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Abstract

In the last two decades, sequencing has become increasingly affordable and a routine tool to study
the microbial community of a given environment. Metagenomics has revolutionised the way
microbes are identified and studied in this age of biological data science because it provides a
relatively unbiased view of the composition of microbial communities we interact with every day,
which are integral to our ecosystem. These technological advances have led to an exponential
growth of raw data repositories that save, distribute and archive these metagenomic datasets. Since
metagenomics presents the ultimate opportunity to capture, explore and identify uncultivated
microbial genomic sequences, these metagenomic datasets harbour a large proportion of unknown
sequences that do not bear any similarity to known sequences readily available in the standard
sequence data repositories. The aim of this thesis was to systematically catalogue, quantify and
potentially characterise the unknown sequences embedded within the metagenomic datasets.
To this end, a comprehensive, portable, modular framework called UnXplore was developed
to determine the proportion of unknown sequences included in human microbiome datasets.
UnXplore was applied to a range of different human microbiomes and showed that on average
2% of assembled sequences were categorised as unknown meaning that they did not bear any
sequence similarity to known sequences. A third of the unknown sequences were shown to
contain large open reading frames indicating the coding potential and biological origin of the
unknowns. Furthermore, a small proportion of these potentially coding sequences were shown to
have functional similarities as they were deemed to contain known protein domain signatures.
These results indicated that unknown sequences captured through the UnXplore framework
were not artefacts and were indeed of biological origin. To test this formally, supervised k-
mer-based machine learning models were devised, tested and validated. These models are
currently distributed in a package called TetraPredX that can accurately predict whether a
sequence originated from bacteria, archaea, virus or plasmid. TetraPredX models were applied
to the unknown sequence dataset and revealed that the majority of unknown sequences are of
biological origin. Furthermore, TetraPredX results demonstrated that >70% of all long unknown
sequences (i.e. >1kb) are likely to be of virus origin indicating an unexplored diversity of viruses
that is yet to be fully characterised and classified. In order to catalogue the diversity of virus
sequences in human microbiome samples analysed here, an extensive virus discovery analysis

was carried out on the contigs assembled through UnXplore. This helped to characterise a vast
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diversity of prokaryotic, eukaryotic and unclassified virus sequences captured in a range of
human microbiomes. The results obtained here demonstrate the need to systematically interrogate
metagenomic datasets to fully comprehend and compile the presence of both known and unknown
uncultivated microbes within them. A comprehensive survey of metagenomic datasets carried
out in this manner would provide a more complete picture of the known and unknown organisms

that surround us.
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Chapter 1

Outline

Microbes, their diversity and their ubiquity in our biosphere has been fully appreciated through
the advent of high throughput sequencing (HTS) and metagenomics. Metagenomics has been
widely applied to various environments, microbiomes and clinical samples in the last two decades.
Public repositories that host raw sequences such as Sequence Read Archives (SRA) and European
Nucleotide Archives (ENA) have grown exponentially, housing >18 petabytes of open-access
datasets as a result of high throughput sequencing’s widespread application. A total of 4,277,855
publicly accessible metagenomic datasets are available via SRA as of 4 September 2022. It has
been shown that these metagenomic sequence datasets contain unknown sequences that are often
referred to as biological ‘dark matter’ (Marcy et al., 2007; Krishnamurthy et al., 2017; Thomas
et al., 2019). Typically, metagenomic sequence analysis is carried out with a specific research
question at hand, and, does not attempt to catalogue the diversity of unknown/dark sequences
and they are often excluded from the downstream analyses. These unknown sequences are
hypothesised to be originating from uncultivated microbes (for which no isolated representative
exists) and their identification and characterisation could help us get a more complete picture of
the complex microbial community that surrounds us.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that started
in 2020 brought global socio-economic interactions to a standstill. This event emphasised and
re-iterated the importance of cataloguing the microbial world that surrounds us. In this era of
biological data science and the unstoppable growth of sequence data repositories, it is essential
to ensure that each dataset is carefully examined to look for signs of microbes that we regularly
interact with as a variety of microbes have a significant role to play in human health, environment,
and ecology. My research project aims to identify, catalogue and classify the biological unknowns
present in the known sequence space. I intend to achieve this by employing tools, methods,
resources and expertise in bioinformatics and computational virology. My endeavours to expand
the current scientific knowledge and advance the frontiers of microbial dark matter research are
described in detail in this thesis. A brief narrative of the research content included in each chapter

is described below.



CHAPTER 1. 2

Chapter 2 of my thesis aims to introduce the main topics and research avenues that form the
basis of this dissertation. A thorough background is provided on viruses, metagenomics, and the
shift in virus discovery in this era of sequencing and metaviromics. In addition, it introduces
the computational approaches utilised to identify virus sequences captured using metagenomics.
I want to emphasise the importance of analysing metagenomic datasets to discover unknown
sequences that are often described as biological ‘dark matter’. The final section discusses briefly
a number of studies that provided the foundation and motivation for investigating the biological
unknowns inherent in the microbiome datasets. From a detailed literature review described in this
chapter, it was hypothesised that the biological ‘dark matter’ is likely to be mainly of microbial
and/or viral origin.

Chapter 3 focuses on the characterisations and quantification of unknowns in the human
microbiome dataset. To address this, I developed a comprehensive, modular and portable analysis
framework called UnXplore which is described in detail. UnXplore was applied to quantify the
unknown sequences (‘dark matter’) in human metagenomic datasets. To determine whether the
dark matter catalogued here originated from uncultivated (micro)organisms and to understand
their distribution, a detailed comparison of the unknown sequences between samples, studies and
microbiomes was carried out. Furthermore, the unknown contigs obtained in this analysis were
compared to currently known sequences in publicly available resources such as GenBank over
the period of the study to determine the rate at which these unknown contig sequences are being
taxonomically classified. This chapter 3 has been published as a research article in mSystems.

Unknown contigs obtained in chapter 3 did not bear any significant sequence similarity to
known sequences available in general-purpose nucleotide and protein databases. A third of
them were shown to contain open reading frames that were at least 100 amino acid residues
long, and a small proportion of them was shown to contain known protein domains. These
results supported our initial hypothesis that unknown sequences are likely to be originating from
uncultivated microorganisms, specifically viruses. To test this further, alignment-free, supervised
machine learning models were explored, developed and tested. A tetranucleotide frequency-based
machine learning prediction model embedded within a package called TetraPredX was designed,
which is described in detail in Chapter 4. The machine learning prediction models developed in
TetraPredX were applied to the unknown sequence dataset and showed that >70% of unknown
sequences were of viral origin supporting our hypothesis. TetraPredX is published on Python
Package Index (PyPI) and is available on https://pypi.org/project/TetraPredX/.

A comprehensive analysis of the contigs assembled through UnXplore was carried out with a
focus on cataloguing human virome and virus discovery in Chapter 5. Over seven million contigs
that were greater than 1kb were initially tested to predict those originating from viruses and
these predictions were further validated using gold-standard alignment-based approaches. This
in-depth survey led to the discovery of thousands of potentially novel prokaryotic and eukaryotic

virus sequences found across various microbiomes, samples and BioProjects. Moreover, a large
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proportion of virus sequences that could not be associated with a known virus family, order or
realm were also catalogued. This reiterates the importance of systematic exploration of already
‘analysed’ public datasets.

Finally, Chapter 6 discusses major findings from this research dissertation with the aim to
provide an outlook for future analysis. In addition to that, a critical appraisal of the methodology
and the overall approach is discussed in detail. Lastly, future avenues of unknown sequence
explorations, virus discovery and implementation of effective computation approaches to address
the ever-increasing big data challenges in biology are contextualised.

The work documented in this thesis - conceptualisation, data curation, methodology, formal
analysis, project management, research, resource and software development, validation,
visualisation, and original writing - has been conducted by me. My supervisors contributed to the
conceptualisation of the project, the development of the methodology, and the editing and

revision of the original text.



Chapter 2
Introduction

The concept of the Tree of Life (ToL) was initially realised by Charles Darwin and the first
evidence of it is found in his notebook, The Origin of Species, in 1837 (Darwin, 1859; Harris
et al., 2021). This formulates the basis of evolutionary biology as it provided the basic notions of
evolution and introduced the concepts of relatedness between living forms and their universal
common origin. The ToL. encompasses all living organisms that are grouped into three major
domains: bacteria, archaea and eukaryotes (Woese et al., 1990). These organisms are grouped into
two major categories based on their fundamental cell structure. Prokaryotes (bacteria and archaea)
are unicellular and lack membrane-bound structures such as a nucleus, whereas eukaryotes can
be either single or multi-cellular organisms with a clearly defined nucleus as well as other cell
organelles like mitochondria and golgi apparatus (Vellai et al., 1999). The eukaryotic branch of
the ToL on the other hand includes all other living things including animals, plants, fungi, protists
and algae.

Bacteria are considered to be the simplest living forms that typically have a single loop of
Deoxyribonucleotic acid (DNA) as their genetic material. Some bacterial cells also possess small
circular genetic material known as plasmids. The plasmids typically contain genetic material that
would give bacteria some advantage over other bacteria. Bacteria replicate by the mechanism of
binary fission whereby a parent bacterial cell is divided into two daughter cells with the exact same
genetic makeup (Cossart, 2018). Archaea were initially thought to be bacteria and were grouped
together with bacteria until the 1970s when this domain of life was added to the ToLL (Woese
et al., 1977; Fox et al., 1977; Mclnerney et al., 2008; Woese et al., 1990; DasSarma et al., 2009).
Archaea have been found in some of the most extreme and hostile environments (DasSarma
et al., 2009; Rampelotto, 2013). Archaea also harbour characteristics found in both bacteria
and eukaryotes. Despite their prokaryotic cellular makeup, archaea share some metabolic genes,
pathways and enzymes with eukaryotes (DasSarma et al., 2009). Though they are microscopic,

prokaryotes make up the majority of known organisms in our biosphere.
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2.1 Viruses

In 1898, Martinus Willem Beijerinck initially used the term “contagium vivum fluidum” (Latin
for “contagious living liquid”) to describe the tobacco mosaic virus that retained its infectious
nature after dilution (Beijerinck, 1898). The term ‘virus’ was then being used to describe anything
from toxins to infection agents, eventually, it started getting associated with this new type of
pathogen. This pioneered the new branch of biology that focused on studying viruses - Virology
(Bos, 2000). Despite the identification of viruses, the structure of the ToL did not change. Viruses
are not included in the ToL as they are not considered living things because they don’t have
universal genes that are present across all viruses. Moreover, a virus does not possess the required
machinery to multiply without a host. In fact, due to the lack of replication mechanism and
inability to carry out metabolic processes required to qualify them as living things, they are
considered an inert organic matter in absence of a suitable living host cell (Moreira et al., 2009).
Viruses can have either DNA or ribonucleic acid (RNA) as their genetic material that is typically
wrapped in a protective protein overlay called a capsid. Viruses can also have an additional
protein layer (coded by the virus) called an envelope which can help them to evade the host

immune system (Rowlands, 2021).

2.1.1 Viruses and the tree of life

Viruses are fundamentally different to living organisms as they cannot independently replicate or
produce energy like other cellular lifeforms. Viruses are passive agents that cannot do anything
in absence of a suitable host cell. Upon successful entry into a suitable host cell, viruses “hijack”
the cell’s replication machinery to propagate and assemble virus particles that are then released
to infect and invade more cells accessible in a given environment (Cann, 2021). In their simplest
forms, viruses have been deemed the most abundant biological complexes that can infect all
cellular life (Harris et al., 2021). However, without any generally acceptable consensus, it is
undecided whether viruses are considered “alive” as the core definition of being alive in itself is a
debatable topic (Koonin et al., 2016). Due to the polyphyletic nature of virus origin that lacks
a shared common ancestor, and a single gene that is shared by all viruses, it has been argued
that viruses cannot be placed in the tree of life. Recent studies based on the wealth of virus
genome data derived from metagenomics have revealed that viruses may be more interrelated
than previously thought (Iranzo et al., 2016; Bin Jang et al., 2019). Viruses have been shown
to harbour viral hallmark genes (VHGs) and these genes are shared among different groups
of viruses (Koonin et al., 2020a). It has been proposed that viruses should be analysed with a
network-based perspective as opposed to tree-based hierarchical approaches to fully comprehend
the viral diversity, their relationship with one another and their complex interactions (Bin Jang
et al., 2019). Viruses are ubiquitous entities that can infect all cellular life, evolve as biological

entities, influence host evolutionary mechanisms and have co-evolved with cellular life. These
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unique properties harboured exclusively by viruses have been argued as indicative of viruses
being strongly linked to cellular organisms and potentially influencing cellular evolution, and
hence, as some experts conclude, qualify to be included in the network of tree of life (Harris
et al., 2021; Forterre et al., 2021). Viruses are part of the continuum of life, whether they are
alive or not is just semantics. Arguably, they are more akin to spores/gametes i.e. the dispersal
part of the “virocell” (Forterre, 2011). The “are viruses alive?” debate is considered futile as it

misses the point that they are part of life as dependent replicators (Koonin et al., 2016).

2.1.2 Virus Diversity

Regardless of their status, viruses are deemed the most compact, fast-evolving biological entities
that are currently known to be present in our biosphere (Roux et al., 2021a). Viruses can vary
in shape, size and nucleic acid composition. Overall, viruses are classified into four groups
based on their shapes: enveloped, filamentous (long and cylindrical), spherical (isometric or
icosahedral) and head and tail (Sevvana et al., 2021). The first identified virus, the tobacco
mosaic virus is a filamentous virus (Klug, 1999). In fact, a large proportion of plant viruses are
filamentous. Spherical viruses are indeed icosahedral when looked at closely under a microscope
(Rux et al., 1998). They consist of equilateral triangles that are fused together to form a spherical
shape. Some examples of viruses in this group are herpesvirus, adenovirus, rhinovirus, and
poliovirus. Enveloped viruses have an additional outer layer or membrane as indicated in the
name. This envelope could be typically derived from the host cell membrane and also contain
some glycoproteins that are coded by the virus (Sevvana et al., 2021). Animal viruses such
as Human immunodeficiency virus (HIV), influenza, and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) are enveloped viruses. Head and tail viruses typically include
those that infect prokaryotes i.e. bacteria and archaea. These viruses have a head that is similar
to icosahedral viruses and a tail shape like filamentous viruses. These groups of viruses that
typically infect bacteria are referred to as bacteriophages (Sevvana et al., 2021). Although most
viruses have a defined shape, some of them such as influenza have been observed to exist in
both spherical and filamentous shapes (Bouvier et al., 2008). A number of viruses use a form of
glycoprotein to attach to their host cells via molecules on the cell called viral receptors. These
surface glycoprotein attachments are used as tunnels to penetrate virus’ genetic material into
the cell and subsequently replicate inside the cell (Dimitrov, 2004; Casasnovas et al., 2021).
Because of the range of shapes, sizes, infection mechanisms, and nucleic acid types, viruses can
be classified based on one or more of these characteristics.

Unlike cellular life that uses double-stranded DNA to store genetic material, viruses can use
DNA or RNA as their genetic material, which can be either double or single-stranded (Sanjuan
et al., 2021). Cellular organisms use their double-stranded DNA to store, replicate and cypher its
genetic information. The DNA is transcribed into messenger RNA (mRNA) by DNA polymerase,

and mRNA is translated into functional units i.e. proteins with the help of ribosomes. This process
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commonly referred to as the ‘central dogma’ of molecular biology is deemed the most important
flow of genetic information within a biological system (Crick, 1970). As viruses have different
genetic makeup, their version of this information flow can be different. For example, RNA
viruses can have either positive or negative sense genomes. A negative-sense genome implies that
the viral nucleic acid (typically found in RNA viruses) cannot be readily translated into protein
and it requires synthesis of the complementary strand first that can be translated into proteins
later. Depending on the nucleic acid types, viruses require different replication mechanisms,
transcription strategies and polymerase interactions to complete the genome synthesis (Baltimore,
1971; Cann, 2021). For example, viruses that infect and stay in the cell cytoplasm have to encode
their own polymerase as they do not have access to host polymerase. On the contrary, viruses
that localise in the cell nucleus rely completely on the host cell machinery for complete genome
synthesis (Choi, 2012).

Although the virus genome diversity, relatedness among different virus groups, host range and
other factors that allow or restrict viruses to replicate in a given environment is well understood,
there is no consensus among virology experts about the origin of viruses (Forterre et al., 2021).
Currently, there are three major hypotheses (Forterre, 2006): (1) Virus-first hypothesis (2)
Reduction hypothesis (regressive) (3) Escape hypothesis (progressive). The virus-first hypothesis
states that viruses predate the origin of cellular life and it potentially played an important role in
shaping the first cellular life. Support for this hypothesis is that viruses have RNA as their genetic
material and that scientists generally understand that RNA predates DNA as a replicative material
(Poole et al., 2000; Forterre, 2001; Forterre, 2002; Wolf et al., 2007; Durzynska et al., 2015). The
reduction hypothesis states that viruses originated from small primordial cells that lost a range of
cellular functional components but retained the most important functional elements required for
replication. The escape hypothesis states that viruses are derived from mobile genetic elements
such as plasmids and transposons (Koonin et al., 2006). To understand the origin of viruses, it
may be necessary to explore more than one explanation. Regardless of the origin of viruses, they
are capable of infecting all cellular lifeforms in the tree of life from bacteria, fungi, and plants to
vertebrates (Harris et al., 2021). Moreover, although viruses have been associated with infectious
diseases and have a reputation as disease-causing agents, a large proportion of viruses are in
fact an integral part of the natural world and ecology. Naturally occurring viruses have been
found in most parts of ecosystems and microbiomes, suggesting a reasonably underappreciated
relationship between viruses and their hosts potentially as symbionts that shaped the living world
as we know it today (Roossinck, 2011; Roossinck et al., 2017; Koonin et al., 2021a).

Depending on the nucleic acid type of the viral genome, and the mechanism and strategies
needed to synthesise mRNA, viruses are grouped into seven different classes. This is referred to
as the Baltimore classification system (Baltimore, 1971) of viruses and includes the following

seven classes:

e Baltimore Class I: Double-stranded DNA (dsDNA) viruses
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e Baltimore Class II: Single-stranded DNA (ssDNA) viruses

e Baltimore Class III: Double-stranded RNA (dsRNA) viruses

e Baltimore Class I'V: Positive-sense single-stranded RNA (ssRNA) viruses
e Baltimore Class V: Negative-sense single-stranded RNA viruses

e Baltimore Class VI: Single-stranded RNA-RT viruses with positive-sense RNA with DNA

intermediates produced by reverse transcription of the viral genome

e Baltimore Class VII: Double-stranded DNA viruses with an RNA intermediate in their
life-cycle

Largely, Baltimore classes are referred to as the informal highest ranks representing virus
diversity as each Baltimore class BC was assumed to share a common ancestor (i.e. being
monophyletic). However, recent studies and comprehensive phylogenetic analyses by Koonin et al.
(2020a) and Wolf et al. (2018) have challenged the idea of Baltimore classes being monophyletic
as they observed significant overlap and gene exchange among them suggesting that they may
not be suitable to be used as top-level ranks for virus groupings.

Virus genome lengths range from <2 kilobases (kb) to several thousand kilobases. CRESS
(circular replication-associated protein (Rep)-encoding single-stranded) DNA viruses that are
classified in the family Circoviridae have the smallest genome of around 1.7-2.1kb (Breitbart et al.,
2017). Compared to these small single-stranded DNA viruses, double-stranded DNA viruses
included in phylum Nucleocytoviricota have the largest genomes observed in the viral world so
far. These viruses are often referred to as giant viruses that depict their large physical and genome
sizes, and, are included in a group called nucleocytoplasmic large DNA viruses (NCLDV). The
largest NCLDV known to date is Megavirus chilensis and it has a genome length of around
1.26Mb. These giant viruses that infect amoeba are included in the family Mimiviridae (Legendre
et al., 2012). In contrast to DNA viruses, RNA viruses can have segmented genomes meaning that
their genomes can be split into more than one fragment, each coding for specific proteins required
for virus infection, replication and host immune system invasion. Among RNA viruses, the largest
non-segmented genomes are found in viruses included in the order Nidovirales. Perhaps the most
studied viruses within this group are included in the family Coronaviridae which contain single-
stranded positive-sense RNA viruses that can infect mammals, birds and fish. Their genome sizes
can vary between 26-32kb in length (ICTV, 2012). Double-stranded RNA viruses included in the
family Reoviridae genomes are composed of the largest number of segments. They have 18-29
kbp of segmented (9—12) linear dsSRNA genomes with the segments ranging from 0.7-5.8 kbp
(https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsrna-viruses/w/reoviridae). These
viruses infect a range of cellular life from algae, fungi, plants, invertebrates, aquatic animals, birds

to mammals. Recently, a new group of negative-sense single-stranded RNA (ssRNA) viruses have
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been discovered that can have segmented and/or nonsegmented genomes that may be also circular.
These viruses are included in order Jingchuvirales and have been predominantly found to infect
invertebrates (Di Paola et al., 2022). The smallest RNA viruses are those that are included in the
family Kolmioviridae and have negative-sense single-stranded RNA genomes that are around
1.7kb long. These viruses were initially found in Hepatitis-B infected humans but have recently
been identified in the transcriptomes of a range of invertebrates and vertebrates (Chang et al.,
2019; Bergner et al., 2021).

2.1.3 Virus taxonomy

Virus taxonomy is a very important field of science that specialises in the grouping of viruses
into artificial categories called taxa. It also develops, executes and utilises systematic naming
conventions to group viruses into different taxa. It is formed of expert virologists that specialise
in grouping viruses according to their properties (Fauquet, 2008; King et al., 2021). Viruses - at
species level and above - are formally classified by the International Committee of Virus
Taxonomy (ICTV) which was initially formed in 1966 at the International Congress for
Microbiology in Moscow. At the time, it was known as the International Committee on
Nomenclature of Viruses (ICVN), which became today’s ICTV in 1974. The first ICTV report
was published in 1971 (King et al., 2021) and it contained 290 virus species grouped into two
virus families and 43 genera. Today, ICTV executive committee has established 100 international
study groups covering all virus taxa. Each study group consists of world-leading virology experts
and researchers who voluntarily contribute to streamlining virus taxonomy
(https://talk.ictvonline.org/taxonomy/w/ictv-taxonomy). They play a critical role in rigorously
assessing and reviewing taxonomic proposals submitted to the ICTV (King et al., 2021).

Virus taxonomy ratified and compiled by the ICTV contains viruses, viroids and satellite
viruses. Initially, only viruses that were isolated using the traditional culture-based methods
were recognised and incorporated into the taxonomy framework. Due to this method of virus
identification relevant external properties including morphology, pathogenicity, host range etc
have been traditionally used to classify viruses. These characteristics are often specific and
customised to a group of viruses. These properties of virus classification have been adapted and
extended to include other features that focus on genomic composition and evolutionary relatedness
to keep up with the virus discovery in this new era of DNA sequencing and metagenomics. Virus
taxonomy structures and organises individual viruses into the tree of life-like structure that has 7
mandatory and 7 optional taxonomic ranks that has ‘realm’ as the highest taxonomic rank and
‘species’ as the lowest (King et al., 2021). Although viruses are grouped based on artificial and
often arbitrary demarcation criteria, the taxonomic framework is deemed crucial to studying
viruses. It compiles and connects all viruses into a systematic framework that facilitates the
research community to understand the global organisation of known viruses, as well as enabling

them to rapidly explore their biological, clinical and evolutionary relationship with one another
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and their corresponding host(s) (Davison et al., 2020).
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Figure 2.1: An overview of ICTV approved viruses in the context of taxonomic classification and
its growth in the last 50 years. The graph shows the number of taxa approved by ICTV for each
taxonomic rank. The Y-axis shows the count and the X-axis shows the year. Plots are separated
by taxonomic ranks order, family, subfamily, genera and species.

A shift was observed in the field of virology with the advancements in DNA sequencing

technology and its application in metagenomics (Described in detail in section 2.2).

Metagenomics enabled a massively parallel sequencing and exploration of microbial
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communities targeting the uncultivated viral diversity that simply could not be accessed through
standard cultivation-based approaches. A detailed outlook of how metagenomics led to the
discovery of previously inaccessible virome (total collection of viruses found in an environment,
microbiome or sample) and viral communities are described in detail in section 2.2.4. ICTV
realised and responded to the scientific community’s need to classify the diversity of viruses that
were identified by the means of metagenomics. In 2017, ICTV officially announced the
incorporation of metagenomically assembled virus genomes into its framework (Simmonds et al.,
2017a) which led to a massive increase in the number of species added to the taxonomic
framework (figure 2.1). Several large-scale metagenomics and metatranscriptomic studies have
also influenced virus taxonomy, adding a number of new orders, families, and genera in recent
years (https://talk.ictvonline.org/taxonomy/p/taxonomy_releases). As of 2021, there are 10,434
ICTV recognised virus species divided into 2,606 genera that are grouped into 233 virus families.
Although a number of different taxa ranks have been added, it is worth noting that a range of
virus families are yet to be associated with higher taxonomy ranks such as order and/or realms.
All RNA viruses on the other hand have been classified at the top-level rank realm called
Riboviria (King et al., 2021). Despite this progress, it has been noted that the majority of
uncultivated viruses remain yet to be included in the taxonomy framework. Due to the sheer
number of viruses that have been identified using uncultivated approaches, virus taxonomy will
probably remain in flux for some time, requiring the taxonomy framework to be dynamic and
adaptable in response to the large diversity of novel viruses discovered on a daily basis. One
suggestion from the Bioinformatics Expert Group (BEG) that is a part of ICTYV, is to explore
computational and automated approaches to cope with the high demand for the classification of
metagenomically discovered uncultivated viruses (Bas E Dutilh et al., 2021). For example, an
extensive uncultivated virus database, IMG/VR, contains 868,178 viral operational taxonomy
units (vOTUs) as of 29 May 2022 (https://img.jgi.doe.gov/cgi-bin/vr/main.cgi) and these
sequences are currently not included in the ICTV taxonomy framework. Indeed, computational
virology-based approaches could also be employed to fill in the knowledge gap and
systematically place these uncultivated virus sequences into the existing virus taxonomy. Major
challenges associated with metagenomically derived virus genome classification such as
virus-host association, quality and completeness assessment of uncultivated virus genomes could
be tackled with the amalgamation of existing knowledge of virology and computer science to
rapidly place uncultivated viruses into the existing taxonomy framework. This advancement
would be critical and can potentially transform virus taxonomy and its broader application in

understanding virus diversity.
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2.2 High throughput sequencing and metagenomics

Microbes are ubiquitous and are an integral part of our living world. They are important to
study in health settings because they have been linked to a plethora of diseases and health. It is
essential to understand the microbial world in order to obtain a complete picture of the living
world. It is suggested that humans should be seen as ‘holobionts’ due to the co-dependence
and intricate relationships between us and microbes (Bordenstein et al., 2015; Guchte et al.,
2018). Traditionally, microbes were identified using cell culture techniques. However, there are
many challenges to isolating, growing and identifying the microbial communities living around
us solely based on these techniques, as it is not always possible to grow them in a laboratory
environment.

The development of high throughput sequencing (HTS) technologies has made it possible to
survey the microbial communities that surround us. HTS technologies such as 16S ribosomal
RNA (rRNA) metabarcoding (metataxonomics), metagenomics and metatranscriptomics have
increased the rate at which novel microbes can be discovered. Metabarcoding uses a single
marker gene-based identification method such as 16S and/or 18S rRNA for classification and is
often misleadingly referred to as metagenomics. 16S rRNA based classification methods are only
capturing one genomic marker of a sample and therefore cannot detect organisms that do not
possess these specific target genes. A large variety of bacterial species has been discovered using
this technique, specifically those that are difficult to cultivate in standard laboratory conditions.

Metagenomics is defined more systematically as an area of research comprising a range of
methods that targets the entire microbial sequences at an aggregate level with unbiased sequencing
approaches. This term was first used by (Schloss et al., 2003) and, as they predicted in their paper,
metagenomics has become a critical tool to enhance research in the field of environmental and
microbial genomics. The authors of the book ‘The New Science of Metagenomics: Revealing the
secrets of our microbial planet’ (The New Science of Metagenomics 2007), go as far as defining
metagenomics as the science of discovery, modelling, understanding and ultimately managing the
molecular level dynamic relationships between the molecules that define the living communities
and their biosphere; this definition derives mainly from Hood’s definition of systems biology
(Hood, 2003). It is clear that metagenomics is an area of scientific research that provides powerful
tools to study the interactions within and between different communities. Metatranscriptomics
is a similar branch of research that focuses on the expressed or active part of the communities
instead of their genomic profiling. The transcribed mRNA content of a given sample is sequenced
through HTS technologies. When applied together, metagenomics and metatranscriptomics
present immense opportunities to gain insights into the microbial communities that are present as
well as active around us.

Conventional cultivation approaches cannot capture the complete view of a given community
as it is almost impossible to mimic the ecological or health environment on a petri dish, thus

limiting the study and characterisation of uncultivated microbes. Moreover, these cultivation
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methods cannot be used to quantify the proportion of microbial abundance in a biological niche
due to the biases associated with the culture-based approaches. On contrary, metagenomic and
metatranscriptomic approaches can help to overcome this cultivation-dependent issue faced by the
classical microbial study techniques, and they provide a relatively unbiased view of the microbial
community directly sampled and sequenced from its natural environment.

With the advent of HTS, the field of bioinformatics/computational biology has also been
advancing at a fast pace to match the demand for analysing the large amount of sequence data that
originated from a range of sequencing technologies. Though the field of bioinformatics predates
HTS technologies, widespread applications of HT'S in all branches of biology have accelerated the
growth and the maturation of bioinformatics as an area of research that combines the knowledge of
biology and uses cutting-edge computational approaches to address complex biological questions.
A rapid expansion of biological sequence data analysis algorithms, techniques and computational
resources has led to the development of a plethora of tools, databases and workflows. These
computational resources are needing to be updated, customised and maintained continually to

keep up with the demands of this area of research.

2.2.1 Metagenomic data analysis

Metagenomics, metabarcoding and/or metatranscriptomics have a wide range of applications.
They can be applied to study the microbial makeup of a given environment such as soil, aquatic
or other biogeographical and ecological locations. These methods can also be employed to study
the host-associated microbiomes in both natural and clinical settings. Though all three techniques
serve the purpose of investigating the microbial composition of relevant samples broadly, their
specific applications are distinct. Metataxonomics or metabarcoding involves sequencing of
specific marker genes such as 16S/18S rRNA of prokaryotes or internal transcribed spacer regions
of fungal ribosomes (Breitwieser et al., 2018). As this technique takes the advantage of marker
gene-based identifications and does not capture the complete content of a given environment,
they are not considered shotgun metagenomics (Quince et al., 2017). Despite this, metabarcoding
is the most cost-effective way to profile targeted microbial communities and can be used to study
bacteria and microbial eukaryotes. The major disadvantage of metataxonomics is that it cannot be
used to study viruses as they lack marker genes and it provides a limited resolution of microbial
genomes as they only capture the diversity within specific genes. Moreover, metabarcoding
sequencing involves a target gene amplification step that can lead to biases if the research project
aims to capture the quantitative aspects of the microbes present in the samples. To overcome this,
a read-based normalisation step is required to draw abundance-based correlations.

In contrast to metabarcoding, both metagenomics and metatranscriptomics methods capture
the total nucleic acid content of a given biological sample. Shotgun metagenomics which
involves the sequencing of random untargeted DNA or RNA present in the sample is regarded

as more powerful due to its robustness and ability to capture all forms of life present in the



CHAPTER 2.

14

Attt

[ = S e
T AR F N
00 '@ Yo Mo

i~

Virus particle

enrichment

Environment All microbes/ Nucleic acid Library High throughput
sampling Bulk metagenomes extraction preparation sequencing
—
FASTQ
files

Read-based identification

¢ Taxonomy profiling

e K-mer-based
classification

¢ Results visualisation

e Abundance matrix

A

Quality Check

Remove adapters

Read trimming and cleaning
Remove host sequences
Remove spike-ins and
common contaminants

High-quality reads

\ 4

De novo Assembly

Read error correction

K-mer based graph assembly
Resolve repeats and bubbles
Post-processing/Scaffold
building

and/or scaffolds

Assembled contigs

Contig sequence analyses

Contig binning

Genome quality evaluation
Homology-based taxonomic
classification

Gene prediction

Sequence annotation
Quantification and abundance
Draft/Complete genome
database submission

Figure 2.2: An overview of metagenomic sample preparations, sequencing and data analysis. A
typical HT'S metagenomic analysis is outlined in the following stages. Briefly, it is categorised
into Quality Check, De novo assembly and/or Read-based identification and Contig sequence

analysis.



CHAPTER 2. 15

captured nucleic acid. A brief and abstract overview of the metagenomic and metatranscriptomic
sequencing and analysis workflow is described in the figure 2.2. A typical pipeline includes DNA
or RNA extraction from the target biogeographical environment or clinical samples. The nucleic
acid is chopped into short segments that are ligated with adapters that enable sequencing library
generation. These libraries are then sequenced using short or long-read sequencing platforms such
as [llumina, Oxford Nanopore or Pacbio. As the field of metagenomics has matured, a wide range
of laboratory kits and reagents are made available that help with the sequencing library preparation
specific to various environments. Metagenomics is the sequencing of the DNA or RNA whereas
metatranscriptomics is the sequencing of mRNA (messenger RNA). Shotgun metagenomics can
be used to profile the genomic content originating from all domains of life including bacteria,
viruses, archaea and eukaryotes. It also enables the de novo assembly of genomes present in
the samples and can enable functional genome analyses. Moreover, unlike metabarcoding, this
unbiased approach provides a more complete picture of what is present in the sample and can be
utilised to identify completely novel organisms and pathogens. Metagenomics enables researchers
to address ‘What is present’ in the sample and metatranscriptomics enables the explorations
of ‘What is active’ in a given sample as it targets the transcribed part of the genomes. Both
techniques require a high-depth sequencing approach to capture the microbial community present
at sufficient resolution. An alternative approach of metagenomics or metatranscriptomics that
specifically focuses on the study of the virome content of a given sample involves an additional
step in the sequencing process. This virus particle enrichment process is a filtering step that is
applied to filter out particles of specific size and can help to capture small virus particles (figure
2.2). This filtering process is not unique to viruses (e.g. it is used to separate bacteria from
eukaryotes), but it is helpful in separating small virus particles from other microbial material.
Further, depending on the aims of the research project, the nucleic acid samples are treated
with DNAase or RNAase to degrade the nucleic acid sequences that are not of interest. These
virome-specific meta-omic methods are termed metaviromics and are used to study the virome
content of a sample.

Metagenomic sequencing data analysis generally requires an extensive pipeline that is tailored
to address the specific research aims. A general overview of the metagenomic data analysis
pipeline is shown in figure 2.2. Although a wide range of sequencing platforms have been
used and are being tested for metagenomic sequencing, the Illumina sequencing platform is the
de facto default technology used in most metagenomic sequencing (Breitwieser et al., 2018).
The sequencing reads produced from Illumina are around 150-300bp long. The first step to
analysing sequence data is to assess the quality of these short sequencing reads. This quality
assessment step is also important as it includes read trimming, sequencing adapter removal and
low-quality read filtering. A number of tools such as Cutadapt (Martin, 2011), TrimGalore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), Trimmomatic (Bolger et al.,
2014), PRINSEQ (Schmieder et al., 2011), BBDuk (Bushnell B., 2015a), FastQC (https://www.
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bioinformatics.babraham.ac.uk/projects/fastqc/), and MultiQC (Ewels et al., 2016) are available
to assess the read quality and clean the reads to retain only high-quality sequencing reads. The
QC step also includes the removal of common lab contaminants and/or known spike-ins which
can have an impact on the results. QC tools such as BBDuk, Trimmomatic, and TrimGalore have
a range of built-in settings and known sequence sets that can be readily removed if found from
the input read set. In the case of the host-associated microbiome, the QC step involves mapping
a cleaned set of reads to the associated host and extracting reads that are unmapped. This step
reduces the number of reads down as well as helping to speed up the de novo assembly process.
General-purpose read alignment programs such as Burrows-Wheel aligner(BWA) (Heng Li et al.,
2009), bowtie2 (Langmead et al., 2012) or BBMap (Bushnell B., 2019) can be used to map short
reads to the known host genomes. In the case of long reads, corresponding long read mapping
programs such as minimap2 (Heng Li, 2018) can be used. This step generates output in sequence
alignment map (SAM) or binary alignment map (BAM) formats. Both formats consist of the
exact same data but the BAM file format is machine-readable binary data that cannot be read
by humans but the SAM file contains the mapping information in the standard human-readable
format. To obtain the unmapped reads from these files, samtools (H. Li et al., 2009) or BBTools
(Bushnell B., 2019) packages can be used.

It is known that complex microbial communities are non-uniformly distributed and the
proportion of each species’ genomic content captured in a typical metagenomic sample varies
widely. In this scenario, it is likely that the process of de novo assembly could potentially lead
to the assembly of the species that are most abundantly present in the sample. To overcome
this, an optional step of read normalisation can be utilised. This step reduces the redundancy
of the reads by removing the duplicate reads and by down-sampling the reads it can achieve
a reasonably uniform sampling coverage that in turn helps with the de novo assembly process.
Reducing the number of duplicate reads also helps to accelerate the assembly process and can
help to reduce the computational resources required for the assembly part of the pipeline. Tools
such as BBNorm (Bushnell B., 2015b), and Diginorm (from the Khmer package) (Crusoe et al.,
2015) can be used to normalise the reads prior to the assembly.

The de novo assembly process is arguably the most computationally intensive part of the
metagenomic data analyses workflow. Genome assembly in itself is regarded as one of the most
challenging steps of HTS data analyses, the sequence assembly of metagenomic samples is more
challenging due to the presence of many different organisms/species in varied abundance. There
are two ways in which the short reads can be assembled. A single sample assembly entails
assembly of the reads from a metagenomic sample and a co-assembly which treats all samples as
a uniform big sample and combines all reads from a range of samples that are typically originating
from the same experiments and/or microbiome or ecological sites. The co-assembly of samples
is more likely to lead to fragmented assembly and generally requires a substantially extensive

computational framework to assemble short reads into contigs. Moreover, the co-assembly step


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

CHAPTER 2. 17

is more likely to yield fragmented assemblies due to the complexity of microbial communities
and other factors including the uneven sample coverage. On the contrary, single sample assembly
is a relatively straightforward process and can be carried out on smaller computational resources
compared to co-assembly. De novo assembly obtained from a single sample is shown to be less
likely to be fragmented and can result in higher quality genomes (Olm et al., 2017).

A number of de novo assembly tools that implement various algorithms can be used to achieve
a good quality assembly. The two most established approaches are Overlap Layout Consensus
(OLC) and De Bruijin Graph (DBG) which have been implemented in a wide range of tools.
Briefly, OLC approaches work by finding overlap among sequence reads. A contiguous sequence
is obtained by stitching overlapping reads together into longer sequences. The amount of overlap
can be varied from a short k-mer to the length of the read. However, the OLC approaches struggle
to find the best continuous sequences as most of them only used the far ends of the reads to search
for the overlaps. The DBG approaches work by chopping the short reads into shorter k-mers
generated using a sliding window across the length of the read, hence utilising all information
and bases captured in the reads. These k-mers are organised in a graph layout such that each node
represents a k-mer and the edges represent k-1 overlap among them. These complex large graph
paths are joined together to generate longer sequences that are termed contigs (Wenyu Zhang
et al., 2011). General-purpose microbial assembly tools such as Abyss (Simpson et al., 2009),
SOAPdenovo (Luo et al., 2012), MIRA (Chevreux et al., 2004), and Velvet (Zerbino et al., 2008)
have been used to assemble microbial genomes from metagenomic samples. However, these tools
often struggle with the high complexity and uneven coverage that is unique to the metagenomic
datasets and often lead to short contigs with low N50 (a measure to assess assembly quality).
The quality of assembly is highly dependent on the size of choice of k and it can be very tricky
to determine the best k-mer size that would help to recover the largest genome fragments from
a sample. To overcome this, iterative DBG approaches have been implemented in the de novo
assembly tools that are specifically designed for metagenomic datasets. These tools including
IDBA-UD (Peng et al., 2012), metaSPAdes (Nurk et al., 2017), and Megahit (D. Li et al., 2015)
have been more successful in retrieving complex microbial genomic structures embedded within
the metagenomic datasets as they carry out the assembly using a range of k-mers and use the
contigs generated at each step of the assembly for the next iteration. Most of these sophisticated
methods of assembly also offer a built-in assembly pipeline that also takes care of pre-assembly
read error correction, low complexity contig filtering, contig coverage and depth calculation and
scaffold building steps included in the pipeline.

In a standard metagenomic sequencing project, millions of reads are condensed down to
tens/hundreds of thousands of contigs that need to be taxonomically labelled to identify their
biological origins. To assess the quality of the metagenomic assembly such as to measure the
proportion of chimeric contigs, identify misassemblies as well as compare the contigs to known

sequence databases, MetaQUAST (Mikheenko et al., 2016) can be used. Moreover, a general-



CHAPTER 2. 18

purpose quality check such as aligning reads back to a contig and/or bin can also be carried out to
gather statistics related to the quality of the contigs. To perform this, standard assembly mapping
tools such as BWA, bowtie2 or BBMap can be used and the resulting SAM/BAM files can be
analysed using samtools to gather the assembly statistics. As short-read assemblies can often
be fragmented due to the uneven coverage and the presence of multiple strains, metagenomic
binning can be utilised to cluster these highly similar sequences that potentially originate from
the same species into metagenomic bins. The representative sequence obtained through binning
can be used to denote a single species or more generally an operational taxonomic unit (OTU).
Metagenomic binning tools cluster sequences based on one or more features. These features could
be obtained from previously known reference databases e.g. phylogenetic marker gene presence
(implemented in MyCC (Lin et al., 2016)) or are calculated dynamically from the dataset in
question. These features include read coverage and linkage, differential coverage, tetranucleotide
frequencies, and/or multi-sample coverage. Genome binning tools widely used for this analysis
include MetaBAT (D. Kang et al., 2019), MyCC (Lin et al., 2016), CONCOCT (Alneberg et al.,
2014), GroopM (Imelfort et al., 2014) and MetaWatt (Strous et al., 2012). However, as with any
other analyses, genome binning can often lead to different results based on the distinct methods
applied to bin the contig dataset and the parameters used to perform the binning. To overcome
this, DAS Tool (Sieber et al., 2018) was developed as it can compile the binning results, remove
redundancies from them and consolidate the bins into better assemblies reflecting more complete
genomes. Moreover, to check the quality of binning, tools such as CheckM (Parks et al., 2015)
can be used for prokaryotic datasets and CheckV (Nayfach et al., 2020a) can be used for viruses
and viral OTUs.

Once good quality contigs or contig bins are generated, the next analysis requires the
taxonomic identification of the sequences to be carried out. Notably, it is also possible to carry
out read-based taxonomic profiling prior to assembling contigs. Typically the read-based
taxonomy profiling tools utilise a short exact k-mer matching approach to taxonomically label
the reads, this is due to the sheer amount of reads that need to be processed and standard
approaches such as Basic Local Alignment Search tool (BLAST) are deemed too slow for
carrying out similarity searches on millions of reads as they were designed to work on longer
sequences. Though a number of k-mer-based taxonomy assignment tools such as Kraken (Wood
et al., 2014), Kaiju (Menzel et al., 2016), CLARK (Ounit et al., 2015), Centrifuge (Kim et al.,
2016), DisCVR (Maabar et al., 2019) exist now, Kraken was one of the first to implement this
approach. In Kraken, short k-mers of k=31 were used and implemented as part of the exact string
matching algorithm that created k-mers of length 31 from reads and compared them against a
reference database of k=31 from known genome sequences. Typically a lowest common ancestor
(LCA) containing the specific k-mers is inferred from the taxonomic databases and sequences are
“classified” at a specific taxonomy level using the LCA information. A complete sequence-based

taxonomic profiling output can be generated by these k-mer profiling tools and the results can be
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visualised using the hierarchical taxonomic profile visualisation tools such as KronaTools
(Brian D Ondov et al., 2011b; Brian D. Ondov et al., 2011a). It is worth noting that k-mer-based
profiling can be efficient in some cases but has disadvantages as long k-mers are likely to be too
stringent and would not be effective candidates for exact matches due to issues such as
sequencing errors, and short k-mers can lead to false positives. Striking a balance between the
best precision and recall is a very challenging task and the choice of k size would often be highly
dependent on the research question, the size of the database and the type of data being
investigated. Similar to k-mer-based classification, another alternative method for metagenomic
profiling is using the overlapping MinHash signatures. Two popular tools Mash (Brian D. Ondov
et al., 2016) and sourmash (Pierce et al., 2019) have implemented this approach that allows users
to run quick similarity estimates of datasets on a laptop as they require much smaller datasets and
less computation power. Though most of the k-mer and hash-based taxonomic profiling tools
were designed for reads, they can be used with contigs. Other tools such as taxator-tk (Droge
et al., 2015) enable users to perform binning, taxonomic assignment and microbial community
profiling using a single package and work well with prokaryotic metagenomic datasets.

In general, a standard homology-based sequence identification is carried out on contigs to
infer their evolutionary relatedness to the existing sequences. Conventional sequence similarity
tools such as BLAST+ suite are considered the gold standard due to their widespread usage and
applications. Nucleotide similarity searches can be carried out against extensive known sequence
databases such as nt or against a specific set of marker genes using tools like MetaPhlAn (Segata
et al., 2012; Truong et al., 2015). If International Nucleotide Sequence Database Collaboration
(INSDC) databases are used, they are often too big to host on a small personal computer and
are hosted either on a database server or searched using National Center for Biotechnology
Information (NCBI)’s remote BLAST options. However, nucleotide searches against extensive
databases such as nt can be computationally expensive and may not be feasible. In such cases,
other taxonomic profiling and classification tools such as Kraken + Bracken (for classification)
J. Lu et al., 2017), CLARK, mOTU (Sunagawa et al., 2013), MetaPhlAn2 (Truong et al.,
2015), Kallisto (pseudo alignment algorithm) (Bray et al., 2016), LAST or Centrifuge can be
used. However, these short sequence-based taxonomy profiling tools can often be less sensitive
and may not be effective in some specific use cases. Nucleotide sequences vary largely even
between highly similar species or taxonomic groups, but protein sequences are more conserved
due to evolutionary convergence. To exploit this, and enable the identification of novel and/or
phylogenetically distantly related sequences, protein alignments can be utilised. BLASTX can
be used to translate a nucleotide query into the amino acid sequence in all six frames and then
search these sequences in a protein sequence database. This is a very powerful approach and can
be particularly effective for the classification of virus genome sequences. Although BLASTX
works very well, it is very slow at processing a large number of contigs and alternatives such as
DIAMOND (Buchfink et al., 2014; Buchfink et al., 2021), and MMSeqs2 (Steinegger et al., 2017)
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have replaced the traditional BLASTP and BLASTX tools as they are able to achieve BLAST
equivalent precision and recall performance in a fraction of time.

Post metagenomic analyses involve a number of different post-processing steps before the
genome sequences are ready to be submitted to the relevant database. One of the most popular and
advisable steps is to carry out gene prediction on the genome to identify the open reading frames
(ORF). Several standard ORF prediction tools e.g. getorf (Rice et al., 2000) or translate can be
used to extract ORF information from the contig sequences. Other genes and ORF prediction
tools such as prodigal that has a specialised mode for the metagenomic dataset which uses
previously trained models for gene prediction are also widely used (Hyatt et al., 2010). These
predicted protein sequences can also be used to further carry out translated sequence analysis
and/or phylogenetic analysis where applicable. In cases where no significant sequence similarity
is observed, predicted ORFs can be used to identify the presence of protein domain signatures.
This can be achieved by using protein profile analyses and/or domain analysis tools such as
HMMER (requires a protein profile databases e.g. Pfam) (Finn et al., 2011) or multi-purpose
protein homology analysis tools such as HHPred (Soding et al., 2005) or InterProScan (Mitchell
et al., 2018a). ORF-based analyses are largely suitable for the discovery of new proteins in
microbes and work efficiently for novel virus sequences that may be significantly diverse from
known virus sequences available in the databases. This analysis cannot identify and annotate
long non-coding RNAs (IncRNAs) that play regulatory roles, and to identify such IncRNAs from
metagenomic datasets, specialised pipelines and tools such as DRAGoM (Liu et al., 2021) could
be used.

All metadata and features obtained through various stages of the metagenomic analysis could
be gathered to formulate a complete picture of the novel genome. If a close relative of the
newly identified sequence exists in the database, the newly discovered microbial genome can be
annotated with relevant features. The feature annotation step may include but is not limited to
gene start and end positions, corresponding translated ORF sequences, domains that were found
to be associated with the ORFs, untranslated regions, terminal repeat sequences and any other
features that may be unique and relevant to the organism being interrogated. A number of tools
and pipelines such as Prokka (Seemann, 2014), Distilled and Refined Annotation of Metabolism
(DRAM) (Shaffer et al., 2020), Rapid Annotation Transfer Tool (RATT) (Otto et al., 2011), DDBJ
Fast Annotation And Search Tool (DFAST) (Tanizawa et al., 2018), Viral Annotation Pipeline
and iDentification (VAPiD) (Shean et al., 2019) are developed that can automate this process and
can be used to either create annotations or transfer annotations from a currently known genome
sequence. The final output from this pipeline is prepared in an INSDC compatible data format e.g.
GenBank or EMBL that can be directly submitted to the databases to share the newly identified
organism draft/complete genome with the research community.

It has to be appreciated that metagenomic sequence analysis is an involved and complex

process that requires a lot of attention to detail and customisation to address specific biological
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questions. Despite the complexity, there have been efforts by the researchers to encapsulate this
process into a meaningful, modular and adaptable workflow that could be applied readily to
answer specific questions. Moreover, there have also been efforts by the research community to
benchmark the tools and resources available for a specific analysis step to devise standardised
ways to carry out the analyses. Community-led efforts such as the Critical Assessment of
Metagenome Interpretation (CAMI) challenge have also helped researchers in making the right
choice of tools to use for metagenomic analyses by performing extensive benchmarks of an
ever-increasing catalogue of assembly, binning, classification and annotation tools against
comprehensive and diverse real and simulated datasets. Furthermore, there have also been efforts
to develop modular metagenomic workflows that incorporate several tools for each step of the
analysis and can be tailored to be used for specific datasets. MetAMOS (Treangen et al., 2013),
Anvi’o (Eren et al., 2015), MetaWRAP (Uritskiy et al., 2018), MGnify (Mitchell et al., 2018b)
and many more such pipelines are available that can be used for any metagenomic datasets.
Moreover, a range of experiment-specific pipelines such as MetaViC (Modha et al., 2019), VIP
(Y. Li et al., 2016), Taxonomer (Flygare et al., 2016) etc is available to choose from. Most of the
pipelines and software mentioned here are either open source or available for free under
academic licenses. Other commercial software tools such as CLC Workbench, One Codex, and
CosmoslD are also used widely in metagenomic sequence analysis. Overall, a range of different
bioinformatic tools and pipelines are available to perform these analyses (Breitwieser et al.,
2018). A recent review focusing on the viral metagenomics methods and data analysis pipeline
discussed 49 currently available tools and provided a decision tree for the different pipelines
dependent on application such as clinical diagnosis for viral discovery (Nooij et al., 2018).

It is evident that a large number of metagenomic sequence analysis steps rely heavily on
reference databases for microbial species characterisation and annotation. In order to classify as
many contigs as possible, it is essential to use general-purpose large-scale databases. There is a
notable trade-off between using the general-purpose databases that contain all types of sequences
as they are often not as well-curated as other more specialised databases that encompass organism-
specific sequences. This leads to the sensitivity versus specificity challenges that need to be
considered with respect to the aims of the metagenomic projects. Moreover, as more and more
environments are readily sequenced using metagenomic and/or metatranscriptomic approaches,
the databases that harbour these sequences are also expanding exponentially in size. This poses a
computational and resource-oriented issue as local searches, i.e. databases hosted locally on a
server within the same network, are much quicker to perform than those required to be done via

the internet.

2.2.2 Application of metagenomics in microbe discovery

In the last two decades, HTS metagenomic methods have been applied to a range of environments

and bodily sites and have led to the identification of numerous novel microorganisms and their
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interactions. For instance, a study by Brown et al. (2015) applied HTS and cultivation-independent
approaches to identify novel bacterial phyla referred to as candidate phyla radiation (CPR), defined
as new phyla with no isolated representative. A more recent study has demonstrated how the
diversity of the tree of life has been expanded due to these CPRs as they capture around 25%
of bacterial diversity and their interactions with archaea (Castelle et al., 2018). These CPRs
have been shown to be genetically distinct and often lack genes or metabolic pathways that were
identified to be universal for bacterial species. Their unique genomic organisation and other
features including self-splicing introns, split genes and downsizing genomes to gain a competitive
edge to their parasitic hosts suggest that these organisms tend to be highly dependent on their
host microbes, and cannot be grown in laboratory culture and could only be identified with
metagenomic techniques (Koonin, 2018). Other studies that strengthen this host dependency have
studied novel archaecal DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota,
Nanohaloarchaea) superphylum and the Asgard phylum, and their strikingly parallel evolution
with CPR bacteria. The Asgard archaea have also been shown to possess many genes that are
considered to be eukaryotic signature genes and have been phylogenetically shown to be a sister
clade of the eukaryotes (Castelle et al., 2015; Spang et al., 2015; Hug et al., 2016; Spang et al.,
2017; Zaremba-Niedzwiedzka et al., 2017; Castelle et al., 2018; Koonin, 2018). Metagenomics
has also led to the identification of Nitrospira bacterial species that encode all the enzymes
required to carry out nitrification of ammonia (Daims et al., 2015). A study by Kessel et al.
(2015) also mined public sequence databases (such as NR; non-redundant protein database) for
the signature sequences of amoA genes and identified amoA sequences that were misclassified
in these databases as methane monooxygenases. This finding highlights two important points:
firstly, unbiased metagenomic sequencing led to the discovery of the first-ever bacterial species
that was shown to be capable of carrying out the complete cycle of nitrification of ammonia and
secondly, the data mining exercise undertaken by this project helped to correctly classify the
existing sequences in the databases that were labelled "unusual" methane monooxygenase as

amoA gene signatures.

2.2.3 Uncultivated microbial diversity in the human microbiome

Metagenomics has been applied to samples from a diverse range of environments such as soil and
oceans, as well as samples from a variety of hosts including humans. The Human Microbiome
Project (HMP) consortium proposed and led by the NIH in 2007 has taken great advantage
of metagenomics to study the microorganisms that live both inside and on humans. These
microorganisms are known as human microbiota and they are estimated to be present in humans
with a 1 to 1 ratio of human cells, making up to 1-3 percent of human body mass (NIH Human
Microbiome Project - About the Human Microbiome 2020). The HMP has generated over 7 Tb
of sequence data that has been submitted to the Sequence Read Archives (SRA). The HMP was

designed to identify the “core” microbiome of humans. It has served as a resource that has led
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to the identification of 2200 microbial reference genomes (NIH Human Microbiome Project -
About the Human Microbiome 2020), 700 metagenomes and 60 million predicted genes from
healthy adult microbiomes. Results derived from the HMP indicate that the microbiomes between
individuals can differ significantly (Consortium et al., 2012; Gevers et al., 2012). The second
phase of the HMP was established in 2014 and is titled the ‘The Integrative Human Microbiome
Project’ (iIHMP). The iHMP’s aim was to understand the impact of the microbiome on human
health and disease. This involves studying microbes and their interactions with their hosts in
disease-specific cohorts by employing a multi-omics data collection and integration approach.
Another similar study that focused solely on the Metagenomics of the Human Intestinal Tract
(MetaHIT) has identified between 1,000-1,150 prevalent bacterial species from 124 individuals
(Qin et al., 2010). A recent study by Pasolli et al. (2019), recovered 154,723 microbial genomes
by mining nearly 10,000 human metagenomes. Two other gut microbiome dataset mining
analyses led by Almeida et al. (2019) and Nayfach et al. (2019) also expanded the uncultivated
bacterial diversity with the identification of thousands of novel Metagenome Assembled Genomes
(MAGS). Subsequently, Almeida et al. (2020) consolidated the MAGs from the above three gut
microbiome surveys and created a unified catalogue of 204,938 reference genomes from the
human gut microbiome. Although the gut microbiome has been a major focus for a number of
years due to its crucial role in human metabolic health and diseases, other human microbiomes
e.g. skin (Kashaf et al., 2022), oral (Dewhirst et al., 2010), and blood (Whittle et al., 2019) have
also been explored to characterise their microbial makeup. Overall, these studies have shown that
the microbes around us have a large effect on an individual’s health status. Microbiome studies
of various conditions and environments such as disease versus healthy individuals, and of various
human body sites such as the skin, gut, blood, oral and respiratory microbiome, have demonstrated
that human microbiota varies among individuals and within body sites. These variations play
arole in the unique interactions each individual has with other microbial organisms in a given
environmental context. For example, Donia et al. (2014) identified an antibiotic bacterial gene
that was found to be widespread in the gut bacteria of the HMP cohort metagenomic samples,
whilst Norman et al. (2015) and Gevers et al. (2014) identified the important role played by
changes in viral and bacterial microbiomes in Crohn’s disease. The human microbiome has been
considered our second genome and with a realisation, that imbalance or dysbiosis of human
microbial communities can have implications in health status. The human microbiome is a
network of complex interactions between microbes and humans are merely a host that facilitates
these interactions. In turn, microbial communities that are found to be associated with humans
have been shown to be playing an important role in shaping and playing a critical role in human
health (Malla et al., 2019). Problematically, most ‘microbiome’ studies have focused on the
bacterial component of the microbiome, ignoring bacteriophage and RNA viruses, and therefore

the study of the human virome has been identified as a key priority (Zou et al., 2016).
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2.2.4 Viral metagenomics

Traditionally, viruses were discovered using cell culture methods and most viruses known to
date were identified using this technique. However, viruses can be difficult to grow in cell
culture, which hinders the process of virus identification, replication and further functional
studies. A lot of viruses need specific hosts in order to replicate. Most viruses often require
particular host cells and suitable functional environments that can be very challenging to imitate
in a standard laboratory setting. In recent years, metagenomics and metatranscriptomics have
been the most effective techniques to identify and characterise viruses in samples. When these
techniques are applied to viruses, it is termed “metaviromics”, and has led to the characterisation
of the global virome or ‘““virosphere” (Mizuno et al., 2013; Zablocki et al., 2014; Koonin et al.,
2018). Metagenomic and metaviromic techniques are excellent tools to enumerate the virosphere
specifically in the context of viruses that infect uncultivated prokaryotic and eukaryotic microbial
species.

The first viruses to be discovered using metaviromics were in the marine environment
(Breitbart et al., 2002). Since then a range of studies has found viruses to be abundant in a diverse
range of environments. This includes a range of projects such as the Earth’s virome project which
discovered over 125,000 partial DNA viral genomes and the largest phage identified (Paez-Espino
et al., 2016). In the case of the marine environment, a study by Mizuno et al. (2013) identified
over 200 novel marine phage genomes. Additionally, other marine metagenomics projects such
as the Tara Ocean Virome and the Pacific Ocean Virome projects have shown these ecosystems
to be rich in viral communities. These consortiums have identified novel viruses that bear little or
no similarity to previously known viruses (Hurwitz et al., 2013; Jennifer R Brum et al., 2015). A
range of studies have shown that humans harbour diverse viruses that can play a role in the healthy
or diseased status of an individual, this could be either due to direct interactions between viruses
and humans or through the virus interactions with other microbiota. It has also been shown that
the viruses that regulate bacteria in humans have an impact on antiviral immune response and
viral infectivity (Honda et al., 2012; Duerkop et al., 2013; Lecuit et al., 2013; Popgeorgiev et al.,
2013; Rascovan et al., 2016; Zarate et al., 2017). Moreover, HTS has also been applied to identify
novel viral pathogens (Briese et al., 2009; Zaki et al., 2012; F. Wu et al., 2020; Jerome et al.,
2019) and has been instrumental in virus outbreak tracking (T. Li et al., 2019; Gardy et al., 2017;
Luk et al., 2015), and metaviromic projects have also contributed to advancing other related
fields such as human and animal pathogen identification (Hoffmann et al., 2012) and clinical
diagnostics (Nakamura et al., 2009; Stremlau et al., 2015; Moustafa et al., 2017; Thorburn et al.,
2015). Recently a comprehensive consolidated catalogue of the human virome has been created
by Liang et al. (2021) that summarised the family-level overview of eukaryotic and prokaryotic
viruses found in various human body sites.

Initially, metagenomic advances predominantly led to the discovery of DNA viruses that
infect prokaryotes. This was mainly due to the fact that a lot of studies sequenced the DNA
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captured and isolated from the given environments and bodily sites. The first human gut virome
study by Breitbart et al. (2003) showed that a large majority of virus sequences identified from
the human gut were not matching to anything and that gut virome contained around 1200 viral
genotypes. Since then, many large studies have identified hundreds of thousands of DNA viruses
associated with human bodily sites using metagenomics (Tisza et al., 2020; Nayfach et al., 2019;
Paez-Espino et al., 2016; Benler et al., 2021). A large proportion of uncultured virus databases
such as IMG/VR, Gut Phage Database (GPD), and Gut Virome Database(GVD) are made up
of DNA viruses that were catalogued through the means of metagenomics (Roux et al., 2021c;
Luis F. Camarillo-Guerrero et al., 2021; Gregory et al., 2020). Although a large of a proportion
of prokaryotic viruses have been catalogued, due to the unbiased nature of metagenomics, they
cannot be readily linked to their hosts. Virus-host association of uncultivated viruses has been
deemed one of the major challenges in metaviromics (Roux et al., 2021b).

In 2005, a study by Breitbart et al. (2005) isolated and sequenced ssDNA viruses using
the shotgun metagenomics from blood. Since then, many metaviromics studies have led to
the discovery and acknowledgement of small circular virus diversity in human and non-human
samples (Abbas et al., 2019; Ng et al., 2015; Tisza et al., 2020). Small circular viruses such
as anelloviruses have been found to be highly diverse and ubiquitously present in human blood
(Tisza et al., 2021b; Arze et al., 2021). These ssDNA viruses are found in different human
microbiomes including urine, fecal and saliva microbiomes (Kaczorowska et al., 2020), and their
genomic diversity was shown to be driven by the mechanism of recombination (Worobey, 2000;
Arze et al., 2021). The first anellovirus, then called TT virus, was identified from the blood sample
of a hepatitis patient (Nishizawa et al., 1997). Since then, anelloviruses have been found in several
mammals including primates (chimpanzee, macaque, tamarin and douroucouli), cows, dogs, cats,
pigs, rodents and bats as well as seals (Varsani et al., 2021; Souza et al., 2018; Kaczorowska
et al., 2020). Though these viruses have been hypothesised to be associated with a range of
diseases and conditions in humans, this opinion has been contested with an alternative hypothesis
that they have co-evolved with their hosts (Koonin et al., 2021b) and they may be a part of the
commensal human virome (Freer et al., 2018). The virus experts have theorised that anelloviruses
may have a symbiotic relationship with their hosts due to their omnipresence in samples obtained
from both human and other mammalian species (Souza et al., 2018; Kaczorowska et al., 2020).
It is also notable that a complete clearance from anellovirus infection is considered impossible
and is instead driven by the host immune system with a higher viral load evident in those with
compromised immune responses (Freer et al., 2018; Webb et al., 2020; Koonin et al., 2021b). The
authors of Arze et al. (2021) coined a new term “anellome" describing the diversity of anellovirus
genomes in human microbiome datasets.

All RNA viruses have RNA-directed RNA polymerase (RdRp) - a hallmark gene that can be
used to check the presence of RNA viruses in metatranscriptomic samples. Due to the robustness

of RdRp-based virus identification of RNA viruses, it has recently become a popular strategy
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to search for RNA viruses in various environments. Metatranscriptomics has been instrumental
in discovering the highly divergent RNA viruses. Due to their high mutation rates and lack
of proofreading mechanisms, RNA viruses are the most challenging viruses to isolate, study
and understand (Drake et al., 1999; Duffy, 2018). A recent study by Neri et al. (2022) led to
a five fold expansion of RNA phages with the discovery of 5,150 publicly available in aquatic,
terrestrial, host-associated and engineered metatranscriptomes. A separate study by Zayed et al.
(2022) identified thousands of novel RNA viruses from the samples collected from Tara Ocean
expeditions. They analysed 28 terabases of Global Ocean RNA sequences and discovered a
globally distributed phylum termed Taraviricota that may potentially provide the missing link
for the evolutionary origins of RNA viruses in connection with retroelements present in both
eukaryotes and prokaryotes. RNA virome analysis of aquatic sampling from China’s Yangtze
River led to the discovery of 4,500 distinct RNA viruses expanding the previously known RNA
virus diversity twofold (Wolf et al., 2020). Similarly, metatranscriptomic sequencing of 220
invertebrate species identified over 1400 novel RNA viruses and these viruses were found to be
significantly divergent from already known species (M. Shi et al., 2016a). Another study focusing
on the virome of the vertebrates including reptiles, amphibians and a number of fish identified 214
novel vertebrate-associated RNA viruses using metatranscriptomic analysis (M. Shi et al., 2018a).
Other studies have found a range of novel viral species belonging to existing and proposed viral
families in other arthropods such as mosquitoes, honey bees and ticks (Coffey et al., 2014; Lara
Pinto et al., 2017; Pettersson et al., 2017; Remnant et al., 2017; M. Shi et al., 2017). A novel
computational framework called Serratus was developed by Edgar et al. (2022) that exploits the
RdRp landscape, for mining RNA viruses in publicly available data repositories. Serratus was
applied to >5 million SRA datasets and led to the discovery of >100,000 RNA viruses embedded
within them.

