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Abstract

We explore various aspects of top quark phenomenology at the Large Hadron Collider and

proposed future machines. After summarising the role of the top quark in the Standard

Model (and some of its well-known extensions), we discuss the formulation of the Standard

Model as a low energy effective theory. We isolate the sector of this effective theory

that pertains to the top quark and that can be probed with top observables at hadron

colliders, and present a global fit of this sector to currently available data from the LHC

and Tevatron. Various directions for future improvement are sketched, including analysing

the potential of boosted observables and future colliders, and we highlight the importance

of using complementary information from different colliders. Interpretational issues related

to the validity of the effective field theory formulation are elucidated throughout. Finally,

we present an application of artificial neural network algorithms to identifying highly-

boosted top quark events at the LHC, and comment on further refinements of our analysis

that can be made.
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A historical introduction

The origins of what is now known as the ‘Standard Model’ of particle physics can be

traced to the late 1940s. The attention of theoretical physicists was centred on how to

consistently embed the postulates of quantum mechanics; the laws describing (sub)atomic

particles, within the framework of special relativity; the laws of motion for objects with

very large velocities. Their efforts culminated in the development of quantum electrody-

namics; the quantum theory of the electromagnetic field. The problems associated with

the infinities arising in calculations had been brought under control by the development of

renormalisation, which allowed properties of the electron and photon to be calculated to

high precision, showing extraordinary agreement with experiment.

It had already been known for some time, however, that electrodynamics could not

be the full story. Firstly, it was immediately obvious that the stability of the atomic

nucleus would not withstand the electrostatic repulsion between the positively-charged

protons, therefore an additional force must have been present to stabilise the nucleus. This

force had to be strong, and extremely short-ranged (no further than the typical size of a

nucleus) so was dubbed the strong interaction. Moreover, the observation of certain types

of radioactive decay, which necessitated the existence of a new, extremely light particle

(what is now called the neutrino), could not be accommodated with the known facts about

electromagnetism and the strong force. These interactions did not allow for processes

which changed electric charge, which nuclear β-decay plainly did. Due to the relatively

long lifetimes associated with these decay processes, the force responsible was called the

weak interaction.

The first attempt to write down a theory of the strong nuclear force was made by

Yukawa in 1935 [6]. He proposed that the force binding together the nucleus was due

to an interaction between protons and neutrons mediated by a scalar particle he dubbed

the ‘pion’, which he calculated should have a mass of around one tenth of the proton

mass. Tentative discoveries of these pions were made in 1947 in photographic emulsion

recordings of cosmic ray showers [7]. The problem with the theory was that it could not

predict anything precisely. The strong force is (by definition) strong, and all the known

calculational tools of the day relied on treating the interactions as small perturbations, and

the particles as almost non-interacting. These approximations failed spectacularly when

applied to the strong force.

Besides, the cosmic ray observations posed an additional problem: in Yukawa’s model

the protons, neutrons and mediating pions were considered fundamental; that is, not con-

taining any substructure. However, experiments made using the more advanced bubble

chamber discovered a slew of new particles - similar in properties to the pion and proton,

but with different masses. By Yukawa’s token, each of these new particles were just as
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fundamental as the proton or the pion. By the mid 1950s, however, dozens of such parti-

cles had been discovered, none of which had, or could have, been predicted, and with no

underlying theory to relate them. Fundamental physics in this era was in a state of excited

disarray.

Motivated purely by the observed properties of nuclear β-decay, and by the discovery

of the neutron by Chadwick two years previously [8], Fermi wrote down the first model of

the weak interaction in 1934 [9], which modelled β-decay as a contact interaction in which

a neutron decays into a proton by emitting an electron and a neutrino. It was extremely

successful in predicting observables in β-decay such as the electron energy spectrum, but

soon it was realised that the theory was non-renormalisable: the infinities that had plagued

early calculations in QED cropped up again, but unlike in QED, they could not be removed.

Therefore it was abandoned as a fundamental theory.

An improvement came in the form of the intermediate vector boson model [10–15],

where, rather than a contact interaction, the decay was described as mediated by the

exchange of vector bosons, completely analogously to the pions that mediated the strong

force in Yukawa’s theory, and the photons of QED. This immediately raised the problem

that, unlike the photon and pion, these vector bosons had not been discovered, and had

to be extremely heavy to give the correct radioactive decay rates. More startlingly, new

tests of the properties of β-decay showed that the weak interaction, unlike all the other

known forces, violated parity symmetry [16,17], i.e. it was able to distinguish between left

and right. Any new theory of the weak interaction would have to be radically different in

structure to accommodate these facts.

Despite these puzzles, progress was made in the 1950s and early 1960s on two fronts.

The first was the quark model of Gell-Mann and Zweig [18,19]. In an effort to classify the

myriad of new particles emerging from the bubble chamber experiments, they postulated

that rather than being fundamental, these particles were composed of smaller particles

(Gell-Mann coined them ‘quarks’, in a literary homage to James Joyce’s Finnegan’s Wake).

Requiring only 3 flavours of quark (which were dubbed the up, down and strange) as ele-

ments of the global symmetry group SU(3), that is, location-independent transformations

on the quark fields by 3×3 unitary matrices, the model was able to accommodate the

observed mass spectrum of many of the observed mesons and baryons, and predicted new

ones, several of which were duly discovered. Still, for most physicists, these quarks were no

more than an idealisation, a useful bookkeeping device for classifying the bubble chamber

results, and few took their existence seriously as fundamental particles.

The other major development was made in 1954 by Yang and Mills [20] who made

the observation that the electromagnetic interaction could be described as resulting from

a U(1) gauge symmetry, a type of local symmetry where the fields receive a location-

dependent phase transformation but the full theory is left invariant. They observed that
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since the proton and neutron were almost equal in mass, it was instructive to model them

as elements of a 2D symmetry group, hence they modelled the proton-neutron nuclear force

as originating from a local SU(2) symmetry, which they dubbed isospin. The immediate

difference from QED was that the gauge boson of this force would be self-interacting,

unlike the photon. This was perfectly allowed by the experimental facets of the strong

interaction, and offered intriguing insights into the possibility of constructing a quantum

theory of gravity.

The bugbear of the gauge theories suggested by Yang and Mills was how to accom-

modate mass. If gauge symmetry was to be an exact symmetry of the weak and strong

interactions, the mediating particles of this symmetry; the gauge bosons, would have to

be massless and so (it was presumed), these forces would have to be long-ranged, just like

in electromagnetism, which they clearly were not. On the other hand, adding in mass

terms for the gauge bosons violated the gauge symmetry explicitly, defying the point of

introducing it in the first place, and, as was later shown [21, 22], just as in the case of

the intermediate vector boson models, led to unacceptable physical behaviour when ex-

trapolated to higher energies. Despite their mathematical beauty, the application of gauge

theories to particle physics was stymied in the late 1950s and early 1960s by the apparent

incompatibility between the symmetry patterns of the theory and the basic observation of

particle masses.

The missing piece of the puzzle emerged from a completely different area of physics:

superconductivity. When a conductor is cooled below a certain ultra-cool temperature, it

displays the bizarre property of having almost no electrical resistance. Anderson noted [23]

that this effect could be explained by the photons which transmit the electric forces inside

the bulk of the superconductor effectively gaining a mass, which would break the long range

electromagnetic interactions and allow currents to flow with effectively zero resistance. The

U(1) electromagnetic symmetry still remained in the conductor, but it was spontaneously,

rather than explicitly, broken when it entered the superconducting phase. Anderson specu-

lated that this phenomena might have important consequences for the application of gauge

theories to elementary particle physics.

Ideas about spontaneously broken symmetries were already being tested in particle

physics, but in the wrong way. It had been suggested by several authors that the known

approximate symmetries of the strong interactions, such as the proton-nucleon isospin

and the symmetries of Gell-Mann’s quark model, could have originated from the spon-

taneous breaking of some exact symmetry of the system, perhaps at a higher energy.

This idea suffered an apparently fatal blow when it was proved by Goldstone, Salam and

Weinberg [24, 25] that any spontaneously broken symmetry would necessarily lead to the

appearance of massless, interacting scalar bosons. These scalars would have easily been

observed experimentally long ago and they had not, and, ignorant of the developments in
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superconductivity, most particle theorists regarded Goldstone’s theorem as the death knell

for this idea.

The importance of Anderson’s observations was immediately appreciated by Higgs,

however. He had been trying to find a loophole in Goldstone’s theorem, and showed that

if the symmetry of the system was not global but local [26](as in the gauge theories of

Yang and Mills), the unwanted massless scalars that resulted from the symmetry breaking

would be absorbed by the gauge bosons, giving them a mass. In this way, gauge symmetry

could be preserved whilst still giving masses to the gauge bosons, just as the U(1) elec-

tromagnetic gauge symmetry was preserved while the photons inside the superconductor

gained an effective mass. The massive Yang-Mills problem had, in principle, been solved.

He speculated that this mechanism could be applied to a gauge theory of the weak inter-

action, and would allow the vector bosons mediating the interaction to gain the mass they

needed. Crucially, he also predicted the appearance of a new, massive scalar boson, which

now bears his name [27]. The same ideas were published at almost exactly the same time

by Brout and Englert [28], and by Guralnik, Hagen and Kibble [29], who were attempting

to give a mass to the pion in a gauge theory of the strong interaction.

The ideas of Brout, Englert, Guralnik, Hagen, Higgs and Kibble were put to use by

Weinberg [30] and Salam [31] in 1967. They wrote down a gauge group with an SU(2)×U(1)

symmetry, as had been suggested in studies by Glashow [32] and Salam and Ward in

1961 [33]. Unlike the earlier papers, however, which contained explicit gauge boson mass

terms, they applied the Higgs mechanism to it, and showed that the charged vector bosons

mediating the weak interaction (the W bosons) gained a very large mass, at least forty

times the mass of the proton. Echoing Higgs’ conclusions, they predicted the appearance of

a massive scalar. They also predicted the appearance of a heavier still, electrically neutral

vector boson. Since this was the last new particle required by the model, it was called

the Z. After the symmetry breaking, an unbroken subgroup remained, this was identified

as electromagnetism, with a massless photon. Hence, their theory unified the weak and

electromagnetic interactions into one single model. This ‘electroweak’ theory, along with

the Higgs mechanism, forms one of the two pillars of what we now call the Standard Model

of elementary particles.

Still, the spectre of renormalisability loomed over the electroweak theory. Though

renormalisability had been demonstrated in electromagnetism by Feynman, Schwinger,

Tomonaga and Dyson twenty years earlier [34–44], little progress had been made in tackling

the problem for the more sophisticated Yang-Mills theories. The question then remained of

whether the symmetry breaking mechanism spoiled the renormalisability of the electroweak

theory, in which case it would have been little improvement over its Fermi and intermediate

vector boson model predecessors. Most theorists thought the answer to this question was

yes, and so the unified electroweak theory received little attention at first. In a series
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of tour de force calculations [45], it was shown by ‘t Hooft and Veltman that the gauge

theories of Yang and Mills were, in fact, renormalisable. First this was demonstrated in

the massless case [46], and then in the more involved case where the vector bosons get

their masses from the Higgs mechanism [47]. After this work was published, interest in

the Weinberg-Salam-Glashow model exploded, and a dedicated experimental program for

uncovering the precise gauge structure of the electroweak interaction took off.

The other half of the Standard Model is the strong interaction. In contrast to the

agitation that engulfed the theory community in the 1950s and early 1960s, particle accel-

erators evolved rapidly during this era. These developments allowed the quark model of

Gell-Mann to be put to a crucial test in experiments at SLAC and MIT in 1967 [48, 49].

The experiments drew analogy with the famous Rutherford experiment of 1912, in which a

beam of α-particles were fired at a strip of gold foil, and the rare collisions in which the α-

particles rebounded from the foil provided evidence for a positively charged nucleus within

the centre of the atom. The SLAC-MIT experiments instead fired a high-energy beam of

electrons into a fixed proton target, to probe the putative inner structure of the proton.

The results were unequivocal. High scattering rates at large angles were observed, con-

taining events with the detection of the scattered electron and large numbers of hadrons.

The sole explanation for these events was that the electron shattered the proton into its

intermediate pieces, which interacted some time later to re-form into into the various types

of hadrons observed in the final state.

These results gave strong weight to the existence of quarks as fundamental particles,

but that relied on a strange presumption: while the scattering rates at large angles were

consistent with electromagnetic interactions between the electrons and the proton’s sub-

components, they could only be explained if the strong interaction between the proton’s

inner parts was much weaker at high-energy, i.e. that when the incoming electron ap-

proached the proton, it saw the proton constituents as almost non-interacting. Then when

the constituents became separated again after the collision, the strong interaction between

them switched on again, binding them into the hadrons that were observed in the final

state. These ideas were put on a firm mathematical footing in the parton model of Feyn-

man and Bjorken [50,51]. Still, the behaviour of the strong force: weak at short distances

and strong at long distances (like the restoring force on a stretched elastic band) was at

odds with all the known forces at the time. Electromagnetism and gravity both become

weaker as the separation between the interacting objects is increased.

A few years later, in 1973, Gross, Politzer and Wilczek [52, 53] discovered a class of

theory which exhibited precisely this property, which is known as asymptotic freedom.

They were exactly the same theories used to construct the electroweak interaction: Yang-

Mills gauge theories. The strong interaction was modelled by an SU(3) gauge symmetry

between the quarks. Their models assumed that the quarks had, as well as electric charge, a
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property of ‘strong’ charge, which came to be known as colour charge. The SU(3) structure

presumed there were 3 types of such colour. The theory thus became known as quantum

chromodynamics, in analogy with QED 30 years previously. The gauge bosons of this

interaction were ultimately responsible for binding together the quarks into hadrons such

as the proton, so they were dubbed gluons.

The puzzle remained of how the strong interaction remained short-ranged, and how

come the massless gluons had not been observed themselves. It was initially presumed

that the SU(3) symmetry was broken so that the gluons gained mass, as in the case of the

W s and Zs, but were too heavy to observe. It was soon realised that the gluons could indeed

be massless, but the same phenomena which bound the quarks together was responsible

for keeping the gluons confined with the hadrons. This phenomena of confinement has

intriguing consequences for how we view mass; most of the mass of hadrons such as the

proton and neutron (and, by extension, most of the mass of the observable Universe)

originates not from the mass of their constituents, but in the binding energy between the

constituents. An analytic proof of confinement in Yang-Mills theory has not been rigorously

obtained, and the Clay Mathematical Foundation continues to offer a $1 million prize for a

first-principles solution. Nonetheless, numerical studies on the lattice have demonstrated

that confinement is indeed a property of QCD.

The Standard Model was beginning to take shape, but several observations were still at

odds with its early predictions. Firstly, the observed rates of certain types of strangeness

violating weak decay processes were much lower than expected from the electroweak model.

Secondly, it had been known since the 1950s that the weak interactions violated the so-

called CP -symmetry, effectively a symmetry between matter and antimatter, by a small

amount, but the electroweak model contained no terms which violated CP . The first

problem was solved by Glashow, Ilopoulos and Maiani [54], who showed that the existence

of a fourth flavour of quark (they dubbed it the charm) was able to suppress the rates

by much more than the näıve prediction. It was quickly realised that this fourth quark

could lead to many new different kinds of meson. The simplest of these would be a

bound state of a charm quark and antiquark. This was promptly discovered in 1974 [55,

56], with a production rate and mass in excellent agreement with the Standard Model

predictions. It was then realised by Kobayashi and Maskawa [57], building on earlier work

by Cabbibo [58],, that CP -violation could be obtained by adding in a 3rd generation (a fifth

and sixth flavour) of quarks, these were called the top and the bottom. The bottom quark

was discovered in 1978 [59,60], the much heavier top quark in 1995 [61,62]. For theoretical

reasons mainly pertaining to the cancellation of anomalies, it was also presumed that a

3rd generation of leptons would exist, a heavier extension of the electron and muon. The

charged lepton of this generation: the τ , was discovered in experiments between 1974 and

1977 [63], its neutrino was finally discovered in 2000 [64].
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Fermions Bosons

Quarks

(
u
d

) (
c
s

) (
t
b

)
γ
g

Leptons

(
e−

νe

) (
µ−

νµ

) (
τ−

ντ

)
W± Z0

H

Table 0.1: Particle content of the Standard Model of particle physics. The mass of each

matter generation increases from left to right. The fermions form doublets which differ in

electric charge by 1: for the quarks this is of the form (qu, qd) = (+2/3e,−1/3e), for the

leptons this is (ql, qν) = (−1e, 0).

These discoveries complete what we now call the Standard Model of particle physics:

The matter content consists of six quarks and six leptons, in three generations of increasing

mass. The force carries are the gauge bosons: the photon of electromagnetism, the W and

Z of the weak interaction, and the gluon mediating the strong interaction. Underpinning

all of it is the Higgs boson, which breaks the electroweak symmetry and gives mass to

the W and Z, and also to the quarks and charged leptons. This is summarised in table

0.1. The model is strikingly minimal; with just a handful of particles it can explain all

the observable matter content in the Universe, and its interactions (other than gravity).

The main concern is the ad hoc nature of its structure. It was largely cobbled together to

fit experiment, and all the parameters relating to the masses of the fermions, the mixing

between different generations, and the relative strengths of the weak, electromagnetic and

strong interactions, as well as the mass of the Higgs boson, are not predicted by it, and

have to be determined by experiment.

Whatever aesthetic qualms one may have about its structure, however, the successes

of the Standard Model as a physical theory describing Nature have been nothing short

of astounding. The first coup of the Glashow-Weinberg-Salam model was the discovery

of the neutral currents in 1973 [65, 66], lending strong indirect evidence for the existence

of the Z. The W and Z bosons were discovered outright at CERN in 1983 [67–70], four

years after Glashow, Weinberg and Salam were awarded the Nobel Prize in Physics for their

electroweak theory. The gluon was discovered in three-jet events at the PETRA experiment

in 1978 [71]. The predictions of the Standard Model continued to be tested throughout the

1980s in collider experiments across the world. These efforts culminated in the precision

electroweak measurements at LEP and SLC [72], which probed the SU(3)×SU(2)×U(1)

gauge structure to per-mille level accuracy, providing incontrovertible evidence that the

Standard Model is an excellent description of Nature up to energies around 100 GeV. The

last outstanding piece of the theory; the Higgs boson, was discovered in 2012 [73, 74], 48

years after it was first hypothesised, and a detailed program for the precise measurements

of its properties is now well underway [75].
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Despite these triumphs, ever since the inception of the Standard Model, physicists

have been looking for evidence for new physics which will take us beyond the current

SM paradigm. After the unification of the weak and electromagnetic interactions into

one simple model, it was natural to ask if the strong interaction could be unified with

the electroweak in a single gauge group. More ambitious still were attempts to include

gravitational interactions in such a framework, a so-called theory of everything. Early

attempts at these models pointed out that the unification would happen at a very large

energy scale, inaccessible to any conceivable future collider experiment. However, several

pieces of indirect evidence point to new physics just above the electroweak scale, well within

reach of current colliders.

With a centre-of-mass energy of 14 TeV, the LHC is best poised to answer the question

of whether new physics beyond the SM resides at the TeV energy scale. However, there

are a large number of well-motivated scenarios, and their experimental signatures are often

very similar. Given the huge catalogue of measurements published by the LHC, and the

possibility of different manifestations of new physics hiding in many of them, it is best to

ask not “Does my new physics model explain this particular measurement better than the

Standard Model alone?” but “Which consistent theory best describes all the data?”. This

has led to renewed interest in being able to describe the data in a model-independent way.

Effective field theory provides such a description.

Since its discovery in 1995, the top quark continues to mystify physicists with its prop-

erties. As it is the only fermion with a mass around the electoweak scale (mt = 173 GeV),

and as the precise mechanism which breaks the electroweak symmetry is unexplained in

the Standard Model, the top quark usually plays a special role in theories of physics beyond

the Standard Model. The top quark sector is thus one of the many well-motivated places

to look for the effects of potential new physics, as only now are its properties beginning

to be scrutinised with high precision. The language of effective field theory provides a

powerful, systematic way of doing this. This is the primary topic of this thesis.

The thesis is structured as follows. In chapter 1, I will discuss the unique role of the

top quark in the Standard Model. In chapter 2, I will outline some of the main hints

for physics beyond the Standard Model and some well-studied new physics models, and

their relevance for top quark phenomenology. I will then describe the formulation of the

Standard Model as a low energy effective theory where all the ultraviolet degrees of freedom

have been integrated out, and the sector of this effective theory that can be studied with

top measurements from hadron colliders. In chapter 3 I will discuss a global fit of the top

quark sector of the Standard Model EFT to data from the LHC. Chapter 4 is concerned

with refinements of the analysis of chapter 3, such as how the increase in LHC energy from

8 to 13 TeV can be best exploited; how ‘boosted observables’ that draw on high-momentum

transfer final states can improve the fit results, and how proposed future lepton colliders
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can complement results extracted from hadron collider measurements. In chapter 5 we

move away from effective theory, and study how the performance of certain algorithms for

reconstructing ‘boosted’ final states may be augmented by recent developments in machine

learning, before summarising the conclusions of this thesis.

The motivations for this work are thus threefold: 1. With the abundant data from the

LHC, top properties can be examined with precision for the first time. 2. The top quark

continues to be a sensible place to search for new physics. 3. Effective field theories are

a powerful tool for confronting new physics models with data in a systematic way. It is

worth remembering that the story of the Standard Model began with an effective theory

when Fermi wrote down his model of nuclear β-decay in 1935. Perhaps it would be fitting

if the story ended with one as well.
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1 The top quark in the Standard Model

1.1 Introduction

The top quark was discovered in 1995 by the CDF [61] and D/0 [62] experiments at the

Tevatron. Still, only recently have its couplings begun to be measured with sub-10% level

accuracy, thanks to the much higher production rates at the LHC and the large integrated

luminosity collected over the total lifetime of the Tevatron. The role that the top quark

might play in specific realisations of electroweak symmetry breaking is just beginning to

be tested. Before we can turn to these questions, however, we must summarise the unique

role of the top quark within the Standard Model. This is the subject of this chapter.

This introductory chapter is structured as follows. In section 1.2 I discuss the build-

ing blocks of the Standard Model of particle physics: the unified SU(2)L× U(1)Y elec-

troweak theory; the SU(3)C gauge theory of the strong interaction known as quantum

chromodynamics and the role of spontaneously broken local gauge symmetry via the Higgs

mechanism, before discussing the free parameters of the Standard Model. In section 1.3

I discuss some generalities about hadron collider phenomenology, including the main the-

oretical uncertainties that crop up in scattering calculations. In section 1.4 I discuss the

main production mechanisms for top quarks at hadron colliders, and some properties of

top production and decay, before summarising in section 1.5.

1.2 The Standard Model of Particle Physics

The Standard Model has three main ingredients. Firstly, there is quantum chromodynamics

(QCD) [52, 53, 76]: the theory of the strong interaction between ‘coloured’ quarks and

gluons (the mediators of this interaction), described by a gauge group with a local SU(3)C
symmetry. Secondly, the electroweak theory described by the model of Glashow, Salam and

Weinberg [30–32], which unifies the electromagnetic and weak interactions of quarks and

leptons under the gauge group SU(2)L× U(1)Y ; its charges are weak isospin L and weak

hypercharge Y . Finally, there is the celebrated Higgs mechanism [27–29]: a complex scalar

field doublet (with four degrees of freedom) whose potential acquires a non-zero minimum

which spontaneously breaks the electroweak symmetry into a U(1) group describing QED;

its charge is the familiar electromagnetic coupling. Three of the four degrees of freedom

form the longitudinal polarisation states of the W± and Z0 bosons, giving mass to these

particles and thus being responsible for the phenomena of nuclear β-decay and other weak

processes. The remaining one forms a massive scalar particle: the Higgs boson. The Higgs

mechanism is also responsible for giving mass to the quarks and charged leptons through

a Yukawa-type interaction.
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1.2.1 Before electroweak symmetry breaking

The Standard Model before electroweak symmetry breaking has two types of field:

Matter fields ψ: Since the weak interactions are known to violate parity, the matter

fields are constructed out of left-handed and right-handed (chiral) fermions.

ψ = ψL + ψR (1.1)

where

ψL = PLψ with PL =
(1− γ5)

2

ψR = PRψ with PR =
(1 + γ5)

2
.

(1.2)

The operators PL,R project out the chiral states of each fermion, whose kinetic terms in

the Dirac Lagrangian LDirac can thus be decomposed:

ψ̄γµ∂µψ = ψ̄Lγ
µ∂µψL + ψ̄Rγ

µ∂µψR (1.3)

i.e. massless fermions decouple into chiral components. For the SM we have three gen-

erations of left-handed and right-handed spin-1
2

fermions which can be categorised into

quarks and leptons. To reproduce the chiral structure of the weak interaction, left-handed

fermions are in weak-isospin doublets, and right-handed fermions fall into weak-isospin

singlets.

Q1 =

(
u

d

)
L

, uR1 = uR , dR1 = dR , L1 =

(
νe

e−

)
L

, eR1 = e−R

Q2 =

(
c

s

)
L

, uR2 = cR , dR2 = sR , L2 =

(
νµ

µ−

)
L

, eR2 = µ−R

Q3 =

(
t

b

)
L

, uR3 = tR , dR3 = bR , L3 =

(
ντ

τ−

)
L

, eR3 = τ−R .

(1.4)

Members of each doublet have 3rd component of weak isospin I3
f = ±1

2
, which is related

to U(1)Y hypercharge Yf and electric charge Qf by

Yf = Qf − I3
f , (1.5)

where

YLi
= −1

2
, YeR = −1, YQi

= +
1

6
, YuRi

= +
2

3
, YdRi

= −1

3
. (1.6)
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These hypercharge assignments ensure the fermions have the correct electric charge:

isodoublets differ in electric charge by 1: for the quarks this is of the form (qu, qd) =

(+2/3e,−1/3e), for the leptons this is (ql, qν) = (−1e, 0). The quark fields are charged

under SU(3)C , i.e. each quark appears as a triplet of 3 colours, whereas the leptons are

singlets. This important feature ensures that the anomaly cancellation condition∑
f

Yf = 0, (1.7)

where the sum runs over all fermions in a generation, is satisfied. Hence gauge-invariance

is not spoiled by radiative corrections and the theory remains renormalisable.

Gauge fields Vµ: These are the spin-1 bosons that mediate the electroweak and strong

interactions. The SU(2)L symmetry of the electroweak sector gives rise to 3 vector fields

W 1,2,3
µ corresponding to the generators T I (I = 1, 2, 3), expressed in terms of the Pauli

matrices τ I as∗

T I =
1

2
τ I ; τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
, (1.8)

which satisfy the commutation relations

[T I , T J ] = iεIJKTK , (1.9)

where εIJK is the antisymmetric tensor. The U(1)Y symmetry corresponds to a vector

field Bµ, which has the unique generator Y . The strong sector has an SU(3)C symmetry,

corresponding to 8 gluon fields G1,...,8
µ , expressed in terms of the 3×3 Gell-Mann matrices

TA which we do not write explicitly here and which satisfy

[TA, TB] = ifABCTC and Tr[TATB] =
1

2
δAB, (1.10)

where fABC denote the SU(3)C structure constants. From these fields one may construct

gauge invariant field strength tensors

GA
µν = ∂µG

A
ν − ∂νGA

µ + gsf
ABCGB

µG
C
ν

W I
µν = ∂µW

I
ν − ∂νW I

µ + gεIJKW J
µW

K
ν

Bµν = ∂µBν − ∂νBµ,

(1.11)

where gs and g respectively denote the SU(3)C and SU(2)L coupling constants. The U(1)Y

∗Throughout this thesis, weak isospin indices are denoted by lowercase Roman letters {i, j, k . . .} ∈
{1, 2}, while SU(3)C and SU(2)L adjoint indices are denoted by uppercase Roman: {A,B,C . . .} ∈ {1 . . . 8}
and {I, J,K . . .} ∈ {1, 2, 3}.
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coupling is denoted as g′.

To couple the matter fields to the gauge fields, we replace the ordinary derivative ∂µ with

the gauge covariant derivative Dµ:

Dµ = ∂µ + igsT
AGA

µ + igT IW I
µ + ig′

Y

2
Bµ. (1.12)

which leads to matter-gauge couplings of the form

fermion-gauge couplings : giψ̄Vµγ
µψ (1.13)

In addition to matter-gauge interactions, the non-Abelian nature of the SM leads to self-

interactions among the gauge bosons, which we can generically class into 3-point and

4-point couplings:

3-point couplings : −giTr(∂µVν − ∂νVµ)[Vµ, Vν ]

4-point couplings : g2
i Tr[Vµ, Vν ]

2
(1.14)

where gi ∈ {gs, g, g′}. The Standard Model Lagrangian at this point consists only of kinetic

terms for massless fermions and gauge bosons:

LSM = Lgauge + Lfermion, (1.15)

where

Lgauge = −1

4
GA
µνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν

Lfermion = iL̄iDµγ
µLi + iēRiDµγ

µeRi + iQ̄iDµγ
µQi + iūRiDµγ

µuRi + id̄RiDµγ
µdRi.

(1.16)

It is manifestly invariant (by construction) under local SU(3)C× SU(2)L× U(1)Y gauge

transformations. For instance, under an SU(2)L transformation,

eRi → e′Ri = eRi

Li → L′i = e−iω
I(x)T I

Li.
(1.17)

So we see that the SU(2)L singlets ψR are trivially SU(2)L invariant and therefore do not

couple to the corresponding gauge fields W 1,2,3
µ . So far, the theory is self-consistent. When

we try to include particle masses, however, we run into two problems:

1. Fermion Masses: Explicit fermion masses take the form Lmass = −mψ̄ψ, which
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Figure 1.1: Left: The tree-level process νµνµ → W+W− in the intermediate vector bo-

son model, which violates unitarity in the high-energy limit. Right: One-loop neutrino

scattering in the IVB model; a non-renormalisable interaction.

when decomposed into chiral components become:

mψ̄ψ = mψ̄

(
(1− γ5)

2
+

(1 + γ5)

2

)
ψ = m(ψ̄RψL + ψ̄LψR) (1.18)

which is not SU(2)L invariant, as it mixes left-handed and right-handed fermion

components.

2. Gauge boson masses: The observed short-range of the weak interaction ∼ 0.1 fm

tells us that the vector bosons mediating to the weak interaction have masses of order

∼ 10 GeV. However, when we include explicit mass terms in the Lagrangian, it is

easy to see they are not gauge invariant. Using the simple U(1) case of QED with a

massive photon as an example:

1

2
M2

AAµA
µ → 1

2
M2

A(Aµ −
1

e
∂µα)(Aµ −

1

e
∂µα) 6= 1

2
M2

AAµA
µ (1.19)

To appreciate the problems caused by explicit breaking of gauge invariance, consider the

propagator for a generic massive vector boson.

i

p2 −M2

(
−gµν +

pµpν

M2

)
(1.20)

and the weak-interaction process νµν̄µ → W+W−, the leading order Feynman diagram for

which is sketched on the left-hand side of Fig. 1.1.

Although this process would be rather difficult to implement experimentally, its cross-

section can be straightforwardly calculated. In the high-energy limit, the pµpν/M2 term,

corresponding to the longitudinal W polarisation states, will dominate contributions to the
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cross-section. In fact, one finds for this process

σ ∼ G2
FE

2 (1.21)

where GF is a coupling constant which must have dimensions of (energy)−2: i.e. the cross-

section grows quadratically with energy. We can decompose the scattering amplitude A

for this process into partial waves f` of orbital angular momentum `:

A = 16π
∞∑
`=0

(2`+ 1)P`(cos θ)f` (1.22)

where P` are the Legendre polynomials and θ is the scattering angle. Noting that for 2 →
2 processes with massless external legs the cross-section is given by dσ/dΩ = |A|2/64π2s,

with dΩ = 2πd cos θ, the total cross-section is then

σ =
8π

s

∞∑
`=0

∞∑
`′=0

(2`+ 1)(2`′ + 1)f`f`′

1∫
−1

d cos θP`(cos θ)P`′(cos θ)

=
16π

s

∞∑
`=0

(2`+ 1)|f`|2
(1.23)

where the orthogonality condition
∫
d cos θP`P`′ = 2δ``′/2l+ 1 was used. From the optical

theorem (a simple consequence of unitarity), σ is equal to the imaginary part of the forward

(θ = 0) scattering amplitude [77], so that, at each order in the partial wave expansion,

unitarity requires:

|f`|2 = Im(f`)⇒ [Re(f`)]
2 + [Im(f`)]

2 = Im(f`)

⇒ [Re(f`)]
2 + [Im(f`)−

1

2
]2 =

1

4

(1.24)

which is just the equation of a circle in the [Re(f`), Im(f`)] plane, of radius 1
2

centred at

[0, 1
2
]. Hence |Im(f`)| ≤ 1, and the cross-section in each partial wave projection has the

unitarity bound

σ ≤ 16π(2`+ 1)

s
. (1.25)

Comparing Eq. (1.25) with Eq. (1.21), we see that unitarity is violated at some finite

energy. Plugging the numbers in we find this is around E ∼ 1 TeV [78–80], indicating that

beyond this energy the theory is perturbatively not well-defined.

Since this is only a perturbative statement, one might well argue that the theory may

still be consistent if strong dynamics take over in this regime. However, we could instead

consider the case where the W bosons appear as virtual particles, e.g. in the one-loop
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V (φ)

φ
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φ
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Figure 1.2: The potential V (φ) of Eq. (1.26) in the cases µ2 > 0 (left) and µ2 < 0 (right).

process νµν̄µ → νµν̄µ, as depicted on the right-hand side of Fig. 1.1, in which the longitu-

dinal states WL lead to quadratically divergent loop-momenta. Renormalising this diver-

gence would require the inclusion of a counterterm corresponding to a four-neutrino vertex.

However, no such vertex exists in the theory. Hence, the theory is non-renormalisable, and

cannot be expected to make predictions for arbitrarily high-energies.

To summarise, it seems there is a fundamental conflict between constructing renormal-

isable gauge theories for particle physics, and allowing particles in those theories to have

mass. If there was a way to generate mass dynamically, i.e. not through explicit mass terms

but through a gauge-invariant interaction between fields, perhaps the gauge principle can

be saved. The Higgs mechanism provides such an interaction.

1.2.2 The Higgs mechanism

As a warmup, we consider the example of a real scalar field φ with the Lagrangian

L =
1

2
∂µφ∂

µφ− V (φ) where V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (1.26)

L is invariant under reflections φ → −φ. For L to describe any physical system, λ must

be positive-semidefinite, otherwise the potential is unbounded from below. µ2 can take

positive or negative values, however. For µ2 > 0 the minimum of the potential (in quantum

field theoretic terms, its vacuum expectation value 〈0|φ|0〉) is located at the origin φ0 = 0.

In this case L is just the Lagrangian of a spin-zero particle of mass µ, as shown in the

left-hand side of Fig. 1.2. However, when µ2 < 0 this no longer represents the Lagrangian
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of a particle of mass µ. The minima of the potential are now at

〈0|φ|0〉 = φ0 = ±
√
−µ

2

λ
≡ ±v (1.27)

The field has picked up a non-zero vacuum expectation value v, as highlighted in the right-

hand side of Fig 1.2. To extract the interactions of this theory, we expand the field around

φ = v. Defining φ = v + σ, L is, up to constant terms

L =
1

2
∂µσ∂

µσ + µ2σ2 −
√
−µ2λσ3 − 1

4
λ4 (1.28)

The theory now describes a new scalar field of mass m2
σ = −2µ2, with trilinear and

quartic self-interactions. The σ3 term breaks the original reflection symmetry; that is, a

symmetry of the Lagrangian is no longer a symmetry of the vacuum, it has been sponta-

neously broken.

The next simplest example of spontaneously broken symmetry is that of four scalar

fields (equivalently a complex doublet of scalars) with Lagrangian

L =
1

2
∂µφi∂

µφi −
1

2
µ2φiφi +

1

4
λ(φiφi)

2 (1.29)

which is invariant under the transformation φi = Rijφj where Rij are 4-dimensional or-

thogonal matrices, i.e. transformations under the rotation group in four dimensions, O(4).

Setting µ2 < 0 and expanding around the minima at φi = (0, 0, 0, v), where v2 = µ2

λ
, L

becomes

L =
1

2
∂µσ∂

µσ + µ2σ2 −
√
−µ2λσ3 − 1

4
λ4

+
1

2
∂µπi∂

µπi −
1

4
λ(πiπi)

2 − λvπiπiσ −
1

2
πiπiσ

2,
(1.30)

where i now runs from 1 to 3, and σ = φ4 − v, πi = φi. Again, a massive σ boson with

mass m2
σ = −2µ2 has appeared, but so have three massless pions, among which there is a

residual O(3) symmetry. This is an example of a general property of spontaneously broken

continuous symmetries known as Goldstone’s theorem [25], which can be stated as follows:

For a continuous symmetry group G spontaneously broken down to a subgroup H, the

number of broken generators is equal to the number of massless scalars that appear in the

theory.

The O(N) group has N(N − 1)/2 generators, so O(N − 1) has (N − 1)(N − 2)/2 and

N − 1 Goldstone bosons appear (the above example is the case of N = 4).

The above example applied to global symmetries, but if the mechanism is extendable
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to local (gauge) symmetries, it would provide a viable way of giving mass to the vector

bosons of the weak interaction. We begin with the case of an Abelian U(1) symmetry, with

the Lagrangian

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)− V (φ) where V (φ) = µ2φ∗φ+ λ(φ∗φ)2, (1.31)

where Dµ = ∂µ + igAµ is the usual covariant derivative. This is invariant under local U(1)

transformations:

φ(x)→ eiθ(x)φ(x), Aµ → Aµ +
1

g
∂µθ(x). (1.32)

The case µ2 > 0 corresponds to scalar QED: interactions between a charged scalar of mass

µ and a massless vector boson, with an additional four-point scalar self-interaction. For

µ2 < 0, φ as usual obtains a non-zero vev, and the potential is minimised at

〈0|φ|0〉 =

√
−µ

2

2λ
≡ v√

2
. (1.33)

Expanding the potential around the vev,

φ(x) =
1√
2

(v + φ1(x) + iφ2(x)) ≡ 1√
2

(v +H(x))eiχ(x)/v, (1.34)

the Lagrangian describing the vacuum state is now

L = −1

4
FµνF

µν + (∂µ − igAµ)φ∗(∂µ + igAµ)φ− µ2φ∗φ− λ(φ∗φ)2

= −1

4
FµνF

µν +
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 + µ2φ2

1 +
1

2
g2v2AµA

µ + gvAµ∂
µχ

+ (interaction terms).

(1.35)

The photon has obtained a mass M2
A = g2v2, the scalar particle φ1 has a mass M2

φ1
= −2µ2.

The φ2 has apparently emerged as the Goldstone boson of this symmetry breaking.

However, L now contains the bilinear term gvAµ∂
µχ, which neither corresponds to an

interaction or a field strength. The symmetry breaking has also apparently created an

extra degree of freedom. Before, there were four: two in the massless photon and two in

the complex field φ. Now there appear to be five: three for the massive photon, and one

each for φ1 and φ2. The resolution of this paradox lies in the fact that we are free to make

a gauge transformation:

φ(x)→ e−iχ(x)/vφ(x), Aµ → Aµ +
1

gv
∂µχ(x) (1.36)

which removes all χ(x) terms from the Lagrangian. Counting degrees of freedom, we see the
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massless photon has absorbed the Goldstone boson, and gained mass: it has a longitudinal

polarisation state. The U(1) symmetry has been spontaneously broken, leading to a massive

vector boson and the appearance of a massive scalar boson. This is the Higgs mechanism.

1.2.3 The Higgs mechanism in the Standard Model

To apply the Higgs mechanism to the Standard Model, we need to generate mass for the

W± and Z0 bosons, whilst keeping the photon massless. So the SU(2)L× U(1)Y electroweak

symmetry should be broken to a U(1) subgroup describing electromagnetism. This means

that at least 3 degrees of freedom are needed. We also want to introduce a gauge-invariant

interaction that gives masses to fermions without mixing chiral components. The simplest

object that satisfies these criteria is an SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, (1.37)

where the superscript denotes the electric charge in each component. We add the usual φ4

Lagrangian LHiggs to the SM Lagrangian in Eq. (1.16)

LHiggs = (DµΦ)†(DµΦ)− V (Φ) where V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (1.38)

V (Φ) gets a minimum at Φ†Φ = µ2/2λ, which we take to be in the neutral direction to

preserve U(1)e.m

〈Φ〉0 = 〈0|Φ|0〉 =
1√
2

(
0

v

)
, (1.39)

with v =
√
−µ2

λ
. Expanding around the vev as before:

Φ =
eiθ

I(x)τI/v

√
2

(
0

v + h(x)

)
, (1.40)

and expanding out the covariant derivative term in LHiggs, we have

(DµΦ)†(DµΦ) =

∣∣∣∣(∂µ + ig
τ I

2
W I
µ + ig′

Y

2
Bµ

)∣∣∣∣2
=

1

2

∣∣∣∣∣
(
∂µ + i

2
(gW 3

µ + g′ Y
2
Bµ) ig

2
(W 1

µ − iW 2
µ)

ig
2
(W 1

µ + iW 2
µ) ∂µ − i

2
(gW 3

µ − g′ Y2Bµ)

)(
0

v + h

)∣∣∣∣∣
2

=
1

2
(∂µh)2 +

1

8
(v + h)2|W 1

µ + iW 2
µ |2 +

1

8
(v + h)2|gW 3

µ − g′Bµ|2

+ (interaction terms). (1.41)
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Eq. (1.41) shows that there are terms mixing the fields W 3
µ and Bµ. The physical bosons

must be superpositions of these fields such that there are no mixing terms. The physical

fields can be obtained by performing the rotation(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
, (1.42)

where the weak mixing/Weinberg angle

tan θW ≡
g′

g
, (1.43)

has been introduced. With this, Eq. (1.41) becomes

(DµΦ)†(DµΦ) =
1

2
(∂µh)2 +

g2v2

4
W+
µ W

−µ +
g2v2

8 cos2 θW
ZµZ

µ + 0AµA
µ, (1.44)

where W± = (W 1 ∓W 2)/
√

2. The W and Z bosons have acquired masses

MW =
1

2
gv, MZ =

1

2

gv

cos θW
(1.45)

i.e. there is a mass relation

MZ = ρMW cos θ. (1.46)

The parameter ρ has been introduced: at tree-level ρ = 1 but radiative quantum effects give

corrections to this relation. The SU(2) gauge structure of the electroweak theory ensures

that these corrections are small, however; a feature known as custodial symmetry [81].

