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Abstract

This thesis is comprised of two parts. In the first part we introduce a new category of structured

beams: the paraxial skyrmionic beams. In the second part of this thesis we introduce a quan-

tum algorithm analogous to the classical matched filtering algorithm for gravitational wave data

analysis.

Structured light refers to the generation and application of a customised light field, including

intensity, phase and polarisation. In the first part of this thesis, we demonstrate that a specific class

of structured beam possesses a topological property that derives both from the spatially varying

amplitude of the field and also from its varying polarization. This type of beam is referred to

as a skyrmionic beam. We are interested in skyrmionic beams mainly for three reasons: the

mathematical appeal of this structure; the physical significance of this structure to link the spatial

and polarisation component of structured beams; and the potential application of this property in

modelling beam propagation.

There are three important aspects to the skyrmionic nature of paraxial beams: the skyrmion

number, the skyrmion field, and the skyrmion vector potential field. In Chapter. 4 we introduce the

construction of the skyrmion beams and their associate skyrmion number with two specific exam-

ples. In Chapter. 5 we introduce the skyrmion field along with proving that it is divergenceless. We

will then proceed to illustrate this property with two examples. Lastly, in Chapter. 6 we introduce

the skyrmion vector potential field. Our discussion throught this chapter will revolve around the

analogy between this field and the superfluid velocity and accompanied by two examples.

In Chapter. 7 we explore the relation between the skyrmionic beams and the more familiar

Poincaré beams to highlight their differences. During the discussion, we introduce another type

of beam similar to the skyrmionic beam, namely the fractional skyrmionic beam, which lacks the

topological robustness of its counterpart

It is also important to explore the experimental realisation of skyrmionic beams. In particular,

collaborating with the Optics group we wish to develop a method to extract the skyrmion number

of arbitrary beams through experimental measurements. In Chapter. 8 we propose three candidate

methods and discuss their current results and roadblocks, respectively.

The second part of thesis will focus on quantum algorithms. We propose a quantum algorithm

analogous to the classical matched filter algorithm in Chapter. 11. Comparing with its classical

counterpart, our algorithm provides a square-root speed-up, which would make possible otherwise

intractable searches. We will also demonstrate both a proof-of-principle quantum circuit imple-

mentation, and a simulation of the algorithm’s application to the detection of the first gravitational

wave signal GW150914 as well as a discussion on the time complexity and space requirements.
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Chapter 1

Introduction

During recent decades, the manipulation of light beams has become more efficient and meticulous

owing to the development of technology [3]. In particular structured light has produced many

applications across various disciplines, including optical traps and tweezers [4, 5, 6, 7, 8] and more

effective commumications [9]. In order to further understand the topology structure of structured

beams, we look into how to incorporate the theory of magnetic skyrmions into the categorisation

of structured beams.

Magnetic skyrmions are topologically protected quasiparticles mainly studied in condensed

matter theory. It was first demonstrated that optical skyrmions exist in the evanescent field of

a plasmonic surface [10] and subsequently in the local spin field of focused vector beams [11].

However, skyrmionic paraxial beams still remained an untouched area which prompted our inves-

tigation. In previous studies, it has been shown that because of their topological nature, optical

skyrmions could be applied in ultrafast nanometric metrology [12], deeply subwavelength mi-

croscopy [11], and topological Hall devices [13].

Through the first half of this thesis, we will focus on developing the theory of paraxial skyrmionic

beams. This theory includes the associated skyrmion number, skyrmion field and skyrmion vector

potential field. These features will be discussed in Chapter. 4, 5 and 6, respectively. The rela-

tionship between our proposed skyrmionic beams and the more familiar Poincaré beams will be

discussed in Chapter. 7, from which we then derive the fractional skyrmion beams. At the end of

Part. I, we will propose three methods to experimentally extract the skyrmion number of arbitrary

structured beams as well as a discussion on their advantages and disadvantages, respectively.

Part. II is related to one of the potential applications of optical skyrmions, quantum computing.

In Part. II, we propose a quantum algorithm analogous to the classical matched filter algorithm.

Various quantum algorithms demonstrated that they are more efficient than classical algorithms

in certain problems, including square-root speed-up in unstructured search [14] and exponen-

tial speed-up in factoring large numbers [15]. Recently, from Google’s superconducting quan-

tum computer ‘Sycamore’ in 2019 [16], to the Chinese photonic quantum computer ‘Jiuzhang’

in 2020 [17], quantum computers are developing faster than ever. Therefore, with this in mind

we look to explore the advancements and changes quantum computers will potentially introduce.

After the first detection of the binary black hole merger, known as GW150914 [18], the detection

of gravitational waves from the merger of compact binary systems is now a regular occurrence.

However, with the increased sensitivity of detectors in order to detect weaker signals, the compu-
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tational power required for gravitational wave data analysis is beyond the limit of current classical

computers. Therefore, we are motivated to propose a quantum algorithm based on the Grover’s

algorithm (which we will introduce in Chapter. 11) that offers a square-root speed-up compared to

its classical counterpart. Although it is by no means an algorithm applicable to noisy intermediate-

scale quantum (NISQ) devices, it does represent the first step in constructing possible applications

of quantum computation to gravitational wave data analysis.
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Chapter 2

Structured beams

The darkest night gave me dark-colored eyes

Yet with them I’m seeking light

—Cheng Gu, “A Generation”, 1979, (translated by Juan Yuchi)

Light has been used as the representation of ideal, freedom and the transcendent across dif-

ferent cultures throughout history. Humanity has therefore trying to study, understand [19] and

manipulate light in the same way as we wish our own existence. Nowadays, light has been used

to advance people’s lives in various ways, one important example of which is transferring infor-

mation. From fiber broadband to radio waves bringing live sports broadcasting in our homes, light

has become an indispensable element in our modern life styles. As an emerging tool, structured

light has the potential to further shape our life in the near future.

Structured light refers to the generation and application of a customised light field, including

intensity, phase and polarisation. Although the idea of controlling light has existed for long time,

precise manipulation of light was not achieved until the advent of laser in 1960s. The emergence

of SLMs (spatial light modulators) and DMDs (Digital micromirror devices) has also led to ad-

vances in more efficient and meticulous manipulation of light beams [3]. During recent decades,

structured light has produced many applications across various disciplines. For example, the vary-

ing intensity provides the gradient force to create optical traps and tweezers, which are now an

essential toolkit to manipulate matter at nano scale [4, 5, 6, 7, 8]. Because structured light pos-

sesses more degrees of freedom, which feeds the exponentially growing demand of data capacity,

it has also gained traction in the optical communication community in recent years. Both classical

optical systems [20, 21, 22, 23] and quantum optical systems [24, 25, 26] have demonstrated that it

is possible to utilise structured light for effective communication. This makes it possible to realise

high-dimensional QKD (quantum key distribution) [9] and therefore further increase data security.

One of the important elements in structured light is vortex beams. There have been numerous

studies of vortices since the early 1950 [27] [28]. The first systematic study, however, was not

carried out until 1974 by two groups of people: Nye and Berry, and Hirschfelder [29][30]. Al-

though vortices have been known to people from then, people did not connect this wave mode with

orbital angular momentum until 1992 by Allen [31]. This leads to a new intense era of studying

vortex beams both theoretically and experimentally, which laid the foundations for the versatile

applications of structured beams as we noted previously.
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In this chapter, we will start with Maxwell’s equations in free space to obtain the Gaussian

beams as solutions in the paraxial limit in Section. 2.1. In Section. 2.2 we will review the concept

of definition of polarisation, before introducing vector beams in Section. 2.3.

2.1 Paraxial Optics

2.1.1 Wave Equations

We are mainly interested in light travelling in free space. In free space, the electric displacement

D and the magnetic field strength H are related to the electric field E and the magnetic field B
by [32]:

D = ε0E; (2.1)

H =
B
µ0
, (2.2)

where ε0 and µ0 are fundamental physical constants, namely, the permittivity and permeability

of free space. As an electromagnetic wave, light is best described by Maxwell equations. The

derivative form of the full Maxwell equations is [32]:

∇ · D = ρ; (2.3)

∇ · B = 0; (2.4)

∇ × E = −
∂B
∂t

; (2.5)

∇ ×H = J +
∂D
∂t
, (2.6)

where ρ and J are the electric charge and current density respectively. In free space where there

are no charges or currents, we can replace the full Maxwell equations by the following form [32]:

∇ · E = 0; (2.7)

∇ · B = 0; (2.8)

∇ × E = −
∂B
∂t

; (2.9)

∇ × B = ε0µ0
∂E
∂t
. (2.10)

From Eq. 2.5 and Eq. 2.6 we can obtain the full vector wave equation:

∇ × (∇ × E) = −µ0ε0
∂2E
∂t2 . (2.11)

According to Lagrange’s formula of vector cross-product identity [33], this is explicitly:

∇ (∇ · E) − ∇2E = −µ0ε0
∂2E
∂t2 , (2.12)

Because we are mainly focusing on cases that light travelling in a source-free space, in which the

10
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above wave equation simplifies to:

∇2E − µ0ε0
∂2E
∂t2 = 0, (2.13)

where 1/(µ0ε0) = c2, indicating the velocity of light in vacuum. The simplest solutions to the

above equation are the complex monochromatic wave solutions:

E(r, t) = E0ei(k·r±ωt), (2.14)

where E0 is the initial electric field at the origin and ω = 2π f is the frequency of the wave. From

Eq. 2.7 and 2.8 we obtain the relationship that:

k · E0 = k · B0 = 0. (2.15)

This means that both the electric field and the magnetic field are oscillating in the cross-sections

perpendicular to the wave propagating direction. The wave vector k indicates the direction of the

propagation of the wave with a magnitude of |k| = 2π/λ. The relationship between k and ω is:

ω

k
= c. (2.16)

The solution with k · r − ωt, the wave travels in the same direction as k [32]. Substituting this

solution into the wave equation Eq. 2.13, it becomes the so-called Helmholtz equation [32]:

∇2E + k2E = 0. (2.17)

We will first concentrate on the scalar form of the Helmholtz equation. This can be obtained by

choosing a constant direction g for the electric field [34]:

E(r) = gΨ(r)e−iωt. (2.18)

In this way, the scalar Helmholtz equation can be expressed as:

∇2Ψ + k2Ψ = 0. (2.19)

2.1.2 Paraxial approximation

The paraxial approximation is essential to Gaussian optics: an elementary theory in which only

rays and points in the immediate neighbourhood of the axis are considered [35]. It provides an

adequate description of laser optics in real life [36]. Mathematically, this means the inclination

angle between the wave fronts and the axis is sufficiently small and consequently eligible for

small angle approximation. For a beam propagating in the z direction, this indicates that the x and

y components of the wavevector are very small compared with k:√
k2

x + k2
y

k
� 1, (2.20)
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or alternatively:

kz ≈ k −
k2

x + k2
y

2k
, (2.21)

Without losing generality, a monochromatic optical wave beam propagating in the z direction

is considered here:

Ψ(r) = u(x, y, z)eikz, (2.22)

where u(x, y, z) is referred to as the complex envelope as it describes the shape of the beam [37].

Because the beam is restricted to a certain distance around the z-axis based on the definition of

paraxial beams, the z-dependence of u is essentially due to diffraction effects. Therefore, u is

generally slow varying in z direction compared with the transverse variation in the width of the

beam [36]. The slowing varying envelope approximations corresponds to working in the regime

with
∂2u
∂z2 � k2u, k

∂u
∂z
, (2.23)

If we employ the relation in eq. 2.16 and neglecting the term ∂2u/∂z2, the scalar Helmholtz equa-

tion Eq. 2.17 reduces to the paraxial equation:

∇2
⊥u + 2ik

∂u
∂z

= 0, (2.24)

where ∇2
⊥ denotes the derivatives with respect to the transverse plane [38].

The derivative of a paraxial beam in the transverse direction is nonzero, which indicates that

the wavefront of a paraxial wave is not a plane wave. This means that the local wave vectors which

are normal to the local wavefront are not exactly parallel to the propagation direction. However,

this does not contradict Maxwell’s equations as the corresponding electric and magnetic fields are

still divergenceless [36, 39].

Solutions to the paraxial equations including Laguerre-Gaussian and Hermite-Gaussian beams

[38] and can be obtained by separating variables. One particular example used in this thesis is the

Laguerre-Gaussian beams.

2.1.3 Gaussian beam

Solutions to paraxial wave equation have been widely used in laser optics. Hermite-Gaussian

beams and Laguerre-Gaussian beams are two of the most established examples [40]. While both

of these form a set of complete solutions, they correspond to physical systems with rectangular

and cylindrical symmetries respectively. In this thesis, the main examples are constructed by

Laguerre-Gaussian beams.

Laguerre-Gaussian beams are solutions to paraxial wave equations in cylindrical coordinates:(
1
ρ

∂

∂ρ
+
∂2

∂ρ2 +
1
ρ2

∂2

∂φ2 + 2ik
∂

∂z

)
u`p = 0, (2.25)

where ρ is the radial coordinate and φ is the azimuthal or polar angle. The normalised form of
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Laguerre-Gaussian modes are given by:

u`p =
CLG
`p

w(z)

ρ√2
w(z)

|`| L|`|p

(
2ρ2

w(z)2

)
exp

(
−

ρ2

w(z)2

)
exp

(
−ik

ρ2

2R(z)

)
exp (i`φ) exp

(
i(2p + |`| + 1)ξ(z)

)
.

(2.26)

In this form, ` is the winding number, characterising the number of phase dislocations in the wave

Figure 2.1 Gaussian beam width w(z) as a function of the distance z along the propagation
direction of the beam and beam waist of w0. The ‘edge’ of the beam, which is outlined in blue,
is considered to be where its radius r = w(z). At w(z), the intensity has dropped to 1/e of its
on-axis intensity. The beam waist w0 is considered to be the narrowest plane, dependent on
the wavelength and the curvature of the beam. Typically for paraxial beams, w0 is larger than
2λ/π ≈ 10−6m. ZR is the Rayleigh range (the distance along the beam propagation direction
from the waist to where the area of the cross section is doubled) and is typically of wavelength
size.

front of the beam, CLG
lp =

√
2p!

π(p+|`|)! is the required normalization constant; L|`|p (x) is the generalised

Laguerre polynomial; p = 0, 1, 2, ... is the radial quantum number; w0 is the beam waist where the

beam is at its narrowest; w(z) = w0

√
1 + z2

z2
R

is the beam width; R(z) = z(1 + z2
R/z

2) is the radius

of curvature of wavefronts, ZR is the Rayleigh range (the distance along the beam propagation

direction from the waist to where the area of the cross section is doubled), and ξ(z) = arctan(z/zR)

is the Gouy phase, as shown in Figure. 2.1.

The Laguerre-Gaussian beams are orthonormal in both the mode index p and the azimuthal

index ` over the radial coordinate ρ and the azimuthal angle φ respectively:∫ θ0+2π

θ0

dφ
∫ ∞

0
ρdρu`p

(
um

q

)∗
= δpqδ`m; (2.27)

where θ0 is an arbitrary starting angle and δ denotes the Kronecker-delta function. The orthogo-

nality of the p mode is based on the orthogonality relation of generalised Laguerre polynomials

[41] whereas that of the ` mode owes to the 2π periodic property of eix. One particular physical

implication of the mode index p and ` is on the intensity profile of the beams as shown in Fig. 2.2.

Beams with a non-zero value of ` have an undefined phase on the z axis with also zero inten-

sity there. The indices p and ` determine the number of concentric rings and intertwined helical

wavefronts respectively.

The phase term ei`φ in Laguerre-Gaussian beams is associated with the idea that each photon

carries ~` of orbital angular momentum [31]. Therefore, ` is also called the topological charge

13



Sijia Gao

(a) ` = 0, p = 0. (b) ` = 0, p = 3. (c) ` = 1, p = 0.

(d) ` = 1, p = 1. (e) ` = 3, p = 0. (f) ` = 3, p = 3.

Figure 2.2 Intensity profiles of different modes of Laguerre-Gaussian beams generated using
Mathematica.

of a beam. Vortex beams are beams containing vortices, i.e. phase singularities or dislocations of

phase fronts. This orbital angular momentum is an intrinsic value [42, 43], in contrast with the

mechanical orbital angular momentum of point particles.

It is also common to link the phase factor in Laguerre-Gaussian beams to optical vortices [44].

Optical vortices are phase singularities and have zero intensity at its centre. Typically, as shown

in Fg. 2.2b to 2.2f, optical vortices exist in the centre of the beam profile. The topological charge

` can also be recovered from a closed path integral around the phase singularity [45]:

` =
1

2π

∮
ds · ∇ arg(Ψ), (2.28)

where arg(Ψ) is the phase factor and the non-vanishing part in arg(Ψ) after the integration is `φ in

Laguerre-Gaussian beams.

Recent developments have demonstrated that propagating electrons can also possess vortices

as well. This is clear from the similarity of form between the Schrödinger equation and the paraxial

wave equation in Eq. 2.24:

i~
∂ψ

∂t
+
~2

2m
∇2ψ = 0. (2.29)

In a similar form to optical beams, it can be described by a phase singularity in the wave function

of the form ei`φ [46, 47, 48, 49]. Although the existence of vortex beams is obvious in low en-

ergy regime when electrons can be described by the Schrödinger equation, it is not unanimously

agreed that they exist in higher energy regime [50, 51, 52]. The fact that the vortex structure is a
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topological feature leads to the assumption that it should not change or vanish just by moving the

electron beams to a higher energy regime. Although high energy electron beams are not of much

practical use yet, let alone high energy vortex beams, the study itself at least will provide us with

motivation for experimental works in this area.

2.2 Polarisation

The spatial variation of the paraxial mode in the transverse plane requires the extreme of a small

electric field component in the z direction. Without this, the transversality condition, ∇ · E = 0,

would be violated. Hence, the full electric filed for our paraxial beam has the form of:

E(r, t) = ei(kz−ωt)
(
u(r)

(
E0

x x̂ + E0
y ŷ

)
+ Ez(r)ẑ

)
, (2.30)

where x̂, ŷ and ẑ are unit vectors in the corresponding directions and E0
x, E0

y are constants. The

transversality condition in Eq. 2.7 has the form:

∂u
∂x

E0
xeikz +

∂u
∂y

E0
y eikz +

∂(Ezeikz)
∂z

= 0, (2.31)

which implies that Ez must satisfy the equation:

ikEz +
∂Ez

∂z
= −E0

x
∂u
∂x
− E0

y
∂u
∂y
. (2.32)

The variation of Ez in the z direction in the paraxial regime, ∂Ez
∂z , is very slow compared with

the wavelength scale variation associated with the term ikEz. Therefore, we can neglect the z-

derivative of E − z to obtain an approximated expression of Ez as:

Ez ≈
i
k

(
E0

x
∂u
∂x

+ E0
y
∂u
∂y

)
(2.33)

The typical length scale on which u varies with respect to x or y is the beam waist, w(z), and hence:

|Ez| ≈
λ

2πw(z)

√
|Ex|

2 + |Ey|
2 (2.34)

It follows that the z-component of the electric field is less in magnitude than the transverse com-

ponent by the ratio of the wavelength to the beam waist [39]. This is necessarily a very small

quantity in the paraxial regime. Therefore, we can discuss the polarisation (the electric field direc-

tion) solely in terms of the electric field component in the transverse plane.

Polarization describes the oscillations of the electric and magnetic fields of a transverse wave [32].

As stated above, without losing generality, we choose the direction of the propagation in the z di-

rection. Because we can approximate the electric and magnetic fields to be perpendicular to the

propagation direction, only the x and y components of E and H field are non-zero. In order to

consider the polarisation ellipse, namely, the end curve formed by the end points of the electric
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field vector at a given point, the electric field can be described by:

Ex = a1 cos (τ + δ1);

Ey = a2 cos (τ + δ2);

Ez = 0,

(2.35)

where τ = ωt − kz. Using multiple angle addition functions it can be shown that the following

relation exists between Ex and Ey [35]:

(
Ex

a1

)2

+

(
Ey

a2

)2

− 2
Ex

a1

Ey

a2
cos δ = sin2 δ, (2.36)

where δ = δ2 − δ1. This relation demonstrates that the locus of the points whose coordinates are(
Ex, Ey

)
from an ellipse as shown in Fig. 2.3, where η and ζ represents the set of axes along that

of the ellipse. We can define the components along the new set of axes as [35]:

Figure 2.3 The polarisation ellipse.

Eζ = Ex cosψ + Ey sinψ = a cos (τ + δ0);

Eη = −Ex sinψ + Ey cosψ = b sin (τ + δ0),
(2.37)

where, without losing generality, a ≥ b. Here, we introduce two auxiliary angles [35]:

tanα =
a2

a1
; tanχ =

b
a
, (2.38)

where α ∈ [0, π/2] denotes the ratio between the x and y components of the electric field and

χ ∈ [0, π/4] specifies the shape and orientation of the polarisation ellipse. To summarise, the

relationship between the principle semi-axes of the polarisation ellipse and its orientation with
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respect to the x axes is as following:

a2 + b2 = a2
1 + a2

2;

tan (2ψ) = tan (2α) cos δ;

tan (2χ) = sin (2α) sin δ.

(2.39)

It is necessary to use three independent parameters to describe a polarisation state out of these

variables [35].

2.2.1 Linear and circular polarisation

There are two kinds of polarisation states that are of particular interest here: the linear polarisation

and the circular polarisation, namely when the polarisation ellipse reduces to a line or a circle.

The linear polarisation typically happens when the ratio between the x and y components of

the electric field remains a constant throughout propagation. If either Ex or Ey is zero, then the

polarisation state is referred to as the horizontal polarisation and the vertical polarisation respec-

tively, demonstrated in Fig. 2.4a and 2.4b. When both of these two components are non-zero,

according to Eq. 2.35, a linear polarisation indicates:

δ = mπ;
Ey

Ex
= (−1)m a2

a1
, (2.40)

where m is an integer [35]. Typically, when m is an even number, the polarisation state is referred

to as the diagonal polarisation as shown in Fig. 2.4c; if m is an odd number, it is an anti-diagonal

polarisation shown in Fig. 2.4d.

We can deduce two essential criteria for polarisation ellipses to reduce to a circle:

a1 = a2 = a; δ = ±
π

2
+ 2nπ, (2.41)

where n is an integer. Conventionally, the handedness of the polarisation is defined when an ob-

server is looking towards the direction from which the light is coming. Specifically, this indicated

the end points of a right-handed polarisation is rotating clockwise, as demonstrated in Fig. 2.4e,

indicating δ = π
2 + 2nπ. For left-handed polarisation all the characteristics would be the opposite,

namely, rotating anti-clockwise and δ = −π2 + 2nπ [35].

Another way to represent polarisation is using the Jones vectors. If we rewrite Ex and Ey in

the complex representation:
Ex = <(Ex) = <

(
a1e−i(τ+δ1)

)
;

Ex = <
(
Ey

)
= <

(
a2e−i(τ+δ2)

)
,

(2.42)

we can define its polarisation state using the Jones vector:a1e−i(τ+δ1)

a2e−i(τ+δ2).

 (2.43)

Based on the previous discussion, we can define the right-handed polarisation by the vector |R〉;

the left-handed polarisation by |L〉; the horizontal polarisation by |H〉; the vertical polarisation by
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(a) a2 = 0: horizontal polarisation. (b) a1 = 0: vertical polarisation. (c) δ = 2mπ: diagonal polarisation.

(d) δ = π + 2mπ: anti-diagonal
polarisation.

(e) δ = π
2 + 2mπ: right-handed

polarisation.
(f) δ = − π

2 + 2mπ: left-handed
polarisation.

Figure 2.4 Three sets of orthogonal polarization directions

|V〉; the diagonal polarisation by |D〉; the anti-diagonal polarisation by |A〉 as following [53, 54]:

|R〉 =

10
 ; |L〉 =

01
 ; |H〉 =

1
√

2

11
 ; |V〉 =

−i
√

2

 1

−1

 ; |D〉 =
1
√

2

1i
 ; |A〉 =

−i
√

2

 1

−i

 , (2.44)

where we have chosen the phase so that:

|R〉 =
1
√

2
(|H〉 + i|V〉) =

1
√

2
(|D〉 + i|A〉)

|L〉 =
1
√

2
(|H〉 − i|V〉) =

1
√

2
(|D〉 − i|A〉) .

(2.45)

2.2.2 Stokes parameters and the Poincaré sphere

G.G Stokes introduced the set of parameters commonly used to unambiguously describe polarisa-

tion states nowadays, i.e. the Stokes parameters. There are four of these [35]:

s0 = a2
1 + a2

2;

s1 = a2
1 − a2

2;

s2 = 2a1a2 cos δ;

s3 = 2a1a2 sin δ,

(2.46)
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from which we can obtain the relation:

s2
0 = s2

1 + s2
2 + s2

3. (2.47)

Therefore, only three out of the four Stokes parameters are independent. Among them, s0 is related

to the intensity of the wave while s1, s2 and s3 are related to the polarisation ellipse [35]:

s1 = s0 cos (2χ) cos (2ψ);

s2 = s0 cos (2χ) sin (2ψ);

s3 = s0 sin (2χ).

(2.48)

This suggests a geometric representation of polarisation involving a unit sphere. By mapping s1,

s2 and s3 on to the Cartesian coordinates, and associate angles χ and ψ to the spherical angular

coordinates, we can establish a bijective relation between every possible polarisation in paraxial

beams of a given intensity and all the points on the unit sphere as shown in Fig. 2.5.

Figure 2.5 The Poincaré sphere.

As stated in Eq. 2.39, angle χ is related to δ. Therefore, on the Poincaré sphere, the north

pole represents the right-handed polarisation while the south pole corresponds to the left-handed

polarisation. In the same way, based on Eq. 2.38 and 2.39, the horizontal, vertical, diagonal and

anti-diagonal polarisation states are placed on the equator, corresponding to the crossover points

of s1 and s2 axes on the sphere respectively. Other points on the equator correspond to all the
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possible linear polarisations and the rest of the points on the sphere represent all the possible

elliptic polarisations.

Stokes parameters can also be calculated from Pauli matrices using Jones’s vectors [40]. Pauli

matrices were a set of 2 × 2 unitary matrices defined by Wolfgang Pauli:

σ1 =

0 1

1 0

 ;σ2 =

0 −i

i 0

 ;σ3 =

1 0

0 −1

 . (2.49)

It is clear that |H〉 and |V〉 are eigenvectors of σ1 with eigenvalue of 1 and −1 respectively; |A〉 and

|D〉 are eigenvectors of σ2; |R〉 and |L〉 are eigenvectors of σ3. Namely:

σ1|H〉 = |H〉; σ1|V〉 = −|V〉;

σ2|A〉 = |A〉; σ2|D〉 = −|D〉;

σ3|R〉 = |R〉; σ3|L〉 = −|L〉.

(2.50)

Therefore, if we use |P〉 to represent an arbitrary polarisation state, Stokes parameters can be

calculated from Pauli matrices by:

si = 〈P|σi|P〉, (2.51)

where i = 1, 2, 3.

2.2.3 Non-paraxial beams

For non-paraxial beams, the z component of the electric field is no longer small comparing with

Ex and Ey anymore. However, in general the end point of the electric field still describes an

ellipse. The difference between the polarisation in paraxial beams and non-paraxial beams is that

the planes where the ellipse lies in now varies from point to point [35, 45].

We use a general vector V(ρ, t) to represent the electric field:

Vx(ρ, t) = a1(ρ) cos (ωt − g1(ρ));

Vy(ρ, t) = a2(ρ) cos (ωt − g2(ρ));

Vz(ρ, t) = a3(ρ) cos (ωt − g3(ρ)),

(2.52)

where ai and gi are all real functions. Using trigonometric addition formulas this expression can

be rewritten into:

Vi(ρ, t) = pi(ρ) cos (ωt) + qi(ρ) sin (ωt), (2.53)

where using i in place of x, y and z and

pi(ρ) = ai(ρ) cos (gi(ρ));

qi(ρ) = ai(ρ) sin (gi(ρ)).
(2.54)

By constructing two new vectors: p = (px, py, pz) and q = (qx, qy, qz), we can express V(ρ) in the

following complex representation:

V(ρ, t) = <(U(ρ)eiωt), (2.55)

20



Chapter 2

where U(ρ) = p(ρ) + iq(ρ).

We can choose a parameter ε such that a new set of vectors: anon and bnon are perpendicular to

each other,

p(ρ) + iq(ρ) = (anon(ρ) + ibnon(ρ))eiε . (2.56)

In other words:
(p cos ε + q sin ε) · (−p sin ε + q cos ε) = 0, (2.57)

which indicates:

tan (2ε) =
2p · q
|p|2 − |q|2

. (2.58)

In this way, we can rewrite the electric field V as:

V(ρ, t) = <
(
anon(ρ) + ibnon(ρ))e−i(ωt−ε)

)
. (2.59)

At a given point r0, we can choose a set of coordinate such that its x and y axes align with anon and

bnon.

Therefore, the end points of the electric field describe an ellipse in a plane defined by p(r0) and

q(r0) the same way as in the paraxial beams. The difference is this plane varies at different points

in space for non-paraxial beams. Because this thesis mainly focuses on the paraxial skyrmionic

beams, we will not be discussing generalised Stokes parameters for non-paraxial beams here.

2.3 Vector beam

The solutions we derived in Sec.2.1.1 are to the scalar Helmholtz equation, which corresponds

to paraxial beams with spatially homogeneous polarisation. However, in structured light, we are

interested in spatially varying polarisations [55, 56]. Therefore, instead of choosing a constant

polarisation t with respect to ρ for the electric field as we did in Eq. 2.18, the polarisation should

be dependent on the position as well. Typically, this can be done by expressing a vector beam by

superposing multiple modes with different spatially homogeneous polarisations:

E(r, t) =
∑

giΨi(r)e−iωit. (2.60)

This is because any linear combinations of solutions to scalar Helmholtz equation should satisfy

the vector Helmholtz equation Eq. 2.17.

We here provide two examples to produce vector beams by superposing scalar Laguerre-

Gaussian beams. The first example is to construct a radially polarized beam which is shown

in Fig 2.6a:

ur = ur0(ρ, z)eikz ρ̂, (2.61)

where ρ̂ can be expressed as:

ρ̂ = cos(φ)x̂ + sin(φ)ŷ. (2.62)

We start with a Laguerre-Gaussian beam with mode p = 0 and ` = 1 that has a uniform

left-handed polarisation. Then it is superposed with another Laguerre-Gaussian beam with mode
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(a) Example beam with radial polarisation. (b) Example beam with azimuthal polarisation.

Figure 2.6 Examples of beams with spatially varying polarisations: vector beams.

p = 0 and ` = −1 that has a uniform right-handed polarisation:

uspp1 = u1
0|L〉 + u−1

0 |R〉. (2.63)

According to the realtionship we introduced in Jones vector notation in Eq. 2.45, if we represent

the horizontal polarisation as in the x direction and the vertical polarisation in the y direction this

can be further simplified into:

uspp1 =
U1

0
√

2

(
eiφ (x̂ − iŷ) + e−iφ (x̂ + iŷ)

)
, (2.64)

where U1
0 represent the non φ related part of the beam. Expanding the terms in the bracket we

obtain:

uspp1 =
U1

0
√

2

((
cos (φ) + i sin (φ)

)
(x̂ − iŷ) +

(
cos (φ) − i sin (φ)

)
(x̂ + iŷ)

)
=
√

2U1
0

(
cos (φ)x̂ + sin (φ)ŷ

)
=
√

2U1
0 ρ̂.

(2.65)

Comparing with Eq. 2.61, we showed that by superposing two scalar beam it is possible to produce

a vector beam with radial polarisation.

