

Alhamed, Mohammed (2022) On the application of artificial intelligence and

human computation to the automation of agile software task effort estimation.

PhD thesis.

https://theses.gla.ac.uk/83231/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/83231/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

ON THE APPLICATION OF ARTIFICIAL

INTELLIGENCE AND HUMAN

COMPUTATION TO THE AUTOMATION OF

AGILE SOFTWARE TASK EFFORT

ESTIMATION.

MOHAMMED ALHAMED

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

OCTOBER, 2022

© MOHAMMED ALHAMED

Abstract

Software effort estimation (SEE), as part of the wider project planning and product road
mapping process, occurs throughout a software development life cycle. A variety of effort
estimation methods have been proposed in the literature, including algorithmic methods, ex-
pert based methods, and more recently, methods based on techniques drawn from machine
learning and natural language processing. In general, the consensus in the literature is that
expert-based methods such as Planning Poker are more reliable than automated effort es-
timation. However, these methods are labour intensive and difficult to scale to large-scale
projects.

To address this limitation, this thesis investigates the feasibility of using human computation
techniques to coordinate crowds of inexpert workers to predict expert-comparable effort es-
timates for a given software development task. The research followed an empirical method-
ology and used four different methods: literature review, replication, a series of laboratory
experiments, and ethnography.

The literature uncovered the lack of suitable datasets that include the attributes of descriptive
text (corpus), actual cost, and expert estimates for a given software development task. Thus,
a new dataset was developed to meet the necessary requirements.

Next, effort estimation based on recent natural language processing advancements was eval-
uated and compared with expert estimates. The results suggest that there was no signifi-
cant improvement, and the automated approach was still outperformed by expert estimates.
Therefore, the feasibility of scaling the Planning Poker effort estimation method by using
human computation in a micro-task crowdsourcing environment was explored. A series of
pilot experiments were conducted to find the proper design for adapting Planning Poker to a
crowd environment.

This resulted in designing a new estimation method called Crowd Planning Poker (CPP).
The pilot experiments revealed that a significant proportion of the crowd submitted poor
quality assignments. Therefore, an approach to actively managing the quality of SEE work
was proposed and evaluated before being integrated into the CPP method. A substantial

overall evaluation was then conducted. The results demonstrated that crowd workers were
able to discriminate between tasks of varying complexity and produce estimates that were
comparable with those of experts and at substantially reduced cost compared with small
teams of domain experts.

It was further noted in the experiments that crowd workers provide useful insights as to the
resolution of the task. Therefore, as a final step, fine-grained details about crowd workers’
behaviour, including actions taken and artifacts reviewed, were used in an ethnographic study
to understand how crowd effort estimation takes place in a crowd. Four persona archetypes
were developed to describe the crowd behaviours, and the results of the behaviour analysis
were confirmed by surveying the crowd workers.

Acknowledgements

In honour of those people without whom it would not have been possible for me to complete
this research and write this thesis.

My sincere gratitude goes out to my parents, Abdullah Alhamed and Norah Albahly for their
endless support, encouragement, and patience throughout my life and especially during my
PhD. Mom, I will not forget your constant calls and prayers to ensure a comfortable life for
me. You always have a place for me. Remember, Dad, you are the one who ignited this
ambition in me, and kept reminding me of the end goal. Without your encouragement and
support, this work wouldn’t have seen the light. I also would like to thank my wife, Samiah
Aljadhai, for not only standing by me, but also for taking great care of me and our children,
Husam, Norah, Sarah, and Lara.

Thank you to my supervisor, Dr Tim Storer, for his patience, guidance, and support. You
have provided me with a wealth of knowledge, a profound way of thinking and questioning,
and meticulous examining and editing that I would never imagined before. You have literally
transformed my skills in scientific research. You are always there for endless support and
guidance, be it editing my writing or recommending me in your letters. Throughout the years,
you kept the research trails fascinating for me as I passed through this journey’s trials. I have
been extremely grateful that you have taken me on as a student and continued to believe in
me. I also thank my second supervisor, Dr Inah Omoronyia, for his great feedback, excellent
encouragement, and guidance.

Thank you to Caroline Orr1 for proofreading the thesis and helping with the language, the
University of Jeddah for sponsoring this research, and the School of Computing Science at
the University of Glasgow for their support.

1www.orreditorial.com

Declaration

I declare that this thesis has been composed by myself, that the research presented embod-
ies the results of my own work and that it does not include work forming part of a thesis
presented for a degree in this or any other University.

The author’s original work presented in this thesis has contributed to a number of publica-
tions that have been co-authored with Dr Timothy Storer:

• M. Alhamed and T. Storer, “Estimating Software Task Effort in Crowds,” 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2019, pp.
281-285, doi: 10.1109/ICSME.2019.00042.

• M. Alhamed and T. Storer, “Playing Planning Poker in Crowds: Human Computa-
tion of Software Effort Estimates,” 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 1-12, doi: 10.1109/ICSE43902.2021.00014.

E

Table of Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Software Effort Estimation . 1

1.1.2 Planning Poker . 3

1.1.3 Human Computation and Crowdsourcing 4

1.2 Motivation . 5

1.3 Thesis Statement . 7

1.4 Contribution . 9

1.5 Thesis Outline . 11

2 Research Methodology 13

2.1 Software Engineering Empirical Research 13

2.2 Literature review . 15

2.3 Replication . 16

2.4 Empirical Experiments . 17

2.4.1 Pilot Experimentation . 18

2.4.2 Laboratory Experiments . 19

2.5 Ethnography . 19

2.6 Summary . 21

3 Literature Review 23

3.1 Characterising Software Effort Estimation 23

3.1.1 Definitions . 24

3.1.2 Different Perspectives of Software Effort Estimation 25

3.1.3 SEE Methods Classification . 26

3.2 Expert-based Software Effort Estimation Methods 28

3.2.1 Guesstimation . 29

3.2.2 Wideband Delphi . 29

3.2.3 Estimeetings . 30

3.2.4 Stochastic Budget Simulation (SBS) 31

3.2.5 Sparse Data Method (SDM) using Analytic Hierarchy Process . . . 32

3.2.6 Planning Poker . 33

3.3 Machine Learning Software Effort Estimation 35

3.3.1 Artificial Neural Network (ANN) 35

3.3.2 Case-Based Reasoning (CBR) . 35

3.3.3 Decision Tree (DT) . 36

3.3.4 Support Vector (SV) . 36

3.3.5 Performance of ML-Based . 37

3.3.6 Contexts Where ML-Based is Recommended 37

3.4 Review of Comparative Research of Expert-Based and ML-Based SEE . . . 38

3.5 Human Computation . 40

3.5.1 Crowdsourcing . 41

3.5.2 Collective Intelligence . 42

3.5.3 Social Computing . 42

3.5.4 Quality Assignment in Human Computation 43

3.6 Software Engineering Applications in Human Computation 45

3.7 Summary . 47

4 JIRA Open Source Software Effort Dataset 49

4.1 Publicly Available SEE Datasets . 50

4.2 Software Effort Estimation Datasets Research Studies 51

4.3 Collection of the JOSSE Dataset . 53

4.4 JOSSE Dataset Refinement Options . 57

4.4.1 Quantity of Data Points Per Project 59

4.4.2 Dataset Outliers . 59

4.4.3 Dataset Dissension . 60

4.4.4 Dataset Readability . 62

4.4.5 Discretising Software Effort Estimates 64

4.4.6 Dataset Domain and Origin . 65

4.4.7 The Quality Taxonomy Assessment 65

4.5 Summary . 67

5 Evaluation of Language-Based Transfer Model for Software Effort 68

5.1 Background on ML and Software Effort Estimation 69

5.1.1 Converting Text Corpus for Use in ML Models 70

5.1.2 BERT and RF as Machine Learning Models 72

5.2 Experiment Design . 75

5.2.1 Experiment Datasets . 76

5.2.2 Estimation Method . 79

5.2.3 Evaluation Metrics . 81

5.3 Results . 81

5.3.1 RQM1: Accuracy of ML models 82

5.3.2 RQM2: Evaluation of Feature Extraction Methods 83

5.3.3 RQM3: ML models compared with expert-based estimates 84

5.4 Discussion . 85

5.5 Summary . 88

6 Crowd Planning Poker: A Preliminary Study 89

6.1 General Considerations of Planning Poker 90

6.2 Crowd Planning Poker (CPP) General Model 93

6.3 Experimental Design . 99

6.3.1 Dataset . 100

6.3.2 Measures . 101

6.3.3 Experiment Trials and Variables 102

6.3.4 Evaluation and Result Test . 104

6.4 Results . 104

6.4.1 Information Experiment . 104

6.4.2 Crowd Size Experiment . 105

6.4.3 Process Design Experiment . 106

6.5 Discussion . 106

6.5.1 PRQ1: Proper working settings for CPP 106

6.5.2 PRQ2: Proper process design for CPP 108

6.5.3 PRQ3: Feasibility of producing expert-comparable estimates 108

6.5.4 Beyond Estimates – Crowd Insights 109

6.5.5 Evaluation of Costs in Pilot Studies 110

6.5.6 Threat to Validity – Issue Availability 111

6.6 Summary . 112

7 Quality Assessment and Enhancement of Crowd Planning Poker 113

7.1 Exploring the Quality of Crowd Assignments in the CPP Context 114

7.2 Measuring Quality of Crowd Assignments 118

7.2.1 User Behaviour Quality . 119

7.2.2 Manual Assessment of Issue Quality 120

7.2.3 Machine Learning . 121

7.3 Improving Crowd Quality . 124

7.3.1 Crowd Feedback Loop . 124

7.3.2 Encouraging Improvement Using Loss Attention 127

7.3.3 Handling Rejected Cases Using Soft-Reject 128

7.3.4 Quality Improvement Experiment Design 129

7.3.5 Experiment Results . 130

7.4 Discussion . 132

7.5 Summary . 135

8 Human Computation of Software Effort Estimates 137

8.1 Full Design of Crowd Planning Poker Using Human Computation 138

8.2 Experimental Design . 147

8.3 Result and Evaluation . 150

8.3.1 Crowd Performance Compared with Experts 151

8.3.2 CPP Scalability . 152

8.4 Discussion . 154

8.4.1 Threats to Validity – Issue Availability 155

8.5 Summary . 156

9 Crowd Estimator Personas: an Ethnographic Study of Crowd Behaviour 158

9.1 Related Work . 159

9.2 Design of Systematic Behaviour Scanning Study 162

9.2.1 UI Interaction Log Systematic Scanning 163

9.2.2 Behaviour Descriptors for Crowd Personas 168

9.3 Results of Behaviour Analysis and Crowd Personas 171

9.3.1 Combined Class A and B . 171

9.3.2 Class C . 174

9.3.3 Class D . 177

9.3.4 Identified Personas . 178

9.4 Post CPP Survey Study . 180

9.4.1 Survey Design . 180

9.4.2 Survey Results . 185

9.5 Discussion . 189

9.6 Summary . 191

10 Conclusions 193

10.1 Summary of Research Activity . 193

10.2 Questions and Findings . 194

10.2.1 ML Algorithms . 195

10.2.2 CPP Design . 195

10.2.3 CPP Quality . 196

10.2.4 CPP Automation . 197

10.2.5 Crowd Behaviour . 198

10.3 Contributions and Learned Lessons . 198

10.4 Thesis Scope and Validity . 203

10.5 Future CPP Research Work . 205

10.5.1 Applying Crowd Planning Poker in an Industrial Case Study 205

10.5.2 Investigating the Effects of Obfuscating on Estimate Reliability . . 206

10.5.3 Extending Crowd Planning Poker Applications 207

10.5.4 Extending Ethnographic Effort Estimation Study 207

10.6 A Final Thought... 208

A Details of JOSSE Open Source Software Project 209

B Detailed ML Results For Each Dataset 214

C POST Crowd Planning Poker Survey 219

Bibliography 226

K

List of Tables

4.1 Effort distribution among datasets. 51

4.2 Datasets summary. 51

4.3 JOSSE project statistics. 55

4.4 JOSSE summary. 56

4.5 JOSSE projects Quantification. 59

4.6 Statistics of Corpus Grammar Error Percentages. 64

4.7 JOSSE Evaluation Against Quality Taxonomy. 66

5.1 Effort Distribution in Experiment Datasets 77

5.2 Summary details of datasets. 77

5.3 Time-Based Categories . 78

5.4 Results Summary . 82

5.5 Expert Performance . 85

6.1 Properties of software development tasks 101

6.2 Summary of trials settings . 103

6.3 Summary of the five trials results . 105

6.4 Summary of the four crowd-size trials results 105

6.5 Summary of the nine process-design trials results 107

6.6 Breakdown of trial costs of the third experiment (process design). 110

7.1 Experiment Issues’ Characteristics . 115

7.2 Crowd Behaviour Actions . 119

7.3 Hyperparameters optimal values . 123

7.4 Experiment Issues’ Characteristics . 123

7.5 Experiment Issues’ Characteristics . 129

7.6 Crowd Workers Submissions . 130

7.7 Crowd Workers Improvement Responses 131

7.8 Assignment Quality VS Workers’ Behaviour 134

8.1 Comparison of estimation error metrics 150

8.2 Summary of trial results . 151

8.3 Breakdown of trial costs. 153

9.1 Association of crowd action and UI events 166

9.2 Number of assignments (cases) that are considered from each class 167

9.3 statistical summary of crowd descriptors 169

9.4 Questions of the crowd survey . 182

9.5 Results of crowd worker familiarity with CPP 186

9.6 Results of unfamiliar crowd worker reaction 187

9.7 Results of useful CPP components . 187

9.8 Results of crowd workers time allocation 188

9.9 Results of good estimation rational . 188

9.10 Results of quality feedback reaction . 188

9.11 Results of information for revision . 189

A.1 An overview brief of each project included in the JOSSE dataset. 213

B.1 Performance of ML models and feature extraction methods 218

M

List of Figures

1.1 Effort Estimation Activities . 3

1.2 Scrum Flow Chart . 4

1.3 Thesis chapters and questions map . 10

2.1 Logical architecture of empirical methods 14

3.1 Classification of Software Effort Estimation Methods 27

3.2 Example of a Planning Poker Deck . 34

4.1 JIRA time logging screenshot. 54

4.2 JOSSE ER diagram. 54

4.3 Two box plots representing the dataset before and after the outlier removal. 61

4.4 Data dissension heat maps of JOSSE. 63

5.1 Simple Random Forest for Estimating Effort. 73

5.2 Fine-tuning BERT for SEE problem . 74

5.3 Dataset Refinement Process . 78

5.4 Feature Extraction Methods . 80

5.5 Box Plot of Performance Metrics . 83

6.1 General model of the crowdsourcing Planning Poker task. 93

6.2 Screenshot of AMT showing CPP HIT specifications 95

6.3 Effort estimates available for crowd workers to select. 96

6.4 Asynchronous communication flow chart of two messages. 97

7.1 Proposed CPP Quality Model . 125

7.2 Low Quality Warning Message . 127

8.1 The Business Process Model and Notation (BPMN) of CPP 140

8.2 Screenshot of AMT showing CPP HIT specifications. 141

8.3 HIT instructions as they are listed in the CPP application. 142

8.4 A screenshot show extra issue information and estimate options 144

8.5 A screenshot shows low quality warning message as feedback 145

8.6 A screenshot shows a list of CPP rounds 146

8.7 List of software issues that are estimated by crowd 148

9.1 State machines of crowd assignments . 164

9.2 State machines of a crowd worker . 165

9.3 Activity stream maps of accurate and inaccurate accepted assignment . . . 172

9.4 Activity stream maps of accurate and inaccurate Class C assignments . . . 176

9.5 Activity stream map for poor assignments (Class D). 179

9.6 Histogram of crowd familiarity with Planning Poker 186

10.1 Activity stream map for poor assignments (Class D). 202

1

Chapter 1

Introduction

In software engineering, effort estimation is part of the planning phase in the system devel-
opment life cycle (SDLC). The goal is to predict a reliable cost of achieving a given software
development task such as implementing a new feature or fixing a bug. Effort estimates can be
predicted using formal models, experts, or a combination of the two. This thesis investigates
the feasibility of using human computation to predict expert-comparable effort estimates for
a given software development task. This chapter introduces the thesis by giving a brief back-
ground and explaining the thesis motivation. It also lists the thesis contribution and describes
the structure of the rest of the thesis.

1.1 Background

The thesis topic is an application of an application of Human Computation and Artificial
Intelligence (AI) in Software Engineering. This section gives some background information
to introduce these disciplines. It explains effort estimation in Agile software development
and human computation using crowds. It also highlights the research methods used during
the research.

1.1.1 Software Effort Estimation

In software engineering, different development methods, such as Waterfall, Spiral, and Agile,
can implement the SDLC differently. There are some software development phases common
to those models, including planning, design, implementation, and testing. However, each
model has its own way of arranging these phases and their activities. Software effort estima-
tion processes vary based on the approach, the input and output, and the involved subjects.
However, the goal in all cases is to predict a reliable effort estimate for a given task. Effort

1.1. Background 2

can be presented in different units, such as time, cost, or even a points system, to determine
project schedules and budgets.

Effort estimation approaches can be based on a formal model, an expert judgement, a ma-
chine learning model, or a mixture of these. Formal model approaches do not involve any
human judgement in their processes, and they rely solely on mathematical equations. One
popular formal method is the Constructive Cost Model (COCOMO) [1]. It has several ver-
sions: Basic, Intermediate, and Detailed. COCOMO depends on lines of code plus other
constants that can be determined based on the project type: Organic, Semi-Detached, or
Embedded.

Formal model estimation approaches are efficient and fast. Therefore, it is easy to use such
approaches on a large scale. However, several studies have cast doubt on the reliability of
formal model approaches [2]. Such models do not consider relevant contextual data that
might provide insights into the estimation process. For instance, Putnam’s model [3] does
not differentiate between non-critical and critical systems that require additional testing and
certification. In addition, such models do not permit critical analysis or negotiation of result-
ing estimates and thus lack justifications to accompany and support the outcome.

Expert-based methods rely on expert judgement using different estimation strategies such
as Guesstimation [4], Wideband Delphi [1], and Planning Poker [5]. The methods share
common activities, including topic understanding, searching for related information, and
evaluating and discussing suggested estimates. According to the literature [2, 6, 7], a general
model of the expert estimation process consists of the following activities and follows the
flow chart illustrated in Figure 1.1.

• Understanding the topic: where estimators comprehend available materials about the
software takes.

• Searching for related information: including similar software tasks from history to
compare and understand the size of the current task.

• Quantifying calculation parameters: when estimators have understood the task, several
features of the given task, such as the number of software modules that need to be
considered, will be identified.

• Calculating an estimate: based on the identity calculation parameters, the estimate will
be produced.

• Evaluating qualities of the estimate: including estimate accuracy and quality of the
calculation parameters.

• Discussing estimates: to provide reasoning, critique, and feedback to the estimation
process for the next software tasks.

1.1. Background 3

Understanding The Topic Searching for Related
Information

 Quantifying Calculation
Parameter

Calculating an Estimate Evaluating Qualities of The
Estimate Discussing Estimates

Figure 1.1: Effort Estimation Activities

Expert-based effort estimation approaches generally lack the scalability of formal models,
but they can produce more reliable estimates accompanied by justifications [8]. Such meth-
ods encourage discussion of estimates within the group of estimators, which may improve
the quality of the estimation end results. The practice is often associated with the Scrum
software development method, where team members use negotiation and discussion to reach
a consensus about their estimates, or determine that a task lacks sufficient detail to estimate
accurately. Therefore, several aspects of a project can be considered, and a better under-
standing of a given task can be achieved.

Finally, Machine Learning (ML) based methods are typically trained on a large dataset to
identify correlation between information about software development tasks and their actual
cost, resulting in a data model that can be used to predict cost estimates for new software
tasks. Different methods are proposed in the literature based on standard ML techniques,
such as Artificial Neural Network [9], Random Forest [10] and Support Vector Machine [11].
ML methods are similar to formal models in the sense that they rely on machines to predict
an estimate. However, ML methods are considerably more flexible than formal models, since
the form of input data can be altered relatively easily to incorporate (for example) internal
project discussions such as instant message chats and email as well as more conventional
task descriptions and metrics. This enables researchers to search for optimal combinations
of inputs to support reliable estimation.

1.1.2 Planning Poker

Scrum is an Agile software development method that arranges software development phases
into small, iterative periods of time called sprints. Each sprint has planning, implementation,
review, and retrospective phases, as illustrated in Figure 1.2. During the planning phase,
which is the concern of this thesis, a Scrum team may undertake an effort estimation process
called Planning Poker [8]. Usually, the team plays Planning Poker over a list of tasks, called
the backlog, to estimate the effort for each backlog item.

Each member of the development team has a set of cards, each labelled with a possible cost

1.1. Background 4

Planning Implementation

Daily Scrum

Review Retrospective

Scrum Sprint

Figure 1.2: Scrum Flow Chart

estimate. Different units of cost can be used, including t-shirt size, person-hours, or story
points. Cohn [5] proposes using story points as a means of comparing relative user story
complexity, rather than producing an absolute estimate. In Cohn [5]’s approach, story point
cards are labelled 0, 1, 2, 3, 5, 8, 13. A final card labelled with infinity can be used to signal
that the task under consideration is too complex to be reliably estimated.

Team members start by estimating the effort for a task individually, and pick the card with
the most appropriate value to make their estimate. Then, they reveal their cards simultane-
ously and compare their estimates. If there is no consensus for the estimate then the team
members explain their views to each other. In particular, the estimators with the lowest and
highest estimates are asked to explain their reasoning. Additional rounds of estimation and
discussion are performed until they reach a consistent estimate for the task. Cohn [5] recom-
mends that if consensus has not been reached after three rounds of estimation then the team
should revisit the task separately.

1.1.3 Human Computation and Crowdsourcing

As von Ahn [12] stated in his dissertation, Human Computation is a paradigm for:

“... utilizing human processing power to solve problems that computers can-
not yet solve.”

Software effort estimation is a candidate problem for human computation since current au-
tomated approaches still lack the reliability of expert-based estimates.

Initially, human computation was used to differentiate between machines and humans with
the aim of avoiding unwanted processing requests such as those generated by unengaged

1.2. Motivation 5

workers; see von Ahn et al. [13]’s research to develop CAPTCHA for more details. Later,
it was used in information retrieval research to annotate and label images and other kinds of
information [14].

Crowdsourcing platforms are markets that connect workers to requesters to meet their de-
mands. These platforms have considerably eased the task of creating computational pro-
cesses that combine human and automatic processing. A requester can be a human or a
machine that has a specific task to be accomplished. What makes such platforms a shadow
of human computation is the ability to interact with those platforms via Application Pro-
gramming Interfaces (APIs). Thus, software powered by human computation techniques can
post tasks for humans to accomplish and collect the outcome as part of the process.

The power of enabling human processing abilities to be manipulated by machines and in-
cluded as part of regular machine processes has opened the door for different applications,
including software engineering activities such as planning, development, and testing [15]. In
particular, when crowdsourcing platforms emerged, human computation flowered in differ-
ent disciplines.

Different kinds of crowdsourcing platform can be found, including micro-task and domain-
specific platforms. Amazon Mechanical Turk (AMT)1 is an example of a micro-task crowd-
sourcing platform, and TopCoder2 is an example of a domain-specific crowdsourcing market
that is specialised in software development tasks.

In AMT, a requester (employer) can post a job called a Human Intelligence Task (HIT). Then
a worker (contractor) can review the HIT and either accept or reject it. Only workers with
qualifications that meet the eligibility criteria can review, view, and work on the HIT. Once
the HIT is accepted, the worker can submit the finished work, known as the assignment.
After that, the assignment can be accepted or rejected by the requester according to the
quality criteria. Assignment evaluation can be performed automatically. More advanced
quality criteria checks may require manual approval of the assignment. Requesters have full
control over the hiring process and it can be fully automated using the AMT API.

1.2 Motivation

Effort estimation plays a critical role in planning activities during the SDLC, providing the
basis for developing project budgets, schedules and roadmaps. Numerous studies have re-
ported on the difficulties of producing reliable software effort estimates for tasks, resulting
in budget over-runs and/or the delivery of low quality software. For instance, Grimstad et al.
[16] found that tight schedules give developers a reason for not assuring the quality of their

1https://www.mturk.com
2https://www.topcoder.com

1.2. Motivation 6

code. Historically, software engineering projects have relied on estimation methods based
on expert judgement and consensus formation, such as Delphi [17], as these are considered
more reliable than approaches based on formal models [18, 5].

The limitations of such methods, in terms of scalability, are well recognised in the literature,
particularly for large scale software development efforts. For example, Taff et al. [19] found
30 years ago that it takes up to two years to plan and estimate such systems, in which time
the requirements and scope may very well have changed dramatically.

More recently, with the growing pervasiveness of Agile methods in software development
[20], the Planning Poker estimation method has become increasingly popular [8]. Planning
Poker resembles Delphi, in that estimates are produced through structured consensus forma-
tion within a group of domain experts. However, the practice is designed to either produce
an estimate for a task relatively quickly (Schwaber [20] recommends doing so within a few
minutes), or to identify a task as requiring further elaboration before an accurate estimate
can be produced.

However, this more Agile approach to estimation still lacks scalability for very large software
projects. For example, in the context of open-source software, in 2019, the Linux Kernel,
Firefox Web Browser, and JBoss projects had, respectively, 6456, 11751, and 17032 new
issues awaiting triage [21, 22, 23]. Applying labour-intensive expert estimation methods to
such projects is infeasible, due to the scarcity of human resource available. Simply pro-
cessing the existing backlog of issues would consume all the working time of the software
engineers working on the project for many months.

A separate risk of expert-based methods is that of bias. For example, the valence effect [24]
is the human tendency to be optimistic, resulting in underestimating the effort required for a
given issue. Alternatively, estimators may experience a conflict of interest, such as when the
estimators are the same people who will be undertaking the estimated effort. Moharreri et al.
[25] reported conflicts of interest in a Planning Poker session resulting in a complicated plan-
ning phase and unreliable outcomes. Several studies [26] reported that estimation sessions
with outsiders resulted in more accurate estimates than closed estimate sessions. Outsiders
are estimators outside the development team.

An alternative approach to effort estimation, addressing the issue of scalability, has been to
depend on automated techniques such as formal models or machine learning. Such methods
are able to generate estimates rapidly based on inputs, since all processing is undertaken au-
tomatically. Unfortunately, in the current state of the art, automated approaches are generally
outperformed by expert estimation. Jørgensen et al. [2], in a survey of 16 effort estimation
studies, found that in 10, using expert-based effort estimation resulted in more accurate esti-
mates. One limitation of automated methods is the relatively narrow scope of data considered
when producing estimates, compared with that considered by experts. Further, automated

1.3. Thesis Statement 7

methods lack techniques for identifying hidden assumptions, whereas expert-based methods
employ negotiation and discussion amongst the experts for this purpose. Therefore, human
participation remains critical to reliable software effort estimation [2], yet, human participa-
tion introduces scalability and cost issues for large-scale projects.

Reviewing the literature, although there are numerous studies exploring the potential for
automated effort estimation, few studies investigated expert-based methods, and even fewer
worked on enhancing those methods. Of the effort estimation studies reviewed by Jørgensen
et al. [2], only 15% investigated expert-based methods. In addition, Jørgensen et al. reported
that the majority of those studies did not suggest any improvements to the methods studied.
Therefore, this gap represents an opportunity that needs to be addressed, especially given that
expert-based estimation methods are the dominant kind of method, as reported by Jørgensen
et al. [2].

In this thesis, the question of whether, by automating or semi-automating an expert-based
effort estimation process such as Planning Poker, limitations on scalability and cost and
the risk of bias can be addressed. Recent advances in human computation have revealed
opportunities to overcome some of those challenges. Human computation is a human-centric
processing approach, where machines orchestrate humans to solve a problem that is hard for
a machine to tackle. This approach is usually used in tasks where machines can not process
reliable enough outcomes, for example, estimating the effort of a software development task.

The development of crowdsourcing platforms offers easy and cheap access to hundreds of
people to process different kinds of tasks. For instance, AMT offers a platform to process
micro-tasks such as annotation tasks. Thus, this thesis investigates the possibility of automat-
ing Planning Poker using human computation, and whether the resulting estimates compare
with expert estimates.

1.3 Thesis Statement

The statement of this thesis is that expert-comparable estimates for software development
tasks can be efficiently predicted by playing Planning Poker in crowds using machine
learning as an assistive management model.

In particular, the thesis addresses the challenges of finding an appropriate estimation process
for crowds, selecting crowd workers for their tasks, and, most critically, automating the
quality assessment and management of crowd worker tasks.

Planning Poker is an effective method to aggregate and consolidate expert opinions, but it
needs a manual procedure and domain experts. This thesis contends that crowd wisdom
can replace experience if a large number of people is involved and they are suitably orches-

1.3. Thesis Statement 8

trated. A crowdsourcing platform can provide economical access to the crowd without time
or location restrictions.

Nonetheless, a large number of crowd workers is hard to manage manually. Workers usually
take micro-level tasks, and the quality of their outcomes is questionable. Human computation
techniques can automatically coordinate and process the crowd work, automating handover
between rounds of Planning Poker task without the need to divide it into micro-level tasks.
Crowd handover also helps in identifying and transferring important knowledge between
crowd workers. Finally, automatic assessment of crowd worker submissions and feedback to
workers enable estimate quality to be managed in real time.

Given the thesis statement above, several questions need to be addressed. As a first step,
based on a review of the available literature, a decision was made to investigate whether con-
temporary advances in natural language processing (NLP) techniques are a viable means of
obtaining effort estimates at scale. It is also important to have a common ground for all effort
estimation methods that are involved in this thesis, and thus, this thesis will first assess and
measure the performance of ML models, since ML models are the most efficient way of pre-
dicting estimates. Therefore, the first question that needs to be addressed is: RQ1: Can the
latest generation of NLP techniques produce an expert-comparable effort estimation
for a software development task?

Since this thesis is the first to investigate playing Planning Poker using human computation,
the next step is to assess the feasibility of human computation performance in predicting
estimates for the same software tasks that are used in the ML-based SEE method. More
detailed information is required, including the size of the crowd, the task handling process,
the amount of information about the software tasks, and finally the appropriate complete
process of Planning Poker that can be managed by a machine. This information is essential
to designing an appropriate model for playing such a game, and thus, the second question
that needs to be addressed is: RQ2: Can a machine-based orchestration of a crowd be
used to predict software effort estimates by playing Planning Poker?

After investigating the feasibility of playing Planning Poker using human computation and
having an appropriate design for the game, the next step is to address a well-known challenge
of running a crowd task: crowd assignment quality. For that, the third question is: RQ3:
Can the quality of crowd-worker software estimates generated during crowd Planning
Poker be automatically measured and enhanced?

After assuring crowd assignment quality, it is time to address the main question of the the-
sis, which is: RQ4: Is playing Planning Poker using human computation in a crowd-
sourcing platform producing an effort estimation comparable to that of an expert for a
software development task?

Finally, to improve the proposed estimation method, it is important to understand how crowd

1.4. Contribution 9

workers play the game and who is most appropriate for it. This thesis includes several
experiments which generate a wealth of data about crowds playing Planning Poker, and thus,
it can be used to gain further details. In those field experiments, real software issues are used
as objects, and AMT workers are the estimators. As part of the experiment, each issue was
annotated with the estimated and actual effort in person-hours. The issues were collected
from different open-source projects such as Apache HTTP Server. An ethnography study
was conducted to observe the crowd behaviour over a few months while the estimates were
being produced. The goal of the ethnography study was to develop all possible personas of
crowd workers who participated in the experiments.

The study provides an understanding of crowd worker behaviour when performing effort
estimation for software development tasks, and thus, it results in fine-grained insights for
future work to improve the quality of crowd estimation. For instance, by knowing what
kind of information crowd workers seek, we can either provide that kind of information
or direct them to other sources. The thesis will use the data to draw different personas of
crowd estimators and explain their behaviour. To do so, the following question needs to be
addressed: RQ5: What are the possible crowd estimator personas and their behaviour?

Figure 1.3 maps the questions to their corresponding chapters. RQ1 was addressed by two
chapters and the rest of the questions were addressed by a chapter for each one. Each chapter
divides those questions into smaller research questions that can be addressed by the selected
research methods.

1.4 Contribution

This thesis contributes to the bodies of research in software engineering and human compu-
tation. Six contributions that are detailed below narrow the gap in enhancement of expert-
based methods. These contributions aim to help pave the way to better automation options
in a human-intensive discipline such as software engineering.

Demonstration of feasibility of playing Planning Poker using human computa-
tion. The thesis is the first to employ human computation using crowd workers to produce
Planning Poker estimates of software development tasks. The work provides the first insights
that such an organisation of crowd workers can deliver, and demonstrates that crowds can
produce estimates that are of comparable accuracy to those of project experts.

Demonstration of feasibility of a handover-based method instead of task di-
vision in crowd micro-task platforms. The thesis suggests a different task delivery
method to crowd workers in micro-task crowdsourcing platforms. Instead of dividing the

1.4. Contribution 10

Chapter 4: Dataset

RQ1

RQ2

RQ3

RQ4

Chapter 5: Machine
Learning

Chapter 6:
Preliminary CPP

Chapter 7: Crowd
Quality

Chapter 8: Full CPP

Chapter 9:
Ethnography of CPPRQ5

Figure 1.3: Thesis chapters and questions map

task of estimation using Planning Poker into micro-level tasks, an asynchronous handover
process between crowd workers was implemented to coordinate and deliver the lengthy es-
timation process without division. This could be extended to other kinds of large tasks that
are hard to divide into smaller independent tasks.

Automation of crowd assignment quality assessment for software effort esti-
mation. The thesis augments the quality assessment of crowd work using machine learn-
ing. In fact, it reaches a fully automated quality assessment model that can assess the crowd
work on the fly. The approach starts with a training phase to collect training samples and
assess them manually. Then the ML assessment model is produced based on those manual
assessments.

Improving crowd effort estimation assignment quality using the behavioural
economic theory of loss attention. The theory states that humans are willing to pay
additional attention to tasks that involve losses [27]. This thesis is the first to use loss atten-
tion [27] to motivate crowd workers to enhance their assignments in Crowd Planning Poker.
After reading feedback that is designed according to the loss attention theory and generated

1.5. Thesis Outline 11

from the quality assessment classifier, crowd workers get a chance to enhance their assign-
ment. The thesis also reports in detail on how significantly the quality of the crowd outcome
is enhanced.

Identification of crowd estimator personas. An ethnography study was conducted
to understand the behaviour of the crowd estimators. It developed different personas to
represent all the behaviours of participating crowd workers. The goal is to find a better way
to enhance the proposal of this thesis in future studies.

Publishing data about software issue costs and crowd effort estimation be-
haviour. The data sets collated for this project have been published for reuse3, including
thousands of crowd behaviour records and hundreds of issues that are annotated with ac-
tual and estimated effort. This step aims to enable research replication and facilitate future
studies that aim to enhance expert-based estimation methods.

1.5 Thesis Outline

The rest of this thesis is structured as follows.

Chapter 2 presents the thesis methodology. It explains the overall methodology and details
the research methods used, including literature review replication, laboratory experimenta-
tion, and ethnography methods.

Chapter 3 is the literature review. It provides an overview of previous work on effort esti-
mation and especially Planning Poker. In addition, related human computation and crowd-
sourcing research is highlighted and compared to the proposals in this thesis.

Chapter 4 describes the JIRA Open Source Software Effort (JOSSE) dataset. It starts with a
background of publicly available SEE datasets. Then, it explains how the JOSSE dataset was
collected and processed. It also suggests additional refinement options and their implications
for the dataset.

Chapter 5 presents an evaluation of using state-of-the-art NLP to perform software effort es-
timation. It reports the early experiments of this research to use machine learning in predict-
ing the effort required for a software development task. Then, it shows how the experimental
results fall below the expected reliability threshold when compared with expert effort esti-
mation. In addition, it illustrates the state-of-the-art research about using machine learning
in effort estimation.

3https://github.com/crowd-planning-poker

1.5. Thesis Outline 12

Chapter 6 discusses evaluating different settings for playing Planning Poker with crowd
workers in a crowdsourcing environment, with settings such as the number of crowd workers
per round and the amount of information needed to be passed to the workers. In this chapter,
the concept of Crowd Planning Poker is assessed in terms of its feasibility.

Chapter 7 explains the quality assessment model of CPP, including how it manages the crowd
outcome by assessing the outcome quality automatically and how machine learning is in-
volved in classifying the crowd answers. This chapter also describes crowd behaviour and
how that could be used to enhance assignment quality. It then describes the approach taken
to enhancing the quality of crowd outcomes in CPP. It illustrates how the CPP quality model
is used to enhance the crowd assignment by employing a behavioural economics theory (loss
attention). It also shows different crowd responses and how such an implementation can
enhance the quality dramatically while reducing the undesirable quality outcomes.

Chapter 8 chapter uses human computation to play Planning Poker. It details the primary
contribution of the thesis, Crowd Planning Poker (CPP). It walks through the process of
CPP and the experiments that have been conducted to show how CPP can produce an effort
estimate comparable to that produced by an expert. It also explains how the crowd can add
value to the development task. This chapter assesses Crowd Planning Poker in terms of its
reliability and efficacy.

Chapter 9 is about personas of crowd estimators. After asking a large number of crowd
workers to estimate several software development tasks, the ethnography study comes up
with different personas that describe the behaviours of crowd workers as human estimators.
In this chapter, the study analyses the personas, and the workers are surveyed to confirm the
findings.

Chapter 10 is the thesis conclusion. It sums up all the chapter conclusions and highlights
future work, namely, implementing CPP in a real-world case by asking a potential develop-
ment team to use CPP as their estimation method and then measuring how successful CPP
can be.

13

Chapter 2

Research Methodology

As stated in Chapter 1, this thesis is looking to test the feasibility of human computation as
a method to improve the scalability and efficiency of expert-based software effort estima-
tion. Therefore, the thesis follows the empirical research method described by Basili [28]. It
proposes the estimation process (Crowd Planning Poker), selects the research methods, ex-
periments with the proposed process, measures and analyses, and then validates the research
hypothesis. In the following sections, extra details will follow about software engineering
empirical research, the rationale behind the selected research methods, and an explanation
of each method that is used in this thesis.

2.1 Software Engineering Empirical Research

Basili [29] explains that empirical research methods in software engineering involve an ex-
perimentation component that can provide evidence to explain a given observation or support
a proposed model. This includes laboratory controlled experiments, surveys, and case stud-
ies.

Sjøberg et al. [30], provide further detail on software engineering empirical methods. At
the highest level, there are primary methods that collect and analyse original data through
laboratory experiments, surveys, case studies, action research, and ethnographic studies. On
the other hand, secondary methods use results from previous empirical studies for reanalysis
and/or synthesis. These methods comprise literature reviews, replications, and statistical
meta-analysis.

Data gathered within empirical software engineering research can be qualitative or quantita-
tive. Quantitative results can be evaluated statistically to ensure internal validity. Qualitative
results can be explained by association and observation. It is quite common to use both

2.1. Software Engineering Empirical Research 14

Literature
Review Replication Experiment Ethnography

Figure 2.1: Logical architecture that interconnects empirical methods selected for the thesis.

methods to investigate different kind of information. Quantitative methods answer what

questions, whereas qualitative methods are often better for finding answers to why questions.

For the purpose of scientifically investigating and researching the thesis, four empirical re-
search methods have been selected. They are literature review, replication, laboratory exper-
iment, and ethnography. Figure 2.1 illustrates the connections between the four methods.

The first stage of the research is to conduct a literature review with the goal of understand-
ing the current state of the art, and keep iterating over the literature review throughout the
research life cycle, see Figure 2.1. Replication is then used to synthesise critical findings
in the literature review about contemporary advancement in NLP and ML. Then, a series
of laboratory experiments are used to validate and evaluate the thesis hypothesis of using
human computation to produce software effort estimates. Finally, ethnography is selected to
give fine-grained insights and rationales behind the outcomes of CPP experimental work.

Figure 2.1 shows the flow between the selected research methods used during the research
of this thesis. The results of the literature review direct the design of the replication, experi-
mentation, and ethnography studies. Then, the results of replication and experimentation are
used to further narrow the literature review towards the research gap. These loops resulted
in a couple of replication and experimentation trials in this thesis, each trial building on the
previous findings. At the end, the ethnography study is used once to provide finer details
about the experimentation work.

The rest of this chapter explores each of these methods in further detail in terms of their
application to the research project. Section 2.2 describes the literature review method ap-
plied for elaborating the state of the art in ML, NLP, software effort estimation and human
computation. Section 2.3 details replication methods applied to ML in software effort es-
timation research. Section 2.4 shows the laboratory experiments conducted to further in-
vestigate the application of human computation and crowdsourcing to augment expert-based
software effort estimation. Section 2.5 explains the ethnography methods used to investi-
gate fine-grained information about crowd behaviour as a way to provide a rationale and
future insights. A summary section will conclude this chapter by providing a synopsis of its
content.

2.2. Literature review 15

2.2 Literature review

Literature review is a secondary empirical method, as stated in Sjøberg et al. [30]’s work. It
does not collect or analyse original data. Instead, it reviews previous research work in the
same area of the thesis topic. Its primary goal is to identify and analyse existing evidence
[31]. From such a literature enquiry, a researcher can establish a foundation about the re-
search topic, adjust research direction to close literature gaps, confirm speculations, and take
informed decisions about the proper research tools and methods. For this thesis, the literature
review is used to uncover the current state of the art in software effort estimation using ex-
perts, machine learning and human computation. As a result, it directed the research towards
the proposed CPP model to narrow the research gap illustrated in Chapter 1. Moreover, it
participates in positioning the new evidence produced by the thesis among that which already
existed in the literature body of effort estimation and human computation. Additionally, it
offers an opportunity to confirm existing evidence of using machine learning (ML) in effort
estimation using the replication method.

The main body of the thesis literature review (Chapter 3) was primarily derived from aca-
demic publications, including peer-reviewed conference papers, journal papers, and text
books. As a secondary source, industry white papers, blogs, and magazine articles are also
considered, to provide a wider foundation that helps in understanding the two disciplines,
software engineering and human computation, from both academic and industry perspec-
tives. Google Scholar, IEEE Xplore, and ACM Digital Library were the main search engines
used to source the academic publications, and Google Search was also used to find relevant
industrial publications.

The foundational literature for effort estimation and human computation is detailed in Chap-
ter 3. It starts with effort estimation as a software engineering activity, and then explains
estimation methods, measurements, and environments. Moreover, a general taxonomy for
software effort estimation is proposed to systematically consider all the relevant content in
the literature about software effort estimation. Most of the effort estimation concepts are
introduced and discussed with an expatiation of their relevancy to the thesis. The remainder
of the chapter is dedicated to establishing the foundational literature for human computation
and its ties with software engineering in general. Human computation related concepts such
as crowdsourcing are also covered in the chapter.

While Chapter 3 is the main body of the literature review, additional literature review sections
are also included to address specific topics. For example, Chapter 5 discusses the use of
machine learning algorithms in software estimation. Similarly, Chapter 9 has a dedicated
section discussing the literature of ethnography and its role as an empirical research method
in software engineering.

2.3. Replication 16

2.3 Replication

Literature review as a method helped construct the theoretical part of the thesis and con-
solidating the researcher understanding of the relevant topics. In addition, it was the pri-
mary method used to identify the required evidence in the literature to support the thesis
claims. However, topics like applying machine learning algorithmics are better accompa-
nied by practical experience to realise the complicated theory behind them, and to confirm
what is reported in the literature. Thus, replication as another empirical method is used as a
practical extension of the review.

Replication is also considered a secondary empirical method since it relies on the original,
and replicated studies. While it is mainly used for confirmation, as stated by Brooks et al.
[32], it also plays a significant role in acquiring the knowledge during the learning process
[33, 34]. Along with its confirmatory power, replication can be used as a practical side of
learning and the literature review can be theoretical side. The researcher conducted a non-
exact replication [34] experimenting with ML for effort estimation to be highly confident in
the reported ML performance. He also used the replication to deepen his understanding of
ML technique, as it is an essential part of the CPP model.

As mentioned by more than one study consolidated in Trendowicz and Jeffery [24]’s book,
machine learning (ML) effort estimation is complex and requires a rigorous understanding
of its extensive fine details. Thus, replication as an empirical research method was used to do
a non-exact replication [34] of the most promising machine learning algorithms. Beside the
learning outcomes of using replication, it was critical to have a high degree of confidence in
the reported results of ML methods for effort estimation and before using human computa-
tion. Thus, the replication of ML methods was mainly to confirm the literature findings and
allow the researcher to confidently adjust the research direction and the proposed model.

Replication is used in Chapter 5 where two ML algorithms are selected based on their re-
ported performance in the literature, including an ensemble ML algorithm, Random Forest,
and an Artificial Neural Network, Multilayer Perceptron (MLP). The datasets, also derived
from the literature, include Deep-SE, Porru, Desharnias, and NASA93. Before replicating
the ML experiment, Chapter 4 also introduces a new dataset called the JIRA Open Source
Software Effort (JOSSE) dataset. That was a response to the lack of availability in the liter-
ature of a dataset that is recent and contains a textual feature, i.e. software task description.

Since the replication follows a non-exact replication model [34], several additional aspects
were added after conducting the original experiments, including a new factorisation method
using BERT [35] and the new proposed dataset, JOSSE. Such additions give more confidence
in using the option of human computation as originally planned, because it was demonstrated
that the machine learning based methods tested did not produce effort estimates that were as

2.4. Empirical Experiments 17

reliable as experts.

2.4 Empirical Experiments

After acquiring theoretical and practical knowledge, experimentation is used to manipulate
independent variables in different experiments to validate the proposed CPP model. Gener-
ally, experiments are designed to examine a causality relationship between independent and
dependent variables in a given hypothesis [36]. Thus, to design, conduct, and then report an
experiment, it is essential to have clear hypotheses. Experimental work in the thesis is a core
component that provides required evidence to support the thesis claims. It examines a variety
of causality relationships, starting with the impact on the estimate reliability of introducing
the crowd as an estimator, and ending with finer details such as the impact of different kinds
of information on crowd performance. Since this thesis is the first to introduce CPP, there
are several aspects that need to be investigated, such as the size of crowd estimators and the
role of information in their estimates. Pilot studies were used to examine these aspects in a
relatively short time.

Before conducting an experiment, a thorough experimental design is essential in conducting
the experiment and reporting it. During the design, experiment hypotheses need to be crys-
tallised. A hypothesis is an idea that assumes an existing relationship between at least two
variables. There are two fundamental types of hypotheses: null and alternative hypotheses.
Null is the negation of the relationship that is going to be proved by the experiment. The ra-
tionale behind hypothesis formation is to draw a conclusion that can be statistically validated
[37].