Different choices of representations for the Higgs field (e.g. an SU(2) triplet) would not

protect the ρ parameter from large corrections. The linear combination A has remained

massless, so is to be identified with the photon. To see that a U(1) subgroup remains

unbroken, consider the symmetry associated with the generator

Q ≡ T 3 +
Y

2
=

(
1 0

0 0

)
(1.47)

where we have included the explicit representation of Y as a 2×2 identity matrix. Then

Q|0〉 ∼
(

1 0

0 0

)(
0

v + h

)
= 0 (1.48)

i.e. the symmetry associated with this generator is unbroken by the vacuum, so the corre-

sponding field gW 3 + g′B ≡ A is massless. We can similarly expand the potential terms
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around the vacuum:

V (Φ) =
µ2

2
(0, v + h)

(
0

v + h

)
+
λ

4

∣∣∣∣∣(0, v + h)

(
0

v + h

)∣∣∣∣∣
2

= −λ2v2 − λvh3 − λ

4
h4 + (constants).

(1.49)

So the scalar particle has gained a mass m2
h = −2µ2 = 2λv2, and has trilinear and quartic

self-interactions. This is the Higgs boson. Next we turn to the issue of generating masses

for the fermions. This too can be done in a gauge invariant way through a Yukawa-type

interaction φψ̄ψ

LYukawa = −yeL̄ΦeR − ydQ̄ΦdR − yuQ̄Φ̃uR + h.c. (1.50)

where Φ̃ = iτ2Φ∗ is used instead of Φ for the up quark because the vev is in the lower

component of the Higgs doublet. Upon spontaneous symmetry breaking, we have, e.g. for

the electron

LYukawa = − 1√
2
ye (ν̄L ēL)

(
0

v + h

)
eR + h.c.⇒ −yev√

2
ēe+ interaction term, (1.51)

and similarly for the up and down quarks. To summarise, using an SU(2) doublet Φ we

have generated masses for both the W and Z vector bosons and the fermions. The SU(2)L×
U(1)Y symmetry is no longer apparent in the vacuum; it has been spontaneously broken

down to an unbroken U(1) subgroup, identified as electromagnetism. The color SU(3)

symmetry is also unbroken, so has been omitted in this section. Because gauge invariance

has not been explicitly broken, the Standard Model remains renormalisable [45, 46] and

unitary [82, 83] up to high energies. The Standard Model can thus be summarised by the

following Lagrangian†.

LSM = Lgauge + Lfermion + LYukawa + LHiggs (1.52)

where

Lgauge = −1

4
GA
µνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν

Lfermion = iL̄iDµγ
µLi + iēRiDµγ

µeRi + iQ̄iDµγ
µQi

+ iūRiDµγ
µuRi + id̄RiDµγ

µdRi

LYukawa = −yeL̄ΦeR − ydQ̄ΦdR − yuQ̄Φ̃uR + h.c.

LHiggs = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2.

(1.53)

†The full Lagrangian also contains gauge-fixing and Fadeev-Popov ‘ghost’ terms to eliminate redundant
gauge field configurations. For brevity these are not included here.
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1.2.4 The parameters of the Standard Model

For one generation of fermions, the free parameters in the Standard Model are:

• The three gauge couplings {gs, g, g′}

• The two parameters in the Higgs potential V (φ): µ and λ

• The three Yukawa coupling constants {yu, yd, ye}

Although these are the ‘fundamental’ parameters, they are typically expressed in terms of

the more directly measurable quantities:

tan θW =
g′

g

e = g sin θW

mH =
√

2µ =
√

2λv

MW =
gµ

2
√
λ

=
gv

2

mf =
yfµ√

2λ
=

yf√
2
v. (1.54)

Once these parameters have been measured precisely, predictions forMZ andGF (the Fermi

coupling) can be made. Thus the interaction strengths of the entire electroweak sector of

the Standard Model are fixed by seven parameters (the strong interaction is determined

by 1: gs) .

Adding additional generations brings some complications, however. For instance, the

presence of a second and third generation of quarks leads to the Yukawa couplings

− [yd]ijQ̄iΦdRj − [yu]ijQ̄iΦuRj + h.c. (1.55)

where i, j are generation/flavour indices. The Yukawa couplings are now 3 × 3 matrices,

and off-diagonal terms are perfectly allowed by gauge-invariance. This would mix quarks

of different flavour. To obtain the physical particles we diagonalise the mass matrix and

extract the terms bilinear in each field, just as we did to extract the physical Z and A

fields. This can be done by performing a unitary rotation on each quark field. However, this

means that we must also rotate the quark kinetic terms, so the off-diagonal structure has

merely been transferred to the fermion-gauge couplings. To relate the weak eigenstates

to the mass eigenstates, the convention is to define the up-type quarks as in the mass-

eigenstate basis to begin with, then to relate the down-type quark weak eigenstates q′ to

the mass eigenstates q through a unitary rotation
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(d′ s′ b′) = V (d s b) (1.56)

where V is the 3 × 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix [57, 58], whose values

are [84]:

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


=

 0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015

0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886± 0.00033 0.0405± 0.0012 0.99914± 0.00005


(1.57)

To count the parameters of this matrix, we first note that a general unitary 3× 3 matrix

has nine independent parameters. With six quarks we can absorb five relative phases into

the quark field strengths q → eiθq, which leaves four independent parameters: three mixing

angles (akin to the Euler rotation angles) and a residual complex phase. The off-diagonal

terms in the CKM matrix are subleading, and a well-known parametrisation of the CKM

matrix which mimics this structure is due to Wolfenstein [85], which can be approximated

as:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) 1− Aλ2 1

+O(λ4) (1.58)

where the complete expression involving {ρ̄, η̄} = {ρ, η}(1−λ2/2+O(λ4)) has not been

displayed here. For massless neutrinos, there is no analogous mixing in the lepton sector:

the weak eigenstates are the same as the mass eigenstates, a property of the Standard

Model known as lepton universality.

Hence for the Standard Model with three generations, we have the following free pa-

rameters, 18 in total‡.

• The 8 parameters mentioned above.

• Three extra Yukawa couplings for each additional generation: six in total.

• Four parameters in the CKM matrix: {A, ρ̄, λ, η̄}.
‡Adding in neutrino masses would bring in 7 more parameters: 3 masses and 4 PMNS [86–88] mixing

angles. For the purposes of this thesis neutrinos can be considered massless.
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The most up-to-date values of these parameters§, expressed through more conveniently

measurable quantities, are shown in Table 1.1 [84].

Parameter Value Parameter Value

α 1/137.035 999 074(44) me 0.510 998 928(11) MeV
αs 0.1185(6) mµ 105.6583715(35) MeV
GF 1.166 378 7(6) × 10−5 GeV−2 mτ 1776.82(16) MeV
mh 125.7(4) GeV mu 2.3+0.6

−0.5 MeV
MW 80.385(15) GeV md 4.8+0.5

−0.3 MeV
A 0.814+0.023

−0.024 mc 1.275(25) GeV
λ 0.22537(61) ms 95(5) MeV
ρ̄ 0.117(21) mt 173.21 ± 0.51 ± 0.71 GeV
η̄ 0.353(13) mb 4.18(3) GeV

Table 1.1: The 18 free parameters of the Standard Model with massless neutrinos.

A few remarks are in order:

• The coupling constants α are related to their respective gauge coupling parameters

by

α =
e2

4π
, αs =

g2
s

4π
(1.59)

Coupling constant is something of a misnomer, however. The renormalisation of the

couplings by higher-order corrections ensures the values of these parameters depend

on the scale at which they are resolved. This will be discussed in more detail later.

In Table 1.1 α is quoted at the scale Q2 = 0, whereas αs is quoted at Q2 = M2
Z .

• In a similar way, the quark masses mi = yiv√
2

are renormalised by QCD effects (QED

renormalisation of lepton masses is negligible), and the values quoted refer to the

‘running masses’ in the MS renormalisation scheme, each evaluated at the scale µ =

2 GeV, with the exception of the top quark.

• The top quark presents an additional ambiguity: the measured value quoted above is

obtained from fitting Monte Carlo templates with different input values for the top

quark mass. This was formerly interpreted as equal to the top quark pole mass: the

renormalised mass corresponding to the pole in the top propagator. This analogy is

flawed, however, due to subtleties in the showering and hadronisation of partons in the

Monte Carlo. The ambiguity of definition here introduces a theoretical uncertainty

of ∼ 1 GeV in additional to the statistical and systematic errors quoted above. This

issue is discussed in more detail in the next section.
§There is also a 19th parameter: the QCD θ-term, which does not lead to physical effects in pertur-

bation theory, but can be generated by non-perturbative instanton effects. This will be discussed in some
detail in chapter 2.

33



The predictions of the Standard Model have been tested in numerous fixed-target and

collider experiments over the last forty years. The rich phenomenology of the strong in-

teraction has been extensively studied in electron-positron collisions and deep-inelastic

scattering in electron-proton events at HERA [89]. In addition, the precision measure-

ments carried out at LEP, the Tevatron and elsewhere [72,90] have probed the electroweak

couplings to sub-percent level accuracy. The 2012 discovery [73, 74] of a Higgs boson at a

mass of ∼ 125 GeV by the ATLAS and CMS experiments has filled in the last piece of the

SM picture, and studies of the Higgs sector to a similar precision are now underway [75].

The subject of this thesis concerns the properties of the top quark, and how they may

be probed at hadron colliders, so the next section reviews some general features of hadron

collider machines such as the LHC and Tevatron, before reviewing the physics of the top

quark that may be studied with them.

1.3 Hadron collider physics

1.3.1 Scattering theory

The starting point for calculating scattering amplitudes in quantum field theory is the

S-matrix, which can be split into a trivial ‘free-propagation piece’ and a scattering piece

T .

S = 1 + iT = 1 + iδ4(pf − pi)Mfi (1.60)

The delta function appears in every scattering amplitude to enforce momentum conserva-

tion, so can be factored out of any scattering amplitude to define the matrix-elementMfi.

From this, and Fermi’s golden rule, the cross-section for producing a general final state X

from initial state particles a1 and a2 of momenta p1 and p2 is

σ(a1(p1)a2(p2)→ X) =
1

Φ

∫
dΠn|Mfi|2 (1.61)

where

Φ = |va1 − va2|(2Ea1)(2Ea2) (1.62)

is the flux factor, defined in terms of the relative velocities of the incoming beams in the

lab frame, vai , and ∫
dΠn =

∫ n∏
i=1

d3ki
(2π)32Eki

=

∫
dLIPS(X) (1.63)

is the volume of the n-body final-state Lorentz invariant phase-space. Cross-sections can

be calculated order-by-order in perturbation theory, provided that coupling constants are

not too large so that higher-order terms in the perturbation series can be neglected. The

initial states relevant for hadron collisions are the constituents of the hadron: quarks and
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p(p1)

p(p2)

X1

q̄(x1p1)

q(x2p2)

µF

X2

g

Figure 1.3: Schematic diagram for the process pp → gX, where X denotes any other

final state products of the collision. The factorisation scale µF separates the perturbative

‘hard’ process from the non-perturbative parton densities of the incoming hadrons.

gluons. The perturbative cross-section is calculated completely in terms of quarks and

gluons (collectively known as ‘partons’) and is related to the full hadronic cross-section by

σ(p(k1)p(k2)→ X) =
∑
i,j

1∫
0

dx1dx2fi(x1, µ
2
F )fj(x2, µ

2
F )σ̂ij(x1, x2, s, αS(µR, Q

2)). (1.64)

Here σ̂ij→X is the partonic cross-section for final state X from partons i and j, where

i, j ∈ {q, g}. fi are the parton density functions (pdfs): the probability of finding a parton

i in the proton with fraction x of the total proton momentum. To obtain the full hadronic

cross-section, we calculate the partonic cross-section for momenta x1p1 and x2p2, then

integrate these over the full range of x for each proton, then sum over all allowed partonic

subprocesses. This is illustrated in Fig. 1.3.

The parameters µR,F are arbitrary scales necessarily introduced in fixed-order pertur-

bation theory. Calculations for hadron colliders are plagued by theoretical uncertainties,

which can be broadly classed into three categories: scale dependence, pdf uncertainties

and finite accuracies for Standard Model parameters such as αs, which enter as inputs into

the calculation. Here we briefly discuss each of these in turn.

1.3.2 Scale uncertainties

It is well-known that quantities calculated beyond the leading Born approximation in

quantum field theory often feature ultraviolet divergences. These arise from quantum fluc-

tuations with unconstrained high-momenta. For a certain class of quantum field theories,

it is possible to remove these divergences by defining the theory at some renormalisation

scale µR which separates the low energy field theory from the unknown short-distance
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Figure 1.4: Renormalisation (left) and factorisation (right) scale dependence of the pp→
tt̄ cross-section at 7 TeV, using the MSTW2008 pdf sets.

physics and allows one to make low-energy predictions regardless of the underlying degrees

of freedom. Although separated out, the degrees of freedom at different scales have the

effect of introducing a scale dependence of the coupling constants and masses of the theory.

In QED, for instance, the effective electromagnetic coupling runs from α = 1/137 at the

scale µR = 0 to α(µR = MZ) ∼ 1/129.

The renormalisation scale is an arbitrary parameter and so predictions for physical

quantities should be independent of µR. The renormalisation group equations define pre-

cisely how the renormalised couplings should vary with scale such that order-by-order in

perturbation theory, measurable quantities are independent of µR. Truncating the pertur-

bative expansion at a fixed order, however, means that the cancellation of µR in physical

quantities is incomplete, i.e. there is a residual dependence on µR proportional to the next

order in the perturbative expansion.

It is not immediately clear which value of µR should be chosen for a process, but it

should be a characteristic energy scale entering the process that absorbs the large log-

arithms log(s/µ2
R) arising from separate scales involved in the process. To estimate the

size of unknown higher-order corrections, one typically varies the scale over the range

µ/2 ≤ µR ≤ 2µ, using the variation in the prediction as the scale uncertainty. For most

processes where NNLO corrections have been calculated, they have been found to lie in the

scale uncertainty band of the NLO estimate, which vindicates this rather ad hoc procedure.

Counter-examples exist, however, where the NLO and NNLO scale uncertainty bands do

not overlap, such as in cases where widely different scales enter¶, and to truly quantify

higher-order effects there is no substitute for doing the actual calculation.

¶One example is associated Higgs production pp→ HV [91].
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One must also choose the factorisation scale for a process. This defines at what energy

we separate the hard (high-momentum) scattering process cross-section, which is calculated

in perturbation theory, from the parton density functions (PDFs) for the incoming protons,

which are extracted from data.

The factorisation scale is also not a physical quantity, it is a definition of what energy

scale corresponds to the partonic process and what falls into the definition of the incoming

protons. Any initial state radiation with energy E < µF is absorbed into the hadron.

Again, there is no ‘correct’ scale, one simply chooses a value typical of the process and varies

over [1/2,2] to estimate the uncertainty. For most of our predictions (save a few special

cases) we set a common central scale µR = µF = µ = mt and vary both independently

over [µ/2,2µ]. The dependence of the total tt̄ production cross-section at the 7 TeV LHC,

at leading and next-to-leading order, on these scales is sketched in Fig. 1.4, showing that

the range [µ/2,2µ] captures most of the scale dependence.

1.3.3 The parton densities

The inner structure of the proton is determined by quantum chromodynamics in the

strongly coupled, low-momentum transfer regime where perturbative techniques are not

valid, so the parton densities fi are not calculable from first principles. The choice of pdf

set introduces an additional theoretical uncertainty and several such sets are available. Of

course, predictions should be independent of the set used: the structure of the proton at

a certain energy scale is a universal physical property. In practice, however, the different

approaches each group uses to extract parton densities from data introduce systematic

uncertainties leading to different results.

Due to the vastly different methodologies used by the main pdf groups, and the different

input measurements used in their fits, it is often not possible to compare their results in an

unbiased way. Instead the discrepancies resulting from different pdf choices are resolved

in the most conservative way, by calculating predictions for each of the main pdf groups:

CT14 [92], MMHT [93] and NNPDF [94], and taking the maximum range as an additional

(‘pdf’) uncertainty. This prescription is the recommendation of the PDF4LHC [95] working

group, and is the one adopted throughout this thesis, unless otherwise stated.

1.3.4 Standard Model parameters

In addition to the theoretical uncertainties arising from scale and pdf choices, an addi-

tional source arises from the finite precision with which the SM parameters entering the

calculation have been measured. Of the 18 parameters in Table 1.1, the two most relevant

for top quark production are the strong coupling constant αs and the top quark mass mt.

37



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

110−4 10−3 10−2 10−1

x
f i

(x
,Q

2 )

x

Q2 = 10 GeV2

0

0.5

1

1.5

2

2.5

3

3.5

110−4 10−3 10−2 10−1

x
f i

(x
,Q

2 )

x

Q2 = 100 GeV2
g/10

u
d
ū
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ū
d̄

s/s̄
c/c̄

Figure 1.5: Parton distribution functions for the proton from the MSTW2008 NNLO

fit [96], at low (left) and high (right) momentum transfer. Uncertainties are not shown.

The former is known to sub per-mille accuracy, having been extracted mainly from high-

precision e+e− experiments at LEP and SLC, as well as through deep inelastic scattering

measurements. Its value, quoted at the Z-pole, can be calculated at any energy scale using

the QCD β-function, which has recently been calculated to five-loop accuracy [97–99]. It

is therefore one of the most precisely measured quantities of the Standard Model, and

the inclusion or omission of its experimental uncertainty rarely has a substantial effect on

perturbative QCD predictions.

The top quark mass, however, presents additional challenges, as mentioned above.

Experimentally, the top quark mass has been measured to sub percent-level accuracy, This

is typically achieved by directly reconstructing the top quark from its decay products: a

b-tagged jet and either a charged lepton and missing transverse energy, or an additional

pair of jets. Kinematic distributions of these decay products are constructed, e.g. the

reconstructed top mass mt, and Monte-Carlo predictions (‘templates’) with different values

of mMC
t are fit to the data. The best-fit value is then defined as the top quark mass. This

is a well-defined statistical procedure. However, ambiguity arises when relating mMC
t to a

renormalised mass in quantum field theory.

The top quark mass is renormalised by self-energy corrections. The UV divergent pieces

of these corrections are absorbed unambiguously into the running of the mass. However,

different treatments of the finite corrections admit different definitions of what is meant by a

‘mass’ in quantum field theory. The most intuitive is the pole mass, the mass corresponding

to the pole in the propagator, where all divergent and finite corrections are absorbed into

the mass. Owing to non-perturbativity, however, loop corrections with momenta . 1 GeV

(the QCD hadronisation scale) cannot be calculated, which defines a maximum precision on

the pole mass definition. A Monte Carlo generator never runs into such problems. The MC
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top mass is defined as the pole in the hard matrix element. When this is interfaced to the

parton shower, which generates successive parton splittings at increasingly low momenta,

self-energy corrections are ignored, so they must be viewed as already included in the

definition of mMC
t . However, when the typical parton momenta in the shower reaches O(1

GeV), showering stops and the hadronisation model takes over. There is thus a fundamental

precision of ∼ 1 GeV with which we can relate mpole
t to the experimentally measured mMC

t ,

and this uncertainty should be included in any calculations involving mt (see Ref. [100] for

a recent review of these issues).

1.4 Top quark physics at hadron colliders

The top quark couples directly to all of the Standard Model gauge and Higgs bosons. The

interaction with gluons is described by a vectorial fermion-gauge coupling ψ̄ψAµ

gA
µ

t

t̄

= −igsTAγµ, (1.65)

as is the coupling to photons,

γ

t

t̄

= −i2
3
eγµ. (1.66)

Due to the V − A structure of the charged weak currents, only the left-handed top

couples to the W±, with coupling

W

t

b̄

= igγµ(1− γ5)Vtb, (1.67)

where the value of Vtb is given in Eq. (1.57). The top couples to the Z with unequal left
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and right-handed components, given by

Z

t

t̄

=
ig

2 cos θW
γµ(vt − atγ5), (1.68)

where vt = T3t − 2Qt sin2 θW ' 0.19 and at = T3t = 1/2. Finally, it couples to the Higgs

boson with a Yukawa-type interaction ψ̄ψφ,

h

t

t̄

= yt =

√
2mt

v
. (1.69)

All of these couplings are flavour-conserving, with the exception of the charged-current

interaction with the W±. Since we are interested in top quark production at hadron

colliders, the QCD triple gluon vertex will also be relevant for our discussion. Its Feynman

rule is

gA
µ
(k1)

gB
ν
(k2)

gC
ρ
(k3)

= gsf
ABC [gµν(k1−k2)ρ+gνρ(k2−k3)µ+gρµ(k3−k1)ν ], (1.70)

where all momenta are defined as towards the vertex.

The structure of the top quark couplings is identical to those of the other quarks, but

the top enjoys properties unique amongst the quarks, namely its large coupling to the Higgs

boson (yt ' 1 in the SM) which suggests it plays a special role in electroweak symmetry

breaking, and its large coupling to b-quarks (Vtb has been measured to be very close to

1), an observation which is unexplained in the SM. For these reasons and others, the top

is often viewed as a possible window to physics beyond the Standard Model (indeed, this

is the subject of this thesis). However, before turning our attention to BSM physics, we

conclude this chapter with a discussion of the main production mechanisms for top quarks

at hadron colliders.

1.4.1 Top pair production

By far the dominant production mechanism for top quarks in hadron collisions is top

pair production pp/pp̄ → tt̄. The main contributions to this process come from QCD;
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Figure 1.6: The leading order Feynman diagram for qq̄ → tt̄ in the SM.

production through intermediate Z bosons are negligible because the tt̄ threshold is far

from the Z pole, while QED contributions are parametrically suppressed by (α/αs)
2. At

leading-order in αs, the partonic subprocesses qq̄ → tt̄ and gg → tt̄ both contribute. For

the former, the partonic cross-section is, averaging (summing) over initial (final) state spins

and colours:

σqq̄→tt̄ =
g4
s

108πs
β(3− β2), (1.71)

where β =
√

1− 4m2
t/s is the velocity of the top quark in the centre of mass frame

(generically referred to as the ‘threshold variable’). The leading-order Feynman‖ diagram

for the qq̄ channel is sketched in Fig. 1.6. For the gg channel, we have:

σgg→tt̄ =
g4
s

768πs

(
31β3 − 59β + (33− 59β + (33− 18β2 + β4)) log

1 + β

1− β

)
. (1.72)

Feynman diagrams for this process are sketched in Fig. 1.7.

To obtain the full hadron-level cross-section, we convolute these expressions with the

parton densities, as in Eq. (1.64). Displaying a closed-form expression for the hadron-level

cross-section would thus require functional forms for the parton densities fg(x;Q2) and

fq(x;Q2) used to fit the data. Here we simply discuss the numerical results, obtained from

numerical tables of the pdf data.

The relative contributions of the partonic subprocesses are determined by the nature of

the incoming hadrons. At the Tevatron pp̄ collider, antiquarks exist as valence quarks in

the initial state, so qq̄ → tt̄ is the dominant subprocess: it contributes around 85% of the

total cross-section, the remainder is made from gluon-fusion. At a centre of mass energy

of
√
s = 1.96 TeV, the leading order cross-section is calculated to be around 7 pb, for

µR = µF = mt and using the CTEQ6l1 parton sets. At the LHC, antiquarks only appear

as sea quarks, whilst the large kinematic reach means the proton is resolved down to much

smaller momentum fraction xmin ∼ 10−5. In this regime the gluon luminosity becomes

dominant, so the gg channel contributes up to 90% of the total cross-section. At a centre

‖Our convention for Feynman diagrams is to represent the flow of charge through diagrams with
arrows, in keeping with the Feynman-Stuckleberg interpretation of antimatter as matter under a time
reversal transformation.
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Figure 1.7: The leading order Feynman diagrams for gg → tt̄ in the SM. Diagrams with

these topologies are generically labelled (from left to right): s, t and u-channel diagrams.

of mass energy of 7 TeV, the leading-order cross-section is around 100 pb [101].

Higher-order corrections

Understanding the effects of higher-order radiative corrections is necessary for obtaining

precise Standard Model cross-section predictions. The size of (as yet) uncalculated higher-

order effects can be estimated by noting the change in the cross-section with respect to

scale variations. Leading-order estimates are typically correct within a factor of two, i.e.

they provide a good ballpark estimate, but, owing to the fact that they include information

about appropriate scale choices that should absorb the large logarithms that occur at higher

orders, next-to-leading order (NLO) and often higher still corrections must be included for

truly accurate estimates. They can be approximately included by defining a K-factor

K =
σ(pp→ X)(N)NLO

σ(pp→ X)LO
, (1.73)

The higher-order estimate is then simply calculated by multiplying (‘reweighting’) the

leading-order estimate by the K-factor. For top-pair production, the current ‘state-of-the-

art’ SM prediction is the full next-to-next-to leading order estimate, which includes the

resummation of terms involving soft gluon emissions to next-to-next-to-leading logarithmic

accuracy (shorthand NNLO+NNLL) leading to the following values [102–104]:

σ(pp→ tt̄+X) = 172.0 +4.4
−5.8 (scale) +4.7

−4.8 (pdf)
√
s = 7 TeV

σ(pp→ tt̄+X) = 245.8 +6.2
−8.4 (scale) +6.2

−6.4 (pdf)
√
s = 8 TeV

σ(pp̄→ tt̄+X) = 7.164 +0.11
−0.20 (scale) +0.17

−0.12 (pdf)
√
s = 1.96 TeV

(1.74)

As well as the total cross-section, it is useful to study the dependence of the cross-section

on kinematic observables that can be measured at colliders. The most commonly studied
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variables are briefly outlined:

• The invariant mass, defined as

m2 =

(∑
i

Ei

)2

−
(∑

i

pi

)2

(1.75)

where the sum is over all final state particles i. Final state invariant mass distribu-

tions are the classic way of searching for new particles. A peak in the tt̄ invariant

mass distribution at high mtt̄ would be an unambiguous signal of a new resonance

decaying to top quarks.

• A related kinematic quantity is the transverse momentum pT of the top; large-pT

events correspond to events in the high-energy region, where possible new physics

effects are most likely to lie.

• The distribution of particles throughout the geometry of the detector is usually spec-

ified in terms of the rapidity y, defined as

y =
1

2
ln

(
E + pz
E − pz

)
. (1.76)

This is typically used as a geometrical proxy for polar-angle θ∗∗ as, unlike θ, it is

additive under Lorentz boosts in the z-direction.

Top quark differential distributions have been calculated at NLO and are now fully

automated in various Monte Carlo event generator programs [105–108]. Full phase-space

results (at parton level) for top quark differential distributions are now available at NNLO

QCD [109, 110], however they are not yet implemented in a Monte Carlo simulation such

that they can be interfaced to a parton shower and implemented in a realistic experimental

cutflow. To illustrate the importance of NLO corrections, in Fig. 1.8 we plot kinematic

distributions in σ at LO and NLO. Uncertainties related to scales and pdfs have not been

shown, the point is merely to illustrate that NLO corrections are large (nearing 50% in

some bins) which highlights the need to include them.

1.4.2 Charge asymmetries

An important probe of the Standard Model in top pair production is through charge

asymmetries [111–115]. The most well-known of these is the so-called ‘forward-backward’

∗∗Most collider experiments use a spherical co-ordinate system, where θ is the angle between the beam
(z-axis) and the particle track, and φ is the azimuthal angle between the track and the vertical, i.e. looking
down the beam.
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Figure 1.8: Cross-section distributions in pp→ tt̄ collisions at the LHC at NLO and LO,

with associated bin-by-bin K-factors, as calculated with Mcfm [107]. Here ytt̄ ≡ yt − yt̄.

asymmetry in proton-antiproton collisions, which is most conveniently expressed as a differ-

ence between the number of top pairs in the forward direction (parallel with the incoming

proton) and the backward direction (antiparallel with the incoming proton):

AFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, (1.77)

where ∆y = yt − yt̄. An asymmetry arises in the subprocess qq̄ → tt̄ due to terms which

are odd under the interchange t ↔ t̄ (with initial quarks fixed), specifically from the

interference between the tree-level diagram for qq̄ → tt̄ and the 1-loop ‘box’ diagram, and

interference between the real emission contributions for qq̄ → tt̄g. Thus, the asymmetry

originates at next-to-leading order in QCD. The SM prediction at NNLO QCD is AFB =

44



y

dσ
dy

y

dσ
dy

tops
antitops

tops
antitops

Figure 1.9: Exaggerated schematic of the origin of the asymmetries AFB at the Tevatron

(left), and AC at the LHC (right).

7.24+1.04-0.67 [116], where the errors are from scale variation.

A different, but related, asymmetry can be defined at the LHC, where the charge

symmetric initial state does not define a ‘forward-backward’ direction. Instead, a central

charge asymmetry AC can be defined

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
, (1.78)

where ∆|y| = |yt| − |yt̄|. This definition makes use of the fact that in qq̄ → tt̄ the quark in

the initial state is almost always a valence quark and is likely to carry more longitudinal

momentum than the antiquark, which is always a sea quark. The net result is that tops,

being more correlated with the direction of the initial state quarks, tend to be produced at

larger absolute rapidities than antitops. However, at LHC energies, gluons dominate the

beam composition, so the gg → tt̄ channel, for which AC = 0, dominates the cross-section.

This means AC is much more diluted than AFB. Its SM prediction is AC = 0.0123 ±
0.0005 [111], which includes NLO QCD and electroweak corrections. The asymmetries at

the Tevatron and the LHC are visualised in Fig. 1.9.

1.4.3 Single top production

The next-most-dominant way of producing top quarks at hadron colliders is the single-

top process, which can be sub-categorised into the purely electroweak processes qq̄′ → tb̄

and qb → tq′, mediated by W bosons in the s [117–119] and t-channel [120–124], and the

electroweak+QCD process gb → tW ; referred to as Wt-associated production [125–131].

Feynman diagrams for both cases are shown in Figs. 1.10 and 1.11.

The s-channel cross-section has a relatively large rate at the Tevatron, but at the LHC

it is much rarer than its t-channel counterpart, because it is initiated by antiquarks and
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Figure 1.10: The leading order Feynman diagrams for electroweak single top production

in the SM. The corresponding antitop diagrams are constructed by reversing the fermion

arrows.

so is suppressed by the initial parton densities. The signature for s-channel production

is a pair of b-tagged quarks, one originating from the primary vertex and one from the

decay of the top quark, a high pT lepton, and missing transverse energy, corresponding

to a neutrino from the leptonic top quark decay. It remains a challenging channel to

reconstruct, however, due to its small event rate and large backgrounds, namely from top

pair and W+jets. The leading order partonic cross-section for s-channel top production is

σud̄→tb̄ =
|Vud|2|Vtb|2g4(s−m2

t )
2(2s+m2

t )

384πs2(s−M2
W )2

. (1.79)

In t-channel production, in order to produce a top quark, the spacelike W must be

highly off-shell, and so there is a large momentum transfer between the outgoing partons,

hence the light quark tends to recoil against the heavy top, leading to an untagged jet in

the forward region of the detector. Moreover, the exchange of a color singlet between the

two outgoing partons means there is relatively little QCD radiation in the region between

them, leading to suppressed central jet activity between the top quark decay products

and the jet from the light quark, known as a rapidity gap. Though this defines a very

clear experimental signature, at the theoretical level there exists some ambiguity in the

parton-level definition of this process. One may choose to define the incoming b-quark as

originating directly from the incoming proton, using a so-called 5-flavour scheme for the

proton pdf, leading to the 2 → 2 topology as shown in Fig. 1.10. Alternatively, one may

treat the b-quark as the product of the collinear splitting of a gluon (g → bb̄) in the initial

state, leading to a 2→ 3 event topology.

Formally, these two treatments should lead to the same cross-section prediction, but

differ when truncated at fixed-order in perturbation theory, in particular due to the accu-

racy at which the logarithms originating from the gluon splitting are resummed, and the

treatment of these splittings in the evolution of the pdfs. The leading-order parton level

cross-section for t-channel production in the 5-flavour scheme, in both the ub → dt and
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db̄→ ūt channels are:

σub→dt =
|Vud|2|Vtb|2g4(s−m2

t )
2

64πsM2
W (s−m2

t +M2
W )

σdb̄→ūt =
|Vud|2|Vtb|2g4

(
(s−m2

t )
2(2s+m2

t )−M2
W (2s+ 2M2

W −m2
t ) log

s+M2
W−m2

t

M2
W

)
4πs2M2

W

.

(1.80)

Finally, for Wt-associated production, the cross-section in the 5-flavour scheme takes the

form

σgb→Wt =
|Vud|2|Vtb|2g2g2

s

384s3M2
W

(
− 3((m2

t − 2M2
W )s+ 7(m2

t −M2
W )(m2

t + 2M2
W ))λ1/2(s,m2

t ,M
2
W )

+ 2(m2
t + 2M2

W )(s2 + 2(m2
t −M2

W ) + 2(m2
t −M2

W )) log
(s+m2

t +M2
W + λ1/2

s+m2
t +M2

W − λ1/2

))
(1.81)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén function [132].

The pure electroweak single top production processes typically have cross-sections an or-

der of magnitude smaller than for top pair production. Although the available phase space

for producing one top instead of two is much larger, the matrix elements are parametrically

suppressed by the strength of the electroweak coupling relative to the strong coupling. For

the same reason, the cross-sections are more stable against higher-order corrections, and

K-factors for s and t-channel production are more flat in differential distributions and scale

choices, typically at the 10-20% level. The most up-to-date calculations for electroweak

single-top production are at approximate NNLO, although there are different definitions

of this term. One calculation calculates in the so-called structure function approximation,

where only factorisable vertex corrections are considered [124]. The remaining terms are

colour suppressed ∼ 1/N2
c and kinematically subdominant. Another approach is to expand

the resummed leading-order cross-section to O(α2
s) [120]. Both calculations are in general
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Figure 1.12: Real emission contributions to Wt-associated production at NLO. These

also correspond to diagrams for tt̄ production, where the antitop has decayed.

agreement. The latter yields for the t-channel:

σ(pp→ tq +X) = 65.7 +1.9
−1.9

√
s = 7 TeV

σ(pp→ tq +X) = 87.1 +0.24
−0.24

√
s = 8 TeV

σ(pp̄→ tq +X) = 2.06 +0.13
−0.13

√
s = 1.96 TeV.

(1.82)

where the uncertainties quoted have added scale and pdfs in quadrature, and for the s-

channel:

σ(pp→ tb+X) = 4.5 +0.2
−0.2

√
s = 7 TeV

σ(pp→ tb+X) = 5.5 +0.2
−0.2

√
s = 8 TeV

σ(pp̄→ tb+X) = 1.03 +0.05
−0.05

√
s = 1.96 TeV.

(1.83)

These values are summed over the top and antitop channels. At the Tevatron, owing to

its charge symmetric initial states, both channels contribute equally, while at the LHC

the relative top/antitop contributions are 65% to 35% for t-channel, and 69% to 31% for

s-channel.

Since the Wt process is QCD initiated, it is expected to receive sizeable corrections from

higher-order terms. However, an ambiguity arises when one tries to define an NLO estimate

for this process. Generically, NLO corrections result from both virtual ‘loop’ corrections,

and emission of real particles. The latter type in Wt production include diagrams of the

form shown in Fig. 1.12: which are also present in resonant top-pair production, with

one top quark decay t → Wb. When this intermediate top quark goes on-shell, the Wt

cross-section becomes of the order of the tt̄ one, which is an order of magnitude larger.

In this regime, such a large K-factor means a perturbative definition of the Wt process is

ill-defined. The question is then, do such diagrams belong to Wt or tt̄, and can one make

an NLO definition of Wt production that avoids the interference with resonant top-pair

production? This problem has been studied in some detail [128,133–137].

Two well-known prescriptions for removing the effects of top pair production in Wt at
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NLO are diagram removal and diagram subtraction. The former removes the diagrams of

the form of Fig. 1.12 at the amplitude level, so they do not enter the calculation. The

latter subtracts their contributions from the final cross-section. The difference between

the NLO Wt cross-section predictions from these two methods thus provides a measure of

the interference effect of the diagrams of Fig. 1.12 [129,133]. Reasonable choices of exper-

imental cuts can be made to minimise this interference (an obvious choice, for instance,

would involve an invariant mass cut close to the tt̄ threshold), so that Wt and tt̄ can, for

all practical purposes, be considered as separate processes††.

However one decides to define the Wt-associated production process, the cross-section is

too small at the Tevatron to be of any phenomenological relevance. At the LHC, however,

the approximate NNLO cross-section, defined from the NNLO expansion of the NNLL-

resummed cross-section, is:

σ(pp→ Wt+X) = 15.5 +1.2
−1.2

√
s = 7 TeV

σ(pp→ Wt+X) = 22.1 +1.2
−1.2

√
s = 8 TeV.

(1.84)

Since the process is initiated by a gluon and a b-quark, and fb(x) = fb̄(x) in the proton,

the top/antitop contributions are equal.

1.4.4 Higher-order processes

As the LHC probes kinematic regions inaccessible to previous colliders such as the Teva-

tron, new event topologies with a higher multiplicity of hard partons become increasingly

commonplace. Of special interest for top physics are processes where a top quark pair is

produced in association with an additional particle in the hard process, dubbed higher-

order because they already have a 2 → 3 topology at tree-level. These processes probe

directly the top couplings of Eqs. (1.65)-(1.69), allowing for a model-independent way of

constraining new top interactions. For instance, a measurement of top pairs in associa-

tion with a Z boson directly probes the tt̄Z [138, 139] coupling, allowing contact to be

made with precision LEP observables. In principle this could be extracted from the simple

pp→ Z → tt̄ process, but this signal is drowned out by the much larger QCD tt̄ rate.

Top pairs produced in association with Higgs bosons (tt̄H) [140, 141] are of particular

interest in this regard, because they allow for a model-independent extraction of the top

quark Yukawa coupling, thus offering discriminating power between models where much

of the top quark mass is generated from a non-SM mechanism. These processes have

small rates, typically O(100 fb), and are thus experimentally challenging. Nonetheless,

significant progress has been made towards their discovery in LHC Run I [142, 143], and

††For an alternative viewpoint, see e.g. Ref. [136].
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the high statistics forecast for the LHC lifetime suggest they can ultimately be measured

with similar precision to the leading order processes discussed above.

1.4.5 Top quark decay

The unique properties of the top quark stem largely from the characteristics of its decay.

The top quark is the only quark in the Standard Model with a mass larger than that of the

W boson. Hence it can decay directly through the process t → Wb. The mass difference

mt−MW ∼ 90 GeV means that the allowed phase-space for the decay is large, and so the

top quark decays before the strong interaction can bind it into hadrons. At next-to-leading

order in αs, the top decay width is given by [144]

Γt =
GFm

3
t

8π
√

2

(
1− M2

W

m2
t

)(
1 + 2

M2
W

m2
t

)[
1− 2αs

3π

(
2π2

3
− 5

2

)]
. (1.85)

where terms of order m2
b/m

2
t , α

2
s and (αs/π)M2

W/m
2
t have been neglected, and it is

assumed |Vtb|2 = 1. For mt = 173.3 GeV this gives a value of Γt ∼ 1.3 GeV, corresponding

to a top quark lifetime of 0.5 × 10−24 s. Despite the large phase space available for the

decay, the top still satisfies the narrow width approximation Γ� m. This means that one

can make the replacement of the propagator

1

((s−m2)2 + (mΓ)2)
→ π

mΓ
δ(s−m2), (1.86)

in the squared matrix element. This substantially simplifies the calculation of decay

amplitudes. Nonetheless, the narrow width approximation should be treated with care,

as it is not valid for observables whose main contributions originate from regions of phase

space where the top is far off-shell. In addition, the raw top width is a difficult quantity to

measure at hadron colliders, without making assumptions (such as a SM-like cross-section).

Other observables relating to top decay can be much more precisely measured.