Although viruses are not monophyletic, recent sequence-led computational analyses have
highlighted a number of virus hallmark genes (VHGs) that are shared between different groups
of viruses. A study by Iranzo et al. (2016) utilised a hierarchical gene sharing network approach
to characterise the VHGs among the dsDNA viruses. This network-based approach identified
19 modules that were representative of dsDNA viruses which formed five major and three
minor supermodules. They discovered 14 VHGs including terminase, integrase, helicase, DNA
primase, DNA polymerase protease, which highlighted intermodule connections. These hallmark
genes included essential viral structural proteins and those involved in virus replication. As
network hubs for the two largest supermodules, two major capsid proteins (double jelly roll
and HK97-like) were observed. The HK97-like were found in order Caudovirales (an order
that comprise of bacteriophages) and order Herpesvirales (the order that include herpesviruses).
The double jelly roll was shared among the putative order Megavirales and smaller viruses, as
well as polintons, which are large DNA transposons (Iranzo et al., 2016). These VHGs were

subsequently utilised to identify DNA virus sequences from metagenomic datasets and these
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features were implemented in various virus identification tools including VirSorter (Roux et al.,
2015a), CheckV (Nayfach et al., 2020b) and Cenote-Taker 2 (Tisza et al., 2021a). A more recent
study by Koonin et al. (2020a) further refined these VHGs and organised them into superviral
hallmark genes which were observed to be present across different Baltimore classes. These
super hallmark genes included double-jelly-roll capsid protein (DJR-CP; spans BC I and BC 1I),
rolling-circle replication (initiation) endonuclease (RCRE; spans BC I and BC II), RNA-directed
RNA polymerase (RdRp; spans BC III, BC IV and BC V), reverse transcriptase (RT; spans BC
VI and BC VII), superfamily 3 helicase (S3H; spans BC I, BC II and BC IV) and single-jelly-roll
capsid protein (SJR-CP; spans BC I, BC II, BC III and BC IV). This phylogenomics-led network
analysis showed that viral super hallmark genes span multiple Baltimore classes, suggesting a
network-based taxonomy approach may be more suitable to explain and capture the diversity
encompassed within the virus world (Koonin et al., 2020a).

It is important to note that without the powerful metagenomics and metatranscriptomics
techniques, the current knowledge of microbial diversity would be very limited. The discovery
of new uncultivated microbes through metagenomics can enable us to reveal previously unseen
diversity of sequences that can contribute iteratively to increasing the efficiency of current
approaches. Incorporating novel microbial sequences identified through metagenomics could
help to refine computational methods, which will help us answer some of the most pressing

questions in biology and relating to the integrated microbial community surrounding us.

2.3 ‘Unknown’ sequence matter embedded in metagenomic

datasets

With the advents in applications of HTS in microbial research and, the advances in the field of
metagenomics, the public repositories that hold these raw sequencing data such as the Sequence
Read Archive (SRA) and European Nucleotide Archive (ENA) have also grown rapidly in the last
decade (Katz et al., 2022). As of 4 September 2022, over 4.2 million open access metagenomic
datasets are available on the SRA. This is due to the importance of data sharing for reproducible
results: a requirement of funding bodies and scientific journals that sequence data should be
published along with the results highlighted in the research papers. This has led to an expansion
of sequence databases such as GenBank, that store nucleotide and protein sequence data from
various organisms. Although the raw sequences generated as part of metagenomic experiments
are made publicly available through SRA or ENA repositories, the assembled contigs data are
rarely submitted to the relevant databases. Although it is possible to submit assembled contigs
to repositories such as ENA (Hunter et al., 2014) (https://ena-docs.readthedocs.io/en/latest/faq/
metagenomes.html), typically, only the contigs that can be classified using metagenomic pipelines
and are of interest to the scientific study are submitted to sequence databases. However, in a

typical metagenomic dataset, a range of assembled sequences cannot be functionally classified, a
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large proportion of which, even after excluding spurious contigs, bear no functional or sequence
similarity to known sequences and is referred to as biological ‘dark sequence matter’ (Marcy
et al., 2007; Bernard et al., 2018).

Metagenomic sample preparation

HTS Sequencing

Sequence
Read

Raw short reads | .
Archive

(SRA)

Sequence Assembly

Contigs and Scaffolds

Functional Classification

Unclassified

Classified ‘ Unknown

Figure 2.3: This diagram illustrates a typical metagenomic data sharing workflow. The raw
HTS sequence reads are generally submitted to short-read databases such as ENA and SRA. The
assembled sequences that can be functionally classified are annotated and submitted to relevant
INSDC databases such as GenBank. The sequences that cannot be characterised and/or annotated
are excluded and would not be shared.

2.3.1 Microbial dark matter

So-called dark sequence matter is defined as any genetic sequence that originates from the
biosphere and cannot be assigned to a taxonomic lineage and functional category using the
known reference nucleotide and/or protein sequence data (Youle et al., 2012; Krishnamurthy
et al., 2017; Bernard et al., 2018). Although the definition of biological dark matter is strictly
defined as sequence matter belonging to unknown unknowns, it is important to note that novel
sequences identified that are substantially distinct from the known lineage and/or functions are
frequently categorised as ‘grey matter’. This refers to sequences that may be distantly related
to currently classified functional units and bear very little similarity to them. A schematic
representation of this is illustrated in Figure 2. Depending on the analyses, such viral dark
matter could constitute approximately 40-90% of all unidentifiable sequence matter (Youle et al.,
2012; Hurwitz et al., 2013; Minot et al., 2013; Jennifer R Brum et al., 2015; Fawaz et al., 2016;
Krishnamurthy et al., 2017). There are many microbial genome discovery pipelines that can

identify novel bacteria, archaea or viruses in metagenomic datasets (Mitchell et al., 2018b; Nooij
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et al., 2018), however, there is not a streamlined functional analytical pipeline that focuses on
the identification, clustering or classification of sequence dark matter. The advent of cultivation-
independent approaches like metagenomics and metatranscriptomics has made the microbial dark
matter, which is thought to be composed of bacteria, archaea, and viruses, widely accessible. In
addition to enabling large-scale exploration and identification of unknown microbial diversity,
metagenomics has ultimately led to the exponential growth of a wide range of data repositories.
In order to fully understand the uncultivated microbial diversity embedded within these data
repositories, a large proportion of their sequences must be systematically analysed. It is possible
to look for novel sequences or genomes from microbes that are currently uncultivated by mining

publicly available datasets.

Dataset 1 Dataset 2 Dataset 3

(R SR SR Reference
| database

o, @ database

* o Shape Colour

( ( Q Organism A == Protein a

O Organism B ™= Protein b

Data analysis Organism C Protein
Organism D Proteind |
Known Partially known Unknown

(‘Grey’ matter) (‘Dark’ matter)

Figure 2.4: A schematic representation of known, partially known and unknown sequence matter
in the metagenomic datasets.

Viruses are the most abundant entities on the planet with an estimated 103! particles with the
ability to infect microbial populations (Youle et al., 2012). Statistical methods have estimated
that each mammalian species harbours around 58 different viruses and extrapolated that 320,000
viruses yet to be discovered that could infect mammalian species (Anthony et al., 2013). Although
this study focuses on nine virus families, it provides an estimate of the viral unknown that is
yet to be discovered. If this analysis was applied to the 1,740,330 known species of vertebrates,
invertebrates, plants, lichens, mushrooms and brown algae then the number would increase to
100,939,140 viruses that are yet to be discovered (How many viruses on Earth? 2019). This is
equally true for humans, for a given human microbiome e.g. human gut, it is estimated at least
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the same number of bacteriophages are likely to be present as the number of bacteria and other
microbes (Shkoporov et al., 2019b; Sausset et al., 2020). The viruses that can jump from animal
species to humans are considered zoonotic viruses (Rahman et al., 2020). An estimate based on
the known zoonotic viruses and data extrapolation by the Global Virome Project indicates that
around 1.67 million novel viruses are yet to be discovered in mammals and birds. Among these,
it was estimated that between 631,000 and 827,00 novel viruses may have zoonotic potential.
Though it is very difficult to determine the exact number of viruses that could jump the species
barriers and pose potential threat to humans, this approximation highlights the importance of
identifying such biological dark matter as well as its scope.

In the early 2000s when metagenomics was first applied to various environments and
microbiomes, the concept of dark matter was introduced. This term was typically used to
describe the genomic sequences that were so diverse that they did not match any known
sequences in the databases (Krishnamurthy et al., 2017; Roux et al., 2021b). In the last two
decades, a number of studies have tried to dive deep into microbial dark matter to make sense of
these unknowns. A 2013 study by Rinke et al. (2013) that employed single-cell genomics and
sequenced nine diverse habitats identified 201 uncultivated microbes belonging to 29 previously
uncharted branches of the tree of life. In 2016, Hug et al. (2016) used over 1000 uncultivated and
little-known organism genomes from IMG/M (Markowitz et al., 2012), combined with public
genomic data, to infer the tree of life and defined a hyper-diverse group of microbial dark matter,
called the Candidate Phyla Radiation (CPR), which subdivides the domain Bacteria (Hug et al.,
2016). Similarly, Parks et al. (2017) mined 1,550 metagenomes downloaded from the SRA
datasets and identified 7,903 novel bacterial and archaeal genomes spanning 17 bacterial and
three archaeal candidate phyla. Their study also led to the discovery of 245 genomes from CPR
and showed that the relative diversity of this group differs significantly with different protein
marker sets (Parks et al., 2017). A recent review focusing on the importance and challenges in
studying microbial dark matter highlighted the importance of microbial dark matter mining and
reiterated that a number of major bacteria and archaea lineages have been recovered solely

through metagenomic sequence mining (Jiao et al., 2021).

2.3.2 Viral dark matter

In 2015, Roux et al. (2015b) mined 14,977 publicly available bacterial and archaeal genomes
and identified 12,498 high-quality viral genomes. They utilised VirSorter (Roux et al., 2015a) -
a computational method to identify virus-specific signals from bacterial and archaeal datasets
leading to the accurate prediction of prophages embedded within the host genomes. However,
these novel virus sequences were not recognised as novel viruses in the official virus classification
framework. A solely computationally identified crAssphage was shown to be omnipresent in the
human fecal microbiome and made up 1.7% of all fecal metagenomic sequences (Bas E. Dutilh

et al., 2014). Subsequent studies identified bacterial members from the genus Bacteroides as
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the natural hosts of crAssphage and also led to the revelations that crAssphages are a group
of viruses that reside in the human gut (Robert A. Edwards et al., 2019; Koonin et al., 2020b;
Yutin et al., 2018; Guerin et al., 2018). According to ICTV Virus Metadata Resource Master
Species List 37 (ratified in March 2022), crAssphages are included in order Crassvirales in class
Caudoviricetes and realm Duplodnaviria. The order Crassvirales contains 73 species included in
4 families and 42 genera (https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository/13426).
Jennifer R. Brum et al. (2016) applied metagenomics and metaproteomics to marine samples and
identified 1,875 novel virion-associated proteins specific to dSDNA viruses. The viral dark matter
that consists of unknown viruses was demonstrated to play an important role in inflammatory
bowel disease as the composition of human virome was observed to be altered compared to
healthy human gut virome (Clooney et al., 2019).

Recently a study (Nayfach et al., 2021) analysed 11,810 publicly accessible human gut
microbiome samples and generated a comprehensive Metagenomic Gut Virus catalogue that
comprises 189,680 viral genomes. Another study, conducted the same year, utilised systematic
data mining to identify a range of novel virus sequences in human gut metagenomes.
Luis F Camarillo-Guerrero et al. (2020) recovered 142,809 non-redundant gut phage genomes
from 28,060 metagenomes and isolate genomes from the human gut. A relevant viral
metagenomic study by Gregory et al. (2020) explored the human gut microbiome of 1,986
individuals representing 16 countries and identified >33,000 novel gut virus sequences. This
study also explored that human gut virome patterns are age and health status-dependent (Gregory
et al., 2020). These studies highlight the importance of identifying and cataloguing viral dark
matter. In this day and age where metagenomics has become a routine tool to study the microbial
composition of a given sample, dark matter analyses often become synonymous with the

discovery of novel viruses.

2.3.3 Mobile genetic elements (MGEs)

The mobilome is defined as any mobile genetic element (MGE) that spread horizontally and
within a microbial community (Siefert, 2009). Bulk metagenomic samples often contain
plasmids, bacteriophages, mobilisable genetic elements, integrative conjugative elements (ICEs
or conjugative transposons), insertion sequences, integrons, and gene cassettes (Carr et al., 2021).
MGEs are important in studying the functional elements of the microbiome that affects microbial
community composition, antimicrobial resistance genes and virulence factors. The mobilome is
the agent of change that facilitates the process of horizontal gene transfers (HGTs). The
community-level microbiome datasets that are sequenced through metagenomics, provide a
unique opportunity to understand the roles that MGEs play in shaping the microbial evolution. It
1s also anticipated that mobilome may play an instrumental role in determining how selection
pressure impacts microbial communities and their impact on host organisms or tissues (Hall

et al., 2022). Moreover, aside from transporting resistance determinants, they also transmit
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virulence factors and antimicrobial resistance determinants between bacteria (Partridge et al.,
2018) which is highly relevant in clinical settings such as antimicrobial resistance.

The metagenomic dataset provides an opportunity to gain further insights into the microbial
mobilome. To address the different parts of the mobilome embedded within the microbiome
dataset, customised metagenomic data analysis protocols are required as the mobilome elements
vary greatly in size and have diverse mechanisms of movement (Carr et al., 2021). For example,
plasmid sequences can vary from <1 kilobases (kb) to several megabases (mb) whereas ICEs
are at least 18kb long (Siefert, 2009). The bacteriophages can have diverse genome lengths
and can integrate their genetic material into the host genomes (prophages). Furthermore, the
microbial mobilome is often composed of a mixture of highly heterogeneous elements; moreover,
certain elements are difficult to distinguish from one another (Carr et al., 2021). These unique
features entailed by MGEs hinder their identification using standard metagenomic data analyses
approaches. To capture specific types of MGE, tailored isolation and sequencing approaches need
to be employed. For example, a high-throughput transposon-aided capture (TRACA) method
is used to isolate circular plasmids from metagenomic DNA. They are then transformed into
Escherichia coli for cloning, before being sequenced using shotgun approaches or PCR to fill in
gaps in sequences (B. V. Jones et al., 2006; Smalla et al., 2015). Other approaches such as size
filtering for phage/virus isolation that is described in detail in section 2.2.1 can also be applied to
target specific parts of the mobilome. Though these targeted approaches help tackle the resolution
issue, they could also lead to a slightly biased representation of MGE abundance and MGE load
in a given sample or environments.

Current metagenomic sequencing experiments are heavily reliant on the short reads technology
that works well in the case of assembling microbial genomes from scratch but provides limited
resolution for MGEs. As fragmented assemblies derived from short read sequences often lack the
required resolution to fully reconstruct the mobilome from metagenomic datasets, this challenge
i1s more comprehensive for MGEs. To this end, MGE-specific tools and pipelines have been
developed and applied to the microbiome datasets to identify the specific parts of the mobilome,
for example there are a large number of phage assembly and identification pipelines developed
exclusively to interrogate the bacteriophages present in a given microbiome sample (Fung et al.,
2022). There are also plasmid-specific tools available that can be used to identify these specific
categories of MGEs from metagenomic data (Carr et al., 2021). However, it is clear that all part
of the mobilome are yet to be fully characterised and their genomic signatures are likely to be
captured in the current microbiome datasets but exist as biological dark matter or unknowns. It
is anticipated that a hybrid sequencing approach and the development of additional specialised
tools targeting the mobilome embedded within microbiomes would provide further insights into
these mobile genetic elements that are currently considered biological unknowns.

In the era of HTS, researchers are faced with the problem that an increasing amount of

sequence data exists that does not match with the currently known genetic sequences using
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the standard sequence similarity-based approaches such as BLAST, thus it is important to
employ other non-similarity-based computational approaches such as sequence prediction and
identification using machine learning (Ren et al., 2017; Ren et al., 2020; Barrientos-Somarribas
et al., 2018; Maarala et al., 2018). Although dark matter expeditions predominantly focus
on sequence identification, the addition of further important information including sequence
annotation and gene identification and prediction are deemed equally as important to add value to
the newly assembled sequences. A recent framework called Agnostos was developed (Vanni et al.,
2022) to categorise the genes with known and unknown functions. It was applied to 400 million
microbial genes predicted from 1,749 metagenomes and 28,941 bacterial archaeal genomes.
The results showed that around 30% of these genes were deemed of unknown functions. This
percentage was smaller than the previous estimates of around 60% in ocean datasets (Salazar
et al., 2019) and 40% in human datasets (Thomas et al., 2019). Their analysis also showed
that these genes of unknown functions are highly diverse. Moreover, by combining targeted
hypothesis testing and an experimental approach, they were able to identify a novel gene that
could be involved in antibiotic resistance (Vanni et al., 2022). This gene-level dark matter analysis
approach can provide the basis for further research in the field of dark matter that encompasses
multiple levels of unknowns.

It is notable that the proportion of unknowns embedded within the microbiome and
metagenomic samples changes over time. In the early 2000s, a large proportion of sequences
identified from metagenomics could not be attributed to known organisms and the corresponding
sequences available in those databases. Hence, the initial quantification of unknown sequences
identified from early metagenomics studies was expected to be up to 90% for certain
environments and/or microbiomes and it was anticipated to be environment-dependent (Rinke
et al., 2013; Krishnamurthy et al., 2017; Solden et al., 2016). However, as metagenomic and
single-cell sequencing became popular, they were routinely employed to study various
environments and microbiomes, and as a result, a number of previously unknown hidden species
were discovered. Moreover, with new taxa included in the set of reference genomes,
microbiomes can be analysed more comprehensively since a higher proportion of reads
generated from shotgun sequencing experiments match a catalogued microbial genome, which
increases the mappability of the metagenome. As an example, in recent years the mappability of
the human gut microbiome has increased to an average of 85 percent (Pasolli et al., 2019;
Thomas et al., 2019), suggesting that a more comprehensive picture is emerging of the microbial
community contained within it. Despite these advances, some of the most studied environments
such as human microbiomes may still contain about 20% of unknown sequences that cannot be
related to any known sequence (Thomas et al., 2019) emphasising the importance of cataloguing
and characterising the genetics of these unknowns that are captured, present yet hidden in

sequence datasets.
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2.4 Machine learning and its applications in microbial

sequence analysis

Exploration and identification of uncultivated microbial diversity have benefited hugely from
computational and algorithmic advances including machine learning (ML). Due to their
widespread accessibility and application across the field of microbiology, ML and Deep Learning
have become regular resource in Bioinformatician/Computational Biologists’ tool kits. These
methods help researchers understand the mechanisms underpinning uncultivated microbial
diversity, and their interactions with each other and can help unravel the diverse role they play in
nature and how it affects their hosts including humans (Ching et al., 2018; Qu et al., 2019;
Ghannam et al., 2021).

ML provides opportunities to determine and learn patterns from the big datasets such as those
generated from HTS technologies and can help to understand complex biological systems of
uncultivated microbes. ML models that are disseminated for wider research applications often
entail one of the following: a) predictive modelling (supervised learning) and b) description
or inferring relationships from the data (unsupervised learning). A typical supervised learning
workflow entails the extraction of features from a given dataset and then training various models
by sub-setting proportions of these observations captured in the dataset. Data is typically split
into two categories: a training set and a testing set. The training set is used to train the models,
these trained models are then used to interrogate the test dataset to predict the outcome. The
model performance is evaluated by comparing the expected outcome with the model output.
Unsupervised ML approaches are utilised in cases where the target outcome of the data is
unavailable. Briefly, unsupervised ML models work by analysing unlabelled, unclassified data
and attempting to detect hidden patterns in it. Clustering is one of the most popular examples of
unsupervised learning (Sarker, 2021).

In recent years, ML has become an increasingly mainstream method in bioinformatics and
computational biology, and, has been applied to all types of biological dataset ranging from
genomics to protein structure predictions. For example, natural language processing (NLP)
methods have been widely applied to sequence datasets whereby shorter sequences (k-mers)
derived from genome sequences are converted into embeddings or vectors. These biological
sequence vectors can then be used to estimate function and structure, or to feed into other
probabilistic models (Yandell et al., 2002; Tuchi et al., 2021). In recent years, ML has been
applied to address outstanding biological questions that led to significant advances of the field.
Accurate protein structure prediction models implemented in AlphaFold (Jumper et al., 2021) and
RoseTTAFold (Baek et al., 2021) utilise neural networks and deep learning algorithms combined
with sequence alignment and known protein structures to build and predict structures of novel
proteins from sequence data. AlphaFold predicts the local regions of the protein structure that are

derived from the protein sequence and structural homology first, and then stitches them together
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to obtain a complete structure of the input protein sequence. AlphaFold predictions have been
shown to achieve similar accuracy as conventional protein structure derivation techniques such as
x-ray crystallography (Jumper et al., 2021). These highly accurate protein structure models have
been subsequently made publicly accessible through European Bioinformatics Institute (EBI)’s
AlphaFold DB platform. This resource currently contains more than 200 million protein structure
predictions, allowing researchers to uncover complex mechanisms underlying protein function
and interactions (Varadi et al., 2022).

ML can help untangle the complex microbial signals in microbial research. For example, the
classification and predictive models can help to detect the presence of a specific microbial species
and/or other taxonomic groups in a given sample. A range of tools and packages have utilised this
approach to develop models that can accurately predict the taxonomic group of a given sequence.
For example, a popular microbiome species prediction tool that can predict the microbial class
based on marker genes e.g. 16S and other rRNA signatures, IDTAXA developed by Murali
et al. (2018) was shown to outperform more traditional homology search based 16S classification
tools such as BLAST, RDP and QIIME. IDTAXA tool has been extended further and a more
recent version of this tool that incorporated amino acid signature-based prediction is shown to
outperform traditional protein assignment tools such as HMMER and BLAST by accurately
linking sequences to KEGG ortholog groups (Cooley et al., 2021). In the case of virus predictions,
tools such as MARVEL (Amgarten et al., 2018) and VirSorter (Roux et al., 2015a) have been
extremely popular and successful in predicting bacteriophage sequences from microbiomes
datasets using virus hallmark genes. Other methods that implemented entirely k-mer signature-
based tools like VirFinder (Ren et al., 2017) and DeepVirFinder (Ren et al., 2020) have also been
efficiently used to predict both DNA and RNA viruses from metagenomic datasets. An updated
version of the virus prediction tool VirSorter, VirSorter2 that combines genomic signatures with
other features such as hallmark genes and protein domains can accurately predict DNA and
RNA virus sequences from microbiome data (Guo et al., 2021a). Random forest and artificial
neural network models that implement simple features such as relative synonymous codon usage
(RSCU) have also been shown to perform well in discovering viruses from metagenomic datasets
(Bzhalava et al., 2018).

Identification of virus-host associations has been argued as one of the most challenging
areas of research that has been even more prominent due to the recent emergence of SARS-
CoV-2 (Cobbin et al., 2021; Coclet et al., 2021; Holmes, 2022). Though metagenomics has
unravelled previously unseen virus sequence diversity, linking viruses to their host(s) remains a
major challenge (Roux et al., 2021b). The host information associated with metagenomically
derived viruses is often not readily available through standard metagenomic analyses, hence,
the crucial virus-host linkage remains largely unknown (Roux et al., 2021c; Roux et al., 2019;
Coclet et al., 2021). As there are no well-established high-throughput experimental method,

researchers rely on bioinformatic predictions to link uncultivated phages with their potential
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hosts since. These predictions are typically based on molecular signals (features) of coevolution
and/or an arms race between phages and their hosts, such as identical matches to reference
host genomes or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers,
and comparisons of sequence compositions. Computational tools for host predictions typically
require a phage genome sequence or genome-derived features that are searched against host
features and/or host genome databases to perform host prediction analyses (reviewed in (Coclet
et al., 2021)). Broadly this type of analyses can be grouped into three major categories. The
alignment-dependent approach typically relies on a host database-led similarity searches that
are carried out by BLASTN or equivalent alignment search tools. Sequence similarities are
often reflected in integrated proviruses, host-encoded CRISPR spacers, auxiliary metabolic genes
(AMG), and/or shared tRNAs, all reflecting different arms races and/or coevolutions between
phages and their hosts. There are several tools and databases such as SpacePHARER (R. Zhang
et al., 2021), CrisprOpenDB (Dion et al., 2021) that implement CRISPR spacer-led identification
approach that would yield highly sensitive and accurate virus-host predictions as spacers represent
the previous interactions between phages and their host(s). The similarity between the query
phage and a CRISPR spacer (typically 20-70 nucleotide (nt) long) reflects a successful defence of
bacteria against a closely related phage. Due to the ongoing arms race between phages and hosts,
phage genomes and CRISPR spacers are highly similar in sequence (Horvath et al., 2010; Stern
et al., 2012; Dion et al., 2021) leading to accurate host predictions. However, these approaches
can have low recalls as they are highly reliant on host genome databases (Coclet et al., 2021;
Dion et al., 2021). Other alignment-based approaches that utilise phage marker genes to predict
virus-host associations also suffers the same shortcoming as they rely on existing databases
and similarity searches. An alternative to alignment-based approach is alignment-free approach
whereby short nucleotide sequences (k-mers) and/or protein composition features are used to
predict virus host(s). Genome sequence similarities between phages and hosts can be attributed to
the adaptation of the phage genome to host replication, transcription, and translation machinery
(Roux et al., 2015a). These methods allow host prediction for a broader range of phages than
alignment-based approaches because they do not require the presence of closely related phages or
hosts in the database. However, they tend to be less accurate than alignment-based approaches. A
number of these alignment-free prediction tools implement machine learning models to carry out
predictions. Due to the high level of uncultivated virus diversity being identified from microbiome
and metagenomic datasets, the race to accurately link these viruses to their host has been deemed
a welcome challenge by ML researchers. A range of virus-host prediction strategies such as
prophage detection (Roux et al., 2015b), CRISPR spacers signatures (Dion et al., 2021), and
virus-host genomic composition analyses (Babayan et al., 2018; Young et al., 2020) has been
translated into ML models that can accurately assign a host taxa to uncultivated virus species. A
study led by Young et al. (2020) showed that Support Vector Machines (SVM) models trained on
short nucleotide and protein k-mers, protein domains as well as physio-chemical properties of
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amino acid sequences were accurately able to predict the host of both prokaryotic and eukaryotic
viruses. Young et al. (2020) also recommended an integrative approach of combining a range of
these features can lead to improved virus-host predictions. Another study by Babayan et al. (2018)
was able to implement gradient boost ML models to accurately predict reservoir hosts and vectors
of RNA viruses based on their genomic signatures. VIDHOP - a deep neural network approach
devised by Mock et al. (2021) that can accurately predict the host based on short 100-400 bases
signatures from viruses without needing the models to be trained on the host genomes, provides
promising advancement to link uncultivated viruses to their host(s), especially in the context of
pandemics and zoonosis. Beyond these widely popular research avenues, ML has also been used
to predict disease based on the microbial communities in microbiome samples (J. Y. Shi et al.,
2018), identifying interactions and associations between microorganisms (Leite et al., 2018) as
well as exploration of microbiome-disease associations (X. Chen et al., 2017; Yan et al., 2020;
Yan et al., 2021). The third and final category integrates both alignment-led and alignment-free
approaches. These integrated approaches maximise both the recall and accuracy of phage—host
predictions as they integrate multiple approaches and address specific challenges and limitations
of each method. Integrative approaches implemented in VirHostMatcher-Net (W. Wang et al.,
2020) and PHISDetector (F. Zhang et al., 2020) use machine-learning models and score the
overall probability of individual phage-host pairs using a combination of alignment-free and
alignment-based features. A combination of alignment-free and alignment-based features is
incorporated into both tools based on (i) k-mer frequencies based similarities between phages and
hosts; (ii) CRISPR spacers shared by both phages and hosts; and (iii) alignment-based matches
between phages and hosts. To achieve best recall and accuracy of phage—host pair detection, the
use of multiple host prediction tools appears to be a reliable strategy.

ML and Deep Learning methods present a significant opportunity to apply these extensively
used data analysis techniques and tools to explore microbial as well as dark sequence matter.
As microbial dark sequences are likely to possess significantly different genomic signatures
to currently known sequences, the ML approaches can be customised, trained and adapted to
comprehend the current knowledge of microbial genomics, and apply it to explore the unknown

microbial diversity embedded within sequence data repositories.

2.5 Motivation

The study of biological dark sequence matter is a very dynamic field of microbial research as new
organisms and environments are sequenced at a fast pace, and the use of sequencing technologies
has been increasing the data output. Identification of sequences of unknown origin should be
considered an iterative process. As more microenvironments in the biosphere are sequenced,
more novel organisms and their genomic contents will be catalogued. The sequences that may

have been the biological dark matter a few years ago before their discovery, such as crAssphage
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and Chuviruses, have now become mainstream identifiable and classifiable sequence matter.
These discoveries are important to understanding the interactions between humans and other
microorganisms present in the biosphere. By mining the metagenomic data for such unknown
signatures, I aim to explore, catalogue and potentially classify the microbes that may be present
in the different organisms and/or environments. Identification of novel microbial species and
their corresponding genomes provide the first insight into their sophisticated ecosphere. This
would lead to a better understanding of the microbial world around us. This project aims to
identify, quantify and potentially classify the unknown microbial matter in human metagenomic
and vector metagenomic datasets. These unknown microbes could be potential disease-causing
agents. A better understanding of the microbial biosphere around us could also help us understand,
predict and control disease outbreaks. Cataloguing and characterising the dark sequence matter is
important in the context of emerging viruses. It will provide a means of determining whether
a novel virus has already been sequenced and in which studies it has been sequenced, lead to a
better understanding of virus-host interactions and can also help to detect and catalogue common
viral contaminants in various datasets. In order to reduce observational bias or the street light
effect, it is important and inevitable to move away from looking where it is most obvious to look

to discover truly new organisms.
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Identification and quantification of
‘unknown’ biological sequences in human

microbiomes

Unknown explorations

The UnXplore framework and unknown sequence analyses described in this chapter are published

in mSystems. A copy of the accepted manuscript is included in Appendix D.

Modha S, Robertson DL, Hughes J, Orton RJ. Quantifying and Cataloguing Unknown
Sequences within Human Microbiomes. mSystems. 2022 Apr 26;7(2):e0146821. DOI:
10.1128/msystems.01468-21.

3.1 Abstract

Advances in high throughput sequencing technologies and cheaper sequencing costs have led to
the rapid growth of the data repositories that hold these data. With these advances, metagenomics
and metatranscriptomics have become popular tools to study and acquire a snapshot of the
microbial communities in various environments. However, due to the limitations of the various
databases used in the microbial identification analysis, there are a large number of unknown
sequences that are embedded within these repositories that often remain unidentified. To this end,
a portable and extendable framework was developed to systematically quantify the amount of
unknown biological matter in publicly available metagenomic repositories. A survey of this data
suggests less extensively explored microbiomes such as skin and oral microbiomes contain a
large amount of unknown biological sequences on average. These unknown sequences are found
in most microbiomes and could potentially belong to uncultured and unidentified novel microbes

that surround us and that we interact with on a daily basis.
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3.2 Introduction

Metagenomics has become an increasingly mainstream tool to catalogue the microbial makeup
of any given habitat (Aguiar-Pulido et al., 2016; Koonin, 2018; Quince et al., 2017; Thomas
et al., 2019). It has been applied to a diverse range of environments from human body sites
(Foulongne et al., 2012; Gevers et al., 2012; Consortium et al., 2012; Qin et al., 2010) to the depth
of vast oceans (Breitbart et al., 2002; Hurwitz et al., 2013; Mizuno et al., 2013). Metagenomics
provides a relatively unbiased approach compared to culture-based methods; to observe, measure
and understand the interactions of the microbes within communities as well as with their hosts,
including humans (Quince et al., 2017). Underpinned by powerful insights and relatively cheaper
sequencing costs, metagenomics has become a routine technique to study the microbial content
of any environment (Koonin, 2018).

These advances in sequencing technologies have led to the rapid expansion of publicly
available sequence repositories. This is due to the importance of data sharing for reproducible
results: a requirement of funding bodies and scientific journals is that sequence data should be
published along with the results highlighted in the research papers. This has led to the growth
of sequence databases such as GenBank, that store nucleotide and protein sequence data from
various organisms (Cochrane et al., 2015; Karsch-Mizrachi et al., 2017). However, although
the raw sequences generated as part of metagenomic experiments are made publicly available
through Sequence Read Archive (SRA) or European Nucleotide Archive (ENA) repositories, the
assembled contigs data are rarely submitted to the relevant databases (Connor et al., 2019). The
reason for the absence of these types of data can be associated with the requirement for sequences
to be annotated before their submission to annotated databases such as GenBank, which is not
possible when the organism the sequence came from is unknown. INSDC databases such as ENA
allow scientists to submit assembled and unannotated contigs, but this practice is not always
followed. Moreover, all of the contigs generated as part of this analysis may not be relevant
and/or of interest for a specific research goal. Furthermore, the unidentified contigs are often
discarded and excluded from downstream analysis.

The raw data in public databases are typically analysed using metagenomic protocols designed
to address specific project aims. There is a range of different tools and pipelines available for
metagenomic sequence analysis. There is a limited comparison of these pipelines as they are
usually developed to address a specific research question. For example, there are approximately 50
workflows available for virus metagenomic analysis that have been used in different publications
with primarily different aims (Nooij et al., 2018). As part of the routine metagenomic analysis,
only the contigs that can be classified using a specific workflow and that are of interest to the
scientific study are submitted to sequence repositories such as GenBank. However, in a typical
metagenomic dataset, a range of assembled contigs cannot be functionally or taxonomically
classified, a large proportion of which, even after excluding spurious contigs, bear no functional

or sequence similarity to known sequences and are often referred to as biological ‘dark’ or
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uncharacterised sequence matter (Youle et al., 2012; Krishnamurthy et al., 2017; Bernard et al.,
2018). Although the terminology itself has been controversial (Murat A., 2020), it typically refers
to the sequences of unidentified taxonomic or functional origin.

Generally, these contigs are often excluded from downstream analyses. However, a number
of recent studies have highlighted the importance of identification and categorisation of such
unknown sequences: A study led by Almeida et al. (2019) have mined over 11,850 human gut
microbiome datasets and has identified nearly 2000 novel uncultured bacterial species from
92,143 genomes assembled from metagenomic datasets. Similarly, another focusing on multiple
human microbiomes assembled 150,000 microbial genomes from 9,428 metagenomic datasets
(Pasolli et al., 2019).

Characterisation of Metagenomically Assembled Genomes (MAGs) as microbial origin has
strengthened the hypothesis that the uncharacterised biological sequence matter is highly likely
to belong to the uncultured bacteria, archaea and viruses that surround us (Rinke et al., 2013;
Bernard et al., 2018; Thomas et al., 2019; Woyke et al., 2019). A range of different ‘dark’
matter studies has led to the identification of novel microbes, including the identification of novel
bacterial and archaeal phyla and superphyla (Rinke et al., 2013; Saw et al., 2015). Previous
studies have shown that dark sequences of unknown lineage and unknown functions tend to be of
viral origin (Youle et al., 2012). For example, a novel identified phage species crAssphage has
been shown to constitute approximately 1.7% of all fecal metagenomic sequences (Bas E. Dutilh
et al., 2014). A more recent study by (Yutin et al., 2018), predicted that this phage is likely to
belong to a crAss-like family of viruses that are associated with diverse bacteria from the phylum
Bacteriodetes. A study by Roux et al. (2015b) mined 14,977 publicly available bacterial and
archaeal genomes and identified 12,498 viral genomes linked to their hosts. This is applicable to
human datasets too, a study mined human metagenomic data and identified 32 novel predicted
putative gene families of which one family is shown to be related to the Torque Teno virus and
has led to the identification of a novel bacteriophage called bacteriophage HFM (Barrientos-
Somarribas et al., 2018). A study led by Kowarsky et al. (2017), found that 1% of cell-free DNA
sequences appear to be of non-human origin in human blood samples and only a small fraction of
them can be mapped to currently known microbial sequences. Despite this, multiple levels of
unknowns remain an ongoing challenge in microbiome research (Thomas et al., 2019) and the
identification of viruses in ‘dark’ matter remains an even greater challenge due to the absence of
a universal gene signature and the high diversity among virus genome content (D. Wang, 2020).

There has been a community-wide effort to address the above challenges by mining the
sequences present in the short-read archives (Connor et al., 2019; Mitchell et al., 2018b) to
compile a complete list of assembled sequences and then, annotate them to identify the diversity
that is harboured within these unexplored sequences. A range of different tools and pipelines
have been developed to forward this field of research (Pasolli et al., 2017; Sczyrba et al., 2017;
Mitchell et al., 2018b; Von Meijenfeldt et al., 2019; Paez-Espino et al., 2019; Tisza et al., 2020;
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Galloway-Peia et al., 2020). However, a comprehensive computational framework and associated
database that provide details about the presence of uncharacterised biological matter in different
metagenomic samples are still to be designed.

In this project, a framework was developed that can be applied to metagenomic datasets
and can enable the detection of sequences of unknown taxonomic origins. This framework was
employed to mine human microbiome datasets to quantify the extent of unknown sequences
embedded within them. Additionally, the UnXplore framework could be expanded to incorporate
potential classification and comparison of biological unknown sequence matter between different

datasets.

3.3 Methods

Metagenomic sequence analysis is a computationally intensive task and requires an appropriate
computational environment to analyse the large volumes of short-read data. The European
Bioinformatics Institute (EBI) has developed a ‘standard’ metagenomic analysis pipeline -
MGnify (Mitchell et al., 2018b; Mitchell et al., 2019) that has been made available to all
researchers. This online platform allows users to submit their data to the ENA and offers
standard metagenomic analysis facilities. Although the workflow of this pipeline is not tailored
to serve a specific project, it helps researchers to get an overview of the microbial communities
present in their samples. Briefly, MGnify includes a de novo assembly step that generates contigs
from the studies and all contigs generated with the pipeline. These contigs are submitted to
downstream analysis that includes ribosomal profiling, open reading frame predictions, domain
identification and functional annotations (Mitchell et al., 2019). However, this general-purpose
framework cannot quantify the proportion of unknown sequences in samples analysed using this
pipeline.

In this study, datasets available within MGnify resources were included. All human
microbiomes submitted to ENA which were included in the MGnify databases were downloaded
with corresponding metadata on 19 April 2019. This included a set of 351 unique studies
comprising a range of different microbiome datasets from human hosts. In order to obtain further
metadata, each study was linked to the corresponding SRA repository using NCBI eutilities
(Sayers, 2018). One study with ENA accession MGYS00000314 could not be linked to SRA
databases. As this project focuses on metagenomic datasets, studies targeting
metabarcoding-based sequencing methods such as 16S and/or amplicon sequencing were
excluded with studies that solely focused on third-party annotation i.e. analysis of previously
published data that lack primary data were also excluded (n=190). In order to reduce sequencing
technology-related bias, studies that utilised sequencing platforms other than Illumina were
excluded (n=49). Any Illumina platform samples with amplicon library preparation

LibrayStrategy == AMPLICON were also excluded as they typically do not represent
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metagenomic sequencing (n=51). A number of studies utilised multiple sequencing platforms
(n=5), and, a few studies included multiple types of library preparations (n=3), in these cases,
samples were sequenced on the Illumina platform along with non-amplicon samples were
included (n=3). To keep the pilot datasets to a reasonably manageable size, studies with more
than 100 samples were also limited to a random sampling of 100 samples (n=19: fecal=12,
human=4, intestine=2, oral=1). Overall, the generated curated set included in the pilot study
comprised 44 distinct studies with 1130 samples.

Initially, all samples were downloaded using the DownloadSRAReads . py (https://github.
com/sejmodha/UnXplore) script that used parallel-fastq-dump (Valieris R., 2020) to get a local
copy of the published short reads archives data files in fastq format. These samples were
divided into two major categories according to the sample’s library layout: single-end and paired-
end. This categorisation also helped to design a customised analytical pipeline suitable for the
corresponding reads layout. The pilot dataset included 790 paired-end (PE) and 340 single-end
(SE) samples. However, a range of sample-specific raw data files were missing from the SRA. 8
samples from BioProject PRIEB19188 and 1 sample from BioProject PRIEB14383 were not
publicly available on the SRA, and, were excluded from the analysis. In total, 1121 samples
(789 PE, 332 SE) from 43 distinct studies were successfully downloaded and submitted to the

metagenomic analysis pipeline.

3.4 Results

3.4.1 Metagenomic analysis

A comprehensive metagenomic workflow was designed to analyse samples included in this study.

An overview of the analytical approach is shown in figure 3.1

Quality assessment

Out of 1121 samples, 158 could not be assembled due to insufficient reads and were excluded
from downstream analysis. A majority of these samples were from BioProjects PRIEB14782 and
PRIEB15057. Further details about these samples are shown in the appendix tables A.1 and A.3.
In summary, 963 samples from 40 distinct studies were included in the pilot study and were
processed using the complete metagenomic pipeline developed as part of this project. All results
described in this chapter are summarised based on these 963 (784 PE, 179 SE) samples. A brief
overview of each study, description and number of samples is listed in the appendix table A.2
In order to assess the quality of the samples and remove sequencing adaptors, all samples
were submitted to ‘bbduk’ from the BBTools package (Bushnell B., 2015a; Bushnell B., 2019).
The word Duk in bbduk stands for Decontamination Using Kmers. BBDuk is capable of
efficiently trimming, cleaning and filtering sequences based on kmer matches. The recommended
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kmer threshold of mink=11 and k=23 were used. All samples included in this study were
sequenced using the [llumina sequencing platform, however, the sequencing methods varied
between samples. It is often not possible to trace the exact sequencing adapters used during
sequencing, a fasta file containing a range of adapters was used to trim the adapter sequences from
the reads for all samples. BBDuk auto-detected the presence of the relevant adapter sequences
from the input fastq file specified and trimmed them. Additionally, commonly known sequencing
contamination and spike-in sequences including PhiX adapters, PhiX Illumina sequences and
other miscellaneous sequences were also trimmed and removed as part of the quality trimming
step. In order to retain the best quality reads, all reads below the average PHRED quality score of
20 were trimmed after kmer-based filtering. BBDuk recommended parameters for paired-end
samples tbo and tpe were also applied to trim adapters where pair overlap was detected (tpe),
and, to ensure that both reads were trimmed to the same length if the adapter sequence was only
detected in one of the pairs (tbo) (Bushnell B., 2015a). All reads that pass the rigorous trimming
and quality filters were retained and submitted to the next step of the pipeline.

The quality trimmed reads were mapped to the human genome sequence build GRCh38
using the Burrows-Wheeler Aligner (BWA); a tool for mapping short reads to its corresponding
reference genome (H. Li et al., 2009). BWA is one of the fastest and most accurate tools for
mapping reads back to large reference genomes such as the human genome (Hatem et al., 2013).
These alignments are stored in Binary Alignment/Map (BAM) files. These files were processed
to obtain the unmapped reads that were extracted using SAMTools (Heng Li et al., 2009).

Read normalisation

Biological samples processed using metagenomic protocols typically contain short sequencing
reads distributed unevenly across sequenced genetic material. If these reads are assembled using
de novo assembly tools, they often result in the assembly of the most abundant species in the
samples, thus missing the low-abundant species. In order to reduce sequence assembly bias, the
best practice is to normalise the reads prior to the de novo assembly step (Howe et al., 2014).
In this pipeline, BBNorm (Bushnell B., 2015b) was used to normalise reads based on the kmer
coverage composition. This step also enabled the acceleration of the assembly process as only a
subset of reads were used to build the de novo assembly and resulting in better assembly quality
overall (Crusoe et al., 2015). BBNorm employs a kmer-based coverage algorithm whereby
the user can define the minimum number of kmers coverage cut-off to be used for the read
normalisation. Typically, sequencing depth under 2x is understood to be sequencing errors
(Bushnell B., 2015b), therefore, a kmer threshold of 3 (mindepth=3) was implemented in the
pipeline and any kmers below that threshold are deleted. This step also accounts for sequencing
errors and helps to remove reads with very low-frequency kmers that usually occur due to

sequencing errors, and, retains the critical reads that account for the real diversity in the samples.
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De novo assembly

The normalised reads were used for de novo assembly using the SPAdes assembly pipeline, part of
the SPAdes package (Nurk et al., 2013). metaSPAdes is deemed to be the best tool for assembling
microbial genomes (Nurk et al., 2017). It employs a de bruijin graph-based approach to assemble
the reads into longer stretches of sequences - labelled as contigs. metaSPAdes assembly pipeline
is not available for single-end reads and the samples with single-end reads were assembled using
the standard SPAdes pipeline using the default parameters.

The FilterFasta.py (https://github.com/sejmodha/UnXplore/) script was developed to
extract contigs that were longer than 300 nucleotides. De bruijin graph base approaches break
short sequence reads into even shorter kmers, hence this approach often leads to misassemblies.
A threshold of length 300 (that is the length of two reads in a pair or twice the length of a read)
was applied to filter out short contigs as they often represent noise and misassemblies generated
using the short kmer-based approach implemented in de brujin graph-based assemblies (Bergner
et al., 2020). Such short contigs do not contain adequate information and were excluded from
downstream analysis as a precautionary measure, and the remaining long contigs were used in
the subsequent steps.

The normalised subset of reads was used to generate assemblies, however, these reads cannot
be used to assess the assembly quality as they represent a small subset of the actual reads. To
assess the assembly quality, the complete set of reads that did not map to the human genome was

mapped onto the de novo assembled contigs with BWA using the default parameters.

Taxonomic annotation

The ‘long’ contigs were searched against the non-redundant (nr) protein databases using the
BLASTX algorithm implemented in DIAMOND (Buchfink et al., 2014). It has been demonstrated
that this algorithm is 10,000 times faster than the stand-alone BLASTX (Altschul et al., 1990)
and has a similar level of sensitivity. It carries out the six-frame translation of the nucleotide
sequences and then searches those translated sequences against the nr protein databases. This step
is very important and enables the identification of distantly related homologues of the queried
sequences due to the 6 frame translation from nucleotide into protein sequences. The top 25 hits
for each contig were extracted and analysed downstream (--unal 1 --evalue 0.001).

The contigs that did not have any protein matches were extracted and searched against the
comprehensive nucleotide database (nt) using BLASTN (-—evalue=0.001). This step helped
to identify and remove non-coding sequences such as ribosomal RNA and untranslated regions of
currently sequenced organisms included in the databases.

To determine the most appropriate organism that the contigs were matching to, the lowest
common ancestor (LCA) was obtained from the top 25 hits. Python scripts Ext ract LCA. py
and Extract LCABLASTMG6 . py were used to determine the taxonomic LCA from DIAMOND
and BLASTN tabular output (https://github.com/sejmodha/UnXplore/).
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Validation and statistics

In order to validate the quality of the contigs, all reads that did not map to the human genome
were mapped back to the contigs. The assembly quality statistics such as coverage, length, and the
number of mapped reads were generated for each contig using pileup. sh - a script included
in the BBTools package (Bushnell B., 2019). Additionally, samtools stats was used to
gather metrics about the reads mapped to the human genome, reads that were submitted to de
novo assembly and the reads that could not be assembled.

To analyse partial matches in more detail, Ext ractPartiallyKnownSeq.py script
(https://github.com/sejmodha/UnXplore) was used to filter BLASTX results to identify contigs
with <=80 percent identity at the protein level. All relevant hits for each of those contigs
were grouped together, and, the Lowest Common Ancestors (LCA) species were identified
using the Ext ract LCA. py script (https://github.com/sejmodha/UnXplore). The contigs that
match exclusively to viruses i.e. the LCA was deemed to be a virus taxonomic group, were
investigated further to identify the virus species using Ext ractViralHits.py (https://github.
com/sejmodha/UnXplore). The contigs that match exclusively to virus proteins were searched
against the nucleotide database once again to carry out a final sanity check on the assembled
contig sequences that could potentially originate from viruses. This step also worked as a quality
assessment to ensure that the contigs matched to viruses and were not spurious hits.

The pilot study set included a range of different sample types as described in figure 3.2(a).
It is important to note that this set is highly skewed towards the human gut microbiome that is
normally sampled through fecal material. This skewness highlights the current bias towards the
gut microbiome studies over other human microbiomes. The second most common microbiome
included in the study was the oral microbiome. Although other microbiomes were under-
represented in the pilot study, it is clear that the initial pilot project covered a wide range of
samples from various human bodily sites and fluids. An ambiguous microbiome ‘Human’ was
included in this dataset that represents 3 distinct studies including PRJEB14301 (CSF, n=1),
PRJEB21827 (A/B testing for colon model, n=12) and PRJEB6045 (metagenomics of medieval
human remains from Sardinia, n=1).

The microbiomes originated from different countries around the globe as shown in the figure
3.2(b). This figure shows the global distribution of 861 samples analysed for which geographical
location was available. Most studies were from western Europe and the geographic distribution
of the samples included in the pilot study is skewed toward western countries in the world. The
location data was extracted from the SRA metadata resources using py s radb (Choudhary, 2019)
for each study. The location information could not be found for PRJEB11554 (n=1), PRIEB12998
(n=1), PRIEB21827 (n=12), PRJEB5761 (n=81), PRINA264728 (n=8) and PRINA43253 (n=7)
and those data points were excluded from the figure 3.2(b). A complete list of study locations is
shown in the appendix table A.4. These samples were sequenced in various sequencing facilities

across the world, and the complete distribution of the sequencing centre is shown in the appendix
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Figure 3.2: Overview of human microbiome samples included in this analysis and their geographic
distribution. (a) The number of samples included in this study per microbiome (n=963). (b)
Overview of the geographical distribution of the samples included in the pilot study (n=861).
Circles are coloured according to the different microbiomes and the size of the circle corresponds
to the number of samples. Geographical locations were not available for 102 samples.
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Table 3.1: A comparison between sequence lengths of raw reads downloaded from the SRA and
the cleaned reads used for de novo assembly.

SRA Reads | Clean Reads
count 963 963
mean 129 108
std 58 40
min 36 30
max 301 264

To assess the quality of data, extensive metrics related to the sequence data were generated.
The read length distributions were calculated for each sample as the read lengths varied among
different studies, samples and microbiomes. Read lengths ranged from 36 to 301 bases for raw
sequence data downloaded from the SRA. After trimming and QC cleaning, assembled reads
were shorter due to adapter trimming and low-quality base cleaning. The average length of the
cleaned reads was 108 bases as shown in table 3.1. As the read lengths varied widely between the
samples and the studies, it was not possible to compare the quality metrics using the read length
measure as it could be misleading. To enable this comparison, quality assessment metrics were
carried out on a number of bases.

The QC step of the assembly led to the loss of bases that were trimmed due to the rigorous
quality trimming and clipping criteria mentioned in the section 3.4.1 in the methods. Overall,
11.87% of bases were lost during the QC step (figure 3.3(a)) compared to the raw data. This
is expected as bases from adapter sequences, spike-ins and those that were of low quality were
trimmed as part of the QC step. A more detailed overview of the data is shown in table 3.2.
On average, 2-28% of bases were lost. The mean proportion of bases lost due to trimming
and cleaning was 13% (standard deviation: 14.27%). These values varied largely between
different microbiomes. For example, in the case of oral microbiome studies PRJIEB12831 and
PRJIEB15334, 94.6% and 83.3%, bases were lost respectively compared to vaginal samples where

less than 2% of bases were trimmed off on average.

Table 3.2: Percentage of bases lost after QC grouped by microbiome. The count represents the
number of samples included in each microbiome group.

Circulatory Fecal | Human | Lung | Oral Pulmonary Saliva | Skin | Sputum | Vagina
system system
count | 3 647 14 8 122 2 91 12 24 40
mean | 5.94 1048 | 20.11 2345 | 25.41 | 21.01 27.66 | 15.26 | 7.72 1.95
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Circulatory Fecal | Human | Lung | Oral Pulmonary Saliva | Skin | Sputum | Vagina
system system
std 8.48 9.49 5.34 6.17 17.36 | 20.78 23.37 | 12.54 | 2.24 0.23
min | 0.86 0.03 15.1 13.99 | 2.78 6.32 0.8 5.19 | 3.02 1.64
max | 15.73 63.94 | 34.8 33.44 | 94.63 | 35.7 77.03 | 50.83 | 13.26 2.55

3.4.2 Reads classification and assembly analysis

All QC passed reads were subjected to reference mapping to the human genome. This is an
important step to remove unwanted and known human sequences from the samples as the aim
was to explore the microbial makeup and unknown sequences of these samples. Overall, 30.75%
of all bases were mapped to the human genome (figure 3.3(a)).

On average, 14.5% of bases were mapped to the human genome. This proportion also varied
largely between all microbiomes. Microbiomes including skin, sputum, vagina and lung had
between 60-70% of all cleaned bases mapped to the human genome. In contrast, saliva and fecal
microbiomes contained <8% of bases mapped to the human genome on average. Any bases
that were lost when extracting unmapped reads from the BAM files were also calculated. This
category would include bases that were lost due to one of the PE read mapping to the human
genome and the other not and these bases were discarded and were not analysed further. This
category contains the smallest proportion of bases lost and on average 0.03% of bases were lost
in this filtering step.

All remaining reads that did not map to the human genome were extracted, normalised and
submitted to the de novo assembly step. In total, 12,038,529,159 (>12 billion) reads representing
nearly 1,195,949,958,509 (>1.1 trillion) bases were assembled in this study. Pink bars represent
these assembled bases in figure 3.3(b). It is important to check that reads map back to the contigs
as de Bruijn graph-based assemblers break reads down into kmers, and can assemble spurious
contigs that may not represent the original sequence data. On average, 61% of bases were able to
map back to the de novo assembled contigs. The saliva microbiome had the highest proportion of
assembled contigs with an average of 81.7% of bases mapping back to the contigs. In contrast, the
skin microbiome only had around 10%. However, all microbiomes had a proportion of bases that
could not be assembled into contigs. QC passed reads were divided into three major categories:
(1) mapped to the human genome, (ii) assembled and mapped to contigs, and (iii) reads that could
not be assembled. Figure 3.3 provides an overview of the average proportion of bases in each of

these three categories for each microbiome.

Unassembled sequences

‘Unassembled’ bases are defined as those that did not map to the human genomes and could not

be assembled into contigs. These sequences could not be classified as part of this project but
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Figure 3.3: An overview of all bases analysed and categorised in this study. (a) Overall
categorisation of all bases included in the study. (b) The proportion of bases mapped to humans,
assembled contigs and bases that were not assembled in different microbiomes
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were quantified as shown in figure 3.3(b) - grey bars. Our quantification suggests that almost
all microbiomes have some proportion of such unassembled sequences which ranges from 0.03-
98.83% depending on the sample with an average of 23.9% (std: 26.59%). Overall, 8.18% of all
data fell into this category as described in figure 3.3(a).

This measure can potentially help to define how easy it may be to assemble a certain
microbiome. It can also provide a measure of the quality of the sequenced nucleic acid. Oral,
fecal and pulmonary system microbiomes had the highest proportion of such unassembled bases
ranging from 26.5 to 32.5%. 68 samples from the BioProject PRIEB17784 contained 87.7-98.8%
of such unassembled bases. This BioProject contains the samples of fecal microbiome in
L-DOPA naive Parkinson’s disease. Ancient dental calculus from skeletons from the Radcliff
hospital burial ground samples also contain a large proportion of unassembled bases for a range
of samples. This oral microbiome is represented with BioProject PRIEB15334. The mean value
for such unknown was 51% for this study with unassembled ranging from 9-97%. At least 50%
of samples from this study contained 50% bases that could not be assembled. Due to the type of
samples included in this project, it is very likely that these samples contained deteriorated or

damaged DNA which could lead to poor quality sequences that could not be assembled.

3.4.3 Defining known, partially known and unknown matter

A total of 44,238,374 contigs were generated and 28,505,777 of them were longer than 300
nucleotides. These contigs were submitted to downstream analysis for classification. In order to
bin the contigs into these three major categories, sequence similarity thresholds were used. The
identity threshold that defines the highest percent identity for a set of aligned segments to the
same subject sequence was used to categorise the known sequences.

All BLASTX hits were grouped and the contigs with >80% protein sequence identity were
classified as contigs with ‘known’ taxonomic origin. In total, 25,148,829 (88.22%) contigs were
classified as known contigs in this study. A threshold of 80% was selected based on the prior
knowledge of protein homology as it is anticipated that when two proteins have conserved active
sites, and share and more than 80% similarity, they have similar functions (Pearson, 2013). In
contrast, it is more difficult to make such an argument at a much greater evolutionary distance
suggesting that this threshold should distinguish between functionally known sequences and
unknown sequences. BLAST/DIAMOND hits were not filtered for the query coverage and all
hits were categorised solely based on the percent identity criteria.

Partially known sequences were categorised based on the protein sequence similarity cut-off
of >0 and <=80%. 2,517,700 contigs that matched these criteria were classified as partially
known. 2,517,700 (8.83%) of all analysed contigs were grouped into this category.

This study systematically measured the proportion of biological sequences that cannot be
labelled taxonomically for all microbiomes as they did not have any sequence similarity to known

sequences. Overall, 651,529 (2.29%) contigs could not be mapped to a known taxonomic group
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of organisms using our approach and were categorised as unknown.

Table 3.3: An overall summary of assembled contigs categories defined in this analysis. Total
number of contigs in each category is shown in the table below.

Contig category Number of contigs
All 44,238,374
Analysed (>=300 nucleotide) 28,505,777
Known (protein identity >=80) 25,148,829 (88.22%)
Partially known (protein identity <80) 2,517,700 (8.83%)
Unknown (no similarity to any existing sequence) 651,529 (2.29%)

] Contigs with BLASTN hits (no BLASTX hits) \ 187,671 (0.66%)

’ LCA taxon could not be determined despite DIAMOND/BLASTN hits \ 75

In total, 25,148,829 (88.22%) contigs were classified as known contigs whilst 2,517,700
(8.83%) of all analysed contigs were classified as partially known. The remaining sequences,
referred to as unknown contigs (UCs), are sequences that did not bear significant similarity
to known sequences in the databases. Overall, 651,529 (2.29%) of contigs did not match any
currently known sequences using our approach and were categorised as UCs. On average 1.3%
of assembled bases per sample were found to be unknown. The proportion of unknown varied
significantly between different assembled metagenomes as shown in figure 3.5(a). Samples
from some microbiomes such as the circulatory system did not contain any unknown sequences

compared to the skin microbiome where this proportion was up to 25.85% for some samples.

Box 3.4.3: The definition and categorisation of reads and contigs
¢ Unmapped unassembled reads: Read that did not map to the human genome and de

novo assembled contigs

e Unknown contigs (UCs): An assembled sequence that could not be labelled

taxonomically and/or functionally

e Partially known sequence: Assembled sequence with DIAMOND BLASTX hits

with <80% sequence similarity

e Partially known virus sequence: A partially known sequence that matches

exclusively to virus protein sequences

¢ Known sequence: Assembled sequence with DIAMOND BLASTX hits with 80% or

higher sequence similarity

e Known virus sequence: A known sequence that matches exclusively to virus protein

sequences
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3.4.4 Quantification of unknown

The UCs varied largely in length and most of the UCs were 300-1000 nucleotides long (figure
3.5(b)). 95.36% (n=621,302) of all UCs were shorter than 1kb and 4.59% (n=29,879) UCs were
between 1-5kb long. A set of 320 UCs fell within the 5-10kb length category and 28 UCs were
>10kb long. The largest UCs were 42.3kb long and the second largest UCs were 21.3kb long. A
complete distribution of UCs across different microbiomes is shown in the figure 3.4 that shows

that the largest UCs were assembled from fecal, oral and saliva microbiomes.
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Figure 3.4: A detailed distribution of unknown contigs across all microbiomes where each
microbiome is represented by a subplot in the faceted plot. The X-axis shows the interval for
the length bin and the Y-axis shows the number of contigs in each interval category. Each bar
is annotated with the total number of contigs corresponding to the interval on the X-axis. An
ambiguous microbiome ‘Human’ was included in this dataset that represents 3 distinct studies
including PRJEB14301 (CSF, n=1), PRJEB21827 (A/B testing for colon model, n=12) and
PRJEB6045 (metagenomics of medieval human remains from Sardinia, n=1).
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Figure 3.5: Quantification of unknown contigs (UCs) in different human microbiomes. (a) The
proportion of UCs in different human microbiomes. The distribution is shown on the X-axis with
each microbiome represented on the left-hand side Y-axis. Y-axis on the right-hand side shows
the number of samples in each microbiome and corresponds to the number of dots on the plot for
the given microbiome. (b) Distribution of contig lengths for all UCs. The X-axis shows length
intervals and the number of contigs is shown on the Y-axis and is annotated on top of the bar.
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3.4.5 Coding potential of the unknown

To understand the coding potential of the unknown sequences, open reading frames (ORFs) were
predicted. 273,590 ORFs that were at least 100 amino acids in length were generated using the
standard genetic code. A threshold of 100 AA was selected, this is similar to that used in the
taxonomic classification tool GRAViTy which demonstrated only a 5-10% gene loss at this cutoff
for viral sequences (Aiewsakun et al., 2018). These ORFs originated from 215,985 distinct UC,
showing that 33.15% of all UCs contained large ORFs. On average, ORFs were 157 amino acid
(AA) long with a standard deviation of 87 AA residues. The longest ORF was 6,898 AA long
(figure 3.10(a)). This set also included 2,713 ORFs with lengths of at least 500 AA and 256 that
were at least 1000 AA long.

A detailed protein domain analysis for these ORFs was carried out using the InterProScan
(Mitchell et al., 2018a) protein analysis software. As a database, InterPro combines information
about proteins’ function from several databases, giving an overview of which families proteins
belong to, and what domains and sites they contain. The InterProScan software package allows
users to run scanning algorithms directly from the InterPro database on novel nucleotide or
protein sequences. InterProScan searches the domain and functional signature of amino acid
sequences against a range of distinct domain databases including Pfam (EI-Gebali et al., 2018),
CDD (S. Lu et al., 2019) and SUPERFAMILY (Gough et al., 2001). 36,354 ORFs originating
from 35,760 UCs could be functionally annotated using the InterProScan analyses, this number
excludes hits to MobiDBLite and Coils databases as they predict disordered regions and coils
structure of predicted ORFs as opposed to the domain signatures. An overview of the number of
hits found to various InterProScan databases for each microbiome is shown in the figure 3.6.

The highest number of hits were found in the MobiDBlite (Necci et al., 2017) - a database
that can predict the intrinsic disorder regions in the proteins. Overall, 5.49% of UCs (n=35,760)
contained ORFs (n=36,354) with at least one identifiable domain. The functional classification of
the ORFs was prominently centred around the Pfam database resource (El-Gebali et al., 2018).
Pfam databases facilitate the domain-based searches against the set of protein sequences using
profile hidden Markov models (HMMs). These types of searches can identify distantly related
protein sequences. Individual Pfam hits were treated as independent entities and overlapping
hits were not consolidated based on the subject/Pfam entries. 16,839 ORFs originating from
16,705 UCs were found to match at least one Pfam entry and in total, 27,025 Pfam hits were
derived (figure 3.6). All Pfam entries were collapsed down to their corresponding protein clans
(grouping of related protein families) by mapping the Pfam IDs back to their clan membership.
Figure 3.7 shows a heatmap of the top 50 Pfam clans with hits to UCs ORFs predicted in
different metagenomes. The most abundant hits were identified to clans tetratrico peptide
repeat superfamily and leucine-rich repeats. The largest number of hits was found in the fecal
microbiome due to the high number of fecal microbiomes included in this study. Additionally,

a range of other protein clans including those that represent Helix-turn-helix, beta-strands,
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polymerase and nuclease proteins were also found in this set. These results illustrate that the UCs
sequences have known protein domains suggesting that these unknown sequences are functional
and belong to organisms that are not yet fully sequenced or taxonomically classified. This step
of the analysis looks at the UCs at protein resolution. These results are intriguing and, provide
more insights into these taxonomically uncharacterised sequences. This also adds a new layer of
information associated with the unknown sequences and sheds light on the dark sequences from

a functional classification perspective.

3.4.6 Unknown sequence clustering

To investigate the extent of sequence diversity and to identify UCs sequences present in multiple
samples and microbiomes, sequence clustering was performed. Clustering analysis was carried
out using MMSeqs2 (Steinegger et al., 2017; Steinegger et al., 2018) to group the unknown
sequences based on the sequence similarity and coverage. All sequences with at least 90%
sequence identity and 80% overlap were clustered using the MMSeqs2’s linclust algorithm
(Steinegger et al., 2018). A unidirectional clustering was performed with respect to target
sequence coverage using parameter cov_mode 1. In brief, linclust is a shared k-mer alignment-
based approach where only sequences that share a minimum number of k-mers are aligned, and
the longest sequence is set as the cluster representative. Consequently, sequences with shared
k-mers are aligned to the cluster representative and sequences that pass the specified clustering
criteria are clustered together. This approach means that if the sequences are missed (i.e. false
negative), then too many clusters are generated as a result.

MMSeqs2 (Steinegger et al., 2018) generated 464,181 clusters of which 377,855 were
singletons i.e. did not cluster with any other sequences. These singletons were excluded from
the cluster analysis described below. 86,326 clusters comprised two or more sequences with a
mean cluster size of 5.7 contigs and a standard deviation of 8.1. Cluster representatives were
extracted from MMSeq’s clustering output which are the longest sequences in the cluster. The
largest cluster contained 153 sequences which originated from the fecal microbiome from 8
distinct BioProjects (figure 3.10(c)(c)). A cluster size distribution across different microbiomes
is shown in figure 3.8 and a detailed cluster size distribution with cluster representative length
is shown in the figure 3.9). 89.42% of 273,674 UCs (n=244,730) were clustered into single
microbiome clusters, 10.58% UCs (n=28,944) were found in clusters that contained sequences
from two or more microbiomes. To compare that with specific studies, 39.4% UCs were clustered
into BioProject-specific clusters and the remaining 60.6% UCs (n=165,851) were grouped into
clusters originating from two or more BioProjects. 78,139 (90.52%) clusters contained sequences
from a single microbiome and 7,645 (8.86%) clusters included sequences from two microbiomes.
Only a few clusters were comprised of members from 3 (n=512) or 4 (n=30) microbiomes.
The largest multi-microbiome cluster contained 57 sequences (304-9,080 bases long) from 4

distinct microbiomes and BioProjects and contigs assembled from 12 samples. The largest single
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Figure 3.7: The heatmap shows the UCs mapped to various Pfam clans found in the different
microbiomes. The darker shades represent the larger number of UCs and lighter shades of the
colour represent a smaller number of UCs that are also annotated in the boxes of the heatmap plot
here. The protein clans are shown on the Y-axis, human microbiomes are shown on the X-axis
and the number of UCs in corresponding categories are annotated on the heatmap.
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microbiome cluster contained 153 sequences (6,640-300 bases long) from fecal microbiomes with
contigs assembled from 46 distinct samples covering 8 different studies. Overall, this clustering
method produced very small, study-specific clusters. A set of 464,181 UCs was obtained by
combining the cluster representative sequences with the unclustered singleton UCs and used to
determine the rate at which UCs are classified.
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Figure 3.8: MMSeq cluster analysis results and the distribution of UC clusters identified in the
different microbiomes. Distribution of cluster sizes on the X-axis and their proportion on the
Y-axis. The marginal box plot shows the distribution of cluster sizes for each category. The plots
are grouped and coloured according to the number of distinct bodily sites the clusters are found
in; e.g. Number of bodily sites = 2 in green, means that members of each cluster are found in
data sets from two distinct bodily sites (e.g. gut, skin, fecal, oral), all clusters from this plot come
from 2 distinct bodily sites, but may (or may not) come from different bodily sites compared
to other clusters within the plot, with one cluster coming from gut and skin, for example, and
another from the skin and fecal etc.