What distinguishes experimentation from other empirical methods is the controlled manipu-
lation of the variables. The variables are formed into a testable hypothesis, through which an
investigator can first identify a causality relationship, if there is one, and the process where
such a relationship accrues.

Every experiment has two kinds of variables: independent and dependent variables. The fo-
cus is on one or a few dependent variables that are affected by manipulating the independent
variables during the experiment. Different values that an independent variable can take dur-
ing an experiment are called treatments. Moreover, the experimental design identifies where
the experiment is conducted (also called treatments), who will apply the experimental pro-
cess (subjects), and on what the experiment will be carried (objects). The next sub-sections
outline the experiments conducted in this thesis, summarising the variables, treatments and
artefacts.

2.4. Empirical Experiments 18

2.4.1 Pilot Experimentation

Wohlin et al. [37] states that experimentation is not a simple process, especially when it
includes humans as subjects or objects. Thus, creating a pilot version of the experiment is a
plausible option when uncertainty is high or in the case of a totally new experiment that has
not been reported earlier in the literature. Surprisingly, Glass [38]’s observation about the
scarcity of pilot studies in the software engineering literature is still valid even after twenty-
three years. There is very little research [38, 39] about using a pilot version of an experiment.
On the other hand, the word “pilot” is heavily used in the literature to mostly indicate using
different experimental subjects/objects who are easily accessible, such as students [40, 41].
However, other disciplines, including medical [42] and social [43] have a detailed body of
literature about using pilot experiments and studies.

According to Glass [38], there are three kinds of pilot studies: rigorous, moderate, and in-
formal. They can be distinguished based on their difficulty. For example, informal requires
have neither a statistical approach nor confidence factors, therefore the pilot is about experi-
ment complexity. Moreover, van Teijlingen and Hundley [43] define a pilot study as a “mini
of a full-scale study”, and thus the pilot is about experiment size. Others such as Connelly
[44] also suggest that a pilot experiment is about 10% of the full version.

The key point is that the pilot version of an experiment is as same as the full version, however,
it is simpler and smaller. Therefore, pilot studies can be used as indicators of feasibility or
testing of setting. However, their simpler design and smaller size prevent drawing final
conclusions.

The importance of pilot studies comes from risk reduction, especially in a new, unexplored
area. A risk can be a financial risk or an ethical violation when an experiment includes hu-
man subjects or objects. Another factor that points to pilot experimentation is the agility of
such experiments to quickly explore the feasibility of different design options [44]. There-
fore, the pilot experiments of this thesis were designed to investigate human computation
application as treatment to SEE and how to handle crowd quality efficiently. The dependent
variable was effort estimation, and the independent variables were task information, process
design, and crowd size. The experiment artefacts used are software tasks collected from is-
sue tracker systems for open-source projects as experiment objects and AMT crowd workers
as its subjects.

The thesis conducted a total of five pilot experiments. The pilot experiments are designed
with a hierarchical architecture (parent–child relationships). There were two parent pilot
experiments: CPP feasibility and quality management. The CPP feasibility pilot experiment
has two children: one investigating the amount of information that best serves the crowd,
and one investigating the crowd size that is suitable for a CPP estimation task. The pilot

2.5. Ethnography 19

experiment (CPP feasibility) is designed to be an indicator of the feasibility of playing CPP
in a crowdsourcing environment. Chapter 6 offers extra details.

The quality management pilot experiment led to a further pilot, which investigates the pos-
sibility of delegating the quality classification of crowd submission to an ML classifier. The
parent pilot experiment is to investigate the crowd response to the newly developed quality
model that automatically classifies and enhances their submission. The first pilot study (CPP
feasibility), uncovered the quality problem and identify its size. Thus, the second parent pilot
experiment was designed after the results from the first pilot study were known. Chapter 7
explains the execution of these experiments.

2.4.2 Laboratory Experiments

After assessing the feasibility of playing Planning Poker using human computation and iden-
tifying the proper design and configuration using pilot experiments, the way is cleared for a
full-scale laboratory experiment to examine the thesis claim. The final (sixth) experiment is
designed on a much larger scale (about 66% bigger). It also includes the statistical analysis
of the hypothesis. It incorporates the full design of running the experiment autonomously
using human computation and avoiding any manual administration work as experimental
treatment. The main goal is to examine whether replacing the experts (subjects) with crowd
workers in playing Planning Poker will dramatically impact the estimate’s reliability or not.
More details about the experiment and its results are explained in Chapter 8.

All the experiments used real artefacts, specifically, the objects (software issues) collected
from open-source issue tracker systems. The subjects in all experiments were crowd workers
hired from AMT, and AMT was used as a micro-task crowdsourcing environment for the
pilot and full-scale experiments.

Since CPP experiments include humans (the subjects of the experiments), an ethical approval
from College of Science & Engineering Ethics Committee [45] in the University of Glasgow
was obtained. In addition, a scheme of “soft rejection” was adopted to examine every crowd
submission rejected by the auto classifier. If the rejected assignment is reasonably good, the
crowd worker gets paid but the rejected assignment stays rejected and is not included in the
experiment results.

2.5 Ethnography

The accumulated behavioural data (UI trace log) from the experimental work represented an
opportunity to understand how crowd workers develop their estimates, but a framework is
needed to analyse the data and infer conclusions. Therefore, ethnography is selected as an

2.5. Ethnography 20

empirical method to investigate and understand behaviour. According to Easterbrook et al.
[36], ethnography in software engineering can play an important role in understanding the
technical community practices and communication within such a community. Ethnography
provides a research framework and analysis tools to investigate the behavioural data, and
provide an understanding of how the results from the CPP experiments were achieved. While
the experiments can answer the what question, ethnography can explain why it did or did not
work. In addition, the ethnography also provides confirmation on the results of the pilot
experiments of in this thesis.

Traditional ethnographic research takes a prolonged time and requires the presence of the
researcher in the research setting. However, Digital Ethnography [46] has emerged as means
of studying a research setting without the researcher being physically present. The traditional
concept of collecting and observing the research group still remains, however, new tools and
techniques are also used to help in carrying out such studies. For example, studying a virtual
community, e.g. a micro-crowdsourcing platform, may become infeasible since there is no
single location that can be targeted for visiting and observing. However, virtual observation
through recording of user behaviour provides an alternative data gathering method.

As explained earlier, ethnography is an effective empirical research method that helps in
understanding a given community. Such a study answers the ‘why’ and ‘how’ questions.
Unlike experimentation, ethnography investigates real instances of the proposed model, and
thus, the researcher can analyse the variety of the instances.

Since the observation has not been done directly, the outcomes of such an ethnographic study
may need an additional tool to help in confirming such findings. In this case, surveys are
usually selected for the last confirmation and validation step of digital ethnographic studies.
They have been done in several software engineering studies, such as Kim et al. [47]’s work.

The experimental work of the thesis results in a large corpus of behavioural data since crowd
workers were monitored across all the experiments. The crowd behaviour was reflected
in their interaction with the User Interface (UI) of the software that need to work on to
accomplish the estimation task. All the monitored interaction was stored, including mouse
movement, typing, scrolling, clicking, etc.

The UI logs were transformed to an eXtensible Event Stream (XES) to be mined and anal-
ysed according to process mining techniques. Process mining software ProM and DISCO
was used to analyse the UI logs. Several findings and speculations about the crowd be-
haviour were identified.

Finally, a survey consisting of nine questions was dispatched to workers who participated in
the CPP experiments to validate the finding of the ethnography study. The goal of the survey
was to find out more about the crowd behaviour in the areas that can not be explained clearly
by the UI log. The survey design and the exact targeted crowd group along with the results

2.6. Summary 21

can be found in detail in Chapter 9.

2.6 Summary

A variety of empirical research methods were selected to investigate the thesis and its claims,
following an empirical strategy of starting with a theoretical review, then a practical review,
claim validation, and in-depth understanding of the results.

The theoretical review started with a literature review of the thesis topic. Two types of review
were conducted: a general review covering the two disciplines of the thesis (effort estimation
and human computation), and a more specific targeted review for relevant topics such as
machine learning. Therefore, replication as a method was used to undertake a practical
review of machine learning and natural language processing (NLP) topics relevant to the
proposed CPP model.

A practical review was conducted by replicating machine learning experiments in the area
of effort estimation. The main goal was to gain extra confirmation of the reported results
in the literature. In addition, a side benefit is that performing the research enhances under-
standing of the complex machine learning algorithms and deep learning techniques. Repli-
cation guided the research to propose a new dataset and try a recently proposed factorisation
method, BERT. It also confirmed the literature findings and opened the door confidently for
the thesis experimentation.

Experimentation as another empirical method was used to validate the thesis claims. A
sum of six experiments were conducted. The experimental work follows the design–pilot–
conduct strategy where a pilot version of an experiment is applied before conducting a full-
scale experiment. This helped to reveal unexpected issues in the experimental design and
participated in enhancing the proposed CPP model. The first three experiments investigated
the level of information, crowd size, and feasibility of the CPP design. Then the fourth and
the fifth experiments explored the quality management model. The sixth experiment was to
validate the thesis claim in a larger scale using a full implementation of the proposed CPP
model. While the experiments provided an overall answer, a more rigorous and detailed
view needs a lengthy observational study and analysis. Therefore, an ethnography study was
designed to understand the crowd behavioural data.

Ethnographics provide detailed insights about the sociology of the research group. They can
also explain why and how real instances vary from a given model. However, this method
requires the collection of data over a prolonged period of time and of as many details as
possible. Traditional ethnography requires the presence of the researcher and direct obser-
vation of the targeted research group. However, recently a digital form of ethnography has
emerged to accommodate the overwhelming technological and digital society that has taken

2.6. Summary 22

over human life. While traditional concepts of ethnography are still valid, its tools have
been adjusted to accommodate the technological change. This thesis used the collected UI
interaction log of the crowd converted into event streams for analysis. The findings were
validated and confirmed by the crowd workers using a survey dispatched to them at a later
stage.

23

Chapter 3

Literature Review

The previous chapter explained how the research methods were selected and provided a ra-
tional for each one of the selected research methods. This chapter presents a literature review
of the research areas related to the main topics of this thesis: expert based and automated
software effort estimation (SEE) methods and human computation.

The next section starts with definitions of SEE and related concepts and then details dif-
ferent SEE contexts. Then Section 3.2 covers expert-based SEE methods to explore their
activities and processes. The goal is to have a comprehensive understanding of the existing
methods. After that, Section 3.3 considers machine-learning SEE methods. Different mod-
els and algorithms of machine learning that are used in SEE are explained and reviewed.
Then, Section 3.4 highlights a literature paradox along with a rationalisation of industry and
academic preferences towards SEE methods. After, Section 3.5 illustrates different human
computation definitions and concepts, including neighbouring research areas such as social
computing and crowdsourcing. In addition, it explains the quality challenge of human com-
putation outcomes. Then Section 3.6 explores different software engineering applications
using human computation, and highlights the research attempts closest to the thesis pro-
posal. Finally, the last section summarises this chapter and states the next direction of the
thesis.

3.1 Characterising Software Effort Estimation

Software effort estimation (SEE) refers to the process of predicting how much effort a given
software development activity may take. Although this may sound simple, the literature sug-
gests otherwise. Most of the studies published about SEE never define the wider planning
activity within which SEE may be carried out. In a literature review of the topic, Grim-
stad et al. [16] found that only 10% of the reviewed literature (one book and two research

3.1. Characterising Software Effort Estimation 24

papers) defined SEE precisely, suggesting much of the research is carried out within an un-
certain scope. Given this apparent uncertainty and in order to provide a framework for the
literature review, this Section first reviews definitions of effort estimation in the literature,
then reviews the characterisation of software effort estimation in different contexts, before
reviewing different approaches to classifying effort estimation techniques.

3.1.1 Definitions

The System and Software Engineering International Standard (SSEIS) [48] does not yet have
a definition for SEE, but it has a definition for each word in SEE (Software, Effort, Estimate)
as follows.

“Software: 1. computer programs, procedures, and possibly associated doc-
umentation and data pertaining to the operation of a computer system; 2. all
or part of the programs, procedures, rules, and associated documentation of an
information processing system; 3. program or set of programs used to run a
computer.”

“Effort: the number of labor units required to complete a schedule activity or
work breakdown structure component, often expressed in hours, days or weeks.”

“Estimate: a quantitative assessment of the likely amount or outcome. Usu-
ally applied to project costs, resources, effort, and durations and is usually pre-
ceded by a modifier (i.e., preliminary, conceptual, feasibility, order-of-magnitude,
definitive). It should always include some indication of accuracy (e. g., (+ or
−) × percent).”

DeMarco [49] defines Estimate in his classic book as:

“An estimate is a prediction that is equally likely to be above and below the
actual result.”

Software Engineering Body of Knowledge (SWEBOK) [50] defines Estimate as:

“An estimate is a well-founded evaluation of resources and time that will be
needed to achieve stated goals.”

Then, SWEBOK describes Effort estimation as:

3.1. Characterising Software Effort Estimation 25

“The estimated range of effort required for a project, or parts of a project, can
be determined using a calibrated estimation model based on historical size and
effort data (when available) and other relevant methods such as expert judgment
and analogy... A software estimate is used to determine whether the project goals
can be achieved within the constraints on schedule, budget, features, and quality
attribute”

While the definitions above agree that effort estimation is a prediction activity, they diverge
on the specification of the measurement as qualitative (high, low) or quantitative (number
of labor unites), source knowledge as historical data or experience, and the process as a
well-founded evaluation or a calibrated model.

As can be seen from the definitions, there is both some uniformity and divergence. All the
definitions agree that an estimation is a prediction of the cost of a software development
activity. There is also agreement between the SSEIS and the SWEBOK that estimates are
for the purpose of establishing the feasibility of a software project, although purpose is not
mentioned by DeMarco.

However, the definitions vary according to the exact nature of the prediction. The SWE-
BOK proposes a range of quantitative measures for estimate, whilst the SSEIS identifies
units of labour as the means of measuring the cost of a work item (implicitly quantitatively).
DeMarco [49] makes no reference to estimation units and indeed, the contemporary Plan-
ning Poker method uses categorical rather than quantitative estimation units (Story Points).
Further, whilst the SSEIS proposes that estimates should be accompanied by a likely error
margin, whilst DeMarco [49] asserts that estimates should have an equally distributed error
margin above and below the central value.

Therefore, a better way to build up a foundation for understanding SEE is to look at SEE
as a collection of concepts that have different terminologies in different contexts at different
scales of software development and project effort.

3.1.2 Different Perspectives of Software Effort Estimation

Fundamentally, software effort estimation provides inputs to project planning processes at
different scales of granularity. Historically, software projects that followed a waterfall like
methodology would adopt a top-down approach to system design and then a bottom-up ap-
proach to estimation, allowing granular estimates of individual module costs to inform high
level timelines and budgets [51]. For example, Armour [52] explains how estimates are used
to prepare a commitment plan for external stakeholders, whilst internally, estimates are used
to develop a working plan. Thus estimates are used to develop a project budget for internal

3.1. Characterising Software Effort Estimation 26

consumption [24, 48, 50] and a bid that allows for the risk of overruns and anticipated profit
[24].

However, numerous authors argue that the process of developing budgets based on effort
estimates is challenging in the context of software projects. [51] makes similar arguments to
Jr. [53] that software is intangible and thus prone to ambiguity. Additionally, software and
software requirements are subject to continuous and rapid change, even during the SDLC.
Additionally, it is labour-intense, which makes quality and measurement challenging. As a
consequence, slowly established plans based on effort estimates may prove to be inaccurate
once development begins.

More recent, agile methods, therefore, adopt a continuous approach to software planning,
including estimation. Similar to Waterfall approaches, estimates are produced for small scale
software tasks, however, there is less emphasis on aggregating estimates for the purpose of
longer term plans. In agile methods, SEE happens more frequently and with a smaller scope.
Moreover, SEE is considered as a communication opportunity to help understand and refine
the software requirements rather than as a commitment [20]. Therefore, software teams use
synthetic internal representations of effort, such as Story Points to convey software effort.
These metrics are effective for internal communication within a team, but have no external
validity. As a result, Agile development poses a challenge to traditional project budgeting
and management, where budgets must be determined in advance to facilitate project control
[54].

At the extreme, the #NoEstimates movement started by Zuill [55] views estimates as unnec-
essary documentation. The rationale behind the movement is that estimates are a form of
documentation that Agile principles value less than workable software. The contention in
this approach is that the rapidity of delivery of new increments of a software project mitigate
the need for estimates to develop longer term roadmaps. This negates the need for budgets
and workplans to justify longer term, large scale investment.

On the other hand, #No-Estimate opponents think that estimates are essential to control, fund,
and communicate a software development project with the other departments. In fact, they
believe that business works that way. Estimates are at the core of business market analysis
and trend measurement [56]. An alternative, Beyond Budgeting [57], is a budgeting concept
that goes well with Agile development principles. It is better to look at Agile development
as on-demand development with a contract over a number of demands.

3.1.3 SEE Methods Classification

There have been a plethora of approaches to software effort estimation proposed in the lit-
erature, with a particular focus on automation as identified by Jørgensen et al. [2] and Vera

3.1. Characterising Software Effort Estimation 27

Software Effort
Estimation
Methods

HybridMachine-BasedExpert-Based

Multi-ExpertSingle Expert Structured Unstructured

Figure 3.1: Classification of Software Effort Estimation Methods

et al. [58] reviewed different approaches to classification of these methods in taxonomies.
Taxonomies are useful for enhancing the understanding of a given topic through mapping
of different works onto a common set of definitions and categories. In the context of SEE
though, Vera et al. [58] identified considerable diversity in classification approaches adopted
in the literature, signalling considerable disagreement amongst authors.

For the purposes of this thesis, a classification is adopted that includes elements from the
approaches proposed by Moløkken and Jørgensen [59], Trendowicz and Jeffery [24] and
Britto et al. [60]. Moløkken and Jørgensen [59] proposed the categories “Expert-based”,
“Model-Based”, and “Other”, however these categories do not explicitly include methods
that depend on Artificial Intelligence or Machine Learning technologies. Trendowicz and
Jeffery [24] suggest a similar classification, with the three main categories as “Data-driven”,
“Expert-based”, and “Hybrid”. However, Trendowicz and Jeffery [24]’s classification is
based on two aspects: input type and estimation principle, which make it harder to decide
which method falls under which category. For instance, it is hard to say that expert-based
methods are not data-driven. Britto et al. [60] also provide a similar classification, with
the three categories “Expert”, “Algorithmic”, and “Artificial Intelligence”. However, the
artificial intelligence methods also fit under the algorithmic category since Britto et al. did
not provide a precise definition.

In the approach adopted in this thesis, the categories employed are “Expert-Based”, “Machine-
Based” and “Hybrid”, see Figure 3.1 for an illustration. The expert-based category can fol-
low Trendowicz and Jeffery [24] for further division. It has two sub-categories, based on the
number of expert participants: Single-Expert methods and Multi-Expert methods. In addi-
tion, the expert-based category can also be divided into Structured methods and Unstructured
methods.

Delphi [61] is an early expert-based method. More expert-based methods are derived from

3.2. Expert-based Software Effort Estimation Methods 28

Delphi methods such as Wideband Delphi [62] and Planning Poker [8]. More details about
expert-based methods will follow in the next section.

Machine-based methods encapsulate the majority of proposed SEE methods in the litera-
ture, including pure model-based methods such as COCOMO [62], artificial neural network
methods, analogical methods such as case-based reasoning [63], and others. Such methods
rely on a model that is either clearly defined along with its parameters, or indirectly built up,
such as in machine-learning techniques. In both branches, such models can rely on a few
parameters or require a large amount of data. More details will follow in Chapter 5 about
methods that are based on machine learning. Further reading about the different kinds of
machine-based methods can be found in Trendowicz and Jeffery [24]’s book under the name
of “Data-driven” methods.

Hybrid SEE methods are basically methods that merge expert-based and machine-based
methods such as COCOMO-U [64]. Unlike industrial practice, the research literature sug-
gests that such a merge can result in substantially better estimates [65]. The combination
can be on the level of the estimation methods, where a third SEE is followed, or based on
aggregating final outcomes of expert-based and machine-based methods.

Expert-based methods, are the most commonly used estimation methods. According to [24],
80% of estimates in industry are made by experts without machine-based methods. Similarly,
[66] reported that 58% of their respondents used planning poker for estimation purposes. Yet,
such methods received the lowest research interest and advancement [2], which places this
thesis in a good position for narrowing the gap.

3.2 Expert-based Software Effort Estimation Methods

While the literature is not conclusive [7], the majority of studies referred to expert-based
methods as the most popular and most often used in the industry as stated by Moløkken
and Jørgensen [67]. The thesis definition of expert-based methods follows the literature
[7, 24, 60]. It includes any method in which the estimates are produced purely based on
human judgement. Usually, a field-knowledgable person or a group of people carry on the
estimation process. The processes vary as explained in the following subsections.

Generally, There are two known strategies to follow, bottom-up or top-down. Bottom-up
strategies start by estimating the finest grained elements in a work breakdown structure
(WBS). Then they aggregate the estimates by gradually aggregating work items into larger
scale packages. On the other hand, top-down strategies divide an estimate of the top level
project and go down through the structure, allocating effort to the WBS leaves. Jørgensen
[7] explored both strategies and concluded that the top-down strategy works better if there is

3.2. Expert-based Software Effort Estimation Methods 29

access to similar historical tasks, and its advantage is that it does not require detailed knowl-
edge in software development. This implies, bottom-up strategy should be the default choice
in the case of little or no historical information as stated by Jørgensen [7].

3.2.1 Guesstimation

According to the Oxford Dictionary [68], a guesstimate is an estimate that is predicted using
guesswork and reasoning. Usually, it is carried out by a single estimator. Guesstimates have
been found to be used within the software industry and have been studied in the literature.

Johnson et al. suggests a guesstimation process of four steps:

• Step 1: Identify similar projects that an estimator believes is close to the project which
is about to be guesstimated (target). Similarity is based on project size (LOC) and
effort. Such projects will serve as input to the LEAP (Lightweight, Empirical, Anti-
measurement dysfunction, and Portable) toolkit— A set of software engineering ap-
plications that collect and analyze data from individuals that can be used as a data
explorer to support effort prediction. [4].

• Step 2: The estimator predicts the target project size.

• Step 3: The estimator browses and analyses the different analytical data that is pro-
vided by the LEAP toolkit.

• Step 4: A final effort estimate is predicted by the estimator or selected from the pro-
vided analysis.

Johnson et al. [4] found that estimates that are guesstimated are more accurate than those
produced by a regression model, if the estimator is supplied with different effort and size
analysis information, such as LEAP [69].

3.2.2 Wideband Delphi

Most research refers to the Wideband Delphi method [1, 70] as the original expert-based
methods. The method went through four development evolutions as described by Tren-
dowicz and Jeffery [24]. Wideband Delphi relies on judgements from several experts, who
predict their estimates based on a structured process. Then, estimates are aggregated based
on consensus and expert discussion.

The latest version of the method [71] follows an iterative pattern to reach consensus. The
process consists of seven steps, and three of them are meetings:

3.2. Expert-based Software Effort Estimation Methods 30

• Step 1: A project manager prepares the initial planning and project description, where
the manager defines the problem, scope and relevant historical records.

• Step 2: The project manager identifies an estimation team with a coordinator.

• Step 3: The coordinator starts a kick-off meeting to introduce the planning materials
that were prepared earlier by the manager. (The first meeting)

• Step 4: Each estimator predicts an initial estimate based on the kick-off meeting.

• Step 5: The coordinator starts an estimation meeting to collect and present estimates
anonymously. The team discuss the estimates, especially the outliers. If they agree,
the coordinator moves to the next step. Otherwise, the team repeats steps 4-5 until they
reach an agreement or the dedicated time finishes. (The second meeting)

• Step 6: The coordinator merges the outcomes of the estimation session.

• Step 7: The estimator calls for a review meeting to review the outcome documentation
and adjust it if necessary. (The third meeting)

Wideband Delphi has several advantages. It does not require excessive information of the
project/job being estimated. Additionally, its structured process helps in reducing human
biases, and yet it is easy to apply. However, the iterative process may consume a significant
amount of time and effort, and its outputs are not reusable [72].

3.2.3 Estimeetings

Taff et al. [19] suggested a lengthy estimation method that is applied over six months, and
it can run up to two years. Estimeeting is part of a larger process called the “Front-End
Process” to convert software concepts to a final list of features that are ready for development.
Estimeeting was designed in the context of mega-projects which have several subsystems
folded inside them.

The Front-End process is divided into three phases and it produces three documents: feature
specification proposal (FSP), feature architecture proposal (FAP), and Detailed Estimates.
These three documents are combined in estimeeting sessions to produce the Final Feature
List. The Detailed Estimates document, which is what concerns this thesis, is developed by
the following steps:

• Step 1: schedule the estimeeting events since they needs to be run over a long time and
incorporate numerous people.

3.2. Expert-based Software Effort Estimation Methods 31

• Step 2: identify and call the required team members to attend the estimeeting session
as well as the optional team members.

• Step 3: distribute the FSP and FAP to the estimation team to study

• Step 4: hold an estimeeting session to present and discuss the FSP and FAP.

• Step 5: estimators then record their estimates, after consulting with each other, in the
subsystem estimation form (SEF).

• Step 6: a feature engineer follows up on the estimeeting outcomes and resolves any
outstanding issues.

• Step 7: the feature engineer fills in a Feature Estimate Summary Form and collates it
with the FSP and FAP to represent the formal output of the Front-End process.

An interesting part of SEF where the estimator records their estimate for each subsystem that
is part of a given feature is that it contains a section to break down the work that makes up
the estimate. By doing so, an estimator gives a rationale to help understand the estimate.

However, Moløkken-Østvold and Jørgensen [73] described Estimeetings as a complicated
process that consumes a lot of time and it might work only for the large project that was
designed for. As far as the author can ascertain, there are no other reports of evaluations of
estimeetings in the literature that might address this question of generalisability.

3.2.4 Stochastic Budget Simulation (SBS)

The primary feature of SBS as an estimation method is to manage the uncertainty that usually
takes place during the early stage of any project. Elkjaer [74] suggested SBS, which uses
a three-point (minimum, most likely, and maximum) expert estimate. The goal here is to
rely on probabilistic range estimation instead of a single-point estimate. Then SBS uses the
estimates to run a statistical simulation based on a selected probability distribution such as
the triangular distribution. The SBS process consists of four steps:

• Step 1: create a WBS that groups related matters together.

• Step 2: identify general risks that affect all the WBS items and list them under generic
risks.

• Step 3: predict the three-point estimate for each WEB leaf.

• Step 4: use an algorithm to run a simulation to calculate the overall cost and identify
the local uncertainty for each item.

3.2. Expert-based Software Effort Estimation Methods 32

As per Elkjaer’s description, SBS is more like an analytical tool for a project manager to
assess uncertainty for a given project. Instead of making an estimate, SBS produces a range
of estimates along with their probabilities, then a project manager uses the SBS output to
determine the most likely estimate for the project.

Chou [75] found SBS a usable tool to get an overview of the project total cost. However,
he points out that SBS missing out some aspects such as variates correlations which play a
critical role in balancing the outcome estimates not to be overestimated or underestimated.
Chou [75] suggest that using probability density function examination is a key to manage the
variates correlations.

3.2.5 Sparse Data Method (SDM) using Analytic Hierarchy Pro-
cess

SDM, as described by Shepperd and Cartwright [76], is another method to use expert judge-
ment towards predicting effort estimates. It uses an Analytic Hierarchy Process (AHP) to
design a hierarchy that decomposes the problem into smaller elements for easier comprehen-
sion and more accurate estimates. SDM puts software effort as the root node in AHP hier-
archy. Then, it lists subcomponents in the second level, known as prediction elements. The
elements can be different development areas or different subsystems. Additionally, SDM has
a precondition, which is acquiring the effort for at least one of the subcomponents, referred
to as the “reference point”. The expert’s role is to judge the relative size of each subcom-
ponent to the others in a pairwise comparison. For instance, if the subcomponents represent
different development tasks such as coding, testing and deployment, the expert’s job is to
compare coding to testing and deployment in terms of effort by predicting how much effort
will be needed for coding compared to testing and deployment, e.g. coding = 1/2 testing and
coding = 2 deployment.

There is a limit on how the prediction elements vary, called Saaty’s homogeneity require-
ment. For better prediction accuracy, the elements should be similar to each other. Moreover,
SDM follows a seven-step process:

• Step 1: Identify the prediction elements. They can be a system subcomponent, or
different project stages.

• Step 2: Evaluate Saaty’s homogeneity requirement for each element and discard any
element beyond the limit. Saaty’s homogeneity is a measurment that can be used to
assess elements disparity, and then cluster similar elements altogether [77]. According
to Saaty, the mind cannot compare widely dissimilar elements, and thus, Saaty believes
the homogeneity limit gives meaningful comparisons.

3.2. Expert-based Software Effort Estimation Methods 33

• Step 3: Select at least one reference point.

• Step 4: Select the comparison criteria. Shepperd and Cartwright used software effort.

• Step 5: Make a pairwise comparison between the elements.

• Step 6: Calculate the relevant contribution of each element to the root node using the
principal eigenvector [78]. Principal eigenvectors reflect numerical judgement-derived
priorities, and thus it can be used to measure the weight of each element.

• Step 7: Determine the value of other elements using the reference point.

While Shepperd and Cartwright and others such as Trendowicz and Jeffery consider SDM to
be an expert-based method, it is better to look at it as an analogy method that belongs under
the machine-based methods. Essentially, experts in SDM do not predict an estimate. Rather,
they make a relative comparison and the final estimate is based on the reference point which
is an input to the SDM method.

3.2.6 Planning Poker

In 2002, Grenning [8] proposed Planning Poker as an estimation method that is derived
from Wideband Delphi [1]. It is by far the most recent advancement in the popular expert-
based effort estimation methods. Grenning’s proposal was made in the context of Agile
development and part of Agile planning. Later, Cohn [5] detailed the approach in his book.
The name PLANNING POKER is also registered as trademark [79].

The method uses a predefined story point series that is printed on poker cards, and estimation
sessions are basically a playing session using the poker cards. This is where the second half
of the method name comes from. Normally, a deck shows the Fibonacci sequence on its
cards, and the player picks the card that represents the number of story points that will
be needed to implement a user story, see Figure 3.2. In Agile development, a user story
encapsulates the software requirements in the form of a story [80]. For example, “As a
student, I can add and delete courses during the registration period so that I will be able to
attend the courses and fill my course requirements.”

A planning poker estimation team consists of: the product owner, the project development
team, a coordinator, and sometimes project stakeholders as observers. A product owner is
the member of the development team who is in charge of a given user story and wants to
maximise its value. The process of Planning Poker generally consists of four steps:

• Step 1: A product owner presents a user story and discusses it with the planning poker
team (estimators).

3.2. Expert-based Software Effort Estimation Methods 34

0
0

0

0

0

CP
P1
/21/2

1/2

1/2

1/2

CP
P 1

1

1

1

1

CP
P 2

2
2

2
2

CP
P 3

3 3

33 CP
P

5
5

5

5
5 CP

P

13
13

13

13

13 CP
P

20
20

20

20

20 CP
P

8
8

8

8

8 CP
P

40
40 40

4040 CP
P

100
100 100

100100 CP
P ?

? ?

?? CP
P

Crowd Planning Poker CP P

CP
P

Figure 3.2: Example of a Planning Poker Deck

• Step 1: After understanding the user story, every estimator puts one of the cards in a
face-down position.

• Step 3: The estimators reveal their estimates simultaneously by flipping the cards.
Then they discuss the most extreme estimates.

• step 4: If the team has reached a consensus, they move on to another issue. Otherwise,
the team repeats steps 2–4 until an consensus is achieved. Usually, the session coordi-
nator sets a time limit for each user story to prevent an infinite loop of estimation.

Moløkken-Østvold et al. [26] found Planning Poker as an estimate combination method pro-
duced better estimates in comparison with unstructured and mechanical combining of esti-
mates. More recently, Mahnic and Hovelja [81] confirmed the findings of Moløkken-Østvold
et al. that Planning Poker is a better way to do software estimation using expert judgements.
However, Moløkken-Østvold et al. tentatively indicates that the more diverse the group, the
better the estimation, without providing details on the diversity of the group. Moreover,
both studies stressed the industrial experience in general without tapping software project
experience. In addition, the scalability of Planning Poker has not been addressed in the pre-
vious research. Perhaps, being a labour-intensive SEE method and solely reliant on human
intelligence and experience is an obstacle for scaling Planning Poker. However, crowdsourc-

3.3. Machine Learning Software Effort Estimation 35

ing platforms represent a good environment to test the diversity, experience, and scalability
issues.

3.3 Machine Learning Software Effort Estimation

With recent advancements and the popularity of machine learning (ML) applications in dif-
ferent disciplines, several researchers have applied ML techniques to help in estimating soft-
ware efforts. ML is mainly used to build data models that determine the similarity between
jobs as whole projects or smaller units such as user stories. The most recent review studies
[82, 83] that investigate ML-based methods have identified nine techniques: Artificial Neu-
ral Network (ANN), Support Vector (SV) Machine/Regression, Bayesian Network (BN),
K-Nearest Neighbors (kNNs), Decision Tree (DT), Genetic Programming (GP), Case-Based
Reasoning (CBR), Genetic Algorithms (GA) and Association Rules (AR).

According to both surveys [82, 83], ANN, SV, DT, and CBR are the most investigated tech-
niques. An overview of these methods will follow in the next subsection.

3.3.1 Artificial Neural Network (ANN)

As its name suggests, ANN is a computing model that imitates a biological neural network. It
consists of neurons and a network of connections that links those neurons based on weights.
Feed-forward ANN is the simplest model.

ANN occupies the first position in Ali and Gravino [83]’s survey, where 60%(45) of the
surveyed studies used ANN. According to a recent ANN survey [9], there are four commonly
used ANN methods used in SEE: feed-forward neural networks, recurrent neural networks,
radial basis function (RBF) networks, and neuro-fuzzy networks. Idri et al. also agrees
that a feed-forward neural network with a back-propagation learning algorithm is the most
commonly used ANN method. However, Idri et al. divide ANNs into two general categories
based on their perception as ANN feed-forward networks or feedback networks. Several
studies [85, 86, 87] compared ANN methods in terms of their accuracy and under which
conditions an ANN can best perform. For example, in the context of feed-forward ANNs,
Hamza et al. [9] suggest that using Levenberg–Marquardt as the learning algorithm works
better for data with noise than a back-propagation algorithm.

3.3.2 Case-Based Reasoning (CBR)

CBR, sometimes referred to as analogy-based, is the second most researched SEE method
according to Wen et al. [82]’s survey with 37%(43) of the survey studies. CBR has a fun-

3.3. Machine Learning Software Effort Estimation 36

damental assumption: alike software projects (for a given set of features) have similar costs
[63]. To measure the similarity between the historical cases and the new one, similarity mea-
sures such as Euclidean distance and Manhattan distance are used, and CBR studies follow
a process of three steps as described by a recent survey [88]:

• Step One: feature and case selection,

• Step Two: similarity evaluation, and

• Step Three: adaptation.

To overcome CBR challenges in selecting features and measuring similarity, other artificial
intelligence techniques such as fuzzy logic and genetic algorithms are used. Idri et al.’s
survey gives details of different combinations of CBR and other techniques. According to
the survey, the Mean Magnitude of Relative Error (MMRE) for CBR ranges from 19% to
35%, which means the estimates are acceptable [88].

3.3.3 Decision Tree (DT)

Decision Tree is a computing model with a binary tree structure. The tree starts with a root
node and it splits based on predictor variables (tree features) until the end of the tree where
nodes become leaves (have no children). DT, also known as Classification and Regression
Trees (CART), has been developed into different approaches such as Random Forest and
Treeboost, and they are also combined with other techniques such as fuzzy trees [89].

DT gained its popularity due to the ease of its concept and structure. According to abdelali
et al. [10], DT is the most used method to predict effort estimation. Ali and Gravino [83],
Wen et al. [82] rank DT among the top three ML techniques.

However, conventional DTs have several drawbacks such as overfitting and lack of global op-
timisation [10]. Therefore, abdelali et al. [10] suggested Random Forest as an improvement
that resolves the traditional DT limitations, and their study evaluation shows a promising
improvement. Recently, Abdelali et al. [90] suggested an ensemble method of optimal trees
that performs significantly better than regression trees.

3.3.4 Support Vector (SV)

The Support Vector method, like many other ML methods, can be used for classification of
non-numerical inputs, in which case it is called Support Vector Machine (SVM); when it is
used as a regressor with numerical inputs it is called Support Vector Regression (SVR).

3.3. Machine Learning Software Effort Estimation 37

According to Nayak et al. [91], SVM has been proposed within statistical learning theory
and structural risk minimization, which guarantees the risk to be bounded, and thus, it can
handle a large number of feature spaces.

Several studies suggest that SVM has better performance than other techniques. For in-
stance, Corazza et al. examined SVM and published two papers [92, 11] stating that SVM
outperformed CBR and BN.

3.3.5 Performance of ML-Based

There are a couple of accuracy indicators that are used in the literature to measure different
SEE methods in general, including the ML-based methods. The most popular indicators ac-
cording to Wen et al. [82], Ali and Gravino [83] are: MMRE (Mean Magnitude of Relative
Error), MdMRE (Median Magnitude of Relative Error), and Pred (25) (Percentage of pre-
dictions that are within 25% of the actual value). For MMRE and MdMRE, lower values
indicate better methods, but for Pred(25) the higher the value, the better the method.

Considering MMRE as an accuracy indicator for different ML-based methods, Wen et al.
[82] found that ANN and SVR are the most accurate methods, with a median MMRE of
35%, followed by CBR and DT. Ali and Gravino [83], on the other hand, suggest similar
results by putting ANN in first place followed by SVM and DT. Both surveys also show
that ML-based methods, especially ANN and CBR, outperform non-ML methods such as
regressions and COCOMO.

One important aspect of such a comparison is its context. These methods have been com-
peting against each other using several datasets, including Desharnais [93], NASA [94],
COCOMO [1], Albrecht [95] and others. Therefore, a method, say DT, that performs bet-
ter than ANN in one study based on a certain dataset may not outperform ANN for other
datasets, as pointed out by Ali and Gravino [83]. For example, ANN and SVM outper-
form DT in two papers [96, 97]. However, DT outperforms ANN and SVM in five studies
[98, 99, 97, 100, 101]. Moreover, the fact that ANN is the most investigated, and perhaps
enhanced, method, may skews the comparison in favour of ANN. Finally, the datasets that
are used are quite old. The most recent one is Tukutuku[102], which as a decade and half
old. Therefore, even if such a comparison is acceptable, it reflects the methods’ performance
against quite old software development datasets which have significantly changed nowadays.

3.3.6 Contexts Where ML-Based is Recommended

In general, ML-based methods demand a large number of historical data points in order to
learn and train their models. However, some methods can work better under certain con-

3.4. Review of Comparative Research of Expert-Based and ML-Based SEE 38

ditions, e.g. a small data set. Wen et al. [82] identified several conditions where different
methods perform better than others. The conditions can be grouped into three categories: the
size, nature, and quality of the dataset. For instance, CBR cannot work with a dataset that
has low quality, i.e. is missing some values. ANN also performs poorly with small datasets.

In the larger landscape, Trendowicz and Jeffery [24] proposed a sophisticated decision tree
to select which estimation approach is better for a given context. It is not just for ML-based
methods; it includes all SEE methods. Trendowicz and Jeffery [24]’s approach identifies six
goals that are based on thirteen criteria, such as data requirement and complexity.

3.4 Review of Comparative Research of Expert-Based

and ML-Based SEE

Although machine-based SEE methods appear to be more sophisticated and advanced, an
overwhelming number of studies indicate that expert-based SEE methods are the most used
methods for estimating software development effort. Kassab and Destefanis [103] conducted
the most recent survey, with 117 participants completing the survey. The survey covers
a wide range of project industries, including finance (13%), utilities (9.7%), and defence
(8.2%). The participants worked on different kinds of projects, such as web-based (22%),
database (19.6%), and web services (13.6%). The survey confirms previous industry studies
[6, 104, 105] that expert-based methods are by far the most dominant either in waterfall-
based or Agile-based SDLC.

Several Agile research studies also suggest that expert-based methods are the most popular
methods. Usman et al. [18] surveyed 60 software professionals around the globe, with par-
ticipants from Europe and America representing 56% of the sample. Expert-based methods
such as Planning Poker were the most dominant methods, with more than 63.33% of par-
ticipants using them. The most recent case studies [106, 107] also confirm that there is not
much change in the practice of effort estimation, and expert-based methods are still the most
used SEE approach.

On the other hand, Jørgensen [65] referred to a literature paradox regarding the fact that
expert-based methods are dominant, but most SEE literature investigates and improves non-
expert SEE methods [2, 108]. Software engineering textbooks and software tools for SEE all,
directly or indirectly, promote non-expert SEE methods [109]. One reason that may provide
some rationale for such a paradox is that expert-based methods are simple and intuitive. The
following subsections provide reasons for the popularity of expert-based methods.

3.4. Review of Comparative Research of Expert-Based and ML-Based SEE 39

Complexity of non-expert methods. A prerequisite of non-expert SEE methods is
access to a large amount of data in order to start predicting acceptable estimates. However,
such data might not be available, especially in the early stage of projects. Yang et al. [104]’s
survey suggests that most estimation activities happen during “Initial project proposal stage”
(57%), “Feasibility study” (67%), and “Requirement” (74%). In the same survey, the major-
ity thought that model-based SEE methods are costly to adapt and yet offer an insignificant
benefit.

On the other hand, expert-based methods have no prerequisites other than an expert’s intu-
ition [2]. They follow simple steps and use common sense. Trendowicz and Jeffery [24]
recognises the simplicity of expert-based methods as one of their strengths.

Another source of complexity is the SEE literature itself. This complexity is best reflected in
the inconsistent taxonomies [58] and measurements [2]. At the same time, industry standards
such as [48, 110] have yet to precisely define SEE vocabulary and processes.

Expert and non-expert estimates have similar accuracy. Surprisingly, expert and
non-expert SEE methods produce similar estimate accuracy, and thus the software industry
opts for the most intuitive methods, i.e. expert-based methods. That leads Jørgensen [65]
to ask if it is reasonable to pursue improvements in accuracy in future SEE research and
development.

Moløkken-Østvold et al. [105]’s survey lists different reasons for selecting expert-based SEE
methods, and the most selected reason is that expert estimators had successful previous es-
timates. This may be translated as a form of trust of expert judgement over machine-based
judgements.

While studies such as Addison and Vallabh [111], Moores and Edwards [109] indicate that
estimate accuracy is important, it does not imply that estimates are expected to be 100%
accurate. In fact, Accurate has been interpreted differently in the industry. For instance,
Moores and Edwards [109] indicated that estimates in the range ±20% are considered ac-
curate estimates by industry professionals. Unless suggesting a significant accuracy gap
between expert and non-expert methods, the software industry will continue its adoption of
expert-based methods.

Lack of supportive details, and flexibility. Among the weaknesses of machine-based
SEE methods noted by Trendowicz and Jeffery [24] is the lack of supportive details. While
estimates are the ultimate outcomes, it is hard to trust an estimate just because a machine
says so without more information. Supportive information, which expert estimators usually
provide, can be a rationale behind the estimates. Such side details provide an environment for
development team members to negotiate and reach a better understanding, as illustrated in

3.5. Human Computation 40

the Planning Poker method [8]. In fact, Agile research such as Tanveer et al. [106] suggests
another purpose of SEE, which is synchronising team understandings.

Moløkken-Østvold [112] indicates that the lack of flexibility in machine-based methods is
another reason behind the popularity of expert-based methods. Flexibility can be interpreted
in several ways, such as in changing the model to consider different kinds of information or
in reusing the model in different contexts [24].

In summary, the literature strongly suggests that expert-based estimation methods remain the
most reliable, but they lack the potential for scalability of automated methods, such as those
based on ML. The next section explores research in human computation as a potential way
of developing scalable and reliable software effort estimation methods.

3.5 Human Computation

Human computation is an emerging research area in which human intelligence is used in
a machine-managed process, computation, or algorithm. As a consequence, there are sev-
eral competing (and in some cases conflicting) definitions of the field. Quinn and Bederson
[14] review these in an attempt to propose a general conception of human computation and
its relationship to other fields. They argue that Human Computation lies largely within the
more general area of Collective Intelligence, alongside Social Computing and Crowdsourc-
ing. All these fields involve the utilisation of human intelligence and decision making within
computational processes, but from different views and with different applications [14]. Thus,
Quinn and Bederson created a classification system that relies on six dimensions, such as mo-
tivation, quality control and aggregations, in order to distinguish between different research
areas and find gaps between them. What concerns this thesis is the area of human compu-
tation where a human crowd is utilised to substitute machines for decision making purposes
within an algorithm. This section reviews work that addresses this concern: the nature of
human computational tasks, they are decomposed and how a human worker is managed as a
computational resource.

While early applications made the human computation tasks independent and identical, Lit-
tle et al. [113] and Bernstein et al. [114] succeeded in using a human computation worker
to accomplish dependant tasks that result in an accumulated effort. Kamar et al. [115] men-
tioned that a human computation worker is able to do different kinds of task, such as solving
a problem and decomposing a goal into a list of tasks. Little et al. [113] took the extreme
end of involving human computation workers in an algorithmic style. In fact, Little et al. is
able to invoke human workers via an imperative-style programming language to perform a
certain task and then get the response back to the program. Most of the research that aims to

3.5. Human Computation 41

harvest human intelligence in relation to human computation can be categorised under three
research areas: Crowdsourcing, Collective Intelligence and Social Computing.

3.5.1 Crowdsourcing

Asking human crowds in an open call to solve a certain problem in exchange for incentives
is not a new method. In the 1714, the British government called upon public to solve a
navigation problem in exchange for £20,000 Sobel [116]. Since then, the concept of solving
a problem by utilising the crowd continued evolving until 2006 when Jeff Howe used the
term Crowdsourcing in his article: “The Rise of Crowdsourcing” [117].

Howe defines crowdsourcing as:

“Crowdsourcing represents the act of a company or institution taking a function
once performed by employees and outsourcing it to an undefined (and generally
large) network of people in the form of an open call.”

Based on Howe’s definition, crowdsourcing is a special type of outsourcing. It has two
explicit characteristics and one implicit, as follows.

• Explicit: Task accomplished by a group of anonymous individuals

• Explicit: The anonymous individuals are recruited by an open call.

• Implicit: The anonymous individuals exchange money for the accomplished tasks.

