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Abstract 

Acute lymphoblastic leukaemia (ALL) is a cancer of the blood and the most common 

childhood cancer in the world today. This leukaemia is known to infiltrate the central 

nervous system (CNS), a sanctuary site where blasts can flourish and cause 

relapse. There are currently no ways to accurately predict CNS relapse, so all 

children receive substantial amounts of CNS-directed chemotherapy which can 

cause short and long-term neurotoxicity.  

 

CNS leukaemia is currently classified by CSF cytology and cell count however, 

evidence shows that leukaemic blasts adhere to the walls of the leptomeninges 

which may reduce the ability of FCM and CSF cytology to accurately determine 

leukaemic burden in the CNS. In order to tailor CNS therapy to a child’s individual 

risk of relapse, better biomarkers, capable of measuring total leukemic burden at 

this site are needed. This project aimed to develop sensitive biomarkers for the 

presence of CNS leukaemia and its response to therapy by targeting cell-

independent markers in samples of cerebrospinal fluid (CSF). Biomarkers of interest 

include CSF metabolites, soluble proteins and cell-free DNA (cfDNA). 

 

Semi-untargeted metabolic profiling was performed using Liquid Chromatography 

Mass Spectrometry (LC-MS) on a large, comprehensive cohort of  diagnostic CSF 

samples and normal control CSF to validate a panel of metabolites that showed 

promise in detecting a leukaemic metabolic signature. This analysis highlighted 

Creatine, N4-acetylcytidine, Phenylalanine and Symmetric dimethylarginine as the 

most promising diagnostic biomarkers. Multivariate biomarker models were created 

and demonstrated a higher sensitivity and specificity in detecting a leukaemic 

signature when the biomarkers were used in combination. Phenylalanine also 
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demonstrated promise as a potential prognostic biomarker, presenting with elevated 

levels in patients who went onto to relapse in the CNS.  

 

Luminex multiplex-immunoassays were run on a subset of diagnostic CSF samples 

and matched control CSF for screening and identification of soluble 

protein/chemokine markers capable of distinguishing CNS leukaemia. Of interest, 

CD27, presented with elevated levels in patient diagnostic CSF compared to the 

control CSF. 

 

Several different commercial cfDNA extraction kits and technologies were tested to 

determine the most suitable kit for extracting cfDNA from low volumes of patient 

CSF. Two highly sensitive platforms, droplet digital PCR (ddPCR) and next-

generation sequencing (NGS) were used to identify leukaemic cfDNA by targeting 

the KRAS G12D mutation and immunoglobulin heavy chain (IGH) gene 

rearrangements. This analysis proved that leukaemic cfDNA could be detected in 

the low samples of patient CSF using both platforms, providing evidence that cfDNA 

can be used as a highly specific biomarker for CNS leukaemia.  

 

In conclusion, this study identified promising diagnostic, prognostic and predictive 

biomarkers in the CSF of CNS-ALL patients, each with their advantages and 

disadvantages, capable of detecting CNS leukaemia taking another step towards  

personalising CNS-directed therapy with the aim of reducing therapy for those at 

low risk of CNS recurrence and intensifying treatment for those at high risk.  
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Chapter 1: Introduction 

1.1 Background   

Cancers of the blood make up around 7% of total global cancers, and of those, acute 

lymphoblastic leukaemia (ALL) is the most common childhood cancer. ALL is a rare 

disease, with around 800 people being diagnosed each year in the UK, most of 

which are children, teenagers or young adults  [1] . This cancer affects white blood 

cells of the lymphoid lineage, namely B cells and T cells, transforming them into 

immature, malignant, lymphoid progenitor blasts capable of proliferating aberrantly 

and avoiding natural cell death mechanisms.  

 

ALL is a systemic disease that originates and accumulates in the bone marrow and 

is known to infiltrate various extramedullary sites around the body such as the 

spleen, liver,  testes and the central nervous system (CNS) via the blood [2]. This 

thesis will focus on the development of biomarkers for the detection of central 

nervous system acute lymphoblastic leukaemia (CNS-ALL) to predict relapse and 

monitor response to therapy in patients with paediatric ALL.  

 

Over the past sixty years there has been a dramatic increase in the efficacy of ALL 

treatment and it is now considered one of the best treatment regimens a cancer 

patient can receive, with overall survival rates today reaching over 90% in most 

developed countries (Figure 1-1) [3]. This can be attributed to the incremental 

treatment strategies implemented with every clinical trial performed and the 

development of accurate risk stratification of patients. These trials and further 

research have allowed extensive identification and characterisation of various ALL 

subtypes, each with their own unique level of risk and consequent personalised 

treatment regimen. 
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Regardless of the remarkable progress achieved in treating ALL, it persists as one 

of the highest causes of death in children today. Not only this, as treatment dosages 

have been increased and intensified over the years, coupled with longer duration of 

treatment regimens (up to 3.5 years) as well as the inclusion of CNS-directed 

therapy, toxicity has become a major obstacle.  

 

 

Figure 1-1: Improvements in the overall survival (OS) with the evolution of treatment of 

paediatric patients with ALL over time. OS curves range across 6 eras defined by the 

introduction of novel treatment strategies for a total of 2,852 children with newly-diagnosed ALL 

who were enrolled in 15 consecutive Total Therapy studies (I-XV) conducted at St. Jude Clinical 

Research Hospital from 1962 to 2007 [3].   

 

The high dosage of  CNS-directed treatment given to all children with ALL is largely 

due to the inability to accurately measure leukaemic involvement in the CNS and 

the high and almost inevitable incidence of relapse if this type of treatment is not 

administered. These factors make up the face of modern challenges seen in the 

treatment of paediatric ALL today and has led to an emphasis on achieving 
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personalised therapy to reinforce the excellent cure rates seen for this disease in 

children. 

 

 

1.2 Leukaemogenesis & Prognostic Factors 

It is currently not known if there is a main cause of leukaemia but there are several 

risk factors associated with developing an increased risk of ALL that can be divided 

into genetic and environmental factors. Environmental factors that have been 

suggested as potential causes for ALL include pre- and post-natal exposure to 

radiation such as x-rays or high dose therapeutic radiation or chemotherapy. 

However, evidence for  these causes is few and far between. Professor Mel Greaves 

of the Institute of Cancer Research, UK, offers another possible explanation in the 

delayed infection hypothesis, with strong evidence suggesting that early infection 

(in the first year of life) is key to priming the immune system of a child and lower the 

risk of triggering ALL through an abnormal immune response to common infections 

later on in childhood [4].  

 

Genetic factors are not hereditary and primarily include cytogenetic variations such 

as aneuploidy, chromosomal translocations & deletions. Genetic predispositions 

however, can occur in the form of germline polymorphisms with associated with an 

increased susceptibility of developing ALL, especially in patients with genetic 

syndromes. The prevalence of somatic mutations within the different genetic 

subtypes in ALL varies markedly and patients can possess inherited genetic variants 

with low or high penetrance (rarer) germline variants such as ETV6, TP53, IKZF1 

and PAX5 (Figure 1-2) [3].  
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How quickly the leukaemia is eradicated in response to treatment to the level where 

it cannot be detected remains the single most powerful prognostic factor in 

paediatric ALL. The term employed for any approach used to measure and quantify 

sub-microscopic levels of disease is minimal-residual disease or MRD and will be 

discussed in detail in section 1.6. 

 

 

Figure 1-2: Genetic subtype frequencies in paediatric ALL [3].   

 

1.2.1 Classical prognostic factors 

Other than the genetic factors mentioned above, there are several well-established 

clinical prognostic factors such as age and white blood cell count (WBC) in B-ALL, 

where older children (>10) and with a WBC >50,000 mm3 are considered high risk 

and children <10 years old with a WBC <50,000 mm3 are considered standard risk 

[5]. The incidence of ALL peaks between the ages of two and five years old. Cases 

of infant ALL (<1 year old) comprise about 2-5% of childhood ALL cases and are 

considered a separate subgroup with poor prognoses as they tend to have a much 
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higher relapse rate [6, 7]. Age and WBC are unfortunately not a strong prognostic 

factor for patients with T-ALL. Males tend to have worse outcomes than females  

and this is thought to be due to the possibility of relapse in the testes and the 

increased incidence rate of T-ALL in males.  

 

The ability to distinguish immunophenotype (B- or T-cell lineage) is another key 

prognostic factor in the treatment of ALL. Morphologically it is not possible to clearly 

distinguish between the two lineages. The expression of lineage specific markers 

for B-cells, also known as common acute lymphoblastic leukaemia antigen (CALLA), 

present on leukaemic cells is used for immunophenotyping in ALL and is achieved 

by multichannel flow cytometry (MFC). This is considered standard protocol in both 

diagnosis and in MRD monitoring. In B-cell ALL the main cell-surface and 

cytoplasmic markers used to detect both pre-B cell ALL and pro-B cell ALL are: 

CD19, CD10, CD22, CD34, CD20, CD24, CD79a and HLA-DR. In T-ALL the 

following markers are used to identify a T-cell phenotype: CD1a, CD2, CD3, CD4, 

CD5, CD7 and CD8. These markers are also known as leukaemia associated 

immunophenotypes (LAIP) because they don’t appear in normal lymphocyte 

precursors [8]. Around 85% of paediatric ALL cases are B-cell-precursor ALL and 

overall have better outcomes than T-cell ALL cases. 

 

Race and ethnicity remain persistent risk factors in ALL. Hispanic children have the 

highest risk of developing ALL whereas children of African descent have the lowest. 

However, children of Black and Hispanic descent tend to have worse prognoses 

compared to children of White/Asian descent. Epidemiological studies also provide 

evidence that a child’s race or ethnicity also influences treatment efficacy [9, 10]. 
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1.3 Biology of CNS-ALL 

1.3.1 The leptomeninges and cerebrospinal fluid (CSF) 

The CNS is composed of the brain and spinal cord which are both protected by the 

meninges. The meninges are made up of three layers, an outer layer called the dura 

mater which is the thickest layer lying underneath the skull, and two inner layers 

called the arachnoid mater and the pia mater which lie on top of the brain tissue. 

The inner layers are also known as the leptomeninges and the space between them 

is known as the subarachnoid space, home to cerebral blood vessels, a forest of 

structural stromal cells and the primary space for CSF circulation throughout the 

organ (Figure 1-3) [11].  

 

CSF is a clear, colourless liquid with an ionic composition mainly comprising of Na+, 

Cl- and HCO3
- ions, and various others such as K+, Ca2+, Mg2+, Mn2+ and contains  

micronutrients such as vitamin C, folate thiamine monophosphate, pyridoxal 

phosphate and trace amounts of macro-molecules such as proteins and 

immunoglobulins. The majority of macro-molecules such as albumin and some 

micronutrients which make up the CSF either diffuse through the various blood-brain 

barriers freely are actively transported from the blood or are actively secreted by the 

choroid plexus in the brain [12]. The cellular composition of CSF is primarily made 

up of leukocytes and monocytes in normal “healthy” CSF at a ratio of 2:1 

respectively but with a low count of <5 cells / μL [13]. 

 

CSF has several functions in the CNS, primitively, in the protection of the brain 

tissue, by filling the intermediary space in the leptomeninges and effectively 

cushioning the brain. It also provides nourishment and removes waste product for 

the essential metabolic processes that occur in this space through bi-directional flow 
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of CSF throughout the CNS maintaining a tightly regulated homeostasis [14]. CSF 

is secreted primarily by the choroid plexus as well as from the ependyma and 

parenchyma [15].  The flow of CSF has been named the third circulation and after 

secretion, CSF flows through the lateral ventricles to the third ventricle, through the 

cerebral aqueduct (aqueduct of sylvius) and into the fourth ventricle where it then 

fills the subarachnoid space around the brain and spinal cord and finally it is 

absorbed back into the blood through the arachnoid villi at major veins or potentially 

though a supporting glymphatic system (Figure 1-4).  

 

 

 

Figure 1-3: Anatomy of the Meninges. Image produced on Biorender. 
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Figure 1-4:Cerebrospinal fluid secretion and flow around the CNS. Source: Basso et al.,[16] 
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1.3.2 Mechanisms of CNS infiltration 

The mechanisms of blast infiltration into the CNS are poorly understood, it appears 

that following leukaemic origin in the bone marrow and transit into peripheral blood, 

ALL has a proclivity to metastasize into the CNS. Infiltration has been shown to 

begin in the walls of the superficial arachnoid veins where it  progresses through the 

leptomeninges, deep arachnoid and, in late-stage disease, into the parenchyma 

[17]. To date there has been no consensus on the primary avenue blasts take into 

the CNS. Originally it was thought that CNS infiltration occurred via the blood brain 

barrier. However, in vivo studies have failed to provide solid evidence for this [18].  

 

The other main routes of CNS infiltration which have been most studied are the 

blood-CSF barrier (BCSFB) located in the choroid plexus and the blood-

leptomeningeal barrier (BLMB) found in micro blood vessels on the surface of the 

pia mater (Figure 1-5). Evidence for CNS infiltration through the BCSFB and BLMB 

can be found in histological analysis of xenograft mice models where infiltration was 

observed in the arachnoid veins, leptomeninges and surrounding tissues [17, 19]. 

Post-mortem histopathological data from children with ALL also revealed similar 

progressive arachnoid infiltration [20]. Another potential route of infiltration is the 

blood-dural lymphatics barrier (BDLB) located in the dural lymphatic system in the 

meninges. This system absorbs CSF from the subarachnoid space and is 

responsible for clearing macromolecules from the CNS [21]. 

 

Recent evidence has shed light on a novel mechanism of infiltration through the 

meningeal vessels and emissary veins connecting the bone marrow and 

subarachnoid space in the CNS of mice. This novel mechanism is dependent on the 

expression of α6 integrin in leukaemic cells and the presence of laminin receptor on 

the epithelial cells of the vein surface. Most leukaemic blasts are known to express 
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the laminin receptor a6 integrin and through a multitude of in vitro and in vivo 

experiments. Yao et al., demonstrated that ALL cells infiltrated the CNS through the 

laminin+ extracellular matrix of emissary bridging blood vessels [18].  

 

There exists the possibility that blasts may be introduced accidently during routine 

clinical procedures involved in the treatment of ALL. Incidence of traumatic lumbar 

punctures (TLP) occur often where peripheral blood possibly containing blasts, 

contaminates the CSF [22]. This phenomenon is unproven however, and it is likely  

that the CNS already contains blasts.   

 

Once the blasts have successfully infiltrated the CNS, evidence shows that they 

have an inherent tendency to adhere to the meningeal stroma and are typically not 

found floating in the CSF [37, 39]. An in vitro study by Akers et al., provided further 

evidence of this adherence using co-cultured ALL cell lines (REH and SUPB-15) 

alongside human meningeal cells, human choroid plexus epithelial cells and human 

astrocytes where they demonstrated ALL cell migration towards CNS cells by 

chemotaxis of chemokine CXCL12 (secreted by CNS cells), and subsequent 

adherence to subarachnoid-derived cells [23]. They also showed that these B-cell 

leukaemic cell lines expressed adherence junction proteins PECAM1 and VE-

cadherin supporting the CNS-entry mechanisms into the CNS through endothelial 

cells barriers found at sites such as the BCSFB and BLMB. Other molecules such 

as vascular endothelial growth factor A (VEGFA) has also been shown to be highly 

expressed in BCP-ALL cells. Muench et al., showed an in vitro increase in trans-

endothelial migration of ALL cells correlated with high VEGFA expression [24].  
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Figure 1-5: The meninges and potential routes of CNS infiltration. (1) Infiltration through the 

BBB; (2) Infiltration through the BLMB; (3) Infiltration through the BCSFB; (4) Infiltration through 

bridging vessels; (5) Infiltration through the BDLB [25]. 

 

What is not yet clear is if the CNS-entry mechanisms for B-cells and T-cells under 

normal physiological conditions are manipulated in CNS infiltration. T-cell 

leukaemias are associated with an increase in CNS relapses and both B and T-cells 

can be found in normal CSF, with higher amounts of T-cells. These T cells have 

been shown to express high levels of chemokine receptors such as CXCR3 and 

CCR7. Indeed, malignant T cells have been found to have upregulated CXCR3 and 

CCR7 and high levels of CCR7 ligand CCL19 in the choroid plexus suggesting a 

potential entry mechanisms for T-cells [26]. 

 

Whether leukaemic blasts have an intrinsic ability to migrate to the CNS is highly 

debated. One study proposed two potential models where, in model 1, only some 

leukaemic blasts acquire the ability to traffic to the CNS and, in model 2, all 

leukaemic blasts can traffic to the CNS regardless of subtype. Using xenograft 
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mouse models, the authors saw a 79% engraftment of CNS leukaemia  supporting 

model 2, with trafficking to the CNS being a ubiquitous trait of the majority of blast 

cells, but not all [17]. In another study, Bartram et al., used high throughput 

sequencing (HTS) of immunoglobulin gene rearrangements to investigate clonal 

architecture in paired bone marrow and CNS diagnostic and relapse samples in 12 

patients with B-cell precursor ALL. The authors hypothesised that leukaemic blasts 

are capable of trafficking freely between the bone marrow and the CNS. Nine out of 

eleven relapse patients presented with shared leukaemic subclones between the 

bone marrow and CNS and a rise and fall in the subclones could be clearly observed 

suggesting that leukaemic blasts are free to traffic into the CNS and bone marrow 

(Figure 1-6). The rise and fall and consequent dominant presence of a clone(s) in 

either the bone marrow or the CNS at diagnosis or relapse could be caused by 

selection pressures such as treatment causing a migratory effect or, alternatively, 

by clonal evolution occurring in both the CNS and in the bone marrow [27]. Both 

patterns were seen in this study (Figure 1-7). 

 

The authors also analysed paired samples of four patients with apparent isolated 

CNS relapses. However, using this HTS method the study proved that sub-

microscopic levels of the clones were detectable thus strengthening the evidence 

that leukaemic blast can freely traffic from the bone marrow and CNS and vice versa.  
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Figure 1-6: Schematic representation of clonal distribution in bone marrow (BM) and CNS in 

matched diagnostic and relapse samples. (A) Shared dominant clones in BM and CSF 

compartments at diagnosis; (B) Two clones present in diagnostic BM; one dominant, one minor. 

BM relapse presents with reversed clonal dominance. CSF relapse presents with only one clone 

and the disappearance of the original major diagnostic BM clone; (C) Shared single dominant clone 

in BM relapse and CSF relapse; (D) Several clones in Diagnostic BM compartment. BM relapse 
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and CSF relapse present with two original clones and two new clones which were originally absent 

in the diagnostic BM compartment; (E) Two shared dominant clones in BM relapse and CSF 

relapse; (F) Single dominant clone in diagnostic BM compartment present in both BM and CSF 

relapse [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7: Patterns of Clonal distributions by either free blast trafficking between the 

BM and the CNS (Pattern 1) or clonal evolution occurring in the BM or the CNS (Pattern 

2) [45]. 
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1.4 Clinical aspects of CNS-ALL 

1.4.1 CNS-ALL diagnosis 

Blasts in the CNS generally proliferate at a much slower rate than in the periphery 

or bone marrow [28]. The ability to detect CNS-ALL most likely occurs from the 

progressive accumulation of slowly proliferating blasts in the CNS or by continuous 

infiltration from the periphery by methods of free trafficking discussed above.  

 

Most patients do not present with clinical symptoms of CNS-ALL. CNS-ALL is 

typically detected and diagnosed by cell count and cytological examination (CM) of 

the CSF by cytospin following lumbar puncture. Routine lumbar punctures extract a 

small volume of CSF (< 1 mL) prior to administering intrathecal chemotherapy [29].   

 

Upon diagnosis, patients are classified as either CNS1, CNS2, CNS3 or TLP+/-  

(Table 1-1) [22, 28]. This diagnostic classification scheme has moderate specificity, 

although it can correctly classify CNS1 and CNS3 patients relatively well, with 

clinical outcomes tending to be worse for CNS3 patients than in CNS1 patients; 

CNS2 patients are often misclassified. A study comparing CSF cytology and 

flowcytometric immunophenotyping (FCM) (a more sensitive method to detect CNS-

ALL) indicated a discordance of between CNS2 patients and flow cytometry 

negative patients, highlighting a high false-positivity rate when using CSF cytology 

which could be explained by the poor ability of CSF cytology to differentiate between 

blasts and reactive T-cells [30]. CSF cytology also has low sensitivity as it currently 

diagnoses only ~2 - 4% of patients with CNS-ALL. A classification of CNS1 does 

not necessarily indicate absence of leukaemic infiltration and several studies have 

shown that the vast majority of CNS relapse cases tend to occur in CNS1 patients 

and non-high-risk patients [22, 28, 31].  
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Evidence clearly shows that the risk of CNS-relapse in CNS3 patients is higher 

although few patients present with CNS3 at the time of diagnosis [32]. This suggests 

that CNS infiltration occurs much earlier than thought in the progression of the 

disease. Patients who present with CNS2 and CNS3 are generally put on higher 

intensity treatment regimens which, in turn, reduces their overall risk of relapse. 

 

Table 1-1: CNS-ALL classification. WBC - White blood cell; RBC – Red blood cell 

 

TLP occurs in up to 20% of all children and the introduction of peripheral blood into 

the CSF may compromise CSF analysis. Incidences of TLP with positive blast 

cytology (TLP+) at diagnosis have also been reported to increase risk of CNS-

relapse [31, 33]. Other prognostic factors such as having a T-cell immunophenotype 

or having high-risk cytogenetics such as BCR-ABL1 also confer an increased risk 

of CNS relapse.  

 

A more sensitive method of CNS diagnosis and risk stratification which is commonly 

used is flowcytometric immunophenotyping (FCM). This technique is common for 

examination of BM for leukaemic diagnoses and has demonstrated a higher 

Classification 
Lymphoblast 

presence in CSF 

WBC count in CSF 

(cells/uL) 

RBC count in CSF 

(cells/uL) 

CNS1 Absent ≤5 <10 

CNS2 Present <5 <10 

CNS3 Present ≥5 <10 

TLP + Present <5 >10 

TLP - Absent ≤5 >10 
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sensitivity in comparison to conventional FCM examination for detecting CNS-ALL 

[34, 35]. Its use in identifying leukaemic cells in CSF is effective, although an 

important limitation is that it most likely does not represent total leukaemic burden 

in the CNS and rapid death of leukocytes after sampling can occur, however this 

can be addressed by the use of Transfix stabilisation  [34, 36].  

 

Interestingly, recent work by Thastrup et al., 2019, demonstrated that flow cytometry 

combined with cytospin analysis of the CSF and other classic prognostic factors 

provides a strong, independent predictor of relapse in the bone marrow 

compartment in comparison to cytospin analysis alone. They revealed that a higher 

blast level in the CSF correlated with an increased risk of relapse in the bone 

marrow, however it did not predict CNS-relapse [37]. This study could not identify a 

low-risk group suitable to reducing treatment. In addition, 25% of CNS1 patients 

were FCM+ suggesting that these patients would require more therapy above 

current levels, potentially leading to more toxicity.  

 

Using PCR to amplify and detect genomic DNA isolated from blasts in the CSF is 

another alternative and potentially highly specific method for detection of sub 

microscopic CNS-ALL although it is unsensitive as it only detects CNS involvement 

in a third of patients. The low sensitivity is thought to be caused by clonal evolutions 

which can occur in the CNS and BM (described in 1.3.2). Studies have, however, 

found concordance between cytospin and PCR+ patients in some cases. Further 

investigation into whether being PCR+ increases risk of CNS-relapse in needed [38].  

 

The lack of predictive biomarkers for CNS diagnosis/relapse and an incomplete 

understanding of fundamental CNS-disease mechanisms are the major challenges 

in improving risk-stratification and treatment of CNS-ALL. 
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1.4.2 Relapse 

The relapse rate for children with ALL is around 10-20% and whether a child will 

relapse or not is strongly related to the patients’ genetic subtype,  

immunophenotype, and efficiency and duration of remission following frontline 

therapy. Generally, T-cell leukaemia is more likely to cause relapse than B-cell 

leukaemia. Evidence has shown that patients who relapse within the first six months 

following remission, tend to have poor prognoses whereas patients with late 

relapses have better prognoses.   

 

Before the introduction of intrathecal chemotherapy, the poor penetration of 

systemic chemotherapy into the CNS led to an increase in CNS relapse rates and 

high levels of subsequent mortality. The most common sites of relapse in ALL are 

the CNS, the bone marrow, and the testes in males. The CNS is an important 

sanctuary site in childhood ALL as it is responsible for >40% of relapses [39]. CNS 

relapse carries a poor prognosis and even with transplantation the event-free 

survival is only 45% [40]. 

 

1.5 Treatment 

1.5.1 Systemic treatment 

Until the 1960s ALL was generally a fatal disease and patients were treated with 

monotherapies resulting in very short remission times. The major breakthroughs in 

treatment for ALL were: (i) the introduction of combined treatments such as 

mercaptopurine and methotrexate; (ii) the introduction of structured treatment 

regimens; (iii) the administration of intrathecal therapy and cranial irradiation to 

eliminate CNS-ALL; and (iv) the introduction of personalised doses of systemic 
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methotrexate based on a patient’s blood count and mercaptopurine, on the basis of 

genotype.  

 

Improvements in supportive care therapy over the years also contributed to the 

improvement of OS. As outcomes improved drastically, these breakthroughs paved 

the way for the new era of personalised treatment we see today.  

 

Over the years chemotherapy agents such as Daunorubicin (anthracyclines); 

prednisolone, dexamethasone (corticosteroids); 6-Mercaptopurine (purine 

analogue) have remained the same in the treatment of ALL. Today, these same 

drugs are used in combination with a further variety of drugs such as cytarabine, L-

asparaginase, etoposide V16, 6-, cyclophosphamide, as well as supportive care 

therapies such as allopurinol and rasburiscase which are used in the first five days 

of treatment to prevent tumour lysis syndrome; as well as antibiotics, antifungals, 

and antivirals. All patients are also treated with intrathecal methotrexate and 

sometimes this is supported with other agents such as intrathecal cytarabine and 

hydrocortisone/prednisolone. 

 

Varied versions of the structured treatment regimen first proposed in the 1960s are 

in use today and the most common structure is composed of four stages: (i) 

remission induction, (ii) consolidation, (iii) delayed intensification, and (iv) 

maintenance. In the UK, treatment lasts two years for females and three years for 

males whereas several other regimens around the world do not give different 

lengths of treatment [41].  

 

Remission induction (RI) is between four to six weeks long and aims to 

reduce the high levels of blasts in the body, in particular the bone marrow 
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and achieve clinical and morphological remission. Patients are treated with 

dexamethasone/prednisolone, vincristine, daunorubicin, pegaspargase/ 

crisantaspase, intrathecal methotrexate/ cytarabine/hydrocortisone and 

mercaptopurine.  Patients begin intrathecal chemotherapy from Day 1.  

  

Consolidation is between 10-12 weeks long and is tailored to the patients’ 

individual risk to target the residual levels of blasts following remission 

induction using a variety of combined therapies. It is more intensive than RI 

and the combination treatments are intended to prevent the development of 

resistance to chemotherapy.  

 

Delayed Intensification (DI) occurs towards the end of Consolidation and is a 

shorter combination of the RI and Consolidation.   

 

Maintenance lasts for two to three years depending on gender in some 

regimens and begins if the leukaemia has remained in remission following 

the previous stages. The aim of this stage is to target any residual blasts 

which divide slowly. Most treatment regimens use mercaptopurine, 

methotrexate (administered weekly), vincristine and either dexamethasone 

or prednisone.  

 

1.5.2 Clinical trials in the UK 

The UKALL trials began in the 1970s and followed on the initial improvements made 

at St. Jude’s (described in Figure 1-1). UKALL VIII in the  early 1980s introduced 

continuous, intensive therapy using maximum tolerated dosages, which led to an 

increase in Event-Free Survival (EFS) by 20%. Trials in the latter half of the 1980s 

(UKALL X) saw the introduction of two five-day post-remission delayed 
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intensification treatments at week 5 and week 30 with daunorubicin further 

increasing EFS to 72%. UKALLXI in the 1990s saw the introduction of a third 

delayed intensification block of treatment at week 35 as well as the efficacy of 

continuous high dose intrathecal therapy, namely methotrexate, which would 

replace the use of cranial irradiation. In the late 1990s, the ALL97/99 trial saw 

changes in asparaginase dosage practices and a change to a more intensive but 

less myelosuppressive delayed intensification blocking scheme. It was around this 

time that patients also began to be treated according to risk-stratification. Patients 

were placed in treatments arms A, B or C which varied drug usages and doses 

according to a patient’s clinical characteristics. ALL97/99 also saw the use of 

dexamethasone and prednisolone where patients were randomised to either 

dexamethasone or prednisolone. The trial resulted in a reduction of both systemic 

and CNS relapse using dexamethasone alone in a third of patients enrolled on the 

trial.  

 

Minimal residual disease monitoring and its implementation in risk-stratification was 

first employed in the UK2003 trial after several large international studies 

demonstrated it as the single strongest predictor of outcome. This trial showed that 

patients who were deemed high risk MRD were three times as likely to relapse than 

low risk MRD patients. This trial however, increased the event-free survival (EFS) 

of patients to 87.7% and the overall survival to 91.3% in the UK [42].  

 

The aim of UKALL2011 was to build upon and improve the use of MRD to risk-

stratify patients and direct treatment by increasing survival rates while maintaining 

safe and if possible, reduced amounts of chemotherapy. MRD was measured at day 

29 and at week 14 using RT-qPCR with a sensitivity down to 0.01%. Patients who 

took part in the randomised trial were either administered dexamethasone at a low 
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dose for 28 days or a high dose for 14 days and it was shown that the shorter, more 

intensive course of treatment was equally as toxic as the longer, less intensive 

course and no correlation with MRD was found [43, 44]. This trial also saw the 

introduction of a single DI stage to all patients to try to further reduce toxicity.  

 

The ALLTogether trial is not an exclusive UK trial but is a European collaboration 

study made up of 14 countries from several study groups including UKALL, NOPHO 

(Nordic countries + Estonia and Lithuania), DCOG (the Netherlands), COALL 

(Germany), BSPHO (Belgium), SHOP (Ireland) and SFCE (France). The pilot study 

began recruitment in 2019 where patients were risk-stratified by a personalised 

algorithm based on clinical characteristics. The main trial began in 2020 and is 

ongoing. It involves a more in-depth look at genetic changes throughout treatment 

and response to therapy.   

 

1.5.3 CNS-Treatment 

Today all children with ALL receive a combination of systemic drugs that penetrate 

the CNS (such as dexamethasone and high dose IV methotrexate as well as harsh 

and potentially neurotoxic CNS-directed chemotherapy administered intrathecally 

even if patients present with negative CSF cytology and white cell count to reduce 

the incidence of CNS-relapse.  

 

Intrathecal administration is crucial as it bypasses the blood-brain barrier (BBB), and 

the therapy is injected directly into the CSF increasing exposure of the drugs in the 

CNS [45]. The main drug used to treat CNS-ALL is methotrexate, administered in 

high doses directly into the CNS. This CNS-directed treatment has resulted in both 

short and long-term neurotoxicity and detrimental effects on the brains of developing 

children and can present as serious adverse events (SAEs) including stroke-like 
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syndrome (SLS), seizures, and posterior reversible encephalopathy syndrome [46, 

47].  

 

Results from the MRC UKALL XI trial demonstrated a decline in patient IQ scores 

three to five years after diagnosis/treatment compared to healthy controls [48]. 

Patients were enrolled onto treatment regimens of 1) intrathecal methotrexate vs 

high-dose systemic methotrexate and 2) high-dose systemic 

methotrexate/intrathecal methotrexate vs short course intrathecal 

methotrexate/cranial irradiation. Both treatment arms resulted in low IQ scores. At 

the time cranial irradiation was a highly successful method of treatment but it 

resulted in an increase of radiation-induced complications and high incidences of 

secondary malignancies [49]. It wasn’t until the introduction of triple intrathecal 

treatment with methotrexate, hydrocortisone and cytarabine that it was removed as 

a treatment option for patients in most of the world. However, it is still used in some 

countries at lower doses and usual only in high-risk patients or those with a high 

tumour burden in the CNS.  

 

1.6 Minimal Residual Disease (MRD)  

Following induction treatment many children with ALL will have residual blasts in 

their bone marrow and in the CNS as seen in the 10-20% of patients who relapse 

[50].  The number of remaining blasts can be so low that they can evade traditional 

detection methods and patients are typically asymptomatic. If left untreated, these 

residual cells can multiply and lead to relapse. MRD can be defined as any approach 

used to measure and quantify undetected, sub-microscopic levels of disease in 

order to measure depth of response to induction therapy and consequently 

determine the intensity of the follow-on therapy.  
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MRD is a well-established prognostic tool in ALL and MRD monitoring is considered 

an extremely accurate method for measuring relapse risk compared to conventional 

risk factors and patients who are positive for MRD demonstrate an increased risk of 

relapse. An important factor in the clinical management of childhood ALL patients is 

tailoring treatment according to the patient’s individual risk category. Studies have 

shown that the absence of MRD in the bone marrow yields a good prognosis and 

that the level of MRD is proportional to the patient’s risk of relapse. In patients who 

achieve remission, those with residual disease have an increased risk of relapse. It 

has also been shown to be the most powerful prognostic factor, independent of other 

clinical risk factors.  

 

There are three main methods of detecting MRD that can reach sensitivity levels of 

1 in 103-105: (i) flow cytometry of immunophenotypic markers; (ii) detection of gene 

fusions by PCR; (iii) immunoglobulin and T-cell receptor gene rearrangements by 

PCR. 

 

1.6.1 Flow Cytometry 

As mentioned in section 1.2.1, there are several LAIP cellular markers that are 

differentially expressed in B and T cells, which can be used to identify and track 

blasts using flow cytometry. It is important to be able to profile the leukaemic 

phenotype at diagnosis against reference bone marrow samples and fortunately, 

this technique can be applied to >90% of all cases with a sensitivity of 1 in 10-3 - 10-

4 cells [51]. However, this technique has its limitations as it requires cell samples to 

be as fresh as possible when being sent to MRD referral laboratories. This may be 

overcome by using transfix which allows sample stability for up to 72 hours. It also 

requires a high level of data interpretation due to the complexity in assigning correct 

ALL phenotypes. False positives arising from the presence of normal lymphoid cells 
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co-expressing common ALL phenotypes are also another factor for consideration 

and highlight the need for data interpretation specialists.  

 

1.6.2 Polymerase chain reaction (PCR) of gene fusions 

This technique can be used for MRD analysis to target the >40% of patients who 

harbour aberrant chromosomal translocations. The ETV6-RUNX1 translocation is 

the most commonly found chromosomal translocation in 25-30% of patients. 

Typically, the starting material to target these fusion transcripts is RNA as the 

translocation breakpoint regions in DNA can be extensive. Evaluation of fusion 

transcripts is an easy and quick method for diagnostic MRD analysis as the same 

primers can be used in several patients for the transcripts [52]. The RNA samples 

can then be quantified using a standard curve comprised of a serial dilution of 

amplified cell line or plasmid DNA allowing for a sensitivity of 10-5. However, this 

method is not patient specific, and its accuracy can vary due to the variation in RNA 

transcript expression within leukaemic cells of the same population as well variation 

found between different patients.  

 

1.6.3 PCR of Immunoglobulin (Ig) & T-cell receptor (TCR) gene 

rearrangements 

The adaptive immune system in mammals is controlled by B and T lymphocytes and 

their ability to generate an antigen-specific response to pathogens by the generation 

of antigen receptors (AR). The highly specific way the body is able to combat 

antigens lies in gene rearrangements within the immunoglobulin (Ig) and T-cell 

receptor (TCR) gene loci. PCR amplification of Ig/TCR gene rearrangements is the 

most common technique used to detect and monitor MRD and can be applied in 

~92% of all cases. In most diagnostic protocols MRD is detected using allele specific 
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oligonucleotide (ASO) primers for RQ-PCR quantification with a sensitivity of 10-5 

based off the EuroClonality-BIOMED 2 collaborative study performed in 2003 [53].  

 

RQ-PCR is the most widely used tool for monitoring MRD in childhood ALL. 

Currently, at diagnosis genomic DNA isolated from leukaemic cells in the bone 

marrow is extracted and Ig/TCR rearrangements in gDNA will be amplified using 

consensus primers. The PCR product will then undergo clonality assessment using 

heteroduplex formation or gene scanning. Heteroduplex formation analysis involves 

denaturing the PCR products at 95°C for five minutes to create single stranded DNA 

followed by immediate renaturation at 4°C for one hour. This results in the formation 

of duplex DNA structures which are either heteroduplex when the PCR products are 

polyclonal, or homoduplex when the PCR products are monoclonal. Polyclonal and 

monoclonal duplexes run at different migration speeds on a gel where a normal 

polyclonal sample will appear as a smear whereas lymphoproliferative monoclonal 

samples will present with a single band. A leukaemic population will typically appear 

as a monoclonal band and the DNA is subsequently isolated and sequenced using 

Sanger sequencing to obtain the highly specific junctional region DNA sequence. 

Patient specific ASO primers are then designed for RQ-PCR against this sequence 

for subsequent MRD monitoring throughout treatment.   

 

1.6.3.1 Biology of Ig/TCR Gene rearrangements 

Malignant cells of a leukaemic population are the offspring of a single transformed 

cell and therefore a leukaemic cell population which is clonally related and can be 

classified as monoclonal. Monoclonality in malignant populations is an important 

hallmark and useful tool which is exploited in MRD monitoring. In lymphoid 

malignancies, clonality can be tracked by targeting rearrangements of the Ig and 

TCR genes. 
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These gene rearrangements are not related to the pathogenesis of ALL but as all 

leukaemic cells derive from an original malignant, transformed cell, all cells of that 

population will carry an identical Ig or TCR rearrangement and effectively act as  

molecular “fingerprints”. The B- lymphocyte Ig repertoire diversity is further amplified 

when they reach maturity through somatic hypermutation events upon antigen 

recognition. As leukaemia is a disease of immature lymphoid blasts, this will not be 

discussed further. Once recombined, these genes form the highly variable region 

on antibody heavy and light chains (Figure 1-8C). 

 

The Ig and TCR gene loci are composed of several variable (V), diversity (D) and 

joining (J) segments that recombine in a stepwise manner during early lymphoid 

differentiation to produce highly diverse junctional regions The Ig cluster of genes 

include: immunoglobulin heavy chain (IGH), immunoglobulin kappa (IGκ) and 

immunoglobulin lambda (IGλ) whereas the TCR cluster of genes include: T-cell 

receptor alpha (TCRα), T-cell receptor beta (TCRβ), T-cell receptor delta (TCRẟ), 

T-cell receptor gamma (TCRγ). Gene rearrangements in IGH, TCRβ and TCRẟ 

genes occur stepwise with D to J rearrangement first, followed by V to DJ 

rearrangement (Figure 1-8A). In IGκ, IGλ, TCRα and TCRγ genes there is a sole V 

to J rearrangement (Figure 1-8B). 

 

Throughout these recombination events, nucleotides are also randomly inserted 

and deleted, massively increasing the diversity of these junctional regions. The 

junctional region is known as the Complementarity-Determining Region 3 (CDR3) 

and is highly variable [54]. Following rearrangement of the gene segments, a single, 

highly specific exon is created marking the clonality of that cell. These gene 

rearrangements can therefore be used as clonality markers capable of being 

detected and tracked from diagnosis throughout treatment. 
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At the coding flanks of V, D, and J segments, there are sequences of conserved 

bases arranged as heptamers and nonamers with either 12 or 23 base pair spacers 

located within them. The heptamer/ nonamer sequences contain conserved bases 

at conserved positions within them and are referred to as recombination sequence 

signals (RSS) (Figure 1-9A). The conserved CAC trio is conserved 99% of the time 

and the AA doublet is conserved 91% and 97% respectively [55]. The other bases 

can vary but the most successful recombination’s do not stray far from the 

consensus sequence. RSS are the only DNA segments required to allow VDJ 

recombination to occur.  

 

The enzymes responsible for binding to the RSS and initiating recombination are 

the recombination activating genes 1 and 2 (RAG1 & RAG2). RAG enzyme RAG1 

is made up of 1040 amino acids and alone can catalyse the rearrangement reaction. 

It has a core region where it binds to the RSS nonamer sequence and contains the 

catalytic amino acids necessary for the cleavage reaction. RAG2 is made up of 527 

amino acids and generally serves as a cofactor for RAG1 [56].  

 

The RAG1/RAG2 complex binds to the nonamer sequence coding segment with 

either a 12 or 23 bp spacer. It then bends the DNA around the strand containing the 

corresponding partner 12 or 23 bp spacer and coding segment. Only this 

combination of 12 and 23 bp spacer will allow for RAG1/RAG2 recombination to 

occur. This 12/23 spacer pairing rule therefore only allows the random 

rearrangement to occur between appropriate V, D or J segments during this 

process. The orientation of the coding flanks is also a factor in the proceeding 

rearrangement as it will direct recombination through either deletional, inversional 

or hybrid joining (Figure 1-9B). Deletional joining is the most common type of 

rearrangement mechanism and occurs 2x more frequently than inversional joining 
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and it relies on the two corresponding RSS signals having opposing orientations. 

This rearrangement results in the creation of precise RSS signal joints which are 

excised as circular by products and imprecise coding joints where random insertion 

of N-nucleotides and non-random insertion of P-nucleotides occurs between the 

coding segments. Inversional joining occurs much less frequently and occurs 

between coding segments with RSS in the same orientation. Hybrid joining is an 

improper type of recombination and does not result in coding diversity. 

 

Deletional joining involves the formation of a coding joint and an excised signal joint 

and the signal joints tend to be around 200 bp apart. The recombinases 

RAG1/RAG2 bind to the 12RSS or 23RSS of the V, D or J coding segment and form 

an RSS complex along with DNA bending factors HMG1A/HMG1B. Upon binding, 

one RSS strand is nicked at the junction between the heptamer and the adjacent 

coding flank within the RSS complex and this results in the folding of the DNA to 

bring the downstream or upstream corresponding RSS into proximity and be 

captured within the RSS complex. Next, the RSS complex nicks the remaining RSS 

resulting in single-strand breaks with exposed -OH groups. The RSS complex now 

catalyses the cleavage transesterification reaction to yield clean double-strand 

breaks following with the formation of a covalently sealed DNA hairpin structure. 

 

The RSS complex resolves the RSS signal joints into circular excision circles. The 

coding hairpin structures are stabilised, aligned and kept in proximity by recruitment 

of another protein complex: DNA-PK holoenzyme (composed of Ku70/Ku80, DNA-

PKcs, ATM and Artemis) to the RSS complex. DNA-PKcs promotes the hairpin 

opening activity of Artemis [57]. The hairpins are now opened either symmetrically 

or asymmetrically. A symmetric hairpin break will result in the random addition of 

nucleotides to the 5’ end by terminal deoxynucleotidyl transferase (TdT) whereas 
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an asymmetrical hairpin break leads to a palindromic overhang of bases. These 

bases are now filled in by DNA polymerase or can be randomly excised by 

exonucleases and the two coding genes are finally ligated by the non-homologous 

end joining (NHEJ) pathway (Figure 1-10). 

 

The inversional joining mechanism is not too dissimilar from deletional joining in 

principle, it does however involve a more complex loop formation that brings the two 

RSS signals/ coding joints together. The signal joints to be joined tend to be 

separated by 3000bp. The signal joint is not excised but in incorporated into the 

sequence in an inverted orientation and therefore this mechanism involves the 

formation of two joints [58] (Figure 1-11). This type of rearrangement is less 

common but is seen in half of all Vk to Jk rearrangement. The fact that the signal 

joints are separated by 3000 bp may provide an explanation as to why these types 

of rearrangements occur less frequently [58].   

 

Another possibility is the formation of a hybrid joint, where a coding segment is 

joined to a signal sequence. The mechanism is thought to be similar to deletional 

joining and occur frequently but appear to act as an intermediate stage between 

rearrangement steps [59]. It is unclear the true purpose of hybrid joints, but they are 

known not to contribute to diversity themselves and do not appear to play a role in 

oncogenesis.  
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Figure 1-8: Basic schematic diagrams of Ig/TCR rearrangement steps and loci on BCR/TCR 

phenotypes. (A) IGH, TCRB and TCRG proceed with a three-step rearrangement; (B) IGK, IGL 

and TCRA genes proceed with a two-step rearrangement; Gene segment colours: Blue = V; Yellow 

= D; Purple = J. (C) Location of heavy chain and light chain loci on the BCR/TCR. Image produced 

on Biorender. 
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Figure 1-9: 12/23 Spacer sequences and rearrangement mechanisms. (A) Composition of 

12/23 spacer sequence (ss). Bases in red are the most conserved (CAC – 99%; AA – 91% in 12 ss 

& 97% in 23ss) (B) Basic schematic diagram of the rearrangement mechanisms. 
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Figure 1-10: Deletional joining mechanism. (i) RAG1/2 recognition of RSS; (ii) Binding of DNA 

PKcs holoenzyme RSS complex to RAG1/2 and formation of recombination complex by DNA 

bending and secondary recognition and capture of partner RSS. Single-strand DNA cleavage and 

exposure of -OH groups; (iii) Formation of hairpin and (iv) Random cleavage of hairpin formation and 

endonuclease generation of P nucleotides and random addition/deletion of N nucleotides to exposed 

ends; (v-vii) repair and ligation of coding and signal sequences by NHEJ and dissociation of RAG ½ 

and signal joint complex (viii). The DNA holoenzyme complex remains bound after step ii until 

dissociation in after step viii but is not shown for clarity. Image produced on Biorender. 
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Figure 1-11: Inversional joining mechanism. (i) RAG1/2 recognition of RSS; (ii) Formation of 

recombination complex by DNA bending and secondary recognition and capture of partner RSS. 

(iii) Single-strand DNA cleavage and exposure of -OH groups; (iv) Formation of hairpin and double 

strand DNA break by RAG1/2. Inversion and formation of two joints, a coding joint and a signal 

joint. (v) Random cleavage of hairpin formation by endonuclease generating P nucleotides and 

random addition or deletion of N nucleotides to exposed ends; (v) repair and ligation of coding and 

signal sequences by NHEJ and (vi) dissociation of the RAG1/2 complex. Image produced on 

Biorender. 
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1.6.4 Limitations of current MRD analysis techniques 

Flow cytometric profiling and real-time quantitative polymerase chain reaction (RQ-

PCR) of leukaemic immunophenotypes are routinely used to monitor MRD. 

However, there can be significant discordance when comparing results. These are 

most likely due to factors such as clonal PCR-marker quality, non-specific 

background DNA amplification, oligoclonality and clonal evolution [60]. These 

methods of monitoring MRD do not consider the small number of cells that may 

avoid detection. Current flow cytometry methods struggle to reach the desired 

sensitivity needed for MRD [61].  

  

A limitation of RQ-PCR is that it requires a reference standard curve containing 

diluted target Ig rearrangements. Sensitivity can also be affected by the presence 

of inhibitors within the PCR reaction mixture. Robustness is also strained in samples 

that lie at the maximum quantifiable range. These samples are often classified as 

positive nonquantifiable (PNQ) but are not considered to be clinically useful [62]. 

The workflow for RQ-PCR is expensive, complex and labour intensive and in the UK 

the first MRD test results are given at day 29, which ultimately inform the 

intensiveness of the remainder of the therapy. Unfortunately, this method is not 

applicable to ~2% of patients due to either inadequate samples, undetectable MRD 

targets, insensitive MRD targets caused by a lack of diversity in IG/TCR 

rearrangements in blasts and difficulties in interpretation when closely related 

markers appear in Ig or TCR loci. 