Another example is to construct an azimuthally polarised beam with scalar beams as shown in

Fig 2.6b. The general form of this type of beam is:

ua = ua0(ρ, z)eikz φ̂ (2.66)

where φ̂ can be rewritten as:

φ̂ = − sin(φ)x̂ + cos(φ)ŷ. (2.67)

Consider the same two Laguerre-Gaussian modes as we did for radially polarized beam but with
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an addition global phase of −π/2:

uspp2 = e−
iπ
2
(
−u1

0|L〉 + u−1
0 |R〉

)
. (2.68)

Similarly to the previous superposed beam, this can be simplified into:

uspp2 =
U1

0
√

2
e−

iπ
2
(
−eiφ (x̂ − iŷ) + e−iφ (x̂ + iŷ)

)
= −i

U1
0
√

2

(
−

(
cos (φ) + i sin (φ)

)
(x̂ − iŷ) +

(
cos (φ) − i sin (φ)

)
(x̂ + iŷ)

)
= −i

√
2U1

0

(
− i sin (φ)x̂ + i cos (φ)ŷ

)
=
√

2U1
0

(
− sin (φ)x̂ + cos (φ)ŷ

)
=
√

2U1
0 φ̂.

(2.69)

Therefore, this shows that by superposing two orthogonally polarised beams we can obtain a vec-

tor beam with azimuthal polarisation. By demonstrating those two examples, we showed that

spatially varying polarised beams can be constructed by superposing spatially homogeneous po-

larized beams with different spatial mode.

In this chapter we have reviewed the Maxwell equations and showed how paraxial wave so-

lutions are obtained from them. We also introduced polarisation and showed how to construct

cylindrical vector beams using scalar beams. This is the foundation of construction of skyrmionic

beams. In the next chapter, we are going to introduce skyrmions and the related topological con-

cepts.
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Skyrmions

Point set topology is a disease from which the human race will soon recover.

—Henri Poincaré, Quoted in D MacHale, Comic Sections (Dublin 1993)

3.1 Introduction

Skyrmions were originally proposed by Tony Skyrme in the 1960s as topological solitons in a

nonlinear field theory [57, 58]. Although not being accepted in the mainstream particle theory,

it was adopted by the condensed matter community for spin structures in magnetic materials.

This idea was later named magnetic skyrmions, which are topologically protected quasiparticles.

Not only have magnetic skyrmions been experimentally realised [59, 60, 61], their creation and

annihilation has also been demonstrated [62]. Therefore, one of the various applications proposed

for magnetic skyrmions is the next generation of information storage devices [63]. Features that

are analogous to skyrmions appear, also, in the theory of superfluids, especially in the A phase of

liquid 3He [64, 65, 66].

We propose, here, a brief introduction to skyrmions as they appear in other branches of physics.

This shall act as a prelude to our own work on skyrmions in paraxial optics. Some of the ideas

introduced here, notably in the theory of superfluids, find ready application of paraxial optical

skyrmions.

In this chapter, we will start with solitons in Section. 3.2. Before we introduce the original

Skyrme’s theory in Section. 3.4, we will first review the idea of topological solitons in Section. 3.3.

Then, closely related to skyrmions, the concepts of magnetic skyrmions and superfluids are intro-

duced in Section. 3.5 and Section. 3.6, respectively. Lastly, in Section. 3.7, we will briefly review

the emerging field of optical skyrmions before detailing the plan for the remainder of the thesis.

3.2 Solitons

As stated above, skyrmions were introduced as topological solitons and therefore we start with a

brief introduction to solitons and topological solitons. In 1834, John Scott Russell noticed some-

thing unexpected in the Union Canal in Scotland, for what he named as the ”Wave of Translation”.

In his own words, he described the event as:
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I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped – not so the mass of water in the

channel which it had put in motion; it accumulated round the prow of the vessel

in a state of violent agitation, then suddenly leaving it behind, rolled forward with

great velocity, assuming the form of a large solitary elevation, a rounded, smooth and

well-defined heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving

its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the

windings of the channel. Such, in the month of August 1834, was my first chance

interview with that singular and beautiful phenomenon which I have called the Wave

of Translation. [67]

This is the first written observation of a soliton, a single wave packet that maintains its shape

and form while propagates. Solitons include the undular tidal bores where the wavefront is fol-

lowed by a train of well-defined free-surface undulations known as whelps, that formed a standing

wave pattern relative to the wavefront [68]. Another example is the undersea internal waves due to

seabed topography that propagate on the oceanic pycnocline, i.e. the layer with the largest density

gradient. Aother more mundane example would be the wave at the interface of oil and vinegar

when a bottle of salad dressing is shaken. It has also been suggested but not widely accepted that

neural signals conduction can be explained as pressure solitons [69].

In optics, solitons are referred to any optical field that remains unchanged during propaga-

tion. This is a result of the balance between the linear and non-linear effect [70]. For example,

optical solitons can be created by dispersion and the non-linear Kerr effect. When a light pulse

with non-zero bandwidth travels through a medium whose refractive index is dependent on the

frequency, the pulse widens during propagation. However, the non-linear Kerr effect, a change in

the refractive index of a material in response to an applied electric field, will squeeze the wave

packet. Therefore, they counteract each other in the change of frequencies, resulting in a temporal

optical soliton. This has been known since the 1970s and have been thus suggested and applied in

telecommunication [71].

3.3 Topological solitons

Topological solitons are a more recent concept that has only been examined by theoretical physi-

cists and mathematicians in the recent half a century. In this context, a topological soliton is

a solution of a system of partial differential equations that are homotopically different from the

vacuum solutions [72]. A topological space is the most general type of a mathematical space that

allows for the definition of limits, continuity, and connectedness [73] and ”homotopy” refers to the

relation between two functions from one topological space that can be ‘continuously deformed’.

i.e. manipulation without tearing, into the other [74].

In the 1960s and 1970s topological solitons were introduced as a novel approach to interpret

some of the solutions of fully non-linear classical field equations. They are different from the
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elementary particle that arises from quantization of the wave-like excitation of the fields. These

quantum excitations are smooth deformations of the field and do not change its topology. There-

fore, typically elementary particles do not possess any topological feature. On the other hand,

the stability of topological solitons emerges from their topological features: when two adjoining

structures are ”out of phase” with each other making it impossible to transition seamlessly be-

tween each other [72]. In other words, this lack of homotopical mapping of the topological soliton

onto vacuum solutions makes them not only stable against perturbation, but also stable against

spontaneously decaying into topologically trivial states.

To get an intuition about topological solitions let us look at the twisted coiled telephone cords.

They are usually coiled clockwise yet some parts of it would end up coiling counterclockwise

after years of usage. The transition loop joining the two directions of coiling would be a larger

loop which is neither clockwise nor counterclockwise. This is an example of a topological soliton

demonstrating the same separation between two spaces as exhibited in more complex examples.

An integer N is normally used to characterise the topological feature of a field. This value

is referred to as the topological charge or the general winding number of the field. One can also

identify an anti-soliton with a topological charge of (−N) as a result of a reflection transformation

acting on the soliton of charge N. Solitons with N > 1 are called multi-soliton states which are

sometimes energetically favourable to decay into N ground soliton states of topological charge 1

or a classical bound state of N solitons [72].

3.4 Skyrmions

The Skyrmion is the first example of a topological soliton particle model [72]. The Skyrmion

model was first introduced by Tony Skyrme in 1962 within a field theoretical framework, to un-

derstand spin 1/2 nucleons and the three pions (consisting of a quark and an antiquark). Skyrme

believed that the nucleus is moving in a nonlinear, classical pion medium, resulting in a special

form of Lagrangian with a soliton solution which could be used to explain the stability of hadrons.

He proposed that if hadrons are described as topological defects of a quantum vector field, they

could be characterized by a topological integer (later known as the skyrmion number, n) which

would not change through any deformation of the field [75]. In his theory, each singularity in the

field contributes one unit to the baryon number [57].

Although this idea is not part of the mainstream particle theory, it has been expanded as

topologically-protected excitation where the field takes values corresponding to a sphere [76] and

has since found wide application in many areas of physics including magnetic materials [77, 78,

79], 2D photonic materials [80] and in the study of fractional statistics [81]. Skyrmions also have

been applied in superfluid research [82, 83], a liquid-like state in which matter flows with zero vis-

cosity [64, 84, 65]. Optical skyrmions have been observed in optics by the controlled interference

of plasmon polaritons [10, 11]. Recently, it has been experimentally demonstrated that optical

skyrmions also exists in free propagating beams [85, 86].

The most important distinction of Skyrme’s theory from others is that, angular variables are

used to represent the fundamental field quantities instead of linear variables. The quantum vector

field in Skyrme’s theory is a vector in a four-dimensional iso-space (a form of spacetime that
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rotates around some certain axis). The components of this vector φi are real fields and constrained

by
4∑

i=1

φ2
i = 1. (3.1)

These four fields can also be described as a spinor K, from which the angular variables Θi can be

defined by specifying a rotation Û to obtain K from a standard spinor (0, 1) [72]:

K = Û(0, 1) = e
i
2σiΘi(0, 1), (3.2)

whereσi are Pauli matrices and note that we are using Einstein repeated index summation through-

out this thesis.

The rotation operators in the four-dimensional space form two independent three-dimensional

rotation groups: one is identified with isospin; the other is associated with hypercharge or the

quantum number known as ‘strangeness’ [87].

In his earlier work, Skyrme introduced a simpler model with one dimension and one angu-

lar variable [87]. In this model, the number of sources, in other words the particle number, is

proportional to the total change in the angle variable θ across the one dimension x as:

θ(∞) − θ(−∞) =

∫ ∞

−∞

∂xθ dx (3.3)

By extending this model to four dimensional space, Skyrme introduced the concept of the

skyrmion current which is independent of the particular angular representation. Using the Levi-

Civita symbol and the Einstein summation convention, the skyrmion current is defined as:

Nλ =
i

12π2 εαβγδελµνρφα
(
∂µφβ

) (
∂νφγ

) (
∂ρφδ

)
, (3.4)

from which we can extract the conservation law:

∂λNλ = 0. (3.5)

The above conservation law is a consequence of Eq. 3.1 which imposes the amplitude summation

constraint on φi.

3.5 Magnetic skyrmions

Based on the original 3 spatial +1 temporal dimensional skyrmion model, the (2 + 1) dimensional

solution, i.e. the Baby Skyrmion model, is of more interest to the condensed matter community.

This is present in quantum Hall ferrogmagnets, [60] namely magnetic skyrmions. This is because

the energy expression of the Baby Skyrmion model is very similar to that of the quantum Hall fer-

romagnets. Magnetic skyrmions can also be understood as quasi particles. They are topologically

non-trivial, point-like regions of magnetisation, localised in a two-dimensional space, which have

been predicted [88][89][90] and experimentally observed [91][92][93]. They typically exist as

planar analogues of skymrions. Magnetic skyrmions can also be extended into three-dimensional
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space as skyrmion strings [94, 95].

Within an isolated skyrmion, the spin m rotates smoothly in a three-dimensional space with

a fixed norm: |m| = 1. Therefore, its order parameter space can be envisioned as a unit sphere,

S 2. This unit sphere can be stereographically projected onto the physical space R2 with a missing

point, i.e. ρ → ∞. This is shown in Fig. 3.1a and 3.1b using an example of the Neel skyrmion,

which we will introduce in detail in the following paragraph. The skyrmion number for magnetic

skyrmions is defined as the number of spin configurations wrapping the unit sphere and can be

obtained by the total flux of magnetisation m on a surface [96]:

n =
1

4π

∫
S

m ·
(
∂m
∂x
×
∂m
∂y

)
dxdy, (3.6)

where S is the area of the magnetic skyrmion.

One main mechanism contributing to the stability of magnetic skyrmion structure is the com-

petition between the Dzyaloshinskii-Mpriya and ferromagnetic exchange interactions [97, 98, 99].

The former interaction induces an alignment perpendicular to the spin alignment and the latter

favours a colinear alignment. Therefore, the magnetisation vectors which are oriented in the op-

posite of the external field cannot ‘flip around’ to align themselves with the rest of the atoms in the

film, without overcoming an energy barrier. As we have previously discussed, the integer topolog-

ical charge of a soliton implies that the soliton is robust against small deformations and cannot be

continuously deformed into a topologically trivial state. Therefore, for magnetic skyrmions with

non-zero skyrmion number, i.e. n , 0, they cannot spontaneously deform into n = 0 states.

For magnetic skyrmions, we can use the polar coordinates (ρ cos(ϕ), ρ sin(ϕ)) to describe the

physical position of a spin with ρ as the distance from the centre of the magnetic skyrmion. Be-

cause of the stereographic mapping between the unit sphere and the magnetic spin discussed be-

fore, the orientation of the spin m can be expressed using two angular variables θ and φ. As the

azimuthal angle, θ is only dependent on ρ whereas φ is a function of ϕ:

φ = nϕ + ϕ0, (3.7)

in which n is the vorticity in some literature, corresponding the number of wrapping on the unit

sphere and ϕ0 is referred to as the helicity. Magnetic skyrmions are the configurations with n > 0

as shown in Fig. 3.1a 3.1c, whereas the solutions with n < 0 are referred to as anti-skrymions as

depicted in Fig. 3.1d [100]. One way to understand this is that, at a fixed distance from the centre,

the spin would wind n times along the travelling direction. In an anti-skyrmion, it means that

the spin direction rotates exactly the opposite of the travelling direction along a physical circular

contour. For skyrmions with n = 1, there are two distinctive types of skyrmions: the hedgehog

or Neel skyrmion (see Fig. 3.1a) with helicity ϕ0 = 0 or π; and the chiral or Bloch skyrmion in

Fig. 3.1c with helicity ϕ0 = π/2 or π/3. The magnetisation m in Neel skyrmions points along the

radial direction, ρ whereas that in Bloch skyrmions exhibits a phase difference between it and the

radial direction [101].

Magnetic skyrmions have attracted increasing research interest due to their potential applica-

tions in various fields, especially in data storage. The fact that magnetic skyrmions can be moved

with spin torques associated with spin polarized currents, makes them a compelling candidate
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(a) A ‘Neel’ or hedgehog magnetic skyrmion with
skyrmion number n = 1. Its magnetisation is along
the radial direction.

(b) A ‘Neel’ or hedgehog skyrmion with skyrmion
number n = 1. Its magnetisation is along the radial
direction.

(c) A Bloch or chiral skyrmion with skyrmion number
n = 1.Its magnetisation differes from the radial
direction by a phase.

(d) An anti-skyrmion with skyrmion number n = −1.
Its magnetisation has a saddle structure.

Figure 3.1 This is an illustration of different kinds of magnetic skyrmions. The colour coding
here corresponding to the z componenet of the magnetisation with red indicates that mz = 1
and blue refers to mz = −1. a) c) and d) are magnetic skyrmions, corresponding to Neel
type, Bloch type and antiskyrmin respectivly. b) is a 3-dimensional skyrmion and a) is its
stereographic projection.

for potential spintronics applications in data storage and logic devices[102, 103, 93]. It has been

proposed that magnetic skyrmion can be localised down to nanometer scale [90, 104]. Further-

more, they exhibit a particle-like behaviour including the possibility of annihilating skyrmion-

antiskyrmion pairs which can be explored as memory erasing mechanism. All of these properties

lead to the new concept of logical devices [105, 106] with magnetic skyrmions as movable infor-

mation bits in future spintronics devices.

30



Chapter 3

3.6 Superfluid vorticity

A many-particle system is categorized as a quantum liquid if it experiences both quantum mechan-

ical effects and quantum statistical effects. The former criteria requires the de Broglie wavelength

of particles in the system to be of the order of interparticle distance and the latter requires that

the particles able to change positions easily. Therefore, there are mainly two types of quantum

liquids: 1) Electrons in any solid or liquid metal and; 2) Any collection of atoms or molecules that

experiences quantum mechanical effects and is in both liquid and gaseous states simultaneously.

This thesis mainly involves the second kind, which consists of the liquid isotopes of Helium [65].

Two of the simplest form of quantum liquids are 3He and 4He, two stable isotopes of helium.

They have the lowest boiling points of all known substances, 3.19K for 3He and 4.21K for 4He.

The mechanism for those two isotopes remaining liquid comprises of two factors: a) the low

mass of the atoms; and b) the extremely weak forces between atoms due to its closed shell of

two electrons and absence of dipole moments [66]. Under normal low-temperature conditions and

in the absence of irradiation, the helium atom is assumed to be in its ground state. Therefore,

the internal degree of freedom of 3He and 4He solely depend on their nuclear spin. Nuclear spin

depends on the total number of fermions (nucleons plus electrons) in an atom. Therefore, 4He and
3He follow Boson-Einstein statistics and Fermi-Dirac statistics respectively [65].

Both 3He and 4He would exhibit superfluid properties below a certain temperature. A su-

perfluid is a state of matter that behaves like a fluid with zero viscosity. This property allows

superfluids to continue circulating over obstructions and through pores in their containers [64].

Superfluidity and superconductivity are essentially the same property - with the former occurring

in an electrically neutral system and the latter in a charged system. This phenomenon is the result

of BEC (Bose-Einstein condensate) in a Bose system and of Cooper pairing in a Fermi system.

The former applies to 4He while the latter applies to 3He and electrons. [65].
3He can undergo a phase transition (BCS theory) to a state analogous to Boson-Einstein con-

densate through atom pairing (Cooper pairing). There are two theoretical models proposed with

respect to the spin function. In the AM model put forward by Anderson and Morel [107] in 1961,

the spin wave function is |00〉 + |11〉, which corresponds to the first order transition B phase ob-

served experimentally. The other theoretical model is known as the BW model which is proposed

by Balian and Werthamer [108] in 1962 which has the spin function of |01〉+ |10〉, and corresponds

to the second order transition A phase. Balian and Werthamer also managed to prove that BW state

would have a lower energy than the AM model [66].

A quantised value named circulation κ = nκ0 is an important quantity in superfluid. This

quantity is measured through the line integral of the superfluid velocity along any contour wholly

within the liquid:

κ =

∮
vs · dl. (3.8)

If we use a wavefunction |ψ|eiφ to describe a superfluid, the superfluid velocity is directly related

to the gradient of the phase φ. Namely, in 4He it is:

vs =
~

m4
∇φ, (3.9)
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where m4 is the mass of a 4He atom. This leads to the Landau irrotational condition:

∇ × vs = 0. (3.10)

However, in order for the circulation κ to be non-zero as in:

κ =

∫
A
∇φ · dA = nκ0 (3.11)

there must exist either a solid obstacle or a vortex core within the contour.

The topology of quantised vortex lines in 3He is fundamentally different from those in 4He due

to the breaking of symmetry that occurs in 3He while in the superfluid state at low temperatures.

One main difference is in the superfluid velocity vs for the A phase [109]. As a Fermi system 3He

is described by a set of order parameters, including an orthogonal triad l̂, m̂s and n̂s following the

constraint of m̂s × n̂s = l̂ for the orbital degrees of freedom [64]. In the A phase, there exists a

combined gauge-orbital symmetry which means that a rotation in the orbital space by any angle

about the axis l̂ does not change the order parameter. This directly results in breaking the curl-

lessness of φ in Eq. 3.10. Rather, the superfluid velocity becomes:

vs =
h

2m3
(∇φ + msi∇nsi) , (3.12)

where Einstein summation notation is used and 2m3 is the mass of a pair of 3He in Cooper pairing.

The vorticity of the superfluid would follow the Mermin-Ho relation [110]. The vortices in 3He

can be either singular or continuous. The latter is particularly interesting in the context of this

thesis. It indicates the 3He retains A phase everywhere and is categorised by a winding number

vn [111]:

vn =
1

4π

∫
S

l ·
(
∂l
∂x
×
∂l
∂y

)
dxdy, (3.13)

which is identical to the skyrmion number introduced in Eq. 3.6. It is interesting that although this

relation seems obvious and there have been studies about skyrmions in superfluids [112, 82], there

has been a lack of literature pointing to the skyrmionic structure of the inherent vorticity of 3He.

Another interesting property of the continuous vortex line in 3He is that it can terminate at

a singular vortex, which forms a monopole-like object. Because they all exist in the same bulk

of superfluid, this means that it is impossible to separate the singular vortex from its tail. This

vortex line is therefore the string that couples the two monopoles [111]. The superfluid velocity

field around this object is therefore analogous to the gauge-field distribution around the Dirac

magnetic monopole and the continuous vortex line is analogous to the Dirac string linking the

monopoles [113].

3.7 Optical skyrmion

Optical skyrmionic fields were first demonstrated in the evanescent field of a plasmonic sur-

face [10] and subsequently in the local spin field of focused vector beams [11]. However, skyrmionic

paraxial beams still remained an untouched area until we started to investigate them. In previous

studies, it has been shown that because of their topological nature, optical skyrmions could be
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applied in ultrafast nanometric metrology [12], deep-subwavelength microscopy [11], and topo-

logical Hall devices [13].

However, the study of an optical skyrmionic structure in free propagating beams remains an

unexplored area and we wish to understand more about the intrinsic topological structure of vector

beams in this thesis. Recently, after the publication of our first paper on optical skyrmions in

paraxial beams there has been experimentally demonstrated that optical skyrmions also exists in

free propagating beams [85, 86].

In this thesis, we will introduce the concept of optical skyrmions in structured beams, their

associated properties and potential application within experiment. The thesis is organised as fol-

lows: In chapter 4, we will introduce the general form of skyrmion beams, their spin structure

and associated skyrmion numbers. We will also present two example beams, one with a constant

integer skyrmion number and the other with a varying skyrmion number during propagation. In

chapter 5, we will introduce the concept of the skyrmion field and prove that it is a conserved field.

In this chapter, the same two examples as in chapter 4 are presented with their skyrmion field. We

will prove that, for these specific examples, the skyrmion field is conserved from a both analytic

and visual point of view. In chapter 6, motivated by three drivers: a pure mathematical interest;

an analogy from superfluid and an alternative way to measure skyrmion number experimently, we

will introduce another vector field in skyrmionic beams - the skyrmion vector potential field. We

will define its mathematical structure and demonstrate its property through the same two examples

as in the previous chapters. In chapter 7, we will introduce a new concept of fractional skyrmions.

This special type of skyrmionic beas shares certain similarities with skyrmionic beams but lack

topological stability. In this chapter, we will also discuss the relationship between skyrmionic

beams and Poincaré beams. In chapter 8, we will discuss how skyrmionic beams can be measured

in experiments and their potential practical application in the future. A graphical way to follow

the structure of chapter 4-7 is shown in Fig. 3.2.

Figure 3.2 A table illustrating the structure of this thesis’ chapters 4-7.
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Skyrmionic beams

4.1 Skyrmion number in general

In this chapter, we will introduce structured beams with skyrmionic structures, which are referred

to as skyrmioc beam. As introduced in the previous chapter in Section. 3.5, the magnetic skyrmion

can be considered as a planner analogue of a three-dimensional skyrmion. Therefore, for optical

and electron beams it is natural to return to the 3D skyrmion model and link it with the two spheres

familiar to us: the Poincaré sphere and the Bloch sphere. This becomes less obvious concerning

non paraxial beams. According to [45, 114], a polarisation ellipse can be defined at any point in

non-paraxial beams. However, because the direction of the plane in which the polarisation eclipse

lies in varies from point to point, no consensus has yet reached concerning their corresponding

generalised Stokes parameters or corresponding geometric representations [115]. The material in

this chapter are included in [1] by the author.

In general, the equivalent magnetisation M in optical skyrmions analogous to the spin m in

magnetic skyrmions should be chosen as a vector field comprising of three orthonormal vectors.

In this way, we can define the effective magnetisation as local direction in the Poincaré sphere

associated with it for paraxial optical beams or spin in for electron beams. For non-paraxial beams

it should still be possible to define a equivalent magnetisation M. For example, [116] has utilised

the electric spin angular momentum density as M despite that it is not a unit vector and [10] used

the electric field E. This, however, is not be the focus of this paper.

M is not dependent on the intensity of the beam of interest, which is a feature different from

other well-studied properties such as the electromagnetic field, spin angular momentum, orbital

angular momentum, linear momentum and energy.

4.2 Constructing paraxial skyrmionic beams

Although this idea can be applied to both classical and quantum beams, it is convenient if we

introduce the definition here using a convenient representation of the Jones vector as a wave vector

|Ψ(r)〉. This then represents the polarisation of the light or direction of the electron spin at the point

r. Taking S as the crossection across the beam in the direction of the propagation, we introduce
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the exact form of M:

M =
〈Ψ(r)|σ|Ψ(r)〉
〈Ψ(r)|Ψ(r)〉

, (4.1)

where σ is the vector form of the Pauli matrices. In this definition, for electron beams, M would

be the Bloch vector. As for paraxial optical beams, M would be the normalised Stokes parameter:

M =
[
S 1, S 2, S 3

]T
. (4.2)

In order to realise the skyrmion structure as introduced above, we first propose a family of beams

constructed by a coaxial superposition of two varying spatial components with orthogonal polar-

isations. The electron skyrmionic beams would possess similar structure except carrying orthog-

onal spin instead of polarisations. For optical beams, polarisation is represented by the Stokes

parameters and we shall start with with the circular polarisation. We adopt the convention that |0〉

and |1〉 represent the left-handed polarisation and the right-handed polarisation with eigenvalues

of −1 and 1 for the S 3 component in the Stokes parameter respectively. Similarly, for electron

beams, we choose the z component of the spin, i.e. S z, to start with, for which the states |0〉 and |1〉

correspond to the spin up and spin down states respectively. We will later prove that this choice

of direction will not affect the result. In this way, the spatially varying polarisation of our beam of

interest can be written in the following form:

|ψ(r)〉 =
u0(r)|0〉 + u1(r)|1〉√
|u0(r)|2 + |u1(r)|2

, (4.3)

which the u0(r) and u1(r) are spatial amplitudes.

In order to simplify the wave vector described above, we choose u0(r) and u1(r) to be or-

thogonal modes. For an arbitrary wave vector ΨA, using the Schmidt decomposition, it can be

re-expressed as a combination of a set of orthonormal basis {β̂i}:

ΨA =
∑

αi jβ̂i ⊗ | j〉, (4.4)

where αi j are real, non-negative scalars and j = 0, 1. Therefore, for the superposed beams with

arbitrary wave vectors as the spatial component u0 and u1, they can always be transformed into

the simplest scenarios that are introduced here along with the combination and interaction of those

basic scenarios.

In this thesis, we assume the beams are paraxial and propagating mainly in the z direction

and thus they can be expressed in cylindrical coordinates. In order to satisfy the requirement

of a varying spatial component, one particular example would be the Laguerre Gaussian beams

introduced in Section. 2.1.3. In this way, the general form of a vector beam in Eq. 4.3 can be

further simplified into:

|Ψ〉 =
|0〉 + µ|1〉√

1 + |µ|2
, (4.5)

where µ is the ratio between the two spatial components u0(r) and u1(r), in the form of:

µ = f (ρ, z)eiΦ(ρ,z) = f (ρ, z)ei`dφeiθ(ρ,z). (4.6)
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Here, f (ρ, z) is the modulus of µ and Φ is is the phase difference between u0(r) and u1(r). The

phase difference can be seperated into two parts: ei`dφ that is associated with Laguerre Gaussian

winding number; and eiθ(ρ,z) including the Gouy phase which is the phase change during propaga-

tion. For paraxial beams described above, their effective magnetisation can be explicitly written

as:

Mx =
2| f |

1 + | f |2
cos Φ; My =

2| f |
1 + | f |2

sin Φ; Mz =
1 − | f |2

1 + | f |2
. (4.7)

Utilising the cylindrical symmetry of the system, we can modify the definition for the skyrmion

number Eq. 3.6 as:

n =
1

4π

∫
S

M ·
(
∂M
∂ρ
×

(
1
ρ

∂M
∂φ

))
ρdρdφ, (4.8)

where the integral is taken over a plane perpendicular to the z-direction. Here from Eq. 4.7, the

derivatives of M are:


∂Mx
∂ρ =

Mz Mx
f

∂ f
∂ρ − My

∂Φ
∂ρ

∂My
∂ρ =

Mz My
f

∂ f
∂ρ + Mx

∂Φ
∂ρ

∂Mz
∂ρ = −

M2
x+M2

y
f

∂ f
∂ρ

,


∂Mx
∂φ = −My

∂Φ
∂φ

∂My
∂φ = Mx

∂Φ
∂φ

∂Mz
∂φ = 0

. (4.9)

In this way, the cross-product can be calculated as:

∂M
∂ρ
×
∂M
∂φ

=


x̂ ŷ ẑ

Mz Mx
f

∂ f
∂ρ − My

∂Φ
∂ρ

Mz My
f

∂ f
∂ρ + Mx

∂Φ
∂ρ −

M2
x+M2

y
f

∂ f
∂ρ

−My
∂Φ
∂φ Mx

∂Φ
∂φ 0


= x̂

 M2
x + M2

y

f
∂ f
∂ρ

Mx
∂Φ

∂φ


+ ŷ

 M2
x + M2

y

f
∂ f
∂ρ

My
∂Φ

∂φ


+ ẑ

((
MzMx

f
∂ f
∂ρ
− My

∂Φ

∂ρ

)
Mx

∂Φ

∂φ
+

(
MzMy

f
∂ f
∂ρ

+ Mx
∂Φ

∂ρ

)
My

∂Φ

∂φ

)
,

(4.10)

from which the dot product can be obtained as:

M ·
(
∂M
∂ρ
×
∂M
∂φ

)
=

M2
x + M2

y

f
∂ f
∂ρ

M2
x
∂Φ

∂φ

+
M2

x + M2
y

f
∂ f
∂ρ

M2
y
∂Φ

∂φ

+ Mz

((
MzMx

f
∂ f
∂ρ
− My

∂Φ

∂ρ

)
Mx

∂Φ

∂φ
+

(
MzMy

f
∂ f
∂ρ

+ Mx
∂Φ

∂ρ

)
My

∂Φ

∂φ

)
=
∂ f
∂ρ

∂Φ

∂φ

1
f

((
M2

x + M2
y

)2
+ M2

z M2
x + M2

z M2
y

)
=
∂ f
∂ρ

∂Φ

∂φ

1
f

(
M2

x + M2
y + M2

z

) (
M2

x + M2
y

)
.

(4.11)

Because M is a unit vector, M2
x + M2

y + M2
z = 1, and substitute Mx and My in Eq. 4.7 as functions
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of f and Φ, the dot product can be expressed as:

M ·
(
∂M
∂ρ
×
∂M
∂φ

)
=
∂ f
∂ρ

∂Φ

∂φ

4 f
(1 + f 2)2

=
∂ f 2

∂ρ

∂Φ

∂φ

2
(1 + f 2)2 .

(4.12)

In this way, the skyrmion number can be calculated as:

n =
1

4π

∫
S

∂ f 2

∂ρ

∂Φ

∂φ

2
(1 + f 2)2 dρdφ

=
1

4π

∫ ∞

0
dρ
∂ f 2

∂ρ

2
(1 + f 2)2

∫ 2π

0
dφ
∂Φ

∂φ

=
1

4π
4π`d

∫ ∞

0
dρ
∂ f 2

∂ρ

1
(1 + f 2)2

= `d
−1

1 + f 2

∣∣∣∣∣ρ=∞

ρ=0
.

(4.13)

Now, we have obtained the general form of the Skyrmion number of paraxial beams in the form

specified in Eq. 4.3

n = `d

(
1

1 + f 2(0, z)
−

1
1 + f 2(∞, z)

)
. (4.14)

Because f (ρ, z)2 is defined as the ratio between the intensity of the two spatial components,

Eq. 4.14 indicates that the skyrmion number is determined only by the ratio between the inten-

sity of the two spatial components at the centre of the beam (ρ = 0) and that at infinity. In the

case of the two spatial components propagating differently, either far from the beam axis or at the

centre of the field there would be one component dominant over the other one. If it is the same

component dominants at both places, then the value in the bracket would be 0, which means the

skyrmion number for this vector beam would be 0. On the other hand, we would obtain either `d

or −`d for the skyrmion number.