Since 2006, the term “crowdsourcing” has been used to describe different initiatives and
projects, such as Wikipedia and Amazon Mechanical Turk. However, such usage of “crowd-
sourcing” amplified the confusion around this term. Thus, Arolas and González-Ladrón-
de-Guevara [118] reviewed 32 articles that contain definitions of the term in three different
contexts, which are: the crowd, the initiator, and the process. Then, Arolas and González-
Ladrón-de-Guevara concluded with their definition, which is close to 2006’s definition with
a slight generalisation. Hosseini et al. [119] also reviewed all the articles that defined crowd-
sourcing that were published between 2006 and January 2014. They ended up with 113
definitions of crowdsourcing. Hosseini et al. [119] converted the text representation of each
definition to an itemised list of features that can be found in any crowdsourcing initiative.
Based on Arolas and González-Ladrón-de-Guevara [118], Hosseini et al. [119], crowdsourc-
ing is not limited to 2006’s definition any more. In fact, it is better interpreted as a set
of features where the variation and availability of such features result in different forms of
crowdsourcing initiatives. However, there is a set of core features that are accepted by all

3.5. Human Computation 42

collected definitions. These are: large number of people, the workers are humans, there is
an initiator of the crowd task, the task is defined. That leads us to our own combination
of crowdsourcing features. These are: micro-tasks, large population, anonymous crowd,
competence and skilled crowd, accumulated effort, self-managed, defined project goals and
sponsored work.

Crowdsourcing has been used in different disciplines such as Computer Science, Business
and Management, Medicine, Law, and Sociology. Most of the crowdsourcing research has
been done under the discipline of Computer Science Hosseini et al. [119]. More details
and applications of crowdsourcing will follow in the subsection on software engineering
applications in human computation.

3.5.2 Collective Intelligence

Collective Intelligence has the most loose definition to describe its boundaries. In fact, it
almost includes any team work, online or offline, that collects individuals’ intelligence into
united cohesive work. Malone et al. defined collective intelligence as “Groups of individuals
doing things collectively that seem intelligent” [120].

Originally, the concept of collective intelligence was meant to describe group decisions with
the claim that a decision made by a group of individuals is better than a decision made by a
solo brain. Scholars extended that concept to include group processes and group organisation
[121].

Research studies in the area of collective intelligence concern the theoretical part of group
thinking, and it represents a good start in understanding the foundation of thinking, acting,
and organising groups of individuals Miorandi et al. [122], Bonabeau [123].

3.5.3 Social Computing

Regardless of our purpose, we, as humans, interact with each other by nature, and this in-
teraction has been carried out over different mediums, such as face-to-face, over the phone,
or using a computer application. The last example is what social computing is about. Wang
et al. [124] list several definitions along with their own.

Social Computing is concerned with utilising human intelligence from the angle of what
can be produced by facilitating interaction between individuals. For example, blogging and
interacting over social media, e.g. Twitter, are how human intelligence has been harvested
to create social and blogging content. In areas where face-to-face interaction is difficult,
e.g. Distributed Software Development, Social Computing can play a significant part in
facilitating human interaction Niazi et al. [125].

3.5. Human Computation 43

By facilitating human interaction, Social Computing can generate a huge amount of useful
data that can be used in understanding crowds. For example, Ortu et al. [126] was able
to collect a huge amount of communication data, about three million data records, from
open-source projects. Moreover, making human interaction easier will increase the number
of participators in the process of harvesting their intelligence, as illustrated in Storey et al.
[127]’s study.

3.5.4 Quality Assignment in Human Computation

As it has been mentioned earlier, most of the publications in the area of human computation
concern its applications. However, there are a number of publications about enhancing and
controlling the quality of human computation outcomes. Allahbakhsh et al. [128] reviewed
previous studies that investigated crowd quality controls, which are the measurements that
can be taken to ensure a quality outcomes. Allahbakhsh et al. list quality-control approaches
along with a quality-control taxonomy. For example, one of the quality-control approaches
featured in the study is: “Effective Task Preparation”, which is a technique that devotes
good preparation of the task by providing an unambiguous description of the task. Such a
technique makes the task in a defensive design— that is, cheating is not easier than doing the
task. The rest of the publications have been categorised into four categories: gold-standard
quality controls, machine-learning quality controls, statistical, and crowdsourcing quality
controls.

Gold-Standard Approach

Gold-standard quality control refers to the way of asking crowd workers questions with
known answers and then checking whether the workers answered correctly. Then, the work-
ers are scored based on these gold-standard questions. There are several studies that im-
plemented this method in different ways, such as Corney et al. [129], Donmez et al. [130],
Bhardwaj et al. [131]. More interestingly, Oleson et al. [132] suggest a novel way to cre-
ate gold-standard units in a programmatic way based on previous gold units. Oleson et al.
test workers with the created gold units to measure their quality score and then judge their
contributions.

Machine-Learning Approach

Basically, this approach involves machine-learning algorithms to learn from crowd workers’
inputs to score the workers. For example, Zhu et al. [133] train their algorithm using quality-
related measurements, such as time spent on a task, and then used that to predict the quality

3.5. Human Computation 44

of the submitted answers. Mashhadi and Capra [134] also use machine learning with novel
inputs, i.e user travel duration between known locations, to control the quality in a Ubiqui-
tous Crowdsourcing setting. Based on that, they can identify mobility patterns (in term of
duration between locations) and the score of the user’s previous contribution to produce a
weighted average of the user contribution.

Statistical Approach

In such a quality-control method, a statistical model such as expectation maximisation is
used to generate a success probability for a crowd worker contribution. Ipeirotis et al. [135]
use an enhanced version of the expectation maximisation (EM) algorithm. EM can deduce
the error rate of workers using the maximum likelihood of total submitted answers. Ipeirotis
et al. enhanced the EM algorithm by differentiating between the error rate and worker bias.
Sarma et al. [136] also worked on enhancing the EM algorithm to be used in a global quality
setting rather than a local one. Their algorithm finds the global optimal estimation of correct
task answers. They leveraged the idea of grouping similar items and treating them as one
item. In addition, they filter items based on roles that are implied by a requester.

Crowdsourcing Approach

Letting a crowd worker (the judge) review an outcome of another crowd worker (the worker)
is also used to control and measure the crowd outcomes. Baba and Kashima [137] suggest a
two-stage quality control for creative tasks. In the first stage (creation stage), an artefact is
being created, and in the second stage (review stage), the artefact is being reviewed. Baba and
Kashima’s contribution is the statistical model to measure the judge ability and the reviewer
bias and convert these into a document quality score.

Although there are some research publications about quality control of crowd worker out-
comes, they still do not cover all the angles of the outcomes, for instance, controlling and
measuring the quality of subjective answers for software engineering management tasks.
Only current methods such as redundancy are being used to ensure the quality in software
engineering crowdsourced tasks LaToza et al. [138]. However, there is a need for a crowd-
adoption method to ensure the quality of crowd workers’ outcomes.

3.6. Software Engineering Applications in Human Computation 45

3.6 Software Engineering Applications in Human Com-

putation

Computer science has the most application research in the area of human computation and
crowdsourcing. Several researchers studied crowdsourcing applications in different software
engineering niches. Mao et al. [15]’s paper is a survey paper about different software engi-
neering applications. It covers all the previous research work from Jan 2006 to Mar 2015.
Mao et al. divided the application of crowdsourcing in software engineering based on the
phases of the software development life cycle. For example, in software requirement en-
gineering, Mao et al. mentioned Lim and Finkelstein [139]’s paper as an example of how
crowdsourcing is being used in requirement elicitation. Mao et al. include another 16 re-
search papers in this specific niche. Moreover, Mao et al. mentioned several crowdsourcing
challenges such as task decomposition and quality assurance.

In addition, Stol and Fitzgerald [140] aimed to show and emphasise the challenges of using
crowds in software development with a real-world case. Stol and Fitzgerald [140] present a
case study of using crowds to develop software. Stol and Fitzgerald list all the challenges of
adopting crowds to develop software, e.g. the task decomposition challenge. They conclude
that crowds are still not cheaper, better in quality, or even faster. Notably, Stol and Fitzgerald
[140] used crowds as if they are contractors, which may explain their findings. Nevertheless,
Stol and Fitzgerald [141] built a framework for outsourcing software development to the
crowds. They concluded that there is a need to research this area using their framework.
Interestingly, Stol and Fitzgerald [141] presented excellent questions that can be used to
narrow any research in this area.

Li et al. [142]’s book has a paper titled “Crowd-sourcing for Large-Scale Software Devel-
opment” that discusses open source, distributed development and crowdsourcing. Li et al.’s
paper is one of the rare papers that includes all the topics together. It summarises the topics’
features in one table. Moreover, it lists an architecture, development process, and maturity
model for the crowd software development. An example of thinking out-of-the-box, Yu et al.
[143] provided a dataset from a gaming platform that simulates the software development
process using crowds. Yu et al. [143] list some technical challenges in human computing
such as measuring the temporal changes in worker behaviour.

In software development and programming, there are couple of studies that suggest solutions
for writing software code using human crowds. For example, LaToza et al. [138] suggest a
crowd development platform to develop software. Others, like Tsai et al. [144], Minder and
Bernstein [145], Cochran et al. [146], LaToza et al. [147], have suggested different solutions
for relatively the same purpose.

The software engineering discipline encompasses implicit images of systematised harvesting

3.6. Software Engineering Applications in Human Computation 46

of human intelligence, for example, open-source development Raymond [148], distributed
(a.k.a. global) software development Jiménez et al. [149], and search-based software engi-
neering Harman and Jones [150]. These images suggest that human computation is native
in the software engineering discipline. Human computation as a research area is considered
an emergent discipline, and similar software engineering applications in crowdsourcing have
started adapting and moving to human computation. Several studies discussed most of the
applications, such as Kittur et al. [151], Casey [152]. More specific research studies are ded-
icated to certain software engineering areas, including team communication, task planning,
and team management.

Team communication. Cubranic et al. [153], Omoronyia et al. [154] proposed an au-
tomated method of keeping team communication intact and present whenever an individual
worker needs it. They bring communication data into context. For example, while you are
working on part of a certain artefact, you can figure out all the communication relating to
that artefact and which people have worked on it. Data mining and machine learning have
been utilised to bring such innovation into the communication context. Other studies Handel
and Herbsleb [155], Fitzpatrick et al. [156], Guzzi et al. [157], Korkala and Maurer [158]
suggest tools and practices to help workers be more efficient by using human computation in
their communications.

Task planning. There are several studies discussing how crowds can do planning, such
as Flostrand [159], Kaivo-oja et al. [160], however, very few studies discuss planning as an
activity that can be enhanced by human computation. Mao et al. [15] discussed the cost
perspective of job planning. Task decomposition, as part of planning, has been discussed.
Alkhatib et al. [161] reviewed the history of piecework and lists how is it possible to learn
from that literature how we can decompose large work into small pieces. While Hoßfeld
et al. [162] offer a model of work granularity, Kulkarni et al. [163] suggest an application
that uses crowds to decompose large tasks. After decomposing tasks, prioritising them is also
important, to get the important work done first. That can be done using some data mining
techniques, as has been done in the context of prioritising issues and software bugs Lamkanfi
et al. [164].

Team management. Individuals are able to perform simple and small tasks, however,
real-world tasks are large and complex. Thus, forming a team and organising it in a way to
accomplish certain tasks is essential. Team formation has been discussed by several studies,
such as Li and Shan [165], Gao et al. [166], Anagnostopoulos et al. [167]. However, these
teams are being formed to be managed manually by humans. There are few studies in which

3.7. Summary 47

teams need to be formed and managed by machines; one example is Park et al. [168]. Organ-
ising team work was the concern of Valentine et al. [169]. They suggest flash organisation, a
reflection of traditional organisational theory in the context of human crowds. Nevertheless,
most of the studies need data, such as the workers’ skillsets, for their solution to work prop-
erly Huang et al. [170], and other research studies require human intervention Wang et al.
[171]

3.7 Summary

This chapter explored the state-of-art in topics related to the thesis. It started by reviewing
software effort estimation research in different contexts, including software development
project management, software maintenance, and Agile. The aim was to cover software effort
estimation from different perspectives and sort out the meaning for each one. Therefore,
a general understanding of the estimation process was captured and described in a general
classification of existing SEE methods.

Then, Section 3.2 started with the first branch of SEE methods, expert-based methods. It
listed six expert-based SEE methods that are featured in the literature and related to the
thesis topic. Then, this section explained the steps of each method and reviewed related
literature.

After that, Section 3.3 reviewed machine-based SEE methods. It started by describing the
popular machine-based methods along with relevant literature for each method. Then, it
explored comparative research investigating the performance of the methods. In this section,
more details were devoted to which contexts machine-based methods have excelled in and
are recommended for, according to the reviewed literature.

Then, Section 3.4 reviewed comparative research of expert-based and ML-based SEE. It ex-
plored the literature that compares both SEE methods from different perspectives, including
complexity, performance, and flexibility. This section concluded that expert-based estima-
tion methods are recommended by the literature for reliability. However, they lack scalabil-
ity, and thus, human computation may offer better options to design a reliable and scalable
SEE method.

After that, Section 3.5 reviewed relevant literature to human computation and surrounding
topics, including crowdsourcing, collective intelligence, and social computing. Human com-
putation is an emerging research area and thus sometimes it gets confused related topics on
social computing, collective intelligence, and Crowdsourcing. This section reviewed all of
them and explained the overlapping areas. It also reviewed quality in crowdsourcing, which
is a well-known issue that hinders the progress of advancing research that uses crowdsourc-
ing.

3.7. Summary 48

Finally, Section 3.6 explored related and recent applications of human computation in soft-
ware engineering. It illustrated how several software engineering topics have been advanced
using human computation, including team communication, management, and task planning.

As explained in previous sections, expert-based SEE methods attracted less attention from
research communities. At the same time, these methods are the most used ones in the in-
dustry of software development, but are also known to be labour intensive. Thus, in this
thesis, research is undertaken to address the gap in the literature by investigating means of
addressing the scalability of expert based estimation methods (specifically planning poker)
through a combination of automated and human-computation based approaches.

49

Chapter 4

JIRA Open Source Software Effort
Dataset

The previous chapter identified the potential for the development of novel approaches to
software effort estimation, based on a combination of machine learning and/or human com-
putation as a research gap. Empirical research on software effort estimation (SEE) requires
previously collected data on software effort measurements in order to evaluate different es-
timation methods. The research presented in this thesis requires a dataset of software de-
velopment tasks that included descriptive text (corpus), actual cost, and expert estimates,
as outlined in Chapter 2. Since the literature features no such dataset, this chapter intro-
duces a new dataset, JIRA Open Source Software Efforts (JOSSE), that meets the necessary
requirements.

This chapter describes: (1) the method for compiling a new dataset, (2) the methods adopted
for refinement of the raw data, (3) a characterisation of the resulting dataset in terms of
quality, and (4) a method for further preparation of the dataset in a form that can be used for
machine-learning experimentation.

The next section will review topics associated with SEE datasets in previous studies and
explain relevant research concerning quality measurements of SEE datasets. Section 4.1
describes previous studies that have developed and used SEE datasets, and then summarises
a selection of popular and publicly available datasets. Section 4.3 explains the new dataset
collection method that is inspired by Ortu et al. [126]’s work. Section 4.4 details the dataset
processing method that incorporates Bosu and Macdonell [172]’s taxonomy. In addition, the
impact of several further options for refinement, drawn from the literature, are evaluated in
terms of their impact on specific quality metrics. Finally, a summary section concludes this
chapter and illustrates the next step in this thesis.

4.1. Publicly Available SEE Datasets 50

4.1 Publicly Available SEE Datasets

Several datasets have been recorded in the SEE literature. Usually, datasets came out of
SEE evaluation studies. Then, later researchers adopted the same dataset if it was publicly
available. According to ML SEE surveys [82, 83, 173, 174, 175], the top five datasets that
are used are: COCOMO [1], Desharnais [93], NASA [102], ISBSG [176] datasets, and Zia’s
dataset [177], and there are over twelve datasets that have been used more than four times.

SEE researchers reuse current datasets in the literature [93, 178] with the aim of evaluating
their advances using the same datasets. The PROMISE repository [179] keeps some of
those datasets publicly available (20 were listed on the date of submission). The majority
of these datasets contain no textual properties, e.g. task description. Instead, they consist of
numerical properties such as lines of code for targeted software projects. In addition, they
are project-based datasets, meaning that the data points (cases) are software projects.

To give an example of existing datasets, four popular and publicly available datasets are
described in this section. Two of them have a text corpus among their properties, and two
have only numeric properties. Two datasets are drawn from open-source communities, and
the rest represent commercial projects. Tables 4.1 and 4.2 illustrate summary information
about the datasets and their properties. The following is a brief description of the datasets.

• Deep-SE: The Deep-SE dataset is derived from Choetkiertikul et al. [180]’s study. Its
data was collected in a similar way to JOSSE. The data was collected from nine open-
source communities (Apache, Appcelerator, DuraSpace, Atlassian, Moodle, Lsstcorp,
MuleSoft, Spring, and Talendforge) and belongs to seventeen different projects. The
actual effort is represented by story points. This dataset offers a corpus among its
properties, however, it does not contain expert estimates.

• Porru: Porru’s dataset is obtained from Porru et al. [178]’s study. It was also collected
using the same method as JOSSE dataset, which is explained in Section 4.3. It con-
sists of 4908 data points that are collected from eight open-source projects (Aptana
Studio, Dnn Platform, Apache Mesos, Mule, Sonatype’s Nexus, Titanium SDK/ CLI,
Appcelerator Studio, Spring XD).

• Desharnias: Desharnais [93] collected nine numeric features of 81 projects in the late
1980s. While this dataset is old, recent studies have reported experiments using De-
sharnais [93]’s dataset, for instance [181]. The 81 projects belonged to a commer-
cial software development organisation. Four of the 81 projects were removed since
they are incomplete projects. The dataset was obtained from the PROMISE repository
[179].

4.2. Software Effort Estimation Datasets Research Studies 51

Dataset # of
Records

Effort
Unit

Min
(minute)

Max
(minute)

Mean
(minute)

Median
(minute)

STD
(minute)

Skewness Kurtosis

Deep-SE 23313 SP 1 100 6 4 10 6 45.69
Porru 4682 SP 1 6765 5 3 99 68.1 4652.2
Desharnias 77 P/H 546 23940 4834 3542 4161 2.04 5.3
NASA93 93 P/M 8 8211 624 252 1130 4.26 23.1

Table 4.1: Distribution of effort in experiment datasets. Effort unit abbreviations stand for
the following: P/I = person-minute, P/H = person-hour, P/M = person-month, and SP = story
point.

Dataset # of
Projects

of
Records

of
Used Attributes

Has
Corpus

Publish
Year

Work
Unit

of
Expert Estimates

(%)

Deep-SE 16 23313 1 Yes 2019 Issue 0 (0%)
Porru 8 4682 1 Yes 2016 Issue 0 (0%)
Desharnias N/A 77 4 No 1989 Project 0 (0%)
NASA93 N/A 93 21 No 2006 Project 0 (0%)

Table 4.2: Summary details of the four datasets that are publicly accessible

• NASA93: This dataset is a collection of 24 numeric features for 93 software projects
belonging to NASA. The dataset features 15 COCOMO standard attributes among the
feature set. It describes old software projects that took place in the 1970s and 1980s.
The source of the dataset is the PROMISE repository [179].

As shown in Table 4.1, the effort costs are skewed to the right (more data points with larger
costs) in all the datasets. According to the datasets’ kurtosis, the datasets have heavier tails
(more data points) than normally distributed datasets, indicating that effort estimates are
widely distributed.

4.2 Software Effort Estimation Datasets Research Stud-

ies

Software effort estimation datasets can be based on several different units of work, including
software project, issue, and story. A dataset is a collection of work units that are associated
with related properties, such as number of code lines. Different research areas name dataset
records differently. For example, Case-Base Reasoning (CBR) research calls them cases
[182], while Machine Learning (ML) research calls them data points [180]. For the rest of
this thesis, the number of work units in a given dataset will be referred to as data points,
since part of the thesis will be an evaluation of ML methods.

4.2. Software Effort Estimation Datasets Research Studies 52

While the focus of SEE research is to produce better software estimates, less attention has
been paid to the development of datasets to support evaluation, as noted by several studies
[183, 184]. In addition, the size of available datasets is quite small compared to the needs
for, for example, machine-learning-based techniques. In fact, the average number of records
(cases in a dataset) in the top three datasets used by ML-based research according to Wen
et al. [82] and Ali and Gravino [83] surveys is around 290. Along with that, there are few
studies that have investigated the available datasets in depth. The rich analysis illustrated
in González-Ladrón-de-Guevara et al. [185]’s study about the ISBSG [176] dataset shows
evidence that it is not the case that any dataset can fit any ML model. NASA’s datasets [102]
were also investigated by Shepperd et al. [186]. They uncover some unwanted qualities of
the datasets, including data discrepancy, incomplete data points, and lack of detail about
dataset preprocessing and data origins.

Further, whilst many studies have proposed or enhanced ML-based estimation methods, only
a small number of studies investigate the role of quality of datasets in the production of es-
timates [172, 187, 188, 189]. In turn, this tendency may be due to the lack of research on
methods for assessing dataset suitability for effort estimation. However, [188] have demon-
strated that effort prediction studies may be invalid if the quality of the dataset adopted for
evaluation is not considered.

Of the available work in this area, Phannachitta et al. [189] focused on a single aspect of
dataset quality, inconsistency. According to Phannachitta et al. [189], inconsistency in a
dataset means the existence of data points that demonstrate similar features (independent
variables), e.g. lines of code, with a significant difference between them in the dependant
variable (effort estimate). Dataset inconsistency can be identified by tools such as TEAK
[190] and FISI [191]. As an advancement, Phannachitta et al. [189] proposed Filter-INC to
double-check data points that are identified as inconsistent by TEAK [190] and FISI [191].
Filter-INC considers those data points as inconsistent only if the inconsistency still persists
after eliminating conflicting data points, and thus, Filter-INC reduced the data loss by using
an inconsistency cleansing procedure.

Another single aspect of research is described by Kocaguneli et al. [192]’s study, which
evaluated datasets’ relevancy. Relevancy is a critical aspect, especially if the data points are
collected from different environments. Kocaguneli et al. [192] stated that an estimate for a
new case should be limited to an identified number (k − values) of similar projects (analo-
gies), and similarity is measured by the Euclidean distance of analogous features given the
features of the new case. By doing so, data points that are imported from other environments
can be used safely along with current local data points.

Further, more holistic frameworks assess multiple aspects of quality in SEE datasets. In
particular, Bardsiri et al. [187] suggested several statistical tests such as correlation between

4.3. Collection of the JOSSE Dataset 53

dataset variables and data distribution to evaluate the dataset fitness. Recently, Bosu and
Macdonell [172] assessed 13 popular datasets from different quality aspects such as dataset
inconsistency. However, Bosu and Macdonell [172] did not apply their approach on datasets
that contain a text corpus among their features, such as the Agile story points dataset.

Bosu and MacDonell [193]’s dataset quality taxonomy offers insights into dealing with qual-
ity aspects of datasets. Specifically, the taxonomy addressed eleven quality issues grouped
into three categories: accuracy, relevance, and provenance. Inspired by the taxonomy, the
thesis developed five refinement procedures for the JOSSE context, e.g. assessing a text
corpus attribute in the JOSSE dataset.

For this thesis, two datasets were collected: JOSSE and Planning Poker Industry (PPI)
datasets. The following section will explain JOSSE and its collection process in detail. How-
ever, PPI can not be disclosed since it was collected from a commercial company and further
summarizing details about the PPI dataset will be provided in Section 5.2.1.

4.3 Collection of the JOSSE Dataset

At the time of starting the thesis, early 2017, Ortu et al. [126] had proposed a large and
general dataset collected from the JIRA issue tracker system for several open-source software
projects. Ortu et al. [126]’s method of mining JIRA was inspiring. They selected open-
source projects that used JIRA as their issue tracker system, and then extracted the issues’
populated attributes (18 attributes) along with relevant objects including users, comments,
and attachments. That resulted in a large amount of data which is stored in an SQL database.
Issue attributes that concern this thesis, e.g. actual cost and expert estimates, were not among
the extracted attributes in Ortu et al. [126].

Expert estimates are the estimates that were predicted by the software development team or
a member of the team working on the task. They are called expert estimates because the
development team are the most knowledgeable individuals about the software project. They
are also aware of their expertise, and thus, they are best placed to predict the most reliable
estimates for a given software development task in their software project.

Using a similar method, issues that are annotated with an expert estimate and actual cost
were selected to be the raw data for the proposed dataset. To produced an SEE-focused
dataset, data objects that surround software issues such as attachments were not included,
and the only extracted attributes were: issue ID, title, description, actual cost, estimated cost,
number of comments and number of change logs. The dataset was named the JIRA Open
Source Software Efforts (JOSSE) dataset.

The JOSSE data has been collected from three open-source communities: Apache, JBoss,

4.3. Collection of the JOSSE Dataset 54

Figure 4.1: A screenshot of JIRA issue tracking system. Inside the red box are details of the
time-tracking information for an issue.

Case

idPK

corpus

features

expert_estimated_effort

actual_effort

reference

Figure 4.2: JOSSE Datasets consist of one table called Case. All the fields are text except
expert estimated effort and actual effort which are numeric.

and Spring. Two criteria are used to find relevant issues, these are Spent Time and Status.
Spent time is referred to as Logged Time and it represents the actual effort spent on finishing
an issue work. Person-hour is the unit that is used in spent time; see Figure 4.1 for an
example of how JIRA system presents time tracking information.

The dataset consists of 23,184 issues that are annotated with actual effort, and 4,327 issues
that are annotated with estimated effort and actual effort. All the issues have a text corpus that
is produced by combining the issue title with its description. For every issue, the actual effort
and issue features are provided. Estimated effort is also extracted for those issues that are
annotated with such information. Since those estimates were produced by the development
team, they named as expert estimates in the JOSSE dataset. Issue features consist of the
number of comments and number of activities for the issue. The number of issue activities is
extracted from the issue log. It represents the sum of all the events that happened for a given
issue. The original issue key is used as an identifier in the dataset. Finally, for traceability,
each issue is supplied with a reference link that refers to the issue web page. The dataset
consists of issues belonging to different projects from each community. Table 4.4 and Table
4.3 present a summary overview of the dataset, and Figure 4.2 shows the single table (“case”)
in an SQLite database where the dataset is stored.

4.3. Collection of the JOSSE Dataset 55

Project # of
Records

Min
(minute)

Max
(minute)

Mean
(minute)

Median
(minute)

STD
(minute)

Skewness Kurtosis

ACCUMULO 1118 3 120 34 30 25 1.44 1.63
AEROGEAR 205 20 1963 668 480 496 0.86 -0.06
AMBARI 1702 10 180 62 50 38 1.28 0.98
ARROW 1659 10 230 64 50 50 1.36 1.21
ARTEMIS 90 10 440 104 50 112 1.54 1.5
BATCH 324 2 480 123 60 129 1.52 1.51
BEAM 1366 10 450 124 90 102 1.3 0.98
CALCITE 137 10 230 70 40 60 1.13 0.15
CARBONDATA 1721 10 590 170 130 130 1.15 0.72
DAFFODIL 176 2 74 19 13 18 1.23 0.63
EXOJCR 709 4 2640 687 480 648 1.29 0.89
FLINK 672 10 30 18 20 5 -0.16 -0.18
GEODE 1269 10 140 44 30 30 1.33 1.04
GTNPORTAL 206 10 495 152 120 129 1.1 0.29
HDDS 158 10 220 67 50 43 1.38 1.57
IGNITE 513 10 41 21 20 8 1.06 1.43
INT 413 1.5 480 129 90 118 1.63 2.17
JBAS 99 10 1920 450 360 447 1.51 1.92
JBEAP 136 5 300 61 20 75 1.82 2.62
JBESB 124 2 962 235 120 268 1.55 1.65
JBFORUMS 109 15 1050 251 150 243 1.4 1.51
JBLAB 230 10 2460 554 330 581 1.56 1.78
JBPORTAL 150 5 2100 374 180 471 1.9 2.84
JBTM 193 2 1080 234 120 277 1.55 1.62
METRON 106 10 290 92 70 69 0.97 -0.05
MNG 144 5 360 75 45 77 1.65 2.42
MXNET 304 10 590 140 85 135 1.36 1.2
NETBEANS 293 10 200 61 40 45 1.18 0.47
NIFI 175 10 150 51 40 32 1.22 0.82
RF 280 15 990 369 242 257 1.02 0.32
SLING 109 10 120 40 30 27 1.23 0.52
SPR 180 2 269 61 34 64 1.48 1.5
STDCXX 198 5 420 119 120 83 1.47 1.97
STORM 839 10 230 69 50 51 1.21 0.83
STS 247 4 780 199 138 170 1.33 1.34
SWS 89 2 156 32 17 36 1.58 1.85
TS 322 10 250 89 70 53 1.15 0.75
ZOOKEEPER 214 10 460 119 80 106 1.26 0.99

Total 16979 1.5 2640 136 60 248 5.06 33

Table 4.3: Distribution of JOSSE dataset

4.3. Collection of the JOSSE Dataset 56

Project
Expert

Estimates Outliers Dissent
Records Project Domain

% # % # %

ACCUMULO 6 0.5% 149 13.3% 2.7 2.7% Database Software
AEROGEAR 185 90.2% 9 4.4% 2 2.0% Mobile Development
AMBARI 41 2.4% 123 7.2% 2 2.0% Data Processing software
ARROW 18 1.1% 174 10.5% 2.5 2.5% Data Processing software
ARTEMIS 0 0.0% 9 10.0% 0.8 0.8% Enterprise system
BATCH 290 89.5% 33 10.2% 1.3 1.3% Software development
BEAM 15 1.1% 112 8.2% 1.9 1.9% Data Processing software
CALCITE 2 1.5% 7 5.1% 1.5 1.5% Database Software
CARBONDATA 15 0.9% 138 8.0% 2 2.0% Database Software
DAFFODIL 0 0.0% 15 8.5% 1.2 1.2% Data Processing software
EXOJCR 489 69.0% 52 7.3% 1.9 1.9% Software development
FLINK 7 1.0% 47 7.0% 1.8 1.8% Data Processing software
GEODE 0 0.0% 119 9.4% 1.9 1.9% Data Processing software
GTNPORTAL 166 80.6% 14 6.8% 1.5 1.5% Web Development
HDDS 0 0.0% 22 13.9% 1.3 1.3% Data Processing software
IGNITE 2 0.4% 110 21.4% 2.3 2.3% Database Software
INT 385 93.2% 47 11.4% 1.6 1.6% Software development
JBAS 33 33.3% 6 6.1% 2 2.0% Enterprise system
JBEAP 4 2.9% 24 17.6% 3.8 3.8% Enterprise system
JBESB 5 4.0% 25 20.2% 0.7 0.7% Enterprise system
JBFORUMS 0 0.0% 14 12.8% 4.2 4.2% Web Development
JBLAB 45 19.6% 27 11.7% 1.8 1.8% Communication Platform
JBPORTAL 25 16.7% 22 14.7% 1.3 1.3% Web Development
JBTM 114 59.1% 24 12.4% 3.2 3.2% Enterprise system
METRON 0 0.0% 5 4.7% 1.6 1.6% Security Framework
MNG 113 78.5% 21 14.6% 3.8 3.8% Software development
MXNET 0 0.0% 24 7.9% 1.4 1.4% Data Processing software
NETBEANS 1 0.3% 24 8.2% 1.9 1.9% Software development
NIFI 4 2.3% 15 8.6% 2.4 2.4% Data Processing software
RF 236 84.3% 162 57.9% 1.3 1.3% Software development
SLING 1 0.9% 5 4.6% 2.9 2.9% Software development
SPR 9 5.0% 25 13.9% 2.3 2.3% Software development
STDCXX 178 89.9% 28 14.1% 2 2.0% Software development
STORM 4 0.5% 87 10.4% 1.9 1.9% Data Processing software
STS 98 39.7% 35 14.2% 2.2 2.2% Software development
SWS 5 5.6% 14 15.7% 3.2 3.2% Cloud Computing
TS 0 0.0% 22 6.8% 2.2 2.2% Web Server
ZOOKEEPER 6 2.8% 20 9.3% 1.8 1.8% Database Software

Total 2502 14.7% 1809 10.7% 2 2.0%

Table 4.4: Summary details of JOSSE dataset

4.4. JOSSE Dataset Refinement Options 57

The original version of JOSSE consists of all the collected issues (23,184) without any fur-
ther refinement. The original version may need to be refined in order to serve the purpose
that it is used for. The JOSSE dataset has been stored in a GitHub repository that is publicly
accessible1. The repository contains all the necessary scripts to replicate and reproduce the
dataset from its original raw data.

The next section will discuss several refinement options that can be applied to the dataset
and report on the impact of the refinements in terms of dataset quality. However, it is up to
the researchers who are planning to use the JOSSE dataset as part of their research to decide
which refinement should be applied given the context of the dataset usage. For example,
those doing experiments involving NLP techniques, such as BERT [194], may require a
readability refinement, since BERT has been trained on a human language text corpus for a
language such as English.

4.4 JOSSE Dataset Refinement Options

After the collection of the raw data points and depending on the research context, some data
refinement options are necessary to eliminate any undesirable data points that may negatively
impact the research outcomes.

Bosu and MacDonell used their taxonomy as a dataset quality assessment framework to
benchmark thirteen popular SEE datasets [172]. Their goal is to evaluate how a given dataset
fits for the purpose that it is intended to be used for. The taxonomy consists of three main
categories: Accuracy, Relevance, and Provenance.

Accuracy is further divided into five elements that represent different data issues. If any
of them exist, then the accuracy of that dataset might be compromised, and thus, it nega-
tively impacts the dataset’s fitness for modelling. The five data accuracy concerns are as the
following:

• Outliers: data points that deviate from the distribution of a given dataset. Such data
points result from irregular events.

• Noise: wrong data points that have slipped into the dataset.

• Inconsistency: the lack of data pattern and agreement. Usually happens when mea-
sures are interpreted in different meaning or contexts.

• Incompleteness: missing some data points or data point properties. It also refers to
measures that represent unfinished components compared with other data points, e.g.
effort of incomplete projects in a dataset of completed projects.

1https://github.com/crowd-planning-poker

4.4. JOSSE Dataset Refinement Options 58

• Redundancy: happens in the case of duplicated data points. It also occurs when differ-
ent predictor variables are correlated, called multicollinearity.

Relevance measures the quality of relationships between data points in a given dataset. There
are three sub-elements beneath this category:

• Heterogeneity: the number of different environments where data points are collected.
Environments here may refer to an organisation or, in large organisations, a single
project.

• Amount of Data: Since ML-SEE relies on statistical methods, the amount of data is a
significant player in the learning process and pattern deduction. It refers to the number
of data points that will be used to train the ML model.

• Timeliness: data currency. Old datasets may train the wrong model for current soft-
ware development tasks. For instance, a predictor variable, such as team experience,
might have a strong impact on a predicted effort at the time when the data was col-
lected. However, the same predictor (team experience) might not be as strong a pre-
dictor now as it was before due to technology changes.

Provenance is about trust in the dataset. In the literature, it relates to research replication
and the dataset accessibility that facilitates such replication. There are three elements under
provenance:

• Commercial Sensitivity: When a dataset is collected from a commercial environment,
it might be sensitive to the organisation, and thus, researchers may not have permission
to disclose such a dataset. Therefore, research replication is limited.

• Accessibility: the ability of researchers to access the datasets and algorithm scripts for
the purpose of replication. Public repositories such as PROMISE [179] are important
in providing enduring research accessibility.

• Trustworthiness: the evaluation of datasets and associated research proposals. The
more extended and rigorous the evaluation, the more confidence it gains.

Inspired by Bosu and MacDonell’s taxonomy, five refinement procedures were applied to
enhance accuracy, relevance, and provenance. The procedures are: project-based quantifi-
cation, outlier detection, assurance of data point cohesion, assessing corpus readability, and
tracing data origin and reproducibility. The following subsections explain each phase and
evaluate the impact on associated quality metrics.

4.4. JOSSE Dataset Refinement Options 59

Community
Projects with < 100 DP

Median IQR SkewensCount %

RedHat 86 89% 5 19.25 1.91
Spring 21 81% 8 26 1.58
Apache 226 91% 4 10.5 2.70

Table 4.5: Distribution of JOSSE data points per project for each of the three open-source
communities. DP stands for data point.

4.4.1 Quantity of Data Points Per Project

After the initial collection and storage as a SQLite database, the dataset consists of 371
projects that belong to the three open-source communities. However, grouping data points
based on their project, some projects have as few issues as one, and thus, it may be necessary
to identify a minimum number of data points for each project. A summary of the statistics
of projects with less than 100 data points is given in Table 4.5.

The data point quantities are not normally distributed, and thus, median and interquartile
range are more representative as a data summary. There is a large number of projects with
fewer than 100 data points per each community, with Spring having the lowest percentage of
those projects (81%). The mean median of data points for those projects is 6 data points.

Whether those projects are removed will depend on the usage of the dataset. For example, if
the goal is to train a classifier on cross-project issues, then there is no need to remove those
data points since they are useful in that context. However, if the decision is made to remove
all the data points that belong to projects with fewer than 100 data points, the remaining
number of projects is 40 and the total number of data points is 18,943; an overall loss of
18.3% of the data points.

4.4.2 Dataset Outliers

The dataset’s outlier data points are detected using David and Tukey [195]’s method to iden-
tify data points outside the lower and upper fences. The outlier detection has been done on a
project basis, i.e. data points are grouped based on their projects, then the outliers are iden-
tified. If outlier removal is required, two phases may need to be considered: project-based
and individual-based removal.

The first phase identifies outliers as a percentage of the whole project data points. Any
project with outlier data points that represent more than a certain threshold is removed. Then,
an individual-based removal of data points should follow to purify projects that have a minor
number of outliers. Such a removal scenario is based on an assumption that the outliers

4.4. JOSSE Dataset Refinement Options 60

represent a minority of the whole project data points, and if they are not a minority then the
project may not be suitable to draw patterns from.

To illustrate an example of the removal scenario above, any project with more than a quarter
of outliers is considered for removal. There are two projects (“CAMEL”, “SCB”) with 31.1%
and 29.6% outlier percentages respectively, and the total number of data points belonging to
both projects is 384. Continuing to the second removal phase (individual-based), there are
a total of 1,482 data points identified as outliers. Table 4.4 shows the percentage of outliers
for each project. The total number of remaining data points if the outlier removal scenario is
considered is 16,979, representing a data loss of 10.4% from the complete dataset.

To visualise the difference before and after outlier removal, Figure 4.3 shows box plot charts
of the dataset before and after outlier removal. The upper part of the figure (4.3a) shows a
large number of outliers, as represented by the black dots outside the whisker range (David
and Tukey [195]’s fences). On the other hand, a significant reduction of outliers is illustrated
in the lower part. Some projects still have a few outliers shown in the box plot, which
represent the outliers of the new distribution after the removal of the original outliers.

4.4.3 Dataset Dissension

As mentioned in several studies, effort inconsistency [189] and data inconsistency [172]
referred to the same thing which is called data dissension here in this thesis. It could impact
prediction accuracy if it is present. According to Bosu and Macdonell [172], inconsistency is
a lack of data point harmony in terms of their property values. Phannachitta et al. [189] refers
to inconsistency when the assumption that similar projects have similar efforts is violated.
In other words, if data points have similar effort, they should exhibit similar property values
(similar to each other).

While the term inconsistency has been used differently in the literature, this chapter uses
data dissension to refer to how cohesive the data points belonging to a given project are. The
challenge with the JOSSE dataset is that the main feature is a corpus, and measuring similar-
ity between different corpuses must consider lexical similarity as well as semantic similarity.
Thus, Phannachitta et al. [189]’s method may not suit JOSSE since it has been designed for
datasets with numeric properties. Nevertheless, Phannachitta et al. [189] provided insights
to inspect data dissension in the JOSSE dataset.

Text similarity is a concern of Natural Language Processing (NLP) research, and BERT[194]
is among the state-of-the-art advancements in that field. Devlin et al. [194] proposed a pre-
trained deep learning data model that can be used to encode a given text into word vectors.
The lexical and semantic meaning of each word is embedded in the word vector. The BERT

4.4. JOSSE Dataset Refinement Options 61

2.5

5.0

7.5

10.0

ACCUM
ULO

AEROGEAR

AM
BARI

ARROW

ARTEM
IS

BAT
CH

BEAM

CALC
IT

E

CAM
EL

CARBONDAT
A

DAFFODIL

EXOJC
R

FLI
NK

GEODE

GTNPORTA
L

HDDS

IG
NIT

E
IN

T
JB

AS

JB
EAP

JB
ESB

JB
FORUM

S

JB
LA

B

JB
PORTA

L

JB
TM

M
ETRON

M
NG

M
XNET

NETBEANS
NIF

I
RF

SCB

SLI
NG

SPR

STDCXX

STO
RM

STS
SW

S TS

ZOOKEEPER

Project

lo
g(

A
ct

ua
l E

ffo
rt

)

(a) JOSSE box plot before outlier removal

2

4

6

8

ACCUM
ULO

AEROGEAR

AM
BARI

ARROW

ARTEM
IS

BAT
CH

BEAM

CALC
IT

E

CARBONDAT
A

DAFFODIL

EXOJC
R

FLI
NK

GEODE

GTNPORTA
L

HDDS

IG
NIT

E
IN

T
JB

AS

JB
EAP

JB
ESB

JB
FORUM

S

JB
LA

B

JB
PORTA

L

JB
TM

M
ETRON

M
NG

M
XNET

NETBEANS
NIF

I
RF

SLI
NG

SPR

STDCXX

STO
RM

STS
SW

S TS

ZOOKEEPER

Project

lo
g(

A
ct

ua
l E

ffo
rt

)

(b) JOSSE box plot after outlier removal

Figure 4.3: Two box plots representing the dataset before and after the outlier removal.

4.4. JOSSE Dataset Refinement Options 62

model has been trained on a large amount of documents, so one word may have different
word vectors based on the context.

For the case of assessing the JOSSE dataset cohesion, issue corpuses were converted to
BERT embeddings and then a cosine similarity between issue vectors was calculated. To
illustrate the harmony between data points (issues), heat maps were created for each project,
see Figure 4.4. Each heat map square represents a 25-issue random sample from each project.
The dissension is represented in a colour range from yellow (100% similarity) to navy blue
(83.5% similarity). Overall, the JOSSE dataset is cohesive, that is, the data point properties
exhibit high similarity, except for a negligible number of data points per project (less than
5% dissension). From 1% to 5% of the data points were are not similar (have a BERT cosine
similarity beyond David and Tukey [195]’s fences) to the rest of the data points. For instance,
project ZOOKEEPER has 5% dissension, while BATCH has a 2.6% dissension; Table 4.4
gives the dissension percentage for each project in the dataset.

While dataset dissension identification is vital, different ML models have different tolerances
of data dissension, and thus it is up to the ML model to include or exclude such data points.
A data point being not similar to the rest of the data points does not necessarily invalidate it.

4.4.4 Dataset Readability

Since the main property of the data points in the dataset is a corpus, it is necessary to examine
the content of that corpus. Some ML models may make assumptions about the corpus,
e.g. written in readable text and following a given language’s grammar. There are several
readability assessment techniques, such as Flesch–Kincaid [196], however, they might not
be useful for assessing a text corpus with grammar errors or code snippets that contains a
stack trace.

The data point’s corpus was originally a combination of an issue description and its title.
Most of the issue’s description contains a stack trace that is marked between snippet delim-
iters, e.g. “<code>”. However, there are many other descriptions that contain stack traces
without the delimiters, which makes it difficult to separate such snippets from the descrip-
tions. While some ML models are not necessarily impacted by language grammar errors,
others, such as BERT, are sensitive to such errors since they are trained on grammar-free
corpuses, and word position and form has consideration in BERT embeddings. Thus, the
corpus for each data point needs to be assessed for language readability.

A grammar checker can be used to assess the corpus’s readability. The more grammar errors
are in the corpus, the lower the corpus readability score. One way to measure readability
using a grammar checker is to compare the number of grammar errors against the number of
corpus words, and based on that, a percentage for the errors can be produced.

4.4. JOSSE Dataset Refinement Options 63

ACCUMULO AEROGEAR AMBARI ARROW ARTEMIS

BATCH BEAM CALCITE CARBONDATA DAFFODIL

EXOJCR FLINK GEODE GTNPORTAL HDDS

IGNITE INT JBAS JBEAP JBESB

JBFORUMS JBLAB JBPORTAL JBTM METRON

MNG MXNET NETBEANS NIFI RF

SLING SPR STDCXX STORM STS

SWS TS ZOOKEEPER

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 4.4: JOSSE dissension heat maps. Each map represents a sample of 25 data points
that are selected randomly for each project.

4.4. JOSSE Dataset Refinement Options 64

Corpus Mean Median STD IQR

Has stack trace 46% 36% 43% 49%
No stack trace 15% 8% 23% 14%

Table 4.6: Statistics of corpus grammar error percentages for two kinds of corpus: one with
stack trace and another without stack trace. STD stands for standard deviation and IQR
stands for interquartile range.

The number of issues with a marked stack trace (between delimiters) in the JOSSE dataset is
2,631 data points, which represents 15% of the dataset. 85% of the data points may contain
non-readable text such as code snippets that contain a stack trace. LanguageTool [197] is
used as a grammar checker to evaluate two kinds of text corpus. The first type of corpus
contains the stack traces of those issues that included a stack trace, and it does not contain
the descriptions. The other kind of corpus contains the descriptions of all 2,631 issues, and
no stack traces.

Table 4.6 illustrates some statistics after evaluating all 2,631 data points from the dataset.
It shows that the corpuses with a stack trace only have a mean of 46% grammar errors
compared to the number of words and a standard deviation of 43%, while the other kind of
corpus (without a stack trace) has a skewed distribution; it has a median of 8% grammar
errors and 14% as the interquartile range.

Based on that, if corpus readability is critical for a given ML model, then this procedure can
be used to eliminate any data points that have grammar errors above a certain threshold.

4.4.5 Discretising Software Effort Estimates

Taking inspiration from the Planning Poker method, software effort estimation can be dis-
cretised and grouped into categorical times. Estimate categories often adopt a metaphor that
suggests increasing uncertainty with estimate magnitude. For example, Grenning [8] sug-
gests using a Fibonacci sequence to indicate the margin of error between estimate sizes as
they increase in magnitude. Cohn [5] states that approximate person-effort categories are
more appropriate because it is often unrealistic to expect person-hour precision estimates
to be accurate for software tasks. Therefore, classification can be used to build machine
learning models instead of regression.