For instance, the fraction of events in which the top decays to W -bosons with a given

helicity: left-handed, right-handed or zero-helicity, can be expressed in terms of helicity

fractions, which for leading order with a finite b-quark mass are

F0 =
(1− y2)2 − x2(1 + y2)

(1− y2)2 + x2(1− 2x2 + y2)

FL =
x2(1− x2 + y2) +

√
λ

(1− y2)2 + x2(1− 2x2 + y2)

FR =
x2(1− x2 + y2)−

√
λ

(1− y2)2 + x2(1− 2x2 + y2)
,

(1.87)
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where x = MW/mt, y = mb/mt and λ = 1 + x4 + y4 − 2x2y2 − 2x2 − 2y2. A desirable

feature of these quantities is that they are relatively stable against higher order corrections,

so the associated scale uncertainties are small. The Standard Model NNLO estimates for

these are: {F0, FL, FR} = {0.687± 0.005, 0.311± 0.005, 0.0017± 0.0001} [145,146], i.e. the

uncertainties are at the per mille level. The large enhancement of decays to longitudinal

W bosons results from the Goldstone boson equivalence theorem, which states that in the

limit s�MW , W scattering is dominated by the longitudinal components, so W s may be

approximated by Goldstone scalars in calculations.

Another unique feature of the top quark is that its decay width is much larger than

the QCD spin decorrelation width Λ2
QCD/mt ∼ 0.1 MeV, therefore the correlation between

the spins of tops and their decay products is completely preserved, and spin correlations

in, for example, top pair production can be measured directly through spins of the decay

leptons (selecting dilepton events).

1.5 Summary

To summarise, the top quark plays a special role among the Standard Model fermions,

and, owing to its unique experimental properties, offers a valuable hadron collider testing

ground for many SM predictions. However, the real interest in the top quark stems from

its role in potential TeV scale new physics, perhaps within reach of the LHC. This is the

subject of the next chapter.

51



2 The top quark beyond the Standard Model

2.1 Introduction

Despite the vast list of experimentally verified predictions of the SM over the last forty

years, it still paints a somewhat unsatisfying picture of Nature. In order for it to be

predictive, it requires fixing the values of 18∗ arbitrary parameters from experiment. These

parameters span several orders of magnitude, with no apparent pattern between them. Any

fundamental theory worth its salt ought to be able to predict the values of these numbers,

or at least relate them in terms of a smaller subset of more fundamental parameters.

Beside the aesthetic issue of the large number of free parameters, the Standard Model

also has some deep structural problems that have motivated new physics model building

for the last few decades. Owing to its unique properties among the SM fermions, the top

quark has played a special role in most of these scenarios. Indeed, the potential for using

measurements of top quark couplings to place bounds on the effects of new physics is the

main topic of this thesis.

This chapter is structured as follows: In section 2.2 I will outline the main motivations

for physics beyond the Standard Model (BSM). In section 2.3 I discuss a few of the most

popular scenarios of BSM physics, and the role the top quark plays in them. In section

2.4 I discuss some generalities of using effective field theories to parameterise the effects

of heavy degrees of freedom on low energy observables, before moving onto discussing the

formulation of the Standard Model as an effective theory in section 2.5, and the parts of

that EFT that are relevant for top quark physics in section 2.6. Conclusions are presented

in section 2.7.

2.2 Motivations for physics beyond the Standard Model

2.2.1 The hierarchy problem

Perhaps the best-known motivation for physics beyond the SM is the hierarchy problem:

the vast difference between the electroweak scale and the Planck scale where quantum

gravity becomes important: v/MPl ∼ 10−16. This large mass hierarchy is not a specific

problem of the Glashow-Salam-Weinberg model, but a general feature of theories containing

fundamental scalars. To see this, we return to the simple case of a real scalar field in four

dimensions.

L =
1

2
∂µφ∂

µφ− V (φ) where V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (2.1)

∗Excluding the QCD θ-parameter, which will be discussed later in this chapter.
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= −iM2 = λ

Figure 2.1: Feynman rules for the 1-loop mass and coupling constants defined in

Eqs. (2.4)-(2.5).

At tree-level the potential will simply correspond to the classical potential Vtree = V (φ).

However, radiative corrections will modify this relation, and the true potential; that is, the

one that the vacuum expectation value seeks to minimise, is the so-called effective potential

Veff, which will receive radiative corrections.

The radiative corrections originate from the effects of virtual particle emission and

absorption on the interaction energy, so in principle includes all one-particle irreducible

diagrams with any number of external legs n > 2†. The potential involves only non-

derivative terms in the Lagrangian, so the momenta of the external legs can be taken to

be zero without loss of generality, i.e. calculating the radiative corrections to the scalar

potential amounts to summing up all 1PI diagrams with zero external momentum (for a

more formal proof of this statement, see e.g. Refs [148, 149]). This can be done order-

by-order in perturbation theory. To isolate the quantum corrections, it is useful to split

φ into a classical ‘background’ or external field φc, corresponding to the field in the tree

potential, and quantum corrections δφ.

φ = φc + δφ. (2.2)

Since we will encounter divergent loop momenta, we must define renormalisation conditions

for the couplings of the theory to absorb them. Conventionally, one defines the renormalised

mass of the scalar field φ as the ‘pole’ mass, i.e. the negative of the inverse propagator at

zero momenta

M2 ≡ −δ
2L
δφ2

c

∣∣∣∣
φc=0

, (2.3)

while the renormalised coupling is defined from the 4-point function at zero momentum:

λ ≡ −δ
4L
δφ4

c

∣∣∣∣
φc=0

. (2.4)

In the spontaneously broken theory, the subtraction point is shifted from φc = 0 to φc = 〈φ〉
†Vacuum energy graphs with n = 0 just shift the energy by a constant, diagrams with n = 1 can be

absorbed into a shift of the field [147].
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so that

M2 ≡ −δ
2L
δφ2

c

∣∣∣∣
φc=〈φ〉

= µ2 +
λ

2
〈φ〉2 . (2.5)

This means that the renormalised masses and couplings will in general be functions of 〈φ〉.
The corresponding Feynman rules are shown in Fig. 2.1.

As mentioned above, the all-order effective potential is given by the sum of all 1PI

vacuum diagrams with zero external momentum. At one-loop then, calculating the contri-

butions to Veff amounts to summing up the vacuum ‘bubble’ diagrams of the form shown

below [149],

V 1-loop
eff (φc) =

+ + + + . . .

leading to a geometric series which can be resummed, giving (up to constant terms)

the well-known one-loop Coleman-Weinberg effective potential [148]:

V (φc) = Vtree + V (1)(φc)

V (1)(φc) =
Λ2

32π2
µ2 +

λφ2
cΛ

2

32π2
+

(µ2 + λφ2
c)

2

64π2

[
log

(µ2 + λφ2
c)

Λ2
− 1

2

]
.

(2.6)

Clearly, this expression is divergent: the mass term has a divergence proportional to

the UV cutoff Λ2, and the quartic coupling has a logarithmic divergence. These may

be absorbed into counterterms δµ and δλ specified by the renormalisation conditions of

Eqs. (2.4) and (2.5), so that the full potential at 1-loop order is then

V (φc) = µ2
renormφ

2
c +

λrenorm

4
φ4
c = Vtree + V (1)(φc) + Vc.t. (2.7)

This, however, means that the renormalized (physical) mass will receive corrections of the

form

µ2
renorm = µ2

0 +
λ0Λ2

32π2
+
λ0µ

2
0

64π2

[
log

(
µ2

0 + λ〈φ〉2
2

Λ2

)2

− 1

2

]
− δµ. (2.8)

So in order to keep the renormalised mass of the same order as the bare mass m0 =√
−2µ2, we require a cancellation between the quadratically divergent term Λ and the
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counterterm δµ (the logarithmic term remains of the same order since it is multiplied

by µ2
0). If the physical mass is to be much smaller than the cutoff Λ, we must assume

a miraculous cancellation between contributions below the cutoff and the unknown UV

degrees of freedom, parameterised by the counterterms, above the cutoff [150,151].

This analysis can be applied to the µ2 term in the Higgs potential of the Standard Model.

Here the cutoff Λ denotes the generic scale at which the Standard Model is no longer valid,

it could for instance represent the mass of a new heavy scalar. Since it can be subtracted off

in mass renormalisation, it should not affect low-energy physics. To ensure this, however,

requires an extraordinarily precise fine-tuning of parameters. Suppose, for instance, that

the SM were valid all the way up to the Planck scale. To keep the renormalized mass at

the 100 GeV scale one would need to arrange for the cancellation between the ‘bare’ mass,

describing the low-energy theory, and the counterterms, describing unknown high-energy

degrees of freedom. This cancellation would have to be precise to 16 orders of magnitude,

and hold through several orders in perturbation theory. Even if one started without a tree

level mass, and generated it radiatively, i.e. by just considering the quartic term in the

tree-level potential, the large mass corrections would still be present, because the scalar

mass renormalisation is additive, not multiplicative‡.

We know of no other situation in physics where degrees of freedom separated by so

many orders of magnitude would conspire to produce the phenomena that we observe. To

calculate the Bragg diffraction angles on a crystal, for instance, one does not need to know

the mass of the Z boson. In keeping with this separation of scales principle, it seems that

the natural mass for a fundamental scalar in a theory is close to the cutoff of that theory.

What mechanism is it, then, that keeps the Higgs so light? This is the hierarchy problem,

and has been the main driving force for physics beyond the Standard Model for the last

forty years.

One could restate the argument in a different way. The hierarchy problem is not the

fact that there is a large difference between the electroweak scale and the Planck scale. One

does not complain, for instance, about the large hierarchy (∼ 106) between the electron

mass and the electroweak scale. This is because the electron mass term in the Standard

Model originates from its chiral Yukawa coupling to the Higgs field:

L̄ϕeR → ye(νL, eL)HeR. (2.9)

This is the only term in the SM Lagrangian that breaks the electron’s chiral symmetry.

Consequently, any radiative corrections that break chiral symmetry can only be propor-

‡Although other regularisation schemes such as dimensional regularisation ‘hide’ the UV divergences
by lacking a UV cutoff Λ, this does not mean the hierarchy problem is an artefact of using a momentum-
dependent regulator: it is a statement that parameters at one scale are sensitive to parameters at a vastly
different scale, whether one expresses this scale in terms of a cutoff or not.
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tional to positive powers of ye. Setting ye = 0 thus enlarges the symmetry group of the

Standard Model. Approximate symmetries like this have physical consequences such as

(approximately) conserved currents, so there is a ‘natural’ reason for me to take such a

small value in relation to other relevant scales. ye is an example of a ‘technically natural’

parameter [152]. The Higgs mass term µ2(H†H), on the other hand, is not technically

natural; since it is already invariant under any chiral transformation H → eiθγ5H, so it has

no natural reason for being so much smaller than näıve power counting would suggest.

2.2.2 Vacuum stability

Arguments for Naturalness of the Higgs mass as evidence for the need for new physics are

convincing, but not incontrovertible. The Standard Model is a renormalisable field theory,

which means that it is in principle a valid description of Nature from the electroweak

scale all the way up to the Planck scale, where the degrees of freedom of quantum gravity

will become important. It is thus possible, that there is no new physics in the region

in between. Extrapolating the Standard Model across this many orders of magnitude,

however, leads to an interesting implication for cosmology. To show this, we consider the

1-loop renormalisation group equations for the following Standard Model parameters, with

nf = 6 flavours of quark:

• The hypercharge coupling g′:

µ
dg′

dµ
=

41

6

g′3

16π2
(2.10)

• The SU(2) gauge coupling g:

µ
dg

dµ
= −19

6

g3

16π2
(2.11)

• The strong coupling constant gs:

µ
dgs
dµ

= −7
g3
s

16π2
(2.12)

• The Higgs quartic coupling λ:

µ
dλ

dµ
=

1

16π2

(
3g′4

8
+

3g2g′2

4
+

9g4

8
− 6y4

t − λ(3g′2 + 9g2 − 12y2
t ) + 24λ2

)
(2.13)

• The top quark Yukawa coupling yt:

µ
dyt
dµ

=
yt

16π2

(
9y2

t

2
− 17g′2

12
− 9g2

2
− 8g3

s

)
. (2.14)
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Figure 2.2: Left: One-loop renormalisation group evolution of the SM Higgs self-coupling

λ. Also shown are the 3σ bands for the three most dominant sources of uncertainty: the

measured value of the top quark mass mt, the strong coupling constant αs, and the Higgs

mass Mh. Right: Corresponding regions of stability, meta-stability and instability (as de-

scribed in the text) of the electroweak vacuum, as a function of the Higgs and top quark

masses, overlaid with the most recent best fit contours for both from the Tevatron and LHC.

The evolution of the Higgs self-coupling is clearly most sensitive to the top quark

Yukawa (all of its other fermionic couplings can be safely neglected). It is also sensitive

to the large running of the strong coupling constant (indirectly through yt) and to itself,

λ. Substituting in as boundary conditions the values of SM couplings at the electroweak

scale µ = v, taken from Tab 1.1, and using λ = m2
h/2v

2, we can straightforwardly solve for

λ(µ). The running of the Higgs self-coupling is plotted on the left of Fig. 2.2.

The y4
t term tends to drive the Higgs potential negative at large renormalisation scales.

The precise scale at which this happens is extremely sensitive to the values of the elec-

troweak scale inputs, but it is clear that λ < 0 at some scale µ = Λ < MPlanck. It is

unclear how this should be interpreted. As mentioned in chapter 1, the absolute stability

of the Higgs potential requires that λ > 0, otherwise the potential will be unbounded

from below. In the SM alone, there are no terms which can rescue the boundedness of

the potential: it is negative definite for µ > Λ. However, one can reasonably assume that

couplings between the Higgs sector and Planck scale physics, which would manifest in the

Higgs potential as higher-dimensional operators such as (ϕ†ϕ)3, will restore the bounded-

ness of the potential. Still, this means that the electroweak vacuum is not a true vacuum:

there is another vacuum at a much higher scale (perhaps at MPlanck) for which it is ener-

getically favourable for the Universe to tunnel into. Based on whatever numerical value
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the tunnelling rate ξ takes§ , one can draw three possible consequences for the fate of the

electroweak vacuum [154,155]:

• ξ = 0:

The tunnelling rate is exactly zero, and v is actually the true minimum of the Higgs

potential. This means the Higgs potential is absolutely stable. It is apparently

disfavoured by data, unless the top mass and Higgs mass are respectively somewhat

smaller and larger than their current measurements suggest.

• ξ < 1/TUniverse :

The tunnelling rate is non-zero, but with a decay lifetime larger than the current age

of the Universe, which would explain why the tunnelling has not yet taken place.

• ξ > 1/TUniverse :

The tunnelling rate is faster than the Hubble rate, meaning the Universe should have

undergone a phase transition from the electroweak vacuum to the true one, sometime

between the Big Bang and today.

One can express these different possibilities in terms of mt and Mh, as shown on the

right of Fig. 2.2. The current measurements place us squarely in the metastable region.

This fact alone is unremarkable (although if we were in the unstable region we ought to have

a good explanation). However, it is a peculiar outcome for the evolution of the Universe.

Shortly after the Big Bang, the Universe was in a state of very large free thermal energy.

At some point the Universe must have then cooled enough to undergo a phase transition

to the electroweak vacuum. It is then unknown what caused the Universe to choose the

less energetically favourable of the two vacua, or what stabilised this false vacuum against

quantum tunnelling and thermal fluctuations, which would have been much more likely in

the early Universe (i.e. when ξ was much larger than 1/TUniverse)
¶.

If one believes in Naturalness as a guiding principle, one should take this problem

as seriously as the hierarchy problem. This apparent paradox may be taken as indirect

evidence that new physics lies between v and MPlanck which stabilises the potential, because

the preceding argument was only valid if there was no such new physics. At any rate, it

shows that despite satisfying the requirement of renormalisability, the Standard Model

alone paints a rather unsatisfactory picture of physics between v and MPlanck.

§An expression for the tunnelling/vacuum decay rate in terms of λ(µ) can be found in e.g. Ref. [153].
¶The state-of-the-art calculation of vacuum stability in the SM is at NNLO [156–159], rather than the

leading-order one presented here, and a more comprehensive discussion of the issue can be found in those
papers.
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Figure 2.3: Left: One-loop renormalisation group evolution of the SM gauge couplings.

Right: Their renormalisation group flow in the Minimal Supersymmetric extension of the

Standard Model (MSSM), showing unification at a scale Q ∼ 1016 GeV.

2.2.3 Gauge coupling unification

The extraordinary accuracy of the electroweak theory in describing physics up to v has

led to speculation that there may be an even larger unification scenario, in which the elec-

troweak and strong interactions are unified under a single gauge group, with new degrees

of freedom occupying that unification scale. Consider instead Eqs. (2.10)-(2.12). Although

the coupling constants have very different values at the electroweak scale, they run in dif-

ferent directions, so perhaps unify at a single energy scale. The one-loop renormalisation

group flow of g′, g and gs in the Standard Model is shown on the left of Fig. 2.3.

It can be seen that the couplings do not meet, and so no unification takes place. On

the other hand, adding in new degrees of freedom between v and MPlanck will also alter

the running of the couplings. One of the most well-studied candidates for new physics

is surely supersymmetry. In the minimal supersymmetric extension of the MSSM, where

every SM particle is supplemented with a superpartner of opposite spin (i.e. there is

only one copy of the supersymmetry algebra), the couplings unify‖ at a scale of around

Q ∼ 1016 GeV [161–163]. This is a striking result, and is often considered one of the main

motivations for supersymmetry as a candidate for new physics at the TeV scale.

‖In fact, the couplings do not exactly unify in the MSSM, but exact unification can be achieved by
adding appropriate threshold corrections at the unification scale, see e.g. Ref. [160].
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2.2.4 Strong CP violation

Although there were 18 parameters in the Standard Model listed in the previous chapter,

in principle one could write down a 19th (CP-odd) term that could lead to experimental

effects in the strong interaction. The fact that these effects have not been observed is

known as the strong CP problem∗∗. The origin of this problem lies in the fact that one can

write down another gauge invariant field strength kinetic term:

L =
θ

16π2
FµνF̃

µν where F̃µν = εµνρσF
ρσ. (2.15)

Since this term can be written as a total derivative;

L = ∂µK
µ where Kµ =

1

2
εµνρσA

νF σρ, (2.16)

the usual argument is that it only contributes a surface term to the action, so based on

the boundary condition that the fields should go to zero (or more concretely, that the Kµ

term goes to zero faster than the surface element diverges) in the limit that r → ∞, this

term can be neglected as it has no physical consequences. While this is certainly true in

the abelian QED case, it does not hold in QCD. There, the total derivative has the form

Kµ =
1

2
εµνρσ(AaνG

a
σρ −

2

3
fabcA

a
νA

b
σA

c
ρ). (2.17)

Hence, even if the field strength tensor Ga
µν goes to zero rapidly enough, the non-Abelian

A3 term above means that Kµ might still not vanish at spatial infinity. In fact, there are

field configurations that do not vanish. These FF̃ terms do not appear in a perturbative

expansion of LQCD, however, they do have physical effects. To show this, we consider LQCD

with only two massless quarks:

LQCD = iQ̄Dµγ
µQ+ iūRDµγ

µuR + id̄RDµγ
µdR. (2.18)

Given that m{u,d} � ΛQCD, this is a fair approximation at low energy. At energies above

ΛQCD, the Lagrangian has a global ‘chiral’ SU(2)L× SU(2)R symmetry. Approaching ΛQCD,

this is spontaneously broken by QCD condensates 〈q̄q〉 to a vectorial subgroup SU(2)V .

By Goldstone’s theorem, there are three massless scalars associated with this symmetry

breaking. These are identified with the pions. In fact the residual vectorial symmetry is

explicitly broken by a small amount by electromagnetic interactions and the small u − d
mass splitting, which gives the pions a small mass (O(ΛQCD), though this is not calculable

from first principles). The Lagrangian also has a U(1)A symmetry which is broken by QCD

condensation. There is no Goldstone boson associated with this symmetry, however.

∗∗See Ref. [164] for a pedagogical review.
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Näıvely, this spontaneous breaking of the axial symmetry should result in the appear-

ance of a pseudoscalar 0− meson with mass of order the pion mass, but no such particle

exists in the meson spectrum of QCD. The next such candidate is the η meson, but it is too

heavy, as Weinberg showed that this particle can have a mass no greater than
√

3mπ [165].

This was referred to as the U(1) problem of QCD.

The resolution of this problem, due to ‘t Hooft [166, 167], was that non-perturbative

gauge configurations known as instantons also contribute to the QCD vacuum, so that the

full action is given by

SQCD vacuum =

∫
d4xLQCD +

θg2
s

32π2

∫
d4xG̃a

µνG
a,µν . (2.19)

That mη � mπ requires θ 6= 0. However, other observables are sensitive to, and place

strong bounds on, θ. It generates a contribution to the neutron electric dipole dn for

instance, dn ∼ eθmq/M
2
N . Current bounds require dn . 3×10−26e cm [168]. This translates

into the bound θ . 10−9. The question is then, why is the dimensionless parameter θ so

small but apparently nonzero? There is no additional symmetry enhancement when θ is

taken to zero, so this is not a technically natural small parameter. This is the strong-CP
problem, and cannot be resolved within the Standard Model alone, therefore new physics,

such as axions [169–172], is required to explain it.

2.3 The role of the top quark in specific BSM scenarios

2.3.1 Low energy supersymmetry

The most widely known solution to the hierarchy problem is supersymmetry. In general,

supersymmetry is a postulate that the theory exhibits a symmetry under the transforma-

tion Q |fermion〉 = |boson〉, Q |boson〉 = |fermion〉, i.e. there is a unique transformation

which maps each boson in the theory into a corresponding fermion and vice versa, thus

keeping the overall theory invariant.

Clearly, the Standard Model does not exhibit this symmetry. This is linked to the

problem of quadratic divergences in the Higgs mass. To see this, one can compute the

explicit corrections to the Higgs mass due to loops of Standard Model particles. Focusing

explicitly on the fermionic corrections (although the same argument applies for the W and

Z bosons), due to Nf flavours of fermion, one finds [173]

m2
H = m2

H,tree +N2
f

λ2
f

8π2

(
−Λ2 + 6m2

f log
Λ

mf

− 2m2
f

)
. (2.20)

In a supersymmetric theory, for each fermion loop there would be a contribution due to a
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Figure 2.4: One-loop diagrams contributing to the renormalisation of the Higgs mass in

the Minimal Supersymmetric Standard Model: the correction due to a top quark loop (left)

and corrections due to a loop of stop quarks t̃.

corresponding scalar particle in the two diagrams on the right of Fig. 2.4, giving the mass

correction

m2
H = m2

H,tree +N2
s

λs
16π2

(
−Λ2 + 2m2

s log
Λ

ms

)
−N2

s

λs
16π2

v2

(
−1 + 2 log

Λ

ms

)
. (2.21)

Counting degrees of freedom, each fermion (a two-component Weyl spinor) must have two

scalar ‘partners’, so Ns = 2Nf . If one makes the additional assumption that λs = λ2
f , then

upon adding these two contributions together, one finds the quadratic divergences in m2
H

cancel entirely, leaving a logarithmic contribution to the Higgs mass

m2
H = m2

H,tree +N2
f

λ2
f

4π2

[
(m2

f −m2
s) log

Λ

ms

+ 3m2
f log

ms

mf

]
. (2.22)

If supersymmetry is exact, then ms = mf and the corrections to the Higgs mass are exactly

zero, to all orders in perturbation theory. This can be understood from symmetry grounds:

a process involving virtual particles without their corresponding superpartners will violate

supersymmetry and reintroduce divergences.

In practice, SUSY must be violated by some amount, otherwise the superpartners would

have the same masses as their standard model counterparts, and would surely have been

observed already. Therefore one must introduce SUSY breaking parameters to break the

ms = mf relation by some amount, though this amount cannot be too large otherwise the

hierarchy problem will reappear. If SUSY is broken at the TeV scale, then it should show

rich phenomenology at colliders such as the LHC. The top quark would play a central role

here, both directly and indirectly.

To emphasise the latter, consider top pair production in the gg channel, with loop effects

of scalar top (stop) quarks, as shown in Fig. 2.5. If the top pair production cross-section

were very precisely measured, it could be used to place indirect bounds on the mass of

the stop quark, and thus the scale of supersymmetry breaking. Indirect stop contributions
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Figure 2.5: Example one-loop diagrams contributing to top pair production in the gg

channel, owing to the effects of virtual SUSY particles, namely the gluing g and the stop t̃.

show up elsewhere, such as in the Higgs decay to γγ, which is part mediated by a top

loop [174]. This shows that the properties of the top quark are a valuable testing ground

for the effects of new physics such as supersymmetry.

2.3.2 Little Higgs

The Higgs mass naturalness problem was solved in supersymmetry by adding extra degrees

of freedom to cancel off the quadratic divergences, but more fundamentally this is due to

extending the Poincaré algebra of spacetime symmetries. In general the Higgs mass can

be made ‘technically natural’ by enlarging the SM symmetry group, such that quadratic

corrections to µ2 are forbidden by the extra symmetries. The ‘Little Higgs’ family [175]

of models use this idea, by having the SU(3)C × SU(2)L × U(1)Y gauge group of the SM

emerge from a spontaneously broken global symmetry. The gauge couplings of the SM break

the residual symmetry explicitly by a small amount, and the Higgs emerges as one of the

pseudo-Nambu-Goldstone bosons of this symmetry breaking. The pattern of the symmetry

breaking ensures that the corrections to the Higgs mass are at most logarithmically sensitive

to the cutoff Λ.

To illustrate this more concretely, we consider an extension of the minimal exam-

ple of a global symmetry breaking SU(3)→SU(2) by the vev of a complex triplet field

〈ΦT 〉 = 〈(φ1, φ2, φ3)〉 = (0, 0, f). Instead, we consider two complex fields Φ1 and Φ2, each

with its own set of 5 Nambu-Goldstone bosons, i.e. the symmetry breaking pattern is

[SU(3)→SU(2)]2. To parameterise this symmetry breaking, Φ1 and Φ2 can be written as

Φ1 = ei~π1/f1

 0

0

f1

 , Φ2 = ei~π2/f2

 0

0

f2

 . (2.23)

For convenience we assume that the two vevs f1 and f2 are aligned. The Nambu-Goldstone

bosons ~π = πaT a are given by the generators of SU(3) that are not also generators of SU(2).
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Figure 2.6: Quadratically (left) and logarithmically (centre) divergent one-loop diagrams

from Eq. (2.25) that do not renormalise the Higgs mass, and logarithmically divergent 1-

loop diagrams that do renormalise the Higgs mass (right).

We can write explicitly, for each set ~π

πaT a =
1√
2

 0 0

0 0
H

H 0

+
η

2

1 0 0

0 1 0

0 0 −2

 . (2.24)

Four of the Goldstones are in the complex doublet H, the remaining one is in the singlet η,

which can be ignored for our purposes. The factors in front of the Goldstone matrices ensure

that the H and η kinetic terms are canonically normalised. As well as the Goldstones,

there are also massive radial excitations r, which are assumed to be heavy so that they

are integrated out. It is also assumed for simplicity that there are degenerate symmetry

breaking scales f1 = f2 = f . The Lagrangian for this toy model is then

LLH = |DµΦ2
1|2 + |DµΦ2

2|2. (2.25)

Upon expanding out the Lagrangian, one generates the 1-loop correlation functions corre-

sponding to the two diagrams on the left hand side of Fig. 2.6:

A1−loop ∼
g2Λ2

16π2
(Φ†1Φ1 + Φ†2Φ2) =

g2Λ2

16π2
(2f 2). (2.26)

In addition, one generates the term corresponding to the diagram on the right of Fig. 2.6.

A1−loop ∼
g4

16π2
log

(
Λ2

µ2

)
|Φ†1Φ2|2 =

g4

16π2
log

(
Λ2

µ2

)
(f 2− 2H†H +

(H†H)2

f 2
+ . . .). (2.27)

Hence, the 1-loop corrections to the Higgs mass term are at most logarithmically divergent.

To see why this has happened, let us focus on the gauge part of LLH:

LLH = |g2
1AµΦ1|2 + |g2

2AµΦ2|2. (2.28)
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This explicitly breaks the SU(3)×SU(3) global symmetry to a gauged diagonal subgroup:

so only one of the SU(3)→SU(2) breaking mechanisms is exact. The other is explicitly

broken by a small amount, giving its Goldstone bosons a small mass, one of which we then

take to be the Higgs. Setting either g1 or g2 to zero restores the full [SU(3)]2 symmetry.

In the case of g2 = 0, for example, we have two independent symmetries

Φ1 → U1Φ1, Aµ → U1AµU
†
1 , Φ2 → U2Φ2, (2.29)

whereas in the case of g1 = 0 we have the symmetries

Φ1 → U1Φ1, Aµ → U2AµU
†
2 , Φ2 → U2Φ2. (2.30)

So when either of the gauge couplings is set to zero, π is an exact Nambu-Goldstone boson,

so the corrections to its mass can only be proportional to g1g2, i.e. the exact symmetry

can only be collectively broken by the two fields. There are no quadratically divergent

diagrams involving g1 and g2 at 1-loop, however, so the Higgs mass is stabilised at this

order by this collective symmetry breaking [176,177].

The same trick for the gauge loops can be played for the top quark loops. To ensure

that there is collective symmetry, one enlarges the quark doublets into triplets; QL →
ΨL = (tL, bL, TL), by adding an extra fermionic partner for each generation. One finds

again that the quadratic divergences due to the top quark loop are cancelled by the top

partner T . It is this extra top partner that has an impact on top quark phenomenology.

It will in general mix with the top quark, so it can be produced via Wb fusion, Depending

on its quantum numbers, it may decay via T → th, T → tZ, T → bW [178], which would

lead to large enhancements of cross sections for top quarks associated with electroweak

and Higgs bosons.

2.3.3 Warped extra dimensions

An alternative approach to explaining the large hierarchy between the electroweak scale

and the Planck mass is through warped extra dimensions. The most studied scenario is the

Randall-Sundrum (RS) model [179, 180], where the Standard Model field content resides

on the 4-dimensional boundary of a 5-dimensional bulk, in which the gravitational degrees

of freedom propagate. The extra dimension is compactified onto a S1/Z2 orbifold (a circle

with an additional Z2 symmetry φ = −φ) of radius rc, and the two boundaries of the 5D

bulk are taken to be at the points φ = 0 and φ = π, where a 4-dimensional field theory

resides, such that there is a visible boundary or brane and a hidden one. The full 5D metric
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GMN(xµ, φ) is then related to the 4D metrics by the boundary conditions:

gvisµν = Gµν(x
µ, φ = π), ghidµν = Gµν(x

µ, φ = 0). (2.31)

The Einstein-Hilbert action for the 5D theory is then given by

S = Sgrav +Svis+Shid =

∫
d4x

π∫
−π

dφ
√
−G(Λ+2M3R)+

∫
d4x(
√−gvisLvis +

√−ghidLhid),

(2.32)

where Λ is a cosmological constant, M is a universal mass scale extracted to give the field

φ the same units as in the 4D theory and R is the Ricci scalar. A solution to the Einstein

field equations for the above action is

ds2 = e−2krc|φ|ηµνdx
µdxν + r2

cdφ
2. (2.33)

This non-factorisable metric describes flat 4D spacetime modified by an exponential warp

factor 2krc|φ|. The parameter k is a scale relating the ‘observed’ 4D Planck scale to the

Planck scale in the bulk. The radius rc describes the compactification of the 5th dimension,

and may be taken to be near the Planck length, if one views the model as originating from

a string/M-theory UV completion. To see how this is relevant for low energy physics, we

can expand the metric about its local fluctuations gµν(x) = ηµν + hµν(x), substitute in a

Higgs field into Lvis in the action, and perform a wave-function renormalisation so that the

Higgs kinetic term is canonically normalised, and one finds that any mass or vev m0 in the

fundamental 5D theory is related to the mass/vev in the visible theory by

mvis = e−krcπm0. (2.34)

So a hierarchy of order v/MPl ∼ 10−16 in the visible theory translates into a hierarchy of

size krc ∼ 12 in the fundamental theory, thus it is much more natural for the bulk curvature

k to live near the Planck scale 1/rc. This is a compelling solution of the hierarchy problem,

because it shows that weak scale masses can be determined by parameters not far from

the Planck scale, but in a natural way. Why is this relevant for top quark physics?

The main phenomenological prediction of warped extra dimension models is that, be-

cause the extra dimension has periodic (Dirichlet) boundary conditions, the fields that are

allowed to propagate in the bulk will have an infinite tower of Kaluza-Klein modes of mass

mn, analogous to standing wave modes on a closed string††, which can be coupled to the

SM fields that also propagate in the bulk [185, 186], and which, according to Eq. (2.34)

can have masses near the electroweak scale. Moreover, the KK modes will couple most

††Kaluza-Klein excitations are also present in other theories of extra dimensions, such as the ADD
models [181,182] and universal extra dimensions [183,184].
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strongly to fields that are localised near the φ = π IR brane, and most weakly coupled to

fields localised on the UV brane.

To keep a hierarchy between v and M4D
Pl , the Higgs field must be localised on the IR

brane (φ = π), cf Eq. (2.34). However, the large top Yukawa means there must be a strong

overlap between the top and Higgs wave-functions, so the top most also be located close to

the IR [187, 188]. Hence, the top is expected to couple strongly to the new Kaluza-Klein

modes of the 5th dimension, which motivates the search for heavy resonances of spin-1 (the

KK modes of the γ, g, W and Z) and spin-2 (the KK modes of the massless graviton),

decaying into tt̄ pairs.

The preceding section provides a strong argument for processes involving top quarks as

a well-motivated place to look for BSM physics at colliders, albeit in the limited context

of specific models. The remainder of this chapter will turn to a more model-independent

formulation of the effects of new particles and couplings, which views the Standard Model

as the first part of an effective field theory, and discusses the sector of this effective theory

that may be probed at hadron colliders.

2.4 Principles of effective field theory

2.4.1 The Euler-Heisenberg Lagrangian

As a warmup, we consider an example from electromagnetism. Imagining a different Uni-

verse where the electron was much heavier and had not yet been detected directly, so that

the ‘full’ Lagrangian for electromagnetism is just that of the free Maxwell theory.

L = −1

4
FµνF

µν . (2.35)

If the electromagnetic process of four-photon scattering had been experimentally ob-

served, it could not be described by this Lagrangian. The lowest-order Lagrangian that

could describe this process would have to have four field-strength tensors, since the Maxwell

theory is abelian. It should also respect Lorentz symmetry and U(1) gauge symmetry, and

can be written as

L4γ = A(FµνF
µν)2 +B(FµνF̃

µν)2. (2.36)

Since the Lagrangian must have mass dimension 4 (we work in natural units), the coeffi-

cients A and B must have mass dimension -4. We can then write

L4γ ≡
1

Λ4

(
c1(FµνF

µν)2 + c2(FµνF̃
µν)2

)
. (2.37)

The coefficients c1 and c2 are dimensionless, and Λ is some generic mass scale. From
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Figure 2.7: γγ → γγ scattering at tree-level in the Euler-Heisenberg effective theory (left)

and at one-loop level in quantum electrodynamics (right).

this Lagrangian we know that the scattering cross-section σ for γγ → γγ scales as 1/Λ8.

However, since σ is just an area, it has units of [mass]−2, so there must be some other mass

scale in the problem. The only other mass scale in the problem, however, is the frequency

of the incoming photons ω‡‡, so we can say that the cross-section scales as

σ ∼ ω6

Λ8
+ . . . (2.38)

The power of effective field theory is manifest: by general arguments of symmetry and

making no assumptions about the nature of the underlying interaction, one can make

powerful deductions about the scaling behaviour of scattering processes in quantum field

theory.

There is a caveat: the ellipsis denotes higher-order corrections due to neglected oper-

ators of dimension D > 8, the leading term of which will be O(ω8/Λ10). There are an

infinite number of such operators, so these corrections must be small in order for their

omission to be valid. In other words, the validity of the effective theory requires that

ω � Λ. But in the pure effective theory, Λ is a free parameter, so there is no a priori

guarantee that this is true. In reality, of course there is a full theory of electromagnetism:

quantum electrodynamics, so one can compute the scattering amplitude in terms of its

parameters: the fine-structure constant α and the electron mass me, corresponding to the

Feynman diagram on the right of Fig. 2.7, and match them onto the EFT parameters.

One finds [189]

Λ =
me√
α
, c1 =

1

90
, c2 =

7

90
. (2.39)

Therefore, provided the photon scattering frequencies ω � me/
√
α ∼ O(MeV), this treat-

ment is valid, and the loop diagram of Fig. 2.7 does not have to be calculated.

‡‡For simplicity we assume them to be of the same order of magnitude.
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2.4.2 Fermi theory of weak decay

The textbook example of an effective field theory is the Fermi low-energy theory of weak

decay. One can arrive at the theory by starting from the full electroweak model and

integrating out the heavy degrees of freedom, i.e. the W and Z boson. In the electroweak

theory, nuclear β decay is mediated by the transition d → uW → ulν. This has the

transition amplitude [190]

Afull =

(
ig√

2

)2

(ūγµPLd)(l̄γνPLν)

( −igµν
p2 −M2

W

)
, (2.40)

where PL is the left-handed projection operator (1− γ5)/2. The low energy continuum is

obtained by Taylor expanding the W boson propagator in the limit p2 �M2
W .( −igµν

p2 −M2
W

)
=
−igµν
M2

W

(
1 +

p2

M2
W

− p4

M4
W

+ . . .

)
. (2.41)

Hence the higher order terms decouple rapidly in this limit, so that the amplitude in the

low energy theory is given by the first term in the series, multiplied by a D = 6 four-fermion

contact term:

AEFT =

(
g2

2M2
W

)
(ūγµPLd)(l̄γµPLν). (2.42)

In fact this is the same β decay amplitude that was written down by Fermi in his contact

interaction model, though he wrote in terms of the nucleon wavefunctions u→ p and d→ n,

and omitted the projection operator PL as parity violation had not yet been observed. He

also parametrised it in terms of an overall dimensionful coupling GF , which we can obtain

an expression for by matching the electroweak parameters to the parameters of the Fermi

theory, giving
GF√

2
=

g2

8M2
W

, (2.43)

with the value of GF given in the first chapter. Provided the condition p2 � M2
W is

justified, one can calculate to a good approximation all weak scattering processes, such

as muon decay and meson mixing, without knowing the details of the gauge structure of

the underlying electroweak theory. In fact, if one makes assumptions about the underlying

couplings, one can even predict the regime of validity of the EFT. Setting g = 1 and

using the measured value of GF , and neglecting O(1) coefficients above, for example, one

finds MW ≈ 290 GeV, not far from its actual value of 80 GeV, and very close to the

electroweak scale v ∼ 246 GeV where the EFT would no longer be valid. This highlights

another strength of EFT: using the measurements of the low energy parameters, one can

infer details about some of the high-energy ones, by making broad assumptions about the

perturbativity of the underlying theory. This matching procedure will be returned to later
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in the thesis.

2.4.3 Renormalisation group treatment

Here we perform a more systematic analysis of how the dimensionality of an operator

determines at which scale it becomes relevant, by means of the renormalisation group. To

isolate the behaviour of operators of a certain dimensionality when the renormalisation

scale is varied, let us return to our prototypical example of a scalar field in four dimensions

with a quartic self-interaction. This time, we supplement the Lagrangian with an infinite

series of higher-dimensional (i.e. D > 4) operators [191].

LE =
1

2
(∂φ)2 +

1

2
m2φ2 +

λ

4!
φ4 +

∑
n

(
cn

Λ2n
φ4+2n +

dn
Λ2n

(∂φ)2φ2+2n + . . .

)
, (2.44)

where the Lagrangian has been rotated to imaginary time in order to perform the path

integral, defining a ‘Euclidean action’. The ellipsis denotes all operators with higher deriva-

tives. Demanding that the effective theory preserve the original φ→ −φ symmetry elimi-

nates terms of odd mass dimension. The scale Λ has been introduced to keep the coupling

constants ci and di dimensionless. The kinetic and mass terms both have dimension D = 2,

the quartic coupling has D = 4. The question is then: how does the dimensionality of an

operator influence its renormalisation scaling behaviour?

To isolate field configurations that are most relevant at a certain momentum/length,

we can perform the path integral∫
Dφe−SE where SE =

∫
d4xLE. (2.45)

We can consider a field configuration φ̃ in the path integral with amplitude φk, and

wavenumber kµ, i.e. a ‘wavelet’ that is confined to a spacetime volume L4 = (2π/k)4.

In momentum space, the Euclidean action can be trivially obtained by Fourier transform-

ing Eq. (2.44). Then the action is given by

SE = (2π)4

[
φ̂2
k

2
+
m2

k2
φ̂2
k +

λ

4!
φ̂4
k +

∑
n

(
cn

(
k2

Λ2n

)2

φ̂4+2n
k + dn

(
k2

Λ2n

)2

φ̂4+2n
k + . . .

)]
,

(2.46)

where φ̂k ≡ φk/k. The contribution of this single mode to the path integral is∫
dφ̂ke

−SE . (2.47)

Clearly it will be dominated by values of φ̂k for which SE . 1. As the amplitude φ̂k becomes

70



large, then the kinetic term (2π)4φ̂2
k/2 will dominate the action, i.e the path integral will

get its dominant contribution for φk ∼ k/(2π2).

