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Abstract

There remain environmental challenges which can only accurately be assessed

by process-based modelling. An example of this is the monitoring of the en-

vironmental impacts of aquaculture, where the logistical difficulty and cost of

collecting data over large areas make mathematical modelling the more effective

approach. Such approaches are computationally intensive and do not account

for uncertainty. NewDEPOMOD is an example of a process-based model that

is used within aquaculture to model the environmental impacts of aquaculture.

This thesis provides an in-depth investigation of uncertainty in such a model

using sensitivity analysis, and proposes a novel statistical emulation framework

to approximate the output from NewDEPOMOD, reducing the computational

cost.

NewDEPOMOD is a complex mathematical model that was developed in

order to estimate and predict the transportation of waste particles from fish

farms to their deposition on the seabed. It features a number of different types

of input, representing features such as the fish farm physical structure, flow

speeds and waste transportation properties. In addition, the output produced

by NewDEPOMOD provides a measure known as Solids Flux in grid cells across

the domain, representing the environmental impact. This can be visualised as

either a univariate or multivariate output.

The univariate outputs produced by NewDEPOMOD are the Total Area

Impacted and 99th Percentile of Solids Flux which provide a measure of the size

and intensity of the impact on the seabed. In collaboration with the Scottish

Environment Protection agency (‘SEPA’), with application to fish farm sites

around the coast of Scotland, a set of inputs were identified as being of most

importance for investigating the effect of their uncertainty on the NewDEPO-

MOD outputs. In this thesis, sensitivity analyses are conducted at multiple

fish farm sites, classed as high and low energy based on their flow speeds, using

random forest models. Random forest models are proposed as they are flexi-

ble, efficient, and the importance values produced by the models can be used

to rank the inputs based on their influence on the output data.
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To assess the impact of changing the inputs values on the output maps

produced by NewDEPOMOD, traditional univariate sensitivity analysis tech-

niques are expanded here to develop novel sensitivity analysis methods for

considering multivariate model outputs. Three different approaches to investi-

gating the output maps are considered: 1) shape analysis based on a landmark

approach for identifying the main shape of the impact, 2) bivariate functional

analysis where the output maps are considered as smooth surfaces, and 3) grid

cell approach where the Solids Flux in each grid cell is considered individually.

The performance of each approach was considered individually before develop-

ing a framework, using a subset of the approaches, that could be applied to

multiple sites to assess parameter uncertainty, and hence the impact of altering

the inputs on the output maps.

The application of statistical emulation to model the univariate outputs

from NewDEPOMOD reducing the computational cost is a novel approach.

The methods proposed for the emulation are random forests and Gaussian pro-

cesses which both provide flexibility and allow for fast predictions for new data

in comparison to the time taken to run NewDEPOMOD. For each site, training

data will be used to fit the emulation models for each approach before using

a test set of data to assess their predictive performance. Root Mean Squared

Error (‘RMSE’) and the Mean Absolute Error (‘MAE’) are both considered as

measures of how well the emulators perform and allow for comparisons to be

made between the approaches. Further investigation assesses the suitability of

a single emulator to be used at all sites, or whether the emulators should be

built individually for each site.

In practice, correlated outputs are more realistic in such a scenario and

hence the emulation framework for the univariate outputs is expanded to con-

sider the univariate outputs together as a correlated multivariate output. Ex-

tensions to the random forest and Gaussian process models are proposed which

account for correlation between the outputs. The predictive performance for

both approaches can be reviewed using RMSE and MAE to determine if there

are improvements when modelling the univariate outputs together as a corre-

lated output.

This research provides a deeper understanding of NewDEPOMOD through

the development of novel sensitivity analysis and emulation tools for computa-

tionally efficient analyses of data on the impact of fish farms. Remarks on the

approaches used and their results are provided throughout this thesis, along

with potential future extensions to the research.
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Chapter 1

Introduction & Background

1.1 Background to the research

Aquaculture accounts for nearly half of the global fish supply and it is antici-

pated that this will continue to grow as global demand for seafood continues to

rise (Campbell & Pauly 2013). The United Nations Food and Agriculture Or-

ganisation (‘FAO’) have identified aquaculture as being one of the faster grow-

ing global food production industries. As a result, regulatory bodies across the

world are now having to further scrutinise the environmental impacts of these

farms. The industry in Scotland is regulated by the Scottish Environment Pro-

tection Agency (‘SEPA’) and current regulations rely on a mathematical model

(NewDEPOMOD), to assess the spatial extent of the environmental impact in

Scottish marine waters. Due to a lack of real data collected from the seabed,

the model has not been validated accordingly and the uncertainty of some of

the model inputs has not been considered in detail. In addition to the lack

of validation of the model, the model can be computationally expensive, with

single runs taking minutes. In addition, NewDEPOMOD contains a random

walk element, which has to be factored into any analysis. This can then be

problematic when considering multiple different scenarios to be tested, where

potentially thousands of runs are required.

With plans for future expansion of the industry in Scotland, SEPA require

more knowledge of this mathematical model to improve regulations and avoid

potentially irreparable damage to the seabed. This thesis aims to investigate

the properties of NewDEPOMOD and the influence on model predictions of

uncertainty in some of the default values for the inputs through sensitivity

analyses. This will provide the foundation for creating a statistical emulator

of NewDEPOMOD that will allow various scenarios to be tested at fish farm

sites, without the computational cost of running NewDEPOMOD.

1
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1.1.1 Aquaculture Background

1.1.1.1 The Aquaculture Industry

Aquaculture as an industry has grown significantly throughout the world since

1980 - with farmed salmon production in particular taking place on all conti-

nents excluding Africa (Asche & Bjorndal 1996). Salmon farming focuses on

three different species - Atlantic salmon, coho salmon and salmon trout - with

Atlantic salmon accounting for more than half of the total output of farmed

salmon. With Atlantic salmon being the main species produced in Scotland,

this will be the main focus of this project. The aquaculture industry as a whole

has grown significantly and in 1980, aquaculture accounted for only 6.5% of the

total world fish production, but by 2018, it accounted for 46%, according to

the FAO’s ‘The State of World Fisheries and Aquaculture 2020’ (this will be

abbreviated in future as ‘according to the FAO’). It has grown from a total pro-

duction of 4.7 million tonnes in 1980, to 82.1 million tonnes in 2020, according

to the FAO. It is anticipated that the reliance on aquaculture will continue to

grow as global demand for seafood continues to rise (Campbell & Pauly 2013).

As expected, with the significant increases in the production of farmed salmon,

this has been associated with reductions in the value of salmon, with the price

in 2008 less than one third of the price in the early 1980s (adjusted for infla-

tion) (Asche & Bjorndal 1996). The increased production has been a result of

improvements in technology, with respect to cage manufacturing, feed, health,

and research into the best methods for creating a farm in terms of location and

cage setup.

1.1.1.2 Atlantic Salmon Farming

As a result of the declining wild fisheries in the late 1960’s in rural Norway,

caged salmon farming began in these rural fishing communities with the help

of significant governmental support and investment in a bid to rebuild these

communities (Willoughby 1999). After the success of floating cage farms in

Norway, and due to license restrictions on farm size, many companies decided

to invest in creating farms overseas (Willoughby 1999). In the early 1970’s,

Scotland had taken over as the major producer of Atlantic salmon, before

Norway regained its place in 1974, and continues to be the major producer to

date according to the FAO. Chile began its rapid rise to become one of the

major producers of farmed Atlantic salmon in the late 1980’s. Since 1999, it

has been the second largest producer of farmed Atlantic salmon according to

the FAO. In Norway in 1980, farmed fish accounted for approximately 6.9%
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of total fish exports, and by 1990, this had increased to 40.5% due to the

various tax and financial incentives throughout the 1980’s (Willoughby 1999).

The FAO’s ‘2015 Fisheries and Aquaculture Statistics’ provide the most recent

breakdown of production by country and indicate that Norway continues to be

the major producer of farmed salmon, accounting for approximately 54.7% of

world Atlantic salmon production. The other two major producers of farmed

Atlantic salmon are Chile (25.55%) and Scotland (7.23%).

1.1.2 Structure and Layout of a Fish Farm

A major factor in the success of fish farming in Norway is the location of farms

in fjords with depths of up to 300m (Taranger et al. 2015). Many farms in

Norway that are situated in sheltered, coastal waters will produce between

3, 000 and 5, 000 tonnes of farmed salmon annually, and in dynamic coastal

sites the production can be 14, 000 tonnes in an 18 month period (Taranger

et al. 2015).

Currently in Scotland, fish farming has been debated and SEPA have re-

viewed the regulatory framework, enabling an expansion of the industry. Pre-

viously, there was a maximum annual biomass of 2, 500 tonnes for each farm

(total weight of fish stocked at a farm). However, SEPA have removed this in

the new regulatory framework to allow biomass limits to be matched to the

capacity at specific sites - allowing for larger farms to be approved in better

locations. Farms located in sustainable locations can now be approved with

larger biomass limits - which would have been rejected under the previous

framework.

Fish farms in Scotland all follow a similar layout, consisting of groups of

six or eight circular cages grouped together. An example of the typical layout

of a fish farm can be seen in Figure 1.1. Figure 1.1 illustrates a typical farm

in Scotland, which contains circular cages set up in pairs, and in this case they

are split up into two groups. In most instances, the cages will be set up in

pairs, as one group of potentially 8 cages. However, at certain farms, such as

the one in Figure 1.1, they are split up into two groups. In addition to this,

the set up at some of the smaller farms consists of rectangular cages that are

situated much closer together. The industry in Scotland is evolving, with the

new regulatory framework and guidelines for farms in place since 2019. SEPA

have also sanctioned licenses to one company for two farms in nearby locations

that are operated as one farm - similar to the farm in Figure 1.1, but with

a larger gap between the groups of cages. This combined farm was licensed

in coordination with SEPA in order to explore the effects of operating two
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Figure 1.1: Plot of the bathymetry and cage location at a farm in Scotland,
with the cages represented by the red circles, land represented by the green
grid cells and the light to dark blue representing the depth below the seabed
in metres.

nearby farms together, to increase Biomass, and how this would impact the

environment. The environmental impacts of fish farming are a crucial factor in

SEPA’s plans to ensure increased production in the industry can be done in a

safe manner.

1.1.3 Environmental Impacts of Fish Farming

The success of a fish farm is dependent upon good environmental conditions

(Willoughby 1999), which means that farm operators are as keen as SEPA

to monitor and protect the environment around their farm. Intensive fish

farming is often criticised for having a negative impact on the environment,

and following a 2017 consultation, two Scottish parliamentary committees, and

extensive work by SEPA, the new regulatory framework was developed and

came into place in 2019. The regulation of the industry has changed since the

beginning of the project, and the environmental impacts of fish farming are the

driving force for the work, so these are now described in more detail.

At fish farms, faeces and waste feed are released into the water column

below the farms and transported by the water current flow and turbulence.

Over time the particles will drift towards the seabed, and if the current speeds

fall below a critical deposition speed, they will be deposited on the seabed.
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After being deposited on the seabed, these particles may be resuspended from

the seabed if the current speed increases above a critical value, and released

back into the water column and transported by the current. So depending on

the current flow in the area surrounding the farm, the particles may be spread

out more evenly in faster current speeds from the initial transportation or from

resuspension from the seabed. At farms with slower current speeds, the initial

transportation of particles will not be as far spread and resuspension may not

occur which could result in more intense deposition in the area closer to the

farm. The bathymetry of the site also plays a part in the intensity of the

depositions. So, even with slower current speeds, if the waters are deeper the

intensity of the deposition in the area below the farm may not be as severe, the

particles will be in the water column longer and therefore transported further

in the initial settling stage.

Fish health is another key factor in the operation of a fish farm as it affects

the quality and speed of growth. In addition to this, farmed salmon are prone

to outbreaks of sea lice which can cause mortality or also restrict the infected

fish from being sold. To protect the fish from sealice there are two common

approaches used in Scotland: 1) chemical treatment (either a bath for the

fish or by incorporating medicine into the fish food) or 2) using a cleaner fish

(wrasse) which feed on the lice. Obviously, using chemicals and medicines mean

that the chemicals are released into the environment and can have a negative

impact, and so the use of cleaner fish has been increasing.

With increasing levels of aquaculture taking place, it is becoming more im-

portant to monitor the environment and try to minimise any negative effects.

Concern among governments and the public for the environment around farms

has increased following the rapid rise of aquaculture. The main cause for con-

cern has been that irreparable damage will be caused to the environment if

future expansion of the industry continues on its current path. In Scotland,

the new regulatory framework produced by SEPA aims to manage the different

environmental issues faced by the industry, but also provide scope to grow and

expand safely. Due to the difficulty faced with trying to collect real data over

such a large area, much of the work is completed using computer models that

replicate the operation of a fish farm and track the transportation of waste.

The model that is used predominantly by SEPA is NewDEPOMOD which will

be described in more detail.



CHAPTER 1. INTRODUCTION & BACKGROUND 6

1.1.4 Introduction to fish farm sites of interest

Throughout the thesis, a number of different sites will be considered for the

analyses. Fish farms throughout Scotland are located in areas with varying site

characteristics such as flow speed and direction and bathymetry (underwater

depth), as well as different operational aspects such as Biomass and cage prop-

erties. SEPA have identified low energy sites (sites with slower flow speeds) as

being less environmentally friendly, and are aiming to reduce the environmental

impact of the industry by locating farms in higher energy sites. In consultation

with SEPA, a number of low and high energy sites were identified for further

investigation. These sites would allow the impact of the site characteristics to

be considered as SEPA aim to increase production in Scotland safely.

Low energy sites refer to sites that have slower flow speeds and therefore

less dispersion of waste from cages. These sites are of interest as the predicted

impact is likely to be focused on the seabed below the farm, with less dispersion

as waste settles through the water column due to the slower flow speeds. The

slower flow speeds also restrict the amount of resuspension and the distance

resuspended particles are transported. This results in greater quantities of

waste consolidating in the area below the farm which could cause irreparable

damage to the seabed. The sites being considered within the thesis can be seen

in the map in Figure 1.2 The low energy sites that will be considered are called

Ardessie, Ardentinny and West Strome. Ardessie is a relatively small farm with

a licensed Biomass of 270 tonnes compared to the larger farms at Ardentinny,

which has a licensed Biomass of over 2, 000 tonnes, and West Strome, which

also has a licensed Biomass of 2, 500 tonnes.

With high energy sites being identified by SEPA as the preferred locations

for larger farms in the future, they will be considered throughout this project.

The high energy sites allow waste to be dispersed further and less intensely,

and the faster current speeds result in more resuspension events taking place.

This is beneficial as the result of more resuspension is that less waste material

consolidates on the seabed and reduces the risk of irreparable damage to the

seabed. The main high energy site that will be considered throughout the

project is Muck. It is a relatively large farm with a licensed Biomass of 2, 500

tonnes, with SEPA considering the potential to increase the Biomass. An

additional high energy site will be considered in some analyses, situated at

Djuba Wick, which has a licensed Biomass of almost 2, 500 tonnes.

Changes in modelling guidance from SEPA since the beginning of the project

have identified that using flat bathymetry when running NewDEPOMOD pro-

duces more realistic results. Previously, at the beginning of the project, variable
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Figure 1.2: Map showing the locations of the sites in Scotland.

bathymetry was used for running NewDEPOMOD - this will be highlighted

at the beginning of the analysis. In line with the changes in the modelling

guidance from SEPA, analysis was conducted using sites with flat bathymetry

following the introduction of the new guidance which suggested that the vari-

able bathymetry did not allow particles to be transported in a realistic manner

near the seabed.

1.2 Introduction to NewDEPOMOD

NewDEPOMOD is a computer particle tracking model which was developed

in order to provide better predictions of the impact of large marine cage fish

farms on the seabed. It is an updated version of DEPOMOD (Cromey et al.

2002), with most of the updates being related to the user experience, as well

as some additional capabilities related to the updated SEPA monitoring guid-

ance. DEPOMOD will be described in more detail to give a general idea of

the model. DEPOMOD was created in order to assist the regulatory bodies

in the monitoring and licensing of fish farms (Cromey et al. 2002). It is based

on the BenOss model (Cromey et al. 1998) that was used for long sea sewage
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outfalls. The aim of the BenOss model was to predict “the relative impacts of

preliminary, primary and secondary treated sewage effluent; the long-term av-

erage of organic carbon accumulating in the near vicinity of a domestic sewage

outfall; and the effects of changing carbon deposition on a benthic community”

(Cromey et al. 1998). Sewage particles that have been discharged are tracked

by the BenOss model as they settle through the water column to the seabed,

and then using hydrodynamic data for the area, predictions of the impact on

the seabed can be made based on the effects of advection, dispersion, deposi-

tion and resuspension (Cromey et al. 1998). With fish farms, the waste follows

a similar pattern to that of long sea sewage outfalls, with faeces and feed waste

settling through the water column and being subject to the hydrodynamics of

the site. By modifying the BenOss model to account for the waste from fish

farms, DEPOMOD was created to predict the solids accumulation in the area

surrounding a fish farm (Cromey et al. 2002). Cromey et al. (1998) conducted

a tracer study in order to validate the resuspension module. In addition to

this, benthic data from five sites were compared to the carbon predictions in

order to validate the benthic module (Cromey et al. 1998). Initial comparisons

of the model predictions to field data collected in a case study by Cromey et al.

(1998) showed general agreement. The model can be broken down into 4 main

modules (Cromey et al. 1998):

• Grid generation module

• Particle tracking module

• Resuspension module

• Benthic module

This led to the development of DEPOMOD by Cromey et al. (2002) which

had a similar structure to the BenOss model with the appropriate modifica-

tions. In terms of the use of DEPOMOD by the regulatory bodies, it requires

input data that are easy to collect or provide for a typical fish farm, such as

the flow of the water currents, the depth and shape of the seabed contours,

the layout of the cages for the fish farm and the fish stocking density (Kee-

ley et al. 2013). The flowchart in Figure 1.3, from the NewDEPOMOD user

guide (https://depomod.sams.ac.uk/docs/UserGuide.pdf) illustrates the pro-

cesses involved in the model. Firstly, DEPOMOD generates a regular grid

pattern for the surrounding area of the fish farm cage in order to make predic-

tions of the deposits on the seabed using the following inputs (Cromey et al.

2002):
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Figure 1.3: Flowchart illustrating the processes and modules within NewDE-
POMOD (https://depomod.sams.ac.uk/docs/UserGuide.pdf).

• Cage positions

• Bathymetry

• Sampling station positions

Where the predicted waste depositions of the fish farm are expected to be less

than 100m from the cage, a finer grid cell resolution is more appropriate (e.g.

10m) (Cromey et al. 2002). If the predicted waste depositions are expected to

be larger, then it is more appropriate to use a larger grid cell resolution such

as 25m (Cromey et al. 2002).

Following the generation of the grid, the particle tracking module explains

how faecal and food waste particles will travel from the cage to the seabed
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(Cromey et al. 2002). This model requires information as to the feed input of

a farm, as well as the expected faecal and food waste (Cromey et al. 2002).

The model then tracks particles as they travel through the water column. In

the water column, particles are subject to movement representing the settling

velocity, movement by the current, and a random walk in three dimensions,

representing turbulence (Cromey et al. 2002). The water column is often di-

vided into 3 layers, with each layer often having different current amplitude

and direction. In order to obtain the current values, the current speed and

direction is often measured over a suitable time period at a specific location

near the farm, at 3 different depths. Regarding the random walk aspect, in the

document relating to the BenOss model, the following random walk model is

used to calculate the size of the random walk step used to represent turbulence

(Cromey et al. 2002):

rwStep = rwdir
√

(2kδt).

The elements of the model are described below (Cromey et al. 2002):

• rwStep - size of the step

• rwdir - direction of the step - this is given by a random number generator,

picking either 1 or −1.

• k - dispersion coefficients (kx, ky, kz).

• δt - the time the particle is in the turbulent field.

In DEPOMOD, the x and y values of the dispersion coefficient represent the

East-West and North-South directions, and almost always, these are considered

to be the same value. In the model, there is the option to have different values

of dispersion coefficients for particles that are in the initial settling phase from

the cage, and particles that have been resuspended, however, these are often

kept the same. In addition, the z values of the dispersion coefficient represent

the turbulence in the vertical direction, which is considered to be reduced in

comparison to the x and y values. The time step within DEPOMOD can be

altered, but for the purposes of this thesis, it remained at the default value

used by SEPA, of 60s.

The aim of the resuspension module is to estimate the amount of particles

that will be accumulating in the grid area (g/m2/year) (Cromey et al. 1998).

The resuspension model is separated into erosion, transport, deposition and

consolidation components (Cromey et al. 1998). Firstly, an erosion event takes

place when the shear stress near the seabed exceeds the critical shear stress for

erosion (Cromey et al. 2002). After some development of the initial formula
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by Cromey et al. (1998) for the rate of erosion, the formula that is used in the

most recent version of DEPOMOD is:

Me = M (τbot − τcrit) if τbot > τcrit (1.1)

Me = 0 if τbot ≤ τcrit, (1.2)

where the elements of the model are:

• Me - Mass of particles eroded

• M - Rate of erosion

• τbot - Shear stress at the seabed

• τcrit - Critical Shear Stress for erosion

The mass of particles eroded is proportionate to the amount that the shear

stress is above the critical value (Cromey et al. 1998). Both the rate of erosion

(M) and critical shear stress for erosion (τcrit) are physical properties that can

be changed in DEPOMOD. On the other hand, if the magnitude of the shear

stress falls below a critical threshold for deposition, then a deposition event

will take place. In the case where a particle is resuspended, the particle will

be lifted to a certain height above the seabed, transported at the surrounding

current speed until it is deposited on the seabed, and after a given time period

on the seabed consolidation of bed particles will occur (Cromey et al. 2002).

A Benthic response model is then used to predict the impacts on the

seabed. DEPOMOD provides a prediction of the total solids flux (measured

in g/m2/year) being deposited on the seabed. When taking samples from the

seabed, the effect on the seabed is measured as Infaunal Trophic Index (ITI) and

the total abundance based on particular levels of solids accumulation (Cromey

et al. 2002). In order to compare the predictions from DEPOMOD to samples

taken from the seabed, a conversion between solids flux to ITI was required.

This conversion was based on real data collected from the seabed and compared

to model predictions of solids flux in an experiment which was carried out by

SEPA. SEPA have identified this conversion as a possible area of uncertainty

when comparing seabed samples to model predictions. However, the main fo-

cus of this research is understanding more about the model and the predictions

rather than looking into the conversion between model predictions of solids flux

to ITI.

Further research into modelling the waste transportation at fish farms has

allowed DEPOMOD to be developed over the years to create NewDEPOMOD
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which is more user friendly. As previously mentioned, NewDEPOMOD has

the same key aspects as DEPOMOD which is described above. This thesis will

aim to investigate NewDEPOMOD in detail through a sensitivity analysis and

develop approaches to approximate the NewDEPOMOD output through the

use of statistical modelling.

1.2.1 Input & Output Data for NewDEPOMOD

For a given site, there are multiple input files that are required to complete a

NewDEPOMOD run. Firstly, there is a bathymetry input file that contains

information on the location of the domain, and the depth of the seabed (or

the height of land) within the domain. Following the introduction of the new

regulatory framework, the updated guidelines indicated that modelling should

be completed with flat bathymetry rather than variable as it produces more

accurate results. Within the model, particles are deposited on the seabed as

soon as they come into contact with the seabed. Using a variable bathymetry

meant that particles being transported horizontally near the seabed would be

deposited as soon as they came into contact with a shallower section of the

seabed. This is not in line with what would be expected in reality, where the

flow of the water over the shallow area would likely mean that waste particles

are not deposited at a shallower section. SEPA therefore altered the guidelines

as flat bathymetry was able to represent the transportation of particles near

the seabed more effectively. As the guidelines came into place after the start of

this project, some of the initial work is completed using a variable bathymetry

input file. There are a number of different input files within NewDEPOMOD,

• Bathymetry - this contains the domain location data and the corre-

sponding bathymetry data within the domain.

• Cages - this contains the cage location and dimension data.

• Flowmetry - this contains the flow data for the site, with the location

and depths at which it was collected over a specific time period.

• Inputs - this contains data relating to the Biomass, feeding rates and

the composition properties of the waste.

• Models - this contains the model run properties such as the duration

of the run, as well as the values of the inputs based on the physical

properties. This file contains more information, which will be described

below.
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When a run is created, a model file is produced which contains four input files

that can be altered. The first of these is a configuration properties file that

includes basic information about the run such as the feeding rate for the fish.

The second is the model properties file that contains information relating to

the time period for each run. The third is the physical properties input file

that contains all of the values for the physical properties that can be changed

within the model - there are over 200 elements that can be changed. Lastly,

the fourth model file is the runtime properties file which links all of the input

files, described above, to the run. All of these input files are required in order

to complete a run for a site.

Once a run has been completed, a results file is compiled which contains

information on the amount of waste particles located within each grid cell -

known as Solids Flux which is measured in grams per metre squared per year,

(‘g/m2/y’). An example of an output map produced by NewDEPOMOD is

given in Figure 1.4. Figure 1.4 shows the output map that can be created

Figure 1.4: Example of an output map produced by NewDEPOMOD - land
represented by green grid cells, and the cages are represented by the red points.

using the information in the results file. It shows that the deposition is highly

variable, with an intense impact directly below the cages and much lower impact

elsewhere. A number of other summaries that capture the impact of the farm

can be calculated. Within this project, the main summary statistics that will
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be of interest are the Total Area Impacted, 99th Percentile of Solids Flux, and

Mass Balance.

The Total Area Impacted is of interest as it determines the overall size

of the impact, in some instances it is appropriate to consider the Total Area

Impacted for Solids Flux greater than a specific value.

The 99th Percentile of Solids Flux is a measure of the intensity of the

impact, which is of importance in determining areas that may be subject to

irreparable damage if this value is especially large. This is calculated as the

99th Percentile across the grid cells within the domain, where the grid cells

without deposition are not included in the calculation. It allows for a measure

of the intensity to be considered, which is not affected by potential outliers in

the Solids Flux output for each grid cell.

Finally, Mass Balance is the proportion of waste particles left in the domain

in comparison to the total waste particles that left the cages. It should be noted

that if waste particles are transported outside of the domain within the model

run timeframe, they are no longer included in a model run. The domain size

for modelling is set at the beginning, and SEPA advised that this is set to

a maximum of 4km2, as NewDEPOMOD does not perform as well for larger

domains. It is calculated as follows:

Mass Balance =
Total Mass in the domain

Total Mass Released from the Cages
. (1.3)

From Equation 1.3, we can see that this value will lie in the interval [0, 1], as the

mass left in the domain cannot be larger than the total mass that was released

from the cages. This value will be affected by all of the input factors being

tested, as they determine how long particles remain in the water column and

therefore how far they can be transported, which may result in large values

of mass leaving the domain. In addition to these scalar summaries, it is of

importance to consider the shape of the impact, which will be done using the

information from the results file, which can be used to produce a map of the

waste deposition within the domain.

1.3 Research aims

Process-based modelling is an effective tool that is used to assess environmental

challenges where collecting data is not practical or cost-effective, as well as for

situations where models are being used for simulating the future. As with any

method for assessing environmental challenges, there are advantages and dis-
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advantages. While process-based modelling is more practical and cost-effective

for some challenges, there are some drawbacks - they can be computationally

intensive and they do not always account for uncertainty. NewDEPOMOD is

an example of a complex process-based model and will be the focus of this

research, with the main aim of the research being:

• To investigate and quantify uncertainty within NewDEPOMOD inputs

to assess their impact on NewDEPOMOD predictions. In addition, the

aim is to develop a statistical emulator of NewDEPOMOD to overcome

the computational challenge of running NewDEPOMOD when testing

different model setups.

Both univariate and multivariate outputs can be produced by NewDEPOMOD,

so this research will focus on both of these outputs as an application for com-

pleting the following statistical objectives:

• Investigate sensitivity analyses methods for univariate model outputs.

• Expand on the traditional sensitivity analysis techniques for univariate

model outputs to develop novel methods for considering multivariate

model outputs.

• Develop a novel statistical emulation framework for the environmental

impacts of fish farms to approximate the univariate outputs without the

computational cost.

• Expand the emulation framework to multivariate output emulation meth-

ods for correlated outputs.

Uncertainty quantification and sensitivity analyses are common approaches

for assessing uncertainty in process-based models to quantify uncertainty in

model outputs and attribute them to variations in the model inputs. With

advancements in modelling techniques and software, it is now possible to ex-

tend traditional methods for univariate outputs to models with multivariate

outputs. Therefore sensitivity analyses of process-based models with multi-

variate outputs is an area of interest. This research applies the methods to

NewDEPOMOD, however the novel approach can be applied to any model

with multivariate output.

Computational time is a common problem in process-based modelling, and

statistical emulation is a novel approach to modelling the environmental im-

pacts of aquaculture which can approximate the impact much more efficiently.

The univariate outputs can be considered using common emulation approaches,
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with additional challenges presenting when extending univariate output for cor-

related multivariate outputs. The univariate output emulation approaches are

extended by considering the univariate outputs as a correlated multivariate

output to investigate the possibility of information gain by introducing a cor-

relation structure between the outputs.

1.4 Sensitivity Analysis Background

Many models in environmental science, like NewDEPOMOD, aim to replicate

systems within our environment. In the creation of these models, assumptions

are made, and parameter values estimated due to the complexity of the sys-

tems or the lack of resources to complete physical experiments (Saltelli et al.

2000). Sensitivity analyses are often used to investigate uncertainties within

models and increase confidence in the model predictions by improving the un-

derstanding of how the model output reacts to changes in the inputs (Saltelli

et al. 2000). A brief introduction to sensitivity analyses will be given here, with

further details provided in Chapters 2 and 3.

Saltelli et al. (2004) defined a sensitivity analysis as, “The study of how un-

certainty in the output of a model (numerical or otherwise) can be apportioned

to different sources of uncertainty in the model input.” Sensitivity analyses

are a useful exercise to confirm the consistency of the model outputs and the

models robustness to uncertain model inputs (Pianosi et al. 2016). Often when

completing a sensitivity analysis, an uncertainty analysis is also executed at

the same time (Saltelli et al. 2008). An uncertainty analysis is a closely re-

lated topic which focuses more on quantifying uncertainty in the model output

(Saltelli et al. 2008). A sensitivity analysis can provide the following informa-

tion in modelling (Saltelli et al. 2000, 2008):

• determine if a model is similar to the system that is being studied,

• pinpoint critical areas in the input space,

• identify areas to focus more research,

• reduce complexity of models by identifying areas that can be simplified,

• establish possible errors in the model.

There are multiple ways in which the above areas can be investigated.
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1.4.1 Sensitivity Analysis Workflow

In each case, a sensitivity analysis will follow a distinct pattern. The sensitiv-

ity analysis will rely on the model being executed multiple times for different

combinations of sample values for the input factors, with the following steps

being executed (Saltelli et al. 2000):

1. Determine what questions relating to the model should be answered and

identify the input factors that should be involved in the analysis.

2. Establish suitable ranges of variation for each input factor and identify

the relevant probability density functions.

3. Identify an appropriate design to generate the required input matrix.

4. Complete model evaluations to create the required outputs for analysis.

5. Analyse the effect of each input factor on the output variable.

Most sensitivity analyses will follow these basic steps, with different options

being available depending on the aims of the analysis. Within the first step,

the decisions that have to be made relate to the input factors, and whether

all factors, or only a proportion of these are required to answer the relevant

questions about the model (Saltelli et al. 2000). Moreover, the output vari-

able(s) will be determined at this point. Following this, the next step requires

decisions to be made about the possible ranges for each input factor within

the analysis. Choices regarding the ranges can be made based on the litera-

ture relating to the input factors (where available), or expert knowledge in the

area. When suitable ranges have been produced, the sampling method then

has to be considered. The main choice here revolves around whether the input

factors should be varied one-at-a-time, or all at once. Using the input matrix

created by the relevant sampling method, the model is evaluated to create the

outputs that can then be analysed to identify which input factors are causing

any variations in the output.

1.4.2 Types of Sensitivity Analysis

In order to achieve the different goals of a sensitivity analysis, different methods

have to be used. There are 3 main purposes/settings that are involved in

determining the goal of the sensitivity analysis (Pianosi et al. 2016):

• Ranking - This is the process of ranking the input factors by their in-

fluence on the variability of the output.
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• Screening - This aims to identify the input factors that have negligible

contribution to the variability of the output.

• Mapping - The goal of mapping is to identify areas of the input space

that produce extreme output values.

The choice of the appropriate sensitivity analysis method is guided by the

purpose. There are other purposes that have been proposed, but the main

ones are provided above and are the most common (Pianosi et al. 2016).

1.4.2.1 Local Sensitivity Analysis

The local approach is the first known application of sensitivity analysis, where

the model output is assessed based on small perturbations to the model inputs.

It is feasible when the input factors have a relatively small variation around

their midpoint, with the relationship between input and output often assumed

to be linear (Saltelli et al. 2000). By keeping the range of variation for the

input factors equal for all input factors (±5%), it allows the effects of the

input factors to be calculated. In essence, local sensitivity analysis considers

varying one input factor, while the others remain constant, and inspecting the

effect on the model output (Gan et al. 2014). The main shortfalls of the local

approach are that they do not cope well with input factors with different levels

of uncertainty, and when interactions exist between input factors (Saltelli et al.

2000). In these more complex situations, it is appropriate to use the global

sensitivity analysis approach.

1.4.2.2 Global Sensitivity Analysis

Saltelli et al. (2000) described a sensitivity analysis as being global when (i)

all the input factors are varied at the same time and (ii) the sensitivity of each

input factor is measured over its total range, for bounded input factors. Global

methods overcome the limitations of local methods by varying input factors

simultaneously (Gan et al. 2014). One drawback of global methods in the past

has been the computational cost of implementing it, but using a Design of Ex-

periments approach, sampling techniques such as Latin Hypercube Sampling

(McKay et al. 1979), Monte Carlo (Metropolis & Ulam 1949) and Orthogonal

Array (Owen 1992) can be implemented to improve computational cost. Us-

ing appropriate sampling methods, computational costs can be reduced and

the ability of global methods to deal with interactions between input factors

make them the better option for completing sensitivity analyses of more com-

plex models (Pianosi et al. 2016). With an appropriately chosen design, an
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understanding of the influence of the input factors can be determined using

appropriate sensitivity measures.

1.5 Emulation Background

Complex environmental systems are regularly imitated by computer models

within scientific research. The complexity of these models (simulators) results

in large computation times, which can cause difficulties when a large number

of model runs are required for validation and calibration purposes. This has

led to the development of statistical modelling techniques that allow highly

efficient meta-models (emulators) to be built allowing approximations of the

simulator to be made without the computational intensity (Conti & O’Hagan

2010). Developing a statistical emulator is therefore a fundamental step when

looking to develop a greater understanding of a simulator (Overstall & Woods

2016). A brief introduction to the idea of statistical emulation is provided

below, with further details given in Chapters 4 and 5.

The basic idea of an emulator is to create a statistical model to imitate a

simulator, using a set of costly training runs generated by the simulator. Em-

ulators are therefore an indirect approximation of the complex environmental

systems. Emulators can be used in many ways and are useful when trying to

gain a deeper understanding of a simulator model and how the inputs affect

the output. If a suitable emulator is created, it could then be used instead

of the computationally expensive simulator. Given a vector of p input vari-

ables, x = (x1, . . . , xp)
T in the p-dimensional input space X , let the simulator

be described by the black-box function, f : X → Y ⊂ Rk, where Y is in the

k-dimensional output space. Essentially, at the given input combination, x,

Y = f(x) = (f1(x), . . . , fk(x)).

In this instance, Y is the k × 1 output vector for x. For a given input com-

bination x0 which has not been evaluated by the simulator, an emulator is a

prediction equation for f(·) that provides a substitute for f(x0). An emulator

is therefore an approximation of f(·), where

Ŷ = f̂(x0) = (f̂1(x0), . . . , f̂k(x0)).

Different statistical methods can be used to determine f̂(·), such as linear re-

gression, generalized linear models, regression splines, and Gaussian processes

(Grow & Hilton 2018), with further details to follow. Linear regression is of-
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ten used for emulation purposes due to the simplicity and the obvious small

computational cost of running these models (Kleijnen 1979, Madu 1990, Jalal

et al. 2013, Grow 2016). With advances in computational power, simulators

have increased in complexity, and simultaneously, emulation techniques have

changed, with Gaussian process emulation becoming more popular. Gaussian

processes are a more flexible approach and are able to capture non-linear pat-

terns (Kennedy et al. 2006, Conti et al. 2009, Rajabi & Ketabchi 2017, Noè

et al. 2019). Simulators do not always produce a singular, scalar output and

different techniques have had to be developed to deal with multivariate outputs

from simulators (Conti & O’Hagan 2010, Overstall & Woods 2016, Alvarez &

Lawrence 2009, 2011). Multivariate emulators can be produced in a Bayesian

framework and also using a functional approach, which is often preferred for

simulators that produce a time series output (Sacks et al. 1989, Bayarri et al.

2005, 2007, Liu et al. 2009). Hence, there are a number of options available

when creating an emulator, with different properties of the simulator determin-

ing the method that would be appropriate.

1.5.1 Linear Regression Emulation

Linear regression models can be used for emulation, and are often referred to

as regression metamodels (Grow & Hilton 2018). Consider the output space

Y ⊂ R, then a typical first-order polynomial can be used to approximate the

simulation model:

y = β0 +

p∑
i=1

βixi + ε. (1.4)

Here, β0 is the intercept and βi represent the estimated linear effects of each

input, xi, on the average value of y. This model however, does not account

for any interactions between the inputs and only allows for linear relationships

between the inputs and the output. Equation 1.4 can be modified to include

interactions between inputs and curvature in the relationships between inputs

and the output.

y = β0 +

p∑
i=1

βixi +

p−1∑
i=1

p∑
j=i+1

βijxixj +

p∑
i=1

βiix
2
i + ε. (1.5)

In Equation 1.5, interactions between inputs xi and xj are included, with the

estimated effect given by βij. To represent curvature in the relationship between

xi and the output, βii estimates the quadratic effect. Higher order polynomials

do not tend to be used as they can be difficult to interpret and can have
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problems with robustness. Ordinary Least Squares (‘OLS’) is often used to

estimate the parameters of the regression metamodels, meaning the standard

assumptions for the error terms, ε, must be satisfied:

1. The errors should be normally distributed.

2. The errors should have a mean value approximately equal to zero.

3. The variance of the errors should be homogenous.

4. The errors are independent.

The above assumptions can be checked in the standard way by inspecting plots

of the residuals. As expected, all of the above assumptions must be met before

any conclusions can be made.

As a whole, Equations 1.4 & 1.5 demonstrate that the regression metamod-

els can be reasonably flexible in relation to the choices of parameters, and it is

therefore appropriate to fit initial models based on previous knowledge of the

inputs and the expected behaviours in the real life scenario, and then assess

their performance. The fit of the regression metamodel is obviously crucial,

and therefore how well its predictions compare to the observed simulations is a

key indicator of how well a metamodel performs (Grow 2016). A formal lack-

of-fit (‘LOF’) test can be used in this instance to assess the performance of the

regression metamodel (Grow 2016, Grow & Hilton 2018). The LOF partitions

the total error (εE) into the pure error (εPE) and the error due to the lack of

fit of the regression model (εLOF ):

εE = εPE + εLOF .

The LOF tests the null hypothesis that εLOF = 0, meaning that εE = εPE. The

alternative hypothesis that εLOF 6= 0, meaning that there is an error due to

the lack of fit of the model. In order to calculate εPE and εLOF , first consider

a = 1, . . . , p different combinations of model input values, where b = 1, . . . , qa

simulations have been conducted for each a. Let Q =
∑p

a=1 qa be the total

number of simulations that are completed, so εPE can be calculated as follows:

εPE =

p∑
a=1

qa∑
b=1

(yab − ȳa)2.

Here, ȳa refers to the average output observed across the qa simulations for

the combination of model inputs, a. This calculation is suitable for Stochastic
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models, as a deterministic model would result in εPE = 0. Next, εLOF can be

calculated as follows:

εLOF =

p∑
a=1

qa(ȳa − ŷa)2.

Hence, εLOF considers the difference between ȳa and the prediction made by

the regression metamodel, ŷa. Using the above calculations, the test statistic

for LOF is as follows (Grow & Hilton 2018):

FLOF =
εLOF/(p− r)
εPE/(Q− p)

.

In this instance, r refers to the number of parameters within the regression

metamodel. FLOF has an F-distribution with (p − r) degrees of freedom for

εLOF , and (Q − p) degrees of freedom for εPE. If FLOF is considered to be

significant when comparing to the F-distribution, F ((p− r), (Q− p)), then

the null hypothesis that there is a lack of fit cannot be rejected (Grow 2016).

If this is the case, the metamodel would therefore have to be adjusted to try

and improve its performance.

The standard linear regression approach can be extended to deal with more

complex relationships between the inputs and the simulator output. Gener-

alized linear models (‘GLMs’) would be a simple extension to standard linear

regression, where the assumption that the errors are normally distributed is

not required (McCullagh & Nelder 1989). An extension to GLMs is General-

ized Additive Models (‘GAMs’), which are a more flexible approach where the

relationship between the inputs and the output can be described by a smooth

function. Given our output y and inputs xi, as seen in Equation 1.4, an additive

model can be written as:

g(E(y)) = β0 +
n∑
i=1

fi(xi), (1.6)

where fi represent smooth functions of the output against the input (Wood

2017). In order for a GAM to be appropriate, plots of the residuals should

be checked, as with a standard linear regression model. A GAM can be built

based on a training set of simulator runs, which can then allow predictions to be

made for a test set of data and the related errors for each prediction. Within

emulation research, the most common approach is using Gaussian processes

(Conti et al. 2009, Bastos & O’Hagan 2009, Rajabi & Ketabchi 2017, Parker

et al. 2019).
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1.5.2 Gaussian Process Emulation

When an LOF test identifies that a regression metamodel is not appropriate, it

may be that a more flexible, non-parametric modelling method may be required

for an emulator. Gaussian processes are widely used in computer experiments

and emulation due to their flexible nature. They are used in many different

branches of statistics for emulating simulators when investigating complex sim-

ulators (Conti et al. 2009, Conti & O’Hagan 2010, Rajabi & Ketabchi 2017,

Parker et al. 2019). Over the years, different variations of Gaussian processes

have been developed, such as sparse Gaussian processes (Titsias 2009), K-

nearest neighbour local Gaussian process approach (Gramacy & Apley 2015),

low-rank Gaussian processes (Wood 2017), sparse convolved Gaussian processes

for multi-output regression (Alvarez & Lawrence 2009, 2011).