Further, Cohn [5] argues that teams eventually develop a tacit interpretation of the relation-
ship between the relative categorical estimate and actual person-time costs, as the completed
tasks are compared to the team’s available person-hour budget over several sprints. Similarly,
Menzies and Shepperd [198] asserts that data discretisation concentrates signals in datasets,
which significantly enhances the ML model’s performance. The discretisation is an essential

4.4. JOSSE Dataset Refinement Options 65

consideration, since the datasets that are adopted feature expert-based effort estimates.

It is necessary to employ categorical units similar to those used in datasets to train ML
models to map continuous effort estimates. For example, if data collected from projects
uses a Planning Poker method to report effort estimates, the Fibonacci series can be used to
develop the categorical units.

Using a Planning Poker model as a strategy helps narrow the gap between expert-based and
ML-based prediction, as Jørgensen et al. [2] concluded that such a combination is one step
towards better estimation. The Planning Poker model inspires the research in designing a
new discretisation category that avoids some drawbacks, such as discretisation noise [199],
and brings in the concept of magnitude of error to discretisation. Thus, this discretisation is
referred to as magnitude discretisation in this thesis.

4.4.6 Dataset Domain and Origin

While the dataset is a collection of software engineering issues including software develop-
ment, such as new feature implementation, and software maintenance, such as bug fixing,
these issues belong to a wide variety of software projects. For instance, the ZOOKEEPER
project is software to manage processes of distributed applications, while the SPR project is
a Java programming framework.

Moreover, the collected issues belong to three open-source communities:

• Spring (https://spring.io/) is a Java programming framework.

• JBoss (http://www.jboss.org/) is an application server.

• Apache (https://httpd.apache.org/) is an HTTP server.

For each data point in the dataset, there is a reference link where further information about
the data point can be acquired. Data point references also provide provenance and trust-
worthiness. The whole dataset can be reproduced from the reference links if necessary. For
more details and to ensure data relevancy, Appendix A lists all the projects along with a brief
overview about the project and its domain area.

4.4.7 The Quality Taxonomy Assessment

Following the quality criteria of Bosu and Macdonell [172]’s taxonomy, Table 4.7 shows
the JOSSE assessment against each criterion of the taxonomy. Three criteria have been
adjusted to fit in the context of the JOSSE dataset, including noise and outliers. Noise has

4.4. JOSSE Dataset Refinement Options 66

RedHat Spring Apache

Dissension* 2.15% 2.12% 1.99%
Outliers* 10% 12% 16%
Amount of data 3,953 1,808 17,427

Timeliness Year* 2004-2018 2007-2011 2004-2019
Timing Information No No No

Inconsistency No No No
Incompleteness Yes Yes Yes
Redundancy No No No
Heterogeneity Yes Yes Yes
Commercial Sensitivity No No No
Accessibility Yes Yes Yes
Provenance/ Trustworthiness Yes Yes Yes

Table 4.7: JOSSE evaluation against Bosu and Macdonell [172]’s quality taxonomy.
Columns with * are adjusted to fit in the JOSSE context. No implies that there were no
traces of a given quality data/issue, e.g. inconsistency.

been replaced by data dissension, since the noise method that is used by Bosu and Macdonell
[172] is not applicable to the JOSSE text corpus properties. In addition, data dissension is not
necessarily a bad sign for the dataset, as described in Bosu and Macdonell [172]’s taxonomy
when they discussed noise. Further details about data dissension and inconsistency, outliers,
amount of data, accessibility, and provenance can be found in sections 4.4.3, 4.4.2, and 4.4.6
accordingly.

Timeliness has been adjusted to represent the year of data point creation rather than the
dataset publication date. Incompleteness concerns the missing features from each data point.
Redundancy refers to data point duplication; it concerns whether a dataset has duplicated data
points. Heterogeneity of a dataset covers the data point environment and context; it concerns
whether data points in a given dataset come from a single environment, e.g. one software
development project, or multiple environments. Commercial Sensitivity concerns whether
a dataset has sensitive information relating to a commercial organisation. For example, a
dataset collected from a private software development project may reveal sensitive data about
the project stakeholders that should not be published.

Interpreting the JOSSE assessment results listed in Table 4.7 in the context of Bosu and
Macdonell [172]’s assessment of the 13 SEE datasets and using their approach, JOSSE has
less noise, more data points, and is more recent. The average dissension (reported as noise in
Bosu and Macdonell [172]’s assessment) of JOSSE is 2.1%, which equals to the lowest noise
reported among the 13 datasets. The average noise of all the 13 datasets is 17%. On aver-
age, the JOSSE dataset has a slightly higher outlier percentage (12.6%) than the 13 datasets
(9.6%). The median number of records in the 13 datasets is 62, with one dataset (ISBSG16)

4.5. Summary 67

that has 7518 records. The JOSSE dataset has 23,188 records. The 13 datasets have records
about software projects, whereas the JOSSE dataset records are software development tasks,
and this is a key difference between the datasets which explains the large number of JOSSE
records. The records of the 13 datasets dated back to the year of 1989, and the most recent
records were created in 2015. The JOSSE dataset records were created between 2004 and
2019.

Generally, JOSSE offers less noise, more granularity, more data, and more recent records
of open-source software development activities compared with the 13 datasets evaluated by
Bosu and Macdonell [172].

4.5 Summary

This chapter reflects upon recent research that concerns SEE datasets. It aims to establish
an understanding of existing datasets from previous research and provide a new dataset that
answers to the overall shortage in SEE dataset. The proposed dataset also features data
properties that are not necessarily available in other datasets, such as expert estimates. Such
a dataset is an important advancement, taking into account its role in the further chapters of
the thesis.

Whilst the dataset is important, few studies pay attention to collecting and maintaining SEE
datasets. In fact, the most popular datasets that are used in the recent ML SEE research are
quite old. Therefore, this chapter analysed research datasets more closely and suggested the
JOSSE dataset as a public dataset to be used in future studies of ML SEE. It also reviewed
dataset quality studies, such as Bosu and Macdonell [172]’s comparative study of different
datasets. Then, it reflected the learned lessons in the JOSSE dataset to ensure its quality and
fitness to be used as training data for ML SEE models.

Then, this chapter drew a detailed step-by-step explanation of possible procedures. Five steps
have been designed to ensure dataset accuracy, relevance, and provenance, as explained in
Bosu and MacDonell [193]’s taxonomy. Now that a fresh dataset has been proposed and
prepared for ML algorithm evaluation, the next chapter is an attempt to use JOSSE along
with other datasets to evaluate the effectiveness of BERT encoding on the accuracy of ML
SEE predictions.

68

Chapter 5

Evaluation of Language-Based
Transfer Model for Software Effort
Estimation

Machine Learning (ML) and parametric models have been used to predict software effort
[1, 82]. Most of the studies have used numerical features, e.g. the number of source code
lines [182]. Other than a small number of studies [180, 200], the literature lacks research
into the use of a text corpus that describes the software task to predict effort.

This chapter contributes to evaluating the state-of-the-art natural language processing (NLP)
language model Bidirectional Encoder Representations from Transformers (BERT). BERT
has advanced the application of NLP dramatically by being able to consider the context of a
given text [201]. The aim, in this chapter, is to determine whether an ML-based approach to
effort estimation is reliable using the recent NLP advancements. This chapter uses JOSSE
discretised effort, and treats the effort prediction as a classification problem. Therefore,
unnecessary precision in effort prediction is avoided to gain more reliable predictions. In
addition, treating effort estimation as a classification problem narrows the methodological
gap between Planning Poker and ML methods in dealing with uncertainty.

The following section gives a brief background about ML and effort estimation. Since ef-
fort estimation is considered as a classification problem in this chapter, it is important to
understand the background and the differences between the methods and concepts used, in-
cluding feature extraction, training algorithms, and data models. Thus, this chapter starts
with a background section explaining how features are extracted from a corpus-based input,
i.e. software task description, and detailing the main steps in ML effort estimation. It also
introduces the ML models that will be used in the experimentation work of this chapter.
After that, Section 5.2 illustrates experimental design and research questions. It details the
datasets, experimentation methods, and evaluation metrics used. Then, Section 5.3 states the

5.1. Background on ML and Software Effort Estimation 69

experiment results and answers the three research questions. After that, Section 5.4 explores
the experimental findings and discusses them along with relevant literature. Finally, Section
5.5 summarises the chapter and draws insights about the next step of this thesis.

5.1 Background on Machine Learning For

Corpus-Based Software Effort Estimation

Early approaches to software effort estimation were SEE formal methods including CO-
COMO [1] and Case-Based Reasoning (CBR) [182]. Both ML and parametric methods are
similar in the sense that both rely on statistical bases such as regression analysis. However,
the key difference between them is the form and amount of input data.

ML algorithms can be used to build an implicit data model of associations between de-
pendent and independent variables. According to Trendowicz and Jeffery [24], parametric
methods predict software development effort based on defined relationships between inde-
pendent variables such as project complexity and required effort. On the other hand, ML
algorithms do not declare relationships. Instead, ML-based approaches assume the existence
of some, potentially weak, correlation between given task attributes (independent variables)
and task cost (dependent variable), and let the data model define them implicitly, and thus,
ML-based approaches are more flexible. However, ML algorithms need to be trained on a
large dataset of software development tasks that are similar to the ones that need to be esti-
mated (the targeted case) in order to build their data models. In contrast, parametric methods
have predefined models that take a limited amount of information about the targeted cases as
inputs to predict new estimates.

Inspired by Planning Poker (expert-based estimation), where the estimation process starts by
comprehending a description of a software development task, this chapter trains and builds
an ML model based on features extracted from the same description text. Additionally,
the chapter considers expert estimates as its comparison baseline. However, ML methods
do not accept natural language as an input as humans do. Instead, the corpus needs to be
transformed into a different format that can be processed by machines, perhaps a numeri-
cal representation of the corpus. The following subsection explains feature extraction and
transformation techniques, and then it explains the learning algorithms that are used this
chapter to build ML models. After that, it discusses how estimates can be better discretised
to strengthen signals in the extracted features.

5.1. Background on ML and Software Effort Estimation 70

5.1.1 Converting Text Corpus for Use in ML Models

The goal of any ML task is to train a machine (creating a data model) on the association
between data point features and its target using historical data. The model is then used to
predict the target of a new data point instance.

As explained in Chapter 4, a data point represents a software development task in a given
dataset. Each data point has attributes that can be classified as either independent variables
(features) or a dependent variable (target). For the data points in this study, the independent
variable is the description of a software development task, and the dependent variable is the
task estimate. Sometimes, datasets have a baseline and ground truth targets, as in the JOSSE
dataset. Those targets are used in training and evaluation processes respectively.

The first step in the experiment is to convert the dataset developed in the previous chapter
such that the issue description (text corpus) can be used as input for a language-based transfer
model. Feature extraction, therefore, is the process of extracting meaningful numeric values,
called features, from a given corpus, for example, the frequency of a word in a given descrip-
tion. The input of the feature extraction process is the corpus, and its output is a numerical
matrix of the extracted features. For each data point attribute, the features are extracted from
the description text to form one vector representing that data point. This process is referred
to as vectorisation. Then the vectors are grouped in the output matrix representing the whole
corpus with one row for every data point.

The discipline of ML offers a diverse range of corpus transformation methods that run from
a simple method such as Bag of Words to a more advanced and complex method that can
capture the corpus context, such as BERT [194]. The method of using BERT word embed-
dings of a text corpus in a further classification task that produces a vector of each class’s
probability is called transferred learning. The rest of this section will give more details about
the different transform methods that are used in the experiment.

Bag of Words (BoW) converts a corpus into a matrix of vectors of word frequencies,
where each row represents a document, i.e. a data point text attribute, and the columns
represent all the words in the corpus. Each cell in the matrix has a real number representing
the number of occurrences of a word (the column) in a document (the row).

A BoW matrix weights corpus words in terms of frequency instead of importance. For
example, common words like “is” and “the” will receive the highest weight, which is not
preferable. The BoW approach is typically enhanced by giving more weight to important
but uncommon words. The Term Frequency–Inverse Document Frequency (TF-IDF) uses a
word’s frequency to reflect its importance, assuming that the word’s frequency-inverse across
documents is a proxy to its importance. The outcome matrix consists of ratios from 0 to 1

5.1. Background on ML and Software Effort Estimation 71

representing the word’s significance for a given document. However, TF-IDF increases the
matrix spareness, giving zeros to common words; thus, it may not be practical for a corpus
with numerous common words.

BoW and TF-IDF lack other properties a word may carry, such as multiple meanings in
homonyms and paragraph contexts. A word needs to be considered as a collection of features
depending on its context. As Firth [202] said, summarising the underlying linguistic theory
of Distributional Structure [203]:

“You shall know a word by the company it keeps!”

The collection of features a word represents in a language model is called word embedding,
and it is generated using a model trained on a large text corpus. The following subsection
will explain more about word embedding and its role in transfer learning in the discipline of
Natural Language Processing (NLP).

Transfer Learning (TL) is the idea of using a model that is trained to solve one problem
in another separate but relative problem. In the case of NLP, TL happened after realising
that corpus transformation needs language understanding in the first place. Therefore, before
solving an ML problem that includes a corpus, a machine should solve the language problem
first. Thus, machines need to understand the language (have a language model).

A language model can be created by taking a large text corpus and extracting the associa-
tion between the corpus words and sentences using machine learning algorithms such as an
artificial neural network (ANN). For example, BERT has been trained with 3,300 million
words from BooksCorpus and English Wikipedia [194]. By doing so, the model can take the
context (surrounding words) of a given word into account and it can differentiate between
one word in two different contexts.

In the context of feature extraction, a language model such as BERT takes a sentence (a se-
quence of words) as an input and transforms the sentence into word embeddings, a numerical
matrix to represent the semantic of the sentence. Using these embeddings, it is possible to
build another data model to solve a given problem, i.e. SEE, and thus, it is called transfer
learning.

In some cases, the general language model, i.e. BERT, needs to be tailored to a specific
domain, e.g. software development, and thus, it gets retrained.

Fine-tuning is the process of retraining a language model. Since language models are
trained on a large general corpus, the model is not necessary to capture the domain-specific
context in the thesis problem (SEE). Besides, fine-tuning helps change the language model

5.1. Background on ML and Software Effort Estimation 72

according to the new problem’s targets, i.e. effort cost. Therefore, fine-tuning adds a domain-
specific layer to the general model. It trains that layer using a domain-specific dataset, e.g.
the JOSSE dataset.

5.1.2 BERT and RF as Machine Learning Models

According to ML surveys [82, 83], Random Forest (RF) and artificial neural network (ANN)
classifiers fall under the top three classifier categories; hence, BERT is an ANN-based lan-
guage model. Thus, they were selected for this thesis. Other classifiers, such as Support
Vector Machines (SVM), were not included since their prediction performance is low. Ad-
ditionally, few research studies have been devoted to SEE and RF, and thus, this chapter nar-
rows the gap of detailed comparative research as explained by Nassif et al. [89]. Similarly,
the area of applying contextualised text embedding to SEE has barely been investigated, and
no study has evaluated BERT for SEE.

This section will briefly explain RF and BERT. Then, it will highlight recent research efforts
that involve RF in contextualised text embedding in SEE. Since no studies have applied
BERT, the following discussion will consider comparing RF and ANN.

Random Forest (RF)

Random Forest is used to assemble estimates from a group of decision tree (DT) models,
hence the name forest. The forest is grown by training a decision tree on a random sample
from a training set. The training is also done based on a partial set of features selected
randomly for every DT. The goal of randomly sampling the training set is to avoid a common
DT overfitting issue by reducing the forest’s overall variance without impact on the bias side.
Variance and bias are two sources of prediction error. The first happens when the noise data
is modelled, causing an overfit issue. On the other hand, bias happens when a model does
not include a legitimate relationship between the data points, casing an underfit issue. Figure
5.1 illustrates an example of an RF model to estimate effort.

Bidirectional Encoder Representations from Transformers (BERT)

The Bidirectional Encoder Representations from Transformers (BERT) is a language model
based on the ANN structure. BERT is considered the state-of-the-art language model [194,
201]. It uses the Transformer, a deep learning model that can handle sequential data, e.g.
words in a sentence, in parallel [204]. BERT has been trained on a large text corpus, includ-
ing Wikipedia and Books Corpus. There are two sizes of BERT: BERT-base, with a neural
network architecture that consists of 110 million parameters (edges); and BERT-large, with

5.1. Background on ML and Software Effort Estimation 73

Tree 1

estimate 1

estimate 2 estimate i

Tree iTree 2

final estimate

Figure 5.1: Simple Random Forest for Estimating Effort.

340 million parameters. As illustrated in Figure 5.2, the text sentences are split into tokens
and then fed to an encoding stage to encode each token in terms of its language, position,
and segment to result in token embeddings (E[CLS] and En). Then the output of the encoding
stage is fed to the pre-trained transformer model that results in token vectors (C and Tn).
A BERT special token [CLS] starts each sentence and it aggregates all the tokens in that
sentence as a C vector in the last layer of BERT (see Figure 5.2). The last stage depends on
the ML task. In the thesis case, it is a classification task, and thus, the transformer output is
fed to a feed-forward neural network classifier. The classifier output is the probabilities of
the classes (time categories).

RF Compared To ANN

Satapathy et al. [100] compared several ML algorithms for their argument about using use-
case points as a software size parameter instead of function points. ANN and RF are among
the compared algorithms. Using Satapathy et al. [100]’s sizing approach, RF outperforms
ANN in their study. Another study [89] compared RF with multiple linear regression (MLR)
and classical Decision Tree (DT). Nassif et al. [89] found that RF outperforms MLR and
DT significantly on two different datasets. A similar RF comparative research was done by
abdelali et al. [10]. Before comparing RF to DT, abdelali et al. investigated the optimality of

5.1. Background on ML and Software Effort Estimation 74

. . .

Bug

. . .

[CLS] Fix

Software development task description

. . .
E[CLS] E1 EN

C T1 TN

Classifier

Time
Categories

Predicted time
category

B E R T

Figure 5.2: Fine-tuning BERT for the SEE problem and use of its aggregated sentence vec-
tor C along with time categories to build the classification model. The Time Categories
represents the estimates boundaries as explained in Table 5.3. The Classifier is a linear feed-
forward ANN.

5.2. Experiment Design 75

RF parameters for three different datasets. They tune the RF model by varying the number of
selected features (mtry) and the number of trees to grow (ntree). The tuned RF outperforms
DT, according to their study. While DT as an ML method category is quite popular in the
literature [82, 83], only a few studies investigated RF, as explained above. Ali and Gravino
[83] also noticed how scarce RF studies are, and they recommend doing more research to
investigate various aspects of RF. However, several studies research RF outside the SEE area,
such as [205].

SEE and Contextualised Text Embeddings

The majority of ML SEE research has been evaluated using datasets that have no corpuses. A
few studies involve text in their estimation process, such as Abrahamsson et al. [206]’s study.
Among text-based SEE studies, only two studies consider a contextualised text-embedding
representation, such as BERT [207, 208]. Ardimento and Mele [207]’s study focuses on
finding the overall bug-fix time by utilising the text in description and developer comments.
The study extracts the corpus from the Bugzilla issue tracking system and builds a data
model to predict whether a bug resolution will be slow or fast. Fávero et al. [208] have used
BERT to represent the bug’s corpus along with other features such as bug priority. Their
experiment results in an effective time prediction. Fávero et al. [208]’s paper compares two
pre-trained embedding text representations (Word2Vec and BERT). They used the DEEP-
SE dataset Choetkiertikul et al. [180], and their experiment resulted in promising outcomes
which suggest that using BERT as a contextualised text-embedding representation increases
the prediction accuracy. Fávero et al. [208]’s study is built on an unverified assumption that
pre-trained text representation is better than other feature extraction methods, e.g. TF-IDF.
Moreover, two studies that use text-based features for SEE, while they do not consider the
context, have sophisticated text embedding Ionescu [200], Choetkiertikul et al. [180]. Both
studies suggest that text-based estimations offer a more profound linkage between the issues
than numeric properties only.

5.2 Experiment Design

This section illustrates the experimental design to evaluate BERT linear and RF classifiers
to predict the effort estimation category. Both classifiers are selected because they fall under
the top three classifier categories mentioned by both ML surveys [82, 83]. In addition, the
feed-forward ANN linear classifier is the default classifier that comes with the Transformers
library [209]. The experiment also compares two feature extraction methods, BERT embed-
dings and TF-IDF vectorisation. Finally, it also evaluates prediction performance with expert

5.2. Experiment Design 76

estimates (baseline) for those projects that have expert estimates. The experiment is designed
to answer the following Research Questions about ML-based SEE methods (RQM):

• RQM1: How accurate are the selected ML models in predicting actual effort?

• RQM2: Is there a significant difference between BERT embeddings and TF-IDF vec-
torisation?

• RQM3: How comparable are the selected ML model predictions to expert estimates?

5.2.1 Experiment Datasets

The four datasets selected for the experiment are JIRA Open Source Software Effort (JOSSE),
Planning Poker Industry (PPI), Deep-SE, and Porru. JOSSE and PPI have been collected as
part of the thesis research, and Deep-SE and Porru are the only ones published in the liter-
ature that are accessible and task-based with corpus and logged effort estimates. In all the
datasets, task description is the independent variable and estimate category is the dependent
variable. Three datasets are drawn from open-source communities (JOSS, Deep-SE, and
Porru), and one (PPI) is based on commercial projects. Tables 5.1 and 5.2 give summary
information about the datasets and their properties. It lists the number of records inside each
dataset (Deep-SE is the largest), and the minimum, maximum, mean, median, and standard
deviation of the dependent variable (estimate) in both person-hours and story points.

The JOSSE dataset was collected from three open-source communities, including Apache,
JBoss, and Spring. It consists of 16,979 issues annotated with actual effort, and 4327 issues
are annotated with estimated effort and actual effort. Refer to Chapter 4 for full details.
The Deep-SE dataset is derived from Choetkiertikul et al. [180]’s study. They collected
their data in the same way as for JOSS, by mining JIRA systems. The data was collected
from 9 open-source communities (Apache, Appcelerator, DuraSpace, Atlassian, Moodle,
Lsstcorp, MuleSoft, Spring, and Talendforge) and belongs to 17 different projects. The
actual effort is represented by story points. While this dataset offers different attributes, e.g.
lines of code, only task description and logged effort were extracted. Porru’s dataset was
collected using the same method as JOSSE and Deep-SE. It consists of 4908 data points
collected from 8 open-source projects (Aptana Studio, Dnn Platform, Apache Mesos, Mule,
Sonatype’s Nexus, Titanium SDK/ CLI, Appcelerator Studio, Spring XD) [178]. Finally, the
PPI dataset was collected as part of the thesis research work. Since PPI was collected from
a commercial development house, the company has not permitted the publication of the data
since it contains sensitive information that may impact the company interest. Because of
that, the next subsection is dedicated to giving more details about PPI.

5.2. Experiment Design 77

Dataset # of
Records Unit Min Max Mean

Effort
Median STD Skewness Kurtosis

JOSSE 16979 P/I 2 2640 136 60 248 5.06 33
PPI 282 P/I 5 1560 431 240 416 1.09 0.17
Deep-SE 23313 SP 1 100 6 4 10 6 45.69
Porru 4682 SP 1 6765 5 3 99 68.1 4652.2

Table 5.1: Distribution of effort in experiment datasets. Effort unit abbreviations stand for
the following: P/I = person-minute and SP = story point. STD stands for standard deviation.

Dataset # of
Projects

of
Records

of
Used Attributes

Has
Corpus

Publish
Year

of
Expert Estimates

(%)

JOSSE 38 16979 1 yes N/A 2502 (14.7%)
PPI N/A 272 1 yes N/A 282 (100%)
Deep-SE 16 23313 1 yes 2019 0 (0%)
Porru 8 4682 1 yes 2016 0 (0%)

Table 5.2: Summary details of datasets.

The researcher got an opportunity to collaborate with an industry partner to observe how
an Agile team plays Planning Poker for seven weeks. Among the research activities, the
researcher was able to collect data about the software development issues of a commercial
software product. Therefore, to distinguish this dataset, it was named the Planning Poker
Industry (PPI) dataset.

The PPI data was collected from a commercial in-house software development team that de-
velops a web application software as a service. The company works in the tourism industry,
and the data was collected from the company issue tracker system (Trello). The issues were
classified into different smaller projects or sprints. Two criteria were used to find relevant
issues: the actual time spent on the issue and issue status. The team annotated the spent time
and the estimated time in the issue’s title using square brackets. The data collection took
place during an observation period of the team practice of Planning Poker.

The dataset consists of 282 issues that are annotated with actual effort and estimated effort.
All the issues have a corpus that is produced by combining the issue title with its description.
For every issue, the actual effort and issue features are provided. Expert-estimated effort was
also extracted. The issue features consist of a number of comments and a number of activities
on the issue. The number of issue activities was extracted from the issue log. It represents
a sum of all the events that happened for a given issue. Moreover, the original issue key is
used as an identifier in the dataset. Tables 5.2 and 5.1 present a summary overview of the
dataset.

While the data points (issues) have been classified into different categories, they all concern

5.2. Experiment Design 78

Start Inconsistency
Check

Outlier
Removal

Minimum Data-
Points Quantity

Check
End Readability

Check

10.4%
Data Loss

0%
Data Loss

12%
Data Loss

18.3%
Data Loss

Figure 5.3: Dataset Refinement Process of both datasets (JOSSE and PPI). More details
about each process step are explained in Chapter 4.

Category Low Middle High
One hour 0 1 1
Half a day 2 4 5
A day 6 8 10
Half a week 11 20 30
A week 31 40 60
Two weeks 61 80 120

Table 5.3: Adopted time-based categories and their boundaries for a software task effort
estimate. The numeric values represent the number of hours.

the same software, and thus they are treated as one group consisting of 282 data points.

Dataset Refinement The datasets have gone through all the refinement options ex-
plained in Chapter 4. As illustrated in Figure 5.3, there are four refinement stages, including
Data Points Quantity Check, Outlier Removal, Inconsistency Check and Readability Check.
In addition, Chapter 4 explains data discretisation and readability as additional data process-
ing procedures.

All the datasets are annotated with the actual effort the software development task took.
However, datasets use different scales and units. For example, JOSSE is annotated in person-
seconds, whereas Deep-SE is annotated in story points. The actual effort is transformed
into time categories with a magnitude scale based on the Fibonacci series. Therefore, the
experiment’s dependent variable (effort) is discretised as detailed in Chapter 4. The person-
second and person-hour costs reported on the issues were translated into approximate person-
day and person-week categories, labelled as one hour, half a day, one day, half a week, one
week, two weeks, and more than two weeks. The translation followed the same scheme as in
the community issue tracker system (JIRA), where a working day is equal to 8 hours and a
working week equal to 40 hours. This enabled a comparison between predicted estimates and
the person-second or story point costs reported on the issues (Table 5.3). To draw boundaries
between the scale categories, a relative midpoint between the two categories was selected.
Table 5.3 illustrates the low, middle, and high possible person-hours for each category.

The details of the refinement of the JOSSE database were given in Chapter 4. For the PPI

5.2. Experiment Design 79

dataset, after the initial collection and storage as a SQLite database, David and Tukey [195]’s
method was used to identify the outliers as the data points outside the lower and upper fences.
A total of 10 data points (3.5%) were identified as outliers and removed. The total number
of remaining data points after removing the outliers was 272.

A text cosine similarity on BERT [35] was applied to the dataset, and the data points of PPI
were found to be consistent; that is, data point features, i.e. the corpus, exhibit high similarity
except for a negligible number of data points (1.7%).

5.2.2 Estimation Method

The method used to estimate effort using an ML model has two phases: data preprocessing
and model training. The data preprocessing phase is essential for a dataset that has a corpus.
During the preprocessing phase, features used to train the ML models are extracted from each
issue’s corpus, as explained in Section 5.1.1. This experiment uses two feature extraction
methods, BERT and TF-IDF, as illustrated in Figure 5.4.

Using the BERT language model as a feature extraction method starts by splitting the text
into single words and replacing each word with its corresponding BERT token using the
BERT dictionary. Then, the BERT-base [35] pre-train model is used to extract correspond-
ing embeddings of the tokenised corpus as fixed-length vectors. These vectors represent the
lexical and semantic meaning of a given word in its context. In this experiment, the embed-
ding process considered only the first 400 words of a given corpus due to limited computing
resources. The March 11th, 2020 version of the BERT-base model was used for the encoding.

TF-IDF was used as an alternative feature extraction method. BoW produces a vector with
a length equal to the total number of distinct words in a given corpus. Then, each digit in
the vector reflects how many times the corresponding word occurs in the corpus. The count
matrix was normalised using term-frequency times inverse document-frequency (TF-IDF)
representation to avoid the dominant effect of popular words.

After producing BERT embeddings and TF-IDF normalised vectors for the data points, the
vectors were sent to the training phase. The training was done on two ML classifiers (BERT
linear and RF). The BERT linear classifier is a single layer of a Feed-Forward Artificial Neu-
ral Network (FFANN) on top of BERT. Data points were divided into testing and training
subsets using K-Fold Cross-Validation (CV). The training and testing were done on a project
basis, which means that datasets with multiple projects, such as JOSSE, were divided into
several subsets based on their projects. The Scikit-learn [210] implementation of RF and the
McCormick [211] implementation of BERT and its classifier were used to run this exper-
iment. Both models used the default configuration of their original authors [210, 211]. A

5.2. Experiment Design 80

Feature Extraction Process

TF-IDFBERT

Software Issues Corpus

Matrices of Extracted Features (Vectors)

Corpus
Vectorisation

BERT
Tokenisation

Text
Preprocessing

Base-model
Fine Tuning

Embedding
Extraction

BERT

Embeddings

Matrix
TF-IDF Matrix

Figure 5.4: BERT and TF-IDF Feature Extraction Methods

5.3. Results 81

replication pack of the actual code along with the datasets is publicly available at a GitHub
repository1.

5.2.3 Evaluation Metrics

Usually, SEE studies use error measures, e.g. Median Magnitude of Relative Error (MdMRE),
as explained in Ali and Gravino [83]’s recent survey. Error measures are used as a proxy to
performance for a regression ML problem. However, in this thesis, the ML task is a clas-
sification problem since the data has been discretised, as explained in the previous section
(5.2.1). Thus, accuracy is used as a performance measure of the models.

Two accuracy measures are reported, the Area Under the Curve Receiver Operating Charac-
teristic (AUC-ROC) [212] and F-score [213]. Both metrics are less impacted by imbalanced
data points, which happens to be the case for selected datasets.

Those metrics are calculated during model performance testing. The testing method used
is K-Fold Cross-Validation (CV) [214]; a five-fold CV is implemented. In each fold, four-
fifths of the data is used for training and one fifth is used for testing. Statistical tests of
their significance are carried out using Kruskal-Wallis tests and ANOVA for AUC-ROC and
F-score, respectively, at a significance level of 0.05.

5.3 Results

This section details the results of predicting estimates using FFANN and RF classifiers.
The first part gives the prediction performance measurements using one feature extraction
method, BERT, across two classifiers, RF and FFANN, to assess the impact of the classifier
on accuracy. The second part evaluates feature extraction methods by using an RF classifier
across two feature extraction methods. As stated earlier in the introduction, the aim is to
examine BERT as a transfer learning model in the SEE problem, and thus BERT is com-
pared with TF-IDF using the same classifier. Finally, to put the results in context, the third
part compares ML models with expert estimates to identify more meaningful aspects from
an expert estimation point of view.

Table 5.4 shows the summarised results across the datasets. The performance measures of F-
Score and AUC-ROC are aggregated by averaging across all projects in the dataset. For more
detailed results, Table B.1 in Appendix B lists the performance metrics based on individual
projects for each dataset.

1https://github.com/crowd-planning-poker

5.3. Results 82

Dataset ML Classifier Feature Extraction Projects Folds F-Score AUC ROC

Deep-SE
FFANN BERT 7 68 0.434 0.633
RF BERT 7 68 0.351 0.613
RF TF-IDF 7 68 0.361 0.585

JOSSE
FFANN BERT 35 167 0.680 0.561
RF BERT 35 167 0.612 0.551
RF TF-IDF 35 167 0.657 0.537

Porru
FFANN BERT 4 17 0.404 0.571
RF BERT 4 17 0.314 0.556
RF TF-IDF 4 17 0.336 0.578

PPI
FFANN BERT 1 5 0.502 0.618
RF BERT 1 5 0.388 0.604
RF TF-IDF 1 5 0.616 0.754

Table 5.4: Results of different models across different datasets. The results for JOSSE,
Deep-SE, and Porru are aggregated from results of individual projects inside each dataset.
Mean is used as the aggregation function.

5.3.1 RQM1: Accuracy of ML models

The results given in Table 5.4 suggest that using BERT for feature extraction and BERT’s
linear classifier (FFANN) for classification is slightly better than the other options. Across
all datasets, the FFANN-BERT combination achieved better F-Score and AUC-ROC results
than other combinations (RF-BERT and RF-TF-IDF), except for the PPI dataset, for which
RF-TF-IDF performed better.

However, we have investigated the performance on a project level using Kruskal–Wallis for
AUC-ROC and ANOVA for F-Score. The Kruskal–Wallis test results in 2.92 with a p-value
of 0.232 for AUC-ROC, and the ANOVA test results in 1.668 with a p-value of 0.192. Both
tests for both metrics show no significant difference between the three combinations, and
thus, the null hypothesis cannot be rejected. Both classifiers have similar accuracy perfor-
mance using BERT and TF-IDF feature extraction methods.

To visualise the performance metrics, Figure 5.5 shows both AUC-ROC (5.5a) and F-Score
(5.5b) for the three combinations using box plots. The figure illustrates the slight, but not
significant, difference between them.

The AUC-ROC metric gives an overall accuracy measurement of a classifier for different
classification probability thresholds. Its accuracy measurement focuses on classifier speci-
ficity. Classifier specificity measures how good the classifier is in identifying data points as-
sociated with a negative class. A classifier with 100% specificity means that it never misses a
negative data point. Figure 5.5a shows that FFANN-BERT combination did the best. BERT
as a feature extraction method also performed better than TF-IDF. Only two projects, PPI

5.3. Results 83

0.4

0.5

0.6

0.7

FFANN-BERT RF-BERT RF-TFIDF
Method (Classifier - Feature Extractor)

A
U

C
-R

O
C

 S
co

re

(a) Box Plot of AUC-ROC

0.4

0.6

0.8

1.0

FFANN-BERT RF-BERT RF-TFIDF
Method (Classifier - Feature Extractor)

F-
S
co
re

(b) Box Plot of F-Score

Figure 5.5: Box plot of performance metrics for different models/feature extraction methods.

and JBEAP (outliers), performed well using the RF-TF-IDF combination. While these are
slight differences, there is no statistically significant difference.

On the other hand, F-Score metric gives an accuracy measurement of a classifier based on
maximum classification probability (a single threshold). Unlike AUC-ROC, F-Score focuses
on classifier precision. Classifier precision measures how good the classifier is in identifying
data points with a positive class. A classifier with 100% precision means that it never misses a
positive data point. Figure 5.5b shows that the FFANN-BERT and RF-TF-IDF combinations
performed similarly. This time, BERT as a feature extraction method performed worse than
TF-IDF. Although all the projects are software development projects, the noticeably wider
IQR of F-Score indicates that projects still vary in the association between task descriptions
and time logging.

While these are slight differences, there is no statistically significant difference. For a multi-
class problem, as in the case of the SEE problem, a strategy is used which pits one class
against the rest of the classes, and then the average of the classes’ metrics is calculated as a
summary metric.

5.3.2 RQM2: Evaluation of Feature Extraction Methods

To examine whether any of the classifiers had impact on the accuracy performance, a nar-
row comparison between two combinations of FFANN-BERT and RF-BERT was performed
where the only feature extraction method used was BERT. Applying a statistical significance
test of Kruskal–Wallis on the AUC-ROC scores of all projects, resulted in 1.1288 with a

5.3. Results 84

p-value of 0.29. Similarly, applying ANOVA on F-Score resulted in 3.34 with a p-value of
0.071. Both tests on both metrics indicate that there is no significant difference, and thus the
classifiers have no impact on the accuracy performance.

Next, a comparison between the two feature extraction methods using an RF classifier (RF-
BERT and RF-TF-IDF) is performed. RF was selected since FFANN is built upon BERT
and its implementation expects BERT-format input, whereas the RF implementation accepts
both TF-IDF and BERT matrices. The aim is to see whether BERT embeddings built upon
a large language model will result in a significant difference compared with a context-less
feature extraction such as TF-IDF.

Applying the statistical significance test of Kruskal–Wallis on the AUC-ROC scores of all
projects resulted in 0.505 with a p-value of 0.48. Similarly, applying ANOVA on F-Score
resulted in 1.23 with a p-value of 0.27. Both tests on both metrics indicate that there is no
significant difference, and thus BERT embeddings are not necessarily better than TF-IDF for
the SEE problem.

5.3.3 RQM3: ML models compared with expert-based estimates

To put those performance metrics in context, the F-Score of the expert-based estimates re-
ported in the JOSSE dataset was calculated. Table 5.5 shows the performance of the expert-
based estimates for individual projects of JOSSE.

The average F-Score is 0.7, with the best performance being 0.812 and the worst being 0.54.
Comparing these scores with the best performing ML model, expert estimates are better than
the ML-based estimates. The ANOVA test of F-Score for those projects resulted in 4.685
with a p-value of 0.046, indicating a significant difference between expert and ML-model
estimates.

Three projects, BATCH, EXOJCR, and INT, have a noticeably large number of issues (290,
489, 385 respectively). Two of them (BATCH and INT) achieved the best F-Scores (0.813
and 0.843). This might shed light on the practice of effort estimation in open-source projects.
In addition, the percentage of issues annotated with expert estimates (see Section 4.3 in
Chapter 4) in those projects from Table 4.4 in Chapter 4 is high (BATCH: 89.4% and 93.2%).
This may indicate that those projects were taking effort estimation seriously, which may have
helped achieve higher F-Scores.

In the same context, ten members of the communities were contacted to determine how the
estimates were conducted. Only five of them responded and indicated that there wan no
particular procedure or instruction around effort estimations. One respondent stated that
the development team tries to experiment with different SEE methods but always relying

5.4. Discussion 85

Table 5.5: F-Score of expert estimates reported for several JOSSE projects.

Project Number of Issues F-Score

AEROGEAR 185 0.678
BATCH 290 0.813
EXOJCR 489 0.536
GTNPORTAL 166 0.713
INT 385 0.843
JBTM 114 0.554
MNG 113 0.723
RF 236 0.786
STDCXX 178 0.637

F-Score Mean 0.698

on their “gut feeling”. That respondent was a tester. The respondent takes the following
considerations while estimating time for a software development task:

• The required learning about the development task and its deployment.

• Manual deployment.

• Reproducing the software issue and creating a fix.

• Automated deployment.

• Creation of test cases.

• Team members scheduled and holidays.

• Contingency time.

Further, the respondent commented that learning about the development task and its deploy-
ment may take a long time depending on the difficulty of the system environments.

Other respondents explained that they rely on their experience when estimating the issues,
with or without a structured process for predicting such estimates.

5.4 Discussion

This section discusses the results from different perspectives and compares them with rele-
vant literature. It also highlights threats to validity and proposes human-in-the-loop as a next
step for advancing SEE.

5.4. Discussion 86

As presented in the results, the lack of significant difference between both classifiers in
accuracy performance is also reported by previous studies, such as the systematic literature
review of Wen et al. [82]. According to the review, the average of the Mean Magnitude
of Relative Error (MMRE) for DT-based models in 17 experiments was 55%, whereas it
was 37% for ANN-based models reported in 39 experiments. While ANN-based models
performed better, the difference is not significant as reported earlier in Section 5.3 in this
chapter. Nonetheless, the reported metrics cannot be compared with those in this chapter,
since the SEE problem in this chapter is a classification problem, whereas for the above
survey it was a regression problem. However, the improvement delta reported in the survey
agrees with what is reported in this chapter.

From a different but close perspective, ensemble methods using DT-based models ensemble
significantly outperform ensemble methods using ANN-based models, as reported by Idri
et al. [174]’s survey. The average of MMRE for DT-based ensemble in 5 experiments was
17.57%, whereas it was 48.32% for ANN-based ensemble reported in 16 experiments. Since
Idri et al. [174]’s survey contradicts the trend reported by Wen et al. [82], that weakens the
overall difference between the models.

Datasets are another factor, other than model algorithms, that may affect accuracy perfor-
mance. Thus, the datasets included in this experiment were taken through a series of refine-
ment steps, starting with ensuring an adequate number of data points for each project (at least
100 data points). Then, outlier data points were removed. Inconsistent or unreadable data
points (i.e. with code or stack trace) were checked and removed (refer to Chapter 4 for more
details). This helped to enhance BERT classifier accuracy performance by 16%. However,
all performance measures are close to a random prediction measure. Theoretically, random
predictions have a measure of 0.5 on both F-Score and AUC-ROC. The reported results of
the datasets shown in Table 5.4 are close to random prediction, with RF-TF-IDF using the
PPI dataset being the only exception.

Interestingly, TF-IDF shows slightly better performance using the RF classifier over FFANN,
which is not expected, since FFANN relies on a state-of-the-art language model, i.e. BERT.
This can indicate that language-based models do not necessarily offer the best feature ex-
traction method for non-language applications, as in effort estimation.

Another reason behind BERT’s lack of performance is the technical nature of the language
of the task descriptions. Although such models have been pre-trained on proper English con-
tent and fine-tuned using domain-specific datasets such as JOSSE, software issues may not
be written in proper English, as explained in the previous chapter in Section 4.4.4. Technical
writing may lack proper English grammar and sentence structure. Nonetheless, BERT em-
beddings achieved the best performance when used with BERT’s linear classifier (FFANN).

5.4. Discussion 87

Threats to Validity A possible threat to validity is that the data are collected from open-
source projects, where time control and project management are more relaxed compared
with commercial projects. Thus, time logging for task effort and expert estimates might not
follow a specific protocol or process, as explained in Question 3’s answer.

To mitigate this risk, a commercial-project dataset was collected and included in the compar-
ison, where the development team followed a defined effort estimation and logging method,
i.e. Planning Poker. In addition, the discretisation step mentioned in Section 4.4.5 is de-
signed to minimise the risk in two ways. Firstly, it reduces the granularity of time to larger
time buckets, and secondly, the efforts compared are in discrete, not absolute, values.

Changes to expert estimates in the JOSSE dataset after realising the actual effort is a threat
that is mitigated by reviewing the activity log of software issues with expert estimates. None
of them had a log entry indicating that the field timeestimate has been changed after up-
dating the field timespent. timeestimate and timespent fields correspond to the expert
estimate and actual time respectively.

Conclusions about accuracy performance can be threatened by the nature of the datasets. For
instance, imbalanced datasets have artificial effects on some accuracy scores. To minimise
such a threat, the measures F-score and AUC-ROC, which can handle imbalanced data, were
selected. In addition, the statistical tests of Kruskal–Wallis and ANOVA were used to draw
final conclusions.

Threats to external validity is also mitigated by incorporating issues from different large
software projects, including both industrial and open-source projects. While the issues vary,
they do not represent all kinds of software. For instance, critical system software projects,
where the tightest time management is expected, are not included.

Human-in-the-Loop for SEE The comparison between expert and ML-model results
confirms what was previously reported in the literature [2]. While the expert estimations
are significantly better than ML, they are still unreliable and there is room for improvement.
Perhaps by combining both ML and expert in one estimation method, each could strengthen
the other.

While ML-based effort estimation studies are advancing, they may benefit from involving
human judgement in the ML process. Effort estimation is not a trivial process, especially for
intangible deliverables like software. Neither text-based features nor project characters are
enough to build a reliable data model. Perhaps involving humans in the loop may help in
comprehending estimation complexity.

5.5. Summary 88

5.5 Summary

This chapter reflects upon recent research in the area of ML SEE. It focuses on ML methods
since they are the most researched methods in the recent literature [82]. ML methods are
sensitive to the data that they are trained on, and thus datasets represent the other half of ML
SEE research.

It draws a comparison between an ensemble model (RF) and a pre-trained language model
(BERT) regarding their performance in an experimental study. It used four datasets, specif-
ically, JOSSE, PPI, Deep-SE, and Porru. It also used expert estimates in the JOSSE dataset
to compare ML models with experts.

The results suggest that there is no significant difference between the presented methods.
However, BERT-BERT shows slightly better performance. On the other hand, the results
show that expert and ML estimate performances are similar, with the experts’ performance
slightly better. Both findings confirmed what was already reported in the literature using
different experimental settings [181, 2].

While ML SEE has received the most attention from the community, expert-based methods
have been neglected [2]. Nevertheless, expert-based methods are the most popular method
used by industry. Therefore, future research will be advocated in augmenting expert-based
methods to be scalable and reliable.

89

Chapter 6

Crowd Planning Poker: A Preliminary
Study

In the previous chapter, software effort estimates for four datasets were predicted using
state-of-the-art machine learning (ML) and natural language processing (NLP) models. As
demonstrated, the model prediction performance was not sufficiently reliable, especially
when compared with expert estimates. Therefore, this chapter investigates whether human
computation and crowdsourcing may offer a potential solution for scalable and reliable soft-
ware effort estimation (SEE).

The work described in this chapter is inspired by an observation made by Grenning concern-
ing the applicability of human computation and crowdsourcing to software effort estimation
[215]. Grenning speculated whether an expert-based estimation method, i.e. Planning Poker,
can be played using crowd workers to produce reliable and expert-comparable estimates.
However, as far as the research is aware, no research was ever undertaken to investigate this
possibility.

As a next step, this chapter details a series of pilot experiments to test the feasibility of
applying human computation to Planning Poker, creating a new estimation method, Crowd
Planning Poker (CPP). Five aspects of CPP will be explored: context and goals, participants,
input and output, communication, and process. Each pilot is necessary in order to design and
examine the adapted process of CPP. In addition, this chapter explores the optimal setting
for conducting CPP. Therefore, the chapter’s contribution is in being the first to offer insights
about CPP that are supported by experimental evidence.

The chapter is structured as follows. The next section reviews considerations for deploying
Planning Poker using human computation. Then, Section 6.2 describes the approach taken to
implementing Crowd Planning Poker. After that, Section 6.3 illustrates the experimental de-
sign of the series of pilots. It lists the experiments and their aims, states the dataset used and
the data selection method, defines the experimentation method, and explains how to evaluate

6.1. General Considerations of Planning Poker 90

and test the results. Then, Section 6.4 details the results of the pilots with a subsection for
each experiment. After, Section 6.5 discuses the takeaways from the experimental work,
including the extra insights from crowds and the economic prospective of playing Planning
Poker using human computation. The last section summarises this chapter and introduces
the next step of the thesis.