When k is decreased, the higher-dimensional terms proportional to ci and di get smaller

and smaller; they are called irrelevant operators; their effects become increasingly decou-

pled as we move from the ultraviolet to the infrared. The mass term, on the other hand,

becomes increasingly dominant; it is a relevant operator. The quartic operator is neither

relevant nor irrelevant, its effects are of apparently equal strength for small and large k; it

is referred to as a marginal operator.

Another way of deriving the scaling properties of these operators (the method originally

employed by Wilson [192–194]) is to consider a random field configuration φ(x), and look

at how its corresponding action changes when we perform a passive transformation φ(x)→
φ(ξx), i.e. when we move across different length scales. If we just consider a plane wave,

for instance, then the transformation is given by φ(ξx) = eiξk·x, so that the limit ξ → ∞
corresponds to shorter wavelengths k′ = ξk. Then the action becomes

SE(φ(ξx); Λ,m2, λ, cn, dn) =

∫
d4x

1

2
(∂φ(ξx))2 +

1

2
m2φ(ξx)2 +

λ

4!
φ(ξx)4

+
∑
n

cn
φ4+2n(ξx)

Λ2n
+
∑
n

dn
(∂φ(ξx))2φ2n(ξx)

Λ2n

=

∫
d4x′

1

2
(∂′φ′(x′))2 +

1

2
m2ξ−2φ′(x′)2 +

λ

4!
φ′(x′)4

+
∑
n

(
cnξ

2nφ
′4+2n(x′)

Λ2n
+ dnξ

2n (∂′φ′(x′))2φ′2n(x′)

Λ2n

)
,

(2.48)

where φ′(x) = ξ−1φ(x), and x′ = ξx. But since we integrate over x and x′, we can just

compare the integrands directly. Relabelling the dummy variable x′ → x shows that our

transformation returns the original action, but with rescaled fields and couplings.

SE(φ(ξx); Λ,m2, λ, cn, dn) = SE(ξ−1φ(x); ξ−2m2, λ, cnξ
2n, dnξ

2n), (2.49)

so the rescaled fields and couplings are:

φ→ ξ−1φ, m2 → ξ−2m2, λ→ λ, cn → ξ2ncn, dn → ξ2ndn. (2.50)

In the infrared limit ξ → 0, it can be seen that the mass term becomes increasingly

important, the higher-dimensional operators cn and dn become increasingly irrelevant, and

the quartic and kinetic terms stay marginal. This result follows purely from dimensional

analysis, and did not rely on any unique symmetry properties of scalar fields. We can then
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make the general statement that there are three types of operator scaling behaviour in a

four-dimensional quantum field theory.

• Relevant operators: Operators O(di)
i with dimension di < 4. Their effects become

increasingly large at low energies, and increasingly decoupled at high energies.

• Marginal operators: Operators O(di)
i with dimension di = 4. Their effects are

näıvely the same across all scales, i.e. they appear to be conformal. However they

may scale logarithmically, and a full radiative calculation is needed to obtain their

scaling behaviour.

• Irrelevant operators: Operators O(di)
i with dimension di > 4. Their effects become

increasingly large at high energies, and increasingly decoupled in the infrared.

It was once considered a miracle that the Standard Model contained only marginal

and relevant (and thus renormalisable) operators. From a modern perspective, we know

that there is no miracle and this follows completely from the renormalisation group: the

Standard Model is a theory of low energy physics (compared to the Planck scale), therefore

the higher-dimensional operators would not be expected, because they only ‘switch on’ as

we move towards the cutoff Λ for the Standard Model. If there exist heavy new degrees

of freedom, then at some scale between the electroweak and Planck scales their effects on

electroweak scale observables can be described generally by supplementing the Standard

Model Lagrangian with operators of dimension > 4. These operators are built completely

out of Standard Model fields since the underlying new heavy degrees of freedom have

been integrated out. This is the Standard Model effective field theory (SMEFT), and it

thus provides a completely model-independent way of searching for the effects of unknown

heavy new physics on electroweak scale observables. In the next section we will discuss the

SMEFT in detail.

2.5 The Standard Model effective field theory

To derive the effective Lagrangian for the Standard Model [195–197], all we have to do is

write down the expansion in powers of cn/Λ
n, as in Eq. (2.44), but with the full SM field

content, rather than just one scalar with a quartic interaction. This time we do not have a

Z2 symmetry to respect, so odd powers of Λ−1 are allowed. The effective Lagrangian can

then be written

Leff = LSM +
∑
i

c
(5)
i O(5)

i

Λ
+
∑
i

c
(6)
i O(6)

i

Λ2
+ . . . , (2.51)

where the sum is over the full operator set at each mass dimension and the ellipsis denotes

all operators at D ≥ 7. The full set of operators can be derived systematically, simply by
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using dimensional analysis to write down the list of operators of a given dimension that

respect the symmetry constraints, i.e. Lorentz invariance and the full SU(3)C × SU(2)L ×
U(1)Y SM gauge symmetry. Then, care must be taken to ensure there are no redundancies

in the operator set; that is, each operator generates a unique contribution to the S-matrix

that cannot be expressed in terms of other operators. We will derive the dimension-five

SM Lagrangian as an illustrative example.

2.5.1 D = 5

To recap, the SM Lagrangian is composed entirely of spin-1
2

fermion fields of dimension

3/2, scalar and vector fields of dimension 1, and field strength tensors of dimension 2,

as well as various covariant derivative operators. At dimension 5, then, näıvely there are

several types of operator that can be constructed, but more careful analysis shows that

most are forbidden for symmetry reasons:

• Clearly, no fermion-only operators are allowed, because 5 is not a multiple of 3
2
.

Scalar only operators are also forbidden, because the Higgs only appears in doublets,

so there must be an even number of scalars in the term.

• An operator with two fermions and two scalars is allowed dimensionally. Two combi-

nations of scalars would be allowed, either (ϕ†ϕ) or (ϕϕ). The first case requires that

the two fermions must also combine to hypercharge zero, so they must be Hermitian

conjugates of the same fermion multiplet: ψ̄ψ, which vanishes for chiral fermions.

The second case is allowed, provided the scalars multiply to give an SU(2) triplet

(the singlet product of two equal doublets is zero). Then the two fermions must also

form a triplet to dot this into a scalar. Each fermion must then be an SU(2) doublet.

The term can then be written as

L5 = εijL̄iϕjεklLkϕl + h.c. (2.52)

where i, j ∈ {1, 2} etc. denote weak isospin indices.

In fact, this is the only allowed dimension-five operator [198] in the Standard Model effective

theory. No analogous operator may be formed with quark fields, since replacing L→ Q does

not give a colour singlet. Operators with two vector fields and two fermions are forbidden

because the fermion bilinear must be a hypercharge zero SU(2) singlet ψ̄ψ, and so vanishes

for chiral fermions. Other combinations involving vector fields cannot be constructed on

dimensional grounds. Expanding Eq. (2.52) after electroweak symmetry breaking generates

a Majorana-like mass term for the neutrino mν ν̄Lν
C
L , and mixing between the neutrino

flavour eigenstates. It is therefore required to be non-zero by neutrino phenomenology.
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However, the mass terms are proportional to mν ∼ v2/Λ, which points to Λ ∼ 1013 GeV

based on current neutrino mass limits. It is therefore not accessible at collider energies,

and not explored in the remainder of this thesis.

2.5.2 D = 6

At dimension-six, many more operators are allowed§§. Deriving the full, non-redundant

dimension-six operator set is somewhat more involved, so it will not be fully reproduced

here, we will merely comment on some of its features. All the operators are built out of

the same objects: field strength tensors of dimension two (shorthanded as X), Higgs dou-

blets of dimension one (denoted ϕ), fermion fields ψ of dimension 3
2

and various covariant

derivatives D of dimension one. By simple power-counting, we can denote the operators

as belonging to one of three classes:

Bosonic operators: These contain no fermion fields. There must be an even number of

Higgs doublets, and an even number of covariant derivative operators, to ensure that all

Lorentz indices are contracted. The allowed combinations are then X3, X2ϕ2, X2D2,

Xϕ4, XD4, Xϕ2D2, ϕ6, ϕ4D2 and ϕ4D2. We can eliminate several of these classes.

Firstly, Lorentz symmetry forbids Xϕ4 terms, which are not Lorentz contracted. All

XD4 terms can also be moved to X2D2 terms by use of the identity [Dµ, Dν ] ∼ Xµν . As

for the remaining classes:

ϕ2D4: By the equations of motion:

(DµD
µϕ)j = m2ϕj − λ(ϕ†ϕ)ϕj − ēy†eLj + εjkQ̄

kyuu− d̄y†dQj,

(DρGρµ)A = gs(Q̄γµT
AQ+ ūγµT

Au+ d̄γµT
Ad),

(DρWρµ)I =
g

2

(
ϕ†i
←→
D I

µϕ+ L̄γµτ
IL+ Q̄γµτ

IQ
)
,

∂ρBρµ = g′Yϕϕ
†i
←→
D µϕ+ g′

∑
i

Yψψ̄γµψ.

(2.53)

these can be moved to operators in the bosonic classes ϕ2XD2 and ϕ4D2, as well as the

single-fermionic current operator class ψ2φD2.

ϕ2XD2: The identity [Dµ, Dν ] ∼ Xµν again moves some operators to the ϕ2X2 class. Also,

using the equations of motion for the gauge field and the Bianchi identity D[ρXµν] = 0,

the remaining operators of this class are moved either to the bosonic class ϕ4D2 or the

fermionic class ψ2φD2.

X2D2: All operators of this class can be reduced to operators in the class X3, ϕ2XD2,

or ψ2XD, or made to vanish by the equations of motion.

§§The elimination of all the redundancies of the original operator set written down in Ref. [197] to the
basis of Ref. [199] was partially done in several intermediate papers [200–207].
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

OG fABCG
A,ν
µ GB,ρ

ν GC,µ
ρ Oϕ (ϕ†ϕ)3 Oeϕ (ϕ†ϕ)(L̄eϕ)

O
G̃

fABCG̃
A,ν
µ GB,ρ

ν GC,µ
ρ Oϕ� (ϕ†ϕ)�(ϕ†ϕ) Ouϕ (ϕ†ϕ)(Q̄uϕ̃)

OW εIJKW I,ν
µ W J,ρ

ν WK,µ
ρ OϕD (ϕ†Dµϕ)?(ϕ†Dµϕ) Odϕ (ϕ†ϕ)(Q̄dϕ)

O
W̃

εIJKW̃ I,ν
µ W J,ρ

ν WK,µ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2X

OϕG ϕ†ϕGA
µνG

A,µν OeW (L̄σµνe)τ IϕW I
µν O(1)

ϕl (ϕ†i
←→
Dµϕ)(L̄γµL)

O
ϕG̃

ϕ†ϕG̃A
µνG

A,µν OeB (L̄σµνe)ϕBµν O(3)
ϕl (ϕ†i

←→
DI
µϕ)(L̄τ IγµL)

OϕW ϕ†ϕW I
µνW

I,µν OuG (Q̄σµνTAu)ϕ̃GA
µν Oϕe (ϕ†i

←→
Dµϕ)(ēγµe)

O
ϕW̃

ϕ†ϕW̃ I
µνW

I,µν OuW (Q̄σµνu)τ Iϕ̃W I
µν O(1)

ϕQ (ϕ†i
←→
Dµϕ)(Q̄γµQ)

OϕB ϕ†ϕBµνB
µν OuB (Q̄σµνu)ϕ̃Bµν O(3)

ϕQ (ϕ†i
←→
DI
µϕ)(Q̄τ IγµQ)

O
ϕB̃

ϕ†ϕB̃µνB
µν OdG (Q̄σµνTAd)ϕGA

µν Oϕu (ϕ†i
←→
Dµϕ)(ūγµu)

OϕWB ϕ†τ IϕW I
µνB

µν OdW (Q̄σµνd)τ IϕW I
µν Oϕd (ϕ†i

←→
Dµϕ)(d̄γµd)

O
ϕW̃B

ϕ†τ IϕW̃ I
µνB

µν OdB (Q̄σµνd)ϕBµν Oϕud (ϕ̃†i
←→
Dµϕ)(ūγµd)

Table 2.1: The non-redundant bosonic and single fermionic-current D = 6 operators in

the ‘Warsaw basis’ described here. For readability we do not explicitly display the fermion

generation indices, but where relevant they are denoted by an extra superscript. For example

O23
eϕ = (ϕ†ϕ)(µ̄, ν̄µ)τϕ.

The only surviving bosonic operator classes are then X3, X2ϕ2, ϕ6 and ϕ4D2. The non-

redundant operators in each of these classes are shown in columns 1, 2 and 4 of Tab.

2.1.

Single-fermionic current operators: The classes allowed here are: ψ2D3, ψ2ϕD2,

ψ2XD, ψ2φ3, ψ2Xϕ and ψ2φ2D. We can make use of the following equations of mo-

tion for the fermion currents.

i /Dl = yeeϕ, i /De = y†eϕ
†l, i /DQ = yuuϕ̃+ yddϕ, i /Dµ = y†uϕ̃

†Q, i /Dd = y†dϕ
†Q.

(2.54)

ψ2D3: By reordering derivatives, we can use the equations of motion to reduce these

operators to operators of the class ψ2ϕD2.

ψ2ϕD2: All operators in this class can be reduced to (up to total derivatives) operators

in the single fermionic current classes ψ2φ3 and ψ2Xϕ or four-fermion operators ψ4, plus

operators that vanish by the equations of motion.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Oll (L̄γµL)(L̄γµL) Oee (ēγµe)(ēγ
µe) Ole (L̄γµL)(ēγµe)

O(1)
qq (Q̄γµQ)(Q̄γµQ) Ouu (ūγµu)(ūγµu) OLu (L̄γµL)(ūγµu)

O(3)
qq (Q̄γµτ

IQ)(Q̄γµτ IQ) Odd (d̄γµd)(d̄γµd) OLd (L̄γµL)(d̄γµd)

O(1)
Lq (L̄γµL)(Q̄γµQ) Oeu (ēγµe)(ūγ

µu) Oqe (Q̄γµQ)(ēγµe)

O(3)
Lq (L̄γµτ

IL)(Q̄γµτ IQ) Oed (ēγµe)(d̄γ
µd) O(1)

qu (Q̄γµQ)(ūγµu)

O(1)
ud (ūγµu)(d̄γµd) O(8)

qu (Q̄γµT
AQ)(ūγµTAu)

O(8)
ud (ūγµT

Au)(d̄γµTAd) O(1)
qd (Q̄γµQ)(d̄γµd)

O(8)
qd (Q̄γµT

AQ)(d̄γµTAd)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Oledq (L̄e)(d̄Q) Oduq εαβγεjk[(d
α)TCuβ][(Qγj)TCLk]

O(1)
quqd (Q̄u)εjk(Q̄d) Oqqu εαβγεjk[(Q

αj)TCQβk][(uγ)TCe]

O(8)
quqd (Q̄TAu)εjk(Q̄T

Ad) O(1)
qqq εαβγεjkεmn[(Qαj)TCQβk][(Qγm)TCLn]

O(1)
lequ (L̄je)εjk(Q̄

ku) O(3)
qqq εαβγ(τ Iε)jk(τ

Iε)mn[(Qαj)TCQβk][(Qγm)TCLn]

O(3)
lequ (L̄jσµνe)εjk(Q̄

kσµνu) Oduu εαβγ[(dα)TCuβ][(uγ)TCe]

Table 2.2: The non-redundant four-fermion D = 6 operators in the ‘Warsaw ba-

sis’. For readability we do not explicitly display the fermion generation indices, but

where relevant they are denoted by an extra superscript Oprst ∼ ψ̄pψrψ̄sψt. For example

O1231
ll = (ēγµµ)(τ̄ γµe) .

ψ2XD: Using the equations of motion for the gauge field and the Bianchi identities, one

finds that all operators in this class can be reduced to operators in the classes ψ2Xϕ and

ψ2φ2D, and four-fermion operators ψ4, plus total derivatives.

The remaining non-redundant operators of the single-fermionic current operator classes

are thus all in the ψ2ϕ3, ψ2Xϕ and ψ2ϕ2D subclasses. They are displayed in columns 3,

5 and 6 of Tab. 2.1.

Four-fermion operators: Although all operators in this class are all of the simple form

ψ4, they constitute by far the most numerous, though they can be straightforwardly

classified. Noting that they are generically constructed out of left-handed fields L and

right-handed fields R, they can be constructed out of products of hypercharge zero cur-

rents (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R), and a few others of the form (L̄R)(R̄L) and

(L̄R)(L̄R), as well as four baryon-number violating operators. Though the equations of
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motion cannot be used to whittle down this operator set, the Fierz identity,

(ψ̄LγµψL)(χ̄LγµχL) = (ψ̄LγµχL)(χ̄LγµψL) (2.55)

as well as the identity for the SU(N) generators

TAµνT
A
αβ =

1

2
δµαδνβ −

1

2N
δµνδαβ, (2.56)

can be used. The complete non-redundant set of four-fermion operators are shown in

Tab. 2.2.

The 64 operators of those tables complete what is commonly referred to as the ‘War-

saw basis’ of the D = 6 Standard Model effective theory. This is the operator basis

used throughout this thesis. Other bases for the D = 6 operator set are also commonly

used [208–211], and it is merely an exercise in linear algebra to translate between them¶¶.

Excluding the five B-violating operators, whose effects must be strongly suppressed to

respect proton decay bounds, we have 59 independent operators. In fact, one can relax

the flavour assumptions and allow all possible flavour combinations to be an independent

operator. This increases the operator set to 2499 operators. In order to make an analysis

tractable, it is typically assumed that the operators obey minimal flavour violation, so that

59 B-conserving operators form a complete set.

The operator set at D = 7 and D = 8 has also been computed, and there now exist tools

for computing the operator set to arbitrarily high dimension, though not all the redun-

dancies are automatically eliminated. The D = 7 operator set all violate lepton number,

so are typically not interesting for LHC energies, where lepton number conservation has

been demonstrated to an extremely high degree. There are 993 structures at D = 8 [213],

even assuming minimal flavour violation (not all of these correspond to a unique operator,

however). In order to avoid the proliferation of large numbers of operators, for phenomeno-

logical purposes one typically cuts off the expansion at D = 6. Since higher-order terms

will be proportional to higher-powers of Λ, then provided there is a large enough separation

between the low-energy theory and the cutoff, then this truncation is allowed. The D = 6

truncation is typically referred to as the Standard Model Effective Field Theory (SMEFT).

2.6 The top quark sector of the Standard Model effective theory

In order to access the sector of the SMEFT that is relevant for top quark physics at hadron

colliders, it is necessary to compute the Feynman rules of the operators in Tables 2.1 and

2.2, and calculate which of them lead to modifications of the processes and observables

¶¶In fact there are tools which automate this procedure entirely [212].
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listed in the first chapter. We will take each of these processes in turn, but first we make

some general comments about the modifications of a collider observable due to a D = 6

operator.

We will focus first on cross-sections, though the same arguments will apply to decay

observables as well. In general, the Lorentz-invariant matrix element M is related to the

differential cross-section in some observable X by

dσ

dX
=

∫
dΠLIPSδ

(4)(X −X ′)|M|2, (2.57)

where the Lorentz-invariant phase space element dΠLIPS ∼ dX ′. X may be a one particle

inclusive quantity such as the pT of one of the final state particles, or N -particle inclusive,

such as the final state invariant mass. In the presence of D = 6 operators, the matrix

element is modified toMfull =MSM +MD6, so that the expression for the squared matrix

element is

|Mfull|2 = |MSM|2 + 2<M∗
SMMD6 + |MD6|2. (2.58)

The linear term 2<M∗
SMMD6 is proportional to 1/Λ2, and is generated by interference

between Standard Model and new physics amplitudes, while the quadratic term is gener-

ated solely by new physics contributions, and is proportional to 1/Λ4. Since there is no

dependence on the matrix element in the final state phase space, we can schematically

write the cross-section as

dσfull ∼ dσSM + cidσD6 + c2
idσD62 , (2.59)

where we have displayed the D = 6 Wilson coefficients explicitly.

Since the matrix element receives contributions from terms at different orders in Λ, one

might worry that the corresponding cross-section is not properly defined in Λ. Namely,

the quadratic termsMD6 and the interference between D = 8 operators and the Standard

Model ∼ 2<M∗
SMMD8 are formally both O(1/Λ4), however we only consider the former

and not the latter. This issue ties in with a broader discussion of the validity of the EFT

description of an observable, and we will return to it throughout this thesis. For now it

suffices to assume that the higher-order interference terms can be neglected.

2.6.1 Top pair production

As in the case of the Standard Model, we can (at leading-order in αs) split up top-quark

pair production into the gg and qq̄ channels. For the former, any new physics which

couples to the top quark directly will modify the top-gluon vertex. The only operator that

does this directly is the so-called chromomagnetic moment operator O33
uG≡OtG, where the
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Figure 2.8: Ratio of the full cross-section for tt̄ production at the 13 TeV LHC (left)

and Tevatron (right) for the operators OG and O33
uG to the Standard model prediction, as

a function of the operator Wilson coefficient. The dashed lines show the effects of the

interference term only, the solid lines show the interference and quadratic terms.

superscript denotes the generation index explicitly. Its interference with the SM gg → tt̄

amplitude gives the term [214]∗∗∗

2<M33∗
uGMSM =

g3
s

2
√

2

vmtc
33
uG

Λ2

(
1

6τ1τ2

− 3

8

)
, (2.60)

where τ1,2 are functions of the Mandelstam invariants τ1 = (m2
t − t)/s, τ2 = (m2

t − u)/s

and ρ = 4m2
t/s is the threshold variable.

In fact, this is the only operator that modifies the gg → tt̄ production cross-section

by directly coupling to the top. We can indirectly modify the cross-section, however, by

modifying the triple-gluon vertex in the initial state with the operator OG. This leads to

the interference matrix element [215,216]

2<M∗
GMSM =

9

8

cGg
3
s

Λ2

m2
t (τ1 − τ2)2

τ1τ2

. (2.61)

The partonic differential cross-sections are folded with the incoming parton densities to give

the proton-(anti)proton cross-sections. To get an idea of the strength of the operators, we

plot the ratio of the full cross-section to the SM only value, broken up into the interference

and quadratic pieces, as a function of the dimensional Wilson coefficient c̃i = ci/Λ
2 for

∗∗∗We want to focus on the interference terms, so we do not show the quadratic terms explicitly, though
we will compute their numerical contributions to observables.
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Figure 2.9: Top quark pair invariant mass distributions at the 13 TeV LHC (left) and the

Tevatron (right). The red curves are for the SM only, while the blue and magenta curves

are for (respectively) the coefficients cG/Λ
2 and c33

uG/Λ
2 set to a value of 5 TeV −2.

O33
uG and OG. The results are shown in Fig. 2.8, for both the 13 TeV LHC and Tevatron.

We see that the effects of the operator OG come almost entirely from its quadratic

term, and its interference is very small, therefore in a D = 6 framework, constraints on its

coefficient should be taken with caution. It is also clear that OG is much stronger at the

LHC than at the Tevatron, due to the much higher gluon densities in the proton beam at

LHC energies. For the chromomagnetic moment O33
uG, the interference term dominates up

to very large values of its Wilson coefficient. Its effects are also typically much stronger

at the Tevatron, because its larger contribution is from the qq̄ channel, which dominates

here since both quark and antiquark are valence and dominate over gluons at the typical

x values probed at the Tevatron.

We can also show the effects of these two operators on kinematic distributions. In Fig.

2.9 we plot the invariant mass distributions at a point in the parameter space for each

operator, namely ci/Λ
2 = 5 TeV −2, again at the 13 TeV LHC and Tevatron. We see again

that in the case of the LHC, the operator OG has the much stronger effect, whereas the

operator O33
uG dominates at the Tevatron. The operator O33

uG, in both cases, modifies the

SM distribution by an overall normalisation factor, whereas the operator OG has a much

stronger effect in the tail of the distribution at the LHC, corresponding to the region where

the gluon pdf becomes increasingly dominant.

For the qq̄ channel, the situation is slightly more complicated. In addition to the

chromomagnetic operator O33
uG already mentioned, there is also a contribution from various

four-fermion operators listed in Tab. 2.2. Though there are many individual operators that
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Figure 2.10: Ratio of the full cross-section for tt̄ production at the 13 TeV LHC (left)

and Tevatron (right) for the four-fermion operators contributing to top pair production to

the Standard model prediction, as a function of the operator Wilson coefficient. The dashed

lines show the effects of the interference term only, the solid lines show the interference

and quadratic terms.

contribute, at the level of observables their effects factorise into only four unique linear

combinations of 4-quark operators [217].

c1
u = c1,1331

qq + c1331
uu + c3,1331

qq

c2
u = c8,1133

qu + c8,3311
qu

c1
d = 4c3,1133

qq + c8,3311
ud

c2
d = c8,1133

qu + c8,3311
qd .

(2.62)

The interference matrix element for these operators is given by

2<M∗
4qMSM =

g2
s

9π2

s

Λ2

[
1

4

(
c1
u,d − c2

u,d

)
(τ1 − τ2) +

1

4

(
c1
u,d + c2

u,d

) (
τ 2

1 + τ 2
2 +

ρ

2

)]
. (2.63)

The ratio of the full tt̄ cross-section (summed over the u and d production channels),

including these operators to the SM estimate, at the LHC and Tevatron, are shown in Fig.

2.10. We see that for larger values of the Wilson coefficient, the squared term dominates

contributions to the cross-section, and that the c1
u,d type operators typically have a much

larger effect on the cross-section, at both the interference and squared level.
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2.6.2 Single top production

For single top production, we can split up the processes into s and t channel production,

as discussed in the previous chapter. However, since the diagrams are related by crossing

symmetry, the same operator set contributes to both. The interfering operators which have

numerical significance are O33
uW (≡ OtW ), O(3)

ϕq , and the linear combination of four-fermion

operators

Ot ≡ O3,1133
qq +

1

6

(
O1,1331
qq +O3,1331

qq

)
. (2.64)

For t-channel production, the interference term generated by these three operators can be

more conveniently expressed directly in terms of the Mandelstam invariants and, for the

ub→ dt subprocess, takes the form

2<M∗
D6MSM =

c
(3)
ϕq

Λ2

Vtb|Vud|2g2v2s(s−m2
t )

4(t−m2
W )2

− ctW
Λ2

√
2Vtb|Vud|2mtmW st

(t−m2
W )2

+
ct
Λ2

9VtbVudg
2s(s−m2

t )

8(t−m2
W )

.

(2.65)

The corresponding expression for the d̄b→ ūt subprocess is obtained by substituting s→ u

in each term. For s-channel production, the expression can be obtained by substituting

s→ u, t→ s, making use of crossing symmetry.

The interference of O(3)
ϕq has the same kinematic dependence as the SM contribution, in

fact it amounts to rescaling the CKM element V 2
tb → V 2

tb + 2c
(3)
ϕqVtb/Λ

2. Therefore it does

not affect the shapes of distributions and merely rescales the overall cross-section. The

other two operators, in addition to modifying the overall cross-section, modify the shapes

of distributions, and so stronger bounds should be expected on their coefficients.

The relative contributions of each of these operators will serve as a rough guide for how

strongly they can be constrained when their coefficients are fit to relevant measurements.

The next chapter will discuss in detail such a fit. The same arguments can be made to

calculate the effects of D = 6 operators on the other top-related processes discussed in

Chapter 1, such as associated production, charge asymmetries and decay observables. We

will postpone such a discussion until the next chapter.

2.7 Summary

Despite the many successes of the Standard Model over the last forty years, there are

several reasons to believe that it is only a stepping stone to a more fundamental theory of

Nature, due to considerations such as the hierarchy problem, vacuum stability, and gauge

coupling unification. Given its large Yukawa coupling, and as the only SM fermion with

an electroweak scale mass, the top quark typically plays a special role in most of these
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scenarios, such as supersymmetry, extra dimensions and broken global symmetries such

as the little Higgs family of models. These extensions generically predict direct and/or

indirect modifications to top quark collider observables, such as new resonances decaying

to top pairs, enhanced top quark production cross-sections, new top decay modes and

modified decay distributions.

A generic way to parametrise the potential effects of heavy new physics on low energy

observables is to regard the Standard Model as the leading order piece of an effective theory,

where the non-SM interactions are encoded in higher-dimensional (D > 4) operators. We

formulated the D = 6 extension of the Standard Model, and discussed the sector of this

EFT that can potentially impact top quark observables at hadron colliders. In the next

chapter we will perform a global fit of the Standard Model EFT to Tevatron and LHC

Run I data, and will discuss the implications of the results of this fit for constraints on

new physics.
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3 A global fit of top quark effective theory to data

3.1 Introduction

In chapter 1, we discussed the role of the top quark in the Standard Model of particle

physics, and the unique properties of its production and decay mechanisms that can be

measured with precision at hadron colliders. In chapter 2, we showed that the top quark

also plays a special role in scenarios of physics Beyond the Standard Model, and outlined

the formulation of the Standard Model as the leading part of an effective theory. We then

briefly touched upon the sector of this effective theory that could be probed with top quark

measurements at hadron colliders.

The motivations for this formulation are manifold: Firstly, with the LHC Run II well

underway, the main take-home message is that, apart from a few scattered anomalies, all

measurements are in agreement with Standard Model predictions. This implies that, if new

heavy degrees of freedom exist at all, they are decoupled [218, 219] from the electroweak

scale (either there is a large mass gap or very weak coupling between the SM and new

physics sectors), in which case they will necessarily integrate out into higher-dimensional

operators [195–197, 220] in the low energy limit∗. Secondly, faced with the large number

of hypothesised new physics scenarios and the frequent degeneracy in their experimental

signatures, it is prudent to describe deviations from the Standard Model in as model-

independent a way as possible. The differences in early inclusive Higgs production cross-

section measurements from their SM values, for instance, are often described by ‘signal

strength’ ratios. Likewise, electroweak observables are also phrased in the language of

anomalous couplings.

From a phenomenological perspective, the EFT description is nothing more than an-

other model-independent way of asking ‘which self-consistent Lagrangian best describes

the data?’, but it has the advantage over other approaches such as signal strengths in

that it can also accommodate differential observables and angular observables, because the

higher-dimensional operators lead to new vertex structures which can impact event kine-

matics. They also have the advantage over ‘form-factors’ in that they manifestly preserve

the full SU(3)C × SU(2)L ×U(1)Y gauge symmetry, and so can be more straightforwardly

linked to concrete ultraviolet completions.

This merits have not gone unnoticed, and EFT techniques have received much attention

in interpreting available Higgs results [222–239], although this area is still in its infancy,

and the corresponding bounds (and thus the conclusions that one can draw about extended

Higgs sectors) are limited by low statistics on the experimental side. Top quark physics,

∗Current collider measurements, however, cannot rule out the existence of light degrees of freedom,
see e.g. Ref. [221].
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by contrast, has entered a precision era, and data from the LHC and Tevatron are far more

abundant. As already discussed, the top quark plays a special role in most scenarios of Be-

yond the Standard Model physics, motivating scrutiny of its phenomenology. Furthermore,

the top sector is strongly coupled to Higgs physics owing to the large top quark Yukawa

coupling, and so represents a complementary window into physics at the electroweak scale.

Thus, it is timely to review the constraints on new top interactions through a global fit of

all dimension-six operators relevant to top production and decay at hadron colliders. This

is the subject of this chapter.

There have been several studies of the potential for uncovering new physics effects in the

top quark sector at the LHC and Tevatron, phrased in model-independent language, either

through anomalous couplings [204,240–254] or higher-dimensional operators [214,217,255–

259]. Though there is a one-to-one correspondence between these two approaches (for the

reasons discussed below) the latter is the approach taken in this analysis. Other studies

have also set limits on top dimension-six operators, but by considering different physics,

such as precision electroweak data [260], or flavour-changing neutral currents [261,262].

The chapter is structured as follows. In Section 3.2 we review the higher-dimensional

operators relevant for top quark physics and in Section 3.3 we review the experimental

measurements entering our fit, as well as the limit-setting procedure we adopt. In Sec-

tion 3.4 we present our constraints, and discuss the complementarity of LHC and Tevatron

analyses, and the improvements obtained from adding differential distributions as well as

inclusive rates. In Section 3.5 we discuss issues relating to the validity of the EFT frame-

work and how our constraints look in the context of specific new physics models. Finally,

in Section 3.6 we discuss our results and conclude.

3.2 Higher-dimensional operators

In order to keep this chapter self-contained, in this section we briefly revisit the operators

relevant for top observables at hadron colliders. As discussed in chapter 2, the leading

contributions to Leff at collider energies enter at dimension D = 6

Leff = LSM +
1

Λ2

∑
i

ciOi(GA
µ ,W

I
µ , Bµ, ϕ,QL, uR, dR, LL, eR) +O(Λ−4) . (3.1)

Oi are D = 6 operators made up of SM fields, and ci are dimensionless Wilson coefficients.

At dimension-six, assuming minimal flavour violation and Baryon number conservation,

there are 59 independent operators. Clearly, allowing 59 free parameters to float in a

global fit is intractable. Fortunately, for any given class of observables, only a smaller

subset is relevant. In top physics, for the observables we consider, we have the following
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effective operators, expressed in the so-called ‘Warsaw basis’ of Ref. [199]†

O(1)
qq = (Q̄γµQ)(Q̄γµQ) OuW = (Q̄σµντ Iu)ϕ̃W I

µν O(3)
ϕq = i(ϕ†

←→
D I

µϕ)(Q̄γµτ IQ)

O(3)
qq = (Q̄γµτ

IQ)(Q̄γµτ IQ) OuG = (Q̄σµνTAu)ϕ̃GA
µν O(1)

ϕq = i(ϕ†
←→
D µϕ)(Q̄γµQ)

Ouu = (ūγµu)(ūγµu) OG = fABCG
Aν
µ GBλ

ν GCµ
λ OuB = (Q̄σµνu)ϕ̃Bµν

O(8)
qu = (Q̄γµT

AQ)(ūγµTAu) O
G̃

= fABCG̃
Aν
µ GBλ

ν GCµ
λ Oϕu = (ϕ†i

←→
D µϕ)(ūγµu)

O(8)
qd = (Q̄γµT

AQ)(d̄γµTAd) OϕG = (ϕ†ϕ)GA
µνG

Aµν O
ϕG̃

= (ϕ†ϕ)G̃A
µνG

Aµν

O(8)
ud = (ūγµT

Au)(d̄γµTAd) . (3.2)

We adopt the same notation as Ref. [199], where TA = 1
2
λA are the SU(3) generators, and

τ I are the Pauli matrices, related to the generators of SU(2) by SI = 1
2
τ I . For the four-

quark operators on the left column of Eq. (3.2), we denote a specific flavour combination

(Q̄i...Qj)(Q̄k...Ql) by e.g. O4q
ijkl. It should be noted that the operators OuW , OuG and

OuB are not hermitian and so may have complex coefficients which, along with O
G̃

and

O
ϕG̃

, lead to CP-violating effects. These do not contribute to the observables built out

of spin-averaged matrix elements that we consider, but they are in principle sensitive

to polarimetric information such as spin correlations, and should therefore be treated as

independent operators. However, currently available measurements that would be sensitive

to these degrees of freedom have been extracted by making model-specific assumptions that

preclude their usage in the fit, e.g. by assuming that the tops are produced with either

SM-like spin correlation or no spin correlation at all, as in Refs. [266–268]. We will discuss

this issue in more detail in the next section. With these caveats, a total of 14 constrainable

CP-even dimension-six operators contribute to top quark production and decay at leading

order in the SMEFT.

3.3 Methodology

3.3.1 Experimental inputs

The experimental measurements used in the fit [269–306] are included in Table 3.1. All

these measurements are quoted in terms of ‘parton-level’ quantities; that is, top quarks

and their direct decay products. Whilst it is possible to include particle-level observables,

these are far less abundant and they are beyond the scope of the present study.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 195 measurements, 174 of which come from

†Given the simplicity of how it captures modifications to SM fermion couplings, this basis is well-suited
to top EFT. For basis choices of interest in Higgs physics, see e.g. Refs. [209,211,263–265], and Ref. [212]
for a tool for translating between them.
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Dataset
√
s (TeV) Measurements arXiv ref. Dataset

√
s (TeV) Measurements arXiv ref.

Top pair production
Total cross-sections: Differential cross-sections:
ATLAS 7 lepton+jets 1406.5375 ATLAS 7 pT (t),mtt̄, |ytt̄| 1407.0371
ATLAS 7 dilepton 1202.4892 CDF 1.96 mtt̄ 0903.2850
ATLAS 7 lepton+tau 1205.3067 CMS 7 pT (t),mtt̄, yt, ytt̄ 1211.2220
ATLAS 7 lepton w/o b jets 1201.1889 CMS 8 pT (t),mtt̄, yt, ytt̄ 1505.04480
ATLAS 7 lepton w/ b jets 1406.5375 D/0 1.96 mtt̄, pT (t), |yt| 1401.5785
ATLAS 7 tau+jets 1211.7205
ATLAS 7 tt̄, Zγ,WW 1407.0573 Charge asymmetries:
ATLAS 8 dilepton 1202.4892 ATLAS 7 AC (inclusive+mtt̄, ytt̄) 1311.6742
CMS 7 all hadronic 1302.0508 CMS 7 AC (inclusive+mtt̄, ytt̄) 1402.3803
CMS 7 dilepton 1208.2761 CDF 1.96 AFB (inclusive+mtt̄, ytt̄) 1211.1003
CMS 7 lepton+jets 1212.6682 D/0 1.96 AFB (inclusive+mtt̄, ytt̄) 1405.0421
CMS 7 lepton+tau 1203.6810
CMS 7 tau+jets 1301.5755 Top widths:
CMS 8 dilepton 1312.7582 D/0 1.96 Γtop 1308.4050
CDF + D/0 1.96 Combined world average 1309.7570 CDF 1.96 Γtop 1201.4156

Single top production W-boson helicity fractions:
ATLAS 7 t-channel (differential) 1406.7844 ATLAS 7 1205.2484
CDF 1.96 s-channel (total) 1402.0484 CDF 1.96 1211.4523
CMS 7 t-channel (total) 1406.7844 CMS 7 1308.3879
CMS 8 t-channel (total) 1406.7844 D/0 1.96 1011.6549
D/0 1.96 s-channel (total) 0907.4259
D/0 1.96 t-channel (total) 1105.2788

Associated production Run II data
ATLAS 7 tt̄γ 1502.00586 CMS 13 tt̄ (dilepton) 1510.05302
ATLAS 8 tt̄Z 1509.05276
CMS 8 tt̄Z 1406.7830

Table 3.1: The measurements entering the fit. Details of each are described in the text.

differential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor [307]. Indeed top

pair production cross-sections make up the bulk of measurements that are used in the

fit. Single top production cross-sections comprise the next dominant contribution. We

also make use of data from charge asymmetries in top pair production, as well as inclusive

measurements of top pair production in association with a photon or a Z (tt̄γ and tt̄Z) and

observables relating to top quark decay. We take each of these categories of measurement

in turn, discussing which operators are relevant and the constraints obtained on them from

data.

3.3.2 Treatment of uncertainties

The uncertainties entering the fit can be classed into three categories:

Experimental uncertainties: We generally have no control over these. In cases where

statistical and systematic (and luminosity) errors are recorded separately, we add them

in quadrature. Correlations between measurements are also an issue: the unfolding of

measured distributions to parton-level introduces some correlation between neighbouring
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bins. If estimates of these effects have been provided in the experimental analysis, we use

this information in the fit, if they are not, we assume zero correlation. However, we have

checked that bin correlations have little effect on our numerical results.

There will also be correlations between apparently separate measurements. The multitude

of different top pair production cross-section measurements will clearly be correlated due

to overlapping event selection criteria and detector effects, etc. Without a full study

of the correlations between different decay channels measured by the same experiment,

these effects cannot be completely taken into account, but based on the negligible effects

of the bin-by-bin correlations on our numerical results we can expect these effects to be

small as well.

Standard Model theoretical uncertainties: These stem from the choice of parton dis-

tribution functions (PDFs), as well as neglected higher-order perturbative corrections.

As discussed in chapter 1, we model the latter by varying the renormalisation and fac-

torisation scales independently in the range µ0/2 ≤ µR,F ≤ 2µ0, where we use µ0 = mt

as the default scale, and take the envelope as our uncertainty. For the PDF uncer-

tainty, we follow the PDF4LHC recommendation [308] of using CT10 [309], MSTW [96]

& NNPDF [310] NLO fits, each with associated scale uncertainties, then taking the full

width of the scale+PDF envelope as our uncertainty estimate – i.e. we conservatively

assume that scales and parton densities are 100% correlated. Unless otherwise stated, we

take the top quark mass to be mt = 173.2 ± 1.0 GeV. We do not consider electroweak

corrections.

Only recently has a lot of progress been made in extending the dimension six-extended

SM to higher order in αs, see Refs. [311–324]. Including these effects is beyond the scope

of this work, also because we work to leading order accuracy in the electroweak expansion

of the SM. QCD corrections to four fermion operators included via renormalisation group

equations are typically of the order of 15%, depending on the resolved phase space [320].

As pointed out in Ref. [325], these effects can be important in electroweak precision data

fits.

Interpolation error: A small error relating to the Monte Carlo interpolation (described

in more detail in the next section) is included. This is estimated to be 5% at a conservative

estimate, as discussed in the following section, and thus subleading compared to the

previous two categories.