This also verifies our previous conclusion that the skyrmion structure is independent of the

polarisation choices. For example, if we switch the polarisation of the two spatial components,

although the deference between the winding number `d would become (−`d), the ratio between

the two components f will also change to 1/ f . The latter change ensures the the intensity ratio

between at the centre of the beam and the region far from the beam axis also flipped. Therefore,

both of the two components in Eq. 4.14 gained a negative sign, leaving the skyrmion number

unchanged. Therefore, the skyrmion number is limited to an integer. According to Skyrme’s

theory introduced in Section 3.4, this shows that this structure cannot change continuously to

vacuum and thus it is a manifestation of topological robustness.

Another way to understand this result is by expressing the effective magnetisation M =
[
S 1, S 2, S 3

]T

of this beam as:

S 1 = sin χ cos Φ; S 2 = sin χ sin Φ; S 3 = cos χ. (4.15)
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This is due to ( 1−| f |2

1+| f |2 )2 + ( 2| f |
1+| f |2 )2 = 1, which allows for introducing an auxiliary angle ξ:

1 − | f (ρ, z)|2

1 + | f (ρ, z)|2
= cos χ(ρ, z), (4.16)

The expression in Eq. 4.15 indicates that an effective magnetisation vector corresponds to a point

on a sphere, as shown in Fig. 4.1. This also proves that the optical and electrical skyrmions of a

paraxial beam is in fact, a stereo-graphic projection of the Poincaré and Bloch sphere respectively.

Particularly, each circle on the planner optical/electrical skyrmion correspond to a latitude on the

the Poincaré/Bloch sphere, as depicted in Fig. 4.1, with the innermost circle mapping to the North

pole.

Figure 4.1 Visualisation of the effective magnetisation of the optical beam. The vectors repre-
sent the related Poincaré vector and the colour mapping represents the magnitude of its S 3
component. This is identical to the magnetisation of magnetic skyrmions shown in Fig. 3.1.

39



Sijia Gao

4.3 Comparing optical and electron beams

As we previously introduced in Section. 3.5 of Chapter. 3, there are two kinds of skyrmions: chiral

skyrmions and hedgehog skyrmions. Hedgehog skyrmions take their name from the fact that their

magnetisation vectors point radially outward from the origin at all points [72]. In other words,

they exist, and only exist when the physical space and the magnetisation vector space are rotating

at the same pace [117]. Chiral skyrmions have helical progression of their magnetisation vectors

when traced along the diameter, and are also known as the vortex skyrmions.

As we stated in Section. 4.1, the physical meaning of the skyrmion number n is the number

of vectors wrapped around the sphere that the baby skyrmion is projected from. For magnetic

skyrmions, this means hedgehog skyrmions would only exist in the n = 1 case. This also applies

to optical skyrmions.

The spin states of electron beams are visualised on the Bloch sphere. Therefore, the similarity

between optical skyrmions in electron beams and magnetic skyrmions is self evident, as we can

observe in Fig. 4.2 a) and c). In Fig. 4.2 a1) and a2), where the skyrmion number is 1, the unit

vector M has rotated exactly once. In comparison, in Fig. 4.2 c2), where the skyrmion number

is 2, the unit vector M has rotated twice before it returns to its original position. Among all four

skyrmions, only Fig. 4.2 a1) resembles a hedgehog skyrmion. However, this similarity between

magnetic skyrmions and optical skyrmions is more subtle for optical beams due to the structure of

the Poincaré sphere. For optical beams, all possible polarisations can be visualised on the Poincaré

sphere as double end vectors, on which the orthogonal polarisations are represented by two op-

posite points. This means a polarisation ellipse that has travelled π angles on the Poincaré itself

has only rotated π/2. Therefore, for a full rotation of the space, i.e. 2π, the polarisation ellipse is

required to only rotate π. This is reflected in Fig. 4.2 b1) b2) and d2). Although physically Fig. 4.2

d2) appear more similar to Fig. 4.2 a1) as a hedgehog skyrmion, it actually corresponds to Fig. 4.2

c2) which is a spiral skrymion with n = 2. This difference is due to the different representation of

the effective magnetisation vector using the Poincaré sphere and the Bloch sphere.

4.4 Skyrmion number in specific examples

We will start with the simplest case with the radial number p = 0, where both u0(r) and u1(r) are

single modes of LG beams and can be expressed in the form of:

ϕl
0 ∝

√
1
π|`|!

1
w(z)

ρ√2
w(z)

|l| eilφ exp
(
i(|`| + 1)ξ(z) − ik

ρ2

2R(z)
−

ρ2

w(z)2

)
, (4.17)

with ` = `u0 and ` = `u1 respectively. We here provide two more specific examples.

4.4.1 Same focus

We start with the case in which the two spatial components are focused at the same point, as

shown in Fig. 4.3. In the figure, the arrows represent the unit Bloch vector and the colour mapping

corresponds to the magnitude Mz vector. The red beam represents a LG beam with ` = 0 and

left-handed polarisation while the blue beams represents a LG beam with ` = 1 (hence the helical
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Figure 4.2 This is a table showing skyrmion structures in optical beams and electron beams.
For electron beams, the skyrmion structure is seen in the visualisation of spin, whereas for
optical beams the skyrmion structure is depicted by polarisation eclipses. Sets a) and c)
(n = 2) and (n = 1) skyrmion structures in electron beams whilst b) and d) compare the
optical beams. Sets a) and b) compare electron beams and optical beams both with an n = 1
skyrmion structure whilst c) and d) compare the n = 2 skyrmion structure. The table also
shows the differences between hedgehog and spiral skyrmions in each case by sets 1) and
2) - that hedgehog skyrmions only exist when n = 1.

phase front) and right-handed polarisation. The corresponding Poincaré vectors are presented in

Fig. 4.2 and their comparisons are discussed in Section. 4.3. If the two spatial components possess

the same beam waist and wavelength, the ratio µ between the two spatial components can be

written as:

µ = f (ρ, z)eiΦ(ρ,z,φ) =

√
|`u0 |!
|`u1 |!

ρ√2
w(z)

`∆

ei`dφe−i`∆ξ(z), (4.18)

where `∆ = |`u1 | − |`u0 |. According to Eq. 4.7, the effective magnetisation M is:

Mx =

2
√
|`u0 |!
|`u1 |!

(
ρ
√

2
w(z)

)`∆

1 +
|`u0 |!
|`u1 |!

(
2ρ2

w(z)2

)`∆
cos (`dφ + `∆ξ(z));

My =

2
√
|`u0 |!
|`u1 |!

(
ρ
√

2
w(z)

)`∆

1 +
|`u0 |!
|`u1 |!

(
2ρ2

w(z)2

)`∆
sin (`dφ + `∆ξ(z));

Mz = −1 +
2

1 +
|`u0 |!
|`u1 |!

(
2ρ2

w(z)2

)`∆
.

(4.19)

According to the general form of the skyrmion number introduced in Eq.4.6 and Eq.4.14, the

skyrmion number is:

n = `d. (4.20)

The orientation of effective magnetisation M on a cross-section depends on the ratio between
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Figure 4.3 This is an illustration of the skyrmionic beam given in Eq. 4.3. Here, the two spatial
modes are Laguerre-Gaussian modes with `u0 = 0 and `u1 = 1 focusing at the same point,
z = 0: a) A schematic diagram of the beam; b) The M vector field at negative z coordinate,
when the relative phase difference is negative resulting in a chiral skyrmion; c) The M vector
field at z = 0,where the relative phase difference is 0, resulting in a hedghog skyrmion; d) The
M vector field for positive z coordinate, when the relative phase difference is positive, resulting
in a chiral skyrmion again.

My and Mx. As demonstrated in Eq. 4.19, this ratio is tan (`dφ + `∆ξ(z)). Because Gouy phase

ξ(z) = arctan(z/zR) depends on z, this ratio is also dependent on z. Therefore, the orientation

of M on a cross-section changes during beam propagation. As shown Fig. 4.3, the cross-section

would change from a chiral skyrmion (Fig. 4.3 b)), to a hedgehog skyrmion at the focus point

(Fig. 4.3 c)) and then progress to a chiral skyrmion winding in the opposite direction (Fig. 4.3 d)).

As demonstrated in Fig. 4.2, hedgehog skyrmions only exist when `d = 1 and the space rotates

at the same pace. According to the explicit form of M for when `d = 1, this only happens when

`∆ξ(z) = 0. In other words, when z = 0.

4.4.2 Different focus

The second example is when the same spatial components as Section. 4.4.1 focus at different

positions, z0 and z1 for u0 and u1 respectively as depicted in Fig. 4.4. Without losing generality,

we choose the LG0
0 component to focus first. The ratio µ = f (ρ, z)eiΦ(ρ,z) between the two spatial

components can be written as:

f =

√
|`u0 |!
|`u1 |!

(wu0(z))|`u0 |+1

(wu1(z))|`u1 |+1

(√
2ρ

)|`u1 |−|`u0 | exp
−ρ2

 1
w2

u1(z)
−

1
w2

u0(z)

; (4.21)
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Figure 4.4 This is an illustration of the paraxial beam given in Eq. 4.3, when the two spatial
modes are Laguerre-Gaussian modes with `u0 = 0 and `u1 = 1 focusing at z0 and z1, respec-
tively. It shows a clear change of skyrmion number as it propagates, where zc =

z0+z1
2 denotes

the crossover plane. (a) A schematic diagram of the beam; (b) The effective magnetisation
M at cross-section at z < z0 with skyrmion number 1; (c) The effective magnetisation M at
cross-section at z > z1 with skyrmion number 0; (d) S 3 (Mz) vector ranges across the x axis
and the y axis respectively on the cross-section in (c).

Φ(ρ, z, φ) = `dφ −
κρ2

2

(
1

Ru1(z)
−

1
Ru0(z)

)
+

((
|`u1 | + 1|

)
ξu1(z)

)
−

((
|`u0 | + 1|

)
ξu0(z)

)
, (4.22)

where the under script u0 and u1 represent the corresponding component of u0 and u1 respectively.

In this particular example, because of the doughnut shaped intensity profile of higher orders LG

beams, the LG0
0 component will always dominate the centre of the beam. Therefore, the ratio

between the intensity of two spatial components at the centre f (0, z) would always be 0. As shown

in Eq. 4.21, this result is generally applicable to u0 other than LG0
0. Far from the beam axis,

the ratio f (∞, z) is either ∞ or 0 depending on whether the term ( 1
w2

u1 (z)
− 1

w2
u0 (z)

) is positive or

negative. Because w(z) is proportional to the distance from the cross-section to its focus point,

the critical plane zc of f (∞, z) changing from ∞ to 0 occurs at the midpoint between two focus

points, and its skyrmion number will change from `d to 0 according to Eq. 4.14. At the critical

plane, f (∞, zc) = ∞ and the skyrmion number at this plane would be `d. In Fig. 4.4(d) we show

how the value of the S 3 (Mz) vector changes with respect to position from the centre of the beam

at a cross-section beyond z1. It shows that Mz cannot exactly reach 1 to expand fully along the

longitude. With `d = 1, according to previous discussions in Section. 4.3, it therefore demonstrates

a non-skyrmion.
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4.5 Conclusion

In this chapter, we introduced the general form of skyrmionic beams and its associated skyrmion

numbers. We propose that skyrmionic beams can be constructed by superposing two coaxially

varying spatial components with orthogonal polarisations or spin. We have demonstrated that

the skyrmion numbers of these beams only depend on the ratio between the intensity of the two

spatial components at the centre of the beam and at infinity. Given how the intensity of the two

spatial components varies differently throughout propagation, the skyrmion number would always

be an integer. When it is non-zero, we refer to this type of beam as skyrmionic beams. We

also have demonstrated the physical meaning of the skyrmion number by associating the effective

magnetisation M with the Stokes parameters.

We have also presented two specific examples of skyrmionic beams to further illustrate this

concept. In the first example, the beam is comprised of two LG beams with different winding

number, `, but sharing the same beam width, wavelength and focal plane as the spatial components.

This type of beam possesses an integer skyrmion number. In the second example the two spatial

components are focused differently, while still sharing the same beam width and wavelength. This

type of beam starts with a non-zero integer skyrmion number before suddenly changing to 0 after

the cross-over plane, and therefore becoming a non-skyrmion beam.

The second example poses an important question: what does the change of skyrmion number

mean for the topological stability of this type of beam? In the next chapter, we will introduce the

skyrmion field to explain these changes in skyrmion numbers and why despite the changes, this

type of beams is still topologically stable. We will also demonstrate that the skyrmion field is a

conserved field, and therefore can be utilised to categorise structured beams.
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Skyrmion field in Skyrmionic beams

In the previous chapter, we have introduced the concept of skyrmionic beams, their associated

effective magnetisation M and the general form of skrymion numbers. We have left one question

at the end of last chapter: what does the change of skyrmion number during propagation mean for

the topological stability of this type of beam? In this chapter, we will introduce the skyrmion field

Σ and prove that it is a conserved field. We will use this new field to further explain the topological

stability of skyrmionic beams and how we can use it to categorize structured beams. The material

in this chapter is produced by the author and partly published in [1] while the rest will be included

in future publications that are currently under preparation.

5.1 Skyrmion field in general

The idea of the skyrmion field can be derived from the definition of the skyrmion number (Eq.3.6).

Because dxdy can be regard as the cross-section in the z direction, the definition of the skyrmion

number in Eq. 3.6 can be modified to:

n =
1

4π

∫
S

(Σzẑ) · (ẑds), (5.1)

where Σz = M · (∂M
∂x ×

∂M
∂y ) is the z-component of a vector field. We can write down the form of

this field as:

Σi =
1
2
εi jkεpqr Mp(∂ jMq∂kMr), (5.2)

where εi jk and εpqr are the Levi-Civitta symbols and we also adopted the Einstein summation

convention. This is in the similar form to the ‘skyrmion current’ in the original paper of Skryme

[58]. Under this new definition, we can reinterpret the skyrmion number as the flux of the skyrmion

field lines in the z direction.

The skyrmion field is independent of the choice of the physical coordinate system. We can

rewrite Eq. 5.2 as:

Σi =
1
2
εi jk det


Mx My Mz

∂ jMx ∂ jMy ∂ jMz

∂kMx ∂kMy ∂kMz

 . (5.3)

Any change of the global orientation of M is equivalent to a multiplication of a global rotational

45



Sijia Gao

matrix. As the determinant of a rotational matrix is 1, this operation would not effect the skyrmion

field. This means that the choice of the physical coordinate system would not affect the skyrmion

field.

It is not difficult to verify that this field is divergence-less, i.e.

∇ · Σ = 0. (5.4)

The proof is as below, based on the nature of M as a normalised field. The divergence of Σ has the

form:

∇ · Σ =
1
2
εi jkεpqr(∂iMp)(∂ jMq)(∂kMr). (5.5)

In the vicinity of any given point r0, the M can be expanded using Taylor expansion. The unit

vector magnetisation is:

M|r = M|r0 +
(
(r − r0) · ∇

)
M|r0 (5.6)

As M is a unit vector everywhere, |M|2|r, and this provides a constraint on the derivative of M at

r0. As r − r0 is small, Eq. 5.6 leads to:

|M|r |2 = |M|r0 |
2 + 2Mi|r

(
(r − r0) · ∇

)
Mi|r0 + O(r − r0)2

= 1.
(5.7)

This means that

0 = Mi|r(r − r0) · ∇Mi|r0 . (5.8)

Because M is a unit vector, the components Mi cannot all be zero. This leads to the conclusion

that for one of the components, its gradients ∇Mi is required to be 0. Therefore, because the

expression of the divergence of the skyrmion field in Eq. 5.5 includes the product of derivatives of

all the three components of M, the skyrmion field at r0 is divergenceless. Furthermore, because r0

is an arbitrary point, we can easily extend this argument to the whole space. In this way we proved

that:

∇ · Σ = 0. (5.9)

Hence, the skyrmion field is divergence-less because the effective magnetisation M is a unit vector.

A divergenceless field is often also referred to as a source-less, sink-less field. According to

the divergence theorem: y

V

(∇ · F)dV =

∮
S

(F · n̂)dS , (5.10)

it is obvious that for a divergence-less field, the flux flowing through an enclosed area would be

zero as well. That is to say, the skyrmion field is conserved.
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5.2 Skyrmion field in paraxial skyrmionic beams

The skyrmion field in paraxial beams we introduced in Sec.4.2 can be simplified as following

based on Eq.5.2:

Σi =
4εi jk

(1 + |µ|2)2

(
∂ j<(µ)∂k=(µ)

)
, (5.11)

where <(µ) represents the real part of µ and =(µ) is the imaginary part of it. This can be proved

as following.

According to the definition of skyrmion number, skyrmion field can be written as:

Σi =
1
2
εi jkM · (∂ jM × ∂kM). (5.12)

and therefore skyrmion field can be further expanded as:

Σi = εi jk
(
Mx∂ jMy∂kMz + My∂ jMz∂kMx + Mz∂ jMx∂kMy

)
. (5.13)

According the explicit forms of M in Eq. 4.7 and the form of µ in Eq. 4.6, we can rewrite M and

their corresponding derivatives as:

Mx =
2<(µ)
1 + |µ|2

; My =
2=(µ)

1 + |µ|2
; Mz =

1 − |µ|2

1 + |µ|2
. (5.14)

∂ jMx = 2
∂ j<(µ)

1 + |µ|2
−
<(µ)∂ j|µ|

2

(1 + |µ|2)2

 ; ∂ jMy = 2
 ∂ j=(µ)

1 + |µ|2
−
=(µ)∂ j|µ|

2

(1 + |µ|2)2

 ; ∂ jMz =
−2∂ j|µ|

2

(1 + |µ|2)2 .

(5.15)

Adopting these expressions, Eq. 5.13 can be re-expressed as:

Σi = 4εi jk

( (
<(µ)

1 + |µ|2

)
∂ j

(
=(µ)

1 + |µ|2

)
∂k

(
1 − |µ|2

1 + |µ|2

)
+

(
=(µ)

1 + |µ|2

)
∂ j

(
1 − |µ|2

1 + |µ|2

)
∂k

(
<(µ)

1 + |µ|2

)
+

(
1 − |µ|2

1 + |µ|2

)
∂ j

(
<(µ)

1 + |µ|2

)
∂k

(
=(µ)

1 + |µ|2

) )
= 4εi jk

( (
<(µ)

1 + |µ|2

)  ∂ j=(µ)
1 + |µ|2

−
=(µ)∂ j|µ|

2

(1 + |µ|2)2

 ( −∂k|µ|
2

(1 + |µ|2)2

)
+

(
=(µ)

1 + |µ|2

)  −∂ j|µ|
2

(1 + |µ|2)2

 (∂k<(µ)
1 + |µ|2

−
<(µ)∂k|µ|

2

(1 + |µ|2)2

)
+

(
1 − |µ|2

1 + |µ|2

) ∂ j<(µ)
1 + |µ|2

−
<(µ)∂ j|µ|

2

(1 + |µ|2)2

 ( ∂k=(µ)
1 + |µ|2

−
=(µ)∂k|µ|

2

(1 + |µ|2)2

) )
.

(5.16)

Using the relation εi jk∂ jA∂kA = 0, the above expression can be simplified into:

Σi = 4εi jk

(1 − |µ|2)
(
∂ j<(µ)∂k=(µ)

)
+ ( 2−(1−|µ|2)

1+|µ|2
)
(
<(µ)∂k=(µ)∂ j|µ|

2 + =(µ)∂ j<(µ)∂k|µ|
2
)

(1 + |µ|2)3 .

(5.17)
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Because |µ|2 = <(µ)2 + =(µ)2, this can be further reduced to:

Σi =4εi jk(1 + |µ|2)−3
(
(1 − |µ|2)∂ j<(µ)∂k=(µ)

+ 2
(
<(µ)∂k=(µ)

(
<(µ)∂ j<(µ) + =(µ)∂ j=(µ)

)
+ =(µ)∂ j<(µ)

(
<(µ)∂k<(µ) + =(µ)∂k=(µ)

)) )
=4εi jk(1 + |µ|2)−3

(
(1 − |µ|2)∂ j<(µ)∂k=(µ) + 2

(
<(µ)2∂k=(µ)∂ j<(µ) + =(µ)2∂ j<(µ)∂k=(µ)

) )
=4εi jk

(1 − |µ|2 + 2|µ|2)∂ j<(µ)∂k=(µ)
(1 + |µ|2)3

=
4εi jk∂ j<(µ)∂k=(µ)

(1 + |µ|2)2 .

(5.18)

Explicitly, using the cylindrical symmetry, the skyrmion field components for the beam described

by Eq. 4.5 can be explicitly written as:

Σρ =
−2

ρ(1 + f 2)2

∂ f 2

∂z
∂Φ

∂φ
;

Σϕ =
2

(1 + f 2)2

(
−
∂ f 2

∂ρ

∂Φ

∂z
+
∂ f 2

∂z
∂Φ

∂ρ

)
;

Σz =
2

ρ(1 + f 2)2

∂ f 2

∂ρ

∂Φ

∂φ
.

(5.19)

This expression also allows us to retrieve the skyrmion number result in Eq. 4.14 through the flux

of skyrmion field in the z direction introduced in Eq. 5.1.

We are interested in the effect of different polarisation/spin of the beams on our results. We

name the basis for the new arbitrary axis as |P〉 and |V〉, which are defined by:

|P〉 = cos γ|0〉 + eiθ sin γ|1〉; |V〉 = − sin γ|0〉 + eiθ cos γ|1〉, (5.20)

where γ and θ are both arbitrary. Therefore, a skyrmionic beam with arbitrary polarisation/spin

can be written as:

|Ψ〉 =
|P〉 + µ|V〉√

1 + |µ|2
, (5.21)

where µ is defined as Eq. 4.6. Input this into the definition for the skyrmion field in Eq. 5.2, it is ob-

vious that the skyrmion field is exactly the same as Eq. 5.11. On this account, we have proved that

the skyrmion field of a skyrmionic beam does not depend on the direction of its polarisation/spin.

We are free to assign the different Pauli matrices to any components of the magnetisation as long

as we retain the order of the Pauli matrices. In this work, M =
[
Mx,My,Mz

]T
=

[
S 1, S 2, S 3

]T
are

chosen in the way that Mz/S 3 corresponds to the polarisation/magnetisation of the spatial compo-

nents.

This result of independence of the choice of the direction of the polarisation/spin does not

only apply to the skyrmion field but also the skyrmion number as well. Because the skyrmion

number is the flux in the direction of the beam propagation, it is also independent of the basis of

the polarisation/spin.
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5.3 Skyrmion Field in specific examples

In this section, we will present and discuss the corresponding Skyrmion field of the examples

introduced in Sec. 4.4.

5.3.1 Same focus

In this example structure, the skyrmion field is explicitly as following according to Eq. 5.19:

Σρ =
−4`d`∆ f 2

ρ(1 + f 2)2

1
R(z)

;

Σϕ =
−4`∆ f 2

ρ(1 + f 2)2

1
R(z)

zR

z
;

Σz =
4 f 2`d

ρ2(1 + f 2)2 .

(5.22)

This is plotted accordingly in Fig. 5.1, with `u0 = 0, `u1 = 1 and λ = 0.5, w0 = 1.

(a) The 3-D plot of the skyrmion field.

(b) The streamline plot of
the skyrmion field in the
x − z or y − z
cross-section.

(c) The streamline plot of
the skyrmion field in the
xy cross-section at
z = −10.

(d) The streamline plot of
the skyrmion field in the
xy cross-section at z = −5.

(e) The streamline plot of
the skyrmion field in the
xy cross-section at z = 0.

(f) The streamline plot of
the skyrmion field in the
xy cross-section at z = 5.

(g) The streamline plot of
the skyrmion field in the
xy cross-section at z = 10.

Figure 5.1 This is an illustration of the skyrmion field of the beam in Fig. 4.3. Here, the two
spatial modes are Laguerre-Gaussian modes with `u0 = 0 and `u1 = 1 focusing at the same
point, z = 0. For scale reference, λ = 0.5,w0 = 1. The colour in the streamline plots denotes
the strength of the magnitude of the relevant components in the plot, where the higher value
corresponds to more orange colour.
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Fig. 5.1a shows a 3D view of the skyrmion field, while the field stretches from∞ and extends

to −∞, the plot depicts the area around the focal plane, namely z = −10 to z = 10. At every point

in space the skyrmion field spirals in the same direction and tightens near the focal plane. This is

further illustrated in the rest of the cross-section plots in Fig. 5.1b to Fig. 5.1g. The colour coding

in these plots is according to the strength of the skyrmion field, where orange represents higher

intensity whereas blue represents lower intensity, demonstrating that the field is concentrated in

the centre of the beam and expands as it propagates away from the focal plane. Although in

Fig. 5.1b the field lines seem to be expanding rather than tightening near the focal plane, this

does not contradict the trend shown in Fig. 5.1a. Although the vectors are pointing away from

the beam axis near the focal plane, the further away from the axis, the magnitude of vectors are

considerably smaller. Fig. 5.1c to Fig. 5.1g tells an interesting story about how the field line

propagates in space. If we trace one field line from −∞, it is spiralling clockwise and outwards

while propagating along the direction of the beam as shown in Fig. 5.1c and Fig. 5.1d. When it

comes to the focal plane, the field line is still spiralling clockwise but forms a closed loop itself

while still propagating along the direction of the beam as shown Fig. 5.1e. As soon as it passes the

focal plane, it starts to spirally inwards to expand while keeping the clockwise rotation as shown

in Fig. 5.1f and Fig. 5.1g. Therefore, Fig. 5.1 confirms that the skyrmion field has no sources nor

sinks and spirals through space.

5.3.2 Different focus

In the example where the two spatial components are focused at different points introduced in

Sec. 4.4.2, although there is a change in the skyrmion number in the propagation, this does not

violate the conservation of the skyrmion field as we established in Eq. 5.4. Because according to

the definition of the skyrmion number in Eq. 5.1, it is only the flux of the skyrmion field in the z

direction rather than in a closed surface. The skyrmion field in this example can be expressed as:

Σρ =
4`d f 2

ρ(1 + f 2)2

( 1
Ru1(z)

(
|`u1 | + 1 −

2ρ2

w2
u1(z)

)
−

1
Ru0(z)

(
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2ρ2
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Σz =
4 f 2`d

ρ2(1 + f 2)2

`∆ − 2ρ2
 1

w2
u1(z)

−
1

w2
u0(z)

 ,

(5.23)

and illustrated in Fig. 5.2, Fig. 5.3 and Fig. 5.5.

Fig. 5.2 shows 3D views of this skyrmion field where the first focal plane is at z0 = −10; the

crossover plane at zc = 0; and the second focal plane at z1 = 10. Because the width of the field

varies much more than the same-focus example in Sec. 5.3.1, the field is plotted in four sections.

Fig. 5.2a depicts the skyrmion field beyond the first focal plane to the region between the first

focal plane and the crossover plane, namely, the region from z < z0 to z0 < z < zc. In this
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(a) Between z < z0 and z0 < z < zc: The field is
spiralling and propagting in the same direction as the
beam travelling.

(b) Between z0 < z < zc and z = zc: The field lines are
winding more in the xy plane except in the centre,
until they are parallel to the xy plane at z = zc where
the field lines escape to infinity. This is responsible
for the change of the skyrmion number while keeping
the skyrmion field conserved.

(c) Between z = zc and zc < z < z1: The skyrmion
field lines are spiraling down from z > zc until they
are parallel to the xy plane at z = zc, except in the
centre, where it is propagating in the same direction
as the beam travelling. This explains the fact of n = 0
when z > zc.

(d) Between zc < z < z1 and z > z1: By colouring the
field vectors with Σz > 0 blue and otherwise red, it is
obvious the flux difference between the centre and the
rest of the beam. This further demonstrates the fact of
n = 0 when z > zc.

Figure 5.2 This is an illustration of the skyrmion field line, in accordance to Fig. 4.4. This
shows that the z-component of the skyrmion field line escapes to infinity at the cross-over
point, which results in the change of the skyrmion number. Before the cross-over plane, as
shown in (a) and (b), Σz is the same direction everywhere in the beam. However, as shown in
(c), after the cross-over plane at the centre of the beam Σz is travelling in the opposite direction
to everywhere else. This explains the change in the skyrmion number - the skyrmion field flux
in the z direction.

region, the skyrmion field behaves very much like the one in the same focus example, where the

field is spiraling along the beam propagation direction at every point in space and tightens at the
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first focal plane z = z0. The skyrmion field between the the first focal plane and the crossover

plane is illustrated in Fig. 5.2b. From this region onward, the skyrmion field in this example start

to demonstrate different features from the one in the same-focus example. The skyrmion field

line still spirals along the beam propagation direction but escapes to infinity while retaining the

rotation. This explains the sudden change of the skyrmion number despite the conservation of the

skyrmion field: the skyrmion field line does not end, rather it forms a closed loop while expanding

to∞ in the transverse plane.

The next two subplots, Fig. 5.2c and Fig. 5.2d, demonstrate how the skyrmion number remains

0 while keeping the field lines intact. Fig. 5.2c illustrates the region between the crossover plane

and the second focal plane where the skyrmion field line starts spiralling while travelling against

the beam propagation direction except in the centre of the field. In the centre of the beam, the

skyrmion field line is still travelling along the beam propagation direction. Therefore, the flux

through a transverse plane in this region would be 0. However, due to the fact that the field is more

concentrated in the centre and the crossover plane, when the sizes of the arrows are related to the

field strength this contrast is not very obvious. This will be further illustrated in Fig. 5.2d. From

this region to beyond the second focal plane, namely between zc < z < z1 and z > z1, is depicted

in Fig. 5.2d. If the field line has a positive z component, in other words, travelling along the beam

propagating direction, it is coloured in blue, otherwise in red. This colour scheme is chosen to

emphasize the feature we observed in the previous region, that the centre of the skyrmion field is

travelling in a different direction from the rest of the field. To summarise, Fig. 5.2 explains how

the skyrmion field remains conserved while the skyrmion number changes during propagation and

therefore demonstrates that the skyrmion field has no sources nor sinks.

Fig. 5.3 is provided to further illustrate how the skyrmion field at the centre of beam behaves

differently from the rest of the space. In Fig. 5.3a, the normalised density plot of Σz covers the

same range as the 3D plot in Fig. 5.2a, namely, z < zc. As shown in the plot, the z component

of the field is positive everywhere. This is different in regions towards the second focal plane,

i.e. zc < z. This is demonstrated by the normalised density plot Fig. 5.3b, where the field at the

centre of the beam is positive while being negative everywhere else (Note the change of the range

of values of intensity which is now from −1 to 1). A non-normalised density plot of this region

is also provided in Fig. 5.3c. Further to the feature shown previously, this subplot illustrates that

the z component of the skyrmion field is concentrated at the centre of the beam, which is also

demonstrated in Fig. 5.3d. Fig. 5.3d shows Σz value at z = 0.5, y = 0 across the x axis, where

not only Σz is positive at the centre of the beam but it is considerable larger than anywhere else

as well. The fact that the flux at this transverse plane (and any other transverse plane at z > zc) is

because the tail of Σz extends to −∞ and∞ due to the e−2ρ2
term (which is constrained within the

ratio f ) on the numerator in Eq. 5.23.

In addition to the graphical demonstration of the conservation of the skyrmion field despite a

change in the skyrmion number, we also provide an analytical proof. If we draw a closed surface

enclosing the crossover plane at z = 0 as shown in Fig. 5.4, the flux change can be calculated by

combining the changes in the radial direction and the z direction due to the cylindrical symmetry

of the beam. The flux change in the radial direction can be calculated from the radial component
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(a) Density plot of Σz/|Σ| from z < z0 to z = zc. (b) Density plot of Σz/|Σ| from z = zc to z > z1.

(c) Density plot of Σz from z = zc to z > z1.

(d) Σz at z = 0.5, y = 0 between −10 ≤ x ≤ 10.