Gaussian processes are used as emulators due to their ability to model

smooth relationships between simulator inputs and outputs, while also being

able to make predictions for new inputs and the associated uncertainty (Grow

& Hilton 2018). Gaussian process emulators rely on the training data to model

the simulator, so the more design points the smaller the uncertainty (O’Hagan

2010). Rasmussen & Williams (2006) defined a Gaussian process as:

‘... a collection of random variables, any finite number of which

have a joint Gaussian distribution’,

and it is defined by its mean function and covariance function (Rasmussen &

Williams 2006). In comparison to a GAM (Equation 1.6), the smooth function

f , essentially has prior information - the mean and covariance functions. These

functions can be defined as follows, for a process, f(x):

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

A Gaussian process can then be written as:

f(x) ∼ GP(m(x), k(x,x′)),

indicating that the function f is distributed as a Gaussian process with a mean

function m, and a covariance function k (Rasmussen & Williams 2006). As

Gaussian processes are defined as collections of random variables, it there-

fore has a consistency requirement (also known as a marginalization prop-

erty, Rasmussen & Williams (2006)). Essentially, for (a, b) ∼ N (µ,Σ), then

a ∼ N (µ1,Σ1), where Σ1 is the relevant submatrix of Σ. Rasmussen & Williams
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(2006) introduced a simple example of a Gaussian process which is summarised

below:

A Bayesian Linear Regression model given by f(x) = φ(x)>w

where φ(x) is a set of basis functions, and w is a vector of weights

with prior w ∼ N (0,Σp), can be described as a Gaussian process

(Rasmussen & Williams 2006). The mean and covariance functions

can be described as follows:

m(x) = E[f(x)] = φ(x)>E[w] = 0 (1.7)

k(x,x′) = E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>Σpφ(x′).

(1.8)

From Equation 1.7 and Equation 1.8, it can be concluded that f(x)

and f(x’) are jointly Gaussian with mean equal to zero and co-

variance given by φ(x)>Σpφ(x′). The mean function of a Gaussian

process, Equation 1.7, is often set either to zero, or takes a paramet-

ric form (Grow & Hilton 2018). The covariance function, Equation

1.8, plays a pivotal role in the production of a Gaussian process

predictor and will be considered in more detail later.

Gaussian processes are an efficient and accurate tool for emulating a complex

simulator, and will therefore be considered for emulating NewDEPOMOD out-

put in this thesis. More detail and background information will be provided

later in the thesis prior to fitting the Gaussian process regression models.

1.5.3 Multivariate Emulation

As emulation is expanded to account for multivariate response variables, the

amount of data to be considered in the building of the emulator becomes a

challenge (Rougier 2008). One approach for emulating multiple outputs is to

consider building an independent univariate emulator for each of the outputs.

The drawback to this approach is that it does not account for the fact that

there may be relationships between the output variables and therefore informa-

tion may be lost by modelling them independently (Fricker et al. 2013). Two

different classes of emulator were described by Fricker et al. (2013):

• Field output - This refers to output ‘that simulates a quantity over a

continuous field, often space or time.’

• Multiple-type output - This refers to ‘simulators that simulate differ-

ent types of quantities jointly.’
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For field output, each output refers to the value of a quantity at a specific

location within the field. By considering the output index as a new input

for the simulator, Kennedy & O’Hagan (2001) emulated field output using

a univariate emulator with a stationary parametric covariance function. This

method was replicated by Conti & O’Hagan (2010) and McFarland et al. (2008).

Rougier (2008) developed a method that did not require the output index to

be considered as a new input, by combining a parametric regression model

with a correlation structure on the output index, to emulate the field output

directly. The index for multi-type outputs is just a label and the outputs have

different units and therefore a distance measure between the outputs cannot

be calculated. As a result, the outputs are often emulated independently,

or a separable covariance structure is used to emulate these jointly (Fricker

et al. 2013). Conti & O’Hagan (2010) used single output Gaussian processes in

conjunction with dimension reduction techniques to consider multiple outputs.

In contrast, correlated outputs can also be considered in a Gaussian process

framework (Alvarez & Lawrence 2009, 2011, Roberts et al. 2013). Correlated

outputs will be considered in further detail in Chapter 5, when considering

multiple outputs from NewDEPOMOD.

1.6 Structure of the thesis

The main aim of the thesis is to develop a deeper understanding of NewDEPO-

MOD through sensitivity analyses and use the information to develop emulators

that allow approximations of NewDEPOMOD predictions to be made without

the computational cost.

Chapter 2 will focus on presenting a sensitivity analysis for each of the

univariate outputs at both a high energy site and a low energy site to compare

and contrast. Design of experiments techniques are considered in order to

account for correlations within the input structure, before using sensitivity

analysis approaches to rank the inputs.

This will then be developed to complete a sensitivity analysis for a multi-

variate output in Chapter 3 to assess the impact of altering the inputs on the

output maps. Part of this chapter considers how the NewDEPOMOD output

maps are represented. A shape analysis, where the output map is summarised

to pick out the main shape of the deposition on the seabed is one of the ap-

proaches considered. An alternative approach then considers the whole output

map as a functional output - represented by a smooth surface. A further ap-

proach considered the output from individual grid cells.
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These sensitivity analyses will provide the necessary information to develop

a univariate and multivariate framework for statistical emulation of NewDE-

POMOD predictions. Chapter 4 will initially consider the emulation of the

univariate outputs, using familiar techniques such as Gaussian processes.

The next stage of the statistical emulation process will consider the multi-

variate outputs in Chapter 5. The multivariate outputs that are to be consid-

ered are the functional representation of the output maps, which is developed

using a functional principal components analysis, as well as considering the

univariate outputs together as a correlated multivariate output. Multi-output

Gaussian processes are considered in this Chapter, allowing for independent

and correlated outputs within the models.

Chapter 6 will then summarise the research presented in the thesis and

discuss the achievements, limitations and scope for future work.



Chapter 2

Sensitivity Analysis for Scalar

Outputs

2.1 Introduction

As previously mentioned in Chapter 1, NewDEPOMOD is a complex process-

based model with a number of inputs. Running NewDEPOMOD produces an

output map specifying the amount of waste deposition across the domain of

interest. The output data contains estimations of the waste deposition (Solids

Flux) within each grid cell of the domain - with an example output map given in

Figure 2.1. The output maps produced can be summarised to provide relevant

Figure 2.1: Example of a NewDEPOMOD output map showing the Solids Flux
across the domain, with land specified by the green grid cells, and the cages
given by the red points.

scalar outputs that are of interest to SEPA. Three summaries of the output

maps that will be considered in this thesis are:

27
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• Total Area Impacted - this is a measure of the size of the impact across

the domain.

• 99th Percentile of Solids Flux - this provides a measure of the intensity

of the deposition on the seabed.

• Mass Balance - this is the proportion of waste material that remains in

the domain at the completion of the run.

Total Area Impacted and 99th Percentile of Solids Flux are important sum-

maries of the output maps as these provide SEPA with an idea of the potential

size and scale of the impact on the seabed. These are essential in the pro-

cess of determining limits on licenses for new farms or the expansion of current

farms. Mass Balance is a further important summary to be considered. Within

NewDEPOMOD, when the current at a site transports waste material outwith

the boundary of the domain being considered, the material is no longer a part

of the simulation. Mass Balance is then a measure of how much of the original

waste material remains in the domain. As Mass Balance is a proportion, it is

therefore restricted to the interval [0, 1].

There are a number of different inputs involved in NewDEPOMOD, which

allows for different analyses to be considered. The inputs can be classified as

two groups - 1) inputs based on the physical properties and 2) operational

inputs. The inputs based on the physical properties relate to the physical pro-

cess within the model such as the transportation, deposition and resuspension

of waste material. The operational inputs refer to the farm properties that

are controlled by the operator of the farm. Three different analyses are to be

considered in this Chapter:

• Sensitivity analysis of the inputs based on the physical properties,

• Sensitivity analysis of the operational inputs,

• Combined sensitivity analysis of the physical properties and operational

inputs.

For the sensitivity analysis of the inputs based on the physical properties, this

will focus on a number of the inputs where their default values are considered

to be uncertain. Multiple studies for some of the inputs, such as the Critical

Shear Stress for Erosion, have discovered a variety of potential values which

can be dependent on the location where the studies took place. These studies

and inputs are discussed further in this Chapter. The aim of this Chapter will

be to identify which of the inputs have the biggest impact on the scalar outputs
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when they are altered. These inputs will be referred to as ‘uncertain inputs’

throughout the thesis. The sensitivity analysis of the operational inputs is

considered as a way to assess the impact of increasing the capacity of a farm

and how it may impact the scalar outputs. Finally, both groups of inputs will

be considered together to assess the impact of altering both inputs at the same

time.

The first two analyses of the input groups separately will be considered

for two sites in detail to investigate the influence on the scalar outputs of

changing the inputs. The sites of interest will feature a low energy site, where

the current speeds are low, and a high energy site, where the current speeds

are high. The sites being considered are Ardessie and Muck, with only two

considered for the initial analysis. Finally, for the combined analysis of the two

groups of inputs, a total of 4 sites will be considered. In particular, two low

energy sites and two high energy sites are considered. Ardessie is removed as

a site of interest as it has lower production, and replaced with two sites with

larger production to allow for better comparisons between the large production

high energy sites that SEPA identified as being the most effective for reducing

the environmental impacts. This was done to investigate and compare how

the environmental impacts are affected by changing the input values for the

different type of sites.

2.2 Sensitivity Analysis - Inputs Based on the

Physical Properties

A sensitivity analysis of the inputs based on the physical properties has been

developed to assess the impact of their parameter uncertainty on NewDEPO-

MOD predictions. This sensitivity analysis will follow the workflow described

by (Saltelli et al. 2000). Due to the complex nature of NewDEPOMOD, there

exists interactions between some of the inputs, which will be considered when

preparing and completing the sensitivity analysis. The sensitivity analysis has

been carried out for two different sites, with different characteristics such as

current speed and depth, in order to determine if the sensitivity ranking of the

inputs is different.
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2.2.1 Aims of the analysis and the inputs to be investi-

gated

In collaboration with SEPA, a subset of the inputs based on the physical proper-

ties were identified for the purpose of conducting an initial sensitivity analysis.

These inputs were considered to be of importance based on SEPA’s previous

modelling experience and the uncertainty surrounding the default parameter

values for these inputs. The inputs that were chosen can be seen below:

• Critical Shear Stress - Threshold value for which an erosion event

takes place when the shear stress on the seabed exceeds this value.

• Rate of Erosion - This input determines how much material is eroded

when an erosion event takes place.

• Release Height - When an erosion event takes place and particles are

resuspended into the water column, this represents the height at which

the particle is lifted.

• Settling Velocity of Faeces - The Settling Velocity determine how long

a faecal particle will stay in the water column.

• Settling Velocity of Resuspended Material - This Settling Velocity

is typically smaller as the particles tend to be smaller in size.

• Dispersion Coefficients of Material from the cages - The Disper-

sion Coefficients are used to calculate the size of the step for the random

walk element of DEPOMOD which represents turbulence. These coeffi-

cients represent turbulence in 3-dimensions for material settling from the

cages.

• Dispersion Coefficients of Resuspended Material - These coeffi-

cients represent turbulence in 3-dimensions for material that has been

resuspended from the seabed.

The aim of this sensitivity analysis is to identify which of the above inputs with

uncertainty in their parameter values had the biggest influence on the scalar

outputs. This therefore related to a sensitivity analysis ranking problem.

2.2.2 Establishing suitable ranges for inputs

In order to look at the sensitivity of some of the inputs of NewDEPOMOD,

a suitable range of values has to be considered for them. In choosing some of
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these values, they have to be considered on a site by site basis. For instance,

when considering a suitable range of values for Critical Shear Stress for Erosion,

(τcrit), this is dependent on the flow speed for that site. We will only be able

to gain useful insights if we consider plausible values for τcrit that are based

on the flow speeds observed at that site. For example, choosing τcrit based

on a flow speed that is greater than the maximum flow speed for that site,

will not provide any more information than if we choose τcrit based on this

maximum flow speed, as no erosion would take place for either of these values.

Similarly for the lower bound of τcrit, this should be based on the minimum flow

speed observed at that site. By choosing a suitable range of τcrit based on the

minimum and maximum flow speeds at each site, we will be able to see fully the

effect of this input on the predictions of solids flux made by NewDEPOMOD.

When an erosion event takes place, the amount of material that is eroded

is dependent on the exceedance of the critical shear stress, as well as the rate

of erosion (M), seen in Equation 1.2. As a result, the level of erosion could be

decreased in two ways:

1. Reducing the amount of material moved in each erosion rate - i.e. reduc-

ing M .

2. Reducing the number of erosion events that take place - i.e. increasing

τcrit.

Looking at the range of values to consider for M , we base this on the current

default value of 0.031kg/m2/s. Mitchener & Torfs (1996) found that M ranges

from 2 × 10−4 to 6 × 10−4, depending on the type of sediment on the seabed.

The range of values found by Mitchener & Torfs (1996) were two orders of

magnitude lower than the current default value used, and so this should be

considered when choosing a suitable range of values to look at for M . For

the upper bound, no literature found the rate of erosion rate to be any larger

than the default value, and increase by one order of magnitude higher than the

default value was considered a good starting point.

The next input to be considered is the release height of the material that

has been eroded. When looking at this, there are two different implications,

depending on the value that is used. First of all, it is linked to how long the

particle is in the water column, as the particles have a specific value for the

settling velocity, and the higher the particle is released, the longer it will be in

the water column and therefore the further that it could travel. Additionally,

resuspended particles will settle quicker if they have been eroded and the seabed

shallows in the direction they are being transported. As a result, if the particles
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have been released at a great enough height, they may be able to avoid certain

shallower areas of the seabed and therefore travel a greater difference. Above

the seabed there will be a cloud of particles, some that are settling, and some

that have been resuspended. The default value that has been used for the

release height is 0.12m, which is considered to be the median of this cloud of

particles. There is a lack of literature available relating to this value indicating

that it is an area that has not been studied in detail. As a result, discussions

with SEPA determined that it would be best to consider the minimum value as

0m, where the particles are not lifted from the seabed. As an initial maximum,

a height of 1m was determined to be a good starting point.

The settling velocity of faeces is one input where there are varying opinions

on appropriate values. Across a wide range of experiments completed by a

number of researchers, different results have been seen. When initially creat-

ing the NewDEPOMOD model, Cromey et al. (2002) found that the settling

velocity for both faecal waste, and resuspended material, was variable, but

concluded that both of these could be modelled by a Gaussian distribution. In

terms of the faecal waste, Cromey et al. (2002) centred the Gaussian distribu-

tion around a settling velocity of 0.032m/s. Chen et al. (2003) found that the

settling velocity of faecal waste ranged from 0.037− 0.092m/s, with the mean

between 0.051 − 0.064m/s. On the other hand, an experiment carried out by

Bannister et al. (2016) found that more than half of the faecal waste, for salmon

of different sizes, had settling velocities between 0.05 − 0.10m/s. However, in

this case, they found that the distribution of these settling velocities had a

right, positive skew, and concluded that modelling the settling velocities of the

faecal waste as a Gaussian distribution was not appropriate. Bannister et al.

(2016) found that less than 10% of the faecal waste had settling velocities less

than 0.01m/s. Due to the varying results seen in different papers, it may be

appropriate in this case to consider a range of values for the mean of a Gaus-

sian distribution. For the settling velocity of the resuspended material, the

default value for the centre of the Gaussian distribution is 0.0054m/s. There

also appears to be a lack of literature relating to this value, and so the range of

values was determined by reducing and increasing the values by approximately

an order of magnitude. For this initial sensitivity analysis, only values for the

centres of the Gaussian distributions were considered and their variances and

distributions can be considered in the future.

Moving on to the random walk aspect of the model which represents tur-

bulence, the default values that are used for both sets of dispersion coefficients

are k = (0.1, 0.1, 0.001) (Gillibrand & Turrell 1997). This indicates that turbu-
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lence has less of an effect vertically than it does horizontally. There appears to

be no reason why there should be any difference between the sets of dispersion

coefficients, and so the same ranges will be used. When completing model sim-

ulations, Bannister et al. (2016) used k = (0.018, 0.018, 0.00058) to represent

turbulence. Cromey et al. (2002) conducted a sensitivity analysis, and came

to the conclusion that the model showed little sensitivity to the vertical steps

of the random walk, as the steps were small in comparison to the settling ve-

locities of the particles. Regarding the horizontal steps, Cromey et al. (2002)

noted that the size of the steps in a given time period could exceed the distance

a particle will be transported by the current. In terms of the bounds for these

coefficients, it would appear appropriate to consider an upper bound of 0.5m/s

for the horizontal coefficients (Cromey et al. 2002). Using this upper bound, the

formula for the magnitude of the random walk step gives
√

2× 0.5× 60 = 7.7m

for a time period of 60s, which is larger than the distance that would be covered

by a particle based on a current speed of 0.1m/s for 60s (Cromey et al. 2002).

0.1m/s is a current speed that is normally considered reasonably high, and in

some sites the current speed rarely reaches this level, and so 0.5m/s is most

likely an unrealistic value for horizontal dispersion coefficients, but it is likely

to provide useful information with regards to the sensitivity analysis. Following

discussion with SEPA, a maximum value of 1m/s would provide useful infor-

mation. In terms of the vertical dispersion coefficient, the upper bound will

increase the default value by an order of magnitude to 0.01m/s. For the lower

bounds, the effect of no random walk may provide useful information, and so

having the coefficients close to zero will confirm how sensitive the model is to

the random walk component.

Using all of the information above, the final parameter ranges can be seen

below in Table 2.1.

For simplicity, a uniform distribution is considered for all the inputs in the

analysis. There is no evidence that would suggest any alternative distributions

should be considered, and so uniform distributions are considered throughout

the thesis.

2.2.3 Sampling design

A key element of any sensitivity analysis is the sampling method that will

be used. Depending on the aims of the sensitivity analysis and the computer

power available, certain sampling methods are preferred to others.
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Inputs Default Value Lower
Bound

Upper
Bound

Critical Shear Stress
(τcrit)

0.02 Based on Min.
flow at site

Based on Max
flow at site

Rate of Erosion (M) 0.031 2× 10−4 0.310

Release Height 0.12 0.00 1.00

Settling Velocity (fae-
ces)

0.032 0.005 0.100

Settling Velocity (sedi-
ment)

0.0054 0.0005 0.05

Material from cages -
Dispersion coefficients
(kx, ky, kz)

(0.1, 0.1, 0.001) (0, 0, 0) (1.0, 1.0, 0.01)

Resuspended Material
- Dispersion coefficients
(kx, ky, kz)

(0.1, 0.1, 0.001) (0, 0, 0) (1.0, 1.0, 0.01)

Table 2.1: Sensitivity Analysis - inputs based on the physical properties of
interest and their ranges

2.2.3.1 Latin Hypercube Sampling

Latin Hypercube Sampling (‘LHS’) is a stratification method described by

McKay et al. (1979), which can be used to create random samples from a

sample space Ψ. LHS is an extension of the Latin Square method which dates

back to 1624 according to Preece (1983’), allowing for samples to be taken from

multiple dimensions.

The main aim of LHS is to capture as much of the sample space Ψ as

possible (McKay et al. 1979). In order to extend the idea of the Latin Square,

each parameter, βββi where i = 1, . . . , K, in Ψ is given a distribution, with the

parameters βββi being independent. Using the Cumulative Distribution Function

(‘CDF’) of each βββi, N strata of equal probability, 1/N are created, where N

will be the number of sets of samples required. The strata are converted on to

the parameter scale for βββi, to create individual stratum, from which a random

sample will be taken. As a result, a set of N samples have been created for each

βββi. The set of N values for βββ1 and βββ2 are combined randomly, and without

replacement, to produce a set of ordered pairs [β1j, β2j], where j = 1, . . . , N .

The set of ordered pairs, [β1j, β2j], are then combined at random with the set

of values for βββ3 to produce a set of ordered triples, [β1j, β2j, β3j]. This process

is then repeated for the K parameters to produce an N ×K Latin Hypercube.
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Example 1. Consider the case where we have 3 parameters of interest, βββ1,βββ2,βββ3,

and we are looking to create 100 sets of samples. Define the distributions of

βββ1 and βββ2 to be U(0, 1), and the distribution of βββ3 to be N (0, 1). Using the

CDF, 100 strata with equal probability of 1/100 are created and can be seen

in Figures 2.2 and 2.3. In Figures 2.2 and 2.3, 100 strata of equal probability

Figure 2.2: Plot showing a stratum
that would be used for sampling of
βββ1 and βββ2.

Figure 2.3: Plot showing a stratum
that would be used for sampling of
βββ3.

were created and then converted on to the parameter scale for βββ1,βββ2,βββ3, and

1 individual stratum can be seen in both plots. Within each stratum on the

parameter scale, a sample is taken and these were randomly combined to pro-

duce 100 ordered triples [β1j, β2j, β3j], for j = 1, . . . , 100. A property of LHS

is that the parameters are required to be independent, which is a limitation of

the method for sampling, however, it is one that can be overcome.

2.2.3.2 Correlated Latin Hypercube Sampling

In some cases, the parameters that are being sampled may not be independent

and so the standard LHS would not be appropriate. Iman & Conover (1982)

introduced a restricted pairing procedure in order to account for correlations

between variables. Where correlations exist between parameters, the restricted

pairing procedure creates a LHS with a rank correlation structure close to the

rank correlation structure specified (Dandekar et al. 2001). The specified corre-

lation structure is often based on previous literature relating to the parameters,

or the knowledge and experience of the modeller (McKay et al. 1979).

The initial process of completing the restricted pairing procedure that was

introduced by Iman & Conover (1982) is as follows:

1. Define a target correlation matrix, C∗ (provided by the user).

2. Complete a Cholesky Decomposition of C∗ to obtain a lower triangular
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matrix P such that,

C∗ = PPT. (2.1)

3. Let L be a LHS with k parameters and n samples, where each row con-

tains a sample of each of the k parameters. Multiplying L by PT, from

Equation 2.1 gives a matrix L∗, which should have a correlation matrix

M such that,

M ≈ C∗. (2.2)

Iman & Conover (1982) noted concern in that the transformation matrix P was

only dependent on C∗. This meant that in certain applications, the correlation

matrix from Equation 2.2, M, calculated for the transformation LPT, may

not be close enough to C∗. Iman & Conover (1982) then proceeded to use a

variance reduction technique that would allow the sample correlation matrix,

M, to be much closer to C∗. The alterations of the above method are described

below (Iman & Conover 1982):

• Define the sample correlation of the initial LHS as T, and use the Cholesky

Decomposition to find Q such that,

T = QQT. (2.3)

• Using Equation 2.3, a matrix S is then found such that,

C∗ = STST ⇐⇒ PPT = SQQTST (2.4)

• The solutions for Equation 2.4 are then:

SQ = P ⇐⇒ S = PQ−1

• The improved restricted pairing procedure can then be used to calculate

the correlated LHS using the following equation,

L∗B = LST (2.5)

From Equation 2.5, L∗B should then have a sample correlation matrix,

MB, which is approximately equal to C∗.

This restricted pairing procedure will therefore allow the LHS to be conducted

for dependent variables. The following example will demonstrate how this

works in practice, continuing on from Example 1.
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Example 2. In order to demonstrate the correlated LHS, the same structure as

in Example 1 will be used, with the same βββ1,βββ2,βββ3. The following correlation

matrix will be used for the restricted pairing procedure:

C∗ =

 1.0 0.9 0.0

0.9 1.0 0.0

0.0 0.0 1.0

 . (2.6)

From Equation 2.6, a strong correlation of 0.9 between βββ1 and βββ2 has been used

to allow the restricted pairing procedure to be illustrated in the 3-dimensional

plot of the LHS in Figure 2.4. The strong correlation between βββ1 and βββ2 from

Figure 2.4: Plot of the Correlated Latin Hypercube Samples for βββ1,βββ2,βββ3.

Equation 2.6 can be seen in Figure 2.4. The actual correlation matrix that is

calculated for this correlated LHS is:

MB =

 1.0000 0.8804 0.0201

0.8804 1.0000 0.0128

0.0201 0.0128 1.0000

 . (2.7)

This correlation matrix from Equation 2.7 is close to the pre-defined correlation

matrix in Equation 2.6, and if the number of samples was increased from 100,

they would be even closer.

2.2.3.3 Correlated LHS for Sensitivity Analysis of NewDEPOMOD

- inputs based on the physical properties

For the construction of the sampling design for NewDEPOMOD, correlations

between the inputs have to be considered in order to make sure that the

NewDEPOMOD runs are not producing implausible results. To do so, a target



CHAPTER 2. SENSITIVITY ANALYSIS FOR SCALAR OUTPUTS 38

correlation matrix, C∗ had to be constructed. This was done with the guid-

ance of SEPA. The order of the inputs within the target correlation matrix and

throughout this section is as follows: 1) Critical Shear Stress for Erosion, 2)

Rate of Erosion, 3) Release Height of Resuspended Material, 4) Settling Veloc-

ity of Faeces, 5) Settling Velocity of Sediment, 6-8) Dispersion Coefficient of

Material from the Cages (X, Y, Z directions), 9-11) Dispersion Coefficient for

Resuspended Material (X, Y, Z directions).

C∗ =



1.00 −0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 −0.90 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 −0.90 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.99 0.00 0.99 0.99 0.00

0.00 0.00 0.00 0.00 0.00 0.99 1.00 0.00 0.99 0.99 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.99

0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.00 1.00 0.99 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.00 0.99 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.00



. (2.8)

Firstly, the negative correlation between ‘Critical Shear Stress for Erosion’ and

‘Rate of Erosion’ was defined in order to keep a reasonable balance in the equa-

tion for calculating the amount of material eroded (Equation 1.2). ‘Release

Height’ and ‘Settling Velocity of Sediment’ also have a negative correlation.

These both relate to material that has been resuspended from the seabed, and

the negative correlation is to represent the fact that the particles can travel

a similar distance by reducing one input value and increasing the other. The

choice of the values of −0.9 for these correlations was made with the assistance

of SEPA to represent a strong relationship between the inputs, but with a small

level of flexibility. The other pre-defined correlations are between the Disper-

sion coefficients. First of all, there is a strong, positive correlation between

each ‘Dispersion Coefficient of Material from the cages’ and each ‘Dispersion

coefficient for Resuspended Material’. These are used for the initial Correlated

LHS as, SEPA advised that there is no reason for different Dispersion Coef-

ficients to be specified for the different materials based on their experience.

Secondly, there is a strong, positive correlation between the X and Y Disper-

sion Coefficients as SEPA advised that there is no reason why material would

be affected more in either of the horizontal axes by turbulence. 0.99 was chosen

to represent the correlation between the Dispersion Coefficients as these values

are always considered as being the same when modelling. The choices of the

values for C∗ were made in collaboration with SEPA and therefore there is
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uncertainty relating to the values, but these could be altered in future analyses

if more information is available. The uncertainty of the values for C∗ could

impact the results if they were changed significantly, however, with the infor-

mation available and to save computational time, these are not investigated

further.

This target correlation matrix could then be used to add a correlation struc-

ture to the LHS. For this analysis, 100 different input sets were created using

a standard LHS approach, before using the restricted pairing procedure to

implement the correlation structure to the data.

2.2.4 Setup of NewDEPOMOD runs - inputs based on

the physical properties

For each set of sample values created by the Correlated LHS, 100 replicate

runs were completed to account for the random walk element within NewDE-

POMOD. As a result, 10,000 runs were completed for each site. Due to the

complex nature of NewDEPOMOD, these runs can take some time to com-

plete, depending on the characteristics of the site. The average time for each

run between the two sites in this analysis was approximately 60s. This meant

that the 10,000 runs would take approximately one week to complete.

For each of the completed runs at a given site, calculations of the scalar

outputs could be made. The outputs being considered provide different mea-

sures of the impact of a farm on the environment. The Total Area Impacted

provides an idea of the overall size of the impact, and the 99th Percentile of

Solids Flux then provides a measurement of the intensity of the impact.

2.2.5 Methods for analysing the effect of the inputs on

the scalar outputs of NewDEPOMOD

The main aims of the sensitivity analysis are to assess the influence of the

uncertain inputs on the different model outputs. By ranking the inputs, it will

provide useful information to SEPA by identifying elements of the model that

will need to be considered cautiously when using NewDEPOMOD for modelling

purposes. Moreover, by comparing two sites with different physical properties,

any similarities or differences in the effects of the inputs can be identified.

Saltelli et al. (2008) outlined that global sensitivity analysis approaches

tend to consider quantitative importance indices as a measure of comparison

of the uncertain inputs.
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2.2.5.1 Random Forest Models

Pianosi et al. (2016) mentioned that a way to rank inputs, using non-linear re-

gression methods, is using Random Forests. Breiman (2001) defined a random

forest as follows:

“A random forest is a classifier consisting of a collection of tree-

structured classifiers {h(x,Θk), k = 1, . . .} where the {Θk} are in-

dependent identically distributed random vectors and each tree casts

a unit vote for the most popular class at input x.”

The basic idea of random forests was to combine the ideas of Classification and

Regression Trees (‘CART’) (Breiman et al. 1984) and bootstrapping aggregation

(‘bagging’) (Breiman 1996). Random forests can be used for either classification

data or for regression purposes. In the classification case, they are produced

by creating multiple classification trees using bootstrap samples of the data

(Breiman 2001, Liaw & Wiener 2002). They are a nonparametric classification

method, where multiple classification and regression trees are produced using

random subsets of the data. However, the random forests being considered in

this work relate to the regression framework, which will be described in more

detail.

In order to explain the methodology of random forests for a regression

setting, consider the p-dimensional input x = (x1, . . . , xp), and the response

Y , such that Y = f(x) + ε, with E [ε|x] = 0. Consider a learning set, L =

{(x1, Y1), . . . , (xn, Yn)}, consisting of n independent observations of the vector

(x, Y ). Bagging is an ensemble learning method that generates B bootstrap

samples from L. For each bootstrap sample, Z∗b, the model is fitted, providing

predictions, f̂∗b(·), for b = 1, . . . , B (Hastie et al. 2009). For a given input

set, x, predictions can be made, f̂∗b(x) for each sample, Z∗b, and the bagging

estimate is defined as (Hastie et al. 2009),

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x).

The bagging estimate, f̂bag(x), is different from f̂(x), but is considered an ef-

fective tool for improving unstable estimates, and works well for high-variance,

low-bias procedures such as trees (Hastie et al. 2009). CART (Breiman et al.

1984), are a technique that estimates f with respect to the mean square risk

function. The starting point for their construction is to specify splitting rules

of the form (xj < t), by recursive partitioning to obtain a maximal tree (An-

toniadis et al. 2021). Using the learning sample, L, greedy selection is used to
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select the best split which maximizes a local decreasing of heterogeneity which

is measured by the difference between the variance of Y in the parent node

and the output in the childs node (Antoniadis et al. 2021). In order to avoid

overfitting the learning data using the maximal trees, insignificant nodes are

cut off in order to choose the right size of tree - this process is called pruning

(Breiman et al. 1984). Pruning is completed through the minimization of a

penalized mean square error which features a penalty term that is linear in

the number of leaves. One considerable drawback to CART are stability issues

which occur through small changes in the learning set, L, which can have a

large affect on the structure of the tree and any prediction values.

In order to overcome the stability issues surrounding CART, Breiman (2001)

introduced the idea of random forests. Random trees are built using ntree sam-

ples, L1, . . . , Lntree , from the learning set, L, and aggregating this set, repre-

senting the bagging element described previously (Antoniadis et al. 2021). The

next step is to incorporate the modified CART methods (Breiman 2001). In

order to speed up computations and without reducing the performance of the

model, two changes are made to the CART approach (Breiman 2001):

1. A fixed number of randomly chosen inputs are considered at each node

to identify the best split.

2. All of the trees in the forest are maximal trees that are not pruned.

Using this approach, the developed learning rule is the aggregation of all of

the estimators resulting from those trees, which are given as f̂1, . . . , f̂ntree . The

Out-Of-Bag (‘OOB’) sample is important in the definition of the variable im-

portance. For a given tree, k, the OOB sample is given as the set of observations

that are excluded from the bootstrap sample used in the construction of the

tree k, and is denoted by L̄k. The OOB sample, L̄k, can be used to calculate

the error of tree k by using L̄k as a test sample. Doing this for each tree results

in the OOB error for a random forest being defined as the average value of all

the trees of the forest.

Using the trees, importance can be quantified and calculations of error rates

can be made for the inputs in the classification and regression cases (Breiman

2001). Breiman (2001) proposed the permutation variable importance (‘PVI’)

in the random forest model, which is the most used measure in the literature

(Antoniadis et al. 2021). The PVI for a given input is defined as the mean

over the trees of the forest, of the decreasing of the OOB error of a tree,

when the values of the input are randomly permuted in the OOB samples

(Breiman 2001). The mean square error (‘MSE’) is used to measure the OOB
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error of a tree for regression random forests. For each tree, k = 1, . . . , ntree,

the prediction error of f̂k is evaluated among it’s OOB sample, L̄k, with the

empirical estimator:

R̂(f̂k, L̄k) =
1

|L̄k|
∑

i:(Xi,Yi)∈L̄k

(
Yi − f̂k(Xi)

)2

.

Before moving on to calculate the PVI, let L̄jk denote the permuted OOB

sample obtained from L̄k, after random permutation of the values of the jth

input. Then the PVI for a given input, Xj, can be expressed as:

Î(Xj) =
1

ntree

ntree∑
k=1

[
R̂(f̂k, L̄

j
k)− R̂(f̂k, L̄k)

]
. (2.9)

This measure of importance can be defined as the mean increase in the pre-

diction error, which is estimated with the help of the OOB error, over all the

trees (Antoniadis et al. 2021). Due to the use of bootstrap sampling, the im-

portance values for the parameters will be different when random forests are

run multiple times, but the ranking of the inputs does not tend to vary unless

importance values are very similar Liaw & Wiener (2002). As it is the ranking

of the inputs that is required for this data, there is no need to run the random

forest multiple times, and importance values that are similar would indicate

that they have a similar ranking.

Harper et al. (2011) used random forests to develop a global sensitivity

analysis method that would be appropriate for ecological models. Harper et al.

(2011) used the concept of random forests in the Global Sensitivity Analysis

as a measure of ranking the parameters of a model by their influence on model

predictions, and recommended its use to assist with prioritization of research

efforts using the ranking of parameters by their importance. The benefits of

using random forests for ranking are:

• their ability to deal with non-linear relationships,

• their ability to incorporate interactions between inputs,

• and the importance values produced can be interpreted easily.

As a result of the above advantages, random forests are an appropriate tool

here for assessing the influence of the uncertain inputs. The relative importance

values will allow for the inputs to be ranked effectively.
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2.2.6 Sensitivity analysis results for the inputs based on

the physical properties

Ardessie and Muck were chosen as the two sites for this analysis as they have

contrasting properties, with Ardessie being a low energy site and Muck being

a high energy site. This will allow comparisons to be made between the sites

to determine if the site characteristics impact the influence of the inputs. Each

of the scalar outputs will be considered along with the inputs based on the

physical properties from Table 2.1.

2.2.6.1 Total Area Impacted

In order to calculate this value, the total number of grid cells in the domain

with a Solids Flux value greater than 0 were determined. Each grid cell in

the domain is 25m × 25m and has a total area of 625m2, so the Total Area

impacted can be calculated by multiplying the number of grid cells with Solids

Flux greater than 0 by the area of one grid cell. As the domain size is so big,

the values calculated were then converted to km2.

First, the Ardessie site will be considered. The Correlated LHS was created

for Ardessie, with the Critical Shear Stress for Erosion values calculated using

the minimum and maximum flow speeds at the site. For each set of sample val-

ues generated by the Correlated LHS, 100 replicate runs were completed. The

output data could then be explored through a histogram. Figure 2.5 shows

Figure 2.5: Histogram of the Total Area Impacted for Ardessie (km2).

some skew in the data with a large proportion of the data having values be-

tween 0.05 and 0.1km2. As there are a number of inputs being considered, as

well as potential interactions between them, a random forest model will be fit-
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ted first, before considering scatterplots of the Total Area Impacted against the

higher ranking inputs. In this instance, 2000 trees were grown in order to fit the

random forest model. The model explained approximately 99% of the variation

in the data, indicating a very good model fit, but potentially some overfitting.

In this instance, the aim of the analysis is to determine the inputs that have

the biggest influence, therefore the overfitting isn’t considered in detail. One

potential reason for the large variation explained is the small influence of the

random walk element within the NewDEPOMOD when considering the Total

Area Impacted as the output. The importance values for the inputs were calcu-

lated using the formula in Equation 2.9, with values given in Table 2.2. Table

Inputs Importance
Critical Shear Stress for Erosion 75.99%
Rate of Erosion 50.81%
Release Height 33.24%
Settling Velocity of Faeces 127.24%
Settling Velocity of Sediment 32.88%
Cage Dispersion Coefficient (X) 38.22%
Cage Dispersion Coefficient (Y) 37.96%
Cage Dispersion Coefficient (Z) 36.26%
Resuspended Material Dispersion Coefficient (X) 38.49%
Resuspended Material Dispersion Coefficient (Y) 38.03%
Resuspended Material Dispersion Coefficient (Z) 30.91%

Table 2.2: Table of Importance values from the random forest model of Total
Area Impacted at Ardessie.

2.2 identifies the Settling Velocity of Faeces as being the most influential input

in relation to the Total Area Impacted. The Critical Shear Stress for Erosion

has the second highest Importance value, with Rate of Erosion having a slightly

higher value than the remaining inputs. Scatterplots of the top two ranking

inputs will now be considered. It should be noted that the importance values

in Table 2.2 relate to the mean increase in the prediction error for the OOB

samples. Therefore percentages greater than 100% are possible and represent

an input with a great deal of influence on the output. Figure 2.7 appears to

show a clear relationship between the Total Area Impacted and the Settling

Velocity of Faeces. The Total Area Impacted remains constant (with a slight

increase around −0.08m/s), until the Settling Velocity of Faeces increases to

−0.04m/s, when it begins to increase. This would appear to make sense, as

the closer the Settling Velocity is to zero, the longer the faeces remains in the

water column to be transported by the currents. Figure 2.6 illustrates a weak,

negative trend between Critical Shear Stress for Erosion and Total Area Im-
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Figure 2.6: Plot of Total Area Im-
pacted against the Critical Shear
Stress for Erosion - Ardessie.

Figure 2.7: Plot of Total Area Im-
pacted against the Settling Velocity
of Faeces - Ardessie.

pacted. Again this appears reasonable, as the larger the Critical Shear Stress,

the less resuspension that takes place, and therefore the less waste will travel.

Next, the high energy site, Muck, will be considered. As with Ardessie,

a correlated LHS was created to create a total of 100 input sets, at which

NewDEPOMOD was run 100 times to account for the random walk. Again,

an initial plot of the Total Area Impacted date will be considered in the form

of a histogram. Figure 2.8 shows that the values for Total Area Impacted

Figure 2.8: Histogram of the Total Area Impacted for Muck (km2).

are larger than those seen at Ardessie. The majority of the data appears

to be close to 0.5km2, with a number of large values seen, going up to over

2.5km2. The difference in values is likely down to Muck being a larger farm,

and the faster current speeds producing more dispersion of the waste. Again,

a random forest model with 2000 trees is fitted to the data, to allow the inputs

to be ranked. The fitted model was again able to explain approximately 99%
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of the variation in the data, and the importance values are given in Table 2.3.

Table 2.3 identifies Settling Velocity of Faeces as having the highest importance

Inputs Importance
Critical Shear Stress for Erosion 61.60%
Rate of Erosion 49.99%
Release Height 40.70%
Settling Velocity of Faeces 73.54%
Settling Velocity of Sediment 49.66%
Cage Dispersion Coefficient (X) 34.20%
Cage Dispersion Coefficient (Y) 31.73%
Cage Dispersion Coefficient (Z) 32.79%
Resuspended Material Dispersion Coefficient (X) 30.96%
Resuspended Material Dispersion Coefficient (Y) 28.99%
Resuspended Material Dispersion Coefficient (Z) 36.62%

Table 2.3: Table of Importance values from the random forest model of Total
Area Impacted at Muck.

value, but the difference between this and Critical Shear Stress for Erosion is

much smaller in comparison to the importance values in Table 2.2. The Rate

of Erosion and Settling Velocity of Sediment both have similar importance

values, and are slightly higher than the importance values for the remaining

inputs. Scatterplots of the Settling Velocity of Faeces and Critical Shear stress

are given below. One thing to note from Figure 2.9 is that the Total Area

Figure 2.9: Plot of Total Area Im-
pacted against the Critical Shear
Stress for Erosion - Muck.

Figure 2.10: Plot of Total Area Im-
pacted against the Settling Velocity
of Faeces - Muck.

Impacted appears to be fairly consistent across the range of Critical Shear

Stress, with a small positive trend, except for a number of large values seen

for large values of Critical Shear Stress. One possible explanation for these

large values could be that there is an interaction effect with another input that

is causing these values. Next, looking at Figure 2.10, there appears to be a
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similar pattern to Figure 2.9, where the values are consistent across the x-axis,

with the exception of some large values for Total Area Impacted occurring at

the Settling Velocity of Faeces close to zero. This could highlight that the two

inputs are having an effect on the Total Area Impacted.

Looking at both Tables 2.2 and 2.3, there are similarities in the ranking

of the inputs with the three largest importance values. The differences relate

to the actual importance values. At Ardessie, Settling Velocity of Faeces had

an importance value that is almost double that of Critical Shear Stress for

Erosion, demonstrating that at the site with slower current speeds (Ardessie),

Settling Velocity of Faeces plays a more dominant role. At the faster flowing

site (Muck), Settling Velocity of Faeces is still the highest ranked input, but

its importance value is closer to the importance value for the second highest

ranked inputs - Critical Shear Stress for Erosion. This may indicate that the

Settling Velocity of Faeces plays a bigger role in the Total Area Impacted in

the low energy sites as it affects the amount of time particles spend in the

water column, and therefore how far the particles are transported. In the

faster flowing sites, it would indicate that it does not have as big an effect as

the current speeds are faster and the effect of resuspension is stronger at these

sites. The scatterplots for the two highest ranked inputs will be compared to

identify any similarities/differences in the patterns. The first thing to notice

Figure 2.11: Plot of Total Area Im-
pacted against the Settling Velocity
of Faeces - Ardessie.