Given the novelty of the unknown sequences, it is very difficult to determine the actual number
of clusters present in this set. As the unknown dataset contain very large numbers of sequences of
variable length, a lot of standard clustering tools such as cd-hit and uclust that employ a greedy

algorithm for clustering take too long and are deemed inadequate for this task.
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Figure 3.9: Overview of clusters found in the unknown sequence dataset. A number of
microbiomes included in distinct clusters are represented by the columns and the number of
BioProjects is represented by rows in the facetted plot. For each subplot, the X-axis represent
the length of the cluster representative sequence and the Y-axis represent the cluster size for all
cluster of size >=2. The size of the bubbles corresponds to the cluster sizes.
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Figure 3.10: The genome diagrams of large unknown contigs (UCs) show the open reading
frames (ORFs) in the light pink shade with the ORFs lengths as their corresponding labels and
the green boxes illustrating the InterProScan predicted presence of domain signature. (a) Cluster
representative of the largest cluster comprising UCs across multiple microbiomes. (b) UC with
the largest predicted ORF (6,898 AA). (c) Cluster representative of the largest single microbiome
cluster derived from fecal microbiome. This cluster comprised of 153 unknown contigs assembled

from 46 samples across 8 different studies.
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3.4.7 C(lassification of the unknown over time

In this framework, the unknown sequence identification is dependent on the publicly available
nucleotide or protein sequence databases. These data repositories are updated regularly with
new sequence data being deposited from around the world. However, typically, the sequence
searches are carried out against static versions of the databases. Our analysis conducted against
the databases downloaded on 18 April 2019 identified 651,529 UCs that collapsed down to a set
of 464,181 UCs following the cluster analysis. Subsequent analyses on 31 October 2019 and
5 March 2020 produced a set of 613,726 and 558,711 UCs respectively. The final number of
sequences that still lacked a taxonomy label was down to 459,147 after the most recent analysis
carried out against the databases downloaded on 14 October 2020. 29.5% (n=192,382) of the
sequences compared to the initial set of unknowns matched at least one sequence from the updated
databases in the BLASTX and the BLASTN steps of the analysis. Similarly, 27.6% (n=128,288)
of the representative set sequences could be labelled taxonomically with the updated databases. A
rate of taxonomic characterisation of 1.64% of unknown sequences being characterised per month
was calculated from the complete set. This rate was estimated to be 1.54% for the representative
set. Moreover, as shown in the figure 3.11, a range of long UCs still remained unknown even

after the similarity sequence-based analysis carried out on 14 Oct 2020.
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Figure 3.11: Distribution of contig lengths for all unknown contigs after the final time point (14
Oct 2020).
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From a set of 192,382 contigs that were labelled taxonomically after the most recent analyses
carried out on 14 Oct 2020, 167,864 were identified using BLASTX and 24,518 were identified
using BLASTN. 106,739 UCs from the BLASTX classified set were categorised as known and
61,125 contigs were categorised as partially known. A large majority of these contigs (97.11%,
n=162,987) were also deemed to be bacterial. The remaining contigs were divided between
cellular organisms (n=2,104), archaea (n=930), viruses (n=858), root (n=827) and Eukaryota
(n=140). 76.55% of all BLASTN hits were matching to bacteria (n=18,768), 17.88% matched to
viruses (n=4,383), 1.99% matched to Eukaryota (n=487) and 0.03% archaea (n=7). The hits that
could not be mapped to a superkingdom were divided between unidentified plasmid (n=544), root
(n=294), cellular organisms (n=20), and uncultured organisms (n=14) and synthetic construct
(n=1). These results reiterate our initial hypothesis that the majority of UCs represent currently

unknown microbial genomes.

3.4.8 Viral domain signature identification

195 UCs were shown to contain a virus-specific functional domain which was parsed using the
term ‘virus’ or ‘viral’ in the InterProScan analysis signature description column. Results with
the term ‘phage’ were not included in this subset as a range of phage domains are also present
in the host bacterial genomes. These domains were predominantly identified using the Pfam
(n=125) analysis. The most abundant virus-specific domain was Vaccinia Virus protein VP39 and
it was found in 53 UCs derived from fecal (n=23), saliva (n=14), oral (n=12), sputum (n=1) and
human (ambiguous; n=3) microbiomes and it was identified by Gene3D analysis. The largest UCs
containing this domain were 3,661 bases long and were found in sample ERR1474567. Another
frequently found domain in the UCs was the podovirus DNA encapsidation protein Gp16 domain.
It was found in 25 UC, out of this set 23 UCs were assembled from fecal microbiome. The
largest UCs containing this virus-specific domain was 9kb long contig shown in figure 3.15(b),
assembled from PRJEB18265. These UCs were clustered with 24 other sequences (See section
3.4.6) that were assembled from 11 samples representing 5 distinct fecal microbiome studies.
These results indicate that these UCs represent a completely novel genome of a virus that is likely
related to currently known podoviruses.

The largest UCs containing a viral RNA dependent RNA polymerase (Pfam: PF00680)
domain was found in the sputum microbiome sample ERR1022511. This UC was 5,894 bases
long and contained seven ORFs that were at least 100 AA long (figure 3.12). A 269 AA long
OREF contained ATPase P4 of dsRNA bacteriophage phi-12 (Pfam: PF11602) domain suggesting
that these UCs represent the large segment of a novel double-stranded RNA phage which is
usually categorised in the virus family Cystoviridae. The genomes of these phages are composed
of three linear dSRNA segments with a total genome length of 12.7-15kb and all segments
code for various proteins (Poranen et al., 2017). Although several other UCs were found in

the same sample, none of them displayed any sequence or functional similarity to the other
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two segments, i.e. small and medium segments of Cystoviruses. However, UCs that could
potentially belong to novel cystovirus-like genomes were extracted based on the sequence length,
GC content and sequencing depth criteria. Moreover, this UC representing a potentially novel
relative cystoviruses did not match any known protein or nucleotide sequences even in the most

recent analyses confirming the discovery of a novel virus.
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Figure 3.12: The genome diagrams of a potentially novel dsRNA phage segment found among
the UC set that is hypothesised to be related to currently known Cystoviruses. The open reading
frames (ORFs) are highlighted in the light pink shade with the ORF lengths as their corresponding
labels and the green boxes illustrating the InterProScan computed presence of domain signature.

3.4.9 Virus prediction and comparisons to uncultured virus databases

From the complete set of the UCs, 323,395 (49.64%) UCs were predicted as viruses by
DeepVirFinder (see figure 3.13 ). This set included 300,271 UCs that were under 1kb long which
represents 48.33% of UCs identified in this length category. A number of larger contigs were
also predicted as viruses: 76.27% (n=22,788) of UCs in the 1-5kb length category and 96.55%
(n=336) of UCs in the 5-50kb category. These results strongly support our hypothesis that the
large majority of the UCs are of virus origin, albeit a large proportion of short UCs is likely to be
fragments of unknown viruses. These results are discussed in detail in section 4.4.7 of Chapter 4.

These predicted virus sequences (n=323,395) were clustered with other known and partially
known sequences using MMSeqs with 90% sequence similarity across 80% of the sequence.
50.18% (162,271) of UCs were either singletons or were clustered with other UCs, whilst the
remaining 49.82% (161,124) of UCs were clustered with known and partially known. However, a
large proportion (n=152,295; 94.52%) of the UCs that clustered with these were shorter than 1kb.
8,829 UCs (out of 22,788; 38.74%) were at least 1kb long among which 1,402 UCs (out of 4,419;
31.73%) were at least 2kb long, 75 UCs (out of 336; 22.32%) were at least 5kb long and 5 UCs
(out of 28; 17.86%) were at least 10kb long. Moreover, 47.52% of sequences that match the UCs
were deemed partially known (i.e. had a protein sequence hit with <80% sequence similarity) in

this analysis suggesting that these known and partially known sequences are still significantly
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Figure 3.13: Contig length distribution of unknown contigs predicted as virus using DeepVirFinder with
qvalue<0.05. 48.33% of UCs that were <1kb long, 76.27% of UCs between 1-5kb long, and 96.55% of
UCs that were at least Skb long were predicted as viruses.

divergent from those present in the databases.

To identify the “known unknowns” i.e. uncultured viruses categorised as UCs in this study
and also observed in previous meta-analyses, the IMG/VR databases were used as a reference
and the UCs were searched against the nucleotide and protein repositories. 182,293 (27.98% of
all UCs) UCs had at least one hit to uncultivated viral genomes (UViGs) included in the IMG/VR
using BLASTN and 175,372 (26.92%) UCs were found to match at least one UViGs using the
BLASTX approach (figure 3.14). Out of the 273,590 predicted ORF set, 85,852 ORFs were
found to match protein sequences included in IMG/VR. 64,779 (9.94%) of UCs were found to

match the uncultured viruses in IMG/VR using all three approaches.
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Figure 3.14: A Venn diagram comparing UCs to IMG/VR databases. Out of the complete set of 651,529
UCs, 442,970 UCs did not have a hit to protein and nucleotide sequences included in IMG/VR. 208,559
UCs were matching to IMG/VR sequences using one or more of three different approaches; BLASTN
(n=182,293), BLASTP (n=74,512) and BLASTX (n=175,372). Overlapping UCs shared between all
different approaches are shown in the Venn diagram here. 64,779 UCs were found to have an IMG/VR hit
for BLASTN, BLASTP and BLASTX methods. The largest overlapping UC set was between BLASTN
and BLASTX which shared 149,458 UCs whereas the smallest overlap was found between BLASTN
and BLASTP which was 64,872 UCs. BLASTP and BLASTX methods shared 74,067 UCs.

3.4.10 The large unknown contigs

All UCs described in this section were predicted to be viruses by DeepVirFinder and did not
cluster with known and partially known sequences. The largest UCs were assembled from the
saliva sample ERR1474583 and were 42,357 bases long. This contig did not cluster with any
other contigs and has 23 ORFs that were over 100 AA long. One of the ORFs that is 434 AA
long comprised of the cysteine proteinases domain (SUPERFAMILY: SSF54001) according to
the InterProScan analysis. This contig still remained unknown after searches against the most
recent version of the databases suggesting that the organism this genomic sequence belongs to is
still to be identified and fully sequenced. A snapshot of the ORFs and domain is shown in figure
3.15(a), highlighting the presence of coding regions across the entire length of the UCs sequence.
Based on the results we have obtained here, we predict that this UCs sequence is likely to be
of microbial origin as it lacks a non-coding region. CheckV analysis predicted it to be a viral
genome fragment with the presence of two identifiable viral genes albeit with low quality as per
the Minimum Information about an Uncultivated Virus Genome (MIUViG) (Roux et al., 2019)
standards due to the lack of similarity to any known sequences. This strongly suggests that this
UC can potentially be a representative or partial genome sequence of a currently unknown and
completely novel virus.

A 20,309 nucleotide long contig from saliva sample ERR1474612 clustered with two very

short contigs from the same study. As shown in figure 3.15(c), long ORFs were predicted
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Figure 3.15: The genome diagrams of large unknown contigs show the open reading frames
(ORFs) in the light pink shade with the ORFs lengths as their corresponding labels and the
green boxes illustrating the InterProScan computed presence of domain signature. (a) The
largest unknown contig assembled in the set is categorised as unknown even after the most recent
similarity-based search on 14 Oct 2020. (b) The largest contig with podovirus DNA encapsidation
protein Gp16 domain. (c) An unknown contig of length 20,309 bases was described to contain a
range of domains including a potential virus-specific RNA polymerase domain.
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across the whole sequence. Some of the predicted ORFs were found to have interesting domain
signatures (figure 3.15(c)) such as enzymes for nucleic acid replication e.g. polymerases. An
ORF that is 655 AA long shows the presence of DNA dependent RNA polymerase domain
(SUPERFAMILY: SSF64484). A CheckV (Nayfach et al., 2020b) analysis of the contig also
predicted it to be of viral genomic origin, however, it was predicted to be an incomplete genome.
This UC was shown to have a very low identity (<30% sequence identity with 2% of query
coverage) to a hypothetical protein of Firmicutes bacterium (HAB66316.1) and AAA family
ATPase from Sharpea azabuensis (23% sequence similarity). When the e-value threshold was
removed, a total of 8 BLAST hits were obtained and 3 out of 8 hits were to a range of phages
including Bacillus phage vB_BpuM-BpSp, Vibrio phage 2 TSL-2019 and Ralstonia phage RP12.
These hits range from hypothetical and putative proteins. All these matches were localised to a
short region between 8,217-8,915 which was shown to contain ATPase and P-loop containing
nucleotide triphosphate hydrolases domains (figure 3.15(c)). Notably, no nucleotide sequence
hits were identified for this UC. Although these results have bacterial hits, it is likely that this
UC represents a complete or partial genome of a novel phage that infects the host bacteria e.g.

firmicutes.

3.4.11 Short circular contigs

A range of circular contigs with direct terminal repeat (DTR) and inverted terminal repeat (ITR)
signatures were identified using CheckV in the UCs data set. A total of 1,839 containing repeat
signatures were predicted of which 1,771 contained DTR signatures and 68 contained ITR
signatures. 94 of these UCs were at least 1kb long suggesting circular genomes and 48 of them
contained a range of 55 bases long terminal repeats. A cluster of 8 sequences from 2 different
microbiomes and studies were identified to contain similar sequences (71-100% similarity)
assembled from different samples (table 3.4). Four cluster members were 2,110 bases long, one
sequence was 1,983 nucleotides long and the cluster representative was 3,165 nucleotides long.
The cluster representative sequence contained multiple copies of the same ORFs suggesting the
presence of multiple genome copies, sequencing error or mis-assembly. Most of these sequences
contained a 50 bp long DTR sequence signature
‘GTGCATTTTTTTTGTGCACTTTTTCAAAAAAACCGTGAAAAAAATTCATT’. These
contigs contained two distinct ORFs, which were 125 AA and 144 AA long. Similarly another
50 bases long DTR signature
‘AATGAATTTTTTTCACGGTTTTTTTGAAAAAGTGCACAAAAAAAATGCAC’ was
observed in another cluster that had 7 member sequences ranging in similarity from 31 to 100
percent and assembled from 7 distinct samples. All but one member were 1,770-1,771 bases
long. These contigs also contained two ORFs that were 102 AA and 106 AA long. These ORFs
did not match any existing protein sequences in the databases. These circular contigs were

assembled from a range of oral microbiome samples from study PRINA230363. Similarly, a
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range of contigs (n=9) that contained Inverted Terminal Repeats (ITR) was also identified in this
data set. A cluster of 5 distinct circular contigs assembled from distinct samples from the fecal
microbiome (PRJEB7949). Four out of five of these circular contigs contained the ITR sequence
‘CGAAACGATTGCCCAGAGAGATGACTGTCAATCCGCCCGATTATTGGGCGCTTAC".
They also contained a 138 AA long ORF. These short circular UCs did not bear any sequence or
functional similarity to known sequences or domains so their biological origin is difficult to
predict. However, based on their genome organisation and size distribution, it was hypothesised
that they are likely to represent either novel circular replication-associated protein
(Rep)-encoding single-stranded (CRESS) DNA virus groups or novel satellite virus-like groups.
16 out of 20 UCs described in the table 3.4 were predicted to be viruses by DeepVirFinder (see:
Virus prediction and uncultured virus databases).

Table 3.4: Circular contig clusters with direct and inverted terminal repeats

Study ID(s) Cluster size | Typical Repeat type | Sample type | Sequence
contig length similarity
for contigs in (min-max)
this cluster

PRJEB14383; 8 2110 DTR Saliva; Oral | 71-100
PRINA230363

PRINA230363 7 1771 DTR Oral 31-100
PRJEB7949 5 1337 ITR Fecal 67-100

3.4.12 Quantification of partially known contig sequences

All contigs that matched other proteins with less than 80% sequence similarity were clustered
into the category of partially known sequences. These partially known sequences make up around
8.83% of all classified contigs. An overview of the proportion of the partially known sequences
is shown in the figure 3.16. It is interesting to note the proportion of partially known bases is very
high in exposed microbiomes including oral and saliva. Oral microbiomes can harbour up to 80%
of such partially known sequences with an average of 25.63% compared to an overall average of
9.75% among all microbiomes. The partially known category represents a very interesting set of
sequences in this study as it represents sequences that are distantly related to the currently known
sequences available in the databases.

The average length of partially known contigs was around 986 bases with a standard deviation
of 3054 bases. The largest contig included in this category was 823,704 long. Among the partially
known contigs, 511,977 were at least 1kb long and 45,022 contigs that were >=5kb. This category
had the longest contigs with 16,341 contigs being at least 10kb or longer.

Partially known contigs were unevenly distributed among different microbiomes and
BioProjects. 13% of all partially known contigs belonged to a study that sequenced the fecal

microbiome of patients suffering from IBD and compared this microbiome with the counterparts
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of control individuals (BioProject PRJEB7949). A second fecal microbiome study
(PRJEB12357), looking at the impact of fecal microbiota transplantation on the intestinal
microbiome in metabolic syndrome patients, contained 12.81% of all partially known contigs.
Two other human fecal microbiome studies, PRIEB8094 and PRJEB6092, comprised over 20%
of all partially known contigs. Additionally, another study that compared the fecal metagenome
of sickle cell disease patients and the healthy controls comprised 5.13% of partially known
contigs. Collectively, these 5 fecal metagenomes contained nearly 50% of all partially known
contigs. This result could be reflective of the initial bias in the sampling i.e. high number of fecal
microbiome samples included in the data. Two other microbiomes represented by BioProjects
PRJEB14383 and PRJEB12831 were the only non-fecal metagenome studies that contained >5%
of partially known contigs identified in this analysis. This might be due to the approach
employed here. General-purpose, extensive nucleotide and protein databases used here are likely
to contain a large number of diverse sequences and the probability of the known and partially
known contigs matching to any of these sequences from the databases is very high. Moreover,
the first step of the sequence similarity-based search was carried out at the protein level in the
UnXplore framework and a lot of new microbial species could bear high similarity at the protein
level (often higher than 80% criteria used here) despite originating from different species and
genera. This could have skewed some of the partially known contigs results obtained here.
Table 3.5 provides a very brief overview of the partially known contigs classification based
on the LCA and taxonomic superkingdom determined for each contig. Bacteria were found to
be the dominant superkingdom among the partially known sequences with 2,323,916 contigs
exclusively matching bacterial proteins. The average % identity for these hits was 63% with
24% query coverage and a mean alignment length of around 169. The second-largest number of
contigs were mapped to the cellular organisms with 94,355 partial hits. The third most prominent
group included in this classification was root comprising 69,529 contigs. This group covered the
hits that could originate from two or more superkingdoms and the LCA which was determined
to be the root of the taxonomic tree. Typically this group could include bacteriophage contigs
that often match to both bacteria and virus sequences. 6,576 partially known contigs matched to

viruses. These results are summarised in detail in the following section.

Table 3.5: Distribution of partially known sequences across different taxonomy groups

Taxonomy group Count %0 1dentity % Query Alignment
(mean) coverage length
(mean) (mean)
Archaea 6250 60.72 22.82 152.0
Bacteria 2323916 | 63.08 23.99 169.17
Eukaryota 16885 59.38 18.46 139.15
Plasmid pTDI1 1 70.0 10.22 60.0
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Taxonomy group Count %0 1dentity % Query Alignment
(mean) coverage length
(mean) (mean)
Plasmid pVT736-1 1 71.2 12.52 66.0
Viruses 6571 45.69 23.37 163.89
cellular organisms 94355 61.54 22.17 151.74
root 69529 58.61 20.35 177.71
unclassified Iapetusvirus 5 34.48 25.25 158.2
uncultured marine microorganism | 2 48.0 30.67 194.0
HF4000_APKG8KS5
uncultured microorganism 1 45.0 11.05 60.0
uncultured organism 5 60.8 14.59 68.0
uncultured organism HF70_19B12 1 32.1 30.35 112.0
uncultured prokaryote 164 55.32 17.64 95.3

3.4.13 Partially known contigs matching to viruses in different

microbiomes

In total, 6,576 contigs had exclusively virus hits. This category of contigs was identified as
those that had DIAMOND BLASTX homologues exclusive to viruses. In order to validate these
contigs, they were searched against the entire nucleotide (nt) database using BLASTN. This step
should have identified any untranslated sequences from other organisms that match viral proteins
by chance. This search showed that these partially known contigs matching exclusively to viruses
did not have a hit to a genomic sequence confirming that sequences included in this category
were likely to be of virus origin.

Figure 3.17 provides an overview of the length distribution of contigs in this category.
Approximately 45% i.e. 2,999 contigs out of 6,576 were 300-500 nucleotide long. These short
contigs were most prominent in all microbiomes as shown in figure 3.17(a) and 3.17(b). A
subset of contigs that were longer than 1kb and the microbiomes they were found in is shown
in the figure 3.17(c). Some of the longest contigs were found predominantly in saliva and oral
microbiomes. The fecal microbiome also contained >400 contigs that were longer than 1kb. 31
of these were at least 10kb long and the five longest contigs were >54kb and were found in oral
(PRINA230363) and saliva (PRJEB14383) microbiomes.

The genomic composition of target sequences found to be matching the contigs is shown
in the figure 3.18(a). The contigs matching the dsDNA viruses were found in all except the
pulmonary system microbiome. The highest numbers of these contigs were in saliva, fecal and

oral microbiomes. The second most prominent group of viruses was negative ssDNA viruses



CHAPTER 3.

1200000

1000000

800000

600000

400000

Number of contigs

200000

o0, 10001 |

Circulatory system - %

Human biome

(000, 15001 [

Pulmonary system -

Saliva -

Sputum -

Vagina -

(b)

(1500, 20001 [

(2000, 25001 [
(2500, 5000] l

(5000, 10000] |

Length bin

73

(a)
Contigs of partially known taxonomic origin in distinct human biomes
(n=963)
3
% 0 S8 80 8l 8 oo o 647
GheeB e d & oo o
% ¢ ¢ 14
g
IR 8 8
T [:L’ ! c
8, o n
$ uﬁz"ﬁﬁg;&ccu ;&E{&m&o&w Kfc-o0 ool Fo—$os oo 122 0
T m%m{ e mr«irgmm Tle 1 D G -
£
JT > 8
T s
0 s
1o dBile e o bang o 8 sno i . a1 &
Tt gRaen oG v o T
AR :
| R ¢ 12 %
% & @R 8-ob 24
;
mﬁgﬁ]wﬂf " 40
0 10 20 30 40 50 60 70
Contigs with partial hits (%)
©
Vagina | e
Sputum | L ]
skin | |
saliva | ([ ]
g Pulmonary system |||
o
) Oral | ][] |
Lung III
Human III
Fecal | N
Circulatory system
10206 3977 743728331 0 20 40 60 80 100
S o o o o Contigs proportion
Ss8¢S¢s
o O © 1n o = (Length bin, (0, 300]) (Length bin, (5000, 10000])
N s (Length bin, (300, 500) (Length bin, (10000, 200001)
8 8 8 8 & (Length bin, (500, 1000]) (Length bin, (20000, 40000])
8 8 8 8 8 (Length bin, (1000, 1500]) (Length bin, (40000, 50000])
4 8 3 50 (Length bin, (1500, 2000]) === (Length bin, (50000, 75000])
- (Length bin, (75000, 100000])

(Length bin, (2000, 2500])
(Length bin, (2500, 5000])

Figure 3.16: Quantification of partially known sequences in different microbiomes. (a) The
percentage of partially known contigs in different human microbiomes. The X-axis shows the
percentage of partially known contigs for corresponding human microbiomes shown on the
Y-axis. The boxplot represents the distribution of partially known contigs and each sample in the
study is denoted using a yellow circle. The total number of samples in each category is shown
on the secondary Y-axis on the right-hand side. (b) The Length distribution of partially known
contigs is shown using a bar plot. The length intervals are shown on the X-axis and the total
number of contigs in each length interval is shown on the Y-axis. The actual number of contigs
present in each length category are annotated on the top of the bar. (c) A proportion plot is used to
visualise the proportion of partially known contigs in different human microbiomes with different
length bins. Each interval bin is coloured according to the colour key shown below the plot.
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Figure 3.17: An overview of partially known viral contig lengths in different microbiomes. (a)
The distribution of contig lengths of partially known contigs with virus hits. The X-axis displays
distinct bins of non-overlapping length. Y-axis shows the number of contigs within each category.
(b) A proportion plot is used to visualise the proportion of partially known viral contigs in
different human microbiomes with different length bins. Each interval bin is coloured according
to the colour key shown below the plot. (c¢) A stacked bar plot illustrating the distribution of
partially known viral contigs larger than 1kb in different microbiomes. The X-axis shows the
total number of partially known viral contigs and the Y-axis shows different human microbiomes.
The colours of the stacked bar plot depict the corresponding length interval.
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that were mostly concentrated in the oral microbiome. The third dominant group of viruses
was negative sSRNA viruses. They were not found in lung, pulmonary system and vaginal
microbiomes. They were mostly concentrated in the fecal microbiome. Interestingly, oral, saliva
and sputum microbiomes included the broadest range of viruses matching partially known viral
contigs. On the contrary, only one or two distinct genomic groups of viruses were identified
in pulmonary, lung and vaginal microbiomes. This distribution could be explained by the low
number of samples associated with specific microbiomes and the number of samples analysed for
that microbiomes. Moreover, another factor could be the different types of sequencing library
preparation steps i.e. metagenomic vs metatranscriptomic that would lead to the capture and
sequencing of different types of genomic materials from individual samples.

In order to get further insights into the different virus families represented in the dataset,
a heatmap showing different virus families, their genomic composition and the distribution
across different microbiomes was generated shown in the figure 3.18(b). The dsDNA families,
Myoviridae, Siphoviridae and Podoviridae contain viruses that most commonly infect bacteria
and were the most dominant across all microbiomes. Other dsDNA virus families including
Ackermannviridae, Ascoviridae, Herelleviridae, Iridoviridae, Marseilleviridae, Mimiviridae,
Nudiviridae, Phycodnaviridae and Tectiviridae were also found in different microbiomes in
different proportions (fig 3.18(b)). The contigs matching the negative ssDNA viruses were all
found to be from the family Anelloviridae, predominantly in the oral microbiome. Anelloviruses
are thought to be omnipresent in various human microbiomes and have not been linked to any
specific diseases or health conditions yet (Kaczorowska et al., 2020).

Other double and single-stranded DNA virus families that have partially known contigs were
matching with Caulimoviridae, Genomoviridae, Inoviridae, Microviridae and Circoviridae. 14
different contigs from 8 different BioProject (PRJEB12357, PRJEB14383, PRJEB8094,
PRJEB23207, PRJEB18265, PRINA230363, PRJEB7949, PRIJEB19367) and 3 different
microbiomes (fecal, oral and saliva) also matched a group of unclassified DNA viruses named
pithoviruses, that are also known as giant viruses.

Single and double-stranded RNA viruses were found in a very small proportion across
all microbiomes. However, 5 different RNA virus families: Partitiviridae, Picobirnaviridae,
Leviviridae, Narnaviridae and Retroviridae, were represented in this dataset. A subset of negative
ssRNA viruses is excluded from the figure 3.18(b). These viruses were classified at the order
level instead of the family level. 641 of these contigs were matching to order Bunyavirales.

It is notable that this chapter focuses on the unknown sequences and hence, individual contigs
matching to various known viruses were not analysed in detail here. However, a thorough virus
metagenomic sequence analysis described in Chapter 5 addressed the individual contigs and virus

groups of interest.
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Figure 3.18: The taxonomic grouping of partially known viral contigs in different microbiomes.
The virus family and genome composition were derived from the lowest common ancestor (LCA)
of the DIAMOND hits. Heat maps depict partially known viral contigs in different microbiomes.
The X-axis shows different human microbiomes and Y-axis shows the virus groups: (a) Partially
known virus hits are grouped according to the virus genome composition indicated on the Y-axis
and the number of contigs in the corresponding categories are annotated on the plot. (b) Partially
known virus hits are grouped according to the virus family and genome composition indicated on
the Y-axis and the number of contigs in the corresponding categories is annotated on the plot.
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3.4.14 Known sequence classification

This category of classification contained the largest number of sequences. A total of 88.22%
of all contigs assembled fell into this category. An overview of a brief superkingdom level
classification of these contigs is shown in a heatmap in the appendix figure A.4. Each row of the
heatmap represents a BioProject label with the corresponding microbiome represented using a
coloured box. As can be observed in the appendix figure A.4, bacteria were the most dominant
superkingdom in most microbiomes as expected with metagenomic samples. However, the saliva
(PRINA306560) and the oral (PRJEB12998) microbiomes had Eukaryota as the most dominant
superkingdom for all known contigs.

It is noticeable that the known contigs matching the viruses were present in a very small
proportion across all microbiomes and BioProjects. In total, 3,484 known contigs with exclusive
hits to viruses were identified and analysed further. The length distribution of these contigs is
shown in the figure 3.19(a). The overall pattern of the distribution of the lengths is very similar
to partially known contigs matching to viruses with a higher proportion of contigs in 300-1kb
categories in all microbiomes (figure 3.19(b)).

A comprehensive family-level categorisation of the viruses matching to known contigs is
shown in the figure 3.19(c). The dsDNA viruses were found to be the most common ones in this
classification and were present in all but the pulmonary system and vagina microbiomes. The
families representing the viruses of bacteria i.e. phages were most abundant among this set of
contigs. Virus families Herpesviridae were over-represented in the salivary microbiome. Viruses
from the negative single-stranded DNA virus family Anelloviridae were abundant in the oral
microbiome set. In contrast to the viruses matching the partially known contigs, the RNA virus

families Picornaviridae, Virgaviridae and Paramyxoviridae were only found in the known set.
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Figure 3.19: Distribution of known viral contigs. (a) The distribution of contig lengths of partially
known contigs with virus hits. The X-axis displays distinct bins of non-overlapping length. Y-axis shows
the number of contigs within each category. (b) A proportion plot is used to visualise the proportion
of known viral contigs in different human microbiomes with different length bins. Each interval bin is
coloured according to the colour key shown below the plot. (¢) Known virus hits are grouped according
to the virus family and genome composition indicated on the Y-axis and the number of contigs in the
corresponding categories is annotated on the plot. The virus family and genome composition were
derived from the lowest common ancestor (LCA) of the DIAMOND hits.
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3.5 Discussion

In this study, we have developed an automated framework that can systematically quantify the
proportion of unknown contigs (UCs) in meta-omics samples. Whilst the presence of UCs is
well recognised, this is the first study that addresses the question of UCs comprehensively and
quantifies it across different human microbiomes. Our approach utilises sequence similarity-based
taxonomic categorisation to identify the sequences that cannot be categorised. We define these
UCs as the sequences that do not match known sequences in the databases with a predefined
sequence similarity threshold of evalue 0.001 which is a very lenient threshold, anything with
evalue higher than this is unlikely to truly be related to the database sequence hit. We show
that on average 2.29% of assembled contigs are categorised as unknown in different human
microbiome studies. Moreover, a subset of those with unknown sequences could be translated
and contained protein domains, thus we were able to find functional similarity to 5.49% of
taxonomically unknown contigs. We have generated a comprehensive catalogue of 651,529 UCs
that do not bear any sequence similarity to sequences present in the widely used GenBank protein
and nucleotide databases. Although sequence similarity-based approaches are dependent on the
databases, the protein sequence-based approach implemented here is highly effective in fishing
out distantly related homologues of known sequences available in the databases (Altschul et al.,
1990) and thus provides better resolution for sequence classification compared to those solely
based on the genomic signature-based binning (L. X. Chen et al., 2020). This study highlights
the importance of avoiding the “street light" effect i.e. observational bias arising from classifying
metagenomic sequences on the basis of related sequences that already exist in the databases.
Here, we have aimed to eliminate such observational bias by performing a comprehensive data
mining of the human microbiome data and cataloguing the UCs, their frequency in different
human microbiomes and their overlap between different samples.

This study has enabled the identification of a range of genomic sequences that are hypothesised
to belong to currently uncharacterised organisms that are often found in similar samples and/or
microbiomes. A range of large UCs with and without known protein domains are presented
here. However, the complete set includes a large number of UCs that still remain unknown
and can be mined further to study their biological origin. A third of all UCs (n=215,985)
contained large predicted open reading frames (at least 100 amino acids long) that were predicted
using the standard genetic code. Using alternative genetic codes may expand this set further
by revealing novel, potentially different open reading frames generated from the UCs. A small
proportion of these open reading frames contained domain signatures confirming the presence
of currently unidentified organisms. Moreover, a comprehensive clustering analysis has led
to the identification of UCs that were present across different human microbiomes (as well
as from different samples/studies investigating the same human microbiome) indicating that
we have discovered potentially widespread and as yet unclassified novel biological organisms

within the human microbiome. The multi-microbiome clustering approach applied here provides
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an interesting way to understand the diversity and the distribution of the UCs across different
microbiomes and geographical sites. For example, this approach led to the identification of 30
clusters that spanned 4 distinct microbiomes. The largest multi-microbiome cluster comprised
57 UCs recovered from saliva, sputum, oral and lung microbiomes and was assembled from 12
different samples. Although it is impossible to identify the true clusters present in the data due to
the novelty of the UCs, the clustering approach helps to identify obvious patterns of sequence
similarity between microbiomes and studies. This approach provides an additional dimension by
capturing unknown sequences that are shared between different projects or human microbiomes.

Virus predictions carried out by DeepVirFinder - a machine learning-based virus prediction
tool for identifying viruses from metagenomic datasets - have shown that approximately 50% of
all UCs are likely to be of virus origin. Additionally, nearly 30% of all UCs identified in this study
have an overlap with uncultivated viral genomes currently catalogued in IMG/VR databases. As
with most similarity-based approaches, we used an arbitrary threshold for determining a match
to the IMG/VR database and thus a match does not mean they are closely related. Interestingly,
this study provides an added dimension to these matching uncultivated viral genomes (UViGs)
by providing information on the type of microbiome they have been found in. It is anticipated
that UCs catalogued in this study may have some overlap with other viral genome databases
such as Gut Phage Database (Luis F. Camarillo-Guerrero et al., 2021) and Gut Virome Database
(Gregory et al., 2020). Short contigs i.e. those less than 1-5kb are often ignored in most data
mining and exploration research typically in studies that employ a contig binning step as binning
has been shown to be less sensitive for short contigs (Breitwieser et al., 2018; L. X. Chen
et al., 2020; Mallawaarachchi et al., 2020). The clustering and time point analyses carried
out on short UCs have shown that these short UCs are originating from biological entities and
predominantly represent the novel microbial sequences that are currently uncatalogued. This has
been demonstrated with the example of short circular sequences with terminal repeats. Short
contigs, which are typically excluded from large microbiome mining studies employing the
metagenomic binning approach, were studied in detail here. These short UCs are found across
multiple human microbiomes and samples, we speculate that these are of viral origin and could
potentially represent novel CRESS DNA or satellite viruses, although the ORFs originating
from these genomes do not bear any sequence of functional similarity to the typical rep and
cap genes. Moreover, a number of large contigs were found to contain various functional
ORFs and domains often originating from viruses or phages indicating that a proportion of
UCs is very likely to be novel viruses that infect currently uncharacterised microbes. In our
approach, we have implemented a protein sequence similarity-based identification that enables
the identification of distantly related sequence homologues (Altschul et al., 1990). This approach
can potentially ‘classify’ contigs of viruses or phages as their corresponding host with very low
sequence similarity. Indeed, viruses are well known to mimic their host genomic signatures

by incorporating genomic sequences from their host into their genome. We anticipate that the
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virus diversity described in this manuscript is reasonably underestimated due to this specific
characteristic of viruses and speculate that a range of assembled contigs classified as bacterial
with very low sequence similarity across a short genomic coverage is likely to be of virus origin.
This hypothesis will need to be tested further by mining the ‘known’ and ‘partially known’ contigs
systematically. In order to explore virus sequences assembled with UnXplore, a comprehensive
analysis of all contigs was carried out, and this process is described in detail in Chapter 5. We
note that a range of UCs matching known and partially known sequences could be taxonomically
uncharacterised in GenBank databases such as unclassified viruses. Assembled contigs matching
these sequences are categorised as known (protein sequence similarity >80%) or partially known
(protein sequence similarity <80%) in this study. Those contigs would need to be investigated
further to identify potentially novel and divergent sequences assembled in this study. The HMP
control sample analyses resulted in only a few UCs validating the UC identification approach
implemented in our framework. The results generated from this study can be extended to identify
the organisms that co-occur in different microbiomes, which in turn can help to inform the
interactions between these organisms and how it affects their hosts - humans. Despite having
sequenced human microbiomes extensively, our understanding of how these microbes interact
with humans remains limited. These large-scale explorations can help to understand the human
holobionts and the interactions of macro- and microorganisms. Based on these results, we do
not know whether the microbes identified in different studies are consistently associated with
humans or they are just passing associations captured at the time of sampling, the latter would
make it even harder to make comparisons between samples and microbiomes.

The UCs landscape changes over time as more sequences get characterised and added to the
ever-expanding sequence repositories. This was demonstrated by comparing the UCs to different
GenBank databases over the course of 18 months. We have estimated that 1.64% of the UCs
identified in this study are getting characterised each month. However, this number would be
highly dependent on the types of data deposited in the International Nucleotide Sequence Database
Collaboration (INSDC) resources. This study provides a strong foundation for preliminary
estimation of this rate and UCs would need to be analysed at multiple future time points to
determine how the rate at which the UCs are being classified, changes over time. Additionally, the
time-point analysis also provides strong evidence of the real biological entities being assembled
and characterised in our study. Indeed, a proportion of the UCs was taxonomically classified
during the period of the study. This delineation of the UCs demonstrates that the unknown
matter that surrounds us largely belongs to currently uncultured, unidentified microbes that we
interact with on a daily basis. The technological advances have accelerated the speed at which
genomic sequences belonging to novel uncultured organisms are being deposited in INSDC
databases. This sharp increase of metagenomically assembled microbial genomes has led to
the scientific community driving the development of genomic data and metadata standards such
as MIMAG (for bacteria and archaea) (Bowers et al., 2017) and MIUVIiG (for viruses) (Roux
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et al., 2019) for consistency and comparison purposes. The taxonomic classification landscape
has also faced a tectonic shift whereby it is moving from the phenotype-based classification to
a more holistic sequence-centric phylogenetic classification, e.g. GTDB (bacteria and archaea)
(Parks et al., 2018) and ICTV (viruses) (Simmonds et al., 2017a). These changes enable the
incorporation of the uncultured sequence diversity into the microbial taxonomy and will provide
a more comprehensive understanding of the complex phylogenetic relationships and interactions
between different microbes.

The metagenomics analysis framework developed here works as a proof of concept for
overcoming the challenge of the quantification of the unknown in already ‘analysed’ data sets.
The pipeline developed here is flexible and can be applied to any microbiome. To get a cross-
section of different human microbiomes and geographical locations whilst keeping the overall data
set size manageable large studies involving >100 samples were down-sampled. This framework
can readily be applied to routine metagenomic exploration, which can help to gain further
understanding of the landscape of sequences of unknown origins. The framework applied here is
easily portable to metatranscriptomics data. In fact, a couple of the BioProjects (PRJEB10919
and PRJEB21446) analysed in this study were indeed from a metatranscriptomic study. It is
important to note that, unlike other studies that often focus on the cross assembly of different
samples, each sample was assembled individually here. This is regarded as best practice when a
cocktail of samples from unrelated studies is analysed in bulk. The co-assembly would often lead
to fragmented assembly as the complexity of sequences originating from multiple samples would
be much higher compared to a single sample (Olm et al., 2017). On the contrary, independent
assembly is expected to capture better diversity across each sample with high-quality genomes
assembled from each sample (Olm et al., 2017). Typically the sequence similarity-based approach
is less reliable for unrelated sequences as the similarity search tools heavily rely on the databases
used in the analysis. Like most other pipelines, this framework classifies the sequences with
respect to a static version of the reference sequence databases. The search results are as good
as the data in the ever-expanding repositories that are often too large to be hosted on a local
computer. Furthermore, a number of these gold-standard repositories have been shown to contain
erroneous and contaminated sequences (Steinegger et al., 2020) which could potentially impact
the sequence similarity-based approach implemented here. In order to improve this, an alignment-
free approach could be explored. The development of a general-purpose alignment-free prediction
method that can categorise the sequences based on the genomic composition would be suitable
for the downstream analysis of the UCs. The UCs classification is highly dependent on the
methods employed to identify and quantify the unknown. Moving away from the sequence
similarity-based methods would help to categorise and classify the currently unknown sequences
better. Machine learning-based approaches might be deemed suitable in certain circumstances to
overcome the similarity threshold-based approaches. In the case of completely novel sequences

that bear no similarity to currently known sequences, significantly rigorous training sets and
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features would need to be identified and be built into the models in order to make accurate
predictions as machine learning approaches are highly reliant on the training data the models have
been developed with. Moreover, a recent study by Krishnamurthy and Wand (Krishnamurthy
et al., 2018) made predictions for picobirnaviruses to be bacteriophages rather than eukaryotic
viruses based on the presence of bacterial ribosome-binding sites in front of the coding sequences.
This approach could potentially be applied to check whether viral UCs are bacteriophages.

This study demonstrates that there is a large diversity of unknown sequences embedded within
various human meta-omic samples available in public repositories. It is clear that the unknown
sequence landscape observed in this study is likely to be the tip of the iceberg, and, as we scan
more microbiomes and extend this to less-studied environments e.g. insect metagenomes, we
are likely to gather a better understanding of the unknown sequence space. As more species
and environments are sequenced more readily, the rate at which the unknown sequences become
known would also change. Our results of novel viruses indicate that the unknown microbes and
their genomic signatures are likely to be more divergent to those currently present in widely used
sequence databases; however, it should be noted that many of the short contigs found in our study
are likely to represent fragments of larger viral genomes rather than being short but complete viral
genomes. Our study also shows that at least some of these unknown microorganisms are prevalent
in nature. To overcome this, more comprehensive resources including searchable databases
such as those enabled using BIGSI (Bradley et al., 2019) and federated indexes (Marti-Carreras
et al., 2020) could be created for the unknown sequence data and metadata. This would allow
researchers to explore the human metagenomic sequence space in a more holistic manner and in
turn, provide a better understanding of microbial diversity interacting with and within human
hosts. It would enable researchers to search, link and explore the unknown sequences present in
different microbiomes, studies and samples. Such resources could help in speeding up the pace at
which unknown sequences can be ‘classified” and make it easier for researchers to determine the
functional and/or ecological importance of the organisms the sequence comes from. A concerted
effort could help to pin down human-microbial interactions in a broader context such as linking
unknown microbes to human diseases and disorders of unknown aetiologies.

In conclusion, more raw sequence data should be mined in this holistic manner to discover
novel, uncultivated species of microorganisms. The unknown sequence classification is highly
dependent on the methods employed to identify and quantify the unknown. Moving away from the
sequence similarity-based methods would help to categorise and classify the currently unknown
sequences better. A novel machine learning-based prediction method developed and described in
Chapter 4 was explored and applied to “classify” all unknown sequences without a taxonomy
label into the higher-order ‘classification’ such as bacteria, archaea or viruses. The partially
known and known sequences that were found to be matching to viruses were systematically
analysed to catalogue the virosphere. The results of a more standard metagenomic analysis are

described in detail in Chapter 5.



Chapter 4

Predicting the biological origin of unknown

sequences using machine learning

Shedding light on the unknown.

4.1 Abstract

There are unknown sequences embedded within metagenomic and metatranscriptomic datasets
which cannot be classified taxonomically or functionally. They represent the genetic signatures of
entirely new microbes that could be interacting with known microbes and their hosts on a regular
basis. Previous studies have found tetranucleotide signatures are unique to microbial species
and contain phylogenetic information. The main objective of this study was the development
of simple genome-composition-based machine learning models that could be used to classify
archaea, bacteria, plasmids, and viruses with high levels of accuracy and precision based solely
on their k-mer composition. These models were packaged and made available to the scientific
community through a PyPI package - TetraPredX. TetraPredX was applied to unknown sequences
catalogued from human microbiomes and more than 70% of the unknown sequences were
accurately determined to be viruses. These results support our initial hypothesis that the vast
majority of unknown sequences are likely to originate from viruses. An analysis of TetraPredX
shows that in the absence of alignment-based sequence similarity, it can assist in identifying
novel microbial sequences embedded within unknown sequence matter efficiently and with high
accuracy. A comparison of TetraPredX’s models against DeepVirFinder showed TetraPredX was
able to identify most DeepVirFinder predicted sequences with equivalent accuracy. TetraPredX
includes a set of models that can be applied to any metagenomic or metatranscriptomic dataset to

assist in the identification of unknown sequences.
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4.2 Introduction

A number of studies have shown that a significant proportion of metagenomic and
metatranscriptomic samples contain unknown sequences, that is, sequences that do not match
those in public databases, such as GenBank (Tisza et al., 2021b; Bernard et al., 2018;
Krishnamurthy et al., 2017; Shkoporov et al., 2019a; Zamkovaya et al., 2020; Aevarsson et al.,
2021). New microbiome databases have been created as a result of the identification of novel
uncultivated microbes, primarily viruses. These include Gut Virome Database (GVD),
Metagenomic Gut Virus (MGV) and Gut Phage Database (GPD) (Gregory et al., 2020;
Luis F. Camarillo-Guerrero et al., 2021; Benler et al., 2021; Nayfach et al., 2021). As discussed
in Chapter 3, the UnXplore framework was developed to systematically identify and quantify
unknown sequences from 40 distinct microbiome studies spanning 963 samples and produced a
comprehensive set of 651,529 unknown contigs (UCs). These UCs were predicted to belong to
microbes that have not yet been identified based on functional characteristics such as protein
domains. Despite this, most of the UCs remain novel and unknown since they bear no sequence
or domain similarity to currently known sequences available in NCBI databases.

Sequence similarity approaches such as BLAST are not able to categorise these UCs and
thus alternative approaches are required to ascertain the origin of unknown sequences. Machine
learning algorithms are computational approaches combined with statistics implemented in a
programming language that can potentially identify complex hidden patterns embedded in large
datasets. These methods, also referred to as pattern recognition or data mining algorithms, can
decode signals specific to different data points, classify them into different categories, and can be
trained to predict the outcome of previously unobserved data points (Tarca et al., 2007; Chicco,
2017). Machine learning (ML) has become an increasingly mainstream bioinformatics tool
applied to address a range of biological problems in this genomics-led data science era (Larrafiaga
et al., 2006; D. T. Jones, 2019; Libbrecht et al., 2015). ML methods have been employed to
tackle various complex biological questions from drug-target identification to gene prediction,
virus-host predictions and image analysis (Zitnik et al., 2019; Babayan et al., 2018; Nami et al.,
2021).

k-mer frequencies and composition have also been used in prokaryotic classification.
Tetra-nucleotide frequencies (TNF) have been shown to contain classification signals similar to
phylogenetic signals (Pride et al., 2003; Teeling et al., 2004). TNFs combined with abundance
can provide up to species-level classification in bacteria. Metagenomic binning tools e.g.
CONCOCT (Alneberg et al., 2014), MaxBin2 (Y. W. Wu et al., 2016), MetaBAT (D. D. Kang
et al., 2015), MetaBAT?2 (D. Kang et al., 2019) make use of TNF (often combined with other
sequencing metrics such as coverage and abundance) to provide up to strain-level resolution and
clustering in metagenomic datasets. TNF can also aid virus-host interactions and accurate host
predictions for novel viruses (Pride et al., 2006; Roux et al., 2015b).

Due to the diversity encompassed by viruses, prediction tools often combine multiple
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methods to accurately predict novel viruses. Popular methods such as VirSorter and the more
recently published VirSorter2 combine multiple methods such as Hidden Markov Models
(HMM), homology to known viruses, hallmark virus gene identification, and genomic
composition metrics incorporated into machine learning algorithms that can enable accurate
identification of novel viruses in unexplored environments. VirFinder was the first reference-free
k-mer-based predictions tool (Ren et al., 2017). An updated version of the same tool,
DeepVirFinder (Ren et al., 2020) has been deemed the most efficient for the identification of
bacteriophages in metaviromic datasets in an extensive benchmark carried out by Fung et al.
(2022). These k-mer composition-based prediction methods have been shown to outperform
other more extensive database-based methods in predicting viral genomes and segments
accurately from assembled contigs (Fung et al., 2022).

TNF signals combined with machine learning methods were used as motivation to investigate
UC:s further by developing and implementing simple TNF-based ML algorithms to predict the
origin of the UCs discovered in this study. As the samples analysed in Chapter 3 originated from
the EBI MGnify subset and contained a very limited set of blood microbiomes, we complement
our previous UCs catalogue with additional human blood microbiome samples processed through

UnXplore.

4.3 Methods

4.3.1 Human blood microbiome dataset

Blood is the liquid channel that transports and preserves life’s most fundamental, but vital,
ingredients. Traditionally, human blood is considered a relatively sterile environment compared
to other bodily sites such as the gastrointestinal tract or oral cavity. However, a number of
studies have observed the presence of various microbial and virus sequences in human blood
which has led to a debate surrounding its ‘sterile’ status (Paissé et al., 2016; Castillo et al.,
2019; Moustafa et al., 2017; Cebria-Mendoza et al., 2021). It is important to characterise and
catalogue the microbial content of the blood as it is relevant in the context of epidemiological
surveillance and more importantly for transfusion safety (Sauvage et al., 2016; Paissé et al.,
2016; Wen Zhang et al., 2016). To quantify and identify the proportion of unknown contigs
present in the human blood microbiome datasets, the UnXplore framework was applied to
human blood microbiome samples. NCBI Entrez utilities were used to search SRA repositories
using query ‘human blood metagenome AND "platform Illumina"[Properties]” as well as -query
‘txid1504969[Organism:noexp]’. Illumina sequence data were combined from these two sets and
16S/amplicon samples were excluded. The resulting set included 21 distinct BioProjects covering
3,312 samples of which 2,625 samples were downloaded using ‘parallel-fastq-dump* (Valieris R.,
2020).
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All samples were analysed using the UnXplore framework (described in detail in Chapter
Identification and quantification of ‘unknown’ biological sequences in human microbiomes) with
the nucleotide and protein reference databases downloaded in February 2020. To update this
analysis and carry out similarity searches against a more recent version of databases, all contigs
classified as unknown, as well as those UCs previously identified in Chapter 3 were searched
against databases downloaded in February 2021. A final set of UCs that were at least 1 kb long
was created (n=20,552).

4.3.2 Machine learning models

UCs do not bear any alignment-based sequence similarity to known sequences in the databases
and hence it is difficult to categorise them. There have been a variety of applications of machine
learning techniques to biological data in recent years. ML methods can be applied as a useful tool
that can help to predict the origin of the microbial UCs catalogued here. Nucleotide composition-
based ML methods were explored in this study to obtain potential predictions of UCs based on
their sequence composition. An overview of the various models, datasets and optimisation steps

is shown in figure 4.1.
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Figure 4.1: An overview of different stages of model development with descriptions of algorithms,
datasets, and optimisation procedures. Briefly, the ‘Explore’ component entailed determining the
suitable feature set, algorithms and classes for supervised learning. Initially, multi-class multilabel
prediction models were designed. These models were improved as shown in the ‘Refine’ block.
The multi-class models were transformed into binary classification models designed with updated
datasets. The final binary classification models were validated, calibrated and packaged into
TetraPredX as shown in the ‘Optimise’ block.
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4.3.3 Machine learning datasets

The complete genome sequences used to train and test the ML models were downloaded at three
different time points: September 2019, May 2020 and January 2021, and are labelled accordingly
(Table 4.1 and Appendix table B.1). September 2019 dataset was generated by downloading
complete genomes for archaea, and bacteria using the assembly summary file available on
https://ftp.ncbi.nlm.nih.gov/genomes/. For viruses, reference genomes were downloaded using
NCBI eutilities. May 2020 dataset contained archaea references and complete genomes
downloaded from GenBank nucleotide databases downloaded on 19/05/2020. It contained
bacteria reference and representative genomes downloaded on 13/05/2020 and ICTV species
exemplar for virus genomes downloaded on 13/05/2020. January 2021 dataset contained archaea
genomes downloaded from GenBank nucleotide on 14/01/2021, bacteria reference and
representative genomes downloaded on 15/01/2021 and ICTV species exemplar genomes
downloaded on 14/01/2021. Additionally, this set also contained reference plasmid genomes
downloaded from https://doi.org/10.15146/R33X2J. Plasmid sequences from bacterial genomes
were also separated using the ‘plasmid’ string in the header and were added to the plasmid set.
All multi-class multilabel exploration models described below were trained and tested using
the September 2019 and May 2020 datasets. All binary models described below were trained and
tested using the January 2021 dataset as well as a curated plasmid dataset published in Brooks
et al. (2019). A variant of the January 2021 dataset was used to optimise binary models whereby
bacteria and archaea genomes from this set were fragmented into non-overlapping chunks to
increase the number of observations for the models without introducing any artificial bias in the
data. This strategy has been shown to be efficient to predict the microbial class of assembled

sequences identified from the metagenomic datasets (Ren et al., 2020).

Table 4.1: An overview of the various datasets used for building and developing machine learning
models.

Dataset Archaea | Bacteria | Virus | Plasmid | Model

September 54,896 28,666 12,148 Multiclass Random Forest Classifier
2019 (RFC)

May 2020 1,268 5,441 7,143 PCA, t-SNE, One-vs-rest

January 2021 10,319 9,814 7,953 6,642 Binary RFC, Support Vector Classifier

Feature and data selection

Genomic composition-based ML models were trained using existing bacteria, archaea, viruses
and plasmid sequences downloaded from GenBank (Table B.1). In the case of prokaryotes,
reference and representative genomes were downloaded. Briefly, RefSeq reference genomes

are NCBI curated sequences that are high-quality genomes and identified as being important,
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and clade-specific representative genome sequences are provided by the NCBI in absence of
reference genomes (https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/faq/). Initial models
were developed using archaea, bacteria and virus genomes and plasmid sequences were added to
models at a later stage. A python script ‘DownloadReferenceGenomes2020.py’ was developed to
download reference and representative genome sequences in FASTA format for bacteria, archaea
and viruses from NCBI databases. This set included reference and representative complete
genomes of bacteria, ICTV virus species exemplars (ICTV, 2021b) identified from NCBI virus
RefSeq (Brister et al., 2015) and all archaea sequences from NCBI nuccore were downloaded. A
range of k-mer features described below was extracted from these sequences and their taxonomy
was used as labels for supervised learning models explained in detail below.

Briefly, k-mers are overlapping words of size k generated from a sequence. The possible
number of unique k-mers is calculated with n*¥ where n represents the number of unique monomers.
For example, in the case of DNA bases these values would be n =4, (i.e. A, C, G and T), and
k of size 2 would yield 4% = 16 k-mers. For a given sequence of length L, the total number of
k-mers for size k can be calculated from N = L —k+ 1. In supervised machine learning, such
measures (e.g. k-mer frequencies) are often termed ‘features’. These features are used to train ML
models to predict the corresponding class outcome i.e. ‘label’. Features and labels are generic
terminologies used in ML. To normalise k-mer frequencies for the length of the sequence, the
frequency value for each k-mer was divided by the total number of k-mers generated for each
sequence. These normalised frequencies were calculated for each sequence in the model training
and test dataset.

The Python programming library scikit-learn (sklearn) provides an extensive toolkit for
predictive data analysis (Pedregosa et al., 2011). All models and methods used for modelling
described below were used from the pre-implemented sklearn library. k-mer length of 4 was
selected for the feature set which led to 256 unique k-mers used in this analysis. As described in
the Introduction, TNF i.e. k=4 features have been shown to contain classification signals similar
to phylogenetic signals (Pride et al., 2003; Pride et al., 2006; Teeling et al., 2004).

To count the word frequencies (k = 4) for each sequence, the sklearn feature extraction method
Tfidf Vectorizer was applied to the FASTA sequences. A tabular output with each sequence record
identifier such as FASTA header or NCBI accession, k-mer frequencies for each feature and
sequence label (e.g. bacteria, archaea or virus) was generated. This dataset was subsequently
used for modelling.

Plasmids are naturally occurring extra-chromosomal circular sequences that are often present
in bacterial genomes. Initial models were developed where plasmid sequences were not separated
from the bacterial genomic sequences. In later versions of models, the plasmid class was
separated from the bacterial sequences and it was compiled with a curated plasmid database that
was published by Brooks et al. (2019).

In the final dataset, four distinct classes of records were included: archaea (n=10,319), bacteria
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(n=9,814), plasmid (n=6,642) and viruses (n=7,953).

Algorithm selection

Initially, a multilabel modelling approach whereby sequences were classified into one of three
classes was assessed and decision tree-based ensemble methods were explored. A random forest
classification model for multilabel prediction was deemed suitable as it supports multi-class
classification and performs well with an imbalanced dataset (i.e. different number of observations
in each class) which was the problem at hand in our case (Dittman et al., 2015). Briefly, Random
Forest (RF) is a supervised machine learning algorithm. It is an ensemble of decision trees that
are typically trained with bagging and feature randomness (figure 4.2(a)). The bagging method
applies a combination of learning models/trees to cast votes for the most popular class for the
given input and this process increases the overall accuracy of the result (Breiman, 2001). Each
class in the input data was split into training and testing sets with 70% of observations being used
to train the model and the remaining 30% being used to test the model performance. Although
promising results were obtained using this approach (see results section: 4.4.4), forcing input into
one of the predefined classes (3 classes) included in the model was deemed a major drawback
of this multi-class model. To overcome the issue of forcing the classification of the input to
one of the predefined classes included in the model, multiple binary classification models were
explored. In simple terms, in binary classification, each sequence is independently predicted as to
whether it is bacteria (yes/no), virus (yes/no) etc for class with a probability. Binary classification
alleviated the forced predictions of unknown contigs into one of the defined classes. They are
deemed more suitable for this use case as unknown contigs that are of non-microbial origin will
not be forced into one of the pre-defined classes.

Initially, one of the most popular binary classification algorithms, Support Vector Machines
(SVMs), was considered along with converting the existing RF model into multiple binary
classification models. SVMs are simple models that work by finding the decision boundaries
between two classes (Cortes et al., 1995). The SVM algorithm implementation in sklearn can
help to identify the best shape of this classification boundary as it may not always be a straight
line. Datasets were split into positive and negative sets for each class (virus, bacteria, archaea, and
plasmid) and independent individual models were trained for each binary classification. Similarly,
independent individual models were also developed using the RF algorithm. The train/test ratio
of 70:30 was used for all models. The binary models were developed using two different data
sampling strategies. The first strategy involved splitting the data into train and test sets first and
then developing the binary classifier model for each class. Notably there were unequal numbers
of observations for each class in the training set; 7,267 archaea, 6,857 bacteria, 4,614 plasmid and
5,571 viruses. The result is an imbalance class problem because the negative observations (i.e.
not bacteria, not viruses, etc) typically include all remaining sequences in the training class. For

example, for archaea models, the negative set included 17,042 observations (bacteria, plasmids,
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Figure 4.2: Illustration of two different machine learning algorithms used to predict sequence
classes derived from microbial genomic compositions. (a) Ensemble decision tree-based
classification algorithm implemented in random forest classifiers. (b) Standard binary
classification method implemented in Support Vector Machines.

and viruses). This demonstrates that the number of observations in the positive and negative
classes is not balanced i.e. more negative observations compared to positive observations are
taken into account by each model. An alternative to this is to train each model such that for
each class, an equal number of negative observations are drawn to match the number of positive

observations which leads to a balanced dataset.

Model calibration and Holdout data

ML models that output prediction probabilities or scores often need to be calibrated to ensure that
the model is not predicting outcomes in favour of the majority class (in the case of imbalanced
data). The predicted probabilities can be over or underestimated in the case of a non-calibrated
classifier. sklearn CalibratedClassifierCV was used to calibrate the final model to overcome this
issue.

To assess model performance and validate the model predictions, 4 different additional
holdout datasets were designed for bacteria and virus classes. Technically, splitting datasets into
training and testing sets would automatically treat the test set as a holdout set but in order to
further assess the model predictions on previously unseen data, additional data was used which is
termed as a holdout dataset in this context. The contig and scaffold level assembled sequences
(>=1kb) from a completely novel species of bacteria Paraburkholderia madseniana (n=385,
NCBI taxonomy ID: 2599607) were used to assess the predictions made by the final calibrated
RF models. In the case of viruses, 3 virus families; Geminiviridae (n=578), Chuviridae(n=32)
and Siphoviridae (n=785) were chosen as holdout sets. The three virus families chosen here are

representative of the distinct genomic compositions of viruses. Geminiviridae are sSDNA viruses,
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Siphoviridae are dsDNA viruses and Chuviridae are ssSRNA viruses that can be segmented or
unsegmented. In order to assess the quality of the predictions and test whether a completely
novel family of viruses could be identified using the TNF-based ML models, each set of virus
family-specific sequences were removed from the training set and those models were used to
predict the class for the holdout data representing the individual virus families.

All models were rigorously tested using a range of datasets shown in tables B.1 and B.3.

Virus-specific models

To predict whether tetranucleotide frequencies could also be utilised to perform virus-specific
predictions e.g. genome type, realm, and segmentation, a range of other ML models for these
properties was developed and tested. Virus metadata related to these labels were extracted from
the ICTV Virus Metadata Resource (VMR) version 010820 MSL35 (ICTV, 2021a). Negative
and positive datasets for each of these models were generated from virus data included in the

previous models.

Unknown data predictions

The final binary RF models were used to predict the class of the UCs. Additionally, two other
widely used virus prediction tools, VirSorter2 and DeepVirFinder were also used to predict the
proportion of UCs that may be of virus origin. Both tools were run with the default parameters.
The results for DeepVirFinder were filtered for score >=0.5 was used as it is comparable to
probability >0.5 in our models and the qvalue threshold of <0.05 was applied 95% confidence
threshold.

4.4 Results

4.4.1 Human blood microbiome mining

Initially, 21 blood microbiome studies comprising 3,312 samples were shortlisted, of which
2,625 were successfully downloaded. A total of 2,596 samples from 18 BioProjects could be
assembled and analysed further. 22 samples could not be assembled and were excluded. The
geographic location of 2,430 samples was extracted from SRA metadata and is shown in figure
4.3(a). Approximately 70% of samples were collected from the USA. The second-largest number
of samples were collected from Sweden. In total, 2,999,668 contigs were assembled and 331,079
were at least 300 bases long. These ‘long’ sequences were submitted to the downstream analysis
of the UnXplore pipeline. Following the approach defined in Chapter 3, 161,730 contigs (48.85%)
were classified as known, and 86,873 contigs were classified as partially known (26.24%). 12,673
contigs (3.83%) were shown to have at least one BLASTN hit despite not having any BLASTX
hits (3.83%). 69,803 (21.08%) long contigs were classified as unknown (UCs). The proportion of
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these unknown contigs (UCs) for each study is shown in figure 4.3(b). On average, 24.75% of
unknown contigs were found in these samples with a standard deviation of 21.29%. 14 samples
originating from 6 different studies contained 100% unknown bases, however, these samples
contained less than 20 long contigs (i.e. >=300 bases long) each with most of them containing
only 1 UC.
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Figure 4.3: (a) Geographical distribution of the human blood microbiome samples included in
this study (n=2,430). Countries are coloured according to the number of samples with darker
shades representing the higher number of samples analysed. (b) The proportion of unknown
contigs in human blood microbiome samples grouped by BioProject. The distribution is shown on
the X-axis with each BioProject represented on the left-hand side Y-axis. Y-axis on the right-hand
side shows the number of samples in each BioProject and corresponds to the number of dots on
the plot for the given BioProject. (c) Distribution of unknown contigs length across different
length bins. The X-axis shows length intervals and the number of contigs is shown on the Y-axis
and is annotated on top of the bar.

Figure 4.3 shows that a majority of UCs were <1kb long (n=68,640). 1,169 UCs were at



CHAPTER 4. 94

least 1 kb long, from this set, 184 were found to be at least 2 kb long and 10 UCs were 5kb or
longer. The largest UC found in the human blood microbiome set was 8,557 bases long and was
assembled from SRR7167036. UCs from the human blood microbiome set were significantly
shorter than those from the previous study described in Chapter 3 . This length distribution of
UCs was compared to all contigs generated from this set to identify whether short contigs were
produced due to assembly anomalies in human blood microbiome datasets. However, this was
not the case and the largest known contig assembled from sample SRR8862013 was 482,734

bases long suggesting that the assembly strategy was effective.

4.4.2 Feature visualisation

To understand and visualise how features are represented across these three major classes
(archaea, bacteria and viruses), dimensionality reduction techniques including Principal
Component Analysis (PCA), t-distributed Stochastic Neighbour Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) were explored.  Briefly,
dimensionality reduction is the process of reducing the number of features to the most relevant
ones (Sivarajah, 2021). These methods can compress multidimensional data into a simpler 2 or 3
dimension representation that can be used to visualise the data in a 2D or 3D plot. Although such
dimensionality reduction can lead to the loss of some information, these easily interpretable
2D/3D plots can provide meaningful and important insights into the underlying patterns
embedded within the feature set and how they correlate with the data points or classes e.g.
identification of clusters within the data.