Figure 5.3 Density plots of Σz, in accordance to Fig.4.4. Before the cross-over plane, as shown
in (a), Σz/|Σ| is positive, meaning that Σz is travelling in the same direction everywhere in the
beam. However, as shown in (c), after the cross-over plane, at the centre of the beam Σz/|Σ| is
positive while being negative everywhere else. This demonstrates that while skyrmion number
changes when the skyrmion field changes its direction, the field itself remains conserved.

of the skyrmion field in Eq.5.11:

1
4π

∫ ∞

0
ΣρdS ρ = `d(

1
1 + | f (∞, z)|2

−
1

1 + | f (∞,−z)|2
). (5.24)

Because the ratio f at the centre (ρ = 0) is unchanged, 1
1+| f (0,−z)|2 = 1

1+| f (0,z)|2 . Therefore the change

of flux (skyrmion number) in the z direction, according to Eq.4.14 is:

n(z) − n(−z) = −`d(
1

1 + | f (∞, z)|2
−

1
1 + | f (∞,−z)|2

). (5.25)

As specified by Eq.5.24 and Eq.5.25, we can see the total flux change:

1
4π

(
−

∮
−z

ΣzdS z +

∮
z
ΣzdS z +

∫ z

−z
ΣρdS ρ

)
= 0. (5.26)
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Figure 5.4 Schematic illustration of a cylindrical closed surface enclosing the cross-over plane
to calculate the total skyrmion field flux change. In the actual calculation, the radius of the
cylinder should be ∞. This shows the flux changes in both z and rho direction, explaining the
net 0 flux change.

Therefore we proved the skyrmion field is conserved when the two spatial components have dif-

ferent focus and the skyrmion number has changed in propagation.

Another way to interpret a conserved field is that there is no breaks or joints of field lines. This

feature is illustrated in Fig. 5.5, where we provide stream plots of the skyrmion field in six cross

sections.

The colour scheme in Fig. 5.5a corresponds to the skyrmion field strength in the xz or the

yz direction, namely, either |Σx x̂ + Σzẑ| or Σyŷ| + Σzẑ|. In Fig. 5.5b to Fig. 5.5f, the colour scheme

denotes the strength of the transverse component of the skyrmion field, i.e. |Σρρ̂+Σϕφ̂|. The colour

orange corresponds to higher strength of the skyrmion field, whereas the colour blue corresponds

to lower strength.

In Fig. 5.5a, which demonstrates the cross-section of the skyrmion field in xz or yz plane, we

can observe that the field lines are propagating in the same direction until the crossover plane,

zc, where a portion of the field lines escape to the infinity in the ρ̂ direction. After zc, except for

the field line in the centre, field lines elsewhere is travelling opposite to the beam propagating

direction. Another important observation is that the field strength in the centre of the beam at

z > zc is considerable larger than other places, making it possible to maintain a net flux of 0.
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(a) The xz and yz Cross-section from
z < z0 to z > z1. (b) The xy Cross-section at z < z0. (c) The xy Cross-section at

z0 < z < zc.

(d) The xy Cross-section at z = zc. (e) The xy Cross-section at
zc < z < z1.

(f) The xy Cross-section at z1 < z.

Figure 5.5 Cross-sections of skyrmion field lines, and their corresponding Σϕ value across
x = 0, in accordance to Fig. 4.4, demonstrating that skyrmion field lines have no sources nor
sinks.

In Fig. 5.5b to Fig. 5.5f, we illustrated the cross section of the skyrmion field in the xy direction

with the Σϕ across x = 0 at z < z0, z0 < z < zc, z = zc, zc < z < z1 and z > z1 respectively. At

z < zc, shown in Fig. 5.5b and Fig. 5.5c, the field line is rotating anti-clockwise at the centre of

the beam, corresponding to the positive Σϕ. As it expands the field lines start to rotate clockwise,

corresponding to the negative Σϕ. At z = zc (Fig. 5.5d), the field line rotates in the clockwise

direction at the centre of the beam and as it expands, the field lines start to rotate in the anti-

clockwise direction before changing back to clockwise rotation. At z > zc, shown in Fig. 5.5e

and Fig. 5.5f, the field line is rotating clockwise at the centre of the beam, corresponding to the
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negative Σϕ. Further from the centre, the field lines start to rotate anti-clockwise before changing

back to clockwise again. Except for the cross-section plane, at any other transverse planes, as the

field expands further to infinity, the rotation tends to zero.

A field line therefore can be visualised as a line spiraling up, then while it is still propagat-

ing upwards, it spirals in the opposite direction and circulates tending to the centre of the beam.

Therefore, it does not break nor join itself during the whole process.

One thing to note is that at the centre of the beam Σϕ = 0, regardless where the transverse

plane is. Except the crossover plane, all the other transverse planes show that the centre of the

beam is much stronger than elsewhere in the beam. At the crossover plane, however, the centre

of the beam is the weakest. This verifies our previous observation that the field lines escape to

infinity in the ρ̂ direction at the crossover plane, explaining the change in skyrmion number.

5.4 Conclusion

In this chapter, we introduced the skyrmion field for skyrmionic beams. We demonstrated that the

skyrmion field is a conserved field which means that there are no sources nor sinks in skyrmionic

beams. We have also proved that the skyrmion field is independent of the global orientation of the

effective magnetisation M. We have also obtained a simple form of the skyrmion field that only

depends on the complex ratio µ between the two spatial components. From this, we are able to

demonstrate that the skyrmion field does not depend on the direction of the polarisation coupled

with the spatial components.

We have also included two specific examples in this chapter. In the first example, the beam

is comprised of two LG beams with different winding number ` sharing the same beam width,

wavelength and focal plane as the spatial components. And in the second example the two spatial

components have different foci, while still sharing the same beam width and wavelength. For each

example we have demonstrated the skyrmion field lines in a 3D model, and on different cross-

sections. Using these graphic illustrations and the analytical expression of the skyrmion field in

each example, we are able to explain how the changes in skyrmion numbers do not contradict the

conservation of the skyrmion field.

It is important to note that this skyrmionic property of structured beams is different from

other properties we are more familiar with, such as the spin and angular momentum [34, 31,

118]. Although skyrmionic beams also require that both the vortex structure and the polarisation

exist in a beam, the skyrmionic structure is a topological rather than mechanical structure. For

example, because the skyrmion field is independent of the polarisation direction, the skyrmion

number would remain the same if we apply reflection or phase retardation to the constituent beams.

On the other hand, in the second example where the skyrmion number has changed, the total spin

and angular momentum passing through each transverse plane remains unchanged.

However, despite all the interesting properties, many of the characteristic features of the

skyrmion field introduced in this chapter happen in the region with low light intensity. This poses

further challenge to experimental observation. Therefore, in the next chapter, we will introduce

another vector field, the skyrmion vector potential field, in the hope to shine more light onto the

nature of skyrmionic beams and providing another tool in experiments to examine skyrmionic
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beams.
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Vector potential field in Skyrmionic
beams

We will introduce another vector field: the skyrmion vector potential field in this chapter. This

has three motivations. The first being that it could serve as an alternative tool to the skyrmion

field to experimentally examine the skyrmion structure. As mentioned in Chapter. 5, the skyrmion

field includes the cross product of two derivatives of the effective magnetisation M which requires

accurate measurement at regions with low light. This will pose great challenges in experimental

measurement. Therefore, we are motivated to find an alternative method to examine the skyrmion

structure in experiments. The second reason is the analogous properties between the skyrmion

structure and the superfluid. As introduced in Section. 3.6, the winding number of superfluid is

similar to the skyrmion number. By introducing the skyrmion vector potential field, we will be able

to explore the analogy between skyrmionic beams and superfluid even further. Last but not least,

it is mathematically interesting to explore the fact that the skyrmion field is a divergenceless field.

This is analogous to the magnetic vector potential field A of the magnetic field B in classical elec-

tromagnetic theory. The material in this chapter are produced by the author and partly published

in [1] while the rest will be included in future publications that are currently under preparation.

6.1 Skyrmion vector potential field in general

As a divergenceless field, the Skyrmion field can be written as a curl of another vector field v0:

∇ × v0 = Σ. (6.1)

By inputting the general form of the skyrmion field defined as in Eq. 5.2 into this expression, we

have:

(∇ × v)i = Σi =
1
2
εi jkεpqr Mp(∂ jMq∂kMr). (6.2)

Surprisingly, we find that this is in a similar form to the so-called ‘Mermin-Ho’ relation in the

theory of superfluid 3He [110]:

(∇ × vs f )i =
~

4m
εi jk l̂ · (∂ j l̂ × ∂k l̂), (6.3)
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where l̂ is a unit vector in orbital space representing the orientation of the order parameter, with

vsf and ∇ × vsf representing the velocity and the vorticity of the superfluid respectively. In the

‘Mermin-Ho’ relation, it also provides the definition of vsf :

(vs f )i =
~

2m
m̂s · ∂in̂s, (6.4)

where m̂s and n̂s are also unit vectors and there exists the restriction:

m̂s × n̂s = l̂. (6.5)

This does not determine m and n and hence there is some freedom in the way we choose vs f .

This is analogous to the gauge freedom in choosing the magnetic vector potential A in electro-

magnetism. In order to understand the meaning of gauge transformation on the skyrmion vec-

tor potential, we can perform the following analysis. Based on the orthogonality of m̂s and n̂s

(m̂s · n̂s = 0), Eq. 6.4 can be written as:

(vs f )i =
~

2m
m̂s · ∂in̂s

= −
~

2m
n̂s · ∂im̂s

=
~

2m
=

(
1
2

(m̂s − in̂s) · ∂i (m̂s + in̂s)
)
.

(6.6)

As we introduced earlier in Section. 3.6 of Chapter. 3 that m̂s, n̂s and l̂ from a set of orthogonal

triad, we can define a 2-D rotation eiχ(r) on this set of axes around l̂:

(m̂s + in̂s)→ eiχ (m̂s + in̂s)

(m̂s − in̂s)→ e−iχ (m̂s − in̂s) .
(6.7)

After the rotation, the vsf field becomes:

(v
′

s f )i =
~

2m
=

(
1
2

(m̂s − in̂s) e−iχ(r) · ∂i
(
eiχ(r) (m̂s + in̂s)

))
=
~

2m
=

(
1
2

(m̂s − in̂s) · ∂i (m̂s + in̂s)
)

+ =

(
1
2

(m̂s − in̂s) · ∂i (m̂s + in̂s) iχ(r)
)

=
~

2m
m̂s · ∂in̂s + ∂iχ(r)i.

(6.8)

Because ∇ × (∇χ(r)) = 0, we have proved that applying a rotation to m̂s and m̂s is a gauge

transformation on the skyrmion vector potential field.

If we compare our M (Eq. 4.1) to vector l̂, we can obtain the corresponding vector m̂s and

vector n̂s. One obvious approach is defining those three vectors as:

l̂ =


Mx

My

Mz

 ; m̂s =
1√

M2
x + M2

y


My

−Mx

0

 ; n̂s =
1√

M2
x + M2

y


−MzMx

−MzMy

M2
x + M2

y

 (6.9)

Inserting this result into the definition for the superfluid velocity vsf in Eq. 6.4, we arrive at the
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equivalent of the vsf for our skyrmion field, which we use v to represent:

(v)i =
Mz

(M2
x + M2

y )
(My∂iMx − Mx∂iMy). (6.10)

Because M is a unit vector, the normalisation factor 1/(M2
x +M2

y ) can also be written as 1/(1−M2
z ).

Combining this result, the ‘Mermin-Ho’ relation Eq. 6.3, Eq. 6.4 and our requirement to write the

skyrmion field Eq. 6.2 as a curl, we finally achieve the answer:

(v)i =
Mz

1 − M2
z

(My∂iMx − Mx∂iMy). (6.11)

Because the curl of the newly found vector field v is the skyrmion field Σ, and based on the Stokes’

theorem, we can draw the following conclusion:∮
L

v · dl =

∫
S
Σ · dS, (6.12)

whereL is the simple closed curve around a surface S. If we choose S to be in the z direction, then

according to Eq. 6.12, we find an alternative way to calculate the skyrmion number using the line

integral of the v field. There is one caveat however, that vector field v is defined and continuous on

surface S. As shown in Eq. 6.10, there are two scenarios in which such singularities might exist.

The first being the denominator (M2
x + M2

y ) is 0, and that the derivatives are not approaching 0 in

the same rate. This indicates that Mx and My components are rapidly changing as they approaches

0. The second which is the more important scenario being that the derivatives are not well-defined

at certain points on the surface. To demonstrate this is a general concern, we provide the explicit

form of the φ component of the v field in cylindrical coordinates:

vϕ =
Mz

(M2
x + M2

y )
1
ρ

(My
∂

∂ϕ
Mx − Mx

∂

∂ϕ
My). (6.13)

If the terms in the bracket do not possess an explicit ρ term, there would exist a singularity at the

centre of the surface where ρ = 0. It is worth noting that if such singularity exists, this is not a

coordinate singularity, but rather, a physical one. In other words, the singularity would always

exist, regardless of how the coordinates are shifted.

This issue of singularities can be solved by defining the boundary L as a connected sum of

countable-many Jordan curves that loop around such singularities [119] as shown in Fig. 6.1. If

we choose those loops carefully as boundaries of all the singularities in the cross-section in Σz

direction, skyrmion numbers can be evaluated by line integrals of the v field through:

n =
1

4π

(∮
LS

v · dl −
∑∮

Li

v · dl
)
, (6.14)

where LS and Li denote the boundary around the cross-section in the direction of Σz and the

singularities respectively. Despite the theoretical interest in constructing this vector field, it is

also practically useful for obtaining skyrmion number in two situations: a) when there are any

singularities in the skyrmion field Σ on surface S , b) in skyrmion related experiments. As we have

discussed above, according to Eq. 5.1, skyrmion number is calculated through the surface integral

61



Sijia Gao

Figure 6.1 Visualisation of applying Stoke’s theorem of v on S which is a smooth oriented
surface with boundary LS . Li represent a series of countable number of singularities.

of the cross-section of the beam, inevitably relying on the low intensity area, such as the centre

and the edge of a beam. Experimentally obtaining local spin/polarisation direction in low intensity

areas requires high precision measurements, and even higher precision is required for obtaining

first-order derivatives with certainty. Using the Skyrmion field as shown in Eq. 5.1 requires cross

products of two first-order derivatives, whereas using the vector potential for skyrmion field as

demonstrated by Eq. 6.14 only requires one first-order derivatives. Switching to a line integral of

vector potential for skyrmion fields can therefore potentially reduce uncertainty from experiments.

Another way in that skyrmionic beams are analogous to superfluid lies in the similarity be-

tween the circulation and the skyrmion number. In the superfluid theory ‘circulation’ κ is defined

as the line integral of its velocity along every closed path ‘L’ in the liquid [64]:

κ =

∮
L

vsf · dl. (6.15)

For isotropic superfluid such as 4He and 3He B phase (3He-B), circulation is quantized and can be

written as:

κ = Nκ0, (6.16)

where N is a non-zero integer for multiply connected containers and κ0 = h/2m is the quantum

of circulation [64]. As for the anisotropic superfluid such as 3He A phase (3He-A), in general the

circulation is no longer quantized except at the wall of the container. From Eq. 6.14, the skyrmion

number is very similar to the circulation of anistropic superfluid, if we consider the boundary

of the beam and its associated singularities as the ‘walls’ of the container. The parallels in this

analogy between superfluids and skyrmion beams will be summaries in Table 6.1 in Section. 4.2.
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6.2 Skyrmion vector potential field in paraxial skyrmionic beams

For paraxial beams, their corresponding vector potential for skyrmion field can be expressed as

using Eq. 4.5

v = −Mz∇Φ, (6.17)

where Φ is defined in Eq. 4.5 as the phase of the ratio between the two spatial components. Adopt-

ing the cylindrical coordinate due to the symmetry of paraxial beams, in calculating skyrmion

number Eq. 6.12, vϕ is the only component not perpendicular to either the cross-section of the

beam or its boundary. Eq. 6.17 shows that for skyrmion beams with a well-defined phase number

`d, there exists only one singularity which is at ρ = 0. Therefore, skyrmion number for paraxial

skyrmionic beams can be generalised as:

n =
1

4π

(
lim
ρ→∞

∮
L

v · dl − lim
ρ→0

∮
L

v · dl
)
, (6.18)

from which we can recover Eq. 4.14.

In general, for a circular contour in the xy plane centred on the z axis, the analogous circulation

would be: ∮
L

v · dl = −2π`d Mz(ρL, zL), (6.19)

which is not necessarily an integer. This is similar to the circulation in anisotropic superfluid,

which is [120, 121]:

κ =

∮
L

vs f · dl =
~

2m

(
S (l̂) + 4πn

)
, (6.20)

where S (l̂) is an area on the unit sphere ranging between [0, 4π] and n is an integer. n depends on

the mapping relation between l̂(r) and its corresponding points on L(l̂): if it is a one-one mapping,

n = 0; otherwise, n corresponds to the extra times of wrapping around L(l̂) [120].

S (l̂) can be visualised in Fig. 6.2. as we traverse the closed contour L(l̂), it can be mapped

as a closed curve L(l̂) on a unit sphere by recording the orientation of vector l̂. Since L(l̂) has a

direction, S (l̂) refers to the surface area of the unit sphere to its left. Therefore, for an anisotropic

superfluid, quantized circulation only exists when l̂ has a fixed direction, i.e. at the surface of its

container. This means l̂ maps to a polar point on the unit sphere and L(l̂) shrinks to that point as

well. From our previous discussion, similar to l̂, M can also represent a point on a unit sphere.

As shown in Fig. 6.2, for each Mz, we can associate a spherical cap with it. The surface area of a

spherical cap is 2π(1 − cos χ), which according to Eq. 4.15 can be rewritten into 2π(1 − Mz). This

allows us to adapt Eq. 6.19 as:∮
L

v · dl = `d (S (M) − 2π) = n (S (M) − 2π) , (6.21)

where S (M) denotes the area of the spherical cap created by M. The similarities and differences

between superfluid velocity v and vector potential for skyrmionic beams are summarized in Ta-

ble. 6.1.

In Table. 6.1, −φ, β and α are Euler angles used to describe the orientation of the orbital

triad (m̂s, n̂s, l̂) of the order parameter of anisotropic superfluid relative to some fixed coordinate
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Figure 6.2 This graph is a visualisation of S (l̂) on a unit sphere, recording the mapping of the
orientation l̂ of the order parameter on a closed contour in an anisotropic superfluid.

system (x̂, ŷ, ẑ). φ is also referred to as the phase of the order parameter. 0 ≤ S (l̂) ≤ 4π is an area

on the unit sphere, which would take the boundary value at the ‘walls’ of the container, leading

anisotropic superfluid possessing an integer circulation. κ is the circulation of the superfluid and

κ0 denotes the ‘quantum of circulation’ [64]. Although we have provided 4π as the equivalent of

κ0 in skyrmionic beams, it is merely an analogy. M is the local magnetisation/polarisation of the

skyrmionic beams and Σ denotes the corresponding skyrmion field. Φ represents the phase of the

ratio between the two spatial components in the paraxial beams of interest. LS and Li are the

boundaries of the beam and any singularities exist within the beam respectively. S (M) denotes the

area of the spherical cap created by M on a unit sphere. Both n and N are integers, representing

the skyrmion number and the number of circulation in superfluid respectively.

We have demonstrated that there is a line along which v is ill-defined or singular as shown in

Eq. 6.11. This is a reminiscent of Dirac strings. We recall that in his seminal paper on magnetic

monopoles [113], Dirac showed that the existence of a monopole was necessarily accompanied by

a line connected to the monopole along which the vector potential, A, was singular. Such string

extend out to infinity unless connected to a second monopole. As introduced in Section. 3.6 of

Chapter. 3, there also exists a vortex line with an inseparable single vortex in 3He. This vortex line

is also analogous to a Dirac string. In the theory of paraxial skyrmionic beams introduced in this

thesis, however, there is no analogous to the monopole and it follows, necessarily, that the line or
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Table 6.1 Comparison between superfluid velocity and the vector potential of the skyrmion
field. −φ, β and α are Euler angles used to describe the orientation of the orbital triad
(m̂s, n̂s, l̂) of the order parameter of anisotropic superfluid relative to some fixed coordinate
system (x̂, ŷ, ẑ). φ is also referred to as the phase of the order parameter. 0 ≤ S (l̂) ≤ 4π is an
area on the unit sphere, which would take the boundary value at the ‘walls’ of the container,
leading anisotropic superfluid possessing an integer circulation. κ is the circulation of the su-
perfluid and κ0 denotes the ‘quantum of circulation’ [64]. M is the effective magnetisation field,
or Stokes parameters for paraxial skyrmionic beams. Φ is the phase component of the ration
between the two spatial components in skyrmionic beams.

Superfluid Skyrmionic beams

Anisotropic Isotropic General Paraxial Beams

v ~
2m (∇φ − cos β∇α) ~

2m∇φ
Mz

1−M2
z
(My∇Mx − Mx∇My) −Mz∇Φ

(∇ × v)i
~

4mεi jk l̂ · (∂ j l̂ × ∂k l̂) 0 (Σ)i = 1
2εi jkM · (∂ jM × ∂kM)∮

L
v ·dl

κ ∮
LS

v ·dl−
∑∮
Li

v ·dl = 4πn 2π`dMz =

n (S (M) − 2π)~
2m

(
S (l̂) + 4πn

)
Nκ0

κ0
h

2m 4π

string along which v is singular extends to infinity in both directions.

6.3 Skyrmion vector potential field in specific examples

In this section, we will present and discuss the corresponding skyrmion vector potential field of

the examples presented in Section. 4.4.

6.3.1 Same focus

We now consider the vector potential v field of the skyrmion field for the example where the

two spatial components are focused at the same point introduced in Section. 4.4.1. According to

Eq. 6.17, the v field is explicitly:

vρ = 0;

vϕ =

(
1 −

2
1 + f 2

)
`d

ρ
;

vz =

(
1 −

2
1 + f 2

)
`∆zR

z2
R + z2

.

(6.22)

This is plotted accordingly in Fig. 6.3, with `u0 = 0, `u1 = 1. Fig. 6.3a shows a 3D view of

the the vector potential field, the v field. While the field stretches from ∞ and extends to −∞, the

plot depicts the area around the focal point, namely −10 to 10. At every point in space it spirals

in the same direction and expands near the focal point. This is further illustrated in the rest of

the cross-section plots in Fig. 6.3b to Fig. 6.3c. The colour scheme in Fig. 6.3a and Fig. 6.3b

are according to the intensity of the field, where orange represents higher intensity whereas blue
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(a) 3-D plot of the v field.

(b) Streamline plot of the v field in the xz and yz
cross-sections.

(c) Streamline plot of the v field in the xy
cross-section, which is the same at every z.

Figure 6.3 Illustration of the v field of the beam in Fig. 4.3, showing no change during propa-
gation.
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represents lower intensity, demonstrating that the field is concentrated near the focus of the beam

and diminishes as it propagates away from the focal point. The low intensity in the middle of the

field corresponds to the change over point of vϕ where it is 0. It also demonstrated that it has no

ρ element. The bottom half of Fig. 6.3c demonstrates that the v field spirals perpendicular to the

beam propagation direction and rotates clockwise everywhere in the space, except in the centre.

This corresponds to the plot at the top of Fig. 6.3c of vϕ across x being negative at the centre of the

beam and positive everywhere else. Examining closer to the expression of vϕ in Eq. 6.22 and the

plot of vϕ across x axis, it is clear that there exists a singularity at ρ = 0 along the z axis, forming

a string of singularities.

We can also use using Eq. 6.18 to reproduce the skyrmion number `d based on the explicit

expression of the v field in Eq. 6.22:

n =
1

4π

(
lim
ρ→∞

∮
L

v · dl − lim
ρ→0

∮
L

v · dl
)

=
1

4π
2πρ

(
vϕ(ρ→ ∞) − vϕ(ρ→ 0)

)
= `d

(
1

1 + f (ρ→ ∞)2 −
1

1 + f (ρ→ 0)2)

)
.

(6.23)

According to Eq. 4.18, f =

√
|`u0 |!
|`u1 |!

(
ρ
√

2
w(z)

)`∆

. Therefore, we are able to reproduce the same result

of skyrmion number n = `d when the two spatial components are focused on the same point as in

Section. 4.4.1 by using the vector potential field.

6.3.2 Different focus

In the example where the two spatial components are focused at different points introduced in

Section. 4.4.2, the change in the skyrmion number can also be demonstrated through the corre-

sponding vector potential field. The v field in this example is explicitly as following according to

Eq.6.17:

vρ =

(
−1 +

2
1 + f 2

)
κρ

(
1

Ru1(z)
−

1
Ru0(z)

)
;

vϕ =

(
1 −

2
1 + f 2

)
`d

ρ
;

vz =

(
1 −

2
1 + f 2

) {
κρ2

2

[
1

R2
u1(z)

(
1 −

( zR

zu1

)2)
−

1
R2

u0(z)

(
1 −

( zR

zu0

)2)]
+ zR

(
|`u1 | + 1
Ru1zu1

−
|`u0 | + 1
Ru0zu0

)}
.

(6.24)

This is plotted accordingly in Fig. 6.4, with `u0 = 0, `u1 = 1. Fig. 6.4 and Fig. 5.5 provide a

one-to-one correspondence between the v field and the skyrmion field at different cross-sections.

Fig. 6.4a demonstrates the cross-section of the vector potential field in xz and yz plane and the

colour scheme corresponds to the field intensity. Fig. 6.4a shows some interesting insights on the

vector potential field: a) Contrary to the skyrmion field in Fig. 5.5a, the vector potential field is

stronger on the outside of the beam rather than the centre of the beam. The vector potential field

also expands at the cross over plane rather than focuses in as with the skyrmion field; b) Before the

cross-over plane at zc = 0 in this case, the field lines are travelling towards the z axis at the centre
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(a) The xz and yz crossection from
z < z0 to z > z1.

(b) The xy crossection at z < z0. (c) The xy crossection at
z0 < z < zc.

(d) The xy cross section at z = zc. (e) The xy cross section at
zc < z < z1.

(f) The xy cross section at z1 < z.

Figure 6.4 The vector potential v field, and their corresponding vϕ value across x = 0, in
accordance to Fig.4.4. The red and black dotted lines illustrates the paths where vϕ changes
sign. This highlighted the different behaviour before and after the crossover plane and further
explains the change in the skyrmion number.

of the beam while the rest are travelling away from the z axis. However, after the cross-over plane,

it is exactly the opposite. The field lines in the centre are travelling away from the z axis and those

on the outside are travelling towards the z axis; c) At the centre of the beam, the vector potential

field originally travels along the beam propagation direction but changes to opposite direction after

the cross-over plane.

In Fig. 6.4b to Fig. 6.4f, we illustrated different cross sections of the vector potential field in

the xy direction with their corresponding vϕ across x = 0 at z < z0, z0 < z < zc, z = zc, zc < z < z1

and z > z1 respectively. At z ≤ zc, shown in Fig. 6.4b, Fig. 6.4c and Fig. 6.4d, the field lines

are rotating clockwise at the centre of the beam, corresponding to a negative vϕ. As it expands
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the field lines start to rotate anti-clockwise, corresponding to a positive vϕ. The changing point

of the rotation is denoted by a black circle. At z > zc, shown in Fig. 5.5e and Fig. 5.5f, the field

lines rotate in a clockwise direction fashion at the centre of the beam and as it expands, the field

lines start to rotate in the anti-clockwise direction, corresponding to the change of a negative vϕ
to a positive vϕ. This first change is denoted by a red circle. Then the field line changed back to

a clockwise rotation as it expands across the second changing point which is marked by a black

circle. This change corresponds to the change of a positive vϕ back to a negative vϕ when ρ tends

to∞.

Similarly to Section. 6.3, from both Eq. 6.24 and Fig. 6.4, it is clear that there exists a singu-

larity at ρ = 0. Therefore, The skyrmion number should be be obtained using Eq. 6.18. Without

explicit calculating the skyrmion number, its change at z = zc can also be inferred from Fig. 6.4.

At z ≤ zc, from ρ = 0 to ρ = ∞, there is only one change in direction of vϕ, from negative to pos-

itive, whereas at z > zc, vϕ changes twice, from negative to positive and back to negative. Hence,

from Eq. 6.18, the difference between the line integral of vϕ changes from `d to 0 at zc.

6.4 Conclusion

In this chapter, we introduced the skyrmion vector potential field derived from the divergenceless

nature of the skyrmion field. We then reproduced the associated skyrmion number of paraxial

skyrmionic beams from this new field, using Stoke’s theorem, which fulfilled our pursuit of math-

ematical interest mentioned at the beginning of this chapter.

We also explored the analogy between the skyrmion vector potential field, and the superfluid

velocity. Adopting the ‘Mermin-Ho’ relationship in superfluid, we are able to produce a form of

the skyrmion vector potential field purely from the experimentally measurable effective magneti-

sation M.

Two specific examples are included in this chapter as in the previous chapters. In the first ex-

ample, the beam is comprised of two LG beams with different winding number ` sharing the same

beam width, wavelength and focal point as the spatial components. In the second example, the two

spatial components have different foci, while still sharing the same beam width and wavelength.

For each example we have demonstrated the skyrmion vector potential field in a 3D model, and

on different cross-sections. Using these graphic illustrations and the analytical expression of the

skyrmion vector potential field in each example, we are able to present an alternative explanation

to the changes in skyrmion numbers from the analysis in Chapter. 5.

Contrary to the skyrmion field, where many of its characteristic features manifest in the region

with low light intensity, there is less spatial constraint in the vector potential field on where we

should collect data. This is because we can adjust the two line integrals that are used to produce the

skyrmion number. Therefore, it provides a more feasible method to extract the skyrmion number

in a pure experimental manner.

In the previous Chapters. 4, 5 and this chapter, we have introduced the three basic features

of paraxial skyrmion beams. Before we start to discuss the potential experimental realisation of

skyrmionic beams, it is important to explore the relationship of the skyrmionic beams with other

categories of structured beams to understand it further.
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Fractional Skyrmionic beams

7.1 Introduction

In order to understand more about skyrmionic beams we wish to explore its relation with the other

categories of structured beams. One of the main ones we will discuss in this thesis is the full

Poincaré beam. This is because of its close relationship with the Poincaré sphere and that it can

also be constructed from superposing two LG beams.

The concept of full Poincaré beams is first formally introduced by A. Beckley, T. Brown

and M. Alonso in 2010 [122]. It has since become one of the most popular categories of vector

beams [123, 3, 124]. Full Poincaré beams require every possible polarisation being found at some

location in the plane perpendicular to the propagation direction. Usng the same notation introduced

in Section. 4.2 to describe the Poincaré sphere, this means that the polar angles χ and azimuthal

angel Φ need to span across the whole sphere, ranging from 0 to π and 0 to 2π respectively. The

most simple construction of a full Poincaré beam is also from superposing two different modes of

LG beams with orthogonal polarisations [122].

The material in this chapter is produced by the author and partly published in [1] while the rest

will be included in future publications that are currently under preparation.

7.2 The relationship between skyrmionic beams and Poincaré beam

Skyrmion structure has been observed in Poincaré beams and has been considered as a property

of them [125]. We find, however, that skyrmion beams are not equivalent to Poincaré beams, but

rather, in a relationship illustrated in Figure. 7.1.

In order to identify the types of paraxial beams possessing an integer skyrmion number, and its

relationship with the full Poincaré beams, the skyrmion number expression in Eq. 4.14 is rewritten

as following by incorporating cos χ in Eq. 4.16 as 2
1+| f |2 − 1:

n =
`d

2
(cos χ(0, z) − cos χ(∞, z)) . (7.1)

This suggests that there are two situations with integer skyrmion number:

• Both `d and 1
2 (cos χ(0, z) − cos χ(∞, z)) are integers:
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Figure 7.1 This shows the inclusive relationship among vector beams, Poincaré beams and
skyrmionic beams.

