrams and Dynamic Programming”. In: Integration

of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, 10th International Conference, CPAIOR 2013, Yorktown Heights, NY, USA,

May 18-22, 2013. Proceedings, pp. 94–110. DOI: 10.1007/978-3-642-38171-3_7 (cit. on
p. 24).

Hurley, Barry and Barry O’Sullivan (2016). “Introduction to Combinatorial Optimisation in
Numberjack”. In: Data Mining and Constraint Programming - Foundations of a Cross-

Disciplinary Approach, pp. 3–24. DOI: 10.1007/978-3-319-50137-6_1 (cit. on p. 4).

REFERENCES 141

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2011). “Sequential Model-Based
Optimization for General Algorithm Configuration”. In: Learning and Intelligent Op-

timization - 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011.

Selected Papers, pp. 507–523. DOI: 10.1007/978-3-642-25566-3_40 (cit. on p. 132).

Järvisalo, Matti, Daniel Le Berre, Olivier Roussel, and Laurent Simon (2012). “The Interna-
tional SAT Solver Competitions”. In: AI Magazine 33.1 (cit. on p. 108).

Jefferson, Christopher, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent, eds. (1999).
CSPLib: A problem library for constraints. http://www.csplib.org (cit. on p. 13).

Kaiser, Hartmut, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar Fey
(2014). “HPX: A Task Based Programming Model in a Global Address Space”. In:
Proceedings of the 8th International Conference on Partitioned Global Address Space

Programming Models, PGAS 2014, Eugene, OR, USA, October 6-10, 2014, 6:1–6:11. DOI:
10.1145/2676870.2676883 (cit. on p. 104).

Kautz, Henry A., Yongshao Ruan, Dimitris Achlioptas, Carla P. Gomes, Bart Selman, and
Mark E. Stickel (2001). “Balance and Filtering in Structured Satisfiable Problems”. In:
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,

IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001, pp. 351–358 (cit. on p. 69).

Kocuk, Burak and Willem Jan van Hoeve (2019). “A Computational Comparison of Optimiza-
tion Methods for the Golomb Ruler Problem”. In: Integration of Constraint Programming,

Artificial Intelligence, and Operations Research - 16th International Conference, CPAIOR

2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, pp. 409–425. DOI: 10.1007/978-
3-030-19212-9_27 (cit. on p. 82).

Kozen, Dexter C. (1992). Design and Analysis of Algorithms. Texts and Monographs in
Computer Science. Springer. ISBN: 978-3-540-97687-5. DOI: 10.1007/978-1-4612-4400-
4 (cit. on p. 6).

Lagerkvist, Mikael Z. and Christian Schulte (2007). “Advisors for Incremental Propagation”.
In: Principles and Practice of Constraint Programming - CP 2007, 13th International

Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, pp. 409–
422. DOI: 10.1007/978-3-540-74970-7_30 (cit. on p. 70).

Lai, Yung-Te, Massoud Pedram, and Sarma B. K. Vrudhula (1994). “EVBDD-based algo-
rithms for integer linear programming, spectral transformation, and function decomposi-
tion”. In: IEEE Trans. on CAD of Integrated Circuits and Systems 13.8, pp. 959–975. DOI:
10.1109/43.298033 (cit. on p. 23).

Larrosa, Javier and Gabriel Valiente (2002). “Constraint satisfaction algorithms for graph
pattern matching”. In: Mathematical. Structures in Comp. Sci. 12.4, pp. 403–422. ISSN:
0960-1295. DOI: http://dx.doi.org/10.1017/S0960129501003577 (cit. on p. 62).

142 REFERENCES

Lee, C. Y. (July 1959). “Representation of switching circuits by binary-decision programs”.
In: The Bell System Technical Journal 38.4, pp. 985–999. ISSN: 0005-8580. DOI: 10.1002/
j.1538-7305.1959.tb01585.x. (Cit. on p. 21).

Leiserson, Charles E. (2009). “The Cilk++ concurrency platform”. In: Proceedings of the

46th Design Automation Conference, DAC 2009, San Francisco, CA, USA, July 26-31,

2009, pp. 522–527. DOI: 10.1145/1629911.1630048 (cit. on p. 104).