6.1 General Considerations of Planning Poker

In this chapter, Planning Poker will refer to the original design of the process that is popular
among Agile development communities. An Agile development team plays Planning Poker
by calling for a meeting on a regular basis, e.g. every two weeks. The team uses a deck of
Planning Poker cards, see Figure 3.2, and follows the process described in Chapter 3, Sec-
tion 3.2.6. As discussed in Chapter 3, Planning Poker is a labour-intensive manual process.
Speculating on how this limitation might be mitigated, in a review of Surowiecki [216]’s
keynote talk on the Wisdom of the Crowds at Agile 2008, Grenning [215] wrote:

“I was wondering how Wisdom of Crowds would relate to people on agile
teams doing estimation and planning. I was specifically interested in how his
research applied to Planning Poker, a practice used throughout the world on
agile teams”

The Wisdom of the Crowds is Surowiecki’s conjecture that a large crowd of non-experts,
when suitably organised, can make a collective decision that is more reliable than a single
or small group of experts. The intuition here is that individual idiosyncratic bias can be re-
duced when a group of people participate in collaborative decision making [217]. Therefore,
Grenning’s proposition is that implementing Planning Poker within a crowd could result in
more reliable estimates than those produced by small groups of experts.

Since Grenning [215]’s speculation, no research has investigated the problem of combining
crowdsourcing and Planning Poker. However, Planning Poker bears a strong resemblance
to Wideband Delphi [62], and a recent study by Kaivo-oja et al. [160] applied Delphi using
human crowds for forecasting for Finnish companies. Kaivo-oja et al. [160] found the crowd-
based Delphi better and more efficient than the conventional Delphi method. Flostrand [159]
also studied the Delphi method in comparison with crowdsourcing as a method of future
forecasting, and proposed a simple tool that can help executives note the differences and
similarities of the methods. More widely, Chapter 3 presented a survey of studies on SEE,
none of which discuss the application of effort estimation using a combination of crowd and
Delphi or any of the Delphi family methods. Most of the studies discussed concepts related

6.1. General Considerations of Planning Poker 91

to the theory of crowd wisdom in corporate management and collaboration context, without
supportive empirical research.

However, Planning Poker was never meant to be played in a crowd environment, and thus
several aspects must be considered before deploying Planning Poker in the new environment,
i.e. crowd platforms. The rest of this section will review challenges concerning Planning
Poker’s context and goals, players, communications, input and output, and process. Then it
will discuss characteristics that distinguish Planning Poker from other SEE methods that it
would be desirable to imitate.

Context and Goals originate from the Agile development methodology. Reviewing the Plan-
ning Poker principles that are presented in Cohn [5]’s book, the Agile development context
makes Planning Poker more than an estimation method. In fact, it is an opportunity to il-
lustrate the first Agile value: “Individuals and interactions over processes and tools” [218].
Therefore, an Agile development team aims to leave a Planning Poker session with a working
plan. The team goals of playing Planning Poker include effort estimation, task understand-
ing, decomposition and refinement, prioritisation, responsibility assignment, and identifica-
tion of side tasks, e.g. software installation [24]. Eliciting this richer range of qualitative
data from a crowd of non-experts may not be realistic.

Participants in Planning Poker are mostly the development team members. Other stakehold-
ers, such as clients, may take an observer role to provide relevant information outside the
team’s sight. Such participants are the most knowledgeable individuals about the matter,
hence, they are referred to in this thesis as experts. Moreover, inaccurate estimates will im-
pact on the performance of the team directly. The team participates in all Planning Poker
stages and rounds, playing the game until they reach a final estimate. However, crowd work-
ers do not incur long-term consequences from inaccurate estimates, or have an opportunity
to learn from them in the context of a specific project. In addition, they may not participate
in all estimation rounds because of communication challenges.

Inputs and Outputs of Planning Poker are only constrained by the knowledge and experience
of the players. Planning Poker is played by the same software developers who work on the
project, and thus, they know the background of the development project and the nature of the
team velocity. As mentioned earlier, the team’s aim is to come up with a working plan as an
outcome. However, the limited time of the crowd workers in the micro-task crowdsourcing
environment caps the amount of input and output data. Thus, the selection of background
information type and amount is critical.

Communication between Planning Poker players happens synchronously as part of the es-
timation process, since they are all in a meeting setting. The players’ communication in-
cludes verbal, visual, and body languages, which make the communication more fluent and
easy. However, in a crowd environment, enabling a crowd worker to communicate in a syn-

6.1. General Considerations of Planning Poker 92

chronous way is complicated [219] due to different backgrounds and the workers operating
in different time zones. Therefore, conducting a communication-intensive process such as
Planning Poker in a crowd environment is a challenge that needs to be addressed.

The Process of Planning Poker takes place in one go, at a team meeting where all participants
play the game and estimate the effort simultaneously. If the game terminates before reaching
the final estimate, the team is likely to restart the process from the beginning. As mentioned
in the beginning of this section, a Planning Poker team iterates over a given software de-
velopment task until reaching a consensus. They pass through sequential stages, starting by
presenting the development task and ending by producing a final estimate. While Planning
Poker’s simultaneousness and sequentiality require it to happen in one go at a team meet-
ing, micro-task crowdsourcing platforms can run Planning Poker over a longer time and in a
series of events to accommodate certain limitations, such as communication synchronicity.

Further, there are several characteristics of Planning Poker that differentiate it from other
SEE methods. These are important to imitate and keep in Crowd Planning Poker, as follows.

Bias avoidance is one feature of Planning Poker, and it is enabled by asking team members
to predict their initial estimates secretly. This practice helps in reducing peer pressure and
gives each team member a chance to have a time to come up with an estimate on their
own. It also creates a gamification mechanism, and supports discovery of reasoning and
relevant experiences as a justification rather than referring to other member’s estimates as
grounds. Therefore, the team will be in a better position to have a fruitful discussion when
the estimates get revealed.

Team comprehension of a task at hand is shared between team members by discussing each
estimate, especially the border estimates. It provides a wider range of possibilities for the
team to consider. Such a discussion is vital in having an balanced team estimate when border
estimates (optimistic and pessimistic) cancel or at least smooth each other. Moreover, it
provides a framework for an active estimate. This means the final estimate is grounded in a
shared rationale, has the team support, and, at least, an assigned team member.

Consensus and aggregation are considered more appropriate for finalising an estimate than
an arithmetic equation, e.g. average. When the team reaches an agreement about an estimate,
it means each team member has learned something from the discussion and adjusted their
estimate accordingly. The adjustment originates out of understanding. There is also a chance
that the team will not reach consensus. This can be useful for the team in identifying issues
that require further refinement in order for a consensus estimate to be reached.

Iterative estimation processes provide assurance and evaluation of an estimate, which are
important when dealing with high uncertainty levels. They also provide traces of changes in
the team members’ individual estimates, which can help to understand how the team came
up with such an estimate, and thus Planning Poker can provide a traceable estimate that can

6.2. Crowd Planning Poker (CPP) General Model 93

Issue
dictionary

Development
team

comments

Software

issue

description

Start
Estimate effort

and write a
justification

Read issue Info

Max: 3 iterations

Review Previous
Estimates

Yes

NoConsensus
or 3 rounds?

Software

project brief

Recruit crowd
workers

Keys: Input/
output

End
Produce final
estimate

Final estimate
and it rationales

List of crowd
comments

Activity Activity Flow Data Flow

Figure 6.1: General model of the crowdsourcing Planning Poker task.

be tracked back to its origins.

In the light of these considerations, and having no prior literature on the topic, a decision
was taken to conduct a preliminary study. There are several unknown aspects of the topic
that need to be specified before investigating Planning Poker as an application of human
computation, specifically, estimation process, amount and type of background information,
and size of crowd team. Having considered these, the next step is to design a CPP process that
has the capacity to imitate desirable Planning Poker characteristics in a crowd environment
and address the raised challenges.

6.2 Crowd Planning Poker (CPP) General Model

Micro-task crowdsourcing environments offer quick and flexible access to human capital,
i.e. crowd workers. At the same time, those environments demand a specific design for any
crowdsourced job. Such a design needs to take advantages of the environments’ flexibility
and addresses their challenges. This section illustrates the proposed design of Planning Poker
to be played by crowd workers in a micro-task crowdsourcing environment. It explains the
design of a general model of Crowd Planning Poker (CPP) in a step-by-step process. Then,
it iterates on the previous considerations identified earlier, showing how the design takes into
account all aspects.

Figure 6.1 shows a flowchart of the CPP general model. In the first step, the crowd workers
are provided with the core information describing a task (summary title and supplemen-
tary description). They may also have access to additional contextual information about
the nature of the wider software project, for example, the programming language, software
framework or technology platform used to develop the software, and the software develop-
ers’ comments on the issue. In addition, workers may search for further information using a
search engine query dialog.

In the second step, crowd workers are asked to provide an effort estimate for the described
task. During this step, workers may also have the option of searching for publicly available

6.2. Crowd Planning Poker (CPP) General Model 94

information that may inform their judgement. All the information was recorded for later
analysis. Once the worker has reached a decision, they are asked to submit their estimate
and a short justification to complete this iteration of the task. Each estimate received was
manually evaluated by the experimenter for quality according to the procedure described in
Section 6.2. Estimates that were determined to be invalid were removed from the experiment
and not used further.

In the third step, the consensus achieved between the crowd workers is calculated. Each
worker is then invited to perform a task to review a summary of the legitimate estimates
provided by the rest of the crowd and then to submit their own estimation. The intention
here is to mimic the consensus-forming behaviour in Planning Poker, by allowing workers
to consider the boundary estimates provided by the crowd in the previous round.

Context and Goals in Planning Poker take Agile development as an environment; CPP can be
played in micro-task crowdsourcing environments. In particular, it can be played in Amazon
Mechanical Turk (AMT) as human intellectual tasks (HIT). Therefore, CPP focuses only on
predicting software task estimates and supporting the estimates with a brief rationale. Given
the environment of AMT, crowd tasks are supposed to be small and precise, and thus, limit
CPP to just predicting an effort estimate. Unlike Planning Poker, the CPP goal is limited to
effort estimation, and thus, additional goals of Planning Poker, including task understanding,
decomposition, and refinements, are not pursued in CPP. From a design perspective, CPP is
better understood as a Planning-Poker-inspired process to produce software effort estimates.

Figure 6.2 shows a sample of HITs. The first HIT is a CPP HIT posted by the researcher,
and the next three items are other HITs from another requester. The CPP HIT is unfolded
to show its specifications, including HIT description, allocated time, required qualifications,
and rewards.

CPP is designed to enhance the scalability of Planning Poker, and thus, it can be played in
large-scale projects that encompass large numbers of people, such as open-source projects.
Large development teams in software development companies can also play CPP. Given that
context, CPP narrows the type of software development tasks to those mentioned in open-
source issue tracking systems. Open-source communities offer real-world data, and there are
a couple of studies that utilise them as experiment datasets. For example, Qi et al. [220] used
data from open-source projects that are hosted on GitHub. Qi et al. train a CART classifier
to predict effort estimates based on the collected data. Their results (the predicted estimates)
are comparable to those predicted based on existing datasets such as COCOMO [1]. Thus,
Qi et al. conclude that open-source data can effectively provide estimates for new projects.

Participants in Planning Poker are the development team members, and thus, commitments
and accountability can be considered. However, CPP participants are crowd workers re-
cruited from AMT. Accountability and commitment are not options in such a context. Fur-

6.2. Crowd Planning Poker (CPP) General Model 95

Figure 6.2: Screenshot of AMT showing CPP HIT specifications

ther, holding a crowd worker to go over all CPP iterations might be challenging, and thus, the
CPP process needs to accommodate such a limitation. CPP participants have no role in the
software development and their commitment can not be elicited. CPP participants can pro-
vide estimates based on their experience, and so their qualifications are assessed. As shown
in Figure 6.2, crowd workers need to satisfy the CPP qualifications, specifically, software
development experience, research consent, HIT approval rate, and previous participation in
CPP. Some qualifications, such as HIT approval rate, depend on workers’ history, and others,
such as software development experience, require workers to take a test in order to satisfy
the qualification.

The CPP process collects a large number of estimates in order produce a reliable estimate,
and thus, it recruits a large number of workers. CPP participants are better considered as
referrals (arrows) pointing towards the right estimate range. Given that analogy, it might be
better to have more distinct crowd workers for a CPP estimation session, and playing only
part of the game may become favourable. According to Moløkken-Østvold et al. [26], team
diversity enhances estimation reliability.

Inputs and Outcomes of CPP are finite and pre-identified to accommodate the limitations of
the micro-task crowdsourcing environment. CPP takes a limited number of inputs, specifi-
cally, software development issue description and title, software project brief, definitions of
abbreviations and acronyms mentioned in the issue description, and comments of the devel-
opment team on the issue. The goal of the project brief is to provide some context to the
crowd workers, and the development team comments help in presenting the development
team’s view to the crowd workers during the estimation process.

When it comes to the outcomes, CPP offers an effort estimate of the software development

6.2. Crowd Planning Poker (CPP) General Model 96

Figure 6.3: Effort estimates available for crowd workers to select.

issue and perhaps an insightful rationale that supports the estimate. For the purpose of evalu-
ating CPP estimates using Planning Poker, crowd workers are presented with a list of options
of estimates, imitating the Planning Poker card deck. Figure 6.3 shows a screenshot of the
estimates available for crowd workers.

The estimates’ unit is time and they are grouped in categories approximately as for a Fi-
bonacci series. The ‘More time’ option is similar to the Planning Poker card with the infinity
symbol, and it indicates that the task cannot be completed or none of the available estimates
are enough.

Communication in a micro-task crowdsourcing environment represents a challenge due to
the limited time available to process the core requirements of a given task, and thus, crowd
workers may find communicating with other workers is not an option for them. Therefore,
the CPP design uses an asynchronous form of communication, and only very limited and
carefully selected background information is communicated with crowd workers. The CPP
design treats communication as a very scarce resource, and thus, it limits the number of
communications to two and aggregates the information in concise, to-the-point messages.

Figure 6.4 illustrates how CPP communicates two messages asynchronously with crowd
workers. The first message (annotated with number 1 in Figure 6.4) contains three elements:
CPP instructions, software development issue description, and additional details about the
issue. The design of both the CPP instructions and the software issue description reveal
them in a sequential process to help the worker focus on one element at a time. Additional
details are not part of the main sequential process. Instead, the worker branches out of the
main process to look for additional information, which contains a concise description of
the software project, terms and abbreviations in the task description, and development team

6.2. Crowd Planning Poker (CPP) General Model 97

Start

First Round Of CPP

Read Software
Issue DescriptionClick Next Read Previous

Estimates

No
Need More Info

End
Read CPP
instructions Click next Submit

Assignment

Click More InfoYes Read More Info

Only for 2nd round
and further All rounds Optional BranchKeys:

1 1

1

2

1 Contains
Message 1 2 Contains

Message 2

Figure 6.4: Asynchronous communication flow chart of two messages.

comments on the task.

The second message (annotated with number 2 in Figure 6.4) contains the crowd estimates
from the previous CPP round along with their justifications. The estimates are aggregated
using Max, Min and Median, and shown to the workers in the new round along with their
justifications. Participants have no way to communicate with each other during a CPP round.
Instead, they read the preceding worker’s estimate and rationale from the previous round.

By following the flow chart in Figure 6.4, workers’ estimates and their justification are re-
vealed in the second round if the first round of CPP has finished and the consensus threshold
has not yet been achieved. The aim of exchanging participants’ estimates and justifications
is to help achieve consensus between participants in the next round.

Estimation Process in CPP is asynchronous. The micro-task crowdsourcing environment and
the nature of asynchronous communication in CPP may require longer time to complete the
CPP rounds. However, it can be done at any time, without the limitation of team availability
that exists in Planning Poker. Micro-task crowdsourcing marketplaces offer 24 hours 7 days
access to human capital, and due to different time zones, crowd workers can take work at
any time during the 24 hours. To take advantage of this feature, the iterative model of the
CPP process mentioned earlier in this section is designed to be performed by crowd workers
around the clock and as soon as the issue has been created.

Bias avoidance in CPP is considered. CPP collects the initial estimates without any prior
estimate-related information. The aim is to produce an initial estimate without biases or
hints, imitating the Planning Poker initial secret estimate. Such a design gives crowd work-
ers a chance to retrospectively review their experience and solely predicate an estimate and
justify it. Further, CPP collects the estimates from a much larger and diverse group of crowd
estimators, which helps in reducing bias and bringing insights that may not cross the devel-
opment team’s thinking. Therefore, the crowd team of estimators is in a better position to
produce a reliable estimate and insightful rationale that comes from a wide range of experi-
ences. It is also necessary to mention that conflicts of interest are avoided in CPP, since the
crowd team of estimators are not the same as the development team.

6.2. Crowd Planning Poker (CPP) General Model 98

Consensus and aggregation in CPP takes two directions. Initially, CPP uses crowd consensus
to produce the final estimate. The consensus is calculated using Fleiss’ Kappa [221]. It is a
measure that is used to assess the agreement reliability of raters. According to Landis and
Koch [222]’s interpretation, a kappa in the range 21%-–40% shows a Fair agreement, and
that is where CPP stops iterating over an issue estimation. To help in bringing the crowd
team of estimators to a consensus on an estimate, the previous estimates are presented in the
next rounds.

Since CPP recruits a large number of crowd workers with a wide range of backgrounds,
there is a chance that the team will not reach consensus. In the case of no consensus between
the workers, alternative aggregation methods, specifically, averaging and median are used to
produce the final estimates. The final estimate is also marked with a lower confidence level.

Team comprehension of the software development issue is shared by providing rationales
from a wider range of backgrounds from the large number of crowd workers. While CPP
cannot sync the development team’s understanding as is the case in Planning Poker, it shows
how the outside world thinks about the issue and its estimates.

Iterative estimation in the CPP process helps communicate the messages between crowd
workers, and it shows the estimate’s evolution over time, which can be used as a confidence
level. CPP limits the number of estimation rounds to three. The goal of the first CPP round is
to produce an estimate, and the succeeding rounds are to bring the team of crowd estimators
to a consensus. Four confidence levels: Confident, Semi-Confident, Low-Confidence, and
Poor-Confidence are used, depending on how many rounds the CPP takes: one round, two
rounds, three rounds with consensus, and three rounds with no consensus, respectively.

Assessing crowd assignments’ quality is a key requirement to reliably crowdsource CPP.
A legitimacy score of a crowd assignment is used to decide the inclusion or exclusion of
the assignment. Predicting effort is a subjective task, and thus, crowd estimates cannot be
accepted or rejected based on the actual effort or expert estimate. At the same time, it is hard
to accept all the assignments that are submitted by crowd workers, since there is a chance of
unwanted assignments that may end among other legitimate assignments.

Therefore, an assignment legitimacy score was developed to classify the assignment into
one of three classes: Considered, Ambiguous, and Disengaged. Each crowd assignment went
through a manual legitimacy classification process of two components. First, the justification
provided by the crowd worker was evaluated for the presence of the following components:

1. a task breakdown,

2. a time assignment for each working block,

3. a general discussion about the task topic, and

6.3. Experimental Design 99

4. an explanation of the applied estimation process.

Secondly, self-reported experience responses to the two questions concerning experience
were evaluated to test whether a relevant answer had been provided:

1. number of experience years, and

2. experience field.

A classification process by a group of four researchers produced a final class as shown below.

• Considered: crowd justification contains at least three of the four elements mentioned
above, e.g. a breakdown of the task with time assignment for each sub-task. The
crowd worker’s experience is within the software engineering discipline and they have
previous experience in developing software.

• Ambiguous: crowd justification contains two of the four elements mentioned above,
and the crowd worker has experience within the software engineering discipline.

• Disengaged: crowd justification does not contain the expected elements and there is
no relationship to the estimation process, e.g. talking about something else.

Finally, the legitimacy score was calculated as the percentage of considered assignments
from received assignments.

6.3 Experimental Design

As stated earlier, this is a preliminary study that aims to discover a working setting and
design of CPP. Therefore, three pilot experiments were designed to investigate the feasibility
of CPP using human computation and answer the following pilot research questions (PRQ).

• PRQ1: What are the working settings of crowd size and amount of information that
enable the crowd to predict an expert-comparable estimate?

• PRQ2: What is the proper process design for CPP that can imitate Planning Poker
features in a micro-task crowdsourcing environment?

• PRQ3: Given a software task that requires between one hour and two weeks of effort,
can a crowd team produce a cost estimate that is of comparable accuracy to that of a
project expert?

6.3. Experimental Design 100

The first experiment is the Information Experiment. It concerns what information is neces-
sary for crowd workers to predict an estimate. The workers have very limited time, and thus,
reading material should be limited to what is necessary. Moreover, it is important to differ-
entiate between the kinds of information that are compulsory and optional. These points will
be further detailed in the Information Experiment. This experiment partially answers PRQ1,
i.e. regarding the amount of information.

In the second experiment (Crowd Size Experiment), the focus shifts to examine how large
the crowd group should be, i.e. how many crowd workers should be hired for each CPP
round. CPP should be efficient, and having the right number of workers is important. Hiring
fewer workers may impact the estimate accuracy, but a large number of workers may result
in inefficiency. This experiment answers the team size part of PRQ1.

The last experiment is the Process Design Experiment and it examines whether the pro-
posed design of CPP will help crowd workers in their estimations. While the focus is on
the overall design of the process, it also evaluates different user interface options to avoid
any misunderstanding of the CPP process. The third pilot experiment is designed to study
the proposed CPP process and examine whether any adjustments are necessary. It therefore
answers PRQ2.

The collective results from the three experiments will be used to answer PRQ3. The next
three subsections illustrate more design details of the three pilot experiments.

6.3.1 Dataset

The dataset that is used in this experimental work is JOSSE, which was detailed in Chapter 4.
Unfortunately, it was not an option to use the PPI dataset mentioned in Chapter 5, since the
researcher has signed a non-disclosure agreement with the commercial organisation. Other
datasets, such as Deep-SE [180], have no expert estimates among their attributes.

The expert-estimated and actual efforts are reported as literal person-minutes in the JOSSE
dataset. In contrast, many sources advocate using an approximate estimation unit in Planning
Poker, such as story points Grenning [8]. Cohn [5] argues that software tasks are notoriously
difficult to estimate accurately to a high level of precision, making approximate person-
effort categories more appropriate. Further, Cohn [5] argues that teams are able to gradually
develop an idiosyncratic, tacit understanding of how these units relate to actual person-time
costs over a series of sprints, based on the team’s review of its performance.

The literal person-minutes efforts reported in JOSSE were grouped into categories so that
they could be compared with approximate costs produced during a CPP activity. The esti-
mate unit labels used were one hour, half a day, one day, half a week, one week, two weeks,

and more than two weeks.

6.3. Experimental Design 101

Issue Id Experiment Community NoC NoW EEE AE

PBR-413
Info.
Level

JBoss 1 51 3h 2.5h
GTNPORTAL-1606 JBoss 2 64 8h 6h
RF-11453 JBoss 14 14 24h 16h
JBBUILD-335 JBoss 3 59 80h 72h

EXOJCR-1259
Crowd
Size

JBoss 13 149 24h 75h
JBTM-1568 JBoss 19 48 80h 48h
IGNITE-10965 Apache 7 182 8h 4.5h
AEROGEAR-5533 JBoss 3 165 8h 2h

ENTMQBR-1619

Process
Design

JBoss 14 86 8h 4h
MSITE-68 Apache 4 175 3h 3h
INT-541 Spring 2 29 1h 3h
AMQCPP-223 Apache 1 39 60h 20h
INT-2312 Spring 16 26 24h 23h
EXOJCR-420 JBoss 14 79 4h 20h
NETBEANS-905 Apache 3 70 168h 79h
EXOJCR-1104 JBoss 13 194 48h 98h
HBASE-12128 Apache 24 143 120h 72h

Table 6.1: Properties of software development tasks selected from the JOSSE dataset. NoC
stands for number of comments, NoW for the number of words in the issue description, EEE
for expert-estimated Effort, and AE for actual effort.

Seventeen issues were randomly selected from the JOSSE dataset for the three experiments.
Four issues were allocated to the Information Experiment, another four issues allocated to the
Crowd Size Experiment, and nine issues allocated to the Process Design Experiment. Before
picking the issues, the dataset was filtered to avoid selecting an issue with no expert estimate,
no comments or no description. Table 6.1 lists the software development issues according to
each experiment. It also shows the issues’ source community, number of comments, number
of words in the issue description, expert effort estimate, and actual effort in hours.

For the Process Design Experiment, the focus moved to examine the CPP process, and thus,
more issues were needed to represent a wider range of issue types, including software bugs,
feature requests, and software enhancements. Also, the condition of issues having a similar
time category for the actual and expert-estimated effort is not needed. Table 6.1 illustrates
more details about the selected issues, and Chapter 4 gives more details about the dataset’s
origins, collection process, and quality.

6.3.2 Measures

Several measures were required to address the research questions, including estimation per-
formance, quality score, crowd consensus, and crowd interaction with CPP jobs and the

6.3. Experimental Design 102

interface. Estimation Performance, quality score, and crowd consensus are required to an-
swer all three questions, whereas crowd interaction will mainly be used to answer PRQ2 and
PRQ3.

Starting with estimation performance, the three most used measures of effort estimate accu-
racy are MMRE, MdMRE, and Pred(25); more details about them are explained in Chapter
5. Magnitude of Relative Error (MRE) is also used to indicate crowd and expert accuracy for
each round in each issue.

To decide on the proper size of the crowd team and the right amount and type of information,
crowd interactions were measured by counting the number of workers a task may take until
reaching a consensus. In addition, the number of crowd interactions with CPP interface,
including the number of clicks, mouse movements, and highlights were recorded and counted
to examine how much information (text corpus) the workers will need and can handle.

6.3.3 Experiment Trials and Variables

In the first study (Information Experiment), this process proceeded through three iterations
ignoring the consensus calculation, hence allowing the effect of iteration on consensus form-
ing to be studied. We anticipate that if CPP was used for real estimation, then the consensus
calculation could be used to decide whether to terminate the activity early.

The dependent variable of the first two experiments is assignment legitimacy. As a reminder,
the aim of the two experiments is to determine working settings for CPP, and not neces-
sarily to produce an expert-comparable estimate. Thus, estimate accuracy is not the focus.
Moreover, the independent variables of the two experiments are: actual effort (as recorded
in the JOSSE dataset), amount of task information provided to the crowd for the information
experiment, and crowd size for the second experiment.

A variety of actual efforts were ensured, including: hour, half-day, day, half-week and two
weeks, using the labels for effort estimates as described in Section 6.3.1. Different actual
efforts were necessary in order to determine whether the crowd could distinguish between
tasks of different complexity.

Information available to the crowd workers about the task being estimated is divided into two
categories. Basic information, which comprises issue title and supplementary description,
and Extended information, which includes the following information resources for the crowd
worker to review:

• Contextual project details.

6.3. Experimental Design 103

• Definitions of all terms in the issue title and description identified by the experimenters
as being ambiguous, abbreviations, or project-specific labels (such as the name of a
component).

• All the comments that the development team made on the given issue.

Initially, the crowd size was set to five workers per CPP round. Workers who submitted
Ambiguous or Disengaged assignments were not considered. While this setting was used in
the Information Experiment, a crowd size of up to 20 workers per CPP round was allowed in
the second experiment (the Crowd Size Experiment).

In the Process Design Experiment, the dependent variable is estimate accuracy, and the in-
dependent variables are the actual effort, issue type, and consensus. After excluding a major
part of the process, consensus, in the previous experiments, this experiment examines the
full design of the CPP process as proposed above. In addition, it ensures that crowd workers
can estimate different kinds of issues using the same CPP process.

Table 6.2 lists the three experiment trials along with the different variable settings of each
trial.

Trial # Experiment Info.
Level

Crowd
Size Consensus Different

Issue Types

1

Info.
Level

extended 73 no no
2 basic 73 no no
3 extended 73 no no
4 extended 73 no no
5 extended 73 no no

1
Crowd
Size

extended 121 no no
2 extended 121 no no
3 extended 121 no no
4 extended 121 no no

1

Process
Design

extended 73 yes yes
2 extended 73 yes yes
3 extended 73 yes yes
4 extended 73 yes yes
5 extended 73 yes yes
6 extended 73 yes yes
7 extended 73 yes yes
8 extended 73 yes yes
9 extended 73 yes yes

Table 6.2: Summary of trials settings: information level, crowd size, and whether consensus
and different issue types were included.

6.4. Results 104

6.3.4 Evaluation and Result Test

The evaluation of the Information Experiment results is done by comparing the legitimacy
measures between the basic information trial and extended information trial. In addition, the
legitimacy of the three remaining trials is used to ensure a consistence measurement over
different actual effort time categories.

Similarly, the Crowd Size Experiment is evaluated by comparing the legitimacy measure
from the Information Experiment (where small groups of workers are hired) with the legiti-
macy measures of the four trials in this experiment.

In the third experiment, the Process Design Experiment, the evaluation is based on the dif-
ference in accuracy between expert-estimated efforts and crowd-estimated efforts. Actual
effort is used as a ground truth to measure the accuracy of both estimates.

A statistical significance test is used on the experiment results to ensure that the observed
differences are statistically significant.

6.4 Results

This section gives the results of the three experiments concerning information level, crowd
size, and process design. In the first two experiments, the goal is to evaluate whether crowd
workers are able to produce a useful estimate regardless of accuracy measures. The point
is to make sure that there are crowd workers willing to take such an estimation task and
to make sure that CPP as a process (the core design with consensus disabled) guides the
workers to produce a legitimate estimate. After ensuring crowd workers’ capability and the
working settings of CPP, the third experiment measures the accuracy of crowd estimates and
compares it to that of expert estimates across different types of task and with the full design
of CPP (i.e. considering consensus).

6.4.1 Information Experiment

The Information Experiment has five trials, and it considers the impact of additional infor-
mation on the estimates produced by the crowd. Based on the results listed in Table 6.3, the
crowd in the second trial, using only a basic level of information, eventually results in the
lowest legitimacy score. Conversely, the crowd in Trial 1, estimating the same issue with
extended information, produced a more accurate (if still incorrect) estimate of One Day, and
did so with a better legitimacy score. Whilst preliminary, these results do suggest that a
crowd benefits from additional contextual information when producing an estimate.

6.4. Results 105

Issue Id Information
Level RE CE Legitimacy

Score
Crowd

Estimate (MRE)
Actual
Effort

PBR-413 Extended 76 25 33% One day (100%) Half-day
PBR-413 Basic 72 12 17% Half-week (400%) Half-day
GTNPORTAL-1606 Extended 66 21 32% Half-week (0%) Half-week
RF-11453 Extended 75 25 33% Half-week (0%) Half-week
JBBUILD-335 Extended 75 24 32% Two weeks (0%) Two weeks

Table 6.3: Summary of the five trials, including received (RE) and considered (CE) estimates,
legitimacy score, and crowd outcome for each issue.

Issue Id Number of
Workers RE CE Legitimacy

Score
Crowd

Estimate (MRE)
Actual
Effort

EXOJCR-1259 112 208 60 29% One Week (16.67%) Two weeks
JBTM-1568 130 247 56 23% Half-week (20%) One week
IGNITE-10965 111 202 59 29% Half-week (100%) Half-day
AEROGEAR-5533 132 224 59 26% One Week (150%) Half-day

Table 6.4: Summary of the four trials of examining large size of crowd. It includes received
(RE) and considered (CE) estimates, legitimacy score, and crowd outcome for each issue.

Trials 1, 3, 4, and 5 under the extended level of information allowed crowd workers to request
additional information about the task or its context. This enabled us to track whether this
information was actively sought by the crowd workers. The workers made 29, 9, 20, and
52 requests, respectively, during the trials with an extended level of information available.
Further, a small subset of workers also used the provided search functionality to engage in
open searches about the project.

These results indicate both that the crowd workers are willing to obtain additional informa-
tion in order to complete their task and that they benefit from doing so. Thus, the extended
level of information is the option that will be applied for the rest of this thesis’s experiments.

6.4.2 Crowd Size Experiment

During the first experiment, an average number of 73 workers (24 workers per round) were
hired to predict the estimates, and the average legitimacy score was 33%. In this experiment,
another four issues were selected for estimation but with an average increment of 66% in the
number of workers. According to Table 6.4, the average legitimacy score is 27%, which is
slightly lower than the legitimacy score in the first experiment. Therefore, the increase in
workers does not necessarily result in better legitimacy or better estimates. Therefore, the
rest of the experiments in this thesis use the same number of workers as the first experiment.

6.5. Discussion 106

6.4.3 Process Design Experiment

Enabling consensus and using a wider range of issues were part of the CPP process exami-
nation for producing expert-comparable estimates. The results of the trials reported in Table
6.5 show that the crowd workers correctly estimated the issue category in five of the nine tri-
als (3, 4, 5, 6, 8) and also outperformed the expert estimation baseline (comparing MRE) in
five of the nine trials (4, 6, 7, 8, 9). Therefore, overall, the crowd workers produced the same
or better estimates than expert estimators in seven of the nine trials. The results also demon-
strate that the CPP process can effectively discriminate between tasks of different orders of
magnitude, ranging from half a day through to two weeks.

One caveat to these results is the outcome in trials 1 and 2, where the crowd workers dramat-
ically overestimated the effort required, producing very large MRE scores (900% in both).
As a consequence, the Mean MRE (MMRE) of the crowd workers across all nine trials is
214% compared to 122% for the expert estimate. Excluding these two outliers for the crowd
workers reduces the MMRE to 18%. Chapter 9 gives some fine-grained information that
offers insights on the questions of why and how the crowd workers under-performed in these
two trials.

6.5 Discussion

This section addresses the three research questions mentioned earlier in Section 6.3, starting
with the proper settings for amount and type of information, crowd team size, and the design
of CPP process. It also addresses the feasibility of playing CPP using human computation
and in a micro-task crowdsourcing environment. The questions’ answers and related details
will be discussed as follows.

6.5.1 PRQ1: What are the working settings of crowd size and
amount of information that enable the crowd to predict an
expert-comparable estimate?

The first experiment’s results indicated that crowd workers performed poorly and achieved
a lower legitimacy score at the basic information level, but it was improved by using an
extended level of information. Such a result suggests the the extended level of information
is the right option.

In contrast, the second experiment resulted in no improvement whatsoever when the number
of crowd workers was increased by 66%. Thus, the number of workers used in the first
experiment (73 workers per issue) is appropriate. Taking into consideration that not all of

6.5. Discussion 107

Issue Id RN Consensus
(%)

Issue
Type

Crowd
Estimate
(MRE)

Expert
Estimate
(MRE)

Actual
Effort

WFWIP-18
1 19%

Bug One week
(900%)

Half-week
(400%) Half-day2 0%

3 26%

MSITE-68
1 0%

New
Feature

One week
(900%)

Half-day
(100%) Half-day2 19%

3 33%

INT-541 1 26% Impr. Half-day
(0%)

One hour
(100%) Half-day

AMQCPP-223
1 13%

Bug Half-week
(0%)

Two weeks
(300%)

Half-week
2 33%

INT-2312
1 14% New

Feature
Half-week

(0%)
Half-week

(0%) Half-week
2 33%

EXOJCR-420
1 0%

Impr. Half-week
(0%)

Half-day
(100%) Half-week2 20%

3 33%

NETBEANS-905
1 19%

Bug Half-week
(75%)

Two weeks
(0%) Two Weeks2 20%

3 60%

EXOJCR-1104
1 20% New

Feature
Two weeks

(0%)
One week

(100%)
Two Weeks

2 33%

HBASE-12128
1 20% New

Feature
One week

(50%)
Two weeks

(0%)
Two Weeks

2 33%

Table 6.5: Summary of the nine trials of examining CPP process after using consensus. It
includes round consensus that is measured using Fleiss’ Kappa, crowd and expert estimates
along with their MREs for each issue. RN stands for Round Number and Impr. for Improve-
ment.

6.5. Discussion 108

the 73 workers were able to submit a legitimate estimate, the number of workers is expected
to drop after developing quality controls. Moreover, each round had a distinct set of workers,
meaning that each round needed an average of 24 crowd workers.

6.5.2 PRQ2: What is the proper process design for CPP that
can imitate Planning Poker features in a micro-task crowd-
sourcing environment?

The proposed design of CPP as illustrated in Figure 6.1 features an iterative, yet asyn-
chronous, estimation model. As in Planning Poker, the iterative loop continues until con-
sensus, which enables using consensus as an aggregation method. If the crowd workers do
not reach a consensus, a limit on the number of iterations is imposed, imitating the Planning
Poker coordinator action of time-limiting the Planning Poker sessions.

Crowd workers provide their initial estimates individually to avoid bias, and this is similar
to Planning Poker members making their initial estimations secretly. The asynchronous
communication of CPP has not impacted the communication between crowd workers. In
the next round, the crowd workers synchronise their understanding at the beginning of the
next round by reading a summary outcome of the previous round and the boundary estimates
highlighted along with their estimators’ rationale.

This design of CPP shows evidence over the three experiments that it enabled crowd workers
to imitate Planning Poker and produce legitimate estimates, although the legitimacy score
is relatively low, with an average of 30%. Taking into consideration the high number of
disengaged estimates may explain the lower legitimacy score as the existence of poor quality
crowd assignments. Therefore, there is a need to design and implement a quality control in
the CPP process to avoid unengaged work.

6.5.3 PRQ3: Given a software task that requires between one
hour and two weeks of effort, can a crowd team produce a
cost estimate that is of comparable accuracy to that of a
project expert?

Whilst preliminary, these results show crowd workers were able to predict expert-comparable
estimates. However, a more rigorous study is essential to answer this question with confi-
dence. Perhaps different kinds of software issue need to be considered and a larger number
of crowd workers is required to come up with conclusions concerning the reliability of CPP.

6.5. Discussion 109

The results presented in this chapter were drawn from pilot experiments to sufficiently jus-
tify the investment in a larger scale study, rather than conclusively answer the thesis research
questions.

6.5.4 Beyond Estimates – Crowd Insights

An additional benefit of requesting a rationale from crowd workers when they supply their
estimates is that further insight and analysis of the task to be estimated can be obtained.
Many of the workers provided useful information about how to approach the task. Such
advice and guidance was often very detailed. For example, on a task concerning the creation
of a preview mode for sites using the Apache Maven site plugin (MSITE-68), a crowd worker
wrote:

“This seems like a good case for building at the DOM level, to ‘implement’
the changes in parallel for the previews. If that is in fact the case, it would
probably take about a day to get a working prototype. If not... then a day would
also probably be enough to know that this simply cannot be done.”

The crowd worker provides a suggestion that the resolution of the issue can be done by
monitoring a page’s DOM for changes to create a preview. They also include a suggestion
that a prototype should be created first to determine whether the feature is feasible.

For another issue, concerning the implementation of a new indexing mechanism for a JBoss
workspace, the crowd worker provides a detailed breakdown of the work to be done:

“1. How to determine, and what is the most efficient and accurate query for
nodes and necessary information?

2. Initial testing for viability of indexing nodes (no lost data, consistency,
etc.)

3. Deeper testing incl. stress testing at higher node counts, ensure all threads
are deleted, etc.”

In particular, the crowd worker emphasises the importance of different types of testing, not-
ing that non-functional testing should be treated separately from the design and functional
testing of the feature.

These examples were intriguing, as we had not anticipated that crowd workers would provide
insights with significant domain-specific knowledge. These suggestions and explanations
have the potential to be of significant assistance to a team during the wider triage process for
a software task that occurs alongside estimation. Chapter 9 offers fine-grained information
to better understand why and how the crowd workers have performed.

6.5. Discussion 110

Estimates
Trial Sign-ups Received Paid Minutes Cost
1 96 35 30 15 $4.50
2 78 32 23 16 $3.45
3 72 22 13 4 $1.95
4 83 33 14 6 $2.10
5 93 34 15 7 $2.25
6 89 40 25 10 $3.75
7 83 37 26 19 $3.90
8 88 31 20 9 $3.00
9 117 37 25 12 $3.75

Total 799 301 191 98 $28.65
Mean 89 33 21 11 $3.18

Table 6.6: Breakdown of trial costs of the third experiment (process design).

6.5.5 Evaluation of Costs in Pilot Studies

During the first two experiments, the costs of running CPP were neglected. Firstly, CPP was
applied partially without enabling consensus, and thus additional rounds were played with
no need for them to continue. Secondly, the experiment trials did not reflect the proposed
CPP; in fact, they were used to figure out the proper settings for CPP. However, in the third
experiment, the CPP process was fully applied and the information level and crowd size were
fixed. Therefore, only the cost of the third experiment is considered. Table 6.6 summarises
the costs and effort associated with the trials of the Process Design Experiment.

The table shows that the total amount of time to produce an estimate through CPP ranged
from 4 to 19 minutes. Unsurprisingly, the number of rounds in a trial had a significant
influence on the time taken, with the third trial requiring just a single round and lasting just
four minutes, for example. These results suggest that producing an estimate from a crowd
takes some additional time, compared with Planning Poker. Expert estimation may also be
considerably faster when the expert group already has a good understanding of the task to be
estimated and can rapidly achieve consensus without the need for discussion. Nevertheless,
the results demonstrate that crowds can produce estimates relatively quickly and on demand.

The table also reports the cost for conducting the trials, showing an average cost of $3.18 to
produce a final estimate (again, this figure is influenced by the number of rounds taken in
a trial). This cost appears to compare very favourably with the cost of running a Planning
Poker session within a software team. Assuming a team of five developers with an average
hourly salary of $40 (excluding other costs) can estimate 10 tasks in hour, then the average
cost per estimate would be $20. Thus, the results of the trials demonstrate the potential for a
significant cost saving.

6.5. Discussion 111

6.5.6 Threat to Validity – Issue Availability

A limitation of the software development issues used is that they are collected from open
source projects. This decision was necessary as the experiment required a source of software
tasks that could be provided to anonymous crowd workers and that had been annotated with
expert-estimated and actual work cost. This meant there was a risk that the crowd work-
ers could access the issue trackers themselves and simply supply the actual reported cost,
creating a threat to the validity of the reliability results.

This risk was mitigated in several ways. First, the issue identifiers were not supplied to the
crowd workers and issues were selected from issue trackers that required user registration.
This created an additional step to deter workers. Second, workers were asked for a categor-
ical submission, rather than an absolute person-hour value, creating an additional step if the
source issue was accessed. Finally, workers were encouraged to supply their estimate and
it was clear that payment was not contingent on supplying the correct result. Consequently,
there is no evidence in the behaviour logs that the workers accessed project issue trackers,
although this may have occurred outside the CPP user interface.

Software development issues from open-source communities were used since they are pub-
licly published and the concern of having sensitive data is avoided. However, using these
issues introduces the risk of having a biased input that may not be applicable to other types
of software development project, such as those from commercial development houses.

To mitigate the risk of bias, the issues were selected from different open-source commu-
nities, specifically, the JBoss, Apache, and Spring open-source communities. Further, the
selected issues represent different kinds of development work, namely, bug issues, software
improvement requests, and new feature requests. Randomness was also used in selecting the
final issues that were used in the three pilot experiments.

The pilot experiments were conducted on a limited number of software development issues.
Consequently, the experiment recruited a relatively small number of crowd workers. The
limited number of issues and workers poses a challenge to using the experiment results to
derive conclusions about the reliability of CPP.

Thus, the experiments and their results are not used to draw any conclusions about the CPP
reliability. Instead, they are used to examine whether the crowd worker can produce esti-
mates using the proposed CPP or whether the CPP design would not work in the micro-
task crowdsourcing environment. In case the crowd workers were able to produce expert-
comparable estimates using CPP, which they did, the experiments did help in identifying the
proper size of the crowd, the amount and type of background information, and the specifics of
the process design. In addition, by conducting those experiments at a low cost, the researcher
learned what practical challenges may occur in playing CPP, one of which is handling the

6.6. Summary 112

quality of crowd assignments.

6.6 Summary

This chapter has presented the first study of applying crowdsourcing to Planning Poker for
the production of software task estimates, answering Grenning [215]’s speculation from
more than a decade ago.

Starting with general considerations of Planning Poker, the game context and goals, players,
input and output, communication, and process were analysed with respect to playing Plan-
ning Poker in a micro-task crowdsourcing environment. Further, Planning Poker’s desirable
characteristics (specifically, bias avoidance, synchronising team comprehension, consensus,
and aggregation) and iterative estimation were also reviewed with the intention to imitate
them in CPP.

Then, CPP was designed according to the considerations mentioned above. Both process and
data flow are explained and illustrated using flowcharts. The four desirable Planning Poker
characteristics mentioned above were imitated in the CPP design.

After that, three pilot experiments were designed to address the unknown parts of the CPP
design, specifically, the type and amount of information, the size of the crowd estimator team,
and the CPP process. Each experiment addressed one of these questions. The collective
analysis of the three experiments answers the chapter’s main research question about the
feasibility of playing Planning Poker in micro-task crowdsourcing environment.

The experiment results were presented and followed with a discussion about the three con-
cerns mentioned above. The work demonstrates that crowd workers, organised in a CPP pro-
cess, can produce software task estimates comparable with those produced by experts, and
at a substantially reduced cost compared with small teams of domain experts. The crowd
workers were able to discriminate between tasks of varying complexity and provide useful
insights as to the resolution of the task. However, the quality of crowd assignments was a
clear obstacle to playing CPP in a micro-task crowdsourcing environment.

Quality management in the crowd environment is an essential aspect that need to be ad-
dressed. The CPP process needs to be adjusted to consider different quality controls, as the
experiment results showed that more than 70% of crowd assignments were not acceptable
due to their poor quality. Moreover, the manual checking that is used in this chapter exper-
iment may not be feasible, since it requires additional human resources and it might be not
possible to meet crowd demand.

113

Chapter 7

Quality Assessment and
Enhancement of Crowd Planning
Poker

In the previous chapter, the feasibility of Crowd Planning Poker (CPP) for Software Effort
Estimation (SEE) was assessed. The conclusion of three pilot experiments indicated that
playing Planning Poker using human computation is feasible and can produce software esti-
mates. At the same time, the experiments revealed the poor quality of a significant propor-
tion of crowd assignments when run by micro-task crowdsourcing platforms such as Amazon
Mechanical Turk (AMT).

Micro-task crowdsourcing platforms are attractive because they enable the systematic re-
cruitment of workers to perform micro-tasks. However, a side-effect of this approach to
recruitment is that workers are treated as disposable computing resources by requesters, and
workers generally do not develop long-term relationships with requesters. In such an envi-
ronment, trust-based relationships [223, 224, 225] are difficult to establish and this can be
conducive to fraudulent behaviour by workers [226].

In general, the inability of buyers to discriminate offers on the basis of quality in a market is
known to drive down the quality of all offers [227]. In the context of crowdsourcing, a worker
is not incentivised to engage fully with a task and provide as high a quality submission as
possible, because they lack feedback as to what actions would improve the quality of their
submission; and in any case, the additional effort required cannot be rewarded relative to that
of a low quality submission. Rather, workers are incentivised to complete a large number of
submissions as quickly as possible in order to maximise their anticipated reward relative to
their effort. Such an approach discourages workers from engaging fully with a task, and they
will seek to minimise their effort and thus the quality of their submission.