Figure 2.12: Plot of Total Area Im-
pacted against the Settling Velocity
of Faeces - Muck.

across all of the plots is the scale of the y-axis (Total Area Impacted) for both

sites. The Total Area Impacted is greater for Muck which is potentially a result

of the fact that it is a larger farm. Despite this, the main focus is the shape

of the pattern for the two highest ranked inputs. First, the shape for both

sites when looking at Settling Velocity of Faeces is similar, with the exception

of some low values for Total Area Impacted seen at Settling Velocities close
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Figure 2.13: Plot of Total Area Im-
pacted against the Critical Shear
Stress for Erosion - Ardessie.

Figure 2.14: Plot of Total Area Im-
pacted against the Critical Shear
Stress for Erosion - Muck.

to zero. Excluding one set of points in Figure 2.11 when Settling Velocity of

Faeces is−0.08m/s, the variance of the data remains fairly even. In Figure 2.12,

the variance is consistent until Settling Velocity of Faeces is −0.04m/s, when

it increases. Both Figures 2.13 and 2.14 appear to show opposing patterns. At

Ardessie, Critical Shear Stress for Erosion has a slight negative trend and fairly

consistent variance. Whereas for Muck, there is potentially a small positive

trend, but an increase of variance is seen as Critical Shear Stress increases.

2.2.6.2 99th Percentile of Solids Flux

As the methods used for the 99th Percentile of Solids Flux are similar to the

methods for Total Area Impacted, a comparison between the results for the

two sites will be sufficient. The analysis will feature the importance values

from the random forest models, as well as scatterplots for the highest ranking

inputs against the 99th Percentile of Solids Flux. Firstly, the initial histograms

of the output data are considered. The data for Ardessie appears to be slightly

more skewed than the data for Muck, which appears to be bimodal, with a

dip seen at 8kg/m2/year. For the comparison of the ranking, a random forest

model was fitted for each site (with both explaining approximately 99% of the

variation in the data) and the importance values for the inputs can be seen in

Table 2.4. For the 99th Percentile, the top two inputs are different for the two

sites, and it is also different to the ranking for Total Area Impacted in Tables

2.2 and 2.3. Firstly, looking at Ardessie, Settling Velocity of Faeces is again

the inputs with the biggest influence on the 99th Percentile of Solids Flux, with

its importance value being much bigger than the second highest ranked inputs.

The order of Critical Shear Stress for Erosion and Rate of Erosion has changed

this time, but with only a small difference between their importance values.
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Figure 2.15: Histogram of the
99th Percentile for Solids Flux at
Ardessie (kg/m2/year).

Figure 2.16: Histogram of the 99th
Percentile for Solids Flux at Muck
(kg/m2/year).

Importance
Inputs Ardessie Muck
Critical Shear Stress for Erosion 51.78% 90.11%
Rate of Erosion 55.04% 50.14%
Release Height 34.59% 46.28%
Settling Velocity of Faeces 125.66% 85.41%
Settling Velocity of Sediment 42.09% 63.71%
Cage Dispersion Coefficient (X) 46.43% 29.44%
Cage Dispersion Coefficient (Y) 42.10% 34.63%
Cage Dispersion Coefficient (Z) 39.87% 33.18%
Resuspended Material Dispersion Coefficient (X) 39.63% 28.44%
Resuspended Material Dispersion Coefficient (Y) 42.91% 29.56%
Resuspended Material Dispersion Coefficient (Z) 36.25% 38.80%

Table 2.4: Table of Importance values from the random forest Model of 99th
Percentile at each site.

The remaining inputs have importance values that are reasonably close to the

importance values for Rate of Erosion and Critical Shear Stress for Erosion.

Now considering the ranking of the inputs for Muck, the highest ranked

inputs is Critical Shear Stress for Erosion. Settling Velocity of Faeces is second,

but with a small difference between it and Critical Shear Stress for Erosion.

Now comparing the importance values for the two sites, it is clear that

Settling Velocity of Faeces plays a big role at both sites, but it is much more

influential at the site with slower current speeds again. The Critical Shear

Stress for Erosion is much more influential at the faster flowing site, which is

to be expected as the faster current speeds will erode more particles from the

seabed and transport them further. Again, scatterplots of the inputs with the

highest importance values can be compared for the two sites. Due to the

differences in the biomass for each farm, the scale of the y-axis is much larger
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Figure 2.17: Plot of 99th Percentile
for Solids Flux against the Settling
Velocity of Faeces - Ardessie.

Figure 2.18: Plot of 99th Percentile
for Solids Flux against the Settling
Velocity of Faeces - Muck.

Figure 2.19: Plot of 99th Percentile
for Solids Flux against the Critical
Shear Stress for Erosion - Ardessie.

Figure 2.20: Plot of 99th Percentile
for Solids Flux against the Critical
Shear Stress for Erosion - Muck.

for the site at Muck, but again, the focus is on the patterns in the plots. First,

considering the Settling Velocity of Faeces in Figures 2.17 and 2.18, there is an

overall positive trend for Ardessie, and a possible decreasing trend for Muck,

with a decrease in the variation as the Settling Velocity of Faeces increases.

At Muck, the closer the Settling Velocity of Faeces gets to zero, the more time

particles spend in the water column, and are therefore dispersed more across

the domain, resulting in lower values for the 99th Percentile of Solids Flux.

However, at Ardessie, the opposite is seen, where the 99th Percentile values

increase as the Settling Velocity of Faeces approaches zero. Figure 2.19 does

not demonstrate an obvious pattern, whereas there is a clear increasing trend

in the 99th Percentile as Critical Shear Stress for Erosion increases in Figure

2.20. This is in line with what would be expected, as increases in Critical

Shear Stress for Erosion mean that less particles are eroded from the seabed,

and therefore they are not being transported as far, which would result in a
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more intense impact in some grid cells.

2.2.6.3 Mass Balance

Again, comparisons will be made between the sites, with the initial output data

considered before fitting random forest models, and looking in more detail at

the highest ranking inputs. The Mass Balance data at Ardessie in Figure

Figure 2.21: Histogram of the Mass
Balance at Ardessie.

Figure 2.22: Histogram of the Mass
Balance at Muck.

2.21 indicates that in most of the NewDEPOMOD runs, approximately all of

the waste material remains in the domain. In comparison, at Muck in Figure

2.22, there are still a large amount of runs with approximately all of the waste

material remaining in the domain, but there are more runs where waste material

leaves the domain in comparison to Ardessie. Transformations of the Mass

Balance data such as log, square root, cube root, were considered, but even

after testing multiple transformations, the data remained heavily skewed, with

only small improvements seen. One thing to note with the Mass Balance output

data is that it is bounded in the unit interval. The purpose of this analysis is

to determine which of the inputs have the biggest influence on Mass Balance,

therefore, for the purposes of this analysis, the random forest model is fitted

without restricting the output data. Upon fitting the models, the importance

values will be examined to determine if they seem plausible and the unrestricted

output data can be used for this purpose. Random forest models were fitted

to the original data in a similar way as before in order to rank the inputs and

compare sites. The calculated importance values are displayed in Table 2.5. In

the first instance, the results appear to be plausible, with the Settling Velocity

of Faeces and Critical Shear Stress for Erosion being most influential at both

sites. This would be expected as the Settling Velocity of Faeces determines

how far the waste particles are transported initially, and Critical Shear Stress

for Erosion determines how much material is resuspended. Looking at the
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Importance
Inputs Ardessie Muck
Critical Shear Stress for Erosion 62.09% 92.25%
Rate of Erosion 49.98% 48.76%
Release Height 37.89% 58.27%
Settling Velocity of Faeces 81.97% 68.86%
Settling Velocity of Sediment 44.76% 76.27%
Cage Dispersion Coefficient (X) 18.86% 33.13%
Cage Dispersion Coefficient (Y) 26.39% 36.89%
Cage Dispersion Coefficient (Z) 28.94% 33.68%
Resuspended Material Dispersion Coefficient (X) 22.30% 35.55%
Resuspended Material Dispersion Coefficient (Y) 22.19% 35.20%
Resuspended Material Dispersion Coefficient (Z) 31.07% 38.29%

Table 2.5: Table of Importance values from the random forest model of Mass
Balance at each site.

sites individually, it can be seen that Settling Velocity of Faeces is again the

most important input for Ardessie, with Critical Shear Stress for Erosion and

Rate of Erosion having the second and third highest values. Release Height

and Settling Velocity of Sediment are not far behind Rate of Erosion, with

the dispersion inputs all having similar low values. For Muck, the Critical

Shear Stress for Erosion is the highest ranked input, with Settling Velocity of

Sediment and Settling Velocity of Faeces second and third. Release Height and

Rate of Erosion are not far behind, while the Dispersion coefficients are also

lower and of similar values for Muck as well.

One thing to note when looking at both sites is that Release Height and

Settling Velocity of Sediment are playing a bigger role when considering Mass

Balance as the output. As these inputs are involved in the process of resuspen-

sion of particles on the seabed, it would be expected that these have more of

an influence on Mass Balance. Together with the erosion inputs, they influence

how long resuspended particles remain in the water column and therefore how

far they are transported. The further they are transported will impact whether

or not they remain in the domain. As expected, they are more influential at the

faster flowing site as particles will be transported further by the faster flowing

currents at Muck. At Ardessie, the Settling Velocity of Faeces is more likely to

play a role in the transportation of particles as resuspended particles will not

be transported as far by the slower current.

As the Critical Shear Stress for Erosion and Settling Velocity of Faeces are

the most important inputs at the sites, their scatterplots will be compared

below. Looking at Figures 2.23 and 2.24, the scales of the y-axis differ again,
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Figure 2.23: Plot of Mass Balance
against the Settling Velocity of Fae-
ces - Ardessie.

Figure 2.24: Plot of Mass Balance
against the Settling Velocity of Fae-
ces - Muck.

Figure 2.25: Plot of Mass Balance
against the Critical Shear Stress for
Erosion - Ardessie.

Figure 2.26: Plot of Mass Balance
against the Critical Shear Stress for
Erosion - Muck.

which is to be expected as at Ardessie, the slower flow speeds mean most of

the material remains in the domain. There is a lot of variation in the data, but

there does appear to be a negative trend when the absolute value of the Settling

Velocity of Faeces is below 0.02m/s. This may indicate a possible threshold

value where it is unlikely for all of the mass to remain in the domain, even for

a site with slower flow speeds. Now considering Figures 2.25 and 2.26, there

is a clear positive trend at both sites. This is to be expected, as lowering the

Critical Shear Stress for Erosion allows more particles to be resuspended and

therefore transported further, and potentially out of the domain.

2.2.6.4 Summary

The sensitivity analysis of the inputs based on the physical properties were

completed at two different sites, and also considered three different scalar out-

puts. There were differences between the two sites in regards to the most
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influential inputs, with the site characteristics being the likely cause. It was

clear throughout that the Settling Velocity of Faeces appeared to be more in-

fluential at the low energy site for all outputs. At the high energy site, the

Settling Velocity of Faeces and the Critical Shear Stress for erosion were iden-

tified as the highest ranking inputs for the different outputs. At the other end

of the scale, it was clear that the dispersion coefficients had the least influence,

with lower importance values for all of the scalar outputs. In addition, the

Release Height of Resuspended Material and the Settling Velocity of Sediment

had lower importance values similar to the dispersion coefficients for the low

energy site. In contrast, these two inputs appeared to be more influential than

the dispersion coefficients at the high energy site.

Due to the low rankings of the dispersion coefficients at both the low and

high energy sites, their uncertainty does not appear to be influencing the scalar

outputs calculated from the output maps. As a result, these inputs will not be

considered in the further combined analysis including the physical properties

and operational inputs. The remaining inputs will be considered in a further

sensitivity analysis containing the inputs based on the physical properties, as

well as the operational inputs.

2.3 Sensitivity Analysis - Operational Inputs

Moving on, the operational inputs will now be considered to determine the

impacts of increasing the Biomass and altering the cage setup. For this analysis,

a new low energy site, Ardentinny, will be considered alongside Muck, though

the methods could be repeated for sites with different properties and compared.

Ardentinny is a larger farm than Ardessie, with a Biomass value similar to

Muck.

2.3.1 Aims of the analysis and the inputs to be investi-

gated

SEPA identified the operational inputs of interest to be Biomass, Cage Diam-

eter and Number of Cages. Biomass is of interest as it refers to the amount

of fish being farmed at a particular site, and there are future plans to increase

production in Scotland, and one way to do so is by increasing Biomass at sites.

In order to increase Biomass at sites, the cage setup will have to be altered,

either by making the current cages larger, or by adding more cages. These

inputs will be considered to help determine the impact on NewDEPOMOD
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predictions of increasing the Biomass and altering the farm setup.

2.3.2 Establishing suitable ranges for inputs

There are several ways that a fish farm can be constructed and so, before be-

ginning the analysis, the inputs will be considered in more detail. The analysis

will be based around the current setup for each licensed site. Changes to the

operational setup of the farms will involve:

• increasing Biomass,

• increasing Cage Size,

• adding extra cages.

There are multiple options for altering the three inputs, and so the analysis was

limited to allow more realistic scenarios to be considered at each site. Another

factor that was pivotal in determining the farm setups being tested was the

Stocking Density. This is a measure of how many fish are kept in the cages -

measured in kilograms per cubic metre (kg/m3). The stocking density is calcu-

lated based on the size of the cages and the Biomass and is a crucial component

for maximising fish growth but not compromising fish welfare. Turnbull et al.

(2005) found that stocking densities above 22kg/m3 resulted in lower levels of

fish welfare, and Canon Jones et al. (2011) discovered that salmon became more

aggressive in more densely stocked cages. Another drawback of densely stocked

cages is the increased risk of pathogens evolving at rapid rates as the densely

packed cages provide perfect conditions (Sundberg et al. 2016). RSPCA stan-

dards specify a maximum Stocking Density of 22kg/m3, however, fish farms

are not required to be certified by the RSPCA standards in Scotland - in 2018

approximately 78% of farms were certified. SEPA specified that a plausible

maximum would be 25kg/m3, but across all farms in Scotland, it is rare for

a farm to operate at this Stocking Density. As a result, 4 different maximum

Stocking Densities were considered in the analysis: {16.3kg/m3 (median across

farms in Scotland), 18.4kg/m3 (average of the median and 95th percentile),

20.5kg/m3 (95th percentile), 25kg/m3 (SEPA recommended maximum)}.
In order to test the effects of increasing Biomass, the analysis is focused

around the default Biomass value provided for each site’s DEPOMOD inputs

- consider this as 100%. In order to allow for considerable expansions to the

industry over time, a maximum Biomass level of 300% of the default value was

determined. Focus was placed on smaller increases in Biomass to investigate

more plausible increases that could be seen in the industry, and the following
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Biomass percentages of the default were chosen: {100% (default), 110%, 120%,

150%, 200%, 300%}.
Across Scotland, the largest diameter of cage that is used is approximately

38.2m and can be seen at the largest sites. AKVA Group is the leading supplier

of plastic and steel cages in aquaculture, with the largest cage in production

having a diameter of 83m. The largest cage size to be considered in this analysis

is double the current largest size (38.2m) that is used at the largest sites - 76.4m.

As with the Biomass values, there will be smaller differences between the values

closer to the default.

The final operational input that will be altered in the analysis is the number

of cages in the farm setup. The standard setup of a fish farm in Scotland has

the cages laid out in pairs, therefore when cages are added to a farm, it will

be done in pairs to keep the same pattern. In order to stop the analysis from

becoming unrealistic by adding multiple new cages, the number of additional

cages is restricted to eight (4 pairs). This will allow for two additional pairs of

cages at either end of the current cage layout.

2.3.3 Setup of NewDEPOMOD runs - operational in-

puts

As previously mentioned, the scenarios being tested had to be considered as

realistic. As a result, specific values were chosen to be tested for each of the

different inputs being considered in the analysis. These values were chosen to

allow a reasonable range of different operational scenarios to be considered,

that take into account future advancements in the industry. The method used

to manage the number of runs required is based around the maximum Stocking

Density, and only altering the farm setup when the maximum Stocking Density

is exceeded - as seen in Figure 2.27. The flowchart will determine the number

of runs required for each site, and the different scenarios to be tested. In each

case where the Stocking Density is exceeded, there are two scenarios to be

tested - 1) increasing the cage diameter, 2) adding more cages to the farm

setup. One key point to note is the maximum of 4 additional pairs of cages

being added to the default farm setup. If the maximum stocking density is

exceeded after adding the four pairs of cages, then the new cages are removed,

the cage diameter is increased and the process of adding pairs of cages begins

again. One key thing to note is that due to the structure of the analysis, the

inputs are not independent of each other, therefore interaction terms will be

required in any modelling approaches.

Using Figure 2.27, the different scenarios to be tested were identified and
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Figure 2.27: Flow chart illustrating the process for creating runs at each site.

are displayed in Tables 2.6 and 2.7 for each site. For a given Biomass level,

if the maximum stocking density is not exceeded for 1 or more of the values,

then only 1 scenario is required at the default settings. If one of the maximum

stocking densities is exceeded for a Biomass value, then 2 scenarios are required

to represent increased cage size and additional cages. This approach was used

to identify the potential different scenarios to be considered for the low energy

site, Ardentinny, and the high energy site, Muck. The following two tables

illustrate the potential scenarios. Consider a Biomass level of 120% of the

Biomass % Stocking Density Exceeds Maximum? (Y or N) No. of
of Default Max = 16.3 Max = 18.4 Max = 20.5 Max = 25.0 Scenarios

100 N N N N 1
110 N N N N 1
120 Y N N N 3
150 Y Y N N 5
200 Y Y Y Y 8
300 Y Y Y Y 8

Total 26

Table 2.6: Scenarios to be tested for analysing the effect of altering the opera-
tional inputs of NewDEPOMOD at Muck.

default, then from Table 2.6, the maximum stocking density of 16.3kg/m3 is

exceeded, and so the cage setup will have to be altered. Therefore there will be 2
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Biomass % Stocking Density Exceeds Maximum? (Y or N) No. of
of Default Max = 16.3 Max = 18.4 Max = 20.5 Max = 25.0 Scenarios

100 N N N N 1
110 N N N N 1
120 N N N N 1
150 Y N N N 3
200 Y Y Y N 7
300 Y Y Y Y 8

Total 21

Table 2.7: Scenarios to be tested for analysing the effect of altering the opera-
tional inputs of NewDEPOMOD at Ardentinny.

scenarios that are constructed to reduce the stocking density for this particular

maximum. The stocking density is not exceeded for any of the other maximum

values, and so one scenario with the default settings is suitable for the other

three maximum values. This approach was used to determine the number of

different scenarios to be set up and run. For the two scenarios to be tested when

the maximum stocking density is exceeded, there are potentially cage setups

that overlap for a given Biomass value. Therefore the maximum number of

scenarios to be tested will be 26 for this site. In addition, for Ardentinny,

Table 2.7 highlights that a maximum number of 21 different scenarios are to

be tested.

2.3.4 Results for operational inputs

The operational inputs are ones that can be controlled by the fish farm oper-

ators, so the effects of altering these inputs on the scalar summaries will be

considered for Ardentinny (low energy site) and Muck (high energy site). For

this analysis, it will be considered in two parts - 1) Total Area Impacted will

be considered as the output at both sites, then 2) 99th Percentile of Solids

Flux will be considered as the output at both sites. In order to avoid repe-

tition, the analysis for Total Area Impacted will be considered in more detail

for Ardentinny, and then a summary of the results will be provided for the

remaining site, and also for the consideration of 99th Percentile of Solids Flux

as the output. As Mass Balance does not provide an indication of the environ-

mental impact of the fish farm, it will not be considered in this, or any further

analyses.
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2.3.4.1 Total Area Impacted

The first stage of the analysis will consider Total Area Impacted as the scalar

output, and aim to identify the effects of altering the operational inputs at

Ardentinny. Before considering the sensitivity analysis, initial plots of the

Total Area Impacted against each input individually will be considered. As

each of the operational inputs are considered as discrete variables in the setup

of the analysis, the initial plots are boxplots. From Figure 2.28 there is a clear

Figure 2.28: Box plot of the Total Area Impacted (km2) against the Biomass -
Ardentinny.

Figure 2.29: Box plot of the Total Area Impacted (km2) against the Cage
Diameter - Ardentinny.

increasing trend in the average Total Area Impacted as Biomass increases, with

an additional increase in the variance as Biomass increases. Figure 2.29 shows

larger variance for the smaller Cage Diameters, likely caused by the different

number of Biomass values tested at the smaller cage sizes. In contrast to the

other two plots, Figure 2.30 has constant variance across all values, and a

positive, linear trend. The trend seen in Figure 2.30 suggests that it is the
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Figure 2.30: Box plot of the Total Area Impacted (km2) against the Number
of Cages - Ardentinny.

dominant input at this site. To explore potential interactions, scatterplots

for Total Area Impacted against Biomass and Cage Diameter are produced,

with the points coloured based on the corresponding Number of Cages for a

give run. Figures 2.31 and 2.32 highlight the fact that the lower values

Figure 2.31: Initial plot of the Total Area Impacted (km2) against the Biomass,
coloured by the relative Number of Cages - Ardentinny.

of Total Area Impacted are a result of the smaller Number of Cages in the

operational setup. Figure 2.31 reveals that, where multiple Numbers of Cages

are considered for a given Biomass (300% of Default) or Cage Diameter in

Figure 2.32 (e.g. 38.2m), the Total Area Impacted appears to be ordered based

on the Number of Cages. This enforces the idea that the Number of Cages is the

driving force at Ardentinny. The next step is to assess the sensitivity of Total

Area Impacted to altering these operational inputs, in order to confirm the

most influential inputs. A similar approach to the method used for the inputs

based on the physical properties will be considered. A random forest model is

fitted, which produces a ranking of the inputs based on an importance value.
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Figure 2.32: Initial plot of the Total Area Impacted (km2) against the Number
of Cages, coloured by the relative Biomass values - Ardentinny.

The random forest model was fitted, with 2000 trees grown, which produced

a model that explained approximately 91% of the variation in the Total Area

Impacted. From the model, importance values were able to be determined

based on the increase in MSE, and can be seen in Table 2.8. As the random

Inputs Importance
Biomass % of Default value 44.6%
Cage Diameter 40.5%
Number of Cages 68.5%

Table 2.8: Table of Importance values from the random forest model corre-
sponding to the Total Area Impacted modelled by the operational inputs -
Ardentinny.

forest model was able to explain a large amount of the variation in the Total

Area Impacted, suitable conclusions can be drawn from the importance values

in Table 2.8. The Number of Cages was ranked as the most important predictor,

which could have been predicted based on the initial plots. It appeared to be

the dominant input, and played a role in the increased variance seen for certain

Biomass and Cage Diameters.

Following the analysis of the runs from Ardentinny, the results from the

runs at Muck will be considered and summarised. As with Ardentinny, box

plots were considered initially to help identify a potentially dominant input.

Biomass was identified as the dominant input from the box plots, where it

demonstrated a positive linear trend, and similar variance across all Biomass

values. To confirm this, scatterplots for Total Area Impacted against Cage

Diameter and Number of Cages were produced, with the points coloured based

on the corresponding Biomass value. Figures 2.33 and 2.34 highlight the

fact that the lower values for Cage Diameter and Number of Cages feature a
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Figure 2.33: Initial plot of the Total Area Impacted (km2) against the Cage
Diameter, coloured by the relative Biomass values - Muck.

Figure 2.34: Initial plot of the Total Area Impacted (km2) against the Number
of Cages, coloured by the relative Biomass values - Muck.

variety of Biomass values which appear to be the cause for the larger amounts

of variation. Where a number of Biomass values are considered for a given Cage

Diameter or Number of cages, they appear to be stacked, with lower Total Area

Impacted for lower Biomass values. As with Ardentinny, a random forest model

is fitted to rank the inputs. The model for this site explained approximately

90.6% of the variation in the data, and the importance values are given in Table

2.9. From Table 2.9, the Biomass was ranked as the most important predictor,

Inputs Importance
Biomass % of Default value 73.5%
Cage Diameter 55.6%
Number of Cages 60.9%

Table 2.9: Table of Importance values from the random forest model corre-
sponding to the Total Area Impacted modelled by the operational inputs.

which was expected based on the initial plots. In comparison to the results

for Ardentinny in Table 2.8, different inputs are identified as being the most
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influential, but Cage Diameter is identified as the least influential at both sites

when considering Total Area Impacted as the output.

2.3.4.2 99th Percentile of Solids Flux

Following the analysis when considering the Total Area Impacted as the single,

scalar input, the 99th Percentile of Solids Flux will be considered. As mentioned

previously, this is used as a measure of the intensity of the impact on the

seabed. A similar approach will be used as the one used for the Total Area

Impacted. Again, Ardentinny was considered first, with box plots viewed to

help identify a potentially dominant input. From the initial box plots, Biomass

appeared to be the dominant input, with a positive linear trend as Biomass

increased, but with a slight increase in variance for larger Biomass values.

Using Biomass as the dominant input, scatterplots of 99th Percentile of Solids

Flux against the remaining inputs are produced, with the observations coloured

based on the corresponding Biomass value. In a similar manner to the plots

Figure 2.35: Initial plot of the 99th Percentile of Solids Flux against the Cage
Diameter, coloured by the relative Biomass - Ardentinny.

for the Total Area Impacted, here, the Biomass appears to be the dominant

input. Figure 2.35 shows a clear stacking of the Biomass values for the lowest

Cage Diameter size. The same pattern can be seen in Figure 2.36 when the

farm features 10 cages. Next, the random forest model was fitted to the data,

and it described approximately 93.6% of the variation, with the corresponding

importance values for the inputs given in the following table. Table 2.10 shows

that Biomass was identified as the most important input, as expected. The

remaining inputs then have similar importance values, with the Number of

Cages slightly larger.

Next, the same analysis will be completed for the data at Muck. The initial

boxplots also identified Biomass as the dominant input for this site, and the
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Figure 2.36: Initial plot of the 99th Percentile of Solids Flux against the Num-
ber of Cages, coloured by the relative Biomass - Ardentinny.

Inputs Importance
Biomass % of Default value 74.4%
Cage Diameter 50.1%
Number of Cages 55.5%

Table 2.10: Table of Importance values from the random forest model corre-
sponding to the 99th Percentile of Solids Flux modelled by the operational
inputs - Ardentinny.

following scatterplots show the 99th Percentile of Solids Flux plotted against

the remaining inputs, with the points coloured based on the Biomass values.

Figure 2.37: Initial plot of the 99th Percentile of Solids Flux against the Cage
Diameter, coloured by the relative Biomass - Muck.

Again, the plots appear to show a stacking pattern, with the larger values for

99th Percentile of Solids Flux corresponding to the larger values of Biomass.

In order to confirm if Biomass is again the dominant input, a random forest

model was fitted, which described approximately 95% of the variation in the

data, and the resulting importance values are given in the table below. As
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Figure 2.38: Initial plot of the 99th Percentile of Solids Flux against the Num-
ber of Cages, coloured by the relative Biomass - Muck.

Inputs Importance
Biomass % of Default value 71.2%
Cage Diameter 45.6%
Number of Cages 57.4%

Table 2.11: Table of Importance values from the random forest model corre-
sponding to the 99th Percentile of Solids Flux modelled by the operational
inputs - Muck.

expected the Biomass is identified as the most influential input, and a larger

gap between the remaining inputs in comparison to the results at Ardentinny.

Tables 2.11 and 2.10 both identify the Biomass as having the most influence on

the 99th Percentile of Solids Flux. This seems reasonable as the larger Biomass

results in more waste leaving the cages, and therefore, the deposition on the

seabed will be more intense.

2.3.4.3 Summary

This process has identified the influence of the operational inputs on the scalar

outputs. Different inputs were identified as being the most important for the

low and high energy sites when considering the Total Area Impacted as the

output. The low current speeds at Ardentinny mean that most of the deposi-

tion occurs directly below the cages, so adding cages to the farm will increase

the area on the seabed directly below the farm where deposition occurs. In ad-

dition, when considering the 99th Percentile of Solids Flux as the output, the

Biomass was identified as being the most influential at both sites. This makes

sense, as increasing the Biomass produces more waste, meaning the deposition

will be more intense. As increasing Cage Diameter and the Number of Cages

are two alternative approaches to allow for increased Biomass, they will both be
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considered in the next steps, where the inputs based on the physical properties

and the operational inputs are combined for a further sensitivity analysis.

By creating the sampling design using the approach described previously,

this creates an imbalance. As a result, there is the possibility of the rela-

tionships between the inputs affecting the results. Therefore, the results are

considered with caution and future work may consider a single input relating

to the operational setup of the farm, rather than the three inputs described

here.

2.4 Sensitivity Analysis - Inputs Based on the

Physical Properties and Operational In-

puts

Within DEPOMOD, altering the inputs based on the physical properties and

the operational inputs individually impacts the calculations of the scalar out-

puts. Combining the effects of the two input sets will be important for simu-

lating farms with extended production capabilities in the future.

2.4.1 Inputs and their ranges

The previous sensitivity analyses provided useful information that will be used

to reduce the number of inputs being used. From the sensitivity analysis of

the inputs based on the physical properties, the dispersion coefficients were

consistently ranked as the least important inputs for all of the scalar summary

outputs. Six of the eleven inputs based on the physical properties are the

dispersion coefficients, so removing these will help improve efficiency of this

combined analysis. For the inputs based on the physical properties that remain,

the range of values they can take will remain the same.

The discrete operational inputs from the previous analysis will all be used,

however, the number of options for each will be reduced. In the analysis of

the operational inputs, a total of 18 and 23 combinations were considered

for Ardentinny and Muck. These totals included different cage setups based

on varying levels for the maximum Stocking Density. In order to reduce the

number of slices (and therefore the total number of runs), only one maximum

Stocking Density will be considered - 16.3kg/m3, which is the most restrictive.

Following the process set out in the flowchart in Figure 2.27, no alterations were

made to the farm set up until Biomass was increased by 50%, therefore, the 10%

increase of Biomass was removed from this analysis to also reduce the number of
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runs required. By removing the 10% increase in Biomass from the operational

setups, this meant that savings could be made in the computational time. As

with the previous analysis, the three operational inputs are considered, but this

will be reviewed later in the thesis to determine if a single input representing

the operational setup is more suitable.

2.4.2 Sampling Design

This sensitivity analysis includes a combination of continuous and discrete in-

puts. Therefore, the sampling design will have to be chosen to reflect this.

Qian & Wu (2009) introduced methods for creating space-filling designs for

quantitative and qualitative inputs in two steps:

1. For quantitative inputs, LHS is generated based on a sliced orthogonal

array. It is then partitioned into different groups, where points in each

group achieve good space-filling properties in low dimensions.

2. Different level combinations of the qualitative inputs are then associated

with the groups.

This approach essentially creates multiple LHS for the continuous inputs and

assigns each a combination of the discrete inputs to one of the LHS. The method

created by Qian & Wu (2009) was studied further and Ba et al. (2015) expanded

it to create an optimal sliced LHS using the maximin-distance approach, which

was used to create a package and implement it in R.

Ba et al. (2015) describes how the construction of the sliced LHS can be

completed in two steps. To construct a sliced LHS, the total number of samples,

n, is calculated based on the number of slices (equal to the number of discrete

inputs, d), and the number of samples within each slice, s, with n = sd. The

final element involved in the construction of the sliced LHS is the number

of continuous outputs, c, with the two steps for constructing it described as

follows:

1. Construct d independent LHS for each discrete input, D1, . . . ,Dd, con-

taining s points for c inputs. Denote their factor levels by 1, . . . , s, and the

samples should then be stacked to produce an (n×c) matrix, D = ∪di=1Di.

2. Independently, in each column of the matrix, D, replace the d entries of

level l = 1, . . . , s, with a random permutation, Πd,of elements {(l−1)d+

1, . . . , ld}.
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The above method described by Ba et al. (2015) differs from the original ap-

proach by Qian & Wu (2009) which generated the whole design using a column

by column approach. Ba et al. (2015)’s next step was to improve the space-

filling qualities of the design using the maximin-distance criteria (Johnson et al.

1990). The sliced LHS approach produces an overall LHS, S, and the smaller

LHS for each slice, S1, . . . ,Sd, therefore the maximin distance criteria will have

to satisfy all LHS. The work of Johnson et al. (1990) was extended, with the

aim being to minimize the average reciprocal interpoint distance of the design

X = {x1, . . . ,xm} (Morris & Mitchell 1995, Jin et al. 2005):

φr(X) =

(
2

m(m− 1)

∑
1≤i<j≤m

1

d(xi,xj)r

)1/r

. (2.10)

Here, d(xi,xj)
r is some distance measurement such as Euclidean distance. Min-

imizing φr when r → ∞, is equivalent to maximizing the minimum distance

between the design points (Ba et al. 2015). Extending Equation 2.10 for eval-

uating the space-filling qualities of the design requires φr(D) to be minimized

for all design points, as well as minimizing φr(Di) for each slice (i = 1, . . . , d)

(Ba et al. 2015). A single objective function was proposed by Ba et al. (2015)

to solve the optimization problem:

φMm(D) =
1

2

(
φr(D) +

1

d

d∑
i=1

φr(Di)

)
. (2.11)

The optimal sliced LHS is therefore the design that minimizes φMm(D). This

method can be applied in R using the package ‘SLHD’ (Ba 2015).

The sampling design is then setup for the analysis to be completed at the

fish farm sites. To create the sampling design, multiple choices have to be

made to allow accurate conclusions to be made and to keep the total runtime

to a minimum. First, determining the number of slices required, it was previ-

ously mentioned that for this analysis, the most restrictive maximum Stocking

Density (16.3kg/m3) will be used to determine the operational inputs required.

After removing the 10% increase of Biomass, for Ardentinny, there are a total

of eight different farm setups to be considered, and therefore, a total of eight

slices in the sampling design. The next choice for the analysis is the number

of samples for each slice of the design. In order to cover the sample space for

the five continuous inputs, a total of 50 samples will be taken for each slice,

resulting in 400 input sets within the analysis. In addition, NewDEPOMOD is

run 50 times for each input set to account for the random walk element within
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NewDEPOMOD, resulting in 20,000 runs in total. The number of replicate

runs was reduced from 100 in the previous sensitivity analyses to 50 to re-

duce the computational time, but still account for the random walk element

of NewDEPOMOD. Running NewDEPOMOD this many times is computa-

tionally expensive, taking approximately 10 days to complete the runs, which

is why the number of samples within each slice was limited to 50. Following

the creation of the optimal sliced LHS, the restricted pairing procedure that

was used previously for the correlated LHS, was applied to account for the

relationships between the continuous inputs.

The other low energy site being considered is West Strome, which had a

total of 9 different farm setups to be considered, when following the flowchart

in Figure 2.27. This resulted in a total of 450 different input sets, and 22,500

runs when considering the replicate runs. For the high energy sites, Muck and

Djuba Wick, there are 9 and 8 different farm setups to be considered. One

difference for these sites though, is that the computational time for the runs

can be up to five times longer, due to the more complex waste transportation

within the model due to the faster flow speed. To reduce the computational

time required, the number of replicate runs at these sites was reduced from 50

to 10.

2.4.3 Results for combined analysis

As with the previous analyses, the scalar summary outputs from the NewDE-

POMOD runs will be considered to assess the size and intensity of the environ-

mental impact. This will allow the combined effects of the operational inputs

and the inputs based on the physical properties on the Total Area Impacted

and the 99th Percentile of Solids Flux to be considered. For this analysis, the

output that will be discussed will be from simulations at the low energy sites

Ardentinny and West Strome. Additionally, the high energy sites Muck and

Djuba Wick will be considered for comparison. A detailed analysis will be

considered for Ardentinny, before a summary of the results for the remaining

sites are reviewed.

2.4.3.1 Total Area Impacted

For the NewDEPOMOD runs at Ardentinny, the sampling design resulted in

a total of eight different operational setups, and therefore eight slices in the

sliced LHS. Within each slice, there were 50 input sets produced, resulting in

a total of 400 different input sets across the eight slices. Considering the Total
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Area Impacted as the output, the range of values will be considered through a

histogram. It is clear from Figure 2.39 that almost all of the data lies in the

Figure 2.39: Histogram of Total Area Impacted - Ardentinny.

interval 0.05 − 0.20km2. This is confirmed when calculating the interquartile

range, which lies between 0.097 and 0.172. The next step is to fit a random

forest model for the Total Area Impacted. The fitted model is able to explain

approximately 94% of the variation in the data, and the top five ranking inputs

are given in Table 2.12. Table 2.12 highlights that in the combined sensitivity

Inputs Importance
Settling Velocity of Faeces 217.8%
Settling Velocity of Sediment 108.7%
Critical Shear Stress for Erosion 86.4%
Number of Cages 85.4%
Biomass % of Default 83.7%

Table 2.12: Table of Importance values from the random forest model of Total
Area Impacted at Ardentinny.

analysis, the Settling Velocity of Faeces is the most important input, with an

importance value more than double that of the second most important input.

The Number of Cages is the most important of the operational inputs, which fits

in with the previous analysis of the operational inputs, however, the difference

between the importance value for the Number of Cages and the Biomass is low.

In order to explore the relationship between the Total Area Impacted and the

Settling Velocity of Faeces further, a scatterplot is produced. Figure 2.40 does

not appear to show any clear relationship between the Total Area Impacted
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Figure 2.40: Plot of the Total Area Impacted against the Settling Velocity of
Faeces - Ardentinny.

and the Settling Velocity of Faeces. It can be seen that some large values for

Total Area Impacted are present across the range of values for Settling Velocity

of Faeces. This could indicate that the importance of this input is influenced

by it’s interactions which are considered in the model.

In order to explore the similarities/differences between the low and high

energy sites, random forest models were fitted for the Total Area Impacted

for each of the remaining sites. These were all able to explain over 90% of

the variation in the data, and the resulting importance values for each of the

inputs are given below for the four sites. First, considering the two low energy

sites, Ardentinny and West Strome, the Settling Velocity of Faeces is the most

important input at both sites. However, the effect of the Settling Velocity of

Sediment on the Total Area Impacted for West Strome is ranked lower. For the

operational inputs, the Biomass and Number of Cages have similar importance

values at Ardentinny, whereas the Number of Cages plays a more dominant

role at West Strome.

Next, the high energy sites, Muck and Djuba Wick, will be considered.

First, looking at the importance values for Muck, the importance values for

the operational inputs are the lowest ranking. The Settling Velocity of Faeces

and the Critical Shear Stress for Erosion are the top ranking inputs. At Djuba

Wick, the Settling Velocity of Faeces is also the highest ranking input, but with

the Critical Shear Stress for Erosion not playing as big a role, with a similar

importance value as the other inputs. The importance values for Djuba Wick

are much lower than the values for the other sites, indicating that the inputs
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Importance

Inputs Ardentinny West Strome Muck Djuba Wick

Critical
Shear Stress
for Erosion

86.4% 58.2% 76.3% 35.6%

Rate of Ero-
sion

80.9% 47.3% 59.6% 30.7%

Release
Height

80.0% 54.8% 50.7% 24.8%

Settling Ve-
locity of Fae-
ces

217.8% 248.9% 92.9% 94.6%

Settling Ve-
locity of Sed-
iment

108.7% 58.1% 68.7% 25.8%

Biomass % of
Default

83.8% 71.1% 40.3% 26.7%

Cage Diame-
ter

64.6% 51.7% 42.1% 19.2%

Number of
Cages

85.4% 87.4% 37.6% 31.5%

Table 2.13: Table of Importance values from the random forest model for the
Total Area Impacted at each site.

do not have as big an influence at this site. Djuba Wick has very high current

speeds in comparison to the others and it is likely that the explanation for

this is that the current speeds play such a big role that the inputs are not as

influential.

Comparing the results from the low and the high energy sites, the Settling

Velocity of Faeces plays a dominant role across all sites, with the highest impor-

tance values. However, at Muck, the importance value for the Settling Velocity

of Faeces is closer to the next ranked input. Djuba Wick appears to have simi-

lar patterns to the low energy sites, with Settling Velocity of Faeces having an

importance value more than two times the size of the second highest ranking

input. It would be expected that with low current speeds, resuspended waste

will not be transported as far, meaning that the initial deposition is likely to

have a bigger influence at the low energy sites. As a result, the Total Area

Impacted will be influenced more by the Settling Velocity of Faeces at the low

energy sites. However, at Djuba Wick, the inputs appear to have a similar pat-
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tern in their importance values. At Muck, the operational inputs have lower

importance values than the inputs based on the physical properties. As men-

tioned before, there are no similarities between the importance values for the

high energy sites.

2.4.3.2 99th Percentile of Solids Flux

Next, the 99th Percentile of Solids Flux is considered and plotted as a histogram

for data from the runs at Ardentinny. Figure 2.41 has a more even spread of the

Figure 2.41: Histogram of 99th Percentile of Solids Flux - Ardentinny.

data than Figure 2.39. Random forest models are fitted for each of the sites,

which all explain over 90% of the variation in the data. Table 2.14 provides the

importance values for the at each of the sites. Considering the two low energy

sites, Ardentinny and West Strome, the highest ranking input at both is the

Settling Velocity of Faeces. This is where the similarities then end, with the

inputs linked to resuspension at Ardentinny (Critical Shear Stress for Erosion,

Release Height, Rate of Erosion, and Settling Velocity of Sediment) being the

next highest ranking inputs, before the operational inputs. In contrast, at West

Strome, the second and third ranked inputs are the Number of Cages and the

Biomass, both of which have similar roles.

For the high energy sites, Muck and Djuba Wick, the Settling Velocity of

Faeces is the highest ranking input at Muck, but at Djuba Wick, the Critical

Shear Stress for Erosion has a slightly higher importance value than the Set-

tling Velocity of Faeces. For the 99th Percentile of Solids Flux, there appears

to be some more similarities between the two high energy sites, with the Crit-
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Importance

Inputs Ardentinny West Strome Muck Djuba Wick

Critical
Shear Stress
for Erosion

97.2% 77.7% 61.8% 58.2%

Rate of Ero-
sion

82.7% 73.0% 42.0% 32.9%

Release
Height

83.1% 70.1% 51.1% 30.5%

Settling Ve-
locity of Fae-
ces

129.0% 171.5% 73.5% 53.8%

Settling Ve-
locity of Sed-
iment

78.7% 71.7% 53.4% 31.5%

Biomass % of
Default

73.4% 85.3% 45.2% 32.2%

Cage Diame-
ter

61.5% 56.8% 35.7% 31.1%

Number of
Cages

73.1% 86.1% 37.3% 33.8%

Table 2.14: Table of Importance values from the random forest model for the
99th Percentile of Solids Flux at each site.

ical Shear Stress for Erosion and Settling Velocity of Faeces being the highest

ranking inputs with importance values slightly bigger than the other inputs.