 

Despite these limitations treatment strategies for Childhood ALL have been shown 

to have an excellent track record in delivering personalised risk-adapted therapy for 

systemic leukaemia [63]. Monitoring treatment response using PCR or flow 

cytometry (FCM) based BM minimal residual disease (MRD) measurements allows 
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safe reduction of treatment for low-risk patients and improves outcome by 

intensification of treatment in high-risk patients [28, 64-67].  

 

Current MRD monitoring is, however, solely performed on bone marrow and has not 

yet been applied to monitor response to treatment and predict relapse at 

extramedullary sites such as the CNS and testes. Its use in analysis of peripheral 

blood has been studied and appears to be inadequate to monitor B-cell leukaemias 

as MRD levels have been reported to be 1-3 logs lower than in matched bone 

marrow biopsies [61]. The application of MRD to the CNS is very clinically important 

for the future of CNS-ALL treatment although it requires more sensitive technologies 

and workflows. 

 

1.7 Biomarkers 

1.7.1 Background 

Biological markers or biomarkers can be defined as objective measurable 

alterations in bodily fluids/tissue and/or biological characteristics that can provide 

insight into healthy physiology, disease pathogenesis or response to therapy [68]. 

Common examples of biomarkers include the detection of blood glucose levels for 

monitoring diabetes or the presence of mutations in known genes such as TP53 to 

predict poor outcome in leukaemia. The key parameters of a good biomarker are 

sensitivity, specificity, applicability, reproducibility and cost effectiveness and they 

are invaluable tools in diagnostics, risk-stratification and in prediction of relapse and 

therapeutic outcomes. Biomarkers can be  defined into several different subtypes 

according to their various applications (Table 1-2).  
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In biomarker discovery there are two approaches that, when combined, can be used 

to optimally identify clinically relevant biomarkers. The first being an experimental 

approach using high-throughput methods capable of detecting differences between 

patient (disease) and control (non-disease) cohorts through one or several potential 

biomarkers. The second being a knowledge-based approach relying on 

understanding fundamental disease biology to identify potential targets of interest.  

 

Once candidate biomarkers have been identified, their adoption into a clinical setting 

requires rigorous testing to ensure the biomarker test meets the appropriate 

analytical requirements in terms of precision, accuracy, sensitivity and specificity. 

Precision can be defined as obtaining reproducible results from repeated sample 

measurements whereas accuracy can be defined as the ability of a test to correctly 

identify patients with a specific disease [69]. Appropriate sensitivity and specificity 

of a biomarker are also essential analytical metrics required for the adoption of a 

biomarker in a clinical setting. Sensitivity can be defined as the ability to detect 

disease in patients who are truly positive for that disease, while specificity can be 

defined as the ability of a tests to correctly identify a non-diseased population as 

truly negative [70]. 

 

Equally important in biomarker discovery and development are the pre-analytical 

variables which can play a key factor in the measurement of a biomarker. Pre-

analytical variables include factors such as sample source, sample collection, 

sample transport and storage, sample volume, sample preparation and sample 

extraction. The testing, measurement and reporting of these factors are essential to 

be able to progress through the biomarker discovery pipeline (Figure 1-12).  
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Table 1-2: Biomarker definitions. [71] 

 

 

 

Figure 1-12: Biomarker development pipeline 

 

 

Establish Clinical Utility: 

Utilise biomarker to stratify 
therapy in a randomised 

controlled trial

Clinical 
Validation: 

Validate clinical 
utility in a larger 

prospective 
cohort

Analytical 
Validation: 

Define biomarker 
with optimal positive 

and negative 
predictive values

Biomarker 
Discovery: 

Optimise assay 
and correlate 
with disease 
process of 

interest

Type of Biomarker Definition 

Diagnostic 

Biomarkers for detecting the presence of a disease in patients. These types 

of biomarkers are also typically used to classify different sub-types of the 

same disease. 

Monitoring 

Biomarkers which are serially assessed to inform of the status of a condition 

in response to a medical intervention i.e., therapy. 

 

Response 

Biomarkers which change in level in response to a medical intervention i.e., 

therapy. These types of biomarkers are commonly used in drug development. 

 

Prognostic 

Biomarkers typically used to inform of a patient’s likelihood of experiencing a 

clinical eventuality such as relapse, or disease progression. 

 

Predictive 

Biomarkers which can either be detected or show a change in level that  

informs of a patient’s likelihood of experience an either a beneficial or 

detrimental reaction to a medical intervention i.e., therapy. 
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1.7.2 Current potential biomarkers for CNS-ALL 

Currently biomarkers that measure leukaemic disease burden are lacking. 

Research to date has focused on more sensitive detection of free-floating  

leukaemic cells in the CSF using flow cytometry or PCR based methods. Use of flow 

cytometry (FCM) increases detection rates from 3% using traditional CSF cytology 

to 15-30% but FCM positive patients at diagnosis have not yet been shown to have 

an increased risk of CNS relapse [34]. Pelleting cells from CSF and extracting DNA 

for PCR also increases detection rates at diagnosis but again, all patients become 

PCR negative rapidly during induction and it has not been shown to predict CNS 

relapse. Both these techniques are too insensitive to track response to treatment -- 

an essential pre-requisite for CSF MRD monitoring. 

 

The search for sensitive biomarkers in the CSF for CNS-ALL has been driven by the 

advent of multi-omics approaches allowing the detection of various types of different 

potential biomarkers including metabolomics, proteomics, transcriptomics and 

genomics. The biomarker areas of interest will be discussed below. 

 

1.7.2.1 Metabolic biomarkers  

Metabolic biomarkers are an area of great interest in biomarker discovery due to the 

significant differences between tumour cell and normal cell metabolism. Tumour 

cells require the ability to adapt to their microenvironment to survive and sustain 

high proliferation rates and they achieve this by altering their metabolism [72].  

Alterations in metabolism can potentially reveal quantifiable levels of metabolites 

that can be isolated from extracellular mediums such as CSF.  
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Within leukaemia, and ALL in particular, the identification of asparagine-

dependence as an intrinsic tool involved in lymphoblast replication has been 

successfully exploited in treatment regimens. L-asparaginase is now administered 

as a standard treatment for ALL. It functions by deaminating asparagine and 

glutamine and consequently causing apoptosis of ALL cells [73]. Information 

obtained from metabolic profiling is potentially of great value as metabolites are the 

furthest downstream product and, therefore, are directly representative of the 

cellular phenotype. However, this presents a variety of complex confounding factors 

which must be addressed, such as the origin of the metabolite of interest. Tiziani et 

al., (2013) investigated the metabolomes of both peripheral blood (PB) and BM 

samples from children with ALL. PB contains a vast number of metabolic products 

from several organs whereas the BM of an ALL patient at diagnosis is most likely 

dominated by metabolites derived from the leukaemic blasts. They found significant 

variation in the levels of certain metabolites between the different 

microenvironments [74].  

 

Metabolomics is a high-throughput platform for identification of novel metabolites 

and has proven to be a very powerful tool although, there is a lack of standardised 

methods related to pre-analysis sample handling and processing. Drug interaction 

and lifestyle changes (i.e. treatment, exercise, meals, fasting) also play a major role 

in the levels of certain metabolites and must be considered in order to identify an 

appropriate metabolite immune to these types of influences [75]. The effect of 

secondary diseases or comorbidities within patients with cancer may confound the 

levels of metabolites detected and should also be considered. One study measured 

metabolite levels from five different gastric diseases as controls compared to gastric 

cancer and failed to note a difference between them [76]. 
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Metabolic experiments can be conducted by two general different methods: 

untargeted and targeted approaches (Table 1-3). An untargeted approach aims to 

identify as many metabolites as possible within a pre-specified range of mass values 

whereas a targeted approach aims to determine the exact concentrations of a panel 

of metabolites [77]. Both of these methods have their place in biomarker discovery 

and development. 

 

Untargeted Targeted 

Hypothesis generating Hypothesis driven 

Global comprehensive analysis Subset analysis 

MS/MS correlated to databases, libraries MS/MS correlated to reference standards 

Qualitative identification Identification already known 

Relative quantification Absolute quantification 

Table 1-3: Experimental metabolomic approaches 

 

 

1.7.2.2 Soluble biomarkers – Proteins & cytokines 

There have been very few cases of successful soluble biomarkers for CNS 

leukaemia. Recent research has identified differences in the protein expression 

profile of leukaemic cells in the CNS compared to their site of origin in the bone 

marrow [64]. This provides the opportunity to search for a specific panel of various 

potential soluble biomarkers including proteins, adhesion molecules, and cytokines 

secreted by leukaemic cells. 

 

This study will focus on the following panel of soluble biomarkers which have been 

shown to have promise as biomarkers capable of detecting and identifying 
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leukaemic burden within the CNS: Osteopontin, CD27, sL-selectin, VEGF, sIL2-Rα, 

TK1, MMP9, CXCL10 and CCL21.  

 

Osteopontin (OPN) is a secreted phosphorylated glycoprotein protein that mediates 

a wide range of biological functions and is found to be secreted in various bodily 

fluids. It is known to be primarily expressed in the bone marrow. The levels of OPN 

in the CSF showed promise in being a leukaemic signature in a study by Incesoy-

Ozdermir et al., (2013) where patients with a high blast count in the CSF were 

compared with CNS1 patients and presented with a higher level of OPN. 

Interestingly, this study indicated that levels of OPN increased around the time of 

relapse [78].  

 

Soluble CD27 is a 32 kD form of the CD27 transmembrane homodimer, a member 

of the tumour-necrosis-factor (TNF) superfamily. It typically presents in peripheral 

blood T-cells and a sub-population of B-cells and has been detected in several 

bodily fluids. One study tested the levels of CD27 in the CSF of patients with CNS 

leukaemia and found them to be elevated compared to CSF controls from patients 

who had CSF taken as part of a myelography examination but had a normal CSF 

profile [79].  

   

L-selectin is a cell-surface adhesion molecule which functions in mediating 

adherence of lymphocytes to endothelial cells. It is secreted from the cell surface 

(sL-selectin) and is known to be detected in various bodily fluids. In a study 

comparing patient ALL CSF samples against CSF controls taken from patients with 

neurological disorders but were cleared of any malignancy, levels of sL-selectin 

were found to be elevated patient group who were classified as having sL-selectin 

positive leukaemia (determined by levels of sL-selectin in plasma) [80].    
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Vascular endothelial growth factor (VEGF) is an important cytokine responsible for 

regulating angiogenesis, skeletal growth, and reproductive functions. However, it is 

reported as a mediator of invasion and tumour survival in several cancers [81]. It 

belongs to a family of growth factors including placental growth factor (PLGF), 

VEGF-B, VEGF-C, and VEGF-D which mediate various mechanisms of vascular 

growth and differentiation [81]. Childhood ALL xenograft cells are reported to directly 

secrete VEGF and various other leukaemic cells are known to express high levels 

of VEGF-A and VEGF-C as well as their complementary receptors on the cell 

surface [81, 82]. One study detected high levels of VEGF-A in the CSF of children 

with CNS-ALL which is believed to be caused by the upregulation of hypoxic genes 

(including VEGF-A) in order to adapt to the nutritionally deficient microenvironment 

[83]. Tang et al., (2013) ran a study on VEGF-A and VEGF-C levels in paired 

samples of serum and CSF. They found that levels of VEGF-A in CSF were elevated 

in CNS-leukaemia compared to controls and importantly to patients with leukaemia 

but without CNS involvement. They also demonstrated a strong correlation between 

WCC and levels of VEGF-A in the CNS of leukaemic patients supporting the use of 

VEGF as a potential biomarker for CNS-relapse in paediatric ALL [84]. 

 

Interleukin-2 receptor alpha chain (IL2-Rα) is a transmembrane protein which is 

expressed in both B cells and T cells and is known to be released in soluble form 

(sIL2-Rα). It has been shown to be elevated in the plasma of patients with ALL [85]. 

In a study comparing levels of sIL2-Rα in paired samples of CSF and serum samples 

from patients with ALL, levels of sIL2-Rα were elevated in the CSF of patients who 

were positive for CSF cytology compared to patients who were negative for CSF 

cytology. The levels of sIL2-Rα between CSF and the serum samples were found 

to not have a correlation suggesting specificity of this analytes in the CNS 

compartment [86]. 
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Thymidine kinase 1 (TK1) is a DNA salvage pathway enzyme and has a key role in 

DNA synthesis and cell division. It is reported to be elevated in several types of 

cancers [87, 88]. It has been shown to be elevated in samples of serum from patients 

with ALL and AML compared to patients without cancer and one study found 

elevated levels in patients with acute leukaemia which decreased upon 

administration of CNS-directed therapy [89, 90].  

 

Matrix metalloproteinase 9 (MMP9) is a type IV collagenase belonging to the zinc-

metalloproteinase family which mediates the degradation of the extracellular matrix. 

It has been implicated as a potential biomarker for different cancers with regards to 

invasion, metastasis and angiogenesis [91]. In leukaemia, it has been shown to be 

secreted by leukaemic cells and implicated as a disruptor of tight-junction proteins 

in the BBB [92]. 

 

Previous work in the Halsey laboratory identified several chemokine receptors on 

the cell surfaces of ALL blasts and their counterpart chemokine ligands were 

explored for use as biomarkers of disseminated ALL in the central nervous system. 

Of the chemokines tested, CCL21 and CXCL10 showed promise in discriminating 

CNS-ALL from CSF controls. 

 

The limitations of these studies primarily lie in the lack of follow-up studies testing 

these findings and the lack of independent validation cohorts. Often these studies 

also contained small numbers of patient samples which were tested.  
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1.7.2.3 Cell-free DNA / circulating tumour DNA 

Cell-free DNA (cfDNA) was first discovered in blood plasma in 1948 by French 

scientists Mandel and Metais [93]. Twelve years later, the first evidence that a 

portion of circulating cfDNA contained circulating tumour-derived DNA (ctDNA) 

appeared, and thus began the idea of ctDNA as an accessible source of genetic 

material capable of revealing genomic architecture. cfDNA is an extracellular, 

double-stranded type of DNA, periodically released into the circulation of a multitude 

of biological matrices such as plasma, serum, CSF, urine, saliva and even in tears 

and thus provides a potential attractive biomarker as it typically requires a non-

invasive procedure and effectively acts as a liquid biopsy.  

 

cfDNA is understood to originate either from cell-death pathways such as apoptosis 

and necrosis or active secretory pathways (actively secreted in vesicles i.e., 

exosomes or in complexes with RNA or protein i.e. virtosomes) that occur in healthy 

and malignant cells alike. However, the exact mechanism remains unclear [94]. 

The release of ctDNA therefore results in its dilution with cfDNA released from non-

malignant cells by the same mechanisms within these different bodily fluids [94]. 

 

Structurally, cfDNA are short, double-stranded fragments around 150-180bp, with 

the most common fragment size at 166bp relating to the DNA being wrapped around 

a nucleosome and a 20bp linker [95, 96]. ctDNA is typically shorter (134-144bp) 

than cfDNA as it does not usually contain the linker molecule. However larger 

fragments of ctDNA are also reported to be found in cancer patients [97]. There is 

evidence that larger fragments exist and appear to follow a ladder-like pattern in 

multiples of ~166 bp, similar to an apoptotic DNA fragmentation ladder pattern. 

Larger fragments up to 10 kb are also believed to originate from necrotic cell death 

[98].   
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The fragmented nature of cfDNA also calls into question whether cfDNA is 

representative of the whole tumour genome. Using whole-genome sequencing, Ma 

et al,. (2017), reported that cfDNA analysis covered ~ 90% of the tumour genomes 

in late stage gastric and lung cancers supporting the use of targeting cfDNA for the 

identification of tumour-specific genes for diagnostic and prognostic purposes. The 

authors also demonstrated that ctDNA coverage did not display bias towards the 

type of sample used when using matched blood, ctDNA from plasma, ctDNA from 

the liquid portion of body fluid effusion samples, or tumour samples and, instead in 

their principle component analysis (PCA) all sample types clustered according to 

each individual patient [99]. 

 

In healthy people, cfDNA detected in blood is reported to be of hematopoietic cell 

origin (lymphoid or myeloid). cfDNA levels in blood are generally low due to 

circulating DNase I and II enzymes and clearance by a variety of organs. Its rapid 

turnover time and clearance from blood is reported to range from as little as 30 

minutes to a couple of hours although, the reasons why this is the case are poorly 

understood. In various reported cancers, cfDNA levels are consistently higher than 

healthy controls. Despite the clear difference in cfDNA levels, its concentration in 

cancers can vary greatly and generally seems to be below 100 ng/mL.  

 

Another promising area involving short non-coding nucleic acids in the form of 

miRNAs (the miR-181 family of miRNAs specifically) has been reported to show 

increased sensitivity in detecting CNS-leukaemia compared to current CSF 

cytology. This study looked at the expression these miRNAs in patients classified 

as CNS-positive and CNS-negative by CSF cytology at diagnosis and found that 

CNS-positive patients had high levels of miR-181a-5p compared to CNS-negative 

patients. Interestingly, levels of this miRNA in CNS-positive patients at day 15 of 
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treatment correlated strongly with the CNS-negative suggesting a response to 

therapy [100].  
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1.8 Summary 

To summarise, the CNS is an important sanctuary site for childhood ALL, being 

involved in >40% of relapses. Of equal concern, isolated CNS relapse carries a poor 

prognosis and even with transplantation the event-free survival is only 45% [39, 40]. 

Given the modern challenges faced in the treatment of paediatric ALL highlighted 

above, there appears to be three overarching observations in which biomarker 

discovery and development can improve the outlook of children with acute 

lymphoblastic leukaemia. 

 

1) There is a major need to improve risk-stratification and detoxify CNS-

directed therapy. 

 

All children receive intensive CNS-directed chemotherapy upfront administered via 

10-26 invasive lumbar punctures, which can cause significant neurotoxicity and 

harmful side-effects. Current methods of identifying those at risk are unreliable [28, 

48, 101].  

 

2) Current diagnostic tests for CNS-ALL are unreliable, insensitive and 

unable to predict CNS-relapse. 

 

CNS-ALL is diagnosed by CSF cytology giving a classification of either CNS1, CNS2 

or CNS3 in order of suspected leukaemic burden (Table 1). However, only about 

3% of patients are CNS3 at diagnosis, although without therapy 50-75% of children 

will suffer CNS relapse with the majority occurring in CNS1 children [20, 22, 31].   
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Data from post-mortem studies, animal models and clinical observations prior to the 

administration of CNS-directed therapy suggest that the majority of children have 

subclinical levels of CNS infiltration at the time of original diagnosis. There is strong 

evidence that CNS leukaemic cells are generally adherent to the leptomeninges 

rather than free-floating in the CSF and this could be a possible explanation for the 

insensitivity of CSF cytology in detecting meningeal disease [17, 19]. This suggests 

that most patients who are currently classified as CNS1 are likely to have ALL in the 

CNS at the time of diagnosis. 

 

3) A method capable of identifying and tracking CNS disease to predict 

relapse, equivalent to bone marrow MRD is needed. 

 

In order to personalise CNS-directed treatment it is necessary to be able to quantify 

the total leukaemic disease burden in the CNS (i.e., both the adherent and free-

floating leukaemic cells) and ideally track its response to initial therapy. 

 

- -    - 

 

A technique that detects soluble biomarkers released from cells in situ is therefore 

attractive and more likely to accurately measure the overall CNS tumour burden at 

diagnosis and in response to therapy when compared to techniques that rely on the 

small proportion of cells free-floating in CSF which rapidly fall to below detection 

limits with therapy, as seen with CSF cytology. 

 

This study will investigate the use of three techniques for the discovery and 

development of diagnostic biomarkers and prognostic biomarkers: metabolomics, 

detection of soluble protein/cytokine biomarkers, and isolation of cell-free DNA. 
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1.8.1 Hypothesis 

The use of sensitive biomarkers for the quantification of total leukaemic burden in 

samples of cerebrospinal fluid (CSF) from children with CNS-ALL may provide the 

means to detect CNS leukaemia, monitor response to therapy and predict CNS-

relapse with the ultimate aim of escalating or de-escalating treatment based on an 

extracellular minimal residual disease (MRD) status. 

 

1.8.2 Aims 

1 – To validate novel metabolic biomarkers in CSF capable of detecting and tracking 

CNS leukaemia and test the hypothesis that this biomarker is able to track the 

response of CNS leukaemia to treatment. 

2 – To discover novel soluble biomarkers in CSF, as alternatives to metabolomic-

based methods, using the same criteria as aim 1. 

3 – To develop a robust and sensitive method for detection of leukaemic cell-free 

DNA in CSF, using the same criteria as aim 1. 

4 – To use data gathered from aims 1-3 to identify the optimal biomarker(s) to take 

forward for further validation and clinical testing. 
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Chapter 2: Materials & Methods 

2 Materials and supplies 

2.1.1 List of Suppliers, materials and supplies 

Supplier Location 
Catalogue 

number 
Material 

Agilent 

Technologies 

Santa Clara, 

California, USA 

5067-4626 Agilent High Sensitivity DNA Kit 

Syringe 

Chip Priming Station 

Beckman Coulter 

Life Sciences 

Brea, California, 

USA 

A63880 Agencourt AMPure XP magnetic beads 

Biorad Hercules, California, 

USA 

1864034 

1863024 

1863004 

12001925 

 

1814040 

QX200 ddPCR EvaGreen Supermix 

ddPCR Supermix for Probes (No dUTP) 

ddPCR Droplet Reader Oil 

ddPCR 96-Well Plates 

DG8 Cartridge 

PCR Plate Heat Seal, foil, pierceable 

Corning Inc. New York, USA  All plastic products unless otherwise 

mentioned 

Covaris Woburn, 

Massachusetts, 

USA 

520221 truXTRAC cfDNA Kit – Magnetic Bead 

Purification 

DSMZ Leibniz, Germany ACC 546 

ACC 22 

ACC 389 

SEM – immortalized childhood ALL cells 

REH – Immortalised childhood ALL cells 

SUPB15 – Immortalised childhood ALL cells  

Eppendorf Hamburg, Germany  Microcentrifuge tubes 

New England 

Biolabs 

Massachusetts, 

USA 

M0544S NEBNext Q5 Ultra II q5 Master Mix 

Nonacus Birmingham, UK C3016SK Cell3 Xtract: cell-free DNA Extraction Kit 

Qiagen Hilden, Germany 55114 

55204 

28104 

79654 

203601 

QIAamp circulating nucleic acids  kit 

QIAamp MinElute ccfDNA Mini Kit 

QIAquick PCR purification kit 

QIAshredder 

HotStarTaq Plus DNA polymerase 
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28704 QIAquick Gel Extraction Kit 

R&D Systems Minneapolis, USA LXSAHM-04 Human magnetic Luminex Assay 

Sigma – Aldrich Missouri, USA  

 

 

T2569-1L 

P1379-1L 

89510-250G 

S6546-1L 

C1016 

 

10270106 

NGSO Bronze primers 

Easy oligos 

DNA custom Oligos 

Trizma hydrochloride solution 

Tween 20  

Poly(ethylene) glycol (PEG) 

Sodium chloride solution 

2-Propanol (Isopropanol) 

Ethanol  

Fetal Bovine Serum 

Starlab Milton Keynes, UK  Pipette tips 

Bioo Scientific Austin, Texas, USA 3825-01 NextPrep-Mag cfDNA Isolation Kit 

Thermo Fisher 

Scientific 

Waltham, 

Massachusetts, 

USA 

4311806 

 

18427013 

10223471 

 

Q10210 

Q32851 

Q32850 

A25576 

 

A28007 

4444556 

70011044 

14200059 

21875158 

15140122 

25030032 

31980048 

4397406 

4346907 

Amplitaq Gold DNA polymerase with Gold 

Buffer & MgCl2 

dNTP Mix (10 mM) 

DNA AWAY Surface Decontaminant 

Qubit RNA BR Assay Kit 

Qubit dsDNA HS Assay Kit 

Qubit dsDNA BR Assay Kit 

TaqMan Advanced miRNA Assay 

TaqMan Advanced miRNA cDNA Synthesis 

Kit 

TaqMan Fast Advanced Master Mix  

TAE Buffer 

PBS (10X) 

RPMI (1640) 

Penicillin/ Streptomycin 

L-Glutamine 

IMDM GlutaMAX 

High-capacity RNA-to-cDNA kit 

MicroAMP Fast Optical 96-Well Reaction 

Plate, 0.1 mL 
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10509821 

12027 

Syringe Filter 0.2μm filter 

DynaMag -96 Side Skirted Magnet  

4basebio Heidelberg, 

Germany 

330025 

 

340020 

 

S33102 

15250061 

R0611 

TruePrime Necrotic Cell-free ctDNA 

Amplification Kit 

TruePrime Apoptotic cell-free DNA 

amplification kit 

SYBRSafe DNA gel stain 

Trypan Blue Solution, 0.4% 

DNA Gel Loading Dye (6X) 

Promega Madison, Wisconsin, 

USA 

R0104S 

R0146S 

HindIII 

XhoI 

PGL3 plasmid 

Table 2-1: List of materials and supplies 
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2.1.2 List of hardware 

Supplier Location Catalogue number Instrument 

Qiagen Hilden, 

Germany 

19413 

19419 

19530 

84020 

19408 

19541 

QIAvac 24 Plus Vacuum Manifold 

QIAvac Connecting System 

Vacuum Regulator 

Vacuum Pump 

VacValves 

QIAvac Luer Adapter Set 

BioRad Hercules, 

California, USA 

1864001 

1864002 

1864003 

1814000 

1851197 

 

171000201 

QX200 Droplet Digital PCR System 

QX200 Droplet generator 

QX200 Droplet Reader 

PX1 PCR Plate sealer 

C1000 Touch Thermal cycler 

 

Bio-Plex 200 multiplex plate reader 

Thermo 

Fisher 

Scientific 

Waltham, 

Massachusetts, 

USA 

IQLAAEGAAPFALGMBDK 

 

 

Q33216 

Orbitrap Q-Exactive (LC-MS) - 

pHILIC_Qexplus 

 

Qubit 3.0 Fluorometer 

Agilent Santa Clara, 

California, USA 

G2939BA 2100 Bioanalyzer  

 

Promega Madison, 

Wisconsin, 

USA 

AS4500 Maxwell 16 Instrument  

Covaris Woburn, 

Massachusetts, 

USA 

500569 LE220-plus Focused Ultrasonicator 

Mettler 

Toledo 

Colombus, 

Ohio, USA 

 

30087635 

XP105 Delta Range Balance 

Illumina  San Diego, 

California, USA 

SY-410-1003 MiSeq instrument 

Table 2-2: List of Hardware 
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2.1.3 List of software 

Supplier Location Software Version 

Thermo Fisher Scientific MA, USA 

Compound 

discoverer 

 

TraceFinder 

3.1.0.305 

 

 

4.1 

Agilent 
Santa Clara, California, 

USA 
2100 Expert B.02.10.SI764 

CRiStAL, Bonsai 

bioinformatics lab 
Lille, France Vidjil beta 

Glasgow Polyomics, 

University of Glasgow 
Glasgow, Scotland, UK Galaxy Heighliner 

GraphPad 
San Diego, California, 

USA 
Prism 8 

BioRad Watford, UK QuantaSoft 1.7 

Metaboanalyst Canada Metaboanalyst 5.0 

Table 2-3: List of software 
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2.2 Human Tissue 

2.2.1 Ethics approval 

All human research conducted in this study was in accordance with the ethical 

standards of the Helsinki declaration and was approved by the West of Scotland 

Research Ethics Committee (WoSREC 09/S0703/77). 

 

2.2.2 CSF biobank 

CSF samples from the Halsey Biobank, Glasgow were processed as follows by Dr 

Saeeda Bhatti and Dr Yasar Yousafzai: CSF was taken from children during lumbar 

punctures performed as part of routine clinical care at the Royal Hospital for 

Children, Glasgow and centrifuged at 4°C, 1000 x g for 10 minutes and the 

supernatant was carefully aliquoted into fresh microcentrifuge tubes. All samples 

were frozen at -80°C and thawed on ice before use. Freeze/thaw cycles were 

avoided where possible. CSF samples were also obtained from the Blood Cancer 

UK Childhood Leukaemia CellBank at the NIHR National Biosample Centre (UK 

Biocentre) who were kind enough to send us 228 patient diagnostic CSF samples. 

Control CSF samples were obtained from the WoS Neuroimmunology BioBank. 

16/WS/0152; IRAS project ID 210043. 

 

2.2.3 Plasma samples and pooled plasma 

Human plasma was supplied by the Blood Transfusion Service (Glasgow, UK) and 

the donation of blood was approved by a Research Ethics Committee. Plasma 

samples were obtained from 6 healthy donors and 5 mL of plasma from each donor  

pooled together to make a stock solution of plasma. 
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2.3 Techniques: Chapter 1 – Metabolomics 

2.3.1 Materials & supplies 

All supplies for liquid-chromatography-mass spectrometry (LC-MS) were kindly 

provided by the metabolomics unit in the Beatson Institute for Cancer Research, 

Glasgow. These supplies included HPLC-grade Acetyl Nitrate and methanol; 

Xanthine, & Creatine purified standards; glass vials and glass-tapered tube 

extenders. 

 

2.3.2 Metabolite extraction from CSF 

CSF samples were removed from -80°C and thawed on ice. Once thawed and at 

~4°C, 10 μL of CSF was diluted 1:20 with extraction solvent (50% methanol/30% 

acetonitrile/20% deionised water) and mixed thoroughly by vortexing for 30 

seconds. The samples were then centrifuged at 16,000 x g for 10 minutes at 4°C 

and half of the supernatants were transferred to glass vials with tapered inserts (for 

volumes <150 μL). These vials were stored at -80°C until analysis. 

 

Before every extraction, 5 μL was taken from every CSF sample and pooled 

together separately in a 2 mL centrifuge tube to create a pooled quality control (QC) 

sample for normalization and for creation of a standard curve. Three procedural 

blanks were created using 200 μL of the extraction solvent (50% methanol/30% 

acetonitrile/20% deionised water) in an Eppendorf tube which was processed via 

the extraction protocol in the same manner as every sample. Three solvent blanks 

were used by transferring  200 μL of the extraction solvent (50% methanol/ 30% 

acetonitrile/20% deionised water) directly into a glass vial for analysis. 
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2.3.3 Semi-untargeted mass spectrometry 

An Orbitrap Q-Exactive pHILIC_Qexplus instrument (Thermo Fisher Scientific) was 

used for liquid chromatography-mass spectrometry (LC-MS). This study took a 

semi-untargeted LC-MS approach in that the samples were run in an untargeted 

mode for global detection of metabolites with a targeted analysis of metabolites of 

interest. The samples were run with a chromatography time of 25 minutes switching 

between both positive and negative polarisations to produce both positive and 

negative ions. Retention times were aligned, all gaps were filled across all samples, 

and elemental compositions for all compounds were predicted for all compounds 

using Compound Discoverer software v3.1.0.305. Chemical background signal was 

subtracted using the blank control samples. All samples were batch-normalised 

based on the QC sample described above. 

 

Peaks were automatically identified initially by the software using comparisons with 

mzCloud (with ddMS2 data) and ChemSpider (with formula or exact mass of 

compounds)  databases. Identified compounds were mapped to known biological 

pathways using the KEGG database. Peaks were also matched with compound 

identity metrics from a database of internal standards provided by the Metabolomics 

Unit, Beatson Institute (CRUK). Finally, peaks identities were compared to online 

database The Human Metabolome Database (HMDB) [102]. 

 

2.3.4 Targeted LC_MS 

Targeted mass spectrometry was run using the same methods as above with the 

addition of standards curves for Xanthine and Creatine. Data was analysed using 

TraceFinder 4.1 software (Thermo Fisher Scientific) where peak identification was 

performed using known retention times provided by the internal standards.  
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2.3.4.1 Creation of standard curves for metabolite 

quantification 

A nine-point standard curve was created for the metabolites  xanthine, creatine and 

inosine using pooled CSF. To determine the range of values which the standard 

curve would encompass, values were taken from the Human Metabolome Database 

(https://hmdb.ca/). Concentrations of “normal” levels and “abnormal” levels 

(disease) of Xanthine, Creatine and Inosine in CSF were averaged and used as the 

midpoint for the standard curve. Points either side of this midpoint progressed 2-fold 

(four points above and below the midpoint) to determine the of  range of the standard 

curve.  

 

An un-spiked sample of pooled CSF served as the blank. Xanthine was diluted in 

1M NaOH and creatine was diluted in deionised H2O to create 100 mM stock 

solutions from which the standard curve points were created by serial dilution. 15 

μL of pooled CSF was initially diluted to 1:17 with extraction solvent and then further 

diluted to the final dilution of 1:20 by spiking 15 μL of each xanthine and creatine at 

the desired concentration. The samples were then centrifuged at 16,000 x g for 10 

minutes at 4°C and half of the supernatants were transferred to glass vials with 

tapered inserts (for volumes <150 μL) and stored at -80°C until analysis.  
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2.4 Techniques: Chapter 2 - Multiplex immunoassay – 

Luminex 

2.4.1 Workflow 

Multiplex immunoassays can be used to detect and quantify several chosen markers 

simultaneously on a 96-well plate using the sample principle as a sandwich ELISA 

assay. Luminex assays were performed for the detection of several proteins/ 

chemokines & cytokines in samples of CSF. All samples, standards and reagents 

were equilibrated to room temperature for at least 30 minutes before use. Standards 

for each marker of interest were reconstituted using Calibrator Diluent RD6-52 

according to manufacturer’s instructions and 100 μL of each standard were mixed 

into a fresh Eppendorf tube to a final volume of 1 mL. This standard cocktail mix 

served as the high standard for every marker of interest and was used to create a 

6-point dilution series consisting of 3-fold dilutions per point. Calibrator RD6-52 

served as the blank sample. Samples were diluted 1:2 using Calibrator Diluent RD6-

53 and 50 μL was added to the wells. All samples, blanks and standards were run 

in duplicate.  

 

Marker specific antibodies are precoated onto magnetic microparticle beads which 

contain unique fluorophores capable of distinguishing each microparticle bead 

region being targeted. The microparticle bead solution and the biotinylated antibody 

cocktail were diluted using RD2-1 solution. These microparticle beads were added 

to samples, blanks and standards in the 96-well plates and left to incubate for 2 

hours at room temperature on a horizontal orbital microplate shaker set at 800 rpm. 

The beads were subsequently washed using Wash Buffer provided and a magnetic 

plate attachment to remove any unbound proteins in the sample and 50 μL of 

biotinylated antibody cocktail acting as the secondary antibody specific to the 
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analyte of interest was added. The plate was then covered with a foil plate sealer 

and incubated for 1 hour at room temperature on an orbital shaker set to 800 rpm.  

 

A second wash was then performed and streptavidin-phycoerythrin (Streptavidin-

PE) was added to each well for binding with the biotinylated antibody and the plate 

was then covered with a foil plate sealer, incubated for 30 minutes at room 

temperature on an orbital shaker set to 800 rpm. One more wash was performed 

and the microparticles were resuspended with 100 μL of Wash Buffer, incubated for 

2 minutes on the shaker at 800 rpm before being read and analysed on a Bio-Plex 

100 multiplex plate reader (Bio-Rad). Fluorescence was measured in each well and 

the fluorescence values in the standard wells were used to create a standard curve 

for each marker of interest. Fluorescence values from each sample were quantified 

using the standard curve to give a measure for each marker of interest per sample. 

 

 

Figure 2-1: Luminex multiplex immunoassay workflow [https://www.bio-rad.com/en-
uk/applications-technologies/bio-plex-multiplex-immunoassays?ID=LUSM0ZMNI] 
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2.5 Techniques: Chapter 3 – Cell-free DNA 

2.5.1 Cell culture 

2.5.1.1 Cell Lines  

Cell lines: SEM, REH and SUPB15 were previously purchased from DSMZ 

(German collection of Microorganisms and Cell Cultures). All cell lines were stored 

in liquid nitrogen (-196°C) until use. Cell lines were authenticated at the Beatson 

Institute of Cancer Research, Glasgow before use. Human cell lines were 

authenticated using Promega GenePrint 10 Kit, a short tandem repeat multiplex 

assay that amplifies 9 tetranucleotide repeat loci and the Amelogenin gender 

determining marker in a single PCR amplification. The kit uses a five dye (PET, 

LIZ, 6-FAM, VIC and NED) fluorescent system for automated fragment analysis. 

Samples were run on a 3130xl DNA analyser and data was compared with ATCC 

(LGC standards) and DSMZ databases. 

 

2.5.1.2 Cell culture procedures 

All cell culture procedures were performed in a tissue culture laminar flow hood 

which was sterilised using 70% ethanol before and after use. All materials used were 

sterile and sprayed and wiped with 70% ethanol before being used.  

 

2.5.1.3 Thawing / freezing cells 

Cell lines were put on ice following removal from liquid nitrogen and subsequently 

thawed in a 37°C water bath. The cells were then transferred to a fresh 50 mL 

centrifuge tube and 5 mL prewarmed complete culture media was added dropwise 

to the cells to help dissociation of DMSO. The cells were then centrifuged at 300 x 

g for 5 minutes, the supernatant was then aspirated carefully, and the cells were 
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resuspended in 20 mL pre-warmed complete cell culture media. The cells were then 

transferred to 25 cm2 cell culture flasks for cell passage. 

 

Stocks of cells were frozen according to DSMZ recommendations in DMSO. Cells 

were spun down at 300 x g for 10 minutes, the supernatant was discarded, and the 

cell pellet was resuspended in 70% media, 20% FBS and 10% DMSO in cryostorage 

tubes. Cells were frozen to -80°C overnight then transferred to liquid nitrogen the 

following day.  

 

2.5.1.4 Cell passage 

All cell lines were incubated at 37°C; 5% CO2. Cells were passaged according to 

suppliers’ recommendations in complete cell culture media. All cell lines were tested 

for mycoplasma soon after being passaged for the first time by the service provided 

at the Wolfson Wohl Cancer Research Centre. To passage the cells, the cells were 

transferred to a 20 mL centrifuge tube and spun at 300 x g for 5 minutes, the 

supernatant was discarded, and the cells were resuspended in 10 mL complete 

media for cell counting. The cells were then seeded according to suppliers’ 

recommendations in 20 mL of fresh complete media in a new 25 cm2 tissue culture 

flask and incubated as mentioned above.  

 

2.5.1.5 Cell Counting 

Cell counts were performed using an Improved Neubauer haemocytometer. Cells 

were first spun down at 300 x g for 5 minutes; the supernatant was discarded, and 

the cell pellet was resuspended in 10 mL of complete media. 50 μL of the 10 mL cell 

suspension was diluted 1:2 using 0.4% trypan blue dye and incubated at room 

temperature for 2 minutes. 10 μL of the cells-trypan blue solution was then 



80 
 
transferred onto the counting chamber beneath a glass coverslip. The 

haemocytometer was then placed under an inverted light microscope and cells were 

counted in the four 10-4 corner squares. Viable cells were distinguished from non-

viable cells using the trypan blue exclusion method. Cell numbers were multiplied 

by 104 and then by the dilution factor (2) to give the number of cells/mL (in 10 mL). 

Percentage of viable cells was calculated by dividing the number of viable cells by 

the number of total cells and multiplied by 100. Cells were passaged only when 

viability was > 90%.  

 

2.5.2 Nucleic Acid Isolation and Extraction 

2.5.2.1 In vitro cfDNA isolation from cell culture media 

Cell-free DNA was isolated from cell culture flasks which had reached at ~80-90% 

confluence by transferring the cell culture media with cells to a 20 mL centrifuge 

tube and centrifuging at 300 x g for 5 minutes to pellet the cells. The supernatant 

was then aspirated and transferred to a clean petri dish. The liquid was then re-

aspirated using a 20 mL syringe and passed through a 0.2 µm filter into a fresh 20 

mL centrifuge tube to remove cells and macro-debris from the cell culture media. 

The filtered cell culture media was then subjected to cfDNA purification with the 

Qiagen, QIAamp Circulating nucleic acids kit.  
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2.5.2.2 Cell-free DNA extraction kit comparisons 

2.5.2.2.1 Commercial cfDNA extraction kits tested for evaluation 

of extraction performance. 

Extraction 

Kit 

Kit 

ID 
Manufacturer Technology Sample type 

Volume 

capacity 

Additional 

requirements 
Automation 

QIAamp 

Circulating 

Nucleic 

Acids Kit 

QA 
QIAGEN 

 

Silica-based 

membrane 

Plasma, 

serum, urine 

Up to 

5mL 

QIAvac 24 Plus 

vacuum 

manifold 

No* 

QIAamp 

MinElute 

ccfDNA kit 

QB QIAGEN 

Magnetic 

bead / silica-

based 

membrane 

hybrid 

Plasma, 

serum 
1-4 mL 

Strong 

magnetic stand 
No** 

Cell3 Xtract NN Nonacus 
Column-

based 

Plasma, 

serum, CSF, 

saliva, 

amniotic fluid 

1-10 mL None No 

Nextprep-

Mag cfDNA 

isolation kit 

NM 
Newmarket 

Scientific 

Magnetic 

bead based 
Plasma 1-3 mL 

Strong 

magnetic stand 
Yes 

Maxwell 

RSC 

ccfDNA 

Plasma kit 

COV Promega Ltd. 
Magnetic 

bead based 

Plasma, 

serum, other 

bodily fluids 

1 mL 
Maxwell RSC 

Instrument 
Yes 

truXTRAC 

cfDNA kit 
MX Covaris 

Magnetic 

bead based 

and Adaptive 

Focused 

Acoustics 

(AFA) based 

DNA 

extraction 

Plasma, other 

bodily fluids 
1 mL 

Adaptive 

Focused 

Acoustic 

ultrasonicator 

and strong 

magnetic stand 

Yes 

*Can be automated using QIAcube Connect; **Can be partially automated using QIAcube Connect 

 

Table 2-4: Commercial cfDNA extraction kits tested for evaluation of extraction performance 
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2.5.2.2.2 QIAamp circulating nucleic acids (QA) 

For all extractions involving plasma, 1 mL of pooled plasma was used. For all 

extractions using CSF, volumes between 100 μL and 1 mL were used. For all 

extractions using cell culture supernatant, volumes between 5 mL down to 1 mL 

were used.  

 

The QIAamp Circulating Nucleic Acids Kit involves four major steps: lysis, binding, 

wash steps and elution to successfully extract and purify cfDNA. The samples are 

first lysed under denaturing conditions with the presence of Proteinase K, Buffer 

ACL and placed in a 60°C water bath for 30 minutes. Binding buffer (Buffer ACB) 

was then added to the samples and incubated on ice for 5 minutes before applying 

the samples to the spin columns. Vacuum pressure created by the vacuum manifold 

(-800 to -900 mbar) then drew the sample through the silica membrane in the spin 

column to capture cfDNA on the membrane as the lysate passes though the column. 

Following this, the columns were subjected to three wash steps using Buffer AW1, 

Buffer AW2 and Ethanol (96-100%). The membrane was dried for 10 minutes at 

56°C and then 50 μL of pre-warmed Buffer AVE was added to the centre of the 

membrane and left to incubate for a further 10 minutes before elution by 

centrifugation at 20,000 x g for 1 minute. The supernatant was transferred to a fresh 

1.5 mL elution tube and stored at -20°C. 

 

2.5.2.2.3 QIAamp MinElute ccfDNA Mini Kit (QB) 

The QIAamp MinElute ccfDNA Mini kit uses both magnetic bead and spin column 

principles for purification of circulating DNA. Samples of pooled plasma (1mL) were 

mixed with Bead Binding Buffer, Magnetic Bead Suspension and Proteinase K to 

dissociate cfDNA from any bound complexes. Once the cfDNA was bound to the 
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magnetic beads, the beads were pelleted on a magnetic plate and the supernatant 

was discarded. The DNA was then eluted using Elution Buffer and the magnetic 

beads were pelleted using the magnetic plate before the supernatant was 

transferred to a fresh tube. Buffer ACB was then added to the sample and mixed to 

facilitate binding of the cfDNA to the silica membrane of the spin column. The 

sample was applied to the spin column and spun in a centrifuge to capture the 

cfDNA on the silica membrane. The membrane was then washed using Buffer 

ACW2 and left to air-dry to remove any residual ethanol. 50 μL of Ultra-clean water 

was carefully added to the centre of the spin-column and then spun in a centrifuge 

to elute the purified cfDNA. The supernatant was transferred to a fresh 1.5 mL 

elution tube and stored at -20°C.  

 

2.5.2.2.4 NextPrep-Mag cfDNA Isolation Kit (NM) 

The NextPrep-Mag cfDNA Isolation Kit (Bioo Scientific) relies solely on the magnetic 

bead principle for cfDNA purification. Samples of pooled plasma (1mL) were mixed 

with a Binding Solution, Magnetic beads and Proteinase K and incubated for 15 

minutes at 55°C. The samples were then applied to a magnetic plate and the 

magnetic beads were pelleted before the supernatant was aspirated and discarded. 

The beads were then washed twice using Wash 1 solution and further washed once 

with Wash 2 solution. 50 μL of elution buffer was then added to the beads, the 

sample was resuspended by vortexing and incubated for 5 minutes at 55°C. The 

sample was reapplied to the magnetic plate to pellet the beads and the supernatant 

was transferred to a fresh 1.5 mL elution tube and stored at -20°C. 
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2.5.2.2.5 Cell3 Xtract: cell-free DNA Extraction Kit (NN) 

The Cell3 Xtract cell-free DNA Extraction Kit (Nonacus) relies solely on 

centrifugation steps for isolation of cfDNA. Samples of pooled plasma (1mL) were 

mixed with 5X Digestion Buffer and Proteinase K and incubated at 55°C for 30 

minutes. Two volumes of DNA Binding Buffer were added, mixed by vortexing, 

carefully transferred to a spin column, then centrifuged at 1000 x g for 1 minute. The 

collection tube and flow-through was discarded and the spin column was placed in 

a fresh collection tube. The spin column was washed with 400 μL of Wash Buffer 

and centrifuged at full speed for 1 minute to remove the wash buffer. The spin 

column was then placed into a 1.5 mL elution tube and 50 μL Elution Buffer was 

added to the centre of the membrane and the spin columns were incubated at room 

temperature for 3 minutes. The spin columns were centrifuged at maximum speed 

for 1 minute into a clean elution tube and stored at -20°C. 

 

2.5.2.2.6 Maxwell RSC ccfDNA Plasma Kit (MX) 

The Maxwell RSC ccfDNA Plasma Kit (Promega) can be used in a fully automated 

manner with the use of a Maxwell RSC 48 instrument. It relies on the magnetic bead 

principle for purifying cfDNA. RSC ccfDNA Plasma Cartridges were placed on the 

deck tray with the largest well facing away from the elution tubes and the seal was 

carefully removed. Samples of pooled plasma (1mL) were added to the largest well 

and a plunger was added into the last well. A fresh 1.5 mL elution tube was placed 

in the elution tube well on the deck tray and 60 μL of Elution Buffer was added to 

the elution tube (for a final solution of 50 μL after sample processing). The Maxwell 

RSC 48 instrument was then initiated and the cfDNA extraction was performed.  
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2.5.2.2.7 truXTRAC cfDNA Kit  (COV) 

The truXTRAC cfDNA Kit (Covaris)  utilizes the magnetic bead principle for 

extraction of cfDNA with the added step of adaptive focused acoustics (AFA) 

technology to ultrasonicate samples. This step dissociates cfDNA in a sample from 

any proteins, histones, protein-DNA complexes, and apoptotic machinery. A Buffer 

M1/ Proteinase K master mix and a Magnetic Bead Suspension/ Isopropanol master 

mix were created according to the supplier’s recommendations  

 

Samples of pooled plasma (1mL) were added to milliTUBEs. Buffer M1/ Proteinase 

K master mix was added to the tubes and the samples were mixed by inverting the 

tubes 10 times. The milliTUBES were then incubated at room temperature for 15 

minutes. The milliTUBES were then placed into the 1 mL milliTUBE rack and 

ultrasonicated in a LE220-plus Focused ultrasonicator with the following settings: 

 

Settings 

Water level 0 

Chiller set point 18°C 

Duty Factor 20% 

Peak Incidence Power 350 Watts 

Cycles per burst 200 

Treatment time 60 seconds 

Instrument Temperature 20°C 

Table2-5: LE220-Plus Focused Ultrasonicator settings 

 

Following the ultrasonication step, the samples were transferred to 5 mL Eppendorf 

tubes and vortexed for 10 seconds. The Magnetic Bead Suspension/Isopropanol 

Mix was vortexed for 10 seconds before 1.6 mL of the mix was added to the 

samples. The samples were then vortexed for 10 seconds and the placed on a 
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magnetic rack and incubated for 5 minutes. The supernatant was discarded and 1 

mL of Buffer WB2 was added to the 5 mL Eppendorf tube. The tube was vortexed 

for 10 seconds until the beads were re-suspended before being placed back on the 

magnetic rack for a further 5 minutes. The supernatant was discarded and 1 mL of 

80% ethanol was added to the tube and incubated for 30 seconds before the ethanol 

was removed and discarded. Both wash steps were repeated once more before air-

drying the beads for 15 minutes on the magnetic rack. The tubes were removed 

from the magnetic rack and the beads were resuspended with 50 μL Elution Buffer 

BR by pipetting up and down at least 20 times to ensure proper resuspension. The 

tubes were placed on the magnetic rack once more and incubated for 1 minute 

before the eluate was transferred to a clean Elution Tube and stored at -20°C. 