Malapert, Arnaud, Jean-Charles Régin, and Mohamed Rezgui (2016). “Embarrassingly Par-
allel Search in Constraint Programming”. In: J. Artif. Intell. Res. 57, pp. 421–464. DOI:
10.1613/jair.5247 (cit. on p. 108).

Mayer-Eichberger, Valentin and Toby Walsh (2013). “SAT Encodings for the Car Sequencing
Problem”. In: POS-13. Fourth Pragmatics of SAT workshop, a workshop of the SAT 2013

conference, July 7, 2013, Helsinki, Finland, pp. 15–27 (cit. on p. 51).

McCreesh, Ciaran (2017). “Solving Hard Subgraph Problems in Parallel”. PhD thesis. Univer-
sity of Glasgow (cit. on p. 13).

McCreesh, Ciaran and Patrick Prosser (2015). “The Shape of the Search Tree for the Maximum
Clique Problem and the Implications for Parallel Branch and Bound”. In: TOPC 2.1, 8:1–
8:27. DOI: 10.1145/2742359 (cit. on p. 122).

McKay, Brendan D. and Adolfo Piperno (2014). “Practical graph isomorphism, II”. In: J.

Symb. Comput. 60, pp. 94–112 (cit. on p. 117).

Meyerson, J. (September 2014). “The Go Programming Language”. In: IEEE Software 31.5,
pp. 104–104. DOI: 10.1109/MS.2014.127 (cit. on p. 101).

Moisan, Thierry, Jonathan Gaudreault, and Claude-Guy Quimper (2013). “Parallel Discrepancy-
Based Search”. In: Principles and Practice of Constraint Programming - 19th Interna-

tional Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
pp. 30–46. DOI: 10.1007/978-3-642-40627-0_6 (cit. on p. 108).

Moore, Edward F. (1959). “The shortest path through a maze”. In: Proc. Int. Symp. Switching

Theory, 1959, pp. 285–292 (cit. on p. 6).

Moore, Gordon E. (September 2006). “Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE

Solid-State Circuits Society Newsletter 11.3, pp. 33–35. DOI: 10.1109/N-SSC.2006.
4785860 (cit. on p. 103).

Nakahata, Yu, Jun Kawahara, and Shoji Kasahara (2018). “Enumerating Graph Partitions
Without Too Small Connected Components Using Zero-suppressed Binary and Ternary
Decision Diagrams”. In: 17th International Symposium on Experimental Algorithms, SEA

2018, June 27-29, 2018, L’Aquila, Italy, 21:1–21:13. DOI: 10.4230/LIPIcs.SEA.2018.21
(cit. on p. 23).

REFERENCES 143

Nanz, Sebastian, Scott West, and Kaue Soares da Silveira (2013). “Examining the Expert Gap
in Parallel Programming”. In: Euro-Par 2013 Parallel Processing - 19th International

Conference, Aachen, Germany, August 26-30, 2013. Proceedings, pp. 434–445. DOI:
10.1007/978-3-642-40047-6_45 (cit. on pp. 105, 108).

Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack (2007a). “MiniZinc: Towards a Standard CP Modelling Language”.
In: Principles and Practice of Constraint Programming - CP 2007, 13th International

Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, pp. 529–
543. DOI: 10.1007/978-3-540-74970-7_38 (cit. on p. 4).

Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack (2007b). “MiniZinc: Towards a Standard CP Modelling Language”. In:
Proceedings of the 13th International Conference on Principles and Practice of Constraint

Programming. CP’07. Providence, RI, USA: Springer-Verlag, pp. 529–543. ISBN: 978-3-
540-74969-1 (cit. on p. 13).

Nguyen, T. and Yves Deville (1998). “A Distributed Arc-Consistency Algorithm”. In: Sci.

Comput. Program. 30.1-2, pp. 227–250. DOI: 10.1016/S0167-6423(97)00012-9 (cit. on
p. 106).

O’Neil, Ryan J. and Karla Hoffman (2018). Exact Methods for Solving Traveling Salesman

Problems with Pickup and Delivery in Real Time (cit. on p. 2).

Perron, Laurent (1999). “Search Procedures and Parallelism in Constraint Programming”. In:
Principles and Practice of Constraint Programming - CP’99, 5th International Conference,

Alexandria, Virginia, USA, October 11-14, 1999, Proceedings, pp. 346–360. DOI: 10.
1007/978-3-540-48085-3_25 (cit. on p. 108).