Comparing the low and the high energy sites, the Settling Velocity of Faeces

appears to play a more dominant role at the low energy sites, where the impor-

tance values are much larger than for the other inputs. At the high energy sites,

the Settling Velocity of Faeces and the Critical Shear Stress for Erosion are the

highest ranking inputs, with similar importance values. The other inputs at the

high energy sites have slightly lower importance values than the values for the

Critical Shear Stress for Erosion and the Settling Velocity of Faeces. At West

Strome, the Settling Velocity of Faeces has an importance value more than two

times the size of the next highest ranking input. The difference between the

importance values at Ardentinny is not as big as at West Strome. In addition,

the operational inputs appear to play a bigger role at West Strome, with the

Biomass and Number of Cages having the second and third highest importance

values.
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2.5 Discussion

The main aim of this Chapter was to consider the inputs based on the physical

properties that were identified as having uncertain default values, as well as

the operational inputs that could be altered to allow for expansion at farms,

in order to identify the inputs with the most influence on the scalar outputs

used to measure the environmental impact of a fish farm. The first analysis

featured only two sites, and only considered the inputs based on the physical

properties. From this analysis, differences were identified between the two sites

relating to the influence of the resuspension inputs, such as the Critical Shear

Stress for Erosion, which played a bigger role at the high energy site compared

to the low energy site across all of the outputs being considered.

Moving on, two sites were again considered to focus on altering the opera-

tional inputs which relate to the farm setup and can be altered by the fish farm

operator. Differences were identified between the two sites when considering

the Total Area Impacted as the output. Moreover, the 99th Percentile of Solids

Flux identified the Biomass as the most important operational input at both

sites.

Both the previous analyses were used as a starting point to identify inputs to

be investigated, before considering the two sets of inputs together in a combined

analysis, looking at 4 sites in total - containing two low energy and two high

energy sites. Two low energy and two high energy sites were considered, with

the aim of comparing between sites with similar properties and contrasting

properties. For both of the outputs, the two low energy sites identified the

Settling Velocity of Faeces as being the most important, but at Ardentinny, the

influence of the resuspension inputs was larger in comparison to West Strome.

For the 99th Percentile of Solids Flux, at West Strome, the Settling Velocity

of Faeces had a much bigger importance value in comparison to the others,

and the operational inputs also played a bigger role. At the high energy sites,

for the Total Area Impacted, the Settling Velocity of Faeces is also the top

ranked input, with the Critical Shear Stress for Erosion playing a bigger role

at Muck. In addition, the structure of the ranking at Djuba Wick is similar

to the low energy sites. For the 99th Percentile at the high energy sites, the

Critical Shear Stress for Erosion and the Settling Velocity of Faeces are the top

ranking inputs, with similar importance values that are bigger than the other

inputs. For the Total Area Impacted, the low energy sites and Djuba Wick

identified similar patterns from the sensitivity analysis, with differences seen in

the results for Muck, where the Critical Shear Stress for Erosion playing a bigger

role. Considering the 99th Percentile, the results for the high energy sites and
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Ardentinny have a similar structure, with West Strome having different results

with the operational inputs playing a bigger role. Differences were identified

between the sites with similar characteristics for each output. This suggests

that the influence of the inputs differs for sites with the same characteristics,

but the inputs that were identified as being most important across the sites

were the Critical Shear Stress for Erosion and the Settling Velocity of Faeces.



Chapter 3

Sensitivity Analysis for Output

Maps

3.1 Introduction

Having considered scalar summaries of the NewDEPOMOD output, the next

steps will consider the multivariate output, i.e. the maps. The sensitivity anal-

ysis of these output maps is an important aspect in determining how influential

the inputs are over the domain, therefore the development of methodology to

assess the influence is essential. Throughout the chapter, three different ap-

proaches to investigating the multivariate output will be developed: 1) shape

analysis of the main impact area, 2) a bivariate functional approach, where

the output map is considered as a surface and 3) considering the output from

individual grid cells.

The focus of this Chapter is to extend the work of Chapter 2 in order

to investigate the effect of the inputs on the NewDEPOMOD output maps.

The three individual approaches to how the output maps will be investigated

provide useful information, but a framework is required in order to investigate

the features of the map and the variation in the data. This framework will

be presented in this Chapter, along with an application of the framework to

multiple sites.

3.1.1 NewDEPOMOD output maps

As was mentioned in the introduction to this chapter, different representa-

tions of the output maps will be considered. The maps represent the NewDE-

POMOD output showing the Solids Flux in each grid cell, and therefore ap-

proaches to analyse these maps are essential to gaining a better understanding

77
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of NewDEPOMOD. It was mentioned in Chapter 1 that Solids Flux is a mea-

sure of the deposition on the seabed, and NewDEPOMOD output maps provide

measures of Solids Flux across the domain. The data featured in this Chapter

is the same data that were used in the previous Chapter, but with a focus

on the output maps instead of the scalar outputs. In order to highlight the

types of variation seen in the output maps, two examples of output maps from

the runs at Ardentinny are given in Figures 3.1 and 3.2. Differences can be

Figure 3.1: NewDEPOMOD
output map of the Solids Flux
(g/m2/y), Example 1 from
Ardentinny- land indicated by
green grid cells and cages indicated
by red points.

Figure 3.2: NewDEPOMOD out-
put map of the Solids Flux
(g/m2/y), Example 2 from Ar-
dentinny - land indicated by green
grid cells and cages indicated by red
points.

seen here in the shape of the main impact on the seabed. In Figure 3.1, the

main area of deposition is directly below the cages and appears to be in an

ordered fashion. In comparison, Figure 3.2 shows less structure in the pattern

of deposition, with some deposition spreading to the West of the cages. This

Chapter will therefore investigate ways to attribute the variation in the maps

to changes in the inputs. An additional point to be highlighted from Figures

3.1 and 3.2 is that a lot of the area in the domain features no deposition.

3.2 Shape analysis approach for investigating

NewDEPOMOD output maps

As a starting point for analysing the effect of altering the inputs on the output

maps, a shape analysis will be considered. This approach does not consider the

full domain, and only looks at the main shape of the impact on the seabed by

identifying landmarks using transects from the farm centre. A shape Principal

Components Analysis (‘PCA’) (Dryden & Mardia 2016) will be used to identify
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the main areas of variation in the shape, and the PC scores used to identify

which inputs are driving the variations.

3.2.1 Landmark approach for identifying predicted size

and shape of the impact area on the seabed

A finite number of points on an object can be used to describe a shape, and are

commonly known as landmarks. These are points of correspondence on each

object that can be matched between and within interested populations (Dryden

& Mardia 2016). Landmarks are often labelled to allow comparisons to be made

between different shapes within a dataset. Shape analysis has long been used

in Biology by comparing distances between landmarks. Pearson (1926) looked

at similarities between skulls using the distances between landmarks.

To pick the landmarks for these NewDEPOMOD maps, 8 transects were

taken from the centre of the farm, illustrated in Figure 3.3. The 8 transects can

be taken using two different methods: (i) where the angles between the tran-

sects are equal (Figure 3.3a) and (ii) where the distance between the transects

on the perimeter of the farm are equal (Figure 3.3b). Figure 3.3 illustrates how

(a) Transects based on equal angles
between each transect.

(b) Transects based on equal distances
around farm perimeter.

Figure 3.3: Plots of the possible transect options for calculating landmarks in
the shape analysis.

the different methods of producing the transects will produce different land-

marks. In this case, the majority of impact appears to be in a more narrow

column, and so the equal distances around the farm perimeter in Figure 3.3b

appears to capture this more effectively. As a result, these transects will be

used to calculate the landmarks, and the next decision is how to determine

what grid cells are landmarks on each transect.

The aim of the shape analysis is to capture the main shape of the impact,
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and so, only grid cells with a Solids Flux value greater than 192g/m2/year are

considered - it was mentioned in Chapter 1 that this value is considered as a

threshold, above which damage to the seabed can occur. In order to try and

obtain landmarks that lie on the outline of the main shape, a nearest neighbour

approach was considered. Each grid cell is bordered by 8 other grid cells. Using

a nearest neighbour approach, a grid cell must be surrounded by at least five

grid cells with Solids Flux values greater than the threshold of 192g/m2/year,

to be considered part of the main shape. Five grid cells were used as a cut-off

point for the main shape as this meant that for a given grid cell, most of the

surrounding grid cells are above the threshold, indicating that it is part of a

larger shape.

Code that was created to calculate the landmarks for each run automat-

ically was computationally expensive, with the time taken for one run being

approximately 3s. In order to simplify this analysis, the data being used is the

NewDEPOMOD output maps from the sensitivity analysis of the inputs based

on the physical properties, completed at the sites Ardessie and Muck. These

analyses contained a total of 10,000 runs, made up of 100 different input sets

with 100 replicate runs for each of them. Running the code to automatically

calculate the landmarks for each run could take approximately 8 hours, so this

was reduced by only considering 1 run from each set of 100 replicates for an

initial analysis.

3.2.2 Procrustes and principal component analysis for

analysing shape variation

Procrustes Analysis is often used as a tool for comparing shapes as it removes

the effects of scale, rotation and translation (location). Within Procrustes

Analysis, there are two different types that can be used in different scenarios

(Dryden & Mardia 2016):

• Ordinary Procrustes Analysis (‘OPA’) - to be used in the case where

one shape is compared to another shape, or where an arbitrary reference

shape is being used, a set of shapes are compared to this reference shape.

• Generalised Procrustes Analysis (‘GPA’) - to be used when a set of

objects are to be compared simultaneously, with a so-called ‘mean shape’

being produced as a reference shape.

GPA is defined as the translation, rescaling and rotation of the shape config-

urations (X1, X2, . . . , Xn) relative to each other, to minimize a total sum of
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squares (Dryden & Mardia 2016):

G(X1, X2, . . . , Xn) =
n∑
i=1

‖ (βiXiΓi + 1kγ
>
i )− µ ‖2,

with respect to βi,Γi, γi, for i = 1, . . . , n and µ, subject to an overall size

constraint that is chosen. βi > 0 refers to a scale parameter, Γi is a rotation

matrix, γi is a location vector and µ is the population mean shape. One measure

of the shape for Procrustes analysis is the ‘centroid size’, which is a measure of

the size of the shape, calculated using the landmark coordinates. For a matrix

of landmark coordinates X, with k × m dimensions (where k is the number

of landmarks in m real dimensions), the centroid size is given by (Dryden &

Mardia 2016):

S(X) =

√√√√ k∑
i=1

m∑
j=1

(Xij − X̄j)2, X ∈ Rkm,

where Xij is the (i, j)th element of X, and X̄ = 1
k

∑k
i=1Xij is the arithmetic

mean in the jth dimension (Dryden & Mardia 2016). The centroid size is a

commonly used measure of size in geometrical shape analysis.

In addition to the measures of centroid size, it is also of interest to consider

the structure of size and shape variability (Dryden & Mardia 2016).

3.2.3 Results from shape analysis

For the sensitivity analysis of the physical properties inputs, the landmarks

and shape analysis approach was considered. This would produce PC scores,

which could be modelled to determine which inputs are potentially driving the

variations in the shape.

3.2.3.1 Ardessie

The Generalised Procrustes analysis calculated the centroid size and the PCs.

The first 7 PCs were able to explain approximately 89% of the variation, with

the breakdown shown in Table 3.1. Table 3.1 identifies the first PC as explain-

ing 36.0% of the variation in the shape of the impact. Figure 3.4 illustrates the

shape variation that is described by the first three PCs. It is difficult to tell

from Figure 3.4 the variation that the PCs are describing. Each PC appears

to describe some information relating to the width of the shape, which can be

seen when comparing the shapes in the first column to the shapes in the third

column. In addition, the second PC appears to be describing the variation of
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Principal Component Percentage of Variability Captured
PC 1 36.0%
PC 2 23.9%
PC 3 10.1%
PC 4 7.3%
PC 5 4.9%
PC 6 4.1%
PC 7 3.1%
Total 89.4%

Table 3.1: Table of the Principal Component percentages for Solids Flux
192g/m2/year - Ardessie.

Figure 3.4: Plots of the shape variation described by the first 3 PC’s - Ardessie.

the shape in the transect that runs in the South-East direction, with the plot

in the first column having this point located further away from the centre.

Using the PCs that have been calculated, and also the centroid sizes, models

will be fitted to determine which, if any, input factors are related to the varia-

tion in the shapes. As a starting point, individual linear models were fitted to

the centroid size and the PC’s to determine the effects of the input factors on

the shape. A standard multiple regression formula with interactions is given in



CHAPTER 3. SENSITIVITY ANALYSIS FOR OUTPUT MAPS 83

Equation 3.2.

yi =β0 + β1x1i + . . .+ βpxpi + γ1x1ix2i + . . . (3.1)

+ γQx(p−1)ixpi + εi for i = 1, . . . , n. (3.2)

Here, there are interaction terms between each of the p inputs, and Q = p(p−
1)/n interaction terms when including all possible two-way interactions. In

this case, the prior knowledge of the correlation structure reduces the number

of two-way interactions included in the general formula in Equation 3.2. Two-

way interaction terms were only included for the inputs that were considered

to be correlated when setting up the design matrix using the correlated LHS

in Chapter 2. Table 3.2 provides information about the fit of the models,

and the input factors that have a significant effect on the outputs. Table 3.2

Model Output R-Squared Significant Input Factors

Centroid size 67.8%

Intercept
RH
RH:SS
SF
DispCageZ

PC 1 (36.0%) 29.4% RoE
PC 2 (23.9%) 15.5% CSS

PC 3 (10.1%) 23.2%
DispCageX
DispCageX:DispCageY

PC 4 (7.3%) 16.7%
CSS:RoE
SF

PC 5 (4.9%) 22.6% SF

PC 6 (4.1%) 3.8%
RoE
CSS:RoE

PC 7 (3.1%) 5.1% SF

Table 3.2: Linear model output for the shape analysis where Solids Flux
192g/m2/year - Ardessie. (CSS - Critical Shear Stress for Erosion, RoE - Rate
of Erosion, RH - Release Height, SS - Settling Velocity of Sediment, SF - Set-
tling Velocity of Faeces, DispCageX/Y/Z - Dispersion Coefficient for Material
from cages (X/Y/Z directions)

appears to show a reasonably good fit for the linear model of Centroid size, and

identified input factors that are significant in the linear model. Settling Velocity

of Faeces is significant, which would be expected given it’s influence on the Total

Area Impacted in the sensitivity analysis for the physical properties inputs in

Chapter 2. One thing to note is that some of the Dispersion coefficients are

significant, when they did not appear to be ranked highly in the random forest

models for Ardessie in Chapter 2. The reason they may affect the shape of
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the impact may be down to the fact that flow speeds are slower at this site

and therefore, the random walk element of the model is playing a role in the

shape of the impact. The linear models fitted to the PCs do not appear to fit

the data well, but have identified significant input factors, and more flexible

models may be more appropriate. As with the fitting of any linear models,

residual plots were checked, with some deviances from the line of equality in

the Normal Q-Q plot at the tails, but there was generally agreement with the

standard assumptions.

In order to investigate possible non-linear patterns, Gaussian GAMs were

fitted to the Centroid sizes and the PCs. An example of a GAM with interaction

terms is given in Equation 3.4.

yi =β0 + f1(x1i) + . . .+ fp(xpi) + g1(x1i, x2i) + . . . (3.3)

+ gQ(x(p−1)i, xpi) + εi for i = 1, . . . , n (3.4)

As with the linear model approach, the number of interaction terms within the

GAM were reduced based on the prior knowledge of the correlations between

the inputs. The results from the GAMs are given in Table 3.3. Table 3.3

Model Output Deviance Explained Significant Input Factors

Centroid size 73.3%
(CSS, RoE) - edf = 2
SF

PC 1 (36.0%) 41.1% (CSS, RoE)

PC 2 (23.9%) 47.5%
(CSS, RoE)
(RH, SS) - edf = 2

PC 3 (10.1%) 63.0%
(CSS, RoE)
SF

PC 4 (7.3%) 36.9% SF

PC 5 (4.9%) 66.9%

(CSS, RoE)
SF - edf = 1
(DispCageX, DispCageY)
DispCageZ

PC 6 (4.1%) 16.2%
No input factors with
significant p-value

PC 7 (3.1%) 39.1%
SF
(DispCageX, DispCageY)

Table 3.3: GAM model output for the shape analysis where Solids Flux
192g/m2/year - Ardessie. (CSS - Critical Shear Stress for Erosion, RoE - Rate
of Erosion, RH - Release Height, SS - Settling Velocity of Sediment, SF - Set-
tling Velocity of Faeces, DispCageX/Y/Z - Dispersion Coefficient for Material
from cages (X/Y/Z directions)

confirms that the added flexibility of the models has improved the model fit,
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which is to be expected. Critical Shear Stress for Erosion, Rate of Erosion

and Settling Velocity of Faeces appear to be the ones that are significant most

often in the model. In some instances, the estimated degrees of freedom (edf)

= 1 or 2, indicating that a flexible function in the model is not be required.

Where the edf is not quoted in Table 3.3, this suggests that a flexible function

was appropriate.

From fitting models to the PCs and Centroid size, the input factors that

appear to have the biggest influence on the shape of the impact are Critical

Shear Stress for Erosion, Rate of Erosion and Settling Velocity of Faeces. They

were also ranked highest when considering the Total Area Impacted, 99th Per-

centile of Solids Flux and Mass Balance as the outputs at Ardessie in Chapter

2.

3.2.3.2 Muck

As with Ardessie, the Procrustes analysis was used to calculate centroid size

and PCs. At this site, the first four PCs explain 93.5% of the variation, with

a breakdown shown in Table 3.4. The larger amount of variation described by

Principal Component Percentage of Variability Captured
PC 1 59.0%
PC 2 22.0%
PC 3 7.5%
PC 4 5.0%
Total 93.5%

Table 3.4: Table of the Principal Component percentages for Solids Flux
192g/m2/year - Muck.

the first 4 PCs indicate that the shapes are more consistent in their variation.

The majority of the variation in the shapes is described by the first PC. The

variation described by the first three PCs is illustrated in Figure 3.5. From

Figure 3.5, it is clear that the first PC describes the variation in the length of

the impact shape in the North-West direction, and also some variation in the

width of the shape. The other two PCs appear to also describe some variation

in the width of the shape.

Following the same method as was used for Ardessie, individual linear mod-

els were fitted to the centroid size and the first four PCs, with information about

the model output provided in Table 3.5. The fit of the models are poor, with

relatively low R-squared values, especially for PC 2. In terms of the signifi-

cant input factors, none of the Dispersion Coefficients appear to have an effect

on the shape, with the other input factors being significant on more than one
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Figure 3.5: Plots of the shape variation described by the first 3 PC’s - Muck.

Model Output R-Squared Significant Input Factors

Centroid size 32.6%
Intercept
SF

PC 1 (59.0%) 33.0%

Intercept
CSS
RoE
CSS:RoE
SF

PC 2 (22.0%) 14.0% No input factors with significant p-value

PC 3 (7.5%) 36.9%
SS
RH:SS

PC 4 (5.0%) 32.4%

CSS:RoE
SS
RH:SS
SF

Table 3.5: Linear model output for the shape analysis for Solids Flux
192g/m2/year - Muck. (CSS - Critical Shear Stress for Erosion, RoE - Rate of
Erosion, RH - Release Height, SS - Settling Velocity of Sediment, SF - Settling
Velocity of Faeces)

occasion. Considering the poor R-squared values, it may be appropriate to

consider more flexible models.

As with Ardessie, GAMs were fitted to the centroid size and PCs, with
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the output information provided in Table 3.6. As expected, the more flexible

Model Output Deviance Explained Significant Input Factors

Centroid size 48.1%
(CSS, RoE) - edf = 2
SF

PC 1 (59.0%) 60.6%
(CSS, RoE)
(RH, SS)
SF - edf = 1

PC 2 (22.0%) 41.4% (CSS, RoE)
PC 3 (7.5%) 60.0% (RH,SS)

PC 4 (5.0%) 59.2%
(CSS, RoE)
(RH, SS)
SF

Table 3.6: GAM model output for the shape analysis for Solids Flux
192g/m2/year. (CSS - Critical Shear Stress for Erosion, RoE - Rate of Ero-
sion, RH - Release Height, SS - Settling Velocity of Sediment, SF - Settling
Velocity of Faeces)

models appear to fit the data better. Again, none of the Dispersion Coefficients

are significant in any of the models. the combined term of Critical Shear Stress

for Erosion and Rate of Erosion is significant in 4 of the 5 models, suggesting

that they have a big influence on the shape of the impact. The Release Height

and Settling Velocity of Sediment feature as significant inputs in Table 3.6,

whereas they only feature as significant for the first PC in Table 3.3. This

indicates that they have a bigger influence on the shape of the impact at Muck

compared to Ardessie, which is most likely down to the fact that resuspension

plays a bigger role at the faster flowing site.

3.2.4 Review

For the physical properties inputs, the shape analysis was able to identify

which parameters were likely to be causing variations in the shapes of the

impact. There were some common results between the two sites, with the

erosion parameters appearing to be influential, and the dispersion coefficients

not featuring a great deal. The main difference between the high and low energy

sites was that the Release Height and Settling Velocity of Sediment appeared

to be more influential at the high energy site, which could be a result of the

larger amounts of resuspension taking place.

The shape analysis approach is a worthwhile consideration in the case where

the impact on the seabed has a main shape. This is not always the case, and

the landmark approach may not always produce a good representation of the
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impact. Therefore, the next stage of the analysis will consider the output maps

in more detail using different approaches.

3.3 Bivariate functional analysis approach for

investigating NewDEPOMD output maps

Functional data analysis (‘FDA’) is a method used to analyse data providing

information over a curve or a surface. For i = 1, . . . , n, and t ∈ T , where T is

a real interval, FDA relates to data where the ith observation is areal function

xi(p), where each xi is a point in some function space, P (Ramsay & Dalzell

1991). Therefore, a functional data approach can be considered for the analysis

of the output maps, where they are represented as a function over space.

The idea of FDA can be explained further in the following equations, where

discrete data are to be converted to functional data using basis functions (Ram-

say & Silverman 2005).

yi(p) = xi(p) + εi,

where yi(p) are the values of the discrete data measured over a continuum, εi

are measurement errors, xi(p) are the linear combinations of the basis func-

tions, φij(p), with the coefficients cij:

xi(p) =
J∑
j=1

cijφij(p).

Here, i = 1, . . . , N is the number of observations and j = 1, . . . , J is the

number of basis functions. B-spline basis functions are commonly used in

FDA, along with Fourier basis functions (Ramsay & Silverman 2005, Abraham

et al. 2003, Serban & Wasserman 2005, Dannenmaier et al. 2020). Fourier basis

functions are suitable for data exhibiting a cyclic trend and are less appropriate

for the NewDEPOMOD data. B-spline basis functions will therefore be used

throughout. Their setup requires several choices to be made:

• The range over which the function is to be evaluated.

• The number of basis functions to be used.

• The order of the b-splines.

• The number of knots.
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The number of basis functions, the order and the number of knots are all linked

by the following equation:

No. of knots = (No. of basis functions)− (order) + 2.

The choices for the basis functions contribute to how flexible the functions

describing the output maps will be. When smoothing the functional data,

the amount of smoothing required is specified by the smoothing parameter,

λ (Ramsay & Silverman 2005). The smoothing parameter λ can be tuned to

improve the performance of the functions, with Generalised Cross Validation

(‘GCV’) being an appropriate approach for identifying the best value. To do

this, smoothing is done using different values for λ, and the average GCV values

are calculated, with the lowest GCV value identifying the optimal choice for λ.

Commonly, FDA is used for data measured over time, where univariate basis

functions are used, but to model the output maps, the FDA is used to model

the data which is measured over space, with bivariate basis functions being

used.

3.3.1 Fitting a surface using functional data approach

Fitting surfaces to the NewDEPOMOD output maps can be challenging due

to the vast areas of the domain where zero deposition occurs. Due to the

considerable differences in variability across the domain, it can be difficult to

produce an accurate representation of the surface using a functional approach.

The output maps were reduced by removing sections to the East of the farm

where no deposition occurs across all of te runs. However, there is still a large

area where there is a very small amount of deposition, which occurs in some

of the runs, so these grid cells remained in the analysis. An example of an

output map illustrating the variability is given in Figure 3.6. This output map

will then be used an example for testing different smoothing approaches. An

adaptive smoothing approach is proposed to allow the level of smoothness to

adapt to the variability in certain regions. The adaptive penalty matrix will

be used to allow areas with larger variability to be penalised less, to allow the

modelled surface to capture this variability.

To describe the method used, it will be described for the univariate func-

tional representation. Given a response, Y (t) measured over time, it can be

represented using a functional approach as:

Y (t) = Φ(t)β + ε(t).
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Figure 3.6: NewDEPOMOD output illustrating the high levels of variability
and large proportion of areas with zero deposition within the domain.

Here, Φ(t) represents a univariate B-spline basis function, and β represents the

coefficients for the basis functions. When fitting a standard P-spline model, a

penalty term is used to control the smoothness of Ŷ (t). The coefficient vector,

β̂, is found by minimizing the penalised least squares criterion, with the second

difference matrix, D:

‖Y−Φβ‖2 + λ‖Dβ‖2 (3.5)

Criterion 3.5 applies the same penalty across each of the elements in β. This

method is altered to allow for adaptive smoothing to take place by replacing

D with a second difference matrix of a diagonal matrix that has elements

that represent the different levels of variability across the time points. The

variability levels are denoted by αj, with j = 1, . . . , J , where J represents the

dimension of the B-spline basis, and therefore the number of coefficients in β.

The matrix D in criterion 3.5 is replaced by the second difference matrix of

the diagonal matrix with elements αj on the diagonal, and will be denoted as

Dα. With this approach, the calculation of αj is crucial and may result in over

adjustment, with some time points being over penalised in comparison to the

rest. Different modification techniques can be applied to account for this, such

as a lower cap, a square root transformation or a log transformation. These

will be considered in more detail later.

The above method will have to be altered to account for bivariate functional

data in order to apply this to the output data for NewDEPOMOD. Xiao et al.

(2013) introduced the ‘sandwich smoother’ as a way to implement a fast pe-
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nalised spline method for bivariate smoothing. This approach will therefore be

used to expand the adaptive smoothing method for bivariate functional data.

If we now consider Y to be an r×s matrix representing the output on a regular

grid, then Xiao et al. (2013) proposed smoothing across the rows and down the

columns of Y such that:

Ŷ = SeYSn,

where Se and Sn are the smoother matrices for each dimension. If we stack

the columns of Y into a vector, then by the properties of the tensor product

(Seber 2007),

ŷ = (Sn ⊗ Se)y. (3.6)

By calculating the tensor product of the two univariate smoother matrices,

an overall smoother matrix can be calculated. Each smoother matrix can be

calculated as follows using P-splines for l = e, n:

S l = Φl(Φ
>
l Φl + λD>l Dl)

−1Φ>l , (3.7)

with Φl representing the model matrix for each dimension using a B-spline

basis, and Dl denoting the difference matrices. The adaptive approach will be

applied to Se and Sn by substituting in Dlα to implement an adaptive penalty.

Using the adaptive smoothing approach, the calculation of the smooth surface,

ŷ can be expressed as follows:

ŷ = Sy. (3.8)

Here the tensor product is defined as S = (Sn ⊗ Se). One choice to be made

when applying the adaptive smoothing method is the smoothing parameter, λ.

This can be done by fitting surfaces using a range of values for λ and calculating

the GCV value for each, with the lowest value indicating the optimal λ. The

other choice to be made is the calculation of α, which denotes the variability

level for calculating the penalty, on the scale [0, 1]. For applying this to the

output maps from NewDEPOMOD, the calculation of α will be dependent

on the variation in the Easting and Northing directions, Ve, Vn. If there are

j = 1, . . . , r coordinates in the Easting direction and {Ve = (Ve,1, . . . , Ve,r)},
then the calculation is given as follows:

αe,j =
|Ve,j −max(Ve)|

max(Ve)−min(Ve)
. (3.9)

This equation will allow areas with lower variability to be penalised more,

to allow the fitted surface to capture the areas with higher variability more
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accurately. The above equation can be altered to account for the variation in

the Northing direction, where there are j = 1, . . . , s coordinates, by changing

the subscripts e to n.

For the method described above, there is a choice to be made regarding the

setup of the B-spline basis. It has been mentioned previously that there are

large areas of the domain where zero deposition occurs, therefore an irregular

basis setup could be used to improve the accuracy in the areas with larger

variance in the deposition. This was done through a dropped knots approach,

where a saturated basis function is set up initially for Easting and Northing,

with knots removed in the areas where the variance of Solids Flux is equal to

zero.

This method can be compared to the standard smoothing method with

no penalty term as well as the adaptive smoothing where knots are placed

regularly at every second grid cell for both methods. Table 3.7 highlights the

improvement that can be seen by using an adaptive smoothing approach with

irregular knots to fit a smooth surface to a sample output map. Figures

Figure 3.7: Plot of the fitted surface
for Solids Flux across the domain
with no penalty term and knots
placed at regular intervals, every
second grid cell.

Figure 3.8: Plot of the fitted sur-
face for Solids Flux across the do-
main with adaptive penalty term
and knots placed at regular inter-
vals, every second grid cell.

3.7 and 3.8 slightly overpredict Solids Flux in the areas where the original

output map (Figure 3.10) suggest that there is zero deposition. One potential

reason for the overprediction is that the deposition over the rest of the runs

is higher, and so these areas have a predicted deposition slightly greater than

zero. In comparison, using irregular knots and the adaptive penalty results

in a much better representation of the surface. This is further highlighted by

considering the MSE for each of the fitted surfaces in Table 3.7. Comparing the

two models with the knots placed every second grid cell, adding the adaptive

penalty produces a slight increase in the MSE. Moving on to using the dropped
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Figure 3.9: Plot of the fitted sur-
face for Solids Flux across the do-
main with adaptive penalty term
and knots placed at irregular in-
tervals, using a dropped knots ap-
proach.

Figure 3.10: Plot of the original
output map from NewDEPOMOD.

Method MSE
No penalty (Regular knots) - Figure 3.7 417013
Adaptive Smoothing (Regular knots) - Figure 3.8 419611
Adaptive Smoothing (Irregular knots) - Figure 3.9 14109

Table 3.7: Table of MSE for the different approaches to fitting the smooth
surfaces.

knots approach produced a much improved MSE. The adaptive smoothing

approach with dropped knots demonstrates an ability to create a surface that

represents the output maps effectively in comparison to the other approaches.

After determining that an adaptive smoothing approach is best, consistency

in the way these surfaces are produced will allow more robust comparisons to

be made. The consistency refers to the choice of smoothing parameter, λ,

and the values of αe(n). A quick exploration will therefore consider surfaces

created using an optimal λ for each surface, and αe(n) calculated for each output

map. A sample of output maps were chosen based on a set of percentiles of

the total Solids Flux for each output map. The percentiles that were chosen

were: {5th, 25th, 50th, 75th, 95th}. Using the associated output maps for each

percentile, smooth surfaces were then fitted, where the optimal value for λ was

chosen using GCV, and αe(n) was calculated individually for each output map,

where αe(n) is an abbreviation rather than writing both αe and αn. In addition,

surfaces were also fitted with an overall αe(n) used for each output map, and

the optimal value for λ also chosen using GCV. The overall αe(n) is calculated

using Equation 3.9 as before, however, the calculations for variance are made

using the data for each Easting (Northing) coordinate across all of the output
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maps being considered. Figure 3.11 highlights that the fitted surfaces have a

Figure 3.11: Plot of the MSE for surfaces fitted using the same αe(n) and
surfaces fitted using different αe(n) for each surface.

lower value for MSE when using the same αe(n) for all of the surfaces, indicating

the simpler approach is more effective. For the surfaces fitted using the same

αe(n), the optimal λ value was considered for each surface. From Figure 3.12,

Figure 3.12: Plot of the optimal values for λ for surfaces fitted using the same
αe(n) and surfaces fitted using different αe(n) for each surface.

four of the five optimal λ values were the same. This would suggest that it is

appropriate to consider an overall λ value to be used to fit all surfaces rather

than adding additional complexity and computational time.
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In order to confirm the approach of using a single value for λ, a set of the

50 replicate runs for a given set of inputs will be considered rather than an

average of these runs that was considered for Figures 3.11 and ??. Therefore,

surfaces were fitted for each of the replicate runs using the optimal value for λ.

Figure 3.13 identifies that the majority of the values are similar, with 38 of the

Figure 3.13: Histogram of the optimal values for λ for each of the surfaces for
the replicate runs.

50 replicates having an optimal λ value of 1 × 10−5. This indicates again the

idea of a single value for λ being appropriate. The next step of the process will

involve checking the optimal values for λ when considering the output maps for

another site. Doing so for an additional site resulted in 100% of the values for

λ being equal. Therefore, the investigation shows that using a common value

for λ to create each surface is appropriate.

When dealing with replicate runs, the method described above will be ap-

plied for each set of replicates, producing an individual smoothing matrix, Sm,

for each set of NewDEPOMOD inputs, m = 1, . . . ,M .

After fitting a surface to the NewDEPOMOD output map, it is important

to consider the variance and standard error of the fitted surface. Xiao (2012),

Xiao et al. (2013) considered the variance-covariance matrix for fitting func-

tional data in the univariate case, where the output is measured over time,

{t1, . . . , tm}. Each row in the output matrix, Y, corresponds to an output

measured over the m timepoints. To calculate the sample variance-covariance

matrix, each element, K(tj, tl), corresponds to the covariance between the out-

put at each pair of sampling points tj and tl (Xiao 2012, Xiao et al. 2013).

This method will have to be altered for bivariate functional data, dealing
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with an output measured over two dimensions. To calculate each element of the

sample variance-covariance, rather than a sampling point being an individual

timepoint, tj, it will instead be considered as a set of given coordinates, (e, n).

Consider a set of N output maps, Y = {Y1, . . . ,YN}, each of which are (r×s)
matrices. Within each matrix, each element corresponds to a grid cell in the

domain, with coordinates (ei, nj), for i = 1, . . . , r and j = 1, . . . , s. Let yi,j

be a vector of length N , containing the i, jth element of each matrix Yk, for

k = 1, . . . , N . In other words, yi,j = ((Y1)i,j, . . . , (YN)i,j). Then, the sample

variance-covariance matrix, S has the following dimensions: (rs × rs). The

diagonal and off-diagonal elements of S can be expressed as:

S =



Var(y1,1) Cov(y2,1,y1,1) · · · Cov(yr,s,y1,1)

Cov(y1,1,y2,1) Var(y2,1) · · · ...
...

... · · · ...

Cov(y1,1,yr,1) Cov(y2,1,yr,1) · · · Cov(yr,s,yr,1)
...

... · · · ...

Cov(y1,1,y1,s) Cov(y2,1,y1,s) · · · Cov(yr,s,y1,s)
...

... · · · ...
...

... · · · Cov(yr,s,y(r−1),s)

Cov(y1,1,yr,s) Cov(y2,1,yr,s) · · · Var(yr,s)



.

The diagonal elements of S refer to the variance of an individual grid cell. The

remaining elements in a given column are the covariance between the given

grid cell and each of the remaining grid cells. The next step is to use the

sample variance-covariance matrix from the original output maps to calculate

an estimate of the fitted variance-covariance matrix for the smooth surfaces.

To estimate the variance-covariance matrix for a fitted surface, the smoothing

matrix, S, used to fit the surface will be considered. For a fitted surface, Ŷk,

the estimated variance-covariance matrix can be calculated as follows, using

the sample variance-covariance matrix, S:

Var(Ŷ) = Var(SY) (3.10)

= SSS>. (3.11)

Equation 3.11 will produce an (rs× rs) matrix corresponding to the estimated

variance-covariance matrix for the fitted surface, which will be denoted, Σ. The

diagonal elements of Σ correspond to the estimated variance for an individual

grid cell, so the standard error can be calculated by taking the square root of
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these values.

Due to the random walk element of NewDEPOMOD, replicate runs are

often completed for each set of NewDEPOMOD inputs. Therefore, the above

method is suitable for each set of replicate runs to estimate the standard error

map for a given set of NewDEPOMOD inputs. Let M be the number of

NewDEPOMOD input sets being considered for a given analysis. For a given

set of inputs, m = 1, . . . ,M , there are Ym,1, . . . ,Ym,N output maps, where N

represents the number of replicate runs completed. Using the above method, a

sample variance-covariance matrix can be calculated for the input set m, and is

denoted as Sm. Using Equation 3.11, an estimated variance-covariance matrix,

Σm can be calculated for each set of inputs, m.

To illustrate this in practice two sets of replicate runs for two different

input sets were considered in order to compare the estimated standard error

maps. The above methods were applied to estimate two variance-covariance

matrices, Σ1 and Σ2. By taking the square root of the diagonals, the standard

error maps can be produced. There are some differences between both maps,

Figure 3.14: Map of the estimated
standard errors of the fitted sur-
faces for a given set of replicate runs
- Example 1.

Figure 3.15: Map of the estimated
standard errors of the fitted sur-
faces for a given set of replicate runs
- Example 2.

which is what we would expect. In Figure 3.15, there is an area below the

cages with standard error values greater than zero, which is not seen in Figure

3.14. Computationally, these standard error maps are expensive to run. The

calculation of each Σm requires the matrix multiplication of three (rs × rs)

matrices, with the matrix multiplication of two of these matrices having a

complexity of somewhere between O((rs)2.37) and O((rs)3). Therefore will not

be calculated for every surface and the plots above are included to illustrate

how the standard error maps can be calculated and how they would look.
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3.3.2 Bivariate functional PCA approach for identifying

areas of variation

A functional PCA (‘FPCA’) approach will be considered first. This will identify

the main areas of variation within the domain, with the aim of determining

which inputs are driving these variations using the PC scores.

To begin the FPCA approach, the functional representations of the output

maps, Ŷi, will be expressed as a linear combination of the set of basis functions.

To do so, the fitted surfaces, Ŷi are converted into vectors by stacking the

columns, ŷi = vec(Ŷi), and can be expressed as follows:

ŷi = Φβ̂i.

Here, Φ, refers to the model matrix for the bivariate B-spline basis, where

Φ = (Φn⊗Φe). Next, β̂i is the vector of estimated coefficients for the relative

basis functions, used to produce the ith fitted surface, Ŷi. Each element of the

matrix, Ŷi, corresponds to the estimated value of Solids Flux for a grid cell

with coordinates, {(ea, nb) : a = 1, . . . , A& b = 1, . . . , B}. To proceed with the

next step, there is an assumption that the set of outputs have zero mean. For

univariate functional data measured over time, this requires the data to have

zero mean for each time point. Extending this to the bivariate case, the data

will require each grid cell to have zero mean over all of the observations. This

can be done by subtracting a mean map, Ȳ, from each fitted surface, Ŷi. From

now on, the fitted surfaces, Ŷi, will correspond to the centered surfaces. The

covariance functions for each grid cell can then be expressed as:

V (ea, na, eb, nb) =
1

N
Φ (ea, na)

> β̂
>
β̂Φ (eb, nb) .

The respective eigenproblem to be solved for the functional PCA is:∫ ∫
V (ea, na, e, n) ξ (e, n) dedn = λξ (ea, na) . (3.12)

The following two orthonormal conditions must be satisfied to solve the eigen-

problem:

1.
∫ ∫

ξp(e, n)2dedn = 1,

2.
∫ ∫

xip(e, n)ξq(e, n)dedn = 0,

where p 6= q are indices for eigenfunctions. To solve Equation 3.12, a further

basis expansion is required, ξ(e, n) = Φ(e, n)>c. Then defining the matrix,
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W (e, n) = Φ(e, n)Φ(e, n)>. In order to solve Equation 3.12, the trapezoidal

rule is used to approximate the double integral W =
∫ ∫

W (e, n) dedn over

the range of e and n values for the domain, which is essential to solving the

eigenproblem (Gong et al. 2015). The left hand side of equation 3.12 can be

expressed as, ∫ ∫
V (ea, na, e, n) ξ (e, n) dedn (3.13)

=
1

N

∫ ∫
Φ (ea, na)

> β̂
>
β̂Φ (e, n) Φ(e, n)>c dedn (3.14)

=
1

N
Φ (ea, na)

> β̂
>
β̂

∫ ∫
Φ (e, n) Φ(e, n)>c dedn (3.15)

=
1

N
Φ (ea, na)

> β̂
>
β̂Wc. (3.16)

(3.17)

Therefore, using Equation 3.17 and the basis expansion of ξ(e, n), the approx-

imated eigenproblem can then be shown as

1

N
Φ (ea, na)

> β̂
>
β̂Wc = λΦ(e, n)>c. (3.18)

The next step of the process involves substitution to convert Equation 3.18 to

a symmetric eigenproblem. The required substitution is u = W1/2c, which

produces the following eigenproblem:

1

N
W1/2β̂

>
β̂W1/2u = λu. (3.19)

Equation 3.19 will then be solved for λ and u. Following this, the reverse

problem, c = W−1/2u, will be solved. This will allow the eigenfunction

ξ(e, n) = Φ(e, n)>c to be calculated. The eigenvalues, λ, indicate the pro-

portion of the variation explained by each of the principal components. The

corresponding principal component scores are then calculated by:

zi =

∫ ∫
ξ(e, n)Ŷi dedn, i = 1, . . . , N. (3.20)

The eigenfunctions, ξ(e, n) will provide information as to the sources of vari-

ation within the domain. Principal component scores are calculate for each

principal component being considered, and can be used, along with the eigen-

functions, to reconstruct the original output, Ŷi.
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3.3.3 Results from bivariate functional analysis approach

For the analysis of the output maps using the bivariate functional analysis

approach, the data from the combined sensitivity analysis of the inputs based

on the physical properties and the operational inputs at Ardentinny will be

considered. This approach will allow the whole output map to be considered,

instead of just the main shape of the impact. The output maps for this site

contain (60× 80) pixels in the domain.