 

2.5.3 Preparation of cfDNA surrogate spike-in molecule 

2.5.3.1 hTERT-Luc plasmid fragment spike-in molecule 

A linearized hTERT-Luc plasmid fragment from a PGL3 plasmid (Promega) was 

used in this part of the study (approximately 172 bp) as a surrogate cfDNA spike-in 

molecule. The plasmid fragment was created from a double digest reaction 

containing HindIII and XhoI restriction enzymes and was incubated in a 

thermocycler for 90 minutes at 37°C. The double digest product was then subjected 

to agarose gel electrophoresis, excision and purification (see section 1.5.3). Purified 

samples of the plasmid fragment were stored at 4°C for short-term use or 20°C for 

long term storage. 
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2.5.3.2 Polymerase Chain Reaction (PCR) of hTERT-Luc 

Plasmid Fragment – cfDNA surrogate spike-in  

To amplify the hTERT-Luc plasmid fragment the following PCR reaction was 

created. A 10% excess in reagents was used as to ensure enough reaction per 

sample: 

Figure 2-2: PGL3 Plasmid map featuring hTERT-Luc plasmid fragment 
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Table2-7: hTERT-Luc plasmid fragment Forward and Reverse primer sequences. 

 

 

The reaction mixes were then subject to the following thermocycler conditions:  

 

Master mix 
Per Well 

(μL) 

10x Buffer 2.5 

dNTPs (200uM) 0.5 

Q solution 5.0 

Forward Primer 0.5 

Reverse Primer 0.5 

HotStartaq 0.2 

H2O 14.8 

DNA template (25 ng/μL) 1.0 

Total Volume 25.0 

Table 2-6: PCR reaction master mix components and volume 

PCR Primers hTERT-Luc plasmid fragment DNA sequence 

Forward CATTCGTGGTGCCCGGAGC 

Reverse GCCCCAGCGGAGAGAGGTCG 

Bilsland A. et al. 2007 (DOI: 10.1158/0008-5472.CAN-06-3000 Published February 2007 
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Step Temperature Time Cycles 

1 95°C 15 minutes 1 

2 

95°C 30 seconds 

32 58°C 45 seconds 

72°C 30 seconds 

3 72°C 5 minutes 1 

4 4°C hold  

Table 2-8: Thermocycler conditions 

 

2.5.3.3 Electrophoresis, Gel Excision, DNA Purification of PCR 

product and DNA quantification 

2.5.3.3.1 Agarose gel preparation 

An agarose gel for electrophoresis was prepared by transferring 1g of agarose to 

an Erlenmeyer flask and 100 mL of 1X TAE buffer was added. The flask was 

microwaved at full power every 15 seconds for a total of 2 minutes, swirling the 

solution between heating and was left to cool for 10-15 minutes.  

 

During cooling, the electrophoresis plate was taped on both sides and an 

appropriate well comb was placed on the holder. Once the agarose solution had 

cooled, 10 μL of SYBRSafe DNA gel stain (Thermo Fisher Scientific) was added to 

the Erlenmeyer flask and mixed well by swirling vigorously. The agarose solution 

was then poured into the electrophoresis plate and left to cool and solidify.  

 

During cooling, 10 μL of 6X gel loading dye (Thermo Fisher Scientific) was added 

to 50 u μL of the PCR product, mixed thoroughly by pipetting and kept on ice until 

use. Once the gel had solidified, the comb was carefully removed, placed into the 
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electrophoresis which was filled with 1X TAE Buffer. The wells were then loaded 

with a 100 bp ladder and the DNA/ Gel Loading dye (6X) mix and electrophoresis 

was run at 150 V for 60 minutes. The resulting gel was then verified and visualised 

for the successful PCR reaction using and SnapGene viewer software. 

 

To isolate the desired fragment of DNA from the gel, the gel was exposed to UV 

light and the gel band was excised using a clean, sharp scalpel. The gel was 

weighed using a XP105 Delta Range Balance (Mettler Toledo) ready for DNA 

purification using the QIAquick Gel Extraction Kit. 

 

2.5.3.3.2 QIAquick Gel Extraction Kit 

Three volumes of QG Buffer were added to the 1 gel volume and was incubated at 

50°C for 10 minutes in a Techne Dri-Block DB-2A heating block. The sample was 

vortexed every 2 minutes to facilitate the dissolving of the gel. The samples were  

treated with Isopropanol and then added to a QIAquick spin column. The spin 

column was centrifuged at 13000 rpm for 1 minute and the flow-through was 

discarded. The spin column was placed in a fresh 1.5 mL elution tube and 50 μL of 

Buffer EB was added to the centre of the membrane. The spin column was 

centrifuged at 13,000 rpm for 1 minute to elute the DNA. The DNA was quantified 

using the Qubit dsDNA BR Assay Kit. The DNA was stored at 4°C for short-term 

use or 20°C for long-term storage.  

 

 

2.5.3.3.3 DNA clean-up - QIAGEN QIAquick PCR Purification Kit 

This kit was used to purify PCR products from residual reagents from the PCR 

process and relies on spin-column technology which has selective binding 
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properties through the use of a silica membrane. Once nucleic acids are bound to 

the silica membrane, a series of wash steps are performed to remove any residual 

reagents prior to elution.  

 

PCR products were mixed with Buffer PB in a 5:1 volume and vortexed to create a 

homogenous solution. The samples for purification were then added to a QIAquick 

spin column to bind the DNA to the silica membrane and the spin column was 

centrifuged at 17,900 x g for 1 minute. The flow-through was discarded and the spin 

column as placed in a fresh collection tube. The spin column was then washed with 

Buffer PE and centrifuged again as above. The flow-through was discarded and the 

spin column as placed in the same collection tube and spun again as above to 

remove any residual wash buffer. The spin column was placed in a clean 1.5 mL 

elution tube and 50 μL of Buffer EB was added to the centre of the silica membrane. 

The spin column was then centrifuged at 17,900 x g for 1 minute to elute the DNA. 

Purified DNA was stored at -20°C 

 

2.5.4 Nucleic Acid Quantification and size (bp) analysis 

2.5.4.1 DNA quantification by Qubit  

DNA was quantified using a Qubit Fluorometer and the Qubit dsDNA HS Assay Kit 

or the Qubit dsDNA BR Assay Kit. All DNA samples were equilibrated to room 

temperature before the assay was run. A 1X working solution was prepared using 

Qubit dsDNA HS/BR reagent and Qubit dsDNA HS/BR Buffer by diluting the reagent 

1:200 with a 200 μL final volume per sample. Samples were diluted (5 μL:195 μL) 

and standards #1 and #2 were diluted(10 μL:190 μL) with 1X working solution, 

vortexed for 5 seconds and incubated at room temperature for 2 minutes before 

being read on a Qubit 2.0 fluorometer. Standards #1 and #2 were run first by placing 
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the Qubit tube into the sample chamber, closing the lid and reading the standard. 

Samples were read in the same manner and DNA was quantified in ng/ μL units.  

 

2.5.4.2 DNA quantification and quality assessment by 

Bioanalyzer 

DNA samples were quantified and analysed for size in (bp) using Agilent’s High 

Sensitivity DNA Assay Kit and an Agilent 2100 Bioanalyzer instrument. All reagent 

and samples were allowed to reach room temperature for 30 minutes before the 

assay was run.  

 

The High Sensitivity DNA dye concentrate was vortexed for 10 seconds and spun 

down in a microcentrifuge before 15 μL was added to the High Sensitivity DNA gel 

matrix vial. The mixed vial was then vortexed for 10 seconds and the gel-dye mix 

was transferred to the top of the spin filter. The spin filter was the centrifuged for 10 

minutes at 2240 x g at room temperature. The filter was then discarded, and the 

tube was wrapped in tin foil to protect the gel-dye mix from light. The dye 

concentrates and gel-dye mix was stored at 4°C in the dark when not in use.  

 

A new High Sensitivity DNA chip was placed on the Chip Priming Station and 9 μL 

was added to the well marked G. The chip was pressurised using the syringe  which 

was set to 1 mL and pressed down until it was held by the clip and held for 60 

seconds exactly. After the 60 seconds the clip was released, and the plunger was 

slowly returned to the 1 mL mark. 9 μL of the gel-dye mix was added to the remaining 

wells marked G and then 5 μL of High Sensitivity DNA marker was added to the 

ladder well and into the 11 sample wells. 1 μL of High Sensitivity DNA ladder was 

added to the ladder well. 1 μL of sample was added to each of the sample wells, 
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where there was an unused well, 1 μL of the High Sensitivity DNA marker was added 

to the well. The DNA Chip was placed horizontally on the IKA vortex mixer and 

vortexed for 60 seconds at 2400 rpm. A cleaning chip with 350 μL dH2O was loaded 

onto the bioanalyzer and the lid was shut for 10 seconds  and opened and left open 

for 10 seconds to dry. The DNA Chip was then loaded into the bioanalyzer. Data 

was analysed using the Agilent 2100 Expert software. 
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2.5.5 Droplet Digital PCR 

Droplet digital polymerase chain reaction (ddPCR) platforms comprise the next 

generation of nucleic acid quantification overcoming the limitations seen in qPCR. 

In principle samples are diluted and divided into several thousand miniscule 

partitions, typically using either emulsifying oil droplets or micro-wells within a 

microfluidic chip so that each individual partition contains either no copies of the 

template molecules, or one copy per partition.  

 

All wells with a target copy will then be simultaneously amplified within their partition 

and the emitted fluorescence is subsequently detected at the end of the PCR.  

Poisson statistics are used to account for variation across the random distribution 

of template copies across the partitions and analyses based off the Poisson 

algorithm used allows for calculation of the total number of total positive partitions 

against the negative partitions to deliver an absolute quantification of the original 

starting template material.  

 

 

Figure 2-3: Droplet digital PCR workflow schematic 

 

All droplet digital PCR (ddPCR) assays were performed using QX200 Droplet Digital 

PCR system (Bio-Rad, Hercules, USA). 
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2.5.5.1 EvaGreen ddPCR preparation 

EvaGreen chemistry contains a dsDNA dye which binds to double-stranded DNA 

during amplification cycles in a PCR reaction, akin to SYBR Green assays for qPCR. 

This dye is incorporated into the ddPCR Supermix used for the following 

experiments. All reagents and DNA samples were thawed to room temperature, 

vortexed gently and briefly centrifuged before use. DdPCR assays were performed 

using BioRad’s QX200 Droplet Digital PCR system and an EvaGreen assay (BioRad 

Laboratories LTD, Watford, UK). All samples were prepared to a volume of 22 μL 

with 11 µL of ddPCR Supermix for EvaGreen (2X), 0.5 μL of each primer, 5 μL of 

the cfDNA template and 5 μL of nuclease-free water. The PCR reaction mix was 

prepared as follows: 

 

Reagent Volume (μL) 

2X QX200 ddPCR EvaGreen SuperMix (1X) 11 

Forward Primer (100-250 nM) 0.5 

Reverse Primer (100-250 nM) 0.5 

cfDNA template (Up to 100 ng) 5 

Nuclease-free water 5 

Total Volume 22 

Table 2-9: PCR reaction master mix components and volume 

 

Table 2-10: hTERT-Luc plasmid fragment Forward and Reverse primer sequences. 

ddPCR Primers hTERT-Luc plasmid 

fragment 
DNA sequence 

Forward CATTCGTGGTGCCCGGAGC 

Reverse GCCCCAGCGGAGAGAGGTCG 

Bilsland A. et al. 2007 (DOI: 10.1158/0008-5472.CAN-06-3000 Published February 2007 
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Once made up, the PCR reaction solutions were mixed thoroughly by vortexing and 

then 20 μL of the PCR mix were loaded into the middle sample wells of the DG8 

Cartridge. QX200 Droplet Generation Oil for EvaGreen (70 μL) was then added into 

the oil wells and the cartridge was covered with a rubber gasket before being loaded 

into the QZ200 Droplet Generator.  

 

Following the droplet generation process, 40 μL of droplets were then transferred to 

a 96-well plate. The plate was sealed using the PX1 PCR Plate Sealer and then 

loaded into the BioRad C10000 Touch Thermal Cycler for thermocycling at the 

following settings: 

   

Step Temperature ⁰C Time No. of cycles 

Enzyme activation 95 5 min 1 

Denaturation 95 30 sec 

40 Annealing/ 

extension 
60 1 min 

Signal 

Stabilization 

4 5 min 

1 

90 5 min 

Hold 4 hold 1 

Ramp rate 2⁰C/sec; Heated lid set to 105⁰C; Sample volume 40 uL 

Table 2-11: Thermocycler conditions 

 

Following thermocycling, the sealed plate was loaded into the QX200 Droplet 

Reader for analysis.   
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2.5.5.2 Probe-based ddPCR 

2.5.5.2.1 Patient purified CSF cfDNA 

Similar to qPCR, primers can be used in conjunction with dual-labelled probes in 

ddPCR to measure fluorescence of specific amplified templates. All reagents and 

DNA samples were thawed to room temperature, vortexed gently and briefly 

centrifuged before use. DdPCR assays were performed using BioRad’s QX200 

Droplet Digital PCR system and a Probe assay with FAM and Hex labelled probes 

(BioRad Laboratories LTD).  

 

All samples were prepared to a volume of 22 μL with 10 µL of ddPCR Supermix for 

probes (2X), 1 μL of each primer, 7 μL (maximum volume) of cfDNA template 

(patient & control) and 2 μL of nuclease-free water. The PCR reaction mix was 

prepared as follows: 

 

Reagent 
Volume 

(μL) 

2X ddPCR Supermix for Probes [1X] 10 

20 x Target primers/probes (FAM or Cy5) [900 nM/250 nM] 1 

20 x Target primers/probes (HEX/VIC or Cy5.5) [900 nM/250 

nM] 
1 

DNA template ( Up to 330 ng) 7 

Nuclease-free water 2 

Total volume 22 

Table 2-12: PCR reaction master mix components and volume 
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Once made up, the PCR reaction solutions were mixed thoroughly by vortexing and 

then 20 μL of the PCR mix were loaded into the middle sample wells of the DG8 

Cartridge. QX200 Droplet Generation Oil for EvaGreen (70 μL) was then added into 

the oil wells and the cartridge was covered with a rubber gasket before being loaded 

into the QZ200 Droplet Generator.  

 

Following the droplet generation process, 40 μL of droplets were then transferred to 

a 96-well plate. The plate was sealed using the PX1 PCR Plate Sealer and then 

loaded into the BioRad C10000 Touch Thermal Cycler for thermocycling at the 

following settings: 

 

 

Step Temperature ⁰C Time No. of cycles 

Enzyme activation 95 10 min 1 

Denaturation 94 30 sec 

40 Annealing/ 

extension 
60 1 min 

Enzyme 

deactivation 
98 10 1 

Hold 4 hold 1 

Ramp rate 2⁰C/sec; Heated lid set to 105⁰C; Sample volume 40 μL 

Table 2-13: Thermocycler conditions 

 

 

 



99 
 

2.5.5.2.2 Mutation detection assay - KRAS G12D 

To determine the lower limit of detection (LOD) of the RSS DNA assay [40 ng/μL] 

(each vial with a known KRAS allelic frequencies of 100% WT, 6.3%, 1.3% and 

0.13%) the contents of each vial was diluted in Buffer AVE and made up to 50 ng, 

10 ng, 5 ng and 1 ng and was added to a 20 μL PCR reaction mix. Negative 

controls used water instead of DNA.  

 

All reagents and DNA samples were thawed to room temperature, vortexed gently 

and briefly centrifuged before use. DdPCR assays were performed using BioRad’s 

QX200 Droplet Digital PCR system and a Probe assay with FAM and Hex labelled 

probes (BioRad Laboratories LTD, Watford, UK). All samples were prepared to a 

volume of 22 μL with 10 µL of ddPCR Supermix for probes (2X), 1 μL of each primer, 

variable quantity of template and nuclease-free water.  

 

Once made up, the PCR reaction solutions were mixed thoroughly by vortexing and 

then 20 μL of the PCR mix were loaded into the middle sample wells of the DG8 

Cartridge. QX200 Droplet Generation Oil for EvaGreen (70 μL) was then added into 

the oil wells and the cartridge was covered with a rubber gasket before being loaded 

into the QZ200 Droplet Generator. Following the droplet generation process, 40 μL 

of droplets were then transferred to a 96-well plate. The plate was sealed using the 

PX1 PCR Plate Sealer and then loaded into the BioRad C10000 Touch Thermal 

Cycler for thermocycling at the following settings: 
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Reagent Volume (μL) 

2X ddPCR Supermix for Probes [1X] 10 

20 x Target primers/probes (FAM or Cy5) [900 nM/250 nM] 1 

20 x Target primers/probes (HEX/VIC or Cy5.5) [900 nM/250 nM] 1 

DNA template ( Up to 330 ng) Variable 

Nuclease-free water Variable 

Total volume 22 

Table 2-14: PCR reaction master mix components and volume 

 

Step Temperature ⁰C Time No. of cycles 

Enzyme activation 95 10 min 1 

Denaturation 94 30 sec 

40 

Annealing/ extension 60 1 min 

Enzyme deactivation 98 10 1 

Hold 4 hold 1 

Ramp rate 2⁰C/sec; Heated lid set to 105⁰C; Sample volume 40 μL 

Table2-15: Thermocycler conditions 

 

 

2.5.6 Next-Generation Sequencing (NGS) 

Next-generation sequencing is the successor technology to Sanger sequencing and 

is also known as massively parallel, high-throughput sequencing. There are now 

several different platforms available for NGS but in this thesis, a targeted Illumina 

(San Diego, California, USA) sequencing approach was used. The Illumina NGS 

workflow involves four major steps: library preparation, cluster generation, 

sequencing and data analysis. All samples were sequenced on a MiSeq instrument 

with V2 2x150-cycle flow cells 4 million reads, paired-end reading mode with a 
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reading depth of 100,000 - 350,000. This project targeted Ig gene rearrangements , 

specifically IGH VDJ gene rearrangements exhibited by leukaemic B-cells. 

 

 

Figure 2-4: Targeted NGS workflow. Adapted from: www.illumina.com/technology/next-

generation-sequencing.html. Created on Biorender. 

 

2.5.6.1 Library preparation 

2.5.6.1.1 1st Stage PCR adapter ligation 

Targeted NGS libraries were prepared using a multiplex, two-stage PCR reaction.  

Prior to the NGS workflow, samples of purified cfDNA or genomic DNA were 

quantified and either 19 μL of purified cfDNA was added when the DNA quantity 

was low or 100 ng per reaction where possible (when using genomic DNA). 
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The first stage PCR reaction was composed of reagents Amplitaq Gold DNA 

polymerase with Gold Buffer & MgCl2 and a set of modified “inside” primers 

containing the first stage MiSeq partial adaptor (PA) sequences on the 5’ ends of 

the forward primer and the 3’ end of the consensus reverse primers.  

 

 

Figure 2-5: NGS dual adapter approach schematic 
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Table 2-16: IGH complete rearrangements forward and reverse 1st stage primers. Forward 

Primers span the VH1-VH7 gene segment. Reverse consensus primer targeting the J gene 

segment 

IGH Complete rearrangements - Sequence 5’ – 3’ 

Forward 

VH1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGAGCTGAGCAGCCTGAGATCTGA 

VH2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAATGACCAACATGGACCCTGTGGA 

VH3 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTGCAAATGAACAGCCTGAGAGCC 

 

VH4 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAGCTCTGTGACCGCCGCGGACACG 

 

VH5 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGCACCGCCTACCTGCAGTGGAGC 

 

VH6 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTTCTCCCTGCAGCTGAACTCTGTG 

VH7 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGCACGGCATATCTGCAGATCAG 

Reverse 

JHCons ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTACCTGAGGAGACGGTGACC 
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The products of the first stage PCR reaction were then purified using the AMPure 

XP bead purification method. 

 

2.5.6.2 AMPure XP beads – Library purification 

An AMPure XP bead purification method was used to purify PCR products for the 

two-stage PCR reaction. Each reagent for the clean-up procedure was made up 

fresh. The Elution Buffer was made up by mixing 1M Trizoma HCl ((Sigma-Aldrich, 

USA), Tween 20 (Sigma-Aldrich, USA) and dH2O and vortexing to ensure a 

homogenous solution. The Binding Buffer was made up by dissolving 2g of PEG 

(Sigma-Aldrich, USA) with 5 mL of NaCl (Sigma-Aldrich, USA) and then topped up 

IGH Incomplete rearrangements - Sequence 5’ – 3’ 

Forward 

DH1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGCGGAATGTGTGCAGGC 

DH2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCACTGGGCTCAGAGTCCTCT 

DH3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGGCCCTGGGAATATAAAA 

DH4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGATCCCCAGGACGCAGCA 

DH5 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGGGGGACACTGTGCATGT 

DH6 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGACCCCAGCAAGGGAAGG 

DH7 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCACAGGCCCCCTACCAGC 

Reverse 

JHCons ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTACCTGAGGAGACGGTGACC 

Table 2-17: IGH incomplete rearrangements forward and reverse 1st stage primers. Forward 

Primers span the DH1-DH7 gene segment. Reverse consensus primer targeting the J gene 

segment. 
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to 10 mL with dH2O and vortexed thoroughly to ensure a homogenous solution.  All 

solutions were poured into individual disposable reservoirs.  

 

The AMPure XP beads were allowed to equilibrate to room temperature for 30 

minutes before use. The PCR products were mixed with 25 μL of Elution buffer and 

50 μL of AMPure XP beads in PCR tube strips and incubated at room temperature 

for 5 minutes. The PCR tubes were then placed on a magnetic rack and left for 2 

minutes before the supernatant was aspirated and discarded. The beads were then 

washed with 80% ethanol twice before being air dried for 5 minutes. The beads were 

then resuspended in elution buffer, mixed with binding buffer and incubated for 5 

minutes at room temperature. The beads were then pelleted on the magnetic rack 

and left for 2 minutes before the supernatant was aspirated and discarded. The 

beads were then washed twice with 80% ethanol before being left to air-dry for 5 

minutes. The beads were removed from the magnet and were resuspended with 50 

μL of elution buffer. The beads were once again pelleted on the magnet for 2 

minutes before the eluate was removed and transferred into a fresh 1.5 mL elution 

tube. Purified DNA was stored at -20°C. 

 

2.5.6.2.1 2nd Stage PCR adapter ligation 

The eluted, purified 1st stage PCR product was then quantified using the Qubit 

dsDNA HS Assay and analysed for size and quality using the Bioanalyzer 2100 

instrument as described in section 1.5.4. The purified products were then used as 

template DNA for the second stage PCR reaction which used NEBNext Q5 Ultra II 

q5 Master Mix (New England Biolabs, Ipswich, MA, USA) and a set of secondary 

“outside” primers containing secondary matching adaptor sequences, sample-

specific barcode sequences and flow cell ligation adapter sequences. 
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Stage 2 

Primers 
Sequence 5’ – 3’ 

i7_01 CAAGCAGAAGACGGCATACGAGATTCTAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_03 CAAGCAGAAGACGGCATACGAGATAGGTTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_04 CAAGCAGAAGACGGCATACGAGATGACCAACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_05 CAAGCAGAAGACGGCATACGAGATGCGGAGTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_06 CAAGCAGAAGACGGCATACGAGATGTGCCATAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_07 CAAGCAGAAGACGGCATACGAGATTAATGTCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_08 CAAGCAGAAGACGGCATACGAGATCGAAGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_10 CAAGCAGAAGACGGCATACGAGATAGAACATTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_11 CAAGCAGAAGACGGCATACGAGATTGTCAGTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i7_12 CAAGCAGAAGACGGCATACGAGATCACCGCTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC∗T 

i5_01 AATGATACGGCGACCACCGAGATCTACACCACTTGAGACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_02 AATGATACGGCGACCACCGAGATCTACACGTTACCGAACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_03 AATGATACGGCGACCACCGAGATCTACACTGACGACTACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_04 AATGATACGGCGACCACCGAGATCTACACACGGATTCACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_05 AATGATACGGCGACCACCGAGATCTACACCCATAGGAACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_06 AATGATACGGCGACCACCGAGATCTACACTGGAAGGCACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_07 AATGATACGGCGACCACCGAGATCTACACGCATCATGACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_08 AATGATACGGCGACCACCGAGATCTACACAGCGGTGAACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_10 AATGATACGGCGACCACCGAGATCTACACCATGCATAACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

i5_13 AATGATACGGCGACCACCGAGATCTACACTCCAGGTAACACTCTTTCCCTACACGACGCTCTTCCGATC∗T 

Table 2-18: 2nd Stage adapter primer sequences 
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Index combination Index Index in oligo Index Read Sequence 

1 

i5_01 CACTTGAG CACTTGAG 

i7_01 TCTAGCTA TAGCTAGA 

2 

i5_02 GTTACCGA GTTACCGA 

i7_03 AGGTTGGC GCCAACCT 

3 

i5_03 TGACGACT TGACGACT 

i7_04 GACCAACG CGTTGGTC 

4 

i5_04 ACGGATTC ACGGATTC 

i7_05 GCGGAGTT AACTCCGC 

5 

i5_05 CCATAGGA CCATAGGA 

i7_06 GTGCCATA TATGGCAC 

6 

i5_06 TGGAAGGC TGGAAGGC 

i7_07 TAATGTCC GGACATTA 

7 

i5_07 GCATCATG GCATCATG 

i7_08 CGAAGGAC GTCCTTCG 

8 

i5_08 AGCGGTGA AGCGGTGA 

i7_10 AGAACATT AATGTTCT 

9 

i5_10 CATGCATA CATGCATA 

i7_11 TGTCAGTC GACTGACA 

10 

i5_13 TCCAGGTA TCCAGGTA 

i7_12 CACCGCTT AAGCGGTG 

Table 2-19: Unique indexes in 2nd stage PCR primers 
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Mastermix Per Well (μL) 

10x PCR buffer 2.50 

dNTPs (200uM) 0.50 

Primer Pool (10pmol/primer) 0.40 

MgCl2 (2mM) 2.00 

Taq polymerase (2U) 0.20 

Water Variable 

DNA variable 

Volume added to wells 5.6 

Total Volume 25.0 

Table 2-20: 2nd  Stage PCR Mastermix composition 

Cycle step Temperature  °C Hold 
No. of 

Cycles 

Pre-activation 95 7 mins 1 

Denaturation 95 30 secs 

30 Annealing 60 45 secs 

Extension 72 45 secs 

Final Extension 72 10 mins 1 

Final hold 4 ∞ - 

Table 2-21: 2nd Stage PCR thermocycling conditions 
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2.5.6.2.2 DNA pooling 

Prepared libraries were pooled according to their length (bp) based on metrics 

obtained from the Qubit dsDNA HS assay and the Bioanalyzer HS DNA assay. 

Libraries were created from samples being pooled to 1-4 nM to create an equimolar 

final pool of all the loci. These pools were submitted to Glasgow Polyomics for KAPA 

RQ-PCR quantification and sequencing on a MiSeq instrument (Illumina). 

 

2.5.7 TruePrime cfDNA amplification  

2.5.7.1 TruePrime Apoptotic cfDNA Amplification Kit 

The TruePrime Apoptotic cell-free DNA amplification kit relies on a novel method of 

multiple displacement amplification with the use of TthPrimPol DNA primase and 

Phi29 DNA polymerase to amplify cfDNA from liquid biopsy samples. It targets short 

fragments of cfDNA (up to 170 bp) which are believed to originate from apoptotic 

mechanisms. The short cfDNA fragments were first treated with an end-repair and 

dA-tailing reaction which produced 3’-dA overhangs on both DNA strands in 

preparation for the subsequent ligation of hairpin adaptors to these overhangs. DNA 

primase TthPrimPol  then recognises, binds, and produces primers on the hairpin 

adaptors and matching sequences are extended by Phi29 DNA polymerase. The 

strands are subsequently displaced by Phi29 allowing TthPrimPol to produces new 

primers on the newly created hairpin adaptors. This process continues 

exponentially, in a rolling circle, isothermal amplification method resulting in a vast 

increase in cfDNA starting material.   

 

Following cfDNA isolation using QIAamp Circulating Nucleic Acids Kit (see section 

2.5.2.2.2), 25 μL of purified cfDNA was made up to 50 μL with nuclease-free H2O. 

For the End-repair + dA-tailing reaction, the cfDNA samples were mixed with End-
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repair enzyme mix and End-repair reaction buffer, mixed by pipetting the solution 

10 times, then incubated in a thermocycler for 30 minutes at 20°C; 30 minutes at 

65°C and held at 4°C with the lid set to a constant to 75°C.  

 

The Adaptor Ligation mix was created by mixing Ligation mix, Enhancer Buffer, 

Adaptor Solution, and the End-repair + dA-tailing product and was then mixed by 

pipetting the solution 10 times. The Adaptor Ligation mix was then incubated in a 

thermocycler for 15 minutes with the lid heating turned off. The adaptor ligated 

cfDNA was then purified using the AMPure XP Bead clean-up method using a bead 

ration of X (as described in section 2.5.6.2). Following the clean-up procedure, the 

TruePrime amplification mix was created by mixing nuclease-free H2O; Reaction 

Buffer; dNTPs; Enzyme 1 and Enzyme 2 to 15 μL of the clean adaptor ligation mix. 

The amplification reaction solution was then mixed by pipetting the solution 10 times 

and incubated in a thermocycler at 30°C for 6 hours; 65°C for 10 minutes to 

inactivate the reaction; and cooled to 4°C. The samples were then quantified using 

the Qubit dsDNA BR Assay kit (section 2.5.4.1).  
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2.6 Data analysis 

All statistical analysis was performed on GraphPad Prism v9 unless stated 

otherwise.  

All tables were created using Microsoft® Excel® for Microsoft 365 MSO (Version 

2203 Build 16.0.15028.20152) 32-bit and figures were assembled  or created 

using Microsoft® PowerPoint® for Microsoft 365 MSO (Version 2203 Build 

16.0.15028.20152) 32-bit or BioRender (BioRender.com)  

ROC curve analysis and multivariate biomarker modelling was performed using 

Metaboanalyst web platform v5.0 (https://www.metaboanalyst.ca/) [103]. 

 

Digital PCR data was analysed using QuantaSoft Software version 1.7.4.0917. Data 

representation and statistics were performed using GraphPad Prism version 9 for 

Windows, GraphPad Software, San Diego, California USA, (www.graphpad.com) 

 

Raw NGS files were pre-processed on a Galaxy server provided by Glasgow 

Polyomics (https://www.polyomics.gla.ac.uk/). Bioinformatic analysis was 

performed on web application Vidjil (https://app.vidjil.org/) [104] 

 

VDJ sequences were compared to IgBlast and IMGT/Vquest databases for analysis 

of VDJ gene rearrangements: (https://www.ncbi.nlm.nih.gov/igblast/index.cgi) 

(https://www.imgt.org/)  

 

 

 

 

https://www.metaboanalyst.ca/
https://app.vidjil.org/
https://www.ncbi.nlm.nih.gov/igblast/index.cgi
https://www.imgt.org/


112 
 

Chapter 3: Metabolic biomarkers for CNS-ALL 

3 Introduction and aims   

Profiling the metabolome of cancers is a growing field in the search for clinically 

informative biomarkers. Metabolic reprogramming is a known hallmark of cancer, 

where malignant cells are known to adapt to their microenvironments to survive and 

replicate through metabolic changes, particularly when microenvironments are 

harsh i.e., nutrient deficient or hypoxic. The leptomeninges is bathed in nutrient 

deficient CSF and typically this space has low levels of cells. Leukaemic blasts 

adapt to this harsh environment through metabolic alterations and consequently 

might alter the metabolic profile of CSF in the process. To explore the metabolome 

of the leukaemic CNS space, a technique called liquid chromatography mass 

spectrometry (LC-MS) was used in this study. LC-MS is a powerful tool which can 

be used to discriminate between various small, polar metabolites and quantify 

relative abundance or absolute abundance if a standard curve of target analytes is 

used.  

 

Metabolomics can be used to identify hundreds to thousands of metabolites 

simultaneously in a single experiment. This has important implications in the field of 

biomarker discovery and development as it is commonplace to use several 

biomarkers in combination for various clinical diagnoses and prognoses. The use of 

the right combination of multiple biomarkers in parallel can significantly increase the 

specificity and sensitivity of a diagnosis and aid in personalising medicine for 

patients with aggressive disease. 

 

In a metabolic biomarker discovery and development pipeline, the process can be 

generally divided into three stages, 1) Selection of clinically appropriate candidate 
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biomarkers,  2) Evaluation of candidate biomarker performance,  3) Creation of a 

multivariate biomarker model. Previous work in the Halsey laboratory identified 

potential candidate biomarkers in the CSF of children with ALL which showed 

promise in detecting a potential leukaemic metabolic signature in the CSF of 

diagnostic patient samples. Patient CSF samples were compared against matched 

control CSF taken from patients a year into treatment where leukaemic burden in 

the CNS is expected to be minimal to non-existent and unmatched CSF controls 

taken from children under the age of 12 who were admitted to hospital for 

neurological conditions but were cleared from any cancer. The use of the matched 

control is essential to obtain a “normal state” signature of the candidate biomarker 

in a controlled cohort of patient samples who are matched for the appropriate age 

group and clinical setting. The use of the unmatched control cohort again gives us 

strong insight into the “normal state”  of the candidate biomarkers from an external 

source of CSF originating from the same age group.  

 

The experimental approach taken previously in the Halsey laboratory was an 

untargeted metabolomic analysis which set the analytical foundation for this analysis 

and begins to address point 1 of the metabolic biomarker discovery and 

development pipeline (Biomarker selection).The candidate biomarkers put forward 

in that study included a range of amino acid derivatives, alpha amino acids, 

nucleosides, and nucleoside analogues.  

 

This study first reanalysed this data in the search for more candidate biomarkers 

again using an untargeted experimental approach. With a final list of candidate 

biomarkers, this study then took a targeted approach focussing on points 2 and 3 of 

the pipeline, evaluating the candidate biomarkers using two cohorts of patient and 

control CSF samples. The first cohort was composed of childhood leukaemic CSF 
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samples originating from the Halsey biobank in Glasgow, UK  and two groups of 

CSF controls. This cohort was used as a small-scale pilot study evaluating the 

behaviour of the candidate biomarkers against the CSF controls. The first control 

CSF group, akin to the unmatched control group mentioned previously, was 

composed of CSF samples taken from patients who were admitted to hospital for 

suspected non-inflammatory neurological conditions and had a lumbar puncture 

taken which returned normal results with clinical profiles parallel to normal CSF. The 

second group of control CSF was composed of CSF samples from patients who 

were admitted to hospital for suspected inflammatory neurological conditions. Both 

control CSF groups did not have CSF samples which had any malignant diagnoses.  

 

The second cohort was composed of a large, comprehensive cohort of patient 

samples obtained from a national childhood leukaemia biobank composed of 

diagnostic samples from patients classified as CNS1, CNS2 or CNS3 by CSF 

cytology and more control CSF samples composed of non-inflammatory and 

inflammatory CSF samples. This cohort was used to further evaluate and validate 

findings from the pilot study through biomarker evaluation analyses (point 2) and to 

begin to address point 3 of the metabolic biomarker discovery and development 

pipeline to test the clinical utility of a  panel of successful candidate biomarkers as 

diagnostic biomarkers of CNS-ALL. This cohort also included several diagnostic 

samples from patients who went onto have either isolated CNS relapse or combined 

CNS and bone marrow relapse. These samples are an opportunity to investigate 

whether the chosen candidate biomarkers express different signatures when 

compared against each other with the aim of elucidating their efficacy as candidate 

prognostic biomarkers.  
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The aim of this part of the study was to further test the candidate biomarkers for 

their clinical utility as diagnostic and prognostic biomarkers for CNS-ALL. The 

analysis of candidate biomarkers was performed according to the following specific 

aims:   

 

1. To perform a new untargeted analysis on a previous dataset of diagnostic 

ALL CSF samples from the Halsey Biobank and matched/ unmatched 

controls using a more comprehensive and stringent compound identification 

software programme to interrogate these results further in the search for 

more candidate diagnostic biomarkers.  

 

2. To perform a targeted metabolic analysis on a new cohort of CSF samples 

from the Halsey biobank to validate candidate diagnostic biomarkers 

identified in (1) and to compare metabolomic signatures between diagnostic 

ALL CSF samples with inflammatory and non-inflammatory control CSF 

sample groups. 

 

3. To perform targeted metabolic analysis on a large, comprehensive cohort of 

diagnostic CSF samples from a national biobank  using candidate diagnostic 

biomarkers identified in (1) and compare metabolic signatures to that of 

inflammatory and non-inflammatory control CSF groups. 

 

4. To perform both univariate and multivariate analyses of diagnostic patient 

samples against a combined cohort of CSF controls made up of inflammatory 

and non-inflammatory control CSF for both datasets in aims 2 and 3.  
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5. To perform targeted metabolic analysis to identify potential prognostic 

biomarkers using patient diagnostic samples from patients who went onto 

relapse in the CNS.  
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3.1 Candidate diagnostic biomarkers  

3.1.1 Untargeted reanalysis to find new candidate biomarkers of 

interest 

The first step was to re-analyse the chromatogram from the previous dataset 

created in the Halsey laboratory using Compound Discoverer (Thermo Fisher) 

software to identify new potential candidate biomarkers for investigation. This 

experiment included 19 CNS1 patient samples obtained from the Glasgow Biobank 

from children with ALL diagnosed between 2009 and 2016 and were compared to 

both matched and unmatched CSF controls mentioned above. 

 

To begin, the reanalysis consisted of another untargeted approach to analyse the 

data with a higher resolution in Compound Discoverer (Thermo Fisher) to attempt 

to discover novel candidate biomarkers which may have been missed initially. First, 

the raw data was filtered by removing basal levels of metabolites and any low-

abundance metabolites, reducing the number of analytes from 1142 to 507 

indicating the presence of a lot of background noise in the data. The data was then 

subjected to statistical analysis to search for differences between the means of the 

leukaemic samples (henceforth labelled and referred to as “CNS Dx”) and both the 

matched late control CSF samples and unmatched control CSF samples to further 

filter down the number of relevant candidate biomarkers (Table 3-1).  

 

To ensure that any candidate biomarker would be suitable for further analysis, a 

ratio filtering method was then applied to all metabolites that were identified as 

having a significant difference between the CNS Dx group and the means of both 

control CSF groups. This ratio filtering involved filtering for metabolites that were 

either clearly higher (where the highest value in both control groups was less than 
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11% higher than the average of the CNS Dx patient group) or clearly lower (where 

the lowest value in both control groups was greater than 11% higher than the 

average of the CNS Dx patient group) than both the late control CSF and unmatched 

control CSF groups to ensure concordant trends (Equation 1).  

 

Software Filter Number of metabolites 

Compound Discoverer 

(CD) 

Raw 1142 

Background 

+ Area >10000 
507 

GraphPad Prism v9 Unpaired t-tests POS = 29 Neg= 45 

Microsoft Excel Ratio filtering POS=18 Neg = 13 

Compound discoverer, 

Online databases 
ID matching + HMDB POS =0 NEG = 2 

 

Table 3-1: Untargeted metabolomic analysis filtering workflow. Initial filtering took place in CD 

software followed by statistical filtering in GraphPad Prism v9. Ratio filtering was performed on 

Microsoft Excel. Identification of compounds was performed on Compound discoverer and public 

databases mzCloud and HMDB. 

 

𝑀𝑎𝑥 (𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑇𝐿)

𝑀𝑒𝑎𝑛 (𝐷𝑥)
  𝐴𝑁𝐷 

𝑀𝑎𝑥 (𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑇𝐿)

𝑀𝑒𝑎𝑛 (𝐷𝑥)
   < 1.11  

 

Or 

 

𝑀𝑖𝑛 (𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑇𝐿)

𝑀𝑒𝑎𝑛 (𝐷𝑥)
  𝐴𝑁𝐷 

𝑀𝑖𝑛 (𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑇𝐿)

𝑀𝑒𝑎𝑛 (𝐷𝑥)
 > 0.89  

 

Equation 1: Ratio filtering 
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Following this, candidate biomarkers were identified by matching metabolites to an 

in-house database from the metabolomics department in the Beatson Institute, 

Glasgow in the Compound Discoverer software and by using mzCloud and HMDB, 

two publicly available databases. Candidate biomarkers previously identified by the 

Halsey lab were excluded from this analysis. This filtering process identified two 

candidate biomarkers for further investigation, both from the negative ionisation 

mode, Inosine and Orotidine (Figure 3-2, Table 3-3). The performance of the 

biomarkers in terms of statistical significance and fold change can be seen in 

(Figure 3-1, Table 3-3). 

 

ROC curve analysis was then performed to test the performance of the candidate 

biomarkers. ROC curves are a powerful and statistically valid tool in biomarker 

assessment to determine the discriminatory ability of an analyte between a patient 

(disease) group and a control (non-disease group). Typically, comparisons between 

disease and non-disease groups reveal natural overlaps in their distributions and 

ROC curves can be leveraged to test the specificity of the proportion of the control 

(non-disease) group which correctly identify as negative, as well as the sensitivity 

of the proportion of the patient (disease) group which correctly identify as positive.  

 

A ROC curve analysis will calculate the frequency of true positives, true negatives, 

false positives, and false negatives and will subsequently plot a curve and yield the 

following metrics: 1) A quantified area under curve (AUC) value between 0 and 1 

summarizing the overall discriminatory ability of the test to differentiate between the 

patient (disease) and control (non-disease) groups; 2) 95% confidence intervals 

which describe the range of values in which a sample will lie upon repeating the 

same experiment with an independent population of the same disease; 3) A p value 

testing the null hypothesis that the AUC of a measurement equals 0.5. In which case 
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a p value less than an alpha of 0.05 will indicate that the feature (analyte) can 

discriminate between the patient (disease) and control (non-disease) with a high 

degree of certainty. 

 

The result of a ROC curve analysis can be summarised with the AUC but must be 

interpreted with care, considering the 95% confidence intervals, and accompanying 

non-parametric statistical test summarised by the p value yielded (Table 3-2). 

  

 

 

 

 

AUC Discriminatory performance 

≤ 0.5 – 0.6 No discrimination 

0.6 to 0.7 Poor 

0.7 to 0.8 Acceptable 

0.8 to 0.9 Good 

0.9 to 1.0 Excellent 

Table 3-2: Classification designations for AUC [103, 105]. 
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Figure 3-1: Volcano plot of untargeted metabolomic data. CNS Dx vs matched CSF control 

(top) and CNS Dx vs unmatched CSF control (bottom). P values are described to the -log10 on the 

y axis and fold change is described as log2 on the x axis. Statistically significant increased or 

decreased  metabolites are present in the top left and top right quadrants. Graphs created on 

GraphPad Prism v9. 
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In this study, calculated AUCs will be categorised according to (Table 3-2). Results 

from this analysis show concordance between  the CNS Dx  group vs both matched 

and unmatched controls with good AUCs for both candidate biomarkers Inosine and 

Orotidine (0.87 & 0.88 respectively) , similar 95% confidence intervals and p values, 

both <0.001, suggesting that both candidate biomarkers show good ability to 

discriminate between disease and non-disease samples (Table 3-4, Figure 3-3).  
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Figure 3-2: Violin plots of Inosine and Orotidine CNS Dx patient samples vs matched and 

unmatched CSF controls. CNS Dx n=19; matched control n=19; unmatched control n=17. Data 

was log transformed and graphs were created on GraphPad Prism v9.  
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Figure 3-3: Inosine & Orotidine ROC Curves and optimal cut-off points between CNS Dx 

and matched and unmatched CSF controls. Optimal cut-off points (red dotted line) 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2].  (A) 

Inosine – CNS Dx vs matched control; (B) Inosine – CNS Dx vs Unmatched control ;  (C) 

Orotidine – CNS Dx vs matched control; (D) Orotidine – CNS Dx vs unmatched control. ROC 

curves created on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Candidate 

biomarker 
Control CNS Dx SEM 

95% 

confidence 

interval 

R2 
Log 2 

FC 
P value Adj. p value 

Inosine  

CNS Dx vs 

matched 

control 

4.792 6.100 0.21 
-1.729 to -

0.8882 
0.7039 5.4202 0.0000004402 0.0000008805 

Inosine 

CNS Dx vs 

unmatched 

control 

4.736 6.100 0.22 
-1.802 to -

0.9261 
0.5410 6.1955 0.0000003217 0.0000006433 

Orotidine  

CNS Dx vs 

matched 

control 

5.459 5.861 0.086 
-0.5586 to -

0.2455 
0.6180 1.5191 0.0000388679 0.0000388679 

Orotidine 

CNS Dx vs 

unmatched 

control 

5.407 5.861 0.098 
-0.6529 to -

0.2554 
0.3881 1.628 0.0000495428 0.0000495428 

Table 3-3: Candidate biomarkers: Statistical analysis of the difference between CNS Dx and 

matched/unmatched CSF controls. Data was log transformed prior to statistical analysis. Paired 

t-test – CNS Dx vs matched control; Unpaired t-test CNS Dx vs unmatched control. Multiple 

comparisons corrected by Holm-Sidak method with α=0.05 and statistic described by adjusted p 

value. All statistics were performed on GraphPad Prism v9.  
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3.1.2 Summary 

Both Inosine and Orotidine show promise in discriminating CNS-ALL from both 

matched and unmatched control CSF. The data shows elevated levels of the 

respective analyte in the CNS Dx group compared to both controls and are the result 

of a stringent filtering process thus, these two candidate biomarkers were taken 

forward alongside the previously discovered candidate biomarker metabolites, 

Xanthine, Creatine, Phenylalanine, Pseudouridine, N4-acetylcytidine and 

Symmetric dimethylarginine (Table 3-5). 

 

 

 

 

 

 

 

ROC CNS Dx vs matched control CNS Dx vs Unmatched control 

Metabolite AUC 95% CI p value 
Optimal 

cut-off 
AUC 95% CI p value 

Optimal 

cut-off 

Inosine 0.86 0.73 to 0.99 
4.4063E

-7 
4.99 0.87 0.73 to 0.99 3.2202E-7 4.96 

Orotidine 0.88 0.74 to 0.97 
3.8863E

-5 

5.62, 

5.66 
0.88 0.74 to 0.98 

 

4.949E-5 

 

5.65 

Table 3-4: ROC curve analysis summary: CNS Dx vs matched/ unmatched control. AUC = Area 

under the curve; CI = confidence intervals. P value calculated by non-parametric t-test. Optimal cut-off 

points determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. 
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Table 3-5: Candidate biomarkers selected for further evaluation. Source: The human 

metabolome database (HMDB).  