7.1. Exploring the Quality of Crowd Assignments in the CPP Context 114

In addition, the judgements performed by crowd workers in the context of CPP are inher-
ently subjective. Rating the quality of submissions for such tasks is difficult, because there
may not be ‘gold standards’ against which the quality can be measured or compared [228].
Workers on crowd platforms are effectively anonymous, which makes assessment of their
qualifications to perform a task or attribution of their work difficult.

Given this challenge, this chapter proposes an approach to actively managing the quality of
work by crowd workers, comprising: (a) a model of quality for the CPP task; and (b) active
feedback to workers as to the quality of the current draft of their assignment prior to submis-
sion. To address the subjective nature of the quality of the assignment itself, we identify a
set of proxy markers for task quality concerning artefacts associated with the assignment and
worker behaviour, drawing on the existing literature of worker behaviour [229] and crowd
rationales [230]. These markers are used to train a classifier to predict low quality assign-
ments. Draft assignments that are identified as low quality are highlighted to the relevant
worker, giving them the opportunity to improve their assignment and avoid potential rejec-
tion. The approach therefore relies on loss attention theory [27] to incentivise workers to
improve their assignment and avoid the loss of income and reputation due to rejection.

The rest of the chapter is organised as follows. Section 7.1 details the problem of crowd
quality, particularly focusing on effort estimation using CPP. Then, Section 7.2 describes
the approach to measuring subjective crowd tasks, proposes a quality measuring model, and
demonstrates its performance. Section 7.3 describes how to incorporate the measure of task
quality into the crowd task to offer real-time feedback, while the crowds undertake the work.
Finally, Section 7.5 sums up the results, limitations, and implications for crowdsourced work
in general and considers future work on enhancing and integrating quality in a crowd mar-
ketplace for general subjective tasks.

7.1 Exploring the Quality of Crowd Assignments in

the CPP Context

As explained above, not all the crowd submissions are qualified to be considered. More than
half are of low quality. Manually evaluating every assignment and assessing its quality con-
sumes a lot of time and energy. For instance, in the first experiment (Chapter 6), collecting
crowd estimates needed a couple of days; however, it took a couple of weeks for a group
of four researchers to review 364 estimates and classify them. Thus, the requester finds
themself in a trade-off between quality and resources. Such a challenge may invalidate the
original promise of the crowd if not managed. Besides, the cost of hiring four researchers to
review the 364 estimates is much more expensive than hiring expert estimators to estimate
these issues in the first place.

7.1. Exploring the Quality of Crowd Assignments in the CPP Context 115

Issue Id Community NoC NoW EEE (Hour) AE (Hour)

PBR-413 JBoss 1 51 3 2.5
GTNPORTAL-1606 JBoss 2 64 8 6
RF-11453 JBoss 14 14 24 16
JBBUILD-335 JBoss 3 59 80 72
AMQCPP-223 Apache 1 39 60 20

Table 7.1: A summary table of characteristics for the selected issues from the preliminary
study used in developing the quality measurement framework.

Another challenge is the nature of the estimation task, which is subjective. Thus, accuracy
in the context of assignment quality is not applicable, since there is no reference for a pre-
diction. Any reasonably justified estimate is a good estimate, even if it is far from the actual
effort. CPP has been designed to limit crowd estimators’ subjectivity using two components:
limited estimate options and a summary of estimates from the previous round. Even with
such a subjectivity-aware design, sometimes crowd workers select from the full range of es-
timation options available to them. This has happened when an estimation session consumes
all three rounds allocated for it. For instance, in the second trial of the information experi-
ment (the first experiment), the subjectivity of the crowd workers was high, so they did not
reach a consensus.

Therefore, the initial goal was to define a measure of quality that could be used to evaluate
worker assignments in Crowd Planning Poker without relying on the estimate accuracy itself.
Most research in quality management in crowdsourcing concerns the correctness of worker
assignments relative to some objective oracle, with relatively few studies addressing wider
dimensions [231, 232]. However, the wider dimensions of data quality have been extensively
researched, as demonstrated by the survey by Sidi et al. [233]. This literature suggests that
there is no one definition of quality for a crowd task and that quality should be defined within
the context of the specific task itself.

Drawing on this work, we therefore conducted an initial pilot study of our Crowd Planning
Poker process to generate a dataset of worker-submitted assignments and associated worker
behaviour during task completion, as detailed in Chapter 6. This work resulted in a dataset
of 364 received assignments. Each assignment comprised a worker declaration of having
software engineering experience, an explanation of that experience, a software task estimate
for a proposed task, a rationale for the proposed estimate, and a log of worker interaction
with the interface (worker behaviour). A summary of issues from the preliminary study used
in the development of the quality model described in this thesis is given in Table 7.1.

Studying the assignments, we proposed four dimensions of assignment quality for crowd
worker assignments in Crowd Planning Poker: completeness, consistency, uniqueness, and
relevance. Each quality dimension has a different impact on the assignment’s quality class.

7.1. Exploring the Quality of Crowd Assignments in the CPP Context 116

For instance, to have an assignment classified as “Excellent”, all the quality dimensions have
a role for that class, whereas the “Poor” class is affected by the uniqueness dimension only.
The dimension definitions, specifics, and measures are detailed in the following subsections.

We ignored other concerns such as validity at this stage, since they were controlled by the
crowd task user interface, even though the crowd behaviour logs show attempts to submit
invalid assignments, e.g. to stop the JavaScript engine in the browser. However, the interface
validation rules were able to control them and there were no invalid assignments.

Completeness Some workers cut themselves short and did not submit a complete as-
signment, which meant that at least one of the three assignment parts was not filled. While a
software interface may help in forcing the worker to fill in a given field, it does not necessarily
prevent workers from going around the interface restrictions and ignoring the field. Several
crowd workers submitted “N/A” as their justification to bypass the interface restriction of
not submitting an empty field. In another example, a crowd worker disabled the JavaScript
feature of their browser, and thus, their behaviour (the fourth component) might not have
been entirely recorded. Software errors and bugs also cause incomplete assignments.

Therefore, assessment of completeness was broken down into two stages. First, the com-
pleteness of the overall assignment was considered. All four elements of the assignment, as
described above, were required to be present if the assignment was judged to be complete
overall. If at least one element was missing, then a score of 0 was assigned for completeness.
Otherwise, a score of at least 1 was assigned for completeness and the evaluation proceeded
to the second stage, concerning estimate rationale completeness.

The second level relied on a structure supplied by the worker. Expert effort estimation best
practices [6], effort estimation activities [2], and research on logs of expert estimation ses-
sions [7] provided insights to developing the four elements. Four components that should
exist in the worker’s justification were identified:

1. A task breakdown

2. A time assignment for each working block

3. A general discussion about the task topic, e.g. using similar issues from experience

4. An explanation of the estimation process applied, e.g. reference to peer estimates.

This scheme allowed for a maximum of five points to be scored for completeness, including
one point for overall completeness. Any justification that achieved more than 3 points out of
5 was considered a complete justification.

7.1. Exploring the Quality of Crowd Assignments in the CPP Context 117

Consistency CPP assignment consists of four parts, with three of them filled directly by
the worker, and the fourth one collected automatically by the tool. Sometimes, when com-
paring these four elements, they contradict or do not comply with each other. This is evident
when a crowd worker refers to a different estimate than the worker selected while writing
the justification. For example, this worker selected half a week as an estimate, but the justi-
fication says a week: “In my opinion, it would take about a week to deploy and thoroughly
test YARN on an Apache server.” Such inconsistency may happen when workers change
their minds but forget to update the relative fields in their assignments, or more importantly,
when the crowd behaviour (automatically collected as part of the crowd assignment) does
not comply with the other part of the assignments —- for instance, submitting work that it is
impossible to have achieved in the time spent that was recorded in the crowd behaviour.

We considered the extent to which the different parts of an assignment were consistent with
one another. Three separate relations were checked for consistency. First, the relationship
between the worker’s declaration of experience and their described experience. For example,
if a worker declared themself to have software engineering experience, their description of
their experience should relate to software engineering concepts, for example, experience
in development using a particular programming language. Second, the submitted rationale
should be consistent with the estimate itself. For example, a rationale that contained a task
breakdown that comprised more work than the estimate would be considered inconsistent.
Third, the worker’s behaviour needs to be consistent with the submitted assignment. For
example, if an assignment has a rationale text of 50 words, the UI logs must show that the
worker spent some time typing in the assignment rationale. An assignment was judged to be
consistent overall if at least two of the three elements were judged to be consistent.

Relevance Irrelevant assignments were most obvious when a crowd worker submitted
an assignment that was entirely out of the task context. For instance, during the third CPP
experiment, a crowd worker fills the justification box with: “good survey” and answered the
experience question: “5”. This would appear to be a deliberate attempt to secure compen-
sation without properly engaging with the task. Not all irrelevant assignments are submitted
with malicious intent. Some of them seem to be a misunderstanding. Some irrelevant as-
signments showed a greater level of relevance but were still far from being fully relevant to
effort estimation. For example, a worker submitted “I justify the system is in [an] organised
state; therefore the data is [in] good condition”, while the task was asking them to justify
the estimate selected by the worker. This assignment is an example of low relevance but not
complete irrelevance.

Further, the relevance dimension in CPP is limited to the worker’s justification. CPP assumes
that there is a rationale behind selecting an estimate for the given issue. Suppose a worker
goes off the issue topic and includes details not related to the issue in places the assignment

7.2. Measuring Quality of Crowd Assignments 118

considers irrelevant. For instance, one worker wrote about Android IDE in his/her justifi-
cation, where the issue topic is about user interface. Therefore, the issue topics and worker
justifications are compared to measure assignment relevancy.

As a further measure, cosine similarity is used to assess the text-similarity between justifica-
tion and issue description. An assignment that measures above 50% is considered relevant.

Uniqueness A contributor to low-quality assignments is copy-and-pasting content with-
out effort. One reason for this may be that during the second and third rounds of CPP, crowd
workers are shown previous estimates and their justifications, and thus, some workers just
copied the justification and submitted their answer without spending time to think about it.
Other workers benefit from the previous round by referring to it to justify and explain why
they agree with a previous estimate. For example, a worker says: “This [is] the median
estimate, a better measurement of frequency than the mean when outliers/large swings of
data are present. Also, from my experience writing code this does not seem like too hard a
problem.” While the worker has used previous estimates, the worker did create an original
and unique assignment. Some workers just copy any text from the web and paste it even if it
is irrelevant, and a quick Google search with the exact text reveals its origin.

It is unsurprising that crowd workers copy and paste text from the previous estimation round
or even from the web to fill the justification or experience fields. However, the uniqueness
dimension is limited to only the justification, since the worker’s experience will not change
over a couple of days. If the provided assignment has a text used before in the previous
estimate or there was an exact match for the justification text using the Google search engine,
then the assignment was considered not unique.

Quality management is a well established problem of working with crowds [234]. The first
step in tackling this challenge is to design a proper measurement framework and tools. Mea-
surement will enable a better understanding of the problem and help in designing improved
methods. The next section will explain the measurement framework and its tools.

7.2 Measuring Quality of Crowd Assignments

This section describes how to measure the quality of a crowd worker assignments within the
Crowd Planning Poker task. The goal is to develop a means of automatically assessing the
quality of a worker assignment for a crowd task in a specific context (Crowd Planning Poker).
We developed an assessment strategy that uses automatic processing of both the worker’s
behaviour and the justification. The crowd behaviour is used to draw a quality conclusion
regarding crowd workers, and the crowd justification is used to assess the assignment quality.
The strategy starts with a manual assessment of the worker’s justifications in the pilot study

7.2. Measuring Quality of Crowd Assignments 119

Event Target Properties Weight

Typing Experience Field 15 words 1
Click Extra Info Button - 2
Click Issue Comment Button - 1
Click Terms Definition Button - 1
Click Project Info Button - 1
Spend Extra info stage 25 second 1
Click Google Search Button - 1
Typing Justification field 24 words 1
Spend Whole task 3 min 1

Table 7.2: Summary of actions used for scoring crowd worker behaviour.

in Chapter 6. After collecting enough data, an machine learning (ML) model is trained to
classify the assignment according to the quality classes as explained in the previous section.

7.2.1 User Behaviour Quality

Our next goal was to identify features that contribute to the observed quality criteria de-
scribed in the previous section. To do so, we reviewed the user interface logs of worker
behaviour from Chapter 6 in order to identify behaviours that contributed to behaviour qual-
ity. For example, log data that showed a worker moving the mouse pointer over a relevant
part of the task, such as the software task description, was considered to contribute to quality.

We therefore identified a set of nine worker actions observable in the user logs that con-
tributed to quality, as shown in Table 7.2. For each action, we defined the event type, the
target user interface component, a metric for the event and the number of points to be added
to the behaviour quality score if the event was observed. For example, if a user typed at least
15 words into the experience field, we added 1 point to the behaviour score. Similarly, if
a user spent at least 25 seconds focused on the extra information page of the task (provid-
ing contextual information concerning the wider project), a further 1 point was added to the
score. All the identified actions and weights were defined based on the researcher’s assess-
ment of the data from Chapter 6. The entire log of a worker’s task assignment was scored
against this table.

Tracking crowd interaction with the user interface for quality purposes is known as finger-
printing in the literature [229]. Unlike previous studies, this chapter extends the core finger-
printing concept. Firstly, it only includes logs for specific and relevant interface elements,
such as action buttons and main text areas. Secondly, it uses different weights to calculate
the behaviour score. Both the relevant interface elements and their weights are determined
based on data from the pilot experiments for good and bad behaviours. To distinguish this

7.2. Measuring Quality of Crowd Assignments 120

extension from the original fingerprinting, it is referred to in this thesis as Weighted Crowd
Behaviour (WCB).

7.2.2 Manual Assessment of Issue Quality

Using these definitions, we proceeded to categorise assignments from the five issues listed
in Table 7.5 according to their quality, using the following scale:

A Assignments have a completeness score greater than 2, are relevant, consistent and
unique, and the worker behaviour score is greater than 7.

B Assignments have a completeness score of 2, are relevant, consistent and unique, and
the worker behaviour score is greater than 4.

C Assignments have a completeness score of 1, are relevant and unique, and the worker
behaviour score is 4 or less.

D Assignments are not complete, or not relevant, or not unique.

Classes A and B are considered acceptable quality, and thus they do not result in additional
improvement work from the worker. However, classes C and D are considered unacceptable.
Each crowd assignment went through a manual classification process of the four quality
components by a group of four researchers. Most of the assignments with poor quality
ended up in the ‘D’ category including those that were submitted by workers who were not
engaged in process.

The manual classification of the five issues involved 364 crowd assignments. Thirty-seven
assignments were classified as Class A and 70 as Class B. The majority of the assignments
were classified as Class C (115) or Class D (142). The four researchers vote for a class for
each issue, and the class with the majority of votes gets selected. In the case of non-majority
votes, the team members discuss their opinions and vote again. If there are no majority votes
after three voting rounds, the issue is considered invalid and not included. None of the issues
has been invalidated because of researchers’ disagreements.

An assignment consists of four parts, including an estimate of a given software issue, a ratio-
nale supporting the selected estimate, the worker’s experience, and the worker’s behaviour
(see Figure 7.1 for an illustration). While the estimate is what is needed for the estimation
process, other parts are used as proxies for the assignment quality. The experience and be-
haviour parts are quality proxies of the worker, while the rationale is a proxy for the worker
deliverable (the assignment).

7.2. Measuring Quality of Crowd Assignments 121

Use of proxy information concerning the quality of a crowd assignment has been reported in
the literature McDonnell et al. [235], Kutlu et al. [230]. Of particular relevance, Kutlu et al.
[230] asked crowd workers to supply a rationale of their decision alongside the intended
task answer. This work shows that obtaining rationales improves the quality of judgements
without a substantial increase in task time. In addition, Dumitrache et al. [236] showed
that rationales help uncover the reasons for subjective disagreement amongst crowd workers
and thus help reach a subsequent consensus. Supplying a rationale is an original feature of
Planning Poker, and is now part of CPP.

7.2.3 Machine Learning

Our next step was to test the viability of machine learning (ML) to automatically classify
worker assignments into the four categories A–D that were specified for the manual cate-
gorisation, based only on the features in the assignment. The data of five issues from the
pilot study were used, as shown in the first five rows of Table 7.5. A decision was taken to
train an ML model on assignments across all five issues to ensure that variations between
issues were considered, and to avoid overfitting the model.

The aim was to get a first impression of how good the classifier would be. Such an evaluation
was essential to making a decision regarding the ethical and economical effects of the model
on the crowdsourcing market. Thus, manually checked assignments from the pilot study
were used for the purpose of evaluating the classifier only.

The four quality classes A, B, C, and D used for the manual assessment of the assignments
described in Section 7.2.2 were grouped into two classes, ‘Accept’ and ‘Reject’, as the targets
for the classifier. Assignments with classes A and B were considered good assignments and
assigned ’Accept’ as their new class, and classes C and D were considered bad assignments
and assigned ’Reject’ as their new class.

There are four possible outcomes based on the above grouping: accepted good assignments
(True Positive), accepted bad assignments (False Positive), rejected bad assignments (True
Negative) and rejected good assignments (False Negative). The classifier is correct when the
outcomes are True Positive or True Negative, and incorrect otherwise. While the optimal
goal of the classifier is to result in only True outcomes, in reality there is a percentage of
False outcomes, which cost money and impact quality.

Rejecting good assignments (False Negatives) is ethically not fair, which basically violates
the contract in the first place. It also has negative economical impacts on the market where
there are no incentives for good workers to remain. On the other hand, accepting bad assign-
ments (False Positives) economically impacts the market by incentivising bad workers. It
also destroys the value that requesters (buyers) are attracted to and thus leaves no incentive

7.2. Measuring Quality of Crowd Assignments 122

for them to remain. Thus, all false outcomes need to be handled in order to have an attractive
value in the market for both workers and requesters.

The one value for requesters in the crowdsourcing market is doing the work at a lower cost
than regular employees or contracted experts, and thus, the assumption here is that crowd
workers’ time is cheaper than non-crowd workers’ time. Based on that, handling a false
negative costs more than handling a false positive. False negatives cost the crowd worker’s
time plus the time to be inspected by the non-crowd workers (processing crowd appeals),
whereas false positives cost the crowd worker’s time and negatively impact the classifier
quality.

While the cost of crowd workers’ time and processing crowd appeals are direct, the negative
impact on classifier quality is indirect. However, such a quality impact can be neglected as
minimal on the final aggregated estimate given that the impact source is bad assignments,
which are equivalent to the random error. In other words, the accepted bad assignments will
be approximately distributed between the estimation categories, and hence, the estimator has
no reason to select a particular category.

For that reason, the ML model should be tuned to minimise the number of false predictions in
general, with the focus on false negatives. Thus, the recall score given by Equation 7.1 [213]
is considered as an evaluation metric since it is sensitive to false negatives. However, recall
alone can not illustrate the overall performance of the ML model, especially for imbalanced
data. Therefore, ROC-AUC [212] is selected as a metric for the overall performance.

r =
TP

TP + FN
(7.1)

where TP, FP, and FN are the true positive, false positive, and false negative scores, respec-
tively.

As a feature extraction method, the TF-IDF matrix of the task description was used. In
addition, the user behaviour score is used as-is and merged with the TF-IDF matrix. Random
Forest was selected after outperforming other algorithms, including Support vector machine
(SVM) and Naive Bayes, in initial trials.

As a final step before evaluating the ML model, hyperparameters need to be tuned. Given
the priority of false negatives, hyperparameters are tuned to satisfy the highest recall score
(i.e. to minimise false negatives). Seven parameters were identified for tuning, as listed in
Table 7.3. Three of them are related to feature extraction, and the rest concern the classifier.
Table 7.3 also shows the optimal values for these parameters based on the recall score.

A total of 417 assignments were received for the five issues, and they were all used in the
first experiment. Table 7.4 shows the distribution of assignments across the two categories,
’Accept’ and ’Reject’. The table shows that 87 assignments were correctly accepted and

7.2. Measuring Quality of Crowd Assignments 123

Step Parameter Description Optimal
value

Feature extraction
max df Maximum document frequency of vo-

cabulary terms to be considered
0.85

max features Maximum number of feature for each
document

3

ngram range Minimum and maximum number of
values for each word n-grams

1

Classification

n estimators Number of trees in the forest 90
max depth Maximum depth of the tree 8
min samples split Minimum number of samples re-

quired to split an internal node
100

min samples leaf Minimum number of samples re-
quired to be at a leaf node

1

Table 7.3: Hyperparameters and their optimal values for CPP quality classification.

Auto
Accept Reject Total

Manual
Accept 87 34 121
Reject 33 263 296

Total 120 297 417

Table 7.4: Summary of classification results for assignments of the five issues used for clas-
sifier assessment.

263 were correctly rejected, so 84% of the classifier decisions were correct. On the other
hand, 34 were incorrectly rejected and 33 were incorrectly accepted, so 16% of the classifier
decisions were wrong.

The model performance, as measured by the overall metric ROC-AUC, was scored at 84.7%,
whereas the recall score was 72.6%. That means the overall performance of the model is bet-
ter than a random classification (>50%). In fact, it is close to the best quarter (≥ 87.5%). The
recall score indicates that 27.4% of legitimate assignments will be rejected (34 assignments
in the case of the pilot assignments). Since legitimate assignments represent the minority
(29%), those false negative assignments represent 8.1% of all received assignments. While
the classifier’s overall score is good, the recall score suggests that the classifier is in general
severe, rejecting assignments that would be otherwise accepted by a manual reviewer.

Given the result, it is clear there is a 27.4% chance of unfair rejection, and thus, a soft-reject
process (equivalent to an appeal) was designed and introduced in the second experiment. The
soft-reject process moves rejected assignments to a hold status for human inspection. Unlike
the manual quality assessment, the soft-reject process provides additional information, in-

7.3. Improving Crowd Quality 124

cluding the assigned class (C or D) and the classification confidence, to quickly help human
inspection. For instance, Class D assignments were rejected during human inspection since
they mostly came from unengaged workers, and they represent the majority of the rejects.
While this may increase the overall headache, it ensures fair treatment for the crowd.

Looking at the classification outcomes (accept, reject) from a statistical point of view, a
McNemar’s test indicates no significant difference: McNemar’s chi-squared = 0.056 and the
p-value = 0.81. This is another indication that the RF classifier performance is similar to the
manual process, and it can decide which assignment should be accepted or rejected with a
relatively good accuracy.

7.3 Improving Crowd Quality

After measuring the quality of crowd assignments, the next step is improving it. This section
describes how to enhance the efficiency of the Crowd Planning Poker task. The goal is to
minimise waste at the worker’s and requester’s ends by improving the communication be-
tween them in the automated assessment process explained earlier in Section 7.2. Therefore,
an improvement model with a continuous feedback loop was developed, and it is illustrated
in Figure 7.1.

The model uses a crowd feedback loop to communicate assessment decisions with work-
ers and enable them to respond. It encourages workers to enhance their assignments using
Loss Attention theory, which emphasises possible losses a worker may face rather than pos-
sible gains. Apart from assignment quality enhancement, the model improves the chance
of fair treatment of crowd workers by introducing a soft-reject procedure. The procedure is
an adjusted appeal process that enables good rejected assignments to be considered by the
requester.

7.3.1 Crowd Feedback Loop

A feedback loop is designed to communicate assessment decisions to crowd workers and
deliver assignment improvements to requesters. It boosts the crowd worker’s learning curve
of assignment quality requirements. Similar work in the literature by [237, 238] suggests
that engaging crowd workers in such a loop results in better outcome quality.

The Crowd Feedback Loop starts with a crowd worker submitting an assignment (Step 3 in
Figure 7.1), then the CPP operator evaluates the assignment quality automatically (Step 4 in
Figure 7.1). After that, the evaluation decision is communicated via a form of feedback to
the worker, then the worker is given a chance to submit an improved assignment or with-

7.3. Improving Crowd Quality 125

CPP Processor

Issue/story to be estimated

Final Estimate

Crowd Worker

Process Estimation
Request

Revised Estimation
Assignment

Submit Estimation
Assignment

Assignment

Experience

Estimate

Rationale

Behaviour

CPP Operator

Quality Assessment

Acceptable

Unacceptable

Quality Improvement

Assessment
Feedback

Create Estimation
Request

Issue Information

Peers Estimates*

Aggregate Estimates

4

1

2

3

5

* Peers Estimates presented for workers in the 2nd CPP round and onwards.

Figure 7.1: The overall real-time quality improvement framework. The framework com-
prises an operator component and a crowd worker component. White boxes represent the
tasks within each component and grey boxes represent the data exchanged between the cores.

7.3. Improving Crowd Quality 126

draw from the task (Step 5 in Figure 7.1). The improvement can be either an assignment
improvement or a reduction of waste, depending on the worker’s decision.

The gap between a requester and a worker regarding a given task’s quality requirements
can be narrowed by educating the worker through a feedback loop. It increases the crowd-
sourcing efficiency if the requester is planning to hire the same workers for the same job,
a common practice in crowdsourcing. It is possible to improve the assignment quality by
asking the worker to revise the assignment and cover missing quality elements. For instance,
an assignment with an insufficient justification can be returned to the worker to revise that
justification and get to the next quality class.

Giving the crowd worker a chance before rejecting the submitted assignment achieves two
results. First, honest workers who submit a borderline assignment (close to the next quality
class) will not waste their time, and a bit of improvement will take their assignment to the
next quality level and thus get accepted. Those workers already spent time to learn the CPP
process and get themselves familiar with the issue in hand. They might spend extra time
searching the web for additional information. Thus, giving them a chance to improve their
assignment before rejection is vital to them.

The mechanism also deters workers who are unwilling to submit quality work or at least set
their expectations to the right level. For those workers, the gain is to withdraw their assign-
ment and thus save their reputation for not being rejected. AMT uses the “HIT approval
rate” of each worker as a qualification to enable additional HITs. This is also a benefit for
the requester since it saves time assessing the assignment, and in odd cases, by not polluting
the ML model’s learning process. Both results help improve CPP efficiency by reducing the
number of rejected assignments, and thus, it shortens the time it takes to collect the required
number of estimates before calculating a consensus.

However, asking for improvement from crowd workers requires additional effort which needs
to be incentivised. Additional money incentives may not work, as stated by more than one
study, such as Mason and Watts [239]’s work. It also represents a burden on the CPP process
due to the additional costs. Fortunately, research in Behavioural Economics suggests that
humans may be encouraged, without incentives, to avoid losses [240]. Thus, framing the
improvement request as a form of loss avoidance may be more effective than framing it as
a form of incentive, and it then does not require additional cost from the requester. Intu-
itively, the crowd feedback loop gives crowd workers an understanding of the discrimination
between high and low quality work, so that high quality work can be appropriately rewarded.

7.3. Improving Crowd Quality 127

Figure 7.2: Low quality warning message presented to crowd workers who submitted low
quality assignments, with three options: review, withdraw, or submit.

7.3.2 Encouraging Improvement Using Loss Attention

Recently, several studies [241, 242, 243] have examined loss aversion [240], a behavioural
economic theory related to loss attention theory [27]. Loss aversion theory states that hu-
mans prefer to avoid losses than receive gains equivalent to the losses. For example, a person
prefers not to lose £1 over gaining £1. While loss aversion theory is similar to loss atten-
tion, it differs in two points. First, loss attention does not assume equivalency between the
losses and the gains. Secondly, loss attention concerns people’s attention, while loss aversion
concerns benefits and gains, and thus, loss aversion treats losses as bias while loss attention
looks at a loss as a factor to clear biases and increase attention.

Loss Attention theory [27] states that humans are willing to pay additional attention to tasks
that involve losses. In the context of crowdsourcing, this section hypothesises that instead
of offering an additional monetary incentive to encourage workers to fix their assignment,
a warning message will be presented to those low quality assignments, see Figure 7.2. The
intuition is to encourage workers to take on additional work (the improvement) to avoid two
kinds of losses: the original financial incentive and their reputation (lower HIT approval
rate). Yechiam and Hochman [27]’s work says the theory works even on losses as low as $1.

The message says the assignment is of low quality and might be rejected if the worker does
not enhance it. Such feedback is designed to convey two points: directing workers’ attention
to the loss, and avoiding misuse and gaming of the ML classifier. First, the message’s lan-
guage was written to warn the worker about the losses that might be incurred if the worker
insists on submitting the assignment as-is. By doing so, the worker is reminded of the loss
of the initial monetary incentive and the loss of reputation. Therefore, according to the loss
attention theory, the worker should avoid submitting the assignment as-is.

7.3. Improving Crowd Quality 128

The second point represents a trade-off between the benefits of educating the workers and the
risks of exposing classifier weakness. For the case of CPP, the researcher avoided exposing
the classifier by not giving more details on which part need to be enhanced. Instead, workers
are encouraged to take a thorough review of the assignment and revise the part that feels
weak. The reason behind this is that CPP has been designed to be played by distinct crowd
workers, and thus, detailed education is not essential since the workers are not retained.

There are three possible responses to such feedback: improving assignment quality, with-
drawing from the task, or insisting on submitting the assignment as-is. The first and second
actions are equally favourable to the requester and the worker. For the requester, they either
increase the number of high quality assignments or decrease the number of low quality as-
signments. For the worker, they either help in gaining the initial financial incentive or save
the worker’s reputation if they cannot make the necessary improvement. While the goal of
the model is for workers to select one of these two actions, the third action (submit as-is)
is enabled for workers since the assessment is ML-based and there is a chance of 27% mis-
classification with a lower quality class. While those assignments represent a minority, the
soft-reject procedure is designed to process them.

7.3.3 Handling Rejected Cases Using Soft-Reject

Soft-reject works after an assignment is rejected by the ML classifier. It starts by holding
the AMT acceptance decision. Then, the assignment is transferred to the rejection handling
repository to be inspected by the researcher. If the assignment merits a rejection (i.e. the
classifier decision was right), then the AMT is notified to reject the assignment. Otherwise,
the AMT is notified to accept the assignment. Assignments accepted through the soft-reject
procedure are not valid for any experimental work since they are assumed to be rejected. The
only reason to accept them is to let AMT complete the transaction and the worker receive
the financial incentive.

Soft-reject is similar to appeal procedures carried out by organisations in a real-world con-
text. For example, auto loan eligibility software determines whether you can get a loan from
a lender. In case of rejection, an appeal can be initiated by the requester, and the lender
processes that request manually.

The purpose of soft-reject is to handle auto-rejected assignments. It ensures that workers are
rejected for a genuine reason and not because of a flaw in the experimental tools. Soft-reject
is not strictly part of the quality model. However, it has been applied since this work has
been carried out as experimental work, and crowd workers should not be mistreated because
of such a context. Research and experiment contexts have a higher risk factor due to the
uncertainty of the applied methods. Further, CPP experiments include humans, and their
rights should be reserved.

7.3. Improving Crowd Quality 129

7.3.4 Quality Improvement Experiment Design

After designing the quality model comprising both measurement and improvement, the next
step is to validate its assumptions and evaluate its performance. The aim is to investigate the
improvement components and measure the reduced waste. Therefore, the experiment will
answer the following quality research questions (QRQ):

• QRQ1: Can the model reduce waste (rejected assignments), and how much can be
reduced?

• QRQ2: How do crowd workers respond to the improvement request?

• QRQ3: How many unfair treatments (false rejections) are handled by the soft-reject
procedure?

The results of the CPP preliminary experiment detailed in Chapter 6 are used as the control
for this experiment. Therefore, the design of this experiment is inherited from the CPP
preliminary experiment. However, this experiment uses the proposed quality model as the
treatment, replacing the manual quality evaluation in the CPP preliminary experiment.

Six issues were picked randomly from the JOSSE dataset (Chapter 4). Table 7.5 illustrates
the characteristics of the selected data issues.

Issue Id Community NoC NoW EEE AE

FUSEDOC-2134 JBoss 7 79 24h 8h
HIVE-4460 Apache 21 64 72h 41h
JBLAB-278 JBoss 2 47 40h 62h
JBPM-153 JBoss 3 27 80h 80h
SLIDER-799 Apache 9 78 24h 24h
WFCORE-1495 JBoss 4 138 32h 28h

Table 7.5: A summary table of the selected issues, showing number of comments(NoC),
number of words(NoW) of the issue description, expert-estimated effort (EEE), and actual
effort (AE).

The selected issues were used in the similar experimentation settings explained in Chapter
6, Section 6.3. Instead of three trials, one trial was conducted using the six issues. Further,
this quality experiment introduced the quality model explained earlier, and thus, the focus of
measurement shifted to assignment quality rather than estimate accuracy.

Assignment quality in this experiment was measured using the quality score explained earlier
in Section 7.2. In addition, two statistical tests, t-test and chi-square goodness of fit, are used
to measure the result significance for waste reduction and quality improvement, respectively.

7.3. Improving Crowd Quality 130

7.3.5 Experiment Results

516 submissions from 712 workers were collected for the six issues. A worker submission
is a provisional assignment that is finally submitted. A worker attempt is a provisional as-
signment that is not submitted but is evaluated by the ML classifier. Table 7.6 details the
submissions across the quality classes Excellent (A), Acceptable (B), Unacceptable (C), and
Poor (D). The table also lists the attempts’ distribution. On average, workers attempted 1.3
assignment revisions, with a maximum of 15 revisions per worker.

Issue ID NoW
Number of submissions Submission Attempts Distribution

A B C D Mean Median Max Min STD

FUSEDOC-2134 155 1 60 16 36 1.34 1 7 1 0.93
HIVE-4460 68 0 20 4 20 1.09 1 4 1 0.41
JBLAB-278 99 0 40 7 19 1.25 1 6 1 0.71
JBPM-153 110 0 60 10 25 1.42 1 15 1 1.63
SLIDER-799 148 0 60 13 31 1.3 1 8 1 0.86
WFCORE-1495 132 0 60 18 16 1.22 1 4 1 0.56

Total 712 1 300 68 147

Table 7.6: Summary of workers’ submissions. NoW stands for number of workers.

From the angle of workers, an approval rate of 58.3% has been achieved, meaning that the
auto classifier has rejected 41.6% of the workers based on the quality model that is described
earlier in Section 7.3. As illustrated in Table 7.7, 43% of workers who submitted assignments
below the acceptable quality threshold of CPP responded positively to the model (i.e. chose
to either improve their assignments or withdraw from the task): 22% decided to improve
their submissions, and 21% decided to exit the Crowd Feedback Loop (CFL).

QRQ1: Waste Reduction One of the model goals is to reduce the waste of time and
effort for both requester and worker. It can be measured by the reduction in the rejected
assignments as a result of workers either improving initial assignments or withdrawing from
the task. According to Table 7.7, the total number of workers who attempted to improve their
assignments is 157 (22%). However, only 25 (3%) workers were able to make it to the quality
threshold; 87 (12%) were not able to pass the quality check but decided to withdraw and save
their reputation, and 45 (6%) workers were not able to pass the quality check but insisted
on submitting their assignments. That represents a 15% waste reduction, from those who
were able to pass the quality check (3%) and those who attempted to improve but failed and
withdrew (12%). Adding to that the 154 (22%) workers who decided to withdraw without
any attempt to improve their assignments results in a total of 37% reduction in waste.

7.3. Improving Crowd Quality 131

Issue ID

Number of Workers

All Acc. Rev. PQT
Exit CFL Insist to Submit

All EnI EaI DaR All SnI SaI

FUSEDOC-2134 155 61 39 7 51 30 6 15 49 38 11
HIVE-4460 68 20 11 0 24 15 2 7 24 22 2
JBLAB-278 99 40 23 2 37 20 7 10 25 21 4
JBPM-153 110 60 20 3 29 20 2 7 34 26 8
SLIDER-799 148 60 33 6 52 36 5 11 43 32 11
WFCORE-1495 132 60 31 7 48 33 3 12 31 22 9

Total 712 301 157 25 241 154 25 62 206 161 45

Table 7.7: Number of workers across different crowd responses to the improvement compo-
nent. Acc. stands for Accepted, Rev. for Reviewed, PQT for Passed Quality Threshold, CFL
for Crowd Feedback Loop, EnI for Exit with No Improvement, EaI for Exit After Improve-
ment, DaR for Drop after Review, SnI for Submit with No Improvement, and SaI for Submit
After Improvement.

The total number of rejected assignments in this experiment is 215 (42%), as illustrated
in Table 7.6, compared with 73% rejected assignments in the preliminary CPP experiment
for the issues listed in Table 7.5. That represents a 31% reduction in rejected assignments
between the two experiments. To examine the significance of the difference in rejected
submissions’ ratio between issues in preliminary CPP experiment (Table 7.5) and issues in
this experiment (Table 7.5), a t-test of unpaired two-samples is applied. It results in t = 7.6982
with a p-value <0.0001. The test indicates a statistically significant difference between the
two experiments in the percentage of rejected submissions.

QRQ2: Crowd Response to Improvement Request One of the model assump-
tions is that crowd workers can be encouraged by drawing their attention towards possible
losses rather than promising additional incentives. As illustrated in Table 7.7, 157 (33%)
workers out of 472 attempted to improve their assignments. Crowd workers were success-
fully encouraged to take the additional effort and improve their submissions up to 15 times,
as shown in Table 7.6. However, not all workers were successful in their improvement at-
tempts. Out of the 157 workers, 70 (44%) workers improved their assignments but did not
reach the quality threshold; 45 (64%) of them decided to submit their assignments anyway
and 25 (36%) of them decided to exit CFL. Out of the 157 workers who attempted to improve
their assignments,62 (38%) workers dropped out of the whole CPP process, and 25 (16%)
successfully passed the quality threshold.

The total number of workers who positively responded to the quality model (i.e. attempted
to review or withdraw) is 311, whereas only 161 did not respond positively to the model

7.4. Discussion 132

(i.e. ignored the warning and insisted on submitting). To examine the difference between
these two groups statistically, the chi-square goodness of fit test was applied on these two
groups. The test resulted in X-squared = 47.67 with a p-value < 0.0001. The test indicates
a statistically significant difference between those who responded positively and those who
did not. Applying the same test but with a further detail introduced by adding the workers
who dropped out of the CPP process to those who did not respond positively resulted in X-
squared = 14.502 with a p-value = 0.00014. This test still indicates a statistically significant
difference between those who responded positively from those who did not.

QRQ3: Handling Unfair Treatment As part of the soft-reject procedure, all submitted
assignments of class C or D were held for a further review, as explained in Section 7.3.3.
Those assignments were reviewed manually with the aim of ensuring fair treatment of crowd
workers by accepting false negatives. 61 (8%) of submitted assignments were false negatives.
These were accepted but not included in the experiment results.

The percentage of false negatives in this experiment and the CPP preliminary experiment are
quite similar: 7.9% and 8.2%, respectively. While reviewing all the assignments and evalu-
ating them manually is not feasible, this can be an indication of similar ML performance, as
explained in Section 7.2.

7.4 Discussion

The first part of the chapter, under Section 7.2, measured crowd quality using a classifier.
There was a difference in the classifier performance between finding good crowd assign-
ments and inferior ones. The classifier performed better when classifying assignments with
lower quality, and less so with those of higher quality. A similar trend was mentioned
for [133]’s classifier. Their classifier was able to predict 96% of low-quality assignments,
whereas it predicted 92% of good ones. One reason behind such a trend is that a large num-
ber of the bad assignments had the same feature and were easily distinguished. Since those
submissions required no effort from crowd workers or were even automated, they came in
large quantities. Taking a closer look at the four classes mentioned in Table 7.6, workers
submitting class D assignments represented 68% of all rejected workers.

As a result, this trend may affect the classifier by making it greedy in assigning the first
quality class (A), as was illustrated in Table 7.6. The fewer “A” class assignments, the less
representation there is of them in the training set for the model compared with the other
classes. Taking this point from another perspective, the “A” class requires workers to satisfy
all the quality dimensions by guessing, which turns out to be quite tricky. In future experi-

7.4. Discussion 133

ments, a general checklist [237] can be given to workers to help them identify the weak area
of their assignment without exposing the classifier weaknesses.

The lack of information about what exactly the quality dimensions were impacted those who
submitted low quality assignments and attempted to improve them, but eventually dropped
the whole CPP process. This is clearly illustrated in Table 7.7, where 62 workers dropped
out of the CPP process after attempting to improve their assignments, representing 39.5% of
all workers who attempted to improve their assignments. While the workers are willing to
improve, they will not be able to calculate the cost, e.g. how many iterations, until they get
approved. That introduces a broader view of the cost of handling misclassification.

A cost model needs to be implemented in real-world scenarios to avoid unfair treatment of
crowds and abuse of requester resources. Such a model should find a balance point, where
the cost of appealing (treating a false negative) is less than the cost of submitting a high-
quality assignment, and higher than the cost of submitting a low-quality assignment. If the
cost of the appeal process is zero or near to zero, all rejected workers will appeal, and if
the appeal cost is higher than the cost of submitting a high-quality assignment, no one will
appeal, including those who were treated unfairly. Both extremes should be avoided, and a
cost model needs to be designed to find a balanced cost point that allows workers who are
treated unfairly by the classifier to appeal while deterring unengaged workers from abusing
the appeal process.

Assignment Quality vs Worker’s Behaviour Score This quality assessment does
not assume that a good worker always produces a good outcome, and thus, workers and
workers’ assignments are assessed independently using user behaviour and estimate justifi-
cation, respectively. This chapter speculates that good workers do not necessarily perform to
their best ability all the time. Good workers may submit a low-quality assignment in some
circumstances, e.g. under pressure. On the other hand, deliberate malice may be able to craft
an assignment that is very hard to distinguish from the legitimate assignment using machines
only. In such odd cases, methods that rely only on assessing workers’ behaviour or assign-
ment quality will not discover them. Table 7.8 shows the number of workers who submitted
good quality assignments (classes A and B) and bad quality assignments (classes C and D)
versus their behaviour scored as good behaviour (⩾ 4) or bad behaviour (< 4).

As illustrated in Table 7.8, 27% of workers behave in contrast to their assignment quality,
i.e. workers with good behaviour submitted bad assignments and vice versa. Judgement
based on workers’ behaviour only (293 workers) is more generous than judgement based on
assignment quality only (274). Blending both mechanisms may give a better understanding
of the overall work quality, and so the quality model in this chapter is designed accordingly.

7.4. Discussion 134

Assignment

Good Bad Total

Behaviour
Good 213 80 293
Bad 61 162 223

Total 274 242 516

Table 7.8: Number of workers who submitted good quality assignments (Class A and B) and
bad quality assignments (Class C and D) versus good worker’s behaviour score (⩾ 4) and
bad worker’s behaviour score (< 4)

Threats to Validity Possible threats to validity may come from the selected software
development issues. They are all from open-source communities and their information is
publicly available. However, this is mitigated by randomly selecting issues that vary in
the required efforts (8h–80h), description length (27–138 words), developer interactions (2–
21 comments), and source community (JBoss and Apache), see Table 7.5. At the same
time, those issues demonstrate similar features to those selected for the CPP preliminary
experiment where the classifier ground truth is developed. All the data are real- world data
and thus minimise risk to the construct validity.

Workers who submitted low-quality assignments are presented with a warning message of
possible losses with three options to select from. To minimise possible bias of the interface
on workers’ decisions, all options are presented equally in terms of their size and fonts. How-
ever, it was important to distinguish them using different colours. Thus, blue was used for
the review option, red was used for the withdrawal option, and grey was used for submission.
Figure 7.2 shows the CPP interface with the warning message along with the three options
for crowd workers to select from.

Table 7.7 shows that 33% of workers were encouraged to review their assignments. This
contradicts the initial assumption that says encouragement needs incentives. Applying the
chi-square goodness-of-fit test with this assumed distribution, by allocating a minority of
workers to review their assumptions (10%) and the rest of the workers equally divided be-
tween withdrawing and submitting their assignments, (10% for review, 45% for withdraw
and 45% submit), resulted in X-squared = 283.92 with a p-value < 0.0001. The test indicates
a statistically significant difference between the original assumption (no one encouraged to
review without incentives) and the actual results. However, it is not clear whether such an
uptake is because of the message that is framed to attract workers’ attention to possible losses
or simply because the option is available. The workers were equally distributed across the
three available options: review, withdraw, and submit. Thus, there is not enough evidence to
decide whether the loss-attention strategy has worked in this situation.

Conclusions regarding crowd quality measurement, waste reduction, and assignment im-

7.5. Summary 135

provement are considered after applying corresponding statistical tests on unbiased mea-
sures including ROC-AUC and Recall for quality measurement, number of total rejected
assignments for waste reduction, and the number of workers selecting improvement options
(review or withdraw) for measuring the effect of encouraging workers to do better without
additional incentives.

Threats to external validity is also mitigated by incorporating issues from different open-
source projects. While the issues vary, they do not represent all kinds of software. For
instance, commercial software projects, where the tightest time management is expected, are
not included. Further investigation of such systems and projects is needed.

Now that the quality of crowd work can be measured and improved, the next step is to go back
and investigate the crowd’s ability in predicting reliable estimates for software development
tasks in a more extended experiment, perhaps involving issues of a different nature, such as
bug fixing and software enchantment tasks, to minimise threats to CPP’s external validity.

7.5 Summary

While controlling the quality of work in a closed environment, e.g. a company with known
contractors, is relatively manageable, it is challenging in an open crowdsourcing market such
as AMT. Such an environment is filled with pitfalls, including quality assessment, subjec-
tivity, and fraudulence, leaving crowd employers with mostly useless outcomes. However,
crowdsourcing markets are the best at providing accessible, flexible, and cheap access to
human capital around the clock.

A quality management suite consisting of three components is illustrated and detailed through-
out this chapter. It starts with quality definition, where six quality dimensions are defined
and specified for the CPP process. Then, an assessment component explains different assess-
ment strategies and concepts suitable for the context of CPP. The third component deals with
quality improvement for CPP assignments and details how waste can be reduced through a
lean-inspired method.

As an application of the quality management suite, a quality model for CPP is proposed. It
consists of five elements that reflect the concepts explained in the suite. It also highlights the
ethical concern regarding using human crowds in experimental work, and explains how that
is treated using a special handling scheme.

Moreover, two experiments were designed and conducted to evaluate the proposed CPP qual-
ity model. The first experiment investigated the performance of the assessment classifier. It
found that the classifier performance is consistent with a 93% F1 score. The second exper-
iment examined and observed crowd workers’ response to the improvement element of the

7.5. Summary 136

model. Its results suggested that 70% of the rejected workers responded positively to the
improvement element by improving their assignment (37%) or withdrawing from the task
(32%).

While the two experiments suggest positive results, the next chapter will show more extended
experimental work to ensure the generality of the quality model and its performance for a
large number of issues and a wider range of issue types.