3.3.3 Fitting procedure

Our fitting procedure, briefly outlined in Ref. [1], uses the Professor framework. The first

step is to construct an N -dimensional hypercube in the space of dimension six couplings,
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Figure 3.1: Dependence of a bin in the unnormalised (left) and normalised (right) tt̄

invariant mass distribution on one of the dimension-six coefficients considered in this fit.

compute the observables at each point in the space, and then to fit an interpolating function

f(c) that parametrises the theory prediction as a function of the Wilson coefficients c =

{ci}. This can then be used to rapidly generate theory observables for arbitrary values

of the coefficients. Motivated by the dependence of the total cross-section with a Wilson

coefficient (also shown in Eq. 2.59):

σ ∼ σSM + ciσD6 + c2
iσD62 , (3.3)

the fitting function is chosen to be a second-order or higher polynomial:

fb({ci}) = αb0 +
∑
i

βbi ci +
∑
i≤j

γbi,jcicj + . . . . (3.4)

In the absence of systematic uncertainties, each unnormalised observable would exactly

follow a second-order polynomial in the coefficients, and higher-order terms capture bin

uncertainties which modify this. The polynomial also serves as a useful check that the

dimension-six approximation is valid. By comparing Eq. (3.3) with Eq. (3.4), we see

that the terms quadratic in ci are small provided that the coefficients in the interpolating

function γi,j are small. This is a more robust way to ensure validity of the dimension-six

approximation than to assume a linear fit from the start.

The simple quadratic dependence on the coefficients is not guaranteed to propagate

into every observable, however. Many of the differential distributions recorded by the

LHC experiments (and used in this fit) are normalised to unity. This has the advantage

of dividing out many of the systematic uncertainties entering the extraction of the cross-
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Figure 3.2: Residuals distributions for interpolated observable values (left) and uncertain-

ties (right), evaluated over all input MC runs and all observables. The 4th order polynomial

parameterisation gives the best performance and the vast majority of entries are within 5%

of the explicit MC value. The poor performance of a constant uncertainty assumption based

on the median input uncertainty is evident – since all three lines have the same normalisa-

tion, the majority of residual mismodellings for the median approach are (far) outside the

displayed 10% interval.

section, but has the practical disadvantage from a fitting perspective that the observables

follow a much more complicated polynomial dependence on the coefficients. Consider, for

example, a bin in the normalised differential cross-section in some observable X, which will

schematically take the form

1

σ(ci)

dσ(ci)

dX
∼ 1

f + gci + hc2
i

× (f ′ + g′ci + h′c2
i ), (3.5)

where {f, g, h, f ′, g′, h′} are dimensionful functions of kinematic and Standard Model

parameters. It is clear to see that this function will not be quadratic in ci. This is exem-

plified in figure 3.1, where we show the dependence of a given bin in the top pair invariant

mass distribution, both unnormalised and normalised. A clear quadratic dependence is

seen in the former, whereas the latter is much more irregular and should be modelled by a

higher-order function.

In principle there is no limit on how high a polynomial order we may use. The limiting

factor is the increased computation time at each successive order, and the inefficiency of

overfitting to statistical noise, which very high order polynomials almost certainly do. In

practice, to minimise the interpolation uncertainty, we use up to a 4th order polynomial in

Eq. (3.4), depending on the observable of interest. The performance of the interpolation
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Figure 3.3: Illustration of the difference between individual and marginalised constraints

for a two-parameter fit. The allowed region for c1 with all other coefficients set to zero (red

squares) can be made larger by varying c1 and c2 simultaneously and tuning them so that

the theory prediction is close to the data (blue squares).

method is shown in Fig. 3.2, which depicts the fractional deviation of the polynomial fit

from the explicit MC points used to constrain it. The central values and the sizes of the

modelling uncertainties may both be parameterised with extremely similar performance,

with 4th order performing best for both. The width of this residual mismodeling distribu-

tion being ∼ 3% for each of the value and error components is the motivation for a total

5% interpolation uncertainty to be included in the goodness of fit of the interpolated MC

polynomial f(c) to the experimentally measured value E:

χ2(c) =
∑
O

∑
i,j

(fi(c)− Ei)ρi,j(fj(c)− Ej)
∆i∆j

, (3.6)

where we sum over all observables O and all bins in that observable i. We include the

correlation matrix ρi,j where this is provided by the experiments, otherwise ρi,j = δij.

The uncertainty on each bin is given by ∆i =
√

∆2
th,i + ∆2

exp,i, i.e. we treat theory and

experimental errors as uncorrelated. The parameterisation of the theory uncertainties is

restricted to not become larger than in the training set, to ensure that polynomial blow-up

of the uncertainty at the edges of the sampling range cannot produce a spuriously low χ2

and disrupt the fit.

We hence have constructed a fast parameterisation of model goodness-of-fit as a function

of the EFT operator coefficients. This may be used to produce χ2 maps in slices (where

all but one parameter is fixed, typically to zero) or marginalised (where all parameters are
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Figure 3.4: Flowchart illustrating the fitting procedure and relevant software used at each

step of the analysis.

varied simultaneously) projections of the operator space. Since in the marginalised case,

a pull of the theory prediction in one direction by one parameter can be compensated by

tuning another parameter to pull it back into agreement with the data, the net result is

that marginalised confidence intervals are wider than individual ‘slices’. A visualisation

of this is shown in Fig. 3.3 for a two parameter fit. These projections are transformed to

confidence intervals on the coefficients ci, defined by the regions for which

1− CL ≥
∫ ∞
χ2(ci)

fk(x)dx , (3.7)

where typically CL ∈ {0.68, 0.95, 0.99} and fk(x) is the χ2 distribution for k degrees of

freedom, which we define as k = Nmeasurements −Ncoefficients.

A flowchart of the fitting procedure is shown in Fig. 3.4.

3.4 Results

The entire 59 dimensional operator set of Ref. [199] was implemented in a FeynRules [326]

model file, with care taken to ensure consistent redefinitions of the relation between SM

input parameters and observables (see appendix A for details). The contributions to par-

ton level cross-sections and decay observables from the above operators were computed

using MadGraph/Madevent [101], making use of the Universal FeynRules Output

(UFO) [327] format. We model NLO QCD corrections by including Standard Model K-

factors (bin-by-bin for differential observables), where the NLO observables are calculated

using MCFM [107], cross-checked with MC@NLO [106, 328]. These K-factors are used

for arbitrary values of the Wilson coefficients, thus modelling NLO effects in the pure-SM
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plitudes for top pair production with the operators of Eq. (3.8). O4q denotes the insertion

of any of the four-quark operators.

contribution only. More specifically, this amounts to performing a simultaneous expansion

of each observable in the strong coupling αs and the (inverse) new physics scale Λ−1, and

neglecting terms ∼ O(αSΛ−2). For t-channel single top production, all our results are pre-

sented in a five-flavour scheme for the incoming pdfs, however we have cross-checked our

results against a four-flavour scheme and found good agreement. Our final 95% confidence

limits for each coefficient are presented in Fig. 3.18; we discuss them in more detail below.

3.4.1 Top pair production

By far the most abundant source of data in top physics is from the production of top pairs.

The CP-even dimension-six operators that interfere with the Standard Model amplitude

are

LD6 ⊃
cuG
Λ2

(Q̄σµνTAu)ϕ̃GA
µν +

cG
Λ2
fABCG

Aν
µ GBλ

ν GCµ
λ +

cϕG
Λ2

(ϕ†ϕ)GA
µνG

Aµν

+
c1
qq

Λ2
(Q̄γµQ)(Q̄γµQ) +

c3
qq

Λ2
(Q̄γµτ

IQ)(Q̄γµτ IQ) +
cuu
Λ2

(ūγµu)(ūγµu)

+
c8
qu

Λ2
(Q̄γµT

AQ)(ūγµTAu) +
c8
qd

Λ2
(Q̄γµT

AQ)(d̄γµTAd) +
c8
ud

Λ2
(ūγµT

Au)(d̄γµTAd) .

(3.8)

As pointed out in Ref. [1], the operator OϕG cannot be bounded by top pair production

alone, since the branching ratio to virtual top pairs for a 125 GeV Higgs is practically

zero, therefore we do not consider it here. For a recent constraint from Higgs physics see

e.g. Ref. [232, 234, 238, 239]. We further ignore the contribution of the operator O11
uG ,

as this operator is a direct mixing of the left- and right- chiral u quark fields, and so

contributes terms proportional to mu. We also note that the six four-quark operators of

Eq. (3.8) interfere with the Standard Model QCD processes ūu, d̄d → t̄t to produce terms

dependent only on the four linear combinations of Wilson Coefficients: c1,2
u,d, displayed in
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Figure 3.6: Parton level differential distributions in top pair production, considering SM

only (red) and the effects of the four-quark operator O2
u, showing the enhancement in the

tails of the distributions. Data taken from Ref. [289].

Eq. (2.62).

It is these four that are constrainable in a dimension-six analysis. Finally, we note

that the operator OG, whilst not directly coupling to the top at tree-level, should not be

neglected. Since it modifies the triple gluon vertex, and the gg channel contributes ∼ 75%

(90%) of the total top pair production cross-section at the 8 (13) TeV LHC, moderate

values of its Wilson coefficient can substantially impact total rates, as we already saw in

chapter 2. We note, however, that in this special case, the cross section modifications are

driven by the squared dimension six terms instead of the linearised interference with the

SM. Nonetheless, in the interests of generality, we choose to include this operator in the

fit at this stage, noting that bounds on its Wilson coefficient should be interpreted with

caution.‡ Representative Feynman diagrams for the interference of these operators are

shown in Fig. 3.5.

The most obvious place to look for the effects of higher-dimensional terms is through the

enhancement (or reduction, in the case of destructive interference) of total cross-sections.

Important differences between SM and dimension-six terms are lost in this approach, how-

ever, since operators can cause deviations in the shape of distributions without substan-

tially impacting event yields. This is highlighted in Fig. 3.6, where we plot our NLO SM

estimate for two top pair kinematic distributions, vs. one with a large new physics inter-

ference term. Both are consistent with the data in the threshold region, which dominates

‡We have observed that excluding this operator actually tightens the bounds on the remaining ones,
so choosing to keep it is the more conservative option.
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Figure 3.7: 68%, 95% and 99% confidence intervals for selected combinations of operators

contributing to top pair production, with all remaining operators set to zero. The star marks

the best fit point, indicating good agreement with the Standard Model. Here c̄i = civ
2/Λ2.

the cross-section, but clear discrimination between SM and dimension-six effects is visible

in the high-mass region, which simply originates from the scaling of dimension-six operator

effects as s/Λ2.

Limits on these operators can be obtained in two ways; by setting all other operators

to zero, and by marginalising over the other parameters in a global fit. In Fig. 3.7 we

plot the allowed 68%, 95% and 99% confidence intervals for various pairs of operators,

with all others set to zero, showing correlations between some coefficients. Most of these

operators appear uncorrelated, though there is a strong correlation between c1
u and c1

d, due

to a relative sign between their interference terms. Given the lack of reported deviations

in top quark measurements, it is perhaps unsurprising to see that all Wilson coefficients

are consistent with zero within the 95% confidence intervals, and that the SM hypothesis

is an excellent description of the data. In Fig. 3.8, the stronger joint constraints on cG
vs c1

u obtained from including differential measurements make manifest the importance of

utilizing all available cross-section information.

It is also interesting to note the complementarity between measurements from the LHC

and Tevatron, as illustrated in Fig. 3.8. It is interesting to see that although Tevatron

95



−0.2 −0.1 0.0 0.1 0.2
c̄G

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2c̄1 u

−0.2 −0.1 0.0 0.1 0.2
c̄33
uG

−0.2

−0.1

0.0

0.1

c̄1 u

Figure 3.8: Left: 68%, 95% and 99% confidence intervals on the operators cG vs. c1
u ,

considering differential and total cross-sections (contours, red star), and total cross-sections

only (lines, white star). Right: Limits on c33
uG vs. c1

u, considering both Tevatron and LHC

data (contours) and Tevatron data only (lines).

data are naively more sensitive to four-quark operators, after the LHC Run I and early

into Run II, the LHC data size and probed energy transfers lead to comparably stronger

constraints. In the fit this is highlighted by the simple fact that LHC data comprise more

than 80% of the bins, so have a much larger pull. This stresses the importance of collecting

large statistics as well as using sensitive discriminating observables.

3.4.2 Single top production

The next most abundant source of top quark data is from single top production. In the

fit we consider production in the t and s channels, and omit Wt-associated production.

Though measurements of the latter process have been published, they are not suitable

for inclusion in a fit involving parton level theory predictions. As discussed in chapter 1,

Wt production interferes with top pair production at NLO and beyond in a five-flavour

scheme [127,128,130], or at LO in a four-flavour one. Its separation from top pair produc-

tion is then a delicate issue, discussed in detail in Refs. [129,133,135,136]. We thus choose

to postpone the inclusion of Wt production to a future study, going beyond parton level.
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The operators that could lead to deviations from SM predictions are shown in Eq. (3.9).

LD6 ⊃
cuW
Λ2

(Q̄σµντ Iu) ϕ̃W I
µν +

c
(3)
ϕq

Λ2
i(ϕ†
←→
D I

µϕ)(Q̄γµτ IQ)

+
cϕud
Λ2

(ϕ†
←→
D µϕ)(ūγµd) +

cdW
Λ2

(Q̄σµντ Id) ϕ̃W I
µν

+
c3
qq

Λ2
(Q̄γµτ

IQ)(Q̄γµτ IQ) +
c1
qq

Λ2
(Q̄γµQ)(Q̄γµQ) +

c1
qu

Λ2
(Q̄γµQ)(ūγµu) .

(3.9)

As in top pair production there are several simplifications which reduce this operator

set. The right-chiral down quark fields appearing in OuW and Oϕud cause these operators’

interference with the left-chiral SM weak interaction to be proportional to the relevant

down-type quark mass. For example, an operator insertion of O33
ϕud will always contract

with the SM Wtb -vertex to form a term of order mbmt c
33
ϕud/Λ

2. Since mb is much less

than both ŝ and the other dimensionful parameters that appear, v and mt, we may choose

to neglect these operators. By the same rationale we neglect O(1)
qu as its contribution to

observables is proportional to mu. We have further checked numerically that the contri-

bution of these operators is practically negligible. Finally, all contributing four-fermion

partonic subprocesses depend only on the linear combination of Wilson Coefficients:

ct = c3,1133
qq + 1

6
(c1,1331
qq − c3,1331

qq ). (3.10)

Single top production can thus be characterised by the three dimension-six operators

OuW , O(3)
ϕq and Ot. The correlations among the constraints of these operators are displayed

in figure 3.9.

As noted in the introduction to this chapter, several model-independent studies have

noted the potential for uncovering new physics in single top production, though these have

typically been expressed in terms of anomalous couplings, via the Lagrangian

LWtb =
g√
2
b̄γµ(VLPL + VRPR)tW−

µ +
g√
2
b̄
iσµνqν
MW

(gLPL + gRPR)tW−
µ + h.c. (3.11)

where q = pt − pb. There is a one-to-one mapping between this Lagrangian and those

dimension-six operators that modify the Wtb vertex:

VL → Vtb + c(3)
ϕq v

2/Λ2 VR →
1

2
cϕudv

2/Λ2

gL →
√

2cuWv
2/Λ2 gR →

√
2cdWv

2/Λ2 (3.12)

Although anomalous couplings capture most of the same physics, the advantages of
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Figure 3.9: Marginalised 68%, 95% and 95% confidence intervals on dimension-six oper-

ators in single top production.

using higher-dimensional operators are manifold. Firstly, the power-counting arguments

of the previous paragraph that allowed us to reject the operators OdW , Oϕud at order

Λ−2 would not be clear in an anomalous coupling framework. In addition, the four-quark

operatorO(3)
qq in Eq. (3.9) can have a substantial effect on single-top production, but this can

only be captured by an EFT approach. For a detailed comparison of these approaches, see

e.g. Ref. [329]. The 95% confidence limits on these operators from single top production

are shown in Fig. (3.10), along with those operators previously discussed in top pair

production.

Let us compare these results to our findings of Section 3.4.1. The bounds on operators

from top pair production are typically stronger. The so-called chromomagnetic moment

operator OuG is also tightly constrained, owing to its appearance in both the qq̄ and gg

channels, i.e. it is sensitive to both Tevatron and LHC measurements. For the four-quark

operators, the stronger bounds are typically on the c1
i -type. This originates from the

more pronounced effect on kinematic distributions that they have. The phenomenology

of the c2
i -type operators is SM-like, and their effect becomes only visible in the tails of

distributions.

The much wider marginalised bounds on these two operators come from the relative

sign between their interference term and those of the other operators, which results in

cancellations in the total cross-section that significantly widen the allowed ranges of ci.

With the exception of ct, which strongly modifies the single top production cross-section,

the individual bounds on the operator coefficients from single top production are typically

weaker. This originates from the larger experimental uncertainties on single top produc-

tion, that stem from the multitude of different backgrounds that contaminate this process,
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Figure 3.10: Left: Individual (red) and marginalised (blue) 95% confidence intervals on

dimension-six operators from top pair production and single top production (bottom three).

Right: Marginalised 95 % bounds considering all data from LHC and Tevatron (green) vs

Tevatron only (purple).

particularly top pair production. For the Tevatron datasets this is particularly telling:

the few measurements that have been made, with no differential distributions, combined

with the large error bars on the available data, mean that two of the three operators are

not constrained at dimension-six§. Still, as before, excellent agreement with the SM is

observed.

In addition to single-top production, the operator OuW may be constrained by distri-

butions relating to the kinematics of the top quark decay. The matrix element for hadronic

top quark decay t → Wb → bqq′, for instance, is equivalent to that for t-channel single

top production via crossing symmetry, so decay observables provide complementary infor-

mation on this operator. We will discuss the bounds obtainable from decay observables in

Section 3.4.4.

3.4.3 Associated production

In addition to top pair and single top production, first measurements have been re-

ported [304–306] of top pair production in association with a photon and with a Z boson

(tt̄γ and tt̄Z)¶. The cross-section for these processes are considerably smaller, and statis-

§Our bounds on these two operators are of the same order, but wider, than a pre-LHC phenomenological
study [257], owing to larger experimental errors than estimated there.
¶Early measurements of top pair production in association with a W has also been reported by ATLAS

and CMS, but the experimental errors are too large to say anything meaningful about new physics therein;
the measured cross-sections are still consistent with zero.
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Figure 3.11: Individual 95% confidence intervals for the operators of Eq. (3.13) from tt̄γ

and tt̄Z production (green) and in the two cases where there is overlap, from single top

measurements (blue).

tical uncertainties currently dominate the quoted measurements. Still, they are of interest

because they are sensitive to a new set of operators not previously accessible, correspond-

ing to enhanced top-gauge couplings which are ubiquitous in simple W ′ and Z models, and

which allow contact to be made with electroweak observables. The operator set for tt̄Z,

for instance, contains the 6 top pair operators in Eq. (3.8), plus the following

LD6 ⊃
cuW
Λ2

(q̄σµντ Iu) ϕ̃W I
µν +

cuB
Λ2

(Q̄σµνu) ϕ̃ Bµν +
c

(3)
ϕq

Λ2
i(ϕ†
←→
D I

µϕ)(Q̄γµτ IQ)

+
c

(1)
ϕq

Λ2
i(ϕ†
←→
D µϕ)(Q̄γµQ) +

cϕu
Λ2

(ϕ†i
←→
D µϕ)(ūγµu) .

(3.13)

There is therefore overlap between the operators contributing to associated production,

and those contributing to both top pair and single top. In principle, one should include

all observables in a global fit, fitting all coefficients simultaneously. However, the low

number of individual tt̄V measurements, coupled with their relatively large uncertainties,

means that they do not have much effect on such a fit. Instead, we choose to present

individual constraints on the operators from associated production alone, comparing these

with top pair and single top in what follows. For the former, we find that the constraints

on the operators of Eq. (3.13) obtained from tt̄γ and tt̄Z measurements are much weaker

than those obtained from top pair production, therefore we do not show them here. The

constraints on the new operators of Eq. (3.13) are displayed in Fig. 3.11. It is interesting to

note that the constraints from associated production measurements are comparable with

those from single top production, despite the relative paucity of the former.
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ments combined (purple).

3.4.4 Decay observables

This completes the list of independent dimension-six operators that affect top quark pro-

duction cross-sections. However, dimension-six operators may also contribute (at inter-

ference level) to observables relating to top quark decay. Top quarks decay almost 100%

of the time to a W and b quark. The fraction of these events which decay to W -bosons

with a given helicity: left-handed, right-handed or zero-helicity, can be expressed in terms

of helicity fractions, which for leading order with a finite b-quark mass were shown in

Eq. (1.87):

F0 =
(1− y2)2 − x2(1 + y2)

(1− y2)2 + x2(1− 2x2 + y2)

FL =
x2(1− x2 + y2) +

√
λ

(1− y2)2 + x2(1− 2x2 + y2)

FR =
x2(1− x2 + y2)−

√
λ

(1− y2)2 + x2(1− 2x2 + y2)

(3.14)

where x = MW/mt, y = mb/mt and λ = 1 + x4 + y4 − 2x2y2 − 2x2 − 2y2. As noted in

Ref. [217], measurements of these fractions can be translated into bounds on the operator

OuW . The operator O(3)
ϕq cannot be accessed in this way, since its only effect is to rescale the

Wtb vertex V 2
tb → Vtb

(
Vtb + v2c

(3)
ϕq /Λ2

)
, therefore it has no effect on event kinematics. The

desirable feature of these quantities is that they are relatively stable against higher order

corrections, so the associated scale uncertainties are small. The Standard Model NNLO

estimates for these are: {F0, FL, FR} = {0.687±0.005, 0.311±0.005, 0.0017±0.0001} [146],

i.e. the uncertainties are at the per mille level. It is interesting to ask whether the

bound obtained on OuW in this way is stronger than that obtained from cross-section

measurements. In Fig. 3.12 we show the constraints obtained in each way. Although

they are in excellent agreement with each other, cross-section information gives a slightly

stronger bound, mainly due to the larger amount of data available, but also due to the
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large experimental uncertainties on Fi. Still, these measurements provide complementary

information on the operator OuW , and combining both results in a stronger constraint than

either alone, as expected.

3.4.5 Charge asymmetries

Asymmetries in the production of top quark pairs have received a lot of attention in recent

years, particularly due to an apparent discrepancy between the Standard Model prediction

for the so-called ‘forward-backward’ asymmetry AFB in top pair production of Eq. (1.77)

AFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
(3.15)

where ∆y = yt − yt̄, and a measurement by CDF [330]. This discrepancy was most pro-

nounced in the high invariant mass region, pointing to potential TeV-scale physics at play.

However, recent work has cast doubts on its significance for two reasons: Firstly, an up-

dated analysis with higher statistics [296] has slightly lowered the excess. Secondly, a full

NNLO QCD calculation [116] of AFB showed that, along with NLO QCD + electroweak

calculations [111,115,331] the radiative corrections to AFB are large. The current measure-

ments for the inclusive asymmetry are now consistent with the Standard Model within 2σ.

Moreover, the D/0 experiment reports [297] a high-invariant mass measurement lower than

the SM prediction. From a new physics perspective, it is difficult to accommodate all of

this information in a simple, uncontrived model without tension.
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Still, in an effective field theory approach, deviations from the Standard Model predic-

tion of AFB take a very simple form. A non-zero asymmetry arises from the difference of

four-quark operators:

AFB = (c1
u − c2

u + c1
d − c2

d)
3sβ

4g2
sΛ

2(3− β2)
, (3.16)

where β =
√

1− s/4m2
t is the velocity of the tt̄ system‖. Combining this inclusive mea-

surement with differential measurements such as dAFB/dmtt̄ allows simultaneous bounds

to be extracted on all four of these operators. Therefore it is instructive to compare the

bounds obtained on c1,2
u,d from charge asymmetries to those obtained from tt̄ cross-sections.

Again it is possible to (indirectly) investigate the complementarity between Tevatron and

LHC constraints. Though the charge symmetric initial state of the LHC does not define a

‘forward-backward’ direction, a related charge asymmetry can be (Eq. 1.78) defined as:

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
, (3.17)

making use of the fact that tops tend to be produced at larger rapidities than antitops. This

asymmetry is diluted with respect to AFB, however. The most up-to-date SM prediction is

AC = 0.0123±0.005 [111] for
√
s = 7 TeV. The experimental status of these measurements

is illustrated in Fig. 3.13. The inclusive measurements of AFB are consistent with the SM

expectation, as are those of AC. The latter, owing to large statistical errors, are also

consistent with zero, however, so this result is not particularly conclusive. Since these are

different measurements, it is also possible to modify one without significantly impacting

the other. Clearly they are correlated, however, as evidenced in Fig. 3.13, where the

most up to date measurements of AFB and AC are shown along with the results of a 1000

point parameter space scan over the four-quark operators. This highlights the correlation

between the two observables: non-resonant new physics which causes a large AFB will also

cause a large AC, provided it generates a dimension-six operator at low energies.

We have used both inclusive measurements of the charge asymmetries AC and AFB,

and measurements as a function of the top pair invariant mass mtt̄ and rapidity difference

|ytt̄|. In addition, ATLAS has published measurements of AC with a longitudinal ‘boost’

of the tt̄ system: β = (|pzt + pzt̄ )|/(Et + Et̄) > 0.6, which may enhance sensitivity to new

physics contributions to AC, depending on the model [334]. Since AFB = 0 at leading-order

in the SM, it is not possible to define a K-factor in the usual multiplicative sense. Instead

we take higher-order QCD effects into account by adding the NNLO QCD prediction to

the dimension-six terms. In the case of AC, we normalise the small (but non-zero) LO

‖Contributions to AFB also arise from the normalisation of AFB and the dimension-six squared term
[113,332,333], which we keep, as discussed in Sections 3.3 and 4.
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Figure 3.14: Marginalised 95% confidence intervals on top pair four quark operators from

charge asymmetries at the LHC and Tevatron.

QCD piece, to the NLO prediction, which has been calculated with a Monte Carlo and

cross-checked with a dedicated NLO calculation [111].

The above asymmetries have been included in the global fit results presented in Fig. 3.18.

However, it is also interesting to see what constraints are obtained on the operators from

asymmetry data alone. To this end, the 95% confidence intervals on the coefficients of the

operators O1,2
u,d from purely charge asymmetry data are shown in Fig. 3.14. Unsurprisingly,

the bounds are much weaker than for cross-section measurements in Fig. 3.10, with the O2
i -

type operators unconstrained by LHC data alone. Despite the small discrepancy between

the measured AFB and its SM value, this does not translate into a non-zero Wilson coeffi-

cient; as before, all operators are zero within the 95% confidence intervals. At 13 TeV, the

asymmetry AC will be diluted even further, due to the increased dominance of the gg → tt̄

channel, for which AC = 0. It is therefore possible that charge asymmetry measurements

(unlike cross-sections) will not further tighten the bounds on these operators during LHC

Run II.

3.4.6 Contribution of individual datasets

Counting each bin independently, there are a total of 234 measurements entering our fit,

giving a total χ2 of 206.1 at the best fit point. It is instructive to examine how this is

distributed across the individual datasets. We quantify this by calculating the χ2 per bin

between the data and the global best fit point, as shown in Fig. 3.15. Overall, excellent

agreement is seen across the board, with no measurement in obvious tension with any

other. The largest single contributors to the χ2 come from the rapidity distributions in top

pair production. It has been known for some time that there is some tension between data

and Monte Carlo generators for this observable, especially in the forward region (see e.g.
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the rapidity distributions in Ref. [292]). It is quite likely that this discrepancy stems from

the QCD modelling of the event kinematics, rather than potential new physics. Moreover,

in a fit with this many measurements, discrepancies of this magnitude are to be expected

on purely statistical grounds.

At the level of total tt̄ cross-sections, the vanishingly small contributions to the χ2 stem

from the simple fact that the total rate is well-described by the SM. Single top produc-

tion measurements are also in good agreement with the SM. The associated production

processes ttγ and ttZ, along with the charge asymmetry measurements from the LHC,

have a very small impact on the fit, owing to the large statistical uncertainties on the

current measurements. For the former, this situation will improve in Run II, for the latter

the problem will be worse. The forward-backward asymmetry measurements from CDF

remain the most discrepant dataset used in the fit, even though the inclusive asymmetry is

in good agreement with the NNLO SM asymmetry, because the NNLO corrections shrink

the scale uncertainty band whilst not enlarging the central value, thus enhancing the CDF

excess (see Ref. [116]).

3.5 Validity of the EFT approach

As we have just shown, collider measurements can be used to extract bounds on Wil-

son coefficients in a completely model-independent way. However, if the corresponding

dimension-six operators are to be interpreted as the leading terms in a consistent effective

field theory, then care must be taken to ensure the constraints are valid. The first question

one might ask is if the dimension-six truncation is valid, and more broadly one can ask

if the measurements used in the fit are probing kinematic regimes that make the entire

effective description invalid.

3.5.1 Impact of quadratic terms

As discussed in section 2.6, at the level of observables adding D = 6 operators to the

Standard Model Lagrangian amounts to replacing the Standard Model matrix element

with

|Mfull|2 = |MSM|2 + 2<M∗
D6MSM + |MD6|2. (3.18)

The last term on the right-hand side is of order O(1/Λ4). However, to have a fully

consistent description of an observable at this order, one should include all terms propor-

tional to O(1/Λ4), i.e. also include the interference terms between the Standard Model

and dimension-eight operators. In the strictest interpretation of the effective Lagrangian
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Figure 3.16: Distributions in top quark pair production for a given point in the parameter

space of tt̄ Wilson coefficients considered in this fit, namely {ci} = {cG, c33
uG, c

1
u, c

2
u, c

1
d, c

2
d} =

{0.01, 0.01, 0, 0.9, 0,−9.2,−9.2} TeV−2. In blue is the SM prediction, in green the pure

dimension-six contribution, in pink the pure squared term, and in red the sum of the three.

Subtracting off the square terms leads to negative cross-sections in the intermediate mass

range. All distributions are leading-order in αs.

approach, neglecting these terms renders the EFT description of such an observable mean-

ingless. This is an overly restrictive viewpoint, however, as there exist several prescriptions

for ensuring that the dimension-six approximation is under control.

One might, for example, restrict the parameter space of Wilson coefficients to regions for

which the linear interference terms dominate over the quadratic terms. This ensures that

all constraints are valid in a dimension-six effective field theory interpretation. However,

it may reduce the sensitivity to the operators, and weaken (or wipe out altogether) the

obtained constraints. Moreover, there is an ambiguity in how tolerant of the squared terms

one should be: should one, for example, only cut off the parameter space when they become

larger than the interference terms, in which case their effects will still be considerable, or

when they reach 10, 20 or 50% of the linear piece? There is no first principles answer to

this.

Alternatively, one could subtract off the squared terms altogether, either at the level

of matrix elements or of observables. By definition this ensures that the constraints can

be interpreted in terms of a dimension-six EFT. This treatment, however, lacks a clear

physical motivation. If a non-zero Wilson coefficient were explicitly measured, it would

have to correspond to the low energy limit of some ultraviolet completion. Matching the

EFT constraints onto a specific UV model can be done in a general way, and will determine
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if the data favours a ‘natural’ region of that model’s parameter space. However, subtracting

off quadratic effects will in general disrupt the accuracy of the matching procedure, as the

most dominant effects of a particular model on a certain observable may be from the non-

interfering piece∗∗. Furthermore, subtracting off some contributions to the cross-section

might lead to unphysical effects in distributions, as shown in Fig. 3.16.

By looking at the range ptT & 200 GeV, and mtt̄ & 600 GeV, we see that considering

only the interference term leads to negative predictions for the differential cross-section:

a clearly unacceptable result. Here the terms proportional to O(1/Λ4) keep the cross-

section physically meaningful. One could take this as evidence that the dimension-six

approximation is then not valid at all, because the squared term is dominating. However,

if one would like to compare the EFT constraints to those obtained in a specific new

physics model, it is necessary to include these to ensure an accurate matching condition.

The importance of keeping the squared term or not is then ultimately a model-dependent

question.

Finally, one could simply adopt the pragmatic approach of viewing the dimension-

six framework not as the leading part of a consistent effective theory, but as a model-

independent way of parameterising how well the Standard Model describes the data. If a

non-zero Wilson coefficient was to be measured, it would still be evidence for new physics,

even if it could not be simply linked to a particular new physics model. This is the approach

we adopt in this fit, and we leave interpretational issues aside.

Even if one considers a fit with quadratic terms completely removed from all observables,

O(Λ−4) terms manifest in another way when likelihood contours are drawn. Consider the

likelihood function of Eq. (3.6), considering just one bin and one operator for simplicity.

For a linear fitting function f , it will have a polynomial dependence on ci proportional to

χ2(ci) =
(f(ci)− E)2

∆2
∼ ci + c2

i − E. (3.19)

To ensure the χ2 has a local minimum, the squared term must be kept. This provides

another argument in favour of keeping the quadratic terms throughout the fit.

3.5.2 Overflow bins

Related, but not identical, to the question of whether one should omit or keep the quadratic

terms, is whether one should worry about events in the tails of distributions that might

invalidate the EFT treatment. For inclusive observables this is less of a problem, because

they tend to be dominated by electroweak scale thresholds, well within the valid region of

the phase space. However, by näıve power counting, the convergence of the EFT expansion

∗∗See also Refs. [335,336] for a discussion of this.
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rests on the two conditions

g2
∗v

2

Λ2
< 1 and

E2

Λ2
< 1, (3.20)

where g∗ is a generic new physics coupling, v is the Higgs vev, and E is the maximum

energy scale probed by the process. The first condition can be ensured for any weakly cou-

pled UV completion. The second condition is troublesome when differential distributions

are included in the fit, however. The final bin in experimentally measured distributions,

such as those in Fig. 3.6, typically contains not only events in that phase space region, but

also so-called overflow events to the right of the plot. If the experiment has not included

information on the maximum momentum transfer probed in the published dataset, i.e. the

maximum value of the ‘overflow’ entry to the right of the plot, it is difficult to consistently

interpret the resulting bounds on the Wilson coefficients in an underlying UV model, be-

cause those overflow events may violate the power counting conditions of Eq. (3.20). As a

test of how much pull they have on the fit, in Fig. 3.17 we plot the 1-dimensional likeli-

hood distributions (equivalent to ∆χ2 = χ2−χ2
min) for the Wilson coefficients relevant for

top pair production, considering the full tt̄ dataset, and omitting the overflow bins in the

kinematic distributions.

The differences in the constraints are small, typically at the order of a few percent,

showing that the fit is not unduly biased by phase space points that undermine the validity

of the effective field theory. One may take the approach of omitting these overflow bins

altogether, to ensure control over the scales involved in the fitted measurements. The

subsequent limits are then slightly weaker, due to reduced statistical power and sensitivity

to the operators. However, the exclusion of certain data points undermines the ‘global’

nature of a global fit, so they are included for full generality. Indeed, this is again a

model-dependent question. To illustrate this, in the next section we will convert our EFT

constraints onto specific UV models.

Before doing this, a final comment is in order about Fig. 3.17. The limit setting

shown there, is obtained from a likelihood ratio test, rather than the raw χ2 we employ

elsewhere in the fit. This is so that the 2σ constraints for both datasets can be easily

shown on the same plot, as they both correspond to ∆χ2(ci) < 4. For the χ2 test both

datasets have different numbers of degrees of freedom, corresponding to the number of

input measurements they contain. However, the same results apply in this case as well.

The limits obtained in the latter approach (i.e. the one we adopt in the rest of the fit)

are actually weaker. Without a compelling reason to adopt either approach, it thus seems

sensible to take the more conservative option.
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Figure 3.17: Individual one-dimensional likelihood plots for the top pair Wilson coeffi-

cients considered in this fit, containing all differential top pair measurements (black), and

omitting the final bin in the mtt̄ and ptT distributions (turquoise).

3.5.3 Constraining UV models

As an illustration of the wide-ranging applicability of EFT techniques, we conclude by

matching our effective operator constraints to the low-energy regime of some specific UV

models. These models do not necessarily represent concrete UV scenarios, but serve as

illustrative examples of how EFT constraints could map onto the parameter space of more

fundamental theories.

s-channel axigluon:

Considering top pair production, one can imagine the four operators of Eq. (2.62) as being

generated by integrating out a heavy s-channel resonance which interferes with the QCD

qq̄ → tt̄ amplitude. One particle that could generate such an interference is the so-called
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axigluon. These originate from models with an extended strong sector with gauge group

SU(3)c1×SU(3)c2 which is spontaneously broken to the diagonal subgroup SU(3)c of QCD.

In the most minimal scenario, this breaking can be described by a non-linear sigma model

L = −1

4
G1µνG

µν
1 −

1

4
G2µνG

µν
2 +

f 2

4
TrDµΣDµΣ† , Σ = exp

(
2iπata

f

)
, a = 1, ..., 8.

(3.21)

Here πa represent the Goldstone bosons which form the longitudinal degrees of freedom

of the colorons, giving them mass, ta are the Gell-Mann matrices, and f is the symmetry

breaking scale. The nonlinear sigma fields transform in the bifundamental representation

of SU(3)c1 × SU(3)c2:

Σ→ ULΣU †R , UL = exp

(
iπaαaL
f

)
, UR = exp

(
iπaαaR
f

)
. (3.22)

The physical fields are obtained by rotating the gauge fields G1 and G2 to the mass eigen-

state basis (
Ga

1µ

Ga
2µ

)
=

(
cos θc − sin θc

sin θc cos θc

)(
Ga
µ

Ca
µ

)
, (3.23)

where the mixing angle θc is defined by

sin θc =
gs1√

g2
s1 + g2

s2

. (3.24)

The case of an axigluon corresponds to maximal mixing θ = π/4, i.e. g2
s1 = g2

s2 = g2
s/2.

Taking the leading-order interference with the SM amplitude for qq̄ → tt̄, in the limit

s�M2
A, we find that the axigluon induces the dimension-six operators

c1
u

Λ2
=

g2
s

M2
A

,
c1
d

Λ2
=

5g2
s

4M2
A

,
c2
u

Λ2
=
c2
d

Λ2
=

2g2
s

M2
A

. (3.25)

Substituting the marginalised constraints on the 4-quark operators, we find this translates

into a lower bound on an axigluon mass. MA & 1.4 TeV at the 95% confidence level.

Since this mass range coincides with the overflow bin of figure 3.6, this bound creates

some tension with the validity of the EFT approach in the presence of resonances in the

tt̄ spectrum (for a general discussion see Ref. [320, 337, 338]); at this stage in the LHC

programme indirect searches are not sensitive enough to compete with dedicated searches.

s-channel W ′:

Turning our attention to single top production, we consider the example of the operator

O(3)
qq being generated by a heavy charged vector resonance (W ′) which interferes with the
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SM amplitude for s-channel single top production: ud̄ → W → tb̄. The most general

Lagrangian for such a particle (allowing for left and right chiral couplings) is (see e.g.

Ref. [339]):

L =
1

2
√

2
VijgW ′ q̄iγµ(fRij (1 + γ5) + fLij(1− γ5))W µqj + h.c. (3.26)

We take the generic coupling gW ′ = gSM . Since we are considering the interference term

only, which must have the same (V −A) structure as the SM, we can set fR = 0. Consid-

ering the tree-level interference term for between the diagrams for ud̄→ W ′,W ′ → tb̄, and

taking the limit s � M ′2
W (we also work in the narrow-width approximation ΓW ,ΓW ′ �

MW ,MW ′), we find
c3,1133
qq

Λ2
=

g2

4M2
W ′
, (3.27)

which, using our global constraint on Ot, translates into a bound MW ′ & 1.2 TeV.

These bounds are consistent with, but much weaker than, constraints from direct

searches for dijet resonances from ATLAS [340, 341] and CMS [342], which report lower

bounds of {MA,MW ′} > {2.72, 3.32} TeV and {MA,MW ′} > {2.2, 3.6} TeV respectively.

It is unsurprising that these dedicated analyses obtain stronger limits, given the generality

of this fit. Again this energy range is resolved by the fit thus in principle invalidating

the EFT approach to obtain Eq. (3.27). Nonetheless, these bounds provide an interesting

comparison of our numerical results, whilst emphasising that for model-specific examples,

direct searches for high-mass resonances provide stronger limits than general global fits.

3.6 Summary

In this chapter, we performed a global fit of top quark effective field theory to experimen-

tal data, including all constrainable operators at dimension six. For the operators, we use

the ‘Warsaw basis’ of Ref. [199], which has also been widely used in the context of Higgs

and precision electroweak physics. We use data from the Tevatron and LHC experiments,

including LHC Run II data, up to a centre of mass energy of 13 TeV. Furthermore, we

include fully inclusive cross-section measurements, as well as kinematic distributions in-

volving both the production and decay of the top quark. Counting each bin independently,

the total number of observables entering the fit is 234, with a total of 12 contributing oper-

ators. Constraining the coefficients of these operators is then a formidable computational

task. To this end we use the parametrisation methods in the Professor framework, first

developed in the context of Monte Carlo generator tuning [307], and discussed here in

Section 3.3.