1
2 (cos χ(0, z) − cos χ(∞, z)) would be an integer if and only if the angle χ ranges from the

North pole to the South pole of the Poincaré sphere. `d indicates the rotation around the

S 3 axis. In this case, the skyrmionic beams in this case covers the whole surface of the

Poincaré sphere, and therefore are also full Poincaré beams. More specific example beams

are illustrated in Section. 4.4

• Only `d is an integer:

In these cases, for example, when ld = 2 and χ only ranges from the North pole to equator,

the extra rotation around the S 3 axis is able to make up for the lack of range of angle χ. These

beams are skyrmionic beams but, they do not cover the full Poincaré sphere. Therefore, they

are not full Poincaré beams.

One example would be the type of beams we named as fractional skyrmions which shall be

explored more thoroughly in the following sections of this chapter. In this example, the two

spatial components u0 and u1 would be Laguerre Gaussian beams whose ` modes possess

the equal magnitude but opposite signs, namely −`0 = `1 = ` focusing at different positions.

In this way, `d = 2`. According to the discussion in Section. 7.3, when the fractional

beam propagates away from the crossover plane, i.e. z > zc, 1
2 (cos χ(0, z) − cos χ(∞, z)) =(

1 +
(wu0 (z)

wu1 (z)
)2(`+1)

)−1
. For example, when ` f = 2, if

wu0 (z)
wu1 (z) =

6√3, the skyrmion number n
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remains as 1. This is visually demonstrated in Fig. 7.2.

Figure 7.2 Visualisation of an optical beam with integer number −1 without spanning the whole
Poincaré sphere. The numbers on the circle without dotted line demonstrates that `d = 4.
cos χ(0, z) = −1 whereas cos χ(∞, z) = −0.5.

Then are all full Poincaré beams skyrmionic beams? We here provide an example to prove

this is not always the case. Consider a structured beam with the beam profile:

|ψ(r)〉 =
LG0

1(r)|0〉 + LG1
0(r)|1〉√

|LG0
1(r))|2 + |LG1

0(r)|2
, (7.2)

with LG0
1 and LG1

0 represent Laguerre Gaussian beams with the winding number ` equals to 1
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Figure 7.3 a) Magnetisation and b) polarisation visualisation of a Poincaré beam with Skyrmion
number 0. Although it looks like a n = 1 and a n = −1 skyrmions being molded together, it
is not comprised of an anti-skyrmion imprinted on a skyrmion. Because it is not possible to
separate this structure into two isolated skyrmions. This is also proved mathematically that
the skyrmion number of this structure is 0.

and 0 and the radial number p equals to 0 and 1 respectively. The effective magnetisation and

corresponding optical polarisation for this beam are depicted in Fig. 7.3. f would take value of 0

at the 0 intensity rings of LG1
0; and ∞ at the centre of beam due to the doughnut beam profile of

LG0
1. This ensures the range of 0 to π of the angle χ. `d = 1 also ensures the angle Φ ranging from

0 to 2π. It follows that this beam is a full Poincaré beam.

This beam profile has a skyrmion number of 0, however, according to Eq. 4.14. We can

understand this in the way that, the LG0
1 mode will be dominant both in the centre and at infinity

while LG1
0 will only be dominant in the dark rings of LG0

1. This is also vividly shown in Fig. 7.3:

with red and blue represent the two orthogonal polarisation states, instead of having the typical

skyrmion structure, where the colour mapping changes from one to the other continuously from

the centre to the edge, these plots changed back blue on the edge. This suggests that this specific

beam, although it is a Poincaré beam, it does not have a skyrmion structure. Although it looks like

two skyrmion molded together, it is not comprised of an anti-skyrmion imprinted on a skyrmion.

Therefore, this beams is not a skyrmionic beam both in the sense that n = 0 and that it is not

possible to separate this structure into two isolated skyrmions.

To summarize, comparing with the requirement for full Poincaré beams - coverage of the full

Poincaré sphere, a skyrmionic beam requires strict stereographic projection of a sphere-like object.

When this sphere-like object is the Poincaré sphere, Skyrmionic beams are Poincaré beams; when

it is a sphere constructed from two of the same hemisphere of the Poincaré sphere, Skyrmionic

beams are not Poincaré beams; and lastly, when the coverage of Poincaré sphere is repeated mul-

tiple times with respect to the polar angle χ, then these beams are full Poincaré beams but not

Skyrmionic beams.
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7.3 Skyrmion number of fractional skyrmions

In the previous section,we discussed the relation between full Poincaré beams and Skyrmionic

beams. During the discussion, we introduced a type of beams named fractional skyrmion beams.

In fractional skyrmion beams, the two spatial components u0 and u1 would be Laguerre Gaussian

beams with ` having the equal magnitude but opposite signs.

In the general expression for the skyrmion number in Eq. 4.14, the skyrmion number is only

related to f (ρ, z), the modulus of the ratio between the two spatial components u0(r) and u1(r).

For LG beams with the same focal points and beam waists, f takes the following form:

µ = f =

√
|`u0 |!
|`u1 |!

ρ√2
w(z)

|`u1 |−|`u0 |

. (7.3)

When |`u0 | = |`u1 | = `, f is a constant, not a function of ρ or z anymore. In this way, the skyrmion

number would inevitably becomes 0 based on Eq. 4.14, as shown in Fig. 7.4.

Figure 7.4 The M field of the beam when the winding number of two spatial components have
the same magnitude, focus point and beam waist. It is 0 everywhere in the beam and therefore
appears to be a ‘mush’ due to Mathematica calculating using LG functions.

When the two spatial components do not share the same focal point, µ would be more compli-

cated as shown in the following equation:

f =

(
wu0(z)
wu1(z)

)`+1

exp
−ρ2

 1
w2

u1(z)
−

1
w2

u0(z)

. (7.4)

Φ(ρ, z, φ) = −
κρ2

2

(
1

Ru1(z)
−

1
Ru0(z)

)
+ (` + 1)

(
ξu1(z) − ξu0(z)

)
+ 2`φ. (7.5)

Without losing generality, here we choose −`u0 = `u1 = ` to be positive. At the centre of the beam,

i.e. ρ = 0, f =

(
wu0 (z)
wu1 (z)

)`+1
, at every z in the beam except zc. In regions far from the beam axis, i.e.

ρ = ∞, we have to consider three scenarios:

• z < zc:

Because u0 focuses first, this means that wu0(z) = w0

√
1 +

(z0−z)2

z2
R

is smaller than wu1(z) =

w0

√
1 +

(z1−z)2

z2
R

. Therefore, the exponential component in f : e
−ρ2( 1

w2
u1

(z)
− 1

w2
u0

(z)
)
,tends to ∞
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when ρ = ∞. In this way, the skyrmion number at z < zc according to Eq. 4.14 is:

n = 2`
/ 1 +

(
wu0(z)
wu1(z)

)2(`+1) ; (7.6)

• z = zc:

This means that wu0(zc) = wu1(zc) leading to that f = 1 at both the centre of the field and far

from the beam axis. Therefore, the skyrmion number is:

n = 0; (7.7)

• z > zc:

Similar to the discussion but contrary to the result when z < zc, the relation between the

beam waists is that wu0(zc) > wu1(zc) here. This leads to the exponential term tends to 0

when ρ = ∞. Thus, the skyrmion number becomes:

n = −2`
(
wu0(z)
wu1(z)

)2(`+1) / 1 +

(
wu0(z)
wu1(z)

)2(`+1) (7.8)

As shown in Fig. 7.5, the Mz value does not extend from −1 to 1 as a regular skyrmion structure

typically would. Therefore, the skyrmion number would not be an integer anywhere along the

beam. This result implies there is no full skyrmion structure in this system. In other words,

although they share similar appearance of skyrmion structure, they do not possess the topological

stability that integer skyrmion beams have.

To understand this result, we should revisit Eq. 4.17, where the dependence of ρ, in other

words, how the beam propagates radially, only depends on the absolute value of `. This means,

when |`u0 | = |`u1 |, both spatial components propagate at the same rate radially, regardless of the

focusing point. This indicates neither part would be dominant over the other one far from the beam

axis or at the center of the beam. Therefore, there is no change in the dominant polarisation or

spin pattern. Hence, there is no skyrmion structure.

7.4 Skyrmion field of fractional skyrmion

In this section we will explore the skyrmion field introduced in Chapter. 5 for fractional skyrmions

introduced in the previous section Section. 7.3, and discuss its relation with the skyrmion field of

integer skyrmionic beams.
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(a) z < zc. (b) z = zc. (c) z > zc.

Figure 7.5 The M field of the beam and its corresponding Mz value across x = 0 at different
z when the winding number of two spatial components have the same magnitude, focal point
and beam waist.

The skyrmion field of this kind of fractional skyrmionic beams has the following form:
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(7.9)

which is illustrated in Fig. 7.6 with the corresponding cross-sections in Fig. 7.7. Both Eq. 7.9 and

Fig. 7.7 indicates that this type of fractional skyrmion is completely symmetric in the transverse

plane with respect to the crossestion plane zc. Namely, Σρ(z − zc) = Σρ(−z + zc) and Σϕ(z − zc) =

Σϕ(−z + zc).

Fig. 7.6 shows a series of 3D views of the skyrmion field of this fractional skyrmion. Similarly

to the reasoning for Fig. 5.2, the skyrmion field is plotted in four sections. The region from z < z0

to z0 < z < zc, in other words, the skyrmion field beyond the first focal point to the region between

the first focal point and the crossover plane is depicted in Fig. 7.6a. The skyrmion field between

the the first focal point and the crossover plane, i.e. from z0 < z < zc to zc, is illustrated in

Fig. 7.6b. Fig. 7.6c illustrates the region between the crossover plane and the second focal point,

i.e. from zc to zc < z < z1. From this region to beyond the second focal point, namely from

zc < z < z1 to z > z1, is depicted in Fig. 7.6d. In all four regions, the skyrmion field behaves

similarly to the skyrmion field in the different focus example illustrated in Fig. 5.2. There is one

main differences between the two beams, manifesting itself at the centre of the field. At the centre
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(a) Between z < z0 and z0 < z < zc. (b) Between z0 < z < zc and z = zc.

(c) Between z = zc and zc < z < z1. (d) Between zc < z < z1 and z > z1.

Figure 7.6 This is a illustration of the skyrmion field line of a fractional skyrmion with its spatial
component focusing at different points. This shows that the z-component of the skyrmion field
line escapes to infinity at the cross-over point, which results in the change of the skyrmion
number.

of fractional skyrmions the skyrmion field is undefined unlike in the integer skyrmion beam. This

can be observed in Fig. 7.6 that the vectors in the centre of the field is orienting differently from

those in Fig. 5.2 pointing in the beam propagation direction.

This can be explained by examining the three components of the skyrmion field in Eq. 7.9 and

the ratio f in Eq. 7.4. Different from the integer skyrmion beams, the ratio f of the fractional

skyrmion beams has no ρ dependency except for in the exponential term. This results in a non-

zero ratio f on the axis where ρ → 0. Therefore, the skyrmion field terms, especially Σρ are

badly-behaved on the axis.

The result of the skyrmion field being ill-defined on the axis can be shown analytically using
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net flux change. If we draw an enclosed surface from z < zc to zc, the flux change in the radial

direction is

8π`
(

1
1 + | f (∞, z)|2

−
1

1 + | f (∞, 0)|2

)
. (7.10)

according to Eq. 5.24. The explicit expression of f from Eq. 7.4 suggests that at ρ → ∞ the ratio

would be 0 at every z. Therefore the flux change in the radial direction would be 0.

The skyrmion number change on the other hand, according to the discussion in Eq. 7.6 and

Eq. 7.7 is:

n(0) − n(−z) = −2`
1

1 +
(wu0 (z)

wu1 (z)
)2(`+1)

. (7.11)

In the different focus case discussed in Section. 5.3.2 , the ratio f at the centre (ρ = 0) is un-

changed, i.e. 1
1+| f (0,−z)|2 = 1

1+| f (0,z)|2 . Therefore, the net flux is 0 for integer beams. However, here

it is not the case. 1/(1 + | f (0, z)|2) changes at different z. In this way, the net flux change does not

equal 0.

This does not mean that the conservation law introduced in Chapter. 5 is flawed. According to

previous discussion, because the ratio would tends to 0 when ρ→ ∞, the total flux flow through a

cylinder extends from z to z + ∆z is:∮
cylinder

Σ · dS = 8π`(
1

1 + | f (0, z + ∆z)|2
−

1
1 + | f (0, z)|2

). (7.12)

This implies that the total flux change only depends on the polarisation on the axis. Using Gaussian

theorem, we can rewrite this as:∫
cylinder

∇ · ΣdV =

∮
cylinder

Σ · dS

= 8π`(
1

1 + | f (0, z + ∆z)|2
−

1
1 + | f (0, z)|2

).
(7.13)

From this, we can deduce the form of the divergence of the skyrmion field being:

∇ · Σ = 4`
δ(ρ)
ρ

∂

∂z
1

1 + | f (ρ, z)|2
, (7.14)

where δ(ρ) is the Dirac-delta function, ensuring only the on-axis term contributing to the total flux

change.

This result is different from the theorem we established in Eq. 5.4 in Chapter. 5. This is because

that on the z axis, the skyrmion field in a fractional skyrmionic beam is not defined and therefore

does not possess a properly defined derivative there. In our earlier discussion in Section. 5.1, we

used Taylor expansion to prove that the skyrmion field is divergenceless. The caveat in using

Taylor expansion is that the effective magnetisation M field is slowly varying everywhere in the

beam. The result suggests that this caveat is not true on the z axis of fractional skymionic beams.

The fact that ∇ · Σ = 0 everywhere except on the axis suggests that the axis acts like a source or a

sink in the fractional skyrmion beam. Therefore, skyrmion field lines can end or start on the axis.

If we draw another infinitesimally small tube around the z axis and calculate the flux between

this tube and the cylinder, the skyrmion filed would still follow the result in in Chapter. 5, i.e.
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divergenceless and have a total flux of 0. This also explains why the skyrmion number can change

continuously in fractional skyrmion beams.

(a) The xz and yz crossection from
z < z0 to z > z1.

(b) The xy crossection at z < z0. (c) The xy crossection at z0 < z < zc.

(d) The xy crossection at z = zc. (e) The xy crossection at zc < z < z1. (f) The xy crossection at z1 < z.

Figure 7.7 Cross-sections of skyrmion field lines, and their corresponding Σϕ value across x =

0 of a fractional skyrmion with its spatial component focusing at different points, demonstrating
that skyrmion field lines have no sources nor sinks.

Similarly to Fig. 5.5, we provide stream plots of the skyrmion field for fractional skyrmions in

six cross sections in Fig. 7.7.

In Fig. 7.7a, which demonstrates the cross-section of the skyrmion field in xz and yz plane,

we can observe that the field lines are propagating in the same direction until the crossover plane,

zc, where all the field lines escape to the infinity in the ρ̂ direction. After zc, field lines are all

travelling opposite to the beam propagating direction. Another important observation is that the

field strength in the centre of the beam is 0, in contrast to the previous situations where the field is
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the strongest in the centre of the beam.

In Fig. 7.7b to Fig. 7.7f, we illustrated the cross section of the skyrmion field in the xy direction

with the Σϕ across x = 0 at z < z0, z0 < z < zc, z = zc, zc < z < z1 and z > z1 respectively. At

z < z0, shown in Fig. 7.7b the rotation of the field line anti-clockwise at the centre of the beam

and becomes clockwise further from the centre, as shown in the change of Σϕ. At z0 < z < zc as

shown in Fig. 7.7c, z = zc (Fig. 7.7d), and z > zc (Fig. 7.7e), the field line rotates in the clockwise

direction everywhere in the beam. At z > z1, as shown in Fig. 7.7f, the field line behaves in

the same way as in z < z0 where the field line rotates anti-clockwise at the centre and clockwise

elsewhere. The cross-section plane behaves uniquely at region far from the beam axis, where at

any other transverse planes the rotation tends to zero and at zc, the rotation tends to −∞.

7.5 Vector potential field of fractional skyrmion

In this section, we will discuss the corresponding vector potential field for fractional skyrmions

introduced in Section. 7.3. The explicit form of the v field for fractional skyrmions can be derived

from Eq. 6.17:
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(7.15)

This is plotted accordingly in Fig. 7.8, with ` = 1. Similarly to Fig. 6.4, we provide stream plots of

the vector potential field for fractional skyrmions in six cross sections in Fig. 7.8 with a one-to-one

correspondence between the v field and the skyrmion field shown in Fig. 7.7.

Fig. 7.8a demonstrates the cross-section of the vector potential field in xz and yz plane and the

colour scheme corresponds to the field intensity. Fig. 7.8a shows that the vector field in fractional

skyrmion in the xz and yz plane is similar to that in the previous example, depicted in Fig. 6.4a with

all three two features listed in Section. 6.3.2. Although it seems like that the v field is propagating

in the same direction as the beam propagating direction at the centre of the beam without changing

its direction at the cross over plane, this is actually not true. From Eq. 7.15, we obtain that:

vz(ρ = 0) =
z2

u1 − z2
u0(

z2
u1 + z2

R

) (
z2

u0 + z2
R

) , (7.16)

which proves that the v field is propagating in the same direction as that of the beam at the centre

of the beam and changes to propagating in the opposite direction after the crossover plane. The

reason for the inconstant in calculation and the plot only appears to deviate from its true value due

to the limited resolution in the plotting.

In Fig. 7.8b to Fig. 7.8f, we illustrated different cross sections of the vector potential field in

the xy direction with their corresponding vϕ across x = 0 at z < z0, z0 < z < zc, z = zc, zc < z < z1

and z > z1 respectively. At z < zc, shown in Fig. 7.8b and Fig. 7.8c the field lines are rotating
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(a) The xz and yz crossection from
z < z0 to z > z1.

(b) The xy crossection at z < z0. (c) The xy crossection at
z0 < z < zc.

(d) The xy crossection at z = zc.
Although the skyrmion number is 0
on this plane, contrary to the double
changes of vϕ in Fig. 6.4e and
Fig. 6.4f, it has a constant vϕ = 0

(e) The xy crossection at
zc < z < z1.

(f) The xy cross-section at z1 < z.

Figure 7.8 The vector potential v field, and their corresponding vϕ value across x = 0 of a
fractional skyrmion with its spatial component focusing at different points. This is similar to the
integer skyrmion cases in Fig. 6.4b except at the cross-section plan z = zc.

clockwise at the centre of the beam, corresponding to a negative vϕ. As it expands the field lines

start to rotate anti-clockwise, corresponding to a positive vϕ. The changing point of the rotation

is denoted by a red circle. At z = zc (Fig. 7.8d), the field line rotates in the clockwise direction

everywhere in space. At z > zc, shown in Fig. 5.5e and Fig. 5.5f, the field lines are rotating

anti-clockwise at the centre of the beam and as it expands, they changed to a clockwise rotation,

corresponding to the change of a positive vϕ to a negative vϕ. This change is denoted by a black

circle.

As shown in Fig. 7.8 and Eq. 7.15, there still exists a singularity at ρ = 0. the same as the
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integer skyrmion cases. The skyrmion number is not self-evident from Fig. 7.8 because vϕ only

has changed once at z , zc. This is similiar to integer skyrmion cases in Fig. 6.4b, Fig. 6.4c and

Fig. 6.4d. At z = zc, however, although it has a skyrmion number of 0, contrary to the double

changes of vϕ in Fig. 6.4e and Fig. 6.4f, it has a constant vϕ = 0.

7.6 Conclusion

In this chapter, we firstly discussed the relation between skyrmioinc beams and full Poincaré

beams, a more widely known category of structured beams. We proved that contrary to earlier

belief in experimental publications, skyrmionic beams are not a sub-category of full Poincaré

beams. Rather, they share some overlap but more generally are two different kinds of beams.

During the discussion, we introduced the concept of fractional skyrmion beams. Typically,

they are comprised of two spatial components u0 and u1. They are Laguerre Gaussian beams

whose ` modes possess the equal magnitude but opposite signs, each carrying orthogonal polar-

isation. Unlike integer skyrmionic beams, not only are their skyrmion numbers fractional, their

skyrmion numbers also change continuously throughout propagation. Therefore, they are lack of

the topological stability of integer skyrmionic beams.

Furthermore, we examined the skyrmion field of fractional skyrmionic beams. Interestingly,

the skyrmion field appears not to be conserved nor is it divergenceless anymore. This is because

unlike the integer skyrmionic beams, the z axis of a fractional skyrmionic beam acts like a sink of

the skyrmion field. Therefore, the skyrmion field lines can start from the z axis and the skyrmion

number can change continuously during propagation.

We also present the skyrmion vector potential field of fractional skyrmion beams. Contrary

to integer skyrmion beams, the v field of a fractional skyrmion beam changes winding direction

during propagation and is symmetric with respect to the crossover plane.

After all the analytically interesting properties of skyrmion beams, we will start to discuss the

experimental measure of paraxial skyrmionic beams. We will present both our ambitions with the

applications of paraxial skyrmionic beams and the challenges we are facing.
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Towards Experimental measurement of
paraxial Skyrmionic beams

8.1 Introduction

In the previous chapters we have introduced the concept and theory of paraxial skyrmionic beams.

There is now interest within the community to see this concept to move from theory into practical

realisation. Ever since our paper introduced this idea into the optics community [1], there have

been a few publications on the experimental realisations on paraxial skyrmionic beams including

[85, 86, 116]. In these papers, their authors construct paraxial skyrmion beams according to our

illustration in the previous chapters by superposing two LG mode with orthogonal polarisations.

By measuring the Stokes parameters in a crosssection, it is proven that paraxial skyrmionic beams

can be constructed according to our theory. Our own work on this area goes further than this.

Currently collaborating with the Optics group in University of Glasgow, we are developing a

mechanism to experimentally extract the skyrmion number from an arbitrary optical beam.

In the following sections, we will introduce the current state, the roadblocks and the outlook

of this ambition. This work is currently at the last stage of writing up and will add to the toolkit of

structured beams soon.

8.2 Experiment set up

In order to develop a mechanism to experimentally extract the skyrmion number from an arbitrary

optical beam, we first need to construct a paraxial skyrmionic beam with a known skyrmion num-

ber. In this way, we can verify that our mechanism indeed is able to obtain the skyrmion number

accurately.

The experimental setup to construct a paraxial skyrmionic beam as shown in Fig. 8.1 has been

created by the Optics group in University of Glasgow. In this set up, a helium-neon laser is used

to generate the laser beams; a Wollaston prism to separate light into two separate horizontal and

vertically polarized beams; and a digital micromirror device (DMD) to shape the amplitude and

phase of the horizontal and vertically polarised beams into our desired spatial components inde-

pendently using a multiplexed hologram. Brown and Lohmann has shown in the 1960s that binary

amplitude masks can be used to shape both the intensity and phase of light [126]. Nowadays, the
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Figure 8.1 The experimental realisation of paraxial skyrmionic beams based on [1] using a
digital micromirror device (DMD). He-Ne: helium-neon laser with wavelength 633 nm. λ/2:
half-wave plate, WP: Wollaston prism, L1,2 ,4 denote lenses with a focal length of 150 mm. L3
has a focal length of 125 mm.

computer-generated hologram method is able to design and apply binary amplitude gratings on

DMDs to diffract light into two independent orders, each travelling at different angles. The first

diffraction order will possess the desired spatial intensity and phase profile [127]. Because the

two orders are travelling in different directions, it is possible to separate the two orders using an

aperture. Therefore, by locally varying the width of the grating to control the diffraction intensity,

and locally varying the lateral position of the apertures to control the optical phase of the diffracted

light, we can achieve spatially varying intensity and phase modulation [128]. The hologram used

to generate a skyrmion number 1 beam comprised of LG0
1 and LG0

0 beams is shown in Figure. 8.2

8.3 Stokes parameters from experimental data

In the experiment, LG0
1 and LG0

0 are used as the spatial components of the skyrmion beam. The

Stokes parameters are collected by measuring the intensity of each polarisation. By normalising

and using Eq. 2.50 the Stokes parameters are calculated through:

S 1 =
IH − IV

IH + IV
; S 2 =

IA − ID

IA + ID
; S 3 =

IR − IL

IR + IL
, (8.1)

where I represents intensity and the subscripts denote the corresponding polarisation. The mea-

sured polarisation pattern is shown in Fig. 8.3.

As discussed in Chapter. 4 the skyrmion number corresponds to the number of wrappings of the

polarisation pattern around the Poincaré sphere on any cross-section perpendicular to the direction

of propagation. In the case of n = 1, we can use inverse stereographic projection construction to

obtain the skyrmion number from a direct mapping of the polarisation pattern onto the Poincaré

sphere. Assuming the centre of the beam is precisely horizontally polarised, then by using ΩS as

the area enclosed by the points on the Poincaré sphere from the outermost contour of the beam
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Figure 8.2 The hologram used to generate a skyrmion number 1 beam comprised of LG0
1 and

LG0
0 beams. The reason that the holograms are not round is because of the way the mirrors

are arranged on the DMD.

allows us to obtain the skyrmion number through:

n = 1 −
ΩS

4π
. (8.2)

This is demonstrated by our colleagues in the Optics group in Fig. 8.4, from which a skyrmion

number of n = 0.82 is obtained. There are two potential drawback of this method: 1) it is difficult

to determine the polarisation pattern on the outermost ring where the intensity is very low to

measure; 2) for skyrmionic beams with n > 1, this method might require some alternation to add

the number of wrappings on the Poincaré sphere as extra degree of freedom.

8.4 Using skyrmion field to extract the skyrmion number

The second method to extract the skyrmion number from paraxial skyrmion beams is through the

skyrmion field, i.e. using Eq. 5.1: n = 1
4π

∫
S (Σzẑ) · (ẑds). The z component of the skyrmion field
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(a) Polarisation pattern reconstructed from measured
intensity of different polarisations.

(b) Colour coding used in Fig. 8.3a to denote different
polarisations.

Figure 8.3 The experimentally measured polarisation pattern of a paraxial skyrmionic beam
with LG0

0 and LG1
0 as the spatial components with horizontal and vertical polarisation respec-

tively.

(a) The concentric circles on the polarisation pattern
of a paraxial skyrmionic beam with LG0

0 and LG1
0 as

the spatial components with horizontal and vertical
polarisation respectively.

(b) Illustration of wrapping the concentric cirlces
shown in Fig. 8.4a on the Poincaré sphere.

Figure 8.4 Demonstration of using inverse stereographic projection to obtain the skyrmion
number n = 0.82 from experimentally measured polarisation pattern of a paraxial beam with
n = 1.

can be obtained directly from the Stokes parameters by using Eq. 5.2:

Σz = M ·
(
∂M
∂x
×
∂M
∂y

)
. (8.3)

The experimental data of polarisation are measured by the Optics group from University of Glas-

gow. The analysis in this section is done by the author.

In this section we will discuss two scenarios: the first one is the same as in the previous
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sections where the spatial components of the beam are LG0
0 and LG1

0 with horizontal and ver-

tical polarisation, respectively; in the second beam the spatial components are HG0
1 and HG1

0

instead. The z component of the skyrmion field for those two scenarios are plotted in Fig. 8.5a

and Fig. 8.5b, respectively. In the first beam comprised of LG beams, the skyrmion number ac-

cording to Eq. 3.6 and the previous section is 0. However, using this method, by integrating Σz

across the cross-section, the result is approximately 0.64. In the second beams comprised of HG

beams, the skyrmion number is analytically 0, but according to this method, it is 1.38. In both

situations, the skyrmion number obtained from experimental results deviates from the analytical

result by an unacceptable amount. This is because the skyrmion field requires the cross product

(a) Σz of a paraxial skyrmion beam
with LG0

0 and LG1
0 as the spatial

components with horizontal and
vertical polarisation respectively.

(b) Σz of a paraxial skyrmion beam
with HG0

1 and HG1
0 as the spatial

components with horizontal and
vertical polarisation respectively.

(c) The Fourier low pass filter that
will be applied to Fig. 8.5a and
Fig. 8.5b.

Figure 8.5 The z component of the skyrmion field for paraxial skyrmion beams with LG0
0 and

LG1
0 and HG0

1 and HG1
0 as the spatial components respectively and the Fourier low pass filter

that will be applied to these fields.

of two derivatives across the whole cross-section which would amplify any uncertainty in the pro-

cess of measurement. This results in high sensitivity of noise in the skyrmion field leading to an

inaccurate evaluation of the integral. Furthermore, it also requires a full surface integral including

areas with low light, such as in the centre and at the edges of the cross-section. For experimental

measurement, these areas are dominated with noises. Therefore, we decide to apply a low pass

filter as shown in Fig. 8.5c to the Stokes parameter before calculating the Skyrmion field. The

green areas denote the ‘passing area’ in the frequency domain. The reason for them to be located

in the four corners rather than in the centre is because how image is represented in Python. Python

uses an array to represent an image, resulting in the pixel with indices (0, 0) is the one on the top

right. This is the effective centre of the image from a mathematical viewpoint. We adjust the ratio

between the size of the green areas and the total frequency domain to control the upper limit of the

frequency of elements preserved in the image post filter application. In this case, the ratio is set to

be 1.6 ∗ 10−3.

In order to compare the result of the filter, we also constructed another set of data from simula-

tion. Adopting the key metrics including wavelength, the beamwaists, the size of the polarisation

plot and the number of pixels, we reproduced another set of Stokes parameters based on analytical

result from the beam construction.

In Fig. 8.6, the z component of the skyrmion field of the simulation result of the skyrmion beam
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(a) Σz of a paraxial skyrmion beam with HG0
1 and

HG1
0 based on simulation result.

(b) Σz of a paraxial skyrmion beam with HG0
1 and

HG1
0 based on experimental result post low pass filter.

.

Figure 8.6 Comparison of Σz of a paraxial skyrmion beam with HG0
1 and HG1

0 based on simu-
lated result and experimental result, respectively, both with low pass filter applied.

comprised of HG beams (Fig. 8.6a) is compared with that of the experimental result (Fig. 8.6b).

Although the two plots are quite different, the skyrmion number extracted from the post filter

skyrmion field is 0.18. This number is still not ideal but, has shown great improvement from the

pre-filter result.

(a) Σz of a paraxial skyrmion beam with LG0
0 and LG1

0
based on simulation result.

(b) Σz of a paraxial skyrmion beam with LG0
0 and LG1

0
based on experimental result post low pass filter.

Figure 8.7 Comparison of Σz of a paraxial skyrmion beam with LG0
0 and LG1

0 based on simu-
lated result and experimental result, respectively, both with low pass filter applied.

Likewise, in Fig. 8.7, the z component of the skyrmion field of the simulation result of the

skyrmion beam (Fig. 8.7a) comprised of LG beams is compared with that of the experimental

result (Fig. 8.7b). Similar to the results in Fig. 8.6, the two plots are far from identical. De-
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spite the difference in plots, the skyrmion number extracted from the post filter skyrmion field is

0.70, an improvement from the pre-filter result. The differences in Σz value is possibly due to the

background noise in the low light areas including the centre and towards the edge of the beam.

8.5 Using skyrmion vector potential field to extract the skyrmion
number

Using the skyrmion field to directly obtain skyrmion number proves to be difficult mainly due to

two reasons: 1) it requires the cross-product of two derivatives which will amplify the noise in

experimental data; 2) it requires full surface integral, including low light areas such as the centre

and the area at large distances from the centre of the beam, posing great difficulty to experimental

measurement. One of the main motivations for introducing the skyrmion vector potential field is

that it may circumvent those issues by switching from surface integrals to line integrals. In this

section the experimental data collection and process are conducted by the Optics group, while the

simulation is processed by the author.