This analysis was carried out using the May 2020 dataset that comprised archaea (n=1,268),
bacteria (n=5,441) and virus (n=7,143) reference sequences (downloaded in May 2020). The
September 2019 dataset was not deemed suitable for this analysis as it was deemed highly
skewed and contained a very large number of archaea and bacteria observations (Table 4.1). PCA
projects data onto linear hyperplane/directions that explain the most amount of variance as it is a
variance maximiser method. Principal components one and two are plotted against each other
in figure 4.4(a) that demonstrates reasonably tight clustering between all three classes which
suggests that it is not possible to explain the variance embedded within the dataset using the
first 2 principal components. Although it is recommended to keep the principal components
to 2 or 3 to visualise the data, in this case, explained variation per principal component was
0.56, 0.08 and 0.03 respectively for the first three components. In such a case, a cumulative
explained variance is explored. Cumulative explained variation for 50 principal components
added up to 0.93 suggesting that up to 93% variance could be explained by 50 features identified
by the PCA. t-SNE is deemed suitable for high dimension datasets as it tries to cluster data points
by keeping similar data points together and dissimilar data points apart (Maaten, 2021). This
approach can provide meaningful clusters as the underlying relationship between data points

is preserved within the embeddings. Unlike PCA which relies on linear relationships, t-SNE
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Figure 4.4: Two popular dimensionality reduction and feature data visualisation plots are shown
here that were generated for May 2020 dataset and contained 3 classes; archaea, bacteria and
virus. Different colours and shapes are used to denote each class. Archaea is represented with
pink squares, bacteria are shown as orange crosses and viruses are shown as blue circles. (a)
Principal Component Analysis (PCA) plot showing first and second principal components derived
from May 2020 dataset. Plotting the PCA of multiple classes is a simple way to view their
overall relatedness. A Principal Component (PC) is a weighted set of probes used to identify the
strongest signals in the data and separate them into Principal Components (PCs). 56% of variance
was explained by PC1 and 8% variance was explained by PC2. (b) t-distributed Stochastic
Neighbour Embedding (t-SNE) plot generated from May 2020 dataset. As a dimensionality
reduction technique, t-SNE plots are a visual way to simplify very large datasets.

can capture non-linear relationships. A t-SNE plot generated from this data is shown in 4.4(b).
It shows some clustering within viruses and bacteria whereas archaea sequences did not show
similar patterns of clustering. It also highlighted that viruses have the largest variance among
the three classes included here. This is expected as viruses are known to mimic host genome
signatures (Pride et al., 2006; Babayan et al., 2018). Overlapping points in t-SNE built using
all features could potentially indicate the low classification potential between the three classes.
However, these results were preliminary and should not be over-interpreted as they are highly

sensitive to parameter optimisation and tuning.

4.4.3 Evaluation metrics

There are various metrics that can be applied to evaluate the performance of the predictions made

by a model. Some of the most popular metrics are defined in Box 4.4.3.

Box 4.4.3: Model evaluation metrics

e True positive (TP): Correctly identified positive class
e True negative (TN): Correctly identified negative class

o False positive (FP): Negative class incorrectly predicted as positive
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False negative (FN): Negative class missed

Precision:
.. TP
Precision = ——
TP+FP
Recall (Sensitivity):
TP
Recall = ————
TP+ FN
True negative rate (Specificity):
TN
Speci ficity —
pecificity TN+ FP T FP

Accuracy: Proportion of correct predictions made by the model.

TP+TN
TP+TN+FP+FN

Accuracy =
Confusion matrix: A table comparing the known outcome to the predicted outcome
generated from a model/classifier.

F1-score: Harmonic mean of precision and recall.

Precision * Recall

F1—score=2x —
Precision + Recall

Support: The support is the actual number of instances of the class in the dataset.

Micro average: Micro average value is computed by taking the unweighted mean
of all the per-class scores. All classes are treated equally regardless of their support

values.

Weighted average: Weighted-average scores are calculated by taking the mean of all
per-class scores while taking into account each class’s support. Weight refers to the

proportion of each class’s support in relation to the total.

K-fold cross-validation: A technique to evaluate ML model performance by

training/testing several ML models on the data that is divided into k subsets.

Receiver operating characteristic (ROC) curve: Receiver operating characteristic
curve that is plotted with TPR (true positive rate) against the FPR (false positive rate)
where TPR (Recall) is on the y-axis and FPR (1 — Specificity) is on the x-axis.
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e Area Under Curve (AUC): AUC represents the degree of separability represented
by the ROC curve. It indicates how well the model can distinguish between classes.

Higher AUCs result in more accurate class separation.

4.4.4 Multilabel multiclass modelling

Initially, a multilabel multiclass model was developed using archaea, bacteria and virus datasets
downloaded in September 2019. This multiclass model attempted to place each sequence into
one of the three classes; archaea, bacteria or virus. As shown in the table 4.1, September 2019
dataset used in these models was imbalanced meaning all classes did not have an equal number
of observations. As this was a multiclass imbalance learn the problem, random forest models
were deemed suitable to be applied to this data. As shown in table 4.2, this model performs well
despite the skewed dataset. It is notable that the recall for the virus class was the lowest due to
the nature of the underlying data i.e. lowest number of data points for class virus.

To address the imbalance class issue, two different data manipulation methods were explored;
undersampling major classes and oversampling of minor classes to match the number of records
and recreate a more balanced dataset. Undersampling methods achieve a balanced dataset by
removing additional data points from majority classes whereas oversampling methods achieve a
balanced set by generating multiple copies of records from the minority class. Undersampling
and oversampling methods were applied to this dataset to generate an artificially "balanced"
dataset. As shown in figure 4.5(a), the September 2019 dataset is highly skewed with around
54,890 observations representing archaea class and 12,148 observations included for virus
class. These classes were balanced using undersampling and oversampling techniques. Figures
4.5(b) show the observations in each class reduced to match the smallest class i.e. viruses by
undersampling and 4.5(c) shows the number of observations in each class increased (oversampled)
by duplicating them to match the number of observations in the largest class. Model performance
after oversampling and undersampling datasets are shown in table 4.2. These results were shown
to improve accuracy and recall for minority classes without impacting the classification of the
majority class. Although these methods are powerful they have limitations. Undersampling can
lead to loss of information as valuable observations relevant to the majority classes are discarded
whereas oversampling can lead to overfitting of the model. Moreover, with oversampling
approach, it is better to split the data into train/test split before copying the observations in order

to ensure that model is not learning and testing on the same data points (overfitting).

Table 4.2: Classification report for multiclass multilabel RFC models.

precision | recall | F1-score | support | Model

archaea 0.96 1.0 0.98 16455.0 | Sept2019_RFC
bacteria 0.99 0.97 0.98 8555.0 | Sept2019_RFC
virus 0.96 0.84 0.9 3703.0 | Sept2019_RFC

accuracy 0.97 0.97 0.97 0.97 Sept2019_RFC
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macro avg 0.97 0.94 0.95 28713.0 | Sept2019_RFC

weighted avg | 0.97 0.97 0.97 28713.0 | Sept2019_RFC

archaea 0.96 0.95 0.95 3680.0 Sept2019_RFC_Undersample
bacteria 0.97 0.96 0.97 3628.0 Sept2019_RFC_Undersample
virus 0.93 0.96 0.94 3626.0 Sept2019_RFC_Undersample
accuracy 0.95 0.95 0.95 0.95 Sept2019_RFC_Undersample
macro avg 0.95 0.95 0.95 10934.0 | Sept2019_RFC_Undersample
weighted avg | 0.95 0.95 0.95 10934.0 | Sept2019_RFC_Undersample
archaea 0.96 0.95 0.96 3680.0 Sept2019_RFC_Oversample
bacteria 0.98 0.96 0.97 3680.0 Sept2019_RFC_Oversample
virus 0.93 0.96 0.94 3680.0 Sept2019_RFC_Oversample
accuracy 0.96 0.96 0.96 0.96 Sept2019_RFC_Oversample
macro avg 0.96 0.96 0.96 11040.0 | Sept2019_RFC_Oversample
weighted avg | 0.96 0.96 0.96 11040.0 | Sept2019_RFC_Oversample

4.4.5 Data partitioning and model optimisation

An overview of the datasets used in the model predictions is shown in the figure 4.1 and
supplementary table B.1. Two binary classification approaches namely SVM and random forest
classifier (RFC) were applied to the January 2021 dataset (Jan2021). For SVM models, a standard
scaling step was applied to the data before it was submitted to the SVM models. In the first
instance of this model’s development, the datasets were split into the train/test category first with
a ratio of 70:30. From the training set, all observations of a class were used as positive labels and
the other observations from the other classes were used as negative labels. Results from these
models shown in the figures 4.7-4.10 demonstrate that these binary classification models were
based on imbalanced data. Despite the imbalance dataset, these models yielded good predictions
for each class.

For each class and classification model, raw and normalised confusion matrices were
generated. For class archaea, 877 positive and 12,285 negative observations were included.
Prediction accuracy, area under the curve (AUC) and average Precision (AP) for this set were
0.98-1.00 for SVC and RFC models. Recall for predicting the archaea as a positive label was
0.94 for RFC and 0.93 for SVC as shown in confusion matrices in figures 4.7. 10-fold
cross-validation yielded the accuracy of 99.07% and 99.14% for RFC and SVC respectively for
class archaea. It is worth noting that the F1-score for the same was around 0.189 for both SVC
and RFC. Such contrast between accuracy and F1-score indicates that the model was accurately
predicting the negative class i.e. not archaea efficiently but was struggling to predict the positive
observation. This is due to the lower number of positive observations. When the dataset is split
into 10 different chunks for cross-validation, some chunks could have very few or no
observations of smaller (i.e. archaea) classes included in them which would in turn lead to an
inaccurate representation of the prediction signal if only accuracy values are compared. This also

highlights the importance of using a more appropriate model performance metric such as the
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Figure 4.5: Number of observations included in each class is shown in the bar chart. The X-axis
shows the class and Y-axis shows the total number of observations in each class. (a) A bar chart
showing the raw number of observations for each class in the September 2019 dataset. (b) A
bar chart showing the number of observations reduced to match the smallest class with 12,148
observations after undersampling techniques were applied to the September 2019 dataset. (c)
A bar chart showing the number of observations duplicated (oversampled) to match the total
number of observations in the train split of the largest class (n=38,441).
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Figure 4.6: Number of observations included in each class is shown in the bar chart. The X-axis
shows the class and Y-axis shows the total number of observations in each class. (a) A bar chart
showing the raw number of sequence observations included in each class in the January 2021
dataset was used to develop binary classification models. (b) A bar chart showing the January
2021 dataset with chopped bacteria and archaea genome sequences. Briefly to achieve a relatively
similar number of observations in each class, sequences from classes with a smaller number of

observations i.e. bacteria and archaea - were split into non-overlapping fragments to increase the
number of observations without introducing bias in the dataset.
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Figure 4.7: Binary model predictions results were obtained for class archaea using January 2021
dataset. A confusion matrix for SVC performance is shown with (a) raw data and (b) normalised
data. Similarly, the confusion matrix showing the prediction results for RFC is shown in (c) raw
data and (d) normalised data. Note: As matrix values are rounded up to two floating points, it

may lead to minor round errors if the numbers are too small. The normalised data represents the
raw counts that are transformed into proportions.
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Figure 4.8: Binary model predictions results obtained for class bacteria using January 2021
dataset. A confusion matrix for SVC performance is shown with (a) raw data and (b) normalised
data. Similarly, the confusion matrix showing the prediction results for RFC is shown in (¢) raw
data and (d) normalised data. Note: As matrix values are rounded up to two floating points, it
may lead to minor round errors if the numbers are too small. The normalised data represents the

raw counts that are transformed into proportions.
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Figure 4.9: Binary model predictions results obtained for class bacteria using January 2021
dataset. A confusion matrix for SVC performance is shown with (a) raw data and (b) normalised
data. Similarly, the confusion matrix showing the prediction results for RFC is shown in (c) raw
data and (d) normalised data. Note: As matrix values are rounded up to two floating points, it
may lead to minor round errors if the numbers are too small. The normalised data represents the

raw counts that are transformed into proportions.
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Figure 4.10: Binary model predictions results obtained for class bacteria using January 2021
dataset. A confusion matrix for SVC performance is shown with (a) raw data and (b) normalised
data. Similarly, the confusion matrix showing the prediction results for RFC is shown in (c) raw
data and (d) normalised data. Note: As matrix values are rounded up to two floating points, it
may lead to minor round errors if the numbers are too small. The normalised data represents the
raw counts that are transformed into proportions.

F1-score that provides further insights into the precision and recall for binary classification
models.

In the case of class bacteria, 2,059 positive and 11,103 negative data points were included.
Although these models have high accuracy of 0.95 for SVC and 0.96 for RFC, recall for positive
class bacteria was 0.83 and 0.78 respectively for SVC and RFC (figure 4.8). Lower recall values
implied that true bacterial sequences were being missed by these models. The average accuracy
for RFC for bacteria after 10-fold cross-validation was 92.88% for RFC and 92.30% for SVC.
The mean F1-score was 0.152 for RFC and 0.163 for SVC. For class plasmid, 4,638 positive and
8,524 negative data points were used. In the case of the plasmid class, an accuracy of 0.94 was
obtained for both classifiers whereas the sensitivity was 0.90 for SVC and 0.87 for RFC (figure
4.9). The average accuracy for 10-fold cross-validation was around 89.54% and the average
F1-score was around 0.356 for RFC models whereas for SVC models mean accuracy was 90.54%
and the mean F1-score was 0.373. The virus class contained 5,588 positive and 7,574 negative
observations. Accuracy, AUC and AP were between 0.98-1.00 for both classifiers (figure 4.10).
The average accuracy of 95.95% with an average F1-score of 0.486 was obtained for RFC after
cross-validation. Similarly, an average accuracy of 96.47% and an average F1-score of 0.486 was
obtained for SVC for viruses.

These results demonstrate that the features implemented in these models are able to distinguish
all four classes with high precision and recall. The cross-validation results obtained for RFC
highlight the problems with imbalanced data being used to train the models. These models
lack robustness for classes with a smaller number of observations i.e. archaea and bacteria. To
overcome this issue, further efforts were made that are discussed in detail below.

Notably, both classification method predictions and performance were comparable for all
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classes. This suggested that either method would be suitable for this specific classification
problem. The wall time for training and testing models using SVC was 19 minutes 24 seconds
compared to RFC which took 17.7 seconds. This is due to the ability of RFC-based models to
be run in parallel using the n__jobs parameter in sklearn. Moreover, RFC-based models were
chosen for further analysis as they are natively probabilistic which means that it is easier to extract
probabilities for each classification in addition to the final classification outcome. Probability
calibration methods such as Platt scaling can be used to convert class outcomes to probabilities in
deterministic models like SVC.

An alternative data partitioning approach was explored whereby genome sequences from
smaller classes, namely bacteria and archaea, were split into non-overlapping chunks to inflate
the number of sequences without introducing any bias in the dataset. This dataset is referred to as
Jan2021_chunks from hereon. A number of k-mer classification tools like VirFinder and (Ren
et al., 2017), DeepVirFinder (Ren et al., 2020) have successfully implemented this approach in
their models. As features are ultimately normalised for the length, these models are assumed to
be not sensitive to the length of the sequence. Hence, splitting the larger genomes into shorter
fragments can help to increase the number of observations in the class without introducing bias
that is typically introduced through other techniques such as over/undersampling. To achieve this,
all larger genomes (namely bacteria and archaea) were split into non-overlapping chunks of a
given size. The chunk size was selected to roughly match up the number of observations from
different classes. A chunk size of Imb (for bacteria) and 200kb (for archaea) were arbitrarily
selected to roughly match up the number of records in each class. All k-mer frequencies were
normalised for the length of the sequence such that sequence length would not bias the features
and the observed frequencies of the feature set. This generated a less imbalanced class compared
to the previous dataset (figure 4.6).

Additionally, calibration methods were also explored to calibrate the prediction probabilities
of random forest-based classifiers. The predicted probabilities of a well-calibrated classifier can
be directly interpreted as confidence levels. For example, a well-calibrated binary classifier should
classify the samples such that among the samples to which it gave a predict_proba value close to
0.9, approximately 90% actually belong to the positive class (Sklearn, 2021). Brier score, which
compares the actual probability with the predicted probabilities was used to measure the accuracy
of the predictions. A Brier score of 0 indicates complete/total accuracy and a value of 1 indicates
completely inaccurate predictions. In current models, the train/test split is always performed on
the fly and before separating the classes which in turn results in a dynamic set of training and
testing data points. In general, these minor changes should not make a huge difference to the
actual results of the classifiers. This was demonstrated and tested using 10-fold cross-validation.
Additionally, a predefined random seed was used that can ensure the reproducibility of the results.

Overall results for the Jan2021_chunks dataset were comparable to those described for the

Jan2021 dataset. 10-fold cross-validation carried out using these datasets indicated average
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accuracy of 99.11% for archaea (average F1-score: 0.472), 91.33% for bacteria (average F1-score:
0.264), 90.26% for plasmid (average F1-score: 0.217) and 95.27% for virus (average F1-score:
0.276) classification using RFC. Furthermore, the average F1-score for archaea and bacteria
was improved suggesting better prediction ability with more data points for the minority class.
However, these additional archaea and bacteria observations negatively impacted the F1-score of
plasmid and virus classes suggesting that a further improvement was required.

Brier’s score of calibration for archaea was 0.005 before calibration and was improved slightly
to 0.003 after calibration albeit the initial model was well-calibrated. For bacteria, the Brier score
was 0.033 for the uncalibrated classifier and could be improved to 0.024 after sigmoid calibration
was applied. In the case of the plasmid class, the sigmoid calibrated classifier’s Brier score was
0.032 compared to the uncalibrated classifier with a Brier score of 0.041. Finally, for the virus
class, the Brier score of the sigmoid calibrated classifier was 0.012 improved from 0.022 to its
uncalibrated counterpart.

These binary models work well in the given scenario, however, they could be slightly biased
towards predicting the negative label. This is simply due to the fact that the model has "seen"
more negative labels compared to the positive ones. To improve these models further, alternative
balanced data strategies were explored. This involved a more traditional binary classification
approach whereby for each class positive labels are separated and an equal number of negative

data points were drawn resulting in a balanced dataset.

Balanced binary classification, cross-validation and calibration

Balanced binary RFC models that include the same number of positive and negative observations
for each class were trained, tested and validated on Jan2021 and Jan2021_ chunks datasets.
Overall, the results obtained for both datasets were similar with slightly better results for the
Jan2021_chunks datasets simply because of a higher number of observations included in the
set for bacteria and archaea classes and that positive and negative observation were balanced
for each class. All RFC binary models were calibrated using a sigmoid calibration and 10-fold
cross-validation. Performance metrics of the final balanced, calibrated and cross-validated models
are shown in the table 4.3. Average accuracy from 10-fold cross-validation (CV) was obtained
for each class. The highest accuracy of 99.68% and AUC of 1.00 were achieved for class archaea.
The Brier score for the archaea was the lowest among all binary classifiers. For class bacteria and
plasmid, a significant improvement was observed from the previous unbalanced classification.
For bacterial classification, the overall accuracy of 96.48% and F1-score of 0.96 were achieved.
In the case of the plasmid class, an accuracy of 94.22% was achievable with F1-score of 0.93.
These results show significant improvement from the previous models where though the accuracy
was very high the Fl-score denoting the precision and recall for each class was not very high.
Balancing the number of observations used for training and cross-validation steps demonstrated

greater prediction precision and recall for each class. Finally, for the virus class, an average
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accuracy of 97.74% and F1-score of 0.97 were achieved. These final classifiers were tested
further using the holdout datasets. These models are implemented as final models and are shared
through TetraPredX.

Table 4.3: Balanced, binary calibrated and cross-validated model performance metrics

Class N AUC | Fl-score | Accuracy | Brier score§
Archaea | 10319 | 1.00 | 0.99 99.68% 0.005
Bacteria | 9814 | 0.99 | 0.96 96.48% 0.029
Plasmid | 6642 | 0.98 | 0.93 94.22% 0.050
Virus 7953 | 1.00 | 0.97 97.74% 0.020

Classification of holdout dataset

To test and validate the predictions made by the final calibrated binary classifiers, four distinct
holdout datasets were designed. These are as follows: 1) Geminiviridae 2) Chuviridae 3)
Siphoviridae and 4) contigs and scaffold level assembly of Paraburkholderia madseniana strain
RP11. Three out of four datasets were specific to virus families and one was for a novel bacteria
strain. To perform these experiments, each group of sequences were excluded (held out) from
the RFC training set and the resulting models were tested on the holdout set. This was to
evaluate if a previously unknown set of sequences could be identified using the classifiers.
Probability-based classification results were divided into two categories: 1) maximum/highest
probability-based classification and 2) signal-based classification. Maximum probability-based
classification considers the highest probability of the given sequence being classified in one or
more microbial classes whereas the signal-based classification would simply show the classes for
which the predicted probability is >0.5. For example, if a contig was predicted to belong to the
class virus with a probability score of 0.7 and class plasmid with a probability score of 0.65 then
it will be classified as a virus in the highest probability-based method and will be classified as a
virus/plasmid using the signal-based method. This is due to the fact that there are independent
signals (i.e. probability score >0.5) that this contig could belong to either class with different
probability scores. Any sequences that were predicted with probability <=0.5 were categorised
as "undetermined" indicating that there wasn’t sufficient signal to predict their class using our
models with >50% confidence.

Prediction results for Geminiviridae and Chuviridae are shown in the figure 4.11. It is notable
that most sequences for both holdout sets were predicted to belong to the virus class. The
sequences from the family Geminiviridae were predicted as viruses with a mean probability of
0.991 (SD:0.008). Moreover, the mean probability for these sequences to be any other class
was between 0.004-0.016. For the family Chuviridae, the mean probability for the virus class
was 0.991 (SD:0.022) and the mean probability for all other classes was between 0.007-0.016.

These results suggest that the virus-specific signals are strong enough to be picked up by the
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model even though the models were trained using the sequences that were left out of the training
set. Compared to these two virus families, predictions made for the family Siphoviridae were
different as shown in the figure 4.11(c). Out of the complete set of 785 sequences, 298 could
not be predicted to belong to any class, 401 sequences were predicted to belong to the virus
class, 55 were predicted to belong to the plasmid class, 29 were predicted to belong to the class
bacteria and 2 were predicted to be archaea. However, the classification described above was
based on the absolute highest probability where a class probability was >0.5. If the "signal" (i.e.
where predicted probabilities for the class was >0.5) was considered then the classification was
as follows: 387 were viruses, 46 were plasmid, 27 were bacteria and 2 were classified as archaea,
20 were predicted to be virus/plasmid, 3 were predicted to virus/bacteria and 2 were predicted to
be bacteria/plasmid. These mixed signals can be observed in figure 4.11(c) where the predictions
are plotted for each class with the highest probabilities. Notably, these models struggled with the
classification of siphoviruses. Bacteria and archaea serve as natural hosts for siphoviruses, and
viruses often mimic their host’s genomic signature. Tetramer frequencies have been shown to be
predictive of the host for prokaryotic viruses (Young et al., 2020). The removal of siphovirus
sequences would have resulted in the loss of key distinctive signals used by models to distinguish
viruses from other classes, which could severely influence the prediction abilities of models.
Predicted probabilities and model-based classification for Paraburkholderia madseniana
strain RP11 sequences are shown in the figure 4.12. Out of the set of 284 sequences, 21 could
not be predicted to belong to any of the classes using the calibrated RFC models developed
here i.e. did not have a predicted probability >0.5 (figure 4.12). Sequence classification based
on the maximum predicted probabilities was as follows: 133 as bacteria, 70 as plasmid and 60
as a virus. This is shown in the figure 4.12. However, this set of predictions also contained
"mixed" classification signals whereby more than one class had >0.5 probabilities for sequence
classification. Based on that "signal", 120 sequences were predicted to be bacteria, 42 were
predicted to be plasmid and 54 were predicted to be of virus class. In the remaining set,
38 sequences had >0.5 probabilities for bacteria as well as plasmid class, 8 sequences had
probabilities >0.5 for plasmid/virus classes and 1 sequence was in bacteria/virus classes. These
results imply that some of the incomplete bacterial genome sequences are difficult to predict

accurately using the TNF-based models developed here.
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Figure 4.11: Virus holdout dataset prediction results obtained using Jan2021_chunk models are shown in various
scatter plots. Predicted probabilities were plotted for each instance of for holdout dataset. The X-axis represents the
query sequence, Y-axis represents the probability for each model and the dotted grey line represents the probability
threshold of 0.5. The colours and shapes denote individual classes. Class archaea is represented with blue circles,
class bacteria is shown in red diamonds, yellow squares represent the class plasmid and green crosses represent
the class virus. (a) Prediction results are shown for the holdout set for the virus family Geminiviridae (n=578).
These results show that the Jan2021_chunk model predicted all sequences in this dataset as viruses with very high
probabilities. (b) Prediction results for virus family Chuviridae (n=32). All 32 sequences were predicted to belong to
the class virus using Jan2021_chunk models. (c) Prediction results for virus family Siphoviridae (n=784). Each panel
shows the class and the corresponding number of sequences predicted to belong to that class based on the maximum
prediction probability. 298 sequences could not be classified accurately (probability <=0.5) using Jan2021_chunk
models.
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Figure 4.12: Prediction results for holdout set containing sequences from bacteria
Paraburkholderia madseniana strain RP11 predictions based on the highest prediction probability.
This set contained 284 contig/scaffold sequences. Each panel shows a class and the corresponding
number of sequences predicted to belong to that class based on the maximum prediction
probability.
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Reverse complement features

Typical metagenomic sequencing involves fragmentation of the genomic content and these
fragments are then sequenced using the high throughput sequencing approaches. The de novo
assembly process often leads to the contig assembly in the opposite orientation. To efficiently
predict the origin of such contigs, it is important to gather the k-mer frequencies in both the
forward and reverse strands of the contig sequences. To achieve this, a minor modification to
the ML models was applied whereby the tetranucleotide frequencies were calculated from both
strands of the sequences for all sequences in the subsequent analyses.

These model prediction performances were not greatly affected by this tweak as shown in
the supplementary table B.4. The holdout dataset results were very slightly affected by the
implementation of this approach. For example, 2 of the Geminiviridae sequences and 1 chuvirus
sequence could not be predicted accurately as shown in the figure 4.13. In the case of siphoviruses,
TetraPredX models could not determine the class of the majority of sequences (n=469). However,
from those that could be predicted, 195 sequences were predicted as viruses, 74 were predicted
as plasmids and 43 were predicted to belong to class bacteria. Using reverse complement
features helped to improve the predictions for holdout set Paraburkholderia madseniana with 152
sequences correctly predicted as bacteria (figure 4.14). The results were interesting since they
illuminated the importance of feature selection and how k-mer frequency calculations can affect
the model’s performance. Here, no changes were made in the dataset but the k-mer frequencies

in the feature set had been impacted due to the addition of reverse complement k-mers.
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Figure 4.13: Holdout virus dataset prediction results after the introduction of reverse complement
features to Jan2021_chunk models. The X-axis represents the query sequence, Y-axis represent
the probability for each model and the dotted grey line represents the probability threshold of
0.5. The colours and shapes denote individual classes. Class archaea are represented with blue
circles, class bacteria is shown in red diamonds, yellow squares represent the class plasmid and
green crosses represent the class virus. (a) Prediction results are shown for the holdout set for the
virus family Geminiviridae (n=578). (b) Prediction results are shown for the holdout set for the
virus family Chuviridae (n=32). (c) Prediction results shown for the holdout set for virus family
Siphoviridae (n=784). Each panel shows a class and the corresponding number of sequences
predicted to belong to that class based on the maximum prediction probability.
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Figure 4.14: Prediction results for holdout set for bacteria Paraburkholderia madseniana strain
RP11 predictions (n=284) after incorporation of reverse complement features in Jan2021_chunk
models. Each panel in this figure shows a class and the corresponding number of sequences
predicted to belong to that class based on the maximum prediction probability. The X-axis
represents the query sequence, Y-axis represent the probability for each model and the dotted
grey line represents the probability threshold of 0.5. The colours and shapes denote individual
classes. Class archaea is represented with blue circles, class bacteria is shown in red diamonds,
yellow squares represent the class plasmid and green crosses represent the class virus.
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4.4.6 Virus-specific modelling

To identify if the existing models and feature set can provide further resolution on the type of
virus a given sequence is, virus-specific classification modelling was undertaken. Three different
taxonomic and genotypic classification properties; realm, genome type and segmentation were
selected for the virus-specific classification models. Random forest binary classifiers were trained
for three distinct virus properties that were extracted from ICTV VMR 010820 MSL35. This
included segmentation, genome type and virus realms. For each category, individual binary
prediction models were trained and tested. Results and performance metrics for balanced
binary models that were calibrated and cross-validated as described in the previous sections are
summarised in table 4.4.

For all four realms (Duplodnaviria, Monodnaviria, Riboviria and Varidnaviria), the average
10-fold CV accuracy was over 85% and AUC was >=0.93. All models were reasonably well-
calibrated with a Brier score between 0.036 and 0.105. The highest average accuracy of 96.10%
and F1-score of 0.95 were achieved for realm Duplodnaviria, followed by realm Riboviria with
an Fl-score 0.94 and accuracy of 94.47%. Calibrated RFC models for Varidnaviria performed
the worst out of the set with an average accuracy of 87.85%, F1-score of 0.85 and Brier score of
0.105. This could be either due to the small number of observation sequences in this set (n=231)
included in this model or that these specific model methods and/or features are not suitable for
accurately predicting virus realm(s).

The genome type property was derived from the genome composition details included in
the VMR. As shown in the figure 4.15, certain genome composition groups e.g. ssDNA(+),
sSRNA, and dsDNA-RT contained a very low number of records thus it would not be feasible to
develop models for each of these categories. To simplify this dataset, genome composition was
collapsed into four distinct genome types; dsDNA (n=3,066), dSRNA (n=951), ssDNA (n=1,189)
and ssRNA (n=2,695). Calibrated binary classification models were able to distinguish among
these groups with an average accuracy of 94.13% for dsDNA, 93.27% for ssDNA, 89.64% for
dsRNA and 92.41% for ssRNA (table 4.4). In addition to this, a balanced binary model was also
developed to predict the segmentation i.e. whether a virus can be segmented or unsegmented. A
total of 2,909 records of segmented viruses were used as a positive set against an equal number
of unsegmented viruses to train this model which demonstrated an average accuracy of 89% with
an F1-score of 0.88 to predict that the given virus record could be segmented.

These results showed that all three virus-specific properties could be predicted well using the
TNF features. All models were able to achieve >85% accuracy with >0.85% F1-score suggesting
that these models can be applied to virus sequences to potentially characterise their realm, genome
type and segmentation properties.

To test these models further, two separate test datasets were designed. In the first test set, all
virus sequences used to train these models were chopped into non-overlapping 2kb fragments

and the models were used to predict realm, genome type and segmentation properties for each
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Figure 4.15: Number of viruses grouped by the genome composition derived from VMR MSL35.
The X-axis shows different genome compositions and Y-axis shows the number of viruses in the
corresponding genome composition category. Colours represent distinct genome composition

categories.

Table 4.4: Virus taxonomy/properties-based model performance metrics

Realm N AUC | F1-score (positive label) | Accuracy | Brier
score

Duplodnaviria | 2051 0.99 | 0.95 96.10% 0.036

Monodnaviria | 1233 0.98 | 0.93 93.27% 0.056

Riboviria 3698 0.98 | 0.94 94.47% 0.045

(3515)

Varidnaviria 231 0.93 | 0.85 87.85% 0.105

Genome type

dsDNA 3066 0.98 | 0.94 94.13% 0.046

dsRNA 951 0.96 | 0.89 89.64% 0.078

ssDNA 1189 0.97 |0.90 93.27% 0.063

ssRNA 2695 097 |0.92 92.41% 0.062

Segmentation

Segmented 2909 0.95 | 0.88 89.00% 0.089

of them. This is to test whether incomplete or fragmented virus genome sequences can be

accurately predicted using these virus-specific models. 107,368 virus sequence fragments were

generated. The comparison between actual, correctly predicted and incorrectly predicted label

are shown in figure 4.16(a) and 4.16(b). Notably, realm Duplodnaviria and genome type dsDNA

were significantly under-predicted for these short fragmented sequences. On the contrary, realm



CHAPTER 4. 114

(@) (b)
a0k o 100k 97110 actual
70k B correct
incorrect
8 ook g O
o Q
c o
5 5]
5 S0k 3 60k 57631
3 g
w5 40k 36283 5
8 sk g A
3 24991 =
2 20k 2 24067
20k
10796 11232
10k o151 0038469 7443 6234 823%6545046
700 17181336 . - 0 353 573 487 1147 876
— RN DN
Duplodnaviria Monodnaviria Riboviria Varidnaviria dsDNA dsRNA SSDNA SSRNA
Realm Genome tvpe
() (d)
50k 48422 55071
actual
50k | | f:orrect
40k 45329 incorrect
8 2
e 33625 2 a0k
[} [}
3 30 &
@ a}
0 z 30k
5 5}
g 20k 2 20k 20454
£ 14332 g 16146
e z
10k 10k 7905 6190 48
48724383 3359
2555 2653 2009
1062 5o 17511603 303 829 662 1485 -
o] f— — — dsDNA dsRNA ssDNA ssRNA
Duplodnaviria Monodnaviria Riboviria Varidnaviria

Genome tvpe
Realm

Figure 4.16: Virus-specific prediction results using TNF models developed to predict virus realm
and genome type for two test datasets. (a) and (b) shows the comparisons between actual realm
and genome type properties of fragmented RefSeq virus sequences; (c) Realm and (d) genome
type comparisons for representative GenBank sequence subset that were not included in the
initial model training and/or testing. It is notable that virus-specific TNF models are sensitive
to the sequence length. In case of the RefSeq set, a large number sequences that belong to
realm Duplodnaviria were incorrectly predicted as realms Monodnaviria, Ribodnaviria and
Varidnaviria. This was also reflected in the genome type models as shown in (b). In contrast,
fragmented sequences derived from GenBank were comparatively better predicted for both
genome type and realm models, except for realm Monodnaviria. Overall, models that were
developed with smaller number of observations for each of the properties e.g. Monodnaviria,
Varidnaviria, dsSRNA were shown to lack robustness with these categories of predictions.
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Monodnaviria, Riboviria and Varidnaviria models were able to recover actual fragments better
albeit with more false-positive predictions. Similar patterns were observed for genome type
dsRNA and ssDNA.

For the second test set, all GenBank nucleotide sequences for the virus (txid10239) were
downloaded from the NCBI on 10 June 2021 using NCBI e-utilities. This set comprised 4,192,727
sequences which were filtered for the length of 1kb and shorter sequences were discarded.
To dereplicate these sequences and remove duplicates, these sequences were clustered using
MMSeqs2 for 90% sequence similarity with at least 80% target sequence coverage. A cluster
representative set with 108,045 was generated which was then filtered for any RefSeq virus
genome sequences previously used to train and/or test the models. The final set comprised
102,221 sequences for which feature extraction and model predictions were carried out. The test
dataset was annotated with relevant taxonomic attributes using the metadata derived from NCBI
Virus Resource and ICTV VMR MSL35. 101,924 records from the test set could be mapped to
relevant metadata downloaded from the NCBI Virus resource. The results for this subset for realm
and genome type predictions are shown in figure 4.16(c) and 4.16(d). Realm and genome type
prediction for this test set was comparable to the original classification labels. Notably, far fewer
false-positive predictions were obtained for all realms and genome types. High numbers of false
positives were identified in the fragmented test set predictions highlighting a major limitation of
the genome composition-based model predictions. Shorter genomic fragments and incomplete
sequences often lack adequate specific signals and can lead to misclassification which is a known

limitation of k-mer-based classification (Ren et al., 2017).

4.4.7 Unknown sequence predictions

To predict the class of the unknown contigs (UCs) generated from Chapter 3 and the blood
microbiome dataset analysed in this chapter, TetraPredX models were employed. Genome
composition-based prediction models have been shown to be sensitive to contig sequence length
and often lead to false positives when applied to short contigs as they lack enough genomic
information required for accurate predictions (Ren et al., 2020; Guo et al., 2021a). To avoid this,
UC set was filtered to include contigs that were at least 1kb long. The contigs that were still
categorised as UCs after the latest analysis carried out on 14 October 2020 (see section 3.4.7) were
combined with the UCs obtained from the blood microbiome dataset and subsequently filtered to
exclude any UCs that were <1kb long. Though a large number (n=9,900) of UCs included here
was assembled from fecal samples, these UCs were originating from ten different microbiomes
analysed in this study. Overall, the final set of 20,552 UCs was spanning 40 BioProjects and
represented 866 samples. To use the TetraPredX models, feature extraction was carried out from
the FASTA sequences and all four calibrated models (archaea, bacteria, plasmid and virus) were
applied to the consolidated UC set of 20,552 sequences. From the UCs set, 18,236 sequences

(88.7%) were predicted as viruses and the second most predicted class for these UCs was plasmid
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which comprised a set of 1,239 sequences. 163 UCs were predicted to be bacteria, 11 UC was
predicted as archaea and the remaining 903 UCs did not have probabilities >0.5 for any classes.
When the signal-based classification was taken into account, 16,601 (80.7%) UCs were predicted
to belong to the virus class only while 717 UCs were classified as a plasmid. 2,106 UCs had
probabilities >0.5 for both virus and plasmid classes, 15 UCs were classified into virus/archaea

classes and 21 UC was in bacteria/plasmid classes (table 4.5).

Table 4.5: Predicted microbial class for unknown sequences

Unpredicted 903 (probability <=0.5)
Predicted class based on maximum probability

Archaea 11

Bacteria 163

Plasmid 1239

Virus 18236
Predicted class based on signal

Archaea 8

Bacteria 141

Bacteria/Plasmid 21

Plasmid 717

Virus 16601

Virus/Archaea 15

Virus/Bacteria 39

Virus/Bacteria/Plasmid | 1

Virus/Plasmid 2106

Notably, >80% UCs were predicted as likely originating from virus class using the models
developed here. To compare these predictions with other virus prediction methods, two widely
used virus prediction tools, VirSorter2 and Deep VirFinder, were applied to the UC set. Briefly,
DeepVirFinder is a widely used genomic sequence composition-based machine learning
prediction tool whereas VirSorter2 uses some genomic composition metrics e.g. GC content
combined with hallmark genes to predict the likelihood of a sequence being of virus origin.
Although DeepVirFinder employs more sophisticated deep learning algorithms to carry out
predictions, the modelling methods i.e. k-mer based predictions are more comparable to the
models described in this section.

Overall, 11,617 and 2,084 UCs were predicted as viruses using Deep VirFinder and VirSorter2
respectively. These predicted viral UCs were compared between all three methods described
here and the overlapping UCs found with these three methods are shown in the Venn diagram
shown in figure 4.17. These results demonstrate that there was variation in UCs predicted to be
viral in origin. 1,463 UCs were predicted to be of virus origin by all three methods. Among the
predictions made by DeepVirFinder and TetraPredX, there was significant overlap. The tools
predicted 10,221 UCs as viruses. There were 1,463 contigs that were common to all three tools.

This could be due to similar genome-composition-based prediction approaches employed by both
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Figure 4.17: Virus predictions results for unknown contigs showing a comparison between
TetraPredX, VirSorter2 and DeepVirFinder output. Venn diagram shows the overlap among
predicted virus sequences from the unknown contigs dataset. Two popular virus prediction tools
VirSorter2 and DeepVirFinder were applied to the same dataset and their results are compared
with TetraPredX output.

tools. Among the predicted set, 6,094 UCs were unique to TetraPredX. These prediction results
were slightly different if the signal-based predictions were taken into account for TetraPredX
(figure B.2). 18,762 UCs were predicted to belong to the class virus with a predicted probability
>0.5. 1,603 UCs were shared and predicted as viruses using all three methods.

The set of 10,221 UCs that were predicted to be viruses using TetraPredX and DeepVirFinder
were analysed further using anicalc/aniclust approach to dereplicate the sequences into virus
operational taxonomic units (OTU). anicalc.py and aniclust .py scripts available within
CheckV (Nayfach et al., 2020b) are shown to be the most efficient to create virus OTUs (Tisza
et al., 2021b). Virus OTUs were generated using aniclust.py with —-min_ani 95,

—--min_gcov 0 and ——min_tcov 85 parameters. These analyses yielded 9,118 unique
virus OTUs suggesting the presence of 9,118 distinct viruses in this set.

To assign further virus-specific attributes to the predicted viruses, 14,830 UCs that were
predicted as viruses were extracted and virus-specific models were used to predict the realm,
genome type and segmentation properties of these UCs. Although these results are preliminary,
they are described below. Based on the highest probability of classification, 8,881 UCs were
predicted to belong to realm Riboviria, 2,572 were assigned to realm Monodnaviria, 1,671 were
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assigned to realm Varidnaviria and 498 were assigned to realm Duplodnaviria. A realm could
not be determined for the remaining 1,208 UCs. Predicted genome types based on the maximum
signals were as follows: 7,195 dsRNA, 2,392 ssDNA, 2,296 dsDNA, and 1,941 ssRNA with the
remaining 1,006 UCs that could not be predicted to belong to any of these classes. Signal-based
predictions for each of these virus-specific properties were often contradictory as shown in table
B.5 highlighting the potential limitations of these models.

4.5 Discussion

Unknown sequences exist in most shotgun metagenomic and metatranscriptomic datasets. A range
of new studies that aim to classify this unknown sequence matter embedded within metagenomes
have found novel viruses and phages (Gregory et al., 2020; Luis F. Camarillo-Guerrero et al.,
2021; Benler et al., 2021; Tisza et al., 2021b; Nayfach et al., 2021). In this study, I have expanded
the catalogue of unknown contigs (UCs) by analysing 2,625 human blood microbiome samples
using the UnXplore framework discussed in Identification and quantification of ‘unknown’
biological sequences in human microbiomes chapter. We found that on average 22% of assembled
sequences were deemed to be of unknown taxonomic origin. These UCs were compiled with
UCs discovered in Chapter 3 resulting in a set of 20,552 sequences that cannot be classified using
traditional sequence similarity-based methods such as BLAST. Hence, the classification of these
UCs remains a major challenge. The k-mer composition-based machine learning (ML) models
we developed and optimised here aimed to solve this issue and classify the UCs surveyed here
into microbial sequences.

Two separate approaches namely Support Vector Classifier (SVC) and Random Forest
Classifier (RFC) were implemented to build prediction models that can classify the UCs into one
of the four categories. The balanced binary models that included the reverse complement k-mer
features were deemed most suitable for this task. The overall performance obtained for both
methods was comparable and RFC was chosen over SVC as they were faster to run due to their
inherited multithread processing attribute available in sklearn. Moreover, the issue of overfitting
i.e. fitting exactly against training data in a statistical model and unable to make accurate
predictions on previously unseen data - is less prominent to RFC as these models consist of
several weak classifiers which are all trained independently on different subsets of training data.

Simple tetranucleotide frequency-based prediction models were developed to predict the
origin of sequences. These models were trained and tested on known microbial sequences, refined
to suit UC derived from microbiome datasets and polished to predict the microbial class of the
unknown sequences identified in this as well as the previous chapter. These models were packaged
into a python tool that can be widely applied to metagenomic and metatranscriptomic datasets
to "classify" the sequences that do not have alignment-based sequence similarity to known

sequences. An extensive comparison between different models was carried out and random forest
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models were deemed suitable for this task as they are less likely to be biased towards observed
data. A wide range of microbial genome datasets were assessed to determine their suitability
for prediction models. RefSeq genomic sequences combined with non-overlapping fragments
of bacteria and archaea sequences proved to be the most effective for metagenomic sequence
classification. Final calibrated random forest classification models with fragmented bacterial and
archaeal sequences, ICTV species exemplar viruses and reference plasmid sequences were shown
to be able to predict all four microbial sequence classes with very high accuracy and precision.

Our TNF-based models were applied to the UCs catalogued in this Chapter as well as in
Chapter 3. Predictions made by these models clearly show that >70% of all UCs can be confidently
assigned to virus class. These results support our initial hypothesis that a large proportion of
unknowns embedded in public repositories could be originating from uncultivated virus genomes.
These sequences represent completely novel virus genomic signatures that are currently missing
from the public databases. Although our models are much simpler compared to the more
sophisticated deep learning algorithms implemented in Deep VirFinder, the prediction results
obtained using these models are largely overlapping with those generated using DeepVirFinder.
This is promising as DeepVirFinder is shown to perform the best among all virus/phage prediction
tools (Fung et al., 2022; Ren et al., 2020).

TNF-based prediction models were tested using a range of test datasets and were deemed
very sensitive toward the identification of each class. However, some bacterial sequences could
potentially be predicted as plasmids or viruses due to the nature of these mobile genetic elements
to acquire bacterial genomic sequences. There is a known trade-off between k-mer length and
specificity. Shorter k-mers could lead to more false positives whereas longer k-mers could be
overly specific to known sequences. As the exact k-mer matching approach is implemented
in TetraPredX, the implementation of longer k-mers could be extremely sensitive to pitfalls
associated with exact k-mer matching. Popular prediction tools such as IDTAXA for bacteria
(Murali et al., 2018) and VirFinder/DeepVirFinder (Ren et al., 2017; Ren et al., 2020) for viruses
have implemented their models with k-mers of length 8-10. Shorter k-mers implemented in
TetraPredX could be less specific compared to other prediction tools that use longer k-mers.
However, it could be argued that short signatures such as that implemented in TetraPredX could
be more effective at predicting high diversity sequences e.g. RNA viruses (Ul et al., 2020).
Moreover, our results show that TNF models implemented in the random forest are in fact able to
deconvolute the signals associated with different classes tested here with very high precision and
recall.

Numerous virus-host prediction tools have demonstrated that short k-mer signatures including
di-, tri- and tetra-nucleotides are effective at predicting the host specifically for prokaryotic viruses
(Tang et al., 2015; Villarroel et al., 2016; Ahlgren et al., 2017; Babayan et al., 2018; Young et al.,
2020). This virus-host signature sharing arising from viruses’ properties of genome mimicry could

potentially be attributed to false-positive predictions. However, this phenomenon would be more
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prominent in the case of previously unseen host (i.e. bacteria and archaea) sequences as viruses
possess a broader genomic diversity compared to their hosts. As previously noted, TNF models’
performance could be poorer if applied to short contigs (typically less than 1kb) as these sequences
lack enough observations required for the models to make accurate predictions. Due to such
complex interactions between viruses and their hosts, further explorations to identify the virus-
host prediction boundaries and feature optimisation would be required. One solution to avoid this
could be to implement suitable longer k-mers in predicting various classes, however, exact k-mer
matching with longer k-mer could in turn negatively impact the prediction accuracy. By expanding
the feature set and incorporating other relevant features such as nucleotide-based features such
as GC content, amino acid k-mers, and protein domain signatures that are implemented in other
prediction tools such as VirSorter2, these challenges could be overcome (Guo et al., 2021a).
Identification and implementation of unique and specific features for each class included in
TetraPredX would be a substantial undertaking and could be extremely challenging, however, it
would be a significant upgrade from the existing models. All models implemented in TetraPredX
were trained and tested using the gold-standard NCBI RefSeq datasets. To encompass a wider
diversity of sequences, alternative data repositories that hold a much larger number of sequences
such as GenBank or specialised databases such as GTDB (Parks et al., 2022) or NCBI Virus
(Brister et al., 2015), IMG/VR (Roux et al., 2021c) can be explored in order to provide a more
comprehensive dataset.

ML models for virus properties including realm, genome type and segmentation were explored
but the predictions made using these models would need to be optimised further, specifically
in the case of realm Varidnaviria and RNA viruses. Due to the poor resolution and signals
embedded in shorter sequences, virus-specific model predictions and performance has plenty of
room for improvement. For example, more sophisticated algorithms e.g deep learning method
implemented in DeepVirFinder and longer k-mers may be more suitable for modelling these
properties. It is worth noting that taxonomic classification is an arbitrary method of grouping viral
sequences into a variety of classes often based on the genomic (e.g. dsDNA viruses are included
in realm Duplodnaviria) as well phenotypic properties. Genomic composition-based signals alone
may not provide sufficient resolution to achieve this classification accurately. Virus taxonomic
classification at various levels of taxonomy is currently in flux e.g. realms Adnaviria and Riboviria
have been added in the newer version of the master species list released in May 2021. Moreover,
a range of virus families (e.g. Baculoviridae, Anelloviridae) still remain to be classified into one
of the realms. Given the fluid nature of virus taxonomy and the complexity presented by virus
genomes/segments modelling virus properties at this level remains a fascinating yet challenging
task.

It is notable that models developed and distributed through TetraPredX are highly reliant on the
reference databases that often suffer from shortcomings related to misannotation and mislabelling

of reference sequences. These errors can potentially impact the model performance and could
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potentially introduce bias. Due to the fluid nature of taxonomy and delays in incorporation of
taxonomic changes in corresponding INSDC databases such as GenBank, it is anticipated that
some results obtained here may be difficult to replicate. Moreover, as mobile genetic elements
such as phages and plasmids often share certain genomic sequences with the host genomes, some
unknown sequences would not be classified using TetraPredX models and further research and
development of targeted approaches would be required to classify them.

Models developed here are aimed at identifying microbial sequences, and if eukaryotic
sequences are submitted to these models, they are likely to be predicted as viruses since eukaryotic
sequences were not included in the models. Viruses are known to imitate their host sequences and
often have host nucleic acid embedded within their genomes which can lead to misclassification
which is a known limitation of these k-mer-based classification models (Ponsero et al., 2019).
UCs that were analysed here were free from eukaryotic contamination as human host sequences
as well any known sequences with reasonable sequence similarity were removed as part of the
UnXplore framework. UnXplore framework has been made available to the wider scientific
research community via GitHub (https://github.com/sejmodha/UnXplore). These models are
wrapped up in a Python package called TetraPredX which is currently under alpha testing and
is also available to download via a simple Python package installation (PyPI) interface via
https://pypi.org/project/TetraPredX/. This package can automatically extract features from a
given input FASTA file and use calibrated, optimised models developed here to predict the

microbial origin unknown sequences assembled from the metagenomic datasets.


https://github.com/sejmodha/UnXplore
https://pypi.org/project/TetraPredX/

Chapter 5

Exploring the diversity of virus genome
sequences embedded within the human

microbiome data

Cataloguing virosphere.

5.1 Abstract

Metagenomics has enabled researchers to obtain greater insights into the uncultivated microbial
diversity in many types of samples. With the advent of sequencing technologies and cheaper costs
of sequencing, it has become a standard laboratory technique that has been applied to a range of
different environments and samples to study their microbial content. Metagenomics poses great
opportunities in the field of virus discovery and has enabled the identification, characterisation
and study of a large number of viruses over the last decade. A systematic metagenomic analysis
was carried out on de novo assemblies of >3000 human microbiome samples to identify known
and novel virus genomes in the contigs generated from the UnXplore framework. Extensive
analyses focusing on individual samples interrogating their viral content led to the identification
of hundreds of novel virus genomes including >300 prokaryotic viruses, >200 novel anellovirus
species and >30 RNA viruses. These results have revealed that viruses are present in a large
number of already “analysed" microbiome datasets emphasising that public data repositories

contain a wealth of novel viruses that are yet to be catalogued.

5.2 Introduction

Viruses are universal to all ecosystems of the planet earth. They are found in all environments
from the human gut to marine water. The virus particles are thought to be one of the most

abundant entities in our living communities. Traditionally, viruses have been identified using
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laboratory-based cell culture techniques but the advances in the high-throughput sequencing
technologies (HTS) and their application in the field of metagenomics and metatranscriptomics
has opened a vast avenue of discovery of uncultivated virus diversity. These methods serve as
very powerful tools to study and identify currently uncultured viruses, and their interactions with
each other and with their hosts, and can help us get insights into the key role they play in our
ecosystem.

This field of study as a whole is often referred to as metaviromics - a term first coined by
Zablocki et al. (2014) and refers to the study of viruses made accessible and possible through
the advent of HTS technologies. In the last two decades, a range of novel viruses, viral families
and unclassified virus diversity has been discovered and catalogued by researchers through
metaviromics (Koonin et al., 2018; Dance, 2021). Metagenomics and metatranscriptomics have
enabled the identification of diverse microbes that cannot be cultured in the lab including viruses.
However, in striking contrast to other microbes such as bacteria, one of the major challenges
to discovering viruses is the lack of universally present conserved genes (such as ribosomal
RNA for bacteria) across the entire viral genomic landscape (Koonin et al., 2018). Nonetheless,
significant progress has been made through the use of certain clade-specific genes such as the
RNA-dependent RNA polymerase (RdRp) gene in RNA viruses (M. Shi et al., 2016a; M. Shi
et al., 2016b; Edgar et al., 2022) and host-specific signatures embedded within the prokaryotic
viruses that are often referred to as phages.

A large catalogue of studies has captured the virosphere in a variety of natural environments
including the Earth virome project (Paez-Espino et al., 2016), and marine virome projects such
as Tara Ocean Virome and the Pacific Ocean Virome projects (Mizuno et al., 2013; Hurwitz et al.,
2013; Jennifer R Brum et al., 2015). Viruses have undoubtedly played a major role in shaping
the human ecosystem as humans are surrounded by and interact with a diverse range of viruses
and their hosts on a daily basis. Studies have shown that the viruses that regulate microbial
components in humans, e.g. bacteriophages, have an impact on antiviral immune response and
viral infectivity (Honda et al., 2012; Duerkop et al., 2013; Lecuit et al., 2013; Popgeorgiev et al.,
2013; Rascovan et al., 2016; Zarate et al., 2017; Tisza et al., 2021b). In 2014, the identification
of crAssphage led by Bas E. Dutilh et al. (2014) highlighted the importance of shedding light
on viral dark matter embedded within the human microbiome. Subsequently, an array of phages
related to crAssphage were discovered in publicly available datasets. These phages that infect
bacteria included in the phylum Bacteroidetes were found to constitute up to 90% of the human
gut virome (Yutin et al., 2018). More recently, studies led by Luis F. Camarillo-Guerrero et al.
(2021) and Gregory et al. (2020) have catalogued and consolidated community-level human
gut virome into the Gut Phage Database (GPD) and Gut Virome Database (GVD) respectively.
Moreover, another study led by Benler et al. (2021) has identified three novel candidate families
of order Caudovirales by mining community-level human gut microbiome samples for circular

phage contigs. This analysis has also identified diverse putative mechanisms underlying phage-
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host interactions in the human gut (Benler et al., 2021). Similarly, the Skin Microbial Genome
Collection (SMGC) found thousands of novel prokaryotic and eukaryotic virus sequences that
were absent from uncultivated virome-specific repositories such as IMG/VR (Paez-Espino et al.,
2019; Roux et al., 2021c) and GPD (Kashaf et al., 2022).

The application of metaviromics has been crucial in human and animal pathogen identification
(Jerome et al., 2019; Briese et al., 2009), and virus outbreak tracking (such as sewage monitoring
for SARS-CoV-2 (Crits-Christoph et al., 2021)) as well as in clinical diagnostics (Nakamura et al.,
2009; Stremlau et al., 2015; Moustafa et al., 2017; Thorburn et al., 2015; Jerome et al., 2019).
Since the Coronavirus pandemic, there has been a newfound interest in virus discovery including
their identification and presence in reservoir species (Wahba et al., 2020). Many community-led
projects have been undertaken and massively parallelised the process of virus discovery by mining
the existing datasets available in the public repositories (Connor et al., 2019; Marti-Carreras et al.,
2020; Edgar et al., 2022). This has been possible through the employment of novel computation
algorithms and resources; for example, a peta-base scale data mining has led to the discovery of
131,957 novel RNA viruses from publicly accessible raw sequence data repositories (Edgar et al.,
2022).

A large number of uncultivated virus genomes have been identified through metaviromics
compared to the traditional culture-based protocols in the last ten years (Roux et al., 2021c).
Viruses require hosts to grow and replicate but due to the limitations of laboratory cultivation
techniques, a lot of viruses and their hosts cannot be cultivated in controlled laboratory
environments. As a result, in 2017, the International Committee on Taxonomy of Viruses (ICTV)
formally started accepting proposals to classify uncultured viruses identified through
metaviromics in their framework given that they were adequately analysed and met the required
quality standards (Simmonds et al., 2017a). In light of this, researchers have also devised
appropriate standards to catalogue the diversity of uncultivated viruses in a more systematic way.
Minimum Information about an Uncultivated Virus Genome (MIUViG) standards chiefly aims to
capture relevant information about the uncultivated viruses such as their origin, genome quality,
genome annotation, taxonomic classification, biogeographic distribution and in silico host
prediction and fittingly provide the best practices for metaviromics research (Roux et al., 2019).
ICTV Bioinformatics Expert Group has also highlighted the importance of including the
uncultivated virus diversity in the taxonomic framework and indicated that this has added
valuable insights into virus taxa, viruses and virus evolution (Bas E Dutilh et al., 2021).

Typically, a large diversity of DNA viruses is expected to be discovered in the bulk
metagenomic samples owing to the sample preparation approaches that target the total DNA
present in the samples. Bulk metagenomic samples that include viruses, as well as other
microbes, often do not have a specific virus enrichment step that is crucial to identifying small
DNA viruses and RNA viruses. It is notable that such metagenome explorations often lead to

taxonomically unclassified virus genomes and a variety of terminologies are found in the



CHAPTER 5. 125

literature to represent the assembled virus sequences from metagenomes. However, MIUViG
recommendations suggest the use of the term “viral operational taxonomic units” or vOTUs that
represents species-level ranking equivalent for uncultivated viruses and it is conventionally
derived after clustering of assembled viral sequences is performed. Moreover, other
terminologies such as metagenome-assembled genomes i.e MAGs, single amplified genomes
(SAGs - often obtained by sorting individual virus particles using methods such as flow
cytometry), Uncultivated Virus Genomes (UViGs) are used to refer to contigs/genomes that
originate from metagenomic datasets.

To meet the demands of the ever-expanding field, a range of different virus prediction tools
and pipelines have been developed and have been used widely by the community to perform
sophisticated metaviromic analysis leading to the successful identification of various novel
uncultured viruses from different environments (Nooij et al., 2018). Some of the most popular
tools that initially focused on prokaryotic viruses discoveries such as VirSorter (Roux et al., 2015a)
have been updated with the advances in sequence mining techniques such as machine learning. A
more recent version of this successful user-friendly tool - VirSorter2; combines various different
nucleotide and protein level features including the presence of hallmark genes, profile HMMs
(derived from Pfam), GC content, and short sequence motifs to successfully predict viruses from
a given set of contigs originating from any environment (Guo et al., 2021a). Other tools such as
DeepVirFinder (Ren et al., 2020) and TetraPredX (described in Chapter Predicting the biological
origin of unknown sequences using machine learning; https://github.com/sejmodha/TetraPredX)
employ solely sequence feature-based machine learning models to successfully predict viruses
from any given set of assembled contigs. To further assess and refine the quality of these
predictions, including the completeness (based on the MIUViG criteria) of the viral genomes,
more targeted pipelines such as CheckV (Nayfach et al., 2020a) have been developed and
have been widely applied to virus discovery projects. Moreover, the final step of the analysis,
virus annotation, can also be automated with virus annotation pipelines such as RATT (Otto
et al., 2011), VAPiD (Shean et al., 2019), and DRAM-v (Shaffer et al., 2020). A general-
purpose metagenomic analysis pipeline developed by the EBI called MGnify is currently being
adapted to accommodate virus discovery. EBI’s new VIRify (Rangel-Pineros et al., n.d.)(https:
//github.com/EBI-Metagenomics/emg-viral-pipeline) pipeline that is currently being developed
can detect, annotate, and taxonomically classify metaviromic assemblies and it makes use of a
range of different tools mentioned above to provide a one-stop solution to researchers to analyse
their metaviromic datasets. Similarly, IMG/VR provides an integrated data management and
analysis platform to store and adequately analyse metaviromic datasets (Roux et al., 2021c).
Moreover, environment-specific virus community resources such as Gut Virome Database (GVD)
and Gut Phage Database (GPD) have also been developed to accommodate and facilitate data
management and integration of uncultivated virus sequences arising from large virus discovery

projects.
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In light of the large-scale identification of uncultivated viruses, a major challenge is to
determine the host association for the uncultivated viruses as it cannot be readily made available
through metagenomics. Host linkage could be argued as one of the most important undertakings
due to its importance in understanding virus ecology, interactions, potential role in shaping human
(and animal) health and the disease state as well microbial evolution (Roux et al., 2021b). For
example, >95% of all UViGs in IMG/VR databases lack host linkage information (Roux et al.,
2021c). In absence of host information, computational approaches have been used to predict and
determine the potential hosts of uncultivated viruses (Robert A Edwards et al., 2016). These
approaches leverage currently known virus-host genome interactions such as the presence of
prophage sequences (Roux et al., 2015b; Roux et al., 2015a), Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) spacers (Dion et al., 2021), or short nucleotide and protein
signatures (k-mers) to predict the potential host of the uncultivated viruses (Villarroel et al., 2016;
Babayan et al., 2018; Young et al., 2020). Although a range of tools and models are available
that can link uncultured viruses to their hosts, this area of research is deemed to be one of the
most challenging tasks by the experts (Roux et al., 2021b; Coclet et al., 2021) and computational
approaches are being adapted to accurately predict the hosts of newly discovered viruses.

UnXplore provided an extensive metagenomic analysis opportunity as high quality de novo
assembly was performed using the framework, as described in Chapter 3. To identify and
characterise the human virome and catalogue virus genomic sequences embedded within human
microbiome datasets assembled through UnXplore, a comprehensive virus discovery analysis

was conducted.

5.3 Method

3,559 human microbiome datasets surveyed and assembled using the UnXplore framework
(described in Chapters Identification and quantification of ‘unknown’ biological sequences in
human microbiomes and Predicting the biological origin of unknown sequences using machine
learning) were systematically interrogated to identify and quantify known and novel virus genome
sequences present in them. These samples were distributed across 58 BioProjects. A list of these
BioProjects along with the metadata including the location of sampling, microbiome type as well
as the primary publication associated with the dataset are shown in the appendix table C.1. 24
BioProjects were linked to a primary publication and the remaining 34 could not be linked to a
primary publication and/or published data analyses. 51 BioProjects included here were sequenced
with metagenomic (i.e. DNA sequencing) protocols. On contrary, the following BioProjects were
sequenced with metatranscriptomic protocols which included RNA sequencing: Sputum samples
from PRJEB14539 and PRJEB10919, Vagina samples from PRJEB21446, Blood samples from
PRINAS513310 and PRINA271229, and Saliva samples from PRINA264728.

From the complete set of assembled contigs generated using UnXplore, assembled contigs
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Figure 5.1: A schematic representation of the virus prediction and discovery process is described

in this chapter.
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that were at least 1kb long were retained to carry out virus discovery analyses. An overview of
the virus discovery process highlighting the major findings is shown in the figure 5.1. Various

steps of the analyses are described in detail below.

5.3.1 Virus sequence prediction

Two widely-used virus prediction tools; VirSorter2 (Guo et al., 2021a) and DeepVirFinder (Ren
et al., 2020) were used to predict viral contigs from UnXplore filtered set. TetraPredX (described
in Chapter 4; https://github.com/sejmodha/TetraPredX) was also applied to the same contig
dataset for virus predictions. Briefly, both TetraPredX and DeepVirFinder are machine
learning-based tools that predict the sequence class solely based on the k-mer composition
whereas VirSorter2 uses 27 distinct sequence features such as viral HMMs, gene density, average
gene size along with other sequence-derived features to predict virus sequences (Guo et al.,
2021a). VirSorter2 predictions were run with
——include—-groups dsDNAphage, NCLDV, RNA, ssDNA, lavidaviridae
——provirus-off and ——min-score 0.5 parameters; all predicted contigs included in
"final-viral-combined.fa" were considered.

In order to capture as many predicted virus sequences as possible three virus sequence
prediction tools that employ different prediction algorithms were used. Three prediction tools
were used to make predictions for the 7,196,090 contigs at least 1kb in length assembled from
the UnXplore analysis in Chapter 3. To retain high confidence predictions these results were
filtered using the following criteria: 1) DeepVirFinder, contigs with a score >=0.9 and pvalue
<0.05 were selected. 2) VirSorter2: all predicted contigs with a minimum score of 0.5 were
selected. 3) TetraPredX: all contigs with viral signal probability >=0.95 and all other class
probability <=0.5 were selected. These prediction thresholds were similar to those that were
used for prediction accuracy measurement in the VirSorter2 paper (Guo et al., 2021a). As
DeepVirFinder and TetraPredX prediction values are based on probabilities, applying a high
probability threshold of 95% should exclude most false-positive sequence predictions. The score
threshold of 0.9 was applied to DeepVirFinder contigs as the higher the score indicates the more
likely a sequence is from viral genomes. To validate these prediction results further, all sequences
that were predicted to be viral by any tool after filtering were searched against nucleotide database
nt (downloaded on 27 October 2021) using BLASTN with evalue 0.0001 and the top 25 hits
for each contig were extracted. The results were generated in the standard BLAST tabular
output format with additional columns staxids, stitle, gcovs and qcovus. The lowest common
ancestor (LCA) was computed for each contig from its corresponding hits using the Python script
ExtractLCABLASTMG6 . py (https://github.com/sejmodha/UnXplore) and the superkingdom
of the LCA was computed using Python script Get SuperkingdomFromLCA.py (https:
//github.com/sejmodha/UnXplore). The proportion of virus-specific hits for each contig was

included in the output generated using these scripts and was subsequently used to confirm the
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results of the prediction along with taxonomic superkingdom level classification. This percentage
value was derived by dividing the total number of virus hits by the total number of hits i.e. 25.
For a contig with all 25 hits to viruses, the percentage of virus hits would be 100%, however,
if a contig had hits to bacteria and viruses then the LCA would be determined as root and
the percentage of virus hits would correspond to the number of hits specific to viruses. This
value was only used in cases where the LCA would be assigned as "root" suggesting that the
contig had hits from more than one superkingdom. It is noteworthy that with this approach
a range of phages where even one hit is from bacteria, the LCA would be determined to root
as opposed to viruses. Additionally, all contigs were also searched against the comprehensive
RefSeq protein database (downloaded on 9 November 2021) using DIAMOND BLASTX run
with evalue 0.001 -b5 -c1 and standard tabular output with additional columns gframe, stitle,
staxids, gcovhsp and scovhsp was generated. The LCA and the superkingdom for each contig
were also obtained for these BLASTX searches using custom Python script Ext ract LCA. py
(https://github.com/sejmodha/UnXplore). Although protein level analyses were carried out for all
predicted contigs, DIAMOND results were only examined when BLASTN hits were absent.