Candidate 

Biomarkers 
Structure Formula Av. MW HMDB ID & online reference 

Xanthine 

 

C5 H4 N4 O2 152.1109 

HMDB0000292 

 

https://hmdb.ca/metabolites/HMDB0000292 

Creatine 

 

C4 H9 N3 O2 131.1332 

HMDB0000064 

https://hmdb.ca/metabolites/HMDB0000064 

Phenylalanine 

 

C9 H11 N O2 165.1891 

HMDB0000159 

 

https://hmdb.ca/metabolites/HMDB0000159 

Pseudouridine 

 

C9 H12 N2 O6 244.2014 

HMDB0000767 

 

https://hmdb.ca/metabolites/HMDB0000767 

N4-

acetylcytidine 

 

C11 H15 N3 O6 285.2533 

HMDB0005923 

 

https://hmdb.ca/metabolites/HMDB0005923 

Symmetric 

dimethylarginine 

 

C8 H18 N4 O2 202.2541 

HMDB0003334 

 

https://hmdb.ca/metabolites/HMDB0003334 

Inosine 

 

C10 H12 N4 O5 268.2261 

HMDB0000195 

 

https://hmdb.ca/metabolites/HMDB0000195 

Orotidine 

 

C10 H12 N2 O8 288.2109 

HMDB0000788 

 

https://hmdb.ca/metabolites/HMDB0000788 
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3.2 Targeted analysis of candidate diagnostic 

biomarkers – Pilot Cohort  

3.2.1 Univariate analysis of candidate biomarker performance 

against non-inflammatory and inflammatory control CSF 

The next step was to test all candidate biomarkers using a targeted metabolomics 

approach with a small pilot cohort of patient and control CSF samples. This cohort 

of patient samples derived from the same local biobank in the Halsey laboratory, 

Glasgow, as the previous experiment. Patient samples were compared against two 

types of CSF control samples derived from samples taken from adults who were 

admitted to hospital for either non-inflammatory or inflammatory conditions but were 

cleared of any cancer (Table 3-6). For the following experiments, the non-

inflammatory control cohort will act as a surrogate “normal CSF” control for the 

unmatched CSF control and the matched late control from the previous experiment.  

 

The control samples from the inflammatory CSF cohort were used to test the 

specificity of the candidate biomarker for leukaemia. It was hypothesized that a 

specific candidate biomarker for CNS-leukaemia in this setting would concord with 

both the inflammatory control or non-inflammatory control CSF as being either 

clearly higher or lower than the patient group. A candidate biomarker’s discordancy 

in the comparisons between the leukaemic patient sample group and the 

inflammatory control CSF would thus suggest a non-specific phenotype for CNS-

ALL. 

 

In this experiment, ten diagnostic CNS1 patient CSF samples were compared 

against ten non-inflammatory control CSF samples (also referred to as NI CTL) and 

ten inflammatory control CSF samples also referred to as I CTL) (Figure 3-4, Table 
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3-6, 3-7). Statistical analysis was performed to test for significant differences 

between the means of the comparators. Of the eight candidate biomarkers tested, 

Xanthine (CNS Dx vs NI CTL p value <0.0001; CNS Dx vs I CTL p value <0.0001) 

and Inosine  (CNS Dx vs NI CTL p value = 0.012675; CNS Dx vs I CTL p value = 

0.012970) showed highly elevated levels compared to both controls and statistical 

analysis indicated significant differences between the means of the comparisons 

(Figure 3-4, Table 3-8). 

 

CSF control demographic 

Control type Ages Sex Diagnosis 

NI control n=10 26- 73 

14 F Migraine, headache, Functional*, motor 

neuronopathy, delirium, epilepsy 6 M 

I control n=10 18 - 57 

13 F Neurosarcoidosis, post-infectious movement 

disorder, RRMS**, 
7 M 

Table 3-6: Control CSF cohorts – non-inflammatory and inflammatory CSF. F= Female; M = 

Male. * Functional = Body symptoms which appear to be caused by the CNS, but are not, medically 

unexplained.** RRMS = Relapsing-Remitting Multiple Sclerosis.  
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Patient ID Age @ Dx Sex CNS status 

Patient 1 4.6 F 1 

Patient 2 7.9 F 1 

Patient 3 1.8 F 1 

Patient 4 5.5 F 1 

Patient 5 2.9 F 1 

Patient 6 3.2 F 1 

Patient 7 15.7 F 1 

Patient 8 2 M 1 

Patient 9 6.2 F 1 

Patient 10 3.2 M 1 

Table 3-7: Patient clinical details for samples in the pilot experiment. 

 

 

Creatine presented with an inverse trend with decreased levels compared to both 

controls and statistical analysis indicated a highly significant difference between the 

means of the comparators (CNS Dx vs NI CTL p val <0.0001; CNS Dx vs I CTL p 

val <0.0001).  

 

N4-acetylcytidine and Symmetric dimethylarginine also had elevated means in the 

CNS Dx group compared to both CSF controls and presented with significant 

differences between the means with p values <0.05.  
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Phenylalanine and Orotidine showed slightly elevated means in the CNS1 Dx group 

(8.58 & 5.95 respectively) compared to both CSF controls (NI CTL= 8.52; I CTL= 

8.51 & NI CTL =5.78; I CTL = 5.73) and the spread of the data in the violin plots 

indicates the data trends higher than the means of both controls but statistical 

analysis did not reveal any significant differences between the means of either 

comparison (Figure 3-4, Table 3-8).  

 

Pseudouridine presented with effectively equal amounts in all comparisons and 

statistical analysis revealed no significant difference between the means of either 

comparison (Figure 4, Table 3-8). 

  

Next, ROC curve analysis was performed, and results were concordant between the 

CNS Dx group and both CSF controls for Xanthine, Creatine, N4-acetylcytidine, 

Symmetric dimethylarginine, and Inosine (Figure 3-5, 3-6, 3-7 & 3-8; Table 3-9). 

Creatine showed the best ability to discriminate between the CNS Dx group and 

both CSF control groups with very high-performance ROC curve metrics. The AUC 

for both comparisons suggest that Creatine is an excellent discriminator (AUC 0.98 

for both comparisons) and this was accompanied by higher and narrow 95% 

confidence intervals (0.88 to 1.00 & 0.90 to 1.00 respectively) and p values <0.05 

(Table 9; Figure 5 B1-B2).  

 

Xanthine showed excellent discriminatory ability with an AUC of 0.93; 0.76 to 1.00 

95% CI; p= <0.05) in the CNS Dx vs NI CTL comparison. This was concordant in 

the CNS Dx vs I CTL comparison with an AUC of 0.90; p val <0.05 however, with 

wider 95% confidence intervals in this comparison, stretching from 0.67 to 1.00, but 

both with accompanying p values <0.05 (Table 9, Figure 5 A1-A2) .  



131 
 

NI Control CNS1 Dx I Control

6.5

7.0

7.5

8.0

8.5

9.0

Xanthine

L
o
g

 (
p

e
a
k
 a

re
a
)

✱✱✱✱ ✱✱✱✱

NI Control CNS1 Dx I Control

9.2

9.4

9.6

9.8

10.0

Creatine

L
o
g

 (
p

e
a
k
 a

re
a
)

✱✱✱✱ ✱✱✱✱

NI Control CNS1 Dx I Control

8.0

8.2

8.4

8.6

8.8

9.0

 Phenylalanine

L
o
g

 (
p

e
a
k
 a

re
a
)

ns ns

NI Control CNS1 Dx I Control

7.0

7.5

8.0

8.5

Pseudouridine

L
o
g

 (
p

e
a
k
 a

re
a
)

ns ns

NI Control CNS1 Dx I Control

4

5

6

7

8

N4-acetylcytidine

L
o
g

 (
p

e
a
k
 a

re
a
)

✱ ✱✱✱

NI Control CNS1 Dx I Control

6.6

6.8

7.0

7.2

7.4

7.6

Symmetric dimethylarginine

L
o
g

 (
p

e
a
k
 a

re
a
)

✱✱ ✱

NI Control CNS1 Dx I Control

4

5

6

7

8

9

Inosine

L
o
g

 (
p

e
a
k
 a

re
a
)

✱✱✱ ✱✱✱

NI Control CNS1 Dx I Control

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Orotidine

L
o
g

 (
p

e
a
k
 a

re
a
)

ns ns

 

Figure 3-4: Violin plots of candidate biomarkers depicting CNS Dx patient group vs non-

inflammatory control CSF and inflammatory control CSF. CNS1 Dx: Diagnostic leukaemic 

patient samples (n=10); NI Control: Non-inflammatory control CSF (n=10); I Control: Inflammatory 

control CSF (n=10). Statistics performed on GraphPad Prism v. One-way ANOVA; means of 

Controls compared with mean on CNS Dx group with Dunnett’s multiple comparisons test α= 0.05. 

Data was log transformed and graphs were created on GraphPad Prism v9.  
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Table 3-8: Candidate biomarkers: Statistical analysis of the difference between CNS Dx and 

matched/unmatched CSF controls. Data was log transformed prior to statistical analysis. One-

way ANOVA; means of Controls compared with mean on CNS Dx group with Dunnett’s multiple 

comparisons test α= 0.05. Statistics performed on GraphPad Prism v9.  

 

 

Candidate 

biomarker 

Control 

Mean 

CNS 

Dx 

Mean 

SE of 

difference 

95% 

confidence 

interval 

ANOVA 

R2 

Log 2 

FC 

ANOVA  

P value 

Adjusted 

p Value 

Xanthine 

CNS Dx vs NI CTL 
9.706 

9.550 

0.02784 
-0.2209 to -

0.09096 
0.6077 2.43 

0.000003 

<0.0001 

Xanthine 

CNS Dx vs I CTL 
9.706 0.02784 

-0.2208 to -

0.09090 
0.6077 1.71 <0.0001 

Creatine 

CNS Dx vs NI CTL 
7.341 

8.002 

0.09730 
0.4338 to 

0.8879 
0.6440 -0.52 

<0.000001 

<0.0001 

Creatine 

CNS Dx vs I CTL 
7.533 0.09730 

0.2422 to 

0.6963 
0.6440 - 0.52 <0.0001 

Phenylalanine 

CNS Dx vs NI CTL 
8.519 

8.575 

0.04445 
-0.04739 to 

0.1601 
0.08924 0.19 

0.283118 

0.354887 

Phenylalanine 

CNS Dx vs I CTL 

8.507 

 
0.04445 

-0.03632 to 

0.1711 
0.08924 0.19 0.240042 

Pseudouridine 

CNS Dx vs NI CTL 
7.667 

7.641 

0.05426 

-0.1527 to 

0.1006 

 

0.04975 0.03 

0.502127 

0.847648 

Pseudouridine 

CNS Dx vs I CTL 
7.603 0.05426 

-0.08853 to 

0.1647 
0.04975 0.13 0.708210 

N4-acetylcytidine 

CNS Dx vs NI CTL 
6.283 

6.650 

 

0.1542 
0.007148 to 

0.7269 
0.4350 1.04 

0.000450 

0.045257 

N4-acetylcytidine 

CNS Dx vs I CTL 
5.947 0.1542 

0.3430 to 

1.063 
0.4350 2.16 0.000200 

Symmetric 

dimethylarginine 

CNS Dx vs NI CTL 

7.055 

7.219 

 

0.04357 
0.06284 to 

0.2662 
0.3553 0.57 

0.002668 

0.001565 

Symmetric 

dimethylarginine 

CNS Dx vs I CTL 

7.107 0.04357 
0.01039 to 

0.2137 
0.3553 0.51 0.029574 

Inosine 

CNS Dx vs NI CTL 
5.707 

6.422 

 

0.1666 
0.3261 to 

1.104 
0.4735 3.31 

0.000173 

0.000408 

Inosine 

CNS Dx vs I CTL 
5.715 0.1666 

0.3183 to 

1.096 
0.4735 3.30 0.000462 

Orotidine 

CNS Dx vs NI CTL 
5.767 

5.946 

 

0.1179 
-0.09561 to 

0.4544 
0.1226  1.00 

0.171075 

0.237723 

 

Orotidine 

CNS Dx vs I CTL 
5.733 0.1179 

-0.06218 to 

0.4878 
0.1226 1.13 

0.144175 
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N4-acetylcytidine presented with elevated levels in the CNS Dx group compared to 

both CSF controls with a significant difference between the means. ROC curve 

analysis was concordant however the CNS Dx vs NI control comparison saw notably 

wide 95% confidence intervals (0.55 to 0.97) as is further supported by the 

closeness of the data seen in (Figure 3-7 E1). Other than this, this comparison had 

a high AUC of 0.81 and a p value <0.05. The CNS Dx vs I control comparison had 

a very high AUC of 0.99 and the narrowest 95% confidence intervals of 0.96 to 1.00 

of all the candidate biomarkers for all comparisons and a p value <0.05 (Table 3-9, 

Figure 3-6 E2).  

 

Symmetric dimethylarginine presented with elevated levels in the CNS Dx group 

compared with both controls and with concordant AUCs (CNS Dx vs NI CTL:AUC 

0.89; 95% CI 0.71 to 1.00; p value <0.01) outperforming the CNS Dx v I control 

(AUC 0.8; p value <0.05) with notably wide 95% confidence intervals of 0.44 to 0.97, 

but equally suggesting this candidate biomarker as having excellent ability to 

discriminate between both comparator groups. This can be seen visually in the data 

at the overlap in between the I control CSF and the CNS1 Dx group (Table 3-9, 

Figure 3-7 F1-F2). 
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The ROC curve results for Inosine classify the candidate biomarker are acceptable  

in discriminating the CNS1 Dx group from both control CSF groups with very similar 

ROC curve metrics (CNS1 Dx vs NI CTL AUC 0.71; 0.40 to 1.00 95% CI; p value= 

0.0012347) (CNS1 Dx vs I CTL AUC 0.70; 0.40 to 1.00 95% CI; 0.0025295; p value= 

0.0025295) (Table 3-7) (Figure 3-8 G1-G2) 

 

ROC analysis of the remaining three candidate biomarkers, Phenylalanine, 

Pseudouridine and Orotidine, indicates that these metabolites have no better than 

ROC CNS1 Dx vs NI CTL CNS1 Dx vs I CTL 

Metabolite AUC 95% CI 
t-test 

p value 

Optimal 

Cut-off 
AUC 95% CI 

t-test 

p value 

Optimal 

Cut-off 

Xanthine 0.93 0.76 to 1.00 6.0772E-6 7.67 
0.90 

 

0.67 to 

1.00 

 

6.8754E-4 7.77 

Creatine 0.98 0.88 to 1.00 3.5525E-5 9.61 0.98 
0.90 to 

1.00 
2.3558E-5 9.62 

Phenylalanine 0.70 0.42 to 0.91 0.13246 8.58 0.59 
0.32 to 

0.83 
0.17634 8.56 

Pseudouridine 0.52 0.27 to 0.80 0.58067 7.62 0.53 
0.20 to 

0.80 
0.5599 7.67 

N4-

acetylcytidine 
0.81 0.55 to 0.97 0.029762 6.47 0.99 

0.96 to 

1.00 
3.7358E-5 

6.27 

6.39* 

Symmetric 

Dimethylarginine 
0.89 0.71 to 1.00 0.0012347 7.11 0.80 

0.55 to 

0.97 
0.030025 7.17 

Inosine 0.71 0.40 to 1.00 0.0024514 6.17 0.70 
0.40 to 

1.00 
0.0025295 6.14 

Orotidine 0.60 0.28 to 0.84 0.20535 6.04 0.63 
0.36 to 

0.88 
0.13018 6.02 

Table 3-9: ROC curve analysis summary: CNS Dx vs NI CTL/ I CTL. AUC = Area under the curve; 

CI = confidence intervals. P value calculated by non-parametric t-test. Optimal cut-off points  

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2].  *Two optimal 

cut-off points identified by “closest to top left” equation.   
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a 50% chance at discriminating between the CNS1 Dx group and the CSF control 

groups due to their p values > 0.05 regardless of the AUC metric presented. The 

very wide 95% confidence intervals corroborate this, and the data can be seen to 

majorly overlap (Table 3-9, Figure 3-6 C1-C2, D1-D2; Figure 3-8 H1-H2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NI CTL CNS1 Dx 

7.0

7.5

8.0

8.5

Xanthine

L
o
g

 (
p

e
a
k
 a

re
a
)

I CTL CNS1 Dx 

7.0

7.5

8.0

8.5

Xanthine

L
o
g

 (
p

e
a
k
 a

re
a
)

NI CTL CNS1 Dx 

9.4

9.5

9.6

9.7

9.8

9.9

Creatine

L
o
g

 (
p

e
a
k
 a

re
a
)

I CTL CNS1 Dx 

9.4

9.5

9.6

9.7

9.8

9.9

Creatine

L
o
g

 (
p

e
a
k
 a

re
a
)

(A1
) 

(A2
) 

(B1
) 

(B2
) 

Figure 3-5: Candidate biomarker ROC Curves and optimal cut-off points between CNS 

Dx and NI CTL/ I CTL CSF. Optimal cut-off point (red dotted line) determined as “closest to 

top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (A1) Xanthine – CNS Dx vs 

NI CTL; (A2) Xanthine – CNS Dx vs I CTL; (B1) Creatine – CNS Dx vs NI CTL; (B2) Creatine 

– CNS Dx vs I CTL. ROC curves created on Metaboanalyst; Box plots created on GraphPad 

Prism v9. 
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Figure 3-6: Candidate biomarker ROC Curves and optimal cut-off points between CNS 

Dx and NI CTL/ I CTL CSF. Optimal cut-off point (red dotted line) determined as “closest to 

top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (C1) Phenylalanine – CNS Dx 

vs NI CTL; (C2) Phenylalanine – CNS Dx vs I CTL; (D1) Pseudouridine – CNS Dx vs NI CTL; 

(D2) Pseudouridine – CNS Dx vs I CTL. ROC curves created on Metaboanalyst; Box plots 

created on GraphPad Prism v9. 
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Figure 3-7: Candidate biomarker ROC Curves and optimal cut-off points between CNS 

Dx and NI CTL/ I CTL CSF. Optimal cut-off point (red dotted line) determined as “closest 

to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (E1) N4-acetylcytidine – 

CNS Dx vs NI CTL; (E2) N4-acetylcytidine – CNS Dx vs I CTL; (F1) Symmetric 

dimethylarginine – CNS Dx vs NI CTL; (F2) Symmetric dimethylarginine – CNS Dx vs I CTL. 

ROC curves created on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Figure 3-813: Candidate biomarker ROC Curves and optimal cut-off points between CNS 
Dx and NI CTL/ I CTL CSF. Optimal cut-off point (red dotted line) determined as “closest to 
top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (G1) Inosine – CNS Dx vs NI 
CTL; (G2) Inosine – CNS Dx vs I CTL; (H1) Orotidine – CNS Dx vs NI CTL; (H2) Orotidine – 
CNS Dx vs I CTL. ROC curves created on Metaboanalyst; Box plots created on GraphPad 
Prism v9. 
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3.2.2 Univariate analysis of candidate biomarker performance 

against combined control CSF 

Due to the general level of concordance between the non-inflammatory and 

inflammatory control CSF against the CNS Dx group as can be observed in Figure 

3-4, it was then decided to combine the two CSF controls for comparison against 

the CNS Dx group to increase the power of the tested controls tested. First, the 

means of both controls were tested against each other to test for any statistically 

significant differences between them. All metabolites had similar means between 

the non-inflammatory and inflammatory CSF groups apart from Xanthine which had 

slightly higher levels in the inflammatory control CSF. Conversely, N4-acetylcytidine 

presented with slightly  lower levels in the inflammatory control CSF but there was 

no statistically significant difference between the means of any of the candidate 

biomarkers in the control CSF (Figure 3-9). 

 

The CNS Dx group was then compared to the combined CSF control (henceforth 

referred to as CSF CTL) to look for differences between the means. As before, there 

was a significant difference between the means in Xanthine p =0.0000005; Creatine 

p = 0.000003; N4-acetylcytidine p = 0.003958; Symmetric dimethylarginine p = 

0.004412 and Inosine p =0.000158 (Figure 3-10). 

 

ROC curve analysis was then performed between the CNS Dx group and the control 

CSF group. Creatine performed best with a high AUC of 0.97; 95% CI 0.87 to 1.00; 

p value = 6.5338E-7. The optimal cut-off point indicated an overall sensitivity of 

100% and specificity of 90% (Figure 3-11 B; Table 3-10). 
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Xanthine and N4-acetylcytidine performed next best with AUCs >0.9 and high 95% 

Cis and p values <0.05. The optimal cut-off point gave Xanthine a sensitivity of 95% 

and a specificity of 90% while N4-acetylcytidine had a sensitivity of 85% and a 

specificity of 80%) (Figure 3-11 A, Table 3-10).   

 

Symmetric dimethylarginine and Inosine presented with AUCs of 0.86 and 0.71  and 

more variable 95% CIs ranging from 0.66 to 0.99 and 0.42 to 0.97 respectively and 

p values <0.05. Sensitivity and Specificity of Symmetric dimethylarginine and 

Inosine were of 90% and 70%; 100% and 70% respectively (Figure 3-12 F,G;  Table 

3-10).    

 

Phenylalanine, Pseudouridine and Orotidine all had p values > 0.05 and thus were 

not considered as having the ability to discriminate between the disease and non-

disease groups (Figure 3-11 C, D, Figure 3-12 H; Table 3-10).  

 

These results were concordant with the previous analysis indicating that the 

combined CSF controls can be combined for testing against the leukaemic patient 

sample group effectively.  
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Figure 3-9: Boxplots: Noninflammatory and Inflammatory Control CSF comparison of means. 

NI control (n=10); I control (n=10). Two-tailed unpaired t-test with an α = 0.05. Graphs created on 

GraphPad Prism v9.  
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Figure 3-10: Violin plots of candidate biomarkers depicting CNS Dx patient group v control 

CSF. CNS Dx: Diagnostic leukaemic patient samples (n=10); Combined CSF control (n-20); Two-

tailed unpaired t-test; Multiple un-paired t-tests corrected using Holm-Sidak method, α= 0.05. 

Statistics performed on GraphPad Prism v9.  
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ROC CNS Dx vs Control CSF 

Metabolite AUC 95% CI t-test P value 
Optimal 

Cut-off 

Sensitivity Specificity 

Xanthine 0.905 0.71 to 1.00 6.5338E-7 7.77 
95% 

(0.85-1.00) 

90% 

(0.7-1.00) 

Creatine 0.97 0.87 to 1.00 3.7956E-7 9.61 
100% 

(1.00-1.00) 

90% 

(0.7-1.00) 

Phenylalanine 0.64 0.43 to 0.84 0.11247 8.58 
70% 

(0.5-0.9) 

70% 

(0.5-0.95) 

Pseudouridine 0.51 
0.25 to 

0.775 
0.89959 7.60 

80% 

(0.6-0.95) 

50% 

(0.3-0.8) 

N4-acetylcytidine 0.91 0.80 to 0.99 7.9113E-4 6.47 
85%  

(0.7-1.00) 

80% 

(0.55-1.000) 

Symmetric 

Dimethylarginine 
0.86 0.66 to 0.97 0.0011049 7.18 

90% 

(0.77-1.00) 

70% 

(0.4-0.95) 

Inosine 0.71 0.42 to 0.97 2.637E-5 6.17 
100% 

(1.00-1.00) 

70% 

(0.4-1.00) 

Orotidine 0.62 0.33 to 0.87 0.06071 6.04 
100% 

(1.00-1.00) 

50% 

(0.2-0.8) 

Table 3-10: ROC curve analysis summary: CNS Dx vs CSF CTL. AUC = Area under the curve; 

CI = confidence intervals. P value calculated by non-parametric t-test. Optimal cut-off points 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2].  
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Figure 3-11: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx 

and CTL CSF. Optimal cut-off point (red dotted line) determined as “closest to top left” described by 

d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (A) Xanthine; (B) Creatine (C) Phenylalanine;(D) 

Pseudouridine. ROC curves created on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Figure 3-12: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx 

and CTL CSF. Optimal cut-off points (red dotted line) determined as “closest to top left” described 

by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (E) N4-acetylcytidine; (F) Symmetric dimethylarginine 

(G) Inosine; (H) orotidine. ROC curves created on Metaboanalyst; Box plots created on GraphPad 

Prism v9. 
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3.2.3 Summary 

This analysis tested the performance of these candidate biomarkers discriminating 

against both inflammatory and non-inflammatory control CSF and subsequently a 

combined CSF control group. Xanthine and Creatine performed best, first in terms 

of the CNS Dx group having concordant, statistically significant differences 

compared to both CSF controls. Secondly, ROC curve analysis returned supporting 

concordant evidence to corroborate this in terms of specificity and sensitivity of the 

respective metabolite when tested against both CSF controls and the combined 

control.  

 

N4-acetylcytidine, Symmetric dimethylarginine and Inosine also performed 

reasonably well in distinguishing between the leukaemic and control groups to a 

lesser degree than Xanthine or Creatine and  results from ROC curve analysis 

corroborate this finding.  

 

Individually, the data indicates that these metabolites are capable of discriminating 

CNS leukaemia from control CSF suggesting that these candidate biomarkers are 

potentially capturing metabolic signatures for the presence of leukaemia in the CNS. 

 

The remaining candidate biomarkers Phenylalanine, Pseudouridine and Orotidine  

did not have any significant differences between the means of the CNS Dx group 

and both controls or the combined control. ROC curve analysis suggests these 

metabolites are poor discriminators for CNS leukaemia.   

 

Phenylalanine and Orotidine did present with a trend potentially indicating higher 

levels of the respective metabolite in the CNS Dx group which would fit with the 

findings of the original untargeted metabolomics experiment. The variability in this 
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experiment may perhaps be explained by the low numbers of samples tested in this 

experiment.  
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3.2.4 Multivariate analysis of candidate biomarkers – Creation 

of a model 

By measuring thousands of metabolites in parallel, a single metabolomics 

experiment can allow for the potential discovery of several biomarkers which may, 

when identified together, lead to a highly clinically informative panel of biomarkers. 

The next stage of this part of the study was to test the candidate biomarkers as a 

collective of potentially clinically informative biomarkers. Individually, most of the 

candidate biomarkers performed well in the univariate analyses used to discriminate 

between the patient group and the control CSF group. Metabolomic data can be 

combined with multivariate data analysis techniques to combine the performance of 

individual metabolites into a single multivariate model. The diagnostic patient CSF 

samples in this study are essentially a real-time record of the result of thousands of 

metabolic processes occurring in the CNS at the time of sample extraction.  

 

To begin, a multivariate ROC curve analysis was performed using a supervised 

machine learning algorithm, the Random forests (RF) algorithm and the candidate 

biomarkers were ranked by their t-test statistical significance to create several 

models testing different combinations of the eight candidate biomarkers. RF is 

deemed an excellent tool for classification which is stable, insensitive to noise, has 

almost none or no overfitting and can compensate for having uneven sample groups 

such is the case in this study where the patient group to control group ratio is 1:2. 

 

The multivariate ROC curve was generated by using the Monte-Carlo Cross 

Validation (MCCV) technique. This involves randomly separating two thirds of the 

total samples (patients and controls) for evaluating the importance of each 

candidate biomarker followed by using the most highly ranked features to build 
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several models for optimal classification (i.e., patient vs control). The multivariate 

analysis will then plot the ROC curves based on several models using various 

combinations of the candidate biomarkers created  to classify patient samples or 

controls. The models are then validated on the last third of the samples. This 

procedure was repeated 100 times and the results were averaged to generate the 

multivariate ROC curve (Figure 3-13 A). 
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(A) 

(B) 

Figure 3-13: Multivariate ROC analysis. (A) Multivariate ROC curve with variable model 

averages plotted with associated AUC values and 95% confidence intervals; AUC = Area under 

the curve; CI = confidence intervals (B) Predictive accuracies of the best performing created 

models with different features. ROC curves created on Metaboanalyst. Classification method 

used: Random Forests, Feature ranking method based on statistical t-test. 
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Every model plotted on the multivariate ROC curve performed with AUC >0.9 which 

varied depending on the number of features used in the that model but generally it 

was observed that increasing the number of features, increased the AUC (Figure 

3-13 A). The predictive accuracies of each model suggest however that the best 

performing model, irrespective of the AUC, is composed of a 6-variables (six out of 

eight candidate biomarkers) with this model giving the highest shared predictive 

accuracy of 96.4% as a 7-variable model also had a predictive accuracy of 96.4% 

(Figure 3-13 B). This suggests that one variable makes no real contribution to the 

multivariate model and there are two variables which behave similarly in their 

contribution to the model.  

 

The candidate biomarkers were then ranked by the frequency of their selection  

during the model building process and they were also quantitively ranked by the 

average importance of their contributions to the model from each of the 100 cross-

validation runs in order of most discriminating to least discriminating. Both ranking 

methods yielded an identical rank order of the candidate biomarkers. The 

concordant ranking order suggests with a high degree of certainty that the best 

performing model includes Creatine, Xanthine, N4-acetylcytidine, Inosine and 

Symmetric dimethylarginine with these candidate biomarkers being selected in 

every model created (100% frequency) and with the highest average importance 

score. As expected, Pseudouridine was ranked last in both lists suggesting that this 

candidate biomarker bears little to no influence on the discriminatory utility of the 

model. Phenylalanine and Orotidine has the next best selected frequency which 

appeared even, although when ranked by average importance, Phenylalanine 

ranked slightly higher than Orotidine (Figure 3-14).  
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Next, different models were tested for their performance manually by first removing 

Pseudouridine, in line with the previous data which led to an increase in predictive 

accuracy from 0.95 to 0.952 (Figure 3-15 A-B). Phenylalanine and Orotidine were 

then removed from the model separately resulting in the best performing model 

being a 7-variable model including Phenylalanine with a predictive accuracy of 0.962 

(Figure 3-15 C-D). Of note, the removal of variables did lead to a marginal reduction 

in the AUC and a slight widening of the 95% confidence intervals.  
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Figure 3-14: Candidate biomarker ranking as determine by frequency of being selected in the 
model creation process and average importance from the 100 cross-validations. 
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To test the predictive capability of the final 6-variable model from this analysis 

(Creatine, Xanthine, N4-acetylcytidine, Inosine, Symmetric dimethylarginine and 

Phenylalanine), average predicted class probabilities were plotted for each CNS Dx 

and control sample across the 100 performed Monte-Carlo cross-validations to 

create a confusion matrix. The data shows that out of the 10 CNS Dx samples tested 

all of them were correctly identified as belonging to the CNS Dx group of samples 

and 19/20 of the control samples were classified correctly as belonging to the control 

group giving an overall predictive accuracy of 96.6% (Figure 3-16). The one sample 

which was incorrectly classified was an inflammatory control CSF sample.   

 

Next, a second  validation of the model was performed using permutation testing, a 

re-sampling based statistical test which postulates a null hypothesis that the 6-

variable model described here could also have been discovered if every sample was 

randomly assigned a classification (either CNS Dx or control CSF) in the same 

quantities with respect to the group sample numbers. The permutation test was run 

n=1000 times using the 6-variable model and for every permutation, a RF model 

was built and tested for a statistical difference between the CNS Dx and control CSF  
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Figure 3-15: Multivariate ROC curve analysis manual model testing by removal of 

redundant features. AUC = Area under the curve; CI = confidence intervals; (A) No 

metabolites excluded; (B) Pseudouridine excluded; (C) Pseudouridine and phenylalanine 

excluded; (D) Pseudouridine and Orotidine excluded; ROC curves created on Metaboanalyst. 
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Confusion Matrix Summary (100 X Cross-Validations) 
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Figure 3-16: Cross-validation Class Prediction confusion matrix.  This graph plots the 

average predicted class probabilities of each sample from 100 cross-validations. The 

classification boundary is set to 0.5 and sample probabilities range from 0-1. Probabilities 

< 0.5 will belong to the leukaemic CSF sample group and probabilities  >0.5 will belong to 

the Control CSF. Each sample is coloured by their probability score. Graph Created on 

GraphPad Prism v9.  
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groups resulting in a distribution of the permutated data. The performance score of 

the original model was then compared to the permutated distribution resulting with 

a significant p value of <0.000006 which lay outside of the of the distribution 

indicating a significant separation between the two groups (Figure 3-17 A). This 

suggests that there is a <5% chance that a permutated model could perform as well 

as the original model tested. A permutation test was also run to test the null 

hypothesis that the AUC of the 6-variable model equals 0.5, meaning the test has 

no discriminatory ability to distinguish between the disease and non-disease group. 

This analysis resulted in an empirical p value of 0.002 suggesting that the calculated 

AUC of the model was not obtained by chance and the model is capable of 

distinguishing CNS Dx samples from control CSF samples (Figure 3-17 B).  

 

3.2.5 Summary 

In summary, the data shown by this analysis reveals that the use of this panel of 

candidate biomarkers can provide a highly accurate method of identifying leukaemic 

CSF in comparison with control CSF composed of both inflammatory and non-

inflammatory CSF controls. Together, each candidate biomarker tested in the 6-

variable model was able to discriminate leukaemic CSF from control CSF.  

 

The limitations of this analysis must be addressed, principally in the low numbers of 

leukaemic diagnostic CSF samples tested against the CSF controls meaning that 

these patient samples tested here only represents a small fraction of the true 

diseased population. This can have big implications on the subtleties of a candidate 

biomarkers detection, such as can be seen with Phenylalanine and Orotidine in this 

analysis, where the data seems to point to slightly elevated levels in the leukaemic 

group compared to the control group, but statistical analysis indicates no significant 

difference found. So far, the evidence put forward in this study points to 
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Pseudouridine being a redundant marker, nonetheless it will continue to be tested 

with subsequent analysis to provide further evidence of the utility of this candidate 

biomarker for the detection of CNS-ALL.  
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(B) 

Figure 3-17: Permutation testing on 6-variable model. (A) Permutated data statistical test 

distribution; Performance t-test score of the original model against the permutated data 

highlighted by the red arrow. (B) Permutation empirical p value calculated from statistical test 

to disprove the null hypothesis that the AUC equals 0.5. Graphs exported from 

Metaboanalyst.  
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3.3 Candidate biomarker performance evaluation: 

Cohort 2  

3.3.1 Background 

The next part of this study was to assess and validate previous findings by testing 

the candidate biomarkers with a larger and more comprehensive cohort of 

diagnostic patient CSF samples. These samples were obtained from a national 

biobank and consist of several patients who were classified as  CNS1, CNS2 or 

CNS3 by CSF cytology. First the candidate biomarkers were tested with a large 

subset of CNS Dx patients (composed of CNS1 CNS2 and CNS3 patients) and non-

inflammatory and inflammatory control CSF both separately and combined following 

in the previous analysis. The larger number of patient samples and controls will give 

a truer representation of the leukaemic and non-leukaemic population.  

 

Next, the CNS1, CNS2 and CNS3 patients were compared individually to the CSF 

control group to investigate for any differences in the patient sample groups. CNS3 

patients are classified as having more leukaemic burden in the CNS than CNS1 

patients and thus it was hypothesized that the candidate biomarkers may be able to 

identify an elevated metabolic signature in the CNS3 patient group when compared 

to the CNS1 patient group. 

 

Finally, to confirm the significance of the multivariate model developed in the pilot 

cohort, the candidate biomarkers were tested as a collective again with the large 

subset of patient and control samples to further evaluate the performance of the 

model and validate its predictive performance. A small subset of patient samples 

from the Halsey biobank which were untested by any of the previous analyses were 

used to test the model with an unsupervised approach. 
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Table 3-11: patient demographic. YO= years old. F = Female, M= Male; BCP-ALL = B-cell 

precursor ALL. 

 

CSF control demographic 

Control type Ages Sex Diagnosis 

NI control n=20 26- 77 

14 F Migraine, headache, Functional*, motor 

neuronopathy, small vessel ischaemia, delirium, 

epilepsy, small vessel disease 
6 M 

I control n=20 18 - 57 

13 F 
Neurosarcoidosis, post-infectious movement 

disorder, RRMS***, GAD encephalitis**, 

neuroinflammatory disorder, neuroborreliosis 7 M 

Table 3-12: Control CSF cohorts – non-inflammatory and inflammatory CSF. F= Female; M = 

Male. * Functional = Body symptoms which appear to be caused by the CNS, but are not, medically 

unexplained. ** GAD encephalitis = Anti-glutamic acid decarboxylase encephalitis 

 

Patient sample demographic  
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Sex Immunophenotype 

70 F: 118 M BCP-ALL 
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3.3.2 CNS Dx vs non-inflammatory & inflammatory CSF controls 

In this analysis, all the patient samples were compared as one large leukaemic 

sample cohort labelled CNS Dx against all CSF controls available from both the non-

inflammatory and inflammatory control CSF cohorts to test the behaviour of the 

candidate biomarkers (Tables 3-11, 3-12). The patient sample group contained a 

mix of CNS1, CNS2 and CNS3 classified patients and the rationale behind grouping 

and testing all the leukaemic samples together for analysis was to have a large 

cohort, truly representative of the real leukaemic diseased population.  

 

As with the previous experiment, this analysis followed the same statistical analyses 

performed on the candidate biomarkers, firstly by looking for differences between 

the averages of the patient group and both control CSF groups. Upon first 

inspection, the means of all metabolites were elevated in the patient group 

compared to both controls apart from creatine which followed its inverse trend of 

being clearly lower than both controls as seen in the previous experiment, and 

Pseudouridine which had similar levels in the patient group and the non-

inflammatory control, but interestingly was lower in the inflammatory control CSF 

than both former groups. Statistical analyses indicated highly significant, concordant 

differences between the patient group and both CSF controls in all candidate 

biomarkers with the exception of Pseudouridine corroborating the observed trend 

mentioned in the pilot cohort (Figure 3-18, Table 3-13).  

 

A key observation with this analysis is the high number of patients with clearly higher 

(or lower in the case of Creatine) levels of their respective biomarkers. As the control 

CSF was taken from an adult population, quantifiable differences which may be due 

to the age difference between the patient and control groups must be considered. 

Of all the candidate biomarkers, Creatine is the only metabolite which presents with 
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lower levels in the patient group compared to both controls and could be subject to 

age-dependent differences in the levels of this metabolite, but as the data in these 

experiments mimic very closely the trend seen in the initial experiment comparing 

leukaemic patient samples to matched and unmatched childhood ALL controls, this 

concordance strongly suggests that the phenotype presented here is a result of a 

leukaemic signature in the CSF. The other metabolites are “easier” to hypothesize 

as being leukaemia-specific due to their elevated levels compared to the controls, 

which again was observed in the initial experiment with the CSF of children. 
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Figure 3-18: Violin plots of CNS Dx vs Inflammatory and Non-inflammatory control CSF 

groups. CNS Dx (n= 188), non-inflammatory control (n=20), Inflammatory control (n=20). Statistics 

performed on GraphPad Prism v. One-way ANOVA; means of Controls compared with mean on CNS 

Dx group with Dunnett’s multiple comparisons test α= 0.05. Graphs created on GraphPad Prism v9. 
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Candidate 
biomarker 

Control 
Mean 

CNS 
Dx 

Mean 

SE of 
difference 

95% 
confidence 

interval 

ANOVA 
R2 

Log 
2 FC 

ANOVA  
P value 

Adjusted p 
Value 

Xanthine 
CNS Dx vs NI 

CTL 

7.397 
 

7.712 
 

0.05618 
 

0.1891 to 
0.4420 

 0.1584 
 

1.31 

0.0000000038 
 

<0.0001 

Xanthine 
CNS Dx vs I CTL 

7.498 
 

0.05618 
 

0.08760 
to 0.3405 

 

0.85 

0.000359 

Creatine 
CNS Dx vs NI 

CTL 

9.699 
 

9.548 
 

0.01641 

-0.1878 
to -

0.1139 0.3755 
 

- 
0.49 

<0.000001 
 

<0.0001 

Creatine 
CNS Dx vs I CTL 

9.679 
 

0.01641 

-0.1679 
to -

0.09404 

-
0.43 

<0.0001 

Phenylalanine 
CNS Dx vs NI 

CTL 

8.463 
 

8.589 
 

0.02776 

0.06408 
to 0.1890 0.1648 

 

0.46 

<0.000001 
 

<0.0001 

Phenylalanine 
CNS Dx vs I CTL 

8.443 
 

0.02776 

0.08397 
to 0.2089 

0.51 

<0.0001 

Pseudouridine 
CNS Dx vs NI 

CTL 

7.449 
 

7.444 
 

0.03534 

-0.08509 
to 

0.07395 0.03426 
 

0.06 

0.019808 
 

0.984248 

Pseudouridine 
CNS Dx vs I CTL 

7.345 
 

0.03534 

0.01916 
to 0.1782 

0.38 

0.011328 

N4-acetylcytidine 
CNS Dx vs NI 

CTL 

6.311 
 

6.627 
 

0.05900 

0.1830 to 
0.4485 0.4212 

 

1.06 

<0.000001 
 

<0.0001 

N4-acetylcytidine 
CNS Dx vs I CTL 

5.914 
 

0.05900 

0.5801 to 
0.8456 

2.30 

<0.0001 

Symmetric 
dimethylarginine 

CNS Dx vs NI 
CTL 

7.049 
 

7.236 
 

0.03492 

0.1083 to 
0.2655 0.2096 

 

0.68 

<0.000001 
 

<0.0001 

Symmetric 
dimethylarginine 
CNS Dx vs I CTL 

7.024 
 

0.03492 

0.1329 to 
0.2901 

0.75 

<0.0001 

Inosine 
CNS Dx vs NI 

CTL 

6.404 
 

6.733 
 

0.08142 

0.1461 to 
0.5126 0.1439 

 

1.52 

<0.000001 
 

0.000144 

Inosine 
CNS Dx vs I CTL 

6.326 
 

0.08142 

0.2239 to 
0.5904 

1.73 

<0.0001 

Orotidine 
CNS Dx vs NI 

CTL 

5.744 
 

6.049 
 

0.08306 

0.1179 to 
0.4918 0.1317 

 

1.54 

<0.000001 
 

0.000605 

Orotidine 
CNS Dx vs I CTL 

5.643 
 

0.08306 

0.2182 to 
0.5920 

1.78 

<0.0001 

Table 3-13: Candidate biomarkers: Statistical analysis of the difference between CNS Dx and non-

inflammatory and inflammatory CSF controls. Data was log transformed prior to statistical analysis. One-

way ANOVA; means of Controls compared with mean on CNS Dx group with Dunnett’s multiple comparisons 

test α= 0.05. Statistics performed on GraphPad Prism v9. 
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As before, the candidate biomarkers were then tested for their specificity and 

sensitivity with ROC curve analysis between the patient group and the control CSF 

groups independently. Following the trend in the first experiment, Creatine 

performed best with an AUC of >0.9 in both comparisons, very narrow 95% 

confidence intervals ranging between 0.86 to 0.98 and 0.88 to 0.96 in the CNS Dx 

group vs the non-inflammatory control CSF group and inflammatory control CSF 

group respectively and extremely low p values <0.0001 (Table 3-14, Figure 3-19 

B1-B2).  

 

Xanthine, Phenylalanine, N4-acetylcytidine and Symmetric dimethylarginine 

performed next best in comparison, all with AUCs of >0.8, with slightly more variable 

but high performance 95% confidence intervals but with p values of <0.0001 (Table 

3-14, Figure 3-19 A1-A2, Figure 3-20 C1-C2, Figure 3-21 respectively). 

 

Interestingly, Inosine and Orotidine had “acceptable” AUC’s of > 0.7 with more 

variable 95% confidence intervals ranging from 0.69 to 0.89 but low p values of < 

0.001 indicating more overlap between the control group and the non- inflammatory 

patient group (Table 3-14, Figure 3-22 G1, H1). Their performance compared to 

the inflammatory control however yielded “excellent” AUCs of >0.8; 95% confidence 

intervals ranging from 0.74 to 0.89 and p values < 0.0001 (Table 3-14, Figure 3-22 

G2, H2). 

 

Pseudouridine performed least best with a no discrimination classification with an 

AUC of 0.52 and a large p value =0.87682 suggesting that this metabolite has no 

utility in discriminating the patient group from the non-inflammatory control group 

(Table 3-14, Figure 3-20 D1). When compared against the inflammatory control 

CSF group, Pseudouridine showed poor discriminatory ability with an AUC of 0.68, 
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with a wide 95% confidence interval, but a low p value <0.001 nonetheless, deeming 

this metabolite as a poor discriminator (Table 3-14, Figure 3-20 D2).  

 

 

 

This experiment demonstrates that all the candidate biomarkers except for 

Pseudouridine can discriminate the patient sample cohort from both inflammatory 

and non-inflammatory control CSF with the exception of Pseudouridine.  

 

 

 

ROC CNS Dx vs NI Control CNS Dx vs I Control 

Metabolite AUC 95% CI 
t-test P 

value 

Optimal 

Cut-off 
AUC 95% CI 

t-test P 

value 

Optimal 

Cut-off 

Xanthine 0.89 
0.84 to 

0.94 
9.696E-8 7.47 0.76 

0.65 to 

0.85 
3.1633E-4 7.61 

Creatine 0.93 
0.86 to 

0.98 

8.2181E-

17 
9.66 0.93 

0.88 to 

0.96 

1.6263E-

13 
9.61 

Phenylalanine 0.82 
0.74 to 

0.90 
1.071E-5 8.5 0.82 

0.71 to 

0.89 
6.5737E-7 8.51 

Pseudouridine 0.52 
0.44 to 

0.52 
0.87692 7.42 0.68 

0.59 to 

0.76 
0.0075172 7.41 

N4-

acetylcytidine 
0.82 

0.74 to 

0.90 

1.0863E-

7 
6.51 0.99 

0.97 to 

1.00 

1.4525E-

26 
6.3 

Symmetric 

Dimethylarginine 
0.86 

0.79 to 

0.92 

3.7899E-

7 
7.11 0.87 

0.80 to 

0.93 
1.5008E-8 7.09 

Inosine 0.78 
0.71 to 

0.89 

1.0982E-

4 
6.58 0.82 

0.75 to 

0.89 
2.5872E-6 6.46 

Orotidine 0.76 
0.69 to 

0.82 

4.2512E-

4 
5.94 0.81 

0.74 to 

0.87 
4.8928E-6 5.87 

Table 3-14: ROC curve analysis summary: CNS Dx vs NI CTL/ I CTL. AUC = Area under the 

curve; CI = confidence intervals. P value calculated by non-parametric t-test. Optimal cut-off points 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. 
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Figure 3-19: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx and 

non-inflammatory and inflammatory controls. Optimal cut-off points (red dotted line) determined 

as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (A1) Xanthine – CNS Dx 

vs non-inflammatory control; (A2) Xanthine – CNS Dx vs inflammatory control ; (B1) Creatine – CNS 

Dx vs non-inflammatory control; (B2) Creatine – CNS Dx vs inflammatory control. ROC curves created 

on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Figure 3-20: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx and 

non-inflammatory and inflammatory controls. Optimal cut-off points (red dotted line) determined as 

“closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (C1) Phenylalanine – CNS 

Dx vs non-inflammatory control; (C2) Phenylalanine – CNS Dx vs inflammatory control ; (D1) 

Pseudouridine – CNS Dx vs non-inflammatory control; (D2) Pseudouridine – CNS Dx vs inflammatory 

control. ROC curves created on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Figure 3-21: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx 

and non-inflammatory and inflammatory controls. Optimal cut-off points (red dotted line) 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (E1) N4-

acetylcytidine – CNS Dx vs non-inflammatory control; (E2) N4-acetylcytidine – CNS Dx vs 

inflammatory control ; (F1) Symmetric dimethylarginine – CNS Dx vs non-inflammatory control; (F2) 

Symmetric dimethylarginine – CNS Dx vs inflammatory control. ROC curves created on 

Metaboanalyst; Box plots created on GraphPad Prism v9. 
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Figure 3-22: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx 

and non-inflammatory and inflammatory controls. Optimal cut-off points (red dotted line) 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (G1) 

Inosine – CNS Dx vs non-inflammatory control; (G2) Inosine – CNS Dx vs inflammatory control ; 

(H1) Orotidine – CNS Dx vs non-inflammatory control; (H1) Orotidine – CNS Dx vs inflammatory 

control. ROC curves created on Metaboanalyst; Box plots created on GraphPad Prism v9. 
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3.3.3 Biomarker performance evaluation 

3.3.3.1 Univariate ROC analysis of leukaemic CSF vs Control 

CSF 

Having tested the CNS Dx patient group against both CSF controls and finding 

concordant trends between the patient group and the control CSF groups in all three 

CNS patient groups (CNS1, CNS2 & CNS3), the next part of the study was to further 

evaluate the performance of the candidate biomarkers against the combination of 

the CSF controls. First, the means of the candidate biomarkers was compared in 

the two groups of CSF controls to search for any statistical differences between the 

means. 