According to the previous discussion on skyrmion vector field in Chapter. 6, in order to obtain

the skyrmion number according to Eq. 6.14 we need to define two contour lines and take the

difference between those two line integrals. Because the pixels are aligned in squares we first

chose the contour paths as rectangles, as shown in Fig. 8.8a. The result based on simulated data

is shown in Fig. 8.8c. The x and y axes represent the ratio between the inner and outer contour

line with respect to the beam measured cross section, respectively. In the simulation result, with

the inner loop chosen to be smaller than 0.1 of the whole data size, and bigger loop larger than

0.8, we can obtain a skyrmion number no less than 0.77. This analysis has not been carried out on

experimental data yet.

However, according to the discussions in Sec. 6.1, the shape of the contour lines does matter.

The most ideal contour lines should be circles, as shown in Fig. 8.8b. Because interpolation is

needed to circumvent the griding of the pixels, this requires even further process of the experi-

mental data.

Although using the vector potential field to obtain the skyrmion number should theoretically

perform better than directly using the skyrmion field, it will still encounters similiar issue: 1) the

vector potential field still requires first-order derivatives, leading to increased sensitivity towards

noises in measurement; 2) it still depends on measurement of low light field areas including areas

closing to the centre of the field and towards the edge of the field. Our collaborators are currently

working on perfecting the integrating methods and data processing to overcome these issues.

8.6 Conclusion

In this section, we have introduced the motivation, current status and the obstructions of our current

path towards experimental measurement of skyrmionic beams. Our aim is to obtain the skyrmion

number of an arbitrary beam rather than simply construct a skymionic beam based on known

structure.

We have proposed three different methods in this chapter. The first one is to use inverse
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(a) Illustration of the two contour paths in rectangles
on the measured plane of a skyrmion beam. (b) Illustration of the paths of the two contour

integrals in circles.

(c) Skyrmion number result based on the ratio of the
sizes of the two contour integrals in the simulated
data. This demonstrates that for a skyrmion number 1
beam, when the inner loop is smaller than 10% and
the bigger loop is larger than 80% of the whole beam
size, the obtained skyrmion number is no less than
0.77.

Figure 8.8 Demonstration of using skyrmion vector potential to obtain the skyrmion number of
the skyrmionic beams comprised of LG0

0 and LG1
0.

steroegraphic projection. By mapping the polarisation pattern onto the Poincaré sphere, skymion

number is obtained by calculating the area enclosed by points corresponding to the outermost

contour line in the beam. This method is the most robust to uncertainties in measurement among

all three because it does not require any form of derivatives of the measured values - Stokes

parameters. However, this method mainly has two concerns: 1) it does require fairly accurate

measurement of polarisation at the edge of the beam. Low light intensity areas like this pose great

difficult in practical measurement; 2) the current method does not apply to cases with skyrmion

number higher than 1 and thus requires further adaptations.
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The second method is using the skyrmion field to obtain the skyrmion number. This method

proves to be the least favourite currently mainly due to two reasons. It requires the cross-product of

two derivatives of the measured values. This process greatly increases the sensitivity of the result

to any noise in the measured values. The second reason is that this method also requires accurate

measurement of polarisation at the centre and the edge of the beam. Similarly to the previous

methods, these low light intensity areas are dominated by noises and thus almost impossible to

provide an accurate measurement.

The last method involves the skyrmion vector potential field. By changing the surface integral

to two line integrals and only requiring one derivative, this method should be more resilient to noise

compared with the second method. However, this method still shares the same issues encountered

in the second method. Although the skyrmion vector potential field only requires one derivative,

this condition still amplifies the noises in the measured values. Despite the fact we can choose the

contour lines in this method to circumvent the low light areas, in order to provide a more exact

skyrmion number, it still requires accurate measurement of polarisations in close to low light areas.

However, we do think this issue will be solved by considering more advanced data processing and

integral methods.

Once we have nailed the method to extract accurate skyrmion numbers of arbitrary optical

beams, we will be able to categorise structured beams that are analytically challenging to obtain

skyrmion numbers. Our immediate next step is to use skyrmion numbers to model beam propa-

gation that are otherwise difficult to predict or explain. In the next chapter, we will go into more

details about the future application and outlook of skyrmionic beams.
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Summary and outlook of Part 1

In Part. I, we have introduced a novel theory on paraxial skyrmionic beams to fulfil a gap in the

research of optical skyrmions. This thoery includes three features: the skyrmion number, the

skyrmion field and the skyrmion vector field.

In Chapter. 3, we proposed the construction of paraxial skyrmionic beams and have demon-

strated their associated skyrmion number is only dependent on the ratio between the two spatial

components at the centre and far from the axis of the beam. By associating the effective mag-

netisation M with the Stoke’s parameters, we have revealed the physical meaning of the skyrmion

number: the number of times the polarisation pattern wraps around the Poincaré sphere.

After introducing the concept of the skyrmion field in Chapter. 5, we have proved this field is

divergenceless. This is an important result as this shows the skyrmion field is a conserved field.

Therefore, this feature can be used to categorise structured beams. Despite this, we have also

proved that the skyrmion field is independent of the global orientation of the effective magnetisa-

tion M and the direction of the polarisation coupled with the spatial components.

The fact that the skyrmion field is a divergenceless field enables us to further construct a

skyrmion vector potential field which is analogous to the magnetic vector potential A in Chapter. 6.

In this chapter, we explored the analogy between this field and the superfluid velocity using the

‘Mermin-Ho’ relationship in 3He theory.

For all three features, we have presented two examples to illustrate. In the first example,

the beam is comprised of two LG beams with different winding number, `, but share the same

beam width, wavelength and focal point as the spatial components. This type of beam possesses

an integer skyrmion number. In the second example the two spatial components are focused

differently, while still sharing the same beam width and wavelength. This type of beam starts

with an non-zero integer skyrmion number before suddenly changing to 0 after the cross-over

plane, and therefore becomes a non-skyrmion beam. We are able to explain how this change in

the skyrmion number does not contradict the topological robustness using both the skyrmion field

and the skyrmion vector potential field.

In Chapter. 7, after concluding that the skyrmionic beam is not a subset of the Poincaré beams

and vice versa, we introduced the concept of the fractional skyrmion beam. This type of beam has

a similar structure to skyrmionic beams but lack its topological robustness. This is due to the axis

in the fractional skyrmion beam acts as a source/sink of the skyrmion field lines.

The theory of optical skyrmions is still a young and emerging field and there are numerous
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blank pages that awaits other researchers to fill in. For example, the analogy between optical

skyrmions and superfluid still requires a more rigorous investigation into its theoretical signifi-

cance and potential practical application. Another natural extension of our paraxial skyrmionic

beams in structured beams in the strongly focused regime. It is interesting to explore if they still

possess the same skyrmionic nature and if so, how will it be presented in this regime.

We wish to devise a method to experimentally extract the skyrmion number from an arbi-

trary optical beam, which is a step further from the current experimental realisations of paraxial

skyrmionic beams. In Chapter. 8 we proposed three methods and discussed their advantages and

disadvantages. The first method is using inverse stereographic projection to map measured polar-

isaion pattern onto the Poincaré sphere. This method is the most robust to uncertainties among

the three methods but not readily available for applications in n > 1 beams. The second method

is using the skyrmion field to derive the skyrmion number. This method is straightforward and

compatible with the grid pixels used in experiments. However, due to the cross-product of two

derivatives required for the skyrmion field, this method will be very sensitive to noise and will

require more precise experimentation than current level. The last method involves calculating the

line integral of the skyrmion vector potential. Although this method is less sensitive to noises

comparing with the second method, it will still amplify the noises in the measured value. This is

due to the derivative of the Stokes parameters in the expression of the skyrmion vector potential

field.

The most ideal way to experimentally extract the skyrmion number from an arbitrary optical

beam is still a matter of ongoing research. Once we have reached a satisfactory result, we will be

able to utilise it to model beam propagation due to the conservation nature of the skyrmion field.

Another potential application of paraxial optical skyrmion theory is in light-atom interaction. In

another ongoing work from the author, we have proved that it is possible to imprint the skyrmionic

structure into the excited states of an atom. Namely, the spatial information of the left-handed

polarized light and the right-handed polarized light are imprinted separately on the two degenerate

excited states. It can also be shown that in regions close to the quantum core (an idea introduced

in [129]), the two states are highly entangled. As imprinting vortex structure onto atoms has been

demonstrated experimentally [130], it is natural to explore using skyrmion beams to imprint the

skyrmion structure on atoms. Just like their magnetic skyrmion counterparts, atoms with internal

skyrmion structures have the potential to be applied as quantum memory.
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Quantum Matched filtering background

10.1 Introduction

I think there is a world market for maybe five computers.

—Thomas Watson, chairman of IBM, 1943

Quantum computers have acquired extensive attention not only in academia but also with the

public over the recent few years. From Google’s superconducting quantum computer ‘Sycamore’

in 2019 [16], to the Chinese photonic quantum computer ‘Jiuzhang’ in 2020 [17], various news

have been announced they have achieved quantum supremacy. Controversial as these announce-

ments might be, quantum computers have demonstrated their ability to outperform classical com-

puters in certain tasks. In the mean time, IBM along with other technology giants have announced

their road map from small quantum processors to NISQ (Noisy Intermediate-Scale Quantum) de-

vices available for commercial uses in the next ten years, as well as launching the new cloud

quantum computing technology available to companies, researches and general public to experi-

ment and contribute to this new technology. Therefore, with quantum computers no longer being

just an academic exercise with distant implications, this is a more important than ever time to

explore the advancements and changes quantum computers will potentially introduce.

Quantum computers are first proposed by Richard Feynman in 1980s to understand quan-

tum systems, which would be exponentially costly to simulate on classical computers [131]. In

addition to its original purpose, quantum computers have also demonstrated that they are more effi-

cient than classical computers in certain problems, including square-root speed-up in unstructured

search [14] and exponential speed-up in factoring large numbers [15]. There are three substantial

differences between classical computers and quantum computers: 1) While classical computers

store information using bits as 0s and 1s, quantum computers use qubits, which can exist in su-

perpositions of |0〉 and |1〉; 2) Qubits can be extracted through entanglement, allowing a quantum

register to have stronger correlations than are allowed classically; 3) We can increase the probabil-

ity of favourable states by interference, due to the wave-like nature of quantum states. However,

there is a limit to the efficiency of quantum computers, which is yet unknown to us. In fact, the re-

lationship between classical and quantum complexity classes still remains an open question [132].

Over the past fifty years, significant progression has happened in both classical computers and

algorithms. Especially in the recent decade, deep learning based on neural networks has changed
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how data influences our lives. Classical machine learning methods like this can not only recognise

statistical patterns but also reproduce them. Quantum algorithms have proven useful to speedup

classical machine learning algorithms [133, 134, 135]. Researchers could not help but wonder

what if we can produce quantum processors that can recognise and reproduce patterns that are

computationally difficult for classical computers? This is later referred to as quantum machine

learning.

Quantum machine learning can refer to the learning process involving either quantum machine

or quantum data. In the scope of this project, we are mainly discussing classical data processed by

quantum algorithms. Although algorithms like HHL algorithm (the quantum algorithm for linear

systems of equations) [136], quantum PCA (principle Component Analyisis) [137] and qBLAS

(quantum basic linear algebra subroutines) [138] offer potential exponential speedups, there are

three major problems prohibiting the applicability of these methods [139]: 1) The input problem of

loading the classical data into a quantum system can require exponential time. Although this can

be solved by using qRAM (quantum random access memory), it is still highly costly energy-wise

because loading data into qRAM would take exponential time [140]. So far, qRAM is considered

difficult to construct experimentally and would require further error correction [141]; 2) The output

problem of obtaining the full solution. This is an inherent limitation of the probabilistic nature of

quantum computers. This is similar to the problem of sampling with substitution; 3) Minimal

number of elementary gates needed for implementing practical quantum algorithms is still an

open question.

One area in physics that has greatly benefited from machine learning algorithms, or big data

analysis in general is gravitational wave detection. Gravitational waves are emitted by the cumu-

lative mass and momentum of systems. In contrast to electromagnetic waves, they generally have

longer wavelength and carry information about bigger scale objects. They are also more difficult to

interact with matter, which makes them difficult to detect but able to travel through space and time

undisturbed. Gravitational waves are important to physics research not only because they can test

Einstein’s theory of general relativity, but also to observe exotic objects in the universe like black

holes. Furthermore, as 96% of the mass-energy of the universe carries no charges, gravitational

waves detection is likely to open a new window to observe the universe [142].

The first direct detection of gravitational waves was made in 2015 from a binary black hole

coalescence. Ever since then, there have been 39 candidate events observed by the Advanced

LIGO and Advanced Virgo gravitational wave detectors [143]. These events are results of merger

of compact binary systems, which allow us to understand more about neutron stars [144] and

gamma-ray bursts [145], as well as set new restraints on the accuracy of general relativity [146].

However, researchers are not satisfied with this unprecedented achievement. They wish to ex-

pand this new tool to the realm of continuously emitted gravitational waves. With more ad-

vanced detectors increased in sensitivity [147, 148, 149] and additional detectors built around

the world [150, 151], it is possible to detect weaker classes of gravitational wave signals like con-

tinuous waves. Currently, a matched filtering approach is adopted in detection of the gravitational

waves[152, 153, 154, 155, 156], using theoretically modelled templates generated from an asso-

ciated parameter space. However, because continuous wave sources require such a big number

of templates [157, 158, 159] for a fully coherent analysis, the search becomes unfeasible. There-
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fore, searches for gravitational wave signals is limited in sensitivity by our current computational

power, making quantum machine learning a natural contender to solve this problem.

We will review match-filtering in Section 10.2, complexity theory in Section 10.3, basics about

quantum circuits in Section 10.4, Grover’s algorithm in Section 10.5 and quantum counting in Sec-

tion 10.6. We will present our algorithm and its relevant analysis in Section 11.1. In the following

sections, we will present the implementation of algorithm on Qiskit in Sections 11.2 along with

its application on GW150914, the first gravitational wave signal detected, in Section 11.3.

10.2 Matched filtering

Matched filtering is a signal processing technique widely used in data analysis including gravi-

tational wave signal detection. It is the optimal method for detecting a known signal buried in

Gaussian noise [160] by maximising the signal-to-noise ratio (SNR) ρ by correlating signal tem-

plates to the detector data.

To calculate the SNR, we first consider the data x(t) collected from the detector in the form of:

x(t) = s(t) + n(t), (10.1)

where s is the signal embedded in some zero-mean noise n. If the signal is of finite duration, we

can apply a linear filter q(t) to it. This can be written as an inner product in the frequency domain:

q · x =

∫ ∞

−∞

q̃∗( f )x̃( f ) d f

=

∫ ∞

−∞

q̃∗( f )s̃( f ) d f +

∫ ∞

−∞

q̃∗( f )ñ( f ) d f ,
(10.2)

where ˜ represents the Fourier transform of a function. Using the example of the linear filter q(t),

Fourier transform is defined as:

q̃( f ) = F (q(t)) =
1
√

2π

∫ ∞

−∞

q(t)ei2π f tdt (10.3)

In order to optimise the detection of the signal, we should choose a filter such that it maximises

its inner product with the signal and minimises its inner product with the noise. In the case of

zero-mean noise, the SNR is defined as:

SNR2 =

∣∣∣∫ ∞
−∞

q̃∗( f )s̃( f ) d f
∣∣∣2

E
[∣∣∣∫ ∞
−∞

q̃∗( f )ñ( f ) d f
∣∣∣2]

=2

∣∣∣∣∫ ∞−∞ (
S 1/2

n (| f |)q̃( f )
)∗ (

S −1/2
n (| f |)s̃( f )

)
d f

∣∣∣∣2∫ ∞
−∞

S n(| f |)|q̃( f )|2d f
,

(10.4)

where E[. . .] denotes an expection value over noise realisations, and S n is the single-sided noise

power spectral density (PSD), defined here as:

1
2

S n(| f |)δ( f − f ′) = E
[
ñ( f )ñ∗( f ′)

]
, (10.5)
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where δ is the delta function. Using the Cauchy-Schwarz inequality, we can place an upper limit

on ρ as:

SNR2 ≤ 2
∫ ∞

−∞

S −1
n ( f )|s̃( f )|2d f , (10.6)

which is achieved when the linear filter is proportional to the noise-weighted copy of the signal:

q̃( f ) ∝
s̃( f )

S n( f )
. (10.7)

Because the noise has zero mean value, we can choose the following relationship to ease calcula-

tion:

E
∣∣∣∣∣∫ ∞

−∞

q̃∗( f )ñ( f )d f
∣∣∣∣∣2 = 1, (10.8)

from which we can deduct the optimal form of the filter should be:

q̃( f ) =
s̃( f )

S n( f )

∣∣∣∣∣∫ ∞

−∞

s̃∗( f )s̃( f )
S n( f )

d f
∣∣∣∣∣−1/2

=
h̃( f )

S n( f )
. (10.9)

We refer to these linear filters as templates, which are therefore normalised waveforms h of the

signal that are weighted in the frequency domain by the detector noise PSD. The inner product in

Eq. 10.2 can be applied across signal start times by instead considering a convolution, resulting

with an additional phase component:

ρ(t) =

∫ ∞

−∞

x̃( f )h( f )
S n( f )

e2πit f d f , (10.10)

where ρ represents the matched filter SNR. For discretised time-series data of Nt time steps

separated by ∆t = t j − t j−1, the discrete ρ at each time step becomes:

ρ(t j) =
1

Nt∆t

Nt∑
k=1

x̃( fk)h̃∗( fk)
S n( fk)

e2πi jk/Nt

=
1

Nt∆t

Nt∑
k=1

ρ̃( fk)e2πi jk/Nt .

(10.11)

The calculation of ρ across all Nt time steps effectively involves Fourier transforming the

product of the signal with the template, and therefore can benefit from the use of the fast Fourier

transform (FFT) algorithm. For a function of N discrete steps, the time required for FFT is N log N

whereas for discrete Fourier transform it is N2. This is achieved by FFT breaking the size of N into

a number of smaller transforms [161]. As it is possible to produce the templates in the frequency

domain, FFT is used to speed up the production of x̃( fk) and ρ(t j).

For signal detection, the parameter space of interest is discretised and determined by the vari-

able associated with the signal we wish to detect. For example, in the case of binary black hole

merger, the parameter space is typically comprised of the component masses m1,2 and the aligned

spin magnitudes s1,2 of the binary system. This list of potential templated generated from the

parameter space is called the template bank. A template is considered a matched template if it

produces a ρ greater than some set threshold ρthr at any point in the given data time series.

102



Chapter 10

10.3 Complexity theory

Any computation problems require certain amount of resources, such as time, space and energy.

The minimum requirement of the resources is of particular interest to researchers. This will help

us to determine if the problem is solvable and when there are more than one solution, which one

requires least resources. In order to use resource quantification in later sections, we will here

introduce some key ideas of computational complexity.

The computational resources for a certain problem are normally model dependent. In order to

measure the cost irrespective of trivial changes in computation devices, one of the tools commonly

used is the asymptotic notation. This is developed to summarize the essential behaviour of a

function, taking the limit of large problem size and disregarding constant factors. The asymptotic

notation consists of three notations [132, 162]:

The O notation denotes the upper bound of a given function. For example, the claim ‘ f (n) is

O(g(n))’ means that there exist constants n0 and c such that for any n > n0, f (n) ≤ cg(n). This

notation is especially useful for studying the worst-case scenario of a specific algorithm.

Another useful notation is the Ω notation, which sets the lower bound of a given function. If a

function f (n) is said to be Ω(g(n)), then there exists constants c and n0 such that for any n > n0,

f (n) ≥ cg(n). This notation is more used to understand the behaviour of a class of algorithms.

The last notation is Θ to indicate an asymptotic behaviour of a given function f (n) when f (n)

is both O( f (n)) and Ω( f (n)).

Now we have the tool to describe and compare the complexity of different algorithms, we

need a theory to categorise algorithms into different classes. This theory is called computational

complexity, which is utilized to study the lower bounds on the resources required to solve a prob-

lem. The different classes are used to distinct between n-bit problems requiring resources that are

bound by a polynomial in n, and those requiring resources grow faster than any polynomial in n.

Although the latter is often referred to as exponential in n, this expression is not accurate. The

reason for adopting the polynomial performance as a criteria is because a) a polynomial algorithm

is in general faster than exponential algorithms; b) the Strong Church-Turing theorem indicates

that if a polynomial resource solution does not exist on a probabilistic Turing machine, then an

efficient solution does not exist on any computation device [132].

Most computational problems can be formulated as language recognition problems. If we use

the alphabet Σ = {0, 1}, the set Σ∗ includes all finite-length strings formulated from Σ. A language

L is a subset of Σ∗. If an algorithm solves the language recognition problem, then it would accept

any string x ∈ L and reject otherwise.

If for any string x in question of length n, and there exists a Turing machine which can decide

if x is in language L in time O(nk), then this class of language L is denoted P. Unfortunately, not

all problems are P problems. Another important category is the NP problems. For NP problems,

there exists a witness string w, that would allow us to determine if x ∈ L. It is clear that P is

a subset of NP, but if P = NP still remains one of the greatest open problems in mathematics.

Within NP problems there exists a subcategory called the NP-complete problems. They represent

the ‘most difficult’ types of problems in NP. If they can be reduced to P problems, then we can

prove P = NP [162].

The last two complexity classes of interest here are BPP and BQP. In BPP class, there exist a
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probabilistic Turing machine that accepts x if x ∈ L with a probability larger than 1/2 and rejects

x with the same probability if x < L. BQP is the quantum analogue of BPP and it has been

proved that P ⊆ BPP ⊆ BQP. Understanding the relationship between BQP and the other three

complexity classes are crucial to the study of quantum algorithms [163].

Most of the common quantum algorithms including the ones used in this project are black-

box models. For these algorithms, the input is submitted to a black box, which will return if this

input is accepted. When comparing the quantum and classical algorithms explicitly, the quantum

speedup is categorised by query complexity and gate complexity. Query complexity measures the

number of queries to the blackbox and gate complexity is made up of the number of elementary

gates needed for the algorithm.

10.4 Quantum circuit

Like classical computers run algorithms by electronic circuits, a quantum computer uses quantum

circuits. Quantum circuit is roughly composed of three parts: 1) Quantum registers to store qubits;

2) A series of quantum gates to perform unitary transformations on the input states; and 3) the

measurement procedure to readout the final result [162].

The qubits have only two orthogonal states, similar to classical computation. Qubits are repre-

sented as points on the surface of the Bloch sphere, as shown in Fig. 10.1. The computational basis

states are labeled by the associated binary string. They are often represented by column vectors

as [161]:

|0〉 =

10
 , |1〉 =

01
 . (10.12)

The other pair of orthogonal states frequently used are |+〉 and |−〉, defined as:

|+〉 =
1
√

2
(|0〉 + |1〉) =

1
√

2

11
 ,

|−〉 =
1
√

2
(|0〉 − |1〉) =

1
√

2

 1

−1

 .
(10.13)

Quantum circuits refers to the model where quantum gates acting on the logical qubits from

left to right along the ‘wire’. An example of a quantum circuit is shown in Figure 10.2. in

which quantum gates are shown as rectangle blocks and ‘wires’ as horizontal lines [162]. In this

example, a quantum state |ψi〉 = |0〉 ⊗ |0〉 ⊗ |0〉 enters the circuit from the left-hand side of the

circuit. ⊗ represents the tensor product. These qubits are then being operated on by the quantum

gates U1 U2 and U3 before they form the output state |ψ f 〉, which is consequently measured in

the computational basis. Single qubit measurement in the computational basis is symbolized by a

meter dial rectangle in this thesis.

For convenience, all the quantum gates discussed here are all unitary, which can be represented

by unitary matrices. The quantum gates only applied to one qubit are called single-qubit gates and

the ones involve multiple qubits are called multiple-qubit gates.

One set of the most frequently used single-qubit gates are the Pauli gates, whose matrix forms
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Figure 10.1 A schematic plot of the Bloch sphere. A qubit can be represented by a point
on its surface. The two points on either side of the z-axis are state |0〉 and |1〉 (defined
in Eq. 10.12).The two points on either side of the x-axis are state |+〉 and |−〉 (defined in
Eq. 10.13.

are the associated Pauli matrices as shown in Eq. 10.14.

X̂ ≡

0 1

1 0

 , Ŷ =

0 −i

i 0

 , Ẑ =

1 0

0 −1

 (10.14)

They rotate the qubit by π radians around the corresponding axis on the Bloch sphere. The Pauli-

X operator is particular of interest, because it functions as the classical NOT gate, that exchanges

state |0〉 and |1〉. They are represented in a quantum circuit diagram shown in Fig. 10.3.

Another important single qubit gate is the Hadamard gate, which interchanges the states be-

tween the computational basis and the |+〉 and |−〉 basis:

Ĥ =
1
√

2

1 1

1 −1

 . (10.15)

It is represented in a quantum circuit as shown in Fig. 10.4.
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|0〉 U1

U3|0〉
U2

|0〉

Figure 10.2 A quantum circuit start with three qubits initialised in state |0〉. The rectangles
labeled as U1 U2 U3 are quantum gates applied to the qubits, in the order of from left to right.
The meter dial rectangles on the right-hand side indicates that each of the three qubits is
measured in the computational basis in their final state. This result would be presented as the
output of the circuit.

X Y Z

Figure 10.3 The Pauli gates expressed in a quantum circuit.

The multiple-qubit gates act on multiple qubits at the same time. The ones of particular interest

here are multiple-controlled-U gates which is often written as Cn-U. A controlled gate acts on the

state of two types of qubits: the control qubits and the target qubits. The operation will be applied

to the target qubit if and only if all the n control qubits are in state |1〉. A general expression of a

Cn-U gate in quantum circuit diagrams is shown in Fig. 10.5.

One particular example would be the CNOT gate:

ÛCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (10.16)

and its corresponding quantum circuit expression is shown in Fig. 10.6. This is applied to the

4-dimension vectors representing two-qubit states, namely:

|0C0T 〉 =


1

0

0

0

 ; |0C1T 〉 =


0

1

0

0

 ; |1C0T 〉 =


0

0

1

0

 ; |0C0T 〉 =


0

0

0

1

 . (10.17)

10.5 Grover’s Algorithm

The search for the closest matching template or templates in gravitational wave detection may be

thought of as belonging to the class of generic search problems. For such problems, we wish to

identify a “marked” solution, i.e., one satisfying a certain set of criteria, from within an unstruc-

tured database of possible solutions. In fact, any problem for which it is easy to verify a solution,

but difficult to find one, may be thought of as a search problem. This is exactly the set of problems

which makes up the computational complexity class NP [162]. Indeed for certain NP-hard prob-

lems the best known classical algorithms offer limited improvement over brute-force search [163].

In the case of matched-filtering, we can consider the database as a template bank comprising of
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H

Figure 10.4 The Hadamard gate expressed in a quantum circuit.

0
•

1
•

...
•q
•

...
•

n
U

Figure 10.5 The Cn-U gate expressed in a quantum circuit. Operation Û will and only will be
applied to the n-th qubit if all the previous ones are in the state |1〉.

numerous predetermined templates, and we are searching for one or more for which the match

with the data is above a specified threshold. Typically the number of templates is much larger than

the size of the data, which determines the complexity of checking whether a given template is a

match. Therefore the number of templates is the limiting factor in determining the time needed

for matched-filtering in gravitational wave data analysis. Depending on the specific data analysis

problem, the number of templates can range up to a O(1012) [164] resulting in a total computa-

tional time of ∼ 106 CPU hours. For a database with N entries and exactly one good solution, we

need to check N
2 entries on average before finding the marked entry; thus the required search time

for a classical algorithm is O(N) [161].

Grover’s algorithm, proposed by Lov Grover in 1996, provides a polynomial speed-up for

these problems, finding a solution in O(
√

N) search time [14]. It was later proved that this is

asymptotically optimal; Ω(
√

N) queries are required for a quantum algorithm to succeed with high

probability[163]. Although it is exciting we have a tight bound for quantum search algorithms, it

is also disappointing because we cannot solve this NP-complete problem using a search method

efficiently in polynomial time on a quantum computer. This is not a nail in the coffin because

there could exist some unknown hidden structure in NP-complete problems that would allow us

to further explore the relationship between BQP and NP-complete problems.

Grover’s algorithm establishes a gap in query complexity between classical and quantum com-

puters, in an oracle model. That is, it assumes that we have access to an oracle, a “black box”

which computes a desired function, but not necessarily a description of the function itself. The

query complexity is then given by the number of calls required to the oracle, as each execution of

the oracle only costs unit time [161].

To cast the search problem as an oracle problem, we can define a function f (x), according

to which f (x) = 1 if and only if x is our marked entry in the database, otherwise f (x) = 0. In

the quantum case, we imagine we have a quantum black box or oracle U f that can perform the

following procedure:

U f : |x〉 ⊗ |b〉 7−→ |x〉|b ⊕ f (x)〉, (10.18)

where ⊕ is bitwise addition modulo 2. |x〉 is the input register containing the input x, stored as a
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•

Figure 10.6 The CNOT gate expressed in a quantum circuit.

classical bit-string in one of a set of orthogonal register states, known as the computational basis,

and |b〉 is an output register. We see that for b = 0 the evaluation of the function would be contained

in the output register. The key difference in the quantum case is that we can query the oracle in

superposition, that is, we can prepare the input register in a superposition over all input states. We

begin by noting that if we prepare our output register in the state |−〉 (see Eq. 10.13), the operation

given in Eq. 10.18 is equivalent to the following procedure, known as phase kickback, on the input

register alone [161]:

U f : |x〉 7−→ (−1) f (x)|x〉. (10.19)

Although in the actual algorithm we need the output register for the oracle, in the following dis-

cussion, we prefer to use Eq. 10.19 for the oracle evaluation for simplicity.

Considering the problem of the search of the best-matching template, we represent the index

of each template in the database as a computational basis state |i〉 and prepare the input register in

an equal superposition over all indices |s〉. Suppose there are N templates, the input register can

be expressed as:

|s〉 =
1
√

N

N−1∑
0

|i〉, (10.20)

where 1√
N

represents the amplitude of each state in the superposition. This corresponds to an equal

initial weighting of each template. We start with the simplest situation where there is exactly one

desired match, |w〉. The rest of the basis, i.e., the bad solutions can be marked as |w⊥〉, which are

all perpendicular to the state |w〉. We can rewrite the input state |s〉 using the new expression as

|s〉 =
1
√

N
|w〉 +

√
N − 1
√

N
|w⊥〉. (10.21)

In order to increase the probability of finding the correct solution |w〉, we need the enquiry to

the oracle to increase the amplitude of the state |w〉 in the superposition. We can use a real two

dimensional vector space to represent the state of the input register, |s〉, as shown in Fig. 10.7a,

where the angle is defined as [161]:

θ = arcsin (〈w|s〉) = arcsin
(

1
√

N

)
. (10.22)

Our goal, in this context, is to rotate the state of the register to make it parallel, or closer to parallel,

to state |w〉. After applying the oracle U f , the input state |s〉 becomes

U f |s〉 = −
1
√

N
|w〉 +

√
N − 1
√

N
|w⊥〉, (10.23)

which is equivalent to flipping the input state |s〉 with respect to the horizontal axis |w⊥〉, as rep-

resented in Fig. 10.7b. This procedure itself however, does not make the desired state |w〉 more
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favourable in the measurement. Therefore, an additional diffusion unitary operator is applied as

the third step, which is defined as

Us = 2|s〉〈s| − Î, (10.24)

where Î is the identity operator. The action of this operator would result in the state

UsU f |s〉 =
1
√

N

(
3 −

4
N

)
|w〉 +

(
1 −

4
N

) √
N − 1

N
|w⊥〉, (10.25)

where the probability of |w〉 being the outcome of a measurement has increased from 1/N to

(3− 4
N )2/N. Equation 10.23 can be decomposed into |s〉 and its orthogonal state, |s⊥〉, analogously

to Eq. 10.21, and where |s⊥〉 is chosen to lie within the same two-dimensional subspace spanned

by |w〉 and |w⊥〉. In this way,we can write U f |s〉 = η1|s〉 + η2|s⊥〉, which means Eq. 10.25 can also

be rewritten as [161]:

UsU f |s〉 = η1|s〉 − η2|s⊥〉. (10.26)

This shows the diffusion operator is equivalent to flipping the U f |s〉 state with respect to the |s〉

state, as shown in Fig. 10.7c.