5.3.2 Contig quality assessment

All contigs (n=7,196,090) were scanned for their quality and completeness using CheckV
(Nayfach et al., 2020a). CheckV is an automated pipeline that can determine the quality of viral
contigs using a range of different strategies including the presence of direct and inverted terminal
repeats, virus hallmark genes and identification of viral protein domain signatures derived from
large complete viral genome sequences including a comprehensive set of 76,262 virus sequences

identified from publicly available metagenomic datasets (Nayfach et al., 2020a).

5.3.3 Consolidated viral contigs set

To obtain a set of high confidence contigs that are most likely to be viruses, a consolidated set of
viral contigs was generated. As VirSorter2 has been demonstrated to recover more viral contigs
compared to other tools, VirSorter2 predicted sequences that satisfied the criteria described in (2)

were also included.
1. Any predicted viral contig where LCA was assigned to viruses (n=122,884).

2. VirSorter2 specific criteria: VirSorter2 predicted contigs that were filtered with criteria
adapted from the protocol described in ‘Viral sequence identification SOP with VirSorter2
V.3’ (Guo et al., 2021b).

Briefly, this set included:

(a) contigs with more viral genes than host genes (Set 1)
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(b) contigs with 0O viral and 0 host genes with max score value >=0.95 and hallmark >2
(Set2)

(c) contigs that weren’t included in Set 1 and Set 2 that had O viral genes, 1 host gene
and were at least 10kb long (Set 3). This set would include novel phage sequences

with integrated host genes.

Filtering based on (a), (b) and (c) generated a set of 366,883 contigs. These 366,883 contigs
were filtered further by incorporating LCA information. The contigs where LCA was
bacteria (n=128,829), archaea (n=231), eukaryota (n=200), cellular organisms (n=1,880) or
undetermined (e.g. plasmid, synthetic constructs; n=1,022) were filtered out leaving a set
of 234,721 contigs. From this set of 234,721 contigs, those with LCA Viruses (n=85,800)

and root (n=148,921) were retained.

These contigs obtained from (1) and (2) were consolidated to remove any duplicates and the
final set of 271,805 high confidence contigs was analysed further. This set included 122,884
contigs that had "Viruses" as a superkingdom and 148,921 contigs where superkingdom was
assigned as "root".

For all contigs where superkingdom LCA was Viruses, the LCA was determined from the
top 25 hits extracted from DIAMOND and/or BLAST results and where possible potential virus
family was identified based on the LCA of contig hits. However, in some cases, a virus family
could not be assigned. This could happen in cases where the LCA taxon was determined to
be an unclassified virus sequence (typically refers to sequences that belong to NCBI taxonomy
ID: 12429), a sequence that was not associated with a family, a virus sequence extracted from
an environmental sample, or had BLAST hits at higher taxonomic ranks such as order. These
metadata derived from similarity sequence results were used to apply various filters to the dataset.
It was combined with the Virus Metadata Resource (VMR; https://talk.ictvonline.org/taxonomy/
vmr/) and was used to determine the potential genomic composition, potential hosts as well as
other taxonomic ranks such as order and family of the predicted viral contigs.

A final consolidated set of 271,805 contigs was collated for further analysis - this set included
contigs where LCA was either Viruses or root (figure 5.1). These contigs were annotated with a
range of different features including the LCA, virus family, CheckV quality and other relevant
metadata. This metadata was used to categorise contigs of interest into three broad categories:
prokaryotic viruses, non-prokaryotic viruses (i.e. DNA viruses excluding phages) and RNA
viruses. Additionally, a range of unclassified viruses where LCA was determined to be either
viruses or root was also identified but were excluded from the above categories as they could not
be ‘classified’ into one of the above categories based on the prediction and similarity analysis
carried out here. 122,884 contigs from this set had the superkingdom "viruses" as the top-level
LCA.
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5.3.4 Viral contigs categorisation

The confirmed viral contigs, i.e. those with LCA superkingdom as "Viruses" (n=122,884) were
further categorised into different virus groups based on the LCA obtained from BLAST hits
in the first instance. If a contig did not have any hits to nucleotide sequences, then LCA was
determined using protein sequences obtained through DIAMOND results. These four categories

were as follows:

1. Prokaryotic viruses (contigs with hits to virus sequences that infect bacteria and archaea)

2. Eukaryotic DNA viruses (contigs with hits to DNA virus sequences are not known to infect

prokaryotic organisms such as bacteria and archaea)

3. RNA viruses (contigs with hits to RNA virus sequences - RNA viruses have RNA as their

genetic material)

4. Unclassified viruses (contigs with hits to virus sequences that could not be mapped to a
known virus family, realm and/or order e.g. those originating from environmental samples

or hits spanning more than one order or realms in virus taxonomy)

Table 5.1: Summary of different sets of contigs used for virus discovery

Input contigs Type of analysis Note
28,837,029 Length filtering (>=1kb) Remaining contigs: 7,196,090
7,196,090 Virus prediction Predicted contigs: 1,421,607
1.421.607 Validate predictions Label contigs’ origin using validation
output
122,884 Confirmed virus sequences validated
’ using BLAST/DIAMOND
Confirmed virus sequences combined
271,805 Prokaryotic virus discovery with those where LCA =root to identify
potentially new phages
122,884 Geographic distribution of viruses

In order to minimise false positives, all sections of the diversity exploration except for the
prokaryotic section used sequence data comprising 122,884 contigs with BLASTN/DIAMOND
hits match exclusively to viruses derived from the 1,421,607 contigs obtained during virus
prediction analysis (see table 5.1). The prokaryotic virus discovery section included an additional

149,943 sequences scanned for prokaryotic virus features described in section 5.4.4 (Table 5.1).

5.3.5 Prokaryotic viruses

To identify prokaryotic viruses 1.e. viruses that infect bacteria and archaea, viral contigs were

filtered from the consolidated set of 271,805 contigs. This more comprehensive set with contigs
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where the LCA was "root" as well as "Viruses" was included for prokaryotic virus sequence
hunting to ensure that phages that mimic their hosts are not excluded from this analysis. To aid that,
Virus Metadata Resource (VMR) version 200721 with the Master Species List version MSL36
was downloaded from https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository/13175.
VMR data was joined with the virus data using the shared columns virus family. VMR also
provided additional metadata associated with virus families including genome composition and
host(s). The following criteria were then applied to filter contigs that belong to prokaryotic

viruses:

e Contig length >=10000; This would lead to exclusion of sequences that belong to families
Microviridae and Inoviridae but helps to exclude false-positive sequences.
AND

— Host is bacteria or archaea
OR

— LCA TaxonName contains string ‘caudovirales’, ‘phage’ or ‘caudo’ where LCA
family could not be determined
OR

— Contigs where:

* host genes <5 AND (based on VirSorter2 prediction) AND
* max_score_group == "dsDNAphage" (based on VirSorter2 prediction) AND
* Percentage of viral contigs >=50 (based on BLAST results)

vOTU identifications and comparison to other phage genome sequences

Complete genome sequences for prokaryotic virus orders Ligamenvirales (n=59), Primavirales
(n=5), Caudovirales (n=14,016), Tubulavirales (n=248), Petitvirales (n=2,979), Haloruvirales
(n=32), Mindivirales (n=83), Norzivirales (n=427), Timlovirales (n=447), Belfryvirales (n=4),
Kalamavirales (n=33), Vinavirales (n=17), Halopanivirales (n=16) were downloaded from NCBI
databases in FASTA format.

Nucleotide sequences of the 142,809 viral clusters (95% nucleotide identity) belonging to the
Gut Phage Database (GPD) were downloaded from
http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/. GPD
sequences were clustered with prokaryotic virus sequences obtained in this study using the rapid

genome clustering based on pairwise Average Nucleotide Identity (ANI).

Rapid genome clustering based on pairwise Average Nucleotide Identity (ANI)

To obtain a sequence level clustering and a representative sequence set, pairwise Average
nucleotide identity (ANI) can be utilised. ANI combined with Alignment fractions (AF) which
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represent sequence similarity between two sequences with sequence coverage provides a quick
but efficient clustering of sequences. anicalc.py and aniclust .py scripts included in
CheckV package were used to determine Virus Operating Taxonomic Units (vOTUs) with 95%
ANI and 85% Alignment Fraction (AF) with parameters ——min_ani 95, -——min_tcov 85

and ——min_gcov 0.

Virus-host predictions

To predict potential hosts of these prokaryotic viruses, CrisprOpenDB was used on prokaryotic
viral contigs. CrisprOpenDB requires PhageHostFinder databases that were downloaded from
http://crispr.genome.ulaval.ca/dash/PhageHostldentifier_DBfiles.zip. =~ Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) spacer are short nucleotide sequences can be
used to predict hosts of unknown phages, as spacers represent biological records of past
phage—bacteria interactions. DNA spacers are short segments (26-72bp long) that are
homologous to phages or plasmids.

Prokaryotic vOTUs compiled from results described in the "Prokaryotic viruses" sections
(see 5.4) were searched against the comprehensive phage-host database using CrisprOpenDB
to determine potential hosts with default parameters that allow up to two mismatches in spacer

sequences.

5.3.6 Anellovirus diversity exploration

A number of contigs matching to anelloviruses were found (see Results section 5.4.5) which
were investigated further. A comprehensive phylogenetic analysis was carried out to study and
compare the diversity of the anelloviruses. To obtain a set of complete sequences, sequences
shorter than 2kb and larger than 4kb were excluded. ORFs were predicted using getorf (Rice
etal.,,2000) -find 1 and -minsize 600 parameters and the largest ORF (typically refers
to ORF1 in the family Anelloviridae) were extracted. The largest ORF from each anellovirus
contig was assumed to be the ORF1 sequences. The ORFs were not subjected to any other quality
assessment steps. 1,275 anellovirus contigs matched the above ORF prediction criteria and were
included in the downstream analysis.

Anelloviridae is a family of small circular ssDNA viruses that are known to infect both
primates and non-primate mammals (Varsani et al., 2021; Souza et al., 2018; Kaczorowska
et al., 2020). Anellovirus genome is not segmented and contains a single molecule of negative-
sense single-stranded circular DNA that is 2000-4000 nucleotides long. Human anelloviruses
are classified into four genera: Alphatorquevirus, Betatorquevirus, Gammatorquevirus and
Hetorquevirus (Varsani et al., 2021). To obtain an up-to-date set of human anelloviruses references,
representative sequences for each human anellovirus species (n=72) were selected from a recent
study led by Varsani et al. (2021). Each species was searched against NCBI GenBank to fetch
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a RefSeq genome sequence, ORFs and other metadata available in GenBank. In cases where a
RefSeq for a species could not be found, any sequence used for classification for that specific
species from Varsani et al. (2021) was used. The largest ORF amino acid sequences for each
species were extracted.

A complete set of 1,347 sequences combining the reference set (n=72) and the contig set
(n=1,275) was generated. These sequences were analysed further to study the phylogenetic
relatedness with respect to currently available species and reference sequences. A phylogenetic
analysis protocol to obtain a genera level phylogeny as outlined (Varsani et al., 2021) was used.
Briefly, amino acid sequences for the largest ORF (i.e. ORF1) were aligned using MAFFT
——auto mode (Katoh et al., 2013). The resulting multiple sequence alignment was filtered to
remove gaps using the TrimAL —-gappyout option. The resulting filtered alignment was
submitted to IQTree with —-m TEST to automatically test and select the appropriate model for
maximume-likelihood-based phylogenetic inference with 1000 bootstraps.

Sequence Demarcation Tool (SDT) (Muhire et al., 2014) was used to calculate ORF1
nucleotide level all-vs-all pairwise sequence similarity between reference set and anelloviruses
assembled in this study. This set of sequences was run through SDT with MAFFT as the
alignment program. The resulting matrix of similarities was analysed using sklearn
implementation of hierarchical clustering for novel species identification with predetermined

species demarcation criteria.

5.3.7 RNA viruses

To identify RNA viruses, all contigs where the LCA family was an RNA virus family were
extracted. For contigs where the family could not be determined, the complete lineage of the LCA
was obtained using ete3 (Huerta-Cepas et al., 2016) implementation in Python. The lineage was
searched for the term ‘Riboviria’ which is the highest taxonomic level (Realm) that encompasses
all RNA viruses. These contigs with hits exclusive to viruses included in realm Riboviria were

also considered and labelled as potential RNA viral contigs.

Phylogenetic analysis

To study the relatedness of novel RNA viral contigs to existing viruses, a comprehensive
phylogenetic analysis was carried out. First, contigs that match to a specific group of RNA
viruses were extracted. For the specific group of interest, relevant RNA virus protein sequence
hits were extracted and consolidated to remove duplicate protein entries retrieved from the
RefSeq protein database. As all RNA virus genomes code for RNA-dependent RNA polymerase
(RdRp), the ORF containing RNA-dependent RNA polymerase (RdRp) were extracted from the
matching virus sequences from the protein sequence hits and/or relevant databases used for

searches. The RdRp sequences were used as RdRp reference set as they spanned all database
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entries matching to contig set. Similarly, RdRp containing ORFs were also extracted from the
contigs using getorf and a confirmatory BLASTP analysis was carried out against the reference
RdRp sequence set to identify the ORF containing RdRp signatures. A protein sequence-based
multiple sequence alignment was generated using MAFFT (Katoh et al., 2013) in ——aut o mode.
The alignments were filtered to remove columns that contained 20% or more gaps. The final
alignment was used to generate a maximume-likelihood-based phylogenetic tree using 1QTree
(Minh et al., 2020) with model testing and 1000 bootstraps. The resulting phylogeny was
visualised and annotated in FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and the
annotations obtained from the VMR and NCBI were overlayed on the phylogeny.

5.4 Results

5.4.1 Virus predictions and validation

Out of the complete set of 7,196,090 contigs, 1,421,607 unique contigs were predicted as
viral using any of the three virus prediction methods. 625,476 were predicted as viruses using
TetraPredX, 495,425 were predicted as viruses using DeepVirFinder and 597,812 were predicted
as viral using VirSorter2. A total of 23,769 contigs were predicted as viruses using all three
prediction tools as shown in the figure 5.2(a). Out of these 23,769 contigs predicted by all three
virus prediction tools, 21,141 were found to match at least one sequence in the nt database using
BLASTN and 10,509 (50%) of them were shown to have viruses as their LCA superkingdom.
Moreover, as shown in figure 5.2(b), 6,515 of these 21,141 contigs were found to match at least
one virus sequence using BLASTN despite their LCA being defined as root which suggests that
these contigs were matching sequences from one or more taxonomic superkingdoms. 42% of all
contigs that were predicted as viral using both DeepVirFinder and VirSorter2 could be validated
using BLASTN (figure 5.2(c)) and this percentage was around 18% for contigs that were shared
between VirSorter2 and TetraPredX (figure 5.2(d)). A range of predicted viral contigs was shown
to have “root” as LCA as their BLASTN hits were composed of sequences that originated from
more than one superkingdom. In general, between 25-45% of any predicted viral contigs were
categorised as matching the root (figure 5.2). However, among this set, >80% of them were shown
to have a BLAST hit to a known virus sequence in the database indicating their viral origin. The
k-mer-based prediction tools such as DeepVirFinder and TetraPredX as well as the random forest
classifier implemented in VirSorter2, rely on these short signatures to differentiate between viral
and non-viral sequences. Due to their ability to efficiently distinguish virus-specific signatures
present in contig sequences, all three prediction tools are able to predict a number of contigs as
viruses even if they may have a variety of matches to other organisms. As viruses are known
to mimic their host sequences, other sequences that predicted viral contigs are matching could

be associated with the viruses e.g. a host. This analysis and virus prediction tool comparison
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highlights that none of the three virus prediction tools was 100% accurate.

Overall, there was a substantial difference in the contigs predicted as viral between the three
different prediction tools. A number of predicted viral contigs were unique to each prediction
software (figure 5.2(a)). To validate these predictions further, BLASTN searches were carried out
for all predicted contigs (shared as well unique contigs for each software) and these results are
shown in the sunburst charts figure5.2(e), 5.2(h) and 5.2(f). Confirmation of whether a contig is
originating from a virus sequence was obtained with the LCA superkingdom derived from the
BLASTN results. A conservative approach of labelling a contig to be of virus origin only if the
LCA superkingdom was assigned as "Viruses" was utilised. In cases where the LCA was assigned
to be "root" - which suggested that the contig was matching to sequences from more than one
superkingdom, a number of virus hits for each contig were checked. Notably, the proportions of
sequences with hits exclusive to virus sequences in the databases, varied between 2-11% of the
total number of predicted contigs for each tool. For contigs where LCA was determined to be
"root", a large proportion of them were found to be matching at least one virus sequence from
the databases. It was hypothesised that although assigned to root, these sequences could still
originate from a virus genome as they showed some similarity to currently known virus sequences
included in the databases. It is appreciated that despite their similarity to known virus sequences
in INSDC databases, these sequences could also originate from other mobile genetic elements
(MGE), such as plasmids. The current analytical approaches are unable to differentiate these
MGESs, and when combined with other factors such as erroneous entries in INSDC databases,
some of these ambiguous sequences that were hypothesised to be viruses could be misclassified.

BLASTN-based validation showed that 11% of predicted viral contigs unique to VirSorter2
were matching exclusively to virus genome sequences in the databases whereas this proportion
was 7% for DeepVirFinder and 2% TetraPredX. This could be explained by the different
approaches implemented in these virus prediction tools. VirSorter2 uses a wide array of
sequence features including nucleotide and protein level information as well as virus-specific
domain signatures for predictions whereas DeepVirFinder and TetraPredX rely solely on short
k-mers of 10 and 4 respectively. In turn, it is much faster to run DeepVirFinder and TetraPredX
prediction analysis and VirSorter2 was deemed much slower in comparison and required much
greater computational resources such as RAM and CPU.

If a contig was predicted to be viral (by any tool) and whose BLASTN LCA was determined
to be viruses, the viral family was derived from BLASTN (nucleotide). In cases where a BLASTN
hit was not found but a protein hit was obtained using DIAMOND, the viral family was derived
using DIAMOND output. This family level classification is summarised in figure 5.3 which
represents a total of 124,493 contigs. A range of DNA virus families whilst prokaryotic virus
families Siphoviridae, Myoviridae and Podoviridae were dominant among them. This was
expected as most of the datasets analysed in this study originated from metagenomic DNA

library preparations. RNA viruses spanning 9 distinct families Arenaviridae, Flaviviridae,
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Figure 5.2: Virus prediction results for all three prediction software: DeepVirFinder, TetraPredX and
VirSorter2 (a) A Venn diagram showing the overlap between contigs predicted as viral using all three tools.
(b-h) Individual sunburst plots showing the number and proportion of sequences classified into different
taxonomy superkingdoms using BLAST against the nt database for all sets included in the Venn diagram.
Purple bands represent sequences that match exclusively to virus sequences in the databases, and yellow
bands represent the sequences that match exclusively to bacterial sequences. Green bands represent the
sequences that have matches to more than one superkingdoms (hence assigned to "root") and the light
pink band represents the proportion of these sequences with at least one virus hit. Blue bands represent

sequences that match eukaryotic sequences.
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Figure 5.3: A heatmap showing the number of predicted viral contigs using any prediction tool
for each family (derived from the LCA). Darker shades of colours represent the higher number
of contigs in the heatmap. The LCA family is coloured according to the genomic composition.
Shades of red colour represent DNA virus families, shades of blue represent RNA virus families

and black represents unclassified viruses.
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Paramyxoviridae, Picornaviridae, Rhabdoviridae, Tombusviridae, Virgaviridae, Retroviridae
and Picobirnaviridae were also identified. However, the majority of viral contig sequences
identified were determined to be unclassified viruses (figure 5.3). A large proportion of these
unclassified virus sequences were shown to be unclassified phages as shown in the appendix
figure C.1. TetraPredX identified more RNA viruses belonging to the families Retroviridae and
Flaviviridae (figure 5.3) as well as unclassified viruses belonging to the LCA realm Riboviria
(n=42, figure C.1).

MIUVIiG quality was also assessed for viral contigs and the results are shown in figure 5.4.
122,993 (98.8%) of viral contigs were categorised as genome fragments and the remaining 1,499
viral contigs were deemed high quality meaning that they were at least 90% complete genome
sequences. The highest number of complete viral genome sequences was predicted by VirSorter2
(n=1,417) followed by TetraPredX (n=683) and the least number of complete viral genome
sequences were included in the DeepVirFinder (n=647) set. 186 high-quality virus genome
sequences were identified by all three prediction tools, 447 were predicted by DeepvirFinder and
VirSorter2, and 419 sequences were identified by VirSorter2 and TetraPredX. Additionally, 365,
68, and 4 were unique to VirSorter2, TetraPredX and DeepVirFinder respectively. It is worth
noting that this set contains 1,609 provirus contigs that were identified using CheckV analysis
hence the total number of contigs analysed in this section was 124,493 instead of 122,884. The
majority of the provirus contigs had MIUVIG quality assigned as Genome-fragment (n=1,532).

These provirus contigs were subsequently removed from the downstream analysis.

5.4.2 Bio-sample distribution of viruses

A top-level overview of various viral taxonomic groups across all 58 BioProjects sampled and
analysed in this study is shown in figures 5.5 and 5.6. This analysis was based on 122,884 contig
sequences that were deemed to be originating from virus genome sequences based on the virus
prediction and validation analyses.

This analysis of human microbiome datasets captured samples and studies from around the
world as shown in figure 5.5. From 58 BioProjects, the top three countries were the USA (n=9),
the UK (n=8), and China (n=4) and the remaining samples were from a range of other countries
spanning all continents of the world. 15 BioProjects out of 58 did not have any confirmed virus
hits consolidated in the final set of viral contigs. Realm Duplodnaviria was present across most
BioProjects (figure 5.6). The major prokaryotic virus families such as Inoviridae, Microviridae,
Myoviridae, Podoviridae and Siphoviridae were also present across all studies reflecting their
corresponding realm. RNA virus realm Riboviria was found in ten BioProjects and they were
associated with nine distinct RNA virus families (figure 5.5). Notably, unclassified viruses i.e.
that that could not be associated with a virus family, were found in 37 studies. This suggests
that contig sequences matching novel/unclassified virus sequences were found across many

BioProjects and geolocations.
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Figure 5.4: Grouped bar plots showing the quality of predicted viral contigs where similarity
search derived LCA was “Viruses". The colours of the bar represent the CheckV quality categories
for the prediction tool(s) specified on the Y-axis and the corresponding number of contigs are
shown on the X-axis. (a) The MIUViG quality category Genome-fragment includes the following
three CheckV quality criteria: Low-quality, Medium-quality and Not-determined. This is shown
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Microbiome, Country, BioProject

Figure 5.5: Distribution of 36 virus families across 58 BioProjects analysed in this study. The
BioProjects on the Y-axis are grouped according to the microbiome (sample type) and sample
locations. The virus families are shown on the X-axis. DNA virus families are labelled in shades
of red, RNA virus families are labelled in shades of blue and unclassified viral sequences are
labelled in black. Green squares represent the presence of the virus family in the corresponding
BioProject specified on the Y-axis and non-green squares represent an absence of the specific
group of viral contigs in the corresponding BioProject(s). Samples from 9 studies could not be
associated with a geographic location and their country locations are shown as blank.
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Figure 5.6: Distribution of higher-level taxon groups (i.e. realms or unclassified sequence groups)
across 58 BioProjects analysed in this study. The BioProjects on the Y-axis are grouped according
to the microbiome (sample type) and sample locations. The virus taxonomic groups are shown
on the X-axis. DNA virus groups are labelled in red, RNA virus groups are highlighted in blue
and unclassified viral sequences in black. Green squares represent the presence of the virus
taxonomic group in the corresponding BioProject specified on the Y-axis and the non-green
squares represent an absence of the virus taxonomic group. Samples from 9 studies could not be
associated with a geographic location and their country locations are shown as empty boxes.
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Although this overview comparing all 58 BioProjects provide some insights into the viruses
that were found in relevant BioProjects, sample size and sample selection are highly skewed in
this study. For example, as described in the Chapter 3, a range of studies that contained >100
samples were arbitrarily limited to 100 samples and no such filter was applied to the blood
microbiome set. The uneven sampling of distinct microbiomes here can provide some idea of
viruses that are present in these samples, but we are unable to rule out those that are absent. This
is because viruses that were not found in these samples could be present at a low level and they

are not detectable by the virus discovery analysis approaches employed here.

5.4.3 Co-occurrence analysis

The co-occurrence among viruses can be measured in microbiome datasets such as those analysed
and described in this chapter. This analysis can provide insights into interactions of various
virus groups and it can be used to interpret these interactions further in the context of other
relevant metadata obtained from SRA databases such as geolocation and/or microbiome. Co-
occurrence analysis could also indicate correlated species/family distributions across different
microbiome, BioProjects and/or geolocations. To explore the co-occurrence patterns of virus
families, co-occurrence analysis was carried out using the R package cooccur (Griffith et al.,
2016). The results obtained from this analysis are categorised as either random, positive or
negative co-occurrences. Random co-occurrence simply indicates that two taxa are distributed
independently of each other. Positive co-occurrence indicates that a pair of taxonomic groups are
more likely to be observed together and a negative co-occurrence stipulates the opposite meaning
they are less likely to be observed together. It is notable that co-occurrence does not indicate
direct interactions between taxa but simply shows that certain taxa are more or less likely to be
found together in a given environment based on the presence/absence data.

All observed pairwise interactions are compared against the expected probabilities in
probabilistic models implemented in this package and are described in detail (Veech, 2013).
Briefly, if the observed probabilities of co-occurrence are significantly greater than the expected
probabilities then the model deemed those interactions as positively correlated. In contrast, if the
observed probabilities of co-occurrence are significantly less than the expected probabilities then
those interactions are deemed negatively correlated. Finally, if there is no significant difference
between the observed and expected probabilities then the interactions are considered random
(Veech, 2013; Griffith et al., 2016).

To facilitate this analysis, all samples i.e. individual SRA IDs were treated as independent
entities. A sample versus virus family matrix was generated indicating the presence/absence
of the 36 virus families identified. This dataset was generated from the confirmed viruses set
(n=122,884) where the family of a viral contig hits could be determined. To gather a top-
level overview of virus family-level interactions regardless of other metadata (e.g. microbiome,

geolocation, DNA/RNA sampling) all interactions were analysed as a whole. A total of 630 family
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Figure 5.7: Co-occurrence analysis of virus families found in all samples. Blue represents a
positive association; yellow represents a negative association and grey represents the random
association in all plots. (a) Family association plot quantifying the percentage of positive, negative
and random associations that each virus family has with all other viral families identified. (b)
A heatmap describing pairwise associations between families, only families with at least one
positive or negative association is shown. (c) Observed vs expected co-occurrences plotted for
each pair of associations. The grey line represents the random co-occurrence.
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pair combinations were analysed for 36 unique families (number of unique pairs =n(n—1)/2
where n = 36). 518 pairs (82.22 %) were removed from the analysis because the expected
co-occurrence was < 1 and 112 pairs were analysed further. This step only retained virus family
pairs that were observed together in a given sample. The results obtained for all families across
all samples are shown in figure 5.7. Most virus families were randomly co-occurring with
other families leading to insignificant interactions (figure 5.7(a)). This is also highlighted in
the cumulative interactions as overall 60% of all pairwise associations between virus families
were deemed to be random (figure 5.7(a) ‘All Families’) suggesting that the presence/absences
of most virus families were distributed independently. Negative co-occurrences were observed
between DNA and RNA virus families in figure 5.7(b) that is likely to be representative of
library preparation and sequencing techniques. DNA viruses such as those included in the family
Anelloviridae are typically captured through metagenomic approaches that sequence the DNA
present in a sample whereas RNA families such as Flaviviridae and Hepadnaviridae are sampled
through metatranscriptomic techniques that target and sequence the total RNA present in a sample.
Unless a sample was prepared in a manner that both DNA and RNA contents were sequenced
homogeneously, it is expected that either DNA viruses or RNA of viruses will be captured.
Moreover, negative associations between DNA virus families Anelloviridae and a range of phage
families e.g. Siphoviridae observed here are likely to represent the type of microbiomes (e.g.
fecal, blood, skin etc) these viruses are typically found in. For example, as shown in figure 5.5
anelloviruses are predominantly found in blood samples whereas bacteriophages are common in
fecal samples. This is because phages rely on their bacterial hosts to replicate and these bacteria
are more likely to be commensal in fecal microbiome samples compared to blood. Hence, the
negative co-occurrences observed here are most likely to be a shortfall in grouping different
types of samples together to perform a high-level analysis. In contrast, positive co-occurrences
were common between bacteriophage families as they are found in similar microbiome types. A
positive co-occurrence between families Herpesviridae and Podoviridae was observed. Further
analysis indicated that these two families were found together in 6 saliva samples from the
Philippines included in the BioProject PRIEB14383 (figure 5.5). It is worth pointing out that
these two virus families have been known to coexist in human virome and have been observed to
be present together in the oral cavity in previous studies (Liang et al., 2021).

To explore these correlations further, and test whether some of the co-occurrence patterns
observed were indeed due to artificial grouping of different microbiome samples, a similar
co-occurrence analysis was carried out for a subset of microbiome specific. This dataset included
to the following microbiomes: fecal, blood and oral. Only a subset of microbiomes could be
analysed in this manner as enough samples and observations were required to carry out an analysis
that tests the statistical significance of observing two taxonomic group together in a given sample.
Other microbiomes such as skin, sputum, and pulmonary system contained too few samples to

quantify statistically significant interactions using cooccur package.
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Figure 5.8: Co-occurrence analysis of virus families found in fecal samples. Blue colour indicates positive
association; yellow indicates negative association and grey represents random associations in all plots. (a)
Family association plot quantifying the positive, negative and random associations for each virus family.
(b) A heatmap describing pairwise associations between families. (c) Observed vs expected co-occurrences
plotted for each pair of associations.

o,
lae (c)

L

&
<

positive

I oo

Observed Co-occurrences
N
5

Percent of pairings

@

60

20 40
Expected Co-occurrences

© regae © random 0 posine

negative [[] random | positive

Figure 5.9: Co-occurrence analysis of virus families found in oral samples. Blue colour indicates positive
association; yellow indicates negative association and grey represents random associations in all plots. (a)
Family association plot quantifying the positive, negative and random associations for each virus family.
(b) A heatmap describing pairwise associations between families. (c) Observed vs expected co-occurrences
plotted for each pair of associations.
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Figure 5.10: Co-occurrence analysis of virus families found in blood samples. Blue colour indicates
positive association; yellow indicates negative association and grey represents random associations in
all plots. (a) Family association plot quantifying the positive, negative and random associations for each
virus family. (b) A heatmap describing pairwise associations between families. (c) Observed vs expected
co-occurrences plotted for each pair of associations.

Out of 630 unique pairwise combinations, 39 associations were analysed for fecal
microbiome, 27 pairs were analysed for oral microbiome and 22 pairs were analysed for blood
microbiome. These microbiome-specific co-occurrence results are shown in figures 5.8, 5.9 and
5.10. Overall, 70% of all associations were determined to be random for all three microbiomes.
The negative associations observed at all sample levels between ssDNA virus family
Anelloviridae and bacteriophage families were absent in the fecal microbiome-specific analysis
suggesting that these two types of viruses were unlikely to be present together in the fecal
samples analysed here. On the contrary, negative associations between anelloviruses and
siphoviruses were observed in the blood microbiome-specific analysis (figure 5.10). No positive
co-occurrences were observed in blood microbiome specific set and no negative correlations

were found between virus families found in the oral microbiome specific set.

5.4.4 Exploring the prokaryotic virus diversity embedded within human

microbiomes

9,218 potentially prokaryotic virus sequences were extracted from the set of 271,805 final contigs
set derived here and were analysed along with GPD (n=142,809) and NCBI (n=18,366) genomes
datasets. This generated a final set of 170,939 sequences that were analysed further. The contigs
obtained from our analysis are labelled as SM set for ease of understanding. A distribution of
LCA for each of these contigs is shown in the bar plot shown in the figure 5.11 coloured and
faceted by the contig quality. 1,141 contigs were deemed of High-quality suggesting that they
are nearly complete or complete genomes and the remaining 8,077 contigs were categorised

as Genome-fragment as per the MIUViG quality assessment criteria. Moreover, as shown in
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figure 5.11, a large number of contigs were classified at higher taxonomy levels such as the
superkingdom level ‘Viruses’ or the order level Caudovirales suggesting that virus sequences
assembled in this study are matching to a range of different sequences included in nt databases as
opposed to matching to a specific species or genus of phage classification. High-quality contig
sequences were found in fecal, saliva, oral and lung microbiomes whereas those categorised as

Genome-fragments were found in all microbiomes.

MIUVIG Quality=Genome-fragment MIUVIG Quality=High-quality
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Figure 5.11: Bar chart showing the number of contigs (X-axis) and their corresponding lowest common
ancestors (LCA) on the Y-axis. Blue bars (left-hand plot) represent contigs with MIUViIG quality =
Genome-fragments whereas red bars (right-hand plot) represent those with MIUViG quality = High-
quality.

USEARCH-like clustering carried out using the 95% average nucleotide identity with 85%
coverage of 170,393 sequences yielded 97,956 clusters. A total of 78,252 sequences were
singletons and 2,243 of them were from the SM dataset. Out of these 2,243 singletons, 215
were High-quality as per MIUViG quality criteria indicating that they were near-complete or
complete genomes. The remaining 2,028 were categorised as Genome-fragments of which 402
were medium-quality as per the CheckV quality assessment criteria suggesting that they were at
least 50% complete genome sequences.

In total, 19,704 clusters with at least 2 sequences were generated, comprising 92,141
sequences. For each cluster with at least 2 sequences, a sequence is defined as a cluster
representative which is typically the longest sequence in the cluster. Henceforth, the term
‘representative’ is used to describe a cluster representative sequence in this context. These

representative sequences are often labelled as viral operating taxonomic units (vOTUs) as
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recommended by MIUViG (Roux et al., 2019). As we have utilised the standard MIUViG criteria
of 95% average nucleotide identity (ANI) over 85% alignment fraction (AF) relative to the
shorter sequence - to cluster sequences in NCBI, GPD and SM set, the cluster representatives, as
well as the singletons (sequences that do not cluster with anything else), can also be referred to as
vOTUs. vOTUs typically describe the species level, and virus groups (Roux et al., 2019). As
GPD sequences made up the largest proportion of sequences in the overall dataset, as expected
the largest number of clusters i.e. 16,328 were represented by a sequence assembled and
catalogued in GPD. 14,392 (88.14%) of these clusters were exclusive to the GPD dataset
meaning they only contained sequences from the GPD set whereas 1,936 (11.86%) clusters
comprised sequences from all three datasets (GPD, NCBI, SM). 82 clusters comprised sequences
from both GPD and NCBI set where the cluster representative was from GPD set, and similarly,
there were 1,832 clusters from GPD and SM set with cluster representative from the GPD set.
2,728 clusters were represented by vOTUs originating from the NCBI set and among them,
94.21% (n=2,570) were represented by genome sequences exclusive to the NCBI set only,
whereas 5.79% (n=158) were comprised of sequences from all three datasets. 7 clusters
contained sequences that originated only from NCBI and SM datasets where a sequence from the
NCBI dataset was cluster representative whereas 142 clusters contained sequences from both
NCBI and GPD datasets where the cluster representative was from the NCBI set. Finally, 648
clusters were represented by the vOTUs belonging to the SM dataset. 72.99% (n=473) of these
clusters were exclusive to the SM dataset and 27.01% (n=175) of clusters included sequences
from all three datasets. 175 clusters that had SM dataset sequence as a cluster representative
contained sequences from both SM and GPD sets. No clusters exclusive to SM and NCBI set
were observed where a cluster representative was from the SM set. Overall, the largest cluster
contained 896 sequences of which 809 were from the GPD set, 77 sequences were from the SM
dataset and the remaining 10 sequences were from the NCBI dataset. The vOTU for this cluster
was found to be similar to crAssphage which is known to be the most dominant phage identified
in the gut microbiome samples (Bas E. Dutilh et al., 2014) and it was also found in fecal samples
originating from 7 different BioProjects in the SM set.

The clustering analysis yielded 2,891 (2,243 singletons and 648 cluster representatives) viral
operational taxonomy units (vOTUs) where the cluster representative vOTU was a sequence
originating from the SM dataset. 396 (13.7%) vOTU sequences from this set were complete or
nearly complete genomes (MIUViG quality = High-quality) and the remaining 2,614 sequences
(90.42%) were classified as Genome-fragment as per the MIUViG quality criteria. 180 of these
High-quality vOTUs were cluster representatives and 106 of these clusters were exclusive to
the SM dataset. vOTU distributions were biased towards the fecal microbiome, reflecting both
sampling biases for the microbiome as well as sampling biases caused by prokaryotic viruses
present in fecal samples. 1,416 vOTUs originated from the fecal microbiome followed by 947

vOTUs from saliva and 482 from oral microbiomes. The remaining vOTUs were as follows: 12
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each were from blood and vagina microbiomes, 11 from sputum, 5 from misc label human, 3
from the pulmonary system and 2 from lung microbiomes.

The largest SM dataset-specific cluster was obtained from the fecal microbiome BioProject
PRJEB8094 which contained 30 sequences from 26 samples from the same study. The cluster
representative sequence was deemed Genome-fragment suggesting that this was a partial
sequence. Another cluster from the same study with 28 cluster members was a complete genome
and was represented by vOTU ERR719882_NODE_74. This sequence matched to bacteria and
viruses using BLASTN analysis against nt, was predicted as dsDNA phage using VirSorter2
(score=0.993) and was deemed complete genome with the presence of 55 bases direct terminal
repeat sequence
‘CCGCCTTGTAAATGCCTGACCTTTTATTCGTTTACCGTTTTTCATAAAAATATAT’. A
schematic representation of this virus genome is shown in the figure 5.12 with ORFs identified
using the DRAM-v annotations pipeline shown along with the genome and GC content of the

sequence shown in the plot below.
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Twenty vOTU clusters identified exclusively in the SM dataset contained sequences from
more than one microbiome. The most commonly clustered microbiomes were either oral and
saliva or saliva and sputum microbiomes which covered 19 out of 20 multi-microbiome clusters.
The remaining multi-microbiome cluster contained two sequences; one from fecal and one from
vagina samples. Six of these 20 multi-microbiome clusters were represented by vOTUs that were
deemed High-quality indicating that they were complete genomes. All six of these vOTUs were
predicted to be virus sequences using all three prediction tools. Four of them had viruses as
LCA and two had root as LCA. These vOTUs sequences were between 33-98kb long and could
not be linked to a known virus family. The VirSorter2 predictions score for all of them was 1
and they were predicted to be dsDNA phages. This suggests that these vOTUs are highly likely
to be novel phages and their genomic makeup is likely to be significantly different compared
to known phage sequences. The largest multi-microbiome cluster contained 9 sequences. This
cluster had sequences from oral and saliva microbiomes from China (PRJINA230363; n=7) and
the Philippines (PRJEB14383; n=2). It was represented by SRR2037090_NODE_11 - a partial
genome sequence from the sample SRR2037090 that was most likely to be a member of the
family Myoviridae based on the LCA analysis.

A total of 322 vOTUs that were unique to the SM dataset were deemed high-quality suggesting
that they were either complete or nearly complete genomes. 84 of these vOTUs were predicted
as virus genomes using all three prediction tools included in section 5.4.1, 111 were predicted
as viral genomes using DeepVirFinder and VirSorter2 and 12 were predicted as viral genomes
using both TetraPredX and VirSorter2. 321 of these contigs were annotated using the DRAM-v
(Shaffer et al., 2020) pipeline using annotate and distill workflows. DRAM-v works very
well with VirSorter2 workflow as VirSorter2 results can be manipulated to generate DRAM-v
compatible input files. Although viral contigs that were not predicted using VirSorter2 can be
annotated using DRAM-v, the distil1 part of the pipeline that consolidates the results and
generated viral metagenome-assembled genomes (VMAGs) level summaries, cannot be executed
without VirSorter2 prediction output. Out of 322 vOTUs, 321 were predicted using VirSorter2 (as
well as other predictions tools) and 1 vOTU was exclusively predicted using DeepVirFinder and
subsequently could not be efficiently annotated using DRAM-v. A summary of the resultant 321
vMAGs with metadata including cluster size, predicted genes, and a number of viral genes with
the CRISPR host prediction are detailed in table C.2. 312 of these vMAGs were predicted to be in
VirSorter (original) category 1 predictions indicating that they were high confidence predictions.
The category 1 predictions indicate the presence of viral hallmark genes and viral-like genes.
9 vMAGs were categorised into VirSorter category 2 predictions indicating that these VM AGs
were likely to be viral genomes. Category 2 predicted vVMAGs tend to have genomic regions
that have either enrichment in viral-like or non-Caudovirales genes, or a viral hallmark gene
detected. These vVMAGs have regions that are associated with at least one other metric defined by

the VirSorter tool which includes: depletion (reduction) in Pfam affiliated genes, enrichment in
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uncharacterised genes, enrichment in short genes, and depletion in strand switch (Roux et al.,
2015a). These metrics are also included in VirSorter2 and the categorisation was obtained from
VirSorter2 and DRAM-v output.

Out of 321 vMAGS, 122 were assembled from the saliva microbiome, 117 were assembled
from fecal microbiomes, 81 were from the oral microbiome and 1 was from the lung microbiome.
All 122 vMAGs originating from the saliva microbiome were from BioProject PRIEB14383. This
study originally included metagenomic sequencing of saliva/oral samples from individuals with
hunter-gatherer or agriculturalist lifestyles from locations in the Philippines. The second-largest
number of VM AGs (n=75) were assembled from BioProject PRINA230363 that including oral
samples from China. A range of vVMAGs were associated with a number of fecal microbiome
BioProjects. One vMAG was assembled from lung microbiome BioProject PRIEB7248.

These SM dataset-specific VMAGs contained 63.09 predicted genes on average with a standard
deviation of 37.21. The largest number of genes were predicted for jumbo viruses with genome
size >200kb. These are described in detail in section 5.4.4. These 321 vMAGs contained 38.23
viral hypothetical genes on average with a very high standard deviation of 33.66. Moreover, on
average each vVMAG contained 8.47 genes of unknown function (standard deviation of 12.56).
vMAGs also contained 2.86 viral structural genes (standard deviation: 4.48) and 0.75 viral
replication genes (standard deviation: 1.22). These results alluded that vMAGs identified and
catalogued here, are likely to contain novel genes and proteins that are yet to be catalogued.
These novel genes and proteins may be significantly different to those that are currently captured

in the standard nucleotide and protein databases.

Jumbo phages

Prokaryotic virus genomes that are larger than 200kb are termed ‘jumbo phages’. In our set, 8
jumbo phage vOTUs were identified. Six of these vOTUs were singletons whereas the remaining
two were clustered with 6 and 5 other contigs respectively. 5 of the vOTUs were predicted as
viruses using all three prediction tools, 2 were predicted as viruses using DeepVirFinder and
VirSorter2 and one was predicted as dsSDNA phage by VirSorter2. Five of these jumbo phage
vOTUs were found in four saliva samples from the Philippines in BioProject PRIEB14383 which
also contained a large proportion of vOTUs as described in table C.2. The remaining were found
in 2 oral samples from PRINA230363 (China) and 1 oral sample from PRJEB15334 (UK).
Overall, all jumbo phage vOTUs were associated with oral and/or saliva samples. vOTU
ERR1474612_NODE_7 represented the largest cluster with 6 other sequences. This cluster
contained 3 members from the GPD dataset and 3 other members from the SM dataset. The
second cluster was represented by vOTU SRR2037090_NODE_1 and 4 cluster members were
from the same BioProject - PRINA230363. 7 out of 8 vOTUs were deemed High-quality
suggesting that they were complete genomes. The largest jumbo phage was predicted as a
dsDNA phage using VirSorter2 with a score of 0.993. This vOTU ERR1611403_NODE_2 was
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shown to have hits to sequences belonging to the virus family Myoviridae using BLAST analysis,
however, it did not have significant sequence similarity to known viruses. The closest virus hit
for this vOTU was found to Myoviridae sp. isolate ctjeh30 (accession: BK042204.1), however,
the matches were sparse with the largest hit covering 5% of the vOTU sequence. Additionally,
the DRAM-v annotations found a range of ORFs and domains within this sequence (figure 5.13)
suggesting that this novel bacteriophage genome sequence was significantly different and
potentially distantly related to existing and known myoviruses. This vOTU was shown to contain
127 base direct termini repeat sequences
TGATATAATTACTGCAAAAAAATAAGGAAGGGCTCAATGCCCTTCCAATTCTTTTTCATT
TTATGCAGATAATATTGTAGGTTTTCTACATTCTATAAAATTATCAAATGATTGTCTTAATC
TATTACTACATTCTATAAAATTATCAAATGATTGTCTTAATCTATTA.



155

CHAPTER 5.

Yoex K213 se umoys st pue yidop s[oojures 3ursn paje[noed sem
owouad ayy sso1oe yidap pear oy, ‘seseq OO0 JO 9ZIS MOPUIM B 1M PAJe[nofed Sem Jey) weldelp swouas ay) mo[oq jo[d 9y} Ul umoys SI awoua3
A} SSOIOE JUAUOI-DD) YL, ‘A-INV Y Sursn pajejouue sem Jey) sawoud3 a3eyd oquinl oY) sso1oe surewiop pue s JUAIPIp a3 Surmoys a3eyd
[9AOU JY) JO WeISeIp QWOU3 Y (q) ‘9seqelep Y} ul 20uanbas snia umouy| Aue 03 LJLIe[rurs 20uanbas JuedyIuSIs 1eaq J0U S0P AWOUIZ SNIIA [QAOU
sIy) 1ey) smoys agedqom SV 14 2y Jo joysdeus v (B) “cOF 1191 YA I UnI VIS WOIJ pa[quiasse awoudd a3eyd oquun( [9A0U Y :¢]°G N3]

000°0LZ 000°0tZ 000°0TZ 000°08T 000°0ST 000°0ZT 00006 000°09 000°'0€ 0
0
P
3
sza
o
3
052
0
)
0z 2
S
oy
250d6™zz0Ig uiy0ad | (14qa ) awAzosA| |18y abeyd { ) ( urewop tvHHa| || { ] asejeydsoydojjerow 35232NUOPU2 HH i (IR
1e2p3u30dAy ﬁoam-omc_n_ c_wuoa_ = (20S€4NQ) uoRduNy [ eseaipnuopus Buiwon] Tmoamlqmo.._v_ C_an_ 25892nU0PUS HNH Ueuiop Jo6u Usyoid
__mu__um_._:_a_?_ : umowjun Jo ulewoq _ asedi|py <zn; T. ur230.4d UOLIA |e212yj0dAy Awey uiuosadeyd UZ [eujwal-N 03 m_‘_z»hw.tm_m_ts>
<z ulewop ‘1qdy 0v0d6 8ENAY ute304d ulewop ased19 0Tdb 0834 uie304d = 210467082514 09udd/T-dDL Jw_me 95e3[2NUopUd=> 3seyjuAs a3e|ApIWAYL
wmewszﬁﬂa <zx_ : __8_552;5_ wey Zsyd/ulngnL _S_uoﬁoaé_ urj0.d [ed33Y30dAY Urewop (LYNO) @ 091d6 2e-THiyd _ _ _ _ aseury ejAplwAy L=
25epIS02A|6 4 = (H17 uloH) = snuiway asewnd yNa urewop buipuiq (z dnoub) ulewop H 9sea|onuopua IZI_ seudjsue|A3Roy urjoud [ed13RY30dAY T UlRWOP [RUIWIDY-D
a1s91poydsoyd 9 Ajlwepadns jo 1AxoqJed ‘yiungns -VYNQ 220ys-| J1ungns peay vsny aseappnu aseuny ajeydsoydAjod

uljoy abeydownayoeg g 9selAb yNa
T 1 T | —

(£96T4NQ) uondUNy asesawA|od

uMOoUUN JO ulewoq -yNa Ajwey-g

Jofew jo sosindaid

0quAx0apopuz=

ungns eaq
asesawAjod yNY
pa12.1p-YNa

Jungns-,e39q
asesawA|od-yNY

urewop Jajisn|d
3|buls Sy-ady

< 90db TEY4 uRI01d
|eonayjodAy

<u_::n:w‘>_mmﬁw
woslodoy/aselAb yNa

[--T'€:03] 4zew

UleWOop [eulwd)
N DIWS/N23Y/423y

9seaIaul YNYW 501d6 0834 ui30id

|ea132yjodAy

ulewop 133snjd
a|buls sy-ady

1uNgns e3aq
asesawAjod YNY
pa122.1p-¥Na

« asesdwA|od YNY

uejoud [einyonns
abeyd |eonnayjodAy
T

uioud
|e4n3dNAs yieays
] 91308.13U0D

aseajold auuas
uiajo.d 2100 peayoud

asedljay Ajiwey
vel1/a2y

asesawAjod yNa g
Ajlwed juabianig

mu_cgg:mz
9selawosiodoy

3ungns eyaq
asesawAjod YNY
P332341p-¥NAd

wmmv:cmwc_cm_m.._ wmmamleNo_m:_wuo‘a
-|AoweinwiAyde-N |eanayjodAy
__

|
<= ulewop Ja3sn|d
3|buls Sp-a4p

<lLzzzeda

ujewop
9)1|-95eA|0S34
|euIwI)-N
‘9Se3|DNUOX3 ,£-,§

Ajjwey ased 1y

] ase|As02A|6
VNQ-12eJn

= ££0d6zz0l19
uiajoud |ednayjodAy

jungns abue|
9seulwa}

1ewop 433sn|d
3|buls Sy-a4p

(€9614NnA) uondUNy
umouun Jo uiewod

g aselhb yNa ulajo.d UOLIA

jungns abue|

jlungns e3aq
asesawAjod YNY
pa122.1p-yNa

3ungns e3aq
‘asesawAjod YNY
pa122.1p-yNa

asejnpal
2jeydsoyduy
-3pISoa[aNuo
qu JIgoiseuy

aseulw.9y

J1ungns e3aq
asesawAjod yNY
Pa31232.1p-YNG

urewop pjo}
-g0 9sebl| yNa
juapuadap-avN

<« 9senpal
9jeydsoyduy
-9pisoa|anuo
qu dlqosaeuy

LOOOSE'S A0 HOELLZ YIBUS| Z IAON E0VTTITHYI



CHAPTER 5. 156

Virus host prediction

To predict the bacteriophage hosts, the CrisprOpenDB package was utilised. It includes a
comprehensive database of more than 11 million sequences of spacers that can be searched
extensively using dedicated software included in the package that can execute host predictions
on large viral datasets. The spacers can provide accurate associations between phages and their
bacterial hosts since they are derived from past interactions between phages and their hosts.
From the set of 2,891 prokaryotic vOTUs obtained in section 5.4.4, a host could be predicted for
1,314 (45.45%) using CrisprOpenDB. Four different criteria are used for predictions made by the
CrisprOpenDB tool as described in Dion et al. (2021). Level 1 predictions indicate that only one
host genus is identified and it is assigned as the predicted host. Level 2 predictions include those
that match more than one genera and in this case host targeting the highest number of regions
in the phage genome will be assigned as the predicted host. Level 3 predictions are the same as
level 2 except that if two or more genera have an equal number of matches then the host with
spacers closest to the 5” end of the CRISPR array is selected. Finally, level 4 predictions were
applied when all three aforementioned criteria failed to match a single host genus. In level 4
predictions, the last common ancestor of the remaining bacterial genera was calculated and was
predicted to be the phage host (Dion et al., 2021).

Out of the 1,314 predicted hosts, 88.96% (n=1,169) were level 1 predictions, 7.99% (n=105)
were level 2 predictions, 2.89% (n=38) were level 3 predictions and the remaining 2 sequences’
host were predicted using level 4 criteria. The distribution of predicted hosts with >5 vOTUs is
shown in figure 5.14(a). The most commonly predicted host genus was Streptococcus (n=176),
followed by Prevotella (n=115), Veillonella (n=85) and Bacteroides (n=83). Host predictions
included 254 vOTUs that were High-quality and 1,060 that were Genome-fragment as per the
MIUVIiG quality assessment. As shown in figure 5.14(b), the most High-quality phage vOTUs
were from fecal, oral and saliva microbiomes whereas the Genome-fragment quality sequences
were from almost all microbiomes analysed. A virus-host interaction network based on the above
result is shown in the figure 5.14(c).

It is noteworthy that a large proportion of phage vOTUs (n=1,072) was unclassified i.e. could
not be linked to a known phage family and were potentially novel as represented by triangles in
figure 5.14(c). These phage vOTUs can be associated with their corresponding hosts suggesting
that these could be completely novel phages. The virus-host network also provides further insights
into the predicted hosts, for example, it is apparent that phages that infect the genus Streptococcus
are predominantly found in fecal, saliva and oral microbiomes whereas those phages that are
specific to the genus Bacteroides are exclusively found in the fecal samples. Bacteroides is
a genus of bacteria that is dominant and commonly found in the gut microbiota of humans.
Bacteriophages that infect the genus Neisseria - a genus of bacteria commonly found in mucosal
surfaces of many animals including humans were specific to oral and saliva microbiomes. Phages

that infect the genus Cutibacterium were found in the blood microbiomes. The members of the
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phage vOTUs and their completeness measured using the MIUViG quality. Each bar is coloured according to the

number of vOTUs identified from different human microbiomes. (c) Predicted hosts of 1,314 bacteriophage vOTUs.
Colours represent different microbiomes: The same colour scheme as shown in (b). Shapes represent LCA family
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represent vOTUs that are unclassified. The size of the dark grey circle represents the number of vOTUs where the
corresponding bacterial taxonomic rank was predicted as host. In each network, the host node is represented by the
dark grey circle in the middle with the circle size relative to the number of phage vOTUs predicted for the host. All
hosts are displayed in the same order as figure 5.14(a). The phage nodes are represented by the square or triangle
shapes where squares indicate that the LCA of the BLASTN hits for the corresponding phage vOTU was a known
prokaryotic virus family e.g. Inoviridae, Microviridae, Myoviridae, Podoviridae and Siphoviridae and triangles
represent the contrary e.g. LCA taxa were unclassified phages or were higher taxonomic ranks such as an order or
realm. The colours of the phage nodes represent the microbiomes that they were assembled from and the colour

scheme is the same as that shown in (b).
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genus Cutibacterium are commensal bacteria of human skin that are also known as common
contaminants of blood and body fluid cultures.

Overall, CRISPR signature-based host identification found the interconnections between
phages and their known bacterial hosts that are commensal in different microbiomes meaning that
they are part of the normal human microbiota. It is appreciated that the prokaryotic virus-host
interactions are typically measured at a much finer scale. Host prediction analysis carried out
here provided a much higher-level overview of the virus-host relationships with a limited number
of sequences available in the CRISPR spacer database utilised in this analysis. Moreover, though
virus-host relationships highlighted here are preliminary data-driven, it is worth noting that a
large proportion of contigs that are likely to be matching to a range of bacteria were not analysed
in detail here limiting the resolution of virus-host interaction analyses. Additional analyses
with a focus on the presence/absence of specific virus-host pairs could provide further insights
into the microbiome-specific virus-host interactions. The CrisprOpenDB package utilised here
has much lower recall which was also indicated in these results as large proportion of phage
contigs could not be associated with the corresponding hosts. Furthermore, the current version of
CrisprOpenDB package only includes bacteria sequences and completely lacks archaea-specific
spacer signatures. It is hypothesised that the large number of phages that could not be associated
with a host owing to the limitations of CrisprOpenDB, could potentially be linked to their hosts

using other virus-host predictions approaches.

5.4.5 Diversity of eukaryotic DNA viruses

This section of results focuses on viral contigs that match known DNA virus groups (family, order,
genera) excluding prokaryotic virus-specific groups. 2,104 DNA viral contigs were identified
to be originating from the genomes of eukaryotic DNA viruses. Among this set, 130 contigs
were predicted as viruses using all three virus prediction tools (DeepVirFinder, TetraPredX and
VirSorter2), 189 were predicted using DeepVirFinder and TetraPredX, 946 were predicted using
VirSorter2 and TetraPredX and 19 were predicted between DeepVirFinder and VirSorter2. There
were 11 predicted contigs that were unique to DeepVirFinder, 758 were unique to TetraPredX
and 51 were uniquely predicted by VirSorter2. These 2,104 DNA viral contigs were originating
from 21 distinct BioProjects as shown in the contig distribution across different studies in the bar
chart shown in figure 5.15(c).

969 contigs were found in the blood microbiome studies and they originated from a range
of BioProjects. As noted in figure 5.15(c), the highest number of DNA viral contigs (n=946)
was found in the oral microbiome BioProject PRINA230363 which contained samples from
China. This BioProject samples were obtained from dental plaques, which are likely to contain
blood. Thus, anelloviruses, which are usually found in human blood, are associated with the
oral microbiome in this study. Other microbiomes such as saliva and fecal were also shown to

contain contigs originating from DNA viruses. To characterise the viruses taxonomically, LCA
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was obtained for each contig hit and these results are described in two separate heatmaps shown
in figure 5.15(a) (family-level classification) and figure 5.15(b) (the LCA could not be classified
at a family level). These contigs were classified into 10 distinct DNA virus families, and, were
found across 7 different microbiomes (figure 5.15(a)). Notably, the Anelloviridae family was
found to be dominant in this classification and anellovirus contigs were predominantly found in
oral (n=897, 48.72%) and blood (n=940; 51.06%) microbiomes. The second most common viral
family found in this set was Herpesviridae and contigs matching herpesviruses were only found
in the saliva microbiome. 58 contigs were unclassified at the family level and were found in 3
distinct microbiomes and a large majority of them had “Monodnaviria” as their LCA indicating
that they were matching a range of different single-stranded DNA viruses from different families
(figure 5.15(b)).

Among the 2,044 contigs where the LCA could be classified at a family level, 394 (19.28%)
contigs were deemed as nearly complete genomes based on the MIUViG quality assessment
and 1,650 (80.72%) were characterised as Genome-fragments (figure 5.15(d)). A majority
of complete genomes were classified to be anelloviruses (n=373), whilst a small proportion
was classified as genomoviruses, circoviruses, parvoviruses and papillomaviruses. MIUViG
high-quality sequences indicating that they were nearly complete genomes were classified as
Arfiviricetes, CRESS virus sp., Circular genetic element sp., Cressdnaviricota, Monodnaviria,
Viruses, unclassified viruses, and uncultured human fecal virus.

To explore this dataset further, the contigs matching the most dominant family found in this

dataset i.e. Anelloviridae were investigated in detail.

Cataloguing the diversity of Anelloviruses

Anelloviruses were the most abundant DNA viruses found in this study. They are small, circular
ssDNA viruses with negative-sense genomes and belong to the family Anelloviridae. Anellovirus
genome sizes range typically between 2-3.9kb. There is a total of 155 viral species classified into
31 genera in the family Anelloviridae according to ICTV MSL 36 (ratified in March 2021).
Initially, 1,841 contigs with BLASTN hits exclusive to various anelloviruses were identified.
This set was expanded with an addition of 164 contigs that had “Viruses” as LCA but were
predominately similar to a range of anelloviruses. These 164 contigs had hits to at least one
of three NCBI sequences (JX157237.1, JX157238.1, JX157239.1) which are classified under
environmental samples under viruses resulting in the LCA being determined to be Viruses instead
of family Anelloviridae. All three of these NCBI sequences contained Torque teno virus (TTV)-
like ORFs. These additional 164 contigs were combined with the original set of 1,841 contigs
resulting in a final set of 2,005 contigs matching anelloviruses. These anellovirus contigs were
between 1-8kb long. The mean contig length was 2356 bases and 75% of sequences were under
3kb long (figure 5.16(b)). The contigs that were larger than expected genome sizes are likely to

be results of either chimaeric sequences or misassemblies. The de novo assembly tools often
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Figure 5.15: An overview of contigs matching to DNA viruses excluding phages. (a) A heatmap showing the
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Blue bars in the top plot show contigs in MIUViG category Genome-fragments, and, the red bar shows the MIUViG
category High-quality.
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join two sequences with overlapping regions together and this could cause trouble in assembling
circular viruses (Hunt et al., 2015). Out of 2,005 contigs, 19 contigs were >4kb long (i.e. larger
than the expected genome size), 709 contigs were <2kb long (smaller than the expected genome
size) and the remaining 1,277 contigs were between 2-4kb long which was the expected genome
size of this virus family.

To initially assess their similarity to existing anellovirus sequences in the database, the top
hit with the highest sequence similarity was extracted. The sequence similarity was plotted
against the query coverage as shown in figure 5.16(a). As it can be seen in the figure 5.16(a),
a large majority of contigs were found to fall within <80% query coverage range suggesting
that these sequences are relatively different to those that were currently catalogued. A total of
1,006 anelloviruses were found in oral microbiome, 995 were found in the blood microbiome
and 4 were found in the pulmonary system microbiome. These microbiomes spanned 8 distinct
BioProjects (figure 5.16(c)) and 162 distinct samples originating from these studies. The largest
number of anellovirus contigs (n=1,006) were found in the oral microbiome samples from China
included in the BioProject PRINA230363. The original study that sequenced these oral samples
was led by J. Wang et al. (2016) and aimed to analyse the phage-host interaction network in the
human oral microbiome. The highest number of anellovirus contigs from the blood microbiome
were from BioProject PRINA419524 (n=573). This study included blood samples of patients
with organ transplants and was carried out in three different sites (Pennsylvania, Wisconsin
and New York) in the USA. The CheckV analysis indicated that 395 (19.7%) of all anellovirus
contigs were High-quality (complete or nearly complete genomes) and 1,610 (80.3%) were partial
genome sequences (figure 5.16(c)).

Typically, the ORF1 coding sequence is used to investigate the phylogenetic relationships in
anelloviruses and it is the largest ORF shared among all anelloviruses and hypothesised to code
for virus replication-associated and capsid proteins. Thus, the ORF1 amino acid sequence-based
phylogenetic tree built with IQTree model LG+F+I+G4 selected via the model selection using
IQTree, and 1000 bootstrap is shown in figure 5.17(a). Four distinct clades representing all four
anellovirus genera are well separated with strong bootstrap support. The anellovirus contigs were
assigned a genus based on their respective clade membership. A breakdown of distinct genera
found in different BioProjects is shown in figure 5.17(b).

From the set of 1,275 anellovirus contigs, 693 were assigned to genus Alphatorquevirus,
196 were assigned to genus Betatorquevirus, 354 were assigned to genus Gammatorquevirus
and 1 was assigned to genus Hertorquevirus. 17 contigs did not fall within any of these clades
and are shown in grey in the figure 5.17(b). These are also shown in a separate cluster in
the figure 5.17(a). The members of genus Alphatorquevirus are referred to as Torque teno
viruses (TTVs), those in genus Betatorquevirus are referred to as Torque teno mini viruses
(TTMVs) and those in genus Gammatorquevirus are referred to as Torque teno midi viruses
(TTVMDs). The largest number of TTVs were found in the blood microbiomes of BioProject
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Figure 5.16: Overview of the contigs matching to anelloviruses. (a) A bubble chart showing the
sequence identity and query coverage with respect to the top BLASTN hit for each anellovirus
contigs. The size of the bubble represents the contig size and the colours represent the BioProjects
for each microbiome category (subplots). (b) The distribution of contig lengths of 2,005
anellovirus contigs was identified in this study. (c) MIUViG quality assessment of anellovirus
contigs grouped by study/BioProject. This figure is split into two MIUViG categories. The bar
plot on the left shows the contigs that were categorised as genome-fragments and the right plot
shows the contigs that were categorised as high-quality. Each BioProject is shown on the Y-axis
and the number of anellovirus contigs is shown on the X-axis. The colour of the bar is indicative
of the microbiome type described in the legend.



CHAPTER 5. 163

(a)

Dataset
B cCurrent study
[l

Hetorquevirus

Potentially new genus
or
recombined sequences

(b)

gr= - =
D -
el o

PRJDB7117.I )

Blood, Japan
-

PRJINA602694
Blood, Brazil

|-

PRJINA419524

Blood, USA 4

BioProject
Microbiome, Country

PRJINA518922
Blood, NA
Genus
Alphatorquevirus
B Betatorquevirus
B Gammatorquevirus
W Hetorquevirus
B Unclassified

1

PRJEB20877
Pulmonary system, Switzerland

0 100 200 300 400 500
Number of contigs

Figure 5.17: Phylogenetic analysis and classification of anellovirus contigs. (a) A maximum-
likelihood tree is inferred from ORF1 amino acid sequences of anelloviruses. Circles represent
nodes which are coloured according to the study; reference sequences retrieved from Varsani
et al. (2021) are shown in cyan and anellovirus contigs identified in this study are shown in burnt
sienna. (b) Human anellovirus genera assignment is inferred from the phylogenetic tree and its
distribution across different BioProjects and microbiomes. Overall, all genera were found in most
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PRINA419524 whereas the highest number of TTVMDs were found in oral microbiomes of
BioProject PRINA230363. A large diversity of TTMDV present in the oral samples from
China suggest either a microbiome or geolocation-specific link. However, this hypothesis was
not formally tested here to explore this further. The unclassified sequences were found in 4
different BioProjects including PRIDB7117 (n=4), PRINA230363 (n=8), PRINA419524 (n=4)
and PRINA471187 (n=1). A number of sequences were shown to form a separate cluster from
known human anellovirus genera. These sequences were initially thought to belong to the genus
Omegatorquevirus. However, an updated Anelloviridae tree with the entire Anelloviridae showing
all genera (see appendix figure C.2) phylogeny built with sequences from Varsani et al. (2021)
showed that these unclassified sequences form a distinct clade from the genus Omegatorquevirus.
This indicates that either these sequences may form a potential new human anellovirus genus
or that they are likely to be recombinant sequences meaning that they may be composed of
sequences that may have originated from two or more genera. Anellovirus sequence diversity has
been evidently driven by recombination (Worobey, 2000; Arze et al., 2021). These recombination
events have been observed within different clades and/or genera of anelloviruses and are not
limited to closely related anellovirus species (Arze et al., 2021). The sequences that fall within this
separate new clade were isolated from blood and oral microbiomes. These BioProjects were not
specific to a geographic location and they originated from various parts of the world. For example,
the blood microbiome BioProject PRIDB7117 was from Japan, PRINA471187 was from Sweden,
PRINA419524 was from the USA and the oral microbiome BioProject PRINA230363 contained
sequences from China.