The approach used to fit the 2-dimensional functional data for the NewDE-

POMOD output maps required a large number of basis functions to capture

the variability of the Solids Flux over the whole domain. As a result, the above

approach which approximates the double integrals becomes an infeasible calcu-

lation. One consideration to allow the calculations to be completed is to use a

sample of the basis functions that were used to calculate the smooth surfaces.

As mentioned previously, to solve the eigenproblem, the output maps were

centred. Due to the replication of runs at each set of input values, the mean

value for each grid cell over the set of replicate runs was removed. This means

that over the set of replicate runs, the mean value for each grid cell will be

zero. When investigating the number of basis functions required to calculate

the smooth surfaces, the computation time had to be considered. Using the

dropped knots approach, described earlier in the Chapter, it was determined

that 2900 basis functions were able to capture the high levels of variability in

some areas of the domain. Computing the functional PCA is computationally

demanding, and reducing the number of basis functions was explored to im-

prove efficiency without sacrificing accuracy. It was determined that reducing

the number of basis functions to a sample of 105, evenly spaced over the origi-

nal basis matrix, allowed the trapezoidal approximation of the integrals to be

completed efficiently without a detrimental effect on the performance, which

was seen by the similar values for MSE when comparing to the original output

map. This then allowed the eigenproblem to be solved and the PCA to be

completed.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 2.22×109 1.93×109 1.63×109 1.42×109 1.30×109

Variance Pro-

portion
22.9% 19.9% 16.8% 14.7% 13.4%

Table 3.8: Eigenvalues and Variance Proportion for the first five PCs.
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The first five PCs are able to describe approximately 88% of the variation

in the data, with all of them playing a similar role, with a difference of less

than 10% between the first and the fifth PC. There is then a drop in the % of

variance explained by the sixth PC to 4.5%. The eigenfunctions for the first

two PCs are given in Figures 3.16 and 3.17, and highlight the different variation

patterns over the domain that are described by each PC.

Figure 3.16: Plot of the eigenfunction for PC1 over the fish farm domain.
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Figure 3.17: Plot of the eigenfunction for PC2 over the fish farm domain.

Due to the vast majority of the domain having zero or close to zero de-

position, the variation identified by the eigenfunctions is small in comparison

to the size of the domain, but tells a lot about where the main shape of the

impact varies. Figure 3.16 highlights a section of the coast to the South of the

cage layout as well as an area to the North of the cage layout. Figure 3.17

highlights two areas on the West of the cage layout, one at the North, and one

to the South-East. As mentioned previously, the output maps can be recon-

structed using the eigenfunctions and the corresponding PC scores. The PC

scores can also be considered as the output for the sensitivity analysis, as they

are representations of the variation of each map according the eigenfunctions.

As the PC scores can be considered as a scalar output for a sensitivity

analysis, random forest modelling was used to help identify the most influential

inputs for each PC. In order to draw inference from the random forest models,

they need to be able to explain some of the variability. For the functional PC

scores, the random forest models explain close to none of the variation in the

data. Figure 3.18 shows the PC scores for the first PC across the runs.
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Figure 3.18: Plot of the PC scores for the first PC against the run number.

Within Figure 3.18, there appears to be different levels of variance across the

runs. The run numbers are ordered based on the operational inputs, of which

there are eight for this site, meaning 2500 runs for each operational setup.

Figure 3.18 appears to show some sort of relationship between the variance

of the PC scores and the operational setups. The random forest models were

fitted again, with one term representing the operational setup as well as the

physical properties inputs. However, this did not provide any improvement on

the fit of the random forest models.

3.3.4 Review

The functional PCA has provided some insight as to the main areas of variation,

how many PCs are required to explain a large amount of the variation, and also

highlights that there could be some relationship between the variation and the

operational setup. However, this approach has not produced a detailed idea of

where some of the inputs are more influential over the domain, and the poor

fit of the random forest models to the PC scores did not allow any conclusions

to be drawn about which inputs were causing the variance described by each

PC. Therefore, further approaches will be considered to provide more detail

and draw better conclusions.
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3.4 Individual grid cell approach for investi-

gating NewDEPOMOD output maps

In order to overcome the issues discovered for the shape and bivariate functional

analyses, the output data for individual grid cells across the domain will be

considered. This will allow the whole domain to be considered, and should

allow the most influential inputs to be identified.

This approach will consider multiple modelling techniques, with the aim of

developing a suitable framework that could be applied to any fish farm site.

The initial analysis will feature the data from Ardentinny that was used in the

previous section.

3.4.1 Eta-Squared as a sensitivity measure

The eigenfunctions for each of the PCs provide some information about the

variation they are describing within the domain, but not in great detail. In

addition, no conclusions were able to be made from the random forest modelling

of the PC scores. So, in order to gain a more accurate description of which

inputs are most influential across the domain, grid cell data will be considered

independently.

For a global sensitivity analysis of a univariate output and discrete input

factors, it can be considered as the equivalent of an ANOVA decomposition

(Saltelli et al. 2000). This method decomposes the output variance and can

attribute it to the main effects of each input factor as well as the second order

interactions between the inputs. The Sums of Squares are used to decompose

the variance, and a unique decomposition exists when a complete factorial

design is used (Lamboni et al. 2011). To test an ANOVA-style method, the

continuous inputs (physical properties inputs) were converted to discrete in-

puts, each with 4 levels containing the same number of values. Due to the

nature of how the operational setup for a farm was chosen, it does not produce

a balanced design with the same number of input sets for each level of the

operational inputs. As a result, the ANOVA decomposition must be altered to

account for the unbalanced design.

Within R, the multisensi package (Bidot et al. 2018) can be utilised to

complete a sensitivity analysis on a model with multivariate output. With this

package, however, it is not applicable to the case where the design is unbal-

anced, as it follows an ANOVA style approach for decomposing the variance

using type I sums of squares. As a result, the approach will have to be altered

to account for the unbalanced design in this case.



CHAPTER 3. SENSITIVITY ANALYSIS FOR OUTPUT MAPS 105

Unbalanced factorial designs were studied as far back as 1934, (Yates 1934),

who described the three different approaches for calculating sums of squares for

unbalanced data to test hypotheses in ANOVA. These methods were considered

further by Speed et al. (1978), Herr (1986), who reviewed different approaches

to modelling unbalanced data. The three different methods for calculating

sums of squares are known as Type I, Type II and Type III. Despite being

considered as three different ‘sums of squares’, each approach differs in the

hypothesis testing strategies for the ANOVA - which then lead to different

sums of squares values when considering an unbalanced design. It should be

noted that, for a balanced design, each approach will produce identical results

for the sums of squares. Each of the types are described in more detail below:

• Type I - This corresponds to a sequential approach of adding the inputs

- beginning with the main effects one at a time before adding each of the

interactions for the model comparisons. This approach is dependent on

the order if the inputs - and different results can be produced by altering

the order.

• Type III - This is simpler to discuss than Type II initially. For each

hypothesis being tested, the alternative model is always the full model

containing all of the main effects and interactions, while the null model

deletes the one term that is being tested.

• Type II - These are similar to Type III in that it compares a full model

with a null model where a single term is removed. The difference between

the two is that Type II tests are based on the ‘marginality principle’,

which advises that a you should not omit a lower order term if there are

higher order terms that are dependent on it.

Example 3. To illustrate the different hypotheses that are being considered,

a simple example will be given. Suppose that two inputs, A and B, are being

considered in an unbalanced ANOVA. Tables 3.9, 3.10 and 3.11 explain the

different approaches used for each type. First, considering the models being

Table 3.9: Type I

Term being tested Null Model Alternative Model

A 1 A
B A A + B
A:B A + B A + B + A:B

test for the type I approach, in Table 3.9, when input A is tested, the null and
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Table 3.10: Type II

Term being tested Null Model Alternative Model

A B A + B
B A A + B
A:B A + B A + B + A:B

Table 3.11: Type III

Term being tested Null Model Alternative Model

A B + A:B A + B + A:B
B A + A:B A + B + A:B
A:B A + B A + B + A:B

alternative models ignore input B, whereas, when input B is tested, input A is

considered in the both models. Therefore, changing which input is being tested

first will produce different results. In Table 3.10 for the type II approach, when

a main effect is being considered, the alternative model does not include any

interaction terms involving that main effect. Finally, in Table 3.10 for the type

III approach, when testing main effects the null and alternative models contain

the interaction term involving that main effect.

Example 3 highlights some of the issues seen with type I and type III anal-

yses. Much controversy has surrounded the type to use when dealing with

unbalanced data, which is considered in Herr (1986), but the choice essentially

comes down to the hypothesis being tested. Due to the fact that Type I is de-

pendent on the order of the inputs, it is rarely considered in the circumstance

where there is an unbalanced design. It is rare to know which order the specific

inputs should be considered, therefore which rules out type I sums of squares

when considering unbalanced data. Langsrud (2003) came to the conclusion

that type II was preferable, a suggestion that was mentioned previously by

Nelder (1977) and Nelder (1994). Langsrud (2003) identified type II sums of

squares as being a more powerful tool when no interaction is present between

inputs. For type III, the main effects are being tested in the presence of interac-

tion terms which are uninteresting hypotheses (Nelder 1977, 1994). Langsrud

(2003) observed that type II methods were previously not considered due to

the fact that the interactions are considered to be negligible or non-existent.

Eta squared (η2) is a standardized measure of effect size for an ANOVA,

meaning it can be compared across different units of measurement. It can be

summarised as the ratio of variance in an output that is explained by an input.
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It can be calculated as follows:

η2 =
SSeffect
SStotal

. (3.21)

Here, SSeffect refers to the sum of squares of the input, and SStotal is the total

sum of squares. In the case of an unbalanced design, it is possible for some

variance to ‘go missing’. The missing variance corresponds to variance in the

output that is attributable to the inputs, but where it is not clear which input

is responsible. This only occurs when considering Type II & Type III tests,

which are more conservative.

To apply the η2 approach to the output maps, each grid cell within the

domain was considered independently - with the Solids Flux values from each

of the 20,000 runs considered as the output data. The aim of this analysis was

to determine more accurately the inputs that are more influential at specific

areas of the domain. This approach will allow η2 values to be calculated for

each of the inputs as well as any interactions. In addition, an η2 value can be

calculated for the residuals. As a result of how η2 is calculated in Equation 3.21

for each of the inputs, the following condition should hold, when considering

all of the η2 values for the first order effects and any interactions.

η2
Res +

n∑
i=1

η2
i ≤ 1. (3.22)

As mentioned previously, it is possible for ‘missing variance’ to be present,

where it cannot be attributed to one specific input which is why Equation 3.22

features an inequality. Here, i = 1, . . . , n represents the element of the model,

including interaction terms.

Considering the NewDEPOMOD output maps, η2 values were calculated

using type II sums of squares, for a model containing two-way interactions for

all of the inputs. The first step of the process was to look at the sum of the

η2 values (Equation 3.22), to review any areas of missing variance. Figure 3.19

produces some interesting insights - the main one being that the area directly

below the farm have values much less than 1, indicating that there is a lot of

variance missing in these areas. In addition, it can be seen that areas of the

domain have values equal to zero as no deposition occurs in these grid cells. It

would be expected that the area directly below the farm would be influenced by

the operational inputs. The cage setup plays a big role in the initial deposition

of waste below the cages, so it is possible that the missing variance in these

areas is a result of the variance not being assigned with confidence to any of
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Figure 3.19: Map displaying the sum of the η2 values for each grid cell.

the operational inputs.

To overcome this problem and reduce the missing variance, only one oper-

ational input will be considered which corresponds to the operational setup.

Overall at this site, there were 8 different operational setups considered, to the

input is a categorical variable with each level corresponding to a given setup.

This could reduce the amount of missing variance in some grid cells as it is able

to be attributed with confidence to the one operational input being considered.

The sums of the η2 values for each grid cell are given in Figure 3.21. Clear

improvements are seen in the areas directly below the farm and along the coast

in Figure 3.21, indicating that the previous suspicion that the variance could

not be assigned confidently to any of the operational inputs in these areas,

was true. However, this plot also highlights one area of concern with the η2

calculations. Some of the grid cells within the domain violate the condition in

Equation 3.22, with the sum of the η2 values being greater than 1. This means

that more variance is being explained than the variance that is available. As

a result, any inference drawn from this analysis would have to be considered

with caution. To avoid the case where the grid cells violate the condition in

Equation 3.22, all inputs should be considered. Further methods will therefore

be considered to attempt to overcome the issue of the condition being violated.



CHAPTER 3. SENSITIVITY ANALYSIS FOR OUTPUT MAPS 109

Figure 3.20: Map displaying the sum of the η2 values for each grid cell for the
reduced model with one operational input.

3.4.2 Sobol Indices approach

In order to overcome the issue of the η2 condition being violated, an alternative

approach is considered. A number of different strategies have been proposed

for completing global sensitivity analyses over the years, but one of the most

popular is the approach proposed by Sobol’ (1993). This method computes in-

dices that measure the variance contribution of each input to the total variance

of a given output. The common indices that are calculated are the first order

and total order indices, which refer to the contribution of each input individu-

ally and the total contribution that includes the interaction effects. Variance

decomposition methods began with a Fourier implementation (Cukier et al.

1973), before Sobol’ (1993) introduced what are now called Sobol indices. The

concept of total sensitivity indices were proposed by Jansen et al. (1994), and

the expansion of Sobol indices for calculation of total sensitivity indices were

introduced by Homma & Saltelli (1996). The estimates of the first-order sen-

sitivity indices for an input, Xi, for the output data, Y , are given as (Sobol’

1993):

Si =
V [E(Y |Xi)]

V (Y )
. (3.23)
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One thing that was identified in Chapter 2, was that there was that outliers

can be present, shown in the skewed histograms of the scalar outputs. This is

also true when considering the output maps, with some outliers being present

within the grid cell data. To demonstrate this, the data for the grid cells where

deposition has occurred across the runs is combined, and plotted in a histogram

in Figure 3.21. The data is heavily skewed, and multiple transformations such

Figure 3.21: Histogram of the combined grid cell data.

as log, square root and cube root were considered but unsuccessful in reducing

the skew. One drawback to the Sobol indices are that they are sensitive to

outliers. The computation of the numerators in Equations 3.23 can produce

values which are greater than the global variance. When calculating the Sobol

indices for the data, approximately 14% of the first-order Sobol indices were

outwith the required range of [0, 1]. As a result, a method for calculating

robust Sobol indices was established. A common approach when dealing with

outliers, is to trim the data, by discarding a proportion of the smallest and

largest values - it is commonly used for calculating robust measures of the

mean, variance and regression coefficients (Huber 1981). In order to calculate

the robust Sobol indices, the proportion of data to be trimmed was considered.

Removing the upper and lower 5% of the data was considered, but still resulted

in approximately 8% of the first-order indices being outwith the required [0, 1]

range.
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Although the robust method shows a reduction in the number of first order

Sobol indices outwith the plausible range, it does not solve the problem. The

method also works by trimming the data, and therefore removing the ‘extreme’

values from the analysis. As a result, it is appropriate to consider an approach

that is not sensitive to outliers, and it could also be of interest to consider

the ‘extreme’ values in more detail to establish if the are combinations of the

inputs that are driving them.

3.4.3 Random forest approach for sensitivity measure

Random forests have been used previously for sensitivity analyses due to their

flexibility, and the easily interpretable importance values as a measure of sen-

sitivity ranking. Therefore, they will be considered as an alternative to the

variance decomposition methods. As with the η2 and Sobol approach, each

grid cell will be considered independently, and random forest models fitted. As

with the η2 approach, each grid cell in the domain is considered independently,

with the output data consisting of the Solids Flux values in each grid cell from

the 20,000 runs. A total of 20,000 runs were completed for this site, containing

data for 400 different input sets and will all be considered in the analysis due to

the efficiency of creating the random forest models. Importance values for the

inputs were able to be extracted for each grid cell as a ranking measure. For

each grid cell, the highest ranking input could then be extracted to consider

any patterns across the domain. Grid cells where zero deposition occurs across

all of the runs are indicated by ‘0’ in the legend in Figure 3.22. For this anal-

ysis, a number of grid cells have been removed as they feature no deposition

across the runs, leaving a rectangular domain where each row or column of the

map features at least one grid cell where deposition occurs. There are some

clear patterns that can be seen in Figure 3.22. First of all, the dominant input

that appears to be highest ranked across the most grid cells is the Settling

Velocity of Faeces. The areas that it is highest ranked are below the cages and

in the areas surrounding the cages, indicating that it is playing a big role in

the build up of waste material near the cages. This can be explained by the

fact that it determines the length of time that the faeces remains in the water

column and therefore how far it is transported initially from the cages. Below

the cages, the Number of Cages appears to be influential in the areas where

the additional cages are added. In the areas of the domain slightly further

from the cages and along the coast, the resuspension inputs appear to be most

important. The one that is be highest ranked in more grid cells is the Settling

Velocity of Sediment. The additional resuspension inputs such as the Release
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Figure 3.22: Map of the highest ranking input in each grid cell according to
the random forest importance.

Height of Resuspended Material, the Critical Shear Stress for Erosion and the

rate of Erosion are ranked highest in a number of the grid cells further from

the cages. Only a small number of grid cells found Biomass and Cage Diameter

to be the highest ranking inputs. The area to the East of the farm features a

large amount of variation in the top ranking input, signalling that it is possible

the amount of deposition in these areas is potentially low and that more than

one of the inputs have similar influence in these areas.

This approach has been able to highlight the different areas within the

domain that are dominated by the different inputs. Each of the inputs that were

highlighted from Figure 3.22 can be explained logically by the characteristics

of each input. The benefit of this approach is the ability to create a single map

of the top ranked input for each grid cell. This will allow comparisons to be

made between sites to help identify any similarities or differences that might

occur.

3.4.4 Considering the extremes

Previously, the Sobol approach was identified as being sensitive to outliers,

producing uninterpretable results. One feature of the data for some grid cells

within the domain is that it is heavily skewed, with some extreme values

present. To consider this extreme data, all of the grid cells were considered

together, rather than independently, with the raw data being used rather than

the smoothed maps. As previously highlighted, there are a large number of grid



CHAPTER 3. SENSITIVITY ANALYSIS FOR OUTPUT MAPS 113

cells within the domain where zero waste deposition occurs across all runs, and

so these grid cells were removed from the analysis. Figure 3.23 confirms that

Figure 3.23: Histogram of the output data being used to investigate the ex-
tremes, after removing the grid cells with zero deposition.

even after removing the grid cells with zero deposition, the data is still skewed

heavily, and the extreme values will have to be identified. Different approaches

could be considered to review whether there are any links between the inputs

and the extremes. As a starting point with skewed data, transformations were

considered, such as log, square and cube roots. Even after transforming the

data, it was still heavily skewed, and so other methods are considered.

The first approach that could be considered is a logistic regression, where

the binary output refers to whether or not an observation is an extreme. In

order to identify the extreme values, a robust Z-score approach will be used.

The formula for a standard Z-score is given as:

Z =
x− µ
σ

,

where x is the observed data, µ is the mean of the data and σ is the standard

deviation of the data. In order to calculate a robust version, the median can

be considered instead of µ, and a robust measure of scale can be considered

instead of σ. Potential robust measures of scale are Median Absolute Deviation

(‘MAD’) or the inter-quartile range. Using these two robust alternatives, Z-

scores could be calculate for the output data. A common approach is to consider

a cut-off value of 3 for identifying outliers when considering Z-scores, which

would refer to three standard deviations away from the mean. After identifying
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the extremes, the next step of the process would look at whether there are

differences between the groups in terms of the inputs. A discriminant analysis

would be an ideal approach for this, however, there are categorical inputs which

do not meet the assumption of normality required for the inputs, so logistic

regression could be considered.

3.4.4.1 Quantile Regression

An alternative approach which does not require alterations to the data, or

calculation of Z-scores, is to consider a quantile regression for the original

output data, rather than the binary output data. This approach does not

require any calculations of Z-scores or definitions of what is an extreme value.

For a set of quantiles τ = {τ1, . . . , τm}, the model equation for the τjth quantile

is:

Qτj(yi) = β0(τj) + β1(τj)xi1 + . . .+ βp(τj)xip, i = 1, . . . , n.

Quantile regression is therefore an extension to linear regression, where the

beta coefficients are changed from constants, to function with a dependency on

the quantile.

For this approach, quantile regression models were fitted with the quantiles

τ = {0.9, 0.95, 0.99}, after removing the grid cells where zero deposition oc-

curred. Due to computational cost, samples from each set of replicates had to

be considered. Out of the 50 replicates for each input set, 5 observations were

considered and the quantile regression models fitted for 10 different samples.

The models fitted, featured the five continuous physical properties inputs, as

well as a categorical variable representing the operational setup for the runs,

and additionally two-way interactions between all of the inputs. Due to the

interactions and the categorical term, there were a total of 64 variables in the

quantile regression models, including the intercept. After fitting the quantile

regression models, Table 3.12 shows the percentage of the inputs that were con-

sidered to be significant. Table 3.12 shows that the number of significant inputs

in the quantile regression models decreases from approximately 70% to 45% as

the quantile value increases. Before reviewing the inputs that are significant, a

measure of how well the quantile regression models fit are considered. Koenker

& Machado (1999) described a process for measuring the fit of a quantile re-

gression model, similar to R2, which will be summarised below. First, consider

a linear quantile regression model,

Qyi(τ |x) = xβ(τ),
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Table 3.12: % of Significant inputs for each quantile model

Model Sample 0.9 Quantile 0.95 Quantile 0.99 Quantile

1 74.1% 60.3% 44.8%
2 74.1% 56.9% 43.1%
3 72.4% 60.3% 43.1%
4 74.1% 63.8% 46.6%
5 72.4% 60.3% 44.8%
6 70.7% 65.5% 43.1%
7 69.0% 62.1% 43.1%
8 69.0% 60.3% 55.1%
9 69.0% 65.5% 43.1%
10 67.2% 63.8% 44.8%

with β̂(τ) being the minimizer of the following,

V̂ (τ) = min
b∈Rp

∑
ρτ (yi − xb).

The above equations correspond to an unrestricted problem, containing all of

the inputs. Next, consider a restricted problem, where only the intercept is

considered. Then β̃ is the minimizer of the constrained problem,

Ṽ (τ) = min
b1∈R

∑
ρτ (yi − x̃b1).

In other words, β̂(τ) and β̃(τ) refer to the quantile regression estimates for the

restricted and unrestricted models. The goodness-of-fit criterion can then be

estimated as (Koenker & Machado 1999),

R1(τ) = 1− V̂ (τ)

Ṽ (τ)
. (3.24)

This measure of goodness-of-fit will provide an approximation of how well the

quantile regression models explain the variation in the data. For the models

fitted for the 0.9 and 0.95 quantiles, R1(τ) was approximately 0, indicating

that the variation in the data was not explained by these models. There was

a slight improvement for the 0.99 quantile, which explained approximately 7%

of the variation. Due to the poor fit of the models, the significant inputs will

only be considered briefly, focusing on the inputs which were significant across

all of the 10 samples.

For the 0.9 quantile, approximately 38% of the inputs were significant across

all of the 10 samples. The significant inputs featured were the intercept, and

the first order terms included the Rate of Erosion and the Cage Setup. Looking
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at the interaction terms, the only interaction terms including only the physical

properties inputs were the Critical Shear Stress for Erosion and Rate of Erosion,

Rate of Erosion and Settling Velocity of Faeces, and Settling Velocity of Faeces

and Settling Velocity of Sediment. The interaction between Critical Shear

Stress for Erosion and Rate of Erosion will be influential in determining whether

or not waste on the seabed is resuspended and transported, therefore a lack

of material being resuspended and transported could produce extreme values.

The remaining interaction terms were between each of the physical properties

inputs and the Cage Setup - indicating that the combined influence of the Cage

Setup and each physical properties input could be influential in modelling the

extremes. As previously mentioned, due to the poor quality of the fit of these

models, the review of the significant inputs cannot be deemed conclusive.

Moving on to consider the 0.95 quantile in a similar way, the number of

significant inputs across the 10 samples was approximately 22%. Again the

intercept was included as being significant, and the first order term for Rate

of Erosion is no longer included, along with the interactions between Rate of

Erosion and Settling Velocity of Faeces, and the interaction between Settling

Velocity of Faeces and Settling Velocity of Sediment. The interaction terms

between the Cage Setup and Settling Velocity of Faeces, Settling Velocity of

Sediment and the Release Height of Resuspended Material remain significant

across all of the samples.

Finally, considering the 0.99 quantile, the number of significant inputs

across the 10 samples was reduced further to approximately 14%. The in-

tercept was again significant across all of the 10 samples, along with the first

order terms for the Cage Setup. In contrast to the previous two quantiles, none

of the interaction terms between the physical properties inputs and the Cage

Setup were significant across all 10 samples, except the one for Settling Veloc-

ity of Faeces. The only other interaction term that was included, is between

Critical Shear Stress for Erosion and Rate of Erosion.

From reviewing the inputs that were significant across the 10 samples for

each quantile, there are some patterns seen. The Cage Setup and the interaction

between the Critical Shear Stress for Erosion and Rate of Erosion appear in all

of the quantiles, along with the interaction between Settling Velocity of Faeces

and Cage Setup. It was previously highlighted that the fits of these quantile

regression models are poor, and so the conclusions have to be considered with

caution.
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3.4.5 Conclusions

Having tested several approaches to investigate the influence of altering the

inputs on the NewDEPOMOD output maps, a framework focusing on a subset

of these approaches can be developed which can be applied at additional sites.

Considering the individual grid cells within the output maps independently,

before combining the results to consider as a map allowed all of the data to

be used, and produced plausible results when identifying the most influential

inputs over the domain.

The framework that will be used for the additional sites will use the η2,

random forest and quantile regression approaches to assess the impact of the

inputs across the domain, as well as investigating the extreme values seen across

the domain.

3.5 Framework applied to additional sites

As previously mentioned, a subset of the methods that were considered for

Ardentinny will be used to investigate the effects of altering the inputs at the

additional sites. An additional low energy site will be considered first, before

looking at the two high energy sites. The aim is to look across the different

sites for any similarities or differences that are present in the distribution of

the influential inputs over the domain. The approach will use the framework

described at the start of the chapter, with the random forest, η2 and quantile

regression approaches considered.

3.5.1 Low energy sites

The additional low energy site, West Strome, will be considered first to assess

if there are similar patterns seen across the domain compared to Ardentinny.

Firstly, the random forest approach will be considered, before looking at the

η2 values and concluding with the modelling of the extremes using quantile

regression.

As with the analysis at Ardentinny, the random forest approach will con-

sider the raw data from each cell individually. For each grid cell, a random

forest model was fitted, with the importance values then taken for each of the

inputs. This allowed the input with the largest importance value in each grid

cell to be identified, then used to create a map of the most important grid cells

over the domain. Figure 3.25 is a map of the highest ranking inputs, which can

be compared to the map produced for Ardentinny, Figure 3.24. There appear
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Figure 3.24: Map of the highest
ranking input in each grid cell ac-
cording to the random forest impor-
tance - Ardentinny.

Figure 3.25: Map of the highest
ranking input in each grid cell ac-
cording to the random forest impor-
tance - West Strome.

to be some similarities between the two sites at the area where the cages are

located. At either end of the cage setup, the Number of Cages is influential for

a number of grid cells, as these are the areas where the additional cages are

placed. In addition, the Settling Velocity of Faeces plays a key role in the areas

below the cages and the areas surrounding the cages at both sites. However, at

Ardentinny, there are a larger number of inputs that appear to be influential in

the areas to the East of the cages, at the outskirts of the deposition. This area

features the Cage Diameter, Number of Cages, Critical Shear Stress, Rate of

Erosion, Release Height of Resuspended Material and the Settling Velocity of

Faeces. At West Strome, the areas on the outskirts of the deposition appear to

be dominated by the Settling Velocity of Faeces and the Critical Shear Stress,

with some other additional inputs being highest ranked in some grid cells. The

inputs related to the resuspension module appear to play a bigger role at Ar-

dentinny, suggesting resuspension plays a bigger role at this site. The potential

reason for the larger number of inputs being highest ranked in certain areas of

the domain at Ardentinny are likely that the inputs have similar importance

values across those areas, which doesn’t appear to be the case at West Strome.

The next step of the framework is to consider η2 as a variance decomposition

technique. Previously, for the analysis at Ardentinny, the map illustrating the

highest ranking inputs in each grid cell was not considered. Therefore the η2

maps for both sites will be considered together. As previously mentioned, to

calculate η2, the continuous inputs have to be converted into categorical inputs

with 4 levels, and all operational inputs were considered to avoid violating the

condition in Equation 3.22. In the event that any grid cells do violate the

condition, they were considered as missing data, and the total η2 values for

the inputs in the remaining grid cells were assessed. The total η2 values were
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calculated by summing the first and second order effects relating to each input.

Figures 3.26 and 3.27 show that only the Critical Shear Stress for Erosion was

Figure 3.26: Map of the highest
ranking input in each grid cell ac-
cording to η2 - Ardentinny. (CSS -
Critical Shear Stress for Erosion)

Figure 3.27: Map of the highest
ranking input in each grid cell ac-
cording to η2 - West Strome. (CSS
- Critical Shear Stress for Erosion)

identified as being the top ranked input in the grid cells across the domain where

deposition occurs, with no grid cells being identified as violating the condition

in Equation 3.22. In addition, the use of 4 different levels for converting the

continuous inputs to categorical inputs could be a reason for only one input

being identified as the top ranked.

In order to test if the number of levels used when converting the continuous

inputs to categorical inputs is the reason for only one input being identified as

the top ranked, an increased number of levels will be considered. To test this,

a total of 8 levels will be considered when converting the continuous inputs to

categorical inputs. This approach was considered for Ardentinny, with η2 cal-

culations run. These calculations were much more computationally expensive

compared to the calculations when using 4 levels for the continuous outputs.

There are two things to notice when comparing Figure 3.28 to Figure 3.26: 1)

Critical Shear Stress for Erosion is again the only input that is identified as

being the top ranked and 2) no grid cells were identified as violating the condi-

tion for the η2 calculations. The adjustment in the number of levels being used

to convert the continuous inputs to categorical inputs did not help pick out

any other inputs as being identified as the most influential in any grid cells.

The drawback of using this approach is the computational cost of using the

additional levels, with the time taken to fit the models increasing by several

times.

Next, considering the extreme values at West Strome, quantile regression

models will be fitted in a similar way. Rather than providing the percentage of

significant inputs for each of the 10 samples, the mean percentages are given
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Figure 3.28: Map of the highest ranking input in each grid cell according to
η2, with additional levels used for converting continuous inputs to categorical
- Ardentinny. (CSS - Critical Shear Stress for Erosion)

in Table 3.13 for each quantile. First, considering the measure of fit for the

Table 3.13: Mean % of Significant inputs for each quantile model across 10
samples

0.9 Quantile 0.95 Quantile 0.99 Quantile
100.0% 57.3% 26.3%

different quantiles, again, the 0.9 and 0.95 quantiles have values close to zero,

and the 0.99 quantile has a slight improvement, explaining approximately 4.4%

of the variation. As with the results at Ardentinny, they inputs which were

significant across the 10 samples are briefly summarised. For the 0.9 quantile,

all of the inputs were significant across the 10 samples. Next, considering the

0.95 quantile, approximately 52% of the inputs were significant over all the

samples. The intercept was not significant across the 10 samples, and the first

order terms that were significant included the Critical Shear Stress for Erosion

and the Cage Setup. In addition, the interactions between: Critical Shear

Stress for Erosion and Rate of Erosion; Critical Shear Stress for Erosion and

Release Height of Resuspended Material; Rate of Erosion and Settling Velocity

of Sediment; Rate of Erosion and Release Height of Resuspended Material; and

Settling Velocity of Sediment and Release Height of Resuspended Material. In

addition to those interactions, the interactions between each physical properties

input and the Cage Setup was included. Similar to Ardentinny, the number of

inputs significant across the 10 samples decreases again for the 0.99 quantile.
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The only first order term is the Cage Setup, and the interaction terms include

the interaction between Critical Shear Stress for Erosion and Rate of Erosion,

Settling Velocity of Faeces and Release Height of Resuspended Material, and

Settling Velocity of Faeces and Cage Setup. The significant inputs appear to

be similar to those identified for the analysis at Ardentinny, but the poor fit of

the models make the conclusions cautious.

When considering the two low energy sites, it was expected that there would

be some similarities in the patterns seen over the domain for the highest ranking

inputs. However, there are some large differences between the ranking of the

inputs at both sites. This highlights the potential need to consider each site

separately, instead of being able to group them by their characteristics.

3.5.2 High energy sites

After considering the low energy sites, the high energy sites will be considered

together to investigate any differences or similarities that may be present within

the domains. The two high energy sites being considered are Muck and Djuba

Wick. As with the additional low energy site, the random forest approach for

each grid cell will be considered. The two sites will be analysed together to

look for any similarities between the high energy sites, and also compared to

the low energy sites. Looking only at Figures 3.29 and 3.30, there appears to

Figure 3.29: Map of the highest
ranking input in each grid cell ac-
cording to the random forest impor-
tance - Muck.

Figure 3.30: Map of the highest
ranking input in each grid cell ac-
cording to the random forest impor-
tance - Djuba Wick.

be some similarities between the two sites, but also some differences in certain

areas. The Settling Velocity of Faeces appears to be the dominant input in

the areas surrounding the cages, but at Djuba Wick, this area appears to be

larger. The Critical Shear Stress for Erosion features as the highest ranking

input more at Muck, along with the Release Height of Resuspended Material
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and Rate of Erosion. These inputs are related to the resuspension module

within NewDEPOMOD, indicating that resuspension plays a bigger role at

Muck. At both sites, the resuspension inputs feature more in the areas on the

outside of the deposition.

Next, Figures 3.29 and 3.30 will be compared to the low energy sites, Fig-

ures 3.22 and 3.25. There are some similarities across all of the sites in the area

surrounding the cages, with the Settling Velocity of Faeces playing a big role,

and the Number of Cages being influential in the areas at the ends of the cage

setup. The Settling Velocity of Faeces appears to have the biggest influence

at West Strome, with a similar pattern seen at Ardentinny and Djuba Wick.

At Ardentinny, Djuba Wick and Muck, the resuspension inputs play a bigger

role in the areas on the outside of the deposition. There appear to be differ-

ences between the sites that have the same characteristics, suggesting that the

grouping of sites with similar characteristics is not suitable.

Following the fitting of the random forest models, η2 calculations were con-

sidered as a measure of sensitivity using variance decomposition. The η2 calcu-

lations were done in the same way as the calculations for the low energy sites.

Again, total η2 values were calculated by summing the values for the first and

second order effects for each input.

Figure 3.31: Map of the highest
ranking input in each grid cell ac-
cording to η2 - Muck. (CSS - Crit-
ical Shear Stress for Erosion, Vio -
η2 condition violated)

Figure 3.32: Map of the highest
ranking input in each grid cell ac-
cording to η2 - Djuba Wick. (CSS
- Critical Shear Stress for Erosion,
Vio - η2 condition violated)

As with the low energy sites, the extreme values seen across the domain

will be considered using a quantile regression approach. The mean percentages

of significant inputs for each quantile are given in Table 3.14. At Muck, the

observations from one of the 10 samples were considered for fitting the ad-

ditional models. The linear regression model identified 75% of the inputs as

being significant, however the fit of the model is poor, with less than 1% of
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Table 3.14: Mean % of Significant inputs for each quantile model across 10
samples

Site 0.9 Quantile 0.95 Quantile 0.99 Quantile

Djuba Wick 97.9% 98.8% 96.2%
Muck 100.0% 98.4% 79.7%

the variation explained. For the additional quantile regression models, none

of the inputs were identified as being significant - indicating that the noise at

the lower values is having an effect. Although there are no significant inputs

identified for the 0.9, there are more inputs that were significant across the 10

samples at the 0.95 and 0.99 quantiles.

3.6 Discussion

A number of challenges were presented when considering the output maps from

NewDEPOMOD within a sensitivity analysis. The idea of exploring the main

shape of the impact and the variations was considered, but it meant that data

was discarded from analyses, and in some cases a shape was not able to be

identified.

In order to explore the full dataset, different approaches were considered.

The functional representations of the maps produced surfaces that were good

representations of the output maps, but the functional PCA was unable to

determine the inputs responsible for the main areas of variation.

Random forest and η2 approaches were also considered for the output maps,

however, these required each grid cell in the domain to be considered indepen-

dently. Considering the results from these analyses, it highlighted that each

site has it’s own characteristics which determine the influence of the inputs.

There are some similarities seen between all of the sites, but also a number of

differences, which suggest that the best approach for future work is to consider

the sites separately. The Settling Velocity of Faeces was identified as the most

important input across most of the domain at each site, but the influence of

the resuspension inputs varies across the different sites. The fact that there are

differences between sites with different characteristics suggest that the energy

of a site does not determine the influence of the inputs, and that each site has

to be considered individually.



Chapter 4

Emulation of Scalar Outputs

4.1 Introduction

Statistical emulation is a common technique that is used to approximate com-

plex process-based models using statistical modelling techniques in order to re-

duce the computational cost (Conti & O’Hagan 2010). These complex process-

based models (also referred to as simulators), are costly to run, and the building

of a statistical emulator is a fundamental step when trying to gain a greater

understanding of the simulator (Overstall & Woods 2016). Multiple different

modelling approaches can be considered for emulation, such as linear regression,

generalized linear models, regression splines and Gaussian processes (Grow &

Hilton 2018).

Running NewDEPOMOD under multiple different scenarios can be compu-

tationally demanding, and take days or weeks to run depending on the number

of runs required. Therefore, statistical emulation will be considered as a tool

for approximating the output from NewDEPOMOD without the computational

cost. This Chapter will focus on the scalar outputs considered in Chapter 2

with the aim of approximating the Total Area Impacted and the 99th Percentile

of Solids Flux. These two outputs are important as the provide a measure of

the size and intensity of the environmental impact of fish farms on the seabed.

The random forest models used in the sensitivity analyses in Chapter 2 were

able to explain over 90% of the variation in the data. As a result, these can

be used as an emulator, with predictions made using the test sets. A common

method within emulation literature is to use Gaussian processes (Conti et al.

2009, Conti & O’Hagan 2010, Rajabi & Ketabchi 2017, Parker et al. 2019).

However, the complexity of Gaussian processes means that, although they are

much more efficient than the simulators they are approximating, the extra

computational cost in comparison to more efficient, simpler regression model

124
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approaches for fitting the models are not always beneficial in terms of the in-

formation gain, so this must be considered when emulating a simulator (Salter

& Williamson 2016). Within the literature, random forests and Gaussian pro-

cesses have been compared, with both showing similar predictive capabilities

(Mlaker et al. 2019, Shabani et al. 2020). Gaussian processes and random

forests will be considered in this Chapter for the emulation of the scalar out-

puts from NewDEPOMOD, with their predictive performance measured using

test data.

4.2 Data being used for Emulation

To build an emulator of a given simulator, a set of costly training runs generated

by the simulator are required. Let X = (x1, . . . ,xn)> be the training input

data, where xi = (xi1, . . . , xip)> for p inputs and n input sets. For a simulator,

f(·), the training output data is given as:

Y = f(X).

In other words, runs are completed for the training input data, X, to create

the training output data, Y = (y1, . . . , yn)>, which is then used for building

the emulator model, f̂(·). After building the emulator model, it can then be

used to create approximations of the simulator for new data, X̃. It therefore

provides a substitute for f(X̃), given as,

Ŷ = f̂(X̃).

To test the quality of the prediction model, the simulator is run for X̃, to get

Ỹ = f(X̃). This will then be compared to the emulator predictions, Ŷ. The

methods for comparing Ỹ and Ŷ will be described later in the Chapter.

Within this Chapter, the data being used as the training data, {Y,X}, will

be the same data from the combined sensitivity analysis at the two low energy

sites, Ardentinny and West Strome, and the two high energy sites, Djuba Wick

and Muck, from Chapter 2. The main focus of the Chapter will be in developing

a framework for the emulation using the data from Ardentinny, before applying

this to the remaining sites. For each site, a smaller test set of input data, X̃,

is created. The test sets, X̃, are created using the sliced LHS approach from

Chapter 2, but with a total of 10 input sets in each slice. NewDEPOMOD

was then run at the test sets, with a total of 5 replicate runs for each test set,

before calculating the scalar outputs, Ỹ. The performance of the statistical
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emulators will be assessed by comparing their predictions, Ŷ = f̂(X̃), with the

NewDEPOMOD output from the test sets, Ỹ.

One of the potential investigations to be considered within this Chapter is

whether or not it is possible to use a statistical emulator created for one site,

and use it to predict the scalar outputs at another site. Chapter 2 showed that

different inputs were more influential at different sites which suggest that every

site has to be considered individually. However, it is important to be able to

compare the emulator performance at each for the sites, so the data is converted

to the same scale, [0, 1]. For each output at a given site, the training data can

be expressed as, {Y,X}, and the test data given as {Ỹ, X̃}, where Y and Ỹ,

are vectors for one of the scalar outputs, and X and X̃ are matrices, where

each column features data for a given input. Each output and input parameter

are considered individually for the conversion, by combining the training and

test data to create a vector (Y Ỹ)> for the output, and (xi x̃i). Given a

vector, x, the formula used to transform the data to the new scale is as follow:

zi =
xi −min(x)

max(x)−min(x)
. (4.1)

Equation 4.1 will be used to standardize the data for each site. It will be

implemented on the combined training and test data for each output and input

at every site. By standardizing the data in this way it will allow the data

from all of the sites to be on the same scale to allow for better comparisons.

Histograms of the training data for the two scalar outputs at Ardentinny are

given in Figure 4.1 and Figure 4.2. Figure 4.1 shows that much of the data

Figure 4.1: Histogram of the stan-
dardized Total Area Impacted at
Ardentinny for the training data.

Figure 4.2: Histogram of the stan-
dardized 99th Percentile of Solids
Flux at Ardentinny for the training
data.

appears to be at the lower end of the scale, around 0.2. Looking at Figure 4.2,

the data appears to be centred around 0.5. As the standardised data for Total
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Area Impacted is slightly skewed, it could suggest that a transformation would

be required, but it will initially be considered without transformation.