 

As can be observed in the previous analyses above in N4-acetylcytidine, the 

leukaemic patient group mean was elevated compared to both controls and both 

differences were statistically significant. Noticeably, the means of the CSF controls 

were also different with levels in the inflammatory controls being moderately lower 

than its counterpart and statistical analysis between the means of revealed a 

significant difference between the means of these two controls (Table 3-15, Figure 

3-23).  

 

Pseudouridine presented with a similar trend to N4-acetylcytidine in terms of the 

differences between the two CSF controls with a decreased mean of the 

inflammatory control CSF control compared to the non-inflammatory control. 

Statistical analysis also revealed a significant difference between the two control 

CSF groups (Table 3-15, Figure 3-23).  
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Creatine, Phenylalanine, Symmetric dimethylarginine, Inosine and Orotidine all had 

very similar levels in the non-inflammatory and inflammatory CSF  groups and 

statistical analysis indicated no significant difference between the means of the two 

groups for all metabolites (Table 3-15, Figure 3-23).  

 

Xanthine did present with slightly elevated levels in the inflammatory control, but no 

statistically significant difference was found between the means of the two CSF 

controls. 

 

For 6/8 metabolites, there appears to be no real evidence that the levels of these 

metabolites differ between non-inflammatory and inflammatory CNS 

microenvironments. This potentially suggests that these metabolites may be at their 

“normal” levels as a constituent of CSF and that their pathways are not obviously 

affected by the numerous different conditions highlighted in Table 3-12.  

 

The phenotype seen in the control CSF groups for N4-acetylcytidine and 

Pseudouridine is interesting, and it appears that inflammation in the CNS can cause 

variability in the levels of these metabolites. The CNS of leukaemic patients is 

considered to be an area of inflammation and, if indeed N4-acetylcytidine and 

Pseudouridine are biomarkers for CNS-leukaemia, it appears that the phenotype for 

these metabolites is more closely linked to the levels present in a non-inflammatory 

CSF environment. 
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Candidate 

biomarker 

NI CTL 

mean 

I 

CTL 

Mean 

± SE 

95% 

confidence 

interval 

R2 P value Adj p value 

Xanthine 
7.397 

 

7.498 

 

0.04689 

 

-0.1965 to -

0.006613 

 

0.1098 

 
0.036701 0.200962 

Creatine 
9.699 

 

9.679 

 
0.01943 

-0.01946 to 

0.05921 
0.02680 0.312758 0.675414 

Phenylalanine 
8.463 

 

8.443 

 
0.02865 

-0.03810 to 

0.07789 

0.01253 

 
0.491597 0.703358 

Pseudouridine 
7.449 

 

7.345 

 
0.03152 

0.04044 to 

0.1681 

0.2235 

 
0.002065 0.014363 

N4-acetylcytidine 
6.311 

 

5.914 

 
0.09797 

0.1988 to 

0.5954 
0.3019 0.000241 0.001925 

Symmetric 

dimethylarginine 
7.049 7.024 0.03261 

-0.04142 to 

0.09062 
0.01475 0.455351 0.703358 

Inosine 6.404 6.326 0.06432 
-0.05235 to 

0.2080 
0.03712 0.233614 0.655023 

Orotidine 5.744 5.643 0.06074 
-0.02271 to 

0.2232 
0.06690 0.107074 0.432355 

Table 3-15: Statistical analysis of the difference between non-inflammatory and inflammatory 

CSF controls. Data was log transformed prior to statistical analysis. Statistics performed on 

GraphPad Prism v9. 
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Figure 3-23: Boxplots: Noninflammatory and Inflammatory Control CSF comparison of 

means. NI control (n=20); I control (n=20). Graphs created on GraphPad Prism v9. 
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3.3.3.2 Analysis of CNS1 CNS2 and CNS3 patient sample 

groups within the CNS Dx patient sample cohort.  

The CNS Dx patient sample cohort was made up of patients who were classified as 

either CNS1, CNS2 or CNS3 by CSF cytology. The next analysis involved breaking 

the combined cohort down into their separate classification categories and 

investigating the behaviour of the candidate biomarkers against the combined CSF 

control to check for any differences between the three classifications. The core of 

the CNS Dx cohort was composed of CNS1 patients, and as expected, the CNS1 

patient samples behaved identically to the CNS Dx cohort in terms of the trends 

observed for each candidate biomarker apart from Pseudouridine (Figure 3-24).  

Pseudouridine had with no real difference in the mean  between the CNS1 Dx group 

and the control CSF group. Statistical analysis revealed no significant difference 

between these means, however the difference between the CNS1 Dx group. 

 

The CNS2 group also behaved similarly to the CNS Dx group when compared to 

the CSF control with significant differences found between the CNS Dx group and 

the control CSF group, apart from Pseudouridine and Inosine, in which the mean 

appeared elevated, but no statistical difference was found (Figure 3-24). 

Pseudouridine, again performed poorly, with no statistically significant difference 

found between the means of the patient group and the control group.  

 

CNS3 Dx patients saw a similar trend to the CNS Dx trends with Creatine, 

Phenylalanine, N4-acetylcytidine, Symmetric dimethylarginine, Inosine and 

Orotidine performing as seen in the CNS Dx comparison. Interestingly, the levels of 

Xanthine appeared decreased compared to the CNS1 and CNS2 groups and 
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statistical analysis revealed no significant difference between the means of the 

CNS3 group and the CSF control (Figure 3-24).  

 

Overall, the candidate biomarkers behaved similarly in their separated 

classifications when compared to the CNS Dx cohort.  
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Figure 3-24: Violin plots of Candidate biomarker levels: Control CSF vs CNS1, CNS2 and CNS3 

patient groups. CSF control (n=40); CNS1 (n=154), CNS2 (n=18); CNS3 (n=16). Data was log 

transformed and statistics performed on GraphPad Prism v9.  
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3.3.3.3 CNS1 vs CNS3 

Next, it was prudent to test the levels of the candidate biomarkers in the CNS1 

patient group against the CNS3 patient group as patients who are classified as 

CNS3 by CSF cytology are considered high risk and it is hypothesized that these 

children have high leukaemic burdens in the CNS at the time of diagnosis in 

comparison to CNS1 patients who have no detectable blasts in the CSF and are 

typically considered lower risk. In this analysis the means of the CNS1 and CNS3 

patient sample groups were compared to look for differences in the levels of the 

candidate biomarkers. It was hypothesized that CNS3 patients would have higher 

or lower levels (depending on the biomarkers observed biological phenotype) than 

the CNS1 patients.  

 

Statistical analysis to test for differences between the means of the CNS1 group 

and the CNS3 group was performed, and the results indicated a significant 

difference in N4-acetylcytidine and Symmetric dimethylarginine alone with an 

increasing trend going from CNS1 to CNS2 to CNS3 patients (Figure 3-26, Table 

3-16). This result potentially suggests that these biomarkers are directly influenced 

by the level of leukaemic burden in the CNS. Unfortunately, the CNS2 and CNS3 

groups do not have as many patient samples as the CNS1 group, and the majority 

of data points lie between two standard deviations of the mean of the CNS1 group.  
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Candidate 

biomarker 

CNS1 

Mean 

CNS3 

Mean 
± SEM 95% confidence interval 

R squared 

(eta 

squared) 

P value 

Xanthine 7.730 7.609 0.05575 0.005194 to 0.2377 0.1909 0.068916 

Creatine 9.551 9.547 0.01872 -0.03523 to 0.04329 0.002511 0.832496 

Phenylalanine 8.586 8.592 0.02704 -0.06267 to 0.05011 0.002675 0.845348 

Pseudouridine 7.441 7.481 0.04907 -0.1437 to 0.06319 0.03785 0.333076 

N4-acetylcytidine 6.608 6.758 0.08010 -0.3190 to 0.01969 0.1741 0.013604 

Symmetric 

dimethylarginine 
7.221 7.330 0.05149 -0.2173 to 0.0003183 0.2102 0.006955 

Inosine 6.755 6.676 0.07743 -0.08211 to 0.2399 0.04702 0.816441 

Orotidine 6.038 6.061 0.08928 -0.2094 to 0.1643 0.003333 0.422169 

Table 3-16: Statistical analysis of the difference between candidate biomarker levels in CNS1 

and CNS3 patient samples. Data was log transformed prior to statistical analysis. Two-tailed 

unpaired t-test; α=0.05.  Statistics performed on GraphPad Prism v9. 
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Figure 3-25: Comparison between the means of CNS1 vs CNS3 patients. Data was log 

transformed prior to statistical analysis. Two-tailed unpaired t-test; α=0.05. Mean and Standard 

deviation shown on both plots. Scatter and line plots created on GraphPad Prism v9. 
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Figure 3-26: Comparison between the means of CNS1 vs CNS3 patients. Data was log 

transformed prior to statistical analysis. Two-tailed unpaired t-test; α=0.05. Mean and Standard 

deviation shown on both plots. Scatter and line plots created on GraphPad Prism v9. 
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3.3.3.4 Univariate analysis CNS Dx vs CSF CTL 

Due to the lack of difference between the two CSF controls for the majority of the 

candidate biomarkers and their concordance when compared to the leukaemic 

patient CSF group, the next step was to re-test the CNS Dx group against the 

combined data from both control CSF groups as one control CSF cohort.  

 

All metabolites apart from Pseudouridine, showed a stark difference in the means 

between the patient group and the control group and statistical analysis indicated 

very low p values of <0.0001 for all candidate biomarkers. The levels of 

Pseudouridine appeared essentially equivalent between the patient group and the 

control CSF group with no statistically significant difference found between the 

means (Table 3-17). 

 

A final univariate ROC analysis was then performed on each candidate biomarker 

to test their specificity and sensitivity compared to the combined CSF control. In line 

with the previous analysis, Creatine performed best  with an AUC of 0.93 with high 

95% confidence intervals (0.88 to 0.97) and a p value < 0.00001. The levels of 

Creatine were clearly lower in leukaemic patient CSF compared to the control CSF 

with minor overlapping data points between the two groups (Table 3-18, Figure 3-

29 B).  

 

Next best, was N4-acetylcytidine which exhibited ROC metrics akin to Creatine with 

an AUC of 0.91; 95% confidence intervals 0.86 to 0.95 and a p value <0.00001. The 

violin plot shows very clustered data around the mean for the leukaemic group and 

again N4-acetylcytidine was clearly higher than the control CSF group (Table 3-18, 

Figure 3-29 E).  
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Xanthine, Phenylalanine, Symmetric dimethylarginine showed high levels of 

discriminatory ability between the leukaemic group and the control CSF group 

followed by Orotidine, all with acceptable to good 95% confidence intervals and p 

values <0.00001 (Table 3-18, Figures 3-28, 3-29). Again, the means of these 

metabolites were clearly higher in the leukaemic patient group compared to the 

control CSF group however a proportion of  the data points can be observed to be 

overlapping in the violin plots (Figures 3-28, 3-29). 

 

Pseudouridine performed poorly as a discriminator between patient and control CSF 

with an AUC of 0.58 and a p value >0.05. This corroborates its poor performance in 

previous analyses and experiments (Figure 3-19). 

 

This data suggests that all candidate biomarkers apart from Pseudouridine, are 

capable of distinguishing leukaemic CSF when compared to control CSF composed 

of a mixture of inflammatory and non-inflammatory metabolomes. The use of both 

controls combined in this experiment create a variable but concordant control 

population from which the leukemic group was tested against and succeeded in 

being sensitive enough and specific enough to generate robust data. While this type 

of CSF, as it originates from adults, is not the perfect control for this analysis, the 

trends seen across the three experiments hold providing strong evidence to propose 

that the levels of these candidate biomarkers in the CSF of matched and unmatched 

children would lie between the lower and upper bounds of the CSF control used in 

this analysis.  
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Candidate 

biomarker 

Control 

CSF 

mean 

CNS 

Dx 

Mean 

Log2 

Fc 
± SEM 95%  CI R2 P value 

Adj P 

Value 

Xanthine 7.448 7.712 1.058 0.04167 
-0.3469 to -

0.1827 
0.1516 <0.000001 <0.000001 

Creatine 9.689 9.548 -0.462 0.01215 
0.1170 to 

0.1648 
0.3733 <0.000001 <0.000001 

Phenylalanine 8.453 8.589 0.484 0.02052 
-0.1769 to -

0.09607 
0.1637 <0.000001 <0.000001 

Pseudouridine 7.397 7.444 0.211 0.02638 
-0.09854 to 

0.005428 

0.0135

9 
0.078958 0.078958 

N4-

acetylcytidine 
6.112 6.627 

 

1.551 

 

0.04594 
-0.6048 to -

0.4238 
0.3567 <0.000001 <0.000001 

Symmetric 

dimethylarginin

e 

7.037 7.236 0.718 0.02581 
-0.2501 to -

0.1484 

0.2086 

 
<0.000001 <0.000001 

Inosine 6.365 6.733 
1.622

9 
0.06021 

-0.4869 to -

0.2496 

0.1420 

 
<0.000001 <0.000001 

Orotidine 5.694 6.049 

 

1.662 

 

0.06146 
-0.4761 to -

0.2339 
0.1286 <0.000001 <0.000001 

Table 3-17:Statistical analysis of the difference between candidate biomarker levels in the 

CNS Dx patient group against the Control CSF group. Data was log transformed prior to statistical 

analysis. Two-tailed unpaired t-test; α=0.05.  Statistics performed on GraphPad Prism v9. 
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Figure 3-27: Violin plots of candidate biomarkers depicting CNS Dx patient group v control 

CSF. CNS Dx: Diagnostic leukaemic patient samples (n=188); Combined CSF control (n=40); Two-

tailed unpaired t-test; Multiple un-paired t-tests corrected using Holm-Sidk method, α= 0.05. Data 

was log transformed and statistics performed on GraphPad Prism v9.  
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Figure 3-28:  Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx and 

CTL CSF. CNS Dx (n=188); control CSF (n=40). Optimal cut-off point (red dotted line) determined as 

“closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (A) Xanthine; (B) Creatine 

(C) Phenylalanine; (H2) Pseudouridine. ROC curves created on Metaboanalyst; Box plots created on 

GraphPad Prism v9. 
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Figure 3-29: Candidate biomarker ROC Curves and optimal cut-off points between CNS Dx 

and CTL CSF. CNS Dx (n=188); control CSF (n=40). Optimal cut-off points (red dotted line) 

determined as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. (A) N4-

acetylcytidine; (B) Symmetric dimethylarginine (C) Inosine; (H2) Orotidine. ROC curves created on 

Metaboanalyst; Box plots created on GraphPad Prism v9.  

(E) 

(F) 

(G) 

(H) 

CSF CTL CNS Dx 

5

6

7

8

N4-acetylcytidine

L
o
g

 (
p

e
a
k
 a

re
a
)

CSF CTL CNS Dx 

6.5

7.0

7.5

8.0

Symmetric dimethylarginine

L
o
g

 (
p

e
a
k
 a

re
a
)

CSF CTL CNS Dx 

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Inosine

L
o
g

 (
p

e
a
k
 a

re
a
)

CSF CTL CNS Dx 

4

5

6

7

8

Orotidine

L
o
g

 (
p

e
a
k
 a

re
a
)



189 
 

 

In with the findings of this analysis, the data suggests that Pseudouridine is a poor 

candidate biomarker for discriminating leukaemic in the CNS and thus will be 

excluded from further analysis. 

 

 

 

 

 

 

 

 

 

 

 

ROC CNS Dx vs Control CSF 

Metabolite AUC 95% CI t-test P value Optimal Cut-off 

Xanthine 0.82 0.76 to 0.88 1.1356E-9 7.51 

Creatine 0.93 0.88 to 0.97 1.0113E-24 9.61 

Phenylalanine 0.82 0.75 to 0.88 2.1569E-10 8.51 

Pseudouridine 0.58 0.50 to 0.66 0.078958 7.46 

N4-acetylcytidine 0.91 0.86 to 0.95 1.9718E-23 6.40 

Symmetric Dimethylarginine 0.87 0.81 to 0.91 3.748E-13 7.11 

Inosine 0.80 0.73 to 0.85 4.1864E-9 6.46 

Orotidine 0.78 0.72 to 0.84 2.5217E-8 5.92 

Table 3-18: Summary of ROC analysis 
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3.3.4 Multivariate Analysis of candidate biomarkers 

The final part of this analysis was to re-implement the multivariate methodologies 

with our proposed model from the previous analysis on a new large cohort of patient 

samples. Once again, a multivariate ROC curve analysis was performed using the 

Random forests (RF) algorithm and the candidate biomarkers were ranked by their 

t-test statistic  calculations to create various models containing different 

combinations of the seven candidate biomarkers (excluding Pseudouridine). In this 

study the patient group outweighed the control group in terms of sample numbers 

with a ratio of 5.7/1 (228 CNS Dx to 40 control). 

 

The multivariate ROC curve was generated by using the Monte-Carlo Cross 

Validation (MCCV) technique by separating two thirds of the total samples (patients 

and controls) for evaluating the importance of each candidate biomarker followed 

by using the most highly ranked features to build several models for optimal 

classification (i.e. patient vs control). The models were then validated on the last 

third of the samples. This procedure was repeated 100 times and the results were 

averaged to generate the multivariate ROC curve (Figure 3-30 A). 

 

The multivariate ROC curve shows that the AUC and the 95% confidence intervals 

increase with the number of variables tested, suggesting that a model with all seven 

candidate biomarkers performs best in discriminating between the CNS Dx group 

and the control CSF (Figure 3-30 A). The predictive accuracies of the different 

models can be seen in Figure 3-30 B and when the 7-variable model with all seven 

candidate biomarkers was used, the predictive accuracy was at its highest (93.8%) 

when compared to models which had lesser numbers of variables. The individual 

ROC curve of this 7-variable model can be seen in Figure 3-31 A depicting a very 
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high performing ROC curve produced by the combination of these seven candidate 

biomarkers with an AUC of 0.988, 95% confidence intervals of 0.974 to 0.996.  

 

The candidate biomarkers were then ranked quantitively by their average 

importance of their classification contributions from each cross-validation run and 

then by the frequency of the metabolites selected during the building of the model 

and the subsequent cross-validation in order of most discriminating at the top down 

to least discriminating. Both ranking methods yielded an identical rank order of the 

candidate biomarkers in terms of importance, unsurprisingly starting with Creatine 

then followed by N4-acetylcytidine, Symmetric dimethylarginine, Xanthine, 

Phenylalanine, Inosine then Orotidine (Figure 3-31 B).  

 

To test the predictive capability of the 7-variable model, average predicted class 

probabilities were then calculated for each leukaemic sample and control across the 

100 performed Monte-Carlo cross-validations and plotted to generate a confusion 

matrix. The data shows that  out of the 188 leukaemic samples tested from the CNS 

Dx cohort, 179 were correctly classified into the leukaemic patient sample group 

and from the control CSF group consisting of 40 CSF samples (both non-

inflammatory and inflammatory CSF), 39 were correctly identified as belonging to 

the control CSF group (Figure 3-32). Of the misclassified patient samples in this 

cohort, seven were CNS1 patients and two were CNS3. The misclassified control 

CSF sample was a non-inflammatory control CSF sample.  
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Figure 3-30: Multivariate ROC analysis. (A) Multivariate ROC curve with variable model averages 

plotted with associated AUC values and 95% confidence intervals; AUC = Area under the curve; CI = 

confidence intervals (B) Predictive accuracies of the best performing created models with different 

features. ROC curves created on Metaboanalyst. Classification method used: Random Forests, 

Feature ranking method based on statistical t-test. 
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This experiment also included 10 samples from the local Halsey biobank (a separate 

biobank to the samples involved in this analysis) which were purposefully not 

included in any of the previous candidate biomarker evaluation analyses. These 

samples were composed of 9 diagnostic CNS1 patient CSF samples and a relapse 

CNS3 CSF sample from a patient who relapsed in the CNS. 

 

These samples were subsequently analysed using the 7-variable predictive model 

and their data was input into the algorithm without a class identifier (leukaemic or 

control CSF). The predictive model was able to correctly classify all new samples 

into the leukaemic patient sample group (Figure 3-32). The overall predictive 

accuracy was calculated as 95.6%.  

 

Next, a second  validation of the model was performed using permutation testing, a 

re-sampling based statistical test which postulates a null hypothesis that the 7-

variable model described here could also have been discovered if every sample was 

randomly assigned  a classification (either leukaemic or control CSF) in the same 

quantities with respect to the group sample numbers.  
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Figure 3-31: ROC curve of highest performing 7-variable model and Candidate biomarker 

ranking. (A) Combined ROC of 7-biomarker model. (B) Feature ranking: determine by frequency 

of being selected in the model creation process and average importance from the 100 cross-

validations. 
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Confusion Matrix Summary (Cross-Validation)  

 
Leukaemic CSF Control CSF 

Overall Predicted accuracy of 

7-variabel model 

Control CSF 1 39 

95.6% 

CNS Dx 179 9 

Test – CNS Dx 9 0 

100% 

Test- Relapse 1 0 

Figure 3-32: Cross-validation class prediction probabilities. Cross-validation Class Prediction 

confusion matrix.  This graph plots the average predicted class probabilities of each sample from 100 

cross-validations. The classification boundary is set to 0.5 and sample probabilities range from 0-1. 

Probabilities < 0.5 will belong to the leukaemic CSF sample group and probabilities  >0.5 will belong to 

the Control CSF. Each sample is coloured by their probability score. Graph created on GraphPad Prism 

v9. 
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The permutation test was run (n=1000) times using the 7-variable model and for 

every permutation, a RF model was built and tested for a statistical difference 

between the leukaemic and control CSF groups which was then compared to the 

original performance of the model resulting in a distribution of the permutated data 

(Figure 3-33 A). The performance score of the original model was then compared 

to the permutated distribution which gave a significant p value of <0.000002 which 

lay outside of the distribution indicating a significant separation between the two 

groups (Figure 3-33 A). This suggests that there is a <5% chance that a permutated 

model could perform as well as the original model tested. 

 

A permutation test was also run to test the null hypothesis that the AUC of the 7-

variable model equals 0.5, meaning the test has no discriminatory ability to 

distinguish between the disease and non-disease group. This analysis resulted in 

an empirical p value of 0.002 suggesting that the calculated AUC of the model was 

not obtained by chance and the model is capable of distinguishing CNS Dx samples 

from control CSF samples (Figure 3-33 B).  

 

In summary, the data shown by this analysis reveals that the use of this 7-variable 

panel of candidate biomarkers provides a highly accurate method of discriminating 

leukaemic CSF in comparison with control CSF composed of both inflammatory and 

non-inflammatory CSF controls. Individually, each candidate biomarker tested in 

this model was able to discriminate leukaemic CSF from control CSF to different 

degrees of specificity and sensitivity but when combined, worked synergistically to 

classify a very high proportion of samples correctly with an overall prediction 

accuracy of 95.6% 
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This experiment validated the created model from the pilot experiment and 

performed as predicted in showing clear separation between the CNS Dx leukaemic 

CSF and the control CSF.  
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Figure 3-33: Permutation test Histogram of permutated data. Permutation testing on 6-variable 

model. (A) Permutated data statistical test distribution; Performance t-test score of the original model 

against the permutated data highlighted by the red arrow. (B) Permutation empirical p value 

calculated from statistical test to disprove the null hypothesis that the AUC equals 0.5. Graphs 

exported from Metaboanalyst. 

 

 

(A) 

(B) 



199 
 

3.4 Measuring true abundance of candidate biomarkers 

3.4.1 Quantification of Creatine and Xanthine levels  

To support the findings above, with the material available to the laboratory at the 

time, the top performing biomarker Creatine, was quantified along with Xanthine 

using external standards to create a calibration curve using the Standard addition 

method in TraceFinder software (Thermo Fisher). Unfortunately, all seven candidate 

biomarkers could not be measured in this study due to material and time limitations 

caused by the Sars-CoV-2 pandemic. 

 

Following the same methodology as before, first, the differences between the means 

of the CNS Dx and the control CSF group were analysed. Statistical analysis 

indicated a statistically significant difference between the means of the two groups 

for both candidate biomarkers (p <0.000001 & p = 0.0011). The mean Creatine 

levels of the patient leukaemic group were found to be at 2.33 μM in comparison 

with elevated levels of Creatine in the control CSF group at 3.1 μM (Table 3-19, 

Figure 3-34). 

 

ROC curve analysis was then performed to leverage an AUC resulting in an 

excellent AUC of 0.91 with 95% confidence intervals of 0.85 to 0.95 and an 

accompanying low p value <0.000001 for Creatine and an AUC of 0.76, 95% 

confidence intervals of 0.69 to 0.83 and a p value of 0.0015 for Xanthine (Table 3-

19, Figure 3-35).  

 

The optimal cut-off between the two groups was then determined by looking at the 

performance of the ROC curve where the trade-offs between sensitivity and 

specificity are at their highest possible within the analysis yielding a cut-off point of 
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2.63 μM, a level at which sensitivity of this test was at 87.5% and the specificity was 

79.3% for Creatine. For Xanthine, the optimal cut-off point was 188.5 nM resulting 

in a sensitivity of 70% and a specificity of 75.5% (Table 3-19, Figure 3-36).  

This result was highly concordant with the previous analysis of Creatine, thus 

showing strong evidence of the discriminatory ability of this candidate biomarker. 

Xanthine still performed reasonably well with calculated absolute abundance; 

however, its performance was lessened compared to its performance in the previous 

analysis with lower ROC curve metrics: AUC 0.76; 95% confidence intervals 0.69 to 

0.83 and a p value < 0.05 (previously AUC 0.82; 95% confidence intervals 0.76 to 

0.88; p value= 1.1356E-9) (Table 3-19). 
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Figure 3-34: Violin plots of Creatine and Xanthine CNS Dx patient samples vs 

matched and unmatched CSF controls. CNS Dx n=188; Control CSF n=40. Data was log 

transformed and graphs were created on GraphPad Prism v9. Xanthine concentration 

expressed in nM, Creatine concentration express in μM. 
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Candidate 

biomarker 

Control 

CSF 

mean  

CNS Dx 

Mean 
± SEM 95%  CI 

Unpaired -test P 

value 

Creatine 3.093 μM 2.325 μM 
0.07268 

 

0.6250 to 0.9115 

 
<0.000001 

Xanthine 
192.4 nM 

 

348.0 nM 

 

47.06 

 

-248.4 to -62.87 

 

0.001100 

 

ROC AUC 95% CI p value 
Optimal 

Cut-off 
Sensitivity Specificity 

Creatine 0.91 
0.85 to 

0.95 
<0.000001 2.63  87.5% 79.3% 

Xanthine 0.76 
0.694 to 

0.83 
0.0014609 188.5 70% 75.5% 

Table 3-19: Candidate biomarker statistical analysis and ROC curve summary: Statistics 

performed on GraphPad Prism v9.  
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Figure 3-25: Individual ROC curves for Creatine and Xanthine. AUC = Area under 

the curve; CI = confidence intervals. . Optimal cut-off points (red dotted line) determined 

as “closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. 
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Cut-Offs Sensitivity Specificity 
Sens + 

Spec 

↑ ↑ ↑ ↑ 

2.529 0.925 0.75 1.675 

2.542 0.9 0.75 1.65 

2.559 0.9 0.7553 1.655 

2.573 0.9 0.7606 1.661 

2.587 0.9 0.766 1.666 

2.594 0.875 0.766 1.641 

2.602 0.875 0.7713 1.646 

2.615 0.875 0.7766 1.652 

2.622 0.875 0.7819 1.657 

2.63 0.875 0.7926 1.668 

2.642 0.85 0.7926 1.643 

2.654 0.85 0.7979 1.648 

2.66 0.825 0.7979 1.623 

2.665 0.8 0.8032 1.603 

2.673 0.8 0.8085 1.609 

2.68 0.8 0.8138 1.614 

2.684 0.8 0.8191 1.619 

2.686 0.8 0.8245 1.624 

2.689 0.8 0.8298 1.63 

↓ ↓ ↓ ↓ 

Cut-Offs Sensitivity Specificity 
Sens + 

Spec 

↑ ↑ ↑ ↑ 

206.5 0.725 0.6968 1.422 

205 0.725 0.7021 1.427 

201.5 0.725 0.7074 1.432 

198.5 0.725 0.7128 1.438 

196 0.725 0.7234 1.448 

193.5 0.7 0.7287 1.429 

192.5 0.7 0.7394 1.439 

191 0.7 0.7447 1.445 

189.5 0.7 0.75 1.45 

188.5 0.7 0.7553 1.455 

187.5 0.65 0.7606 1.411 

186 0.6 0.766 1.366 

184.5 0.575 0.766 1.341 

183.5 0.55 0.7713 1.321 

182.5 0.55 0.7819 1.332 

180.5 0.525 0.7819 1.307 

177.5 0.5 0.7819 1.282 

175.5 0.5 0.7872 1.287 

173.5 0.475 0.7926 1.268 

↓ ↓ ↓ ↓ 

Figure 3-36: ROC curve optimal cut-off determination: Optimal cut-off points determined as 

“closest to top left” described by d=sqrt[1-Sensitivity)2 + (1 – Specificity)2]. Red circle indicates 

optimal cut-off point. Arrows indicate data direction towards infinity.  
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3.4.2 Application of a multi-biomarker model to true abundance 

levels of candidate biomarkers 

The next step was to replicate the multi-biomarker model discussed previously with 

true abundance data. Unfortunately, this could only be replicated with two out of the 

seven candidate biomarkers so the goal here was to see if we see an increase in 

performance when using a multi-biomarker model with two of the seven candidate 

biomarkers compared to their individual performance, in with the findings of the 

previous analysis.  

 

The multivariate ROC curve plot indicated a decrease in AUC from 0.903 to 0.897 

when using  two-variable models compared to the precited performance of using a 

one-variable model (Figure 3-37 A, C).  The predictive accuracy however increased 

very slightly from 84% to 84.9% when using 2-variable models compared to just the 

one-variable models created (Figure 3-37 B). The average importance of the 

metabolites in the creation of the model indicates as expected, that Creatine 

contributes to the discriminatory ability significantly greater than Xanthine (Figure 

3-37 D).  

 

To test the predictive capability of the 2-variable model, average predicted class 

probabilities were then calculated for each leukaemic sample and control across the 

100 performed Monte-Carlo cross-validations and plotted to generate a confusion 

matrix. Confusion matrices were created for the individual one-biomarker models 

for comparison. The data shows that  out of the 188 leukaemic samples tested from 

the CNS Dx cohort, 160 were correctly classified into the leukaemic patient sample 

group and from the control CSF group consisting of 40 CSF samples, 35 were 

correctly identified as belonging to the control CSF group, ultimately giving us an 
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overall predicted accuracy of 88.5% In comparison, the individual biomarker models  

which yielded overall predicted accuracy of 83.3 (Creatine) and 63.6% (Xanthine) 

(Figure 3-38). 

 

Results from the permutation testing for the two-model biomarker model yielded a 

statistically significant p value of 0.011053 and an empirical p value of <0.001 

suggesting robust modelling. 
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Figure 3-37: Multivariate ROC analysis. (A) Multivariate ROC curve with variable model 

averages plotted with associated AUC values and 95% confidence intervals; AUC = Area under 

the curve; CI = confidence intervals (B) Predictive accuracies of the best performing created 

models with different features. (C) Combined ROC plot of 2-variable model. (D) Candidate 

biomarker ranking as determine by average importance from the 100 cross-validations. ROC 

curves created on Metaboanalyst. 

(A) 

(B) 

(C) 

(D) 
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0.0 0.5 1.0

Cross-validation Class Prediction

Predicted Class Probability

CNS Dx

Test CNS Dx

Relapse

Control  CSF

 

 

 

 

 

 

 

Confusion Matrix Summary (100 X Cross-Validations) 

Multi-biomarker 

model 
Leukaemic CSF Control CSF 

Overall Predicted accuracy of 2-

variable model 

Control CSF 5 35 

88.5% 

CNS Dx 160 28 

Test – CNS Dx 9 0 

100% 

Test- Relapse 1 0 

Individual biomarker model: Creatine –  Data not shown 

Control CSF 7 33 

83.3% 

CNS Dx 147 41 

Individual biomarker model: Xanthine – Data not shown 

Control CSF 11 29 

63.6% 

CNS Dx 116 72 

Figure 3-38: Cross-validation Class Prediction confusion matrix.  This graph plots the 

average predicted class probabilities of each sample from 100 cross-validations. The classification 

boundary is set to 0.5 and sample probabilities range from 0-1. Probabilities < 0.5 will belong to 

the leukaemic CSF sample group and probabilities  >0.5 will belong to the Control CSF. Each 

sample is coloured by their probability score. Graph Created on GraphPad Prism v9. 
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This data generated from true abundance of the candidate biomarkers Creatine and 

Xanthine strongly supports the findings of the previous analysis by demonstrating 

that a multi-biomarker model performs better than an individual biomarker in 

correctly identifying leukaemic samples from control CSF samples. While it would 

have been ideal to have been able to measure true abundance of all seven 

candidate biomarkers, the data shown here follows the trends described previously.  
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3.5 Prognostic biomarkers 

The final part of this study involved the testing of the candidate biomarkers for their 

prognostic capabilities as biomarkers capable of predicting CNS relapse. Several of 

the diagnostic samples from the patient cohort were chosen for this study as they 

were patients who went onto have either an isolated relapse in the CNS or  a 

combined relapse in the CNS and bone marrow (henceforth referred to as CNS DxR 

samples). It was hypothesized that these patients may have distinct metabolomic 

phenotypes compared to patients who did not go onto relapse and that these could 

be identified using the biomarkers identified in this study.  

 

The mean of the CNS Dx group was compared to the mean of the CNS DxR 

samples and upon first inspection only Phenylalanine, N4-acetylcytidine and 

Symmetric dimethylarginine appeared to have elevated means in the CNS DxR 

group compared to the CNS Dx group. The means were then tested for statistically 

significant differences and only Phenylalanine presented with a significant 

difference between the means with a p value <0.05 (Table 3-20, Figure 3-39).  

 

The CNS DxR did not have as many patient samples as the CNS Dx group, and 

most data points for Phenylalanine lie between two standard deviations of the mean 

of the CNS Dx group indicating that these patient samples may make up part of the 

true population rather than being elevated. However, the CNS DxR samples were 

matched with 2-5 CNS Dx controls for age, sex, CNS status, and risk. This 

significant difference seen between the groups for Phenylalanine potentially suggest 

that elevation of this candidate biomarker may indicate an increased risk of relapse 

in the CNS. It is unlikely however that it can act on its own as a prognostic biomarker, 
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but it may provide some clinical utility as part of a combined score using appropriate 

clinical and other CSF variables. 

 

The other candidate biomarkers in this analysis did not seem to confer any 

prognostic utility.  
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Figure 3-39: Comparison between the means of CNS Dx vs CNS DxR patients. Data was log 

transformed prior to statistical analysis. Two-tailed unpaired t-test; α=0.05. Mean and Standard 

deviation shown on both plots. Scatter and line plots created on GraphPad Prism v9.CNS Dx (n=148) 

CNS DxR (n= 40). 
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Figure 3-40: Comparison between the means of CNS Dx vs CNS DxR patients. Data was log 

transformed prior to statistical analysis. Two-tailed unpaired t-test; α=0.05. Mean and Standard 

deviation shown on both plots. Scatter and line plots created on GraphPad Prism v9.CNS Dx (n=148) 

CNS DxR (n= 40) 
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Table 3-20: Statistical analysis of the difference between candidate biomarker levels in 

the CNS Dx patient group against the Control CSF group. Data was log transformed prior 

to statistical analysis. Two-tailed unpaired t-test; α=0.05.  Statistics performed on GraphPad 

Prism v9. 

Candidate 

biomarker 

CNS 

Dx 

Mean 

CNS 

DxR 

Mean 

± SEM 

95% 

confidence 

interval 

R squared 

(eta 

squared) 

P value 

Xanthine 

7.717 

 

7.696 

 

0.04524 

 

-0.06835 

to 0.1102 

 

0.001146 

 

0.644631 

 

Creatine 

9.547 

 

9.552 

 

0.01274 

 

-0.03036 

to 0.01992 

 

0.0009021 

 

0.682415 

 

Phenylalanine 

8.578 

 

8.632 

 

0.02159 

 

-0.09697 

to -

0.01178 

 

0.03298 

 

0.012628 

 

Pseudouridine 

7.439 

 

7.463 

 

0.02828 

 

-0.07969 

to 0.03188 

 

0.003828 

 

0.398968 

 

N4-acetylcytidine 

6.621 

 

6.647 

 

0.04232 

 

-0.1093 to 

0.05767 

 

0.001997 

 

0.542553 

 

Symmetric 

dimethylarginine 

7.229 

 

7.262 

 

0.02778 

 

-0.08800 

to 0.02161 

 

0.007618 

 

0.233635 

 

Inosine 

6.727 

 

6.757 

 

0.06581 

 

-0.1603 to 

0.09932 

 

0.001154 

 

0.643489 

 

Orotidine 

6.047 

 

6.054 

 

0.06746 

 

-0.1401 to 

0.1260 

 

5.851e-

005 

 

0.917026 
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3.6 Summary and conclusions 

The aim of this study was to extend the discovery pipeline for diagnostic biomarkers 

of CNS-ALL by identifying candidate biomarkers capable of measuring leukaemic 

burden within the CNS. This study first found two more metabolites to be added to 

the list of previously discovered metabolites which were taken forward for  biomarker 

performance evaluation and validation experiments.  

 

The eight candidate biomarkers were first analysed with a univariate approach in a 

small pilot study testing their behaviours in leukaemic patient samples against two 

types of CSF controls classed as either inflammatory or non-inflammatory. The 

majority of the biomarkers performed well, and the general behaviour of each 

candidate biomarker was  concordant with the previous findings of the Halsey 

laboratory. Candidate biomarker levels were then tested (through the use of 

parametric univariate statistical tests and univariate ROC curve analysis) between 

the patient group and the combined control CSF groups to see if the findings held 

true, resulting in five of the eight candidate biomarkers showing discriminatory ability 

between the patient and control groups. Candidate biomarkers Phenylalanine, 

Pseudouridine and Orotidine, which did not show promise in this experiment were 

not excluded due to the low numbers of samples used and it was deemed that there 

was not enough evidence to dismiss any of the candidate biomarkers at this stage. 

Of note, Pseudouridine consistently performed the worst up to this point in the study. 

 

Next, a multivariate approach was taken to test the discriminatory capability of the 

candidate biomarkers when combined as a panel of informative candidate 

biomarkers. The ultimate aim of creating a multivariate biomarker model is to 

develop a fixed algorithm combining the biomarker performance metrics of a panel 
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of candidate biomarkers into a single score which can be applied in a clinical setting 

to accurately predict the desired clinical outcome (positive or negative), in this case 

the presence of leukaemia in the CNS, through indirect measurement of biomarkers 

in the CSF. This analysis suggested that a six or seven candidate biomarker model 

was optimal for discriminating between the patient and control group. This analysis 

highlighted Pseudouridine as performing the worst, as expected, and concurred with 

the previous statistical analysis that Phenylalanine and Orotidine were trending 

towards redundant contributions to the model. Further manual model testing 

revealed that the exclusion of Pseudouridine and orotidine led to the highest 

discriminatory metrics between the patient and control group. The predicted class 

probabilities for this model demonstrated an overall predictive accuracy of 96.6% 

when classifying samples to their correct class (i.e., patient or control) with only one 

mis-classed control sample.  

 

The creation of a biomarker model in this experiment is not without its limitations, 

sample size being the biggest to note however this small pilot study provided 

sufficient evidence to take the eight candidate biomarkers forward for secondary 

analysis with a larger and more comprehensive cohort of patient samples and for 

the re-implementation of this biomarker model for further performance evaluation in 

a large independent validation cohort.  

 

The results of the secondary analysis of these candidate biomarkers demonstrated 

that with the exception of Pseudouridine, individually every marker held good-to-

excellent ability to discriminate leukaemic CSF samples from control CSF samples. 

Pseudouridine was then excluded from further analysis because of its redundancy 

in discriminating between the patient and control group.  
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This cohort included a mixture of CNS1, CNS2 and CNS3 patients as classified by 

CSF cytology. These groups were searched for differences compared to the CSF 

control and every group behaved similarly to the CNS1 patient group with no 

discernible differences found. Only N4-acetylcytidine and Symmetric 

dimethylarginine showed elevated levels in the CNS3 patient group compared to the 

CNS1 patient group. The difference between the means of the CNS1 and CNS3 

patient groups were statistically significant potentially suggesting a linear correlation 

with leukaemic burden in the CSF as classified by current CSF cytology, that is high 

leukaemic burden in CNS3 patients. However, the numbers of CNS1 patients 

heavily outweighed the CNS3 patients, thus further testing with higher numbers of 

CNS3 patients would be required to see if this trend holds true. CNS2 patients were 

not analysed statistically but were merely added for visualisation of the spread of 

the data for these patients as it is reported that CNS2 patients are often poorly 

diagnosed [30].  

 

An important factor to note in the analysis of this study was the assumption that 

CNS1 patients are CNS-ALL positive as opposed to CNS-ALL negative, a more 

common approach in this field. CNS2 and CNS3 patients are classified as CNS-ALL 

positive as per CSF cytology due to the presence of blasts in the CSF and CNS1 as 

CNS-ALL negative due to the lack of blasts however, as discussed previously, there 

is strong evidence that leukaemia within the CNS is adherent to the walls of the 

leptomeninges and therefore may not be found freely floating in the CSF which 

possibly explains the lack of detectable blasts in CNS1 patients. The use of more 

sensitive methodologies for detection of CNS-ALL such as PCR or flow cytometry 

have been shown to increase the level of detectable leukaemia in CNS1 patients, 

corroborating this.  
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It could be argued that there should be a ”dose-response” trend seen with the levels 

of these biomarkers to match current CSF cytology diagnoses and therefore CNS3 

patients should potentially have the highest (or lowest) level of these biomarkers, 

followed by CNS2 patients and then CNS1 patients. However, as the soluble 

biomarkers being investigated in this study are secreted by leukaemic cells and are 

therefore an indirect form of measuring the presence of CNS-ALL, we cannot 

assume that there will be a clear CNS1 - CNS3 “dose-response” trend. Classification 

of CNS2 and CNS3 patients relies on the detection of free-floating cells which in the 

CSF show signs of cell-death. One could argue that these cells potentially under-

express adhesion molecules and are therefore not as well suited to adapt to the 

leptomeningeal space and adhere to the walls of stroma as the evidence suggests. 

This would of course suggest that patients classified as CNS1 potentially over-

express adhesion molecules resulting in fewer to undetectable levels of free-floating 

blasts. Future work in this regard would be interesting to test the expression of 

adhesion molecules of CNS1 vs CNS3 leukaemia to corroborate this hypothesis and 

potentially inform of fundamental CNS-ALL biology. However, it must be noted that 

high blast counts in the periphery and aggressive leukaemia’s tend to be CNS3 

patients thus suggesting that CNS3 patients most likely do have higher levels of 

leukaemic burden within the CNS. The rationale behind the approach of combining 

all CNS1, CNS2 and CNS3 patients together as one leukaemic patient group stems 

from the knowledge that these patients certainly have systemic leukaemia and most 

likely have CNS-leukaemia at diagnosis.  There of course is also the chance that 

some patients simply do not have CNS-leukaemia at the time of diagnosis which 

cannot be ruled out.   

 

An important limitation of this study is the lack of matched plasma samples for the 

patient CSF samples. Unfortunately, it was not possible to obtain matched plasma 
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samples for this study. It is possible that the levels of these metabolites reflect 

systemic levels found in the body instead of being CNS-leukaemia specific. This 

may explain why CNS1 CNS2 and CNS3 levels of all metabolites apart from N4-

acetylcytidine and Symmetric dimethylarginine, stay relatively constant in 

comparison to each other. These two metabolites which show a ”dose-response” 

trend with regards to leukaemic burden as classified by current CSF cytology, 

however, are more likely to be specific to the CNS and to the leukaemia. 

Considerations for future work should involve a study with matched CSF and plasma 

patient samples to confirm that these metabolites are differentially expressed in the 

CNS-compartment and are independent from systemic levels in the body. Animal 

models may also be a suitable alternative to perform this work to validate the 

behaviour of N4-acetylcytidine and Symmetric dimethylarginine.  

 

The next step involved re-applying the multivariate biomarker modelling to this larger 

cohort of samples to see whether the model performed better or worse than the pilot 

study. The results from this analysis suggested that a seven-biomarker model 

performed best, encapsulating all the candidate biomarkers together to achieve the 

best discrimination with an overall predicted accuracy of 95.6%. This experiment 

was primarily run to validate the use of a multi-biomarker model for discriminating 

between the patient and control group and was subsequently tested on a small 

subset of different patient samples from the Halsey laboratory rather than the 

National Biobank and this model correctly classified all ten samples tested including 

one relapse sample taken from a CNS3 patient. 

 

Finally, the true abundance of Creatine and Xanthine was calculated from a 

standard curve generated by pure external reference samples of each compound. 

This experiment was run to support the findings of this study and to begin the 
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process of validating these findings. Unfortunately, the true abundance of all 

candidate biomarkers could not be measured as they were not tested due to 

material and time limitations. Both Creatine and Xanthine however performed 

according to the previous analysis and when tested together as a multi-biomarker 

model, performed better in discriminating the patient group from the control group 

thus providing strong evidence of the use of a multi-biomarker model for the 

detection of CNS-ALL.  

 

The candidate biomarkers were also tested for their prognostic capability by 

comparing samples from patients who did not go onto relapse with samples from 

patients who went onto relapse either in the CNS alone or in the CNS and bone 

marrow. Only Phenylalanine was found to have an elevated mean in the patients 

who went onto relapse potentially suggesting that higher levels of this biomarker 

could predict relapse, but this would have to be investigated further with a larger 

number of patient samples who went onto relapse as well as serial-samples from 

various time-points around the time and after relapses for tracking. This would 

involve several regular lumbar punctures which would need to be performed 

routinely to be able to quantify the level of a prognostic biomarker with the aim of 

predicting relapse. Currently this type of serial sampling has begun through the 

Altogether CSF-Flow study which provides an opportunity to analyse leftover CSF 

from these lumbar punctures for the presence of soluble biomarkers such as 

Phenylalanine in this setting [106].  

 

The strengths of this study lie in the use of patient samples originating from two 

separate biobanks, one a local biobank in Glasgow and the other a national biobank. 