θ

(a) The input state is described by
Eq. 10.21, represented by the red
line.

θ
θ

(b) The state after the oracle applied
is described by Eq. 10.23,
represented by the blue line.

θ
θ
2θ

(c) The state after the diffusion
operator is described by Eq. 10.25,
represented by the green line.

Figure 10.7 We show how the input state |s〉 changes at different stages of Grover’s algorithm.
The two dimensional space is spanned by the desired match |w〉 and undesired match |w⊥〉.
The solid lines represent the current state and the dotted lines represent the previous states.

If we define the Grover operator Ĝ as

Ĝ = UsU f , (10.27)

it is clear from the previous discussion, and shown in Fig. 10.7c, that it is equivalent to a rotation

operator in the two-dimensional space spanned by |w〉 and |w⊥〉 [161]:

Ĝ =

cos 2θ − sin 2θ

sin 2θ cos 2θ

 . (10.28)

After applying the Grover operator k times, the input state would become

Ĝk|s〉 = sin
(
(2k + 1)θ

)
|w〉 + cos

(
(2k + 1)θ

)
|w⊥〉 (10.29)
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and in order to maximise the probability of finding the desired match |w〉, we need to maximise its

amplitude sin
(
(2k + 1)θ

)
. In other words, we need to apply the Grover operator k times such that

it satisfies

(2k + 1)θ =
π

2
. (10.30)

This means that for large N [161],

k ≈
π

4

√
N. (10.31)

If there exist multiple matches, e.g., multiple templates in the bank that return a signal-to-noise

ratio greater than the threshold, we can rewrite the input state |st〉 as:

|st〉 =

√
t
N
|wt〉 +

√
N − t

N
|wt⊥〉, (10.32)

where t is the number of matching templates, |wt〉 refers to all the matching templates, and |wt⊥〉

are all the non-matching templates. In this case, in the two-dimensional space spanned by |wt〉 and

|wt⊥〉, state |st〉 is represented by a vector with an angle θt defined as:

θt = arcsin (〈wt|st〉) = arcsin
√ t

N

 . (10.33)

In this case, in order to maximise the amplitude of the desired templates, we need to apply the

Grover’s operator kt times where now (2kt + 1)θtπ/2. Thus, if the number t of matching templates

is known, for large values of N/t we find that [161]

kt ≈
π

4

√
N
t
. (10.34)

After kt applications of Grover’s algorithm, because all the matching templates are in superposi-

tion, a measurement of the |st〉 register will return only one of them at random. To obtain additional

matching templates the algorithm must be repeated.

10.6 Quantum Counting

In most cases we do not know the number of matching templates, t, in advance. Complementing

Grover’s algorithm with one of the most important subroutines in quantum computing, quantum

phase estimation [165] results in a quantum counting algorithm [166], which is able to determine

the number of desired templates in the database and therefore the number of applications of the

Grover operator needed to find a matching template with high probability.

Recall that we introduced the Grover operator Ĝ as a rotation in the two-dimensional space

spanned by |wt〉 and |wt⊥〉 in Eq. 10.28. The eigenvectors of Ĝ are

|s+〉 =

 i√
2

1√
2

 , |s−〉 =

 −i√
2

1√
2

 , (10.35)

with eigenvalues of e2iθt and e−2iθt respectively. The input state |s〉 (Eq. 10.20) is not an eigenstate
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of the Grover’s operator. Instead, it is a equal superposition of the two eigenstates, |s+〉 and |s−〉:

|st〉 =
1
√

2
(|s+〉 + |s−〉) . (10.36)

If we can find θt then we can use Eq. 10.33 to find the number of matching templates. Therefore the

problem of finding the number of desired templates is transformed into an eigenvalue estimation

problem, which can be solved using quantum phase estimation, a well-known primitive in quantum

information theory [162].

We thus assume that we know how to apply Ĝ, and outline the phase estimation algorithm

which allows us to extract an estimate of θt from applications of Ĝ. An example circuit is presented

in Fig. 10.8. We first set up a register to store our estimate of θt. For an estimate with p bits of

precision, we need a p qubit register. We refer to this as the counting register, as it determines how

many times the Grover gate is applied. The counting register is initialised in an equal superposition

over all possible computational basis states:

Ĥ⊗p|0〉⊗p =
1

2
p
2

(|0〉 + |1〉) ⊗ ... ⊗ (|0〉 + |1〉) =

2p−1∑
a=0

|a〉. (10.37)

A phase is naturally represented in the Fourier basis {|ã〉}, defined as follows:

|ã〉 = ÛQFT |a〉 =

2p−1∑
b=0

ei 2πab
2p |b〉

=
1

2
p
2

(|0〉 + eiπa|1〉) ⊗ (|0〉 + ei πa
2 |1〉) ⊗ ... ⊗ (|0〉 + ei πa

2p−1 |1〉).

(10.38)

where ÛQFT is the quantum Fourier transform (QFT) [132]. Each basis element |ã〉 corresponds

to a different phase 2πa/2p appearing in the superposition, so the inverse Fourier transform gives

a way to extract information encoded as a phase.

In quantum counting, the desired phase θt is encoded in this way in the counting register by

applying Grover’s operator to the input state, where the number of applications of the Grover gate

is controlled by the counting register:

2p−1∑
a=0

C-Ĝa|a〉 ⊗ |st〉 =
1
√

2

2p−1∑
a=0

ei2θta|a〉 ⊗ |s+〉 +

2p−1∑
a=0

e−i2θta|a〉 ⊗ |s−〉


=

1

2p+ 1
2

( (
|0〉 + ei2θt20

|1〉) ⊗ ... ⊗ (|0〉 + ei2θt2p−1
|1〉

)
⊗ |s+〉

+
(
|0〉 + e−i2θt20

|1〉) ⊗ ... ⊗ (|0〉 + e−i2θt2p−1
|1〉

)
⊗ |s−〉

)
,

(10.39)

where C-Ĝa represents applying the controlled Grover’s operator a times. Comparing Eq. 10.38

and Eq. 10.39, we naturally proceed to apply an inverse QFT to Equation 10.39 to extract the
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eigenvalue θt contained in the phase information:

Û−1
QFT

2p−1∑
a=0

C-Ĝa|a〉 ⊗ |st〉

=
1
2p

2p−1∑
a=0

2p−1∑
b=0

(
αei2πa

(
θt
π −

b
2p

)
|b〉 ⊗ |s+〉 + βei2πa

(
π−θt
π −

b
2p

)
|b〉 ⊗ |s−〉

)
.

(10.40)

A measurement of the counting register in the computational basis returns an integer value b

|0〉

H⊗p

•

QFT
−1

· · · · · · · · ·

|0〉 •

|0〉 •


|C〉

|0〉

H⊗n+1 G⊗20
G⊗21

G⊗2p−1

· · · · · ·

|0〉

|0〉

|0〉



|T 〉

· · ·

Figure 10.8 A circuit diagram of the quantum counting algorithm. |C〉 and |T 〉 represents the
counting register with p qubits and the input register with n + 1 qubits respectively. The +1 in
the input register is the ancilla qubit used in Grover’s algorithm.

between 0 and 2p−1, from which we can now extract the desired estimate of the phase. Intuitively,

constructive interference occurs for those elements |b〉 for which

θt

π
−

b
2p ' 0, or

π − θt

π
−

b
2p ' 0. (10.41)

In the rest of this section, subscript ‘th’ refers to the theoretical value; ‘obs’ refers to the observed

value and θt refers to theoretical eigenvalue. We will only be interested in cases in which tth � N,

and thus θt � 1. Therefore, the measured value bobs gives an unambiguous estimate of θt as

follows:

θobs =

 bobsπ
2p , bobs

2p ≤
1
2

π − bobsπ
2p , bobs

2p > 1
2 .

(10.42)

In reality, values of bobs which differ slightly from the constructive interference condition are

possible; an example of the probability distribution over b is shown in Fig. 10.9. However, it

may be shown that the measured value bobs gives an estimate of θt to m bits of accuracy with a

probability of success at least 1−ε if p is chosen such that p = m+ log(2+1/2ε) [132]. In quantum

counting, we require an estimate of accuracy at least O(N−1/2), as θt itself is of this magnitude.
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Thus m and p are each of size 1/2 log N. The maximum number of applications of G is given by

2p, which is therefore O(
√

N). From the estimate of θt we can estimate tth and kth, the number

of applications of G needed to subsequently retrieve a marked entry with high probability. In

Chapter 11 we will discuss the choice of p in more detail for the application to quantum matched

filtering.

5 10 15 20 25 30
b

0.05

0.10

0.15

0.20

0.25

Probability

Figure 10.9 The probability distribution for each state in a 5-qubit counting register, with two
matching entries in a 64-entry database. The two peaks corresponds to the two eigenstates
defined in Eq. 10.35. Constructive interference only happens at states close to 2pθt/π or
2p(π − θt)/π and destructive interference elsewhere, resulting in this probability distribution.

If we are only interested in retrieving a matched template, rather than the number of matched

template, there are altered protocols. One example involves choosing a random number between

0 and 2m as the number of applications of the Grover’s algorithm on the template register. After

the measurement, the output template is checked to inquire if it is a matching template. If not, m,

the limiting factor is incremented and the whole process is repeated until 2m exceeds N. This pro-

tocol scraps the necessity of the counting register and requires less run time (number of Grover’s

algorithm application) if there is a match in the template bank [162]. Another example involving

updating threshold to find the minimum [167, 168] to avoid the problem of no matches. Although

these algorithms might require less space and less complexity, in the majority of gravitational wave

matched filtering problems, we are interested in if there is a match against a predetermined thresh-

old at all. Therefore, the original quantum counting algorithm is still the most optimal option in

this case.
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Quantum matched filtering

11.1 Quantum matched filtering algorithm

In the previous chapter we introduced matched filtering, Grover’s algorithm and its extension to

quantum counting, and outlined the computational speed-up promised by quantum algorithms for

the process of search in an unstructured database. In this section we argue that matched filtering

for gravitational wave detection provides a natural application of quantum counting. We detail

the pseudo-code of a possible implementation and prove that we can effectively construct the

required oracle. We will also compare the computational cost of the quantum approach with the

classical cost, taking account of the cost of the oracle evaluation, to evaluate overall complexity

in each case and the relative speed-up. In this chapter, Sec. 11.1.1 to Sec. 11.2 are conducted by

the author while Sec. 11.3 is done by our collaborators in the Institute for Gravitational Research

(IGR) group in University of Glasgow. The work presented in this chpater is included in our recent

publication [2].

As discussed in the previous section, matched filtering involves comparing data (originally) in

the form of a time series against templates drawn from a template bank, searching for one or more

matches above a pre-determined threshold. The templates for gravitational wave data analysis are

well modelled by general relativity, and rather than performing comparisons against a previously

populated database, these are calculated as part of the matched filtering procedure. Indeed the

number of templates can be so large that pre-calculating and storing these in a database may have

prohibitive memory requirements even in the classical case. Thus a pre-loaded database is not

necessary for a quantum implementation, avoiding the need for a large amount of data to be loaded

into qRAM. Further, the steps needed in order to construct an oracle which determines whether or

not a given template is a match are already part of the classical data analysis, and including these

explicitly does not diminish the speed-up of the quantum approach, which we outline below.

We note that the cost of an oracle call (i.e., a single SNR calculation) is not negligible; this

scales with the observing time period and the frequency bandwidth over which the data is analysed,

and must be taken into account in a full complexity analysis. Grover’s algorithm does not speed

up this step, and one might wonder whether a more sophisticated approach could give a speed up

here also. We return to this in the discussion, and compare our quantum counting based approach

to related tasks from the literature. What quantum counting can do is improve the dependence of

the overall computational cost on the number of templates, making previously intractable searches
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possible. In particular, as it is the spacing of templates, and therefore the overall number of

templates required, that determines the sensitivity of the search, a quantum implementation of

matched filtering based on quantum counting promises to enable the detection of signals too weak

to detect by classical data processing techniques.

11.1.1 Oracle construction

We propose two applications of quantum counting to gravitational wave matched-filtering: one to

determine whether there is a match at all, which is often the problem of interest in gravitational

wave matched filtering; and the other to retrieve a matching template in the case in which there is

at least one match. In order to apply quantum counting in each case, we first require an oracle to

perform matched filtering with a predefined threshold. Thus we begin by detailing in Algorithm 1

the pseudo code to construct the Grover’s gate.

We begin with some preliminaries: recall that the number of templates is denoted by N, and

the number of data points in the time-series by M. We choose a digital encoding, i.e. to represent

the data and templates as classical bits encoded in the computational basis. Standard techniques

exist to convert any, in general, irreversible classical logic circuit to a reversible one, which may

readily be implemented on a quantum computer by replacing classical reversible gates by their

quantum equivalents [163, 169]. In general some scratch space is needed to aid in performing

all calculations reversibly. We outline a specific implementation, making use of four registers:

one data register which must be of size (number of qubits) linear in M, and one index register,

which requires log N qubits. For intermediate calculations we specify also one register to hold

the computed template, which must be of size linear in M, and one to hold the computed SNR
value, which does not scale with N or M and is O(1). We discuss the space requirements further

in Section 11.4.

The basic element of Grover’s algorithm is a search over an index into a database, and an oracle

construction must calculate the template from the index i, proceed to calculate the SNR, and finally

perform the check against the threshold value. We denote the number of gates needed to compute

a template waveform from its parameters by k1
1. As each template consists of M data points, this

takes time linear in M. The number of gates needed to calculate the SNR between a template

and the data is denoted k2. From the introduction in Sec. 10.2, this requires time O(M log M).

Finally, checking whether the result is above a given threshold ρthr, as defined in Sec. 10.2 takes

O(1) gates, and is denoted k3. In this way, to compute the match against all templates we need

N · (k1 + k2 + k3) steps, which is the total classical cost. Consequently, the total computational

complexity of the classical algorithm is O(NM log M).

To construct a quantum algorithm we require all the same steps, but in addition we need to

erase the intermediate calculations, in order to disentangle the index register from everything else

to complete the oracle application. The pseudo code for Grover’s gate is given in Algorithm 1.

Discussion: The following is the explanation for each step and the related computational cost

for Algorithm 1.

Oracle construction:
1We also need to specify the mapping from index to template parameters. For reasons of clarity we have not

included this step explicitly here, but note that efficient algorithms exist (see [170]), which add a modest complexity
O(polylogN). We discuss template placing in the example in Section 11.3.1.

116



Chapter 11

Algorithm 1 Grover’s Gate
Complexity: O(M log M + log N)

1: function Grover’s Search algorithm(N, |D〉, ρthr)
2: procedure Oracle Construction
3: Creating templates:
4: for all i < N do
5: |i〉|0〉 ← |i〉|Ti〉

6: Comparison with the data:
7: |i〉|D〉|Ti〉|0〉 ← |i〉|D〉|Ti〉|ρ(i)〉
8: if ρ(i) < ρthr then
9: f (i) = 0

10: else
11: f (i) = 1

|i〉|D〉|Ti〉|ρ(i)〉 ← (−1) f (i)|i〉|D〉|Ti〉|ρ(i)〉
12: Dis-entangling registers:
13: (−1) f (i)|i〉|D〉|Ti〉|ρ(i)〉 ← (−1) f (i)|i〉|D〉|Ti〉|0〉
14: (−1) f (i)|i〉|D〉|Ti〉|0〉 ← (−1) f (i)|i〉|D〉|0〉|0〉
15: procedure Diffusion Operator
16:

∑
(−1) f (i)|i〉 ←

∑
(2|i〉〈i| − Î)(−1) f (i)|i〉

• Step 0: Initialisation

[Cost: O(M + log N)]

The initial state is comprised of four registers:

|ψ0〉 =
1
√

N

N∑
i

|i〉I |0〉T |D〉D|0〉ρ, (11.1)

where the subscripts I, T , D and ρ represent the indices, templates, data, and the SNR
register respectively. Becasue this step can be done in paralle for each index, loading the

data takes time linear and initialising the index register to an equal superposition would each

add a complexity of O(1) [132].

• Step 1 (line 3-5): Creating templates

[Cost: O(M)]

Calculating the templates from the index is performed in superposition over all index values,

at a cost of k1 ∼ O(M) gates. The state after this step would be:

|ψ1〉 =
1
√

N

N∑
i

|i〉I |Ti〉T |D〉D|0〉ρ. (11.2)

• Step 2 (line 6-11): Comparison with the data

[Cost: O(M log M)]

The cost of calculating SNR between the template and the data is k2 ∼ O(M log M). Finally

we compare this result to a predetermined threshold to determine the value of f (i); the

function that determines whether a given template is a match or not at a cost of k3 ∼ O(1).
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After this step the state becomes:

|ψ2〉 =
1
√

N

N∑
i

(−1) f (i)|i〉I |Ti〉T |D〉D|ρ(i)〉ρ. (11.3)

• Step 3 (line 12-14): Disentangling registers

[Cost: O(M log M)]

The diffusion operator part of Grover’s gate must act on the index register alone. If the index

register is entangled with any other register, it will not have the desired effect. Therefore,

we need to erase the computation of ρ(i) and Ti to remove any correlation between these

registers and the index register. The erasure process is the reverse of the generation process.

Accordingly, another k1 + k2 cost is generated. The state after this step is

|ψ3〉 =
1
√

N

N∑
i

(−1) fi |i〉I |0〉T |D〉D|0〉ρ. (11.4)

• Step 4 (line 15-16): Applying the Diffusion Operator

[Cost: O(log N)]

This step is unique to the quantum algorithm and requires O(log N) quantum gates [171].

Total Cost: The total cost for a single oracle call is therefore

O
(
M log M + log N

)
. (11.5)

11.1.2 Signal detection

Now that we have constructed the required oracle for quantum matched filtering, we can readily

apply quantum counting to problems of relevance to gravitational wave data analysis. Our appli-

cation will firstly focus on whether there is a signal existing in the data, a common example in

matched filtering. Once it has been identified that a signal is present a full Bayesian parameter

analysis to determine the properties of the source must be performed separately [172, 173]. Quan-

tum counting returns robs, an estimate of the number of matches, and so is ideally suited to this

task.

In order to identify if there is a signal, we are interested in four conditional probabilities: a

true negative, the probability of correctly returning that there is no template with an SNR above

the predetermined threshold when there is no such template existing in the template bank, P(r∗ =

0|r = 0); a false negative, the probability of identifying that there is no match when indeed there is

no template in the template bank with an SNR above the predetermined threshold, P(robs = 0|r >

0); a true positive, the probability of identifying that there are templates with a SNR above the

predetermined threshold when there exists such templates in the template bank, P(robs > 0|r > 0);

and a false alarm, the probability of identifying that there are templates with a SNR above the

predetermined threshold when there no such template exists it template bank, P(robs > 0|r = 0).

Recall that quantum counting returns an integer b, between 0 and 2p − 1, from which we can

estimate θ and therefore r. If there are no matches, perfect constructive interference occurs for

b = 0 in Eq. 10.40 and b = 0 is returned with certainty. Thus identifying whether or not there
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is a signal present simply requires us to check whether b = 0 or b , 0. There will be some

probability of returning b = 0 in cases where there are in fact one or more matches, resulting in a

false negative output of the algorithm. This may be made exponentially small through a constant

number of repetitions. The resulting pseudocode is detailed in Algorithm 2. As discussed earlier

2p is required to be O(
√

N) to give a sufficient accuracy to distinguish θ from zero. At the end

of this subsection we discuss further the impact of the choice of p on the probability of a false

negative.

Algorithm 2 Signal Detection
Complexity: O

(
(M log M + log N) ·

√
N
)

1: p← number of precision digits
2: N← number of templates
3: i←index of templates
4: ρthr ← threshold
5: |0〉 ← Data |D〉
6: procedure Quantum Counting(p, N, |D〉, ρthr)
7: Creating the counting register :
8: |i〉 ← |0〉p|i〉
9: |0〉p|i〉 ← 1

2p/2 (|0〉 + |1〉)p ⊗ |i〉
10: Controlled Grover’ gate:
11: for all j < 2p do
12: a← j
13: repeat
14: Algorithm 1 Grover’s Gate(N, |D〉, ρthr), a − −
15: until a == 0
16: 1

2p/2 (|0〉 + |1〉)n ⊗ |i〉 ← 1
2(p+1)/2

∑
(e2iθ j| j〉 ⊗ |s+〉 + e−2iθ j| j〉 ⊗ |s−〉)

17: Inverse Quantum Fourier Transform:
18: 1

2(p+1)/2

∑
(e2iθ j| j〉⊗ |s+〉+e−2iθ j| j〉⊗ |s−〉)← 1

2p+1/2

∑∑
(ei2π j( θπ−

l
2p )|l〉⊗ |s+〉+ei2π j( π−θπ −

l
2p )|l〉⊗

|s−〉)
19: Measurement (b):
20: if b = 0 then
21: return ‘There is no match.’
22: else robs ← Round

[
N sin

(
b
2pπ

)2
]

23: if robs = 0 then
24: robs ← 1

Discussion: The following is the explanation for each step and the related computational cost

for Algorithm 2.

Signal detection:

• Step 0: Initialisation

[Cost: O(M + log N)]

This is the same as the step 0 in Algorithm 1.

Quantum counting:

• Step 1 (line 7-9): Creating counting register

[Cost: O( 1
2 log N)]
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This step involves applying a Hadamard gate to each qubit. Because this can be done in

parallel for each indices, it would only incur a cost of 1. The state after this step would be

|ψ4〉 =
1

2p/2
(|0〉C + |1〉C)p ⊗

N∑
i

|i〉I , (11.6)

where the subscript C represents the counting register.

• Step 2 (line 10-16): Controlled Grover’s Gate

[Cost: O((M log M + log N)
√

N)]

In this step, we apply the Grover’s gate a times to state |a〉. The cost is given by the largest

number of iterations needed, 2p−1. The state after this step is

|ψ5〉 =
1
√

2

2p−1∑
a=0

ei2θta|a〉C ⊗ |s+〉I +
1
√

2

2p−1∑
a=0

e−i2θta|a〉C ⊗ |s−〉I . (11.7)

Here we rewrite the index register as the two eigenstates |s+〉 and |s−〉 introduced in Eq. (10.36).

• Step 3 (line 17-18): Inverse quantum Fourier transform

[Cost: 1
4 (log N)2 [161]]

The inverse quantum Fourier transform is applied to the counting register to extract the

eigenstates encoded in the phases, resulting in the state

|ψ6〉 =
1

2p+ 1
2

2p−1∑
a=0

2p−1∑
b=0

{
ei2πa

(
θt
π −

b
2p

)
|b〉C ⊗ |s+〉I

+ ei2πa
(
π−θt
π −

b
2p

)
|b〉C ⊗ |s−〉I

}
.

(11.8)

• Step 4 (line 19-24): Measurement

[Cost: O( 1
2 log N)]

The cost of measurement is 1 for each counting qubit. For the actual measurement we obtain

a value b. According to Eq. 10.42, we can calculate an estimate of the number of matching

templates robs based on Eq. 10.33. When there is no matching template, the probability

of b being measured as 0 is 1. Therefore, any other observed value of b resulting in zero

matching templates can be disregarded and thus corresponds to an estimate of at least one

matching template.

Total Cost:

O
(
(M log M + log N) ·

√
N
)
, (11.9)

We conclude by discussing the effect of the choice of p on the probability of a false negative,

denoted δn. According to the discussion in Sec. 10.6, p can be written as

2p = c
√

N, (11.10)

and the following discussion is on the choice of the constant c and its effect on the probability of a

false negative. We will use well-known bounds from the literature to motivate a particular choice
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of c, and therefore p. This is not a unique choice, but rather is a convenient one for which we can

readily bound δn.

In order to avoid triggering a false negative, the outcome of measurement of the counting

register b should not be 0. According to [166], if b̃ is defined as either θ2p/π or (2p − θ2p/π)

(note that this is not in general an integer value), then the measured value b differs from b̃ by

|b − b̃| ≤ 1 with a probability at least 8/π2. Therefore, choosing p such that b̃ − 1 > 0 ensures that

the probability of a false negative is at most 1 − 8/π2. With this choice, Eq. 10.33 and 10.41 thus

gives the following restriction on p:

2p > π

√
N
r
. (11.11)

This restriction is most stringent when r = 1. Therefore, we obtain a lower bound for the choice

of number of counting qubits:

2p > π
√

N. (11.12)

With this choice of p we can obtain a slightly tighter bound on the false negative probability

as follows. To consider the amplitude for the measured state |b〉 for eigenstate |s+〉, we can sum up

all its amplitude across a:

P(b) =
1
2p

2p−1∑
a=0

ei2πa( θπ−
b

2p )|b〉 (11.13)

=
1
2p

ei2π2p( θπ−
b

2p ) − 1

ei2π( θπ−
b

2p ) − 1
|b〉

=
1
2p

sin
(
π2p( θπ −

b
2p )

)
sin

(
π( θπ −

b
2p )

) eiπ(2p−1)( θπ−
b

2p )|b〉. (11.14)

The probability of state |b〉 would be:

P(b) =
1

22p

( sin
(
2pθ

)
sin(θ − bπ

2p )

)2
. (11.15)

From the discussion previously, the only state situation will trigger a no signal result is when

|b〉 = 0. According to Eq. 11.15, the probability of false negative is:

P(robs = 0|r > 0) = P(b = 0)

=
1

22p

(sin
(
2pθ

)
sin(θ)

)2
.

(11.16)

Using angle addition theorem we can simplify this probability into:

P(robs = 0|r > 0)

=
1

22p

(sin
(
(2p − 1)θ

)
cos(θ) + cos

(
(2p − 1)θ

)
sin(θ)

sin(θ)

)2
.

(11.17)

Using the relation between N and p according to Eq. 11.10 and the relation between N and θ
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according to Eq. 10.33, this probability can be further simplified into:

P(robs = 0|r > 0)

=
1

c2N

(sin
(
(c
√

N − 1)θ
)

cos(θ)
sin(θ)

+ cos
(
(c
√

N − 1)θ
))2

=
1

c2N

(sin
(
(c
√

N − 1)θ
)√

1 − r
N√

r
N

+ cos
(
(c
√

N − 1)θ
))2

≤
1

c2N

(√N
r
− 1 + 1

)2
.

(11.18)

Because we only consider cases in which r � N, the probability of false negative can be simplified

into:

P(robs = 0|r > 0) =
1

c2r
. (11.19)

Therefore, the probability of a false negative when there exists one or more templates can be

expressed as:

δn = P(b = 0|r > 0) =
1

22p

N sin2(2pθ)
r

≤
1

22p

N
r
. (11.20)

With the choice in Eq. 11.12, this probability is inversely proportional to r, and for all r is bounded

by:

δn <
1
π2 . (11.21)

We conclude that the signal detection algorithm based on quantum counting has a false alarm

probability of 0 under all conditions, and a false negative probability of 1/π2, given the condition

in Eq. 11.12 is met.

If the false negative rate is δn for each run, by repeating the whole procedure ` times, the

probability of obtaining b = 0 every time is δ`n. Therefore, the total tolerance of our procedure

would be δ`n < π−2`. With a repetition logarithmic to its tolerance, the total complexity of the

procedure is O(`π
√

N).

In gravitational wave research, practical applications normally involve between 104 to 1012

templates [174, 164]. With the lower bound of the number of templates, 104, p can be chosen to

be 9 according to Eq. 11.12. In the classical case, the computational cost is approximately 104

oracle evaluations, while in the quantum case, 512 evaluations suffice for a single run of the signal

detection algorithm. There is therefore an order of magnitude difference in cost even for cases

with the lowest number of templates. The upper most extreme case that has been analysed has

1012 templates, in which p would be chosen as 22, resulting in a computational cost of around 107

oracle evaluations. As a specific example, for a false negative probability of π−12 ' 10−6 (one in a

million) a total of 6 × 222 ' 3 × 107 evaluations are required. To reduce this to a one in a billion

chance of a false negative, 9 repetitions of the algorithm are needed, or a total of around 4.5 × 107

oracle evaluations. This is orders of magnitude smaller than the classical cost of 1012.
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11.1.3 Retrieving matched templates

In the case of a successful signal detection (the identification of 1 or more matching templates), we

might wish to further examine its corresponding parameters using (one of) the matching templates.

In this section, we will provide a pseudo algorithm to retrieve one or all matching templates.

The procedure to retrieve matching templates is based on Grover’s algorithm in Algorithm. 1

and the result r∗ of Algorithm 2. This is not the only way to retrieve a matching template given an

unknown number of matches [175], but we anticipate that for most applications the signal detec-

tion algorithm would run first in order to determine whether there is any match above threshold.

In any potential subsequent attempt to retrieve a matching template it is then natural to use the

estimate r∗ already obtained.

Algorithm 3 Template retrieval
Complexity: O

(
(M log M + log N) ·

√
N
)

1: N← number of templates
2: i← index of templates
3: ρthr ← threshold
4: |0〉 ← Data |D〉
5: robs ← number of matched templates
6: Calculating the number of repetitions:

7: k∗ ← Round
[
π
4

√
N

robs
− 1

2

]
8: procedure Retrieve one template
9: repeat

10: Algorithm 1 Grover’s Gate(N, |D〉, ρthr), k∗ − −
11: until k∗ == 0
12: Output:
13: icorrect

Discussion: The following is the explanation for each step and the related computational cost

for Algorithm 3. Templates retrieval:

• Step 0 (line 6-7): Calculating the number of repetitions

[Cost: O (1)]

The output robs from Algorithm 2 is imported into Algorithm 3, and we then calculate the

number of required repetitions of Algorithm 1 from Eq. 10.34.

• Procedure 1 (line 8-13): Retrieve one template

[Cost: O
(√

N/robs
(
M log M + log N

))
]

Grover’s algorithm, Algorithm 1, will be repeated k∗ times to achieve the desired template

index. The value of k∗ according to our previous discussion will be O(
√

N/robs).

The total cost of Algorithm 2 and retrieving one template combined is:

O
(
(M log M + log N) ·

√
N
)
. (11.22)

• Procedure 2 : Retrieve all matched templates

In the case where all the matched templates are required to be found, it is not as trivial as

123



Sijia Gao

repeating Procedure 1 r (assuming robs ≈ r) times because it samples with replacement.

It is, instead, a coupon collector problem [176], which requires Θ(r log r) repetitions of

Procedure 1. As long as the number of matching templates is small comparing with the total

number of templates in the bank, the complexity is the same for both procedures.

We conclude this section by discussing the overall probability of failing to return a matched

template following this procedure. Note that if this probability is less than 0.5, then with a constant

number of repetitions, it can be made negligibly small to ensure successful retrieval of a matched

template2.

Without loss of generality we consider in the following analysis only one eigenvalue in Eq. 10.40,

corresponding to |s+〉. Recall the state of the register after inverse Fourier transform |ψ6〉 in

Eq. (10.40). Without losing generality, only one eigenstate is considered for the analysis. Ac-

cording to Eq. (10.40), the probability of a certain |b〉 is measured in the whole state would simply

be twice of the probability of that in one eigenstate. The corresponding probability distribution for

different measured values b is given in Eq. 11.15. In any given run of the procedure, the probability

of returning a matched template according to Eq. 10.29 is therefore given by:

P(Match) = | sin ((2k∗ + 1)θ) |2, (11.23)

where k∗ is the number of Grover’s applications calculated through Eq. 10.34 from the outcome

b of Algorithm 2 and corresponding estimates θ∗, r∗. Using Eq. 11.15, the overall probability of

failing to retrieve a matched template is given by:

P(Fail) =

2p∑
l=0

P(Fail|b = l)P(b = l)

=
1

22p

2p∑
l=0

( sin
(
2pθ

)
sin(θ − πl

2p )

)2
| cos ((2kl + 1)θ) |2,

(11.24)

where kl is the number of repetitions of Grover’s algorithm when b = l.