4.3 Methods for Emulation

The main aim of statistical emulation is to imitate a complex and computa-

tionally expensive simulator using a statistical model. It was mentioned in

Chapter 1 that these emulation models can take many forms, with the main

focus being to fit a model using a set of costly training runs generated by the

simulator, and using the emulation model to predict the output at unknown

input sets.

4.3.1 Random Forests

Random forest models, as described in Chapter 2, can be considered as a

statistical emulator, and used to predict the values for the scalar outputs, Total

Area Impacted and 99th Percentile of Solids Flux, using the test data. Random

forests have become a popular tool for prediction methods in multiple sectors

due to their flexibility and speed (Segal 2004, Zahedi et al. 2018, Iannace et al.

2019).

One aspect of producing a statistical emulator is quantifying the statisti-

cal uncertainty of the predictions. Zhang et al. (2019) explained that, within

machine learning, prediction intervals for random forests are often overlooked.

Meinhausen (2006) used quantile regression forests to obtain prediction inter-

vals. This involved estimating the conditional distribution of a response vari-

able, Y , given the predictor vector, X = x to obtain lower and upper quantiles,

QL(x)andQU(x), for a prediction interval, typically a 95% prediction interval,

I(x) = [Q0.025(x), Q0.975(x)].

Meinhausen (2006) described the key difference between quantile regression

forests and random forests as follows:

‘for each node in each tree, random forests keeps only the mean

of the observations that fall into this node and neglects all other

information. In contrast, quantile regression forests keeps the values

of all observations in this node, not just their mean, and assesses

the conditional distribution based on this information.’

This approach to calculating prediction intervals for random forests can then

be used to calculate the coverage probability for predictions.
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4.3.2 Gaussian Processes

In order to create the emulators, Gaussian processes will be used due to their

flexibility and their ability to capture uncertainty. They are a common method

that is used for emulating complex simulators across many branches of statistics

(Conti et al. 2009, Conti & O’Hagan 2010, Rajabi & Ketabchi 2017, Parker

et al. 2019). Rasmussen & Williams (2006) previously described a Gaussian

process as ‘a collection of random variables, any finite number of which have a

joint Gaussian distribution’. For a given input, x, a Gaussian process can then

be written as:

f(x) ∼ GP(m(x), k(x,x′)),

indicating that the function f is distributed as a Gaussian process with a mean

function, m, and a covariance function, k (Rasmussen & Williams 2006). The

mean function, m, is generally set to be zero, or a constant. The choice of

covariance function is generally considered in more detail and will therefore be

discussed in more detail.

4.3.2.1 Covariance Functions

Covariance functions are a crucial element when creating a Gaussian process

emulator, as they define nearness or similarity of inputs to produce outputs that

are also close (Rasmussen & Williams 2006). There are a range of different co-

variance functions that can be used, and these can be grouped into different

categories (Rasmussen & Williams 2006). Generally, a function k(x,x′), map-

ping inputs x, x′ ∈ X into R is referred to as a kernel, originating from the

theory of integral operators (Rasmussen & Williams 2006). A function k(·)
is said to be symmetric if k(x,x′) = k(x′,x), which is true of a covariance

function by it’s definition (Rasmussen & Williams 2006).

Firstly, a stationary covariance function is a function of x−x′, therefore it is

invariant to translations in the input space (Rasmussen & Williams 2006). One

stationary covariance function that is often used is the squared exponential,

which can have different variations to the one seen below. It is defined as

follows for a pair of random variables (Rasmussen & Williams 2006):

cov(f(x), f(x′)) = k(x,x′) = σ2 exp

(
−|x− x′|2

2l2

)
+ σ2

noiseδ, (4.2)

where σ2 > 0 is the signal variance, l > 0 is the lengthscale, and σ2
noise ≥ 0 is

the noise variance. The signal variance is a scaling factor that determines

the variation of function values from their mean. Large values for σ2 allow
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for more variation in the function, however, if this value is too large it can

result in the function trying to model outliers, with an illustration seen of the

effect of increasing and decreasing σ2 seen in Figure 4.3. The lengthscale

Figure 4.3: Plot illustrating the effect of increasing and decreasing the signal
variance (σ2) in the squared exponential covariance function, with σ2

noise kept
constant.

determines how smooth the function is, with small values indicating that a

function values can change quickly, and large values resulting in a function

that changes at a slower rate, seen in Figure 4.4. The noise variance allows

Figure 4.4: Plot to demonstrate the effect of increasing and decreasing the
length scale (l) in the squared exponential covariance function.

the Gaussian process to account for some noise in the training data, so a value
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greater than zero will mean that the uncertainty of the Gaussian process will

be seen at the design points from the training data when there would have been

no uncertainty if there was no noise. The squared exponential is referred to as

isotropic since it is a function of |x− x′|, and is therefore invariant to all rigid

motions (Rasmussen & Williams 2006). Equation 4.2 details that for inputs x

and x′ that are similar, the resulting covariance will be close to 1, and hence

their outputs will be similar, unless the noise variance, σ2
noise, is large.

Next, the dot-product covariance function depends on x ·x′. An example of

a dot-product covariance function would be k(x,x′) = σ2
0 + x ·x′, which can be

acquired from linear regression by placingN (0, 1) priors on the coefficients of xi

(i = 1, . . . , p) and a prior of N (0, σ2
0) on the constant function, 1 (Rasmussen &

Williams 2006). The dot-product covariance function is not used often, but has

been successfully used in high-dimensional classification problems (Rasmussen

& Williams 2006).

When using Gaussian processes, the covariance functions can include large

numbers of hyperparameters (such as lengthscale), and the information known

about their values is rather vague. As a result, it is essential that methods

are available to assist with the selection of the form of the covariance function

and it’s hyperparameters (Rasmussen & Williams 2006). Within each choice

of covariance function, there are a number of possibilities for the different hy-

perparameters. It is therefore essential to be able to compare Gaussian process

models with different values for hyperparameters, different covariance function

shapes, and even with models that are not Gaussian processes (Rasmussen &

Williams 2006). Rasmussen & Williams (2006) referred to the selection of the

covariance function and its hyperparameters as ‘training of a Gaussian process’.

Covariance functions, such as the squared exponential in Equation 4.2, can

be parameterized in terms of the hyperparameters, demonstrated below.

k(x,x′) = σ2 exp

(
−1

2
(x− x′)>V (x− x′)

)
+ σ2

noiseδ (4.3)

Here, θ = ({V }, σ2, σ2
noise)

>
is a vector that contains all the hyperparame-

ters. The noise parameter, σ2
noise, is not always considered a hyperparameter,

but it plays a similar role, therefore it is treated as a hyperparameter in these

circumstances. {V } represents the symmetric matrix V that contains the pa-

rameters, which can be denoted by the following,

V1 = `−2I, V2 = diag(`)−2, V3 = ΛΛ> + diag(`)−2. (4.4)

Here, ` denotes a vector of positive values, and Λ is a D × k matrix where
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k < D (Rasmussen & Williams 2006). In the case of the squared exponen-

tial covariance function in Equation 4.3, using ` = `1, . . . , `D and V2 from 4.4,

the hyperparameters (`) can be described as ‘characteristic lengthscales’. Ras-

mussen & Williams (2006) explained it in simpler terms - ‘how far do you need

to move (along a particular axis) in input space for the function values to be-

come uncorrelated’. Using this approach for the squared exponential covariance

function, the inverse of the lengthscale dictates how relevant an input is, which

therefore applies automatic relevance determination (‘ARD’) (Neal 1996). In

other words, the larger the lengthscale, the less of an effect the input will have

on the covariance, and therefore reducing its involvement in the inference. In

the case where there are multiple lengthscales for the different predictor vari-

ables (V2 in Equation 4.4), the lengthscales can be used to determine whether

or not all the predictor variables are required. If a Gaussian process model is

fitted using all of the predictor variables, the Mean Squared Error (‘MSE’) can

be calculated, and then compared to a model fitted without the predictor vari-

able corresponding to the largest lengthscale. If the MSE remains at a similar

value, then it could be said that the simpler model with less predictors could

be used to emulate the output. Using Gaussian processes presents a number

of major challenges such as the need to choose and define the structures of the

hyperparameters, specifically, the lengthscale and signal variance.

4.3.2.2 Model selection

As previously stated, it is essential to be able to compare different models and it

requires a systematic and practical approach to model selection (Rasmussen &

Williams 2006). Model selection will refer to the choice of the functional form of

the covariance function, as well as the values of any hyperparameters included

in the Gaussian process. There are three general principles that cover many

of the different methods available for model selection (Rasmussen & Williams

2006):

1. Compute the probability of the model given the data.

2. Calculate an estimate of the generalization error - this is the average error

on unseen test examples.

3. Produce bounds for the generalization error.

The main approaches for model selection include a Bayesian approach, where

the marginal likelihood is used in the computation of the probability of the
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model given the data, and the other approach involves using cross valida-

tion. Using a Bayesian approach, the marginal likelihood includes a complexity

penalty term to automatically incorporate a trade-off between model fit and

model complexity (Rasmussen & Williams 2006). The general idea of cross

validation is to split the training set into two disjoint sets, one of which is a

‘validation set’ that is used to monitor performance.

The marginal likelihood is used in a model selection scenario to calculate the

probability of the data, y, given the model,M. For a set of model parameters

Λ, the marginal likelihood of M is given by:

p(y|M) =

∫
p(y|Λ,M)p(Λ|M)dΛ. (4.5)

In the case of Gaussian Processes, Rasmussen & Williams (2006) referred to

a hierarchical specification of models that was described by MacKay (1992) -

(1) the lowest level included the parameters, w, (2) the second level included

the hyperparameters, θ and (3) the top level which included a discrete set of

possible model structures, Hi. Bayesian inference takes place on a level by

level basis, and using Bayes’ rule, the posterior over the parameters, w, the

hyperparameters, θ, and the model structure, Hi can be expressed as follows

(Rasmussen & Williams 2006):

p(w|y, X,θ,Hi) =
p(y|X,w,Hi)p(w|θ,Hi)

p(y|X,θ,Hi)
(4.6)

p(θ|y, X,Hi) =
p(y|X,θ,Hi)p(θ|Hi)

p(y|X,Hi)
(4.7)

p(Hi|y, X) =
p(y|X,Hi)p(Hi)

p(y|X)
, (4.8)

In each of the equations, the two elements on the numerator are known as the

likelihood and the prior, and the normalizing constant on the denominator is

referred to as the marginal likelihood, or in some instances, the evidence. In

Equation 4.8, the prior p(Hi) over the model structures is such that it does

not allow any of the models to be favoured over another, so it is often taken to

be flat (Rasmussen & Williams 2006). In each case, the marginal likelihood is
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calculated as follows (Rasmussen & Williams 2006):

p(y|X,θ,Hi) =

∫
p(y|X,w,Hi)p(w|θ,Hi) dw (4.9)

p(y|X,Hi) =

∫
p(y|X,θ,Hi)p(θ|Hi) dθ (4.10)

p(y|X) =
∑
i

p(y|X,Hi)p(Hi). (4.11)

The execution of Bayesian inference requires the above integrals to be evalu-

ated and for certain models it may be required that analytical approximations

are required. One approximation that is used is Type II maximum likelihood,

where the marginal likelihood in equation 4.9 is maximised with respect to

the hyperparameters, θ, rather than evaluating equation 4.10 (Rasmussen &

Williams 2006). In the case where there are many hyperparameters, this ap-

proximation can result in overfitting. Rasmussen & Williams (2006) advised

that the Laplace approximation could be used to approximate the integral in

equation 4.10, and that it is a good approximation in the case that the pos-

terior over θ is well peaked. As previously mentioned, marginal likelihood’s

automatic trade-off between model fit and model complexity, make it useful

in model selection problems. An example of this trade-off is described by

Rasmussen & Williams (2006) and is seen in the Figure 4.5. The 3 different

Figure 4.5: Figure from Rasmussen & Williams (2006) illustrating the trade-off
between model fit and model complexity.

models are created with the same number of inputs, X, and the same number

of data points, n. The y-axis of Figure 4.5 represents the marginal likelihood,



CHAPTER 4. EMULATION OF SCALAR OUTPUTS 134

p(y|X,Hi), and the x-axis represents the possible vectors of the target data, y.

The more complex the model, the wider the range of possible target vectors, y

that could be accounted for. The marginal likelihood is a probability distribu-

tion over y, and so it must sum to 1, so more complex models have wider and

lower peaks as they can account for a larger number of possible target vectors,

y. In Figure 4.5, a particular dataset, y, is highlighted to show that model

of intermediate complexity is preferred over the other two using a marginal

likelihood approach. A marginal likelihood is therefore useful in the selection

of a model that is suited to the data in terms of complexity, but care must be

taken when approximations of the marginal likelihood are made.

Moving on to look at the cross validation method of model selection, the

standard cross validation method of splitting the data into two disjoint sets

can be improved by using k-fold cross validation to reduce the variance of the

performance estimate (Rasmussen & Williams 2006). K-fold cross validation

requires the training set to be split up into k disjoint, equally-sized subsets,

where training is completed using the union of k − 1 subsets. This is repeated

k times with a different subset being used for the validation (Rasmussen &

Williams 2006). Another method of cross validation is ‘Leave-one-out’ cross

validation, where each observation is removed and used as test data, while the

model is trained using the remaining observations. This is approach is therefore

computationally expensive, as for a large number of observations, an equally

large number of models are trained. For k-fold cross validation, Rasmussen

& Williams (2006) advised that values for k tend to vary from 3 to 10. The

hyperparameter choices are an important part of Gaussian process modelling,

and will therefore be considered in more detail.

4.3.2.3 Hyperparameter optimization

Within Gaussian process models, and other machine learning models, the opti-

mization of the hyperparameters is an essential task. These optimization pro-

cesses often begin with initial hyperparameter values being specified, before

optimizing a cost function via gradient-based methods (Ulapane et al. 2020).

Quasi-Newton methods (Davidon 1991) are a class of optimization algo-

rithms which are based on Newton methods, but can be used in the case where

the Jacobian or Hessian matrix are not available or computational expensive to

compute at each iteration. One of the most widely used quasi-Newton meth-

ods is the BFGS optimization, which was proposed independently by Broyden,

Fletcher, Goldfarb and Shanno in 1970 (Broyden 1970, Fletcher 1970, Goldfarb

1970, Shanno 1970). The BFGS algorithm is a type of second-order optimiza-
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tion that approximates the Hessian matrix, using the gradient. The way that

the inverse Hessian is calculated is different across the different quasi-Newton

algorithms, and the BFGS is one specific way for updating this calculation,

instead of recalculating it during every iteration. It is recognised as one of the

most popular quasi-Newton algorithms (Nocedal & Wright 2006).

Consider a real-valued, differentiable objective function, f(x). To find a

local minimum, Newton’s method uses an iterative scheme, with the following

update at each iteration,

xk+1 = xk −H(x)−1∇f(xk),

where H(xk)
−1 is the inverse Hessian matrix, and ∇f(xk) is the gradient,

where, for each step, the Hessian is computed and inverted. Newton’s method

has two main disadvantages:

1. It is sensitive to the initial conditions - the iterative process could lead

to a local maximum or a saddle point rather than a minimum.

2. It is computationally expensive - the computation of H(xk)
−1 scales as

O(n3).

In order to address the computational cost of Newton’s method, the quasi-

Newton method was developed. In order to improve the computational time,

the quasi-Newton method uses an approximation of the Hessian matrix, B,

which is a positive definite matrix that is updated between iterations using

information from the previous steps. Any quasi-Newton method has one con-

dition, known as the quasi-Newton condition, that the Hessian approximation,

B must satisfy:

Bk+1[xk+1 − xk] = ∇f(xk+1)−∇f(xk). (4.12)

This condition is obtained from the first order Taylor expansion of ∇f(xk+1)

about ∇f(xk). The updated Hessian approximation, Bk+1, from Equation

4.12, can be calculated in different ways, but with a common theme being

that it only uses the previous gradient information. In addition, Equation 4.12

will be rewritten to simplify future equations, with [xk+1 − xk] = ∆xk, and

∇f(xk+1)−∇f(xk) = yk.

Bk+1∆xk = yk (4.13)

One drawback to the quasi-Newton condition in Equation 4.12, is that it is un-

derdetermined for n > 1 dimensions. As a result, further additional constraints

are required for the update method for B.
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The BFGS method is a type of quasi-Newton method, and is considered

to be one of the most popular (Nocedal & Wright 2006). The different quasi-

Newton methods place constraints on the Hessian approximation, B, and the

next steps will focus on the BFGS method. In addition to the quasi-Newton

condition in Equation 4.13, the BFGS method imposes two additional con-

straints on the updating scheme for the Hessian approximation, B.

• Bk andBk+1 are characterized as being close. In other words, min
Bk+1

‖Bk+1−

Bk‖.

• Bk+1 is symmetric and positive-definite, B>k+1 = Bk+1

• Finally, the quasi-Newton condition, Bk+1∆xk = yk

Consider again Newton’s method in Equation 4.3.2.3 and notice that it is the

inverse of the Hessian matrix that is being considered, so the above constraints

have to be altered to account for the inverse of the Hessian approximation, B.

• minB−1
k+1
‖B−1

k+1 −B
−1
k ‖,

• (B−1
k+1)> = B−1

k+1,

• and ∆xk = B−1
k+1yk.

In other words, the constraints mean that the change in B−1 at each iteration

is minimized, subject to B−1 being symmetric, and the inverted quasi-Newton

condition holding, as well as B−1 being positive-definite. The matrix norm

that is used in the BFGS method is the Frobenius norm:

‖A‖F =

√√√√ m∑
i

n∑
j

|aij|2.

A detailed derivation of the conditions for Bk+1
−1 can be found in Nocedal &

Wright (2006), with the final setups described here. The derivation by Nocedal

& Wright (2006) leads to the approximate Hessian at each iteration being

updated using:

Bk+1 = Bk + Uk + Vk, (4.14)

where U and V are symmetric, rank-one matrices of the form, U = auu> and

V = bvv>, with u and v being linearly independent, non-zero vectors and a

and b are constants. The matrices U and V are both symmetric, therefore the

approximate Hessian update in Equation 4.14 results in B being symmetric



CHAPTER 4. EMULATION OF SCALAR OUTPUTS 137

following each iteration. Substituting in our values for U and V , we get,

Bk+1 = Bk + auu> + bvv>. (4.15)

As both auu> and bvv> are rank-one, their sum is rank-two, which is known

as a rank-two update. This rank-two update allows the condition of closeness

between Bk and Bk+1 to be guaranteed. The next step is to consider the

quasi-Newton condition, Equation 4.13.

Bk+1∆xk = yk

Bk∆xk + auu>∆xk + bvv>∆xk = yk.

Choosing u = yk and v = Bk∆xk, we then have,

Bk∆xk + ayky
>
k ∆xk + bBk∆xk∆x>k B

>
k ∆xk = yk (4.16)

yk(1− ay>k ∆xk) = Bk∆xk(1 + b∆x>k B
>
k ∆xk). (4.17)

Solving Equation 4.17, produces the following for a and b,

a =
1

y>k ∆xk
,

b = − 1

∆x>k B
>
k ∆xk

.

Using these values for a and b, and substituting them back in to Equation 4.15,

produces the BFGS update:

Bk+1 = Bk +
1

y>k ∆xk
− Bk∆xk∆x>k B

>
k

∆x>k B
>
k ∆xk

. (4.18)

This iterative formula for the approximate Hessian uses only the previous gradi-

ent information to update it. In practice, referring back to the Newton method

in Equation 4.3.2.3, it is the inverse Hessian matrix that is required. Therefore,

Equation 4.18, will have to be inverted, which can be done using the Woodbury

formula (Woodbury 1950). This formula provides a way to invert the sum of

an invertible matrix, A and a rank-m correction.

(A+ SCT )−1 = A−1 − A−1S(C−1 + TA−1S)−1TA−1. (4.19)

In order obtain the inverse of B from the BFGS formula, Equation 4.18 has to
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be rewritten in a more suitable form:

Bk+1 = Bk +
(
Bk∆xk yk

)
︸ ︷︷ ︸

S

− 1
∆x>k Bk∆xk

0

0 1
y>k ∆xk


︸ ︷︷ ︸

C

(
∆x>k Bk

y>k

)
︸ ︷︷ ︸

T

. (4.20)

Using the Woodbury formula and the values for S, C and T in Equation 4.20,

the matrix manipulation produces the following result for the inverse of the

Hessian approximation.

Bk+1 =

(
I − ∆xky

>
k

y>k ∆xk

)
B−1
k

(
I − yk∆x>k

y>k ∆xk

)
+

∆xk∆x>k
y>k ∆xk

. (4.21)

Equation 4.21 provides the detail for the computation that is required within

the BFGS approach to optimization, using B−1 instead of calculating the Hes-

sian matrix at each iteration for Equation 4.3.2.3. This updating of the approx-

imate Hessian matrix removes the O(n3) operations of inverting the Hessian

matrix in the original Newton method. There are two common ways to initial-

ize B−1
0 in practice:

1. Set B−1
0 to the identity matrix, I.

2. Compute and invert the true Hessian at the initial point and use the

BFGS approach to update it.

The disadvantage of the second approach would be that there is an initial cost of

computing the true Hessian and then inverting it. Although the BFGS method

was computationally more efficient than Newton’s method, its computational

efficiency was further improved through the introduction of the limited memory

BFGS approach (‘L-BFGS’) (Nocedal 1980, Liu & Nocedal 1989). The BFGS

approach requires the storage of an n×n approximation of the inverse Hessian

matrix, whereas the L-BFGS approach requires the storage of a small number of

vectors that represent the approximation. It is able to reduce the computational

storage that would be required for the BFGS method, and is therefore an

effective approach with larger datasets (Liu & Nocedal 1989).

Due to the large datasets being used within this thesis, the L-BFGS ap-

proach for optimization will be considered when optimizing the hyperparameter

values within a Gaussian process.

4.3.2.4 Sparse Gaussian Processes

Sparse Gaussian processes are a useful tool when fitting models for large data

sets as they can reduce the computational cost significantly. There are multi-
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ple methods for using sparse Gaussian processes such as Pseudo-input approx-

imation (Snelson & Ghahramani 2006), subset of data approaches (Silverman

1985, Smola & Bartlett 2001) and variational approximations (Titsias 2009,

Matthews et al. 2016). Exact Gaussian process regression requires the inver-

sion of an n× n matrix, which becomes computationally expensive, with large

storage requirements for large data sets with n observations. Approximate

Gaussian process regression is a common approach used for large data sets to

avoid the large computational cost and storage demands.

One approach to reducing the computational complexity is to use the ‘sub-

set of data approximation’. In order to overcome the inversion of the n × n

matrix, a selection of m � n of the total n observations are used to then

apply the exact Gaussian process regression fitting methods. This set of m

points is often referred to as the active set, in this case it will be called A.

Using this approach reduces the size of the matrix to be inverted, produc-

ing the reduced computational complexity as well as a smaller kernel matrix

to be stored in comparison. A simple approach to selecting the active set,

A, would be to choose the points at random, but experimental studies have

shown that this can result in poor results (Lawrence et al. 2003). The selection

of the inducing points has been investigated in the literature, with different

approaches considered, such as greedy algorithms (Smola & Schölkopf 2000,

Smola & Bartlett 2001, Lawrence et al. 2003), and variational approaches (Tit-

sias 2009). The sparse greedy matrix approximation (Smola & Schölkopf 2000,

Smola & Bartlett 2001) is a greedy apporach that can be used within sparse

Gaussian processes for selecting the active set, A. The subset of data ap-

proach is often considered as the simplest form of sparse Gaussian processes

(Quinonero-Candela et al. 2007), but is less computationally demanding than

other approaches (Quinonero-Candela et al. 2007).

An alternative approach for the approximation is the ‘subset of regressors’

which was proposed by Wahba (1990) and further summarised in Rasmussen &

Williams (2006). This approach involves replacing the kernel function, k(x,xi),

with an approximation, k̂SR(x,xi|A), given the active set A ⊂ N = {1, . . . , n},
where N is the set of indices for all observations. For an exact Gaussian

process approach, the set of N functions SN = {k(x,xi), i = 1, . . . , n} is used

to calculate the expected prediction. The subset of regressors approach uses

the set of functions SA = {k(x,xj), j ∈ A}, to approximate the span of the

functions in SN . Consider the kernel function k(x,xi), for i ∈ N , then the
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approximation can be calculated using functions from SA:

k̂(x,xi) =
∑
j∈A

αjik(x,xj). (4.22)

Here, αji ∈ R, are the corresponding coefficients for the linear combinations

of the elements of SA which are used to approximate k(x,xi). Allow α to be

the |A| × n matrix containing all of the coefficient values, αji. The following

error function is minimized to find the best approximation of the elements of

SN using the linear combinations from Equation 4.22.

E(A,α) =
n∑
i=1

‖k(x,xi)− k̂(x,xi)‖2. (4.23)

The corresponding coefficient matrix α that minimizes Equation 4.23 is then

given by,

α̂A = K(XA,XA)−1K(XA,X). (4.24)

Here K(XA,XA) represents the covariance function matrix, with each element

corresponding to k(xa,xb) for (a, b) ∈ A. The kernel approximation from

Equation 4.22 can then be expressed in matrix form:

k̂(x,xi) =
∑
j∈A

αjik(x,xj) = K(x>,XA)α(:, i). (4.25)

Following this, the subset of regressors approximation to the kernel function is

given as:

k̂SR(x,xi) = K(x>,XA)α̂A(:, i) = K(x>,XA)K(XA,XA)−1K(XA,X),

(4.26)

using the coefficient matrix from Equation 4.24. Then considering the overall

kernel function matrix, K(X,X) is defined as:

K̂SR(X,X) = K(X,XA)K(XA,XA)−1K(XA,X). (4.27)

As with the subset of data approach, the subset of regressors approach requires

the points to be selected for the active set, A, which can again be done using

a greedy algorithm, such as the sparse greedy matrix approximation (Smola

& Schölkopf 2000, Smola & Bartlett 2001). One drawback to the subset of

regressors approach is the unreasonably small predictive variances that can be

produced when making predictions far away from the active set (Rasmussen &

Williams 2006).
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An alternative approach to the subset of regressors that overcomes the

predictive variance problem is ‘fully independent conditional approximation’

(‘FIC’) (Candela 2005). This approach also approximates the kernel function,

without the predictive variance problem that was mentioned for the subset

of regressors approach. Given the active set, A, the FIC approximation of

k((xp,xq), for (p.q) ∈ N is given by:

k̂FIC(xp,xq) = k̂SR(xp,xq) + dpq

(
k((xp,xq)− k̂SR(xp,xq)

)
, (4.28)

where dpq = 1 if p = q, or dpq = 0 if p 6= q. In other words, it uses the exact

kernel value rather than the approximation when p = q. To assist with the

matrix version of Equation 4.28, define an n× n diagonal matrix, ∆(X) as:

[∆(X)]pq = dpq

(
k((xp,xq)− k̂SR(xp,xq)

)
(4.29)

=

k(xp,xq)− k̂SR(xp,xq) if p = q,

0 if p 6= q.
(4.30)

Using the matrix, ∆(X), the matrix form of the FIC approximation ofK(X,X)

is defined as:

(̂K)FIC(X,X) = K̂SR(X,X) + ∆(X) (4.31)

= K(X,XA)K(XA,XA)−1K(XA,X) + ∆(X) (4.32)

As with the previous approaches, the inducing points in the active set have to

be defined, and are often done using a greedy algorithm.

Each of the sparse approximation approaches described can be implemented

and their performance measured to determine the most appropriate approach

to the NewDEPOMOD data.

4.3.3 Measurements of predictive performance for com-

paring emulators

As the statistical emulators are being created to predict the NewDEPOMOD

output at unknown input sets, the measure of their performance is an important

aspect. One such measure to be considered is the Root Mean Squared Error

(‘RMSE’) which is a common measure of predictive performance. It is given
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by the following formula,

RMSE =

√∑N
i=1(ŷi − yi)2

N
,

where ŷ is a set of N predicted values, and y is a set of N observed values.

One benefit of the RMSE is that, because the data has been standardized,

comparisons of the RMSE for different emulators can be made. However, one

potential drawback to it, is that it is sensitive to outliers, with the square of the

errors resulting in a much larger effect for the outliers (Willmott & Matsuura

2005). In some cases though, it is reasonable that the effect for outliers should

be punished more, as an outlier could have a much larger impact in some

modelling scenarios. Therefore this should be reflected in the measure of the

performance by giving the outliers a larger weighting (Chai & Draxler 2014).

In the case of NewDEPOMOD, a larger under or over-prediction could result in

irreparable damage to the seabed being missed in the case of under-prediction,

or resources being wasted monitoring a site more closely in the case of over-

prediction of the environmental impacts.

In the case where RMSE is not appropriate, an alternative that is often

considered is the Mean Absolute Error (‘MAE’). The MAE is given as:

MAE =
1

N

N∑
i=1

|ŷi − yi|.

The MAE is therefore not sensitive to outliers in the same way that RMSE is,

as the MAE provides equal weight to the errors, where the squared element of

RMSE penalised predictions that were further from the observed value (Chai

& Draxler 2014).

Additionally, when assessing the predictive performance of emulators, bias

is an important tool. Bias is a measure of how close the predicted values are to

the true values. In order to calculate the overall bias for a set of predictions,

the differences between the predicted values and the true, observed values is

averaged.

Bias =
1

N

N∑
i=1

yi − ŷi.

This equation calculates an average of the differences between predictions and

observed values, where an unbiased estimator would produce a value of zero.

In the case where the estimator is biased, underpredictions will be identified by

a positive value for Bias, and overpredictions will be identified by a negative
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value.

Further to the above measurements, coverage probability is a measure of

the proportion of observed values that are in a given prediction interval for a

set of predictions. Coverage probability accounts for uncertainty in predictions,

including it in the measure of how well the model predicts. For a set of predic-

tions to have good coverage and indicate a good emulator model, it would be

expected that the coverage probability would be greater than 0.95, indicating

that the prediction intervals are a good representation of the observed values.

However, if there is some bias present within the emulator, this would impact

the coverage probability, producing lower values than would be expected.

Throughout this Chapter, the RMSE, MAE, Bias and coverage will be

considered as measures of the predictive performance of the emulators, where

appropriate.

4.4 Results from Emulation

This section will provide an overview of the results for each of the methods

being considered for emulation, before comparing the results from the two

approaches in a further section later in the Chapter.

4.4.1 Random forest emulation

As was mentioned previously, the data from the combined sensitivity analysis

in Chapter 2 was used as the training data to fit the statistical emulators.

The first site to be considered will be Ardentinny, which has a total of 20,000

runs that were included in the training set. As before, the 20,000 runs include

400 different input sets, at which NewDEPOMOD was run 50 times to create

replicate runs for each input set. The test data at Ardentinny consists of 80

different input sets, which were run 5 times each to create a total of 400 runs.

4.4.1.1 Total Area Impacted

Using the standardized data, a random forest model was fitted to the training

data, with Total Area Impacted as the output, and the five continuous physical

properties inputs, and the three categorical operational inputs. As was seen

in Chapter 2, the random forest model is able to explain approximately 94%

of the variation in the training data, indicating that it is a very good fit. In

addition, the random forest model was created in less than a minute, which is

fast when considering the amount of data being used, and will be compared
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with the Gaussian process approach. The next challenge for this model is to

assess how well it performs at predicting the Total Area Impacted for the test

data. Using the fitted random forest model, the input test data was used

to create predictions of the Total Area Impacted. NewDEPOMOD was run

using the test data to provide the output that the predictions will be compared

against. Using the RMSE and the MAE, the performance of the random forest

predictions can be assessed. The values for RMSE and MAE are fairly close

RMSE MAE Bias Coverage
0.078 0.050 0.0078 0.97

Table 4.1: Table of the predictive performance of the random forest model for
Total Area Impacted - Ardentinny.

Figure 4.6: Plot of the predicted Total Area Impacted from the random forest
model against the output from NewDEPOMOD - Ardentinny.

to zero, when considering the data are on the scale [0, 1], indicating reasonably

good performance. This is also supported by the large value for the coverage

probability. This is emphasized when considering the plot of the predicted

values against the output from NewDEPOMOD for the test data. The data

shows a linear pattern, which is close to the line of equality, with some slight

underpredictions where the NewDEPOMOD output is greater than 0.3. The

underpredictions are highlighted by the positive value for bias. From Figure
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4.7a, the positive bias is related to the underpredictions seen for output values

greater than 0.3. This is likely a result of the smaller amount of data available

for these larger values of Total Area Impacted, seen in Figure 4.1. In general

though, there seems to be reasonable agreement between the random forest

predictions and the output from NewDEPOMOD at Ardentinny. In addition,

the importance values of the random forest model, calculated using Equation

2.9 from Chapter 2, are similar to the values from Table 2.13, which would be

expected as the only change to the data is standardizing by adding in the data

from the test set, X̃.

Next, the other remaining sites will be considered. West Strome is the other

low energy site, which had a total of 22,500 runs from 450 different input sets,

together with the test set consisting of 450 runs from 90 different input sets.

At Muck, one of the high energy sites, it had a total of 4,500 runs from 450

input sets in the training data and 450 runs from 90 different input sets for

the test data. At the other high energy site, Djuba Wick, it had 4,000 runs

from 400 input sets in the training data, and 400 runs from 80 input sets in the

test data. The reason for the differences in the number of input sets between

sites is described in Chapter 2, but relates to the additional operational setup

that is required at West Strome and Muck based on the setup of the combined

analysis. In addition, it was explained in Chapter 2 that a reduced number of

replicate runs were considered for the high energy sites due to the increased

computational cost of running for sites with faster current speeds. Random

forest models were fitted for each of the sites, producing high values for the

% of variance explained - all above 90%. The predictive performance of the

random forest models was assessed using the RMSE and MAE, with the results

given in Table 4.2. Table 4.2 shows lower values for the RMSE and MAE at

Site RMSE MAE Bias Coverage
West Strome 0.059 0.039 0.00012 0.99
Muck 0.143 0.102 0.01726 0.77
Djuba Wick 0.055 0.028 0.00789 0.98

Table 4.2: Table of the predictive performance of the random forest models for
Total Area Impacted - additional sites.

West Strome in comparison to the values for Ardentinny in Table 4.1, indicating

better predictive performance at this site. Djuba Wick has a similar RMSE

value to West Strome, but with a lower MAE value, indicating it performs

slightly better. Muck has much larger values for RMSE and MAE than the

other sites, indicating that the variance in the Total Area Impacted at this site

was not explained well by the changes in the inputs. Considering the coverage
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(a) Ardentinny (b) West Strome

(c) Muck (d) Djuba Wick

Figure 4.7: Plots of the predicted Total Area Impacted from the random forest
model against the output from NewDEPOMOD for different sites.

probabilities, Muck has a much lower value than the other sites, which all have

similar values. As with the random forest model for Ardentinny, the models

for the additional sites all have a similar ranking structure to the models used

in Chapter 2, with the Settling Velocity of Faces being the dominant input

at each site when considering the Total Area Impacted as the output, and no

changes to the top three ranked inputs at each site.

Considering Figures 4.7, the plot for Muck supports the results from Table

4.2 with a large number of points not close to the line of equality. In contrast,

the majority of the points at West Strome and Djuba Wick lie on or close to

the line of equality. At Ardentinny, there appears to be a bit more variation

around the line of equality, which is expected based on the RMSE and MAE

values. At all sites, the random forest emulator appears to under-predict the

Total Area Impacted where the standardized NewDEPOMOD output is greater

than 0.4, with the majority of the points lying below the line of equality, which

is supported by the small, positive values for bias in Tables 4.2 and 4.1.

It was previously mentioned that the possibility of using one emulator to

predict the scalar outputs at all sites would be investigated. It has been men-
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tioned previously that the operational outputs were considered as categorical

inputs, but that due to the nature of the sampling design, only a subset of the

possible combinations were considered. As a result, if the test data at a new

site featured combinations that were not included in the training data used to

fit a model at another site, the predictions could not be calculated. One possi-

ble solution to this would be to consider the operational inputs as continuous

variables. The best performing model from Table 4.7 was Djuba Wick, and so

this model will be fitted using continuous variables for the operational inputs,

and used to predict at the remaining sites. Using continuous variables for the

operational inputs still explained over 90% of the variation in the training data,

and the RMSE and MAE for the predictions at each site are given in Table

4.3. When comparing the predictive performance of the Djuba Wick random

Site RMSE MAE
Ardentinny 0.134 0.088
West Strome 0.133 0.090
Muck 0.259 0.220
Djuba Wick 0.054 0.028

Table 4.3: Table of the predictive performance of the Djuba Wick random
forest model of the Total Area Impacted for all sites.

forest emulator for Total Area Impacted in Table 4.2, to the individual models

for each site in Table 4.7, it can be seen that there is a large decrease in the

predictive performance when using the Djuba Wick random forest emulator all

sites. This suggests that this approach for a single emulator is not appropriate

and that each site should be considered individually. An alternative approach

combined the data from West Strome and Djuba Wick, as they had the best

predictive performance in Table 4.7, before fitting a random forest model. Pre-

dictions for the test data at each site were made, but the RMSE and MAE

values were also greater than the values for all sites using the individual model.

This again suggested that each site should be considered individually when

modelling the Total Area Impacted.

4.4.2 99th Percentile of Solids Flux

In addition to the Total Area Impacted, measures of the 99th Percentile of

Solids Flux were calculated for each of the NewDEPOMOD runs. This allowed

random forest models to be fitted to the data and used for predictive purposes

in a similar way. The random forest models for each of the sites were able

to explain over 90% of the variation in the training data and their predictive
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performance was assessed using the RMSE and MAE, with the results given in

Table 4.4. Table 4.4 shows that the random forest models for 99th Percentile

Site RMSE MAE Bias Coverage
Ardentinny 0.067 0.041 0.00078 0.96
West Strome 0.039 0.027 -0.00049 0.99
Muck 0.107 0.079 -0.00152 0.90
Djuba Wick 0.069 0.038 -0.00782 0.92

Table 4.4: Table of the predictive performance of the random forest models for
the 99th Percentile of Solids Flux - all sites.

at Ardentinny, West Strome and Djuba Wick perform well when looking at the

RMSE and MAE, with Muck having slightly higher values. Muck is again the

worst performing of the sites, with the largest RMSE and MAE values along

with the lowest coverage probability. The coverage probabilities are higher for

the low energy sites, Ardentinny and West Strome. One possible reason for this

is the high energy sites are subject to more variation due to the higher current

speeds, meaning the variation seen in the NewDEPOMOD runs may not be

explained as well by the changes in the inputs as they are for the low energy

sites. Again, the ranking of the inputs based on their importance values for

these models were compared to the rankings from Table 2.14 in Chapter 2, with

similar ranking seen and no changes to the top three ranked inputs. In order

to confirm, plots of the predicted values for 99th Percentile against the output

from NewDEPOMOD are given in Figure 4.8. The plots for Ardentinny, West

Strome and Djuba Wick in Figure 4.8 show most of the points are close to the

line of equality, with a small number of points that appear to over-predict for

each site. Again, Muck has a lot more variation around the line of equality,

with the random forest model under and over predicting.

As with the Total Area Impacted, a single emulator approach was consid-

ered - using the best performing site from Table 4.4, which was West Strome,

and also considering fitting a model using the training data for both West

Strome and Djuba Wick. For both approaches, the RMSE and MAE values

were larger than the individual approaches, with three of the sites having values

almost double the size of the values from Table 4.4.

Comparing the results for modelling the 99th Percentile of Solids Flux to

the results for modelling the Total Area Impacted, the models perform better

for the 99th Percentile of Solids Flux at all sites except Djuba Wick, when

considering RMSE and MAE. When considering the coverage probability, the

emulator for the 99th Percentile has a much larger value at Muck, and for

Djuba Wick, the coverage probability is larger for the Total Area Impacted. In
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(a) Ardentinny (b) West Strome

(c) Muck (d) Djuba Wick

Figure 4.8: Plots of the predicted 99th Percentile of Solids Flux from the
random forest model against the output from NewDEPOMOD for different
sites.

addition, for the two low energy sites, the coverage probabilities are similar for

both outputs. The model for West Strome was identified as performing well for

both inputs, indicating that for both inputs the variation in the outputs can be

explained well by the variations in the inputs. In contrast, the models for Muck

did not predict well for the test data. When considering the bias values for

both outputs, they are all positive for the Total Area Impacted, indicating some

small levels of bias, where the underpredictions are likely to have occurred due

to the lack of data for the larger values of Total Area Impacted, as seen in the

histogram in Figure 4.1. In contrast, for the 99th Percentile, Ardentinny is the

only site with a positive value for bias, with the others having small negative

values. In comparison, the data is spread more evenly across the full range

for the 99th Percentile of Solids Flux in Figure 4.2. A further investigation

considered whether a single emulator could be used to predict for all sites, but

for both outputs, investigations determined that each site should be considered

individually as the predictive performance decreased when considering a single

emulator.



CHAPTER 4. EMULATION OF SCALAR OUTPUTS 150

4.4.3 Gaussian process emulation of NewDEPOMOD scalar

outputs

The scalar output Gaussian process emulation will consider the Total Area

Impacted and the 99th Percentile. The same data that was used to fit the

random forest models will be used for fitting the Gaussian process models,

with different sparse approaches being considered. Due to the large number of

runs being considered for each site, sparse Gaussian processes are an effective

tool for reducing the computational cost.

Let X be the input sets for the training data at a given site. Each of the

sparse approximation methods above require the selection of an active set, A,

which is a subset of the training data containing m � n of the total n obser-

vations, chosen using sparse greedy matrix approximation (Smola & Schölkopf

2000, Smola & Bartlett 2001). Using the active set, A, the input sets, X, can

be sub-setted and defined as XA. The subset of data approach fits an exact

Gaussian process using only the data from the active set, whereas the subset of

regressors and FIC approach reduce the computational cost by approximating

the kernel matrix, K(X,X), using the active set. The approximations of the

kernel matrices are given in Equations 4.27 and 4.32. These sparse approaches

will be considered in detail for the Total Area Impacted at Ardentinny, be-

fore applying the specified framework to the remaining sites, and also the 99th

Percentile of Solids Flux.

One main choice when fitting a Gaussian process is the kernel function.

Throughout this work, the squared exponential kernel function is considered

as it is considered the most commonly used kernel function due to its flexibility

(Rasmussen & Williams 2006). In this work, the ARD squared exponential

is used as it allows for separate lengthscales for each of the 8 inputs in order

to provide added flexibility. The lengthscales, along with the signal and noise

variance parameters will be optimized using the L-BFGS method described

previously.