The majority of the biomarkers performed concordantly between the two datasets 

as well as with the previous analysis conducted in the Halsey Laboratory. Creatine, 
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Xanthine, N4-acetylcytidine, Symmetric dimethylarginine and Inosine in particular 

were concordant in all datasets. Phenylalanine, and Orotidine were proved to have 

strong discriminatory ability in the second experiment and contributions to the 

multivariate biomarker model’s discriminatory ability.  The use of adult CSF from 

patients who were cleared of any malignancy but underwent lumbar puncture for a 

range of either inflammatory or non-inflammatory conditions, was both a strength 

and a weakness of this study. The strength lies in that the wide range of CSF 

phenotypes included in this control capture the CSF phenotype of non-leukaemic 

children. The trends seen in this study mimicked the trends seen in the previous 

analysis by the Halsey lab thus giving us confidence that our statistically significant 

findings between the means of the leukaemic patient samples and the control CSF 

used in this study are comparable. The weakness lies in that the control CSF 

samples used in this study were obtained from adults and thus age-dependent 

metabolic phenotypes must be investigated alongside the phenotypes of the various 

conditions associated with the adult CSF samples. Of course, to truly measure the 

effect of this panel of candidate biomarkers, CSF samples from healthy volunteers 

matched for age and sex would be needed which may perhaps be an impossibility. 

 

An important finding that must be addressed is the unavoidable phenomenon of 

drug-related metabolism. One possible explanation of the differences observed in 

between the leukaemic patient samples, and the control CSF samples in some of 

the metabolites tested may be due to the medication that the children were on at the 

time of diagnosis, specifically allopurinol a purine analogue which is metabolised by 

enzymes involved with purine and pyrimidine synthesis. Patients are known to be 

given allopurinol around the time of diagnosis. The effects of allopurinol metabolism 

can see seen in Figure 3-41.  
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Figure 3-41: Allopurinol metabolism. Figure adapted from: 

https://www.ebmconsult.com/articles/allopurinol-febuxostat-zyloprim-uloric-uric-acid-gout-

mechanism 

 

Allopurinol is known to inhibit enzymes such as Xanthine oxidase and other 

enzymes involved in DNA synthesis. This is a potential confounder for the results 

seen in metabolites Xanthine, Inosine, Orotidine and potentially Pseudouridine and 

calls into question whether these biomarkers are biologically plausible. Future work 

can potentially begin to address these questions through the use of in vitro studies 

investigating the consumption and secretion of these metabolites at various time-

points in a CNS-like environment by using LC-MS or in vivo follow up studies using 

carefully constructed mouse-models.  
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Whether or not the other metabolites which are not potentially influenced by 

allopurinol or other medications (Creatine, N4-acetylcytidine, Symmetric 

Dimethylarginine, and phenylalanine) are biologically plausible remains to be 

investigated and validated. However, the data in this study suggests that even 

biomarker models with fewer numbers of biomarkers from this panel perform 

extremely well in discriminating between leukaemic CSF and control CSF.  

 
This study has extended the metabolic biomarker discovery phase in this field and 

future directions should first and foremost involve investigating the metabolic 

pathways associated with these candidate biomarkers to shed light on the metabolic 

processes occurring within the CNS. Next, repeating these experiments 

independently on a larger scale with more sensitive technologies and age-

appropriate CSF controls for validation will reveal the clinical utility of these 

candidate biomarkers as biomarkers for CNS-ALL. 

 

Although there are some promising leads in this study, as demonstrated above, 

metabolomics is an extremely sensitive platform and can be very sensitive to 

individual patient differences and external factors potentially unrelated to CNS 

leukaemia. Therefore, this study progressed onto the discovery of candidate 

biomarkers which are more directly secreted by leukaemic cells in the form of 

soluble protein/cytokine molecules and cell-free DNA. 
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Chapter 4: Discovery of soluble biomarkers of 
Central-Nervous System Acute lymphoblastic 
leukaemia 

4 Introduction and aims   

Discovery of novel sensitive and specific soluble biomarkers with a method that is 

independent from the number of “free-floating” blasts in the CSF is essential to be 

able to detect, quantify and track levels of leukaemia in the CNS. A potential 

biomarker class in the CSF are secreted proteins, chemokines, and cytokines which 

can be detected using techniques such as immunoassays or ELISAs. 

Immunoassays are considered a gold standard for the detection and quantification 

of protein biomarkers and generally have higher sensitivity and specificity compared 

to conventional alternative methods. They are generally cost-effective, and the 

workflows are fast and simple to use. Luminex technology allows for the multiplexing 

of several analytes simultaneously and is thus an ideal technology for testing several 

potential biomarkers in the biomarker discovery phase, especially if sample volume 

is a limiting factor. 

 

Luminex technology uses fluorescent beads which are assigned specific 

fluorophores capable of being detected and discerned from each other. These 

beads are then coated with capture antibodies specific to the target analyte. After 

incubation with the target sample, the beads are washed and then incubated with 

biotinylated detection antibodies and streptavidin-phycoerythrin (PE). The Luminex 

analyser subsequently excites the beads using a laser to detect the fluorophore and 

assigned analyte while another laser will determine the quantity of the PE signal 

which is proportional to the quantity of the analyte bound to the bead. 
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This part of the study used diagnostic CNS1 patient CSF samples from the Halsey 

laboratory biobank with matched control CSF taken a year into treatment as well as 

diagnostic CNS1, CNS2 or CNS3 from a national childhood leukaemia biobank. 

CSF from patients who were admitted to hospital for suspected non-inflammatory 

and inflammatory neurological conditions and had a lumbar puncture taken which 

returned a normal CSF profile, were also used as a control group.  

 

Targets were chosen based on a literature search (Chapter 1.7.2.2) to attempt to 

discover new soluble biomarkers. In this study, the following analytes were tested 

CCL21, CXCL10, IL-2Rα, Osteopontin, Thymidine Kinase-1 (TK-1), MMP-9, L-

Selectin, VEGF-A, VEGF-C and CD27. The goal of this chapter was to test a variety 

of soluble protein analytes to discover potential diagnostic and prognostic 

biomarkers for CNS-ALL through the following aims: 

 

1) To test a panel of analytes using diagnostic CNS1 samples and matched 

“late” control samples (take around one year into treatment) to identify 

potential diagnostic or prognostic biomarkers of interest – primary analysis 

 

2) To test promising analytes with a cohort composed of non-inflammatory and 

inflammatory control CSF against patient samples currently classified by CSF 

cytology as CNS1, CNS2 or CNS3 – secondary analysis. 

 
 

3) To analyse data from promising analytes as a combined group of patient 

diagnostic CSF samples (irrespective of their current classification of CNS1-

3) against non-inflammatory and inflammatory control CSF to further assess 

biomarker performance – secondary analysis. 
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4) To test a select number of diagnostic patient CSF samples from patients who 

went onto relapse in the CNS against patients who did not relapse to 

elucidate whether the promising analytes have any prognostic biomarker 

utility – secondary analysis. 
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4.1 Primary analysis of potential soluble biomarker 

candidates  

To test the chosen set of candidate analytes, an initial multiplex Luminex assay 

using 50 μL of CSF was run using a small cohort of matched patient samples 

consisting of diagnostic CNS1 patients with matched “late” control samples taken 

around a year into treatment where leukaemic burden in the CNS would be expected 

to be low to non-existent due to the high intensity treatment given in that period 

(Table 4-1).  The diagnostic patient samples were all taken from around 2010-2013 

and have been stored at -80 °C until use with no freeze/thaw cycles. These samples 

were first thawed on ice, spun at 16,000 x g for 4 minutes at 4 °C and then diluted 

1:2 with Calibrator Diluent RD6-52. Standards were prepared according to the 

manufacturer’s guide and the plate was run on a Bio-Plex 100 multiplex plate reader 

(Bio-rad).  

 

This experiment detected 5 / 10 analytes tested (Osteopontin, CD27, L-selectin, 

VEGF-C & CXCL10) with values for both the diagnostic (dx) and late samples 

(Table 4-2, Figure 4-1). The remaining analytes (CCL21, IL-2Rα, TK1, VEGF-A and 

MMP9) were below the range of the assay. Interestingly, CCL21 which was detected 

in previous experiments in the laboratory, was not detected in this experiment. 

Results from this experiment show low levels of CXCL10, VEGF-C and CD27 in the 

CSF of the patient sample cohort. 

 

Osteopontin and L-selectin showed higher levels compared to the other analytes. 

Analysis of the differences between the patient sample groups (Dx vs late control) 

indicate very little change in the levels of CXCL10, VEGF-C, Osteopontin and  
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Patient 

ID 
Immunophenotype 

CNS 

Classification 

Age at Dx 

(years) 

Years Between Dx 

and Late Samples 

P1 BCP-ALL CNS1 1 1.05 

P2 BCP-ALL CNS1 7 1.10 

P3 BCP-ALL CNS1 5 1.22 

P4 BCP-ALL CNS1 3 1.04 

P5 BCP-ALL CNS1 2 0.94 

P6 BCP-ALL CNS1 2 0.96 

P7 BCP-ALL CNS1 2 0.99 

P8 BCP-ALL CNS1 1 0.96 

P9 BCP-ALL CNS1 4 0.75 

P10 BCP-ALL CNS1 15 1.12 

P11 BCP-ALL CNS1 6 0.99 

P12 BCP-ALL CNS1 4 1.19 

P13 BCP-ALL CNS1 4 0.92 

P14 BCP-ALL CNS1 2 0.94 

Table 4-1: Diagnostic patient sample information. BCP-ALL = B-cell precursor ALL diagnosis.  

 

L-selectin and statistical analysis showed no significant difference between these 

groups. 

Levels of CD27 in the diagnostic patient sample group (368.6 pg/mL) were elevated 

compared to the matched late sample group (199.1 pg/mL) and statistical analysis 

indicated a significant difference between the two groups (p = 0.018) (Figure 4-1).  

 

To determine the diagnostic utility of CD27 to discriminate between the diagnostic 

CSF sample and the matched late sample (representing CSF with no blast 

presence), a receiver operator curve (ROC) analysis was run.  
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Table 4-2: Analyte concentrations in range of standard curve and descriptive statistics 

calculated on GraphPad Prism v9.  <OOR = Out Of Range: below range of assay. SEM = Standard 

Error of the Mean. CV = coefficient of variation. Two-tailed paired t-test, statistical significance: * = p 

<0.05;Statistics were calculated on GraphPad Prism v9. 

 

ROC curve analysis plots the true positive rate (Sensitivity) against the False 

Positive rate (Specificity) at several different classification thresholds resulting in 

an area under the ROC  curve (AUC) metric which measures the ability of the 

analyte to discriminate between individuals with disease (Dx sample) and those 

without the disease (late control sample). 

 

Analyte 
Dx Av. 

(pg/mL) 
SD SEM CV 

CTL Av. 

(pg/mL) 
SD SEM CV P Value 

OPN 
111380.

3 
71160 17790 64% 81122.9 54074 13518 67% 

0.11298

6 

CD27 368.6 275 76 64% 199.1 124 35 53% 
0.01759

9 

L-SLT 5383.4 3590 960 64% 4000.9 3186 851 70% 
0.17725

2 

VEGF-C 444.1 93 23 21% 435.6 88 22 20% 
0.51196

7 

CXCL10 14.6 13 3.4 85% 18.5 24 6.1 
122

% 

0.77252

7 

CCL21 <OOR - - - <OOR - - -  

IL-2Rα <OOR - - - <OOR - - -  

TK1 <OOR - - - <OOR - - -  

VEGF-A <OOR - - - <OOR - - -  

MMP9 <OOR - - - <OOR - - -  
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Figure 4-1: Violin plots of several log10 transformed analyte concentrations from dx vs 

matched late control sample data. Dx samples n=14; matched late samples n=14. Two-tailed 

paired t-test, statistical significance: * = p <0.05; ns = not significant. Prior to statistical analysis, the 

data was log10 transformed. Statistics were calculated on GraphPad Prism v9. 
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The result of the ROC analysis (AUC: 0.78, 95% CI: 0.6-0.96, p value= 0.017) 

demonstrate that initially CD27 has a moderate-high chance of 78% of 

discriminating between our CNS-ALL positive samples (diagnostic CSF samples) 

and CNS-ALL negative sample groups (matched late control CSF samples).  

 

CD27 was thus chosen to take forward for further testing with a second cohort of 

patient and control samples as a potential biomarker for CNS-ALL. The average 

means of L-selectin and Osteopontin were higher in the Dx group (5383.4 & 

111380.3 pg/mL) than in the late control group (4000.9 & 81122.9 pg/mL)  

Area under the ROC curve 0.775 

Std. Error 0.092 

95% confidence interval 0.594 to 0.956 

p value 0.017 

Figure 4-2: Receiver Operator Curve (ROC) analysis of diagnostic sample (Dx) vs matched 

late control sample (Late). Alpha set at 0.05. Statistics were calculated on GraphPad Prism v9. 
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(Table 4-2). Even though statistical analysis did not report a significant difference 

between the means of the two groups, these two analytes were also investigated 

further in the secondary analysis. 

 

4.2 Secondary analysis of soluble biomarker candidates  

4.2.1 CD27  

The next step was to measure levels of CD27 in CNS-ALL patients classified as 

CNS1, CNS2 or CNS3 against two groups of independent CSF controls made up of 

non-inflammatory CSF and inflammatory CSF with the aim of investigating the 

specificity of the analyte for ALL against a spectrum of control “normal” CSF (Table 

4-3). The CSF controls available originate from adults ranging from 18-77 years of 

age who were admitted into hospital for a range of inflammatory or non-inflammatory 

neurological conditions but were cleared of any cancer. 

 

For this experiment, it was chosen to compare the patient groups to the non-

inflammatory control CSF to determine the capability of the analyte to discriminate 

between disease state and non-disease state. The CNS is considered to be an 

inflammatory leukaemic sanctuary at the time of diagnosis and relapse. 

 

Results from this experiment indicate that CD27 levels in CNS2 and CNS3 patients 

were elevated compared to the non-inflammatory control CSF and statistical 

analysis indicated a significant difference between the compared groups (p 

=0.002537; p = 0.046783 respectively) (Figure 4-3A). 
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Patient CSF sample types 

CNS1 CNS2 CNS3 CNS Dx CNS DxR 

n=10 n=10 n=10 n=22 n=8 

Age at Dx ranges 

 

Site of future 

relapse 1, 2, 6 1, 3, 4, 5, 8, 14 1, 2, 3, 4, 5, 7, 13, 15 

Sex 
CNS isolated: n=5 

CNS + BM: n=3 0F : 10M 4F : 6M 4F : 6M 

 

CSF control demographic 

Control type Age Sex Diagnosis 

NI control n=4 

26 F Migraine 

34 F Headache 

37 M Functional* 

57 M Motor neuropathy 

I control n=4 

18 F 
Post-infectious movement 

disorder 

27 M Neurosarcoidosis 

30 F GAD encephalitis** 

42 M RRMS*** 

 

Table 4-3: CSF sample types for secondary analysis of candidate biomarkers. NI = non-

inflammatory control CSF; I= inflammatory control CSF. Age at Dx = Age at diagnosis. All samples 

belonging to ALL groups CNS1-3 were diagnosed as B-cell ALL patients. CNS Dx = accumulated 

CNS1-3 patient samples; CNS DxR = Diagnostic patient samples of patients who went onto relapse 

in the future, CNS = central nervous system, BM = bone marrow. F= Female; M = Male. * Functional 

= Body symptoms which appear to be caused by the CNS, but are not, medically unexplained. ** 

GAD encephalitis = Anti-glutamic acid decarboxylase encephalitis.*** RRMS = Relapsing-Remitting 

Multiple Sclerosis.  
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Levels of CD27 in the control and CNS1 patient group however had similar 

averages, and no statistically significant difference between the means p = 

0.736403). This result shows a “dose-response” trend in line with CSF cytology  

potentially suggesting that CD27 is measuring increasing levels of leukaemia in the 

CNS 

 

Interestingly, the inflammatory CSF control group had higher levels of CD27 than 

the non-inflammatory control CSF with a statistically significant difference between 

the means (p = 0.041082), suggesting that inflammation within the CNS  can also 

result in elevates levels of CD27 (Table 4-3) (Figure 4-3C). 

 

When comparing CD27 levels in CNS1-3 patient groups against the inflammatory 

CSF controls, all patient groups had lower levels of CD27, and statistical analysis 

indicated significant differences between the means of the inflammatory control CSF 

and the CNS1 and CNS3 groups (p = 0.001576; p = 0.044464, respectively). The 

level of CD27 in the CNS2 patient group showed similar levels to the inflammatory 

control CSF and no significant difference was found with statistical analysis between 

the groups (Figure 4-3B). This further supports the suggestion that inflammation 

within the CNS may be the cause of elevated CD27 in the CSF of leukaemic 

patients. 

 

The next step was to re-analyse the CNS1, CNS2 and CNS3 CD27 data together 

as a cumulation of patients with CNS-ALL against the control CSF. The data shows, 

as expected, elevated CD27 levels in the CNS Dx group compared to the non-

inflammatory control CSF and statistical analysis indicated a significant difference 

between the means of the two groups (Figure 4-4).  
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Figure 4-3: CD27 - Violin plots of CD27 levels in control CSF vs CNS1, CNS2 & CNS3 patient 

sample groups. (A) Non-inflammatory control CSF vs patient samples  (B) Inflammatory control 

CSF (I) vs patient samples. (C) Non-inflammatory control CSF (NI) vs inflammatory control CSF (I). 

Statistics: (A-B) Unpaired Ordinary one-way ANOVA, multiple comparisons corrected using 

Dunnett’s multiple comparison test, alpha threshold=0.05 and confidence level 95% confidence 

interval; ns = not significant; * = p<0.05; **= p<0.01. (C) Two-tailed unpaired t-test, * = p<0.05. 

Statistics were calculated on GraphPad Prism v9. 
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The level of CD27 of the CNS Dx group was less than the level of the inflammatory 

control CSF but sat between the two control groups. Leukaemic cells are by nature 

inflammatory cells, so these results potentially suggest that elevated CD27 levels 

could potentially a phenotype of inflammatory CSF environment  caused by the  

presence of CNS-ALL.  

 

ROC curve analysis which was then performed on CNS Dx group against the non-

inflammatory control CSF (Figure 4-5). The AUC for the NI vs CNS Dx (AUC: 0.842, 

95% CI: 0.70-0.98, p = 0.028) comparison suggest that CD27 shows excellent 

diagnostic capability, an 84% chance of discriminating between the non-

inflammatory control CSF and the CNS Dx group. ROC curve analysis between  the 

inflammatory control CSF and the CNS Dx group suggested that CD27 has no 

discriminatory utility between the two groups with a p value >0.05 and had very wide 

95% confidence intervals (AUC 0.775; 95% CI = 0.533 to 1.00) (Figure 4-5).  

 

However, given the phenotype of elevated CD27 in the inflammatory control CSF 

and the similarity in elevated levels of CD27 in the leukaemic patient sample groups, 

these results cast doubt on the clinical utility of CD27 as a diagnostic biomarker for 

the presence of CNS-ALL. It’s use alongside other tests that confirm the presence 

of CNS-leukaemia e.g., flow cytometry, may have some clinical utility however as 

elevated levels do correlate with our current classification of CNS leukaemia and its 

use in a panel of biomarkers similar to the panel mentioned in Chapter 1, may 

improve sensitivity and specificity within this biomarker class. 
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Figure 4-4: CD27 – Violin plot of log10 transformed CD27 levels in control CSF vs CNS Dx 

patient sample group. Non-inflammatory control CSF (NI) & inflammatory control CSF (I) vs CNS 

Dx combined patient samples. Statistics: Unpaired ordinary one-way ANOVA, multiple comparisons 

tested using Dunnett’s multiple comparison test, alpha threshold=0.05 and confidence level 95% 

confidence interval; ns = not significant; * = p<0.05; **= p<0.01. (Alpha set at 0.05. Statistics were 

calculated on GraphPad Prism v9.  
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Figure 4B NI vs CNS Dx I vs CNS Dx 

Area under the ROC curve 0.842 0.775 

Std. Error 0.0708 0.123 

95% confidence interval 0.703 to 0.980 0.533 to 1.000 

p value – alpha <0.05 0.028 0.078 

Figure 4-5: ROC analysis CSF vs CNS Dx. Receiver Operator Curve (ROC) analysis of 

non-inflammatory control CSF & inflammatory control CSF vs CNS1, CNS2 & CNS3 

patient samples 
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Next, CD27 was tested for its ability as a prognostic biomarker for CNS-ALL. Within 

this cohort of patient samples, eight patients from all three CNS groups (1-3), were 

diagnostic samples from children who eventually had either an isolated relapse in 

the CNS or a relapse in both the CNS and the bone marrow. These samples are 

referred to as CNS DxR patient samples and were included for testing to see if there 

would be any difference in the levels of any promising analytes between the CNS 

Dx group and the CNS DxR group (Table 4-3). 

 

Leukaemia’s in children who went onto relapse tend to be more aggressive from 

diagnosis and it was hypothesized that with the right biomarker, these children 

would present with differing levels compared to diagnostic CSF, to predict CNS-

relapse. The results show that CD27 cannot identify any difference between the 

levels of these diagnostic samples and statistical analysis indicates no significant 

difference between the means of these two groups of samples (p = 0.932592) 

(Figure 4-6). Of note, sample numbers for these experiments are low and therefore 

may be too underpowered to see a difference between the CNS Dx and the CNS 

DxR groups.  
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Figure 4-6: Violin plot of log10 transformed CD27 levels in CNS DX samples vs CNS DxR 

samples. CNS DxR = Diagnostic patient samples of children who relapsed in the CNS in the future. 

Statistics: Two-tailed unpaired t-test, confidence level 95% statistical significance: * = p <0.05; ns = 

not significant. Statistics were calculated on GraphPad Prism v9. 
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4.2.2 L-selectin & Osteopontin 

L-selectin and Osteopontin were also examined further due to the high levels which 

were detected in (Figure 4-2) to investigate whether analysis with more patient 

sample groups could identify any role as diagnostic or prognostic biomarkers for 

CNS-ALL. As with CD27, various analyses were performed: First, the levels of both 

analytes were compared to both the non-inflammatory and inflammatory CSF 

controls, Then the samples were combined to test the CNS Dx group as a whole 

against the control CSF and finally the CNS Dx group were tested against a select 

number of diagnostic patient samples of which the patients went onto relapse in the 

future in the CNS and/or bone marrow (Table 4-3). 

 

Initial results from the secondary analysis of L-selectin did appear to show an 

increasing trend in levels of the analyte with the intensifying CNS classifications 

CNS1-3, however statistical analysis did not report a significance different between 

the means of any of the CNS-ALL patient groups and both the non-inflammatory 

and inflammatory control CSF samples (NI CTL vs CNS Dx: p = 0.755930; p = 

0.0998161; p = 0.099934, respectively) (I CTL vs CNS Dx: pp = 0.571275; p = 

0.993462; p = 0.228448, respectively) (Figure 4-7 A, B). 

 

Levels of L-selectin in both the non-inflammatory and inflammatory control CSF 

were very similar and when compared against the combined CNS Dx patient group 

and the data shows similar levels of L-selectin between all groups suggesting that 

this analyte is detectable in CSF irrespective of disease or non-disease state 

(Figure 4-8). This is further corroborated by the primary analysis result of L-selectin 

where levels between the Dx group and the late control group were very similar 

(Figure 4-1). This data does not indicate any utility as a diagnostic biomarker.  
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Analysis of L-selectin levels between the CNS Dx and CNS DxR groups also 

showed no significant indicating that it is not a prognostic biomarker in this sample 

set difference (Figure 4-8).  

 

Results from the secondary analysis of Osteopontin follow suit with the trends seen 

for L-selectin. Levels of Osteopontin in the non-inflammatory control CSF vs CNS1, 

CNS2 and CNS3 patients were very similar and statistical analysis showed no 

significant difference between the means (p = 0.842095; p = 0.940494; p = 

0.531488, respectively) (Figure 4-9 A). This trend was replicated in the results seen 

between the comparison of inflammatory control CSF and the CNS1-3 patient 

groups (p = 0.174992, p = 0.775824, 0.066127, respectively) (Figure 4-9 B).  

 

Comparison between the CNS Dx group and the non-inflammatory control and 

inflammatory control unsurprisingly revealed no significant difference between the 

means (p = 0.874376; p = 0.219661, respectively) (Figure 4-9 C). 

 

Analysis of Osteopontin levels between the CNS Dx and CNS DxR groups also 

showed no significant indicating that it is not a prognostic biomarker in this sample 

set difference (p = 0.883827)  (Figure 4-9D).  

 

ROC analysis data shows that both analytes show very poor diagnostic capability 

to identify the CNS-ALL patient groups against the control CSF groups with p values 

for all comparisons being > 0.05 , confirming that these two analytes are of no 

diagnostic utility (Table 4-4). 
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Figure 4-7: L-selectin – Violin plots of log10 transformed L-selectin levels of control CSF vs 

CNS1, CNS2 and CNS3 patient samples. (A) Non-inflammatory control CSF vs patient samples. 

(B) Inflammatory control CSF (I) vs patient samples. Statistics: Unpaired ordinary one-way ANOVA, 

multiple comparisons tested using Dunnett’s multiple comparison test, alpha threshold=0.05 ; ns = 

not significant. Graphs created on GraphPad Prism v9.  
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Figure 4-8: L-selectin – Violin plots of log10 transformed L-selectin levels of control CSF vs 

CNS Dx patient samples. (A) Non-inflammatory control CSF (NI) & inflammatory control CSF (I) vs 

CNS Dx combined patient samples. Statistics: ordinary one-way ANOVA unpaired, multiple 

comparisons tested using Dunnett’s multiple comparison test, alpha threshold=0.05 and confidence 

level 95% confidence interval * ns = not significant. (B) CNS Dx vs CNS DxR group. CNS DxR = 

Diagnostic patient samples of children who relapsed in the CNS in the future. Statistics: unpaired t-

test, ns = not significant. Graphs created on GraphPad Prism v9. 
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Figure 4-9: Osteopontin – Violin plots of log10 transformed Osteopontin levels of various 

analyses. (A) Non-inflammatory control CSF vs patient samples. (B) Inflammatory control CSF (I) 

vs patient samples. (C) Non-inflammatory control CSF (NI) & inflammatory control CSF (I) vs CNS 

Dx combined patient samples. Statistic: Unpaired ordinary one-way ANOVA, multiple comparisons 

tested using Dunnett’s multiple comparison test, alpha threshold=0.05 ; ns = not significant. (D) CNS 

Dx vs CNS DxR group. CNS DxR = Diagnostic patient samples of children who relapsed in the CNS 

in the future. Statistics: unpaired t-test, ns = not significant. Graphs created on GraphPad Prism v9. 
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Together, this data confirms that both analytes, although detectable and present in 

CSF, have no diagnostic clinical utility for detecting CNS-ALL in the CSF of children 

with acute lymphoblastic leukaemia, and do not appear to predict later risk of CNS 

relapse. 

 

 

 

 

 

ROC Comparison AUC St. Err 95% CI 
p value: alpha = 

0.05 

L-selectin 

NI vs CNS Dx 0.629 0.109 0.416 – 0.842 0.407 

I vs CNS Dx 0.689 0.097 0.499 to 0.879 0.287 

Osteopontin 

NI vs CNS Dx 0.517 0.169 0.186 – 0.848 0.915 

I vs CNS Dx 0.783 0.092 0.604 to 0.963 0.069 

Table 4-4: Receiver Operator Curve (ROC) analysis of non-inflammatory control CSF & 

inflammatory control CSF vs CNS Dx patient sample groups for L-selectin & Osteopontin.  

Alpha set at 0.05. Statistics were calculated on GraphPad Prism v9. 
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4.2.3 Summary and conclusions 

The goal for this chapter was to discover novel sensitive and specific diagnostic or 

prognostic biomarkers for CNS-leukaemia. Current methods for classifying CNS-

leukaemia are insensitive and unable to accurately predict CNS-relapse. Initial work 

involved a literature search for potential analytes of interest to use with Luminex 

multiplex immunoassay technology for the detection of multiple analytes 

simultaneously.  

 

Primary analysis involved testing CNS1 diagnostic patient samples against matched 

late controls as a preliminary experiment to determine which analytes proved most 

interesting to take forward to a secondary analysis. This data revealed 5/10 analytes 

with detectable concentrations within range of the assay (Osteopontin, L-selectin, 

CD27, VEGF-C and CXCL10). Levels of these analytes were generally low and 

close to the lower limit of quantification apart from L-selectin and Osteopontin. 

Individual analyses indicated no real difference between the patient group and the 

control group in all but CD27. The strength of this experiment lies in the matched 

late controls from each patient. These controls are taken one year into treatment 

where the leukaemic burden is expected to be minimal to non-existent. Inflammation 

within the CNS is also expected to be minimal in these control samples and so this 

experiment is ideal for identifying potential biomarkers of interest. Although there 

was no real difference between the patient and control groups of L-selectin and 

Osteopontin, these two analytes alongside CD27 were chosen to take forward for a 

secondary analysis due to the high levels found in CSF.  

 

 

Secondary analysis initially involved the testing of the chosen analytes with different 

groups of CNS-leukaemia current classification patient samples (CNS1, CNS2 & 
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CNS3) against both non-inflammatory and inflammatory control CSF. These two 

CSF control group samples were provided by the Glasgow Neuroimmunology 

Biobank and include CSF from patients who were admitted to the hospital for an 

exploratory lumbar puncture for a range of conditions but were cleared of any 

malignancies. The rationale behind using these CSF controls was to see if the non-

inflammatory control would replicate the trend seen with matched late control CSF 

and to elucidate the behaviour of the analytes in an inflammatory CSF environment. 

A biomarker that presents with the same difference in both controls, is likely a 

specific biomarker for the presence of CNS-ALL.  

 

Regarding CD27, the secondary analysis indicated that higher leukaemic burden, 

i.e. CNS2/3, as classified by the current gold standard method of CSF cytology, 

appear to have elevated CD27 when compared to the non-inflammatory control 

CSF. ROC curve analysis results support this finding, indicating that CD27 shows 

strong diagnostic capability to discriminate CNS-ALL burden in higher diagnostic 

classifications CNS2 and CNS3 against the non-inflammatory control CSF. CD27 

did not show evidence of being clinically useful when differentiating between the 

control and the CNS1 patient sample group. However, given that CD27 was 

elevated in the inflammatory control CSF, the data strongly suggests that elevated 

CD27 is most likely a consequence of an inflammatory phenotype in the CNS space 

rather than it being indicative of the presence of CNS-leukaemia specifically. This 

experiment while showing promising signs of the right level of sensitivity needed for 

a good biomarker of CNS-ALL, greatly lacks the specificity needed to take this 

analyte further for testing by itself. It may have some clinical utility as a biomarker in 

combination with other parameters which may enhance the overall specificity of a 

multi-biomarker test.  
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This was further supported by moving away from the current classification systems 

(CNS1-3) by combining all patient samples regardless of their CSF cytology 

classification, uniting them as one CNS diagnosis population (CNS Dx) and 

comparing this group to both controls. This analysis put the levels of CD27 in-

between the non-inflammatory and inflammatory control CSF, with CD27 levels of 

the CNS Dx group being closer to the inflammatory control than the former. Again, 

positioning CD27 as a sensitive but unspecific marker capable of detecting 

inflammation within the CNS rather than the presence of CD27.  

 

ROC curve analysis requires the test (in this case the analyte in question) between 

the disease and non-disease groups to be as robust as possible to be able to provide 

an answer on the discriminatory utility of the test. While this test is commonly used 

in biomarker discovery, its use and interpretation must be performed with care. The 

use of two controls in this case revealed that while upon first sight, CD27 looked 

specific and sensitive for detecting CNS-ALL in the CNS2 and CNS3 patient sample 

groups when compared against our “normal” non-inflammatory control CSF. 

Analysis against the inflammatory control CSF however, revealed that CD27 is not 

clinically useful for identifying CNS-ALL.  

 

Testing the CD27 levels for  diagnostic samples from patients who went onto relapse  

in either the CNS or bone marrow against diagnostic samples from patients who did 

not relapse did not reveal any differences suggesting that it has no utility as  

prognostic biomarker. 

 

Despite being implicated as potential biomarkers for CNS-ALL, L-selectin and 

Osteopontin were found to be universally detectable in all the CSF sample types 

analysed but no differences between the levels of the analytes in the groups were 
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found, suggesting little utility of theses markers in this setting. The other potential 

biomarkers tested in the primary analysis were not even detectable in this study.  

 

There are limitations in this study which must be addressed which could explain the 

behaviour of all the candidate biomarkers tested (apart from CD27). First, the pre-

analytical variables i.e., sample stabilisation, storage and transport may have played 

an effect with the integrity of the proteins/ chemokines being investigated. Samples 

are often not collected, processed, and stored adequately from the bedside (post 

lumbar puncture) to the laboratory bench. These samples have also been in storage 

at -80 °C for several years. The data in these experiments are from a small cohort 

of patients so this study may be too underpowered to discern any real differences 

between the comparator groups. The CSF controls in the secondary analysis 

originate from adults and are thus not ideal for comparison against childhood ALL 

patients. Unfortunately, true control CSF from clinically well children is extremely 

rare-to-very difficult to obtain.  

 

In summary, the results of this chapter, while they have not identified a protein 

biomarker suitable for detecting leukaemic burden in the CNS, have laid the 

foundation work by setting up the appropriate parameters in which a successful 

biomarker must behave in this setting i.e., must show clinically useful differences 

between non-inflammatory and inflammatory control CSF by the various different 

analyses used here to be considered sensitive and specific enough for further 

testing. Future studies should involve wider screening of more potential protein/ 

cytokine biomarkers through the use of large multiplex immunoassays. 
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Chapter 5: Circulating-tumour DNA as a 
biomarker of central-nervous system acute 
lymphoblastic leukaemia 

5 Introduction and aims 

The release of cell-free DNA into surrounding bodily fluids is ubiquitous around the 

body. cfDNA can be measured in various biological matrices such as plasma, 

serum, urine, and CSF and current research has a focus on the adoption of cfDNA 

analysis for routine application in areas such as prenatal screening, monitoring 

organ transplants, and detection of disease such as cancers [107]. Typically, cancer 

patients can present with higher levels of cfDNA than healthy persons of which, 

circulating tumour DNA (ctDNA) will make up a fraction, big or small, of the total 

cfDNA [108]. However, the level of ctDNA can be highly variable between patients 

depending on the type of cancer or disease stage [109].  ctDNA is an ideal target 

as a diagnostic and prognostic biomarker because in most cases, it is an “easy” 

molecule to extract by non-invasive procedures i.e., blood or urine samples and thus 

can be used effectively for tracking disease progression, response to treatment and 

for detecting potential relapses [110].  

 

The use of cfDNA as a biomarker in cancer diagnostics, monitoring disease 

progression and predicting response is widely investigated but lacks an appropriate 

level of standardisation with regards to pre-analytical stages of the workflow. These 

needs must be met before widespread clinical implementation can be adopted. Of 

the preanalytical stages to consider, the following factors can have significant effects 

on the results: sample source, sample collection, sample transport and storage, 

sample volume, sample preparation, and sample extraction.  
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This part of the study focussed on the detection of ctDNA biomarkers in the CSF of 

children suffering from disseminated ALL in the CNS compartment. Patient samples 

used in this study were sourced from leftover CSF taken at diagnosis and various 

subsequent dates throughout the treatment period through lumbar puncture prior to 

intrathecal administration of chemotherapy in the CNS. Drops of CSF are taken into 

a “research” collection tube (plain universal container) and sent alongside the 

clinical diagnostic samples to the central laboratories at the Queen Elizabeth 

University Hospital, on receipt in the laboratory, the samples were stored at 4OC 

until retrieval by the research team. The majority of samples were processed within 

6 hours of collection, but some were processed up to 48 hours later if taken at a 

weekend. This study currently had no influence and played no role in the origin and 

transport of samples until it reaches the research laboratory. Samples of CSF which 

were received by the Wolfson Wohl Cancer Research Centre were transported on 

dry ice, centrifuged at 4 OC and transferred into a -80°C freezer as per general 

sample storage guidelines to preserve the integrity of the samples. Freeze/thaw 

cycles were avoided where possible to again preserve the integrity of any DNA in 

the samples.  

 

This study focussed on the remaining preanalytical considerations: sample volume, 

sample preparation and sample extraction to develop this part of the workflow in 

preparation for the use of highly sensitive platforms such as droplet-digital PCR and 

Next-generation sequencing (NGS) to detect ctDNA in samples of CSF.  

 

The samples available for this part of the study were composed of diagnostic patient 

CSF samples as well as some matched CSF samples taken at day 8, day 29 and 1 

year into of treatment. The samples taken 1 year into treatment serve as a matched 

control sample as there is expected to be little or no-leukaemia at this stage of 
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treatment. This study also included samples taken from three patients who relapsed 

in the CNS.  

 

Part of the initial work in this chapter was performed on plasma as samples of CSF 

are extremely valuable as they require an invasive procedure, thus are difficult to 

obtain and are typically of low volume. A major challenge faced in this project was 

obtaining CSF of a high enough volume for all experiments. In lieu of this, a 

surrogate matrix composed of pooled plasma samples from six volunteer donors 

was used to complete part of the cfDNA extraction work below. When CSF was 

available, a pool of control CSF from six donors was used. This control CSF was 

obtained from childhood patients in hospital who were investigated for neurological 

conditions but were cleared of any cancer or significant neuropathology (i.e. CSF 

results were within normal limits). While plasma and CSF are fundamentally and 

constitutionally different matrices, their extraction methods are generally the same 

given the extraction kits and technologies currently available.  

 

CSF is an ultrafiltrate of plasma mostly secreted into the subarachnoid space by the 

choroid plexus and is considered is a “content light” matrix compared to plasma. 

Plasma generally contains more background “noise” by means of having  a high 

white cell number, a multitude of proteins and different electrolyte levels [12].  What 

may differ is the amount of cfDNA present in each matrix and the potential 

constituents which could alter its level such as the level of nucleases or protein-DNA 

complexes.  

 

It was hypothesized that ctDNA is abundant in the CSF of patient samples and has 

the potential of being a sensitive and specific diagnostic, prognostic, and response  

biomarker for detecting and tracking CNS leukaemia. The goal for this part of the 
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project was to develop a robust and sensitive method for the detection of leukaemic 

circulating-tumour DNA (ctDNA) in CSF through the following aims: 

 

1. To  test and compare commercial cfDNA extraction kits using a surrogate 

cfDNA molecule (linearized plasmid fragment DNA) on samples of plasma 

to identify the best cfDNA extraction protocol. 

 

2. To test the chosen cfDNA extraction protocol with a series of spike-in and 

recovery experiments to test the sensitivity and recovery yields, first with 

samples of plasma, followed by samples of CSF. 

 

3. To analyse the quantity and quality of extracted CSF cfDNA from both 

control and patient samples. 

 

4. To test and develop protocols for highly sensitive platforms such as ddPCR 

and NGS to target specific ctDNA targets and determine utility of these 

methods for ctDNA biomarker discovery. 
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5.1 Comparing commercial cfDNA extraction kits  

5.1.1 Quantification by Qubit fluorometry 

It was first decided to determine the most appropriate extraction method to isolate 

ctDNA from CSF by comparing several commercial extraction kits which are 

available on the market today. Six different commercial kits (QA, QB, NN, NM, COV 

& MX) were chosen which spanned a variety of different methodologies including 

one automated extraction kit (Described in Table 2-4, pg. 86). Most of these kits 

focus on extraction from blood (plasma and/or serum) and are primarily designed 

for liquid biopsy workflows. Of the kits chosen in this study, only one kit (NN), 

specifies CSF as a sample type for cfDNA extraction.  

 

To test the performance of these kits, a cfDNA surrogate molecule (linearized DNA 

fragment from a pGL3 plasmid)172 bp in length herein labelled as hTERT172 (See 

materials & methods 2.5.3.1 pg. 86)  was used in a variety of spike-in and recovery 

experiments. The surrogate matrix for this experiment was composed of  plasma 

samples pooled to 1 mL aliquots to create a stable matrix with a consistent 

background quantity of cfDNA for downstream extraction and analysis. Samples 

were divided into two groups, one control group (un-spiked) and one test group 

spiked with 5 ng of hTERT172 . The aim of this experiment was to measure and 

compare extraction efficiency for each kit by comparing the spike-in recovery 

between the spike-in sample and the control sample. Each sample went through the 

manufacturer specified extraction process and was eluted in 50 μL of their 

respective elution buffer. The eluted cfDNA was then quantified using a Qubit 2 

Fluorometer (Thermo Fisher) and the Qubit dsDNA HS Assay kit (Thermo Fisher) 

(Figure 5-1). 
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Figure 5-1: Box plots of absolute cfDNA extracted quantified by Qubit (n=3-4). CTL (Control-

un-spiked = blue) vs Spiked (hTERT172 spike-in = orange). cfDNA extracted from 1mL samples of 

surrogate pooled plasma matrix. Data expressed as absolute DNA calculated multiplying DNA 

concentration in ng/μL by the elution volume (50 μL) Statistics: Two-tailed paired t-tests, alpha 0.05. 

*p<0.05. Plots generated on GraphPad Prism v9. 
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Quantification by Qubit yields the total nucleic acid fraction present in the sample. 

Each kit in the experiment performed variably compared to each other but generally 

trended as expected, demonstrating a higher quantity of cfDNA in the hTERT172 

spiked sample compared to the control sample. Of note, extraction kit COV yielded 

the highest recovery of cfDNA in the control group but conversely a lower recovery 

in the spiked group (COV control = 25.7 ng. spiked = 17.33 ng). Extraction kit QA 

yielded the highest recovery of cfDNA in both control and spiked groups (QA control 

= 21.8 ng, spiked = 24.8 ng) (Figure 5-1,Table 5-1).  

 

Statistical analysis between the means of the control and the spiked groups 

indicated significant differences in kits QA (p = 0.000604), QB (p = 0.011034), NN 

(p = 0.003069), NM (p = 0.024219) and MX (p = 0.042408). The kit COV, did not 

have a statistically significant difference between the means of the control vs spiked 

groups (p = 0.118259 (Figure 5-1,Table 5-1).   

 

Next, given the high recovery of cfDNA by the QA kit in both groups (control & 

spiked), this kit was compared to all the other kits by combining both control and  

spiked values to measure general extraction efficiency. Kits QA and COV recovered 

higher levels of cfDNA than all other kits (23.3 ng & 20.3 ng respectively). Statistical 

analysis between the means of all the kits compared to QA indicated significant 

differences in all but the QA – COV comparator (Figure 5-2, Table 5-2).   

 

Between the two highest performers in cfDNA recovery, kits QA and COV, COV 

showed higher variability in the measurements within the control and spiked groups 

compared to QA (Figure 5-1,Table 5-1).   
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Kit ID 

Control Spiked 

p value 

Qubit 
[ng/uL] 

Ab. 
DNA 

(ng) (i) 
SD SEM 

Qubit 
value 

[ng/uL] 

Ab. 
DNA 

(ng) (ii) 
SD SEM 

QA 0.44 21.83 5.36 1.547 0.497 24.85 5.791 1.672 0.000604 

QB 0.19 9.63 4.737 1.367 0.26 12.87 5.11 1.475 0.011034 

NN 0.11 5.65 1.697 0.5117 0.17 8.73 2.407 0.7258 0.003069 

NM 0.15 7.35 4.21 1.215 0.25 12.71 9.046 2.611 0.024219 

COV 0.51 25.72 17.3 6.54 0.35 17.33 7.957 3.008 0.118259 

MX 0.29 14.48 5.655 1.333 0.34 16.94 5.059 1.192 0.042408 

 

 

 

 

 

Table 5-1: Descriptive statistics for each tested kit – Control vs Spiked. (i-ii) Absolute DNA in 

ng was calculated by multiplying the concentration (ng/uL) by the elution volume (50uL) 
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Figure 5-2: Extraction efficiency of cfDNA kits compared to kit QA. All kits were compared to 

kit QA which demonstrated the highest recovery of cfDNA. Statistics: Ordinary one-way ANOVA. 

Multiple comparisons corrected using Dunnett’s multiple comparisons test with an alpha of 0.05. 

p<0.05, **p<0.005, ***p<0.001, ****p<0.0001 and ns=not significant. Graphs created on GraphPad 

Prism v9. 
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Table 5-2: Statistical analysis of the differences between the means of kit QA vs all other 

kits. Ordinary one-way ANOVA. Multiple comparisons corrected using Dunnett’s multiple 

comparisons test with an alpha of 0.05. p<0.05, **p<0.005, ***p<0.001, ****p<0.0001 and ns=not 

significant Statistics calculated on GraphPad Prism v9. 

 

5.1.2 Quantification by droplet-digital PCR 

The next step was to confirm the presence and assess the quality of the hTERT172 

spike-in molecule. While DNA quantification by fluorometry (Qubit) gives us an 

accurate representation of the total quantity of double stranded DNA present in a 

sample, it is unspecific since it cannot discriminate specific nucleic acid sequences. 

With oligonucleotides for hTERT172 DNA, we were able to confirm the presence of 

the spike-in molecule directly using droplet digital PCR (Figure 5-3). The purified 

cfDNA samples from both test groups were added to a droplet digital PCR reaction 

Dunnett's 
multiple 

comparisons 
test 

P value summary <0.000001 

Comparison 
QA 

Mean 
SD SEM 

Comp. 
Mean  

SD SEM 
Mean 
Diff. 

95.00% CI 
of diff. 

Adjusted P 
Value 

QA vs. QB 

23.3 5.67 

1.16 11.2 5.1 1.04 12.1 7.10 to 17.1 <0.0001 

QA vs. NN 1.16 7.19 2.57 0.548 16.2 11.1 to 21.3 <0.0001 

QA vs. NM 1.16 10 7.42 1.52 13.3 8.32 to 18.3 <0.0001 

QA vs. COV 1.16 20.3 14.1 3.77 3.06 
-2.76 to 

8.87 
0.538078 

QA vs. MX 1.16 15.7 5.43 0.905 7.63 3.08 to 12.2 0.000184 
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using EvaGreen chemistry to get an absolute quantity in copies/μL of hTERT172  

(Figure 5-4). Interestingly, low quantities of endogenous hTERT172 were detected 

in the un-spiked control samples as can be seen in the digital PCR rain plots (Figure 

5-3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Digital PCR Rain-plots : Confirmation of detection of hTERT172.. Data points 

indicate individual partitioned PCR reactions events per water-oil emulsion droplet. Purple line 

= common threshold set. Blue data points = positive droplets, grey data points = negative 

droplets . X Axis = sample replicate, Y axis = Fluorescence. Control samples designated as C. 

Spiked sample designated as S.  

QA QB NN 

NM COV MX 
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Figure 5-4: Box plots of absolute quantity of hTERT172  extracted quantified by ddPCR (n=3-

4). CTL (Control-unspiked = blue) vs Spiked (hTERT172 spike-in = orange). Data expressed as 

copies/ng of hTERT172 .Statistics: Two-tailed paired t-tests, alpha 0.05. *p<0.05. Plots generated on 

GraphPad Prism v9.  
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These results show that the kits which detected the highest copies of hTERT172 

were kits QB (81351 ± 26704 copies/ng) and kit NN (80280 ± 75722 copies/ng). 

Kits MX and QA performed similarly in terms of hTERT172 quantity (59214 ± 29842; 

44849 ± 30869, respectively). Of note, Kit MX demonstrated the highest precision 

between the sample replicates (SEM =  7460).  

Kits COV and NM detected the least amount of hTERT172 out of all the kits (27004 

± 33130; 36066 ± 34799, respectively) (Figure 5-4,Table 5-3). 

Next,  the efficiency of hTERT172 recovery was assessed by comparing the means 

of hTERT172 from each kit to the QA kit, as above. Statistical analysis 

demonstrated that there was no significant difference between the means of any of 

the comparisons (Figure 5-5, Table 5-4).  