Let b′ be the closest integer larger than 2pθ/π, i.e. b′ = d2pθ/πe = 2pθ/π + ε where 0 ≤ ε ≤ 1;

and b′′ the closest integer smaller than 2pθ/π such that b′′ = 2pθ/π− (1− ε). b′ and b′′ are also the

most probable values; recall that the probability that the measured b value falls into the interval of

|b − b̃| ≤ 1 is larger than 8/π2 [166]. This is illustrated in Fig. 11.1 based on Eq. 11.15 where the

central peak contains the two most probable b states.

Now an upper bound for P(Fail) is given by only considering the probability of successfully

retrieving a template for these two most probable outcomes:

P(Fail) < P(b′)P(Fail|b′) + P(b′′)P(Fail|b′′)

+ (1 − P(b′) − P(b′′)).
(11.25)

2There is nothing special about 0.5 here, as long as the probability of failure is bounded away from 1 this is enough;
0.5 is a convenient choice.

124



Chapter 11

Figure 11.1 The red dotted line corresponds to the probability distribution for each state in a
5-qubit counting register, with two templates matching in a 64-template bank corresponding
to one eigenvalue defined in Eq. 10.35. The black line is plotted according to Eq. 11.15 as a
continuous function. Each peak contains one b state with a width of 1, except for the central
peak which has the two most probable b states and a width of 2. The upper integer b state to
b̃ is referred to as b′ while the lower as b′′. The curve peaks at either 2pθ/π or 2p(π − θ)/π,
depends on which eigenvalue the curve corresponds to, and it is labelled as b̃.

Now, to estimate P(Fail|b′), note using Eq. 10.34 that:

kb′ =

[
π

4θ∗
−

1
2

]
=

π

4θ∗
−

1
2
± εk,

=
2p−2

b′
−

1
2
± εk,

(11.26)

where in the second line 0 ≤ εk ≤ 0.5, and in the third line we have used Eq. 10.42. In the context

of gravitational wave searches, i.e. N � r, the small angle approximation can be applied and

consequently, θ ≈
√

r/N. Thus

(2kb′ + 1)θ =
2p−1

b′
θ ± 2εkθ

=
b̃
b′
π

2
+ O

(√
r
N

)
,

(11.27)
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from which we obtain using Eq. 11.23

P(Fail|b′) = 1 − | sin ((2kb′ + 1)θ) |2

=

∣∣∣∣∣∣cos
(

b̃
b′
π

2

)∣∣∣∣∣∣2 + O
(√

r
N

)
=

∣∣∣∣∣∣cos
(
b′ − ε

b′
π

2

)∣∣∣∣∣∣2 + O
(√

r
N

)
=

∣∣∣∣∣sin
(
ε

b′
π

2

)∣∣∣∣∣2 + O
(√

r
N

)
.

(11.28)

We can also rewrite P(b′) as follows:

P(b′) =
1

22p

( sin
(
2pθ

)
sin(θ − πb′

2p )

)2

=
1

22p

 sin
(
b̃π

)
sin

(
π
2p ε

)
2

'

sin
(
επ

)
πε


2

(11.29)

where in the last line we have used the small angle approximation for πε/2p, and b̃ = b′ − ε. With

similar arguments for b′′, the bound becomes:

P(Fail) <1 −

sin
(
πε

)
πε


2 (

cos
(
ε

b′
π

2

))2

−

sin
(
π(1 − ε)

)
π(1 − ε)


2 (

cos
(
1 − ε
b′′

π

2

))2

+ O
(√

r
N

) (11.30)

Recall from Eq. 11.12, we choose p = dlog2(π
√

N)e. It is convenient to express this as p =

log2(π
√

N) + εp, where 0 < εp < 1. Therefore b̃ may be written:

b̃ =
2pθ

π

=
π
√

N2εp

π

√
r
N

= 2εp
√

r.

(11.31)

Recall that b′ = db̃e, and so b′, ε become:

b′ = d2εp
√

re; ε = d2εp
√

re − 2εp
√

r. (11.32)

Thus for each r we can write Eq. 11.30 in terms of a single parameter, εp, between 0 and 1

(neglecting the O(
√

r/N) term). We optimise this numerically and plot the bound for various

values of r in Fig. 11.2. In all cases this is less than 0.453, the value found numerically for r = 1,
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Figure 11.2 This shows for large N, the joint probability of obtaining outcome b and sub-
sequently failing to retrieve a matched template is bounded by 0.45 for different number of
matching templates r, according to Eq. 11.30.

ensuring the probability of successfully retrieving a template is no smaller than:

P(Success) ≥ 0.547. (11.33)

Note that for large r (but still requiring r << N),

P(Fail|b′) ' P(Fail|b′′) ' sin2
(

1
√

r
π

2

)
' O

(
1
r

)
and thus we can expect the bound on the probability of failure to decrease with r to a limit given

by:

P(Fail) < 1 − P(b′) − P(b′′) + O
(
1
r

)
= 1 −

8
π2 + O

(
1
r

)
.

(11.34)

We here provide a specific example of the total probability of failing to retrieve a matching

template corresponding to Eq. 11.24 in Fig. 11.3. This example has a template bank of 217 tem-

plates, with r = 9, a real gravitational wave signal GW150914 that will be discussed in Sec. 11.3.

The total failing probability P(Fail) ≈ 0.34 < 0.5. Therefore, with a constant number of repeti-

tions of Alg. 2 and Alg. 3, we are guaranteed with a matched template returned at a complexity

of O
(
(M log M + log N) ·

√
N
)
. This is less than the classical cost of O

(
NM log M

)
. Therefore,

we conclude that our quantum algorithm offers a
√

N speed up with a practical oracle when the

number of matching templates is small compared with the total number of templates in the bank.
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Figure 11.3 For the case of a template bank with 217 templates, and r = 9, the joint probability
of obtaining outcome b and subsequently failing to or succeeding at retrieving a matched
template are plotted in blue and yellow respectively. The total probability of P(Fail) ≈ 0.34 <

0.5.

11.2 Example using Qiskit

In this section, we will present our proof of principle model of template matching on a quantum

computer using IBM’s Qiskit library [177] and their quantum computer simulator ibmq qasm simulator3.

Matching to real gravitational wave data requires a much larger quantum processor than is

currently available; in Section 11.3 we will present a classical simulation of matching to actual

detector data using python. Later we also discuss the space requirements of the matched filtering

algorithm. Here, in order to demonstrate the basic features of a realisation on a quantum processor,

we implement a simplified algorithm in which we imagine the data is an n-bit string and the

templates are all possible n-bit strings. This means that the templates themselves are identical to

the index, and there is no need to explicitly perform the template generation steps (Algorithm 1

Step 1). We consider that a template is a match to the data if the bit strings are identical, however

to simulate the possibility of non-exact matches, we disregard the q lowest order bits and require

only the n − q highest order bits to match. The choice of q is analogous to the choice of threshold

SNR value ρthr in the main algorithm. The proof of principle demonstration presented here is thus

an example of string matching, a problem considered in [178, 179, 180].

The data consists of an n-qubit string stored in binary form in the data register |D〉, where the

first q qubits are ignored allowing for 2q matching templates among 2n total templates. Hadamard

gates are used to initialise the template register |T 〉 to store a superposition of all possible n-bit

templates. The output qubit |d〉 in Eq. 10.18 is stored in the ancilla register |A〉. An extra counting

register with p qubits is added for the quantum counting procedure.

In our template matching oracle, which is presented in Fig. 11.4, we match the template reg-

3The QasmSimulator backend is designed to mimic an actual device. It executes a Qiskit QuantumCircuit and
returns a count dictionary containing the final values of any classical registers in the circuit.
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ister and the data register qubit-by-qubit using CNOT gates. In the case of an exact match, all the

qubits in the template register would be turned into state |0〉. Therefore, after bit flipping, we can

use a multiple-control-NOT gate to realise phase kickback on the ancillary qubit initialised into

the |−〉 state. The diffusion operator is constructed by a combination of Hadamard gates, NOT

gates and a Cn-Z gate, and is illustrated in Fig. 11.4.

In gravitational wave searches, the true signal parameters will lie somewhere within the tem-

plate bank parameter space and no template will be identical to the signal. Therefore, a predeter-

mined ρthr is chosen as the threshold in Algorithm. 1. The number of templates possessing ρ over

this threshold, if there are any, is unknown. Since the optimal number of applications of Grover’s

search algorithm is dependent on the number of templates with ρ over the threshold, we need to

apply the quantum counting algorithm first.

0
1
...

q
• •

...
• •

n
• •



|D〉

0
H X • X H

1
H X • X H

...
H X • X H

q
X • X H X • X H

...
X • X H X • X H

n
X • X H X Z X H



|T 〉

|A〉

Figure 11.4 Quantum circuit diagram for our multiple-template matching oracle and the dif-
fusion operator, which are separated by the vertical dashed line. The |D〉 and |T 〉 variables
represent the data and template registers respectively and |A〉 is the ancilla qubit. The num-
bers label the ith qubit in the respective register. To simulate multiple matches, the oracle does
not act on the first q qubits. When there is only one matching template q would be 0.

To demonstrate a proof of principle of our algorithm, we implement this simplified version

with a range of qubits for data and omission, allowing for multiple templates matching. For each

pair n, q, we run the quantum counting algorithm first, in order to estimate the number of matches

r, and then Grover’s algorithm to find a match. From the output of the quantum counting algorithm,

we take the most probable value of b to calculate an estimated r∗ and k∗ for the template retrieval

phase. For each algorithm the experiment is trialed 2048 times and the output of the simulator

gives a set of probabilities calculated from the number of occurrences of each possible measured

value. The results are presented in Table. 11.1. The number of counting qubits, p, is based on
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Eq. 11.12. When the number of qubits for the data, n, is small, p is close to n. However, as n

increases, the difference between n and p increases as well, allowing us to maintain the speedup

of
√

N discussed in Sec. 11.1. The parameters k∗ and k are the estimated and true number of

applications of Grover’s gate needed, given by the quantum counting process by Eq. 10.42 and

Eq. 10.34 with r = 2q respectively. The probability of the search process returning us with one

of the matched templates given the most probable value of b is over 78% in all cases, and the

estimated number of templates, robs differs from the actual number of matched templates, 2q, by

no more than 2.

ignored data counting measured Grover’s est. No. Grover’s
qubits length qubits count iter. est. templates iter. theo. P(Succ.)

q n p b k∗ robs k

0

5 5 30 4 1 4 0.9995
6 5 1 6 1 6 0.9961
7 5 1 8 1 8 0.9956
8 6 1 12 1 12 1
9 7 2 17 1 17 0.9990

1

5 5 3 2 3 3 0.9092
6 5 30 4 2 4 0.9985
7 6 61 5 3 6 0.9619
8 6 2 8 2 8 0.9961
9 7 125 10 3 12 0.9365
10 7 126 17 2 17 0.9995

2

5 5 4 1 5 2 0.7885
6 5 29 2 5 3 0.9072
7 6 60 3 5 4 0.8926
8 6 61 5 6 6 0.9688
9 7 124 7 5 8 0.9429
10 7 125 10 6 12 0.9395

Table 11.1 Trial runs of our algorithm with 2048 iterations on ibmq qasm simulator. We com-
pare the number of iterations Grover’s algorithm should apply and the number of matched
templates based on the measured result, to their theoretical counterparts across a range of
data with different number of qubits with various number of omitted qubits in the matching
process. We also state the P(Success) as the probability of our algorithm returning us with
a matched template in the final search in each case. The number of counting qubits is the
minimum allowed by Eq. 11.12 to minimise the false negative rate, δn.

A specific instance is illustrated in Fig. 11.5 and 11.6. This case corresponds to n = 6, q = 1,

and the data is fixed to be 000110. q = 1 means that we look to find templates that match at least

the last 5 qubits, i.e., 000110 and 000111. This is the same scenario as the analytical example we

presented in Fig. 10.9, and described in Sec. 10.6. The result of the quantum counting process is

shown in Fig. 11.5 where we can see that the measured values corresponding to the two eigenvalues

from Eq. 10.35 are the most probable to be obtained. Converting the state indices from binary to

decimal, our result is a bimodal distribution with 2 modes: 2 and 30 are the locations of the mode

peaks with a standard deviation less than 2. Both cases correspond to an estimate of 4 for k∗, the

same as the true value of k calculated from the real number of templates. Although this result does
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not exactly equal that given in Fig. 10.9, the fact that this algorithm is performed on a quantum

simulator with limited number of runs needs to be taken into consideration.

In Fig. 11.6, we show the result of the Grover’s search process based on the result from

Fig. 11.5, in which the two matching templates are recovered with high probability in relation

to other templates. Since they form an equal superposition, the two matched templates are as-

signed approximately equal probability. After performing 2048 trials of simulation in our results,

the two matched templates constitute altogether a success probability > 99%.

Figure 11.5 The measurement of the quantum counting process for 6-qubit data matching with
a 5-qubit counting register. The first qubit is ignored to allow for two templates matching. The
theoretically most frequent outcome b in this case, according to Eq. 10.41, should be either 2
or 30. The most probable measurement result is 11110, which in decimal is 30.

11.3 Example Search for GW150914

Our collaborator in the Institute for Gravitational Research in University of Glasgow applied this

method to gravitational wave detection. The specific case chosen is the detection of the first

gravitational wave event GW150914 [18]. The template bank size is not possible to be analysed

on Qiskit platform, because it has at most 32 qubits at the time of this project being conducted. We

compute the amplitudes of quantum states that correspond to the template and counting register at

various stages of the algorithm described in Sec. 11.1 using python code. The gravitational wave

strain time-series data that we choose to analyse is from the LIGO Hanford detector and is centered

around the GW150914 event time (GPS time 1126259462.4). It is 28 s in duration and sampled at

a rate of 4096 Hz. The data is initially whitened and passed through a high-pass filter with a 20 Hz
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Figure 11.6 The measurement of the Grover’s search process for 6-qubit data matching. The
data is set as 000110 and the lowest qubit is ignored to allow for two templates matching.
With 4 iterations suggested by the quantum counting process as a numerical output, the two
templates that meet the matching criteria are returned with a probability higher than 99%
altogether after 2048 trials on ibmq qasm simulator.

lower cut-off frequency. The resulting time-series is shown in Fig. 11.7 in black. An approximate

matching template is plotted overlaying the data in orange. We perform our analysis on a bank of

217 templates covering the 4-dimensional search space defined by the component masses m1,2 and

the aligned spin magnitudes s1,2 of the binary system. We search these templates to find instances

that correspond to matching templates with a SNR higher than a predefined threshold.

11.3.1 Signal Detection

After FFT the strain data into frequency domain, it is stored in |D〉, the data register, in computation

basis. The indices for each of the N template are represented by |i〉 in superposition. The same

is done to the 2p states in the counting register as described in Alg. 2 lines 7-9. The controlled

Grover’s operator is applied to |ψ0〉 as described by Alg. 2 lines 10-16 to compare the templates

to the data using Alg. 1 as a subroutine. The templates are created from |i〉 to produce |Ti〉 as

described in lines 3-5 of Alg. 1. Like the current measures in most classical examples, in this

project, this step is done by using a look-up table that is computed prior to the analysis [182] that

accepts a given index as a key and returns the set of parameters {m1,m2, s1, s2} corresponding to the

template. The parameters are then given to the phenomenological waveform model IMRPhenomD

to produce the template [183, 184, 185]. For a quantum computer this step cannot be done using

such a look-up table as this would rely on using qRAM. Instead an algorithm is required that maps
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Figure 11.7 Whitened time-series data (black) of the gravitational wave event GW150914 sam-
pled at 4096 Hz after a 20 Hz highpass filter overlaid by a signal template (orange) with com-
ponent masses m1 = 35.6 M� and m2 = 30.6 M� and with zero aligned spin, taken from [181].
The signal can be more clearly seen in the 0.25 s plot in the upper panel.

the N template indices to their respective locations in the parameter space as long as this algorithm

is executable on a classical computer. This is based on the fact that any classical algorithm can be

performed on a quantum computer and made reversible with at most polynomial overhead [163].

This kind of algorithm can be based on existing classical algorithms, such as those used for lattice-

based template placement [186, 187, 188, 189, 190].

For each template in the bank, the oracle calculates ρ for each time step using Eq. 10.11 which

produces {ρi(t1), . . . , ρi(tM)} where M = 28 × 4096 is the number of time steps. A classical search

algorithm is also written into the oracle to find ρmax
i = max({ρi(t1), . . . , ρi(tM)}). In actual quantum

computing, it would be possible to conduct these two steps in parallel for each mass templates.

The analysis is repeated with ρthr = 8, 12, 16, 18 for p = 11, which is the fewest number of qubits

in the counting register to meet the condition set in Eq. 11.11.

An estimate of the number of matching templates can be made from quantum counting as

described in lines 17-18 of Alg. 2 by applying the inverse QFT across the counting register states

{| j〉} to obtain {|l〉}. Fig. 11.8 displays the probabilities of each outcome b after a measurement

is performed on the counting register for different ρthr with p = 11. The probability of different

outcomes after measuring the counting register for the four different cases are compared to the

non-integer value b̃, defined by the exact solutions of Eq. 10.41, and plotted with a dotted line in

Fig. 11.8. The most probable outcome corresponds to b′ or b′′ for each case, where the form of

the distributions are governed by Eq. 11.15. The outcome of measuring the counting register can

equally be represented in terms of a prediction of the number of matching templates according to
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Figure 11.8 The probability of different outcomes b of measuring the counting register after
the inverse quantum Fourier transform is applied. This process is described by lines 17-18
for the different cases of ρthr given p = 11. The distributions are compared to the correspond-
ing value of b̃ (dotted). The probability distributions corresponding to the two eigenvalues
of Grover’s operator are closer to 2p−1 for cases with more matched templates (lower ρthr).
Cases with fewer matched templates are closer to the extremities of the range of b and have
an increased probability of not identifying any matched templates, corresponding to P(b = 0).
This probability can be reduced by repeating the algorithm.

Eq. 10.33 and Eq. 10.41 as shown in Fig. 11.9 for the example cases. For each ρthr considered, the

distributions peak near the actual number of matching templates. Notably, the probability of ob-

taining an outcome that corresponds to a non-zero number of matching templates is much greater

than the probability of an outcome corresponding to zero matching templates for all cases. This is

equivalent to the probability of obtaining an outcome other than b = 0 in Fig. 11.8. Obtaining an

outcome of b = 0 given the case where there are matching templates is a false negative, the prob-

ability of which is governed by Eq. 11.21. Therefore the rate of false negatives (made in addition

to that produced from the classical matched filtering approach) can be reduced by repeating the

Signal Detection procedure. This should be compared to the case where there are no matching

templates to identify. In this case the measurement of the counting register always results in b = 0

corresponding to no matching templates. This negates the possibility of the analysis producing

additional false alarms to the classical matched filtering approach as P(robs > 0|r = 0) = 0. If

we only wish to determine if a signal is present in the data or not then the analysis can stop at

this stage after the counting register is measured. The cost of determining this outcome requires

2p − 1 enquiries of the oracle, in comparison to the ∼ O(N) calculations of {ρ(t1), . . . , ρ(tM)} from

Eq. 10.11 in the classical case.
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Figure 11.9 The probability distributions of outcomes from measuring the counting register
from Fig. 11.8 transformed to estimates on the number of matching templates robs for each
of the different cases of ρthr. The distributions are compared to the true number of matching
templates r (dotted).

11.3.2 Retrieving Matching Templates

The optimal number of Grover’s operations is estimated using Eq. 10.34 based on the output of robs

from the prvious procedure in Sec. 11.3.1. Fig. 11.10 shows the probability of obtaining different

values of k∗ from the measurement for different SNR of ρthr = 8, 12, 16, 18. The distributions

peak around k which is indicated by the dotted line. Fig. 11.10 is truncated at (2p−1 − 1)/2, so as

to exclude the outcome corresponding to zero matching templates and only consider outcomes of

b > 0.

The Template Retrieval procedure in Alg. 3 can be applied to obtain a matching template

based on the resulting k∗. Similar to the previous procedure Signal Detection, this also requires

initializing |ψ0〉 from Eq. 11.1 and then applying Grover’s Gate in Alg. 1 to this state iteratively

k∗ times. In this way, the probability of an index corresponding to a matching template will be

maximized. As demonstrated from Eq. 10.40, being degenerate states, each state corresponding to

a match will be amplified equally so that the probability of obtaining any given matching template

is the same. For a given k∗, the probability of obtaining a matching template is governed by

Eq. 11.23.

Fig. 11.11 shows how the template states respond to the the Template Retrieval procedure

in their corresponding positions in the parameter space for each of the different ρthr cases from

Sec. 11.3.1. The parameter space is comprised of three parameters: the component masses m1

and m2 of each binary system and the system’s effective spin χeff = (s1/m1 + s2/m2)/(m1 + m2),

a reparameterization of the component spins that adequately expresses their effect on the template

waveforms as a single parameter. Fig. 11.11 contains three projections, each one demonstrating
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Figure 11.10 The probability distributions of outcomes from measuring the counting register
from Fig. 11.8 transformed to estimates on the optimal number of Grover’s applications k∗ for
each of the different cases of ρthr. The probabilities are compared to the true k (dotted) for
each case.

how one parameter is compared with another one. The templates meeting the matching criteria

are marked by the colour corresponding to the maximum ρthr. Therefore templates with a high ρthr

are a subset of lower ρthr values. The size of the template labels is scaled to the log probability

of obtaining the index of that template from the measurement after k∗ application of Grover’s

operations. The highest ρ in this template bank is 19.05 from classical calculation. This template

is highlighted in the figure which coincides with one of the templates corresponding to a match

with ρthr = 18.

As we have discussed previously in Sec. 11.1.3, if the Template Retrieval procedure fails to

return a matching template then we can choose to repeat our algorithm until a matching template

is found. In Fig. 11.12, given the ρthr = 18 case with p = 11, we compare two scenarios with

the classical case in order to demonstrate there does exist a
√

N speed up. The first scenario,

as shown in the red histogram, 10,000 simulations of measuring the counting register are made

after the Signal Detection procedure to obtain k∗, before repeating Template Retrieval for each

k∗ until a matched template is found. The second scenario, as demonstrated in the blue histogram,

is to only repeat the Signal Detection procedure after repeated failures to retrieve a matching

template to obtain another k∗ to use. In Fig. 11.12 we adopted the most extreme case, that the

Signal Detection procedure is repeated after each Template Retrieval procedure that failed to

retrieve a matching template. The number of times of accessing the oracle U f (phase kickback in

Eq. 10.19, which is comparable to the cost of SNR calculation) for each simulation is shown in

the corresponding histogram of Fig. 11.12 with its mean indicated by the same coloured dashed

line. These can be compared to the number of times SNR is evaluated in the classical search case
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Figure 11.11 The positions of templates in the bank that have their corresponding states am-
plified after applying Grover’s operator k∗ times to an initially equal superposition of template
states for ρthr. Here k∗ is assumed to be the most probable k∗ from the outcome probabili-
ties shown in Fig. 11.10. The templates are scattered across the binary system’s component
masses m1 and m2 as well as the effective spin χeff. The template marker size is proportional
to the log probability of obtaining that template state from a measurement of the template reg-
ister. With increasing ρthr the matching templates cluster more tightly together and around the
template found to have the maximum ρ out of all the template (found from a classical search).

where it is calculated for every template, indicated by the black dotted line. From Fig. 11.12, it

demonstrates the
√

N speed up of our procedures comparing with the classical cost.

For the case when all matching templates are desired, then the step described previously must

be repeated as described in Step 6 of Sec. 11.1, which leads to matching templates being sampled

with replacement. This step would be costly when the number of matching template r is not

small comparing with N. This can happen for a loud signal and a low ρthr used for detection.

Therefore, because the cost of retreiving a template is inversely related to the ratio of r/N as stated

in Sec. 11.1.3, a procedure can be made using these algorithms as subroutines to obtain matches
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Figure 11.12 The number of evaluations of f required to retrieve a matching template for
10,000 simulations given the GW150914 example with ρthr = 18 and p = 11. The red
histogram and blue histograms correspond to two extreme situations of applying the Signal
Detection and the Template Retrieval procedures. The red histograms represent simulations
where the Signal Detection procedure is only applied once and the value of k∗ obtained is
assumed for Template Retrieval. The latter procedure is repeated until a matching template
is found. The blue histogram depicts simulations where the quantum counting algorithm, the
Signal Detection procedure, is repeated to obtain a new k∗ for each application of the Template
Retrieval algorithm. The mean for both extreme methods of ∼ 2, 418 and ∼ 5, 575 (red, blue
dashed lines respectively) are compared to the classical case where all 217 templates are
evaluated (dotted line).

with a high ρ while searching using a low ρthr; a low ρthr can initially be assumed for the search

specified in Sec. 11.3.1, and given a measurement corresponding to P(robs > 0), the value of robs

obtained can be assessed. If robs � 1, and the signal is presumed to be loud, then the steps in

Sec. 11.3.1 can be repeated with the ρthr being updated as the ρ of the retrieved template.

11.4 Conclusion

We have presented a quantum analogue of the classical matched filtering algorithm with a square-

root speed-up. Our algorithm is based on Grover’s algorithm, using SNR to implement a feasible

oracle to search through an unstructured large template bank. The algorithm is separated into two

parts: the SignalDetection and the TemplateRetrieving algorithms. The former is more crucial to

gravitational wave detection whereas the latter is more optional when needed. We have discussed

the effect of the number of counting qubits p on the accuracy of the algorithms through formulating

the additional false alarm rate and false negative rate caused by the algorithms. Through this
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discussion, we are able to prove that the total probability of successfully retrieving a template

using our algorithm once is no less than 0.547.

We have also demonstrated a toy model of our algorithm on the IBM Qiskit platform, and a

classical simulation on the GW150914 event of gravitational wave detection. In both cases, the

results are successful at returning a matched template. For the simulation on the GW150914 event

of gravitational wave detection, our collaborator has analysed two different failure tolerances: one

where Signal Detection is applied for every application of Template Retrieval until a matching

template is found; and the other one where Signal Detection is applied once and then Template

Retrieval is repeated until a matching template is retrieved. We have demonstrated the computa-

tional cost and probability of the best and worst case outcomes of the whole process and compare

them to the classical computational cost. In both scenarios, the average computational cost of

quantum matched filtering is shown to be an order of magnitude cheaper than that of the classical

counterpart.
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Summary and outlook of Part 2

In Part. II, we have proposed a quantum algorithm analogous to the classical matched filtering

algorithm for gravitational wave data analysis. Our algorithm is based on the Grover’s algorithm

and offers a square-root speed up in computational cost for unstructured data base search. We

propose that the number of counting qubit should be no less than (log π + 0.5 log N) based on

analyses on the additional false alarm rate and false negative rate caused by the algorithm. We

are able to prove the total probability of successfully retrieving a template using our algorithm

once is no less than 0.547. We also have demonstrated our algorithm on the IBM Qiskit platform

with a toy model as well as a classical simulation on the GW150914 event of gravitational wave

detection. In both cases, we have demonstrated our algorithm is successful at returning a matched

template.

In past studies, quantum template matching have focused more on the size of the data, espe-

cially when the dimension spanned by the data is large, and demands more than one copy of the

data and templates in quantum states [191, 192, 193]. In the case of interest here, for astrophys-

ical researches the current limitation in computation is the number of templates. Furthermore,

both the data and the templates are originally in classical form. An alternative from the basis

encoding method adopted in our algorithm is amplitude encoding. In amplitude encoding a nor-

malized classical N-dimensional datapoint x is represented by the amplitudes of a n-qubit quan-

tum state. This would require repeatedly loading them into the quantum register. Therefore, this

could offset any computation advantage the current quantum template matching algorithms offer.

Although this could be solved by adopting qRAM, it would induce prohibitive time and space

requirements [194, 195]. Our method bypasses the problem of loading data and templates into

the quantum registers repetitively by calculating the templates from their associate indices using

a classical algorithm. For the novel oracle we provided, the complexity associated with loading

data and templates is not comparable to the square-root speed-up, although we require erasing

and producing the templates for each application of Grover’s algorithm. This is caveated that such

classical algorithms used to produce templates do exist. Therefore, the quantum advantage persists

and our algorithm remains a practical application for error corrected quantum computers once they

become available.

However, it is worth pointing out the space requirement of our algorithm and how it compares

with existing quantum processors. Let us consider a case with N templates and M bits of signal

data. In our algorithm, we require a data register of size M: large enough to hold the data in
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computational basis. We need two registers of such size: one to store the signal, and one for

templates. Because the templates are stored in superposition, entangled with their indices, only one

is needed for all the templates. If each time sample is stored using 64 bits and we analyse data as in

the example of the GW150914 event included in Section. 11.3 (28 seconds of data at 4096Hz) then

28×4096 number of time samples are needed. If each time sample is stored using 64 bits (8 bytes),

our algorithm becomes feasible with an error-corrected device with a few Megabytes of memory.

With N templates, we require a counting register in the order of 1
2 log2 N and an index register

of size log2 N. In gravitational wave research, the template bank typically hold up to N = 1012

templates [182, 181]. Overall, the size of data is more of a limiting factor for our algorithm. In

addition, to produce the templates and perform the matched filtering calculation reversibly, we

may need a scratch space polynomial in the size of the signal. IBM has announced a new quantum

processor ‘Eagle’ with 127 qubits in December 2021 [196] and according its road map released

earlier this year, a quantum processor ‘Osprey’ with 433 qubits will be available in 2022 and

pushing this limit to over 1000 qubit in 2023 [197]. Although these are by no means fault tolerant

quantum computers and the number of qubits is not the sole measure of computation ability, this

does shine some optimism that the day for us to use quantum computing in gravitational wave

research is not that far away.

We note that here we did not discuss the physical gate complexity: the cost of constructing,

executing and error-correcting the gates. Rather, we just compare the number of executions with

the classical algorithm. Quadratic speed-ups, such as provided by our algorithm, do not seem

to be promising for runtime advantages for modest fault-tolerant devices [198]. Taking this into

account, combined with the quite demanding space requirements outlined above, we do not claim

this as a near term application. However, in the medium to long term with improvements in quan-

tum hardware and in error correction, quantum algorithms have the potential to offer significantly

improved sensitivity in gravitational wave searches.

Our algorithm of course is not only limited to speed up the current gravitational wave research,

but rather applicable for any template matching problem in which the number of templates is

much bigger than the size of any one template or the data, and in which the templates can be

calculated efficiently through classical algorithms. Some examples where our algorithm may help

the intractable search using classical algorithm tractable include the continuous wave detection in

gravitational wave research and even dark matter detection [199].

Gravitational wave research has always been on the frontier of adopting novel computing

methods such as classical machine learning techniques [200, 201, 202], and we expect that more

sophisticated quantum machine learning techniques may contribute further quantum advantages

to it. In the future, there are three possible opportunities for further improvement of our algo-

rithm. The first opportunity is to explore the possibility of involving prior knowledge into the

template bank setup to favour certain templates, as was done classically in [203, 204]. Although

this method would still remain a quadratic algorithm, the overall efficiency could be improved.

The second one is by incorporating amplitude encoding. As we have discussed before, the ad-

vantage of this method is that it will reduce space requirement. But for our algorithm, it is more

difficult to perform the matching steps using amplitude encoding, and would likely add extra com-

plexity. The last opportunity is to apply machine learning techniques as it is considered a possible
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application of NISQ devices[205]. As we fully enter the era of gravitational wave astronomy and

quantum computing, joining those two areas would produce better performing and more efficient

data processing techniques to fully exploit these new windows on the Universe and computation.
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Neubauer, Robert Georgii, and Peter Böni. Skyrmion lattice in a chiral magnet. Science,

323(5916):915–919, 2009.
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