Pesant, Gilles, Claude-Guy Quimper, and Alessandro Zanarini (2014). “Counting-Based
Search: Branching Heuristics for Constraint Satisfaction Problems”. In: CoRR abs/1401.4601.
arXiv: 1401.4601 (cit. on p. 69).

Promotional material, Gurobi (2019). Ditributed Optimisations: Use multiple machines for

maximum performance. Tech. rep. (cit. on p. 107).

Prosser, Patrick (1995). MAC-CBJ: maintaining arc consistency with conflict-directed back-

jumping. Tech. rep. Department of Computer Science, University of Strathclyde (cit. on
p. 7).

Prosser, Patrick, Chris Conway, and Claude Muller (1992). “A constraint maintenance system
for the distributed resource allocation problem”. In: Intelligent Systems Engineering 1.1,
pp. 76–83 (cit. on p. 106).

Prud’homme, Charles, Jean-Guillaume Fages, and Xavier Lorca (2017). Choco Documenta-

tion. TASC - LS2N CNRS UMR 6241, COSLING S.A.S. (cit. on p. 4).

144 REFERENCES

Puget, Jean-Francois (1993). “On the Satisfiability of Symmetrical Constrained Satisfaction
Problems”. In: Methodologies for Intelligent Systems, 7th International Symposium, ISMIS

’93, Trondheim, Norway, June 15-18, 1993, Proceedings, pp. 350–361. DOI: 10.1007/3-
540-56804-2_33 (cit. on p. 93).

Quimper, Claude-Guy and Toby Walsh (2005). “The All Different and Global Cardinality
Constraints on Set, Multiset and Tuple Variables”. In: Recent Advances in Constraints,

Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint

Logic Programming, CSCLP 2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected

and Invited Papers, pp. 1–13. DOI: 10.1007/11754602_1 (cit. on p. 70).

Régin, Jean-Charles (1994). “A Filtering Algorithm for Constraints of Difference in CSPs”.
In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA,

USA, July 31 - August 4, 1994, Volume 1. Pp. 362–367 (cit. on pp. 70, 72).

Régin, Jean-Charles and Jean-Francois Puget (1997). “A Filtering Algorithm for Global
Sequencing Constraints”. In: Principles and Practice of Constraint Programming - CP97,

Third International Conference, Linz, Austria, October 29 - November 1, 1997, Proceed-

ings, pp. 32–46. DOI: 10.1007/BFb0017428 (cit. on p. 51).

Régin, Jean-Charles, Mohamed Rezgui, and Arnaud Malapert (2014). “Improvement of the
Embarrassingly Parallel Search for Data Centers”. In: Principles and Practice of Con-

straint Programming - 20th International Conference, CP 2014, Lyon, France, September

8-12, 2014. Proceedings. Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer
Science. Springer, pp. 622–635. ISBN: 978-3-319-10427-0. DOI: 10.1007/978-3-319-
10428-7_45 (cit. on p. 108).

Reinders, James (2007). Intel threading building blocks: outfitting C++ for multi-core proces-

sor parallelism. O’Reilly Media, Inc. (cit. on p. 104).

Schaerf, Andrea (1999). “Scheduling Sport Tournaments using Constraint Logic Program-
ming”. In: Constraints 4.1, pp. 43–65. DOI: 10.1023/A:1009845710839 (cit. on p. 69).

Schröer, Olaf and Ingo Wegener (1998). “The Theory of Zero-Suppressed BDDs and the
Number of Knight’s Tours”. In: Formal Methods in System Design 13.3, pp. 235–253.
DOI: 10.1023/A:1008681625346 (cit. on p. 23).

Selman, Bart, Hector J. Levesque, and David G. Mitchell (1992). “A New Method for
Solving Hard Satisfiability Problems”. In: Proceedings of the 10th National Conference

on Artificial Intelligence, San Jose, CA, USA, July 12-16, 1992. Ed. by William R. Swartout.
AAAI Press / The MIT Press, pp. 440–446 (cit. on p. 11).

Shannon, Claude Elwood (1940). “A symbolic analysis or relay and switching circuits.”
PhD thesis. Massachusetts Institute of Technology, Dept. of Electrical Engineering (cit. on
p. 21).