 

Kit ID 

Control Spiked 

p value 

Ab. DNA 
(ng 

Copies/ 
ng 

SD SEM 
Ab. DNA 

(ng 
Copies/ 

ng 
SD SEM 

QA 21.83 313.7 94.31 31.44 24.85 44849 30869 10290 
0.002497 

 

QB 9.63 730.1 353.4 117.8 12.87 81351 26704 8901 0.000017 

NN 5.65 717.4 465.2 164.5 8.73 80280 75722 26772 0.020262 

NM 7.35 415.4 566.1 188.7 12.71 36066 34799 11600 0.014173 

COV 25.72 86.41 57.32 15.90 17.33 27004 33130 9189 0.012601 

MX 14.48 93.51 48.52 12.13 16.94 59214 29842 7460 <0.000001 

Table 5-3: Descriptive statistics for each tested kit – Control vs Spiked. (i-ii) Absolute DNA in 

ng was calculated by multiplying the concentration (ng/μL) by the elution volume (50 μL). 
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Figure 5-5: Efficiency of hTERT172  extraction  in all kits compared to kit QA. All kits were 

compared to kit QA. The spike-in values were baseline-subtracted (Spike-in minus average control 

value for each kit respectively). Statistics: Ordinary one-way ANOVA. Multiple comparisons 

corrected using Dunnett’s multiple comparisons test with an alpha of 0.05. p<0.05, **p<0.005, 

***p<0.001, ****p<0.0001 and ns=not significant. Graphs created on GraphPad Prism v9. 
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Dunnett's 
multiple 

comparisons 
test 

P value summary <0.009575  

Comparison 
QA 

Mean 
SD SEM 

Comp. 
Mean 

SD SEM 
Mean 
Diff. 

95.00% CI 
of diff. 

Adjusted 
P Value 

QA vs. QB 

44535 30869 10290 

80621 
26704 

 
8901 

 
-

36086 
-82920 to 

10748 
0.180972 

QA vs. NN 79562 
75722 

 
26772 

 
-

35027 
-83303 to 

13248 
0.225031 

QA vs. NM 35651 
34799 

 
11600 

 
8884 

-37950 to 
55718 

0.982203 

QA vs. COV 26917 
33130 

 
9189 

 
17618 

-25464 to 
60699 

0.723344 

QA vs. MX 58169 
28166 

 
6639 

 
-

13634 
-54194 to 

26925 
0.843803 

Table 5-4: Statistical analysis of the differences between the means of kit QA vs all other kits. 

Ordinary one-way ANOVA with multiple comparisons corrected using Dunnett’s multiple comparisons 

test with an alpha of 0.05. p<0.05, **p<0.005, ***p<0.001, ****p<0.0001 and ns=not significant Statistics 

calculated on GraphPad Prism v9. 
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The results show variability in terms of total cfDNA recovered and of the levels of 

hTERT172 recovered. Kit QA recovered most total cfDNA compared to all other kits 

and recovered higher amounts of hTERT172 compared to kits COV and NM. It 

behaved similarly to kit MX but its recovery of the hTERT172 plasmid fragment was 

outperformed by kits QB and NN.  

 

Despite higher levels of recovered hTERT172 in kits QB and NN, Statistical analysis 

demonstrated however that were was no significant differences between the means 

of kit QA and all other kits tested suggesting that these kits all perform similarly with 

regards to recovery of a cfDNA surrogate spike-in molecule. Given the performance 

of kit QA, extracting the highest quantity of total cfDNA of all the kits, this kit was 

chosen to be our desired cfDNA extraction kit for the remainder of the project.  The 

samples of CSF available are also typically of low volume, so choosing a kit which 

maximises the capture of cfDNA from the CSF samples is imperative.  
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5.1.3 Testing of kit QA sensitivity: Spike-in & recovery 

Having chosen our cfDNA extraction kit (QIAamp circulating nucleic acids kit, QA), 

we now moved onto further spike-in and recovery experiments to investigate further 

key factors in the extraction process. The research samples of CSF available to the 

lab are typically of low volume ranging between ~0.08 mL to 0.2 mL and on rare 

occasion between 0.5mL – 2 mL. Therefore, the influence of sample volume on 

recovery was investigated first.   

 

To begin, a range of volumes (2 mL, 1 mL, and 0.5 mL) of the surrogate pooled 

plasma matrix were tested using two test groups, a control group and a spike-in 

group which was spiked in with a known concentration of hTERT172 (Figure 5-4). 

The data shows that cfDNA was extracted from all three volumes tested in both test 

groups despite decreasing starting volume. Interestingly, levels of extracted cfDNA 

increased with decreasing volume in both the control and spike-in groups 

demonstrating that at 0.5 mL of plasma, cfDNA could be extracted and quantified.  

 

Next, with the lowest tested volume (0.5mL), further spike-in and recovery 

experiments were carried out using known concentrations of hTERT172. Two test 

groups were again used, an un-spiked control of the surrogate matrix and spiked 

samples of the surrogate matrix which were spiked with hTERT172 to the following 

concentrations: 25 ng/mL, 10 ng/mL, 5 ng/mL, and 2 ng/mL (Figure 5-5 A). Post-

extraction, the samples were quantified using both Qubit fluorometry and the 

presence of the hTERT172 molecule was confirmed by microchip electrophoresis 

using a 2100 Bioanalyzer instrument (Agilent) and the High Sensitivity DNA Assay 

Kit (Agilent). 
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Figure 5-6: Violin plots of cfDNA extraction volume testing in 2 mL, 1mL and 0.5 mL of plasma 

surrogate matrix. All samples were performed in triplicate (n = 3). (Blue) Control samples were un-

spiked; (Orange) Samples were spiked with a known concentration of hTERT172. Multiple paired t-

tests with multiple comparison correction using Holm-Sidak methodology with an alpha of 0.05. * = 

P<0.05. All graphs were created on GraphPad Prism v7. Statistics were calculated on GraphPad 

Prism v9.  

 

 

The concentrations of the spike-in molecule were then compared with the un-spiked 

control (Figure 5-7 A). The baseline level of cfDNA (control) was subtracted from 

the mean of the hTERT172  spike-in samples to give an estimate of the recovered 

spike-in (Figure 5-7 B).  
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Figure 5-7: cfDNA Spike-in & recovery experiment from 0.5 mL pooled plasma surrogate 

matrix. (A) Qubit data of control surrogate matrix cfDNA vs spike-in hTERT172 at various 

concentrations: 25 ng/mL, 10 ng/mL, 5 ng/mL & 2 ng/mL. n=3. (B) Baseline-subtracted graph of (A) 

on GraphPad Prism v9. This function zeros the value for extracted cfDNA from control pooled 

plasma sample (blue dot) and subtracts its value from the values of extracted cfDNA containing 

plasmid fragment spike-in (orange shapes). 
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(i) 

(ii) 

(iii) 

(iv) 

(v) 

Figure 5-8: Bioanalyzer electropherograms (i) Control – un-spiked (ii) 25 ng/mL 

hTERT172 (iii) 10 ng/mL hTERT172 (iv) 5 ng/mL hTERT172 (v) 2 ng/mL hTERT172. Peak at 35 

bp (left hand of electropherogram) corresponds to the lower marker. Peak at ~10380 bp 

(right hand of electropherogram) corresponds to the upper marker. X-axis is measured in 

Fluorescence Units [FU], Y-axis measured in time. All samples were baseline corrected 

and peaks were detected automatically by Expert 2100, software version 1.03 
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The hTERT172 spike-in molecule can be identified by its size (172 bp).The 

Bioanalyzer 2100 Expert software uses measured peak densities to calculate the 

size and the quantity of dsDNA relative to a ladder of reference molecules included 

within the kit and depicts this data through electropherograms (Figure 5-8).   

 

The data indicates that upon first inspection using the baseline-subtraction method 

with the qubit values, recovery of the hTERT172 plasmid fragment follows a 

downwards trend from the highest to the lowest spike-in with relatively concordant 

recovery between the theoretical recovery and the actual recovery down to 10 

ng/mL (Table 5-5). The data suggests that hTERT172 can be recovered down to the 

2 ng/mL spike-in and analysis with the Bioanalyzer confirms the presence of the 

plasmid fragment, indicating a peak at ~172 bp. However, the quantification values 

given by the Qubit indicates a significantly higher yield than expected *.8 ng/mL for 

the 2 ng/mL spike-in. The Bioanalyzer data indicated that the actual recovery of the 

hTERT172 plasmid fragment, was 4.4 ng/mL (Figure 5-8, Table 5-5) .  

 

This data suggests even at the low concentrations of spike-in hTERT172, the 

extraction kit can recover this molecule from 0.5 mL of our pooled plasma surrogate 

matrix, however the discordance of the quantification values must be noted. 

 

Next, the experiment was repeated with samples of control CSF obtained from 

childhood patients in hospital who were investigated for neurological conditions but 

were cleared of any cancer or significant neuropathology (i.e., CSF results were 

within normal limits). To establish a stable baseline quantity of CSF cfDNA and 

repeat the process as above, equal volumes of control CSF were pooled to create 

a pooled control CSF matrix and cfDNA was extracted from both 0.5 mL and 0.2 mL 

aliquots of the pool. 
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Qubit values Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL 

Means (Figure 7A) 29.1 51 43.3 40.2 37.9 

Std. Deviation 10 6.97 10.5 9.86 7.98 

Std. Error of Mean 2.89 2.47 3.02 3.48 2.3 

 

Theoretical recovery 0 25 10 5 2 

 

Baseline subtracted means (Figure 7B) 0 24.6 14.2 13.8 8.8 

Std. Deviation 0 6.77 14.5 8.49 13.3 

Std. Error of Mean 0 2.39 4.19 3 3.83 

 

Bioanalyzer confirmation  0 31.6 9.7 7.5 4.3 

 

 

 

Using the same methodology from the experiment in Figures 5-7, 5-8 with the 

pooled plasma surrogate matrix, the spike-in and recovery process was repeated 

and comparing 0.5 mL and 0.2 mL of  pooled control CSF matrix data.  

 

The data indicates that the hTERT172 plasmid fragment was recoverable in all spike-

in concentrations through confirmation using the Bioanalyzer (Table 5-6, Figures 

5-9, 5-10).  The spike-in recovery followed a general downwards trend from the 25 

ng/mL spike-in down to the 5 ng/mL spike-in with both 0.5 mL and 0.2 mL volumes 

however there was significant variability by Qubit quantification down at the 2 ng/mL 

spike-in compared to the theoretical spike-in. Bioanalyzer analysis however 

reported concordant data to the theoretical yield (Table 5-6).  

 

Table 5-5: hTERT172 Spike-in recovery using Qubit and confirmation by Bioanalyzer.   



272 
 

Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL

0

20

40

60

80

100

hTERT172 spike-in

c
fD

N
A

 n
g
/m

L

✱✱

ns

ns

✱

Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL

0

50

100

150

hTERT172 spike-in
c
fD

N
A

 n
g
/m

L

ns

ns

ns

ns

Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL

0

5

10

15

20

25

30

35

40

hTERT172 spike-in

c
fD

N
A

 n
g
/m

L

Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL

-10

-5

0

5

10

15

20

25

30

hTERT172 spike-in

c
fD

N
A

 n
g
/m

L

(A)

(B)

(C)

(D)

 

Figure 5-9: cfDNA Spike-in & recovery experiment from 0.5 mL and 0.2 mL CSF pooled matrix. 

(A,C) Qubit data of control CSF cfDNA vs spike-in hTERT172 at various concentrations: 25 ng/mL, 

10 ng/mL, 5 ng/mL & 2 ng/mL. n=3. (B,D) Baseline-subtracted graph of (A,C). Dotted line indicate 

theoretical yield. Graphs created on GraphPad Prism v9 
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(C) (F)) 

Figure 5-10: Bioanalyzer electropherograms (i) Control (ii) 25 ng/mL hTERT172 (iii) 10 ng/mL hTERT172 

(iv) 5 ng/mL hTERT172 (v) 2 ng/mL hTERT172. Peak at 35 bp (left hand of electropherogram) corresponds to 

the lower marker. Peak at ~10380 bp (right hand of electropherogram) corresponds to the upper marker. X-

axis is measured in Fluorescence Units [FU], Y-axis measured in time. All samples were baseline corrected 

and peaks were detected automatically by Expert 2100, software version 1.03. 
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0.5 mL CSF 

Qubit Values Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL 

Mean (Figure 9A) 18.5 48.2 32.3 31.7 38.1 

Std. Deviation 5.14 3.16 3.48 6.22 16.9 

Std. Error of Mean 2.97 1.58 1.74 3.11 8.43 

 

Theoretical recovery 0 25 10 5 2 

 

Baseline subtracted means 
(Figure 9B) 

0 28.5 14.3 10.2 12 

Std. Deviation 0 3.55 5.09 6.56 8.76 

Std. Error of Mean 0 2.05 2.94 3.79 5.06 

 

Bioanalyzer confirmation 
(Figure 10A) 

0 19.6 10.7 4.2 2.5 

0.2 mL CSF 

Qubit Values Control 25 ng/mL 10 ng/mL 5 ng/mL 2 ng/mL 

Mean (Figure 9C) 34.9 55.9 38.8 39.4 49.6 

Std. Deviation 11.6 14.2 8.22 7.43 7.92 

Std. Error of Mean 6.68 7.12 4.11 3.72 3.96 

 

Theoretical recovery 0 25 10 5 2 

 

Baseline subtracted means 
(Figure 9D) 

0 22.4 6.5 4.08 11.1 

Std. Deviation 0 5.76 3.91 7.32 10.2 

Std. Error of Mean 0 3.32 2.25 4.22 5.89 

 

Bioanalyzer confirmation 
(Figure 10B) 

0 23.8 6.1 3.5 0.9 

Table 5-6: 0.5 and 0.2 mL CSF spike-in and recovery experiments. 
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Collectively, these results suggest that at low volumes of CSF, recovery of  

hTERT172 surrogate cfDNA spiked-in at various concentrations is possible and the 

molecule can even be detected down to the 2 ng/mL concentration.  

 

We also examined the potential for any variability in our pooled control CSF samples 

by comparing extracted cfDNA quantities from individual control CSFs to the pooled 

CSF matrix. All of the six individual control CSFs which were pooled had very similar 

levels of cfDNA recovered compared to the pooled CSF control matrix and statistical 

analysis indicated no significant differences between the means of the individual 

samples compared to the pool, indicating a stable background level of cfDNA 

(Figure 5-7).  
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Figure 5-11 : Pooled control CSF variability. cfDNA was extracted from 0.2 mL CSF from six 

individuals. Quantification by Qubit dsDNA HS Assay. Two 3 μL readings were taken for each 

individual. Data is presented as a mean of two readings and ± SD error bars. Blue dot represents 

pooled control CSF sample. Two-tailed One-way ANOVA with multiple comparisons corrected by 

Dunnett’s multiple comparisons tests; alpha 0.05 All graphs were created on GraphPad Prism v9. 
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5.1.4 Patient sample CSF cfDNA 

Having carried out several spike-in and recovery experiments investigating the 

performance of the cfDNA extraction kit, the next step was to extract cfDNA from 

patient CSF samples. The Halsey biobank contains several CSF samples taken at 

various time-points spanning from diagnosis to end of treatment. During a patient’s 

treatment, CSF is removed during intrathecal administration of chemotherapy, 

typically at diagnosis, day 8, day 29 of induction therapy and then between 10 and 

26 more times during 2-3 years of continuing therapy.   

 

This project used samples taken during induction (early) and included a late CSF 

sample taken after 1 year of treatment, henceforth known as “late sample”. At this 

point in treatment, the leukaemic burden within the CNS is expected to be low to 

non-existent due to the intensive chemotherapy treatment. This biobank also 

included samples from patients who went onto relapse in the CNS and patients who 

were classified as CNS3, i.e., high leukaemic burden in the CNS at diagnosis. 

 

 The first question to be addressed was what levels of cfDNA are expected at these 

different CSF sample time-points. cfDNA kinetics inside the CNS space may be 

affected by different factors, for example ongoing treatment. It is hypothesized that 

the majority of cfDNA comes from cell death processes such as apoptosis and 

necrosis, but it is also reported that cfDNA can be actively secreted by living and 

healthy cells. One can hypothesize that as treatment continues past diagnosis date 

(Dx) more and more cells will die within the CNS, thus releasing more cfDNA 

assuming that the majority of cfDNA is released by cell death. One could also 

hypothesize that the levels of cfDNA at diagnosis could be higher compared to a 

year into treatment due to leukaemic cells in the CNS which could be potentially 
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actively secreting cfDNA compared to a year into the intensive treatment where the 

leukaemic burden is very low or non-existent.  

 

The majority of samples in this cohort had ~100 μL of CSF and cfDNA was extracted 

from 100 μL of CSF and eluted in 50 μL elution buffer. As demonstrated in Figure 

5-12, all the diagnostic samples averaged around 10.86 ng (SD: 1.873; SEM: 

0.2418; Lower 95% confidence interval 10.38; Upper 95% confidence interval 11.35) 

of cfDNA recovered, a relatively small amount of DNA.  

 

First, total levels of cfDNA in diagnostic samples and late control samples were 

compared and no significant difference between the groups (Figure 5-13 A). 

Comparison between diagnostic samples and matched day 8 and day 29 samples 

saw no significant difference between the groups with all groups again averaging 

around 10 ng of extracted cfDNA (Figure 5-13 B).  

 

When examined individually, the quantity of cfDNA recovered for the matched 

diagnostic, day 8 and day 29 samples followed no consistent trend to support the 

hypothesis above of a treatment induced increase in cfDNA release through cell-

death mechanisms (Figure 5-13C).   

 

Next, the extracted levels of cfDNA from the CSF of three patients taken at the time 

of relapse were analysed. The hypothesis being that these samples would likely 

have abundant cells in the CNS and thus potentially secrete cfDNA. These patient 

samples had very similar levels of cfDNA present compared to the other test groups 

averaging around 10 ng (Figure 5-14) .  
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Figure 5-12: Absolute cfDNA quantity from ~100 μL diagnostic CSF samples. cfDNA recovered 

from CSF of diagnostic patient samples using QIAamp circulating nucleic acids kit (n=60). Data 

obtained by Qubit quantification. Data is represented as absolute cfDNA by multiplying the Qubit 

value in ng/μL by elution volume (50 μL). Graphs created on GraphPad Prism v9.  
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Figure 5-13: Total levels of extracted cfDNA from patient samples. Investigation into various 

patient cfDNA samples. All CSF samples were ~100 μL and cfDNA was extracted using QIAamp 

circulating nucleic acids kit. All data generated from Qubit quantification. (A) cfDNA levels in Dx vs 

late control samples. (B) cfDNA levels in Dx, day 8 and day 29 matched samples. (C) Individual 

matched patient sample levels of cfDNA from Dx, day 8 and day 29. Graphs created on GraphPad 

Prism v9.  
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Given the uniformity in the quantity of cfDNA and the lack of any true variability even 

between the different sample types, there may be external factors leading to this 

consistent quantity recovered. Whether this be factors out of our control such as the 

way the samples are handled post lumbar puncture or how they are handled and 

transported is unfortunately unknown. 

 

Next, using the 2100 Bioanalyzer instrument (Agilent) and the High Sensitivity DNA 

Assay kit (Agilent), matching diagnostic and late samples as well as control CSF 

cfDNA samples were analysed to investigate the type of size distribution of cfDNA 

fragments from patient CSF samples. Purified cfDNA (1 μL) was loaded onto a 

pressurized microchip along with a reference ladder for size determination. Using 
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Figure 5-14: Total cfDNA levels of Relapse patient samples 
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2100 Expert software (Agilent), a smear analysis was run between the 100-300 bp 

range to determine the concentration of cfDNA fragments between this range.  

 

The data in Figure 5-15 B, Table 5-7 shows an increased distribution of small 

fragments between 100-300bp in all six individual control CSF groups, consistent 

with the size distribution of cfDNA reported in the literature. When these samples 

were pooled, the distribution of these cfDNA fragments appears diluted but still 

consistent between this size range, as expected given the pooling effects of six 

samples into one (Figure 5-15 B, Table 5-7).  

 

Next, six diagnostic patient CSF samples and matched late control samples were 

compared. In the diagnostic patient CSF samples, again a distribution of fragments 

within this range was observed in patients P1, P4 and P5. The other three do not 

appear to have any cfDNA in that size range or in any range within the range limit 

of the Bioanalyzer assay (Figure 5-16 A, Table 5-8) .  

 

Interestingly in the late samples, there appears to be a shift in the cfDNA distribution 

to slightly larger fragments in patient samples P1 and P5 (Figure 5-16B, Table 5-

8). Patient P4 did not exhibit this shift and appeared to have the majority of its cfDNA 

fragments at a similar size to its matched diagnostic sample. The remaining three 

appear to have very little amounts of cfDNA in the tested range and within the range 

limit of the Bioanalyzer assay (Figure 5-11). This data suggests that cfDNA from 

patient diagnostic CSF samples likely lie in the 100-300 bp range thus supporting 

the hypothesis that this cfDNA is of apoptotic origin.  
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Figure 5-15: Electropherograms of control CSF: cfDNA fragment size analysis 
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Table 5-7: cfDNA size fragment analysis from control CSF. Electropherograms of six individual 

control CSF samples. The table depicts the exported data extrapolated from the electropherograms.  

 

 

 

 

 

 

 

 

Sample ID 

From 

[bp] 

To 

[bp] 

Corr. 

Area 

% of 

Total 

Average 

Size [bp] 

Conc. 

[pg/µl] 

Molarity 

[pmol/l] 

Size 

distribution 

in CV [%] 

Pooled 1 

(Ai) 
100 300 32.4 29 138 38.16 432.1 18.6 

Pooled 2  

(Aii) 
100 300 60.9 52 164 90.98 909.5 24.9 

Pooled 3 

(Aiii) 
100 300 43.4 49 174 44.82 427 26.1 

Pooled 4 

(Aiv) 
100 300 66.8 68 196 78.45 676.5 26.7 

Control  1 

(Bi) 
100 300 131.4 55 168 150.27 1,468.90 24.8 

Control  2 

(Bii) 
100 300 137.6 69 185 147.8 1,334.10 26.6 

Control 3 

(Biii) 
100 300 387 79 223 539.08 3,878.30 20.2 

Control  4 

(Biv) 
 100 300 39.4 21 177 46.69 300 56.4 

Control 5 

(Bv) 
100 300 39.5 44 149 42.71 455.9 20.5 

Control  6 

(Bvi) 
100 300 160.6 59 199 193.92 1,651.80 27.2 
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Figure 5-16: Electropherograms of patient and matched control CSF: cfDNA fragment size analysis. (A) 

Electropherograms of six different diagnostic CSF cfDNA patient samples. (B) Electropherograms of six 

matched late CSF cfDNA patient samples. 
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Sample ID 
From 

[bp] 

To 

[bp] 

Corr. 

Area 

% of 

Total 

Average 

Size [bp] 

Conc. 

[pg/µl] 

Molarity 

[pmol/l] 

Size 

distribution 

in CV [%] 

Patient 1 - Day 1 100 300 156.8 71 185 190.9 1,720.40 26.5 

Patient 2 - Day 1 100 300 388.3 70 198 428.7 3,670 27.6 

Patient 3 - Day 1 100 300 1.5 3 283 1.6 8.3 4.4 

Patient 4 - Day 1 100 300 185.1 42 196 269 2,355.90 29 

Patient 5 - Day 1 100 300 1.2 1 283 1.2 6.7 11.1 

Patient 6 - Day 1 100 300 6.1 5 275 5.8 32.3 10.1 

Patient 1 - Late 100 300 164.4 73 192 202.7 1,766.60 26.4 

Patient 2 - Late 100 300 4.5 2 275 5.1 30.3 14.5 

Patient 3 - Late 100 300 2.4 2 260 3.8 26.9 24.6 

Patient 4 - Late 100 300 124.4 33 263 123.2 709.6 9.3 

Patient 5 - Late 100 300 1.9 2 284 2 10.7 9.7 

Patient 6 - Late 100 300 5.8 6 264 7.2 46.7 19.8 

Table 5-8: cfDNA size fragment analysis from diagnostic (DX) and late (>1 year) samples. The 

table depicts the exported data extrapolated from the electropherograms. 
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5.2 Detecting ctDNA from Samples of CSF  

The next step in this project was to attempt to detect ctDNA from samples of CSF 

to identify potential ALL-specific genetic biomarkers using two different highly 

sensitive platforms. The extraction experiments indicate  that cfDNA can be 

extracted from low volumes of patient sample CSF and the data indicates a 

uniformity in the extraction quantification values with a potential expected range of 

cfDNA fragments around the 100 – 300 bp range. Given the low quantity of cfDNA 

recovered from our low-volume samples, using highly sensitive next-generation 

platforms such as droplet digital PCR (ddPCR) and next generation sequencing 

(NGS) for detection of leukaemia specific targets is essential.  

 

5.2.1 Detection of KRAS G12D using ddPCR 

Droplet digital PCR is a third generation PCR technology and a highly favourable 

alternative to RQ-PCR which is considered the gold-standard. It does not require a 

standard curve as DNA samples are partitioned into several thousand oil-in-water 

droplets allowing absolute quantification of the DNA sample through fluorescent 

probes. The amplification reaction that occurs within each individual droplet is 

enhanced due to the high ratio of DNA molecules to PCR reagent and the fact that 

PCR inhibitors no longer influence the reaction, creating a pro-amplification 

environment. The droplets are then independently analysed and quantified using 

Poisson statistics to determine absolute copy number of target molecules in positive 

droplets [111, 112]. 

 

Detection of tumour-specific mutations in ctDNA from CSF samples is reported in 

the literature for various CNS tumours, typically from oncogenes such as TP53, 

BRAF, NRAS & KRAS [113]. NRAS and KRAS frequently undergo mutations 
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associated with CNS-ALL and can typically present in around 10-25% of newly 

diagnosed childhood ALL patients and  35% of all childhood ALL relapse cases [114, 

115]. In this study a QX200 Droplet Digital PCR system (Bio-Rad) was used to 

attempt to detect low frequency mutant KRAS G12D in our patient samples of CSF 

ctDNA. KRAS G12D has been reported to be present in 20-25% of newly diagnosed 

ALL patients and recent research has reported variant allelic frequencies of KRAS 

G12D at ~0.4% [114, 116].  

 

First,  to test the performance of a ddPCR KRAS G12D assay, a multiplex reference 

standard DNA set (RSS) containing different allelic frequencies of 
𝑀𝑢𝑡

𝑊𝑇
 genes for 

EGFR, KRAS, NRAS, PI3KCA at 100% WT, 5%, 1% and 0.1%. The expected allelic 

frequencies however for KRAS specifically are set at 100%WT, 6.3%, 1.3% and 

0.13% (Table 5-9). For this experiment, samples of the QA elution buffer were 

spiked with the different allelic frequencies at various concentrations of the RSS 

DNA: 50 ng, 10ng, 5ng and 1 ng to determine the limit of input DNA needed to 

replicate these allelic frequencies.  

 

The results show that expected and observed allelic frequencies are matched 

closely at 50 ng, 10 ng and 5ng of input RSS cfDNA (Figure 5-17). At 1 ng of input 

RSS cfDNA, WT KRAS is detected however no mutant KRAS G12D is detected at 

any of the allelic frequencies tested.  

 

This data suggests an ideal input DNA of 5ng is needed to be able to detect KRAS 

G12D at the various allelic frequencies tested down to 0.13%. Of note, a false 

positive was detected 5 ng RSS DNA in the negative control wildtype resulting in an 

observed allelic frequency of 99.67% instead of 100% WT.  
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Acceptance 

criteria 

Reference Standard Set 

DNA Expected 

Frequency ( (EGFR, 

KRAS, NRAS, PI3KCA) 

Expected frequency 

𝑴𝒖𝒕
𝑾𝑻

  

Allelic frequency 

(AF) 

0% expected 

frequency for 

WT up to 0.01% 

100% WT 100% WT 

AF ≥ 5%        

<10% ± 30% 
5% 6.30% 

AF ≥ 1%         

<5% ± 40% 
1% 1.30% 

AF < 1%             

± 50% 
0.10% 0.13% 

Table 5-9:Expected frequencies and Acceptance criteria for KRASG12D Multiplex I cfDNA 

RSS – Horizon 

Next, using cfDNA extracted from 0.2 mL of pooled control CSF (Mean ~0.26 ng/uL; 

13 ng absolute cfDNA), the assay performance was tested to attempt to see if WT 

KRAS would be detectable in such low volumes of CSF. Mutant KRAS G12D was 

not expected to be detected in these samples as these samples were from “healthy” 

volunteers. 

 

The low concentration of cfDNA extracted and the maximum volume of DNA input 

into the ddPCR reactions allows a total cfDNA input of ~1.5 ng per total PCR 

reaction, only around 30% of the ideal amount (5 ng) to confidently detect KRAS 

mut/WT at our lowest allelic frequency of 0.1%. The results show that WT KRAS 

was detected in all pooled CSF samples at these low volumes, suggesting that even 

with this low amount of CSF and extracted cfDNA, the assay can detect cfDNA 

targets in cfDNA (Table 5-10). 
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The last experiment run before testing patient CSF samples, was designed to test 

the performance of the extraction and assay workflow end-to end. For this 

experiment, 5 ng of RSS cfDNA (spike-in quantity based off data from Figure 5-17) 

was spiked-in to 0.2 mL of control pooled CSF and extracted using the QIAamp 

Circulating nucleic acids kit (QA). Due to material limitations, this experiment was 

only run once to inform of the end-to-end performance. The data showed that at 5 

ng of spike-in input RSS cfDNA, KRAS G12D was able to be detected down to an 

allelic frequency of 1% Mut/WT. At 0.1% allelic frequency , only WT KRAS was 

detected (Figure 5-18). 

Figure 5-17-1: ddPCR rain plot interpretation. (A)Probe method 1: FAM + HEX probes. Dual 

labelled FAM probes cause mutant only positive droplets to cluster in the blue mutant bubble. Dual 

labelled HEX probes cause WT only positive droplets to cluster in the green WT bubble. Positive 

droplets containing both FAM and HEX probes cause dual positive droplets to cluster in the orange 

bubble. Negative droplets containing neither FAM nor HEX cluster in the grey bubble. (B) Probe 

method 2: FAM only probe. The dual labelled FAM probe causes mutant only positive droplets to 

cluster in the blue mutant bubble.  In the absence of HEX probes, WT KRAS will bind to single-

labelled WT probes contained within the FAM probe solution. The single-labelled probe causes WT 

KRAS positive droplets to cluster below FAM positive and above negative grey droplets. The WT 

KRAS cluster had to be manually recognised as HEX cluster to obtain a value in copies/μL for allelic 

frequency calculations. This was achieved by setting thresholds above the negative droplet cluster 

and below the FAM cluster.Ch1 Fluorescent Amplitude refers to the fluorescence corresponding to 

FAM probes. Ch2 Fluorescent Amplitude refers to the fluorescence corresponding to HEX probes. 

Note the x-axis scale difference between (A) and (B) due to the absence of HEX probes and the 

single-labelled WT probes. 
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Figure 5-17: Fluorescence Amplitude plots of allelic frequencies. These amounts of RSS DNA were 

obtained by diluting stock solutions [40 ng/μL] of RSS DNA in Buffer AVE. Values given in copies/μL for 

both FAM (Mut) and HEX (WT). Allelic Frequencies calculates as follows: 
𝑀𝑢𝑡

𝑊𝑇
 × 100. Data 

interpretation given in Figure 5-17-1. 
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Sample Target Copies Per 1 μL Well Copies Per 20 μL  

Pooled control CSF 1 

FAM + HEX probes 

FAM 0 0 

HEX 1 20 

Pooled control CSF 1 

FAM + HEX probes 

FAM 0 0 

HEX 1.2 24 

Pooled control CSF 1 

FAM + HEX probes 

FAM 0 0 

HEX 1 20 

Pooled control CSF 1 

FAM only probes 

FAM 0 0 

HEX 1 20 

Pooled control CSF 2 

FAM + HEX probes 

FAM 0 0 

HEX 0.21 4.2 

Pooled control CSF 2 

FAM + HEX probes 

FAM 0 0 

HEX 0.5 10 

Pooled control CSF 2 

FAM only probes 

FAM 0 0 

HEX 0.5 10 

Table 5-10: ddPCR results from 0.2 mL CSF extracted cfDNA. Values given in copies for FAM 

(mutant) and HEX (WT) 

Figure 5-18: Frequency Amplitude plots 5 ng spiked into control CSF. Extracted 5 ng RSS 

DNA – 5 ng of RSS DNA was spiked into 0.2 mL pooled control CSF samples. Following extraction 

by QIAamp CNA kit, the sample of cfDNA was analysed by ddPCR.  
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Finally, 13 patient samples, each with a diagnostic and a matched late sample, were  

tested for the presence of WT KRAS and mutant KRAS G12D. The cfDNA extracted 

from all samples again averaged around 0.23 ng/μL thus giving us around 1.5 ng of 

total input DNA per ddPCR reaction. Only patients 3, 6 and 12 presented with 

positive KRAS G12D droplets out of all sets of 13 patient samples. Patients 3 and 6 

both presented with detectable WT KRAS in both diagnostic and late samples. 

Patient 12 presented with Mutant KRAS and WT KRAS in the late sample 

suggesting the extremely low presence of ctDNA in the late sample (Figure 5-19).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19: KRAS G12D/ WT KRAS assay results from 13 patient samples cfDNA extracted 

with QIAamp circulating nucleic acids kit. Patients 3,6 and 12 present with positive droplets.  
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However, give the extremely low number of positive droplets in patient 12 and 

factoring in the potential for false positives as seen in Figure 5-17, this result does 

not give us full confidence of the presence of ctDNA in these samples. What these 

results do show is that cfDNA can be extracted and detected using sensitive 

platforms such as ddPCR given the low volume and concentration of our starting 

DNA sample. There may be several factors at play in this situation which could lead 

to the poor recovery of ctDNA tested in these experiments. These patient samples 

have been in storage at -80 for ~4 years and the manner of their processing and 

handling from the point of lumbar puncture CSF sampling to storage is known to be 

poor.  

 

Of course, the low quantity of CSF which underwent the cfDNA extraction process 

in conjunction with the low quantity of cfDNA present in those samples also may 

contribute to the quality of the results. Also, the low prevalence of KRAS G12D 

mutations in diagnostic ALL samples could mean that these patient samples simply 

do not have this mutation at diagnosis. Nevertheless, the detection of WT KRAS in 

patient samples indicates that cfDNA can be detected from the samples of CSF 

using droplet digital PCR.  
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5.2.2 Detection of IGH rearrangements using NGS 

An ideal target to measure leukaemic burden in the CNS would be one which is 

ubiquitous and highly specific for acute lymphoblastic leukaemia. Immunoglobulin 

gene rearrangements are such targets as they are composed of variable (V), 

diversity (D) and joining (J) gene segments which recombine partially or fully 

resulting in a unique complementary determining region 3 (CDR3), highly specific 

to leukaemia cells. This target is currently used in MRD monitoring for bone marrow 

samples in initial diagnoses and follow ups for children with ALL.  

 

The final stage of this project was to test another highly sensitive platform (NGS) to 

detect ctDNA from the CSF of leukaemic ALL patients. NGS is a promising tool for 

monitoring MRD in childhood ALL. All Ig/TCR gene rearrangements can be fully 

sequenced and importantly, clonal evolutions of ALL blasts can be sequenced and 

tracked both in the bone marrow as well as in extramedullary sites such as the CNS 

throughout treatment. Bartram and colleagues (2016) developed a thorough HTS-

MRD workflow for monitoring MRD in ALL using NGS to identify rearrangements 

and by using known quantities of spiked in IGH sequence DNA from 3 different ALL 

cell lines to patient sample DNA and pooled donor lymphocyte DNA to measure the 

sensitivity of using ddPCR. They reported a sensitivity of 10-6, a 10-fold increase in 

sensitivity by using both ddPCR and NGS, compared to conventional RQ-PCR MRD 

monitoring [117]. 

 

The EuroClonality-NGS group has been involved in the standardisation of novel 

techniques and technologies for use in MRD analysis, building upon the 

fundamental work of EuroClonality-BIOMED-2 2003 study. The group recently 

developed and validated the use of an in vitro/in silico NGS protocol for MRD marker 

identification and analysis using five EuroMRD laboratories. The group 
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demonstrated higher reproducibility, a more comprehensive range of coverage of 

Ig/TCR loci, successful identification of bi-allelic rearrangements and a more 

streamlined workflow when using NGS compared to traditional Sanger sequencing 

methods [118]. They also provided supporting data for the use of these NGS 

protocols on frozen and formalin-fixed parrafin embedded tissue specimens 

highlighting the wide applicability of the technique and strengthening the need to 

implement these methodologies into the clinic.  

  

The translation of these HTS workflows from the laboratory bench to the clinic 

however is a long process with many considerations. It would have to be cost-

effective, quick and show increased sensitivity and specificity compared to 

traditional techniques of monitoring ALL MRD with RT-PCR. These may be 

addressed by multiplexing patient samples, a complex process which requires 

stringent measures to avoid inaccurate treatment stratification. The workflow would 

also have to be robust and consistent for it to be adapted into routine clinical 

practise. 

 

In this study, a targeted NGS approach was used to target V-D-J recombination’s of 

the IGH gene. NGS is a highly sensitive and specific platform capable of detection 

of leukaemia-specific nucleic acid sequences and given the complexity of the gene 

rearrangements, should allow for correct discrimination of leukemic cfDNA 

molecules. The strategy used for these experiments was based off Bartram et al., 

[117] with alterations to increase the amount of DNA input into the nested PCR 

reactions before sequencing to account for the very low quantity of cfDNA recovered 

from our samples of CSF.  
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5.2.2.1 in vitro testing of NGS protocol 

First,  to test the protocol, genomic DNA from four ALL cell lines was extracted and 

purified. The purified DNA then underwent two PCR stages for the dual adapter 

ligation (as described in 2.5.6.1 pg. 101). Two sets of consensus primers were 

tested, one for complete IGH gene rearrangements (V-D-J) and one for incomplete 

IGH gene rearrangements (D-J).  

 

VDJ sequences were detected in all cell lines, three of which were complete IGH 

gene rearrangements (REH and SUPB15) and two which were incomplete IGH 

gene rearrangements (Figure 5-20, Table 5-11). CDR3 sequences for the complete 

gene rearrangements were confirmed by comparison to Bartram et al., [117].  

 

Next, cell culture supernatant from REH, SD1 and SEM cell lines was collected, 

centrifuged, and carefully filtered through a 0.2 µm filter to remove any cells and 

cfDNA was extracted using the QIAamp Circulating nucleic acids kit (QA). The 

cfDNA was then quantified and used in the 2 stage PCR reaction as above before 

being sequenced resulting VDJ sequences matched the genomic DNA sequences 

(Figure 5-20, Table 5-11). These experiments were performed to test the workflow 

end-to-end and ensure that we can detect VDJ rearrangements in vitro before 

moving onto patient samples. 
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REH

SUPB15

SD1

SEM

IGHV3-15 1/GG/8 D3-10 3//6 J6*02

IGHD2-15 2/10/5 J6*03

IGHD7-27 0/TCC/3 J3*02

IGHV3-71 1/9/13 D2-8*02 0/GG/5 J6*02

ID Clonotype

REH

SD1

SEM

IGHV3-15 1/GG/8 D3-10 3//6 J6*02

IGHD2-15 2/10/5 J6*03

IGHD7-27 0/TCC/3 J3*02

ID Clonotype

(A )

(B )

 

Figure 5-20: Bubble plots: VDJ clonotypes from ALL cell-line gDNA and cfDNA detected by 
NGS. (A) Sequences detected from genomic DNA. (B) Sequences detected from cfDNA. Bubbles 
are sized according to their read number in Table 11. Graphs created in GraphPad Prism v9.  
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Cell line 
ID 

Clonotype Type V D J 
Read  

# 
L 

%  tot. 
reads 

 gDNA 

REH 
IGHV3-15 1/GG/8  
D3-10 3//6 J6*02 

IGH 
IGHV3-
15*01 

IGHD3-
10*01 

IGHJ6*0
2 

208285 220 96.8 

SD1 IGHD2-15 2/10/5 J6*03 IGH+  IGHD2-
15*01 

IGHJ6*0
3 

26097 150 98.6 

SEM 
IGHD7-27 0/TCC/3 

J3*02 
IGH+  IGHD7-

27*01 
IGHJ3*0

2 
59008 150 98.6 

SUPB15 
IGHV3-71 1/9/13  

D2-8*02 0/GG/5 J6*02 
IGH 

IGHV3-
71*01 

IGHD2-8*02 
IGHJ6*0

2 
251 227 0.12 

 cfDNA 

REH 
IGHV3-15 1/GG/8  
D3-10 3//6 J6*02 

IGH 
IGHV3-
15*01 

IGHD3-
10*01 

IGHJ6*0
2 

120194 140 95.5 

SD1 IGHD2-15 2/10/5 J6*03 IGH+  IGHD2-
15*01 

IGHJ6*0
3 

57250 150 98.6 

SEM 
IGHD7-27 0/TCC/3 

J3*02 
IGH+  IGHD7-

27*01 
IGHJ3*0

2 
112446 117 98.8 

Table 5-11: NGS metrics. Type = complete or incomplete IGH rearrangements.  
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5.2.3 Patient cfDNA 

5.2.3.1  Diagnostic, Day 8 and Day 29 CSF samples 

It was first hypothesized that leukaemia cells release ctDNA into CSF by active 

secretion or by cell-death mechanisms and that levels of ctDNA may correlate to 

leukaemic burden within the CNS at diagnosis. cfDNA was first extracted from the 

diagnostic CSF of three CNS3 patients, two CNS2 patients and six CNS1 patients 

using the QIAamp circulating nucleic acids kit. The average concentration of cfDNA 

extracted was 0.253 ng/μL  allowing an average of 3.8 ng of starting DNA sample 

per 1st stage PCR reaction (15 μL) (Table 5-12). The cfDNA from these diagnostic 

CSF samples was then sequenced to attempt to detect VDJ gene rearrangements 

in cfDNA. 

 

Following the 1st stage PCR reaction and subsequent sample purification, a QC 

check was performed to identify amplified template molecules indicating the 

presence of any potential IGH sequences in the CSF cfDNA samples. Unfortunately,  

no VDJ sequences were detected as there was no amplification in any of the 

samples tested (Table 5-12).  

 

Next,  matched diagnostic, day 8 and day 29 CSF cfDNA samples from four CNS1 

patients were then tested to test the hypothesis that CNS-directed therapy causes 

increased cell-death within the CNS, thus releasing ctDNA in abundance. The 

average concentration of cfDNA extracted was 0.185 ng/ μL  allowing an average 

of 2.78 ng of cfDNA per 1st stage PCR reaction (Table 5-13). The cfDNA from these 

CSF samples was then sequenced to attempt to detect VDJ gene rearrangements 

in cfDNA. 
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Table 5-12: Cohort of CNS3, CNS2 and CNS2 patient samples tested for IGH gene 
rearrangements 

 

Table 5-13: Quantified cfDNA from diagnositc CSF samples. cfDNA quanitified by Qubit 

 

 

CSF cytology 
classification 

Original sample 
conc. (ng/µL) 

Av. cfDNA PCR 
rx. Input (ng) 

Post 1st PCR QC 
quantification 

CNS3 0.271 
4.065 

Out of range< 

CNS3 0.281 
4.215 

Out of range< 

CNS3 0.302 
4.53 

Out of range< 

CNS2 0.197 
2.955 

Out of range< 

CNS2 0.344 
5.16 

Out of range< 

CNS1 0.319 
4.785 

Out of range< 

CNS1 0.213 
3.195 

Out of range< 

CNS1 0.235 
3.525 

Out of range< 

CNS1 0.237 
3.555 

Out of range< 

CNS1 0.201 
3.015 

Out of range< 

CNS1 0.19 
2.85 

Out of range 

Average 0.253 
3.8 

 

Patient ID Original sample conc. (ng/µL) Av. cfDNA PCR rx. input 

P1 Dx 0.172 2.58 

P1 D8 0.176 2.64 

P1 D29 0.18 2.7 

P2 Dx 0.191 2.865 

P2 D8 0.16 2.4 

P2 D29 0.161 2.415 

P3 Dx 0.144 2.16 

P3 D8 0.179 2.685 

P3 D29 0.201 3.015 

P4 Dx 0.196 2.94 

P4 D8 0.192 2.88 

P4 D29 0.211 3.165 

P5 Dx 0.226 3.39 

P5 D8 0.215 3.225 

P5 D29 0.178 2.67 

Average 0.185 2.78 
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Interestingly, only a diagnostic patient sample (P2) presented with a unique 

clonotype and identifiable CDR3 sequence at a very low abundance suggesting the 

presence of a lymphoblast in the CNS (Figure 5-21, Table 5-14). This clone 

disappeared in the following matched day 8 and day 29 samples (Figure 5-22). No 

clones were detected in any of the day 8 or day 29 CSF cfDNA samples.  

 

These results while not abiding to the hypotheses put forward, at the minimum 

confirm that IGH gene rearrangements can be detected in the cfDNA extracted from 

CSF. There may be several explanations to the low sensitivity seen in these results. 

The presence of contaminating genomic DNA from the REH cell-line in some of the 

patient samples tested, including all samples from Figure 21 may be a factor (Figure 

5-28). The samples tested in Table 12 however did not contain any genomic DNA 

contamination as this would have been detected in the 1st PCR stage QC check 

analysis. This suggests that either any ctDNA present in the samples of CSF is 

either at a level below the limit of detection of this method (discussed below), or that 

it is simply not present.   
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P1

P2

P3

P4

P5

P4 Dx CL1 -IGHV3-23D*01 0/TAAGGAGCAGCAGATT/14 IGHJ4*02

Clonotypes

Dx D29D8

 

Figure 5-21: Bubble plot representing diagnostic patient cfDNA sequencing results from 7 DX 
samples. CL1 = clone. Bubbles are sized according to the read number in Table 14. Graphs created 
in GraphPad Prism v9.  

 

 

 

 

 

 

 

 

 

Dx D8 D29 

P2 Dx CL1 

Figure 5-22: P2 clone prevalence in Dx, D8 and D29 CSF samples 
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Putative Clonotype  Size (bp) Read # % of total reads 

IGHV3-23D*01 
0/TAAGGAGCAGCAGATT/14 IGHJ4*02 

112 
2297 reads 

0.591 

V-D-J sequence 

TCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATAAGGAGCAG
CAGATTTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGTAAG 

CDR3 

GCGAAAGATAAGGAGCAGCAGATT 

 V region end 

 AAAGA 

   V-D Junction 

   TAAGG 

     D region 

     AGCAGCAG 

       D-J Junction 

       ATT 

         J region start 

         TGGGG 

Top V gene matches Top D gene match Top J gene matches 

IGHV3-23*01 IGHD6-13*01 IGHJ4*02 

IGHV3-23*02  IGHJ5*02 

IGHV3-23*03   

Table 5-14: VDJ sequence data of detected cline in diagnostic CSF sample from P2. 
 

 

 

 

 



305 
 

5.2.3.2 Relapse Samples 

Next, three CNS3 relapse samples from patients who had isolated CNS relapses 

were tested. Leukaemic burden at time of relapse is expected to be high providing 

an opportunity to test whether VDJ rearrangements can be detected in the cfDNA 

extracted from these samples. cfDNA was extracted and quantified and values did 

not show any higher or lower levels of total cfDNA than any of the samples tested 

before (Figure 5-23, Table 5-15).  