137

Chapter 8

Playing Planning Poker in Crowds:
Human Computation of Software
Effort Estimates

Chapter 6 introduced Crowd Planning Poker (CPP) as an estimation method based on the
implementation of the Agile Planning Poker practice in a crowd, and Chapter 7 addressed the
subsequent assignment quality issues that arose. This chapter contributes through a extended
evaluation of the full design of Crowd Planning Poker on a diverse range of issues. Thirty
of the issues had not previously been used in experiments. They comprise feature requests,
software enhancements, and bug fixes, from three different open-source projects. In total, 80
Crowd Planning Poker rounds were executed and 807 estimates were received. Actual effort
for task completion reported in the issue repositories ranged from half a day through to two
weeks. In addition, this chapter details the application that was developed to execute the CPP
process and orchestrate worker activity on the Amazon Mechanical Turk (AMT) platform.

This chapter is organised as follows. The next section reviews the involvement of human
computation in playing CPP along with its challenges and the development of a system
that can orchestrate CPP. Then Section 8.2 illustrates the experimental design to evaluate the
automated version of CPP. It explains the dataset used and selected issues, the CPP workflow
used, and how the quality model is implemented. Next, Section 8.3 lists the experiment
results along with the result evaluations. It shows the performance of CPP for software
effort estimation (SEE) and the scalability of the process. Then, Section 8.4 discusses the
experiment results in the light of additional benefits of CPP and possible threats to validity.
The last section summarises this chapter and traces the direction of the next step in this thesis.

8.1. Full Design of Crowd Planning Poker Using Human Computation 138

8.1 Full Design of Crowd Planning Poker Using Hu-

man Computation

As explained in the thesis introduction (Chapter 1) and reviewed in the Literature Review
(Chapter 3), human computation is an emerging discipline with a variety of promising appli-
cations. The proliferation of crowdsourcing platforms enabling access to human workers on
platforms such as AMT has industrialised this mechanism. This section explains the details
concerning human computation in the revised CPP. The introduction of human computation
in CPP is to automate the auditing of crowd assignment quality and to help orchestrate CPP
without requiring the researcher to intervene in the CPP process.

The notion of human computation is that machines in some computation processes are not
capable of taking some decisions, and thus, they need a human to compute that piece of the
process. Human Computation as a discipline studies the involvement of humans in a machine
computation process without interrupting or changing the context or direction of the pro-
cess. Since humans are the cornerstone of human computation, crowdsourcing works very
well with it by providing easy and flexible access to human capital. Similarly, large-scale
development efforts such as open-source communities will be able to use CPP in estimat-
ing their projects and issues. Organisations do not necessarily need to hire crowds outside
their communities; CPP can be used within an organisation, using its own human capital.
CPP also could help in slightly different applications such as task triage, which is currently
challenging for open source communities, as Hooimeijer and Weimer [244] noticed in their
overview:

“For software that is widely deployed, the number of bug reports typically outstrips the
resources available to triage them.”

The CPP process presented in this chapter is similar in many aspects to the process described
in Chapters 6 and 7. However, the revised process is described in full to present a single view
of the whole process used for the full experiment, and to address the human computation
aspects of the process.

Thinking of CPP as an automated process, a machine needs to take decisions about the
crowd’s assignment quality and the estimation process along with the process orchestration
tasks such as hiring qualified crowd workers. However, machines might not be as good as
humans at linking previous experiences and providing estimates of a given task. Thus, the
machine involves humans to compute what is necessary without handing the process to the
humans or changing the overall process. Chapter 7 starts the process by merging human and
machine computations in the quality model, and this chapter will draw a complete picture
of the automated CPP using human computation in different CPP aspects after addressing
possible challenges.

8.1. Full Design of Crowd Planning Poker Using Human Computation 139

In the pilot experiments (Chapter 6), quality assessment was a manual process and there
was no option for crowd workers to improve their assignment. Submitted assignments were
assessed manually using a legitimacy score. The manual handling of quality prevented the
experiment from engaging crowd workers in a feedback loop, and thus the quality improve-
ment step needed to be conducted separately by posting additional Human Intelligence Tasks
(HITs) to fill the gap created by rejected assignments. Such handling of quality results in ex-
tra financial costs and takes a prolonged period of time.

Additionally, running CPP with a large number of software development tasks, as intended
in this chapter’s experiment, demands an automated orchestration of all CPP activities, in-
cluding the quality assessment. For instance, HIT configuration, recruiting crowd workers,
and deciding when an estimation round is mature were done manually in previous experi-
ments. Sometimes, a HIT got posted more than once when no one picked it or the hired
worker submitted unacceptable assignment quality.

Therefore, quality evaluation in earlier experiments in Chapter 6 was conducted manually by
the researcher and employed crowd workers for the purposes that are stated in their design.
While it shows an encouraging result in that regard (using the crowd), the process was un-
practical from the side of the requester (the researcher). Human computation can take over
the requester role and start executing and administering the process automatically, including
crowd management. Therefore, the earlier version of CPP was using a human-to-human pro-
cess, whereas the revised version uses a machine-to-human process to support automation.

To implement the machine-to-human process, a CPP web application was developed to com-
municate with AMT and provide a customised interface for crowd workers to carry out the
CPP process. The CPP application was implemented using Python. It implements CPP com-
ponents including administration, quality, and AMT integration using AMT’s Application
Programming Interface (API). It also uses the Django framework to provide a web interface
access for the researcher to enter issues, observe the process, and retrieve results. CPP is in-
tegrated with AMT to smoothly handle the workers’ transitions between the application and
AMT as if they are a single system. The development of the CPP application was essential
in order to implement the quality model explained in Chapter 7, especially the improvement
step where a crowd worker needs to be engaged in the Crowd Feedback Loop (CFL), which
is beyond AMT’s capabilities. Further, the CPP web application is designed to collect a log
of the workers’ interactions with the CPP user interface, which cannot be done using the
AMT platform alone. Figure 8.1 illustrates the 15 activities of CPP using Business Process
Model and Notation (BPMN), along with their operators, and the rest of this section will
explain the process activities.

HIT Configuration.

Starting with the configuration before recruiting crowd workers, there are 15 configuration

8.1. Full Design of Crowd Planning Poker Using Human Computation 140

Automated CPP
CPP Operator

Recruit

Workers

Quality
Assessment

HIT
Configuration

Educate
Workers

Stop
Determination

Final Estimate
Production

Accept

Reject

No

Yes

AMT Response

Crowd Worker

HIT & Issue
Understanding

Pro. Assig.
Submission

Understanding
Feedback

Assignment
Improvement

Assignment
Submission

Withdraw

Improve

Submit
as-is

Search for Extra
Information

Estimate
Prediction

Estimate
Justification

Figure 8.1: This is an illustration of a model process using Business Process Model and
Notation (BPMN). Pro. Assig. stands for Provisional Assignment.

8.1. Full Design of Crowd Planning Poker Using Human Computation 141

Figure 8.2: Screenshot of AMT showing CPP HIT specifications.

parameters [245] that need to be defined and specified. According to AMT, most of these
do not need to change during the process and can use templates to set them, such as “De-
scription” and “LifetimeInSeconds”. However, other parameters are dynamic and need to be
managed dynamically during the execution of the CPP process, such as “MaxAssignments”
where the number of required workers is defined.

Crowd Worker Recruitment.

Next, the requester posts the HITs and then the AMT lists the HITs on the platform, see Fig-
ure 8.2 for an example of a CPP HIT along with other HITs. After posting a HIT, the system
waits for crowd workers to pick the HIT and accept the HIT terms. Only qualified workers
can accept the HIT, and all the HIT qualifications are listed beside the HIT description, as
shown in Figure 8.2

HIT Understanding.

After a qualified worker picks a HIT, the worker first reads the HIT instruction (Figure 8.3),
and then initial information about the issue (title and description) is presented to the crowd
worker via a web-based user interface. The worker reads and analyses the targeted soft-
ware development issue. Ideally, the worker’s analysis of the issue description results in a
breakdown of the issue into smaller components that can be easily estimated according to
the worker’s knowledge.

Search for Knowledge.

The worker may need to look for additional information that can help in sizing the problem.
CPP offers three additional pieces of information about the issue which the worker can opt
to look at. CPP offers a dictionary, a project overview, and development team comments,

8.1. Full Design of Crowd Planning Poker Using Human Computation 142

Figure 8.3: HIT instructions as they are listed in the CPP application.

8.1. Full Design of Crowd Planning Poker Using Human Computation 143

see Figure 8.4. This information includes contextual project details, such as definitions of
ambiguous terms and abbreviations, or more information about project-specific terms, such
as the name of a software component that appears in the description. The crowd worker can
also access comments that were posted on the issue. Further information can be searched by
the developer using a search dialog provided on the user interface.

Estimate Prediction.

After having accessed the issue information and its background, the worker can move on to
the next step by selecting an estimate category that fits the worker’s estimate for effort, as
shown in Figure 8.4.

Explain The Rationale.

Right after picking an estimate category, the worker is asked to justify the selected estimate.
Ideally, the worker will list the sub-components from the analysis along with how much effort
the worker predicts for those components. Additional comments about how to resolve the
issue or what tools and technology might be helpful show that the worker is fully engaged.
The worker can write the justification for selecting such an estimate in the text box shown in
Figure 8.4.

Assignment Submission.

Now the worker can submit the assignment to the CPP system. This is different from the
AMT assignment submission request. Before communicating with the AMT API, CPP re-
ceives the assignment as a provisional version that needs to be assessed, and it could be
different from the final one.

Quality Assessment.

While the worker is waiting for a response from the web browser, the CPP process conducts
a quality assessment on the worker assignment. The assessment happens in real time. Af-
ter quality assessment, CPP automatically annotates the assignment with the proper quality
class based on the submitted provisional version of the assignment. The quality assessment
outcome is either to accept or reject the assignment, as detailed in Chapter 7

Quality Feedback.

If the assignment’s quality is below a certain threshold, a feedback step is taken by commu-
nicating the evaluation result to the worker. By then, the worker is engaged in the CFL, as
explained in Chapter 7.

Understanding Feedback.

The worker receives the feedback if the assignment is classified as low quality, as illustrated
in Figure 8.5. After understanding the feedback, the worker is offered three options: 1)
improve the assignment, 2) withdraw from the process, or 3) submit the assignment as-is.

8.1. Full Design of Crowd Planning Poker Using Human Computation 144

Figure 8.4: List of extra information that includes term definitions, development team com-
ments, and development project brief. Crowd workers also can do a web search using
Google. This screen also lists possible estimate options for the worker to pick from and
a text box to write a justification for selecting such an estimate.

8.1. Full Design of Crowd Planning Poker Using Human Computation 145

Figure 8.5: Low quality warning message presented to crowd workers who submitted low-
quality assignments, with three options: review, withdraw, or submit.

Withdrawing from the process or submitting the assignment as-is will terminate the process
for the worker and mark the assignments accordingly.

Assignment Improvement.

If the worker decides to improve the assignment, the worker will be returned to the previous
screen to add any modification to the estimation and/or justification. The worker can work
in the CFL until the desired quality is reached.

AMT Response.

Either by submitting a provisional assignment with the required quality or by exiting CLF,
an AMT response request is initiated to accept or reject the assignment on the AMT platform
and CPP system. In case of approval, the process approves two aspects: a CPP approval to
include the assignment in determining the final estimate, and an AMT approval to pay the

8.1. Full Design of Crowd Planning Poker Using Human Computation 146

Figure 8.6: Screenshot of one of the CPP admin screens. It shows a list of rounds along with
the round details, including how much time a round has taken, the crowd consensus (Fleiss’
Kappa %), round number, and status.

worker for the assignment.

Process Stop Determination.

Then, CPP checks whether the workers have reached a consensus or the maximum number of
iterations has been reached to determine whether another CPP round is necessary. If a further
round is required, the crowd workers are offered a summary of the low, median, and high
estimates from the previous round, along with the justifications provided. The provision
of this supplementary information mimics the design of in-person Planning Poker. Seed

answer refers to the summary of the previous round that is fed back to the crowd workers,
in a similar way to the discussion that takes place in in-person Planning Poker. If the CPP
limits are reached, the process stops recruiting more workers and deletes any HITs listed at
AMT. Figure 8.6 shows a monitoring screen for CPP rounds. It lists detailed information for
each CPP round, including how much time a round has taken, the crowd consensus (Fleiss’
Kappa %), round number, and status.

Final Estimate Production.

After that, CPP aggregates the estimates from the final round which have already been nar-
rowed by the workers during the CPP rounds. Figure 8.7 shows a screenshot of the dashboard

8.2. Experimental Design 147

where the issues are listed after the final estimate is produced. The green rows represent the
issues where crowd workers produced estimates more accurate than or similar to the ex-
perts’ estimates, and the red rows are for issues with crowd estimates worse than the experts’
estimates.

8.2 Experimental Design

Earlier experiments of CPP in Chapter 6 and Chapter 7 were designed and conducted to
serve subtopics of the CPP design and experiment with its quality management options.
Also, they were conducted using a limited number of issues. Although those experiments
helped determine working settings for CPP and showed promising results for its efficiency
and reliability, a more rigorous experiment with an extended number of issues needed to be
undertaken. The aim was to confirm earlier conclusions and extend the method applicability
to a wider range of issues. Therefore, this chapter aims to find answers to the following CPP
research questions (CRQ):

1. CRQ1: Given a software task that required between half a day and two weeks of
effort, are crowdsourced effort estimates, which are produced by the automated CPP,
of comparable accuracy to those of experts?

2. CRQ2: How does the cost (money and time) of crowdsourced estimates compare with
those produced by small groups of experts?

This section details an experimental design to compare the performance of a crowd in pro-
ducing software task estimates with those produced by project expert estimation. It starts
with a description of the software tasks that formed the objects of the experiment. It then
describes the automated CPP adaptation of Planning Poker and our technique for filtering
estimates provided by the crowd workers based on the quality of an associated justification
and their behaviour. In addition, it reviews the outcome of the third preliminary experiment
that assisted in the design of the CPP process.

The purpose of the experiment is to determine whether the CPP process performed by crowd
workers and orchestrated by a machine can produce estimates comparable to those of ex-
perts. Therefore, it was necessary to obtain a set of software tasks that had been annotated
with both an expert-estimated and an actual effort, providing an experimental baseline and a
ground truth, respectively. The JOSSE dataset was found to satisfy these criteria.

After filtering the JOSSE dataset, 419 issues were found that had been annotated with both
an expert time estimate and actual time spent in person-hours. Although the communities
behind those issues have published their issue reporting documentation, the research was not

8.2. Experimental Design 148

Figure 8.7: The screenshot shows a list of software development issues (a row for each
issue) along with expert and crowd estimates. The green rows represent the issues where
crowd workers produced estimates more accurate than or similar to the experts’ estimates,
and the red rows are for issues with crowd estimates worse than the experts’ estimates.

8.2. Experimental Design 149

able to determine exactly how the estimated or actual times were produced. After reach-
ing out to several community team leaders to determine the exact estimation process, the
researcher realised that the estimation process depends on their experience and there is no
structured process to follow for producing software estimates.

Moreover, the issue history log shows that estimated effort had been determined by one or
more of the issue assignees. Therefore, the estimated effort reported by the development
team on the issue is referred to as an expert estimate in this study (see Section 4.3 in Chapter
4).

This experiment follows the previous design of using a relative unit for effort estimation
instead of using literal person-hours; extra details have been illustrated in Chapter 6. The
units of effort were labelled as one hour, half a day, one day, half a week, one week, two
weeks, and more than two weeks. Therefore, the reported efforts in the issues were translated
into those categories, based on an 8-hour day and 40-hour working week. This enabled a
comparison between the CPP estimates and the person-hour costs reported on the issues.

Further narrowing filtered down the population to 126 issues, to avoid issues that:

• required less than 30 minutes or more than two weeks to complete;

• contained less than 20 words in the description and were assumed to be too vague; or

• had received no comments and so were assumed to not be of interest to the community.

Thirty (30) issues were randomly selected from the filtered data set for use in the experiment.
To ensure that a diverse range of effort magnitudes were included, issues were first organised
into effort categories ranging from one hour through to two weeks, as described above. Issues
were then selected randomly from these categories for inclusion in the sample. URLs for
the selected issues were obtained from the JOSSE dataset. Issues selected were found to
comprise a mixture of bugs, feature requests, and enhancements.

Before proceeding, it was necessary to check whether the expert estimates for the selected
issues were representative of the whole data set. The selected sample might represent an
artificially low baseline if the estimates they contain are less accurate than those for the
population of issues as a whole. To do this, the mean absolute error, median magnitude
of relative error, and mean magnitude of relative error were calculated for the three sets of
issues (all estimated issues, filtered issues, random sample), as shown in Table 8.1. The
results show that the average estimation performance by experts in the sample is slightly
better than for the whole or filtered set of issues. This assessment demonstrates that the
selected baseline (the expert estimates in the sample) is suitable for use in the study.

Crowd workers (the study subjects) were recruited from the Amazon Mechanical Turk plat-
form [246]. Only workers with a self-declared experience of at least two years of software

8.3. Result and Evaluation 150

#
Mean

Absolute
Error (hours)

Median
Magnitude of
Relative Error

Mean
Magnitude of
Relative Error

All 419 ±29.3 128% 2475%
Filtered 129 ±12.0 100% 773%
Sample 39 ±10.5 90% 440%

Table 8.1: Comparison of estimation error metrics of the whole population (419 issues),
filtered set of issues (126), and selected sample (30).

engineering were permitted to participate. Each estimation session employed a group of
between 5 and 15 workers.

8.3 Result and Evaluation

Thirty trials were conducted (one per selected issue), as summarised in Table 8.2. All trials
proceeded until an ‘Almost Perfect’ level (>0.75) [247] of agreement was reached amongst
the crowd workers, measured using Fleiss’ Kappa [221]. The crowd workers reached a
consensus within three rounds in all trials, with nine trials ending after a single round, ten
trials ending after two rounds and eleven trials requiring three rounds of estimation.

Each round of CPP received between 10 and 5 estimates, with an average of 8 estimates
received in each round, resulting in a total of between 5 and 30 estimates for each trial.
Each round was kept open until a minimum of five estimates of sufficient quality had been
received. Unlike the earlier pilot study, the proportion of rejected estimates was much lower,
averaging 39% across all trials and reaching 50% in Trial 2 and Trial 9. The reduction in low-
quality submissions is likely due to the automatic quality assessment and feedback process
explained in Chapter 7.

The table also shows a comparison between the final aggregate estimate produced by the
crowd for each trial and the expert (baseline) estimate and actual effort (ground truth) for the
issue as reported in the source project’s issue tracker. The category (one hour, half a day,
etc.) of the final estimate and actual effort is reported in all cases.

Further, the Magnitude of Relative Error (MRE) is shown for both the crowd and expert
estimates, relative to the actual effort. The MRE for expert estimates was calculated directly
from the effort estimates reported in the respective project’s issue tracker. For crowd workers,
the categorical estimates from individual estimates were translated back to person-hours,
from which a mean estimate was calculated. The next two sections review these results with
respect to the original research questions.

8.3. Result and Evaluation 151

Estimates Crowd
Agreement

Expert
Estimate

Crowd
Estimate

Trial NoR All AC RE (Fleiss’
Kappa %)

Actual
Effort

Category
Category MRE Category MRE

1 1 6 5 1 APrA 76.19% A day Half a week 100% Half a day 50%
2 2 20 10 10 APrA 76.19% One Hour A day 500% A day 700%
3 3 26 15 11 APrA 76.19% One Hour One Hour 0% A day 700%
4 2 12 10 2 APrA 80.95% Half a day Half a day 0% A day 100%
5 1 10 5 5 APrA 79.17% One Hour Half a day 100% One Hour 0%
6 2 17 10 7 APrA 76.19% One Hour One Hour 0% Half a day 300%
7 1 7 5 2 APrA 79.17% Half a week Half a week 20% Half a day 80%
8 1 7 5 2 APrA 79.17% One Hour A day 700% Half a day 300%
9 3 30 15 15 SuA 66.67% Half a day Half a day 25% Half a day 0%

10 1 7 5 2 APrA 76.19% Half a day A day 50% A day 100%
11 3 26 15 11 SuA 66.67% One Hour Half a week 2300% Half a day 300%
12 1 8 5 3 APrA 79.17% One Hour One Hour 0% Half a day 300%
13 2 16 10 6 APrA 83.33% Half a week Half a week 20% A day 60%
14 2 18 10 8 APrA 79.17% Half a day Half a day 25% A day 100%
15 2 16 10 6 APrA 83.33% Half a week Half a week 20% Half a day 80%
16 2 22 10 12 APrA 79.17% One Hour Half a week 2300% One Hour 0%
17 2 24 10 14 APrA 76.19% Half a day One week 1100% Half a week 400%
18 2 14 10 4 APrA 83.33% Half a day Two weeks 1700% A day 100%
19 2 17 10 7 APrA 75.0% Half a day Half a week 300% A day 100%
20 3 21 15 6 APrA 79.17% One Hour Half a day 300% Half a week 1900%
21 3 19 15 4 SuA 70.83% Half a day Half a day 0% Half a day 0%
22 3 24 15 9 APrA 76.19% One Hour Half a day 200% One Hour 0%
23 1 9 5 4 APrA 83.33% Half a day A day 100% Half a day 0%
24 1 5 5 0 APrA 79.17% A day Half a week 200% Half a week 150%
25 3 26 15 11 SuA 71.43% One Hour One Hour 0% Half a day 300%
26 3 17 15 2 APrA 80.95% A day Half a week 100% Half a week 150%
27 3 23 15 8 SuA 66.67% Half a day Half a day 0% Half a day 0%
28 3 22 15 7 SuA 52.38% A day Half a week 100% Half a week 150%
29 3 27 15 12 SuA 66.67% One Hour One Hour 0% A day 700%
30 1 10 5 5 APrA 83.33% Half a day Half a day 0% One Hour 75%

Total 62 506 310 196

Table 8.2: Summary of trial results, including number of estimates received, accepted, and
rejected, outcome for each round and overall trial, and level of agreement achieved within
the crowd. The abbreviations APrA and SuA in the agreement column stand for Almost
Perfect Agreement and Substantial Agreement, according to Munoz and Bangdiwala [247].
NoR stands for Number of Round, AC for Accepted, and RE for Rejected.

8.3.1 Crowd Performance Compared with Experts

The CRQ1 research question concerns the reliability of the crowd estimate compared with
the expert estimate and actual effort. The results of the 30 trials conducted are reported
in Table 8.2. The table reports the total number of rounds for each trial, along with the
number of accepted and rejected submissions. The table also shows the category of actual
effort required for the task concerned, the expert’s estimate, and the estimate produced by
the crowd. Estimates in bold are the estimates closest to the reported effort (either expert or
crowd, or both if the error was equal). Estimates are also underlined if the correct category

8.3. Result and Evaluation 152

was estimated.

As can be seen from the table, the crowd workers correctly predicted the effort category for 7
of the 30 trials (5, 9, 16, 21, 22, 23, 27), as compared with 13 trials by the expert estimator (3,
6, 7, 9, 12, 13, 14, 15, 21, 25, 27, 29, 30). This indicates that expert estimators significantly
outperform crowds when considering only correct predictions.

However, when considering reliability more broadly, it can be seen that the crowd workers
produced the same estimates as experts in 8 trials, crowd workers were more accurate in
10 trials, and experts more accurate in 12 trials. In addition, comparing the Mean MRE of
crowd estimates (239.83%) with the Mean MRE of expert estimates across all the issues
indicates that the crowd workers’ error is less than the experts’ by 102.19%. This suggests
that crowd workers are more likely to underestimate by a category, while experts are more
likely to overestimate using person-hours.

This comparison was checked by investigating whether a statistically significant difference
existed between the distributions of the MREs for the crowd and expert produced estimates.
First, the Shapiro–Wilk test was applied to both MRE distributions to determine if either
were normal. The results of the test for crowds (W=0.60984, p=9.645e-08) and experts
(W=0.57812, p=3.987e-08) indicate that both were non-normal. Therefore, the Mann–
Whitney U Test was applied, since both distributions were assumed to be independent. Ap-
plying this test to the two distributions resulted in a rejection of the null hypothesis (W=497,
p=0.4861), indicating that there is no statistically significant difference between the MRE
distributions, and thus, that the two effort estimation techniques have similar accuracy.

8.3.2 CPP Scalability

The CRQ2 research question addresses the scalability of Crowd Planning Poker, compared
with a Planning Poker estimation activity conducted by a team of experts. Table 8.3 sum-
marises the costs and effort associated with the trial.

The table shows that the total amount of time that crowd workers took to produce an estimate
through CPP ranged from 17 to 76 minutes, including idle time. Unsurprisingly, the number
of rounds in a trial had a significant influence on the time taken, with Trial 8 requiring
just a single round and lasting just four minutes, for example. These results suggest that
producing an estimate from a crowd takes some additional time compared with a Planning
Poker process conducted by a group of experts, as described in Chapter 3.

Expert estimation may also be considerably faster when the expert group already has a good
understanding of the task to be estimated and can rapidly achieve consensus without the
need for discussion. Nevertheless, the results demonstrate that crowds can produce estimates
relatively quickly and on demand. In addition, the work demonstrates that CPP can estimate

8.3. Result and Evaluation 153

Estimates
Trial Sign-ups Received Paid Minutes Cost
10 105 6 6 35 $0.9
11 253 20 15 51 $2.25
12 366 26 20 70 $3.0
13 230 12 11 45 $1.65
14 118 10 7 32 $1.05
15 302 17 13 62 $1.95
16 163 7 7 21 $1.05
17 202 7 5 17 $0.75
18 643 30 23 74 $3.45
19 88 7 5 28 $0.75
20 474 26 17 59 $2.55
21 131 8 7 33 $1.05
22 348 16 12 54 $1.8
23 476 18 16 63 $2.4
24 285 16 10 54 $1.5
25 393 22 15 71 $2.25
26 323 24 16 68 $2.4
27 307 14 12 48 $1.8
28 342 17 13 76 $1.95
29 425 21 16 71 $2.4
30 553 19 16 67 $2.4
31 324 24 20 71 $3.0
32 215 9 7 28 $1.05
33 52 5 5 35 $0.75
34 544 26 18 61 $2.7
35 258 17 16 66 $2.4
36 449 23 22 60 $3.3
37 303 22 18 57 $2.7
38 408 27 20 57 $3.0
39 241 10 9 19 $1.35

Total 9321 506 397 1553(26Hrs) $59.55
Mean 311 17 13 52 $1.99

Table 8.3: Breakdown of trial costs.

8.4. Discussion 154

multiple tasks in parallel, as compared with in-person Planning Poker, where only one issue
can be considered at a time.

Table 8.3 also reports the cost for conducting the trials, showing an average cost of $1.99 to
produce a final estimate (again, this figure is influenced by the number of rounds taken in a
trial). This cost would appear to compare very favourably with the cost of running a Planning
Poker session with a software team. Assuming that a team of five developers with an average
hourly salary of $40 (excluding other costs) can estimate 10 tasks in hour, the average cost
per estimate would be $20. Thus, the results of the trials demonstrate the potential for a
significant cost saving.

8.4 Discussion

Beyond estimates, an additional benefit of requesting a rationale from crowd workers when
they supply their estimate is that further insight and analysis of the task to be estimated can
be obtained. This phenomenon was first noted in the pilot studies in Chapter 6. Many of
the workers provided useful information about how to approach the task. Such advice and
guidance was often very detailed, for example, on a task concerning the creation of a preview
mode for sites using the Apache Maven site plug-in (MSITE-68), a crowd worker wrote:

“This seems like a good case for building at the DOM level, to ‘implement’
the changes in parallel for the previews. If that is in fact the case, it would
probably take about a day to get a working prototype. If not... then a day would
also probably be enough to know that this simply cannot be done.”

The crowd worker provides a suggestion that the resolution of the issue can be done by
monitoring a page’s DOM for changes to create a preview. They also include a suggestion
that a prototype should be created first to determine whether the feature is feasible.

For another issue, concerning the implementation of a new indexing mechanism for a JBoss
workspace, the crowd worker provides a detailed breakdown of the work to be done:

“1. How to determine, and what is the most efficient and accurate query for
nodes and necessary information?

2. Initial testing for viability of indexing nodes (no lost data, consistency,
etc.)

3. Deeper testing including stress testing at higher node counts, ensure all
threads are deleted, etc.”

8.4. Discussion 155

In particular, the crowd worker emphasises the importance of different types of testing, not-
ing that non-functional testing should be treated separately from the design and functional
testing of the feature.

These examples were intriguing, as the researcher had not anticipated that crowd workers
would provide insights with significant domain specific knowledge. These suggestions and
explanations have the potential to be of significant assistance to a team during the wider
triage process for a software task that occurs alongside estimation. Overall, the results also
demonstrate that the CPP process can effectively discriminate between tasks of different
orders of magnitude, ranging from half a day through to two weeks.

8.4.1 Threats to Validity – Issue Availability

A limitation of the study was employing issues created for open-source projects. This de-
cision was necessary as the experiment required a source of software tasks that could be
provided to anonymous crowd workers and that had been annotated with expert-estimated
and actual work costs. This meant there was a risk that the crowd workers could access the
issue trackers themselves and simply supply the actual reported cost, creating a threat to the
validity of the reliability results.

This risk was mitigated in several ways. First, the issue identifiers were not supplied to the
crowd workers, and issues were selected from issue trackers that required user registration.
This created an additional step to deter workers. Second, workers were asked for a categor-
ical submission, rather than an absolute person-hour value, creating an additional step if the
source issue was accessed. Finally, workers were encouraged to supply their own estimate
and it was clear that payment was not contingent on supplying the correct result. Conse-
quently, there is no evidence in the behaviour logs that the workers accessed project issue
trackers, although this may have occurred outside the CPP user interface.

Since the software development issues were selected from open-source projects, the expert
effort estimations may have been changed in a later stage and the actual reported effort may
not reflect what a task actually took. As explained above, data confidentiality limited source
options to open-source projects. In addition, the variety of software development projects
and the abundance of information may not be easily collected from different sources such as
commercial software development houses.

The risk of tampering with the expert estimate at a later stage was mitigated by reviewing
the change log of the issues. None of the issues’ estimates were found to be changed after its
initial entry. In addition, the issue change logs were reviewed with respect to the reporting of
actual effort. The issues’ change logs show that the actual efforts were updated at the same

8.5. Summary 156

time as a major change of the issue properties, e.g. issue status. This is an indication that the
actual efforts were kept by the issue assignee.

Further, crowd workers were asked to self-assess their experience in software development.
Not all workers would necessarily have such experience, and thus there was a risk of having
workers without software experience. Another option to assess the workers’ experience is
to ask them to take an exam. While this is a viable option, it increases the burden on the
workers and thus may result in extra money incentives being required. Similarly, for extra
fees, AMT offers the option to hire workers who have undertaken an assessment of their
software development experience by AMT. Both options increase the overall cost of CPP,
which limits its scalability.

The risk of having workers with no software development experience is mitigated by asking
the worker to explain their experience and quantify it in a declaration form as part of the HIT
instruction, see Figure 8.3. In addition, workers with no experience in software development
may struggle to provide a quality justification for their estimates. That was clear during
the soft-reject process, where the researcher reviewed the auto-rejected assignments and re-
turned to the experience declaration to find that most workers with no or unclear experience
declarations had submitted low-quality justifications and thus they were rejected.

8.5 Summary

While the literature suggests that most of the SEE academic research is in the area of ML
SEE methods, it also illustrates how the industry is relying on expert-based SEE methods
such as Planning Poker. Narrowing the literature gap by investigating and developing an
expert-based SEE is one of this chapter’s outcomes. It adds to the earlier development of
CPP by automating the process using a human computation orchestration methodology.

Human computation can boost machine artificial intelligence computation by delegating part
of its computation to a human to process. Such a part might be impossible for a machine
to compute, or it might produce unreliable outcomes without human intervention. For CPP,
that part comprises the individual estimates that work as seeds which are grown by the ma-
chine in order to produce a final estimate. The machine uses CPP, a process inspired by
Planning Poker, to collect individual estimates from crowd workers and then aggregate them
to produce the final estimate.

In order to examine the process efficiency and practicality, an experiment was designed to es-
timate prior software development issues that are annotated with actual and expert-estimated
efforts. Since the process is automated, the budget is the only limit on the number of issues
to be estimated. Thirty issues were randomly selected from a filtered list of JOSSE dataset
issues.

8.5. Summary 157

Then, an experiment was conducted to estimate those issues. The aim of the experiment
was to see whether the automated CPP process is able to produce estimates that are com-
parable with expert-estimated efforts. The results indicate that CPP successfully produced
estimates that are comparable with expert estimates. These results therefore present several
opportunities for future research directions. First, an observed benefit of CPP compared with
in-person Planning Poker is the ability to obtain results on demand, rather than needing to
wait for a team’s regular planning session. In addition, it was noted that the crowd workers
often provided useful insights as to the best approach to take to resolve the issue and the
sub-tasks that this might involve. Therefore, CPP could be used by a software team to obtain
an initial estimate for a task along with some initial guidance, prior to the task being triaged
by a team member.

While crowd workers were able to produce expert-comparable estimates using CPP, more
details are needed about how the workers were able to do that and which part of CPP partic-
ipated in enabling the worker to produce such reliable estimates. Therefore, the next chapter
will investigate the workers’ behaviour and draw insights into how the workers interact with
the CPP process.

158

Chapter 9

Crowd Estimator Personas: an
Ethnographic Study of Crowd
Behaviour

The preceding chapters of the thesis have demonstrated the feasibility and reliability of
Crowd Planning Poker (CPP). However, fine-grained details about how crowd workers pro-
duce software effort estimates and which circumstances help crowd workers to produce such
estimates are not addressed. Such details are essential to understanding the mechanics and
dynamics of CPP and thus continuing to improve CPP and software effort estimation in
general. They will also help future studies in assigning different kinds of work for suitable
workers, providing rationales for challenges, and illustrating a framework for similar future
investigations.

This chapter investigates and describes different behavioural profiles of the crowd work-
ers who participated in the CPP experiments described in earlier chapters. It extracts fine-
grained details of the estimation process followed by workers and uses these details to de-
velop a set of worker personas. The chapter provides insights into the reasons for the differ-
ing quality of crowd worker assignments and their use of inputs from prior rounds. It also
pinpoints which resource was most helpful for the workers while estimating the software
development tasks. The chapter contributes by developing crowd estimator personas and
persona descriptors using systematic log scanning, and then provides a qualitative analysis
of CPP components, specifically, peer discussion and the crowd feedback loop. It also con-
tributes by confirming the outcomes of the systematic scanning and qualitative analysis by
asking participating crowd workers about the outcomes.

A large amount of the worker behaviour (User Interface (UI) interaction logs) dataset was
collected while conducting the CPP experiments; this was possible because an interface
logger was enabled. The logger captured all interaction between crowd workers and the CPP

9.1. Related Work 159

software UI. Just from the last experiment, which is detailed in Chapter 8, over five million
UI interaction events were recorded for 1,449 crowd workers. Analysing such a wealth of
information about participants helps draw a better understanding of how and why CPP has
worked.

The next section reviews ethnography studies in software engineering and explains how
ethnographic studies have advanced to enable investigation of online communities such as
crowdsourcing platforms. Then, Section 9.2 explains the research method of systematic be-
haviour scanning and the process of developing crowd personas. After that, Section 9.3
presents a systematised analysis of the UI logs to develop the personas. It provides details
about accurate and inaccurate estimates across different quality classes of crowd assign-
ments, crowd personas, and crowd workers’ perception of peer discussion and the feedback
loop. Then, Section 9.4 explains the crowd survey design and presents the survey results.
Section 9.5 discusses the analysis of the customised scanning of UI logs in the light of the
survey results. Finally, the last section provides a summary of this chapter followed by in-
sights into future research directions.

9.1 Related Work

This section reviews the literature at the intersection of crowd worker behaviour, assign-
ment quality, and UI data-based ethnography. In particular, the review identifies aspects of
previous work that informs the design of the present study.

Ethnography is a research discipline that traces and studies human behaviour. Ethnography
as a research method has been used in several software engineering areas, including software
development [248], maintenance [249], architecture [250], and software testing [251, 252].
In a typical ethnographic study, a researcher immerses themself physically in the targeted
study . The researcher spends prolonged time observing and recording different behavioural
aspects of the group members. Spending a prolonged period of time is a key challenge in
applying ethnography to software practices, as explained in Passos et al. [253]’s work. How-
ever, in rapidly changing disciplines such as software engineering, short ethnographic studies
are also possible, as done by Sharp and Robinson [248] while studying XP practices. Sharp
and Robinson [248] spent a week with the XP team, tracing and logging their behaviour
against XP practices. Furthermore, attending and observing the study group in person is a
challenge that can be resolved by inferring human behaviour from software UI interaction
logs. For instance, Kim et al. [47]’s ethnographic study employed UI interaction logs to
understand the behaviour of copy-and-paste programming.

Ethnographic studies investigate real-world practices, which may deviate from the theoretical
or descriptive concept. For instance, Martin et al. [252] examined software testing and found

9.1. Related Work 160

that testing has social aspects as well as technical ones. Thus, involving social aspects as well
as technical advancements will help improve software testing. Two more comprehensive
studies of the application of ethnographic methods in software engineering research were
presented by Sharp et al. [254] and Rönkkö [255]; the reader is directed to these works for
more information.

Applying ethnography to software engineering practices using traditional ethnography tech-
niques has several challenges, such as the need to have a successful relationship between the
researcher and research participants, and the impact of the researcher’s presence on the real-
ity of software development practice, among other challenges as pointed out by Passos et al.
[253]. For instance, the attendance of the researcher at the working environment and the
fact that the researcher is observing the development team may disrupt the team’s behaviour
and thus compromise the distinctive feature of ethnographic study, which is the recording of
real-life behaviour.

Another aspect that calls for innovation of ethnographic methods is the emergence of digital
and virtual life [46]. These contexts can be as important for software engineering practice
as the physical world. Therefore, a sub-discipline called Digital Ethnography has emerged
[46], which concerns topics related to digital innovations and their impact on humans. It
also provides tools and methods for gathering data with the features of the digital world.
For example, attending in-person might not be viable in such a world. Alternatively, video
recording and digital logs can be used to infer human behaviour. Pink et al. [46] detail the
emergence of Digital Ethnography and suggest several practices to conduct such research.

There have been three ethnographic studies of crowdsourcing reported in the literature [256,
257, 258]. ONeill and Martin used ethnography research methods to highlight the challenge
of unbalanced treatment of crowd workers and their employers. Furthermore, the ethno-
graphic study illustrates the complexities of the relationships between workers and employ-
ers and states design aspects that can be implemented in crowdsourcing platforms to help in
balancing the treatment of both parties.

Relevant to the present study, Gupta [258]’s thesis also uses ethnographic research methods.
It identified different motives of the workers, features of the crowdsourcing platform, i.e.
Amazon Mechanical Turk, the social side of crowd work, effort that goes unseen/unpaid,
and workers’ risk plans. Gupta [258] concluded that money is not the only motive of crowd
workers, and they can take on collaborative work which may result in more unpaid work that
is ignored by the crowdsourcing platforms. As a recommendation, Gupta [258] emphasises
the importance of communication between crowd workers to enable more collaborative work
between them and to help reduce the unseen effort of workers who do such jobs.

Moreover, Gupta et al. [259] describe how ethnography can be applied to crowdsourcing
research. Their paper explained, using evidential examples, how crowd workers in India

9.1. Related Work 161

work, their perspective of being crowd workers, and who they are. Gupta et al. [259] aim to
influence the design of such platforms for workers in terms of how it impacts their life. An-
other example that illustrates how ethnographic study can differentiate between theoretical
conception and real-world practice is Gray et al. [260]’s work. The study demonstrated that
crowd workers can handle independent work and they can also work collaboratively. Using
ethnographic methods, Gray et al. [260] examined that assumption and found that crowd
workers are depending on each other and collaborating to enhance their crowdworking envi-
ronments.

The concept of personas has been used in a variety of different areas to provide archetypes
of subsets of a system’s users. These personas can then be used to understand how and why a
system is interacted with in different ways. Personas have been used extensively in software
requirements [261] as well as other areas of software engineering practice, [262, 263, 264].
Ford et al. [262]’s work, for instance, explains how a persona was successfully used to pre-
cisely allocate human resources to the right job. Their work tries to fix the misallocation of
general software engineering skills by specifying contextual skills for specific jobs. More-
over, personas are also used in requirements engineering in several ways. One example is to
represent archetypical users of a software system and limit software developers from stretch-
ing the assumptions of what makes users happy. Faily and Lyle [263] suggest guidelines to
help keep these personas prominent in software engineering activities and integrate them into
different software development tools. Aoyama [264] detailed more about different usage of
personas in software development. In addition, they explained several associated challenges,
such as a lack of knowledge and resources in creating and adopting them.

From the crowdsourcing perspective, a few studies have tried to implement the concept of
personas for crowd workers. For example, Bernstein et al. [265] suggested two personas:
“Lazy Turker” and “Eager Beaver” based on the workers’ contributions. By developing these
two personas, Bernstein et al. [265] were able to clearly communicate the effort spectrum
of crowd workers, define effort patterns and then resolve effort issues that were identified as
part of the persona’s behaviour. More recently, Ayalon and Toch [266] used personas to ex-
amine their effects in inspiring empathy in crowd workers while criticising privacy designs.
As a result, Ayalon and Toch [266] demonstrated how personas encourage workers to give
useful critiques and how that enhances privacy-by-design processes. Moreover, Stergiadis
[267] modelled crowd workers using personas and the repertory grid technique (RGT). This
thesis found that RGT can offer empirically grounded data which can be helpful in different
applications including user profiling and information graphics.

User interface (UI) log data have been used in several user experience studies and crowd-
sourcing research. In particular, UI logs have been used to model workers’ behaviour and
therefore measure assignment quality [229, 268]. Instead of assessing the quality of workers’
assignments, Rzeszotarski and Kittur [229] focused on how workers produce the assignment,

9.2. Design of Systematic Behaviour Scanning Study 162

and used the captured UI interaction logs to infer the assignment’s quality and the likelihood
of the worker’s disengagement. They found that the UI logs can be used to build predictive
models of task performance. Similarly, Kazai and Zitouni [268] adopted the same technique
and enhanced the model’s productivity by including trusted users’ behaviour as a gold stan-
dard; they called them Gold Judges. The model’s accuracy almost doubled using the Gold
Judges’ behaviour data.

Using UI interaction logs as a worker behaviour proxy has been done in a couple of ethno-
graphic studies such as Kim et al. [47]’s work of investigating the copy-and-paste program-
ming practice. With the emergence of digital ethnography, there will be more reliance on
such logs, as pointed out by Pink et al. [46]. The point is that some traditional practices of
ethnography are not viable, such as attending the research group in person. For instance,
crowd workers in the CPP research group came from several countries (over 20 countries
based on their internet connection IP), and attending in person would raise a substantial
financial burden.

Moreover, tracking user interaction with the interface is more subtle, and thus less disruptive
to the nature of the worker than someone attending the worker’s workplace. As pointed out
by Passos et al. [253], attending in person is challenging because it changes the reality of
the work that is being studied. However, such logs cannot convey other human aspects, such
as feelings and body expressions, which may leave an opportunity for research assumptions
that need to be addressed. One way to reduce that gap is by using surveys to confirm study
findings and assumptions with the workers before rendering them as outcomes.

Drawing on the explored literature, this chapter uses the logs of the crowd workers’ inter-
action with the CPP UI as a proxy for their behaviour and thus systematically scans and
analyses the logs, creates crowd personas, and confirms the analysis findings with a survey
of participating crowd workers. Therefore, this chapter uncovers details about how crowd
workers, using CPP, are able to produce expert-comparable estimates and what resources are
most useful for predicting such estimates.

9.2 Design of Systematic Behaviour Scanning Study

In this study, a systematised scanning of the UI interaction log and analysis of selected
topics of the CPP UI logs are used to investigate the behaviour of participating workers
and develop crowd personas. The UI interaction log has been used as a proxy for crowd
behaviour. Later, crowd workers were invited to participate in a survey to confirm the study
findings, as explained in the next section 9.4. Thus, in this study, the outcomes are better
interpreted alongside the post-CPP survey results.

9.2. Design of Systematic Behaviour Scanning Study 163

The aim is to investigate what activities of CPP a crowd worker, as an estimator, has fol-
lowed, abandoned, repeated, or even invented, and why. Different worker personas can be
identified by such behaviour. Therefore, the analysis of UI log data drawn from the CPP
crowd workers’ behaviour is used to answer the following research questions about crowd
behaviour (RQB).

• RQB1: What workflows do crowd workers follow when performing effort estimation
assignments?

• RQB2: What are the different personas of crowd estimators and their descriptors?

• RQB3: What information artefacts do different personas of crowd workers value as a
basis for making effort estimation decisions?

The following subsection explains more details about the systematised scanning of the UI
interaction log, along with the persona descriptors. Then, it illustrates the process that is
used in the selective analysis.

9.2.1 UI Interaction Log Systematic Scanning

The UI interaction log of crowd workers will be investigated systematically as explained in
this section. The goal of the systematic investigation is to consider all logs to understand
how a crowd worker applies the CPP process in the real world. For comparison purposes,
Figure 9.1 illustrates an ideal state machine for crowd assignments. A crowd assignment
starts with an Estimating state, where a crowd worker comprehends the information about
a given software development task, picks an estimate category, and writes a corresponding
rationale to support their selection. Then the assignment moves to an Evaluating state, where
the quality evaluation of the crowd assignment takes place. If the evaluation classifies the
assignment as good quality, then the assignment moves to an Approved state, which takes it
to the end. However, if the assignment quality is below the quality threshold, the assignment
moves to a Rejected state. After communicating the feedback to the worker, if the worker
decides to improve the assignment, it moves to a Revising state, which is similar to the
Estimating state, but populated with the previous worker’s inputs. Otherwise, if the worker
withdraws from the process or the improvement loop, the assignment moves to a Dropped

state.

Further, the Estimating and Revising states encapsulate the state machines of the workers
as illustrated in Figure 9.2. The crowd worker state machine starts with a Reading state
for the CPP instructions and terms and conditions. Then, the worker moves to a Declaring

state, where the worker’s experience is declared and described. After that, the worker moves

9.2. Design of Systematic Behaviour Scanning Study 164

Estimating Evaluating

Click Improve Btn.

Rejected

Approved

NoGood

Quality?

Yes

Revising

DroppedClick Withdraw Btn.