Novel anellovirus species and genera are classified based on the ORF1 coding nucleotide
sequences. Based on the recently updated species classification criteria defined by Varsani et al.
(2021), any sequences that bear <69% sequence similarity to currently known anellovirus species
are identified as novel species. Varsani et al. (2021) also recommend using SDT to determine the
species demarcation based on pairwise sequence identity. The similarity matrix was extracted
from SDT and was converted to distances. Clusters were computed from this set using the
Agglomerative Clustering (Hierarchical clustering) implemented in the Scikit-learn package with
distance_threshold = 0.31, linkage = complete, affinity = precomputed, compute_full_tree =
True and compute_distances = False parameters for a total of 1,419 sequences (1,275 anellovirus
contigs plus 144 reference sequences from Varsani 2021 set).

In total 371 clusters were generated using the above demarcation clustering method. 143
clusters contained at least one known anellovirus species, these clusters comprised 443 sequences
including 143 known anelloviruses species from the Varsani et al. (2021) set as well as 299
anellovirus contigs from the SM set; the remaining 228 clusters contained anellovirus contigs that
were assembled from the SM set. 299 human anellovirus contigs were found to cluster within
46 clusters representing existing human anellovirus species. These species’ demarcation results

align well with the phylogenetic analysis described above. As shown by the phylogenetic clade
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membership in figure 5.17(a) all 46 species that clustered with anellovirus contigs were members
of human anellovirus genera Alphatorquevirus, Betatorquevirus and Gammatorquevirus. One
cluster with Gammatorquevirus species Torque teno midi virus 15 that was isolated from Pan
troglodytes was shown to include two human contigs sequences SRR7166951_NODE_76 and
SRR6316221_NODE_11 assembled in this analysis. The remaining 976 sequences were grouped
into 228 clusters based on the species demarcation criteria and were uniquely found in the dataset
assembled and catalogued from this analysis. Based on these clustering results, it is hypothesised
that 228 potentially novel anellovirus species in humans have been discovered (table C.3).

A complete list of these novel species of human anelloviruses discovered from 3 distinct
microbiomes (1 from the Pulmonary system, 72 from the Blood and 155 from the Oral) is shown
in the table C.3. These new species originated from 50 different SRA samples included in 8
distinct BioProjects. 155 novel species were identified from the oral microbiome from China
(PRINA230363). 72 novel species were identified from a range of different blood microbiome
BioProjects. One novel species was found in the pulmonary system BioProject PRIEB20877
from Switzerland. Novel species were identified in all human anellovirus genera. To reiterate, the
genera were assigned based on the phylogenetic clade membership. 46 new species were from
the genus Alphatorquevirus. 70 novel species were from the genus Betatorquevirus and 106 novel
species were from genus Gammatorquevirus. One novel species of the genus Hetorquevirus
was also identified. Moreover, 5 new species were identified that could not be associated with a

known human anellvirus genus.

5.4.6 RNA viruses

Out of the four major categories of viruses described in the figure 5.1, RNA virus categories
contained the smallest number of contigs. This is due to the fewer metranscriptomic BioProject
included in the previous analyses carried out in Chapters 3 and 4. In total, 269 contigs matched a
range of RNA viruses. Among this set 54 contigs were deemed High-quality and 215 were
partial sequences. However, it is worth noting that MIUViG criteria do not always provide the
best measure of the completeness of RNA virus genomes due to RNA virus-specific features
such as segmentation. The distribution of these RNA viral contigs across different BioProjects
and microbiomes is shown in figure 5.18. 125 of these contigs’ LCA could not be determined at
a family level and the remaining contigs were categorised into RNA virus families as follows:
Arenaviridae (n=6), Flaviviridae(n=79), Hepadnaviridae (n=7), Paramixoviridae (n=2),
Picobirnaviridae (n=3), Retroviridae (n=32), Rhabdoviridae (n=5), Tombusviridae (n=2) and
Virgaviridae (n=1). Genus Pegivirus which comprises the family Flaviviridae contained the most
number of hits (n=69) and it was found in 4 distinct BioProjects. Pegivirus name is derived from
persistant, and g in historical reference to GB virus and hepatitis G virus names. Pegiviruses
have a broad host range and can infect humans, non-human primates, pigs, horses and a range of
rodent and bat species (Simmonds et al., 2017b).
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The contigs that could not be classified at a family level were predominantly classified at
higher taxonomy levels including the realm Riboviria (n=52), phylum Lenarviricota (n=6) and
Viruses (n=55). Additionally, these contigs were also matching to a range of currently unclassified
RNA viruses such as unclassified RNA viruses ShiM-2016 (n=6), Hubei narna-like virus 22
(n=4), le Maire virus (n=1) and Beihai picorna-like virus 64 (n=1).

A number of RNA viral contigs were found in the human blood microbiome. This is chiefly
because BioProject PRINA271229, which was comprised of human blood samples of patients
with an unknown fever collected in Nigeria in 2011, contained the most RNA viral contigs (n=177)
found in this study. The majority of RNA viral contigs identified in this BioProject could not be
linked back to a known RNA virus family and their LCA was assigned to the realm Riboviria
(n=47) or Viruses (n=47). The metatranscriptomic study that sequenced total RNA from sputum
samples (BioProject: PRIEB10919) of patients with active tuberculosis contained 37 contigs
matching RNA viruses. This BioProject contained the most diverse range of unclassified RNA
viruses including Chicken picobirnavirus (n=1), Coxsackievirus A21 (n=1), Enterovirus (n=2),
Hubei narna-like virus 22 (n=3), Human immunodeficiency virus 1 (n=9), Human respirovirus 3
(n=1), Lenarviricota (n=6), Lentivirus (n=1), Otarine picobirnavirus (n=1), Picobirnavirus (n=1),
Rhinovirus A (n=1), Rhinovirus B (n=2), Riboviria (n=3), Tobamovirus (n=1), Viruses (n=2), le
Maire virus (n=1) and unclassified RNA viruses ShiM-2016 (n=1).

A general-purpose clustering was performed using the anicalc and aniclust script available
within the CheckV package to identify sequence similarity among contigs matching RNA viruses.
A minimum sequence identity threshold of 95% and a target coverage of 85% were applied. From
the set of 269 contigs, 141 clusters were obtained. 103 cluster representatives had a nucleotide
hit to nt databases (BLASTN) whereas 38 cluster representatives did not have nucleotide hits
and only had protein hits against viral proteins. Two of the largest clusters were generated from
two separate contigs of the same length of 7,940 nucleotides representing a potentially novel
picorna-like virus. Both contigs were assembled from blood microbiome sample SRR1748182.

These results are discussed in detail in the section 5.4.6 below.

Unclassified RNA viruses

Due to their short genomes, error-prone replication mechanism and high sequence diversity,
RNA viruses are often trickier to identify in metagenomic samples and require special wet-lab
and dry-lab protocols to successfully capture their signature sequences from
metagenomic/metatranscriptomic studies (Holmes, 2009; Greninger, 2018; M. Shi et al., 2018b).
Moreover, novel RNA viruses often do not bear any nucleotide-level sequence similarity to
known viruses at the nucleotide level. This is a distinct feature of completely novel RNA viruses
that leads to no hits when searched against comprehensive nucleotide databases such as nt,
however, they may bear some similarity to their distant relatives at the protein level. RNA viral

contig representatives (n=38) that did not bear any nucleotide level similarity to known
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Figure 5.18: Overview of contigs matching to RNA viruses. The lowest common ancestor (LCA)
of BLAST/DIAMOND hits is shown on the Y-axis with the number of contigs identified in that
category shown on the X-axis. The bars are coloured according to the BioProject the contigs are
found in, and the patterns represent the corresponding microbiomes.
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sequences in the databases but displayed some protein similarity to a range of unclassified RNA
virus protein sequences were explored further. The top hit for these contigs was extracted to
obtain query coverage and percent identity and these two measures were plotted against each
other as shown in figure 5.19. All these sequences have very low sequence similarity to their
closest match even at the protein sequence level compared to their BLASTN counterpart shown
in the appendix figure C.3. Moreover, a large number of these contigs have low query coverage
of <80% (X-axis). These low sequence similarity and low sequence coverage suggest that these
contigs represent completely novel RNA virus sequences that are not yet catalogued in the

databases.
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Figure 5.19: A scatter plot showing query coverage (X-axis) and corresponding percent identity
(Y-axis) to its protein level best hit for each contig. The shapes of the markers represent distinct
studies, the colours of the markers represent the LCA taxa and the size of the marker is relative to
the contig length.

These potentially novel unclassified viruses were identified in 6 distinct studies;
PRINA271229 (n=16; blood), PRJEB10919 (n=15; sputum), PRINA471187 (n=3; blood),
PRINA264728 (n=2; saliva), PRINA230363 (n=1; oral) and PRJIEB609 (n=1; fecal). These
cluster representative sequences (or vOTUs) had hits to viral proteins originating from the
following LCAs: Riboviria (n=13), Viruses (n=11), Lenarviricota (n=5), Hubei narna-like virus
22 (n=4), unclassified RNA viruses ShiM-2016 (n=2), Picobirnavirus (n=1), Otarine
picobirnavirus (n=1), and Beihai picorna-like virus 64 (n=1). These results are captured in detail
in table C.4. To catalogue completely novel RNA viruses that were classified at the higher

taxonomy levels, an in-depth analysis was carried out on specific contigs of interest.

Novel picorna-like virus

17 contigs of interest were found in the blood microbiome study PRINA271229 that were at

least 5kb long. This study sequenced human serum samples derived from healthy individuals
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and patients with fevers of unknown origin from Nigeria in 2011 (https://www.ncbi.nlm.nih.
gov/bioproject/PRINA271229). All contigs >=5kb were extracted and their corresponding LCA
identification showed that all of them were matching to a range of unclassified picorna-like
viruses with very low sequence similarity at the protein level and no significant matches were
found at the nucleotides sequence level. These contigs were 5,888-7,940 nucleotide long. The
figure 5.20 shows the sequence similarity of the largest contig (SRR1748182_NODE_2) against
the NCBI RefSeq protein databases on BLASTX run on the web on 10 April 2022. Notably, this
sequence matched an unclassified picorna-like virus called Bat dicibavirus with 27% similarity at
the protein level. These results are shown in figures 5.20(b) and 5.20(c). Moreover, these contigs
were also shown to contain a large polyprotein ORF which contained RdRp and VP4 domains
identified by BLAST domain signature analysis (figure 5.20(a)) .

The presence of the polyprotein ORF, RNA virus-specific domains and protein sequence
divergence indicated that these contigs were likely to be originated from a novel picornavirus or
picorna-like virus. Picornaviruses have a monopartite or bipartite positive-strand RNA genome
that ranges from 7-12kb nucleotides in length. Monopartite genomes code for a single ORF
that encodes a single large polyprotein (King et al., 2012). A range of picorna-like viruses has
been identified predominantly from marine environment (Culley et al., 2003; Lang et al., 2009),
however, since the widespread application of metagenomics, picorna-like viruses are identified in
faeces and organs of a variety of organisms (M. Shi et al., 2016a; M. Shi et al., 2018a; Zell et al.,
2022). This indicates both a wide distribution of picorna-like viruses among organismic kingdoms
as well as an accumulation of unspecific viruses without subsequent infection (Zell et al., 2022).
To investigate this hypothesis further, all protein sequences that these 17 contigs were matching to
were extracted from the DIAMOND results. In total, 37 unique protein sequences matching these
contigs were identified that belong to a range of picorna-like viruses discovered in freshwater
arthropods and molluscs as well as other hosts including octopus and algae. In total 54 sequences
were used to perform the analysis and this dataset is referred to as PLO1. A vertebrate picornavirus,
rabbit hemorrhagic diseases virus was used as an outgroup for the phylogeny shown in figure
5.21 which was generated using the steps described in the Method section 5.3.7.

The novel picorna-like virus sequences showed very high sequence similarity (>94-100% at
the nucleotide level) among each other suggesting that they may be originated from the same
virus (figure 5.21). However, they form a cluster separate from their closest relative Shahe
picorna-like virus 1 which was extracted from freshwater arthropod by Shi et al (M. Shi et al.,
2016a). Although most of the viruses included in the PLO1 phylogeny shown here are unclassified
sequences, 7 sequences from this set were classified to the family Marnaviridae. The family
Marnaviridae represents sequences that typically infect marine protists, and algae and also have
unclassified members identified using metagenomic methods that were found in marine and
freshwater environments (Lang et al., 2021).

To study this novel picorna-like virus further, all classified sequences of order Picornavirales
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Figure 5.20: Protein level sequence similarity of novel picorna-like viral contig to the existing sequences
in RefSeq protein databases. (a) Schematic representation of the novel picorna-like virus. Open Reading
Frames (ORFs) are highlighted with pink boxes and the Pfam domains are highlighted in blue. The
GC-content of the sequence was obtained using window size 50 and it is shown in the plot below. (b)
and (c) Protein sequence alignments for novel picorna-like virus against its closest relative found in the
NCBI RefSeq protein databases. The sparse protein-level similarity indicates the diversity of the novel
sequence being distantly related to its closest relative found in the BLAST databases.
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Figure 5.21: A maximum likelihood phylogeny derived based on the polyprotein ORF (largest
ORF) amino acid sequences showing the clustering of the novel picrona-like virus with other
picorna-like viruses. The phylogenetic tree was generated using 1000 bootstrap in IQTree
showing the relationship between the novel picorna-like contig to its BLASTX hits in RefSeq
protein databases. The virus names are coloured according to the corresponding virus family.
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were extracted from VMR 200721 version with MSL 36. This set was filtered (n=59 removed)
further to include all species exemplar with a RefSeq sequence which yielded 272 sequences.
The largest ORFs that coded for polyproteins were extracted for each of these sequences and then
this set was merged with sequences from PLO1. All sequences were sanity checked to remove any
duplicate sequence identifiers and a final set with 319 sequences was created which is referred to
as PO1 hereafter.

PO1 set contained sequences representing 8 distinct families; Caliciviridae (n=15),
Dicistroviridae (n=15), Iflaviridae (n=15), Marnaviridae (n=20), Picornaviridae (n=137),
Polycipiviridae (n=8), Secoviridae (n=62), Solinviviridae (n=2) of the order Picornavirales as
well as unclassified picorna-like sequences from PLO1 along with picorna-like virus sequences
identified from PRINA271229. A polyprotein amino acid sequence-based phylogeny of the PO1
set was generated and it is shown in figure 5.22. The phylogenetic tree of the order
Picornavirales shows clear clustering of the families based on the polyprotein ORF. Most of the
sequences from each family are clustered with other sequences of the same virus family with
high bootstrap support. Unclassified sequences that are termed picorna-like by M. Shi et al.
(2016a) are shown to cluster with existing members of the family Marnaviridae often with very
high bootstrap support suggesting that these picorna-like viruses could potentially be classified
with respect to their sequence similarity with existing marnaviruses. The sequences assembled
from PRINA271229 do not cluster with any other sequences, confirming that they represent a
currently unidentified novel picorna-like virus.

It has been noted by the ICTV that most of the families (except Iflaviridae) in the order
Picornavirales form monophyletic branches in a maximum-likelihood-based phylogenetic tree
derived using the amino acid sequence extracted from the protein-polymerase region, and each
family has a defined host range (https://talk.ictvonline.org/ictv-reports/ictv_9th_report/
positive-sense-rna-viruses-2011/w/posrna_viruses/227/picornavirales). For example, members
of the family Secoviridae have a bipartite genome and infect plants, members of the family
Picornaviridae contain monopartite genomes and infect vertebrates and families Dicistroviridae
and [flaviridae include viruses with monopartite genomes that infect arthropods (King et al.,
2012). As this novel picorna-like virus that was found in the human blood samples from multiple
individuals from Nigeria, clusters with unclassified viruses and members of the family
Marnaviridae that infect unicellular organisms including marine algae and other marine

invertebrates, it is difficult to determine its host species.
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Figure 5.22: A midpoint rooted maximum likelihood-based on polyprotein ORF amino acid sequences for all
representative species in order Picornavirales. This phylogenetic tree was generated using 1000 bootstrap in IQTree
and it was visualised in FigTree with midpoint root settings. All species are coloured according to their corresponding
family membership in the order Picornavirales. The contigs assembled in this study are shown in purple with
complete contig names used as their labels.
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5.4.7 Unclassified viral contig sequences (UViCs)

Unclassified viral contig sequences (UViCs) represented by the grey box in the figure 5.1 included
confirmed viral contig sequences that could not be confidently associated with a virus family
and/or order. A total of 47,994 contigs (out of 122,884) representing more than a third (39.06%)
of all confirmed viral contigs were included in this category. 47,341 UViCs were deemed to
be Genome-fragments and 653 were High-quality according to the MIUViG criteria. Among
this set of 653 High-quality contigs, 557 were predicted to belong to the dsDNA phage group
according to the VirSorter2 categorisation suggesting they are likely to be novel phage sequences.
Out of 47,994 UViCs, 4,451 were predicted as being viral using all three prediction software.
14,375 UViCs were predicted using DeepVirFinder and VirSorter2; 2,437 were predicted by
DeepVirFinder and TetraPredX, and 1,677 were predicted to be originating from virus genomes
using TetraPredX and VirSorter2. A range of software-specific predicted viral contigs was also
identified. 17,553 UViCs were predicted exclusively by VirSorter2 whereas 5,819 and 1,682
UViCs were predicted exclusively using DeepVirFinder and TetraPredX respectively. Among all
three prediction tools, VirSorter2 can provide a virus group that the viral contig may be originating
from. The UViCs were categorised as follows based on their VirSorter2 max_score_group
categorisation: 1,890 NCLDV, 55 RNA, 19,389 dsDNAphage, 1,653 lavidaviridae, and 13,838
ssSDNA. Max score group could not be determined for the remaining 11,169 UViCs.

Table 5.2: Distribution of Unclassified viral contig sequences (UViCs) across different
microbiomes and BioProjects.

BioProject Microbiome Country Number of Contigs | Number of SRA Run ID
PRINA471187 Blood 1 1
PRINA602694 Blood Brazil 2 1
PRINA389455 Blood 3 3
PRINA518922 Blood 10 3

PRIDB7117 Blood Japan 17 7
PRINA271229 Blood Nigeria 47 20
PRINA471187 Blood Sweden 64 50
PRINA419524 Blood USA 91 28

PRJEB11554 Fecal 1 1

PRIEB15257 Fecal United Kingdom 65 6

PRJIEB23207 Fecal Italy 195 7

PRJEBS8201 Fecal Egypt 208 1

PRIJEB23207 Fecal Netherlands 260 4

PRJEB8201 Fecal USA 261 1

PRIEB17784 Fecal Germany 672 52

PRIJEB1775 Fecal Germany 930 38

PRJEB19090 Fecal Italy 1268 37

PRJEB18265 Fecal Russia 1523 9

PRJEB19367 Fecal USA 2031 28

PRJEB7331 Fecal United Kingdom 2397 24

PRJEB6542 Fecal Netherlands 2714 8

PRJEB7949 Fecal United Kingdom 5240 40

PRJEB6092 Fecal Australia 5479 24

PRJEB8094 Fecal Canada 6661 100

PRIEB12357 Fecal Netherlands 9835 100
PRJEB21827 Human 184 12
PRJEB7248 Lung Gambia 23 3
PRJEB12831 Oral United Kingdom 27 11
PRJEB15334 Oral United Kingdom 164 23
PRINA230363 Oral China 2584 28

PRINA264728 Saliva 81 8
PRJEB14383 Saliva Philippines 4599 30
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BioProject Microbiome Country Number of Contigs | Number of SRA Run ID
PRJEB10295 Skin Netherlands 2 1
PRIEB10919 Sputum South Africa 343 17
PRIJEB21446 Vagina Germany 12 8

UViCs were not specific to a study and/or microbiomes and were found in all major
microbiomes represented by 35 BioProjects shown in table 5.2. However, they were
predominantly found in fecal microbiome datasets. A total of 39,740 UViCs were found in fecal
microbiome datasets which represented 82.8% of all UViCs identified here. The largest number
of UViCs were found in fecal microbiome BioProjects PRJIEB12357 (n=9,835; Netherlands),
PRJEB8094 (n=6,661; Canada), PRJEB6092 (n=5,479; Australia) and PRIEB7949 (n=5,240;
United Kingdom). 4,680 UViCs were found in saliva microbiome datasets. 4,599 of these saliva
UViCs were found in BioProject PRJEB14383 (Philippines) and 81 were identified from
BioProject PRINA264728. 2,775 UViCs were assembled from oral microbiomes and a large
proportion of these (n=2,584) were assembled from BioProject PRINA230363 from China. 343
UViCs were identified from sputum samples from BioProject PRIEB10919 from South Africa.
235 UViCs were assembled from blood microbiome and these UViCs originated from
BioProjects PRINA419524 (n=91; USA), PRINA471187 (n=65; Sweden), PRINA271229
(n=47; Nigeria), PRIDB7117 (n=17; Japan), PRINA518922 (n=10), PRINA389455 (n=3) and
PRINA602694 (n=2). Miscellaneous BioProject PRIEB21827 with microbiome specified as
‘Human’ and no geolocation metadata comprised of 184 UViCs. Remaining UViCs were
assembled from lung (n=23), vagina (n=12) and skin (n=2) microbiomes. These results highlight
the importance of cataloguing the virosphere as it represents the viral sequences that are yet to be
classified and incorporated into the formal virus classification framework such as taxonomy. It
also emphasises the significance of carrying out systematic virus sequence prediction and
identification analyses such as that applied here as it can lead to the expansion of viral genome
sequence space.

A superficial high-level clustering of UViCs carried out using the standard protocol specified
in 5.3.5 generated 20,734 vOTUs from 47,994 UViCs. 5,479 clusters (with at least 2 sequences)
were generated and 15,255 UViCs were deemed to be singletons (i.e. UViCs that did not cluster
with any other sequences). This suggests that a third of UViCs bear some sequence similarity to
one another. These UViCs could be explored further to investigate their potential virus origin as
currently they represent the “viral unknowns” and cannot be grouped with known virus families,

order or realm in the existing virus taxonomy framework.

5.5 Discussion

In this study, nearly 7.2 million contigs originating from 3,559 samples covering 11 distinct

human microbiomes from 58 studies (BioProjects) were systematically interrogated for the
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purpose of virus discovery. This analysis enabled the identification of 122,884 confirmed viral
contigs that could be confidently assigned to the taxonomic rank ’Viruses’ as superkingdom. This
has led to the creation of a rich dataset with 49,247 (40.02%) contigs that could be confidently
associated with virus families and the remaining 59.92% (n=73,637) that could only be classified
at above family ranks, sometimes only at the top level e.g. viruses. 1,422 (1.16%) of these
viruses were deemed High-quality and were complete genomes whereas 121,462 (98.84%) were
likely to be genome segments or partial viral sequences according to the MIUViG quality criteria.
However, it is worth noting that the MIUViG criteria can provide limited information in cases of
ssDNA as well as RNA viruses due to their shorter genome lengths. Moreover, the resolutions
required for RNA virus identifications are often limited as RNA viruses can possess segmented
genomes.

Three distinct virus prediction tools were applied to the assembled contigs set and the
prediction results were validated using gold-standard sequence similarity methods including
BLAST and DIAMOND. These results also show that k-mer-based prediction tools often lead
to more false-positive compared to the more traditional sequence similarity methods and a
combination of these methods such as the ones implemented in VirSorter2. VirSorter2 approach
performs extremely well and can help to reduce false positives in virus discoveries. However,
it is worth noting that a conservative and gold-standard BLAST approach for validating the
prediction results has been applied here which has its own limitations. Moreover, it can be argued
that VirSorter2’s algorithm that uses tools such as Prodigal for ORF prediction and HMMER3
for HMM profile identification for viral genes is similar to the sequence similarity approach
implemented in BLAST. This integrated approach that utilises existing databases, and known
and uncultivated virus sequence space is certainly better at virus sequence prediction compared
to other tools that solely rely on short signature k-mers. Nevertheless, it should be noted that
all prediction methods were susceptible to false-positive predictions albeit to a varying degree.
The validation results show that TetraPredX was able to predict more RNA viruses compared to
DeepVirFinder and VirSorter2. Although it is likely that those RNA viral contigs were simply
missed because of the various prediction threshold applied to the output of prediction tools,
it is worth noting that TetraPreX was able to predict those RNA viral contigs with very high
confidence suggesting that our simple k-mer based prediction method is able to deconvolute
the microbial genomic signals embedded within tetra-mer frequencies. VirSorter2 gave null
confident scores for a number of RNA viral contigs, which may be because these contigs had
only one complete gene and possessed a recognisable hallmark gene (personal communication
with Jiarong Guo at EVBC 2022, https://github.com/jiarong/VirSorter2/issues/68). Moreover,
as a more comprehensive prediction analysis is carried out by VirSorter2, it was the slowest
among the three prediction tools used here. In reality, it is impossible to completely measure the
exact number of microbial species present in a metagenomic or metaviromic sample except those

originating from pre-designed mock communities. Thus, it should be appreciated that sequences
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that belong to root and match more than one superkingdom can potentially be originating from
virus genomes but they cannot be confidently assigned to a group of viruses due to the limitation
of our validation approach.

Despite the algorithmic advances in sequence classification, taxonomic classification and
characterisation are deemed to be challenging tasks. Metagenomic data analysis is overly
subjective and it is especially more difficult for virus classification. The reason for this is
partly due to the sheer amount of genomic diversity embedded in viral genomes, as well as the
specialised approach required to categorise different types of viruses, e.g. phages vs RNA viruses.
In order to capture various different types of viruses, customised analytical approaches were
developed that are described in the results section. To verify the viral origin of predicted viral
contigs, a general-purpose, but much slower BLAST-based identification method was employed
here. Arbitrary criteria of evalue 0.0001 for nucleotide level classification and 0.001 for protein
level classifications without a query coverage filter were applied to obtain the top 25 hits for each
predicted viral contig. This BLAST-based validation method could be considered more suitable
for viruses in contrast to the short k-mer-based classification method as viruses have been shown
to mimic their host genomic signatures to evade host immunity.

In order to strengthen the taxonomic assignment of viral contigs, I have also utilised the
approach whereby the top 25 hits for a sequence are extracted and then an LCA of these hits is
obtained to determine the final taxonomic “class” of the contig. This LCA-based classification
strategy is deemed more effective and works in most cases (Mande et al., 2012; Huson et al.,
2007; Mclntyre et al., 2017) but fails if the sequences present in the databases being interrogated
are misclassified. For example, it was noted that due to misannotation of GenBank entries
JX157239 and JX157238, a range of anellovirus contigs was assigned to root despite the majority
of BLAST homologues for those contigs being anelloviruses. Despite this limitation, LCA
taxonomy classification approach works better than other alternatives such as top hit which can be
misleading and may not provide the complete picture as the parameter that is used to restrict the
output to "top hit" (max_target_seqgs = 1) is not designed to provide the best match (Shah
et al., 2019). According to the BLAST+ manual, at least 5 hits for each match should be retrieved
(https://www.ncbi.nlm.nih.gov/books/NBK279690/). Alternatively, a majority voting approach
could be applied whereby a taxonomic group could be decided for each taxonomic level of the
BLAST hits and the final taxonomy level could be decided based on the majority voting. This
majority voting approach would overcome the specific issue discussed above however, it would
become ineffective in cases where the majority votes are too close to call (Watson, 2021).

These results also confirm an overall expected pattern of virus presence in various studies
and geolocations. As anticipated, a range of omnipresent viruses including bacteriophages and
anelloviruses were found in most samples. Interestingly, unclassified viruses and those that
cannot be linked back to a known virus family were more prominent in all types of microbiomes

and studies sampled across different countries and locations. This suggests that though there


https://www.ncbi.nlm.nih.gov/books/NBK279690/

CHAPTER 5. 178

have been advances in cataloguing the virosphere around us, a large proportion of viruses still
remain unclassified, uncultured and uncharacterised. There were some relevant patterns to be
explored further e.g. the diversity of RNA viruses in unexplored and undersampled regions such
as countries in Africa; these patterns are more likely to be consistent with sample preparations
meaning that we are able to capture more RNA viruses through metatranscriptomic studies
compared to their metagenomic counterparts. It is worth noting that the geolocation analysis
described in this study aims to provide a cursory overview of patterns of viruses we observed
in this study and cannot be used to draw conclusions about the presence or more importantly
absence of specific viruses in certain geographic regions.

The co-occurrence analysis carried out at various microbiome levels suggest that a large
proportion of interactions between virus families that were observed here are likely to be random.
Although some positive, as well as negative associations, were determined between virus families,
these results were largely based on a very small number of pairs of samples. It is important not to
over-analyse these associations due to the nature of the dataset used here. It was assumed that all
samples were originating from individual human subjects, however, that is unlikely to be true as
a range of studies included samples pooled from more than one individual. Further validation of
the most interesting associations should be carried out using more suitable microbiome-specific
datasets.

To predict the hosts for bacteriophages, a conservative but effective approach that predicts the
host based on the CRISPR spacer interactions and looks for the overlap of these short sequences
between virus and host genomes was applied here. It is important to note other tools and methods
such as those that utilise short nucleotide and amino acid k-mers shared between virus and hosts
(Ahlgren et al., 2017; Villarroel et al., 2016; Babayan et al., 2018; Young et al., 2020), CpG
composition (Simmonds et al., 2013), and the presence of a prophage genome (Roux et al., 2015b;
Roux et al., 2015a) have also been widely applied to efficiently predict hosts for both prokaryotic
and eukaryotic viruses. Identification of novel bacteriophages can help to provide further insights
into their interactions with their hosts as well as any implications that it can have on human health.
Furthermore, the specificity of such virus-host interactions can be explored further and can be
contextualised in treatments such as phage therapy.

A range of recent studies has identified a previously unexplored diversity of anelloviruses,
collectively known as the anellome (Moustafa et al., 2017; Tisza et al., 2020; Arze et al., 2021).
The results described here extend the diversity of human anelloviruses found in human blood
and oral microbiomes. Only 23.45% (299 out of 1,275 genomes) of anelloviruses discovered
in this study belong to a currently known human anellovirus species. A thorough analysis
carried out here indicates that the remaining sequences can be represented with 228 novel human
anellovirus species which expands the diversity of known human anellovirus species threefold.
The largest catalogue of previously unknown Torque teno midi viruses belonging to the genus

Gammatorquevirus that was found in oral samples from BioProject PRINA230363 from China
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was discovered. Anellovirus phylogenetic analysis also found a novel clade of anelloviruses
that is separate from currently known human anellovirus genera. Our analysis also shows that
this new clade is also separate from the genus Omegatorquevirus which currently has only one
species namely Torque teno hominid virus 1 that was isolated from Gorilla. Due to their compact
genomes, anelloviruses are known to recombine within the same host (Arze et al., 2021). It
would be interesting to explore the recombination patterns in the species we have assembled in
this study. Moreover, a further detailed recombination analysis could also shed light on whether
the genomes included in the novel clade identified here are results of recombination. There are
72 currently known species of anelloviruses and our analysis has greatly expanded the known
anellovirus sequence species diversity by identifying three times as many novel species in this
study. A further analysis comparing these novel anellovirus species with those identified in
other studies such as Tisza et al. (2020) and Arze et al. (2021) could help reveal the distribution
of these novel species across different samples, studies and geolocations, as well as help, get
insights into the world of these omnipresent human viruses that have been co-evolving with
their hosts. Notably, although they have been termed the "friendly" human viruses, their role in
shaping human immunity specifically in immune-compromised individuals remains unknown.
The advances made through metagenomics have helped to understand the extent of their diversity
and further confirmatory studies can help to determine their evolutionary history, host range as
well as a critical role in the wider area of virology research.

Although our study focuses on the metagenomic samples, the virus discovery approach
devised here can also be applied to metatranscriptomic samples. Only a small proportion of
metatranscriptomics samples were included here that were investigated for the presence of RNA
viruses. A range of known RNA viruses was found in various samples originating from blood,
fecal and saliva microbiomes from different locations including Brazil, Nigeria, the USA and
the UK. A novel picorna-like virus was found in the blood sample from Nigeria that was shown
to have a very diverse genomic composition compared to any known members of the order
Picornavirales. The phylogenetic analysis showed that this novel picorna-like virus is likely to be
very divergent from any known viruses as it shows sparse homology even at the protein sequence
level to its nearest relatives in the phylogeny. Although it was not possible to determine its
potential host, this virus sequence was shown to cluster with other viruses that infect freshwater
arthropods albeit with very low sequence similarity. A range of other contigs likely to represent
potentially novel RNA viruses were identified. These contigs were predominantly matched to
unclassified viruses and displayed very low sequence identity to known unclassified RNA viruses
at the protein level, suggesting that they too are likely to be distantly related to any known RNA
viruses.

A large diversity of unclassified virus sequences was also discovered embedded within
different human microbiome datasets. Here, the unclassified virus sequences were defined as

those whereby the LCA of the nucleotide or protein hits could not be mapped to a known virus



CHAPTER 5. 180

family and/or order suggesting that viral contig was matching to sequences from multiple virus
families and/or orders. These unclassified sequences are likely to represent uncultivated and
novel families, orders or realms of viruses. An overlap among these unclassified virus sequences
and uncultivated virus sequence databases such as GPD, GVD and IMG/VR is anticipated. It
is noteworthy that, unlike the RefSeq virus sequence database, the uncultivated virus sequence
databases are currently being developed and managed in silos. There is a need for a federated
or curated non-redundant database that can link these repositories. Further endeavours could be
made by the virus discovery community to centralise and unify the uncultivated virus sequences
such that they are automatically updated, integrated and can be queried in a more systematic
fashion. To enable users to access such databases efficiently and programmatically, an application
programming interface (API) could also be made available through standard database services
such as ENA, NCBI or IMG/VR.



Chapter 6
Discussion

Advances in metagenomic and metatranscriptomic techniques have opened up a completely
new horizon of microbial research. These techniques have inevitably revolutionised the way
we study microbes. A plethora of microbiome and environmental datasets get submitted to the
International Nucleotide Sequence Database Collaboration (INSDC) repositories. These raw
sequence datasets have been shown to contain a large of number uncultivated and unclassified
microbial sequences that are often referred to as microbial dark matter or unknown sequence
matter. In the inquest of cataloguing the unknown sequences, an extensive, modular, portable
analyses framework - UnXplore was designed and developed. UnXplore is a modular pipeline
written and implemented in SnakeMake that can automatically assemble, analyse and quantify the
presence of unknown sequences in the short read sequence datasets. It is a portable framework
that can be installed and run on any computer and requires minimal setup to enable users to
analyse their own datasets of interest. As it is contained in preconfigured Conda environment
minimal user intervention is required. The UnXplore framework simply requires the download
of the relevant databases of interest and specifying these locations in a simple configuration file
along with the location of the input fastq files. UnXplore can QC the reads, remove adapters,
remove human host sequences, assemble the non-human reads into high-quality contigs and
search the contigs against existing nucleotide and protein data repositories in a systematic and
automated fashion. Once the database searches are completed, a range of Python scripts included
in UnXplore can quantify the proportion of known, partially known and unknown sequences
in them. UnXplore can also be used as an effective metagenomic analysis pipeline as it carries
out extensive searches against the relevant INSDC databases and provides a high-quality per
sequence quantification of known and partially known sequences along with their best hits and
the lowest common ancestor (LCA) of the top 25 hits. Moreover, UnXplore also produces contig
metadata including the number of reads aligning to contigs, depth and breadth of reads coverage
for each contig assembled using this pipeline.

UnXplore framework which is now published in mSystems (Modha et al., 2022) was applied

to 3,559 human microbiome datasets from 58 BioProjects that were sequenced on the Illumina
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Figure 6.1: A schematic illustrating the main findings described in this thesis. (a) A summary of
unknown sequence analysis and results, stating the number of samples, microbiomes, and BioProjects
analysed and described in Chapters 3 and 4. (b) An overview of microbiome-associated virus families
provides a snapshot of the human-associated virome characterised and described in detail in Chapter 5.
Virus families associated with various microbiomes are shown in the corresponding microbiome boxes
along with the number of contigs associated with each family. The blue shading indicates the contigs
associated with specific virus families that were analysed in depth.
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sequencing platform (figure 6.1(a)). By utilising this methodology it was shown that on average
2% of assembled sequences were shown to be categorised as unknown contigs (UCs) meaning
that they did not have significant sequence similarity to any known sequence at the nucleotide
or protein level. Despite the lack of nucleotide and protein level sequence similarity to any
known sequences, a third of the UCs were shown to contain open reading frames (ORFs) that
were at least 100 AA long. Moreover, a large proportion of these predicted ORFs was also
shown to have protein domain signatures. Overall, 5.49% of UCs that could not be labelled
taxonomically, could be annotated functionally based on the domain signatures. New sequences
are added to INSDC repositories on a daily basis. To compute the rate at which the UCs become
taxonomically classified - i.e. have a match to a known sequence in the INSDC databases, the
sequence similarity-based analysis was carried out at four distinct time points over the course of
18 months. As new sequences get analysed, catalogued and added to the INSDC repositories, the
probability of finding a match/hit to the UCs would increase over time. This was demonstrated
using the database searches carried out at different time points, as the proportions of UCs were
shown to decrease over time as the databases are updated. Overall, an estimated 1.64% of the
UCs were identified per month, however, it was anticipated that this rate would plateau as more
time points would be considered. The presence of ORFs, domains and the UCs matching to
known sequences as time passes, strongly supported the hypothesis that UCs are of biological
origin. A number of large and small unknown contigs were analysed further. These contigs were
shown to contain large ORFs and some of those ORFs also had protein domains embedded within
them further confirming the biological origin of the unknown sequences.

The proportion of UCs varied greatly between different types of microbiomes. For example,
less studied microbiomes such as skin and oral that are often more exposed to the outside
environment were shown to harbour a higher proportion of UCs. On the contrary, the blood
microbiome contained a much smaller number of UCs. One explanation for this can be that
some human microbiomes such as fecal, skin or oral microbiomes tend to contain a range of
commensal and non-commensal microbes, however, compared to these microbiomes, blood is
considered a sterile environment. This was observed when despite analysing a large number of
blood microbiomes using UnXplore a very small number of large UCs (>=1kb) were identified.
However, it is still very important to analyse human blood microbiome datasets in this context as
diseases of unknown aetiology could potentially be associated with the presence of blood-borne
microbes, specifically viruses.

It was hypothesised that a large number of UCs could be originating from genomes of
uncultivated microbes, specifically viruses. To test this, extensive supervised machine learning
models were designed, developed, tested and validated. It was noted from the literature that short
nucleotide frequencies can be unique to each microbe and have been shown to encompass robust
phylogenetic signals (Pride et al., 2006). To build on this, TetraPredX - a Python package that can

learn and predict the microbial origin of a UC based on its tetranucleotide k-mer (k=4) frequency
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was developed as part of this project. TetraPredX is a supervised machine learning method that
implements k-mer-based prediction using the Random Forest (RF) algorithm. The models were
trained, tested and cross-validated using the gold standard genomes and sequences originating
from four different microbial classes namely archaea, bacteria, plasmid and viruses. TetraPredX
models were shown to demonstrate very high precision and recall for all four classes and were
effectively able to separate the genomic signatures embedded within the sequences to predict the
class of a given input sequence with very high accuracy.

Sequence predictions carried out using TetraPredX, DeepVirFinder and VirSorter2 indicated
that a large proportion of UCs was likely to be originating from viruses (figure 6.1(a)). These
results obtained using a method developed here, as well as using the widely used virus predictions
software supported the initial hypothesis that UCs are indeed representatives of uncultured virus
diversity that is yet to be catalogued in the standard INSDC databases. This finding emphasises
the importance of scanning the microbiome and environmental datasets available in public
repositories that are often analysed with a specific research question in mind, and can often
contain a completely unknown and uncharacterised diversity of microbes that are yet to be
identified.

It is appreciated that TetraPredX is not the first implementation of k-mer frequency-based
taxonomy predictions and many such tools e.g. VirFinder, DeepVirFinder, IDTAXA exist that can
predict a class of the microbial sequences based on the short nucleotide frequencies. However,
TetraPredX 1is the first tool to incorporate models that can predict the microbial class across
multiple superkingdoms as well as plasmids. TetraPredX provides an opportunity to think
of microbial communities as a whole and look for all microbial and mobile element-related
signals present in them and then use them efficiently to predict the potential class of the UCs.
Though TetraPredX was designed to predict the class of UCs, it can be easily used for standard
metagenomic contigs originating from microbiome datasets as it is designed to work off any
given fasta input.

Despite its very high precision and recall, TetraPredX models suffer the same shortcomings
as those that are known for use of short k-mer frequencies. ML models developed based solely
on short k-mer frequencies are sensitive to false positives. This feature is more prominent in
the case of viruses as viruses are known to mimic their hosts’ genomic signatures in order to
escape the immune responses associated with their hosts. All k-mer-based prediction methods
including those that are widely accepted and used by the research communities are challenged
with this limitation and are continuously being improved to tackle the complexity posed by such
biological phenomenons. Moreover, k-mer frequency-based predictions have been shown to
work very well in the case of short sequences as well as prediction of RNA viruses as they are
able to capture the compound signals obtained from gold standard datasets and can overcome
other sequence similarities related limitations such as finding things that are largely similar to

those that are currently included in the nucleotide and protein databases. In absence of significant
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sequence similarity, ML methods provide a valuable layer of information albeit with a probability
associated with it which can be analysed further to identify the sequence features and their
potential biological origin. It is becoming more and more apparent that ML. methods combined
with other approaches such as domain information, GC content, presence/absence of hallmark
genes and protein signatures can often yield better predictions and can help to reduce false
positives in metagenomic sequence analyses (Guo et al., 2021a).

Machine learning models serve as a powerful tool to explore the relationship of novel
sequences by learning and applying the patterns observed from the real-world known datasets.
Nevertheless, with the ever-expanding INSDC data repositories with new biological sequences
being added to them on a daily basis, the application of these models can often be temporary.
The ML models are as good as the data that was used to build and train these models, hence
to retain the robustness of these models, they need to be revised with updated information and
new data periodically. This could be a challenging task as scientific projects are commonly
funded through short cycles of aid and financial support. The huge demand of keeping the
data, models and relevant metadata up-to-date is a very demanding job that can be potentially
challenging with researchers who develop and devise these models tending to also move on and
away from the initial project due to the high turnaround of people and research needs. Moreover,
all ML models suffer from sampling limitations meaning that if predictions are being made
on substantially novel and previously unseen observations, the models tend to perform worse
compared to the data that was previously "seen" by these models. Hence, the models would need
to be updated perpetually to keep up with the high influx of novel data points. To address this
limitation, an automated framework that can update, train and test models with newer datasets
could be explored. Alternatively, instead of continuously updating and retraining the models,
comprehensive standard test datasets could also be devised that are updated regularly with new
sequences as model testing is often considered less burdensome than completely retraining the
models. These datasets could be used to monitor the model performance over a period of time and
when the model performance fails the desired standard, they would be expanded and/or trained,
tested and validated with newer datasets.

Following the potential classification of UCs as viruses, the apparent next step was deemed
to look for known and novel virus sequence diversity embedded within the SRA repositories.
A number of recent studies have shown that microbiome and environmental datasets harbour
a large number of uncultivated virus genome sequences. Systematic meta-omic analyses have
led to the expansion of the virosphere by cataloguing viruses that simply could not have been
identified due to the limitation of culture-based approaches. The culture-independent approaches
are immensely useful in virus discovery as viruses are extremely tricky to grow in labs as they
often require specific host(s) cells and precise environmental conditions are very hard to simulate
in traditional laboratory settings.

UnXplore framework provided an important foundation to carry out virus discovery analyses
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on 3,559 samples that were already assembled into high-quality contigs. Over 7 million contigs
were analysed using three distinct virus prediction tools TetraPredX, DeepVirFinder and
VirSorter2. Each prediction method generated a large number of predicted contigs that were
validated by nucleotide and protein level sequence similarity searches carried out using
comprehensive nt and RefSeq protein databases. This analysis helped to characterise
human-associated virome (figure 6.1(b)). A core set of 122,884 confirmed virus sequences was
generated which was then analysed further to identify known and novel viruses. These
explorations led to the identification of 321 novel bacteriophage species, 228 novel anellovirus
species and 214 novel RNA virus contigs representing potentially novel and unclassified RNA
viruses. Moreover, approximately 48 thousand unclassified virus contigs were also identified that
could not be linked to a known virus family and/or order indicating the vast diversity of
potentially novel virus genomes embedded within this dataset. Geographic and co-occurrence
patterns were explored for the classified - i.e. where a virus contig could be linked to a known
virus family, which indicated that most of the family-level interactions observed in these datasets
were likely to be random. However, there were some interesting positive association patterns to
be found between bacteriophage families in specific human microbiomes e.g. fecal. These
patterns would be required to be validated with much larger, microbiome-specific datasets. As
the initial datasets analysed here were not set out to be aimed at co-occurrence analysis and
exploration of a positive and negative association between viruses, the co-occurrence analysis
results should be carefully interpreted in the context of the presence and/or absence of specific
virus families in specific microbiome samples.

The process of making sense of viral dark matter, including the sequencing and analyses, has
matured significantly in the last decade with arguably a vast number of novel viruses identified
through metagenomic and/or metatranscriptomic approaches compared to the traditional culture-
based approach (Roux et al., 2021c¢). The virus-related knowledge derived from these datasets
can then be fed back into making informed decisions about specific research questions and/or
navigating hypotheses-driven science. One such striking finding was the identification of virus
hallmark genes. Although viruses lack a universal signature gene such as 16S for bacteria,
sequence-led analyses by Koonin et al. (2020a) provided a megataxonomy view of the viruses
which helped to define and identify a range of virus hallmark genes that were shown to be
conserved through the virus realm or subrealm level (Koonin et al., 2020a). These findings not
only helped to gather and organise the global viral diversity but can also help to design and
implement suitable algorithms and software that can efficiently translate these complex biological
findings into resources and tools that can be readily applied to new and existing datasets. A
real-world example of such a cyclic approach can be demonstrated with the example of RdRp
which helped recover tends of thousands of novel RNA viruses from a wide range of environments
(M. Shi et al., 2016a; M. Shi et al., 2018b; Wolf et al., 2020; Neri et al., 2022) as well as the
specific RARp palm domain (Venkataraman et al., 2018; H. Jia et al., 2019) and how it was further
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scrutinised to mine petabase scale SRA resources and led to the discovery of around 130,000
novel RNA virus sequences embedded within them (Babaian et al., 2021; Edgar et al., 2022).
Similarly, virus prediction tools e.g. VirSorter2 (Guo et al., 2021a) heavily rely on detecting
the presence of hallmark genes to predict the probability of a sequence originating from a virus
genome.

With the help of advances made in computational virology, the process of virus identification
from microbiome, environmental and clinical datasets has become an increasingly substantial
topic of conversation in the virus research community. A community-level endeavour that enables
quick and easy processing of metagenomic and metaviromic datasets has been undertaken by
organisations such as JGI, NCBI and EBI. NCBI has developed new resources to increase the
usability of NCBI viral genomes (Brister et al., 2015) and virus genome variation data (Hatcher
et al., 2017). JGI has made a nontargeted virus genome detection pipeline available through their
platform that users can apply to detect uncultivated viruses present in their sample. This pipeline
formed the basis of one of the largest uncultivated virus data repositories IMG/VR (Paez-Espino
et al., 2017; Paez-Espino et al., 2016). Virify - a pipeline derived from EBI’s MGnify is currently
being developed that enables users to systematically and automatically detect, annotate, and
taxonomic classify viral contigs in metagenomic and metatranscriptomic assemblies (Rangel-
Pineros et al., n.d.) (https://github.com/EBI-Metagenomics/emg-viral-pipeline). The inclusion of
these analytical protocols as part of routine sequence data analyses enables non-expert users to
understand their data to answer virus-centric research questions.

In recent years, several hundred thousand uncultivated viruses have been identified solely
through computational virological approaches. As a result of the Coronavirus pandemic that
began in 2020 and brought the world to a complete standstill, it has led us to realise that we
must better understand the viruses that surround us. These viruses that exist as inert entities in
environments that we regularly interact with, when provided with the suitable conditions can
pose a very serious threat to humankind. Hence, it is very important to develop our understanding
of the viral world and the first step in this process is to catalogue, characterise and potentially
classify the diverse viruses that surround us. Typically viruses are classified in a hierarchical
taxonomy framework to organise the virosphere and access their biological properties readily.
However, in this era of metagenomics, classification of all uncultivated virus sequences into a
taxonomy framework is considered a very ambitious task, albeit an important one as uncultured
virus sequences represent a significant amount of biological insights that simply cannot be
overlooked. Efforts are being made by the taxonomy communities to keep up with the pace
and computational virology researchers are called upon to help with devising novel tools and
algorithms that can capture the majority of uncultured virus diversity into the ICTV framework
(Bas E Dutilh et al., 2021). It is equally important to realise that the taxonomy framework is likely
to be in flux for some time due to the sheer amount of data that needs to be incorporated into the

existing framework. Though alternative frameworks such as purely sequence-based taxonomy is
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suggested, a critical coherent assessment of such proposals must be carried out before completely
breaking away from the norms and starting something completely new.

In addition to the virus sequence taxonomic classification, the databases that store and share
the uncultivated virus sequence information are also confronted with challenges related to the
exponential increase of these uncultured virus sequences. A number of resources including
IMG/VR, GPD, GVD, unclassified and environmental assembled sequences in INSDC e.g.
GenBank, nt or NCBI virus resource are all accessible to the researchers but they are developed
and maintained independently by various organisations. The uncultured and unclassified virus
data is dispersed across multiple independent platforms that do not communicate with one
another which inevitably leads to information fragmentation. Due to the nature of uncultivated
sequences included in them, these data repositories often contain a high number of false-positive
sequences and require manual curation to identify such anomalies and where appropriate remove
them from confirmed virus sequences. A scientific community-wide collaborative effort is
required to standardise uncultivated virus data sharing. Some progress in this field has been made
since the introduction of MIUVIG criteria, specifically in the case of DNA viruses, however,
certain measures such as genome completeness remain difficult to determine computationally for
viruses that have multipartite genomes; e.g. RNA viruses have very short genomes and many
DNA viruses have short genomes that are <10kb long. A more collaborative approach between
different data repositories could help achieve the common goal of cataloguing virosphere and
can potentially aim to unify the virus sequences representing the virus diversity scattered across
multiple silos. As the unknown sequence data analysis stems from the metagenomic datasets, it is
also highly dependent on the databases the contig sequences are searched against. For example,
in additional analysis carried out for Modha et al. (2022), it was observed that though sequences
were classified as “unknown" with respect to widely used nt and nr databases, approximately
28% of UCs were found to match at least one known uncultivated virus sequence in IMG/VR
suggesting that around a third of unknowns are “known-unknowns”. This further emphasises the
importance of the unification of uncultivated sequence resources that can potentially help find
unknown sequences present in various data repositories that are similar to one another. Moreover,
this result also provides further confirmation to the initial hypothesis that unknown sequence
matter is likely to be associated with uncultivated viruses and represents the genome sequences
originating from these viruses.

This research project initially endeavoured to discover, categorise and potentially classify
unknowns and has highlighted the importance of looking for things that are not related to
currently known sequences. By enabling the identification and categorisation of unknowns
that are embedded in the publicly available datasets, this project has led to the identification
of a myriad of sequences that could potentially be originating from the unknown uncultured
organisms that surround us, interact with us and are yet to be discovered. The unbiased approach

implemented to gain further insights into the biological unknown matter has effectively shown
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that our knowledge about the uncultured virus diversity is limited. With the advent of the field of
computational biology research, truly no sequence can be labelled unknown. Unknown sequences
can be assigned a denomination by the means of various taxonomic and/or functional features
associated with them albeit with the help of the right types of models and algorithms.

Although the raw sequence data added to repositories such as ENA and SRA are growing at
an exponential rate, it has to be appreciated that the data deposited in these repositories are often
imperfect. For example, in the case of the 58 studies analysed in detail here, it was noted that
the SRA metadata associated with these studies was inconsistent. As these repositories and data
submission into these repositories rules are lenient to serve a broad scientific research community,
the metadata associated with the raw data can often be incomplete and/or inconsistent. In some
cases such as BioProjects PRIEB11554 and PRJEB14301, a limited amount of information was
provided describing the study itself. Datasets submitted to the SRA and ENA repositories often
contain customised data fields that can be redundant, uninformative and potentially misleading.
It was notable that around 190 unique column names were captured among the 58 BioProjects
analysed here. The mislabelling of datasets can also cause problems if the datasets are not handled
with meticulous detail and utmost care. Although a range of new pseudo taxonomy groups has
been created in NCBI to cope with and categorise various metagenomic studies and samples, the
data and metadata quality submission responsibilities lie with the research community to ensure
that raw data is submitted with appropriate relevant metadata which enables the reproducibility
in science.

The sequence data examined here merely scratches the surface. There are more than 18
petabytes of publicly accessible raw sequence data available in the SRA. Analysing the whole
of SRA with an aim of cataloguing the unknowns would be a very challenging but extremely
helpful task. It would require relevant search techniques that are adaptable to the level of multi-
terabytes of data. This could be achieved by taking advantage of SRA Taxonomy Analysis
Tool (STAT) - a new MinHash k-mer-based method that calculates the taxonomic distribution
of SRA reads from HTS runs submitted to SRA repositories (Katz et al., 2022). The STAT
reports for each SRA run can be mined further to identify the SRA runs with a high proportion
of unknown sequence reads to target the BioProjects with a large proportion of unknown reads
embedded within them. This could potentially be a good starting point to scale this analysis
to terabyte-level data. It is worth noting that SRA data repositories are being moved to cloud
platforms such as Amazon Web Services (AWS) and Google Cloud Platform (GCP) for easier
access for processing in the cloud. However, this also means that users who wish to download
data on a local server available on their own premise will need to pay egress charges (https:
//lwww.ncbi.nlm.nih.gov/sra/docs/sra-cloud-access-costs/). It may be an expensive task both
financially as well as computationally to have local copies of these large repositories. The current
version of the UnXplore analysis pipeline requires the data to be locally accessible and has not

been tested in the cloud compute environment. To scale up, an alternative cloud-based analysis
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model such as that developed by Serratus authors (Edgar et al., 2022) might need to be explored
as a more viable option.

This thesis targeted the characterisation and cataloguing of genetic unknowns but it is
appreciated that there may be other types of unknowns embedded within the datasets analysed
here that were not pursued here. A systematic quantitative measure of genetic unknowns
indicated that the integration of new taxa into a set of reference genomes in the last decade
resulted in a significant reduction of genetic unknowns in human microbiomes. However, the
percentage of the unknown is highly dependent on experimental factors such as bodily
sites/microbiomes, sampled populations, as well as other analysis factors such as resources and
databases used to compare and classify the assembled sequences. Although the average
proportion of unknowns identified in human microbiome samples analysed in this thesis was
around 2% which is lower than previous measures (Krishnamurthy et al., 2017; Thomas et al.,
2019), this was shown to be highly divergent between microbiomes, BioProjects and samples.
Furthermore, the definition of unknowns applied in this thesis could be considered more
conservative compared to those used in similar studies. To label something as genetically
unknown, the sequences were required to be phylogenetically significantly different to any
known protein and nucleotide sequences available in the general-purpose databases. A criticism
of this approach would be that it excluded other types of unknowns, such as novel strains, or
species-level taxa since sequences originating from them are likely to have correlations with
known sequences present in the databases, although at lower degrees of similarity. To measure
such hidden unknowns, results obtained from the similarity sequence analysis part of the
UnXplore framework could be investigated further. An educated hypothesis would be that such
analysis could likely result in the characterisation of a number of novel microbial strains and
species that are missed by the current analysis carried out here.

Human-associated virome catalogued here provides a comprehensive picture of specific virus
families identified in a range of human microbiomes. The virome described here is largely similar
to that included in a recent review (Liang et al., 2021) that compiled a list of viruses identified
from healthy humans sampled in various virome surveys. Considering that our analysis did not
exclusively use healthy human samples, it is likely that the discrepancy between our results and
those reported in Liang et al. (2021) can be attributed to sampling type and human subject health
status. Though this catalogue is not a complete snapshot of the human virome, as the human
gut alone is believed to contain a staggering amount of viruses, it can nonetheless be utilised
as a powerful resource and could be used to determine virus-host relationships. Moreover, the
human virome has also been shown to be unique to individuals and is considered dynamic. As
a result, it is difficult to distinguish between cases of vertical or horizontal virus transmission,
or differences in composition, of the virus in individuals from different geographical locations,
those consuming different diets, or those ageing or younger. Our current understanding of human

viruses is highly skewed toward western populations. Though efforts are being made to achieve a
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more inclusive catalogue of the human virome, it can be argued that a complete picture of the
human virome is yet to be painted. There need to be more concerted efforts on the part of the
scientific community to decode the viral dark matter surrounding us, so that it can be used for
better therapeutics and precision medicine in the future. Furthermore, a comprehensive survey of
viruses beyond human populations is also as important as viruses with zoonotic potential can
emerge, evolve and jump from other species to humans. It was reaffirmed to the greatest extent
by the Coronavirus pandemic. An extensive survey of viruses could help predict, control, and
possibly completely avoid future pandemics.

While many viruses are being identified in this era of metagenomics using computational
virology, these probable viruses are yet to be grown in cell cultures. Viral taxa have historically
been determined by virus isolation and cell culture studies, but today viral lineages are often
referred to as sequences before successful culture can occur. As a result, at present, we do not
know how many members of the virome are replicated. Most viruses found through metagenomics
do not have host associations, so further research is needed to determine host associations.
Changes in virome are increasingly associated with disease states, but the molecular basis and
causality of many cases remain unclear. Human virology is a vast field, and we are beginning to
understand it, laying the foundation for future research.

In this thesis, the sole focus was on the genetic unknowns, and the functional unknown
landscape was not explored. Although some open reading frames were analysed in the context of
unknown contigs of interests, a comprehensive functional unknown analysis was largely excluded.
To overcome this, UnXplore can be applied in conjunction with a specialised unknown functional
analysis framework such as AGNOSTOS (Vanni et al., 2022) to investigate the functional
unknowns embedded within this dataset. To pursue this, results obtained in Chapter 5 could
serve as a good starting point because a number of virus sequences have been shown to have
protein-coding ORFs of unknown function when annotated using DRAM-v. However, it is worth
noting that functional unknowns would not be limited to viruses/virome sequences and other
microbial gene prediction and ORF analysis would also need to be considered.

The results obtained from the current UnXplore analysis could be extended to characterise
and survey a broader microbial co-occurrence network. Such network analysis could in turn
be used to investigate within and between microbiome interactions of the microbial community
that surrounds us. Furthermore, to strengthen these findings, virus-host interactions could also
be explored as viruses often mimic their host genetic properties, those robust signals could be
harnessed to identify important links in the co-occurrence network. This could help better our
understanding of the microbial interactions and it can be utilised and contribute to other fields
of biology such as antimicrobial resistance and the application of phage therapy. In order to
obtain the complete picture of microbial interactions taking place within and around humans,
integrated approaches that incorporate metagenomics with meta-transcriptomics, metabolomics

and metaproteomics could be employed and explored.
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All datasets included in this analysis originated from Illumina short-read sequencing
technology. The largest overhead associated with the short-read sequences is the genome
reconstructions and assemblies. These challenges are being tackled with long-read sequencing.
Although they are not as widely used as short-read technologies at present, long-read
technologies have been applied to study and explore microbial communities in clinical,
ecological, and epidemiological settings (Leggett et al., 2019; Van Goethem et al., 2021;
Warwick-Dugdale et al., 2019; X. Jia et al., 2021; Moss et al., 2020; Warwick-Dugdale et al.,
2019; Yahara et al., 2021; Zablocki et al., 2021; X. Deng et al., 2020). However, due to the
higher sequencing error rates associated with the long-read sequencing, its applications in
metagenomics has been limited. As long-read sequencing technologies improve, they would be
deemed increasingly suitable for sequence analysis of environmental microbial communities.
Rather than having to assemble microbial genomes from short reads, which can yield inaccurate
and/or incomplete sequences, a complete genome can be sequenced either as a single read or
from relatively fewer but much longer reads. Through constant acceleration and rapid
optimisation, the long-read sequencing technique could easily become the next big thing that can
provide unprecedented insights into microbes, particularly viruses. Because their genomes are
relatively short, viruses can be sequenced in a single read per genome with the advent of
long-read sequencing. Long-read metagenomic technology promises to transform viral
metagenomics, and, because it enables whole-nucleotide phasing of polymorphisms, it could not
only solve the assembly difficulties associated with viral genomes but could also provide
valuable understanding into the evolutionary process of viruses. Hybrid approaches, which
combine the strengths of both short and long-read technologies, can also help gather a more
comprehensive view of the microbial community around us. Furthermore, enhanced long-read
and hybrid sequencing technologies can also shed light on microbial dark matter that cannot be
detected due to current technological limitations.

Due to the lack of standardised dark matter identification and annotation protocols, the
proportion of microbial dark matter reported in literature varied greatly between studies. Here, |
have tried to establish a general-purpose unknown sequence analysis framework, UnXplore, that
can systematically quantify and characterise dark matter embedded within publicly accessible
datasets. To classify the unknown sequences identified here, accurate microbial sequence
prediction models were developed using a supervised machine learning approach. These models
are implemented in a portable sequence prediction framework called TetraPredX. TetraPredX
was applied to the unknown contigs found here and revealed that a majority of unknown contigs
were viral in origin. Virus genomes are being discovered in record numbers with metagenomic
sequencing. To mine the metagenomic samples analysed using UnXplore, customised and
comprehensive virus discovery analyses were carried out. This analysis highlighted a large
number of known and novel virus sequences present in human microbiome samples.

Through the use of computational approaches to search and analyse publicly available



CHAPTER 6. 193

data, I have revealed various biological insights previously hidden from the scientific research
community; by doing this, I have made a contribution to the field of unknown sequence research

in an attempt to shed light on this microbial dark matter.
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UnXplore Resources

A.1 Supplementary data

A.1.1 Supplementary tables

Table A.1: List of samples excluded from the metagenomic analysis.

BioProject Total number of | Samples excluded | Reason for exclusion
samples

PRJEB14383 | 31 1 raw sequence data unavailable
(PE)

PRIEB14782 | 93 93 not assembled (SE)

PRJEB15057 | 56 56 not assembled (SE)

PRIEB15334 | 48 3 not assembled (SE)

PRJEB19090 | 38 1 not assembled (PE)

PRJEB19188 | 8 8 raw sequence data unavailable
(PE)

PRJEB20595 | 4 4 not assembled (PE)

PRIJEB21696 | 2 1 not assembled (SE)
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Table A.3: List of sample accession and the corresponding BioProject identifiers of samples
excluded from the metagenomic analysis.