This application of sparse Gaussian processes to the NewDEPOMOD data

will aim to produce efficient models that are able to approximate NewDE-

POMOD for the test data without the computational cost. The predictive

performance of the models will be assessed and compared to the random forest

emulators.
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4.4.3.1 Total Area Impacted

The first scalar output that will be considered is Total Area Impacted. The

data from the combined physical properties and operational inputs analysis at

Ardentinny will be considered in more detail, before summarising for the other

sites.

As previously mentioned, there are multiple methods to fitting an approx-

imate Gaussian process model. To assess the efficiency and quality of the

approaches, each of the methods were considered for fitting an approximate

Gaussian process model using 50 inducing points, and the L-BFGS method

for optimizing the hyperparameters. The number of inducing points will be

considered later after reviewing the approximation methods. After fitting the

approximate Gaussian processes for each of the methods, predictions were made

for the test data. RMSE values were then calculated for each of the methods,

as well as the time to fit each of the models. The time required to find the

predictions was negligible, and so it is not considered. Table 4.5 shows the

Fitting Method RMSE MAE Time to fit & optimize model
SD 0.168 0.119 15s

Table 4.5: Table of the predictive performance of each Gaussian process model
for Total Area Impacted using different approximation methods (SD - Subset
of Data) and 50 inducing points - Ardentinny.

computational time for fitting and optimizing the model for the SD approach,

as well as the predictive performance. However, the L-BFGS optimization was

unable to converge for the Subset of Regressors and Fully Independent Condi-

tional approaches, therefore they are not included in the results table. It was

mentioned previously that the lengthscales can be used as a measure of influ-

ence for an input, with small values meaning that the output changes quickly

for changes in that input. The smallest lengthscales that were identified for

the SD method were Settling Velocity of Faeces, which is consistent with the

random forest approach were the Settling Velocity of Faeces had a much larger

importance value than the other inputs. Looking at Figure 4.9, the majority

of the predictions appear to be below the line of equality, with a small number

above the line for the lower values. This would suggest that the model appears

to be under-predicting in most cases. Further models will be considered with

more inducing points to assess their performance.

The SD approximation was the only approach that was able to converge

when fitting, so this approach will be considered, with more inducing points,

to assess if this will improve the predictive performance. To test this, 100,
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Figure 4.9: Plot of the predicted Total Area Impacted against the observed
values for each of the approximation methods.

200 and 400 inducing points will be considered along with the full Gaussian

process model, and again the computational time to fit the models as well as the

regression loss will be reviewed. Comparing the time to fit the models and the

No. of Inducing Points RMSE MAE Time to fit & optimize model
100 0.139 0.100 30s
200 0.096 0.077 63s
400 0.105 0.079 144s
Full Dataset 0.151 0.108 6224s

Table 4.6: Table of the predictive performance of each Gaussian process model
for Total Area Impacted with different numbers of inducing variables using SD
approximation, as well as the full Gaussian process model - Ardentinny.

RMSE and MAE from Table 4.5 and Table 4.6, there are improvements in the

accuracy compared to 50 inducing points. The increased number of inducing

points does result in a larger computational cost, but these are still less than

the times seen for the SR and FIC methods in Table 4.5. It should also be

noted that increasing the number of inducing points to 400 actually reduced

the accuracy of the predictions by a small amount, likely a result of noise within

the data. Figure 4.10 shows that there is still an issue of some over and under

prediction in some instances. Table 4.6 indicates that increasing the number of

inducing points from 200 to 400, and then fitting a full Gaussian process, did
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Figure 4.10: Plot of the predicted Total Area Impacted against the observed
values for SD approximation models with varying numbers of inducing points,
as well as the full Gaussian process model.

not produce better predictions of the Total Area Impacted. Possible reasons for

this lack of improvement when using more training data, could be the variation

from the random walk within in the model. Looking at the lengthscales for each

of the models, the Settling Velocity of Faeces had the smallest values for the

models with 200 and 400 inducing points, which is what we would expect as

it was identified as the highest ranking input in the sensitivity analysis and

random forest model. As a result, there is no evidence to suggest increasing

the number of inducing points as there are no performance gains, and increased

computational time.

As the optimization process did not converge for the SR and FIC methods,

it suggests that the SD approach is the most appropriate for the remaining

sites. In addition, Table 4.6, as well as additional investigations, suggested that

there were no improvements in the predictive performance when the number

of inducing points was increased above 200.

Future Gaussian process modelling will be done using the SD approximation

with 200 inducing points for the sparse approach, as well as using the full

training data set to fit full Gaussian process models. This will include the

modelling of the Total Area Impacted for the additional sites, as well as the

modelling of the 99th Percentile of Solids Flux. In order to compare between
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the two emulation approaches, the models have to be fitted using the same

training data, so the full Gaussian process models are required for comparisons.

However, as the computational time for the sparse approach is much better

than the full Gaussian process, this will be considered independently for the

remaining sites, as well as for the 99th Percentile of Solids Flux as the output,

to assess their predictive abilities. First, the sparse approach will be considered

for the additional sites to assess how well this performs, as well as considering

the 99th Percentile of Solids Flux as the output, using the sparse approach

again.

Next, the Total Area Impacted for the additional sites will be considered.

The sparse Gaussian processes were fitted using the SD approach and 200

inducing points, and the performance of their predictions was assessed using

RMSE, MAE, Bias and Coverage Probabilty, with the results displayed in Ta-

ble 4.7 and Figure 4.11. Comparing the results from Table ?? to the results

Site RMSE MAE Bias Coverage
Ardentinny 0.096 0.077 0.0569 0.95
West Strome 0.034 0.024 0.0033 0.95
Muck 0.158 0.118 0.0139 0.85
Djuba Wick 0.065 0.034 0.0126 0.95

Table 4.7: Table of the predictive performance for each Gaussian process model
for Total Area Impacted at the additional sites using 200 inducing points and
SD approximation.

for the additional sites in Table 4.7, there are big improvements in the predic-

tive performance at West Strome compared to Ardentinny, with the emulation

at Djuba Wick also performing better than Ardentinny. The predictive per-

formance of the Gaussian process for Muck was much poorer in comparison

to the other sites, suggesting that the variation in the Total Area Impacted

is not explained well by the changes in the inputs. There appears to be no

pattern between the predictive performance and the site characteristics, with

West Strome and Djuba Wick having the lowest RMSE and MAE values. West

Strome is a low energy site and Djuba Wick is a high energy site, so this does

not appear to play a role in how well the models perform. All of the sites had

small, positive values for bias, indicating that the models may underpredict.

The bias value for Ardentinny is larger than the other sites, which is confirmed

in Figure 4.11a, where the majority of the points lie below the line of equality.
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(a) Ardentinny (b) West Strome

(c) Muck (d) Djuba Wick

Figure 4.11: Plots of the predicted Total Area Impacted from the Gaussian
process model against the output from NewDEPOMOD for different sites.

4.4.3.2 99th Percentile

Having considered the Total Area Impacted, now Gaussian process models will

be fitted for the 99th Percentile at each of the sites. In line with the previous

models, their predictive performance was measured using RMSE, MAE, Bias

and Coverage Probabililty, with the results presented in Table 4.8 and Figure

4.12. Table 4.8 shows fairly large differences in the performance between West

Site RMSE MAE Bias Coverage
Ardentinny 0.104 0.091 0.0768 0.74
West Strome 0.035 0.021 -0.0037 0.95
Muck 0.129 0.094 0.0003 0.89
Djuba Wick 0.077 0.042 -0.0087 0.92

Table 4.8: Table of the predictive performance for each Gaussian process model
for the 99th Percentile of Solids Flux at all sites using 200 inducing points and
SD approximation.

Strome and the other sites, with West Strome performing better. The values

for RMSE and MAE are larger at Ardentinny and Muck, and together with

the lower values for the coverage probabilities indicate a poor fit. Ardentinny
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(a) Ardentinny (b) West Strome

(c) Muck (d) Djuba Wick

Figure 4.12: Plots of the predicted 99th Percentile of Solids Flux from the
Gaussian process model against the output from NewDEPOMOD for different
sites.

has a positive value for bias, indicating the model underpredicts, which is

supported by Figure 4.12a. The bias in this case could therefore be affecting

the calculation of the coverage probability and causing it to be the lowest at

all of the sites. The bias values for the other sites are lower, with West Strome

and Djuba Wick having small, negative values, indicating that the model is

slightly over-predicting.

4.5 Comparison of the random forest and Gaus-

sian process emulation approaches

As mentioned previously, after considering the two emulation approaches, these

will be compared to assess how they perform. In order to make comparisons

between the two approaches, the same training data has to be used for fitting

the models. As the full Gaussian process models are more computationally

expensive than the sparse approaches and without any improvement on the

predictive performance, the sparse Gaussian processes will be considered. To
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make comparisons to the random forest approach, the data used to fit the

sparse Gaussian process models will be used to fit the random forest models

before calculating their predictive performance using the test data.

The first comparison considers the Total Area Impacted as the output, with

the predictive performance statistics summarised in Table 4.9. The first thing

Site Method RMSE MAE Bias Coverage
Ardentinny RF 0.085 0.059 0.0036 0.98
Ardentinny GP 0.096 0.077 0.0569 0.95
West Strome RF 0.074 0.051 0.0007 0.98
West Strome GP 0.034 0.024 0.0033 0.95
Muck RF 0.144 0.108 0.0152 0.78
Muck GP 0.158 0.118 0.0139 0.85
Djuba Wick RF 0.066 0.037 0.0048 0.98
Djuba Wick GP 0.065 0.034 0.0126 0.95

Table 4.9: Table of the predictive performance for each method at all sites for
the Total Area Impacted.

to note from Table 4.9 is that the RMSE and MAE values for Muck for both the

random forest and Gaussian process approaches are higher than for the other

sites. This indicates that the variance in the Total Area Impacted at this site

is not explained as well by the changes in the inputs. At Ardentinny, Djuba

Wick and Muck, the RMSE and MAE values are fairly close, indicating that

neither of the approaches appears to perform consistently better. In contrast, at

West Strome, the predictive performance statistics indicate that the Gaussian

process emulation approach performs best, with RMSE and MAE less than half

of the values for the random forest approach. Considering bias, all of the values

for both random forests and Gaussian processes are positive, indicating that

they slightly underpredict, which is likely due to the lack of data available for

the larger values of Total Area Impacted. When comparing between random

forests and Gaussian processes, the bias values are lower at all of the sites

except for Muck. Finally, looking at the coverage values, these are equal to, or

about 0.95 for all of the sites except Muck, where the variation did not appear

to be explained well by the changes in the inputs.

Next, the 99th Percentile of Solids Flux was considered as the output, and

the predictive performance of the two methods is compared again. Comparing

the results for the two approaches in Table 4.10, West Strome is the only site

where the Gaussian process approach performs better than the random forest

when considering RMSE and MAE. Ardentinny and Muck have lower values

for RMSE and MAE, and Djuba Wick has similar values for both statistics for

the two approaches. When considering the coverage probability, the random
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Site Method RMSE MAE Bias Coverage
Ardentinny RF 0.072 0.052 0.0082 0.95
Ardentinny GP 0.104 0.091 0.0768 0.74
West Strome RF 0.051 0.040 0.0046 0.99
West Strome GP 0.035 0.021 -0.0037 0.95
Muck RF 0.106 0.083 -0.0032 0.89
Muck GP 0.129 0.094 0.0003 0.89
Djuba Wick RF 0.071 0.048 0.0014 0.93
Djuba Wick GP 0.077 0.042 -0.0087 0.92

Table 4.10: Table of the predictive performance for each method at all sites for
the 99th Percentile of Solids Flux.

forest approach has higher values at all of the sites except Muck, where the

coverage values are the same.

One additional comment relates to the random forest models for both out-

puts. In order to compare between the two methods, the same datasets had

to be used to train the emulator models. This meant that the random forest

emulators in Tables 4.9 and 4.10 used less data than the models from earlier in

the Chapter. When comparing the predictive performance though, the values

for each of the statistics appear to be similar, indicating the models with less

data fit just as well.

4.6 Discussion

The main aim of this Chapter was to build statistical emulators to approxi-

mate the scalar outputs produced from running NewDEPOMOD without the

computational time. For this, two approaches were considered - random forest

modelling and Gaussian process modelling. These two approaches have the

benefit of being flexible and efficient to run when predicting at new input sets.

One benefit to using random forests for predicting the scalar outputs at

the test data, is that the computational time required to fit the model using

all of the training data is small - approximately one minute. In contrast, for

the Gaussian process approach, it was determined that a sparse approach was

required, where a subset of the training data is used to fit the model. Different

sparse approaches were considered, before using the SD approach, which had

a similar computational time to the random forest approach in comparison to

the SR and FIC approaches.

Looking at the predictive performance of the random forest and Gaussian

process models at multiple sites, one point to highlight was that there were dif-

ferences seen between the sites with similar characteristics, with West Strome (a



CHAPTER 4. EMULATION OF SCALAR OUTPUTS 159

low energy site) and Djuba Wick (a high energy site) having the lowest RMSE

and MAE values for each emulation approach for both outputs. This suggested

that each site should be considered independently, and was confirmed when in-

vestigating whether a single random forest emulator could be used for all of

the sites. Comparing the performance of the random forest approach to the

Gaussian process approach, some of the metrics indicated that one approach

performed better, while other metrics suggested the other approach performed

better. Overall, there did not appear to be clear evidence to suggest that one

method would be preferred to the other. One thing that could be considered

to suggest that random forests are a more appropriate choice would be the

fact that they can be trained efficiently while using all of the data, whereas

the Gaussian process models are more computationally demanding when us-

ing all of the data, which is why a sparse approach was considered. These

analyses has provided a foundation for extending the random forest and Gaus-

sian process emulation framework in the next Chapter to consider the outputs

as a multivariate output with correlations, where each site will be considered

independently.



Chapter 5

Emulation of Multivariate

Outputs

5.1 Introduction

Having considered the emulation of univariate outputs from a process-based

model, the next logical step is to consider the extension where a process-based

model produces a multivariate output. Rougier (2008) highlighted that in-

creasing emulation complexity from univariate output to multivariate output

provides extra challenges such as the extra data being considered for addi-

tional inputs, and the introduction of relationships between outputs increases

the computational complexity. The modelling of multivariate outputs can be

considered in two different ways: 1) using multiple independent single out-

put emulators, in which case the outputs are not related or 2) considering the

outputs directly as correlated outputs. In the case of NewDEPOMOD data,

the aim of this Chapter is to consider whether accounting for a relationship

between the Total Area Impacted and the 99th Percentile of Solids Flux re-

sults in improved predictive performance in comparison to the single output

emulators in Chapter 4.

For the case where multiple independent single output emulators are con-

sidered, dimension reduction techniques could be used to reduce/transform

multiple, correlated outputs. After applying dimension reduction, the re-

duced/transformed data can be considered as independent outputs, in which

case multiple single output emulators can be applied, an approach considered

by (Higdon et al. 2008, Bayarri et al. 2007). Alternatively, the correlated out-

puts can be considered directly in emulation approaches, where the correlation

between the outputs are incorporated into the emulator structure (Conti &

O’Hagan 2010), or alternatively through convolution processes as a way to in-

160
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corporate non-trivial correlations between outputs within Gaussian processes

(Alvarez & Lawrence 2009, 2011). Both approaches have drawbacks, with di-

mension reduction techniques resulting in some loss of information through

the new representation of the data and the requirement to fit multiple models

can be computationally expensive, while considering the outputs directly as

correlated outputs requires the correlation structure to be included within the

model, which can be computationally expensive for many outputs.

Chapter 4 considered random forests and Gaussian processes as emulation

methods, both of which can be extended to account for multivariate outputs.

The multivariate output from NewDEPOMOD being considered only contains

two outputs, and so these will be considered directly as correlated outputs to

avoid any loss of information. Segal & Xiao (2011) extended the single-output

random forest model to account for multiple outputs which are linearly related.

The extension proposed by Segal & Xiao (2011) considered the combination of

multivariate regression trees (De’ath 2002) and the traditional random forest

approach (Breiman 2001). More detail of this approach will be considered

within this Chapter.

The alternative approach to be considered within this Chapter are Gaus-

sian processes for multivariate outputs, an extension of the univariate output

Gaussian processes in Chapter 4. Different approaches are considered for imple-

menting the multivariate output Gaussian processes, such as the Linear Model

of Coregionalization (Journel & Huijbregts 1978) and convolution processes

(Alvarez & Lawrence 2009, 2011). Multivariate Gaussian processes can present

computational challenges related to the optimization of the hyperparameters,

which will be discussed in more detail throughout the Chapter.

Both of these approaches will be applied to the output from NewDEPO-

MOD to consider whether modelling of the two scalar outputs, Total Area

Impacted and 99th Percentile of Solids Flux, together to account for any rela-

tionship between them will improve the predictive accuracy of the models for

new data. In a similar manner to Chapter 4, the predictive performance of

these emulators will be assessed using the RMSE and MAE. The aim of this

Chapter is to make predictions of the Total Area Impacted and 99th Percentile

of Solids Flux without the computational cost of running NewDEPOMOD,

while accounting for any potential relationships between the two outputs that

could improve the predictive performance.
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5.1.1 Data being used

It was mentioned in Chapter 4 that in order to build a statistical emulator,

the complex process-based model has to be run at a number of different input

sets. These input sets and the corresponding output data are often referred to

the training data and are used to build a statistical emulator model. In order

to test the performance of the emulator, the process-based model will be run

at some new input sets, at which predictions will be made using the statistical

emulator, before comparing the output from the process-based model to the

output from the statistical emulator. The new input sets and their simulator

output are referred to as the test data.

Within this Chapter, the data that will be considered is the same data as

was used in Chapter 4. The four sites will be considered, with training and

test data which include calculations of both the Total Area Impacted and the

99th Percentile. These two scalar outputs are what will be considered within

this Chapter as the multivariate output. The two outputs plotted against each

other for each of the sites can be seen in Figure 5.1, where the observations

are coloured based on the corresponding Biomass values. There are some pat-

terns present in Figure 5.1, when accounting for the different Biomass values.

There appears to be a lot of variation for all of the Biomass values where the

Standardised Total Area Impacted is less than 0.2. As the Standardised Total

Area Impacted increases above 0.2, there are potentially some weak, decreas-

ing, linear trends which have some outliers. Considering the full data, the

relationship for each Biomass value does appear to be non-linear, with a sharp

increase in the standardised 99th Percentile as the Standardised Total Area

Impacted increases above 0.1, but with quite a bit of variance.

5.2 Multivariate output random forests

Random forests were identified as an effective modelling tool for both regression

and classification problems due to their ability to deal with non-linear relation-

ships, incorporate interactions, and provide easy to interpret importance values

that can be used as a measure of the influence of the inputs (Pianosi et al. 2016).

Segal & Xiao (2011) looked to extend the standard single-output random for-

est model (Breiman 2001) to the scenario where there are multiple outputs to

be considered. Segal & Xiao (2011) provided an example of the multivariate

random forest applied to an ecology problem, and the approach has also been

considered in other settings (Miller et al. 2014, Browne et al. 2021).

Multivariate random forests were proposed as an extension of traditional
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(a) Ardentinny (b) West Strome

(c) Muck (d) Djuba Wick

Figure 5.1: Plots of the predicted outputs for the test data against the NewDE-
POMOD output, coloured by the Biomass values.

random forests by combining the traditional method (Breiman 2001), with

multivariate regression trees (De’ath 2002). De’ath (2002) introduced multi-

variate regression trees as a new technique for modelling species-environment

relationships. Breiman et al. (1984) introduced a regression tree framework

that consisted of four components:

1. A set of binary questions or splits relating to the inputs, that aim to

partition the input space. The subsamples of the data created by the

splits are defined as nodes.

2. A measure of node impurity that relates to variation in the output.

3. For each split, s, of each node, t, a split function, φ(s, t), is evaluated, with

the best split that optimizes, φ, in order that the response distribution

in the resultant children nodes are most similar among the competing

splits, which is assessed via the impurity measure.

4. A way of determining the appropriate tree size.
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First, the univariate response for regression trees will be considered, where Yi

is the output, and xij are the inputs for i = 1, . . . , n; j = 1, . . . , p. For a node,

t, containing a sub-sample of cases, the aim is to partition t into two child

nodes, that can be considered as a left node, tL and a right node, tR. Consider

one of the inputs with index, j, then binary splits that are order preserving

can be considered as, {tL = i ∈ t : xij ≤ c} and {tR = i ∈ t : xij > c},
where the cut-point, c ranges over all possible values (Segal & Xiao 2011). The

mean-squared error split statistic is then given as,

D(s, t) =
1

n

∑
i∈tL

(Yi − µ(tL))2 +
1

n

∑
i∈tR

(Yi − µ(tR))2, (5.1)

where µ(tL) and µ(tR) refers to the sample means for tL and tR. Then, the

best split for xj is the split, S which minimizes D(s, t).

The extension for the multivariate case for multivariate regression trees

requires the modification of the split statistic in Equation 5.1 (Segal & Xiao

2011). To illustrate the extension, consider the q-dimensional multivariate

output data, Yi,j, for i = 1, . . . , n; j = 1, . . . q. Then the modified split statistic

is given as (Ishwaran et al. 2021),

Dq(s, t) =

q∑
j=1

{∑
i∈tL

(Yi,j − µ(tLj
))2 +

∑
i∈tR

(Yi,j − µ(tRj
))2

}
(5.2)

where µ(tLj
) and µ(tRj

) represents the sample means of the j-th response for

the left and right children nodes. For the multivariate output, the goal is then

to minimize Dq(s, t). It should be noted that all of the outputs being considered

should be on the same scale, otherwise the contribution of an output with large

values would dominate Dq(s, t) (Ishwaran et al. 2021).

The standard multivariate regression splitting rule in equation 5.2 did not

take into account any correlation between the outputs. In order to intro-

duce correlations between the outputs, the Mahalanobis distance (Mahalanobis

1936) was incorporated. For a given element, Z, with mean, µZ, and variance-

covariance, ΣZ, the Mahalanobis distance from Z to the mean, µZ is given

as,

DM(Z) = (Z− µZ)>Σ−1
Z (Z− µZ). (5.3)

One problem with the Mahalanobis distance in practice is that ΣZ may be sin-

gular. To overcome this problem, the Moore-Penrose generalized inverse (Pen-

rose 1955) is introduced. For an efficient multivariate splitting rule based on the

Mahalanobis distance, consider continuous outputs, Y = (Y1, . . . ,Yq)
> ∈ Rq.
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For a splitting tree node, t, let the centered output matrix for t be given as,

L∗t =


(Y1 − µ(t))>

...

(Yn − µ(t))>


n×q

,

where the sample means for Y in t are given in the q-dimensional vector,

µ(t). The sample covariance matrix for the data is given as n−1Q∗t , where

Q∗t = (L∗t )
>L∗t . Here, Q∗t has the generalized inverse, (Q∗t )

+. For t, suppose

that it is split into left and right children nodes, tL and tR, based on inputs,

X. The q-dimensional sample mean vectors for Y in tL and tR are given by

µ(tL) and µ(tR). The Mahalanobis multivariate split-statistic is (Ishwaran

et al. 2021),

DM,t(tL, tR) =
nL
n

∑
i∈tL

(Yi − µ(tL))>(Q∗t )
+(Yi − µ(tL)) (5.4)

+
nR
n

∑
i∈tR

(Yi − µ(tR))>(Q∗t )
+(Yi − µ(tR)). (5.5)

By minimizing DM,t(tL, tR), the best split for t can be obtained. An alterna-

tive approach to determine the best split for t, is to maximize the following

(Ishwaran et al. 2021),

D∗M,t(tL, tR) = 1− 1

q
DM,t(tL, tR). (5.6)

The implementation of the Mahalanobis split-statistic allows correlations be-

tween outputs to be included within the multivariate random forest.

The extension of random forests for multivariate output will be considered

within this Chapter as an emulation approach. These results can therefore be

compared to the independent random forest models from Chapter 4, as well

as comparing to the alternative approach of multi-output Gaussian processes

that will be considered within this Chapter. (Browne et al. 2021) considered

the predictive performance of independent random forest models compared to

a multivariate approach, finding the multivariate approach performed better

in some instances, but not all. Browne et al. (2021) noted that the simplicity

of the Mahalanobis splitting method could be a promising direction for future

work, but it has not yet been considered in the literature. Within this Chapter,

this approach will be considered in order to determine if the joint modelling of

the two outputs using multivariate random forests will provide better predictive

performance.
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5.2.1 Application of multivariate random forests for em-

ulation

Browne et al. (2021) noted that there are a lack of more sophisticated multi-

variate random forest models, and that the Mahalanobis splitting method is

available which is only able to account for linear relationships between inputs.

Previously, Figure 5.1 appeared to show non-linear trends were present when

accounting for the different Biomass values, with some large sections of weak,

linear trends. As Browne et al. (2021) mentioned, there are no methods avail-

able at this time that are able to account for more complex relationships within

multivariate random forests, and so, the Mahalanobis splitting method will be

considered to test how the assumption of a linear trend would compare to the

independent random forest approach. The non-linearity at the lower values for

the Standardised Total Area Impacted will be considered when reviewing the

results to assess for under or over predictions.

The data used within this modelling will be the same standardized data

that was used for the emulation of the outputs independently in Chapter 4. In

this case, the standardized versions of the Total Area Impacted and the 99th

Percentile of Solids Flux are considered as a multivariate output for the multi-

variate random forest modelling. For each site, the multivariate random forest

model will be fitted using all of the training data that was used in Chapter 4,

before using the test data to assess the predictive performance of the models.

Each of the random forest models were again able to explain over 90% of the

variation in the data and could be fitted in 10 minutes, with predictions at the

test data being produced in less than a second. The results from the investiga-

tion of their predictive performance is given in Table 5.1. When comparing

Total Area Impacted 99th Percentile
Site RF Type RMSE MAE RMSE MAE
Ardentinny Multi 0.108 0.068 0.071 0.043
Ardentinny Independent 0.078 0.050 0.067 0.041
West Strome Multi 0.050 0.032 0.041 0.026
West Strome Independent 0.059 0.039 0.039 0.027
Muck Multi 0.147 0.109 0.116 0.086
Muck Independent 0.143 0.102 0.107 0.079
Djuba Wick Multi 0.064 0.031 0.088 0.046
Djuba Wick Independent 0.055 0.028 0.069 0.038

Table 5.1: Table of RMSE and MAE for each output at each site, when pre-
dictions are made using the multivariate random forest models.

the results in Table 5.1 of the multivariate random forests to the independent
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(a) Area (b) 99th Percentile of Solids Flux

Figure 5.2: Plots of the predicted outputs for the test data against the NewDE-
POMOD output for multivariate random forests - Ardentinny.

(a) Area (b) 99th Percentile of Solids Flux

Figure 5.3: Plots of the predicted outputs for the test data against the NewDE-
POMOD output for multivariate random forests - West Strome.

(a) Area (b) 99th Percentile of Solids Flux

Figure 5.4: Plots of the predicted outputs for the test data against the NewDE-
POMOD output for multivariate random forests - Muck.
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(a) Area (b) 99th Percentile of Solids Flux

Figure 5.5: Plots of the predicted outputs for the test data against the NewDE-
POMOD output for multivariate random forests - Djuba Wick.

random forests for each output, the majority of the results are slightly worse

when fitting a multivariate random forest. At West Strome, the multivariate

random forest improves the predictive performance slightly when considering

the RMSE and MAE for Total Area Impacted, and the MAE for 99th Per-

centile of Solids Flux, though the differences are small. As was mentioned

previously, the assumption of a linear trend between the outputs in order to

use the Mahalanobis splitting rule was ambitious, and this is highlighted by

the fact that considering the outputs together does not improve the predictive

performance. Therefore, it suggests that further work could focus on deter-

mining a way to account for non-linear relationships between outputs. Figures

5.2 and 5.5 show reasonable agreement between the predictions for the test

data and the NewDEPOMOD output for Ardentinny and Djuba Wick with

some variation and areas of under and over prediction. At West Strome, Fig-

ure 5.3 highlight the better predictive performance in comparison to the other

sites which was noted in Table 5.1, with the opposite seen at Muck in Figure

5.4 where the RMSE and MAE were higher than the other sites. Looking at

the plots for the 99th Percentile, there appears to be some over-prediction for

the lower observed values, which are potentially a result of the assumption of

linearity between the two outputs.

The multivariate random forest models are able to rank the inputs based

on their importance values for each input, as described in Chapter 2. The

importance values produced relate to each output, with the top three ranked

inputs at each site given in Table 5.2 for the Total Area Impacted and Table

5.3 for the 99th Percentile of Solids Flux. The importance values from Tables

5.2 and 5.3 can be compared to the top ranking inputs that were discussed in

Chapter 4. The first thing to note is that the operational inputs (Biomass,
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Ranking Ardentinny
West
Strome

Muck Djuba Wick

1
Settling Ve-
locity of
Faeces

Settling Ve-
locity of
Faeces

Settling Ve-
locity of
Faeces

Settling Ve-
locity of
Faeces

2 Biomass Biomass Biomass
Critical Shear
Stress for Ero-
sion

3
Critical Shear
Stress for Ero-
sion

Number of
Cages

Critical Shear
Stress for Ero-
sion

Biomass

Table 5.2: Table of top three ranked inputs at each site for the Total Area
Impacted from the multivariate random forest.

Ranking Ardentinny
West
Strome

Muck Djuba Wick

1 Biomass Biomass Biomass Biomass

2
Cage Diame-
ter

Cage Diame-
ter

Cage Diame-
ter

Number of
Cages

3
Critical Shear
Stress for Ero-
sion

Settling Ve-
locity of
Faeces

Critical Shear
Stress for Ero-
sion

Critical Shear
Stress for Ero-
sion

Table 5.3: Table of top three ranked inputs at each site for the 99th Percentile
of Solids Flux from the multivariate random forest.

Cage Diameter and Number of Cages) play a much bigger role when modelling

the univariate outputs together as a multivariate output. One possible reason

for this is that the operational inputs determine how much waste is released

from the cages, and so, when the two outputs are considered together, they

play a more dominant role. This is confirmed by the Biomass being the top

ranked input for all of the sites when considering the 99th Percentile of Solids

Flux. This suggests that the amount of production and therefore the amount

of waste is heavily influential when considering the two outputs together.

The results from Table 5.1 highlight that, in most cases, including the linear

relationship between the Total Area Impacted and the 99th Percentile of Solids

Flux does not provide any information gain when using the multivariate random

forests to predict the NewDEPOMOD outputs, when comparing to the results

from Chapter 4. This would be expected based on the initial analysis of the

relationship between the two outputs. This suggests that the linear relationship

assumption for the outputs is not suitablefor providing information gain, and

an extension to the multivariate random forest could be considered where more

complex relationships between the outputs are incorporated.
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5.3 Multi-output Gaussian processes

An alternative approach to modelling multivariate outputs that can be consid-

ered are Gaussian processes, where the single output case described in Chapter

4 can be extended to the case where multiple outputs are present. Multiple

approaches have been proposed in the literature, and some of these will be

introduced below. These will be introduced by introducing multi-output Gaus-

sian processes for the case where the outputs are independent and no correla-

tion exists between them, as an extension to the univariate Gaussian processes

considered in Chapter 4. Following this, the extensions of the multi-output

Gaussian processes for correlated outputs will be considered.

First consider a single output Gaussian process, f(x) ∼ GP(m(x), k(x,x′)).

For given data, D = {(xi, f(xi)) : i = 1, . . . , N}, the Gaussian process can be

expressed as follows, for a zero mean function:
f(x1)

...

f(xN)

 ∼ N



0
...

0

 ,

k(x1,x1) · · · k(x1,xN)

...
. . .

...

k(xN ,x1) · · · k(xN ,xN)


 (5.7)

f ∼ N (0,K). (5.8)

Consider another Gaussian Process, g(x) ∼ GP(m(x), k(x,x′)) with the same

mean function and kernel as f(x). This can then be expressed in a similar

way to Equation 5.8, g ∼ N (0,K). The two processes can then be represented

together as: [
f

g

]
∼ N

([
0

0

]
,

[
K 0

0 K

])
(5.9)

h ∼ N (0,Kf,g) . (5.10)

Equation 5.10 highlights that the covariance between the two outputs, f and g

is zero, and the multi-output GP therefore considers the outputs as two inde-

pendent single-output Gaussian processes. This approach is simple and can be

considered for the case where the outputs are independent and no correlation

exists between them. Dimension reduction techniques such as principal compo-

nents (Pearson 1901) are an effective approach for reducing high-dimensional,

correlated data into a small number of independent variables approximating

the original data. Therefore, dimension reduction techniques can be used to

create a number of independent variables to approximate the original output

data, before modelling them as an independent multi-output Gaussian process.
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As previously mentioned, the covariance structure of a multi-output Gaus-

sian process can be created to account for correlations between the outputs.

Unless otherwise known, treating multiple outputs as independent and mod-

elling them separately can result in significant loss of information and can

be a restrictive assumption (Noè et al. 2019). Part of the approach to these

multi-output Gaussian processes is to choose a prior on the correlation of the

outputs, which was discussed by Alvarez et al. (2012), with some of the choices

summarised below (van der Wilk et al. 2020).

5.3.1 Linear model of coregionalization

The linear model of coregionalization (Journel & Huijbregts 1978) was a con-

sideration in geostatistics literature for expressing correlation between multiple

outputs (Alvarez & Lawrence 2011). For this approach, the sum of Kronecker

products between coregionalization matrices and a set of underlying covariance

functions are considered, where the coregionalization matrices contain the cor-

relations across the outputs, and the underlying covariance functions describe

the correlation between the input points (Alvarez & Lawrence 2011). For a

multi-output function, f(·) : X → RP , mapping data from the input space, X ,

to the P -dimensional output space. The idea is then to describe the multi-

output function f(·) as follows (Journel & Huijbregts 1978):

f(x) = Ag(x).

Here, A ∈ RP×L, where L is the number of independent functions gl(·) ∼
GP(0, kl(·, ·′)). The set of independent functions gl(·) are then expressed as

g(x) = {gl(x)}Ll=1.

5.3.1.1 Intrinsic Coregionalization Model

The coregionalization approach can be broken down into a simpler format,

the Intrinsic Coregionalization Model (‘ICM’) (Goovaerts 1997) refers to the

case where the functions, gl(·), have the same covariance function, k(·, ·′). To

illustrate the process, consider the case where there are two outputs, f1(x) and

f2(x), with the input x ∈ R2. We will also choose two independent functions

g1(x), g2(x) ∼ GP(0, k(x,x′)), which will be used to describe the two outputs
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as follows.

f1(x) = a1
1g1(x) + a2

1g2(x)

f2(x) = a1
2g1(x) + a2

2g2(x).

To proceed, the two outputs, f1(x) and f2(x), will be grouped together as a

vector, f(x), when considering a fixed value of x.[
f1(x)

f2(x)

]
=

[
a1

1g1(x) + a2
1g2(x)

a1
2g1(x) + a2

2g2(x)

]
f(x) =

[
a1g1(x) + a2g2(x)

]
.

Here, a1 = [a1
1 a1

2]> and a2 = [a2
1 a2

2]>. The computation for the covariance

of f(x) is then given as,

cov(f(x), f(x′)) = cov(a1g1(x) + a2g2(x), a1g1(x′) + a2g2(x′))

= cov(a1g1(x), a1g1(x′)) + cov(a2g2(x), a2g2(x′))+

cov(a1g1(x), a2g2(x′)) + cov(a2g2(x), a1g1(x′))

= cov(a1g1(x), a1g1(x′)) + cov(a2g2(x), a2g2(x′))

= a1(a1)>cov(g1(x), g1(x′)) + a2(a2)>cov(g2(x), g2(x′))

= (a1(a1)> + a2(a2)>)k(x,x′)

= Wk(x,x′).

The above covariance function can then be extended for the general case. Given

a set of outputs, {fd(x)}Dd=1, which can then be expressed in terms of L func-

tions that are Gaussian processes sampled independently with the same covari-

ance function k(x,x′) (Goovaerts 1997),

fd(x) =
L∑
l=1

aldgl(x).
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Then, for f(x) = [f1(x) · · · fD(x)]>, the covariance function, cov(f(x), f(x′)) is

given as,

cov(f(x), f(x′)) =

(
L∑
l=1

al(al)>

)
k(x,x′) (5.11)

= AA>k(x,x′) (5.12)

= Wk(x,x′), (5.13)

where A = [a1 a2 · · · aL], and W is a positive-definite matrix, with the rank

of W ∈ RD×D equal to L.

5.3.1.2 Semiparametric Latent Factor Model

The next step in the coregionalization approach is the Semiparametric La-

tent Factor Model (‘SLFM’) (Teh et al. 2005) which is an extension of ICM,

where the requirement for the Gaussian processes gl(·) to have the same co-

variance function is relaxed. Consider two outputs, f1(x) and f2(x). Then,

given two functions sampled from Gaussian processes, g1(x) ∼ GP(0, k1(x,x′))

and g2(x) ∼ GP(0, k2(x,x′)), scaled versions of g1(x) and g2(x) can be used to

obtain the outputs,

f1(x) = a1,1g1(x) + a1,2g2(x)

f2(x) = a2,1g1(x) + a2,2g2(x).

The two equations above can then be expressed as a vector-valued function, as

was done with the ICM approach.

f(x) = a1g1(x) + a2g2(x).

Again, a1 = [a1
1 a1

2]> and a2 = [a2
1 a2

2]>. The computation of the covariance

function for f(x) is similar to ICM, but with the addition of the different

covariance functions.

cov(f(x), f(x′)) = a1(a1)>cov(g1(x), g1(x′)) + a2(a2)>cov(g2(x), g2(x′))

= a1(a1)>k1(x,x′) + a2(a2)>k2(x,x′)

= W1k1(x,x′) + W2k2(x,x′).

There are now two parts to the covariance function, corresponding to the

different covariance functions k1(·, ·′) and k2(·, ·′), with W1 = a1(a1)> and

W2 = a2(a2)> each of rank 1. The next step is to extend this approach to
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the general case for a set of D outputs, {fd(x)}Dd=1, which can be expressed as

f(x) = [f1(x) · · · fD(x]>. The outputs can then be expressed as follows,

fd(x) =

Q∑
q=1

ad,qgq(x),

where gq(x) are Gaussian processes with covariance functions kq(x,x
′). Next,

the covariance function, cov(f(x), f(x′)) is expressed as,

cov(f(x), f(x′)) =

Q∑
q=1

al(al)>kq(x,x
′)

=

Q∑
q=1

AqA
>
q kq(x,x

′)

=

Q∑
q=1

Wqkq(x,x
′).

For the SLFM approach, we now have a sum of multiple matrices, Wq of rank

1, and the covariance functions corresponding to each latent function gq(x).

5.3.1.3 Linear Model of Coregionalization

Finally, the Linear Model of Coregionalization (‘LMC’) (Journel & Huijbregts

1978) combines the ICM and SLFM approaches to allow samples from Gaussian

processes with different covariance functions as well as samples from Gaussian

processes with the same covariance functions. Take a set of outputs {fd(x)}Dd=1.

Then, consider Q different groups of samples. Each group of samples is taken

from a Gaussian process with zero mean, and covariance function kq(x,x
′).

Within each group, there are Rq samples obtained independently from the given

Gaussian process. Essentially, the LMC approach is the sum of Q different

Figure 5.6: Figure to illustrate the different groups and sampling within LMC
approach.
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ICM’s, shown in Figure 5.6. To illustrate this approach and show the calcula-

tion of the covariance, consider the case where there are two outputs (D = 2),

two groups (Q = 2), and two samples within each group (R1, R2 = 2). In

this case, g1
1(x), g2

1(x) ∼ GP(0, k1(x,x′)), and g1
2(x), g2

2(x) ∼ GP(0, k2(x,x′)).

Then, the outputs are expressed as,

f1(x) = a1
1,1g

1
1(x) + a2

1,1g
2
1(x) + a1

1,2g
1
2(x) + a2

1,2g
2
2(x)

f2(x) = a1
2,1g

1
1(x) + a2

2,1g
2
1(x) + a1

2,2g
1
2(x) + a2

2,2g
2
2(x).

As with the previous approaches, this will then be expressed as a vector-valued

function.

f(x) = a1
1g

1
1(x) + a2

1g
2
1(x) + a1

2g
1
2(x) + a2

2g
2
2(x).

Here, a
Rq
q = [a

Rq

1,q a
Rq

1,q]. The covariance function is then expressed as follows,

cov(f(x), f(x′)) = a1
1(a1

1)>k1(x,x′) + a2
1(a2

1)>k1(x,x′)+

a1
2(a1

2)>k2(x,x′) + a2
2(a2

2)>k2(x,x′)

= (a1
1(a1

1)> + a2
1(a2

1)>)k1(x,x′) + (a1
2(a1

2)> + a2
2(a2

2)>)k2(x,x′)

= A1A
>
1 k1(x,x′) + A2A

>
2 k2(x,x′)

= W1k1(x,x′) + W2k2(x,x′).

Each of the matrices, Wq are known as the coregionalization matrices with rank

Rq. Expanding on the example above, the LMC approach can be generalised.

Consider the set of outputs, {fd(x)}Dd=1, as well as Q groups of samples, each

with a given number of samples, Rq, for q = 1, . . . Q. Each of the outputs can

then be expressed as (Journel & Huijbregts 1978, Goovaerts 1997),

fd(x) =

Q∑
q=1

Rq∑
i=1

aid,qg
i
q(x),

where giq(x) ∼ GP(0, kq(x,x
′)). Then for f(x) = [f1(x) · · · fD(x)]>, the covari-

ance function is specified as,

cov(f(x), f(x′)) =

Q∑
q=1

AqA
>
q kq(x,x

′)

=

Q∑
q=1

Wqkq(x,x
′),
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where Aq = [a1
q a2

q · · · a
Rq
q ], and Wq = Aq(Aq)

> are the coregionalization

matrices with rank Rq (Alvarez et al. 2012). The covariance functions kq(x,x
′))

can be chosen from the same covariance functions that are used in the single

output Gaussian processes, with one of the most popular choices being the

squared exponential, as mentioned in Chapter 4.

The linear model of coregionalization is considered as a simple way of intro-

ducing correlations in the outputs, where the outputs are expressed as linear

combinations of independent random functions (Alvarez & Lawrence 2009).