REFERENCES 145

Siala, Mohamed, Emmanuel Hebrard, and Marie-José Huguet (2014). “An optimal arc
consistency algorithm for a particular case of sequence constraint”. In: Constraints 19.1,
pp. 30–56. DOI: 10.1007/s10601-013-9150-6 (cit. on p. 51).

Siala, Mohamed, Emmanuel Hebrard, and Marie-José Huguet (2015). “A study of constraint
programming heuristics for the car-sequencing problem”. In: Eng. Appl. of AI 38, pp. 34–
44. DOI: 10.1016/j.engappai.2014.10.009 (cit. on p. 51).

Smith, Barbara (n.d.). CSPLib Problem 001: Car Sequencing. Ed. by Christopher Jefferson,
Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.org/Problems/
prob001 (cit. on p. 147).

Smith, Barbara M. (2002). “A Dual Graph Translation of a Problem in ’Life’”. In: Principles

and Practice of Constraint Programming - CP 2002, 8th International Conference, CP

2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, pp. 402–414. DOI: 10.1007/3-
540-46135-3_27 (cit. on p. 94).

Smith, Barbara M., Karen E. Petrie, and Ian P. Gent (2004). “Models and Symmetry Breaking
for ’Peaceable Armies of Queens’”. In: Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, First International Conference,

CPAIOR 2004, Nice, France, April 20-22, 2004, Proceedings, pp. 271–286. DOI: 10.1007/
978-3-540-24664-0_19 (cit. on p. 94).

Solnon, Christine, Van-Dat Cung, Alain Nguyen, and Christian Artigues (2008). “The car
sequencing problem: Overview of state-of-the-art methods and industrial case-study of
the ROADEF’2005 challenge problem”. In: European Journal of Operational Research

191.3, pp. 912–927. DOI: 10.1016/j.ejor.2007.04.033 (cit. on p. 51).

Stergiou, Kostas and Toby Walsh (1999). “The Difference All-Difference Makes”. In: Pro-

ceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI

99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pp. 414–419
(cit. on p. 70).

Stuckey, Peter J. (2016). Cell block. URL: https://github.com/MiniZinc/minizinc-examples/
tree/master/cell_block (visited on October 21, 2020) (cit. on pp. 84, 147).

Stuckey, Peter J., Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer (2014).
“The MiniZinc Challenge 2008-2013”. In: AI Magazine 35.2, pp. 55–60 (cit. on p. 4).

Sutter, Herb (2005). “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software”. In: Dr. Dobb’s Journal 30.3 (cit. on p. 103).

Sutter, Herb and James R. Larus (2005). “Software and the concurrency revolution”. In: ACM

Queue 3.7, pp. 54–62. DOI: 10.1145/1095408.1095421 (cit. on p. 103).

Tarjan, Robert Endre (1972). “Depth-First Search and Linear Graph Algorithms”. In: SIAM J.

Comput. 1.2, pp. 146–160. DOI: 10.1137/0201010 (cit. on p. 72).

146 REFERENCES

Van Beek, Peter (n.d.). CSPLib Problem 006: Golomb rulers. Ed. by Christopher Jefferson,
Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.org/Problems/
prob006 (cit. on p. 147).

Van Hoeve, Willem Jan (2001). “The alldifferent Constraint: A Survey”. In: CoRR cs.PL/0105015
(cit. on p. 70).

Van Laarhoven, Peter J. M. and Emile H. L. Aarts (1987). Simulated Annealing: Theory and

Applications. Vol. 37. Mathematics and Its Applications. Springer. ISBN: 978-90-481-
8438-5. DOI: 10.1007/978-94-015-7744-1 (cit. on p. 11).

Wegener, Ingo (2000). Branching programs and binary decision diagrams: theory and appli-

cations. Vol. 4. SIAM (cit. on p. 22).

Weidenbach, Christoph (2017). “Do Portfolio Solvers Harm?” In: ARCADE 2017, 1st In-

ternational Workshop on Automated Reasoning: Challenges, Applications, Directions,

Exemplary Achievements, Gothenburg, Sweden, 6th August 2017, pp. 76–81 (cit. on
p. 107).