We perform a χ2 fit of theory to data, including appropriate correlation matrices where

these have been provided by the experiments. We obtain bounds on the Wilson coeffi-
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Figure 3.18: 95% confidence intervals for the dimension-six operators that we consider

here, with all remaining operators set to zero (red) and marginalised over (blue). In cases

where there are constraints on the same operator from different classes of measurement,

the strongest limits are shown here. The lack of marginalised constraints for the final three

operators is discussed in Section 3.4.3.

cients of various operators contributing to top quark production and decay, summarised

in Fig. 3.18, in two cases: (i) when all other coefficients are set to zero; (ii) when all other

operators coefficients are marginalised over. The numerical values of these constraints are

also shown in table 3.2.

The strongest constraints are on operators involving the gluon, as expected given the

dominance of gluon fusion in top pair production at the LHC (for which there is more pre-

cise data). Four fermion operators are constrained well in general, with weaker constraints

coming from processes whose experimental uncertainties remain statistically dominated

(e.g. tt̄V production). We have quantified the interplay between the Tevatron and LHC

datasets, as well as that between different measurement types (e.g. top pair, single top).

The results are all in agreement with the SM only hypothesis, with no tensions beyond

the 95% confidence level, which is perhaps to be expected given the lack of reported

deviations in previous studies. However, the fact that this agreement is obtained, in a
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Coefficient Individual constraint Marginalised constraint

cGv
2/Λ2 (—0.018, 0.027) (—0.097, 0.085)

c33
uGv

2/Λ2 (—0.018, 0.039) (—0.079, 0.073)

c1
uv

2/Λ2 (—0.103, 0.018) (—0.236, 0.188)

c2
uv

2/Λ2 (—0.175, 0.036) (—0.424, 0.272)

c1
dv

2/Λ2 (—0.067, 0.121) (—0.139, 0.151)

c2
dv

2/Λ2 (—0.109, 0.085) (—0.508, 0.533)

c33
uWv

2/Λ2 (—0.151, 0.151) (—0.242, 0.206)

ctv
2/Λ2 (—0.024, 0.036) (—0.036, 0.073)

c
(3)
ϕq v2/Λ2 (—0.157, 0.091) (—0.254, 0.121)

c33
uBv

2/Λ2 (—0.430, 0.284) (—, —)

cϕuv
2/Λ2 (—0.593, 0.496) (—, —)

c
(1)
ϕq v2/Λ2 (—0.188, 0.188) (—, —)

Table 3.2: Numerical values of the individual and marginalised 95% confidence intervals

on the operators presented here.

wide global fit, is itself testament to the consistency of different top quark measurements,

with no obvious tension between overlapping datasets. New data from LHC Run II is

continuously appearing, and can be implemented in our fit framework in a systematic way.

Still, there are several potential refinements of our analysis that can be made in order to

improve the numerical constraints presented here, that go beyond simply replacing 8 TeV

measurements with 13 TeV ones. A discussion of these issues is the subject of the next

chapter.
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4 Future prospects for top quark EFT

4.1 Introduction

In chapter 3 we performed a comprehensive global fit of the D = 6 operators that can

influence top quark observables at hadron colliders to all the published top measurements

from the Tevatron and Run I of the LHC. These constituted (predominantly) top pair pro-

duction in various decay channels, as well as single top, associated vector boson production

and observables from top quark decay. Despite the impressive statistical sample that en-

tered the fit, the subsequent bounds on the studied Wilson coefficients are rather weak,

pointing to values of Λ of order O(. 1TeV), depending on the assumed size of the UV

couplings. While one can take care to ensure that all bounds are consistent within an EFT

formulation, for example by cutting out the high-mass ‘overflow’ bins in the differential

distributions used, for which there is no control over scales, this is still a disappointingly

low scale compared to the design mass reach of the LHC.

The wide allowed ranges for these operators stems not from a lack of sensitivity to

the operators, but from the large experimental systematics and theory uncertainty bands

from varying the scales and PDFs, and the more general problem of searching for precision

deviations at a hadron collider, rather than ‘bump hunts’. Still, given that we are at a

very early stage of the full LHC programme, it is well-motivated to ask what improvements

can be made over its lifetime as theory descriptions are improved and experimental error

bars are shrank. We saw that, for the case of tt̄ production, vast improvement could be

achieved by adding differential distributions as well as total rates. Typically, however, the

measurements used in the fit were based on standard top reconstruction techniques, which

while providing good coverage of the low pT threshold region, suffer from large statistical

and systematic uncertainties in the high pT tails, precisely the region where we want to be

most sensitive to the effects of the operators.

Moreover, the distributions used were typically unfolded to parton level; that is, the

final-state objects were corrected for detector effects and the actual measured cross-section

in a fiducial volume of the detector extrapolated to the full phase-space, without cuts.

This substantially eases the workflow of our fit, since the data can be compared directly

to parton-level predictions without the need for the full parton shower, hadronisation

and detector simulation chain to be implemented at each point in the parameter space.

However, the extrapolation, which makes use of comparing to Monte Carlo simulations,

necessarily biases the unfolded distributions towards SM-like shapes. It also introduces

additional correlations between neighbouring bins which can broaden the χ2∗.

Both of these problems can be attacked by employing ‘boosted’ top reconstruction

∗Experimental resolved measurements are now provided at hadron level as well.
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techniques. Rather than the standard ‘resolved’ reconstruction techniques used in the

analyses of chapter 3, which require the decay products from the top to be relatively well-

separated in the detector, these are optimised for events in which the top is produced at

very large pT so that its decay products are collimated, and can be captured in a single

large radius fat jet, in contrast to the typical one-to-one parton-jet matching of a resolved

event reconstruction. This has the potential to dramatically increase our sensitivity to the

high-pT region. In addition, boosted reconstruction necessitates a hadron level description,

so the model-dependence of the constraints induced by the unfolding procedure can also

be mitigated. It is instructive to quantify how much they can improve the limits from the

Run I fit. This is the subject of the first part of this chapter.

In the second part of this chapter, we move away from hadron colliders and study the

role that future lepton colliders can play in this endeavour, focusing on the two most mature

proposed colliders: the International Linear Collider (ILC) and Compact Linear Collider

(CLIC). While in general lepton collider measurements will be sensitive to a different set

of operators, there is overlap with LHC measurements, so that the sensitivities can be

directly compared.

This chapter is structured as follows: In section 4.2, we discuss the improvements on

the tt̄ constraints that can be made by employing boosted jet substructure techniques. We

analyse the importance of improving experimental systematics as well as collecting larger

statistics, and the gain that can be made when theory uncertainties are improved beyond

their present values. We also study the implications of our constraints for the reach of the

LHC for generic (perturbative) UV completions. In section 4.3 we discuss the potential for

improving the bounds on the electroweak operators in the top quark sector of the SMEFT,

which can be accessed at hadron colliders through the process pp→ tt̄Z. In section 4.4 we

switch to lepton colliders, and compare the bounds on the operators of section 4.3 with

the bounds that can be achieved with the forecasted capabilities of the ILC and CLIC

colliders, before summarising in section 4.6.

4.2 Improving the fit with boosted reconstruction

Top pair production is (at leading order in αs) a 2→ 2 process, so the relevant observables

which span the partonic phase space are the momentum transfer t̂ and the partonic centre-

of-mass energy ŝ. All other observables are functions of these parameters, of which the top

quark transverse momentum is the most crucial in determining the quality and efficiency of

the boosted tagging approach which we will employ here [343–349]. As discussed in chapters

2 and 3, at leading order in the Standard Model EFT, the operators that contribute to

top pair production are: the three-gluon vertex operator OG, the top chromomagnetic

dipole moment operator OuG, as well as six four-quark operators O4q, which contribute
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Figure 4.1: Transverse momentum distributions for the reconstructed hadronic top quark

candidate. The bars represent 30 fb−1 of pseudodata with
√
s = 13 TeV constructed with the

SM-only hypothesis, while the shaded curves include the effects of four-quark operators with

Wilson coefficients ci = 10 TeV −2 for illustration. Details of the top quark reconstruction

are described in the text.

at interference level through four linear combinations O1,2
u,d. To keep this chapter self-

contained, these operators are again displayed in Eq. (4.1).

Ltt̄ ⊃
cuG
Λ2

(Q̄σµνTAu)ϕ̃GA
µν +

cG
Λ2
fABCG

Aν
µ GBλ

ν GCµ
λ +

cϕG
Λ2

(ϕ†ϕ)GA
µνG

Aµν

+
c1
qq

Λ2
(Q̄γµQ)(Q̄γµQ) +

c3
qq

Λ2
(Q̄γµτ

IQ)(Q̄γµτ IQ) +
cuu
Λ2

(ūγµu)(ūγµu)

+
c8
qu

Λ2
(Q̄γµT

AQ)(ūγµTAu) +
c8
qd

Λ2
(Q̄γµT

AQ)(d̄γµTAd) +
c8
ud

Λ2
(ūγµT

Au)(d̄γµTAd) ,

(4.1)

and the four linear combinations of operators are

O1
u = O1,1331

qq +O1331
uu +O3,1331

qq

O2
u = O8,1133

qu +O8,3311
qu

O1
d = O3,1133

qq + 1
4
O8,3311
ud

O2
d = O8,1133

qu +O8,3311
qd .

(4.2)

To emphasise that the effects of these operators are most pronounced at high pT , in Fig. 4.1
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we plot the pT distribution of the hadronic top quark candidate (reconstructed as detailed

below) in the Standard Model and for the four quark operator coefficients switched on to

a (huge) value of 10 TeV−2, showing the enhancement in the tail.

4.2.1 Analysis details

The events generated from MadEvent which sample the Wilson coefficient space are

subsequently showered by Herwig++ [350,351], which takes into account initial and final

state radiation showering, as well as hadronisation and the underlying event. At this stage,

all our predictions are at leading order in the Standard Model EFT. While considerable

progress has recently been made in extending the effective Standard Model description

of top quark physics to next-to-leading order [352, 353], the full description of top quark

pair production is incomplete at this order. As in chapter 3, we take into account higher-

order QCD corrections by re-weighting the Standard Model piece of our distributions to

the NLO QCD prediction with K-factors, as obtained from Mcfm [107] and cross-checked

with Mc@Nlo [101]. Recently, full NNLO results for top quark pair production have

become available in [104, 110, 354], we will comment on their potential for improving our

results in Sec. 4.2.2.

We estimate scale uncertainties in the usual way: For the central value of the distri-

butions we choose renormalisation and factorisation scales equal to the top quark mass

µR = µF = mt. Then we vary the scales independently over the range mt/2 < µR,F < 2mt.

PDF uncertainties are estimated by generating theory observables with the Ct14 [92],

Mmht14 [93] and Nnpdf3.0 [94] as per the recommendations of the Pdf4Lhc working

group for LHC run 2 [308], and we take the full scale+PDF envelope as our theory band.

This defines an uncertainty on the differential K-factor which we propagate into each ob-

servable. We treat theory uncertainties as uncorrelated with experimental systematics and

take them to be fixed as a function of luminosity unless stated otherwise.

Our study focuses on tt̄ production at the LHC with
√
s = 13 TeV. For simplicity

we focus on the semileptonic decay channel pp → tt̄ → qq̄′blνlb, where l ∈ {e, µ} and

q ∈ {u, d, s}, which strikes the best balance between the large rate but involved jet combi-

natorics of the fully hadronic channel and the clean signal but low rate and two-neutrino

ambiguity of the dilepton case. The sting in the tail for analyses selecting high pT objects

is, of course, low rates. In tt̄ production, for instance, only 15% of the cross-section comes

from the region pT & 200 GeV. We thus aim to quantify at what stage of the LHC pro-

gramme, if any, the increased sensitivity in the boosted selection can overcome the poorer

statistics relative to the resolved selection. We thus construct an analysis which targets

both regions simultaneously. Our analysis setup, as implemented in Rivet [355], is as

follows (also shown in Tab. 4.1).
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Leptons pT > 30 GeV

|η| < 4.2

Missing energy Emiss
T > 30 GeV

Small jets anti-kT R = 0.4

pT > 30 GeV , |η| < 2

Fat jets anti-kT R = 1.2

pT > 200 GeV , |η| < 2

Resolved ≥ 4 small jets w/≥ 2 b-tags

Boosted ≥ 1 fat jet, ≥ 1 small jet w/ b-tag

Table 4.1: Summary of the physics object definitions and event selection criteria in our

hadron-level analysis.

Firstly, we require a single charged lepton with pT > 30 GeV†, and find the Emiss
T

vector as the negative vector sum of the reconstructed momenta, which we require to have

a magnitude > 30 GeV. The leptonic W -boson is reconstructed from these by assuming it

was produced on-shell. Final state hadrons‡ are then clustered into jets using the anti-kT

algorithm [356] implemented in FastJet [357] in two separate groups with R = (0.4, 1.2)

requiring pT > (30, 200) GeV respectively, and jets which overlap with the charged lepton

within ∆R = 0.3 are removed. The constituents of the R = 1.2 fat jets are reclustered with

the Cambridge-Aachen algorithm [358,359], with all fat jets required to be within |η| < 2,

and the R = 0.4 small jets are b-tagged within the same η range with an efficiency of 70%

and fake rate of 1% [360].

If at least one fat jet and one b-tagged small jet which does not overlap with the leading

fat jet exists, we perform a boosted top-tag of the leading fat jet using the HEPTopTag-

ger [343,344,361] algorithm.

The HEPTopTagger procedure is a multistep algorithm optimised to isolate the

characteristic three-prong pattern of a hadronically decaying top quark (t→ Wb→ qq̄′b).

It can be used efficiently for top quark pT as low as 200 GeV, provided the radius of the

large-R jet is large enough to capture all the decay products. Beginning with a Cambridge-

Aachen jet J of radius Rfat we undo the last step of the clustering, giving two subjets j1

and j2 (defined by mj1 > mj2). A mass-drop criterion is applied on the heavier subjet:

mj1/mJ < µfrac, (4.3)

where µfrac is a tuneable parameter. If this criterion is not met the jet is discarded. If

it is met, the criterion is applied iteratively on both subjets until all subjets either have

†We do not consider τ decays here to avoid the more involved reconstruction.
‡We do not consider a detector simulation, and B-hadrons are kept stable.
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masses less than some input parameter mcut or the jet constituents (tracks, calorimeter

deposits) are reached, in which case further unclustering is impossible. If at the end of this

unclustering stage, there are less than three subjets, the jet J is discarded. Among the

subjets, all possible combinations of 3 subjets are formed (these are called triplets). The

constituents of the subjets in each triplet are reclustered using the C/A algorithm with a

size parameter Rfilt = min[0.3,∆Rj1,j2/2], where ∆Rj1,j2 is the smallest separation between

any two subjets in the triplet. Any constituents of the original jet J that are left outside

the reclustered triplets are discarded. This procedure is generically referred to as filtering.

All triplets with mass outside the range 140 GeV ≤ mj ≤ 200 GeV are rejected. If more

than one is inside the range, the one closest to the top quark mass is selected, this triplet

(with 3 or more subjets) is referred to as the top quark candidate. The Nsubjet highest-pT

subjets of this triplet are chosen. From these subjets, exactly 3 jets are constructed using

the C/A algorithm with distance parameter Rjet on their constituents. Finally, invariant

mass and geometrical requirements on these 3 subjets are applied, to isolate the presence

of a W boson decay, namely:

R− <
m23

m123

< R+ and 0.2 < arctan
m13

m12

< 1.3

R2
−

(
1 +

(
m13

m12

)2
)
< 1−

(
m23

m123

)2

< R2
+

(
1 +

(
m13

m12

)2
)

and
m23

m123

> 0.35

R2
−

(
1 +

(
m12

m13

)2
)
< 1−

(
m23

m123

)2

< R2
+

(
1 +

(
m12

m13

)2
)

and
m23

m123

> 0.35,

(4.4)

where R± = (1± fW )(mW/mt) and fW is a tuneable parameter of the algorithm between

0 and 1. If at least one of the criteria in Eq. (4.4) are met, the top quark candidate is

considered ‘tagged’. The HEPTopTagger algorithm can achieve stable efficiencies of around

30% with background contamination of 1% for top candidate pT ranges from 200 GeV to

over 1 TeV (this is the pT range we consider). To summarise then, the tuneable parameters

of the HepTopTagger algorithm and their optimal values for our analysis are:

{µfrac,mcut, Nsubjet, Rjet, fW} = {0.8, 30 GeV, 5, 0.3, 0.15}. (4.5)

The leptonic top candidate is reconstructed using the leading, non-overlapping (we require

∆R(l, j) > 0.4 for all jets) b-tagged small jet and the reconstructed leptonic W . If no

fat jet fulfilling all the criteria exists, we instead require at least 2 b-tagged small jets

and 2 light small jets. If these exist we perform a resolved analysis by reconstructing

the hadronic W -boson by finding the light small jet pair that best reconstructs the W

mass, and reconstruct the top candidates by similarly finding the pairs of reconstructed

W -bosons and b-tagged small jets that best reconstruct the top mass.
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Figure 4.2: Individual 95% bounds on the operators considered here, from the boosted

analysis and the resolved fat jet analysis, and the combined constraint from both, assuming

20% systematics and 30 fb−1 of data. We also show existing constraints from unfolded 8

TeV pT distributions published in [292] and [362], showing the sizeable improvement even

for a modest luminosity gain.

Finally, regardless of the approach used, we require both top candidates to have |mcand−
mtop| < 40 GeV. If this requirement is fulfilled the event passes the analysis.

4.2.2 Results

Impact of experimental precision

Using a sample size of 30 fb−1 with a flat 20% systematic uncertainty (motivated by typical

estimates from existing experimental analyses by ATLAS [363] and CMS [364]) on both

selections as a first benchmark, and the pT distribution of Fig. 4.1, the 1-dimensional 95%

confidence intervals on the operators considered here are presented in Fig. 4.2. All the

bounds presented here are ‘one-at-a-time’, i.e. we do not marginalise over the full operator

set. Our purpose here is to highlight the relative contributions to the allowed confidence

intervals here, rather than to present a global operator analysis.

As a general rule, the increased sensitivity to the Wilson coefficients offered by the

boosted selection is overpowered by the large experimental systematic uncertainties in this

region, and the combined limits are dominated by the resolved top quarks. The exception

to this rule is the coefficient cG from the operator OG = fABCG
µ,A
ν Gν,B

λ Gλ,C
µ . Expanding

out the field strength tensors leads to vertices with up to six powers of momentum in the
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Figure 4.3: Fractional improvement on the 95% confidence intervals for the operators

considered here, with various combinations of luminosity and experimental systematics

considered. We take the width of the 95% confidence limit obtained from 20 % system-

atic uncertainty and 30 fb−1 of data as a baseline (green bar), and normalise to this, i.e.

we express constraints as a fractional improvement on this benchmark. The purple and blue

bars represent respectively, 300 fb−1 and 3 ab−1 of data, also at 20% systematics, while the

yellow, orange and red are the analogous data sample sizes for 10% systematics.

numerator, more than enough to overcome the näıve 1/ŝ2 unitarity suppression. Large

momentum transfer final states thus give stronger bounds on this coefficient, even with

comparatively fewer events.

With these constraints as a baseline, it is then natural to ask by how much they can be

improved upon when refinements to experimental precision are made. The constraints are

presented in Fig. 4.3 for different combinations of systematic and statistical uncertainties.

We take the width of the 95% confidence interval in Fig. 4.2 as our normalisation (the

green bars), and express the fractional improvements on the limits that can be achieved

relative to this baseline, for each operator. The right bars (green, purple, blue) represent

20% systematic uncertainties with, respectively 30, 300 and 3 ab−1 of data. The left

bars (yellow, orange, red) represent the same respective data sample sizes, but with 10%

systematic uncertainties.

Beginning with the resolved selection, we find that the limits on the coefficient cG can

be improved by 40% by going from 30 fb−1 to 300 fb−1, and by a further 20% when the

full LHC projected data sample is collected. Systematic uncertainties have a more modest

effect on this operator: at 3 ab−1 the limit on cG is only marginally improved by a 10%

reduction in systematic uncertainty. This merely reflects that cG mostly impacts the high

pT tail, so it can only be improved upon in the threshold region by collecting enough
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Figure 4.4: Left: 68%, 95% and 99% confidence intervals for cG and c33
uG, the lines are

obtained using experimental (20% systematics and 30 fb−1 of data) uncertainties along with

theoretical uncertainties, the filled contours using only experimental uncertainties. Right:

the same plot, but using 10% systematics and 3 ab−1 of data, showing the much stronger

impact of theory uncertainties in this region.

data to overcome the lack of sensitivity. 8 TeV measurements are already constraining the

relevant phase space region efficiently and the expected improvement at 13 TeV is only

mild (see below).

For the chromomagnetic dipole operator O33
uG, improving the experimental systematics

plays much more of a role. A 10% improvement in systematics, coupled with an increase

in statistics from 30 fb−1 to 300 fb−1 leads to stronger limits that maintaining current

systematics and collecting a full 3 ab−1 of data. Similar conclusions apply for the four-

quark operators, to varying degrees, i.e. reducing systematic uncertainties can provide

comparable improvements to collecting much larger data samples.

For the boosted selection, the situation is quite different. For all the operators we

consider, improving systematic uncertainties by 10% has virtually no effect on the im-

provement in the limits. This simply indicates that statistical uncertainties dominate the

boosted region at 30 fb−1. For cG, at 300 fb−1 some improvement can be made if systemat-

ics are reduced, however we then see that systematic uncertainties saturate the sensitivity

to cG, i.e. there is no improvement to be made by collecting more data. For c33
uG, a modest

improvement can also be made both by reducing systematics by 10% and by increasing the

dataset to 300 fb−1. However, going beyond this, the improvement is minute. The four-

quark operators again follow this trend, although c2
u shows much more of an improvement

when going from 300 fb−1 to 3 ab−1.
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The role of theory uncertainties

The other key factor in the strength of our constraints is the uncertainties that arise

from theoretical modelling. The scale and PDF variation procedure typically leads to

uncertainties in the 10-15% range. Fully differential K-factors for top pair production at

NNLO QCD (i.e. to order O(α4
s)) have become available, which have substantially reduced

the scale uncertainties. The numbers quoted in Refs. [109, 110] are for the Tevatron and

8 TeV LHC, and available only for the low to intermediate ptT range (ptT < 400 GeV).

Updated results for 13 TeV have become available only recently [365]. It is worthwhile to

ask what impact such an improvement could have on the constraints.

We put this question on a firm footing by showing in Fig. 4.4 the 2D exclusion contours

for the coefficients cG and c33
uG, as obtained from combining the boosted and resolved limits,

at fixed luminosity and experimental systematics, first using our NLO theory uncertainty,

and also using no theory uncertainty at all. For 30 fb−1 the improvement is limited,

indicating that at this stage in the LHC programme the main goal should be to first

improve experimental reconstruction of the top quark pair final state. However, at 3 ab−1

the improvement is substantial, indicating that it will also become necessary to improve

the theoretical modelling of this process, if the LHC is to augment its kinematic reach for

non-resonant new physics.

In addition to SM theoretical uncertainties, there are uncertainties relating to missing

higher-order terms in the EFT expansion. Uncertainties due to to loop corrections and

renormalisation-group flow of the operators O(6)
i are important for measurements at LEP-

level precision [237,366] where electroweak effects are also resolved. However, at the LHC

we find them to be numerically insignificant compared to the sources of uncertainty that

we study in detail here. In addition, there is also the possibility of large effects due to

D = 8 operators, particularly owing to additional derivatives in the EFT expansion. Since

the interference effects of omitted D = 8 operators are formally of the same order as

the retained quadratic terms in the D = 6 operators, we emphasise that the numerical

constraints presented here should be treated with caution. The only way to be certain

that the omission of these terms is justified is to compute the effects of the interference of

the relevant D = 8 operators to a given process and demonstrate them to be small. This

has been shown to be true for the gg → tt̄ subprocess [215,216]. However, due to the large

number of operators present there, this has not been studied for the qq̄ → tt̄ process. We

leave a full computation of these effects as a future direction of study.

4.2.3 Interpreting the results

The whole purpose of the EFT approach is to serve as a bridge between the Standard

Model and heavy degrees of freedom residing at some unknown mass scale M∗. Connect-
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Figure 4.5: Areas in the new coupling-BSM mass scale plane (see also [320]), resulting

from our fit coverage. Shaded areas are constrained in perturbative UV completions at a

scale M∗, subject to the boundary condition Eq. (4.6). The shaded grey area is probed by

the pseudodata of our fit. We do not consider unitarity bounds in this work.

ing the EFT to this scale, however, necessarily involves making assumptions about the

couplings of this new physics. We can make statements about the relation between the

constraints presented here and such a scale, however, by making general assumptions, such

as perturbativity of the underlying new physics.

Consider, for example, the simple case where the perturbative UV physics is charac-

terised entirely by a single coupling g∗ and a unique mass scale M∗. Such a scenario could

arise from integrating out a heavy, narrow resonance. In this case we have the simple

tree-level matching condition
ci
Λ2

=
g2
∗

M2
∗
. (4.6)

Constraints on ci then map onto allowed regions in the g∗-M∗ plane. In Fig. 4.5 we sketch

these regions for illustrative values of ci. In order for the EFT description of a given mass

region to be valid, we must not resolve it our measurement. Therefore we impose a hard

cut at
√
s = 2 TeV, obtained from the maximum tt̄ invariant mass probed in our SM

pseudodata. We also impose a generic perturbativity restriction g∗ . 4π to ensure that

our EFT expansion is well-behaved and higher-dimensional operators do not affect the

power counting.

We see that for large Wilson coefficients c̄i & 0.5 only a very small window of parameter

space may be constrained, but the weak limits push the underlying coupling to such large

values that loop corrections are likely to invalidate the simple relation of Eq. (4.6), making

it hard to trust these limits. However, at 3 ab−1, the projected constraints are typically

c̄i . 0.01, therefore, even for moderate values of the coupling g∗, our constraints are able
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to indirectly probe mass scales much higher than the kinematic reach of the LHC.

4.2.4 Discussion

The special role of the top quark in BSM scenarios highlights the importance of searches

for new interactions in the top sector. Taking the lack of evidence of resonant new physics

in the top sector at face value [367–369], we can assume that new interactions are sup-

pressed by either weak couplings or large new physics scales. In both cases we can analyse

the presence of new physics using effective field theory techniques. A crucial question that

remains after the results from the LHC run 1 is in how far a global fit from direct search

results will improve with higher statistics and larger kinematic coverage. We address this

question focusing on the most abundant top physics-related channel pp→ tt̄, which probes

a relevant subset of top quark effective interactions. In particular, we focus on complemen-

tary techniques of fully-resolved vs. boosted techniques using jet-substructure technology,

which are affected by different experimental systematic uncertainties. Sensitivity to new

physics is a trade off between small statistical uncertainty and systematic control for low pT

final states at small new physics-induced deviations from the SM expectation (tackled in

fully-resolved analyses) and the qualitatively opposite situation at large pT . For the typi-

cal parameter choices where top-tagging becomes relevant and including the corresponding

efficiencies, we can draw the following conclusions:

• Boosted top kinematics provide a sensitive probe of new interactions in tt̄ production

mediated by modified trilinear gluon couplings. In particular, this observation shows

how differential distributions help in breaking degenerate directions in a global fit by

capturing sensitivity in phenomenologically complementary phase space regions.

• The sensitivity to all other operators detailed in Eq. (4.1) is quantitatively identical

for boosted and fully-resolved analyses for our choice of pboost
T ≥ 200 GeV. Increasing

the boosted selection to higher pT (where the top tagging will become more efficient)

will quickly move sensitivity to new physics effects to the fully resolved part of the

selection. The boosted selection is saturated by large statistical uncertainties for the

for the typical run 2 luminosity expectation. These render systematic improvements

of the boosted selection less important in comparison to the fully resolved selection,

which provides an avenue to set most stringent constraint from improved experi-

mental systematics. Similar observations have been made for boosted Higgs final

states [370] and are supported by the fact that the overflow bins in run 1 analyses

provide little statistical pull [2].

• Theoretical uncertainties that are inherent to our approach are not the limiting fac-

tors of the described analysis in the forseeable future, but will become relevant when
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statistical uncertainties become negligible at very large integrated luminosity.

Boosted analyses are highly efficient tools in searches for resonant new physics [367–369,

371]. Our results show that similar conclusions do not hold for non-resonant new physics

effects when the degrees of freedom in question do not fall inside the kinematic coverage

of the boosted selection anymore. Under these circumstances, medium pT range configura-

tions which maximise new physics deviation relative to statistical and experimental as well

as theoretical uncertainty are the driving force in setting limits on operators whose effects

are dominated by interference with the SM amplitude in the top sector. This also implies

that giving up the boosted analysis in favor of a fully resolved analysis extending beyond

ptT ≥ 200 GeV will not improve our results significantly. The relevant phase space region

can be accessed with fully resolved techniques, with a large potential for improvement from

the experimental systematics point of view.

4.3 Associated Z production projections

We have seen that there are good improvement prospects for the tt̄ D = 6 operators. Of

the constraints listed in chapter 3, however, by far the weakest are those extracted from

top quark neutral couplings in tt̄Z and tt̄γ production. This is because these processes

have a much smaller rate, so at this stage of the LHC programme their measurements are

currently statistics dominated. It is also natural to then ask how they may be improved

over the lifetime of the LHC. This is the subject of this section.

4.3.1 Top electroweak couplings

In the SM, the electroweak tt̄Z coupling is given by the vector-axial-vector coupling

LttZ = et̄ [γµ(vt − γ5at)] tZµ (4.7)

where

vt =
T 3
t − 2Qt sin2 θW
2 sin θW cos θW

' 0.24,

at =
T 3
t

2 sin θW cos θW
' 0.60.

(4.8)

To capture effects beyond the SM in this Lagrangian there are two approaches: one can

write down anomalous couplings for the tt̄Z vertex, such that LttZ receives a term

∆LttZ = et̄

[
γµ(C1V + γ5C1A) +

iσµνqν
2MZ

(C2V + γ5C2A)

]
tZµ, (4.9)
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where q = pt − pt̄. While this has the advantage of elucidating the various spin structures

that can impact the tt̄Z vertex, it has the drawback that it does not allow for a simple

power counting of which anomalous couplings would have the strongest effect. For example,

the coefficient C2A is zero in the Standard Model, so that any corrections to it come solely

from new physics contributions, which should be smaller than couplings that have SM

interference.

To augment this description, one can instead supplement Eq. (4.7) with higher-dimensional

operators. At leading order in the SMEFT, the list of operators that generate modifications

to the tt̄Z vertex is, expressed in the basis and notation of Ref. [199]:

OuW = (Q̄σµνu)τ Iϕ̃W I
µν

OuB = (Q̄σµνu)ϕ̃Bµν

O(3)
ϕq = (ϕ†i

←→
DI
µϕ)(Q̄τ IγµQ)

O(1)
ϕq = (ϕ†i

←→
Dµϕ)(Q̄γµQ)

Oϕu = (ϕ†i
←→
Dµϕ)(ūγµu).

(4.10)

The dictionary between the D = 6 operators of Eq. (4.10) and the anomalous couplings of

Eq. (4.9) is

C1V =
v2

Λ2
<
[
c(3)
ϕq − c(1)

ϕq − cϕu
]33

C1A =
v2

Λ2
<
[
c(3)
ϕq − c(1)

ϕq + cϕu
]33

C2V =
√

2
v2

Λ2
< [cos θW cuW − sin θW cuB]33

C2A =
√

2
v2

Λ2
= [cos θW cuW + sin θW cuB]33 ,

(4.11)

where the superscript 33 denotes that we are considering the 3rd generation only in the

fermion bilinears of Eq. (4.10). Since c
(3)
ϕq and c

(1)
ϕq only appear with an overall opposite

sign, we can only constrain the operator O(3)
ϕq − O(1)

ϕq ≡ Oϕq from tt̄Z couplings. We will

discuss a method for bounding the two operators independently later in the chapter.

C2A is generated by a CP-odd combination of operators, therefore it does not interfere

with SM amplitudes and so its effects are expected to be smaller. Since in this study we are

more interested in the absolute mass scales of these operators, we set all Wilson coefficients

to be real, however we note that CP-sensitive observables such as angular distributions can

also distinguish the CP character of the Wilson coefficients. We also assume that the new

physics solely impacts the tt̄Z vertex, so we do not consider operators which modify the

Zeē vertex, nor four-fermion operators which can contribute to the qq̄ → tt̄ or e+e− → tt̄

processes (see e.g. Refs. [2, 372] for constraints on the former).
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Figure 4.6: Ratio of the full SM pp→ tt̄Z cross-section with the operators of Eq. (4.10)

switched on individually to the NLO Standard Model estimate. The dashed lines show the

contribution from the interference term, and the solid lines show the full dependence.

4.3.2 Total rates

To appreciate the impact of the operators of Eq. (4.10), in Fig. 4.6 we plot the ratio of

the full tt̄Z cross-section with each operator switched on individually, to the NLO SM

prediction, taken from Ref. [373]. For ease of interpretation, we split up the cross-section

into the contribution from the interference term and the quadratic term. We see firstly

that the operators OuW and OuB have the strongest impact on the total cross-section, but

this comes purely from the squared term (this was also noted in Ref. [374]). The remaining

operators have a milder effect on the cross-section, but their interference term dominates.

We also see that the operators O(3)
ϕq and O(1)

ϕq contribute the same dependence but with an

opposite sign, as discussed in Sec. 4.3.1, therefore we can only bound the linear combination

Oϕq.
The LHC bounds on the coefficients of these operators from 8 TeV tt̄Z production cross-

sections were presented in chapter 3. The current constraints are weak. Since then, ATLAS

and CMS have presented measurements using 13 TeV collision data, with measured values

0.9 ± 0.3 pb [375] and 0.7 ± 0.21 pb [376], respectively. The constraints on the operators

using these two measurements are shown in Fig. 4.7, where the coefficients are normalised

to the ‘bar’ notation c̄i = civ
2/Λ2, and the operators are switched on individually.

We see that the current constraints are still quite weak, mainly due to the large (∼
30%) experimental uncertainties. These measurements are currently statistics dominated,

so it is instructive to ask what the expected improvement is over the lifetime of the LHC.

Using a constant systematic uncertainty of 10% based on the current estimate, we also

130



-1 -0.5 0 0.5 1
c̄i = civ

2/Λ2

current
300 fb−1

3 ab−1c̄33
uW

c̄33
uB

c̄ϕq

c̄ϕu
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Eq. (4.10) using the current 13 TeV measurements (red bars). Also shown are the projected

constraints using 300 fb−1 (blue) and 3 ab−1 (purple) of SM pseudodata. For the latter two

cases, the inner bars show the improvement when theory uncertainties are reduced to 1%.

plot in Fig. 4.7 the constraints using 300 fb−1 and 3 ab−1 of SM pseudodata. We see that

there will be an improvement by factors of 1.5 to 2 by the end of Run III, but after this

the measurement is saturated by systematics.

To highlight the benefits of improving the theory description in tandem, we also show

in Fig. 4.7 the projected constraints if theory uncertainties are improved to 1% from the

current O(10%) precision, which does not seem unreasonable over the timescales we are

considering. We see again that there will be no subsequent improvement after 300 fb−1

unless experimental systematics are reduced.

4.3.3 Impact of differential distributions

Finally, it should be noted that as more data becomes available, it may be possible to

measure tt̄Z cross-sections differentially in final state quantities. Since cuts on the final

state phase space can enhance sensitivity to the region where näıve power counting says

D = 6 operators become more important, differential distributions could substantially

improve the fit prospects, as has already been demonstrated for tt̄ production. [2, 3].

To illustrate this, in Fig. 4.8 we plot the distributions for the Z boson transverse

momentum and top pair transverse momentum, both for the SM only case and with each

operator switched on to a value of c̄i ' 0.3; approximately the maximum allowed by current

constraints in Fig. 4.7. We see that extra enhancement in the tail is visible for the field
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Figure 4.8: Kinematic distributions in pp → tt̄Z production at 13 TeV for the SM

prediction and for the operators of Eq. (4.10) switched on to their maximum value allowed

by current data. Left: the Z boson transverse momentum spectrum. Right: ptt̄T = ptT − pt̄T
spectrum. All distributions are normalised to the total cross-section. Shape differences can

be seen in the tails for the operators OuW and OuB, showing that differential distributions

provide complementary information to overall rates.

strength tensor operators OuW and OuB, due to the extra momentum dependence in the

numerator from the field strength tensor. For the ϕ-type operators, since the interference

is solely proportional to ϕ†ϕ→ v2/Λ2, there is no extra enhancement at high pT .

We do not estimate the improvement of the fit by taking these distributions into ac-

count, since this would require proper estimates of experimental systematics and tracking

the nontrivial correlations between the kinematic quantities in the massive 3-body final

state. Here, we merely comment that it may be an avenue worth pursuing as more data

becomes available.

4.4 Future collider prospects

We see that despite the impressive statistical sample of top quark data that enters these

fits, the subsequent direct bounds on the operator coefficients, and, by extension, the scale

of new physics that would generate those operators, are rather weak [2]. There are few top

quark measurements at the LHC that can be considered “precision observables” (helicity

fractions in top decays are an exception [145]). By dimensional analysis, the strength

of the interference of these operators with energy
√
s typically scales as s/Λ2, and the

areas of phase space that are most sensitive are plagued by correlated experimental and

theoretical systematics. Moreover, the associated weak limits translate into values of Λ
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that are probed by the high energy bins of the measurement, bringing into question the

validity of the truncated EFT description [377] and care needs to be taken when combining

measurements of different exclusive energy ranges of a binned distribution [320]. Inclusive

cross-sections, being typically dominated by the threshold region
√
s ∼ (2)mt, are under

more theoretical control, but bring far less sensitivity.

Lepton colliders are not vulnerable to either of these problems. Firstly, there is excellent

control over the hard scale of the interaction
√
s, so one can always ensure that the limits

on the D = 6 operators are consistent with a well-behaved EFT expansion.§ Secondly,

the theoretical uncertainties from Standard Model calculations are much smaller: there

are no PDFs, and the current state of the art precision for tt̄ production is N3LO QCD

at fixed-order [378], and NNLO+NNLL including threshold resummation, which bring SM

scale uncertainty variation bands to the percent level [379].

The physics case for a e+e− collider is by now well-established. The principal moti-

vation is to perform a detailed precision study of the couplings of the Higgs boson in the

much cleaner environment that a lepton collider affords, which will bring Higgs coupling

measurements to an accuracy that will not be challenged by the LHC, even after it collects

3 ab−1 of data [380]. The electroweak couplings of the top quark are also clearly within

the remit of such a collider. Currently, the only handle on top quark electroweak cou-

plings from the LHC is through the associated production pp→ tt̄V where V ∈ {Z,W, γ}.
Whilst measurements of these processes are now approaching the 5σ level, the pull that

they have on a global fit is small [2]. Measurements of electroweak single top production

bring stronger bounds, but are sensitive to a smaller subset of operators.

At a lepton collider, on the other hand, the process e+e− → Z∗/γ → tt̄ is extremely

sensitive to top electroweak couplings. While the overall rate is more modest than at the

LHC due to the parametric αEW/αs and s-channel suppression, the process is essentially

background-free, and would constitute the first true precision probe of the electroweak

sector of the top quark, and open up a new avenue for top quark couplings, complementary

to the well-studied top QCD interactions. Several studies of the prospects for improvement

of top measurements at future colliders have already been undertaken (see for example

Refs. [381–386]), in particular for the proposed International Linear Collider (ILC), but

none have explicitly quantified the gain in the constraints on the top electroweak sector of

the SMEFT, nor provided a comparative study of different collider options. The remainder

of this chapter provides such a study.

Going beyond the LHC, currently, the most mature proposal is for a linear e+e− collider

with a centre of mass energy ranging from 250 GeV to up to 1 TeV. There are several

§Consistently improving the perturbative precision within the dimension 6 framework, however, makes
the truncation of the perturbative series necessary as corrections to (D = 6)2 operators will typically
require unaccounted for D = 8 counterterms.
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Figure 4.9: Left: Ratio of the full SM e+e− to tt̄ cross-section at
√
s = 500 GeV with the

operators of Eq. (4.10) switched on individually to the NLO Standard Model estimate. The

dashed lines show the contribution from the interference term, and the solid lines show the

full dependence The operator colour-coding is the same as Fig. 4.6. Right: Likewise for

CLIC running at
√
s = 3 TeV.

scenarios for integrated luminosity and CM energy combinations. The most-studied is the

so-called H-20 option, which involves running at 500 GeV for 500 fb−1 of data, followed

by 200 fb−1 of data at the tt̄ threshold to perform detailed measurements of the top quark

mass, and 300 fb−1 of data at
√
s = 250 GeV to maximise the machine’s Higgs potential

with high precision. After a luminosity upgrade, a further 3.5 ab−1 is gathered at
√
s =

500 GeV, followed by another
√
s = 250 GeV run at 1.5 ab−1. Since we are most interested

in the ILC mass reach for new physics, in this study we focus on the 500 GeV ILC running.

An important parameter for lepton colliders is the energy spread of electron and

positron beams (see e.g. [387]). In order to estimate the effect on our results, we use

the results of [387] to calculate the expected change in the cross-section by including the

effects of initial state radiation, beam spread and beamstrahlung. We find that for the

typical beam profile, the associated uncertainty is not a limiting factor and we neglect

these effects in the following.