BioProject Run

PRJIEB14782 ERR1529686
PRIEB 14782 ERR1529669
PRJEB14782 ERR 1529668
PRJEB14782 ERR1529667
PRIEB14782 ERR1529666
PRJEB14782 ERR 1529665
PRJEB14782 ERR1529664
PRJIEB14782 ERR1529670
PRIEB 14782 ERR1529663
PRJEB14782 ERR1529661
PRJEB14782 ERR1529660
PRIEB 14782 ERR1529659
PRIEB14782 ERR1529658
PRJEB14782 ERR1529657
PRJIEB14782 ERR1529656
PRIEB 14782 ERR1529662
PRJEB14782 ERR1529671
PRJEB14782 ERR1529672
PRIEB 14782 ERR1529673
PRIEB14782 ERR 1529688
PRJEB14782 ERR1529687
PRJEB14782 ERR1529615
PRIEB 14782 ERR1529685
PRJEB14782 ERR1529684
PRJEB14782 ERR1529683
PRJEB14782 ERR1529682
PRIEB 14782 ERR1529681
PRJEB14782 ERR1529680
PRJEB14782 ERR1529679
PRIEB14782 ERR1529678
PRIEB14782 ERR1529677
PRJEB14782 ERR1529676
PRJIEB14782 ERR1529675
PRIEB 14782 ERR1529674
PRJEB14782 ERR1529655
PRJEB14782 ERR1529654
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BioProject Run

PRIEB14782 ERR1529653
PRIJEB14782 ERR1529652
PRJEB14782 ERR1529632
PRJEB14782 ERR1529631
PRIEB14782 ERR1529630
PRIJEB14782 ERR1529629
PRJEB14782 ERR1529628
PRIEB14782 ERR1529627
PRIEB14782 ERR1529626
PRJEB14782 ERR1529625
PRJEB14782 ERR1529624
PRIEB14782 ERR1529623
PRIJEB14782 ERR1529622
PRJEB14782 ERR1529621
PRJEB14782 ERR1529620
PRIEB14782 ERR1529619
PRJEB14782 ERR1529618
PRJEB14782 ERR1529633
PRIEB14782 ERR1529689
PRIEB14782 ERR1529634
PRJEB14782 ERR1529636
PRJEB14782 ERR1529651
PRIEB14782 ERR1529650
PRIJEB14782 ERR1529649
PRJEB14782 ERR 1529648
PRIEB14782 ERR1529647
PRIEB14782 ERR1529646
PRIJEB14782 ERR1529645
PRJEB14782 ERR1529644
PRIEB14782 ERR1529643
PRIJEB14782 ERR1529642
PRJEB14782 ERR1529641
PRIEB14782 ERR1529640
PRIEB14782 ERR1529639
PRJEB14782 ERR1529638
PRJEB14782 ERR1529637
PRIEB14782 ERR1529635
PRIJEB14782 ERR1529617
PRJEB14782 ERR 1529690
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BioProject Run

PRIEB14782 ERR1529692
PRIJEB14782 ERR1529613
PRJEB14782 ERR1529614
PRJEB14782 ERR1529691
PRIEB14782 ERR1529705
PRIJEB14782 ERR1529704
PRJEB14782 ERR1529703
PRIEB14782 ERR1529702
PRIEB14782 ERR1529701
PRJEB14782 ERR1529616
PRJEB14782 ERR1529699
PRIEB14782 ERR1529698
PRIJEB14782 ERR1529697
PRJEB14782 ERR1529696
PRJEB14782 ERR1529693
PRIEB14782 ERR1529694
PRJEB14782 ERR1529700
PRJEB14782 ERR 1529695
PRIEB15057 ERR1558907
PRIJEB15057 ERR1558906
PRJEB15057 ERR1558905
PRJEB15057 ERR1558904
PRIEB15057 ERR1558901
PRJEB15057 ERR1558902
PRJEB15057 ERR1558908
PRIEB15057 ERR1558900
PRIJEB15057 ERR1558899
PRJEB15057 ERR1558903
PRJEB15057 ERR1558909
PRIEB15057 ERR1558912
PRJEB15057 ERR1558911
PRJEB15057 ERR1558898
PRIEB15057 ERR1558913
PRIJEB15057 ERR1558914
PRJEB15057 ERR1558915
PRJEB15057 ERR1558916
PRIEB15057 ERR1558917
PRIJEB15057 ERR1558918
PRJEB15057 ERR1558919
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BioProject Run

PRIEB15057 ERR1558920
PRIJEB15057 ERR1558921
PRJEB15057 ERR1558922
PRJEB15057 ERR1558910
PRIEB15057 ERR1558897
PRJEB15057 ERR1558894
PRJEB15057 ERR1558895
PRIEB15057 ERR1558867
PRIJEB15057 ERR1558868
PRJEB15057 ERR1558869
PRJEB15057 ERR1558870
PRIEB15057 ERR1558871
PRJEB15057 ERR1558872
PRJEB15057 ERR1558873
PRJEB15057 ERR1558874
PRIEB15057 ERR1558875
PRJEB15057 ERR1558876
PRJEB15057 ERR1558877
PRIEB15057 ERR1558878
PRIJEB15057 ERR1558896
PRJEB15057 ERR1558879
PRJEB15057 ERR1558881
PRIEB15057 ERR1558882
PRJEB15057 ERR1558883
PRJEB15057 ERR1558884
PRIEB15057 ERR1558885
PRIJEB15057 ERR1558886
PRJEB15057 ERR1558887
PRJEB15057 ERR1558888
PRIEB15057 ERR1558890
PRJEB15057 ERR1558891
PRJEB15057 ERR1558892
PRIEB15057 ERR1558893
PRIJEB15057 ERR1558880
PRJEB15057 ERR1558889
PRJEB15334 ERR1611424
PRIEB15334 ERR1611401
PRJEB15334 ERR1611418
PRJEB19090 ERR1809127
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BioProject Run
PRIJEB20595 ERR1951441
PRJEB20595 ERR1951440
PRJEB20595 ERR1951439
PRJEB20595 ERR1951438
PRIEB21696 ERR2028014

Table A.4: List of analysed BioProjects with associated metadata including the location,
microbiome and number of samples included in each BioProject.

Country BioProject Biome Count
Australia PRJEB6092 Fecal 24
Canada PRJEB&094 Fecal 100
China PRINA230363 | Oral 28
China: Sichuan | PRINA306560 | Saliva 53
Egypt PRIJEBS201 Fecal 1
Egypt PRINA384402 | Oral 17
Gambia PRIEB7248 Lung 8
Germany PRIEB1775 Fecal 53
Germany PRJEB17784 | Fecal 100
Germany PRJEB21446 | Vagina 40
Italy PRJEB19090 | Fecal 37
Italy PRJEB23207 Fecal 7
Italy: Sardinia PRJEB6045 Human

Netherlands PRJEB10295 Skin 2
Netherlands PRJEB12357 Fecal 100
Netherlands PRIJEB23207 Fecal 4
Netherlands PRIEB6542 Fecal 8
Philippines PRJEB14383 Saliva 30
Russia PRJEB14301 Human 1
Russia PRJIEB18265 Fecal 10
South Africa PRJEB10919 | Sputum 19
South Korea PRJEB21696 Fecal 1
Switzerland PRIJEB20877 Pulmonary system | 2
Switzerland PRJEB21816 | Circulatory system | 1
Switzerland PRIEB24753 Circulatory system | 2
Taiwan PRJEB14539 Sputum 1
USA PRJEB10865 Fecal 2
USA PRJEB19367 | Fecal 28
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Country BioProject Biome Count
USA PRJEB8201 Fecal 1
United Kingdom | PRIEB10133 Skin 10
United Kingdom | PRIEB10919 Sputum 4
United Kingdom | PRIEB12831 Oral 31
United Kingdom | PRIEB14935 | Fecal 3
United Kingdom | PRIEB15257 Fecal 15
United Kingdom | PRIEB15334 Oral 45
United Kingdom | PRIEB7331 Fecal 24
United Kingdom | PRIEB7949 Fecal 40
nan PRJEB11554 Fecal 1
nan PRJEB12998 | Oral 1
nan PRJEB21827 Human 12
nan PRJEB5761 Fecal 81
nan PRINA43253 | Fecal

not applicable PRINA264728 | Saliva

204

Table A.5: An overview of open reading frames generated from unknown contigs that were at

least >=1.5kb long.

Genetic code | Number of ORFs
0 26,280
1 34,234
2 25,282
3 53,621
4 68,092
5 65,949
6 69,533
9 49,234
10 41,608
11 39,440
12 31,435
13 41,608
14 79,610
15 33,285
16 33,285
21 49,234
22 18,960
23 19,948

A.1.2 Supplementary figures
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IMPERIAL COLLEGE LONDON 1

Microbiome
COLLEGE OF ENVIRONMENTAL SCIENCE AND ENGINEERING, YZU\ 1 Fecal
CENTRE FOR GENOMIC REGULATION (CRG)|1 B Human
WARWICK UNIVERSITY\ 1 B ol
SKOLTECH)|1
THE CATHOLIC UNIVERSITY OF KOREA 1 B Sputum
VIRGINIA TECH| 2 B Pulmonary system
LEIDEN UNIVERSITY MEDICAL CENTER| 2 W Skin
WRIGHT STATE UNIVERSITY 2 B Circulatory system
INSTITUTE OF FOOD RESEARCH 3 B Lung
GENEVA UNIVERSITY HOSPITALS|| 3 Saliva
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J CRAIG VENTER INSTITUTE 8
UNIVERSITY OF WARWICKI 8
SAN DIEGO STATE UNIVERSITY | 8
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Figure A.1: Detailed information on the research centres associated with the BioProjects (n=963).

A bar chart shows the research centre/organisation on the Y-axis and corresponding number of
samples on the X-axis.
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Partially known contigs matching to virus families in different biomes

Ackermannviridae 4 7 10 3
Anelloviridae - 1 1
Ascoviridae 1
Caulimoviridae 3
1000
Circoviridae i} 10
Genomoviridae 12
Herelleviridae 54 22 29 1
Herpesviridae 5
Inoviridae 34 1
750
Iridoviridae i} 2 1
Leviviridae 5
2  Marseilleviridae 3 1 1 1
€
L Microviridae 90 11 2 3
Mimiviridae 4 4 4
- 500
Myoviridae 318 1 8 476 1204 23 154 1
Narnaviridae 9 7 1
Nudiviridae 4
Partitiviridae 1
Phycodnaviridae 8 1
- 250
Picobirnaviridae 38 33
Podoviridae 746 15 2 248 313 14 23 4
Retroviridae 2
Siphoviridae 315 3 1 374 497 31 24
Tectiviridae 2
-0
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[= %
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Figure A.2: A heatmap showing partially known viral contigs grouped according to the
corresponding virus family (Y-axis) determined from the LCA hits and the microbiome they
originate from which is shown on the X-axis. The heatmap is annotated with the number of
contigs for each category.
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Figure A.3: A heatmap showing partially known viral contigs grouped according to the
corresponding virus family (X-axis) determined from the LCA hits and the BioProject and
microbiome they originate from which is shown on the Y-axis. The heatmap is annotated with

the number of contigs for each category.
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Figure A.4: Distribution of all known contigs across superkingdoms. The percentage of known
contigs in each superkingdom is shown in the heatmap wtih superkingdoms specified on the
X-axis and BioProjects shown on the Y-axis. BioProjects are grouped according to microbiomes
are denoted in different colours specified in the colour legend at the top of the plot.
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A.2 Tools and databases
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Table A.6: Software and algorithms currently implemented in the metagenomic analysis pipeline

Software Version Reference Source
BBDuk 38.22 https://sourceforge.net/ https://sourceforge.net/
projects/bbmap/ projects/bbmap/
BBNorm 38.22 https://sourceforge.net/ https://sourceforge.net/
projects/bbmap/ projects/bbmap/
BioPython 1.77
BLASTN 2.9.0 Altschul et al., 1990 ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/blast+
/LATEST/
BWA 0.7.17-r1188 | H. Li et al., 2009 http://bio-bwa.sourceforge.
net/
DIAMOND 0.9.21.122 Buchfink et al., 2014 https://github.com/bbuchfink/
diamond
ete3 (Python)
InterProScan 5.38-76.0 Mitchell et al., 2018a https://github.com/
ebi-pf-team/interproscan
Parallel-fastq-dump | 0.6.6 https://github.com/rvalieris/
parallel-fastq-dump/
pysradb
Python 3.6.7 https://www.python.org/ | https://www.python.org/
download/releases/3.0/ downloads/
SAMTools 1.7
Snakemake 5.4.5 Koster et al., 2012 https://bitbucket.org/
snakemake/
SPAdes 3.11.1 Nurk et al., 2017 http://cab.spbu.ru/software/

spades/

Table A.7: Reference genomes and databases used in the current analysis pipeline

Database/Genome Version | Download Link Notes
Non-redundant protein | 114 https://ftp.ncbi.nlm.nih. nr databases downloaded
(nr) gov/blast/db/v5/ in FASTA format and
DIAMOND  databasese
were generated from that
set
Nucleotide databases | 71 https://ftp.ncbi.nlm.nih. BLAST v5 databases were
(nt) gov/blast/db/v5/ used in this analysis
Human Genome GRCh38 | https://www.ncbi.nlm. Path  release: pl2
nih.gov/assembly/GCF_ | Assembly identifier:
000001405.38/ GCF_000001405.38
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Appendix B

TetraPredX Resources

B.1 Supplementary data

B.2 One-vs-Rest modelling approach

An alternative approach whereby each class is tested against the remaining classes was also
explored. This One-vs-Rest (OVR) RFC model performance report is described in table B.2.
The overall accuracy of this model was 0.97. The average F1-score was 0.96, 0.96 and 0.97
for archaea, bacteria and virus classes respectively. Notably, the recall for bacteria and archaea
class was slightly lower compared to the virus class, which could be due to the lower number of
observations and imbalanced datasets. Similar results were obtained for the gradient boost model.
An OVR model was also trained with SVM classification which predicted each of the three
classes with similar accuracy and F1-score. The predictions made by these models were very
encouraging. However, a major limitation of these multiclass models is that a certain probability
is assigned to each class and the sum of probabilities is always 1. This means that when a new
dataset is interrogated with these models, each data point would be classified as either archaea,
bacteria or virus. In the case of an unknown sequence prediction, these models would force each
UC into one of these categories which can lead to an artificial classification.

Although this model performs really well with respect to the training and test data, it will
force the classification of each contig into one of the classes included in the multiclass model,
therefore independent binary prediction models were explored. To achieve this, multiple binary
classification models were developed that predicted the given class as a positive label and if the
model could not predict the positive class then the contig would be assigned a negative label.
This breakdown of multiple classes into multiple binary classification problems was deemed

more intuitive and suitable for the UC dataset.

210
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B.3 Supplementary figures

(b) (c)
(a) Confusion matrix, without normalization (k=4) Normalized confusion matrix (k=4)
7143 -!
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Figure B.1: (a) A bar chart showing May 2020 dataset. (b) Random forest one-vs-all (RFC OVR)
performance confusion matrix whereby actual labels are plotted against the predicted labels with

the number of observations in the test dataset. (¢) A normalised confusion matrix of RFC OVR
for all three classes.

TetraPredX
DeepVirFinder
7181
9629 316
1603
349 63
VirSorter2

Figure B.2: Venn diagram showing the overlap among predicted virus sequences i.e. those with

probability >0.5 for virus class from the unknown dataset using TetraPredX, VirSorter2 and
DeepVirFinder.
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B.3.1 Supplementary tables
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Table B.1: Overview of machine learning model datasets

dataset Version | Models Notes
September 2019 | Sept2019 | Multiclass RFC All RefSeq complete genomes
e 3 majors classes
e Bacteria and  virus  genomes
downloaded on 26/09/2019
e Archaea genomes downloaded on
01/10/2019
May 2020 May2020 | PCA, t-SNE, RFC | RefSeq representative genomes
OVR .
e 3 major classes
e Archaea reference genomes
downloaded on 13/05/2020. Archaea
genomes from nuccore downloaded on
19/05/2020
e Bacteria reference and representative
genomes downloaded on 13/05/2020
e ICTYV species exemplar virus genomes
downloaded on 13/05/2020
January 2021 Jan2021 | Binary RFC, SVM | RefSeq representative genomes

e 4 major classes (bacteria, archaea, virus,
plasmid)

e Archaea genomes from nuccore
downloaded on 14/01/2021

e Bacteria reference and representative
genomes downloaded on 15/01/2021

e ICTV species exemplar genomes
downloaded on 14/01/2021

o Reference plasmid genomes
downloaded from https://doi.org/
10.15146/R33X2J

Plasmid sequences from bacterial genomes
were also separated using ‘plasmid’ string in
header
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Table B.2: Classification report for multiclass multilabel RFC OVR model.

precision | recall | Fl-score | support
archaea 0.98 0.95 0.96 373.0
bacteria 0.98 0.95 0.96 1679.0
virus 0.96 0.99 0.97 2104.0
accuracy 0.97 4156.0
macro avg 0.97 0.96 0.97 4156.0
weighted avg | 0.97 0.97 0.97 4156.0

Table B.3: Overview of additional holdout datasets

Dataset Alias | Notes

Paraburkholderia madseniana strain 284 contigs and scaffold sequences >=1kb
RP11

Geminiviridae Holdout set containing 578 complete genome

sequences from Jan2021 RefSeq virus set

Chuviridae Holdout set containing 32 complete genome
sequences/segments from Jan2021 RefSeq
virus set

Siphoviridae Holdout set containing 784 complete genome

sequences from Jan2021 RefSeq virus set

Virus RefSeq Jan2021 chopped RefSeq virus sequences chopped into 2kb non-
overlapping fragments

Virus GenBank June 2021 All nucleotide sequences for viruses
(txid10239). These sequences were filtered
(>=1kb), clustered (MMSeqs2) and viruses
from Jan2021 were removed from cluster
representatives

Table B.4: Balanced, binary calibrated and cross-validated model performance metrics for models
with reverse complement features

Class N AUC | Fl-score | Accuracy | Brier score
Archaea | 10319 | 1.00 | 1.00 99.78% 0.003
Bacteria | 9814 | 0.99 | 0.97 96.97% 0.025
Plasmid | 6642 | 0.99 | 0.94 94.60% 0.046
Virus 7953 | 1.00 | 0.97 97.64% 0.024
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Table B.5: Virus specific model signal-based predictions (probability >0.5) for UCs that were
predicted to be viruses (n=14,830).

Predicted class Number of UCs
Realm

Unpredicted 1208
Duplodnaviria 459
DuplodnavirialMonodnaviria 41
DuplodnavirialRiboviria 18
DuplodnavirialVaridnaviria 30
Duplodnaviria/VaridnavirialMonodnaviria | 11
Monodnaviria 1496
Riboviria 6533
RibovirialMonodnaviria 1391
RibovirialVaridnaviria 2180
RibovirialVaridnavirialMonodnaviria 243
Varidnaviria 554
VaridnavirialMonodnaviria 666
Genome type

Unpredicted 1006
dsDNA 1471
dsDNA/dsRNA 1085
dsDNA/dsRNA/ssDNA 394
dsDNA/dsRNA/ssRNA 4
dsDNA/ssDNA 447
dsDNA/ssDNA/ssRNA 1
dsDNA/ssRNA 150
dsRNA 4270
dsRNA/ssDNA 2292
dsRNA/ssDNA/ssRNA 75
dsRNA/ssRNA 829
ssDNA 1222
ssDNA/ssRNA 137
ssRNA 1447
Segmentation

Unpredicted 2370
Segmented 12460
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Table C.3: Contigs predicted to be novel anellovirus Anelloviridae species (n=228) assembled
and analysed in this study.

ContigID SRARunID  BioProject Microbiome Country Genus
ERR1989828_NODE_605_length_3247_cov_15.901629 ~ ERR1989828 PRIEB20877 :;;ginary Switzerland  Alphatorquevirus
SRR2037083_NODE_1414_length_2801_cov_8.129643 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1216_length_3083_cov_71.353699 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1192_length_3146_cov_93.224199  SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1207_length_3105_cov_177.622623  SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1250_length_3025_cov_80.289562  SRR2037083 PRJNA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1261_length_3010_cov_84.541117  SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1287_length_2975_cov_86.436644 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1351_length_2892_cov_19.944307  SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1225_length_3068_cov_111.693993 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1614_length_2530_cov_127.395556  SRR2037083 PRJINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1226_length_3067_cov_70.074037 = SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1247_length_3026_cov_31.711208 ~ SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1307_length_2949_cov_72.204561 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1243_length_3036_cov_66.863133 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1298_length_2956_cov_80.619097 SRR2037083 PRJINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1336_length_2912_cov_102.922296 SRR2037083 PRJNA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1418_length_2795_cov_59.138321 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1526_length_2636_cov_7.888803 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1450_length_2739_cov_5.714232 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1055_length_3506_cov_100.455810 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1236_length_3045_cov_75.244816 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1316_length_2937_cov_74.704025 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1373_length_2845_cov_5.214337 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037083_NODE_1283_length_2979_cov_23.466826 SRR2037083 PRINA230363 Oral China Alphatorquevirus
SRR2037084_NODE_664_length_3035_cov_99.495638 SRR2037084 PRINA230363 Oral China Alphatorquevirus
SRR2037084_NODE_720_length_2896_cov_67.324182 SRR2037084 PRJINA230363 Oral China Alphatorquevirus
SRR2037084_NODE_641_length_3105_cov_93.142295 SRR2037084 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5249_length_2843_cov_18.285868 = SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_6587_length_2480_cov_6.510515 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5468_length_2777_cov_115.985305 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5103_length_2890_cov_6.426455 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5740_length_2697_cov_3.995836 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5287_length_2832_cov_109.884768 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR2037085_NODE_5358_length_2813_cov_5.227339 SRR2037085 PRINA230363 Oral China Alphatorquevirus
SRR6316209_NODE_21_length_3898_cov_133.309654 SRR6316209 PRINA419524 Blood USA Alphatorquevirus
SRR6316221_NODE_16_length_2904_cov_63.788698 SRR6316221 PRINA419524 Blood USA Alphatorquevirus
SRR6316270_NODE_6_length_3044_cov_21.549682 SRR6316270 PRINA419524 Blood USA Alphatorquevirus
SRR6316286_NODE_1_length_3840_cov_124.134478 SRR6316286 PRINA419524 Blood USA Alphatorquevirus
SRR6316314_NODE_10_length_2592_cov_4.729602 SRR6316314 PRINA419524 Blood USA Alphatorquevirus
SRR7166762_NODE_22_length_3522_cov_35.503317 SRR7166762 PRINA471187 Blood Sweden Alphatorquevirus
SRR7166826_NODE_23_length_2307_cov_7.345027 SRR7166826 PRINA471187 Blood Sweden Alphatorquevirus
SRR7166877_NODE_24_length_3132_cov_5.864153 SRR7166877 PRINA471187 Blood Sweden Alphatorquevirus
SRR7166877_NODE_44_length_2009_cov_15.385363 SRR7166877 PRINA471187 Blood Sweden Alphatorquevirus
SRR7166943_NODE_1_length_3711_cov_81.121718 SRR7166943 PRINA471187 Blood Sweden Alphatorquevirus
SRR7167030_NODE_11_length_3840_cov_73.389696 SRR7167030 PRINA471187 Blood Sweden Alphatorquevirus
DRR140164_NODE_13_length_2885_cov_7.748410 DRR140164 PRIDB7117 Blood Japan Betatorquevirus
DRR140165_NODE_22_length_3550_cov_2.654077 DRR140165 PRJDB7117 Blood Japan Betatorquevirus
DRR140166_NODE_60_length_2632_cov_8.199069 DRR140166 PRJDB7117 Blood Japan Betatorquevirus
DRR140166_NODE_54_length_2692_cov_11.335988 DRR140166  PRIDB7117 Blood Japan Betatorquevirus
DRR140173_NODE_16_length_2430_cov_3.621053 DRR140173  PRIDB7117 Blood Japan Betatorquevirus
DRR140173_NODE_17_length_2149_cov_2.801815 DRR140173  PRIDB7117 Blood Japan Betatorquevirus
DRR140174_NODE_16_length_2050_cov_2.710777 DRR140174 PRJDB7117 Blood Japan Betatorquevirus
DRR140178_NODE_3_length_2980_cov_15.155556 DRR140178 PRIDB7117 Blood Japan Betatorquevirus
SRR10951765_NODE_1409_length_2824_cov_3.586854  SRR10951765 PRINA602694 Blood Brazil Betatorquevirus
SRR2037083_NODE_1440_length_2757_cov_3.851221 SRR2037083 PRINA230363 Oral China Betatorquevirus
SRR2037083_NODE_1407_length_2810_cov_71.443194  SRR2037083 PRINA230363 Oral China Betatorquevirus
SRR2037083_NODE_1525_length_2637_cov_6.265686 SRR2037083 PRINA230363 Oral China Betatorquevirus
SRR2037083_NODE_1730_length_2449 cov_3.651211 SRR2037083 PRINA230363 Oral China Betatorquevirus
SRR2037083_NODE_1433_length_2769_cov_39.274134 SRR2037083 PRJINA230363 Oral China Betatorquevirus
SRR2037083_NODE_1273_length_2990_cov_48.493015 SRR2037083 PRINA230363 Oral China Betatorquevirus
SRR2037084_NODE_760_length_2822_cov_75.136249 SRR2037084 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5387_length_2804_cov_5.351401 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6414_length_2511_cov_38.802932 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5107_length_2889_cov_9.442131 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6450_length_2505_cov_5.317143 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6018_length_2618_cov_4.453765 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5390_length_2801_cov_51.262564  SRR2037085 PRINA230363 Oral China Betatorquevirus
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SRR2037085_NODE_5400_length_2799_cov_8.270773 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6297_length_2542_cov_3.851628 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_7975_length_2196_cov_3.409155 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6385_length_2519_cov_9.820211 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5919_length_2647_cov_3.398534 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5501_length_2767_cov_9.144174 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6391_length_2518_cov_9.021112 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5670_length_2718_cov_4.489673 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_8719_length_2068_cov_3.507700 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5404_length_2798_cov_9.382793 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5339_length_2819_cov_15.157019  SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5981_length_2629_cov_6.550117 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_6009_length_2623_cov_5.651480 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR2037085_NODE_5966_length_2634_cov_5.871656 SRR2037085 PRINA230363 Oral China Betatorquevirus
SRR5681769_NODE_1_length_2523_cov_21.696648 SRR5681769 PRINA389455 Blood NA Betatorquevirus
SRR6316202_NODE_13_length_2856_cov_4.798286 SRR6316202 PRINA419524 Blood USA Betatorquevirus
SRR6316202_NODE_17_length_2692_cov_7.566932 SRR6316202 PRINA419524 Blood USA Betatorquevirus
SRR6316203_NODE_18_length_2827_cov_7.550505 SRR6316203 PRINA419524 Blood USA Betatorquevirus
SRR6316221_NODE_20_length_2788_cov_5.750823 SRR6316221 PRINA419524 Blood USA Betatorquevirus
SRR6316221_NODE_17_length_2896_cov_17.302006 SRR6316221 PRINA419524 Blood USA Betatorquevirus
SRR6316233_NODE_27_length_2807_cov_15.835756 SRR6316233 PRINA419524 Blood USA Betatorquevirus
SRR6316233_NODE_24_length_2862_cov_16.978269 SRR6316233 PRINA419524 Blood USA Betatorquevirus
SRR6316233_NODE_23_length_2869_cov_50.130775 SRR6316233 PRINA419524 Blood USA Betatorquevirus
SRR6316233_NODE_16_length_2950_cov_88.579620 SRR6316233 PRINA419524 Blood USA Betatorquevirus
SRR6316236_NODE_3_length_2976_cov_8.485108 SRR6316236 PRINA419524 Blood USA Betatorquevirus
SRR6316247_NODE_19_length_2023_cov_4.168191 SRR6316247 PRINA419524 Blood USA Betatorquevirus
SRR6316257_NODE_19_length_2573_cov_7.963463 SRR6316257 PRINA419524 Blood USA Betatorquevirus
SRR6316270_NODE_11_length_2700_cov_4.344423 SRR6316270 PRINA419524 Blood USA Betatorquevirus
SRR6316284_NODE_11_length_2885_cov_6.932862 SRR6316284 PRINA419524 Blood USA Betatorquevirus
SRR6316307_NODE_8_length_2837_cov_77.074766 SRR6316307 PRINA419524 Blood USA Betatorquevirus
SRR7166769_NODE_118_length_2722_cov_7.362955 SRR7166769 PRINA471187 Blood Sweden Betatorquevirus
SRR7166809_NODE_1_length_2005_cov_3.933333 SRR7166809 PRINA471187 Blood Sweden Betatorquevirus
SRR7166826_NODE_20_length_2511_cov_2.880700 SRR7166826 PRINA471187 Blood Sweden Betatorquevirus
SRR7166829_NODE_7_length_2983_cov_66.900615 SRR7166829 PRINA471187 Blood Sweden Betatorquevirus
SRR7166860_NODE_1_length_2940_cov_63.382322 SRR7166860 PRINA471187 Blood Sweden Betatorquevirus
SRR7166883_NODE_14_length_2147_cov_76.689293 SRR7166883 PRINA471187 Blood Sweden Betatorquevirus
SRR7166917_NODE_46_length_2958_cov_33.011712 SRR7166917 PRINA471187 Blood Sweden Betatorquevirus
SRR7166946_NODE_3_length_2838_cov_6.518146 SRR7166946 PRINA471187 Blood Sweden Betatorquevirus
SRR7166965_NODE_6_length_2904_cov_14.952615 SRR7166965 PRINA471187 Blood Sweden Betatorquevirus
SRR7167022_NODE_102_length_2985_cov_44.358020 SRR7167022 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_119_length_2844_cov_9.391180 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_138_length_2635_cov_4.973643 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_107_length_2931_cov_22.772601 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_133_length_2666_cov_33.724627 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_113_length_2881_cov_12.172328 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_139_length_2615_cov_32.800391 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR7167078_NODE_129_length_2717_cov_11.590158 SRR7167078 PRINA471187 Blood Sweden Betatorquevirus
SRR8862005_NODE_7_length_2998_cov_82.991845 SRR8862005 PRINA518922 Blood NA Betatorquevirus
DRR140165_NODE_49_length_2854_cov_18.827081 DRR140165 PRJDB7117 Blood Japan Gammatorquevirug
DRR140166_NODE_99_length_2031_cov_6.637652 DRR140166 PRJDB7117 Blood Japan Gammatorqueviru:
DRR140173_NODE_14_length_2503_cov_7.160131 DRR140173  PRIJDB7117 Blood Japan Gammatorquevirug
SRR2037083_NODE_1617_length_2528_cov_69.701981 =~ SRR2037083 PRJNA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1692_length_2476_cov_65.699711 SRR2037083 PRINA230363 Oral China Gammatorqueviru:
SRR2037083_NODE_1695_length_2474_cov_15.520050 ~ SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1490_length_2690_cov_40.173435  SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1531_length_2630_cov_65.916117 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1702_length_2470_cov_5.663768 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1579_length_2569_cov_24.115354 ~ SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1639_length_2514_cov_80.590484  SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1713_length_2463_cov_31.497093  SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1672_length_2488_cov_17.247842  SRR2037083 PRINA230363 Oral China Gammatorqueviru:
SRR2037083_NODE_1685_length_2480_cov_9.928660 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1635_length_2516_cov_11.924015  SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1715_length_2460_cov_11.387942 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1701_length_2470_cov_13.613665 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1746_length_2438_cov_28.350399  SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1698_length_2470_cov_75.913043 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1664_length_2494_cov_65.056991 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1591_length_2556_cov_24.097961 =~ SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1718_length_2457_cov_9.904246 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1676_length_2484_cov_34.350350  SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1680_length_2482_cov_23.366296 =~ SRR2037083 PRINA230363 Oral China Gammatorqueviru:
SRR2037083_NODE_1487_length_2693_cov_76.602350 = SRR2037083 PRJNA230363 Oral China Gammatorqueviruy
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SRR2037083_NODE_1666_length_2493_cov_99.588597 SRR2037083 PRINA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1596_length_2553_cov_72.678143 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1622_length_2523_cov_41.655592 ~ SRR2037083 PRJNA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1683_length_2481_cov_3.532564 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1699_length_2470_cov_61.400000  SRR2037083 PRJNA230363 Oral China Gammatorquevirug
SRR2037083_NODE_1726_length_2450_cov_54.724426 ~ SRR2037083 PRJNA230363 Oral China Gammatorqueviru:
SRR2037083_NODE_1697_length_2471_cov_6.011589 SRR2037083 PRINA230363 Oral China Gammatorqueviruy
SRR2037083_NODE_1649_length_2504_cov_76.756635  SRR2037083 PRJNA230363 Oral China Gammatorquevirug
SRR2037084_NODE_910_length_2464_cov_11.052304 SRR2037084 PRINA230363 Oral China Gammatorqueviru:
SRR2037084_NODE_892_length_2489_cov_13.798685 SRR2037084 PRINA230363 Oral China Gammatorqueviruy
SRR2037084_NODE_944_length_2415_cov_5.583475 SRR2037084 PRINA230363 Oral China Gammatorquevirug
SRR2037084_NODE_824_length_2624_cov_11.172441 SRR2037084 PRINA230363 Oral China Gammatorquevirug
SRR2037084_NODE_842_length_2570_cov_17.083897 SRR2037084 PRINA230363 Oral China Gammatorqueviruy
SRR2037084_NODE_899_length_2478_cov_9.038795 SRR2037084 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_5200_length_2857_cov_38.860457  SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6643_length_2471_cov_22.883278  SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6695_length_2463_cov_13.318522 ~ SRR2037085 PRIJNA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_7023_length_2387_cov_12.205403 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6607_length_2477_cov_24.983485  SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6544_length_2489_cov_4.679951 SRR2037085 PRINA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6550_length_2487_cov_36.356908 = SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_5475_length_2775_cov_31.245588 ~ SRR2037085 PRIJNA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6491_length_2496_cov_30.374027 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6508_length_2493_cov_4.894586 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_7436_length_2297_cov_3.397413 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_8039_length_2184_cov_5.918741 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6955_length_2405_cov_7.004255 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6654_length_2469_cov_10.145816 ~ SRR2037085 PRIJNA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6789_length_2442_cov_29.776288  SRR2037085 PRIJNA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6552_length_2487_cov_5.763158 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6479_length_2498 cov_67.277118 SRR2037085 PRINA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6307_length_2539_cov_20.448068  SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6559_length_2485_cov_53.960082  SRR2037085 PRJNA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6829_length_2434_cov_6.817150 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_7098_length_2368_cov_4.104194 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_8055_length_2181_cov_5.339605 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6480_length_2498_cov_16.431437  SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6631_length_2473_cov_21.275848 ~ SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6722_length_2456_cov_42.191587 = SRR2037085 PRIJNA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6706_length_2461_cov_80.141313 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6704_length_2462_cov_4.831325 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6798_length_2441_cov_5.411567 SRR2037085 PRINA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6487_length_2497_cov_20.082310  SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6439_length_2507_cov_53.873165  SRR2037085 PRIJNA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6580_length_2481_cov_5.784831 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6689_length_2463_cov_93.828073 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6716_length_2459_cov_6.049085 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6565_length_2484_cov_27.446274  SRR2037085 PRIJNA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6619_length_2475_cov_59.180579  SRR2037085 PRIJNA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6710_length_2460_cov_31.163410 ~ SRR2037085 PRJNA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6632_length_2473_cov_18.833333 SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6604_length_2478_cov_13.554684 ~ SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6531_length_2490_cov_103.070637 SRR2037085 PRINA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6473_length_2500_cov_23.070348 =~ SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6586_length_2480_cov_6.567423 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_8723_length_2067_cov_4.818091 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6781_length_2443_cov_15.309464  SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_7456_length_2292_cov_5.023692 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6602_length_2478_cov_46.224928  SRR2037085 PRIJNA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6693_length_2463_cov_25.809801  SRR2037085 PRJNA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6533_length_2490_cov_12.678439 ~ SRR2037085 PRIJNA230363 Oral China Gammatorqueviru:
SRR2037085_NODE_6827_length_2434_cov_20.583438  SRR2037085 PRIJNA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6645_length_2470_cov_68.151967  SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6570_length_2482 cov_73.878039 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6765_length_2446_cov_69.466750 ~ SRR2037085 PRINA230363 Oral China Gammatorqueviruy
SRR2037085_NODE_6800_length_2440_cov_66.693082  SRR2037085 PRIJNA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6426_length_2509_cov_86.914833 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR2037085_NODE_6615_length_2476_cov_27.154895 SRR2037085 PRINA230363 Oral China Gammatorquevirug
SRR5681814_NODE_1_length_2643_cov_22.722136 SRR5681814 PRINA389455 Blood NA Gammatorquevirug
SRR6316199_NODE_1_length_3219_cov_11.170670 SRR6316199 PRINA419524 Blood USA Gammatorqueviruy
SRR6316202_NODE_18_length_2448_cov_4.269954 SRR6316202 PRINA419524 Blood USA Gammatorqueviruy
SRR6316203_NODE_9_length_3018_cov_80.558218 SRR6316203 PRINA419524 Blood USA Gammatorqueviru:
SRR6316247_NODE_16_length_2461_cov_9.033250 SRR6316247 PRINA419524 Blood USA Gammatorqueviruy
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ContigID SRARunID  BioProject Microbiome Country Genus
SRR6316272_NODE_5_length_2482_cov_4.211372 SRR6316272 PRINA419524 Blood USA Gammatorquevirug
SRR6316298_NODE_19_length_2905_cov_76.388070 SRR6316298 PRINA419524 Blood USA Gammatorqueviruy
SRR7166769_NODE_99_length_3238_cov_63.412190 SRR7166769 PRINA471187 Blood Sweden Gammatorqueviruy
SRR7166772_NODE_78_length_2820_cov_9.428571 SRR7166772 PRINA471187 Blood Sweden Gammatorqueviruy
SRR7166791_NODE_91_length_2982_cov_23.078579 SRR7166791 PRINA471187 Blood Sweden Gammatorquevirug
SRR7166883_NODE_12_length_2402_cov_65.199403 SRR7166883 PRINA471187 Blood Sweden Gammatorqueviru:
SRR7167078_NODE_150_length_2498_cov_79.879247 SRR7167078 PRINA471187 Blood Sweden Gammatorqueviruy
SRR8862010_NODE_54_length_2554_cov_9.011605 SRR8862010 PRINA518922 Blood NA Gammatorqueviruy
SRR2037083_NODE_2038_length_2150_cov_5.638186 SRR2037083 PRINA230363 Oral China Hetorquevirus
SRR2037083_NODE_1583_length_2564_cov_57.915903 ~ SRR2037083 PRJNA230363 Oral China Unclassified
SRR2037084_NODE_746_length_2845_cov_23.757706 SRR2037084 PRINA230363 Oral China Unclassified
SRR2037085_NODE_5950_length_2639_cov_9.782508 SRR2037085 PRINA230363 Oral China Unclassified
SRR6316308_NODE_9_length_3148_cov_65.976398 SRR6316308 PRINA419524 Blood USA Unclassified
SRR7166865_NODE_11_length_2799_cov_13.776968 SRR7166865 PRINA471187 Blood Sweden Unclassified
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C.1.1 Supplementary figures

Software

virus sp. ctyg714
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virus sp. ctdoM1
virus sp. ctVE78
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Figure C.1: A heatmap showing the number of predicted virus contigs using any prediction tool
for unclassified virus group (derived from the LCA). Darker shades of colours represent the
higher number of contigs in the heatmap. Shades of red colour represent DNA virus families,
shades of blue represent RNA virus families and black represents unclassified viruses.
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Figure C.2: Phylogenetic analysis and classification of anellovirus contigs. A maximum-
likelihood tree inferred from ORFI1 amino acid sequences of all anelloviruses. Nodes are
coloured according to the study; reference anellovirus sequences retrieved from Varsani et al.
(2021) are shown in cyan and anellovirus contigs identified in this study are shown in burnt
sienna. The tip labels indicate the corresponding genera of anellovirus sequences used to build

the phylogentic tree.
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Figure C.3: A scatter plot showing query coverage (X-axis) and corresponding percent identity
(Y-axis) to its nucleotide level best hit for each contig. The shapes of the markers represent
distinct studies, the colours of the markers represent the LCA taxa and the size of the marker is
relative to the contig length.
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Abstract

Background

Advances in genome sequencing technologies and lower costs have enabled the exploration of a
multitude of known and novel environments and microbiomes. This has led to an exponential
growth in the raw sequence data that is deposited in online repositories. Metagenomic and
metatranscriptomic data sets are typically analysed with regards to a specific biological question.
However, it is widely acknowledged that these data sets are comprised of a proportion of
sequences that bear no similarity to any currently known biological sequence, and this so-called

‘dark matter’ is often excluded from downstream analyses.

Results

In this study, a systematic framework was developed to assemble, identify, and measure the
proportion of unknown sequences present in distinct human microbiomes. This framework was
applied to forty distinct studies, comprising 963 samples, and covering ten different human
microbiomes including fecal, oral, lung, skin and circulatory system microbiomes. We found
that whilst the human microbiome is one of the most extensively studied, on average 2% of
assembled sequences have not yet been taxonomically defined. However, this proportion varied
extensively among different microbiomes and was as high as 25% for skin and oral microbiomes
that have more interactions with the environment. A rate of taxonomic characterisation of 1.64%
of unknown sequences being characterised per month was calculated from these taxonomically
unknown sequences discovered in this study. A cross-study comparison led to the identification
of similar unknown sequences in different samples and/or microbiomes. Both our computational
framework and the novel unknown sequences produced are publicly available for future cross-

referencing.

Conclusions

Our approach led to the discovery of several novel viral genomes that bear no similarity to
sequences in the public databases. Some of these are widespread as they have been found in
different microbiomes and in studies. Hence, our study illustrates how the systematic characterisa-
tion of unknown sequences can help the discovery of novel microbes and we call on the research
community to systematically collate and share the unknown sequences from metagenomic studies

to speed up the rate at which the unknown sequence space can be classified.
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Background

Metagenomics has become an increasingly mainstream tool to catalogue the microbial makeup
of any given habitat [1-4]. It has been applied to a diverse range of environments from human
body sites [5—8] to the depths of vast oceans [9—11]. Metagenomics, compared to culture-
based methods, provides a relatively unbiased approach to observe, measure and understand the
interactions of the microbes within communities as well as with their hosts [3]. Underpinned by
relatively cheap sequencing costs and providing powerful insights, metagenomic has become a
routine technique to study the microbial content of any environment [2].

These advances in sequencing technologies and the importance of data sharing for repro-
ducible research have led to the rapid expansion of publicly available sequence data. This has
led to rapid growth in online sequence databases such as GenBank, that store nucleotide and
protein sequence data from various organisms [12, 13]. However, although the raw sequences
generated as part of metagenomic experiments are made publicly available through the Short
Read Archive (SRA) or European Nucleotide Archive (ENA) repositories, the complete set of
assembled contigs from a study are rarely submitted to online databases [14]. The reason for
the absence of this type of data can be associated with the sheer number of contigs generated
and the requirement for sequences to be annotated before their submission, which is difficult
when the organism the sequence came from is unknown, and when the number of contigs is
large. Additionally, taxonomically unidentifiable contigs are typically discarded and excluded
from downstream analyses (Figure 1(a)), but such sequences represent novel, and potentially
widespread biological entities and cataloguing their sequences and where they are found will aid
taxonomic classification and our understanding of their biological nature in the future.

The raw data in public databases are typically analysed using metagenomic protocols designed
to address specific biological questions. There is a range of different tools and pipelines available
for metagenomic sequence analysis, but there are limited comparisons of these pipelines as they
are usually developed to address specific research questions. For example, there are approximately
50 workflows available for virus metagenomic analysis that were used in different publications
with primarily different aims [15]. As part of the routine metagenomic analysis, only the contigs
that can be classified using a specific workflow and that are of interest to the scientific study are
typically submitted to sequence repositories such as GenBank. The current approaches used for
metagenomics extensively rely on similarity searches to known organisms and proteins, thus,
suffers from the street light effect i.e. observational bias which occurs when people only search
for something where it is easier to look. However, in a typical metagenomic data set, a range of
assembled contigs cannot be functionally or taxonomically classified, a large proportion of which,
even after excluding spurious contigs, bear no functional or sequence similarity to any known
sequences and are often referred to as unknown or ‘dark’ sequence matter [16—19]. Although
the terminology itself has been controversial [19, 20], it typically refers to the sequences of

unidentified taxonomic and/or functional origin (figure 1(b)). Generally, these unknown contigs
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(UCs) are excluded from downstream analyses. However, a number of recent studies have
highlighted the importance of identification and categorisation of such unknown sequences [17,
19, 21, 22].

Characterisation of metagenomically assembled genomes (MAGs) as microbial origin has
strengthened the hypothesis that uncharacterised biological sequence matter is highly likely to
belong to uncultured or unculturable bacteria, archaea and viruses present in the microbiome
sampled [4, 17, 19, 23]. A study by Almeida et al. [24] mined over 11,850 human gut microbiome
data sets and identified nearly 2000 novel uncultured bacterial species from 92,143 genomes
assembled from metagenomics data sets. Similarly, another focusing on multiple human biomes
assembled 150,000 microbial genomes from 9428 metagenomic data sets [25]. The MAGs
generated from these studies were consolidated to create a unified catalogue of 204,938 gut
microbiome reference genomes [26]. A range of different data mining studies have led to the
identification of novel microbes, including the identification of novel bacterial and archaeal phyla
and superphyla [17, 27].

Previous studies have shown that sequences of unknown lineage and unknown functions tend
to be of viral origin [16]. For example, a computationally identified phage crAssphage has been
shown to constitute approximately 1.7% of all fecal metagenomic sequences [28]. A study by
Roux et al. [21] mined 14,977 publicly available bacterial and archaeal genomes and identified
12,498 completely novel viral genomes linked to their hosts. Kowarsky et al. [29] found that 1%
of cell-free DNA sequences appear to be of non-human origin in human blood samples and only
a small fraction of them can be mapped to currently known microbial sequences. Despite this, the
characterisation of unknown sequences in publicly available data repositories remains an ongoing
challenge in microbiome research [4] and the identification of viruses in such UCs remain an
even greater challenge due to the absence of a universal gene signatures and the high diversity
in virus genome content [30]. Overall, this highlights the widespread existence of potentially
novel viruses and bacteria in the currently available sequence data sets, and that a systematic
method to identify and catalogue them, especially in human data sets, would be extremely useful.
The European Bioinformatic Institute (EBI) has developed MGnify that enables researchers to
analyse their data using a standard metagenomic workflow [31, 32]. Similarly, there have been
other community initiatives developed to forward this field of research [31, 33-38]. Here, we
have focused on the development of a robust, portable and reproducible analyses framework that
aims to identify and quantify the UCs in different microbiome samples.

In this study, 1) we develop a framework to quantify the unknown sequence matter in human
metagenomic data sets; 2) we compare the unknown sequences between samples, studies and
microbiomes to determine whether these sequences are likely to be of biological origin and
whether they are broadly distributed and 3) we compare the unknown contigs to currently
known sequences in GenBank over the period of the study to determine the rate at which these

unknown contig sequences are being taxonomically classified. All unknown sequences and
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associated metadata have been made publicly available for the research community and the

original submitter.

Methods

This study includes the data sets available within the EBI MGnify resource. All human micro-
biome studies submitted to ENA which were included in the MGnify databases were downloaded
with the corresponding metadata on 19 April 2019. In order to obtain detailed metadata, each
study was linked to the corresponding SRA repository using NCBI e-utilities [39]. As the fo-
cus was on shotgun metagenomic data sets, studies targeting metabarcoding-based sequencing
methods such as 16S and amplicon sequencing were excluded as well as studies that solely
focused on third party annotation i.e. analysis of previously published data and lack primary
data were also excluded. In order to reduce sequencing technology-related bias, the studies that
utilised sequencing platforms other than Illumina were excluded. Very large studies involving
>100 samples were discounted in order to get a cross-section of different human microbiomes
and geographical locations whilst keeping the overall data set size manageable. The filtered
set initially comprised 44 distinct studies with 1130 samples of which 1121 were available to
download. A script that uses parallel-fastq-dump [40] was developed to download reads in fastq
format. In total, 1121 samples (789 paired-end [PE], 332 single-end [SE]) from 43 distinct studies
were successfully downloaded and submitted to the pipeline. Out of 1121 samples, 158 could
not be assembled due to insufficient reads and were excluded from downstream analysis (see
supplementary method). In summary, 963 (784 PE, 179 SE) samples from 40 distinct studies
were included and were processed using the complete metagenomic analyses pipeline described
below (figure 2).

This study set included a range of different sample types as described in the figure 3. It
is important to note that this set is highly skewed towards the human gut metagenome that
is normally sampled through fecal material and the oral microbiome was the second most
common sample type included in the study. Although other metagenomes were under-represented,
our study covered a wide range of samples from various human bodily sites and fluids. A
miscellaneous metagenome labelled only as ‘Human’ was included in this data set that represents
3 distinct studies including PRJEB14301 (CSF, n=1), PRJEB21827 (A/B testing for colon model,
n=12) and PRJEB6045 (metagenomics of medieval human remains from Sardinia, n=1).

In order to assess the quality of the samples and remove sequencing adaptors, all samples
were processed through BBDuk from BBTools package [41]. BBDuk auto-detected the presence
of the relevant adapter sequences from the input files specified and trimmed them. Additionally,
commonly known sequencing contamination and spike-in sequences were also removed as part
of this QC step. All reads that pass QC were retained and mapped to the human genome sequence
build GRCh38 using the Burrows-Wheeler Aligner (BWA) [42], and unmapped reads were
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subsequently extracted using SAMTools [43]. BBNorm [41] was used to normalise reads based
on the kmer coverage composition with a kmer threshold of 3 (mindepth=3). This step also
enabled the acceleration of the assembly process as only a subset of reads were used to build the
de novo assembly and resulted in better assembly quality overall [44]. The read lengths varied
widely between the samples and the studies, thus it was not possible to compare the quality
metrics using the read-based measures as it would be misleading. To enable a comparison, quality

assessment metrics were carried out for a number of bases.

De novo assembly and taxonomy label assignment

The normalised reads were de novo assembled using the SPAdes [45] assembly pipeline, with the
default parameters. A script was developed to extract contigs that were longer than 300 bases
as short contigs do not contain a lot of information and they were excluded from downstream
analysis as a precautionary measure. Although the normalised subset of reads was used to
generate assemblies, these reads cannot be used to assess the assembly quality as they represent a
small subset of the actual reads. To assess the assembly quality, the complete set of reads that did
not map to the human genome were mapped onto the de novo assembled contigs with BWA [42]
using the default parameters. The assembly quality statistics such as coverage, length, number of
mapped reads were generated for each contig using pileup. sh from BBTools package [41].

Contigs were searched against the GenBank non-redundant (nr) protein databases using the
BLASTX algorithm implemented in DIAMOND [46]. It carries out a six-frame translation of
the nucleotide sequences and then searches those translated sequences against the nr protein
databases. This step enables the identification of distantly related homologues of the currently
known sequences. The default DIAMOND tabular output format with additional columns ‘qframe,
staxids stitle” was generated for aligned sequences. The top 25 hits for each contig were extracted
and analysed downstream (-—evalue=0.001). The Lowest Common Ancestors (LCA) of
these hits was computed and superkingdom was assigned based on the LCA using the Python ete3
package [47]. The contigs that did not have any protein match were extracted and searched against
the GenBank comprehensive nucleotide database (nt) using BLASTN (--evalue=0.001);
BLAST output format 7 with additional columns ‘qframe, staxids, stitle’ was generated. This step
helped to identify and remove non-coding sequences such as ribosomal RNA and untranslated
regions of currently sequenced organisms included in the databases.

To identify the geographical distribution of the raw data, location data was mined from
the SRA metadata resources using pysradb [48] for each study. Geo-location information was
available for 861 samples as shown in figure 4 . A complete list of study location is shown in the
supplementary table S1. These samples were sequenced in various sequencing facilities across
the world, and the complete distribution of the sequencing centre is shown in the supplementary
figure S6(a).
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Unassembled sequences

‘Unassembled’ bases are defined as bases from reads that did not map to the human genome
and could not be assembled into contigs. These were calculated from reads that did not map
to assembled contigs. These bases/reads could not be classified as part of this project but were
quantified as shown in the figure S6(c) - grey bars. Our quantification suggests that almost all
microbiome samples have a proportion of unassembled sequences and on the sample, the average
value for this is around 23.91% (std: 26.59%). This unassembled sequences proportion was very
high for samples originated from PRJEB15334 (mean: 51.17%, max: 97.67%, std: 24.30%) and
PRJEB17784 (mean: 82.59%, max: 98.83%, std: 17.84%). Overall, 8.18% of all data fell into
this category as described in figure S6(b). A range of possibilities from degraded nucleic acid to

sequencing protocols could lead to poor quality data that cannot be used for de novo assembly.

Control samples

The Human Microbiome Project mock community samples(n=9) were downloaded for study
PRINA298489 and were analysed using the metagenomic framework described above for quality
control and workflow assessment. This would also allow us to validate the metagenomic analyses

pipeline for this study.

Post metagenomic analysis

All unknown contigs (UCs) were analysed further to get insights into the coding potential of
those sequences. getorf tool from EMBOSS [49] suite was used to generate open reading
frames (ORFs) from contigs (-find 1, -minsize 300) using the standard genetic code.
These ORFs were searched against a range of different domains and functional identification
databases included in the InterProScan.

To explore the sequence similarity between samples and the diversity of the unknown se-
quences, a nucleotide-based sequence similarity clustering which also used coverage was carried
out using MMSeqs2 [50, 51]. All sequences with at least 90% sequence identity and at least
80% overlap were clustered using the MMSeqs2 easy-cluster pipeline [51]. All UCs were
processed through CheckV [52] pipeline to identify the UCs that were likely to belong to viruses.

The most widely applied sequence similarity-based approaches rely on static versions of the
databases to carry out the classification step of the analysis. In this study, the sequence databases
utilised were downloaded on the 18th of April 2019. All results included in the study are based
on the searches against this static version of the databases. However, the sequence database
is ever-expanding with new sequences being added to the databases each day. With newer
sequences being added to these databases, it is very likely that unknown sequences transition
into the “known sequence space" over time. In order to identify the proportion of the unknown

sequences classified over the period of the study, 4 distinct time points were considered. Static
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versions of the databases were downloaded on 31 October 2019, 5 March 2020 and 14 October
2020.

To predict the proportion of UCs that are likely to be viruses, the virus prediction tool
DeepVirFinder was used. DeepVirFinder has been demonstrated to accurately predict viruses
from metagenomic datasets and has been shown to work well even with short contigs [53]. It
was deemed suitable for UCs as a large proportion of UCs identified in this study are under 1kb
long. DeepVirFinder was run on all UCs with default parameters and g-values (false discovery
rate) were computed for the predictions using the R library g-value as recommended in the
DeepVirFinder tutorial. The g-value output was rounded to 3 decimal points and a cut-off of
g-values <0.05 was applied.

In order to identify if the UCs captured in this study have any overlap with other uncultured
virus databases such as IMG/VR [36], initial nucleotide (BLASTN) and protein sequences-based
(BLASTX, BLASTP in DIAMOND) searches were carried out against nucleotide and protein
sequence data downloaded for the latest IMG/VR version 2020-10-12_5.1. BLASTN searches
were carried out with default parameters except for the evalue which was set to 0.0001 and the
output was generated in standard tabular format. For BLASTP searches, predicted ORFs were

used.

Results

To quantify the presence of unknown sequences in human metagenomes, datasets included in the
EBI MGnify were filtered to select for metagenomic data sets sequenced on the Illumina platform
(see Methods). A set of 963 samples from forty studies covering ten different microbiomes
were downloaded from SRA repositories and analysed using the framework described in the
Methods in order to characterise and quantify the unknown sequences in these samples. The
studies included a total of 2.08 x 10'? bases of raw sequence data that was derived from a range
of human microbiome studies including the following microbiomes (figure 3(a)): (1) circulatory
system (n=2) (2) fecal (n=20) (3) lung (n=1) (4) oral (n=5) (5) pulmonary system (n=1) (6) saliva
(n=3) (7) skin (n=2) (8) sputum (n=2) (9) vagina (n=1) and (10) human (n=3; miscellaneous).
Geo-location information available for 861 of these samples shows that the data sets are globally
distributed, but skewed towards western Europe (figure 4 and figure 3(b)). All samples were
individually processed through the metagenomic analysis framework designed in this study (see
Methods). The framework included an individual sample-based de novo assembly step resulting
in a total of 44,238,374 de novo assembled contigs, 28,505,777 of them were longer than 300
nucleotide. Out of this set, 7,155,624 contigs were at least 1kb long, 970,507 were at least 5kb and
415,719 were at least 10kb long. The largest assembled contig was 1,380,230 bases long and was
found in the human gut microbiome sample ERR505090. These contigs were then systematically

processed by our metagenomic framework for BLASTX sequence similarity classification against
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the GenBank non-redundant protein database. Sequence similarity thresholds were used to sort
the contigs into three classes: known (>80% similarity to a known protein sequence), partially
known (>0 and <80% similarity to a known protein sequence), and unknown (no similarity to
any existing sequence).

In total, 25,148,829 (88.22%) contigs were classified as known contigs whilst 2,517,700
(8.83%) of all analysed contigs were classified as partially known. The remaining sequences,
referred to as unknown contigs (UC), are sequences that did not bear significant similarity to
known sequences in the databases. Overall, 651,529 (2.29%) of contigs did not match any
currently known sequences using our approach and were categorised as UCs. On average 1.3%
of assembled bases per sample were found to be unknown. The proportion of unknown varied
significantly between different assembled metagenomes as shown in the figure 5(a). Samples
from some microbiomes such as the circulatory system did not contain any unknown sequences
compared to the skin microbiome where this proportion was up to 25.85% for some samples.

The UCs varied largely in length and most of the UCs were 300-1000 nucleotides long (figure
5(b)). 95.36% (n=621,302) of all UCs were shorter than 1kb and 4.59% (n=29,879) UCs were
between 1-5kb long. A set of 320 UCs fell within the 5-10kb length category and 28 UCs were
>10kb long. The largest UCs was 42.3kb long and the second largest UCs was 21.3kb long. A
complete distribution of UCs across different microbiomes is shown in the figure S1 that shows
that the largest UCs were assembled from fecal, oral and saliva microbiome.

To understand the coding potential of the unknown sequences, open reading frames (ORFs)
were predicted. 273,590 ORFs that were at least 100 amino acid in length were generated using
the standard genetic code. A threshold of 100 AA was selected, this is similar to that used in
the taxonomic classification tool GRAViTy which demonstrated only a 5-10% gene loss at this
cutoff for viral sequences [54]. These ORFs originated from 215,985 distinct UC, showing that
33.15% of all UCs contained large ORFs. On average, ORFs were 157 amino acid (AA) long
with a standard deviation of 87 AA residues. The longest ORF was 6,898 AA long. This set also
included 2,713 ORFs with length of at least 500 AA and 256 that were at least 1000 AA long.

A detailed protein domain analysis for these ORFs was carried out using the InterProScan
[55] protein analysis software. This tool searches the domain and functional signature of amino
acid sequences against a range of distinct domain databases including Pfam [56], CDD [57]
and SUPERFAMILY [58]. 36,354 ORFs originating from 35,760 UCs could be functionally
annotated using the InterProScan analyses, this number excludes hits to MobiDBLite and Coils
databases as they predict disordered regions and coils structure of predicted ORFs as opposed
to the domain signatures. An overview of the number of hits found to various InterProScan
databases for each microbiome is shown in the figure S2(a). The most number of hits were found
in the MobiDBlite [59] - a database that can predict the intrinsic disorder regions in the proteins.
Overall, 5.49% of UCs (n=35,760) contained ORFs (n=36,354) with at least one identifiable

domain. The functional classification of the ORFs was prominently centred around the Pfam
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database resource [56]. Pfam databases facilitate the domain-based searches against the set of
protein sequences using Hidden Markov Model profiles. These types of searches can identify
distantly related protein sequences. 16,839 ORFs originating from 16,705 UCs were found to
match at least one Pfam entry and in total, 27,025 Pfam hits were derived (figure S2(a)) All
Pfam entries were collapsed down to their corresponding protein clans (grouping of related
protein families) by mapping the Pfam IDs back to their clan membership. Figure S2(b) shows a
heatmap of top 50 Pfam clans with hits to UCs ORFs predicted in different metagenomes. The
most abundant hits were identified to clans tetratrico peptide repeat superfamily and leucin rich
repeats. The largest number of hits was found in the fecal microbiome due to the high number of
fecal microbiomes included in this study. Additionally, a range of other protein clans including
those that represent Helix-turn-helix, beta-strands, polymerase and nuclease proteins were also
found in this set. These results illustrate that the UCs sequences have known protein domains
suggesting that these unknown sequences are functional and belong to organisms that are not yet

fully sequenced or taxonomically classified.

Unknown sequence clustering

To investigate the extent of sequence diversity and to identify UCs sequences present in multiple
samples and microbiomes, sequence clustering was performed. MMSeqs?2 [51] generated 464,181
clusters of which 377,855 were singletons i.e. did not cluster with any other sequences. These
singletons were excluded from the cluster analysis described below. 86,326 clusters comprised
two or more sequences with a mean cluster size of 5.7 contigs and a standard deviation of 8.1.
Cluster representatives were extracted from MMSeq’s clustering output which are the longest
sequences in the cluster. The largest cluster contained 153 sequences which originated from the
fecal microbiome from 8 distinct BioProjects (figure S5(c)). A cluster size distribution across
different microbiomes is shown in figure 6 and a detailed cluster size distribution with cluster
representative length is shown in the figure S3). 89.42% of 273,674 UCs (n=244,730) were
clustered into single microbiome clusters, 10.58% UCs (n=28,944) were found in clusters that
contained sequences from two or more microbiomes. To compare that with specific studies, 39.4%
UCs were clustered into BioProject specific clusters and the remaining 60.6% UCs (n=165,851)
were grouped into clusters originating from two or more BioProjects. 78,139 (90.52%) clusters
contained sequences from a single microbiome and 7,645 (8.86%) clusters included sequences
from two microbiomes. Only a few clusters were comprised of members from 3 (n=512) or 4
(n=30) microbiomes. The largest multi-microbiome cluster contained 57 sequences (304-9,080
bases long) from 4 distinct microbiomes and BioProjects and contigs assembled from 12 samples.
The largest single microbiome cluster contained 153 sequences (6,640-300 bases long) from
fecal microbiomes with contigs assembled from 46 distinct samples covering 8 different studies.
Overall, this clustering method produced very small, study-specific clusters. A set of 464,181 UCs

was obtained by combining the cluster representative sequences with the unclustered singleton
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UCs and used to determine the rate at which UCs are classified.

Classification of unknown over time

In this framework, the unknown sequence identification is dependent on the publicly available
nucleotide or protein sequence databases. These data repositories are updated regularly with
new sequence data being deposited from around the world. However, typically, the sequence
searches are carried out against static versions of the databases. Our analysis conducted against
the databases downloaded on 18 April 2019 identified 651,529 UCs that were collapsed down
to a set of 464,181 UCs following the cluster analysis. Subsequent analyses on 31 October
2019 and 5 March 2020 produced a set of 613,726 and 558,711 UCs respectively. The final
number of sequences that still lacked a taxonomy label was down to 459,147 after the most recent
analysis carried out against the databases downloaded on 14 October 2020. 29.5% (n=192,382)
of the sequences compared to the initial set of unknown matched to at least one sequence
from the updated databases in the BLASTX and the BLASTN steps of the analysis. Similarly,
27.6% (n=128,288) of the representative set sequences could be labelled taxonomically with the
updated databases. A rate of taxonomic characterisation of 1.64% of unknown sequences being
characterised per month was calculated from the complete set. This rate was estimated to be
1.54% for the representative set. Moreover, as shown in the supplementary figure S4, a range of
long UC:s still remained unknown even after the similarity sequence-based analysis carried out
on 14 Oct 2020.

From a set of 192,382 contigs that were labelled taxonomically after the most recent analyses
carried out on 14 Oct 2020, 167,864 were identified using BLASTX and 24,518 were identified
using BLASTN. 106,739 UCs from the BLASTX classified set were categorised as known and
61,125 contigs were categorised as partially known. A large majority of these contigs (97.11%,
n=162,987) were also deemed to be bacterial. The remaining contigs were divided between
cellular organisms (n=2,104), archaea (n=930), viruses (n=858), root (n=827) and Eukaryota
(n=140). 76.55% of all BLASTN hits were matching to bacteria (n=18,768), 17.88% matched to
viruses (n=4,383), 1.99% matched to Eukaryota (n=487) and 0.03% archaea (n=7). The hits that
could not be mapped to a superkingdom and were divided between unidentified plasmid (n=544),
root (n=294), cellular organisms (n=20), uncultured organisms (n=14) and synthetic construct
(n=1). These results reiterate our initial hypothesis that the majority of UCs represent currently

unknown microbial genomes.

Viral domain signature identification

195 UCs were shown to contain a virus-specific functional domain which was parsed using
the term ‘virus’ or ‘viral’ in the InterProScan analysis signature description column. Results

with the term ‘phage’ were not included in this subset as a range of phage domains are also
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present in the host bacterial genomes. These domains were predominantly identified using the
Pfam (n=125) analysis. The most abundant virus-specific domain was Vaccinia Virus protein
VP39 and it was found in 53 UCs derived from fecal (n=23), saliva (n=14), oral (n=12), sputum
(n=1) and human (n=3) microbiomes and it was identified by Gene3D analysis. The largest UCs
containing this domain was 3,661 bases long and was found in sample ERR1474567. Another
frequently found domain in the UCs was podovirus DNA encapsidation protein Gp16 domain. It
was found in 25 UC, out of this set 23 UCs were assembled from fecal microbiome. The largest
UC:s containing this virus-specific domain was 9kb long contig shown in figure 8(a), assembled
from PRIEB18265. These UCs was clustered with 24 other sequences (See Unknown sequence
clustering) that were assembled from 11 samples representing 5 distinct fecal microbiome studies.
These results indicate that these UCs represents a completely novel genome of a virus that is
likely related to currently known podoviruses.

The largest UCs containing a viral RNA dependent RNA polymerase (Pfam: PF00680)
domain was found in the sputum microbiome sample ERR1022511. This UC was 5,894 bases
long and contained seven ORFs that were at least 100 AA long (figure 7). A 269 AA long ORF
contained ATPase P4 of dsRNA bacteriophage phi-12 (Pfam: PF11602) domain suggesting that
this UCs represents the large segment of a novel double-stranded RNA phage which are usually
categorised in the virus family Cystoviridae. The genomes of these phages are composed of
three linear dsSRNA segments with a total genome length of 12.7-15kb and all segments code for
various proteins [60]. Although several other UCs were found in the same sample, none of them
displayed any sequence or functional similarity to the other two segments i.e. small and medium
segments of Cystoviruses. However, UCs that could potentially belong to novel cystovirus-like
genomes were extracted based on the sequence length, GC content and sequencing depth criteria.
Moreover, this UC representing a potentially novel relative cystoviruses did not match to any
known protein or nucleotide sequences even in the most recent analyses confirming the discovery

of a novel virus.

Virus prediction and comparisons to uncultured virus databases

From the complete set of the UCs, 323,395 (49.64%) UCs were predicted as viruses by Deep-
VirFinder (see figure S7(a)). This set included 300,271 UCs that were under 1kb long which
represents 48.33% of UCs identified in this length category. A number of larger contigs were
also predicted as viruses: 76.27% (n=22,788) of UCs in the 1-5kb length category and 96.55%
(n=336) of UCs in the 5-50kb category. These results strongly support our hypothesis that the
large majority of the UCs are of virus origin, albeit a large proportion short UCs are likely to be
fragments of unknown viruses.

These predicted virus sequences (n=323,395) were clustered with other known and partially
known sequences using MMSeqs with 90% sequence similarity across 80% of the sequence.
50.18% (162,271) of UCs were either singletons or were clustered with other UCs, whilst the
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remaining 49.82% (161,124) of UCs were clustered with known and partially known. However, a
large proportion (n=152,295; 94.52%) of the UCs that clustered with these were shorter than 1kb.
8,829 UCs (out of 22,788; 38.74%) were at least 1kb long among which 1,402 UCs (out of 4,419;
31.73%) were at least 2kb long, 75 UCs (out of 336; 22.32%) were at least 5kb long and 5 UCs
(out of 28; 17.86%) were at least 10kb long. Moreover, 47.52% of sequences that match the UCs
were deemed partially known (i.e. had a protein sequence hit with <80% sequence similarity) in
this analysis suggesting that these known and partially known sequences are still significantly
divergent from those present in the databases.