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown (2011). “SATzilla: Portfolio-
based Algorithm Selection for SAT”. In: CoRR abs/1111.2249. arXiv: 1111.2249 (cit. on
p. 107).

Yasuhara, M., Toshiyuki Miyamoto, K. Mori, S. Kitamura, and Y. Izui (2015). “Multi-
objective embarrassingly parallel search for constraint programming”. In: 2015 IEEE

International Conference on Industrial Engineering and Engineering Management, IEEM

2015, Singapore, December 6-9, 2015, pp. 853–857. DOI: 10.1109/IEEM.2015.7385769
(cit. on p. 108).

147

Appendix A

Problem Models

This appendix includes the models used for the problems solved in this thesis given as listings
of Minizinc code. The code given in Listing A.1 (B. Smith, n.d.) and Listing A.2 (van Beek,
n.d.) can be found in the CSPlib repository of problems. The code given in Listing A.3 can
be found in the Minizinc Examples Github repository (Stuckey, 2016). The code given in
Listing A.4 is my own.

Listing A.1: Car factory sequencing problem model
%
% Car s e q u e n c i n g i n MiniZinc .
%
% Thi s i s based on t h e OPL3 model c a r . mod .
%
% Compare wi th t h e Comet model
% h t t p : / / www. hakank . o rg / comet / c a r . co
%
%
% This MiniZinc model was c r e a t e d by Hakan K j e l l e r s t r a n d , hakank@bonetmai l . com
% See a l s o my MiniZinc page : h t t p : / / www. hakank . o rg / m i n i z i n c
%
% Model m o d i f i e d t o match CSPLib d a t a f o r m a t by C h r i s Mears .
%
% L i c e n c e d under CC−BY−4.0 : h t t p : / / c r ea t ivecommons . o rg / l i c e n s e s / by / 4 . 0 /
%
% i n c l u d e " g l o b a l s . mzn " ;
i n t : n u m c l a s s e s ;
i n t : numopt ions ;
i n t : numcars ;
s e t o f i n t : C l a s s e s = 1 . . n u m c l a s s e s ;
s e t o f i n t : O p t i o n s = 1 . . numopt ions ;
s e t o f i n t : S l o t s = 1 . . numcars ;

a r r a y [C l a s s e s] o f i n t : numberPe rC la s s ;

a r r a y [C l a s s e s , O p t i o n s] o f i n t : o p t i o n s R e q u i r e d ;
a r r a y [O p t i o n s] o f i n t : windowSize ;
a r r a y [O p t i o n s] o f i n t : optMax ;

a r r a y [O p t i o n s] o f i n t : o p t i o n N u m b e r P e r C l a s s = [sum (j i n C l a s s e s) (numberPe rC la s s [j] * o p t i o n s R e q u i r e d [j , i]) | i i n O p t i o n s] ;

% d e c i s i o n v a r i a b l e s

a r r a y [S l o t s] o f v a r C l a s s e s : s l o t ;
a r r a y [Opt ions , S l o t s] o f v a r 0 . . 1 : s e t u p ;

v a r i n t : z = sum (s i n C l a s s e s) (s * s l o t [s]) ;

148 CHAPTER A. PROBLEM MODELS

s o l v e min imize z ;

o u t p u t [
" z : " ++ show (z) ++ " \ n " ++
" s l o t : " ++ show (s l o t) ++ " \ n "

] ++
[

i f j = 1 t h e n " \ n " e l s e " " e n d i f ++
show (s e t u p [i , j])

| i i n Opt ions , j i n S l o t s
] ;

Listing A.2: Optimal Golomb rulers
%−−−%
% Golomb r u l e r s
% prob006 i n c s p l i b
%−−−%
% From c s p l i b :
% A Golomb r u l e r may be d e f i n e d as a s e t o f m i n t e g e r s 0 = a_1 < a_2 <
% . . . < a_m such t h a t t h e m(m− 1) / 2 d i f f e r e n c e s a _ j − a_ i , 1 <= i < j
% <= m a r e d i s t i n c t . Such a r u l e r i s s a i d t o c o n t a i n m marks and i s o f
% l e n g t h a_m . The o b j e c t i v e i s t o f i n d o p t i m a l (minimum l e n g t h) o r
% n e a r o p t i m a l r u l e r s .
%
% Thi s i s t h e " t e r n a r y c o n s t r a i n t s and an a l l d i f f e r e n t " model
%−−−%