 

 

 

 

The cfDNA from these CSF samples was then sequenced to attempt to detect VDJ 

gene rearrangements and 2/3 patients (RL1 and RL3) presented with unique 

clonotypes and identifiable CDR3 sequences (Figure 23). RL1 presented with one 

unique clonotype potentially suggesting the presence of only one clonal population 

of  leukaemic cells in the CNS (Table 5-18) and RL2 presented with two unique 

clonotypes suggesting the presence of 2 clonal leukaemic populations in the CNS 

(Tables  5-19,  5-20). 

 

 

 

Patient ID Original sample conc. 
ng/µL 

Av. cfDNA PCR rx input 

RL1 0.215 3.23 

RL2 0.199 2.99 

RL3 0.206 3.09 

Table 5-15: Relapse sample cfDNA quantification post- extraction 
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CL1 CL2

RL1

RL2

RL3

RL1 CL1 - IGHV3/OR16-9*01 16/CCTACAGGTCCGCAT/0
IGHJ6*02

Clonotypes

RL2 CL1 - IGHV4/OR15-8*01
1/GGGGAGAGATCCGATCGAGGGGGAACCTTTCT/1
IGHD3-10*01 0//5 IGHJ4*02

RL2 CL2 - IGHV3-13*03 1/TCTGGGGGAACCTTTCT/1
IGHD3-10*01 0//5 IGHJ4*02

 

Figure 5-23: Bubble plot representing relapse patient cfDNA sequencing results from 4 RL 
samples. CL = clone. Bubbles are sized according to their read number in Tables 16-18 . Graphs 
created in GraphPad Prism v9.  
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To confirm that the presence of these clones was really of leukaemic origin, the 

diagnostic bone marrow VDJ sequences were obtained from the Queen Elizabeth 

University Hospital, Glasgow, UK for  cross-referencing. Only patient sequences 

from RL1 and RL2 were able to be obtained. 

 

At diagnosis patient RL1 presented with a bone marrow leukaemic population 

composed of several different clonal sub-populations (Table 5-16), including an IGH 

complete rearrangement which had an identical CDR3 sequence to the sequence 

detected in the cfDNA from the patient relapse sample (Table 5-17). The only 

difference between the BM sequence and the CSF ctDNA sequence was an base 

mismatch (T->C) in the V gene segment, upstream of the CDR3 sequence.  This 

suggests that this leukaemic clone was potentially the cause of the CNS relapse. 

However, this study only tested for IGH complete (Vh-Jh) and IGH incomplete (Dh-

Jh) gene rearrangements thus there remains the possibility of another clonal 

leukaemic population with other gene locus rearrangements.  

 

At diagnosis, patient RL2 presented with a bone marrow leukaemic population 

composed of an incomplete IGH rearrangement which was determined as non-

specific (very unlikely to be leukaemic origin) and a TCRβ gene rearrangement 

(Table 5-16).  The presence of two IGH clones in the cfDNA of the relapse CSF 

samples of this patient potentially suggests the presence of 2 subsets of leukaemic 

populations in the CNS at the time of relapse. RL CL1 presented with a higher 

number of reads compared to RL CL2, potentially acting as the major clonal 

population (Table 5-19, 5-20). Again, there remains the possibility of another clonal 

leukaemic population with other gene locus rearrangements as only IGH gene 

rearrangements were tested.  
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Rearrangement 

chain type 
VDJ rearrangement Type 

RL1 

Vδ2 Dδ3 V2*02(-19)/n=5/(-4)Dd2(0)/n=3/(-19)Dd3 Incomplete TCRδ 

VγI Jg1.1 V2*02(0)/n=6/(-11)JP2*01 TCRγ 

VγI Jg1.3 Vg5*01(-5)/n=2/JP2*01(-1) TCRγ 

VH3 

VH3-74*01(-18)/n=15/(0)J6*02 

IGH - complete 

RL2 

DH2 

Non-specific 

IGH - incomplete 

Mix 26 Jβ2.3- 

Vβ19 Jβ2.2 Vb19*01(-7)/n=12/(-6)Jb2.2P 

TCRβ 

Table 5-16: Diagnostic bone marrow VDJ clonotypes detected for patients RL1 and RL2.  

 

Patient RL1 CDR3: 

CGCATATTACTACTACTACTACGGTATGGACGTC 

BM gDNA 

TCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCTGTCCTACAGGTCCGCATATTACTACTACTA

CTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTNTNCNCANGTA 

 

CSF ctDNA 

TCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCCTACAGGTCCGCATATTACTACTACTA

CTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTAAG 

 

Table 5-17: IGH complete rearrangement (VH3) VDJ sequence comparison between bone 
marrow clone and CSF ctDNA clone. Yellow highlight = V gene segment; Red highlight = D gene 
segment; Green highlight = J gene segment. CDR3 spans part of the D-J junction and J gene 
segment. Enlarged base – mismatch between BM and CSF sequences. 
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RL1 - Putative Clonotype  Size (bp) Read # % of total reads 

IGHV3/OR16-9*01 

16/CCTACAGGTCCGCAT/0 IGHJ6*02 
122 7732 8.913 

RL1 – Confirmed Clonotype 

 
VH3-74*01(-18)/n=15/(0)J6*02 

V-D-J sequence 

TCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCCTACAGGTCCGCATATTACTACTACTAC

TACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTAAG 

CDR3 

CGCATATTACTACTACTACTACGGTATGGACGTC 

 V region end 

 GCTGT 

   V-D Junction 

   C 

     D region 

     CTACAG 

       D-J Junction 

       GTCCGCAT 

         J region start 

         ATTAC 

Top V gene matches Top D gene match Top J gene match 

IGHV3-21*01 IGHD4-11*01 IGHJ6*02 

IGHV3-21*02 IGHD4-4*01  

IGHV3-21*05   

Table 5-18: VDJ sequence data of detected cline in diagnostic CSF sample from RL1. 
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RL2 CL1 -Putative Clonotype  Size (bp) Read # % of total reads 

IGHV3-13*03 1/TCTGGGGGAACCTTTCT/1 

IGHD3-10*01 0//5 IGHJ4*02 
149 329 0.323 

V-D-J sequence 

TCTGCAAATGAACAGCCTGAGAGCCGGGGACACGGCTGTGTATTACTGTGCAAGTCTGGGGGAACCT

TTCTTATTACTATGGTTCGGGGAGTTATTATAACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGT

CTCCTCAGGTAAG 

CDR3 

GCAAGTCTGGGGGAACCTTTCTTATTACTATGGTTCGGGGAGTTATTATAACTTTGACTAC 

V region end 

GCAAG 

  V-D Junction 

  TCTGGGGGAACCTTTCT 

     D region 

     TATTACTATGGTTCGGGGAGTTATTATA 

D-J Junction 

N/A 

          J region start 

          ACTTT 

Top V gene matches Top D gene match Top J gene match 

IGHV3-13*01 IGHD3-10*01 IGHJ4*02 

IGHV3-13*02   

IGHV3-13*03   

Table 5-19: VDJ sequence data of detected cline in diagnostic CSF sample from RL CL1 
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RL2 CL2 -Putative Clonotype  Size (bp) Read # % of total reads 

IGHV4/OR15-8*01 

1/GGGGAGAGATCCGATCGAGGGGGAAC

CTTTCT/1 IGHD3-10*01 0//5 IGHJ4*02 

157 76 0.074 

V-D-J sequence 

GAGCTCTGTGACCGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGGGGGAGAGATCCGATCGAG

GGGGAACCTTTCTTATTACTATGGTTCGGGGAGTTATTATAACTTTGACTACTGGGGCCAGGGAACCC

TGGTCACCGTCTCCTCAGGTAAG 

CDR3 

GCGAGAGGGGGAGAGATCCGATCGAGGGGGAACCTTTCTTATTACTATGGTTCGGGGAGTTATTATAA

CTTTGACTAC 

V region end 

GAGAG 

  V-D Junction 

  GGGGAGAGATCCGATCGAGGGGGAACCTTTCT 

      D region 

      TATTACTATGGTTCGGGGAGTTATTATA 

D-J Junction 

N/A 

          J region start 

          ACTTT 

Top V gene matches Top D gene match Top J gene match 

IGHV4-39*06 IGHD3-10*01 IGHJ4*02 

IGHV4-39*07   

IGHV4-4*02   

Table 5-20: VDJ sequence data of detected cline in diagnostic CSF sample from RL CL2 

 

 

In summary, these results show that IGH gene rearrangements  can be detected in 

ctDNA extracted from very low samples of CSF (100 μL). Only one diagnostic 

patient and 2/3 relapse samples presented with unique clonotypes and identifiable 

CDR3 sequences identifying the presence of leukaemic clones in the CNS.  
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5.2.4  TruePrime amplification 

One major limitation of this study was the low amount of starting cfDNA extracted 

from patient CSF samples. This is most likely due to the low CSF volumes 

available for cfDNA extraction (100 μL). To attempt to overcome this challenge 

without obtaining more CSF, a novel method of multiple displacement amplification 

was applied to 4 patient samples including RL1 and the three CNS3 patients 

tested in the experiment described by Table 5-12. This method globally amplifies 

any DNA material from a purified DNA solution. The kit used, specifically targets 

small cfDNA fragments which are believed to arise from apoptosis using a 

TthPrimPol DNA primase and Phi29 DNA polymerase to amplify cfDNA.  

 

The reaction amplified the starting patient cfDNA samples significantly, from an 

average of 0.283 ng/µL to 90.8 ng/µL. cfDNA from the REH cell-line was used as a 

positive control for this experiment and the starting cfDNA was also significantly 

amplified (3.19 ng/µL to 155 ng/µL) (Figure 5-24, Table 5-21).  

 

The amplified cfDNA was then subjected to the NGS workflow starting with the 1st 

and 2nd stage adapter ligation. The quality control checks after the 1st stage 

indicated amplification of a template which was confirmed at the second quality 

control check after the second PCR reaction.  
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Sample Starting conc (ng/µL) Post - TP amp ( ng/µL) 

RL1 0.277 96 

CNS3 0.271 93.2 

CNS3 0.281 75.2 

CNS3 0.302 98.8 

Average 0.283 90.8 

+ REH cfDNA 3.19 155 

Table 5-21: TruePrime cfDNA amplification of RL1, and three CNS3 

patient cfDNA samples. 

Figure 5-24: Line graph: TruePrime cfDNA amplification of RL1, and three 

CNS3 patient cfDNA samples. Positive control:: REH cfDNA isolated & 

extarcted from cell culutre supernant. Black line represents the mean of the 

samples. Graph created on GraphPad prism v9. 
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Figure 5-25: Electropherograms of 1st stage PCR QC check. X-axis= time [s]; Y axis = 

Fluorescence Units. (i) hTERT positive control; (ii) REH cfDNA control; (iii-v) CNS3 patients; (vi) RL1; 

(vii) Negative control. 

(vii) 

(i) (ii) 

(iii) 

(v) 

(iv) 

(vi) 
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Bioanalyzer analysis revealed expected peaks around 180-190bp for the four 

patient samples and a peak of ~220bp for the REH cfDNA positive control. The 

samples were then pooled and sequenced (Figure 5-25).  

 

Analysis of the VDJ rearrangements detected revealed a large number of 

sequences for each sample which were analysed using IgBlast and IMGT/VQUEST 

online web tools  (Table 5-22). Only the REH cfDNA positive control sample 

returned a matching clonotype with an identical sequence to the REH genomic DNA 

sequence (Figure 5-26 E, Table 5-22). Interestingly, this clone only made up 14.3% 

of the total reads compared to the original result where the cfDNA REH clone made 

up 95.5% of total reads (Table 5-11). The starting amount of cfDNA in the original 

experiment was similar to the starting amount used in the TruePrime experiment 

(original = 2.87 ng/µL TruePrime = 3.19 ng/µL) (Tables 5-15, 5-23). 

 

All other sequences detected did not have identifiable CDR3 sequences or unique 

clonotypes (Figure 5-26 A-D, Table 5-22). The nature of these sequences is 

currently unknown, but one could speculate that they may stem from the various 

amplification processes in the workflow starting from the TruePrime amplification 

reaction to the subsequent PCR reactions and sequencing resulting in a cumulative 

creation of artefactual sequences. 

 

The use of TruePrime amplification showed some promise in overcoming a major 

limiting variable of this study. Sequencing of TruePrime-amplified cfDNA of the 

leukaemic REH cell-line was able to detect the REH clonotype however the RL1 

patient sample with the known leukaemic gene rearrangement was not detected 

for reasons currently unknown.  
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Sample 
Sequences 

detected 

Identifiable 

CDR3 

sequence 

Unique 

Clonotype 

% of total 

reads 

REH 

cfDNA (+ control) 
67 1 1 14.29 

RL1 60 0 0 N/A 

CNS3 39 0 0 N/A 

CNS3 59 0 0 N/A 

CNS3 94 0 0 N/A 

Table 5-22: IgBlast analysis of TruePrime amplified cfDNA sequences. 

Sample cfDNA Starting conc. (ng/µL) 

REH cfDNA 3.19 

REH cfDNA TP 2.87 

Table 5-23: Starting concentrations of REH cfDNA in original workflow experiment and 
TruePrime amplification experiment 
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(A) (B) 

(C) (D) 

(E) 

Figure 5-26: Bubble plots of TruePrime amplified cfDNA. (A) RL1 patient (B) CNS3 patient 1; (C) 

CNS3 patient 2; (D)CNS3 patient 3; (E) REH cfDNA positive control. Graphs exported from Vidjil.  
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5.3 Summary and discussion 

This study set out to discover soluble biomarkers in the CSF capable of detecting 

and tracking CNS leukaemia in children with ALL. Cell-free DNA is an attractive 

biomarker as with the appropriate genetic target, can be highly specific. The advent 

of highly sensitive next-generation platforms such a ddPCR and NGS has 

significantly advanced research into the of future application of liquid biopsies to the 

clinic. 

  

One of the major challenges in the implementation of cfDNA analysis in clinical 

practise is the lack of standardisation with regards to controlling for pre-analytical 

variables . Factors such as sample volume, transportation, processing, preparation, 

and extraction methodology can significantly influence the sensitivity of cfDNA 

analysis.  

 

The first step in this project was to test six commercial cfDNA extraction kits to test 

the efficiencies of different extraction methodologies including silica-based 

membrane extraction, magnetic bead-based extraction, ultrasonication-based 

extraction, as well as an automated workflow for cfDNA extraction. This experiment 

demonstrated the variability in total cfDNA extraction between the different kits with 

kit QA extracting the most total cfDNA of all the kits. Quantification  of the spike-in 

hTERT172 molecule by droplet digital PCR demonstrated that each kit was able to 

recover the cfDNA surrogate spike-in molecule with a similar efficiency. Based on 

these results the QA kit was chosen to take forward given it recovered the highest 

quantity of total cfDNA. It is important to note that these experiments were 

performed on samples of plasma and not CSF due to the lack of control CSF that is 

available for experimentation. Whether these kits would perform in a similar manner 
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is unknown however, the composition of CSF is much less dense and less complex 

than that of plasma, which may in theory suggest that the extraction process may 

be less hindered by any inhibitory constituents present in the sample. cfDNA is 

typically of low abundance in plasma and CSF however, in CNS-cancers, CSF has 

the advantage of having less quantity of native cfDNA in this space [119, 120] 

 

Next, recovery of the spike-in cfDNA surrogate molecule at different concentrations 

was tested. hTERT172 was spiked into samples 0.5 and 0.2 mL of pooled control 

CSF which was subsequently extracted and quantified by Qubit. The variability seen 

with the qubit measurements are perhaps to be expected as subtracting the baseline 

is a crude method to calculate spike-in recovery. Confirmation of the recovery of 

spike-in molecules down to 2 ng/mL in low volumes of CSF (0.5 and 0.2 mL) by 

Bioanalyzer demonstrated that it is possible to capture DNA molecules of a similar 

size to cfDNA from CSF using the chosen extraction kit at a low concentration. 

 

CSF cfDNA yields of diagnostic patient samples, day 8 CSF, day 29 CSF, the 

matched controls take a year into treatment and the three relapse CNS CSF 

samples and demonstrated little variability, all averaging around 10 ng. This 

consistency may be explained perhaps by the fact that these samples have been in 

storage at – 80 °C for several years. It is also known that the handling of the samples 

post-lumbar puncture may be inadequate, and the samples may not handled 

appropriately enough to preserve the integrity of the samples. Size fragment 

demonstrated that 3/6 patients had a clear sign of a size distribution signature 

around the 170-200bp area, consistent with an apoptotic release mechanism of 

cfDNA. There is the potential that larger (>1000 bp) fragments represent the 

remaining fraction of cfDNA present in the sample. The literature reports that 

apoptotic cfDNA tends to appear in fragments of ~200 bp or multiples thereof 
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whereas, necrotic cfDNA tend to be much larger cfDNA fragments. Elucidating the 

nature of larger cfDNA fragments is interesting work which should be investigated 

but was beyond the scope of this project. 

 

Highly sensitive platforms such as digital PCR and next-generation sequencing can 

be powerful tools in the search for diagnostic and prognostic biomarkers. In this 

study, both tools were used to detect leukaemia-specific targets capable of providing  

insight into leukaemic burden within the CNS. The first target tested was the KRAS 

G12D mutation, a very common cancer mutation which is present in 20-25% of 

newly diagnosed childhood ALL patients. By testing the performance of the assay, 

it was determined that 5 ng of input DNA would be needed to detect KRAS down to 

a variant allelic frequency of 0.13%. Given the low volume and concentration of our 

starting samples, only 1.5 ng of starting cfDNA was able to be analysed per patient 

sample. One CNS1 patient did present with very low levels of KRAS G12D mutation 

indicating the presence of CNS-leukaemia suggesting that digital PCR can detect 

leukaemia in CNS1 patients. Negative controls composed of 100% WT KRAS were 

used with only 1 false positive being recorded however more negative controls (~ 

60 minimum suggested by the Clinical and Laboratory Standard Institute) would 

have to be analysed to determine the false-positive rate for ddPCR assays [121]. A 

necessary investigation to be performed in future work when adapting digital PCR 

assays to a clinical setting. A limitation of the KRAS G12D  target was that it is a 

low-prevalence mutation in newly diagnosed ALL. A further limitation of this 

experiment was the low number of patient samples that were able to be tested. At 

the time of experimentation, only a small amount of CNS1 patients with matched 

controls were available.  
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The final stage of the project was to attempt to sequence cell-free DNA with an 

ubiquitous target; Ig gene rearrangements. A workflow was tested on cell-line 

genomic DNA and cell-free DNA providing unique clonotypes and CDR3 sequences 

which matched previously reported IG rearrangement sequences [117].  

 

A small cohort composed of CNS3, CNS2 and CNS1 patients were then tested to 

test the hypothesis that increased leukaemic burden as classified by CSF cytology 

(i.e., CNS /CNS3) would have abundant cfDNA capable of being detected compared 

to CNS1 patients acting as a diagnostic biomarker for CNS-ALL. Initial results 

indicated no amplification with regards to an IGH complete or incomplete gene 

rearrangement present in any of the samples tested. cfDNA sample inputs into eh 

1st stage PCFR reaction were higher than that of digital PCR with an average input 

of 3.8 ng per reaction. This result suggested that either IGH gene rearrangements 

are not present in the ctDNA or that the starting amount of cfDNA was still too low 

to be able to detect the target. It was then decided to test the hypothesis that post 

administration of CNS-directed therapy at diagnosis, the result of treatment would 

cause an increase in the abundance of cfDNA released by cell-death mechanisms 

such as apoptosis or necrosis which would give an indication of the utility of ctDNA 

as a response biomarker. Matched diagnostic, day 8 and day 29 CSF samples from 

5 patients were sequenced and interestingly, only one patient diagnostic sample 

presented with a unique clonotype and CDR3 sequence. This contradicts the 

hypothesis put forward about the effects of treatment on cfDNA release in the CNS 

but suggested that it is possible to detect IGH gene rearrangements in the cfDNA 

extracted from diagnostic patient CSF.  

 

Of note, some samples unfortunately had some level of genomic DNA 

contamination from the REH cell-line. Significant efforts went into reducing this 
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contamination including intense decontamination procedures in the workspace and 

the replacement of new reagents in the entire workflow, and the use of several 

sample preparation areas which mostly worked. This may have had an effect on the 

detection of any leukaemic clones in the CSF however the primers used are 

designed for multiplex detection of various IGH gene rearrangements. The extent of 

the REH cell line contaminations can be seen in Figure 5-27 where it can be 

observed that the majority of sequencing reads were dominated by the REH clone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-27: REH cell line contamination 
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Three relapse samples from patients who had isolate relapses in the CNS were then 

tested to see if IGH gene rearrangements were able to be detected in these truly 

positive CNS-ALL samples. Two of three of the patients presented with unique 

clonotypes and CDR3 sequences with one patient presenting with two clones. The 

VDJ sequences were then compared to the diagnostic bone marrow profile of these 

respective patients and one patient was confirmed to have an identical clone both 

at the time of diagnosis and at relapse in the CNS. The other patient presented with 

an incomplete IGH gene rearrangement at diagnosis which was not present at 

relapse and two IGH complete rearrangements at relapse which were not present 

at diagnosis potentially identifying the leukaemic subpopulations that were the 

cause of the CNS-relapse. This result suggests that ctDNA can potentially be used 

as a biomarker capable of detecting CNS leukaemia at relapse, however, further 

evidence from the testing of a higher number of relapse samples would be 

necessary to support this and time-point CSF samples taken around the time of 

relapse would also be needed to test whether or not the ctDNA biomarker can track 

the disappearance of leukaemia after treatment. These samples were not available 

to this study unfortunately although this type of serial sampling has begun in the 

Altogether CSF-Flow study providing an opportunity to analyse leftover CSF for 

ctDNA analysis [106]. 

 

Finally, in an attempt to overcome a limitation of this study, the low starting 

concentration of cfDNA, a method of global cfDNA amplification was tested 

(TruePrime). The relapse patient RL1 was tested alongside three CNS3 patients 

and cfDNA from the REH cell line as a positive control. Interestingly only the positive 

control was able to be detected in the TruePrime amplified cfDNA. An explanation 

for this may be that as TruePrime multiple displacement amplification amplifies the 

global repertoire of DNA molecules present in purified sample of DNA 
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indiscriminately, this process seemingly might turn a “needle in a haystack” scenario 

(the needle being the target of interest i.e., IGH gene rearrangements, and the 

haystack being background cfDNA composition) into a scenario with a higher 

quantity of “needles” but also many more “haystacks”. This is potentially an ideal 

solution for this setting as this global amplification could increase low levels of a 

desired target to levels above the limit of detection. However, the TruePrime 

amplified RL1 patient cfDNA did not present with a matched clonotype, as 

discovered in Figure 23,  whereas the original NGS workflow did, contradicting this 

notion. Why the TruePrime amplification reaction did not amplify the RL1 clone 

present in the CSF cfDNA sample is unknown. The amplification of the REH cfDNA 

clone indicates that the TruePrime amplification is capable of amplifying these 

complex gene rearrangements and perhaps repeated experiments may reveal the 

frequencies at which certain areas of the genome are amplified or not. As this 

experiment was only conducted once it is not possible to speak to variability in the 

depth of coverage in this regard. 

 

The data in this part of the study has provided that IGH gene rearrangements, highly 

specific to leukaemia are able to be detected in the ctDNA of patients with CNS-

ALL, particularly in patients who had isolated CNS relapses. This study only targeted 

complete and incomplete IGH gene rearrangements which means that there may 

exist the possibility of the presence of more detectable clones in all of the samples 

tested here. This study proved the concept that leukaemic IGH gene 

rearrangements are able to be detected in the ctDNA extracted from the CSF of 

children with leukaemia and future work can expand on this discovery by testing for 

the full clonal repertoire of IG and TCR gene rearrangements.  
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Chapter 6: Final Conclusions, discussion and 
future Directions 

This study set out to discover and develop sensitive biomarkers for CNS-leukaemia 

capable of detecting, tracking response to therapy and predicting relapse with the 

following aims: 

1 – To validate novel metabolic biomarkers in CSF capable of detecting and tracking 

CNS leukaemia and test the hypothesis that this biomarker is able to track the 

response of CNS leukaemia to treatment; 

2 - To discover novel soluble biomarkers in CSF, as alternatives to metabolomic-

based methods, using the same criteria as aim 1; 

3 – To develop a robust and sensitive method for detection of leukaemic cell-free 

DNA in CSF, using the same criteria as aim 1; 

4 – To use data gathered from aims 1-3 to identify the optimal biomarker(s) to take 

forward for further validation and clinical testing. 

The main findings of this study are summarised below. 
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5.4 Summary and discussion of the main findings 

5.4.1 Metabolic biomarkers 

The relationship between leukaemia (and cancers in general) and cellular 

metabolism is convoluted but it is known that leukaemia’s rely heavily on the 

deregulation of a wide range of metabolic pathways to survive. In order to proliferate 

and survive, blasts require high amounts of energy obtained by the hijacking of core 

metabolic processes such as glucose uptake, aerobic glycolysis as well as other 

non-glycolytic mechanisms such as the oxidation of glutamine, amino acids and fatty 

acids [122, 123]. Metabolomics is a powerful tool which can be used to profile the 

metabolic signature of leukaemic blasts through the identification of small 

metabolites.  

 

Metabolic profiling of leukemic cells has previously identified that replicating ALL 

cells are dependent on asparagine. This dependence was consequently 

manipulated  by the introduction of L-asparaginase as a standard chemotherapeutic 

treatment  regimen. L-asparaginase functions by starving blast cells of asparagine 

by catalysing the degradation of asparagine into aspartate and ammonia[124]. 

Research on the leukaemic metabolome has widely shifted to the identification of 

biomarkers which can aid in the improvement of personalised treatment. 

 

Leukaemic cells have a vastly different metabolic signatures to that of normal 

healthy cells. Given that leukaemic blasts are known to migrate and adhere to the 

walls of the leptomeninges in the CNS, their presence in the CSF will ultimately alter 

the metabolic composition of the CSF. Localised metabolic analysis of CSF samples 

from patients with ALL may provide a means to screen for clinically relevant 

biomarkers capable of revealing metabolic signatures of disease in the CNS. 
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This study has validated a panel of metabolites that show promise as diagnostic 

biomarkers for the presence of leukaemia in the CNS of patients with ALL in a large 

comprehensive cohort of CSF samples composed of patients classified as CNS1, 

CNS2 and CNS3. The data generated provides clear evidence that these 

metabolites have the ability to discriminate between patient CSF and control CSF, 

each demonstrating high levels of sensitivity and specificity when tested individually. 

The panel of metabolites which show the most promise as biomarkers for CNS-ALL 

are Creatine, N4-acetylcytidine, Symmetric dimethylarginine, Phenylalanine 

Xanthine, Inosine and Orotidine. 

 

The levels of creatine in CSF in the context of paediatric ALL biomarkers is poorly 

reported. Creatine is primarily synthesized in the liver, kidneys and pancreas but it 

is also known to be synthesized in the brain. The brain requires significant amounts 

of energy to function and relies on creatine, phosphocreatine and  the creatine 

kinase metabolic pathway as a reserve source of energy due to it being an organ 

with a high demand for ATP [125]. Studies have also shown that the BBB contains 

active membrane-bound creatine transporters (CrT) that continually transport 

creatine from the blood, through the BBB and into the CNS against a creatine 

concentration gradient [126]. This provides an explanation for the source of creatine 

present in the CSF.  

 

In this study, the levels of creatine in the CSF of ALL patients were decreased 

compared to controls. Creatine levels have been shown to be decreased in the 

serum of patients with ALL and AML compared to age and gender matched healthy 

controls [127]. In the patients with ALL, Creatine was only slightly downregulated 

compared to healthy controls in concordance with the findings of this study and in 

AML, its down regulation was considerably larger. Another study compared the 
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levels of creatine in peripheral blood samples from patients with ALL at the time of 

diagnosis and at day 29 and interestingly, levels of creatine were lower at diagnosis 

than at day 29 (at which patients were considered to be in remission through 

clearance of peripheral leukaemic burden) further supporting the findings of this 

study [74].  

 

This trend can also be seen in both serum and tissue samples of colorectal cancer 

patients compared to healthy controls [128]. In pancreatic cancer, Creatine and 

Inosine formed part of a panel of metabolites detected in samples of plasma which 

show great promise for use as diagnostic biomarkers [129]. Again, the trend 

observed here was of decreased levels of Creatine in the patient group compared 

to healthy volunteers.  

 

A possible explanation for the difference in the levels of creatine in patient CSF 

samples compared to control CSF samples seen in this study, may be due to the 

use of creatine metabolism by leukaemic blasts in the CNS to provide energy for 

proliferation and survival in this nutrient-poor microenvironment. It is known that 

leukaemic cells, in particular ecotropic virus integration site 1 (EVI1) over-

expressing AML cells, are highly dependent on arginine-creatine metabolism in the 

mitochondria [130]. Amongst causing other metabolic changes, aberrant EVI1 

expression in AML results in high expression of mitochondrial creatine kinase which 

catalyses the phosphorylation of creatine to phosphocreatine for energy storage 

[131]. There is evidence that over-expression of EVI1 is also present in paediatric 

ALL patients, particularly in patients between late childhood and adolescence [132].  

 

Another potential mechanism which could explain decreased Creatine in the CSF 

of ALL patients compared to controls can perhaps be explained by a mechanism 
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exhibited in colorectal cancer in the liver microenvironment. Colorectal cancer cells 

are known to secrete creatine kinase into the extracellular space to allow 

phosphorylation of exogenous creatine into phosphocreatine in the extracellular 

space. Uptake of phosphocreatine into the cancer cell then occurs through the 

membrane-bound CrT and the phosphocreatine is then used for as an energy buffer 

by its conversion back into Creatine mediated by intracellular creatine kinase to 

produce ATP to promote survival in the liver microenvironment [133]. A similar 

mechanism in the CNS could potentially provide an explanation for the phenotype 

we observed here, however this mechanism is currently poorly understood and 

future studies will be required to address whether this mechanism occurs in the 

CNS-ALL context.  

 

N4-acetylcytidine is modified cytidine pyrimidine nucleoside that has important 

functions in mRNA regulation and promotes translation efficiency [134]. It is widely 

reported as a urinary metabolite which can function as a potential biomarker for 

several different types of solid tumours. N4-acetylcytidine has been reported as a 

potential biomarker of epithelial ovarian cancer in the urine of patients where levels 

of the metabolite returned to normal following surgical treatment [135]. This 

metabolite has also been implicated as a potential biomarker for breast cancer, 

colorectal cancer, urogenital cancer from patient samples of urine where levels of 

N4-acetylcytidine were higher in-patient samples than controls [136-139].  

 

It’s use as a biomarker for detection of leukaemia is poorly reported. There is, 

however, some research into N-acetyltransferase 10 (NAT10) which catalyses RNA 

modifications on mRNA, 18S rRNA and tRNA, specifically the acetylation of cytidine 

to  N4-acetylcytidine. High expression of NAT10 in cancer cells has been reported 

to upregulate expression of oncogenes. In AML, NAT10 has been reported as a 
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potential prognostic biomarker as it is upregulated in patients compared to normal 

controls and patients with high NAT10 expression had poorer progression-free 

survival and overall survival  [140]. Whether high expression of NAT10 results in 

detectable levels of N4-acetylcytidine may perhaps provide an explanation for the 

increased levels of this metabolite in CNS-ALL.   

 

N4-acetylcytidine is also known to be reported in instances of inflammatory disease. 

Elevated levels of the metabolite in the urine of patients with inflammatory conditions 

such as interstitial cystitis have been observed [141]. In contrast however, Patients 

with pulmonary fibrosis exhibit a decreased level of N4-acetylcytidine in plasma 

compared to normal levels [142]. In microglia in the brain, a NLRP3 neurogenic 

inflammatory response is reported to be induced by N4-acetylcytidine [143]. As the 

CNS-ALL is considered to be an inflammatory environment, it may be possible that 

the detection of this metabolite is a result of inflammation caused by CNS-ALL 

however further extensive research is required.   

 

Symmetric dimethylarginine is an alpha amino acid derivative of L-arginine which is 

formed through the methylation of protein arginine by protein arginine 

methyltransferases (PRMTs) . It is typically present in human blood as a result of 

the degradation of methylated proteins. Again, the literature does not reveal much 

research into this metabolite in the context of CNS-ALL, however, increased levels 

of Symmetric dimethylarginine appears to be associated with both solid and 

haematological malignancies.  

 

One study detected elevated levels of Symmetric dimethylarginine in the plasma of 

patients with AML, non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia 

compared to controls which were matched for age, sex, co-morbidities and smoking 
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habits [144]. In patients with myelodysplastic syndrome, increased levels of this 

metabolite were also found in the sera compared to healthy donors  [145]. 

 

Increased expression of PRMTs can be observed in a wide range of cancers 

including AML and has been reported to play a role in tumorigenicity [146, 147]. 

Whether this increased expression can explain the elevated level of Symmetric 

dimethylarginine observed in this study remains to be investigated. 

 

Xanthine and Inosine form part of the purine synthesis and metabolism metabolic 

pathway and Orotidine is part of the pyrimidine synthesis metabolic pathway. 

Nucleotide synthesis is a vital part of cellular metabolism in both healthy and 

malignancy cells and actively proliferating ALL cells have a high demand for the 

building blocks of DNA and RNA. L-phenylalanine is an essential amino acid which 

is metabolized into acetoacetic acid and fumaric acid and is also a precursor to 

Tyrosine which is essential in protein synthesis.   

 

Previous studies have reported increased levels of Xanthine, Inosine and L-

phenylalanine in the plasma of ALL patients compared to controls (with no history 

of leukaemia). In this study, patients with high plasma inosine levels had poorer 

prognoses than patients who had Inosine levels close to the normal range [148].  

 

In a recent study similar to this, levels of Xanthine, Phenylalanine were reported to 

be elevated in the CSF of patients with CNS leukaemia compared to control 

leukaemic patients who were negative for CNS leukaemia via flow cytometric 

analysis (FCA) and cytomorphological examination of the CSF. Interestingly,  in one 

study levels of phenylalanine were reported to be elevated in the serum of patients 

with ALL compared to age and gender matched healthy controls in concordance 
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with the findings of this study, but the levels of phenylalanine in patients with AML 

were conversely greatly decreased [127].  

 

As many of the chemotherapies given to patients with ALL target metabolic 

pathways, the elevation of these metabolites observed in leukaemic patients could 

potentially be explained by drug-related metabolism. For example, methotrexate is 

known to inhibit enzyme dihydrobiopterin reductase and interrupt the formation of 

tetrahydrobiopterin which is integral to the hydroxylation of L-phenylalanine and 

other nucleotides. This results in accumulation of intracellular L-phenylalanine which 

is known to diffuse to the extracellular space and as these treatments cause cell-

death, this could further increase the extracellular concentrations of this metabolite. 

This phenomenon may perhaps explain the increased levels of L-phenylalanine in 

the CSF of patients with CNS-ALL but requires further investigation.  

 

 6-mercaptopurine can cause the accumulation of Inosine as it causes the inhibition 

of AMP, XMP synthesis however, this drug is typically given orally and is not part of 

the intrathecal treatment of ALL. The BBB does not allow transport of this treatment 

into the CNS thus the metabolic signature observed for Inosine here, may perhaps 

reflect leukaemic burden. Nevertheless, as discussed in the results section, 

allopurinol is known to be administered to ALL patients and is known to inhibit key 

enzymes involved in purine and pyrimidine synthesis which may explain the 

increased levels of Xanthine, Inosine and Orotidine.   

 

When combined in a multivariate biomarker model these candidate biomarkers 

performed excellently in detecting a leukaemic signature in the CSF of patients with 

ALL compared to control CSF, outperforming the performance of each individual 

biomarker on its own. Application of the seven -biomarker model to small, previously 
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untested cohort of diagnostic CNS1 patients and one CNS3 relapse patient resulted 

in the correct classification of all samples as leukaemic samples. Measuring true 

abundance of two of the best performing metabolites provided data strongly 

supporting the application of the multi-biomarker model. 

  

Phenylalanine showed promise as a potential prognostic biomarker for CNS 

leukaemia with elevated levels in patients who went on to have isolated relapses in 

the CNS or combine CNS and bone marrow relapses compared to patients who did 

not relapse. The patient samples were matched for age, sex, CNS status and risk. 

This result suggests an increased risk of CNS-relapse in patients with increased 

levels of Phenylalanine. 

 

N4-acetylcytidine and Symmetric dimethylarginine showed a concordant trend with 

current CSF cytology. Patients classified as CNS3 showed elevated levels of both 

metabolites compared to the control group CNS1 patients. 

 

A key strength of this validation was the large number of patient samples which were 

tested comprised of CNS1, CNS2 and CNS3 patients from a wide range of ages 

(childhood to young adult), giving a true representation of a leukaemic population. 

The use of two CSF controls with this large cohort of samples allowed thorough 

testing of the behaviour of each metabolite  by comparison against normal CSF 

(from patients who were admitted to hospital for suspected non-inflammatory 

neurological conditions and had a lumbar puncture taken which returned normal 

results with clinical profiles parallel to normal CSF) and inflammatory CSF, allowing 

the ability to rule out potential false positives caused by CNS inflammation rather 

than leukaemia. 
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The major limitation of this study was the lack of matched plasma samples which 

would indicate whether these metabolites were differentially expressed in the CNS. 

As discussed above, there also exists the possibility of the effects of drug-related 

metabolism on the differences between the leukaemia samples and control CSF 

samples.  

 

5.4.2 Soluble protein, cytokine biomarkers 

Several protein-based biomarkers were tested for their ability as diagnostic and 

prognostic biomarkers. Only CD27, a proapoptotic protein belonging to the TNF 

superfamily, showed some promise in discriminating between leukaemic patient 

samples and control CSF.  

 

CD27 is known to regulate the functions of lymphocytes and with its ligand CD70 is 

known to promote survival and proliferation in lymphocytes. It is known to be 

expressed in B-cell lymphoma, adult T-cell leukaemia/ lymphoma, as well as in high-

risk paediatric and adult BCP-ALL [149, 150]. It has been shown to correlate with 

disease progression in B-cell chronic lymphocytic leukaemia (CLL) as well as being 

a prognostic biomarker in AML where one study reported significantly elevated 

CD27 in the serum of diagnostic AML patients compared to controls [151-153]. 

 

In concordance with the findings of this study, a previous study examined the CSF 

of 102 patients with a range of diseases with and without suspected leptomeningeal 

involvement including: B and T-non-Hodgkin’s lymphoma, B-lymphocytic 

leukaemia, multiple myeloma, Waldenströms disease, B and T-cell ALL, CML, 

myelodysplastic syndrome, AML and various solid tumours. Elevated levels of CD27 

were not specific to disease with leptomeningeal involvement and were elevated in 
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cases which presented with other forms of infection which would prompt T-

lymphocyte activation and inflammation [154].  

 

The soluble form of CD27 is typically secreted following lymphocyte activation and 

thus one can postulate that in context of CNS-ALL, where the immune system of 

patients is typically compromised, response to infection and inflammation may 

potentially cause the phenotype of elevated CD27 in the CSF of patients with ALL 

[155].  

 

In this study, the levels of CD27 were elevated in the inflammatory control to levels 

similar to the leukaemia patient samples, suggesting that elevated CD27 is most 

likely a phenotype for inflammation in the CNS rather than being specific for 

leukaemia. The levels of CD27 did show concordance with CSF cytology, with CNS3 

patients having higher levels than CNS1 patients. Nevertheless, the CNS is known 

to be a site of inflammation in leukaemia which may provide an explanation for this 

elevation.   

 

5.4.3 Cell-free DNA 

Cell-free DNA can be detected in various bodily fluids and the targeting of tumour-

derived cfDNA is an area that shows great promise with respect to measuring 

residual tumour burden. cfDNA is periodically released from cells (malignant and 

healthy alike) by cell death mechanisms such as  apoptotic, necrotic and it is also 

known to be actively secreted [156]. Its use as a diagnostic and prognostic 

biomarker is well reported for solid tumours in blood plasma/ serum and for brain/ 

spinal cord tumours in CSF [157-160] 
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In haematological disease, extraction of cfDNA from blood simply requires a blood 

sample whereas unfortunately, in CNS disease, repeated invasive procedures i.e., 

lumbar punctures are required for CSF extraction. There are already several studies 

investigating brain tumour ctDNA from CSF. One study compared samples of CSF 

and plasma from several cancers including glioblastoma, medulloblastoma, or brain 

metastases (from lung/breast cancer) and found that ctDNA was consistently 

detected in higher levels in CSF than in plasma suggesting that the CSF provides 

the most suitable medium for liquid biopsy of brain malignancies compared to 

plasma [161].  

 

Leukaemic cfDNA can be identified by targeting rearrangements of the 

immunoglobulin heavy (IgH) and T-cell receptor (TCR) rearrangements. The Ig loci 

constitutes germline rearrangements of several variable (V), diversity (D), and 

joining (J) segments.  These segments undergo various rearrangements during 

early lymphoid differentiation and effectively act as ‘fingerprints’, specific to the 

original transformed lymphoid cell [162] 

 

Analysis of IGH gene rearrangements in cfDNA from different body fluids is reported 

in the literature for patients with haematological malignancies such as the plasma 

of Non-Hodgkin’s lymphoma  patients  and CSF in CNS lymphoma [163, 164].  

Studies have tried to address whether the detection of these rearrangements in 

cfDNA from plasma samples can be used in minimal disease detection by assessing 

diagnostic samples against samples taken following treatment and the data provides 

evidence that detection of clearance of the haematological malignancies is possible 

in both AML and multiple myeloma [165].  
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Several commercial cfDNA extraction kits were tested and compared for their 

extraction efficiencies of total native cfDNA and of a surrogate cfDNA spike-in 

molecule (a linearized hTERT plasmid fragment) from samples of plasma and CSF. 

One kit (QA) performed best in recovery of total cfDNA. It is a popular and effective 

kit used in several studies for the extraction of cfDNA from various biological fluids 

of patients with different cancers. [119, 166, 167]. One study compared four different 

cfDNA extraction methods from samples of pooled plasma and demonstrated that 

QIAGEN’s QIAamp circulating nucleic acids kit surpassed the cfDNA recovery yield 

compared to other methods in concordance with the findings of this study [119]. 

 

There are currently no universal standardized methods for extraction and 

quantification of cfDNA and study designs differ greatly. The majority of studies 

focus on the extraction of cfDNA from blood plasma and serum and little details are 

given for cfDNA extraction methods from CSF. As cfDNA is typically detected in low 

concentrations and because of the difference in composition of CSF compared to 

blood plasma/ serum, there is a need for optimising the extraction process for 

maximal cfDNA yield from CSF. Sample handling, processing, storage and analysis 

methods also vary between institutions; therefore, it is difficult to draw comparisons 

between studies. This relates to both samples of CSF post-lumbar puncture to 

samples of extracted cfDNA. cfDNA yield is known to be significantly affected by 

poor handling of these samples and the lack of standardized methods must be 

acknowledged. 

 

Detection of leukaemic cfDNA from low volumes of CSF (~100 μL) was achieved 

using highly sensitive platforms like ddPCR and NGS. The KRAS G12D mutation 

was detected by ddPCR in a CNS1 patient, providing evidence of the presence of 

leukaemia in the CNS of a patient currently classified as CNS-negative by current 
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CSF cytology. Highly specific IGH gene rearrangements were sequenced by NGS 

in the cfDNA of patients who relapsed in the CNS revealing the clonal architecture 

of the leukaemia that caused the CNS relapse. leukaemic cfDNA was also 

sequenced in a diagnostic CNS1 patient which disappeared in day 8 and day 29 

CSF samples correlating with clearance of CNS leukaemia.   

 

The low starting volume of CSF and total cfDNA concentration was a major 

challenge in this study, which may explain the low sensitivity observed using both 

of these platforms. Amplification of global cfDNA levels from patient samples using 

multiple displacement amplification (TruePrime) showed promise in increasing the 

amount of target cfDNA molecules as seen by successful amplification and 

detection of  REH cell-line cfDNA. However, this amplification resulted in a high level 

of artefactual sequences, potentially confounding the detection of any starting 

leukaemic cfDNA.  

 

5.5 Final conclusions and future directions 

The path towards personalised CNS-directed therapy lies in replicating the excellent 

track record for delivering risk-adapted therapy for systemic leukaemia. A 

biomarker(s) that can measure how well a patient responds to initial therapy will 

allow highly accurate prediction of a patient’s risk of relapse, as occurs with bone 

marrow MRD. It not only reveals the behaviour of the biology of the leukaemia but 

also of the patient’s individual biology i.e., how well the therapy is metabolised and 

the response of the microenvironment i.e., bone marrow or CNS.  

 

The major challenge in adopting current MRD methods to the CNS is that leukaemic 

cells are adherent to the walls of the leptomeninges. Therefore, in order to achieve 
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CSF MRD, an extracellular based approach is required. In summary, this project 

aimed to develop and validate the necessary tools to enable sensitive detection of 

CNS leukaemia and tracking of its response to treatment akin to bone marrow MRD. 

 

The greatest need for future biomarker discovery and development in CNS 

leukaemia is the standardisation of all the procedures involved in the journey of a 

CSF sample from the bedside to the laboratory bench. This work should involve the 

optimisation and standardisation of all of the preanalytical variables including CSF 

sample source, sample collection, sample transport and storage, sample volume, 

sample preparation and sample extraction to maximise the integrity of a CSF liquid 

biopsy for downstream analysis.  

 

Several candidate metabolic biomarkers described in this thesis show excellent 

promise as diagnostic biomarkers capable of detecting the presence of a leukaemic 

metabolic signature in the CSF of patients with leukaemia. In order to validate these 

findings further, a large cohort of patient samples composed of paired CSF and 

plasma samples is imperative to investigate the differential expression of these 

metabolites in the CNS.  

 

Next, an investigation into the effects of drug-related metabolism on the levels of 

these metabolites in the CNS using in vitro and in vivo models of metabolite 

consumption and secretion are essential to determine the biological plausibility of 

these biomarkers. Further work is needed into broadening the understanding of the 

metabolic pathways associated with these candidate metabolic biomarkers again to 

confirm biological plausibility. With a final panel of candidate metabolic biomarkers 

repeating these experiments  with a more sensitive technology and a fully targeted 

metabolomic approach measuring true abundance of all the candidate biomarkers, 
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with the aim to apply a multivariate biomarker model to a large independent cohort 

of patient samples and age-matched CSF controls will reveal the clinical utility of 

these candidate biomarkers as biomarkers for CNS-ALL and utility in the 

development of CSF MRD.  

 

Targeting IGH gene rearrangements in leukaemic cell-free DNA showed promise in 

being a highly specific biomarker for CNS-ALL. Although, the lack of sensitivity 

observed in this study may be explained by the effects of long-term storage and pre-

extraction preanalytical variables. This study adapted the workflows from the 

BIOMED-2 multiplex PCR study which is currently in practise with sanger 

sequencing. Work involving the standardisation and validation of NGS workflows (in 

lieu of current practise with Sanger sequencing workflows) for the targeting of Ig and 

TCR gene rearrangements in ALL has begun through the Euroclonality-NGS 

validation study [118]. Future work involving the development and application of 

these workflows for the detection of the complete clonal repertoire of Ig and TCR 

gene rearrangements in cell-free DNA and testing in independent patient cohorts 

will elucidate the clinical utility of this biomarker for CSF MRD.  

 

In future, achieving CSF MRD akin to current bone marrow MRD, is likely to be 

driven by the use of  a multifaceted risk-score for CNS-ALL composed of various 

biomarkers in combination.  The finale milestone would be to show that intervention 

on the basis of CSF MRD permits safe reduction of CNS directed therapy for low-

risk children and that escalation of CNS therapy reduces CNS relapse in high-risk 

children. This would free many children from the burden of intensive, unnecessary 

and toxic CNS-directed therapy, whilst potentially improving the outlook for patients 

with resistant disease by targeting them for more intensive up-front treatment to 

prevent relapse. 
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