To identify the “known unknowns” i.e. uncultured viruses categorised as UCs in this study
and also observed in previous meta-analyses, the IMG/VR databases were used as a reference
and the UCs were searched against the nucleotide and protein repositories. 182,293 (27.98% of
all UCs) UCs had at least one hit to uncultivated viral genomes (UViGs) included in the IMG/VR
using BLASTN and 175,372 (26.92%) UCs were found to match at least one UViGs using the
BLASTX approach (figure S7(b)). Out of the 273,590 predicted ORF set, 85,852 ORFs were
found to match protein sequences included in IMG/VR. 64,779 (9.94%) of UCs were found to

match the uncultured viruses in IMG/VR using all three approaches.

The large unknown contigs

All UCs described in this section were predicted to be viruses by DeepVirFinder and did not
cluster with known and partially known sequences. The largest UCs was assembled from the
saliva sample ERR1474583 and was 42,357 bases long. This contig did not cluster with any
other contigs and has 23 ORFs that were over 100 AA long. One of the ORFs that is 434 AA
long comprised of the cysteine proteinases domain (SUPERFAMILY: SSF54001) according to
the InterProScan analysis. This contig still remained unknown after searches against the most
recent version of the databases suggesting that the organism this genomic sequence belongs to is
still to be identified and fully sequenced. A snapshot of the ORFs and domain is shown in figure
8(b), highlighting the presence of coding regions across the entire length of the UCs sequence.
Based on the results we have obtained here, we predict that this UCs sequence is likely to be
of microbial origin as it lacks a non-coding region. CheckV analysis predicted it to be a viral
genome fragment with the presence of two identifiable viral genes albeit with low quality as per
the MIUVIG [61] standards due to the lack of similarity to any known sequences. This strongly
suggests that this UC can potentially be a representative or partial genome sequence of a currently
unknown and completely novel virus.

A 20,309 nucleotide long contig from saliva sample ERR1474612 clustered with two very
short contigs from the same study. As shown in figure 8(c), long ORFs were predicted across the
whole sequence. Some of the predicted ORFs were found to have interesting domain signatures
(figure 8(c)) such as enzymes for nucleic acid replication e.g. polymerases. An ORF that is 655
AA long shows the presence of DNA dependent RNA polymerase domain (SUPERFAMILY:
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SSF64484). A CheckV [52] analysis of the contig also predicted it to be of viral genomic origin,
however, it was predicted to be an incomplete genome. This UC was shown to have a very
low identity (<30% sequence identity with 2% of query coverage) to a hypothetical protein of
Firmicutes bacterium (HAB66316.1) and AAA family ATPase from Sharpea azabuensis (23%
sequence similarity). When the e-value threshold was removed, a total of 8 BLAST hits were
obtained and 3 out of 8 hits were to a range of phages including Bacillus phage vB_BpuM-BpSp,
Vibrio phage 2 TSL-2019 and Ralstonia phage RP12. These hits range from hypothetical and
putative proteins. All these matches were localised to a short region between 8,217-8,915 which
was shown to contain ATPase and P-loop containing nucleotide triphosphate hydrolases domains
(figure 8(c)). Notably, no nucleotide sequence hits were identified for this UC. Although these
results have bacterial hits, it is likely that this UC represents a complete or partial genome of a

novel phage that infects the host bacteria e.g. firmicutes.

Short circular contigs

A range of circular contigs with direct terminal repeat (DTR) and inverted terminal repeat (ITR)
signatures were identified using CheckV in the UCs data set. A total of 1,839 containing repeat
signatures were predicted of which 1,771 contained DTR signatures and 68 contained ITR sig-
natures. 94 of these UCs were at least 1kb long suggesting circular genomes and 48 of them
contained a range of 55 bases long terminal repeats. A cluster of 8 sequences from 2 different
microbiomes and studies were identified to contain similar sequences (71-100% similarity) assem-
bled from different samples (table 1). Four cluster members were 2,110 bases long, one sequence
was 1,983 nucleotides long and the cluster representative was 3,165 nucleotides long. The cluster
representative sequence contained multiple copies of the same ORFs suggesting the presence of
multiple genome copies, sequencing error or miss-assembly. Most of these sequences contained
a 50 bp long DTR sequence signature ‘GTGCATTTTTTTTGTGCACTTTTTCAAAAAAAC-
CGTGAAAAAAATTCATT’. These contigs contained two distinct ORFs, which were 125 AA
and 144 AA long. Similarly another 50 bases long DTR signature ‘AATGAATTTTTTTCACG-
GTTTTTTTGAAAAAGTGCACAAAAAAAATGCAC’ was observed in another cluster that
had 7 member sequences ranging in similarity from 31 to 100 percent and assembled from 7
distinct samples. All but one member were 1,770-1,771 bases long. These contigs also contained
two ORFs that were 102 AA and 106 AA long. These ORFs did not match any existing protein
sequences in the databases. These circular contigs were assembled from a range of oral micro-
biome samples from study PRINA230363. Similarly, a range of contigs (n=9) that contained
Inverted Terminal Repeats (ITR) were also identified in this data set. A cluster of 5 distinct
circular contigs assembled from distinct samples from the fecal microbiome (PRJEB7949). Four
out of five of these circular contigs contained the ITR sequence ‘CGAAACGATTGCCCAGA-
GAGATGACTGTCAATCCGCCCGATTATTGGGCGCTTAC’. They also contained a 138 AA

long ORF. These short circular UCs did not bear any sequence or functional similarity to known
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sequences or domains so their biological origin is difficult to predict. However, based on their
genome organisation and size distribution, we predict that they are likely to represent either
novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA virus
groups or novel satellite virus-like groups. 16 out of 20 UCs described in table 1 were predicted

to be viruses by DeepVirFinder (see: Virus prediction and uncultured virus databases).

Control samples

The HMP mock community samples (n=9) were downloaded for study PRINA298489 and were
analysed for quality control and workflow assessment. These are control samples that are not
expected to yield UCs, but if they do, those UCs could be due to sequencing/assembly error or
common lab contaminants. Out of the complete set, four HMP samples did not contain any UCs
as expected whereas SRR2726666, SRR2726669 and SRR2726672 contained one UC each but
their lengths were short varying from 323 to 449 bases. The remaining two samples SRR2726670
and SRR2726671 contained 28 and 18 UCs each. The largest UC assembled in the mock sample
was 3,965 bases long and was found in SRR2726670, only 3 UCs were >= 1kb. These UCs were
searched against the most recent version of the databases downloaded on 14 Oct 2020 and only 8
short contigs; 4 from SRR2726670, 2 from SRR2726671 and one each from SRR2726666 and
SRR2726669 remained in the UCs category. These remaining UCs were only 330-513 bases
long. These results validate the UC analysis framework developed here and highlight that even in
control samples, there are a very minor number of short UCs to be found. New sequence data
gets uploaded to public repositories daily and these updated databases contain a greater diversity
of sequences most of which are taxonomically classified. Therefore, UCs identified in the initial
analysis of these mock samples were subsequently found to match to a known sequence in the

updated version of the database as more sequence data was available and classified.

Resources

We have developed a modular metagenomic and unknown sequence analysis framework using
the sophisticated pipeline management tool Snakemake. Our analysis pipeline takes advantage
of portability and flexibility offered by Python, BioPython and Snakemake tools which allow
reproducible analysis of large meta-omic data on any processing servers and clusters. The
framework developed here is capable of utilising multiple cores enabling users to analyse
large data sets in a parallel fashion. Results and code generated in this study is available
on https://github.com/sejmodha/UnXplore. All assembled unknown sequences generated here are
submitted to ENA as third party annotations and are accessible under BioProject PRIEB41812.
This allows the UCs data to be properly linked to its original samples and studies. A consistent
data labelling scheme is utilised across all studies and samples. For traceability, all UCs fasta

identifiers start with SRA sample identifier. All ORFs contain the exact same naming scheme
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with a suffix ‘_’ and ORF number starting with 1. A complete metadata table is provided to
link any new sequence data to its corresponding BioProject and sample. Functional domain
predictions and clustering results are annotated with relevant metadata and provided in a tabular

format.

Discussion

In this study, we have developed an automated framework that can systematically quantify the
proportion of unknown contigs (UCs) in meta-omics samples. Whilst the presence of UCs is
well recognised, this is the first study that addresses the question of UCs comprehensively and
quantifies it across different human microbiomes. Our approach utilises sequence similarity-based
taxonomic categorisation to identify the sequences that cannot be categorised. We define these
UCs as the sequences that do not match known sequences in the databases with a predefined
sequence similarity threshold of evalue 0.001 which is a very lenient threshold, anything with
evalue higher than this is unlikely to truly be related to the database sequence hit. We show
that on average 2.29% of assembled contigs are categorised as unknown in different human
microbiome studies. Moreover, a subset of those with unknown sequences could be translated
and contained protein domains, thus we were able to find functional similarity to 5.49% of
taxonomically unknown contigs. We have generated a comprehensive catalogue of 651,529 UCs
that do not bear any sequence similarity to sequences present in the widely used GenBank protein
and nucleotide databases. Although sequence similarity-based approaches are dependent on
the databases, the protein sequence-based approached implemented here is highly effective in
fishing out distantly related homologues of known sequences available in the databases [62] and
thus provides better resolution for sequence classification compared to those solely based on
the genomic signature-based binning [63]. This study highlights the importance of avoiding the
“street light" effect i.e. observational bias arising from classifying metagenomic sequences on the
basis of related sequences that already exist in the databases. Here, we have aimed to eliminate
such observational bias by performing a comprehensive data mining of the human microbiome
data and cataloguing the UCs, their frequency in different human microbiomes and their overlap
between different samples.

This study has enabled the identification of a range of genomic sequences that are hypothesised
to belong to currently uncharacterised organisms that are often found in similar samples and/or
microbiomes. A range of large UCs with and without known protein domains are presented
here. However, the complete set includes a large number of UCs that still remain unknown
and can be mined further to study their biological origin. A third of all UCs (n=215,985)
contained large predicted open reading frames (at least 100 amino acid long) that were predicted
using the standard genetic code. Using alternative genetic codes may expand this set further

by revealing novel, potentially different open reading frames generates from the UCs. A small

16



552

553

554

555

556

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

proportion of these open reading frames contained domain signatures confirming the presence
of currently unidentified organisms. Moreover, a comprehensive clustering analysis has led
to the identification of UCs that were present across different human microbiomes (as well
as from different samples/studies investigating the same human microbiome) indicating that
we have discovered potentially widespread and as yet unclassified novel biological organisms
within the human microbiome. The multi-microbiome clustering approach applied here provides
an interesting way to understand the diversity and the distribution of the UCs across different
microbiomes and geographical sites. For example, this approach led to the identification of 30
clusters that spanned 4 distinct microbiomes. The largest multi-microbiome cluster comprised of
57 UCs recovered from saliva, sputum, oral and lung microbiomes and were assembled from 12
different samples. Although it is impossible to identify the true clusters present in the data due to
the novelty of the UCs, the clustering approach helps to identify obvious patterns of sequences
similarity between microbiomes and studies. This approach provides an additional dimension by
capturing unknown sequences that are shared between different projects or human microbiomes.

Virus predictions carried out by DeepVirFinder - a machine learning-based virus prediction
tool for identifying viruses from metagenomic datasets - have shown that approximately 50% of
all UCs are likely to be of virus origin. Additionally, nearly 30% of all UCs identified in this study
have an overlap with uncultivated viral genomes currently catalogued in IMG/VR databases. As
with most similarity-based approaches, we used an arbitrary threshold for determining a match to
the IMG/VR database and thus a match does not mean they are closely related. Interestingly, this
study provides an added dimension to these matching uncultivated viral genomes (UViGs) by
providing information on the type of microbiome they have been found in. It is anticipated that
UCs catalogued in this study may have some overlap with other viral genome databases such as
Gut Phage Database [64] and Gut Virome Database [65]. Short contigs i.e. those less than 1-5kb
are often ignored in most data mining and exploration research typically in studies that employ
a contig binning step as binning has been shown to be less sensitive for short contigs [63, 66,
67]. The clustering and time point analyses carried out on short UCs has shown that these short
UCs are originating from biological entities and predominantly represent the novel microbial
sequences that are currently uncatalogued. This has been demonstrated with the example of short
circular sequences with terminal repeats. Short contigs that are typically excluded from large
microbiome mining studies employing the metagenomic binning approach but were studied in
detail here. These short UCs are found across multiple human microbiomes and samples, we
speculate that these are of viral origin and could potentially represent novel CRESS DNA or
satellite viruses, although the ORFs originating from these genomes do not bear any sequence
of functional similarity to the typical rep and cap genes. Moreover, a number of large contigs
were found to contain various functional ORFs and domains often originating from virus or
phages indicating that a proportion of UCs are very likely to be novel viruses that infect currently

uncharacterised microbes. In our approach, we have implemented a protein sequence similarity-
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based identification that enable the identification of distantly related sequence homologues [62].
This approach can potentially ‘classify’ contigs of viruses or phages as their corresponding
host with very low sequence similarity. Indeed, viruses are well known to mimic their host
genomic signatures by incorporating genomic sequences from their host into their genome. We
anticipate that the virus diversity described in this manuscript is reasonably underestimated due
to this specific characteristic of viruses and speculate that a range of assembled contigs classified
as bacterial with very low sequence similarity across a short genomic coverage are likely to
be of virus origin. This hypothesis will need to be tested further by mining the ‘known’ and
‘partially known’ contigs systematically. We note that a range of UCs matching to known and
partially known sequences could be taxonomically uncharacterised in GenBank databases such
as unclassified viruses. Assembled contigs matching to these sequences are categorised as known
(protein sequence similarity >80%) or partially known (protein sequence similarity <80%) in
this study. Those contigs would need to be investigated further to identify potentially novel and
divergent sequences assembled in this study. The HMP control sample analyses resulted in only
a few UCs validating the UC identification approach implemented in our framework. The results
generated from this study can be extended to identify the organisms that co-occur in different
microbiomes, which in turn can help to inform the interactions between these organisms and
how it affects their hosts - humans. Despite having sequenced human microbiomes extensively,
our understanding about how these microbes interact with humans remains limited. These large
scale explorations can help to understand the human holobionts and the interactions of macro-
and microorganisms. Based on these results, we do not know whether the microbes identified
in different studies are consistently associated with human or they are just passing association
captured at the time of sampling, the latter would make it even harder to make comparisons
between samples and microbiomes.

The UCs landscape changes over time as more sequences get characterised and added to the
ever expanding sequence repositories. This was demonstrated by comparing the UCs to different
GenBank databases over the course of 18 months. We have estimated that 1.64% of the UCs
identified in this study are getting characterised each month. However, this number would be
highly dependent on the types of data deposited in the International Nucleotide Sequence Database
Collaboration (INSDC) resources. This study provides a strong foundation of preliminary
estimation of this rate and UCs would need to be analysed at multiple future time-points to
determine how the rate at which the UCs are being classified, changes over time. Additionally, the
time-point analysis also provides strong evidence of the real biological entities being assembled
and characterised in our study. Indeed, a proportion of the UCs were taxonomically classified
during the period of the study. This delineation of the UCs demonstrates that the unknown matter
that surrounds us largely belongs to currently uncultured, unidentified microbes that we interact
with on a daily basis. The technological advances have accelerated the speed at which genomic

sequences belonging to novel uncultured organisms are being deposited in INSDC databases.

18



628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

This sharp increase of metagenomically assembled microbial genomes has led to the scientific
community driving the development of genomic data and metadata standards such as MIMAG
(for bacteria and archaea) [68] and MIUVIG (for viruses) [61] for consistency and comparison
purposes. The taxonomic classification landscape has also faced a tectonic shift whereby it is
moving from the phenotype-based classification to more holistic sequence-centric phylogenetic
classification, e.g. GTDB (bacteria and archaea) [69] and ICTV (viruses) [70]. These changes
enable the incorporation of the uncultured sequence diversity into the microbial taxonomy and
will provide a more comprehensive understanding of the complex phylogenetic relationships and
interactions between different microbes.

The metagenomics analysis framework developed here works as a proof of concept for
overcoming the challenge of the quantification of the unknown in already ‘analysed’ data sets.
The pipeline developed here is flexible and can be applied to any microbiome. To get a cross-
section of different human microbiomes and geographical locations whilst keeping the overall
data set size manageable large studies involving >100 samples were discounted. This framework
can readily be applied to routine metagenomic exploration, which can help to gain further
understanding of the landscape of sequences of unknown origins. However, the framework
applied here is easily portable to metatranscriptomics data. In fact, a couple of the BioProjects
(PRJEB10919 and PRJEB21446) analysed in this study were indeed from a metatranscriptomic
study. It is important to note that, unlike other studies that often focus on the cross assembly of
different samples, each sample was assembled individually here. This is regarded as best practice
when a cocktail of samples from unrelated studies are analysed in bulk. The co-assembly would
often lead to fragmented assembly as the complexity of sequences originating from multiple
samples would be much higher compared to a single sample [71]. On the contrary, independent
assembly is expected to capture better diversity across each sample with high-quality genomes
assembled from each sample [71]. Typically the sequence similarity-based approach is less
reliable for unrelated sequences as the similarity search tools heavily rely on the databases used
in the analysis. Like most other pipelines, this framework classifies the sequences with respect
to a static version of the reference sequence databases. The search results are as good as the
data in the ever-expanding repositories that are often too large to be hosted on a local computer.
In order to improve this, an alignment-free approach could be explored. The development of a
general purpose alignment-free prediction method that can categorise the sequences based on
the genomic composition would be suitable for the downstream analysis of the UCs. The UCs
classification is highly dependent on the methods employed to identify and quantify the unknown.
Moving away from the sequence similarity-based methods would help to categorise and classify
the currently unknown sequences better. Machine learning-based approaches might be deemed
suitable in certain circumstances to overcome the similarity threshold-based approaches. In case
of completely novel sequences that bear no similarity to currently known sequences, significantly

rigorous training sets and features would need to be identified and be built into the models in order
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to make accurate predictions as machine learning approaches are highly reliant on the training
data the models have been developed with. Moreover, a recent study by Krishnamurthy and Wand
Krishnamurthy and Wang [72] made predictions for picobirnaviruses to be bacteriophages rather
than eukaryotic viruses based on the presence of bacterial ribosome-binding sites in front of the
coding sequences. This approach could potentially be applied to check whether viral UCs are

bacteriophages.

Conclusion

This study demonstrates that there is a large diversity of unknown sequences embedded within
various human meta-omic samples available in public repositories. It is clear that the unknown
sequence landscape observed in this study is likely to be the tip of the iceberg, and, as we scan
more microbiomes and extend this to less-studied environments e.g. insect metagenomes, we
are likely to gather a better understanding of the unknown sequence space. As more species
and environments are sequenced more readily, the rate at which the unknown sequences become
known would also change. Our results of novel viruses indicate that the unknown microbes and
their genomic signatures are likely to be more divergent to those currently present in widely used
sequence databases; however, it should be noted that many of the short contigs found in our study
are likely to represent fragments of larger viral genomes rather than being short but complete viral
genomes. Our study also shows that at least some of these unknown microorganisms are prevalent
in nature. To overcome this, more comprehensive resources including searchable databases such
as those enabled using BIGSI [73] and federated indexes [74] could be created for the unknown
sequence data and metadata. This would allow researchers to explore the human metagenomic
sequence space in a more holistic manner and in turn, provide a better understanding of microbial
diversity interacting with and within human hosts. It would enable researchers to search, link
and explore the unknown sequences present in different microbiomes, studies and samples. Such
resources could help in speeding up the pace at which unknown sequences can be ‘classified” and
make it easier for researchers to determine the functional and/or ecological importance of the
organisms the sequence comes from. A concerted effort could help to pin down human-microbial
interactions in a broader context such as linking unknown microbes to human diseases and

disorders of unknown aetiologies.
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Table 1: Circular contig clusters with direct and inverted terminal repeats

Study ID(s) Cluster size | Typical Repeat type | Sample type | Sequence
contig similarity (min-
length max)

PRJEB14383; 8 2110 DTR Saliva; Oral | 71-100
PRINA230363

PRINA230363 7 1771 DTR Oral 31-100
PRJEB7949 5 1337 ITR Fecal 67-100
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existing metagenomic analytical workflow and the definition of unknown sequence matter. (a) Typical
metagenomic analytical workflow with data submission steps. (b) A schematic representation of known,
partially known and unknown sequence matter in the metagenomic data sets.
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Figure 3: An overview of the human microbiome data set included in this study. (a) Distribution of
samples included in this study for each microbiome (n=963). (b) Overview of the geographical distribution
of the samples included in the study (n=861) coloured according to the distinct microbiome. The size of
the slice represents the number and the proportion of samples.

Footnote: As Russia spans two continents; Asia and Europe, samples from Russia were included in Europe to simplify the illustration in this figure.
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Figure 4: The geographical distribution of human microbiome samples included in this study. Geo-
graphic locations are coloured according to the number of samples (n=861) with darker shades representing
the higher number of samples analysed. Samples originating from each location are represented by a
doughnut chart. Each doughnut is coloured according to the microbiome and its proportion is represented
by the slice of the doughnut.

34



(a)

Bases of unknown taxonomic origin in distinct human biomes
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Figure 5: Quantification of unknown sequences in different human microbiomes. (a) The proportion
of unknown bases in different human microbiomes. The proportion of unknown bases was calculated from
the unknown contigs for each microbiome. The secondary Y-axis shows the number of samples analysed
in each category. Each individual sample is overlayed on the boxplot and is represented by small yellow
circles. (b) The distribution of all unknown contigs in ten distinct length categories. Each bar represents
the proportion of UCs on the Y-axis with the number of contigs in the given category annotated at the top
of the bar. Bin sizes are shown in the interval format, which means that sizes are exclusive on start values
and inclusive on end values.
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Figure 6: Distribution of cluster sizes on the X-axis and their proportion on the Y-axis. The marginal box
plot shows the distribution of cluster sizes for each category. The plots are grouped and coloured according
to the number of distinct bodily sites the clusters are found in; e.g. Number of bodily sites = 2 in green,
means that members of each cluster are found in data sets from two distinct bodily sites (e.g. gut, skin,
fecal, oral), all clusters from this plot come from 2 distinct bodily sites, but may (or may not) come from
different bodily sites compared to other clusters within the plot, with one cluster coming from gut and
skin, for example, and another from skin and fecal etc.
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Figure 7: The genome diagrams of a potentially novel dsRNA phage segment found among the UC set
that is hypothesised to be related to currently known Cystoviruses. The open reading frames (ORFs) are
highlighted in the light pink shade with the ORF lengths as their corresponding labels and the green boxes
illustrating the InterProScan computed presence of domain signature.
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Figure 8: The genome diagrams of large unknown contigs show the open reading frames (ORFs) in the
light pink shade with the ORFs lengths as their corresponding labels and the green boxes illustrating
the InterProScan computed presence of domain signature. (a) The largest contig with podovirus DNA
encapsidation protein Gp16 domain. (b) The largest unknown contig assembled in the set is categorised as
unknown even after the most recent similarity-based search on 14 Oct 2020. (¢) An unknown contig of
length 20,309 bases was described to contain a range of domains including a potential virus-specific RNA

polymerase domain.

38



= Supplemental Material

Lung

Human
N SN
N
91 &
34 27
15
: i i

S

S

w—u 964
= m 1199
5y 2011
S 11292
w 96542

= 293610

2]

m 3110
9 § 8 8 ¢d
p sbnuoo
w.. 10 JaquINN
N

v

@

o

10

Pulmonary system Saliva

Oral

IS

]

<
I-

100k

£
127
734
555
1314
4043
25414
74375
923

10k
1000
100
10

1

sbnuoo
10 JaquinN

Vagina

Sputum

Skin

100k

(40000, 50000]
(20000, 40000]
(10000, 20000]
B (5000, 10000]
(2500, 5000]
EB 2000 2500,
EE (500 2000)
EE (oo 1500)
EX o 1000
EXN oo 5o
EN .00

(40000, 50000]

(20000, 40000]

(10000, 20000]

EI 5000, 100001
B 2500, 5000)
[E 2000, 2500)
ESN (1500, 2000)
[EEEI (1000, 15001
I o0, 1000

I oo o0
I oo

(40000, 50000]
(20000, 40000]
(10000, 20000]
(5000, 10000]
B (2500, 50001
B 2000, 2500
B (500, 2000
B (000, 1500]
ES <o 100
SO o0 oo
E .0
g s -

=

10k
1000

sbnuoo
10 JaquinN

Length bin

Length bin

Length bin

A detailed distribution of unknown contigs across all microbiomes where each microbiome is

Figure S1

represented by a subplot in the faceted plot.
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Figure S2: (a) Functional homologues identified in the InterProScan analyses for UCs generated for each
microbiome. Darker colours represent the higher number of hits to specific Pfam clans. (b) UCs matching
to various Pfam clans found in different microbiomes. The darker shades represent the larger number of
UCs and lighter shades of the colour represent a smaller number of UCs that are also annotated in the
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Figure S3: Overview of clusters found in the unknown sequence dataset. A number of microbiomes
included in distinct clusters are represented by the columns and the number of BioProjects are represented
by rows in the facetted plot. For each subplot, the X-axis represent the length of the cluster representative
sequence and the Y-axis represent the cluster size for all cluster of size >=2. The size of the bubbles
corresponds to the cluster sizes.
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Figure S4: Distribution of contig lengths for all unknown contigs after the final time point (14 Oct 2020)
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Figure S5: The genome diagrams of large unknown contigs (UCs) show the open reading frames (ORFs)
in the light pink shade with the ORFs lengths as their corresponding labels and the green boxes illustrating
the InterProScan predicted presence of domain signature. (a) Cluster representative of the largest cluster
comprising UCs across multiple microbiomes. (b) UC with the largest predicted ORF (6,898 AA). (c)
Cluster representative of the largest single microbiome cluster derived from fecal microbiome. This cluster
comprised of 153 unknown contigs assembled from 46 samples across 8 different studies.
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Figure S6: (a) Research centres around the world coloured according to microbiome data sets distributed
among them (n=963) An overview of all bases analysed and categorised in this study. (b) Overall

categorisation of all bases included in the study. (c) The proportion of bases mapped to the human genome,
assembled contigs and bases that were not assembled in the different microbiomes.
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Figure S7: (a) Contig length distribution of unknown contigs predicted as virus using DeepVirFinder
with qvalue<0.05. 48.33% of UCs that were <1kb long, 76.27% of UCs between 1-5kb long, and 96.55%
of UCs that were at least 5kb long were predicted as viruses. (b) A Venn diagram comparing UCs to
IMG/VR databases. Out of the complete set of 651,529 UCs, 442,970 UCs did not have a hit to protein
and nucleotide sequences included in IMG/VR. 208,559 UCs were matching to IMG/VR sequences using
one or more of three different approaches; BLASTN (n=182,293), BLASTP (n=74,512) and BLASTX
(n=175,372). Overlapping UCs shared between all different approaches are shown in the Venn diagram
here. 64,779 UCs were found to have an IMG/VR hit for BLASTN, BLASTP and BLASTX methods.
The largest overlapping UC set was between BLASTN and BLASTX that shared 149,458 UCs whereas
the smallest overlap was found between BLASTN and BLASTP which was 64,872 UCs. BLASTP and
BLASTX methods shared 74,067 UCs.
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Table S2: Tools and their versions used for UnXplore analyses described in this study.

Software Version Source

BBDuk 38.22 https://sourceforge.net/projects/bbmap/

BBNorm 38.22 https://sourceforge.net/projects/bbmap/

BLASTN 2.9.0 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/

BWA 0.7.17-r1188 | http://bio-bwa.sourceforge.net/

DIAMOND 0.9.21.122 https://github.com/bbuchfink/diamond

ETE3 3.1.2 http://etetoolkit.org/

InterProScan 5.38-76.0 https://github.com/ebi-pf-team/interproscan

Parallel-fastq-dump | 0.6.6 https://github.com/rvalieris/parallel-fastq-dump/

Python 3.6.7 https://www.python.org/downloads/

SAMTools 1.7 http://www.htslib.org/

Snakemake 5.4.5 https://bitbucket.org/snakemake/

SPAdes 3.11.1 http://cab.spbu.ru/software/spades/

Supplementary text
CheckV predicted viral contigs

All UCs were processed through the CheckV pipeline [52] to identify the UCs that were likely to
belong to viruses. A total of 47,702 UCs were predicted to be of viral origin and 7,696 of them
were at least 1kb long. A set of 11,121 of these UCs were predicted to have at least one viral
gene and 1,712 UCs of this subset were at least 1kb long. These 1,712 UCs were mapped against
the results of the most recently carried out BLASTX analysis for validation. 529 of the predicted
viral contigs matched to bacterial protein sequences with low sequence identity with a mean
percent identity of 48.43. However, these results are based on short protein sequence hits on
bacterial proteins indicating that these UCs are likely to be phage genomic signatures that matched
bacterial protein in absence of a phage sequence in the database specifically as protein-based
similarity searches are able to identify distantly related homologues of query sequences. These
results can help to stipulate that the actual diversity of virus sequences present in the UCs set
is largely underestimated. It is highly likely that a range of contigs that match distantly related
protein sequences of bacterial origin are in fact derived from unknown and uncultured novel

viruses, such as phages, that infect bacteria.

The large unknown contigs

The largest multi metagenome UCs (figure S5(a)), was assembled from SRR2037089 from the
oral metagenome and was 14,958 bases long. It was clustered with 33 other contig sequence
assembled from 12 distinct samples from oral (n=8; PRINA230363), sputum (n=3; PRJEB10919)
and saliva (n=23; PRJEB14383) microbiomes. These three distinct studies contained samples
from distinct geographic locations: PRINA230363 from China, PRIEB14383 from the Philippines
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and PRJEB10919 from South Africa suggesting that this unknown organism is broadly distributed
in its association with humans. The second-largest member of this cluster was 9,791 bases long
and was assembled from a separate sample (SRR2037087) from the same study. This large
contig was deemed to be identical to the cluster representative. The largest cluster member from
the saliva microbiome was 1.5kb long and was assembled from ERR1474566. On the contrary,
the contigs assembled from the sputum microbiomes were significantly smaller with lengths
ranging between 479-533 bases, indicating the fragmented assembly and the presence of partial
sequences.

A large contig of length 21,357 was identified in the oral microbiome shown in figure S5(b).
This contig was assembled from run ERR1611386 and was clustered with 16 other sequences
from BioProjects PRIEB12831 and PRJEB15334. Other members of the clusters originated from
5 distinct samples and were between 306-6,109 bases long. This contig contained the largest
predicted ORF that was 6,898 residues long. 14 out of the 16 other contigs within the cluster
contained partial sequences belonging to this ORF. This contig also did not have a taxonomic
homologue identified in any of the most recent similarity sequence-based searches. Additionally,
the largest ORF was predicted to contain P-loop containing nucleoside triphosphate hydrolases
(SUPERFAMILY: SSF52540) signatures.

The largest cluster contained 153 sequences (figure S5(c)) had a cluster representative that
was 6,642 bases long assembled from sample ERR1297807 from PRJEB12357. This cluster
representative was predicted to contain 9 distinct ORFs. The cluster contained 35 other sequences
that were at least 1kb long. Additionally, other contigs (6,015 bases long from ERR537012 and
5,344 bases long from ERR537011) from as a separate study (PRJEB6542) were found in this

large cluster.
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Abstract: Viruses represent important test cases for data federation due to their genome size and
the rapid increase in sequence data in publicly available databases. However, some consequences
of previously decentralized (unfederated) data are lack of consensus or comparisons between
feature annotations. Unifying or displaying alternative annotations should be a priority both for
communities with robust entry representation and for nascent communities with burgeoning data
sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon
series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of
Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations
and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in
virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation
for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the
publication of this manuscript, FIVE is the first implementation of a virus-specific federated index
of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly
accessible. Many projects of database or index federation fail to provide easier alternatives to access
or query information. To this end, a Python API query system was developed to enhance the
accessibility of FIVE.

Keywords: Data Federation, CRISPR, Protein Domain, Metagenomics, Virus, Genome Graphs, HIV-
1

1. Introduction
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While the sharp reduction in the cost of sequencing over the past 15 years [1] is leading to the
progressive democratization of biomolecule sequencing and experimental data production, the
resulting data influx represents a nightmare of data storage, management, accessibility, and analysis.
As of November 2019, the Sequence Read Archive (SRA) contained almost 13 petabases of open
information, with close to 20 more petabases in the queue [2] (data growth is periodically updated at
[3]). Tackling the complexity and depth of this information is daunting. Despite the existence of stable
general repositories (Genbank, ENA, DDB]J), a growing number of specialized databases are leaving
the results of biological experiments (mostly sequence data) disconnected, sparse, disorganized, and
often inaccessible. Data accessibility and data federation, the virtualization of sparse databases into a
common platform, represent the most important assets to the wider scientific community. There have
been previous attempts to federate such databases and to make them open access, specifically for
viral sequences [4].

The National Institutes of Health (NIH) continues to promote such efforts through the Science
and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability
(STRIDES) Initiative, which “provides cost-effective access to industry-leading partners to help
advance biomedical research” ([5]). These partnerships enable access to rich datasets and advanced
computational infrastructure, tools, and services. The STRIDES Initiative is one of many NIH-wide
efforts to implement the NIH Strategic Plan for Data Science, which provides a roadmap for
modernizing the NIH-funded biomedical data science ecosystem ([6]). The National Center for
Biotechnology Information (NCBI) [7] leverages their participation in the STRIDES Initiative in part
by organizing and supporting a series of events, such as hackathons and codeathons, to engage
researchers and general users of NIH resources to improve NIH resources ([8]). These events usually
span a three-day period and are geared towards addressing a specific research problem or topic.
Through these events, the NIH receives active feedback from their user community on existing
resources that helps improve the quality and output of future NCBI products. Typically, milestones
or minor objectives are brainstormed during an online organizational meeting before the event. These
objectives form the core of the working groups during the event. Over the course of the three days,
each working group produces a solution to a specific task, often collaborating and integrating their
solution with the products from the other working groups. The event concludes with working groups
presenting their solutions.

NCBI also leveraged their participation in the STRIDES Initiative by moving SRA to the cloud.
SRA is the largest source of open, publicly available next-generation sequencing (NGS) data from
diverse biological sources. SRA serves as an umbrella for a variety of sequencing experiments (e.g.,
amplicons, whole genome sequencing, and environmental metagenomics) from different platforms
(namely IonTorrent, Illumina, Oxford Nanopore, and PacBio) and applications. The first collaborative
attempt to annotate and index SRA datasets in bulk was conducted as part of the inaugural of this
series of events, the Virus Hunting Toolkit (VHT) [4]. This first event (VHT-1) challenged users to
harness the power of the Google Cloud environment to test and develop bioinformatics pipelines to
identify all viruses, including previously characterized and novel, in existing publicly available SRA
datasets. The working groups were organized by specific tasks to emphasize the exhaustive
separation of known viral diversity from the bulk data, and the identification of possible new viral
sequences: data selection, taxonomic and cluster identification, and annotation of domains and genes.
From that first codeathon, a set of 5.5 x 107 reassembled contigs, from 2953 SRA entries, were
produced (see Table 1 on accessing these resources) [4]. All contigs were classified and annotated,
and this information was integrated into a complete dataset [9]. Despite the efforts made, some areas
were not covered in the final annotation files, such as virus-host pairing predictions. An additional
impending limitation was developing concise strategies to store and visualize sequencing data from
related biological entities. In our second series of Virus Hunting in the Cloud 2.0 (VHT-2), we present
here the first Federated Index of Viral (Sequencing) Experiments (FIVE).

In contrast to traditional sequence data databases, federated indices do not store raw sequence
data. Instead, federated indices store the results from different sequence analysis. For example, to
identify putative novel viruses in SRA contigs, a federated index would store and link results from
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several analyses on these contigs, allowing researchers to quickly identify SRA contigs of interest
without the need to perform the same extensive underlying analysis. Therefore, the output of FIVE
is a collation of analysis results from different methods indicating if and where a sequence contains
viral or virus-like signals, and not a single similarity score to a known virus sequence or structure.

This novel resource indexes sequences, metadata, and hyperdata from the VHT-1 hackathon,
sparse databases, and online resources. More than 2953 SRA entries assembled during VHT-1 [4]
were reanalyzed and their annotations included in FIVE. Additionally, existing databases (i.e.,
taxonomy, CRISPR, etc.) were federated into our index, expanded with novel annotations. Finally,
FIVE includes the first attempt to condense viral genome variation (nucleotide diversity along the
genome) in an indexable genome graph ([10]), using HIV-1 as a proof-of-concept. The emerging field
of genome graphs can provide an efficient method to summarize and index sequence diversity data
for a single species [11]. Unlike previous efforts, FIVE is a publicly accessible index where several
methods were built to easily query and retrieve information from the index. The index accession
methods were wrapped into an easy-to-use Application Programming Interface (API) written in
Python to further improve its accessibility. The FIVE index links SRA with accurately assembled
contigs, viral and host taxonomy annotation, protein/functional annotation (assisting taxonomy
identification), and virus-host pairing predictions. FIVE was generated by (i) federating or mining
existing datasets, (ii) implementing novel methods for annotation, and (iii) indexing and improving
data access. Several teams were formed, focusing on different aspects to generate FIVE. During and
after the VHT-2, four core aspects of FIVE can be distinguished: (i) protein domain recognition and
computation scalability, (ii) virus-host pairing prediction, (iii) viral genome variability indexing in
genome graphs, and (iv) index structure and accessibility.

New functional and taxonomic annotation methods were developed, covering similarity search
by alignment, probabilistic models (hidden Markov models [HMMs]), and k-mer distances. These
methods were added to the extensive information in our previously published SRA annotations [4].
Known virus-host pairings were federated from existing databases for both eukaryotic and
prokaryotic viruses and expanded through novel phage annotation and CRISPR profiling. Besides
taxonomy or function, genome variability is another desirable layer of information to consider for
virus diversity. Mutations in viral genomes can help to trace geographical patterns, distinguish
closely related viruses, or to predict protein functionality and therefore infective properties. Genome
graphs are an emerging tool to compress genomic information (e.g., variants) from closely related
genomes into more compact formats compared to multiple linear reference genomes or multiple
sequence alignments. Despite their compactness, if many variants exist, such graphs can become
considerably large. Such diversity is of interest to have indexed together with other types of data.
With FIVE we present a proof-of-concept of viral genome graphs indexing and systematization. We
refined a new and compact approximate k-mer graph creation tool, SWIft Genomes in a Graph
(SWIGG), which was used to model the genome variation of full-length HIV-1 reference genomes.
Finally, FIVE is intended to be a free, public, usable database by a broader audience, therefore besides
the publication of FIVE as a public BigQuery index, we designed an easy-to-use Python application
programming interface (API), and some methods, to query FIVE. This index is the first attempt to
centralize and federate viral (meta)data and annotations directly from SRA. As such, FIVE is distinct
from, yet complementary to, other resources such as ViPR [12] or NCBI Viral Resources.

2. Materials and Methods

2.1. Protein Domain Recognition and Computation Scalability

To improve the contig annotation index in FIVE, we evaluated 2953 datasets from VHT-1 [4,13]
against 2082 viral-specific protein domains selected from the CDD database (see [14]). We designed
two pipelines: (i) Reverse Position Specific tBLASTn (RPS-tBLASTn) [15] and (ii) Mash pipelines [16]
to identify known viral protein domains within VHT-1-assembled contigs (see Table 1). RPS-
tBLASTn is a robust method for domain detection, although its computational demands render it
challenging for large-scale data annotation, such as in VHT-2. In this context, a distance estimator,
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based on protein sequence sketches, can be used to identify protein domains with less computational
demand. Mash, a metagenome distance estimation tool (based on MinHash dimensionality
reduction), [16] was used with amino acid k-mer size = 6. A subset of the 728 datasets was used to
compare RPS-tBLASTN and Mash ([17]) to assess the performance of the distance estimation. Recall
percentages for the Mash pipeline were calculated per dataset by dividing the ‘true positive” viral
CDDs by the sum of ‘true positive’ and ‘false negative’ viral CDDs. Precision percentages for the
Mash pipeline were calculated per dataset by dividing the ‘true positive’ viral CDDs by the sum of
‘true positive” and ‘false positive” viral CDDs. A CDD hit was considered either a true positive if it
was retrieved in the same dataset, a false positive if it was retrieved by the Mash pipeline but not by
the RPS-tBLASTn pipeline, and a false negative if it was retrieved by the RPS-tBLASTn pipeline but
not by the Mash pipeline. Clustering was performed on the Canberra distance matrices derived from
the domain counts matrices using base R function hclust (stats package v3.5.3) [18]. Correlation
between both matrices was calculated with the Mantel test implemented in the ade4 R package (v1.7.-
15) [19]. Normalized Robinson-Foulds metrics were calculated with the RF.dist function in the
Phangorn R package (v2.5.5) [20], and entanglement values and tanglegram were calculated and
plotted using the dendextend package (v1.13.4) in R (v3.6.2) [21]. Additionally, HMMER (v3.1) [22]
was explored as a short read taxonomic annotator, providing an alternative to a computationally
intensive de novo assembly step.

A schematic of both pipelines can be seen in Figure 1, each of which two sets of inputs: (i) a set
of 2953 datasets containing assembled contigs constructed during VHT-1 [4], and (ii) a selected set of
2082 virus-associated Conserved Domains Database (CDD) entries (personal communication from J.
Rodney Brister, NCBI RefSeq [23]; [24] Supplementary File S1).

Protein Domain Recognition Pipeline

] RPS-BLAST Output
RPS BII(/;ST Tab-delimited file with
workflow Thorough (1) domain ID; (2) contig

»  domain search locations; and (3) Quality
using RPS-BLAST metrics.

T

A4

Query
?;2?:;22: Domain models
. Database in PSSM format
metagenomics (CDD)
contigs
l Mash Output
g Tab-delimited file with
Nucleotide domm e g domalr(Isl)D':) e
"| translation ; " name; -value;
Mash using Mash (4) # of sketches.
workflow

Figure 1. Protein Domain Recognition Pipeline. Using 2082 entries from CDD (Conserved Domains
Database) domain models in PSSM (Position-Specific Scoring Matrix) format, we tested two pipelines:
RPS-BLAST and Mash. RPS-BLAST, with known domain models matched against assembled contigs,
is accurate but computationally expensive. Mash pipeline was tested, which is significantly faster,
and can be applied directly on unassembled reads.

We matched CDD entries against the dataset using RPS-BLAST, with 6-frame translation (RPS-
tBLASTn) ([25]). We filtered them to include only higher-quality output hits with e-value < 1x10-10
and coverage threshold length > 50 nucleotides.

In addition to RPS-BLAST and Mash, we tested the feasibility of domain detection using
HMMER [22] directly against short sequence reads. We generated a simulated dataset of 1000 reads
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(each 150 bases long) by randomly extracting simulated reads from a complete genome of Human
Herpesvirus 1 (HHV-1, GenBank accession JN555585). The DNA sequences were translated into the
six possible reading frames using Biopython ([26]), yielding 6000 short “peptides” (~50 amino acids).
This simulated dataset enabled us to evaluate HMMER (hmmscan) for searching for domains in short
reads.

2.2. Virus—Host pairing Prediction

FIVE included an index for virus-host pairing (which viruses can infect which organisms).
Initially, we federated a reference dataset of experimentally confirmed viral-host pairings, generating
22,896 known virus-host pairings from the NCBI Virus Variation Resource database [27] and
supplemented with records from PhagesDB [28]. Missing information from PhagesDB, including host
and virus taxonomic identification numbers and taxonomic lineages, was retrieved using the NCBI
Taxonomy Browser [29] and incorporated into the index (see custom scripts in [30]). In several
instances, phage genomes without a specified host in the database possessed a bacterial genome in
the phage name that allowed for relationship inference.

The federated index was expanded upon using CRISPR spacer connections. A large-scale
CRISPR spacer merged from the initial federated index and four datasets generated using distinct
sources: The first dataset of CRISPR spacers was CRISPRCasdb ([31]; accessed November 6, 2019),
where spacers were identified using the tool CRISPRCasFinder [32] from “reference” and
“representative” microbial genomes available in RefSeq [23]. The second dataset of CRISPR spacers
[33] was identified from all prokaryotic assemblies in RefSeq [23] (December 2017) using
CRISPRDetect [34]. The third dataset of CRISPR spacers was identified from 24,345 metagenome-
assembled genomes (MAGs) of the human microbiome [35] using MinCED ([36]), based on the
CRISPR Recognition Tool [37] (parameters: -spacers -gffFull). The fourth dataset of CRISPR spacers
was identified from the 24,706 species-representative sequences in Genome Taxonomy Database
(GTDB) [38] using MinCED. All genomes/MAGs were provided using standardized taxonomy, based
on the GTDB taxonomy. The resulting CRISPR spacer database was searched against the initially
federated index of known virus-host pairings using BLASTn, with parameters set to account for the
short size of the spacer regions (parameters: -task blastn-short, -evalue 0.01, -outfmt 6, -gapopen 10,
-gapextend 2, -penalty “-1”, -word_size 7, -dust no).

2.3. Viral Genome Diversity Indexing in Genome Graphs

As introduced earlier, we used genome graphs as proof-of-concept to index viral genome
variability for a given set of closely related viruses. We used SWIft Genomes in a Graph (SWIGG)
(commit 48c4661), a nascent genome graph builder, as a back-bone for FIVE’s own implementation
([39]). In short, SWIGG creates genome graphs using k-mers from input genome sequences. The k-
mer length can be set by the user, and k-mers used for genome graphs can be excluded by fine tuning
the maximum and/or minimum k-mer counts within or across analyzed sequences. We added the
functionality to parse metadata from sequence headers and incorporate both into the individual
nodes of the genome graph. We used human Immunodeficiency Virus 1 (HIV-1) as test case for the
integration of viral genome diversity into FIVE (sequences available at [40]). HIV-1 was selected
because at the time of submission, it was the most well-studied human pathogen, having the most
high-quality full- or near full-length genomes available ([41]), with robust feature annotations
including structural features at the proviral DNA, viral RNA, and viral protein levels.

To balance sequence diversity with representative HIV-1 sequences, we used 170 HIV-1
reference genome sequences from the Los Alamos National Laboratory’s HIV Sequence Database
([42]; accessed on November 4th, 2019). To retrieve these sequences, curated alignments were
accessed with the following parameters: from “Alignments”, “Curated alignments” was selected;
Alignment type = “Subtype reference”; Pre-defined region of the genome = “GENOME"; subtype =
“ALL”; DNA/protein = “DNA”; year = “2010”. This number was narrowed down from 170 to 167
after removing “cpz” or SIV sequences. We also used a subset of these yielding 39 sequences by
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changing subtype = “M group without recombinants (A-K)”. The implementations require Python
v3.6 or higher and the Python package NetworkX (v2.4) [43].

2.4. Index Structure and Accessibility

We indexed data generated by working groups during the second codeathon (“Virus Hunting
in the Cloud 2.0”) in a relational database format on Google Cloud’s BigQuery, called Federated
Index of Viral Experiments (FIVE). This index can be visualized as distinct silos of the data generated
by each of the analysis pipelines presented in this manuscript. Data was parsed ([44]), loaded into
BigQuery using google-cloud-sdk (v288.0.0) tools, and SQL-like manipulation and subsetting of the
tables was performed (scripts available at [45]). Data loaded into FIVE is made accessible to the public
(see Table 1).

Table 1. List of repositories used in the generation of FIVE and its accessory information (contigs and
FIVE link) hosted in GitHub and the first release of each repository frozen in ZENODO. VHT — Virus

Hunting Toolkit.
Rele'van.t GitHub Project Dataset Citation
Repositories
Connor et al., 2019 https://github.com/NCBI-
VHT [4] Hackathons/VirusDiscoveryProject 10.3390/genes10090714
https://github.com/NCBI-
VHT contig list Hackathons/VirusDiscoveryProject/blob/master/contigs 10.17605/0sf.io/g9w8r
readme.md
VHT c.ontlg https://storage.googleams.com/e.xperlmental—sra— 10.17605/0sf i0/g9wSr
repository metagenome-contigs

Protein domain
recognition and https://github.com/NCBI-

computation Codeathons/Domain HMM Boundaries 10.5281/zenod0.4027168
scalability
Virus—-Host https://github.com/NCBI- 10.5281/zenodo0.4027172
pairing prediction Codeathons/Host_Phage Interactions

Viral genome
diversity indexing https://github.com/NCBI-Codeathons/Virus Graphs 10.5281/zenodo.4027629
in genome graphs

Index structure

- https://github.com/NCBI-Codeathons/The Virus Index 10.5281/zenodo0.4027617
and accessibility

FIVE https://console.cloud.google.com/bigquery?p=virus-
hunting-2-codeathoné&d=viasq&page=dataset

One of the most important aspects of an index is accessibility. BigQuery is a relatively new
framework and hence it was decided to generate a series of queryable actions, answering the most
frequent research questions. To facilitate this research, a Python-based API was developed. This AP,
called viral-index (v0.0.3) (Figure 2, is freely available to download from PyPI ([46]). Installation of
the viral-index module requires Python 3.7 and the Python packages pip (v20.0.2) and virtualenv
(v20.0.18). The viral-index module relies on google-cloud-bigquery (v1.27), google-auth (v1.21.1), and
twine (v3.2.0) Python3 modules, which should be downloaded as part of the viral-index module
dependencies. After installation, the user must add the path to their google credentials, as system
variable “GOOGLE_APPLICATION_CREDENTIALS”. These credentials allow the user to access the
BigQuery databases (detailed instructions at [47]) and query the federated indexes using a range of
functionalities implemented in the viral-index module, which we describe in this manuscript. It is
important to note that the viral-index API module supports data retrieval but not data manipulation.
The viral-index module returns the data as standard list() or dict() objects that can be easily
manipulated in order to carry out further analysis. Additionally, this framework enables
incorporation of new or updated datasets when they become available.
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Figure 2. A schematic representation of Federated Index of Viral Experiments (FIVE) implementation,
and interactions with users, enabled through the viral-index Application Programming Interface
(API). Viral information generated in both codeathons is indexed in BigQuery on FIVE, accessible
from Google Cloud, which can be easily queried using the viral-index API ([48]). This API enables
users to perform a range of flexible searches on the FIVE databases with minimum code.

2.5. Data and Software Availability

A broad and detailed explanation of each method section can be found in the corresponding
GitHub projects (Table 1). Each project contains complete instructions to fully reproduce the data
generated and to reproduce FIVE. Links to the VHT contigs and FIVE are also made available (Table
1).

3. Results and Discussion

3.1. Protein Domain Recognition and Computation Scalability

We ran RPS-tBLASTn pipeline on contigs derived from 2953 public sequencing datasets
assembled in VHT-1 [4] (see Table 1 for access to the contig list and contig repository from
GoogleCloud), but we found it to be too computationally expensive to run with the complete CDD
database over three days. Instead we used a subset of 2082 viral CDD models.

Since RPS-tBLASTn does not allow for query parallelization natively, we tried several
parallelization strategies for RPS-tBLASTn in order to scale up its performance. Subsequently, we
attempted to parallelize the RPS-tBLASTn search using a procedure whereby we divided the
database into 60 segments and later combined the results for each segment. Splitting the database
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and later rejoining results affected the search space, and therefore the e-value of our results. While
appropriate for testing purposes, for production runs we strongly recommended to use the dbsize
parameter to account for the changed search space as a correction factor.

Among the 55,503,968 contigs that we searched against the viral specific CDDs ([49]), 10% of the
contigs (5,606,754 from 2745 SRA datasets) had at least one CDD hit with e-value <1 x 103, Using a
more stringent e-value < 1 x 10719, the number of contigs having at least one viral CDD was reduced
to 0.5% (278,725; from 2534 entries). Hit distribution varied enormously, some contigs had multiple
CDD hits, peaking at 22,560 hits (Contig ID = NC_003663.2:1.224499, Cowpox virus), but the majority
of contigs (77.3%) had one unique CDD hit. The most common CDD was CDD:222853 (a transposase
specific to the Caudovirales lineage).

In parallel, we tested the (meta)genomic distance estimation tool Mash (MinHash
dimensionality reduction) [16,50] on predicted proteins (obtained through Prodigal protein
prediction) from the contigs derived from 728 datasets ([51]), a subset of the 2953 datasets used in the
previous RPS-tBLASTn analysis ([52]). Mash’s default amino acid k-mer length of k = 21 (for both of
its input sketches) retrieved almost no hits, a length of k = 6 was chosen arbitrarily. We could not
assess other k values (which may have yielded better estimations) due to time restrictions.

A representative subset of 728 datasets was used to compare both the Mash and the RPS-
tBLASTn pipelines. Out of 728 datasets, the Mash pipeline had an order of magnitude fewer hits
(133,452 hits) than with RPS-tBLASTn (2,574,452 hits). The Mash pipeline was found to be
substantially less sensitive than the RPS-tBLASTn analysis, with an average recall of 15.3% and a
precision of 37.0%. Despite the low recall value, Canberra distance matrices retrieved from the Mash
datasets and RPS-tBLASTn datasets were strongly correlated (Mantel test, p-value = 0.0009).
Additionally, hierarchical clustering implied that, despite the loss of global structure in the dataset
(as shown by a Robinson-Foulds distance of 0.91 and an entanglement of 0.2), the Mash pipeline can
be used as a fast tool to quickly identify datasets containing roughly similar viral domains (see Figure
3). While the Mash pipeline performed significantly faster than RPS-tBLASTn, the prodigal
translation step still represented a significant bottleneck for scaling. Faster translation algorithms
would increase the feasibility of the Mash pipeline. While the fast Mash pipeline method proved to
be promising, as an alternative to more computationally heavy methods, such as RPS-tBLASTn, a
lack of recall and precision deemed this method unsuitable for exhaustive research.

MASH datasets RPS-tBLASTn datasets

Entanglement = 0.2
Robinson-Foulds distance = 0.91
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Figure 3. Tanglegram depicting hierarchical clustering performed on the Canberra distance matrices
derived from the domain counts matrices of both Mash and RPS-tBLASTn pipelines. Both
dendrograms are colored by their cluster id with k = 10. Base R function hclust was used to generate
the clustering [18]. Correlation between both matrices was calculated with the Mantel test
implemented in the ade4 R package [19]. The entanglement value and plot were generated with the
Entanglement and Tanglegram functions implemented in the dendextend package [21]. Robinson—
Foulds distance was calculated using the RF.dist function implemented in the Phangorm package
[20].

The HMMER pipeline (hmmscan against Pfam-A v33.0) was applied to a simulated viral dataset
of short reads. A total of 75 herpesvirus-specific domains were detected, with e-values <1 x 10-3. On
a node with 64 2.30GHz cores, a total of 136 peptide sequences per minute were scanned for domain
detection. In order to improve comparability, the same procedure was applied to search domains in
a real, non-simulated sequence dataset (Illumina paired-end data; SRA: ERR1137115). A total of 1000
randomly selected reads were extracted, translated into the six possible frames, and scanned for
domains using the HMMER pipeline. For this dataset, 125 peptides were searched per minute,
detecting 109 domains. Despite its ability to detect viral domains in short sequences, the HMMER
pipeline performance did not scale well enough for datasets containing millions of reads over the
course of three codeathon days. In order to deploy the HMMER pipeline for such large datasets, we
propose the following: (i) collapsing identical or near-identical sequences to reduce redundancy; (ii)
splitting translated frames yielding truncated peptides into distinct peptides, using stop codons as
peptide boundaries; and, (iii) filtering amino acid sequences by length (= 50 amino acids) to decide
whether to accept them as queries for domain detection. Applying these premises might still not be
enough to yield reliable resources over the course of an event like a codeathon but might be sufficient
to yield results under reasonable research time (e.g., over a week).

3.2. Virus—Host Pairing Prediction

To establish a baseline for known virus-host pairings, we federated several resources to act as
references for experimentally confirmed and inferred interactions for the FIVE. In addition, we
included queryable datasets designed to detect putative viral elements and linkable to a putative
host. These putative pairings included phages and prophages mainly, which may help to understand
prophage variability in well-categorized host systems. We federated existing databases providing
information on hosts (including Bacteria, Archaea, and Eukarya) and the identity of confirmed viral
pairings from PhagesDB and NCBI Virus Variation Resource database. The aforementioned
resources were combined, expanded, and standardized to produce a comprehensive virus-host
pairing index, containing 44,975 virus-host pairs (29,847 unique viruses and 7974 unique hosts) that
can be queried from FIVE.

Identified CRISPR spacers from four datasets (CRISPRCasdb, RefSeq, 24,345 human microbiome
MAGs and 24,706 GTDB species-representative sequences) were curated and compiled into a
comprehensive CRISPR spacer database, with 1 million unique spacer sequences linked to a
formalized host taxonomy. CRISPR spacers were compared against the 29,847 unique viruses with
known hosts identified in the virus-host pairing index. In addition, the CRISPR spacers are compared
against 2953 raw datasets selected from NCBI's SRA used in VHT-1 [4].

3.3. Viral Genome Diversity Indexing in Genome Graphs

To demonstrate the ability of FIVE to index a wide variety of data types, we made genome
graphs with HIV-1 reference genomes. Genome graphs facilitate the analysis of the diversity of a set
of closely related sequences by counting and connecting k-mers from multiple sources like full viral
genomes or virus segments. Examples of our HIV-1 genome graphs are shown in Figure 4. The
FASTA header for each sequence analyzed to create the graph was extended using brackets as key
value pairs, i.e., “>Accession [key=value] [key=value]”. Specifically, we indexed the viral diversity
using the metadata of individual k-mer graph nodes. This metadata was later included into the
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individual graph nodes (not shown). The sequences were assembled into a graph using the Python3
package NetworkX and stored as a GraphML file that can be visualized and further analyzed using
free open-source software such as Gephi ([53]) or Cytoscape ([54]) [55].
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Figure 4. (Left) HIV-1 reference genome graphs generated with SWIft Genomes in a Graph (SWIGG)
with annotated k-mers/nodes. Number of input sequences (1) = 167. Node color corresponds to
taxonomic distribution of k-mer. Size of nodes is proportional to occurrence of taxonomic category.
(Right) HIV-1 subtypes A-J (n = 39), k-mer size =41, threshold > 2. Note that both example graphs are
circular, which may represent the fact that common nodes occur within long terminal repeats (LTRs).
Most of the HIV references used in this work were modeled after the proviral sequence, which
includes 5’ and 3' LTRs.

3.4. Index Structure and Accessibility

Contig annotations and graph data derived from protein domain recognition, viral-specific
HMM, virus-host pairing, and HIV-1 genome variability were produced in tabular format (as
detailed at the end of each previous sections). Each table was loaded into the FIVE BigQuery
GoogleCloud index ([56]) to be queryable. FIVE consists of seven interconnected tables
(accession2species [3,174,289 entries], combined_known_interactions [46,979 entries], cdd_data
[2,765,472 entries], spacer_db [18,521,874 entries], domains_viral_cds_tblastn [26,902,443 entries],
and hiv_a_jrefs_k41_t2 [247 entries]), as seen in Figure 5, and can be freely accessed at [57] (link
provided in Table 1).
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Figure 5. FIVE index schema. Each table (boxes) represents the output from the different annotation
efforts towards FIVE. For each table, the title of the table is white in a blue rectangle (accession2species,
combined_known_interactions, cdd_data, spacer_db, domains_viral_cds_tblastn, and hiv_a_jrefs_k41_t2),
immediately followed by the field names or categories for that given table. Each line corresponds to
a field, in which the first column gives the abbreviation name for the content of the field and the
second column the format of the content (int for integers, char for strings of characters, float and
decimals). Primary keys for each table are found in bold. It is possible to both access each one of the
tables independently and to link primary keys from one table to fields from another table, generating

a link (in grey).

A range of different functions are implemented in the viral-index API module that enable easy
access to FIVE. The viral-index can search the federated indexes by SRA run ID, virus and host

taxonomy ID, and CRISPR spacer sequences (as seen in Table 2).

Table 2. Summary and description of primary viral-index API query functions.

Function Description
get_viruses_for_host_taxonomy Retrieve host(s) for a given virus taxonomy ID
get_host_from_virus_taxonomy Retrieve virus(es) that can infect a given host

get_potential_hosts_for_virus_domain

get_virus_host_interactions_from_confidence_level

Get all potential host(s) given a domain that is found
in viruses

Get all virus-host interactions for specified
confidence level

get_SRAs_where_CDD_is_found Get Sequence Read Archive (SRA) accessions of
studies wherein a viral protein domain is found

get_domains Find all domains present in a virus

Virus-host pairs can be searched using the get_host_for_virus_taxonomy function that takes a
NCBI virus taxonomy ID as input and returns all hosts that the given virus could infect. In order to
perform the inverse search, get_viruses_for_host_taxonomy can be applied, and it may allow users to
search for viruses that could infect a given host taxonomy ID; this search can be expanded to
incorporate the protein domain-based information. The get_potential_hosts_for_virus_domain function
integrates the data generated for the protein domains and the virus-host interactions. Thus, it allows
searching potential virus hosts that viruses, with a specific domain, could infect by searching the
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federated data using a CDD domain ID. Other domain-based functions include (i)
get_SRAs_where_CDD_is_found and (ii) get_domains, whereby users can retrieve specific SRA studies
where (i) a virus-specific domain is present and (ii) the viruses that may contain a domain,
respectively. The former function can be used to get a snapshot of virus domains in several SRA
studies analyzed in VHT-1 [4]. Two additional functions are implemented to retrieve CRISPR
signature-based spacer indexes. The get_spacer_seqs enables the users to fetch all spacer sequences
present in the spacer datasets for a given taxonomy ID. The get_metadata_from_spacer_seq retrieves
spacer ID, spacer sequence, GenBank accession, and taxonomy identification of organisms where the
given spacer sequence is present. An example, showing how to use the viral-index to retrieve all
viruses that infect pigs, is provided at [58].

It is important to note that data integration is becoming the norm; powerful analysis can be
performed when it is possible to interlink data generated and enriched with multiple layers of known
and novel information. The wviral-index APl enables researchers to interrogate increasingly
sophisticated biological questions from FIVE through the multi-layer information available in this
federated database indexes.

4. Conclusions and Future Directions

During this three-day continuation of the VHT codeathon series (VHT-2), a new integrated and
federated viral index was elaborated. This Federated Index of Viral Experiments —FIVE —integrated
new functional and taxonomy annotations, novel virus-host pairings, and for the first time,
introduced virus genome diversity as genome graphs. Additionally, FIVE contains a federation of
annotations and pairings from pre-existing sources. As per the publication of this manuscript, FIVE
is the first implementation of a virus-specific federated index of such scope.

Several metagenomic annotation pipelines were developed and tested, building on top of the
foundations laid out in previous editions. Three pipelines for annotation of viral contigs through
protein domains were proposed: (i) RPS-tBLASTn, (ii) Mash, and (iii) HMMER. Results showed the
differences in recall, accuracy, and speed between RPS-tBLASTn and Mash. RPS-tBLASTn may have
been more computationally expensive than Mash, but it had better recall and overall accuracy.
Additionally, as evidenced from VHT-1 [4], HMMER searches could not be fully scaled in a cloud
environment, representing a bottleneck in protein domain classification using HMMs. Despite the
ability of RPS-tBLASTn to be pseudo-parallelized, the main bottleneck for high-throughput cloud
computing was scalability. Based on the current results, the RPS-tBLASTn pipeline was the best-
performing implementation out of the three and the one we recommend for other large-scale cloud
computing initiatives.

We made an additional effort to expand and federate not only the annotation tools for viral
datasets, but also its taxonomical pairing with a given host. This original work expanded the number
of known viral-host taxonomical pairings by 129% over VirHostNet 2.0 (release 1/2019) [59], by
integrating a federated high-confidence dataset and a novel dataset based on de novo assignations.
The high-confidence dataset is based on a federation of the NCBI Virus Variation Resource and
PhagesDB databases. The novel dataset is built with predicted past pairings using CRISPR spacers.
An expanded CRISPR dataset was created with 1M unique spacers to identify previously unknown
relationships between complete viral genomes with taxonomy and the CRISPR spacer isolation
source.

One of the last challenges during the codeathon was to start developing a pipeline and indexing
strategy for virus genome diversity. It is known that genome graphs can be used to efficiently
summarize known virus genome diversity, thus as a proof-of-concept we decided to build an HIV-1
genome diversity graph to index the variability into a federated index, such as FIVE. The two main
challenges were (i) finding appropriate k-mer settings and (ii) adding multiple metadata values to
virus genome diversity graphs. Proper attachment of metadata is crucial for indexing datasets and
ensuring that data is findable, accessible, interoperable, and reusable (FAIR) [60]. Metadata can also
be overlaid onto genome diversity graphs to improve functional interpretation. Metadata was added
from the analyzed sequences but was inadequate when evaluating features within graphs. A
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limitation of available reference genomes included nonuniform feature annotation formatting.
Follow-up work will be needed to analyze the influence of SWIGG parameters on subsets of HIV-1.
Linking individual k-mer nodes to component sequence annotations will further enhance the
possibility to mine the structural information represented in graphs and to connect it to biological
function. In the current state, creating genome diversity graphs is a convoluted process involving
iterative testing of multiple parameters and visual inspection of their resulting graphs. Visualizing
multiple metadata layers simultaneously becomes challenging and, ultimately, the manual analysis
of multiple and complex graphs becomes an unfeasible task. It will be important to develop
automated assessments of virus diversity graphs to adjust construction parameters, evolve
visualization methods for multiple metadata values, and create methods to automate graph analysis.
Input from viral genomics is needed in order to standardize a genome diversity graph format.

Annotations and metadata from the different projects were integrated into the FIVE BigQuery
index and later made queryable, making it the first implementation of a virus-specific federated index
that is easily accessible and queryable. As per the development of a Python-based AP], the FIVE can
be de facto used by a larger part of the research community (possessing basic scripting abilities).
Accessibility and ease of implementation are often the limiting factors for the broad use of public
resources. A graphical user interface (GUI) is under discussion to further broaden accessibility. The
final aim is to link FIVE to other widely used viral and host resources, such as those supported NCB],
centralizing the resource and improving its connectivity to other services. Efforts are underway to
maintain FIVE through annual updates and continuous federation.
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