4.4.1 The tt̄ total cross-section

Top pair production has a more modest rate here than at a hadron collider. The state-of-

the-art Standard Model calculations for (unpolarised) e+e− → tt̄ production are at N3LO

QCD [378,379], and at NLO EW [388] (with partial NNLO results in Ref. [389]) and predict

a cross-section σ ' 0.57 pb. The conventional scale variation gives a QCD uncertainty at

the per-mille level. While this rate is more than a factor of a thousand smaller than at the
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Figure 4.10: Full dependence of the tt̄ forward-backward asymmetry of Eq. (4.12) on the

operators of Eq. (4.10) for left-handed polarised electrons (left) and right-handed polarised

electrons (right) at
√
s = 500 GeV, the operator colour coding is the same as Fig. 4.6.

We also show a 5% uncertainty band around the SM prediction, to estimate the expected

constraints.

13 TeV LHC, the process is essentially background free. Thus, after even 500 fb−1 of data

the statistical uncertainty will be approximately 0.2%, and so completely subdominant to

the systematics.

We can thus repeat the exercise of extracting the bounds on the coefficients of the

operators of Eq. (4.10) using SM pseudodata. As a guide for the expected numerical

constraints, we also plot the ratio of the total cross-section in the presence of the operators

to the SM prediction, this time using the total (unpolarised) cross-section at the 500 GeV

ILC. This is shown on the left of Fig. 4.9.

We see again that the operators OuW and OuB are the strongest, however, unlike the

case of tt̄Z production the interference term dominates at small ci/Λ
2. The result of this is

that there is a cancellation between the interference and quadratic terms at approximately

ci/Λ
2 ' −3 TeV−2, leading to a SM-like cross-section and a second, degenerate minimum

in the χ2. The constraints obtained from a one-at-a-time fit of these operators to the SM

pseudodata is shown in the red bars on the right of Fig. 4.11.

The operatorsOuW andOuB are very tightly constrained, due to their much stronger im-

pact on the cross-section stemming from the extra momentum dependence flowing through

the vertex. The ϕ-type operators are more weakly constrained, but on the whole the con-

straints are typically 100 times stronger than for the LHC tt̄Z production projections in

Sec. 4.3, which is unsurprising giving the difference in precision.

Individual constraints are less useful in practice, however. Firstly, in a plausible UV
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Figure 4.11: 95% confidence ranges for the operators we consider here, from the 500 GeV

ILC, assuming 1% theoretical and experimental uncertainties, by fitting to cross-sections,

asymmetries, and the combination, with each operator considered individually (left) or in

a 5D fit (right). To display both on the same plot, we scale the individual constraints up

by a factor of 10, so that the bottom axis is actually c̄i/10.

scenario that would generate these operators one would typically expect more than one to

be generated at once, so that one-at-a-time constraints cannot be straightforwardly linked

to a specific ‘top-down’ model. Secondly, there can in general be cancellations between

different operators for a given observable that can yield spurious local minima and disrupt

the fit. This would not be visible in the individual constraints, and so would obscure

degeneracies in the operator set that could be broken by considering different observables.

Therefore, we also consider constraints where we marginalise over the remaining three

coefficients in the fit, as also discussed in chapter 3. These are shown in the blue bars on

the right of Fig. 4.11.¶

We see that, with the exception of OuW and OuB, marginalising over the full operator

set wipes out the constraints. This is because even for large values of coefficients, the

pull that a particular operator has on the cross-section can easily be cancelled by another

operator. We can conclude that, despite the impressive precision that can be achieved in

extracting the cross-section, it has limited use in constraining new physics in a simultaneous

global fit of several operators. It is worthwhile to make use of other measurements.

¶Note, however, that a full marginalisation will be overly conservative when confronting a concrete UV
model.
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4.4.2 Polarised beams

One of the principal strengths of lepton colliders is that the polarisation of the incoming

beams can be finely controlled, so that the relative contributions between different sub-

processes to a given final state can be tuned. Moreover, because the dependence of top

observables on the operators of Eq. (4.10) depends strongly on the initial state polarisation,

varying the settings increases the number of independent measurements that can be used

to place bounds in a global fit.

To emphasise this point, we study the forward-backward asymmetry, defined as

AtFB =
N(cos θt > 0)−N(cos θt < 0)

N(cos θt > 0) +N(cos θt < 0)
, (4.12)

where θt is the polar angle between the top quark and the incoming electron, for three

incoming beam polarisation settings: unpolarised beams, denoted (AtFB)U ; a fully left-

handed initial polarised electron beam and fully right-handed polarised positron beam,

denoted (AtFB)L; and vice versa, denoted (AtFB)R. The SM predictions for these settings

at tree level are {(AtFB)U , (A
t
FB)L, (A

t
FB)R} ' {0.40, 0.37, 0.47}, which agree well with

the full NNLO QCD estimates [390, 391]. The dependence of these asymmetries on the

operators of Eq. (4.10) is shown in Fig. 4.10.

We see that the dependence on the operators distinctively depends on the initial state

polarisations. For the (AtFB)L case, we again see the large interference-square cancellation

in the gauge-type operators OuW and OuB. For the right-handed case the impact of OuW is

much milder. For both cases we see that the operators O(3)
ϕq and O(1)

ϕq pull the prediction in

opposite directions. Most encouragingly, we see that the departure from the SM prediction

is now much stronger for the ϕ-type operators than for the total cross-section, which should

lead to a sizeable improvement in the final constraints.

To generate these constraints, we consider a global fit of the four operators to six

observables:

{(AtFB)U , (A
t
FB)L, (A

t
FB)R, (σ

tt̄
tot)U , (σ

tt̄
tot)L, (σ

tt̄
tot)R}. (4.13)

In extracting the constraints, we consider the more realistic ILC polarisation capabilities

Pe− = ± 0.8, Pe+ = ∓ 0.3, noting that the cross-section for arbitrary e+e− polarisations

is related to the fully polarised one by [392,393]

σPe−Pe+
=

1

4
{(1 + Pe−)(1− Pe+)σRL + (1− Pe−)(1 + Pe+)σLR}, (4.14)

where σRL is the cross-section for fully right-handed polarised electrons and fully left-

handed polarised positrons and σRL is vice versa (the σRR and σLL components vanish for

p-wave annihilation into spin-1 bosons). Performing a χ2 fit of the full analytic expression
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for each observable, using SM pseudodata with 1% experimental error bars (based on

studies in Refs. [383,394]) and SM theory uncertainties of 1% (based on the calculations of

Refs. [378,379,388,390,391]) the individual and marginalised constraints on these operators

are shown in Fig. 4.11.

At the level of individual operators, the constraints are not improved drastically by

adding in asymmetry information. For the global fit, however, the constraints lead to much

stronger bounds than for fitting to cross-sections (although the marginalisation typically

weakens the overall constraints by a factor O(100)).

We see that the constraints are again much stronger for the field strength operatorsOuW
and OuB, where the constraints are at the |c̄i| . 10−4 level for the individual constraints

and |c̄i| . 10−2 for the marginalised case, corresponding to a mass reach of Λ & 10 TeV

and Λ & 2.16 TeV, respectively, assuming ci ' 1. The weakest constraints are on the

operators O(3)
ϕq (O(1)

ϕq ), which translate into bounds on Λ of roughly 700 GeV.

While it is encouraging that the bounds are consistent with an EFT formulation, in

the sense that Λ � √
s, the ILC mass reach for the scale of new physics that would

generate these operators is still low. We note, however, that these bounds are on the

conservative side, since other observables such as oblique parameters and LEP asymmetries

contribute complementary information that will in general tighten them. To keep this fit

self-contained, we postpone this discussion until Sec. 4.5.

4.4.3 CLIC constraints

The Compact Linear Collider (CLIC) project [395, 396], with its larger maximum centre-

of-mass energy
√
s = 3 TeV, will be in a stronger position to discover the effects of some

higher-dimensional operators, whose effects näıvely scale with the CM energy as s/Λ2.

There are two main running scenarios, but both envisage total integrated luminosities of

500 fb−1 at
√
s = 500 GeV, 1.5 ab−1 at 1.4 or 1.5 TeV, and 2 ab−1 at 3 TeV. Again,

we focus on the highest energy setting
√
s = 3 TeV, to maximise discovery potential for

non-resonant new physics through D = 6 operators.

Moving further away from the tt̄ threshold, the total e+e− → Z∗/γ → tt̄ rate is smaller

than at the ILC; at
√
s = 3 TeV it is around 20 fb, which means for the total forecast

integrated luminosity at this energy there will be a statistical uncertainty of ' 0.5%. A

total experimental uncertainty of 1% may therefore be too optimistic an estimate once

systematics are fully itemised. Nonetheless, for ease of comparison with the ILC figures,

we take this as a baseline, and the corresponding constraints, using the same observables

and beam settings, are shown in Fig. 4.12.

We see that for the individual fit, CLIC constraints are of the same order of magnitude
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Figure 4.12: 95% confidence ranges for the operators we consider here, from CLIC run-

ning at
√
s = 3 TeV, assuming 1% theoretical and experimental uncertainties, by fitting

to cross-sections, asymmetries, and the combination, with each operator considered indi-

vidually (a) or in a 5D fit (b). To display both on the same plot, we scale the individual

constraints up by a factor of 10, so that the bottom axis is actually c̄i/10.

worse than ILC ones.‖ Although the direct sensitivity to the operators is enhanced, we see

that as we move away from the tt̄ threshold, the interference effect of the ϕ-type operators

is much smaller. This is not the case for the operators OuW and OuB, whose contributions

stem mainly from the (D = 6)2 term, as seen on the right of Fig. 4.9, which receives

no suppression. Their individual constraints are close to the ILC values, indicating that

energy scale is not the dominant factor driving these limits, but rather the theory and

experimental uncertainties which saturate the sensitivity, which we do not vary.

For the more general marginalised fit, we see again that combining cross-section and

asymmetry measurements will break blind directions in the fit, leading to much more

powerful overall constraints. Unlike for the case of the ILC, however, care must be taken

in interpreting these limits in terms of the mass scale of a particular UV model. The

marginalised constraint |c̄ϕu| . 0.05, for example, corresponds to a mass scale Λ/
√
c & 1.1

TeV, which is less than the energy scale probed in the interaction, so that the constraint

can only be linked to a particular model if it is very weakly coupled: g∗ � 1.

‖This is in contrast to Higgs sector constraints from e+e− → hZ, where the projected sensitivity
is extremely dependent on the momentum flow through the vertex, leading to better overall CLIC con-
straints [397].
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Figure 4.13: Representative Feynman diagram contributing to the S, T, U parameters at

one-loop. The grey-shaded area marks a possible dimension six insertion while the black

dot represents a SM vertex of the V − V ′ polarisation function, V, V ′ = W±, Z, γ.

4.5 Beyond e+e− → tt̄: Precision Observables

Obviously the direct constraints that we have focused on in this work do not exist in

a vacuum and the interplay of direct and indirect sensitivity plays an important part

in ultimately obtaining the best constraints for a given model (see [318, 325]). To put

the expected direct constraints detailed above into perspective we analyse the impact of

the considered operators on LEP precision observables. Note, that these Z resonance

observables are sensitive to a plethora of other new interactions and a direct comparison

is not immediately straightforward [325]. Nonetheless, there is significant discriminative

power that is worthwhile pointing out, which we will discuss in the following.

4.5.1 Oblique corrections

The S, T, U parameters [398, 399] (see also [400]) are standard observables that capture

oblique deviations in the SM electroweak gauge sector from the SM paradigm [401, 402]

through modifications of the gauge boson two-point functions. The operators considered

in this work modify these at the one-loop level through diagrams of the type shown in

Fig. 4.13. Throughout we perform our calculation in dimensional regularisation.

The definitions of S, T, U , see [398, 399, 402], are such that in the SM all divergencies

cancel when replacing the renormalised polarisation functions by their bare counterparts.

The modifications of Fig. 4.13, however, induce additional divergencies due to the dimen-

sion 6 parts and the introduction of two-point function counterterms is essential to obtain

a UV-finite result, see also [318]. This leads to a regularisation scale µR dependence of the

D = 6 amplitude parts after renormalisation, as shown in Fig. 4.14. It is this part which

we focus on as we choose the SM with a 125 GeV Higgs as reference point [403].
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OuW ,OuB, which are unconstrained by down-sector measurements. All other Wilson co-

efficients are chosen to be zero. The dark and light shaded areas represent 68% and 95%

confidence levels for this projections, while the blue contour uses µR = mZ and the red

contour µR = 1 TeV.

4.5.2 Non-oblique corrections

A well-measured quantity at LEP is the Zbb̄ vertex, which enters the prediction of the

bottom forward-backward asymmetry Abb̄FB, see e.g. [404]. Similar to the operators in

Eq. (4.10), in the generic dimension six approach we can expect similar operators for the

down-sector of the 3rd fermion family. These will modify the interactions along the same

lines as we focused on above for the top sector. However, due to the different isospin

properties, the bottom forward backward asymmetry is now sensitive to the sum c
(3)
ϕq +

c
(1)
ϕq . This leads to a complementary constraint by the LEP forward backward asymmetry

compared to the direct measurements in tt̄, as shown on the left of Fig. 4.15.

Moreover, the constraints on c
(3)
ϕq + c

(1)
ϕq from Abb̄FB can be combined with the constraints

on c
(3)
ϕq − c(1)

ϕq to extract independent bounds on c
(3)
ϕq and c

(1)
ϕq . This is shown on the right of

Fig. 4.15. Care should be taken when interpreting these constraints individually, however.

We are considering marginalised bounds for the ILC constraint but only one operator

combination for the LEP bound. In general, other operators that we do not consider here

will impact the Zbb̄ vertex at tree level and in general weaken the bound. This serves as a

useful visualisation, however, of the complementarity between past and future colliders in

constraining these operators.
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√
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bining the information from ILC tt̄ asymmetries and cross-sections (dark blue) and LEP1
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4.6 Summary

Given the unsatisfactory precision of current probes of top quark electroweak couplings

from hadron collider measurements, they must be a key priority in the physics agenda of

any future linear e+e− collider. By parameterising non-standard top couplings through

D = 6 operators, we have analysed the potential for the ILC and CLIC to improve the

current precision of the top electroweak sector. Unsurprisingly, if experimental precision

would match current estimates, and theory uncertainties can be brought to the same level,

the current constraints can be drastically improved by both colliders, with associated

bounds on the scale of new physics typically in the 1 TeV to few TeV range, depending on

the assumed coupling structures of the underlying model. Using asymmetry measurements

as well as cross-sections will be crucial to this endeavour, as will collecting large datasets

with several incoming beam polarisations.

We have found that, unlike for the Higgs sector, the large increase in centre-of-mass en-

ergy at CLIC does not necessarily offer a competitive advantage over the ILC for bounding

new top interactions by the operators we consider, and bounds on the operators that we

consider are typically stronger at the latter, though in simultaneous 4D fits the difference

is not striking. For some of the operators we consider, the bounds derived from CLIC fits

correspond to mass scales smaller than the CM energy that we consider, which can call

into question the validity of the EFT description, unless the CLIC sensitivity can exceed

the expectations we forecast here.
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By combining Z-pole measurements from LEP1 with tt̄ measurements (and future

improved electroweak precision measurements), one can in principle break degeneracies

in the operator set and disentangle individual operators that could previously be only

bounded in combinations. We showed this for the LEP forward-backward asymmetry, this

could be improved by fitting other precision electroweak observables too. Care must be

taken in interpreting the associated constraints, however, as both sets of measurements

will in general talk to other operators for which there is no complementarity, and a more

systematic approach taking into account EFT loop corrections would have be undertaken

before these numerical bounds can be taken at face value.
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5 Top tagging with Deep Neural Networks

5.1 Introduction

In the last chapter, we discussed how the sensitivity to non-resonant new physics in

the top quark sector could be improved by making use of reconstruction techniques for

‘boosted’ [405–410] top final states; that is, top quarks whose decay products are highly

collimated in the detector. Since we generally expect on dimensional grounds that the

effects of heavy new physics coupling to the top quark would be most prominent in the

high pT tail, top tagging is well suited to this task. There are many other applications

of boosted tagging, however, and as higher momentum transfer final states begin to be

probed more regularly at the LHC, jet substructure methods are becoming an increasingly

crucial component of its analysis program.

In top pair production for instance, 15% of the (Standard Model) total cross-section

comes from the region where ptT & 200 GeV, and in new physics scenarios where, for

example, a heavy resonance decays into a top pair, the boosted regime is the region of

interest [411]. Because they rely on the final state objects being well-separated in the

detector, standard ‘resolved’ reconstruction techniques begin to falter here. Boosted re-

construction techniques, on the other hand, which allow for more than one of the hard

partons in the final state to be captured by the same large-radius jet, and then analyse

the substructure of those jet(s), are more efficient in this regime. Improving the efficiency

of boosted top tagging in the increasingly challenging hadronic environment of the LHC

detectors will thus be of vital importance over the LHC lifetime. This is the subject of this

chapter.

There exist several well-studied examples of these boosted techniques, for example

mass-drop filtering [406], trimming [412], pruning [413, 414], shower deconstruction [415]

and the HEPTopTagger [343, 344, 361] algorithm, which was used in chapter 4. These

taggers have typically been designed to focus on the hard substructures of the jet, and

veto the softer activity in the detector. This approach, whilst well-motivated from a QCD

perspective, in principle throws out valuable information about the jet’s properties, and

it is interesting to ask whether the softer constituents of the jets can also offer powerful

discriminating features between signal and background, as has already been demonstrated

for the hard substructures.

An intriguing new avenue in this direction has recently been opened, that makes use of

machine learning algorithms known as Convolutional Neural Networks (ConvNets). These

deep learning techniques are routinely used in computer vision problems such as image/fa-

cial recognition as well as natural language processing. As applied to boosted jet finding,

the basic idea is to view the calorimeter (η, φ) plane as a sparsely filled image, where
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the filled pixels correspond to the calorimeter cells with non-zero energy deposits and the

pixel intensities to the energy or ET deposited. After some image preprocessing, a training

sample of these jet images, with signal and background events, is fed through a ConvNet

designed to learn the signal-like and background-like features of the images; shapes, clus-

ters, edges, voids, etc. The final layer of the network converts the learned features of the

image into a probability of it being either signal or background. One then feeds a test

sample through the network to quantify its performance, usually expressed in terms of its

receiver operator characteristic (ROC) curve: signal efficiency vs. background rejection.

This method will be described in detail later in the chapter.

Using Monte Carlo simulated data, these networks have been shown to be comparable

in performance to various already well-established QCD-inspired taggers, even in the pres-

ence of pileup [416–424]. However, these analyses have typically focused on hadronically

decaying W -boson tagging, and top tagging has not yet been studied. Whilst a concep-

tually similar problem, the extra prong in the top decay corresponding to the b-quark,

and the extra mass splitting in the tWb vertex, lead to a different structure of the final

large-R jet. It would be desirable to show that jet image techniques can be applied here

with similar efficiency. A broader goal would be to demonstrate that these techniques

have applicability across the realm of jet substructure, not just in the narrow example of

W -tagging. This analysis is a step in that direction.

This chapter is structured as follows: In section 5.2 we outline the main jet substruc-

ture and top tagging concepts visited throughout the analysis. In section 5.3 we discuss

the two machine learning algorithms that we utilise: boosted decision trees (BDTs) and

convolutional neural networks. In section 5.4 we discuss the details of how we build a jet

image and the specific network architectures we test against. In section 5.5 we discuss

the performance of the neural network compared to standard QCD based taggers, and

investigate the physics that the network learns, before summarising in section 5.6.

5.2 QCD-inspired top tagging

The goal of any QCD-based tagger is to use an understanding of perturbative QCD to

construct observables and algorithms that offer the best discrimination between jets from

signal processes; typically involving tops, W and Z bosons or Higgses, and background;

typically originating from QCD dijet or multijet processes. The simplest such observable is

the jet mass, defined simply as the mass of the Lorentz vector sum of all of the constituent

momenta in a jet.

m2
J =

constits∑
i

pµi pµi. (5.1)
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Clearly, the exact value of the reconstructed jet mass will be dependent on the algorithm

used to cluster the jet, but it should be close to the mass of the parton(s) it originated from.

In the case of signal jets, this should be fairly close to the mass of the decaying object, as

shown on the left of Fig. 5.1, where the reconstructed fat jet mass for jets within the range

350GeV ≤ pJT ≤ 450GeV is shown (to ensure the jets are tagged as tops we require that

they are matched to a parton-level top within ∆R = 1.2). In the case of QCD jets, hard

perturbative emissions push the reconstructed jet mass to higher values than one would

näıvely expect from its massless constituents, as shown on the right hand side of Fig. 5.1,

where the QCD jet mass is broadly peaked at mJ ∼ 100 GeV, rather than towards the

origin. Some additional processing of the reconstructed jets therefore must be done before

the jet mass can be considered a reliable observable, i.e. a detector-level observable that

captures the kinematics of the hard process. These techniques are generally referred to as

grooming.

5.2.1 Jet grooming

The three most commonly used jet groomers are filtering, pruning and trimming. Filtering

a jet is aimed at keeping its hard constituents originating from the hard interaction whilst

rejecting as much as possible the softer constituents originating from QCD radiation. Be-

ginning with a large-R jet, its constituents are reclustered with the Cambridge-Aachen

algorithm (C/A) [358, 359], with radius parameter Rfilt. Then, all constituents outside of

the N hardest subjets are filtered out. That is, the N subjets with the largest transverse

momenta after filtering are kept, the rest of the jet is discarded. For a hadronically decay-

ing top quark t→ Wb→ qq̄′b, there are three hard subjets associated with the decay, and

one typically allows tolerance for some extra QCD emission, to avoid mis-filtering out the

decay products. The 5 hardest subjets are usually kept. A typical radius Rfilt is 0.3, for an

original jet of size R = 1.2 or 1.5. The effects of filtering on the jet mass for top and QCD

jets are shown in Fig. 5.1. We see that the mass peak for the signal jets has become much

sharper, and is symmetric around the top mass. For the QCD jets, we see a moderate shift

towards zero.

For trimming, rather than keeping the N hardest subjets, one cuts on the fraction of

the subjet pT to the original fat jet pT . Namely, one reclusters the fat jet constituents

with the kT algorithm using a radius Rsub, thus clustering softer energy deposits first and

harder activity last. Any subjets i with pT i/p
J
T < fcut are removed, and the final trimmed

jet is composed of the remaining subjets. The jet mass distributions for tops and QCD

after trimming, using Rsub = 0.35, fcut = 0.03, are also shown in Fig. 5.1. Comparing to

the raw distributions, we see that QCD jets typically lose 30%-50% of their mass, whereas

top jets keep most of their mass, therefore trimming is a robust procedure for isolating the

hard components of a jet that one is most interested in. A drawback is that sometimes the
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Figure 5.1: Top (left) and QCD (right) jet mass distributions after the application of

various grooming algorithms. The original jets are constructed with the Cambridge-Aachen

algorithm with distance parameter 1.5. Filtering is applied with radius parameter Rfilt = 0.3

and the 5 hardest subjets are kept. The trimming procedure uses Rsub = 0.35 andfcut = 0.03,

and the pruned jets are reclustered with the C/A algorithm with zcut = 0.1, Rcut = 0.5 (see

text for details).

b quark will be vetoed from the jet if it is very soft, and so the jet mass will be spuriously

reconstructed to the W mass.

Pruning is related to trimming, but along with kinematic requirements on the pT , it

applies an additional geometrical cut, designed to remove wide-angle radiation. Starting

with a large-R jet, one reapplies either the C/A or kT [425, 426] jet clustering algorithm

on its constituents, but at each clustering step, the criterion that a) the softer of the

constituents j1 and j2 (taken to be j2, so that pj1T > pj2T ) has pj2T /p
j1+j2
T < zcut, and b)

∆Rj1,j2 < Rcut × (2mJ/p
J
T ), are both tested.

At least one of a) or b) must be true, otherwise j1 and j2 are both removed. Typical

values used in real jet substructure analyses are zcut = {0.05, 0.1} and Rcut = {0.1, 0.2, 0.3}.
The effects of pruning on the signal and background jets we are using are also shown in

Fig. 5.1. We see that pruning is particularly effective for reducing the QCD jet mass, but

the price paid is that it is also more likely to erroneously reconstruct the signal jet mass

to the W mass instead of the top, i.e. it is more likely to veto the b quark.

5.2.2 N-subjettiness

As well as the absolute mass scales entering the jet, it is also useful to construct observables

that capture the likely number of hard subjets within a jet, i.e. that gives a measure of
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Figure 5.2: Distributions of the N-subjettiness parameter τ3 (left) and ratio τ3/τ2 (right)

for top and QCD jets, clustered using the C/A algorithm with R = 1.5 as before. The

subjet axes are defined by kT clustering, and β = 1. Better discriminating power is offered

by the ratio τ3/τ2, as seen on the right plot.

how ‘prongy’ a fat jet is. One could imagine, for instance, a W ′ or Z ′ boson with a mass

close to the top quark. It would have a characteristic two-prong decay, but from jet mass

distributions alone it would appear very similar to a top jet. N -subjettiness [427, 428] is

an observable designed to measure this property. For a fat jet of radius R0, N -subjettiness

is defined as

τN =

∑
i
pT i min(∆Ri1, . . . ,∆RiN)β∑

i
pT iR0

. (5.2)

The sum is over the jet constituents i, and N is the number of candidate subjets. To

define the distance measures ∆R, one must define candidate subjet axes. This can be done

either by summing over all possible candidate subjet directions and taking the minimum,

or, in a computationally simpler approach, by defining the subjets by applying the kT

clustering algorithm on the jet constituents and truncating after N subjets are generated.

The exponent β is a free parameter that can be optimised for a given analysis. It is also

implicitly assumed that the fat jet radius R0 > ∆Rij for all jet constituents.

In the limit τN → 0, the jet must have ∆RiN = 0 for all constituents, i.e. all constituents

must be perfectly aligned with the candidate subjets, so the jet has exactly N subjets. In

the case of τN → 1, the jet must have at least N + 1 subjets, i.e. the minimisation missed

some subjet axes. Therefore jets with small τN are said to be N -subjetty, whereas jets

with larger τN have more than N subjets. For top jets the ratio τ3 is clearly the one of

interest. In fact, it has been shown that the ratio τ3/τ2 ≡ τ32 has the most discriminating

power between tops and QCD, because several QCD uncertainties are present in the value
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of τ3 that drop out when taking the ratio τ32
∗. The distributions of τ32 for tops and QCD

dijets are shown in Fig. 5.2, showing clear separation between signal and background.

N -subjettiness is thus an extremely useful discriminating variable and will be utilised

throughout this analysis.

5.2.3 SoftDrop

Another useful substructure algorithm for top tagging is SoftDrop [429], which is de-

signed to iteratively remove soft, wide-angle activity corresponding to contamination from

the underlying event from the jet. The algorithm is as follows:

• For a fat jet J , undo the last step of the clustering so that there are two subjets j1

and j2.

• If the softer of the two subjets has a fraction of the total jet pT greater than

min(p1
T , p

2
T )

p1
T + p2

T

> z

(
∆R12

R0

)β
, (5.3)

then J is the final jet.

• If not, keep harder of the two jets and continue until the final jet is reached.

The parameters of SoftDrop are thus the exponent β and the pT fraction z. The

limit β → 0 removes the geometrical dependence of the cut, e.g. β = 0, z = 0.1 removes

subjets with less than 10% of the total jet pT . The additional ∆R cut shows that softer

activity is much more likely to be cut out if it has a large angular separation from the rest

of the jet. SoftDrop is a useful procedure for defining a jet mass that is robust against

contamination from soft radiation, and a ‘softdropped’ jet mass, in conjunction with τ32

provides powerful discrimination between tops and QCD background.

There are many other observables used in top tagging, and we will not review them

all here, we merely briefly discuss the ones that will be utilised in this analysis. The

other key component of the analysis is the use of machine learning techniques. In the

form of multivariate techniques such as Boosted Decision Trees, these techniques have

been well-established as useful in jet substructure classification. Deep Neural Networks

are a recent development. Since we will benchmark the performance of our neural network

against various standard BDTs, in the next section we will outline the basics of a BDT

architecture, before discussing the structure of a deep neural network in detail.

∗See Ref. [345] for a discussion of this, and as a useful review of top tagging in general.
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5.3 Machine learning inspired top tagging

5.3.1 Boosted decision tree approaches

Starting with a sample of signal and background jets that one wants to classify, a stan-

dard decision tree begins by ordering the input jets by the value of some discriminator

variables, typically referred to as features in BDT parlance. For our case, the features will

be quantities such as the jet mass and N -subjettiness ratios. For each feature, the sample

is split into two parts, based on the value of the feature that best separates the signal

and background. An initial node, containing all the events, has thus been separated into

two branches. The branches continue to be split until the final branches, called leaves are

either pure signal or pure background, or contain too few samples of either kind to continue

splitting.

Each sample jet/event is given a weight Wi, where the weighting procedure is specific

to the precise type of decision tree classifier. The splitting criterion is defined by the purity

of the sample in each branch,

P =

∑
sWs∑

sWs +
∑

b
Wb

, (5.4)

For each branch, the optimal splitting of the parent branch into two daughter branches

is defined by maximising the Gini function

[(
n∑
i=1

Wi)P (1−P )]parent− [(
n∑
i=1

Wi)P (1−P )]daughter 1− [(
n∑
i=1

Wi)P (1−P )]daughter 2. (5.5)

If the events all have unit weight, then if a final leaf has a purity P ≥ 1/2 it is called

a signal leaf, and if P ≤ 1/2 it is a background leaf†. All events that finish on a signal

leaf are classified as signal, likewise for background. The signal efficiency is defined as

the number of signal events that landed on signal leaves divided by the initial number of

signal samples, and the corresponding background contamination or ‘mistag’ rate is the

number of background events that landed on signal leaves divided by the initial number of

background samples. A schematic diagram of a simple two-feature decision tree is shown

in Fig. 5.3.

The performance of a decision tree classifier can be significantly enhanced by applying

‘boosting’ criteria at each branch. A boosted decision tree proceeds as above, except if a

signal event is misclassified as background or vice versa, the weight of that event is boosted.

The entire sample of weighted events is fed through a second tree, and the procedure

†In fact the purity demanded can be varied between zero and one, which gives a smooth curve of
background contamination for a given signal efficiency, i.e. an ROC curve.
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sofdropjet.M() ≤ 63.67
gini = 0.4943

samples = 150000
value = [82988, 67012]

class = background
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value = [55598, 6866]
class = background

True

tau32 ≤ 0.6861
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class = signal
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value = [47055, 3981]
class = background
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samples = 11428

value = [8543, 2885]
class = background
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value = [9456, 41329]
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gini = 0.4997
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value = [17934, 18817]
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Figure 5.3: A simple decision tree classifier with a maximum tree depth of two, using

just two features: the N-subjettiness ratio τ32 and the mass of the fat jet after applying the

SoftDrop algorithm. The tree first cuts on the jet mass, with jets above the cut going

into the signal category, a further cut on τ32 is then applied to the signal jets, and a further

cut on the jet mass to the background jets. Figure generated with [430].

repeated for several trees. After each tree, the event is given a score of 1 if it lands on a

signal leaf and -1 if it lands on a background leaf. The total BDT score for that event is

the sum of its scores after each tree.

A commonly used boosting classifier is the adaptive boosting method or AdaBoost.

Starting with a sample of N events labeled i, each with a weight 1/N , give signal events

an initial score yi = 1 and background events yi = −1. For a set of input features xi for

each event i, define Tm(xi) = 1 if the event lands on a signal leaf at the end of tree m

and Tm(xi) = −1 if it lands on a background leaf. A ‘misclassify’ score I is defined as

I(yi 6= Tm(xi)) = 1 and I(yi = Tm(xi)) = 0, so that the total error on the mth tree is just

the weighted sum of the misclassified event scores:

errm =

∑N
i
wiI(yi 6= Tm(xi))∑N

i
wi

. (5.6)

The misclassified events are reweighted by

wi → wi × exp (αmI(yi 6= Tm(xi))), (5.7)

where

αm = β × log

(
1− errm
errm

)
. (5.8)

The parameter β can be chosen freely; typical values used are β = 1 or β = 1/2. The

goal of the decision tree is then to simply construct the weights at each tree so that
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the error function is minimised for each event. Boosted decision trees are typically more

powerful because their performance is less sensitive to changing the model parameters,

and they are less prone to overfitting. For this reason they are already widely used in

signal/background discrimination in real particle physics analyses, and will thus provide

an appropriate comparison for quantifying the performance of a deep neural network.

5.3.2 Deep learning

Deep neural network algorithms originate from computer vision, namely the problem of

trying to correctly label an image from a fixed set of categories. The network consists of

three steps: input, learning and evaluation.

An input image can be thought of as a vector of pixel densities {xi}. The goal is then

to construct a classifier which converts this into a label from a predefined set {yi}. In a

binary classification problem such as signal vs. background, {yi} ∈ {0, 1}. The simplest

such classifier is a linear mapping, where each pixel is multiplied by a series of weights W

and added with some bias b: yi = Wijxj + bi. For a binary classifier over a (flattened)

N × N pixel image, W is then a 2 × N2 matrix and b a 2D vector. This transformation

would constitute a single layer of a neural network. A typical NN has many such layers,

with in general more complicated mappings between layers.

Each layer in a network is made of of units or neurons which receive as input the output

from the previous layer. If every neuron in the layer is connected to every neuron in the

previous layer, the layer is fully-connected or dense. The connections between neurons in

neighbouring layers may be thought of as synapses, in analogy with neurons in the brain.

In each neuron, the outputs from the previous layer are combined with the weights and

biases of the current layer and compared to an activation function, which models whether

the signal entering the neuron is strong enough for the neuron to ‘fire’, i.e. to activate the

next layer. After passing the image through several such hidden layers, the final layer of

the network is a classifier which converts the inputs to a probability that the original image

~x belonged to class yi. The goal of a neural network is to construct appropriate weights at

each layer such that the distinctions between the different classes are maximally ‘learned’

by the neurons.

In order to construct the weights and biases, one trains the network by feeding through

a set of input images for which the classes are known. A loss function quantifies how close

the network class prediction for the image is to the truth label on the data. The entire

network can thus be thought of as a single, differentiable, highly nonlinear function acting

on the input pixel densities to produce an output classification. There are many choices of

network available. ‘Deep learning’ is distinguished from ordinary neural networks by large

numbers of layers, but each layer is typically connected to a few neighbouring neurons in
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the previous layer, rather than shallow networks with small numbers of dense layers. As

it is believed to simulate the process of image recognition in the human brain, it is well

suited to the problem of image classification. Convolutional Neural Networks are among

the most widely used deep learning architectures. Here we discuss the main building blocks

of a ConvNet and their effects and discuss the training of the network.

The convolutional neural network starts from a two-dimensional input image and iden-

tifies characteristic patterns using a stack of convolutional layers. We use a set of standard

operations, starting from the n× n image input I:

– ZeroPadding: (n× n)→ (n+ 2× n+ 2)

We artificially increase the image by adding zeros at all boundaries in order to remove

dependence on non-trivial boundary conditions,

I →

0 · · · 0
... I

...

0 · · · 0

 . (5.9)

– Convolution: n′c-kernel × (n× n)→ nc-kernel × ((n− nc-size + 1)× (n− nc-size + 1))

To identify features in an n × n image or feature map we linearly convolute the

input with nc-kernel kernels of size nc-size × nc-size. If in the previous step there are

n′c-kernel > 1 layers, the kernels are moved over all input layers. For each kernel this

defines a feature map F̃ k which mixes information from all input layers

F̃ k
ij =

n′c-kernel−1∑
l=0

nc-size−1∑
r,s=0

W̃ kl
rs I

l
i+r,j+s + bk for k = 0, ..., nc-kernel − 1 . (5.10)

– Activation: (n× n)→ (n× n)

This non-linear element allows us to create more complex features. A common choice

is the rectified linear activation function (ReL) which sets pixel with negative values

to zero, fact(x) = max(0, x). In this case we define for example

F k
ij = fact(F̃

k
ij) = max

(
0, F̃ k

ij

)
. (5.11)

Instead of introducing an additional unit performing the activation, it can also be

considered as part of the previous layer.

– Pooling: (n× n)→ (n/p× n/p)
We can reduce the size of the feature map by dividing the input into patches of fixed
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size p× p (sub-sampling) and assign a single value to each patch

F ′ij = fpool(F(ip...(i+1)p−1,jp...(j+1)p−1) . (5.12)

MaxPooling returns the maximum value of the subsample fpool(F ) = maxpatch(Fij).

A convolutional layer consists of a ZeroPadding, Convolution, and Activation step each.

We then combine nc-layer of these layers, followed by a pooling step, into a block. Each of

our nc-block blocks therefore works with essentially the same size of the feature maps, while

the pooling step between the blocks strongly reduces the size of the feature maps. This

ConvNet setup efficiently identifies structures in two-dimensional jet images, encoded in a

set of kernels W transforming the original picture into a feature map. In a second step of

our analysis the ConvNet output constitutes the input of a fully connected DNN, which

translates the feature map into an output label y:

– Flattening: (n× n)→ (n2 × 1)

While the ConvNet uses two-dimensional inputs and produces a set of corresponding

feature maps, the actual classification is done by a DNN in one dimension. The

transition between the formats reads

x = (F11, . . . , F1n, . . . , Fn1, . . . , Fnn) . (5.13)

– Fully connected (dense) layers: n2 → nd-node

The output of a standard DNN is the weighted sum of all inputs, including a bias,

passed through an activation function. Using rectified linear activation it reads

yi = max

(
0,

n2−1∑
j=0

Wijxj + bi

)
. (5.14)

For the last layer we apply a specific SoftMax activation function

yi =
exp (Wijxj + bi)∑
i exp (Wijxj + bi)

. (5.15)

It ensures yi ∈ [0, 1], so the label can be interpreted as a signal or background

probability.

In a third step we define a cost or loss function, which we use to train our network to

a training data set. For a fixed architecture a parameter point θ is given by the ConvNet

weights W̃ kl
rs defined in Eq.(5.10) combined with the DNN weights Wij and biases bi defined
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in Eq.(5.14). The performance of the training is quantified by minimising the mean squared

error

L(θ) =
1

N

N∑
i=0

(y(θ;xi)− yi)2 , (5.16)

where y(θ;xi) is the predicted binary label of the input xi and yi is its true value. For a

given parameter point θ we compute the gradient of the loss function L(θ) and first shift the

parameter point from θn to θn+1 in the direction of the gradient ∇L(θn). In addition, we

can include the direction of the previous change such that the combined shift in parameter

space is

θn+1 = θn − ηL∇L(θn) + α(θn − θn−1) . (5.17)

The learning rate ηL determines the step size and can be chosen to decay with each step

(decay rate). The parameter α, referred to as momentum, dampens the effect of rapidly

changing gradients and improves convergence. The Nesterov algorithm changes the point

of evaluation of the gradient to

θn+1 = θn − ηL∇L(θn + α(θn − θn−1)) + α(θn − θn−1) . (5.18)

Each training step (epoch) uses the full set of training events.

5.4 Analysis setup

5.4.1 Building a jet image

The analysis objects for the ConvNet are jet images, constructed from Monte Carlo simula-

tions. For signal events we use 14 TeV LHC tt̄ samples in the all hadronic decay channel ‡.

For background we consider a QCD dijet sample, which constitutes the dominant back-

ground to this signature. All samples are simulated with Pythia8 [431], without the

effects of multiparton interactions. The events are then passed through a fast detector

simulation with Delphes3 [432], using the ATLAS card, and calorimeter towers of size

∆η×∆φ = 0.1×5◦. We cluster these towers with the anti-kT [356] algorithm with R = 1.5,

as implemented in FastJet3 [357], requiring that all jets have |η| < 1.0. These anti-kT

jets give us a smooth outer shape of the fat jet and a well-defined jet area for our jet image.

To ensure that the jet substructure in the jet image is consistent with QCD, and to

‡One could also consider the semileptonic tt̄ channel, which has a much cleaner signature, but since
we are interested in the properties of the fat jets rather than the event as a whole, we make use of the
much higher statistics of the all-hadronic channel.
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Figure 5.4: Jet image after pre-processing for the signal (left) and background (right).

Each picture is averaged over 10,000 actual images.

prepare the jets for the HEPTopTagger algorithm, we re-cluster constituents of the

anti-kT jet using the Cambridge-Aachen (C/A) algorithm with R = 1.5. Its substructures

define the actual jet image pixels. A final comment is in order here, when we identify these

calorimeter towers with pixels, it is not clear whether the information used should be the

energy E or only its transverse component ET . We study the performance of the network

in both cases.

The rather stringent geometrical cut |ηfat| < 1.0 guarantees that the fat jets are con-

tained entirely in the central part of the detector and justifies our calorimeter tower size.

For this study we focus on the range pT,fat = 350 ... 450 GeV, such that all top decay

products can be easily captured in the fat jet. For signal events, we additionally require

that the fat jet can be associated with a Monte-Carlo truth top quark within ∆R < 1.2.

Before feeding in the images to the neural network, it is helpful to apply some prepro-

cessing, such that the salient features of the image are contained in the same location§.

The preprocessing steps are as follows:

1. Find maxima: before we can align any image we have to identify characteristic points.

Using a filter of size 3× 3 pixels, we localize the three leading maxima in the image.

2. Shift: we then shift the image to center the global maximum taking into account the

periodicity in the azimuthal angle direction.

3. Rotation: next, we rotate the image such that the second maximum is in the 12

o’clock position. The interpolation is done linearly.