i n c l u d e " g l o b a l s . mzn " ;

i n t : m;
i n t : n = m*m;

a r r a y [1 . .m] o f v a r 0 . . n : mark ;

a r r a y [1 . . (m*(m− 1)) d i v 2] o f v a r 0 . . n : d i f f e r e n c e s =
[mark [j] − mark [i] | i i n 1 . . m, j i n i + 1 . .m] ;

c o n s t r a i n t mark [1] = 0 ;

c o n s t r a i n t f o r a l l (i i n 1 . . m−1) (mark [i] < mark [i +1]) ;

c o n s t r a i n t a l l d i f f e r e n t (d i f f e r e n c e s) ;

% Symmetry b r e a k i n g
c o n s t r a i n t d i f f e r e n c e s [1] < d i f f e r e n c e s [(m*(m− 1)) d i v 2] ;

s o l v e : : i n t _ s e a r c h (mark , i n p u t _ o r d e r , indomain , c o m p l e t e)
min imize mark [m] ;

o u t p u t [show (mark)] ;

%−−−%
%−−−%

Listing A.3: Cell Block Allocation
i n t : k ;
s e t o f i n t : PRISONER = 1 . . k ;
i n t : n ;
s e t o f i n t : ROW = 1 . . n ;
i n t : m;
s e t o f i n t : COL = 1 . .m;
s e t o f PRISONER : d a ng e r ;
s e t o f PRISONER : f e ma le ;
s e t o f PRISONER : male = PRISONER d i f f f e ma le ;
a r r a y [ROW,COL] of i n t : c o s t ;

a r r a y [PRISONER] of v a r ROW: r ;
a r r a y [PRISONER] of v a r COL: c ;

%c o n s t r a i n t f o r a l l (p1 , p2 i n PRISONER where p1 < p2)
% (abs (r [p1] − r [p2]) + abs (c [p1] − c [p2]) > 0) ;
i n c l u d e " a l l d i f f e r e n t . mzn " ;

149

c o n s t r a i n t a l l d i f f e r e n t ([r [p] * m + c [p] | p i n PRISONER]) ;

c o n s t r a i n t f o r a l l (p i n PRISONER , d i n da n ge r where p != d)
(abs (r [p] − r [d]) + abs (c [p] − c [d]) > 1) ;

c o n s t r a i n t f o r a l l (p i n f e m a l e) (r [p] <= (n + 1) d i v 2) ;
c o n s t r a i n t f o r a l l (p i n male) (r [p] >= n d i v 2 + 1) ;

v a r i n t : t o t a l c o s t = sum (p i n PRISONER) (c o s t [r [p] , c [p]]) ;
s o l v e min imize t o t a l c o s t ;

o u t p u t [" c o s t = \ (t o t a l c o s t) \ n "] ++
[" P r i s o n e r \ (p) " ++ i f p i n f em a le t h e n " (F) " e l s e " (M) " e n d i f ++

" i n [\ (r [p]) , \ (c [p])] . \ n "
| p i n PRISONER] ;

Listing A.4: Maximum Independent Set Problem
%
% Maximum I n d e p e n d e n t S e t
%

i n t : n ;
a r r a y [1 . . n , 1 . . n] o f 0 . . 1 : A; % a d j a c e n c y
a r r a y [1 . . n] o f i n t : c o s t ;
a r r a y [1 . . n] o f v a r 0 . . 1 : v ; % v [i] = 1 <−> i t h v e r t e x i s i n max i n d e p e n d e n t s e t

% d e c l a r e c o n s t r a i n t s
c o n s t r a i n t f o r a l l (i , j i n 1 . . n where i < j) (i f A[i , j] = 1 t h e n v [i] + v [j] < 2 e l s e t r u e e n d i f) ;

v a r i n t : s e t C o s t ; % number o f v e r t i c e s i n t h e max i n d e p e n d e n t s e t
c o n s t r a i n t s e t C o s t = sum (i i n 1 . . n) (c o s t [i] * v [i]) ;

s o l v e maximize s e t C o s t ;

	Thesis cover sheet
	2022ReillyPhD