Using this approach within a Gaussian process framework, the independent

random functions are Gaussian processes, which results in the model also be-

ing a Gaussian process (Alvarez & Lawrence 2009). The linear model of core-

gionalization can be considered as an efficient way to incorporate correlations

between outputs within a multi-output Gaussian process (van der Wilk et al.

2020).

5.3.2 Convolution processes

The linear model of coregionalization approach has it’s limitations, and is con-

sidered to be a restrictive approach to constructing multi-output covariance

functions. One example of the limitations are that it is not able to capture

outputs which are delayed versions of each other. Convolution processes are

able to overcome this problem and can account for time-lag relationships and

general dependence on past observations (Alvarez & Lawrence 2009). Convolu-

tion processes were considered in different forms as an alternative to the linear

model of coregionalization approach (Higdon 2002, Alvarez & Lawrence 2009,

2011), to allow the correlation structures to account for relationships such as

time-lags and general linear dependence on past observations (van der Wilk

et al. 2020). Alvarez et al. (2010) constructs f(·) from a convolution of g(·) as,

f(x) =

∫
G(x− z)g(z)dz, with G(z) ∈ RP×L.

The resulting covariance function can be expressed as follows, when taking the

same prior on g(x) as before (Alvarez et al. 2010):

k({x, p}, {x′, p′}) = Eg

[∫ ∫
G(x− z)g(z)g(z′)>G(x′ − z′)>dzdz′

]
=

L∑
q=1

∫ ∫
Gpq(x− z)Gp′q(x

′ − z′)kl(z, z
′)dzdz′.
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In order to balance flexibility against susceptibility to overfitting, G(·) is nor-

mally parameterised such that it makes the integral tractable and adds a num-

ber of parameters (van der Wilk et al. 2020).

One drawback to the convolution processes approach is the computational

cost of considering the full covariance function of the joint Gaussian process

(Alvarez & Lawrence 2009). The computational complexity can be considered

as O(N3D3), and the storage expressed as O(N2D2), for a Gaussian process

with D output dimensions and N data points. This lead to a sparse approxima-

tion being considered by Alvarez & Lawrence (2009, 2011) which would reduce

the computational burden. However, the convolutional approach proposed by

Alvarez & Lawrence (2009, 2011) requires the inversion of a DN×DN matrix,

which is not feasible for large datasets (Davies et al. 2019). In addition, it was

mentioned previously that the convolutional Gaussian process approach was

able to overcome the time-lag relationship limitations within the linear model

of coregionalization approach, which is not an issue that will occur within this

research, as there is no time feature within the data from NewDEPOMOD

being considered. As a result, the linear model of coregionalization will be

considered as the multi-output Gaussian process approach.

5.3.3 Application of multi-output Gaussian processes to

NewDEPOMOD

The fitting of the multi-output Gaussian processes will be done using the linear

model of coregionalization approach. Previously, three versions of the linear

model of coregionalization were considered which depended on the latent struc-

ture of the outputs. For the NewDEPOMOD data, there are two outputs being

considered, Total Area Impacted and 99th Percentile of Solids Flux. In the sim-

plest case the ICM method considers latent functions to describe the outputs,

each with the same covariance structure. The outputs can be expressed in

terms of L latent functions, gl(·) ∼ GP(0, k(·, ·′)) for l = 1, . . . , L.

Y1 = f1(x) =
L∑
l=1

al1gl(x)

Y2 = f2(x) =
L∑
l=1

al2gl(x).
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As was seen in Equation 5.13, the covariance structure for the outputs, f(x) =

(f1(x), f2(x)), is given as,

cov(f(x), f(x′)) = AA>k(x,x′)

= Wk(x,x′),

where A = [a1 a2 · · · aL], and W is positive-definite with rank L. This ap-

proach can be applied to the NewDEPOMOD data, with a choice for L being

required. The extensions of the ICM method, such as the SLFM and LMC,

relate to different structures of the latent functions. For the modelling of the

NewDEPOMOD output, the ICM approach will be considered as it reduces

the complexity of the model by only including one covariance function in the

covariance structure of the outputs. This will reduce the computational time

required to optimize the Gaussian process model, as less hyperparameters are

included. The choice that has to be made then relates to the number of la-

tent functions, L, that are to be used when fitting the model. This will be

investigated further.

This application and optimization of the Gaussian process models can be

computationally demanding, and so steps are required to reduce the computa-

tional time and storage of fitting and optimizing the Gaussian process models.

Sparse approaches were considered in Chapter 4 to overcome the computational

demands of fitting and optimizing the scalar output Gaussian processes. The

most efficient and best performing sparse approach was the Subset of Data

(‘SD’) method, which was the most simple. This approach required a subset of

the data being used to fit the Gaussian process, which reduces the size of the

matrix to be inverted and therefore the computational cost. The data being

used across this analysis considers either 400 or 450 different input sets, at

which a number of replicate runs were completed. Therefore, a reasonable ap-

proach for the SD method would be to consider one of the runs for each input

set, chosen at random. The detailed investigation at Ardentinny will consider

a number of different subsets to assess whether the samples chosen have a large

impact on the performance of the model.

5.3.3.1 Detailed investigation at Ardentinny

For the multi-output Gaussian process application to NewDEPOMOD, the

data for Ardentinny will be considered first in more detail. The aim of this is

to determine the best approach for fitting the multi-output Gaussian process

model, before applying this framework to the remaining sites. One of the first
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considerations that is made is the base kernel function that will be used. It has

been mentioned previously that the squared exponential is a popular choice

within the literature, and this will therefore be considered throughout this

investigation. Within this kernel function, the choice can be made as to whether

or not to include separate lengthscales for each of the inputs. In addition, the

choice of the number of latent functions to be used will be investigated.

As with the single-output Gaussian processes in Chapter 4, the L-BFGS

method will be used to optimize the hyperparameters in the models. The

first investigation will focus on the choices for the hyperparameters such as the

lengthscale and the number of latent functions. Following this, an investigation

will consider multiple subsets of the data to assess whether this has any effect

on the performance of the models.

For the first investigation, one of the subsets of the data containing 400

NewDEPOMOD observations (one sample for each input set), are considered.

The choices that will be considered in more detail relate to the rank of the

matrix W from Equation 5.13, which defines the number of latent functions,

and the choice of a single lengthscale or separate lengthscales for each input,

for the squared exponential covariance function introduced in Chapter 4. The

different Gaussian process setups that will be considered are as follows:

• L = {1, 2, 3} with a single lengthscale for each input,

• L = {1, 2, 3} with separate lengthscales for each input.

Gaussian process models will be fitted and optimized for models considering a

single lengthscale for all of the inputs, and different numbers of latent functions,

L. In addition, the Gaussian process models with separate lengthscales will

be fitted and optimized using different numbers of latent functions, L. After

fitting the Gaussian process models with the above settings, their predictive

performance was assessed by estimating the outputs using the test data and

comparing them to the NewDEPOMOD output by calculating the RMSE and

MAE, with the results given in Table 5.4. Table 5.4 shows that altering the

number of latent functions, L, does not affect the predictive performance when

considering the RMSE and MAE to 3 decimal places. When considering more

decimal places, there are some differences between the RMSE and MAE values,

but it suggests the impact of changing these is small. The other thing seen in

Table 5.4 is that the predictive performance improves when using separate

lengthscales, which would be expected as using separate lengthscales allows for

a more flexible model.

The next stage of the investigation considers multiple different subsets of the
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Total Area Impacted 99th Percentile
Hyperparameter Settings RMSE MAE RMSE MAE
L = 1, single lengthscale 0.172 0.118 0.189 0.151
L = 2, single lengthscale 0.172 0.118 0.189 0.151
L = 3, single lengthscale 0.172 0.118 0.189 0.151
L = 1, separate lengthscales 0.076 0.047 0.056 0.035
L = 2, separate lengthscales 0.076 0.047 0.056 0.035
L = 3, separate lengthscales 0.076 0.047 0.056 0.035

Table 5.4: Table of RMSE and MAE for the different hyperparameter settings
for multi-output Gaussian process at Ardentinny.

data. The previous investigation determined that the number of latent func-

tions did not alter the predictive performance, but that separate lengthscales

provided better results due their increased flexibility. A total of five different

subsets of the data are considered, and multi-output Gaussian processes are fit-

ted with separate lengthscales and L = 1. The RMSE and MAE are provided

in Table 5.5. Considering the predictive performance of the multi-output Gaus-

Total Area Impacted 99th Percentile
Subset number RMSE MAE RMSE MAE
Subset 1 0.076 0.047 0.056 0.035
Subset 2 0.078 0.050 0.049 0.031
Subset 3 0.080 0.050 0.050 0.032
Subset 4 0.073 0.044 0.048 0.031
Subset 5 0.080 0.051 0.051 0.034

Table 5.5: Table of RMSE and MAE for the different multi-output Gaussian
process at Ardentinny using multiple subsets of the data.

sian processes for the different subsets, there is some variation in the RMSE

and MAE values for each of the outputs. The variation across the RMSE and

MAE values is small when considering the data lies in the interval [0, 1]. Next,

comparing the RMSE and MAE for the two outputs, the multi-output Gaus-

sian process has better predictive performance for the 99th Percentile of Solids

Flux. As noted in Chapter 4, this suggests that the changes in the inputs

perform better at explaining the variation in the 99th Percentile. This will be

considered further when looking at the multi-output Gaussian processes fitted

for the remaining sites. The small differences between the RMSE and MAE

for the different subsets suggest that each of the fitted models perform equally

well and the sub-setting approach is appropriate.
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5.3.4 Multi-output Gaussian process emulation for all

sites

It was mentioned previously that a sub-setting approach will be considered

which takes the outputs from one of the NewDEPOMOD runs for each input

set at all sites. The multi-output Gaussian process models were fitted using the

same hyperparameter settings as were used for Ardentinny, where L = 1 and

separate lengthscales are used for each of the inputs. The RMSE and MAE

values for each of the sites are given in Table 5.6. Firstly, looking at Table

Total Area Impacted 99th Percentile
Site RMSE MAE RMSE MAE
Ardentinny 0.076 0.047 0.056 0.035
West Strome 0.034 0.021 0.036 0.019
Muck 0.152 0.108 0.145 0.097
Djuba Wick 0.070 0.039 0.099 0.055

Table 5.6: Table of RMSE and MAE for the different multi-output Gaussian
process at all of the sites using multiple subsets of the data.

5.6, the RMSE and MAE values for the Total Area Impacted are similar for

Ardentinny and Djuba Wick, with the predictions for West Strome being the

most accurate and the predictions for Muck being the least accurate. The vari-

ation in the Total Area Impacted at West Strome appears to be well explained

by the changes in the inputs, such as Settling Velocity of Faeces which had a

much larger importance value than the other inputs in the sensitivity analysis

from Chapter 2. The RMSE and MAE at Muck for both of the inputs are

higher in comparison to the other sites. This could be a result of the faster

flow speeds resulting in much more variation in the deposition of waste on the

seabed which is unable to be explained by the changes in the inputs. The

predictions for the test set are plotted against the NewDEPOMOD output to

explore the predictive performance further in Figures 5.7 to 5.10, with error

bands for the predictions included. At Ardentinny, in Figures 5.7a and 5.7b,

the majority of the points lie close to the line of equality with a large amount

of the error bands overlapping the line, particularly for the 99th Percentile of

Solids Flux. This is supported by the RMSE and MAE in Table 5.6, which

had lower values for the 99th Percentile of Solids Flux. The points with error

bands that do not overlap the line of equality appear to be related to under-

predictions in most cases for Total Area Impacted, and over-predictions for the

99th Percentile of Solids Flux.

In Figures 5.8a and 5.8b, the predictions for the test set at West Strome
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(a) Area (b) 99th Percentile of Solids Flux

Figure 5.7: Plots of the predicted outputs for the test data against the NewDE-
POMOD output - Ardentinny.

(a) Area (b) 99th Percentile of Solids Flux

Figure 5.8: Plots of the predicted outputs for the test data against the NewDE-
POMOD output - West Strome.

(a) Area (b) 99th Percentile of Solids Flux

Figure 5.9: Plots of the predicted outputs for the test data against the NewDE-
POMOD output - Muck.
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(a) Area (b) 99th Percentile of Solids Flux

Figure 5.10: Plots of the predicted outputs for the test data against the NewDE-
POMOD output - Djuba Wick.

show good agreement with the NewDEPOMOD output for both outputs. This

was expected as the RMSE and MAE had the lowest values in Table 5.6. In

addition, it should be highlighted that the error bands at West Strome are

much smaller than the other sites.

Considering the predictions at Muck, these were expected to be poor based

on the RMSE and MAE from Table 5.6. Figures 5.9a and 5.9b highlight this,

with a number of over and under-predictions for both outputs. In addition,

the error bands for each of the outputs are larger at Muck than they are at the

other sites. This again indicates that the variation in the two outputs at Muck

cannot be explained by the changes in the inputs.

Finally, looking at figures 5.10a and 5.10b, there is good agreement between

the predictions and the NewDEPOMOD output for the Total Area Impacted

for the lower values, but there appears to be a mix of over and under-prediction

for the larger values of Total Area Impacted. For the 99th Percentile of Solids

Flux, there is mostly good agreement between the predictions and the NewDE-

POMOD output, but with some areas of over-prediction. In comparison to the

other sites, the Total Area Impacted in Figure 5.10a has most of the data

situated around low values for Total Area Impacted.

To summarise, it is clear from Table 5.6 that there are differences between

the sites in terms of the performance of the multi-output Gaussian processes.

West Strome performed better than the other sites based on the RMSE and it

can also be highlighted when considering Figure 5.8. The multi-output Gaus-

sian process for Muck did not perform well when predicting at the new data,

suggesting the variance cannot be explained by the changes in the inputs.
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5.4 Comparison of multivariate output emula-

tion to independent scalar output emula-

tion

The investigations within this Chapter considered the extension of the inde-

pendent modelling of the scalar outputs, with the aim of assessing whether or

not there is any information gain by modelling the outputs jointly to account

for correlations between them. In order to compare between the different ap-

proaches for each site, a subset of the data was used fit the emulator models

for each approach. A sparse subset of data approach was considered, the same

approach as for the multi-output Gaussian processes, where one replicate run

from each input set was considered, resulting in either 400 or 450 runs being

used to fit the models depending on the site.

It was mentioned previously that there are differences between the sites,

even between the sites with similar flow speeds and characteristics. As a result,

each site will be considered separately for comparing the different approaches,

with Ardentinny being considered first. The best performing method at Ar-

Total Area Impacted 99th Percentile
Emulation Approach RMSE MAE RMSE MAE
Independent RFs 0.086 0.057 0.071 0.045
Multivariate RFs 0.127 0.080 0.079 0.052
Independent GPs 0.126 0.069 0.078 0.043
Multi-output GPs 0.076 0.047 0.056 0.035

Table 5.7: Table of RMSE and MAE for each output at Ardentinny for the
different emulation methods. (RF = Random forest, GP = Gaussian process)

dentinny for both outputs, for RMSE and MAE, is the multi-output Gaussian

processes, but with only a small difference between independent random forests

and multi-output Gaussian processes for Total Area Impacted. This suggests

that this flexible approach that accounts for correlations between the inputs

is successful at improving the predictive performance. Next, West Strome will

be considered to determine if there are similarities in the performances of each

method. Table 5.8 also shows that the Gaussian process approaches performs

best for both outputs, with the independent emulators performing slightly bet-

ter. The random forest methods perform similarly, with the RMSE and MAE

being approximately double the values from the Gaussian process approaches

for both outputs.

Now the high energy sites will be considered, looking at Muck first in Table
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Total Area Impacted 99th Percentile
Emulation Approach RMSE MAE RMSE MAE
Independent RFs 0.062 0.042 0.045 0.033
Multivariate RFs 0.075 0.048 0.056 0.041
Independent GPs 0.025 0.018 0.032 0.017
Multi-output GPs 0.034 0.021 0.036 0.019

Table 5.8: Table of RMSE and MAE for each output at West Strome for the
different emulation methods. (RF = Random forest, GP = Gaussian process)

5.9. It was seen earlier, in Table 5.6 and Figure 5.9, that the performance of

Total Area Impacted 99th Percentile
Emulation Approach RMSE MAE RMSE MAE
Independent RFs 0.139 0.101 0.106 0.080
Multivariate RFs 0.136 0.106 0.104 0.079
Independent GPs 0.154 0.115 0.137 0.095
Multi-output GPs 0.152 0.108 0.145 0.097

Table 5.9: Table of RMSE and MAE for each output at Muck for the different
emulation methods. (RF = Random forest, GP = Gaussian process)

the multi-output Gaussian process was poor for predicting at the test data.

This was also seen for the other approaches when considering the Total Area

Impacted, with similar RMSE and MAE values seen. When comparing the

methods for both outputs, the two random forest approaches appear to perform

best, with similar RMSE and MAE values for this dataset. As was mentioned

previously, at this site there was a large amount of variation that could not

able to be explained by the changes in the inputs, potentially a result of the

fast flowing currents. Finally, the predictive performance of the approaches is

considered for Djuba Wick in Table 5.10. For Djuba Wick, in Table 5.10, the

Total Area Impacted 99th Percentile
Emulation Approach RMSE MAE RMSE MAE
Independent RFs 0.064 0.032 0.074 0.043
Multivariate RFs 0.094 0.045 0.110 0.061
Independent GPs 0.054 0.028 0.068 0.037
Multi-output GPs 0.070 0.039 0.099 0.055

Table 5.10: Table of RMSE and MAE for each output at Djuba Wick for the
different emulation methods. (RF = fandom Forest, GP = Gaussian process)

independent Gaussian processes have the best predictive performance for both

outputs. There does not appear to be a big difference between the RMSE and

MAE for the independent random forests and independent Gaussian processes
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for the two outputs, indicating that the independent modelling of the outputs

is better suited for this site. Considering both the high energy sites, Tables

5.9 and 5.10, there does not seem to be any improvement when modelling the

two outputs together, with the independent random forests and independent

Gaussian processes performing best at these sites.

In summary, considering the outputs jointly for the low energy sites, Ar-

dentinny and West Strome, using multi-output Gaussian processes produces

the best predictive performance when considering RMSE and MAE. However,

for the two high energy sites, Muck and Djuba Wick, the independent random

forest approach for each output out-performs the other methods. It is possible

that the relationships between the outputs at these sites are more complex than

the ones being considered for the multivariate output approaches that were con-

sidered, and also that the higher current speeds mean that the variations in

the output are not explained as well by the changes in the inputs. Overall,

the comparisons have indicated that the best performing method appears to

be site specific.

5.5 Discussion

The main aim of this Chapter was to investigate the possibility of considering

the two scalar outputs as a multivariate output in an extension to the previous

scalar output random forests and Gaussian processes. In addition, the main

focus of emulation is to approximate a complex model without the computa-

tional cost. The extensions to the scalar output emulation models in Chapter

4 are able to incorporate multivariate outputs with correlations. Each of the

approaches that were considered were able to predict the outputs at new data

with low computational cost - with predictions taking less than a second.

The first approach that was considered was a multivariate extension to ran-

dom forest models which was able to account for a linear relationship between

the outputs, through the use of a Mahalanobis splitting rule (Segal & Xiao

2011). Initial exploration of the Total Area Impacted and the 99th Percentile

of Solids Flux showed a non-linear relationship between the outputs for the

different Biomass values, but with some linearity across the range of values.

The Mahalanobis splitting rule was used to assess it’s suitability for modelling

the outputs jointly. Comparison of the RMSE and MAE for the multivariate

random forest models to the independent random forest models for each output

did not indicate any improvement in the prediction when introducing a linear

relationship between the outputs, indicating that a more complex relationship
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is more suitable. The multivariate random forest could therefore be developed

further through the introduction of more complex relationships between the

outputs. Additionally, by modelling the outputs using a multivariate random

forest, the ranking of the inputs changed, with the operational inputs having

a greater influence. This is possibly related to the fact that the operational

inputs determine how much waste is released from the cages, and so when mod-

elling the two outputs together this influence is increased, compared to when

they are modelled separately.

The second approach to modelling the outputs jointly considered a multi-

output Gaussian process method. Linear model of coregionalization (Journel

& Huijbregts 1978) was considered, as well as convolution processes (Alvarez &

Lawrence 2009, 2011). The linear model of coregionalization approach is sim-

pler, and was considered more appropriate for the data, as described previously.

Investigations relating to the choices to be made around some of the hyperpa-

rameters were conducted, which identified the number of latent processes as

having no influence on the RMSE and MAE. In addition, a single lengthscale

was considered as well as separate lengthscales, with the separate lengthscales

improving the fit with the added flexibility. A further investigation considered

the sub-setting of the data to allow for a sparse Gaussian process approach

to be considered. This identified a sub-setting method that was applied to all

sites, with the predictive performance of the multi-output Gaussian processes

assessed for the test data using RMSE and MAE. Analysis of the RMSE and

MAE for the two outputs at the different sites identified West Strome as the

best performing, and the variation at Muck not being well explained by the

changes in the inputs.

Finally, the performance of the multi-output Gaussian processes and ran-

dom forests were compared to the independent modelling of the scalar outputs

that was considered in Chapter 4. The comparisons between the performance

of the methods for each site indicate that the method with the best predictive

performance is site specific.



Chapter 6

Conclusions, Discussion &

Future Work

Process-based models such as NewDEPOMOD are effective tools that are used

to assess environmental challenges where collecting data is not practical or ef-

fective. The challenges of process-based modelling include their computational

cost, and they do not account for uncertainty.

Uncertainty in process-based models can be investigated through the use

of sensitivity analyses and uncertainty quantification to quantify uncertainty

in the model outputs and attribute them to variations in the model inputs

(Saltelli et al. 2004). Using sensitivity analysis techniques can increase confi-

dence in model predictions by improving the understanding of how the model

output reacts to changes in the inputs (Saltelli et al. 2000). There are three

main types of sensitivity analyses that can be used: 1) Ranking of the inputs

by their influence on the variability of the output, 2) Screening to identify the

inputs that do not contribute to the variability of the output and 3) Mapping

to identify the areas of the input space that produce extreme output values.

Saltelli et al. (2000) developed a framework that could be applied to sensitiv-

ity analyses to answer specific questions about models. Classical sensitivity

analysis techniques focus on univariate or multivariate output, but one of the

novelties within this thesis is the extension to the classic approaches to handle

maps as the output.

As was mentioned above, process-based models suffer from computational

challenges due to their complexity. The computational cost can be reduced

by using statistical emulation techniques which approximate the output from

process-based models (Conti & O’Hagan 2010). Development of statistical em-

ulators are considered as a fundamental step when looking to gain a deeper

understanding of a complex process-based model (Overstall & Woods 2016).

188
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The aim of a statistical emulator is to create a statistical model to imitate a

process-based model, using a set of costly training runs that were completed

using the process-based model. Different statistical methods such as linear re-

gression, generalized linear models, regression splines and Gaussian processes

can be used to emulate the process-based models (Grow & Hilton 2018). Sta-

tistical emulators are then an effective tool for investigating uncertainty within

a process-based model and used as an approximation which can be used for

predicting at a range of input sets (Overstall & Woods 2016).

The main aims of this thesis were to develop novel sensitivity analysis and

emulation tools through the consideration of NewDEPOMOD and the mod-

elling of environmental waste from fish farms. The thesis investigated the

impact on NewDEPOMOD output of uncertainty within the NewDEPOMOD

inputs, and to develop a statistical emulator of NewDEPOMOD to overcome

the computational challenge of running it several times when testing multiple

model setups. The impact of uncertainty within the NewDEPOMOD inputs

on the NewDEPOMOD output were analysed in this research through sen-

sitivity analyses for both the univariate output data from NewDEPOMOD,

and the output maps produced by NewDEPOMOD. The aim of the sensitivity

analyses were to rank the inputs and determine the most influential inputs at

different sites. Next, emulation of NewDEPOMOD was considered, with initial

investigations focusing on the emulation of the univariate output data, before

expanding on this to develop a statistical emulator for multiple, correlated

outputs. Random forest regression and Gaussian processes are considered as

emulation techniques for the univariate output data from NewDEPOMOD, be-

fore using extended approaches to account for the multiple, correlated outputs.

Summaries from each of the analyses will be considered before discussing the

overall success of the research and identifying areas for future work.

6.1 Sensitivity analysis for univariate outputs

The aim of this analysis in Chapter 2 was to determine which of the uncertain

inputs had the biggest impact on the univariate outputs from NewDEPOMOD

- Total Area Impacted, 99th Percentile of Solids Flux and Mass Balance. Two

groups of inputs were considered: 1) inputs based on the physical properties

(continuous inputs) and 2) operational inputs (categorical inputs). Initially,

separate sensitivity analyses were conducted for each group of inputs, before

completing a combined analysis to assess the impact of altering both at the

same time.
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The inputs based on the physical properties consisted of a set of inputs that

were considered due to uncertainty surrounding their default parameter values,

based on the previous modelling experience of SEPA. The inputs based physi-

cal properties inputs initially consisted of 11 different inputs, which consisted

of the Settling Velocity of Faeces, four inputs related to resuspension of waste

on the seabed, and six inputs related to the random walk within NewDEPO-

MOD. After identifying the inputs to be considered, their ranges were identified

through analysis of the literature, as well as through collaboration with SEPA

where ranges could not be determined through the literature alone. The inputs

based on the physical properties were all continuous, and a LHS approach with

a restricted pairing procedure was used to capture as much of the input space

as possible while accounting for correlations between some inputs (McKay et al.

1979, Iman & Conover 1982).

An initial sensitivity analysis of the inputs based on the physical properties

was conducted in order to rank the inputs by their influence on the univari-

ate outputs. These were ranked for each of the outputs at two different fish

farm sites using importance values obtained through random forest modelling

(Breiman 2001, Harper et al. 2011). The two sites being considered had dif-

ferent characteristics, with one being considered as a low energy site and the

other as a high energy site. At both sites, the Critical Shear Stress for Erosion

and the Settling Velocity of Faeces were consistently ranked highly for each

of the univariate outputs being considered. In contrast, the inputs related to

the random walk element of NewDEPOMOD were consistently ranked lower

at both sites for each of the outputs. This indicated that altering the size of

the step within the random walk element of NewDEPOMOD did not have a

big impact on the univariate outputs. As a result, it was concluded that the

random walk inputs would be removed from future analyses, but with a number

of replicate runs being completed for each input set in the analyses to capture

stochasticity arising from the random walk component in NewDEPOMOD.

Next, the consideration of the operational inputs required a different ap-

proach as these inputs relate to the farm setup and could be altered by a farm

operator. The three outputs that were considered were Biomass, Cage Diame-

ter and Number of Cages, all of which were treated as categorical inputs. These

inputs were considered to explore the impact on NewDEPOMOD predictions of

increasing the Biomass to allow for future expansion within the industry. Two

ways to increase the Biomass without reducing the levels of fish welfare are: 1)

to increase the Cage Diameter or 2) increase the Number of Cages. Altering the

operational outputs had to be kept realistic in relation to the possible choices
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of cage numbers and size which allowed for different expansion scenarios to be

considered. A flowchart was developed that allowed different scenarios to be

tested.

This sensitivity analysis was again conducted using random forests and

concluded that the characteristics of the low energy site, such as slow current

speed, meant that the Number of Cages had the biggest influence on the Total

Area Impacted. The additional cages meant a larger footprint on the area of

the seabed directly below the farm. Biomass had the biggest influence on the

Total Area Impacted at the high energy site, as well as the 99th Percentile

of Solids Flux, due to larger amounts of waste being produced by the larger

number of fish in the farm. This analysis considered different operational setups

that could be implemented at farms, and how the characteristics of a site were

influential in the ranking of the inputs.

Finally, the inputs based on the physical properties and the operational

inputs were considered together. The number of inputs based on the physical

properties were reduced following the initial analysis, with the inputs related

to the random walk elements removed. This meant that there were five contin-

uous inputs being considered in addition to the three operational inputs. This

required an alternative sampling approach. The approach that was considered

was a sliced LHS that was able create a space-filling design when continuous

and categorical inputs are considered (Qian & Wu 2009, Ba et al. 2015).

Using the information gained from the previous sensitivity analyses, the

framework developed to assess the influence of the two types of inputs was

applied to two low energy and two high energy sites to allow comparisons to

be made. Random forests were again used in order to rank the inputs based

on their influence on the univariate outputs. Similarities were seen between

the high and low energy sites, with the Settling Velocity of Faeces playing a

dominant role. However, the influence of the operational inputs appeared to

be different between the high and low energy sites, having a bigger effect at

the high energy site.

6.2 Sensitivity analysis for output maps

Chapter 3 looked to expand on the sensitivity analysis techniques for the uni-

variate outputs, to develop methods for considering multivariate outputs, such

as NewDEPOMOD maps. The aim was to develop a framework that would be

suitable for application to multiple sites. Three different approaches were con-

sidered for multivariate output data before deciding on a suitable framework
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to be applied to additional sites.

The first approach considered a shape analysis for the NewDEPOMOD

output maps. This involved identifying a main shape of the impact using land-

marks, before performing a shape PCA to identify the main areas of variation

(Dryden & Mardia 2016). Applying this approach to the data from the sen-

sitivity analysis of the inputs based on the physical properties, it was able to

identify the main areas of variation in the shapes. Modelling of the PC scores

related to the main areas of variation identified the most influential inputs,

with more of the resuspension inputs being identified as influential at the high

energy site, where more resuspension will take place. One drawback to this

approach was that it did not consider the deposition over the whole domain

and only a main shape of deposition. It is not always possible to identify

the main shape of the impact using the landmark approach, which led to the

consideration of further methods which considered the whole domain.

The second approach aimed to use the data across the full domain, consid-

ering the output map as a surface using a bivariate functional approach. The

functional representations of the output maps were produced using an adaptive

smoothing approach with irregular basis functions to capture the large amounts

of variation. A bivariate functional PCA was used to investigate the areas of

variation across the domain (Gong et al. 2015). The main areas of variation

were identified as being on the seabed below the cages. Despite being able to

identify the main areas of variation across the domain, modelling of the PC

scores provided limited explainability, therefore, conclusions could not be made

about the inputs contributing to the variation.

The final approach considered the output from individual grid cells inde-

pendently. Different modelling techniques were used to identify the inputs

that had the biggest influence on the variance of the output in each grid cell.

Variance decomposition approaches are common within sensitivity analyses to

decompose the output variance and attribute it to the inputs (Saltelli et al.

2000). One measure of the variance explained by the inputs is η2, which is a

standardized measure of effect size for an ANOVA. It required the continuous

inputs to be converted to categorical data. An alternative variance decompo-

sition approach that is common within sensitivity analysis literature are Sobol

indices (Sobol’ 1993). A robust extension of Sobol indices were proposed to

overcome the issue of Sobol indices being sensitive to outliers. Finally, random

forest regression was considered as a way to rank the inputs in each of the grid

cells across the domain. In addition, the outliers that affected the Sobol indices

approach were considered in more detail to identify the inputs that may have
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been responsible for the extremes.

The approach which considered the output from the individual grid cells

produced the most interpretable results, and so this approach was used for

the framework to be applied to multiple sites. The framework involved η2 and

random forest modelling to investigate the ranking of the inputs across the

domain, as well as the consideration of the extreme values through quantile

regression. The framework was applied to 4 sites in total, featuring two low

and two high energy sites in order to compare the influence of the inputs across

the domain for the sites with different characteristics. This analysis concluded

that the effect of the inputs across the domain appears to be site dependent,

with differences seen between the sites with similar characteristics. Similarities

are seen between all of the sites with the Number of Cages being the highest

ranking input in the areas of the seabed below where the additional cages are

positioned. In addition, the Biomass and the Cage Diameter only feature as

the highest ranking inputs in a small number of grid cells across the domains

of all sites. When comparing the results from the low energy sites to the

results from the high energy sites, the Settling Velocity of Faeces plays a bigger

role across the domain at the low energy sites, with the resuspension inputs

featuring more as the highest ranking inputs at the high energy sites. Quantile

regression models fitted to the data to investigate the extreme values did not

fit the data well, and so the analysis of the output data was considered with

caution.

A framework was developed in order to assess the contribution of a set

of inputs to variation seen in output maps. The framework was applied to

the NewDEPOMOD data for multiple sites to allow comparisons to be made

between low and high energy sites. This work identified differences between

the influence of inputs across the domain for the different types of sites. The

random forest approach was able to identify the most influential inputs across

the domain, whereas the η2 approach was only able to identify one input across

all sites, suggesting that it did not perform well. The results for the random

forest model were plausible when considering the characteristics of the sites, but

did highlight that even for sites with similar characteristics, there are differences

which suggests that sites should be considered independently in future work.

6.3 Emulation of univariate outputs

The objective for Chapter 4 was to develop a novel statistical emulation frame-

work for the environmental impacts of fish farms to approximate the univariate
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outputs without the computational cost of running NewDEPOMOD. The uni-

variate outputs that were considered throughout this Chapter were the Total

Area Impacted and the 99th Percentile of Solids Flux which provide a measure

of the size and the intensity of the impact on the seabed. Two different mod-

elling approaches were considered for this: 1) random forest regression and 2)

Gaussian process regression. Training and test data was established for fitting

the models and testing their predictive performance. Comparisons of random

forests to Gaussian processes have previously been carried out (Mlaker et al.

2019, Shabani et al. 2020), which showed that the two methods had similar

predictive capabilities.

The random forest approach was considered due to the high percentage of

variation explained by the models used in Chapter 2. In addition, Gaussian

processes were considered due to their flexibility and common use within emu-

lation literature, as referenced in Chapter 4. The predictive performance of the

two approaches was measured through the calculations of RMSE and MAE.

The predictive performance of the random forest models for each output was

good for three of the four sites, with low RMSE and MAE values. However,

at Muck, the RMSE and MAE values were much higher than for the other

sites, which was seen when looking at the plots of the predictions for the test

set against the NewDEPOMOD output in Figures 4.7c and 4.8c, where there

was a lot more variation around the line of equality. Different approaches were

considered to determine if a single emulator could be used for prediction at

all sites, however, the RMSE and MAE for the sites was worse than for the

independent random forest models. This indicated that each site should be

considered independently and a single emulator was not appropriate.

The random forest and Gaussian process approaches have the benefit of

being flexible and efficient to run for predicting at new input sets. One draw-

back to the Gaussian process approach is that it is computationally expen-

sive to fit and optimize the model when using all of the data, and requires

a sparse approach to reduce the computational time. A number of different

sparse approaches were considered for one site, Ardentinny, before deciding

on a method that would be applied to additional sites. However, an investi-

gation of the predictive performance of a Gaussian process fitted using all of

the data compared to the sparse approach, showed that the sparse approach

actually out-performed the full Gaussian process. Multiple sparse approaches

were considered such as the subset of data method which fitted an exact Gaus-

sian process using a subset of the data. Additionally, the subset of regressors

and fully independent conditional approximations were considered, which both
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use a subset of the data to approximate the computationally expensive covari-

ance function within the Gaussian process. The subset of data approach was

identified as being more efficient and had better predictive performance when

predicting for a test set at Ardentinny, and was therefore applied to all sites

for both outputs.

For the Gaussian process regression, a number of investigations were con-

sidered to determine the sparse approach to be used as well as the number of

inducing points to be included in the active set. The results indicated that a

subset of data approach with 200 inducing points was best, and this was applied

to both outputs at each site. The Gaussian process models had slightly higher

RMSE and MAE values than for the random forest models at three of the four

sites. At West Strome, the Gaussian process had better predictive performance

for the Total Area Impacted, and similar RMSE and MAE values for the 99th

Percentile of Solids Flux. These comparisons identified only one occasion where

the Gaussian process approach performed better than the random forests - the

Total Area Impacted at West Strome. This suggested that the random forest

approach for emulation is better for the case where the univariate outputs are

considered independently.

The two emulation approaches that were considered performed well for all

of the sites, excluding Muck. Emulation is commonly used to approximate the

output from complex mathematical models without the computational cost,

before studying the uncertainty of the model output to variation in the model

inputs. The emulators for each site that were developed could be used fur-

ther to investigate the effect on the output variation of the inputs in more

detail through uncertainty quantification, with a larger number of input sets

considered than would be possible when using NewDEPOMOD.

6.4 Emulation of multivariate outputs

An expansion of the emulation framework from Chapter 4 was considered in

Chapter 5 to create a multivariate output emulation framework that accounted

for correlation between the outputs. The two univariate outputs featured in

Chapter 4 are considered as a multivariate output to assess if there is any

information gain from . Again, a random forest and Gaussian process approach

were considered, where each method is expanded to account for multivariate

outputs where correlations exist. (Segal & Xiao 2011) proposed an extension

to the standard random forest that accounts for multiple outputs that are

linearly related, which can be done through a Mahalanobis splitting method.



CHAPTER 6. CONCLUSIONS, DISCUSSION & FUTURE WORK 196

A number techniques have been considered for the multiple output extension

for Gaussian processes (Conti & O’Hagan 2010, Higdon et al. 2008, Alvarez &

Lawrence 2009, 2011), with a linear model of coregionalization being used for

the application to NewDEPOMOD (Alvarez & Lawrence 2011).

Browne et al. (2021) noted that there are a lack of more sophisticated mul-

tivariate random forest models that can account for relationships other than

linear relationships. Initial scatterplots of the Total Area Impacted against

the 99th Percentile of Solids Flux showed non-linear relationships between the

outputs for each Biomass value, but with some areas of linearity. The Ma-

halanobis splitting method was applied with the multivariate random forest

models to the data to investigate if the assumption of linearity provides any

information gain. After fitting the multivariate random forest models for each

site, their predictive performance was assessed using test data and calculations

of the RMSE and MAE. Reviewing the RMSE and MAE values for each out-

put using the multivariate random forest, they are slightly higher for three of

the four sites than the values from the independent random forests. For West

Strome, similar values are seen for the independent and multivariate random

forests. In addition, when considering the importance values of the inputs for

each output, differences were seen when comparing to the importance values

from the univariate random forests in Chapter 4. The Biomass value had a

bigger influence for the multivariate random forest, having the largest impor-

tance value for the 99th Percentile across the four sites. The operational inputs

determine how much waste leaves the cages and enters the water column, and

the multivariate random forest suggests that, when modelling the two outputs

together, the operational inputs play a bigger role.

Alternatively, an extension to the Gaussian processes for correlated, multi-

variate outputs was considered. The linear model of coregionalization (Journel

& Huijbregts 1978) approach was applied to Gaussian processes to allow for

correlated, multivariate outputs to be considered. Considerations of the hy-

perparameter structure were required for this approach, such as the number

of latent processes within the model, and the choice of a single or separate

lengthscales for each input. These choices were investigated in more detail and

determined that the number of latent processes had no major impact on the

predictive performance of the models, but the inclusion of the separate length-

scales significantly improved the predictions. The hyperparameters within the

multi-output Gaussian process were optimized using the L-BFGS algorithm,

similar to the univariate output Gaussian processes. After fitting the multi-

output Gaussian processes, the same training data from this model was used to
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fit emulator models using independent random forests, independent Gaussian

processes and multivariate random forests. When comparing the performance

of the emulators, none of them performed consistently better across the 4 sites,

and the best performing approach appears to be site specific.

6.5 Discussion, limitations and future work

This thesis has investigated how uncertainty of inputs within process-based

models can affect the output from the model, using the application of sensitiv-

ity analysis techniques to the modelling of the environmental impacts of aqua-

culture with NewDEPOMOD. Sensitivity analyses were conducted for both the

univariate outputs and the multivariate output maps from NewDEPOMOD.

Random forests were an effective tool for the purpose of identifying the most

influential inputs in relation to the univariate outputs that were considered.

In addition, the random forest approach was incorporated in the framework

that was developed for analysing the multivariate output maps produced by

NewDEPOMOD. This was an effective tool that was able to identify areas of

variation across the maps. The other measures did not perform as well, which

is potentially a result of the outliers present within the output for the grid cells.

Transformations of the data were considered to overcome these problems, but

did not solve the problems of the data being skewed. When considering the

grid cell data, a large proportion of it features Solids Flux values close to or

equal to zero, so a possible approach to combat this problem would be to only

consider grid cells where the average Solids Flux values are greater than a pre-

defined value. In addition to the problems with the outliers, the approach that

was considered within the framework considered the grid cells independently

and did not account for spatial correlation. Not accounting for the spatial cor-

relation when considering the output maps in as the output for the sensitivity

analysis, limits the conclusions that can be drawn from the analysis. The anal-

ysis provided a general idea of the influence of the inputs across the domains.

Therefore, the analysis could be extended to account for spatial correlation

within the framework for the multivariate output maps.

Following the sensitivity analysis, statistical emulation approaches were

considered to approximate the univariate and multivariate output from NewDE-

POMOD. The application of emulation to modelling the environmental impacts

of aquaculture is a novel approach. Initially, the univariate outputs were con-

sidered, with random forests and Gaussian processes proposed as emulation

techniques due to their flexibility and low computational cost when predicting
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for new input sets. The performance of the univariate emulators was good for

three of the four sites being considered. For each output, a single random for-

est emulator was considered for all of the sites, but resulted in poor predictive

performance, suggesting the inputs should be considered individually to gain

accurate predictions. The emulation framework was then extended to account

for correlated, multivariate outputs. The first approach to be considered was

multivariate random forests, which were able to account for linear relationships

between the outputs. In most cases, this did not produce better predictive per-

formance, which indicated that the assumption of a linear relationship between

the outputs was not suitable. As a result, a further extension to this work could

be the consideration of more complex relationships between outputs. Follow-

ing the multivariate random forest approach, the univariate Gaussian process

approach was extended to account for correlated multivariate outputs. The

multi-output Gaussian processes performed well in comparison to the other

approaches for some of the sites, but not all. Across the four sites for each of

the outputs, there was no method that performed consistently better than the

rest for prediction. This is potentially a result of each site having individual

characteristics, which were identified in the sensitivity analysis, and also the

investigation of a single emulator to be used for all sites.

Further analysis of additional sites could provide extra information for both

the sensitivity analysis and emulation methods that were investigated. In ad-

dition, the emulators created for each of the sites could be used to explore the

uncertainty within NewDEPOMOD without the computational cost of running

NewDEPOMOD for multiple input settings. The sensitivity analysis methods

described in this thesis could be applied to any setting with univariate or mul-

tivariate outputs, such as maps.

In this thesis, different statistical frameworks have been considered and

contrasted, for the sensitivity analysis and emulation of process-based models.

Novel approaches have been developed for dealing with maps as model outputs,

as well as the novel application of statistical emulation of the environmental

impacts of aquaculture.
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