§In facial recognition, this would be akin to shifting the image such that the eyes are always at the
centre.
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Figure 5.5: Effect of the preprocessing on the image mass calculated from E-(left) and

ET -images (right) of signal (top) and background(bottom). The right set of plots illustrates

the situation for forward jets with |η| > 2.

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane.

5. Crop: finally, we crop the image to 40× 40 pixels.

Throughout the analysis we will apply two pre-processing setups: for minimal pre-

processing we apply steps 1, 2 and 5 to define a centered jet image of given size. Alterna-

tively, for full pre-processing we apply all five steps. In Fig. 5.4 we show averaged signal

and background images based on the transverse energy from 10,000 individual images after

full pre-processing. The leading subjet is in the center of the image, the second subjet is

in the 12 o’clock position, and a third subjet from the top decay is smeared over the right

half of the signal images. These images indicate that fully pre-processed images might lose

a small amount of information at the end of the 12 o’clock axis.

As mentioned above, a non-trivial question is whether one should use the calorimeter

tower E or ET as the pixel density, since the shift and rotation steps of pre-processing

involve a longitudinal η boost, under which E is not invariant. Following Ref. [416] we

investigate the effect on the mass information contained in the images,

m2
img =

[∑
i

Ei

(
1,

cosφ′i
cosh η′i

,
sinφ′i

cosh η′i
,

sinh η′i
cosh η′i

)]2

Ei = ET,i cosh η′i , (5.19)
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Figure 5.6: Left: performance of some of our tested architectures for full pre-processing

in terms of an ROC curve, including the default DeepTop network. Right: discrimina-

tion power or predicted signal probability for signal events and background probability for

background events. We use the default network.

where η′i and φ′i are the centre of the ith pixel after pre-processing. The study of all pre-

processing steps and their effect on the image mass in Fig. 5.5 illustrates that indeed the

rapidity shift has the largest effect on the E images, but this effect is not large. For the

ET images the jet mass distribution is unaffected by the shift pre-processing step. The

reason why our effect on the E images is much milder than the one observed in Ref. [416]

is our condition |ηfat| < 1. In the the right-hand panels of Fig. 5.5 we illustrate the effect

of pre-processing on fat jets with |η| > 2, where the image masses changes dramatically.

Independent of these details we use pre-processed ET images as our machine learning

input [433]. Since, as a rule of thumb, neural networks perform better with small numbers,

we scale the images such that the pixel entries are between 0 and 1.

5.4.2 Network architecture

The neural network architecture is constructed with Keras [434] using the Theano back-

end [435]. To identify a suitable DeepTop network architecture, we scan over several

possible realizations or hyper-parameters. As discussed in the last section, we start with

jet images of size 40×40. For architecture testing we split our total signal and background

samples of 600,000 images each into three sub-samples. After independently optimizing the

architecture we train the network with 150,000 events and after each training epoch test it

on an independent test sample of the same size. The relative performance on the training

and test samples allows us to avoid over-training. Finally, we determine the performance

of the default network on a third sample, now with 300,000 events.
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In a first step we need to optimize our network architecture. The ConvNet side is

organized in nc-block blocks, each containing nc-layer sequences of ZeroPadding, Convolution

and Activation steps. For activation we choose the ReL step function. Inside each block

the size of the feature maps can be slightly reduced due to boundary effects. For each

convolution we globally set a filter size or convolutional size nc-size × nc-size. The global

number of kernels of corresponding feature maps is given by nc-kernel. Two blocks are

separated by a pooling step, in our case using MaxPooling, which significantly reduces the

size of the feature maps. For a quadratic pool size of p × p fitting into the n × n size of

each feature map, the initial size of the new block’s input feature maps is n/p× n/p. The

final output feature maps are used as input to a DNN with nd-layer fully connected layers

and nd-node nodes per layer.

In the left panel of Fig. 5.6 we show the performance of some test architectures. We give

the complete list of tested hyper-parameters in Tab. 5.1. As our default we choose one of

the best-performing networks after explicitly ensuring its stability with respect to changing

its hyper-parameters. The hyper-parameters of the default network we use for fully as well

as minimally pre-processed images are given in Tab. 5.1. In Fig. 5.7 we illustrate this

default architecture.

In the second step we train each network architecture using the mean squared error

as our loss function and the Nesterov algorithm with an initial learning rate ηL = 0.003.

We train our default setup over up to 1000 epochs and use the network configuration

minimizing the loss function calculated on the test sample. Different learning parameters

were used to ensure convergence when training on the minimally pre-processed and the

scale-smeared samples. Because the DNN output is a signal and background probability,

the minimum signal probability required for signal classification is a parameter that allows

to link the signal efficiency εS with the mis-tagging rate of background events εB.

In Sec. 5.5 we will use this trained network to test the performance in terms of ROC

hyper-parameter scan range default
nc-block 1,2,3,4 2
nc-layer 2,3,4,5 2
nc-kernel 6,8,10 8
nc-size 2,4,6,8 4
nd-layer 2,3,4 3
nd-nodes 32,64,128 64
p 0,2,4 2

Table 5.1: Range of parameters defining the combined ConvNet and DNN architecture,

leading to the range of efficiencies shown in the left panel of Fig. 5.6 for fully pre-processed

images.
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Figure 5.7: Architecture of our default networks for fully pre-processed images, defined

in Tab. 5.1. Figure drawn using Ref. [436].

Figure 5.8: Averaged signal minus background for our default network and full pre-

processing. The rows correspond to ConvNet layers one to four. After two rows Max-

Pooling reduces the number of pixels by roughly a factor of four. The columns indicate

the feature maps one to eight. Red areas indicate signal-like regions, blue areas indicate

background-like regions.

curves, correlating the signal efficiency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening

inside the trained ConvNet by looking at the output of the different layers in the case of

fully pre-processed images. In Fig. 5.8 we show the difference of the averaged output for 100

signal and 100 background images. For each of those two categories, we require a classifier

output of at least 0.8. Each row illustrates the output of a convolutional layer. Signal-like

red areas are typical for jet images originating from top decays; blue areas are typical for

backgrounds. The first layer seems to consistently capture a well-separated second subjet,

and some kernels of the later layers seem to capture the third signal subjet in the right

half-plane. However, one should keep in mind that there is no one-to-one correspondence
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Figure 5.9: Left: Averaged signal minus background for our default network and full

pre-processing. The rows show the three dense DNN layers. Red areas indicate signal-like

regions, blue areas indicate background-like regions. Right: Pearson correlation coefficient

for 10,000 signal and background images each. The corresponding jet image is illustrated in

Fig. 5.4. Red areas indicate signal-like regions, blue areas indicate background-like regions.

between the location in feature maps of later layers and the pixels in the input image.

On the left hand side of Fig. 5.9 we show the same kind of intermediate result for

the two fully connected DNN layers. Each of the 64 linear bars represents a node of the

layer. We see that individual nodes are quite distinctive for signal and background images.

The fact that some nodes are not discriminative indicates that in the interest of speed the

number of nodes could be reduced slightly. The output of the DNN is essentially the same

as the probabilities shown in the right panel of Fig. 5.6, ignoring the central probability

range between 20% and 80%.

To see which pixels of the fully pre-processed 40× 40 jet image have an impact on the

signal vs background label, we can correlate the deviation of a pixel xij from its mean

value x̄ij with the deviation of the label y from its mean value ȳ. A properly normalized

correlation function for a given set of combined signal and background images can be

defined as

rij =

∑
images (xij − x̄ij) (y − ȳ)√∑

images (xij − x̄ij)2
√∑

images (y − ȳ)2
. (5.20)

It is usually referred to as the Pearson correlation coefficient. From the definition we see

that for a signal probability y positive values of rij indicate signal-like patterns. On the

right hand side of Fig. 5.9 we show this correlation for our network architecture. A large

energy deposition in the centre leads to classification as background. A secondary energy

deposition in the 12 o’clock position combined with additional energy deposits in the right

half-plane lead to a classification as signal. This is consistent with our expectations after

full pre-processing, shown in Fig. 5.4.
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Figure 5.10: Performance of the neural network tagger compared to the QCD-based ap-

proaches SoftDrop plus N-subjettiness and including the HEPTopTagger variables.

5.5 Results and benchmarks

Given our optimized machine learning setup introduced in Sec. 5.3 and the fact that we

can understand its workings and trust its outcome, we can now compare its performance

with state-of-the-art top taggers. The details of the signal and background samples and jet

images are discussed in Sec. 5.4; essentially, we attempt to separate a top decay inside a fat

jet from a QCD fat jet including fast detector simulation and for the transverse momentum

range pT,fat = 350 ... 450 GeV. Other transverse momentum ranges for the fat jet can be

targeted using the same DNN method.

Because we focus on a comparing the performance of the DNN approach with the

performance of standard multivariate top taggers we take our Monte Carlo training and

testing sample as a replacement of actual data. This means that for our performance test

we do not have to include uncertainties in our Pythia simulations compared to other

Monte Carlo simulations and data, see Ref. [419] for a study in this direction.

5.5.1 Performance of the network

To benchmark the performance of our DeepTop DNN, we compare its ROC curve with

standard Boosted Decision Trees based on the C/A jets using SoftDrop combined with

N -subjettiness. From Fig. 5.6 we know the spread of performance for the different network

architectures for fully pre-processed images. In Fig. 5.10 we see that minimal pre-processing

actually leads to slightly better results, because the combination or rotation and cropping

described in Sec. 5.4 leads to a small loss of information. Altogether, the band of different
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Figure 5.11: Kinematic observables mfat and τ3/τ2 for events correctly determined to be

signal or background by the DeepTop neutral network and by the MotherOfTaggers

BDT, as well as Monte Carlo truth.

machine learning results indicates how large the spread of performance will be whenever

for example binning issues in pT,fat are taken into account, in which case we we would no

longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [430] with 200

trees, a maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90%

for the kinematic variables

{ msd,mfat, τ2, τ3, τ
sd
2 , τ

sd
3 } (SoftDrop + N -subjettiness) , (5.21)

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental

approaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition,

we include the HEPTopTagger2 information from filtering combined with a mass drop

criterion,

{ msd,mfat,mrec, frec,∆Ropt, τ2, τ3, τ
sd
2 , τ

sd
3 } (MotherOfTaggers) .

(5.22)

In Fig. 5.10 we compare these two QCD-based approaches with our best neural net-

works. Firstly, we see that both QCD-based BDT analyses and the two neural network

setups are close in performance. Indeed, adding HEPTopTagger information slightly

improves the SoftDrop+N -subjettiness setup, reflecting the fact that our transverse

momentum range is close to the low-boost scenario where one should rely on the better-

performing HEPTopTagger. Second, we see that the difference between the two pre-

processing scenarios is in the same range as the difference between the different approaches.

Running the DeepTop framework over signal samples with a 2-prong W ′ decay to two

jets with mW ′ = mt and over signal samples with a shifted value of mt we have confirmed

that the neural network setup learns both, the number of decay subjets and the mass scale.
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5.5.2 What the network learns

Following up on on the observation that the neural network and the QCD-based taggers

show similar performance in tagging a boosted top decay inside a fat jet, we can check what

kind of information is used in this distinction. Both for the DNN and for the MotherOf-

Taggers BDT output we can study signal-like learned patterns in actual signal events

by cutting on the output label y corresponding to the 30% most signal-like events shown

on the right of Fig. 5.6. Similarly, we can select the 30% most background-like events to

test if the background patterns are learned correctly. In addition, we can compare the

kinematic distributions in both cases to the Monte Carlo truth. In Fig. 5.11 we show the

distributions for mfat and τ3/τ2, both part the set of observables defined in Eq. (5.22).

We see that the DNN and BDT tagger indeed learn essentially the same structures. The

fact that the signal-like features of those distributions are more pronounced than the Monte

Carlo truth is linked to our stiff cut on y, which for the DNN and BDT tagger cases removes

events where the signal kinematic features are less pronounced. The MotherOfTaggers

curves for the signal are more peaked than the DeepTop curves is due to the fact that

the observables are exactly the basis choice of the BDT, while for the neutral network they

are derived quantities.

For our performance comparison of the QCD-based tagger approach and the neutral

network it is crucial that we understand what the DeepTop network learns in terms of

physics variables. The relevant jet substructure observables differentiating between QCD

jets and top jets are those which which we evaluate in the MotherOfTaggers BDT,

Eq. (5.22). To quantify which signal features the DNN and the BDT tagger have correctly

extracted we show observables for signal event correctly identified as such, i.e. requiring

events with a classifier response y corresponding to the 30% most signal like events. As we

can see from Fig. 5.6 this cut value captures a large fraction of correctly identified events.

The same we also do for the 30% most background like events identified by each classifier.

The upper two rows in Fig. 5.12 show the different mass variables describing the fat

jet. We see that the DNN and the BDT tagger results are consistent, with a slightly

better performance of the BDT tagger for clear signal events. For the background the two

approaches deliver exactly the same performance. The deviation from the true mass for

the HEPTopTagger background performance is explained by the fact that many events

with no valid top candidate return mrec = 0. Aside from generally comforting results we

observe a peculiarity: the SoftDrop mass identifies the correct top mass in fewer that

half of the correctly identified signal events, while the fat jet mass mfat does correctly

reproduce the top mass. The reason why the SoftDrop mass is nevertheless an excellent

tool to identify top decays is that its background distribution peaks at very low values,

around msd ≈ 20 GeV. Even for msd ≈ mW the hypothesis test between top signal and
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Figure 5.12: Kinematic observables defined in Eq.(5.22) for events correctly determined to

be signal or background by the DeepTop neutral network and by the MotherOfTaggers

BDT, as well as Monte Carlo truth. Extended version of Fig. 5.11.

QCD background can clearly identify a massive particle decay.

In the third row we see that the HEPTopTagger W -to-top mass ratio frec only has

little significance for the transverse momentum range studied. For the optimalR variable

∆Ropt [361] the DNN and the BDT tagger again give consistent results. Finally, for the

N -subjettiness ratio τ3/τ2 before and after applying the SoftDrop criterion the results

are again consistent for the two tagging approaches.

Following up on the observation that SoftDrop shows excellent performance as a

hypothesis test, we show in Fig. 5.13 the reconstructed transverse momenta of the fat jet,
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Figure 5.13: Reconstructed transverse momenta for events correctly determined to be

signal or background by the DeepTop neutral network and by the MotherOfTaggers

BDT, as well as Monte Carlo truth.

or the top quark for signal events. In the left panel we see that the transverse momentum of

the un-groomed fat jet reproduces our Monte-Carlo range pT,fat = 350 ... 450 GeV. Because

the transverse momentum distributions for the signal and background are very similar, the

BDT tagger and DNN curves agree very well with the correct behaviour. In the right panel

we see that the constituents identified by the SoftDrop criterion have a significantly

altered transverse momentum spectrum. To measure the transverse momentum of the

top quark we therefore need to rely on a top identification with SoftDrop, but a top

reconstruction based on the (groomed) fat jet properties.

5.5.3 Sensitivity to experimental effects

Finally, a relevant question is to what degree the information used by the neural network

is dominated by low-pT effects. We can apply a cutoff, for example including only pixels

with a transverse energy deposition ET > 5 GeV. This is the typical energy scale where the

DNN performance starts to degrade. A key question for the tagging performance is the de-

pendence on the activation threshold. Figure. 5.14 shows the impact of different thresholds

on the pixel activation, i.e. ET used both for training and testing the networks. Removing

very soft activity, below 3 GeV, only slightly degrades the network’s performance. Above

3 GeV the threshold leads to an approximately linear decrease in background rejection

with increasing threshold.

A second, important experimental systematic uncertainty when working with calorime-

ter images is the calorimeter energy scale (CES). We assess the stability of our network

by evaluating the performance on jet images where the ET pixels are globally rescaled by

±25%. As shown in the right panel of Fig. 5.14 this leads to a decline in the tagging

performance of approximately 10% when reducing the CES and 5% when increasing the

CES.

Next, we train a hardened version of the network. It uses the same architecture as
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Figure 5.14: Left: Background rejection at a signal efficiency of 30 % for different ac-

tivation thresholds. Right: Background rejection for the default and hardened training for

different re-scalings of the jet images. The background rejection is evaluated at a signal

efficiency of 30 % and normalized to the rejection at nominal calorimeter energy scale.

our default, but during the training procedure each image is randomly rescaled using a

Gaussian distribution with a mean of 1.0 and a width of 0.1. New random numbers

are used from epoch to epoch. The resulting network has a similar performance as the

default and exhibits a further reduced sensitivity to changes in the global CES. While

other distortions of the image, such as non-uniform rescaling, will need to be considered,

the resilience of the network and our ability to further harden it are very encouraging for

experimental usage where the mitigation and understanding of systematic uncertainties is

critical.

5.6 Summary

Like boosted decision trees before them, deep neural networks provide a powerful way of

distinguishing between jets from heavy decaying objects, and jets from QCD background.

This has already been shown for W -boson tagging, in this analysis we have shown that the

same conclusions hold for top tagging as well. Using techniques from image processing,

we trained a ConvNet on a Monte Carlo simulated sample of hadronically decaying tops

and QCD dijets, and quantified its performance by testing the network on an independent

testing sample. By benchmarking the network against the performance of other industry

standard taggers, in terms of ROC curves, we showed that the network can offer compa-

rable, and even superior background rejection to QCD inspired taggers. We also showed

that preprocessing of the images is an optional, but not necessary step, and good network
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performance is observed even on minimally preprocessed images, albeit at the price of more

sophisticated network architectures, and thus more intensive computational demands.

Interestingly, we showed that for some observables the network learns features that

are not also captured by the BDTs, and vice versa. This shows that the network may

be picking up on features of the jets that are not captured by currently used taggers and

observables. We have also demonstrated that the network performance is fairly robust

against degradation by detector level effects such as calorimeter deposit cutoffs and jet

energy scale calibration, which is an encouraging sign that they may one day prove feasible

in LHC experimental analyses, as well as phenomenological studies.

Still, there are some shortcomings. Our analysis, like others in this area, is based

exclusively on Monte Carlo simulated data samples, for which the training labels are known

for each jet. If these techniques are to actually prove useful for the experiments, it will

have to be demonstrated that these networks can be trained on real hadron collider data,

which, as well as bringing the extra complications of pileup, multiparton interactions and

underlying event, does not come with ‘truth’ labels on each event which can be used

to evaluate the network performance. It thus remains to be seen whether or not these

techniques will bear fruit in the long term. However, the impressive performance that we

see here shows that these techniques certainly merit further study.

168



Summary and conclusions

This thesis has explored several aspects of top quark phenomenology at hadron and lepton

colliders. In chapter 1, we reviewed the foundations of the Standard Model of particle

physics, discussed some generalities about hadron collider physics and the main uncer-

tainties that can hinder high theoretical precision there, and explored the properties of

the top quark can that can be probed at hadron colliders through its various produc-

tion mechanisms and decay observables, discussing in detail the state-of-the-art SM theory

calculations where relevant.

Chapter 2 focused on physics ‘Beyond the Standard Model’. After outlining some of

the main flaws of the Standard Model and arguments for new physics (perhaps at the

TeV scale); the hierarchy problem, gauge coupling unification and vacuum instability, we

presented a few examples of popular new physics models constructed to address these flaws,

and we briefly touched upon why they might be relevant for top quark phenomenology.

We then moved from specific UV models to a more agnostic approach, by considering the

Standard Model as the leading part of an effective theory, where heavy degrees of freedom

have been integrated out, leaving behind a tower of higher-dimensional (that is, D > 4)

operators; which can be studied perturbatively as an expansion in Wilson coefficient divided

by UV cutoff (ci/Λ)n.

By using a ‘bottom-up’ approach, constructing the operators that are consistent with

the SM gauge and global symmetries, we derived the only D = 5 operator allowed by

symmetry constraints. The terms that could generate effects at collider energy scales begin

at D = 6. Since there are many more operators allowed at this order, we did not reproduce

the full derivation of the operator set, we just sketched some of its salient points, following

the derivation of the ‘Warsaw basis’. Left with 64 non-redundant D = 6 operators, we

focused on those operators which are (at leading order in the EFT expansion) relevant

for top quark physics, which amounted to calculating the effects of the operators on the

observables introduced in the first chapter, and computing their numerical effects as a

guide for how strongly they may be bounded with current measurements.

In chapter 3, we focused on confronting those operators with data. With the large

production rates for top quark associated processes at the LHC and Tevatron, huge sta-

tistical samples of top quark data are now public, which make the precision scrutiny of

the top quark sector of the Standard Model EFT a timely exercise. The large number of

observables requires sophisticated fit machinery, which was achieved by adapting the Pro-

fessor software package, originally used for tuning of Monte Carlo generators, to BSM

limit-setting code. We took various top quark production channels in turn, beginning with

tt̄ production. We demonstrated that there is complementarity between LHC and Tevatron

measurements, because they are dominated by different partonic subprocesses and so most
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sensitive to different operators. Differential measurements bring much more sensitivity

than total rates alone, as they provide extra sensitivity to shape modifications by the new

Lorentz structures of the D = 6 operators that go beyond overall normalisation differences.

Higher-order processes such as tt̄Z production bring sensitivity to operators that cannot

otherwise be constrained, but the statistical uncertainties on the early measurements of

these processes are weak and so the subsequent bounds are inconclusive. There is overlap

in the operator set constrainable from single top production and from decay observables

such as helicity fractions, and so combining these measurements gives stronger bounds.

Some measurements remain in tension with the SM-only prediction, but there are no

anomalies that are more significant than what would be näıvely expected with this number

of independent measurements. We discussed in detail some of the validity issues inherent

in the EFT formulation, such as the neglecting of operators of higher dimension than 6,

and the potential for the fit to be excessively pulled by ‘overflow’ bins in the differential

distributions, for which there is no control over scales entering the fit. We concluded

that the latter was not a problem in practice by performing the fit with and without

those bins, and that for the former, in order to avoid unphysical effects such as negative

cross-sections, it is best to keep in contributions from O(1/Λ4) terms, even when D =

8 operators are neglected. Though the fit is comprehensive, and the complementarity

between different sets of measurements used allowed the system of operators considered to

be easily overconstrained, we found that when our constraints mapped on to the parameter

space of specific UV models, the final numerical bounds on the operators considered were

in the end rather weak.

Chapter 4 was concerned with the prospects for improving this situation. We noted

that the constraints on the tt̄ operators, which constituted the largest component of the

fit, were dominated by observables reconstructed using ‘resolved’ techniques in the low

to medium pT region. While statistical uncertainties are smaller in this region, so is the

sensitivity to the operators, whose interference typically scales as ŝ/Λ2. High pT final states

reconstructed by jet substructure methods thus have the potential to dramatically improve

the constraints, especially as low statistics in the tails becomes less relevant over the LHC

lifetime.

Our analysis showed mixed results, however. While the constraints from a typical low

pT analysis can be improved by up to 70% when current systematics are improved upon

and as we approach 3 ab−1 of data, the improvement from the boosted region is much

milder when experimental error bars are reduced, indicating that SM (and SMEFT) theory

uncertainties also have to be dramatically improved in order to exploit the full potential

of boosted tagging performance. Given the timescales involved over the forecasted LHC

lifetime, however, this does not seem an unrealistic expectation.

We also studied the role that proposed future lepton colliders could play in these im-
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provements. By far the weakest constraints from our fit, and the least well-measured of

the top quark couplings in general, were from the electroweak neutral vertices. The only

direct handle on these from the LHC is from tt̄Z and tt̄γ production, and the improvements

at 3 ab−1 are still modest. Lepton colliders are sensitive to the same operators, however,

through the electroweak process e+e− → tt̄. We found that orders of magnitude improve-

ment over the current bounds was possible, even when marginalising over all operators in a

global fit, which was unsurprising giving the improvement in precision on both the theory

prediction and measurement sides.

By benchmarking proposed scenarios at the 500 GeV ILC and 3 TeV CLIC machines, we

saw that just as for the LHC, using as much information as possible (in this case running

with high statistics at several incoming beam polarisations and making use of pseudo-

observables such as forward-backward asymmetries in addition to total cross-sections) was

crucial in maximising the sensitivity. Unlike for the LHC, however, we saw that the in-

creasing the collider CM energy does not necessarily buy extra sensitivity, and as we move

away from threshold and overall rates become smaller, sensitivity to the operators begins

to degrade slightly, although in a full 4D fit the difference was not remarkable. We also

highlighted the possibility of combining these bounds with measurements from LEP in or-

der to lift a blind direction in the EFT parameter space, however, at this level of precision,

the much more involved EFT loop corrections would have to also be considered in some

detail for the numerical bounds to be completely trusted.

In chapter 5, we returned again to hadron colliders, and discussed in detail what goes

into the algorithms behind boosted taggers such as the HepTopTagger, which we used

in the boosted analysis of chapter 4. After summarising the current state-of-the-art in

terms of taggers built from perturbative QCD, we moved on to concepts from machine

learning; namely using so-called ‘deep learning’ neural networks to improve the performance

of boosted top reconstruction, by building an image out of the calorimeter plane in a

hadronic top quark event, and training image classifier algorithms over top signal against

QCD background.

Quantifying its performance in terms of ROC curves (signal efficiency versus back-

ground rejection) we found comparable performance to well-established QCD based tag-

gers, even in the presence of experimental degradation such as detector smearing and

calorimeter energy cutoffs. The overarching question remains of whether these techniques

will bear fruit when applied to real data and not just Monte Carlo simulation, but the

robust performance of our network suggests that this is certainly a question that merits

future investigation.

There are several other well-motivated directions for future work. For instance, in the

global fit presented in chapter 3, a total of 12 parameters were constrained. However, in

order to perform this fit, this parameter space was broken up into subsets of operators: 6 in
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tt̄ production, 3 in single top, and a further 3 in tt̄Z production. This factorisation, while

easing the burden on the computational complexity of the fit, is not necessarily physically

justified, since tt̄Z and other electroweak processes are sensitive to all 12 operators simul-

taneously, and because the D = 6 operators also affect top quark decays, the division of

the fit into production and decay observables is an imperfect approximation. This can be

improved by only fitting to fiducial top measurements that are presented in terms of final

state quantities and not ‘unfolded’ to the level of tops. The experimental collaborations

are beginning to favour presenting data in this way, and work on improving the capabilities

of TopFitter to harness this data is underway.

Improvements can be made on the theory side as well. All the constraints presented

here are at leading order in the SMEFT, and the bounds on the Wilson coefficients can

be interpreted as valid at the scale that they are probed. However, just as in QCD, when

we truncate the perturbative expansion in ci/Λ
2 we introduce a scale dependence of the

D = 6 Wilson coefficients. This can be modelled with an additional scale uncertainty

propagated into each observable, or explicitly calculated through the RGEs for the D = 6

operators, which are known at 1-loop. RGE improvement cannot completely capture the

full NLO corrections, however, because the new operators will in general induce additional

loop corrections that can substantially affect the shapes of differential distributions. This

is also related to the imperfectness of our modelling of (N)NLO corrections with QCD

K-factors, which inevitably misses out on some kinematic effects. On the other hand, a

complete 1-loop EFT calculation of tt̄ production, for instance, is a formidable challenge,

due to the sheer number of additional operators and diagrams involved, but certainly a

worthwhile one, especially given the timescale of the future LHC programme.

Zooming out from the plethora of numerical results in this thesis, we can ask what

general conclusions can be drawn? Firstly, though we often hear repeated that ‘top quark

physics has entered a precision era’ and that ‘the LHC is a top quark factory’, it appears we

still have some way to go before we saturate our understanding of the top quark’s proper-

ties, and improvements in both experimental precision and theory understanding are both

essential to this endeavour. Secondly, since at the time of writing there are no convincing

hints of new resonant states from the current data and we are beginning to asymptote

towards the maximum LHC reach for these states, it seems that precision understanding

of the Standard Model, both as a full and an effective theory, will increasingly play a role

in the hunt for new physics. It remains to be seen whether the D = 6 extension of the

SM will be the avenue that leads us to the next Standard Model, but its usefulness as a

tool for collider phenomenology has shown us beyond question that it is an avenue worth

pursuing.
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A D = 6 redefinitions of Standard Model input pa-

rameters

As well as generating additional contributions to S-matrix elements through new Feynman

rules, the D = 6 operators also lead to modifications of the Standard Model Lagrangian

parameters, which will propagate into observables. To see this, we note that an observable

O such as a decay width or cross-section can be written as a function of Lagrangian

parameters O({ρ}), where {ρ} = {g, g′, v, yt} etc. These Lagrangian parameters bear a

specific relation to the physical observables {obs} = {α,GF ,mZ ,mt} so that the shift ε

in O due to a Wilson coefficient ci has, in addition to an explicit dependence on ci, an

implicit dependence due to a modification of the relation between Lagrangian parameters

{ρ} and observables {obs}:

O({ρ(obs)})→ O + ε = O({ρ(obs, ci)}, ci) (A.1)

In order to work consistently up to a given order in the EFT expansion, one must take

care to ensure that the SM input parameters are appropriately renormalised as as function

of ci so that obs are unchanged. The modifications to the relations ρ(obs) is the subject of

this section∗.

Higgs potential

The Higgs potential receives a contribution from the operator Oϕ:

V (ϕ) = λ

(
ϕ†ϕ− 1

2
v2

)2

− cϕ(ϕ†ϕ)3. (A.2)

The shifted vacuum expectation value of the potential is at

1

2
v2

6 =
1

3cϕ

(
λ− λ

√
1− 3cϕv

2

λ

)
, (A.3)

This expression does not have a well-defined SM (cϕ = 0) limit, but this can be obtained

by expanding to first order in cϕ:

〈ϕ†ϕ〉 =
1

2
v2

6 =
1

2
v2

(
1 +

3cϕv
2

4λ

)
, (A.4)

so that the shift in the vev is linear in cϕ and vanishes in the SM limit.

∗To avoid unnecessary cluttering of notation, all D = 6 Wilson coefficients are dimensional, i.e.
ci/Λ

2 → ci in this section.
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Kinetic terms

The scalar kinetic part of the SM is modified by the operators Oϕ� and OϕD

L = (Dµϕ)†(Dµϕ) + cϕ�(ϕ†ϕ)�(ϕ†ϕ) + cϕD(ϕ†Dµϕ)∗(ϕ†Dµϕ), (A.5)

In the unitary gauge, we can write the field ϕ as

ϕ =

(
−i(1 + κ±)G±

1√
2
(v6 + (1 + κh)h+ i(1 + κ0)G0)

)
, (A.6)

where the coefficients κh, κ0 and κ± can be chosen to ensure the kinetic terms will be

canonically normalised. Upon expanding out the Lagrangian and keeping just the scalar-

only terms (the gauge parts will be treated shortly), we see that the kinetic terms are given

by:

LH =
1

2
(1 + κh)

2
(

1 + 2v2
[cϕD

4
− cϕ�

])
∂µh∂

µh,

LG0 =
1

2
(1 + κ0)2

(
1 + 2v2

cϕD
4

)
∂µG0∂

µG0,

LG± =
1

2
(1 + κ±)2∂µG+∂

µG−

(A.7)

Canonical renormalisation of the kinetic terms then requires

κh = v2
(
cϕ� −

cϕD
4

)
,

κ0 = −v2
cϕD
4
,

κ± = 0.

(A.8)

Combining the Higgs kinetic terms with the modified Higgs potential, the scalar Lagrangian

reads

L =
1

2
(∂µh)2 − κh

v2
6

[
h2(∂µh)2 + 2vh(∂µh)2

]
− λv2

6

(
1− 3cϕv

2

2λ
+ 2κh

)
h2

− λv2
6

(
1− 5cϕv

2

2λ
+ 3κh

)
h3 − 1

4
λ

(
1− 15cϕv

2

2λ
+ 4κh

)
h4 +

3

4
cϕvh

5 +
1

8
cϕh

6,

(A.9)

so we see that there is a shift in the Higgs mass definition

m2
h = 2λv2

6

(
1− 3cϕv

2

2λ
+ 2κh

)
, (A.10)
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which does not correspond to a physical mass shift, as it can be absorbed into a renormal-

isation of the quartic coupling λ(mh).

Gauge sector

The D = 6 operators induce redefinitions of the gauge fields and gauge couplings. The

part of the D = 6 Lagrangian relevant for this discussion is:

L ⊃ cϕG(ϕ†ϕ)GA
µνG

A,µν + cϕW (ϕ†ϕ)W I
µνW

I,µν + cϕB(ϕ†ϕ)BµνB
µν

+ cϕWB(ϕ†τ Iϕ)W I
µνB

µν + cGf
ABCGAν

µ GBν
ρ GCρ

µ + cW ε
IJKW Iν

µ W Jν
ρ WKρ

µ .
(A.11)

After electroweak symmetry breaking, this becomes (combined with the D = 4 Lagrangian)

L ⊃ −1

2
W+
µνW

µν
− −

1

4
W 3
µνW

µν
3 −

1

4
BµνB

µν − 1

4
GA
µνG

A,µν +
1

2
v2

6cϕGG
A
µνG

A,µν

+
1

2
v2

6cϕWW
I
µνW

I,µν +
1

2
v2

6cϕBBµνB
µν − 1

2
v2

6cϕWBW
3
µνB

µν .
(A.12)

The gauge kinetic terms are no longer canonically normalised, and we have also induced

kinetic mixing between W 3 and B. Beginning with the gluons, we can write the canonically

normalised gluon field as Gµ = (1 + κG)
1
2Gµ, then the Lagrangian reads

L ⊃ −1

4
(1− 2v2

6cϕG)GµνG
µν

= −1

4
GµνGµν ,

(A.13)

provided that

κG = −2v2
6cϕG. (A.14)

The gluon field is rescaled

GA
µ = GAµ (1 + cϕGv

2), (A.15)

so that the strong coupling constant must also be renormalised

ḡs = gs(1 + cϕGv
2), (A.16)

in order to keep the vector currents unchanged, i.e. gsG
A
µ = ḡsGAµ . The exercise can be

repeated for the electroweak bosons

W I
µ =WI

µ(1 + cϕWv
2)

Bµ = Bµ(1 + cϕBv
2)

(A.17)
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where the renormalisation coefficients are κW = −2v2cϕW and κB = −2v2cϕB, and the

gauge couplings are renormalised to

ḡ = g(1 + cϕWv
2),

ḡ′ = g′(1 + cϕBv
2).

(A.18)

We must also take into account the kinetic mixing that has been induced. The Lagrangian

for the kinetic terms of the W3 and B fields can be written as a non-diagonal matrix:

L = −1

4

[
W3

µν Bµν
] [ 1 v2

6cϕWB

v2
6cϕWB 1

][
W3

µν

Bµν

]
. (A.19)

Canonically normalising theW3 and B fields then just amounts to diagonalising this matrix,

which can be done by rotating the fields[
W3

µ

Bµ

]
=

[
1 v2

6cϕWB

0 1

][
W3

µ

Bµ

]
. (A.20)

The canonically normalised kinetic Lagrangian is then

L = −1

4
WI

µνW
µν
I −

1

4
BµνBµν = −1

2
W+

µνW
µν
− −

1

4
W3

µνW
µν
3 −

1

4
BµνBµν , (A.21)

where W1,2
µ =W1,2

µ .

Turning now to the electroweak mass terms, we start with the Lagrangian

L = −1

4
ḡ2v2

6W+
µWµ

− +
1

8
v2

6(ḡW3
µ − ḡ′Bµ)2 +

1

16
v2

6cϕD(ḡW3
µ − ḡ′Bµ)2, (A.22)

so that the W mass term can be straightforwardly read off as

M2
W =

1

4
ḡ2v2

6. (A.23)

As for the Z and photon, we can write the Lagrangian as

L =
1

2

(
1

4
v2

6

{
1 +

1

2
v2

6cϕD

})[
W3

µν Bµν
] [ ḡ2 ḡḡ′

ḡḡ′ ḡ′2

][
W3

µ

Bµ

]
(A.24)

Diagonalising the mass matrix gives us the updated expression[
Zµ

Aµ

]
=

[
cos θ̄W − sin θ̄W

sin θ̄W cos θ̄W

][
W3

µ

Bµ

]
, (A.25)
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where

cos θ̄W =
ḡ√

ḡ2 + ḡ′2

[
1 + v2 ḡ

ḡ′
ḡ′2

ḡ2 + ḡ′2
cϕWB

]
sin θ̄W =

ḡ′√
ḡ2 + ḡ′2

[
1− v2 ḡ

′

ḡ

ḡ2

ḡ2 + ḡ′2
cϕWB

]
.

(A.26)

Then the Z mass is given by

M2
Z =

v2
6

4
(ḡ2 + ḡ′2) +

1

8
v4

6cϕD(ḡ2 + ḡ′2) +
1

2
v4

6 ḡḡ
′cϕWB, (A.27)

while the photon remains massless as required. Substituting the renormalised gauge fields

into the covariant derivative operator gives the expression

Dµ = ∂µ + i
g′√
2

[W+
µT

+ + W−
µT
−] + iḡZ [T 3 − (sin2 θ̄ + κ)Q]Zµ + iēQAµ, (A.28)

where, as usual, the generators T± = T1 ∓ iT2 and the electric charge is Q = T3 + Y . The

effective neutral couplings are

ē =
ḡḡ′√
ḡ2 + ḡ′2

[
1− ḡḡ′

g2 + g′2
v2

6cϕWB

]
= ḡ sin θ̄ − 1

2
cos θ̄ḡv2

6cϕWB

ḡZ =
√
ḡ2 + ḡ′2 +

ḡḡ′

g2 + g′2
v2

6cϕWB =
ē

sin θ̄ cos θ̄

[
1 +

ḡ2 + ḡ′2

2ḡḡ′
v2

6cϕWB

]
sin2 θ̄ =

g′2

ḡ2 + ḡ′2
+
ḡḡ′(ḡ2 − ḡ′2)

(ḡ2 + ḡ′2)2
v2

6cϕWB.

(A.29)

Yukawa sector

The Yukawa sector will be modified by the operators of type ψ2ϕ3. The Yukawa Lagrangian

for the unbroken theory now reads

LYukawa = −(ϕ†d̄s[yd]stQt + ϕ̃†ūs[yu]stQt + ϕ†ēs[ye]stLt + h.c.)

+ (cdϕ(ϕ†ϕ)ϕ†d̄sQs + cuϕ(ϕ†ϕ)ϕ†ūsQs + cuϕ(ϕ†ϕ)ϕ†ēsLs + h.c.),
(A.30)

which in the unbroken theory leads to the fermion mass matrices

[Mψ]rs =
v6√

2

(
[yψ]rs −

1

2
v2[cψϕ]rs

)
, where ψ = u, d, e (A.31)
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and to the Higgs fermion couplings

[κψ]rs =
1√
2

[yψ]rs(1 + κh)−
3

2
√

2
v2cψϕ

=
1√
2

[Mψ]rs(1 + κh)−
v2

√
2
v2cψϕ, where ψ = u, d, e

(A.32)

which, unlike in the SM, are not simply proportional to the fermion mass matrices. Fur-

thermore, because the fermion mass matrices and Yukawa matrices have different RGEs,

they are not simultaneously diagonalisable, so Higgs-fermion couplings will be no longer

flavour diagonal.

Fermi sector

The Fermi coupling constant is measured from the transition rate for µ− → e−ν̄eνµ, and

this in turn defines the value of the electroweak scale v. In the SM alone, this is described

by the effective operator

LGF
=

4GF√
2

(ν̄µγ
µPLµ)(ēγµPLνe). (A.33)

The Fermi constant GF will also receive corrections from D = 6 operators, leading to the

new value: √
2GF =

1

v2
6

− 1

2

(
c2112
ll + c1221

ll

)
+
(
c

(3)11
ϕl + c

(3)22
ϕl

)
. (A.34)

Although this looks like a physical shift, in fact it can be combined with the modified

expression for the Higgs mass to define renormalised values for the Higgs self-coupling and

vev:

λ =
3
√

2cϕ
4GF

+
m2
h

4

(
c2112
ll + c1221

ll − 2(c
(3)11
ϕl + c

(3)22
ϕl )

)
+

1√
2
m2
hGF (1− 2κh)

v6 =
1

(
√

2GF )
1
2

+
1

2(
√

2GF )
3
2

(
c

(3)11
ϕl + c

(3)22
ϕl − 1

2

(
c2112
ll + c1221

ll

))
.

(A.35)

Likewise, we can rearrange the expressions for the observables αem(≡ e2/4π) and MZ to

obtain the renormalised U(1)Y and SU(2)L couplings

ḡ′ = g′ +
v2

6(4cϕWBg + cϕDg
′)(−4M2

Z + v2
6(g2 − g′2 + 16παem))

32(M2
Z − 4πv2

6αem)

ḡ = g − 2v2
6(4cϕWBg + cϕDg

′)(4M4
Z +M2

Zv
2
6)

M2
Z(M2

Z − 4πv2
6αem)

×
[
v4

6((g2 − g′2 − 20παem) + παem(−3g2 + 3g′2 + 16παem))

(4M2
Z + v2

6(g2 − g′2))2

] (A.36)
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where the SM coupling constants are as usual given by

g′ =

√
2

v6

(
M2

Z −
√
M4

Z − 4παemM2
Zv

2
6

) 1
2

g =

√
2

v6

(
M2

Z +
√
M4

Z − 4παemM2
Zv

2
6

) 1
2

.

(A.37)

This completes the finite renormalisation of the Standard Model Lagrangian due to the

effects of operators of dimension D = 6. The modifications to all other derived parameters

can be obtained from the relations presented here.
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