Figure 9.1: State machine for crowd assignments. Blue boxes represent the assignment state.
The Estimating state is extended further in Figure 9.2.

to a Reading state again but with different content. The new content consists of several
types of information about the software development task that needs to be estimated. If the
worker chooses to search the web using Google, the worker moves into a Searching state.
Then, the worker moves into an Estimating state, where the estimate category is selected.
After that, the worker moves into a Justifying state, where the rationale behind the estimate
category selection is explained. After the assignment quality evaluation, the worker moves
into another Reading state, where the feedback of the quality assessment is communicated.
If the worker decides to improve the assignment, then the worker stays in the Reading state
but with different content, i.e. the information about the software development task. If the
worker decides to withdraw, then the worker moves into a Leaving state where the worker is
reminded to confirm the exiting choice. Otherwise, the worker terminates the state machine
by submitting the assignment as-is.

During the CPP experiments detailed in Chapter 7 and Chapter 8, the CPP application
recorded crowd workers’ interaction with the application UI. It used JavaScript to collect
the mouse and keyboard events and send them to the back-end server for each worker and
assignment. Each record had information about the UI events, specifically, the event names
as listed in Table 9.1, event content detailing associate event information such as click coor-
dinates, event time, and event target, which represents the UI element as listed in Table 9.1,
and reference pointers to the worker, assignment, and CPP round records. The UI log traces
were captured for 1,449 crowd workers, resulting in over five million UI interaction events.
Those records comprise the Crowd Planning Poker Behaviour (CPPB) dataset. The dataset
is stored in an SQL database that is accessible from the a public repository1. Besides the UI
events listed in Table 9.1, the CPPB dataset includes additional UI events such as scrolling
and window resizing. While the additional events are not included in this analysis, they
may benefit future research. The included UI events were selected since they can provide
information about targeted crowd actions, as illustrated in Table 9.1.

Each log trace belongs to a single crowd assignment. Those traces are associated with the as-

1https://github.com/crowd-planning-poker

9.2. Design of Systematic Behaviour Scanning Study 165

Estimating/Revising

First CPP round?

READING:
Peer discussion

No

READING

Click T&C Link

Instruction

 Terms&Conditions

READING

 Issue
Comments
 Issue Dictionary
 Issue's Project

Overview

SEARCHING

Click More Info Btn.

Yes

Click Google Search Btn.

Return

Move mouse to instruction section

Yes

Click Show Issue Btn.

DECLARING

READING: Issue
Describtion

Start Typing

ESTIMATING

Click Submit Button

Review

Review

JUSTIFYING

READING:
Feedback

Click Times Radio Btn.

EVALUATING

Click Submit Button

Click Revising Btn.

NoYes

APPROVED REJECTED

No

(Revisioning Visits)

First Visit?

worker left

Click Exit

Confirmation

Btn.

Click Return Btn.

LEAVING

Good Quality?

DROPPED

Click any

exit btn.

Click Exit

Btn.

Figure 9.2: State machine of a crowd worker navigating through the CPP process. Grey
boxes represent the crowd assignment states, as illustrated in Figure 9.1. Red boxes represent
the crowd worker states that are encapsulated into the Estimating and Revising assignment
states

9.2. Design of Systematic Behaviour Scanning Study 166

Crowd
Action/
UI
Element

read declare search estimate justify leave idle

instruction •
terms-Conditions •
experience •
basic-info •
pair-discussion •
issue-dictionary •
issue-project •
issue-comments •
err-msg •
feedback •
google-search •
time-options •
estimating-step •
justification •
exit-dialog •
experience-exit •
task-desc-exit •
detail-info-exit •
estimate-exit •
feedback-exit •
waiting
justify-submit •
feedback-submit
irrelevant •

Crowd
Action/
UI Event

read declare search estimate justify leave idle

highlight • • • •
copy • • • •
paste • • •
mousemove • • • •
click • • • • • •
type • • •

Table 9.1: The first table shows which crowd action is associated with each UI element. The
second table shows which UI atomic events contribute to each crowd action.

9.2. Design of Systematic Behaviour Scanning Study 167

Accuracy/
Quality

Excellent and Acceptable
(A&B Classes)

Unacceptable
(Class C)

Poor
(Class D)

Accurate 222 196
669Inaccurate 593 308

Table 9.2: Number of assignments (cases) that are considered from each class. Each assign-
ment has a stream of activities (Crowd Actions). Poor Class assignments are those assign-
ments that are useless and show a clear sign of a quality problem, e.g. no justification. Thus,
they are studied as a whole to identify the behaviour behind such assignments.

signment accuracy (crowd estimate compared with a ground truth), as well as the assignment
quality, as described in Chapter 7. Therefore, the dataset of log traces from the UI is divided
into five parts using two factors: the quality of workers’ assignments and the accuracy of
their estimates. Table 9.2 shows the log size of each portion. One reason behind selecting
these two factors is the overall thesis objective of investigating the reliability of crowd es-
timates. Each portion is scanned to filter out duplication or events that are not considered
in this investigation. The quality class is determined using the quality model explained in
Chapter 7. Accuracy determination follows Moores and Edwards [109]’s suggestion. As-
signments with an estimate that is within 20% of the actual effort are grouped in the accurate
category. Otherwise, they are grouped in the inaccurate category.

Six UI events are associated with 23 CPP UI elements to represent eight crowd CPP actions.
UI events are the worker’s atomic actions which interact with the software UI, such as mouse
click and highlighting. CPP UI elements are a group of HTML tags that build up an HTML
page. Each HTML tag in the CPP HTML page is associated with an ID, and then these
HTML tags are grouped to represent one CPP UI element. For example, “Instruction” is
the CPP UI element that contains the CPP task instruction, and it consists of fourteen active
HTML tags. Not every HTML tag in the CPP HTML page is considered, and thus, there
are passive HTML tags that do not represent any value to the CPP process but are impor-
tant to have on the page to implement the CPP process, for instance, HTML hidden input.
By associating CPP UI elements with UI events, crowd CPP actions may be inferred. For
instance, when a crowd worker highlights text from the “basic-info” CPP UI element, the
worker has probably started a searching activity. Likewise, when the worker retrieves extra
information about the issue by clicking on either the “issue-comments” or “issue-project”
CPP UI element, the worker probably starts a reading activity. Table 9.1 shows the different
kind of crowd CPP actions and CPP UI elements.

After processing the UI interaction log as described above, the logs are transformed into ex-
tensible event stream files to be analysed using DISCO and ProM, which are process mining
applications. Section 9.3 gives more detail about the outcomes of the analysis and possi-
ble personas associated with such behaviour. Moreover, different persona descriptors are

9.2. Design of Systematic Behaviour Scanning Study 168

extracted from the UI log and other experimental work components. These descriptors are
explained in the following subsection.

9.2.2 Behaviour Descriptors for Crowd Personas

A persona is a way to express a group of merits that can be grouped into one character. Each
persona has two kinds of descriptor: a public feature of that character, such as the charac-
ter demographic, and a topic-related feature, such as spending more time reading an issue
[261]. In this chapter, personas are used to describe different crowd estimator behaviours.
In order to develop a persona, the features that a persona can assemble need to be identi-
fied and detailed. The goal of the descriptors is to represent the archetypical pattern that
characterises the persona from different perspectives, including the persona’s activity, in-
tention, practice, effort, accuracy, knowledge, interaction, and reputation, as explained in
Reinhardt et al. [269]’s research while describing knowledge workers. Adopting Reinhardt
et al. [269]’s knowledge-worker actions, and based on what information is available in the
CPPB dataset, eight descriptors were identified, specifically, Activity, Advocacy, Repetition,

Timings, Effort, Knowledge Seeking, Peer Interaction, and Assurance. Additionally, two fea-
tures were inherited from crowd assignments that are associated with workers’ behaviour,
specifically, estimate accuracy, measured by Mean Magnitude Relevant Error (MMRE), and
crowd assignment quality class, as explained in Chapter5 and Chapter 7, respectively. Table
9.3 states a statistical summary (mean) of the descriptors across the logs categories shown
in Table 9.2. A crowd assignment has one or more UI interaction log records that reflect
what the crowd worker has done before submitting an assignment. The eight descriptors are
explained as follows.

Activity.

This descriptor illustrates how active the persona is in terms of the generated number of
UI events as a result of the persona interacting with the CPP application UI. The persona’s
activity was measured by the average number of total event traces. Further, the average
number of crowd actions (Table 9.1) is also used to measure the activity. Crowd actions
are extracted from the logs, and sequence actions, e.g. typing text, are consolidated as one
action.

Advocacy.

This descriptor shows how engaged the persona is in the CPP process. CPP-specific crowd
actions are the actions that a crowd estimator takes to estimate a software development task.
Each action is associated with relevant UI events, e.g. mouse clicks, and identified with
targeted CPP-specific UI elements, e.g. the more info button. The persona’s advocacy of the
CPP process was measured by four measurements, specifically, the number of CPP crowd

9.2. Design of Systematic Behaviour Scanning Study 169

A
ct

iv
ity

C
PP

A
dv

oc
ac

y
R

at
io

of
re

pe
at

ed
C

ro
w

d
A

ct
io

ns
to

To
ta

lC
ro

w
d

A
ct

io
ns

N
um

be
ro

f
A

ss
ig

nm
en

ts
N

um
be

ro
fU

I
In

te
ra

ct
io

n
L

og
R

ec
or

ds

N
um

be
r

of
C

ro
w

d
A

ct
io

n

N
um

be
r

of
C

ro
w

d
C

PP
A

ct
io

ns

R
at

io
of

C
ro

w
d

C
PP

A
ct

io
ns

to
To

ta
lC

ro
w

d
A

ct
io

ns

D
ur

at
io

n
of

C
ro

w
d

C
PP

A
ct

io
ns

Se
co

nd
s

D
ur

at
io

n
R

at
io

of
C

ro
w

d
C

PP
A

ct
io

ns
to

To
ta

lS
pe

nt
Ti

m
e

A
-B

A
cc

ur
at

e
22

2
14

20
19

15
0.

77
13

8
0.

7
0.

43
A

-B
In

ac
cu

ra
te

59
3

15
28

20
16

0.
76

15
2

0.
71

0.
44

C
A

cc
ur

at
e

19
6

17
16

27
21

0.
77

13
5

0.
66

0.
47

C
In

ac
cu

ra
te

30
8

16
86

29
22

0.
77

15
2

0.
68

0.
5

D
66

9
12

57
24

19
0.

76
97

0.
58

0.
43

C
ro

w
d

A
ct

io
n

Ti
m

in
gs

Ti
m

e
Sp

en
t

on
Pe

er
D

is
cu

ss
io

n

A
ss

ur
an

ce
N

um
be

ro
f

K
no

w
le

dg
e

R
eq

ue
st

A
ss

ig
nm

en
t

Si
ze

(L
en

gt
h

of
To

ta
l

Su
bm

itt
ed

Te
xt

)

A
ve

ra
ge

Ti
m

e
Sp

en
to

n
a

Si
ng

le
C

ro
w

d
A

ct
io

n

M
ax

im
um

Ti
m

e
Sp

en
t

on
a

Si
ng

le
C

ro
w

d
A

ct
io

n

N
um

be
ro

f
Su

bm
is

si
on

fo
ra

n
A

ss
ig

nm
en

t

R
at

io
of

Su
bm

is
si

on
s

w
ith

Ju
st

ifi
ca

tio
n

C
ha

ng
e

R
at

io
of

Su
bm

is
si

on
s

w
ith

E
st

im
at

e
C

ha
ng

e

A
-B

A
cc

ur
at

e
11

78
6

1
0.

05
0.

02
0.

68
35

5
A

-B
In

ac
cu

ra
te

11
82

9
1

0.
07

0.
03

0.
96

34
1

C
A

cc
ur

at
e

8
67

3
3

0.
18

0.
1

0.
88

28
4

C
In

ac
cu

ra
te

8
68

7
3

0.
19

0.
16

0.
88

26
2

D
6.

5
58

.5
2.

5
3

0.
1

0.
1

0.
56

19
8.

5

Ta
bl

e
9.

3:
A

st
at

is
tic

al
su

m
m

ar
y

(a
ve

ra
ge

s
ac

ro
ss

lo
gs

pe
rc

at
eg

or
y)

of
th

e
de

sc
ri

pt
or

s.

9.2. Design of Systematic Behaviour Scanning Study 170

actions, the ratio of CPP actions to the rest crowd events, time spent while performing CPP
actions, and the ratio of CPP action time to the total time spent.

Repetition.

This descriptor illustrates the repetitive patterns in a persona’s behaviour, and how many
times an action is performed during an estimation session. The repetition action descriptor is
measured by the ratio of repeated crowd actions to total actions. The repetition pattern might
offer insight on workers’ familiarity with the estimation activity in general.

Timings.

This descriptor records how much time has been invested by a persona while estimating a
software development task using CPP. Based on a single crowd action, effort is measured by
two measurements: the average time and maximum time spent on a single action.

Effort.

This descriptor shows the persona’s productivity, and how much effort has been invested to
predict an estimate for a given software development task. As a proxy for the amount of
thinking and analysing that a persona may do, the effort descriptor is measured by the length
of the crowd justification and experience text, represented by the total number of words in
the text corpus.

Knowledge seeking.

This descriptor gives an idea about how far the worker will go to obtain additional infor-
mation in order to predict an estimate for the software development task in hand. It also
illustrates the importance of the supplied additional information about the development task
and whether the worker will be willing to go and spend more time on reading and compre-
hending the written materials. This descriptor is measured by the number of requests for
additional information, including Google enquires.

Peer interaction.

This descriptor casts light on the CPP-specific feature of asynchronous communication of
estimation rounds between crowd workers. As explained in Chapter 6 and Chapter 8, the
workers’ estimates were aggregated using crowd consensus on an estimation category for a
given software development task. While it was not feasible to have synchronous commu-
nication between the workers, CPP added an additional area with summarised information
about the previous estimation round for workers estimating the development task in later
rounds. This descriptor is measured by time spent reading the summarised information from
peers who estimated the previous round.

Assurance

9.3. Results of Behaviour Analysis and Crowd Personas 171

This descriptor gives an idea about the willingness of a persona to take on additional work
and invest additional time to improve an assignment with low quality. This takes place
after communicating the quality assessment result with the worker. The assurance descriptor
quantifies the additional effort using three measures: the number of submissions for each
assignment (number of provisional assignments), the ratio of submissions with a change in
estimate category to the total number of submissions, and the ratio of submissions with a
change in estimate justification to the total number of submissions.

DISCO [270] was used to draw the event stream that represents the flow of crowd CPP
actions. The process mining discipline uses its terminology to convey the meaning of the
analysed process. In particular, “case” is used to refer to a single worker’s attempt at the
process. It is equivalent to an assignment in the CPP context. “Activity” refers to a single
activity (crowd CPP action) done by a “resource”. “Resource” means the subject who per-
forms the activity, a crowd worker in the CPP case. “Path” is the flow between two activities.
DISCO gives the user the ability to select which activities and activity flow paths need to be
illustrated in the event stream diagram based on the frequency of those activities and flow
paths. In this chapter, the activity frequency was set to show the 50% most frequent activities
(crowd CPP actions), and only the most dominant process flows will be shown with 0% of
path branches. The goal of these settings is to simplify the flow map.

9.3 Results of Behaviour Analysis and Crowd Per-

sonas

In this section, the systematised scanning of the CPPB dataset is reflected onto a descriptive
observation of crowd behaviour, and based on that, four personas are developed. Because
few assignments were classified as Class A (19 assignments), and classes A and B are both
considered acceptable from a quality perspective, assignments in classes A and B were com-
bined in this scanning. The following subsection will go through each category describing
and comparing workers’ behaviour.

9.3.1 Combined Class A and B

Accepted assignments are classified as either A or B. These represent the best quality as-
signments that are collected by the CPP process depending on the automatic quality model
described in Chapter 7.

9.3. Results of Behaviour Analysis and Crowd Personas 172

243

67

14

144

99

198

256

28

21

37

10

97

23

293

85

36

132

101

9

77

14 144

167

60 161

reading_instruction

584

declaring_experience

254

reading_basic-info

520

searching_google-search

38

reading_issue-project

38

reading_issue-comments

45

reading_issue-dictionary

31

estimating_estimating-step

625

estimating_time-options

491

justifying_justification

537

dropping

60

idling_irrelevant

440

justifying_justify-submit

201

classifying

198

reading_feedback

38

reading_peer-discussion

164

(a) Accurate

356

200

127 250

639

55

410234

40

17420

488

279

17

147

71

689

33

47

188

792

437

244 341

idling_irrelevant

1,334

reading_instruction

1,657

declaring_experience

667

reading_basic-info

1,472

estimating_estimating-step

1,684

estimating_time-options

1,314

justifying_justification

1,525

dropping

244

justifying_justify-submit

506

classifying

488

reading_feedback

149

reading_issue-project

150

reading_issue-comments

171

reading_issue-dictionary

134

searching_google-search

112

reading_peer-discussion

451

(b) Inaccurate

Figure 9.3: The activity stream maps for accurate and inaccurate assignments of classes A
and B.

Accurate Group Activities

Analysis of the Accurate group, that is, the group of workers whose assignments were ac-
curate, shows that four frequent CPP Actions (CPPA) were followed as expected, including
reading instructions, reading basic information, estimating, and writing justifications. Sur-
prisingly, another popular Crowd Action (CA) was an idle event between reading basic in-
formation and estimating, although it was less popular than the four frequent CPPAs. Figure
9.3 shows the event stream map of these cases. Reading peer discussion and idling are the
two activities performed most frequently after reading basic information. Mostly, workers
preferred reading peer discussion to going over extra details of the issues, including issue dic-
tionaries, comments, and issue project. However, issue comments were the most requested
type of extra information for those who selected to go over the extra information. The ma-
jority of workers in this group considered revision after reading the classifier feedback.

9.3. Results of Behaviour Analysis and Crowd Personas 173

Accurate Group Stream Flow

The most dominant flows illustrated in Figure 9.3 are from reading instructions to declaring
experience, from starting estimation to selecting an estimate, and from selecting an estimate
to writing a justification. These flows are expected, and they followed the designed model.
Unexpected behaviour is that several workers (16% of cases) dropped the CPP process after
spending time (an average of 30 seconds) writing their justification and before submitting
their assignment. The flow of crowd workers looks systematic and smooth, meaning that
workers follow the process steps without jumping from one place to another. As shown in
Figure 9.3, there are four flow loops in the flow for this group, as follows:

• Reading Instruction → Declaring Experience

• Reading Instruction → Declaring Experience → Reading Basic Information → Idling

• Reading Basic Information → Searching Google

• Selecting an Estimate → Writing a Justification → Submitting a Provisional Assign-
ment → Reading Feedback

The looping behaviour illustrated by the four loops above indicates that the crowd worker is
engaged and considering whether to go back and forth between CPP components, reflecting
critical thinking behaviour while comprehending the given software development task. As a
result, this group gave the best assignments in terms of accuracy and quality.

Inaccurate Group Activities

The Inaccurate group had the same four frequent CPPAs as the Accurate group. Unlike
the Accurate group, this group tended to idle while they were estimating. In addition, they
searched Google while they were estimating. Figure 9.3 shows the event stream map of this
group. Reading peer discussion was the activity workers did most frequently after reading
basic information. Similarly, workers preferred peer discussion to going over extra issue
information, and issue comments were the most requested of the three extra information
components. About half of the workers who got the classifier feedback revised their assign-
ments.

Inaccurate Group Stream Flow

The most dominant flows illustrated in Figure 9.3 are the same as for the Accurate group.
Similarly, about a quarter of the workers (21% of the cases) dropped the process some time

9.3. Results of Behaviour Analysis and Crowd Personas 174

(about 34 seconds on average) after justifying their assignment and before submitting it. The
flow of crowd workers is less systematic. It was systematic in the early stages of the process
and only became chaotic after starting the estimation. Neither idling nor searching Google
was expected during justification. As shown in Figure 9.3, there are three flow loops in the
flow of this group:

• Reading Instruction → Declaring Experience

• Start Estimating → Selecting an Estimate → Writing a Justification → Idling

• Selecting an Estimate → Writing a Justification → Submitting a Provisional Assign-
ment → Reading Feedback

The looping behaviour here is missing the loop for seeking more information about the issue.
Unlike the Accurate group, this group rushes to estimation before taking their time to read
and perhaps search the web for extra information. However, this group still shows good loop-
ing behaviour around estimation and justification, giving an indication that they are engaged
while they think and write the rationale behind their estimate selection.

Descriptors

By taking a look at the descriptor summary statistics relating to classes A and B, as shown
in Table 9.3, it can be seen that Accurate and Inaccurate are alike except in the time that
is spent estimating. The Inaccurate group is likely to spend more time on the overall esti-
mation process, including reading peer discussion. In addition, the Inaccurate group tends
to change their estimate selection during the revision of their assignments more than the
Accurate group.

9.3.2 Class C

Class C assignments are not accepted because they are in a grey area between good quality
and poor assignments. These represent assignments that show some confusion and irrele-
vancy to the topic of the issue. In addition, the assignments’ rationales are not as complete
as the ones in classes A and B.

Accurate Group Activities

Reading basic information is not among the frequent CPPAs of the Accurate group. The most
frequent activities are reading instructions, selecting an estimate, and writing justifications.

9.3. Results of Behaviour Analysis and Crowd Personas 175

Similarly to the Accurate group for classes A and B, this group idled between reading basic
information and estimating. Figure 9.4 shows the event stream map for Class C. Workers in
this group prefer neither reading peer discussion nor requesting extra details about the issue.
Instead, the majority went from reading basic information to estimating. Only a few workers
read comments about the issue. Some Google searches were done during the estimating
part of the process. Few of the workers in this group considered revision after reading the
classifier feedback; they either exited the process or insisted on submitting low quality work.

Accurate Group Stream Flow

The most dominant flows illustrated in Figure 9.4 are from reading instructions to declaring
experience, from starting estimation to selecting an estimate, from selecting an estimate to
writing a justification, and from submitting a provisional assignment to reading the classifier
feedback. The flow of crowd workers shows chaos from the beginning to the end. For
instance, several workers started with reading issue comments and then exited the process.
As shown in Figure 9.4, two flow loops were identified for this group:

• Reading Instruction → Declaring Experience

• Reading Instruction → Declaring Experience → Reading Basic Information → Idling

Unsurprisingly, the looping behaviour here is weaker than in assignments with classes A
and B. The lack of looping behaviour suggests that less critical analysis was done by crowd
workers in this group, and thus, they submitted assignments with lower quality.

Inaccurate Group Activities

The Inaccurate group exhibits four frequent CPPAs: reading instructions, reading basic infor-
mation, estimating, and writing a justification. In addition, workers search Google and idle
after reading basic information (similar to the Accurate group of classes A and B). Figure
9.4 shows the event stream map of this group. Idling, reading peer discussion, and reading
issue comments are the most frequent activities workers did after reading basic information.
As was the case in the Accurate group, only a few workers from those who got the classifier
feedback revised their assignments.

Inaccurate Group Stream Flow

The most dominant flows illustrated in Figure 9.4 are the same as for the Accurate group.
More workers (20% of the cases) have dropped the process after some time (about 19 seconds

9.3. Results of Behaviour Analysis and Crowd Personas 176

193

29

144

239

19

84

99

91

17

57

46

66

3

1

231

167

49

31

93

21

52

49

reading_instruction

381

idling_irrelevant

290

declaring_experience

154

reading_basic-info

339

estimating_estimating-step

426

estimating_time-options

398

justifying_justify-submit

253

justifying_justification

369

dropping

52

classifying

239

reading_feedback

234

reading_feedback-submit

49

reading_peer-discussion

64

leaving_feedback-exit

22

(a) Accurate

23

259

105

263

21

451

81

302

574

170

98

161

544

202

138

496

25

62 59

7

24

560

313

131

173

idling_irrelevant

866

reading_instruction

1,115

declaring_experience

488

reading_basic-info

983

estimating_estimating-step

1,187

estimating_time-options

1,057

justifying_justification

1,076

justifying_justify-submit

620

classifying

574

reading_feedback

561

reading_feedback-submit

138

searching_google-search

96

dropping

173

reading_issue-project

85

reading_issue-comments

104

reading_peer-discussion

258

(b) Inaccurate

Figure 9.4: The two activity stream maps for accurate and inaccurate assignments of Class
C.

9.3. Results of Behaviour Analysis and Crowd Personas 177

on average) justifying their assignments and before submitting them. The flow of crowd
workers shows a lot of chaos, especially in the first half of the process (while the workers
were reading the issue information). As shown in Figure 9.4, there are two flow loops for
this group:

• Reading Instruction → Declaring Experience

• Idling → Estimating → Writing a Justification

This group has the least looping behaviour, with no looping on the basic information. Instead,
workers tend to use Google to find ready justifications for their random selection of estimates.
The groups that did not show iterative behaviour around the core information during the
estimation process submitted inaccurate estimates. This gives insight into why machine-
based SEE lacks reliability. As illustrated here, good estimators are taking in a lot of context
and considering a lot of related information.

Descriptors

Table 9.3 suggests the same pattern as between the Accurate and Inaccurate groups for
classes A and B. However, the Inaccurate group tends to spend more time and changes their
estimate selection during the revision of their assignments more than the Accurate group.
Moreover, workers in both groups of Class C submitted smaller assignments than those in
the classes A and B. Unsurprisingly, since workers are more rejected in this class, they spend
more time and show more activities.

9.3.3 Class D

Poor assignments are classified as Class D. They have clear signs of poor work, e.g. submit
no justification. This class includes unengaged and unqualified workers who submit useless
assignments. The analysis of this group is to understand the behaviour of unwanted workers.
Accuracy here is not a concern, and thus, the class is analysed as one group. In fact, an
earlier attempt to distinguish the accurate and inaccurate assignments of this class failed, as
both groups exhibit similar features.

Activities

Reading instructions and estimating were the two most frequent CPPAs. Figure 9.5 shows
the event stream map of Class D. The majority went from reading basic information to es-
timating. The second majority did the same but with an idling state between reading basic

9.3. Results of Behaviour Analysis and Crowd Personas 178

information and estimating. Only a few workers read comments about the issue. Some
Google searches were done during the first part of the process (the reading part). A couple
of workers considered revising their assignments; most insisted on submitting low quality
work.

Stream Flow

The most dominant flows illustrated in Figure 9.5 are from reading instructions to declaring
experience, from starting estimation to selecting an estimate, from selecting an estimate to
writing a justification, and from submitting a provisional assignment to reading the classifier
feedback. The flow of crowd workers shows chaos in the first part but is smooth in the
second part. As shown in Figure 9.5, no significant loop has been found, except the usual
one between reading instructions and declaring experience.

Descriptors

Unsurprisingly, Table 9.3 suggests that this group made the lowest effort even though the auto
classifier warned them, unlike the groups of Class C assignments, where workers showed ex-
tra activity and working time as a response to the warning. This group of Class D assignments
showed the lowest level of activity across all the classes. Moreover, workers in this group
submitted the smallest assignments, and they showed less demand for extra information.

9.3.4 Identified Personas

Four personas, John, Johanna, Sarah, and Smith, were derived from the analysis above and
matched to the four quality classes A, B, C, and D, respectively. The personas’ characteristics
were assembled from the descriptors, behaviour activities, and behaviour loops detailed in
previous subsections. The collective analysis description of the personas can be stated as the
following:

• John: Goes systematically through the CPP process steps. He prefers to think and
search while reading and before taking any decision. John prefers reading what people
say about the issue. He is most likely to predict an accurate estimate. John will mostly
take on extra work to improve his assignment quality.

• Johanna: Follows the process systematically until an action needs to be done, then she
shows some chaos. She prefers to shift between thinking and searching at the point
where she is stuck. While Johanna will probably submit a high-quality assignment,
she is less accurate than John and tends to be more active than John.

9.3. Results of Behaviour Analysis and Crowd Personas 179

336

626

46

107

20

629

94

262

89

166

50

25

178

6 27

231

572

29

179

101

8 55

428

307

18

39

616

632

50

268

177

41

113

387

218

67223

reading_instruction

1,577

declaring_experience

782

reading_basic-info

1,250

estimating_estimating-step

1,322

estimating_time-options

1,200

justifying_justification

1,100

dropping

218

justifying_justify-submit

755

classifying

629

reading_feedback

628

idling_irrelevant

1,080

reading_feedback-submit

231

reading_issue-comments

84

searching_google-search

110

reading_issue-project

71

reading_issue-dictionary

60

reading_peer-discussion

232

leaving_feedback-exit

67

Figure 9.5: Activity stream map for poor assignments (Class D).

9.4. Post CPP Survey Study 180

• Sarah: A good person who wants to deliver good quality. However, she is probably
not qualified. She goes randomly between the process activities and shows signs of
chaos and hyperactivity, e.g. a lot of clicks and several attempts to try most of the
components of a website. Sarah will try to improve her work. However, she will give
up quickly.

• Smith: Probably only after the money. He does not care about quality. Sometimes, he
becomes an unengaged worker. Time is his concern, so he will probably allocate the
least time to work on the task. Improving assignments is not his priority. Although his
flow through the process seems systematic and smooth, he does not spend any useful
time and clicks like a robot to obscure his behaviour. Smith will never submit a useful
assignment.

Smith is the worker that you need to avoid. On the other hand, Sarah is a worker who might
be worth taking on with extra training and explanation of the estimation task.

John is precise, and it is better to have him for the first round of CPP. Johanna can join in the
next rounds of CPP to build upon John’s estimates, with fewer interface options offered to
her. She is easily distracted.

9.4 Post CPP Survey Study

Since crowd behaviour is instrumented using a proxy, the UI interaction log, the second part
of this chapter is a survey study that investigates the crowd’s opinion about the outcomes of
the systematic scanning of their UI interaction log. The objective of the survey is to confirm
the scanning outcomes regarding the crowd’s familiarity with Planning Poker and software
development issue, the most helpful part of CPP, and the crowd’s perspective of the CPP
quality model.

As discussed earlier in the persona descriptor sections, these three topics distinguish between
accurate and inaccurate crowd workers who submitted good quality assignments. The fol-
lowing section will detail the survey design. The section after that will illustrate and discuss
the survey results.

9.4.1 Survey Design

The targeted population of the survey is the 350 crowd workers who participated in a CPP
trial and submitted an acceptable assignment for those trials explained in chapters 6, 7, and
8. Since the total population is relatively small (only 350) and consists of only one group

9.4. Post CPP Survey Study 181

(accepted assignment), a quota sampling of 100 workers is selected. At the same time, the
invitation is sent to the whole population. Such a sample will result in a confidence level of
95% with a 10% interval. The other group of crowd workers who submitted unacceptable
assignments are excluded because they are not trusted to provide valid input in the first place.

The survey consists of nine questions that address three topics based on patterns discovered
during systematic scanning of the UI interaction log: familiarity with Planning Poker, the
most helpful part of the CPP process, and the crowd’s perspective of the CPP quality model.
Table 9.4 lists the questions along with their topics and the rationale behind each question.

9.4.
PostC

PP
Survey

Study
182

Table 9.4: List of questions along with their topic and the rationale behind selecting them

Q# Topic Question Rational

1 Planning Poker familiarity How familiar you are with Planning Poker? This is a direct question to assess Planning Poker familiarity
and its role in impacting the worker behaviour and the accu-
racy of the submitted estimate.

2 Most helpful CPP component When you were estimating an issue, how useful did you find
each of the following sources of information:

• The specific issue description

• General project information and context

• Comments made by the issue’s contributors

• Peer estimates and justifications from previous Crowd
Planning Poker rounds

In this question, the worker specifies in general what source
of information is most helpful.

3 Software issue familiarity Thinking about the LAST issue you estimated, how familiar
were you with the nature of the issue to be estimated?

This is a direct question to assess worker familiarity with the
issue domain and its role in impacting worker behaviour and
the accuracy of the submitted estimate.

4 Most helpful CPP component Thinking about the LAST issue you estimated, how much
time did you allocate to each of these estimation activities?

• Reading the present issue

• Thinking about similar issues

• Analysing and breaking down the issue sub-tasks

• Searching the web for supplementary information

This question investigates where workers are most likely to
invest their time.

9.4.
PostC

PP
Survey

Study
183

Table 9.4: continued from previous page

5 Software issue familiarity Thinking about an issue you were asked to estimate that
did not seem familiar (the nature of the project or the work
involved was unfamiliar), which of the following activities
would you do?

• Look at every bit of information on the page and proba-
bly click on every button to reveal as much information
as possible

• Pick any estimate and write any justification

• Withdraw from the estimation page and exit

• Ask a friend or colleague about it

• Search for similar issues

This is a follow-up question to the previous unfamiliarity
question to understand the expected next action under uncer-
tainty.

6 CPP quality model When working on a Crowd Planning Poker issue, did you re-
ceive a warning about the quality of any of your estimates,
saying that your assignment might be rejected?

This is a direct question to differentiate between workers who
experienced a full cycle through the quality model from those
who did not need to go through the quality enhancement cycle.

7 CPP quality model What did you do after reading the warning feedback ? This is a direct question to understand what is the next action
taken by the worker in the case of submitting low quality work.

9.4.
PostC

PP
Survey

Study
184

Table 9.4: continued from previous page

8 CPP quality model When I’m revising my estimate, I review the following
sources of information:

• The estimate that I have selected

• The justification and comments that I have written

• The specific issue description

• General project information and context

• Comments made by the issue’s contributors

• Peer estimates and justifications from previous Crowd
Planning Poker rounds

In this question, the worker details what source of information
they are most likely to return to for clarifying and fixing the
quality issue.

9 CPP quality model What do you think makes for a good justification for an esti-
mate?

• The justification is composed of descriptions of
smaller tasks

• The justification is composed of estimates for a series
of smaller sub-tasks

• A reference to a similar issue

• A reference to a previous estimate for the same issue
done in the previous round

In this question, the worker gives their perspective and under-
standing of what makes a quality estimate.

9.4. Post CPP Survey Study 185

Google Forms was used to create the nine survey questions. Some questions were sup-
plemented with an additional free-text question in case the options listed as answers were
insufficient or not valid for some workers. To have a look at the exact survey as implemented
in Google Forms, refer to Appendix C, where all questions are listed as they were given to
crowd workers.

Since the crowd workers had already participated in the CPP trials, AMT provided the option
to communicate with them through their API. All the workers were invited to participate in
the survey, and the survey was open until it reached the sample quota (100 participants).

Before running the survey, three researchers evaluated the survey to measure how much time
it might take. The researchers took 3.5, 4, and 8 minutes to complete the mock survey. A
decision was made to select the median (4 minutes) and pay workers $7.50 per hour, since
that was the minimum wage in the United States, where AMT is operating.

9.4.2 Survey Results

The survey results can be grouped into three aspects: the crowd’s familiarity of CPP as a
process and the software issues that were given to be estimated, the most useful components
of the CPP process and most helpful issue data, and the crowd’s perspective of the quality
model and their response to the quality feedback loop.

The survey took seven days. On average, 35 answers were collected daily from the workers
who participated in the CPP process. Questions 1, 3, and 5 address the crowd’s familiarity
with CPP process as well as the presented software development tasks they were estimating.
Questions 2 and 4 address the most useful components of CPP from the workers’ perspective.
Questions 6, 7, 8 and 9 address the details around the CPP quality model and how the workers
perceived the quality feedback and what reactions they had.

The survey consists of two familiarity questions as listed in Table 9.5. The first one assesses
the crowd’s familiarity with Planning Poker as an estimation method on a scale from 1 (not
at all familiar) to 5 (very familiar). The second question measures the crowd’s familiarity
with the presented software issue for which the worker is about to estimate the effort.

The results suggest that most of the crowd (64%) is familiar with Planning Poker as a process.
They also acknowledged that the issue is something part of their experience. However, the
crowd is less knowledgeable about the issue than Planning Poker as a process. Thus, only
58% of workers indicated that they know the issue or its project. Please refer to Figure 9.6
for a histogram of both topics.

Moreover, when crowd workers are not familiar with the presented issue (see Table 9.6), the
majority (65%) of the crowd start looking for additional information and clicking on every

9.4. Post CPP Survey Study 186

Question
Familiarity Scale

(1 is not familiar 5 is very familiar)

1 2 3 4 5

Q1* How familiar you are with Planning Poker? 3% 15% 19% 37% 26%

Q2* How familiar were you with the nature of the
issue to be estimated ?

2% 13% 27% 38% 20%

Table 9.5: Survey results for crowd familiarity of Planning Poker and the software devel-
opment task in percentages of participating workers (100 participants divided between the
answer columns).

0.0

0.2

0.4

0.6

1 2 3 4 5
Familiarity Scale

C
ou

nt
/D

en
si

ty

Familiarity Topic Planning Poker Software Issue

Figure 9.6: Histogram illustrating crowd familiarity with Planning Poker as a process and
with the selected software issue on a scale from one to five, where one indicates “Not at all
familiar” and five indicates “Very familiar”. The two red dashed lines indicate the mean.

9.4. Post CPP Survey Study 187

Answer Options
How Likely Scale
(1 is rare 5 is often)

1 2 3 4 5

Look at every information in the page & click every
button. . .

4% 9% 24% 36% 24%

Pick any estimate and write any justification 30% 21% 18% 21% 9%
Withdraw from the estimation page and exit 27% 26% 18% 19% 9%
Ask a friend or a colleagues about it 17% 17% 18% 25% 21%
Search for similar issues 4% 8% 20% 35% 32%

Table 9.6: Q5: Thinking about an issue you were asked to estimate that did not seem familiar,
which of the following activities would you do?

Answer Options
Usefulness Scale

(1 is not useful 5 is very useful)

1 2 3 4 5

The specific issue description 4% 6% 27% 32% 31%
General project information and context 2% 12% 22% 44% 20%
Comments made by issues contributors 6% 13% 26% 36% 19%
Peer estimates and justifications from previous
crowd planning poker rounds

5% 8% 28% 45% 14%

Table 9.7: Q3: When you were estimating an issue, how useful did you find each of the
following sources of information?

button on the web page. They also search the web looking for similar issues. However, the
workers rarely (28%) withdraw from the process or just pick any estimate.

Starting with which information the crowd found most useful among the offered information,
the result generally suggests that the crowd found all the information very useful, see Table
9.7. The crowd scaled four types of information about the issue from 1 (not at all useful) to
5 (very useful). Most of the crowd (> 55%) indicated that all the information was useful.
Besides task description (63%), project information (64%) and peer discussion (60%) were
the most useful information.

From the CPP process activities perspective (Table 9.8), crowd workers suggested that think-
ing about similar issues or finding an analogy for the given issue was the estimation activity
they spent the least time on. Only 19% of workers said they spent most of the time thinking
about similar issues, and 42% of them spent little time on this activity. However, the ma-
jority of the workers (61%) suggested that they spent most of the time analysing (35%) and
reading (26%) the presented issue. Searching the web for extra information was an activity
that crowd workers spent some time on.

9.4. Post CPP Survey Study 188

Answer Options Little Some Most

Thinking about similar issues 42% 24% 19%
Searching the web for supplementary information 25% 18% 19%
Reading the present issue (issue description, project infor-
mation and comments)

19% 17% 26%

Analysing and breaking down the issue sub tasks 13% 40% 35%

Table 9.8: Q4: How much time do you allocate to each of these estimation activities?

Answer Options
How Likely Scale
(1 is rare 5 is often)

1 2 3 4 5

The justification is composed of descriptions of smaller
tasks

2% 7% 33% 36% 20%

The justification is composed of estimates for a series
of smaller sub-tasks

2% 10% 26% 41% 20%

A reference to a similar issue 4% 6% 28% 39% 21%
A reference to previous estimation on the same issue
done in the previous round

4% 12% 32% 34% 15%

Table 9.9: Q9: What do you think makes for a good justification for an estimate?

When the crowd was asked what makes a high-quality assignment (Table 9.9), the major-
ity (61%) responded that a justification explaining possible sub-tasks along with their sub-
estimates can reflect a high-quality assignment. Similarly (60%), responded that reference
to previous experience or a peer estimate also reflects a high-quality assignment.

Moreover, when the workers were asked whether they received a warning about their assign-
ment quality (Q6 in the survey), 38% answered Yes, 43% answered No, and 18% answered
Maybe. If the Maybe group (%18) is considered as noise and excluded, that gives us around
47% of crowd workers who submitted acceptable assignments after having received a quality
warning. As illustrated in Table 9.10, the majority of them (61%) revised their assignments.
Only 17% decided to withdraw from the process after the feedback.

In addition, when workers revised their assignments (Table 9.11), mostly (38%), they re-

Answer Options Count(%)

Revise my justification 27(32%)
Withdraw from the feedback page and exit 9(11%)
Revise my estimate selection 24(29%)
Closed the webpage (exit the CPP task) 5(6%)
Submit it without revising it 14(17%)

Table 9.10: Q7: What did you do after reading the warning feedback?

9.5. Discussion 189

Answer Options Count(%)

The specific issue description 24(18%)
Peer estimates and justifications from previous crowd planning poker
rounds

13(10%)

General project information and context 25(19%)
The justification and comments that I have written 25(19%)
The estimate that I have selected 25(19%)
Comments made by issues contributors 19(14%)

Table 9.11: Q8: When I’m revising my estimate, I review the following sources of informa-
tion.

viewed their estimate selection and the justification that they had written. Some (19%) also
retake a look at the issue description and project overview.

9.5 Discussion

The crowd survey results suggest similar conclusions to those are drawn from the behaviour
analysis, starting with the chaos patterns that are spotted in the Johanna and Smith per-
sonas. As per the analysis above, the exploratory behaviour exhibited can result from a
crowd worker not being familiar with the issue. The survey says that workers unfamiliar
with the issue start looking for additional information by clicking everywhere, looking for
additional information. In addition, since all crowd workers who were surveyed had also
successfully submitted acceptable assignments, the survey suggests that the majority were
familiar with the process and the issues in question. Both the survey results and the behaviour
analysis suggest that a minority of the crowd workers withdrew from the CPP process before
submitting any provisional assignments.

Moreover, the survey results confirm what has been noticed in the crowd behaviour in terms
of data component usefulness. The analysis observed a higher request rate on project in-
formation and peer discussion. That also confirms earlier findings in Chapter 6, where the
types of information are evaluated. Surprisingly, the survey suggests that the crowd does
not look for analogies at the beginning of their estimation process. Instead, they prefer to
read the available information and start analysing the issue by breaking it down into smaller
sub-tasks.

From the perspective of the quality model, the crowd proposal for quality criteria is very
similar to the implemented version, and that lends additional credibility to Chapter 6’s ex-
perimental work. Moreover, the survey results and behavioural analysis agree that the major-
ity of crowd workers consider a revision path. Again, another similarity is that assignment

9.5. Discussion 190

justification and estimate selection are the most reviewed component of the assignment for
those workers who decided to revise their assignments.

While the systematic method of investigating the UI interaction log considers all the log
events without exception, a focused investigation on peer discussion and the crowd feedback
loop is also considered by filtering the logs to include only related trace entries.

By filtering the activity stream flow to show only flows that considered peer discussion, an
interesting correlation between peer discussion and extra information shows up. Workers
who submitted accurate estimates were relying only on peer discussion. They did not ask
for or read additional information, including the issue dictionary, issue project, and issue
comments. That phenomenon appeared across quality classes (A, B, and C).

On the other hand, workers who ask for or read extra information after peer discussion submit
inaccurate estimates across quality classes.

In other words, if Johanna or Sarah stuck to the peer discussion without distracting them-
selves with information in comments or Google searches, they would probably reach a more
accurate estimate. The original Planning Poker showed that peer discussion is beneficial [5],
and it has similar effects here in CPP.

Moreover, such a phenomenon suggests that crowd workers can adopt a handover mechanism
to process large tasks instead of breaking the tasks into smaller independent parts.

Shifting the focus towards the reading feedback activity, the usual behaviour in all classes
is that workers who consider reviewing their assignment go over estimate options then the
justification. Fewer workers idle then go on to read the issue instructions and basic informa-
tion, and this behaviour was not exhibited by workers who submitted accurate estimates in
classes A and B.

The aim of using Loss Attention is to encourage workers to take on additional work and
review their assignments. In addition, the selected feedback message does not specify a par-
ticular component to review, to not expose the classifier weakness. This was also reflected
by workers’ behaviour in going over most of their inputs, and a smaller number went further
and reviewed the instruction and issue description. Interestingly, workers who submitted ac-
curate estimates behaved more systematically, and those who submitted inaccurate estimates
showed chaos in their behaviour.

Workers who considered revision after getting Class D (Poor Quality) showed less review
activity. However, the majority reviewed the time options and submitted the assignment
again.

9.6. Summary 191

9.6 Summary

While the preceding chapters of the thesis have demonstrated the feasibility and reliability
of CPP, fine-grained details about how crowd workers interacted within CPP process are still
uncovered. Such details are essential to understanding the mechanics and dynamics of CPP
and thus continuing to improve CPP.

The extended experiment in Chapter 8 has recorded a large number of UI interaction logs.
Such logs offered an opportunity to investigate crowd behaviour, from which several obser-
vations can be derived. As a next step, an ethnographic methodology is used to investigate
the logs.

In the literature, several studies have used ethnographic methods to understand the research
group. While the traditional method is by immersing the researcher into that group, new
methods using UI logs and surveys are also used in more than one study, for example Sharp
and Robinson [248].

The method designed for the ethnographic study consists of three components: a systematic
scanning of all UI interaction logs, a selective topic analysis, and a crowd survey. The sys-
tematised scanning aimed to provide a general understanding of different crowd behaviours,
from which four persona archetypes were derived. The personas that were developed are
John, Johanna, Sarah, and Smith.

Smith shows the behaviour that needs to be avoided. The poor assignments are what can
be expected from Smith. He will ignore any improvement opportunity. On the other hand,
Sarah does her best to submit a good quality assignment, and she considers improving her
chances. However, good quality is not going to come from her. Hence, additional training
and detailed feedback may benefit her. Johanna and John are the best workers, and good
quality assignments are their game. Moreover, John is more accurate than Johanna, and his
behaviour suggests he is focused on the analysis of the issue while reading the issue details,
unlike Johanna, who is a bit distracted and acts only when needed.

The selective analysis of peer discussion shows that crowd workers rely on such information.
Sarah and Johanna returned to peer discussion only after getting their provisional assignment
rejected. This may explain the correlation between accurate assignments and reliance on peer
discussion that is identified in the analysis.

The other selective analysis was about the crowd feedback loop. It appears that when crowd
workers considered a revision, they mostly looked at the justification and their estimate se-
lection. It also confirms the effectiveness of using loss attention as part of the improving
element of the quality model. It helped to encourage the workers to review their assign-
ments. However, Smith is not among those workers.

9.6. Summary 192

A hundred crowd workers were asked to take a survey to confirm the analysis findings and
understand their perspectives. The results confirm similar conclusions to the systematic and
selective analysis. However, looking for issue analogies was not viewed by the crowd as
the best option during their estimation process, contradicting what was assumed before. The
survey also doubly confirms the earlier findings of Chapter 6’s experiments.

193

Chapter 10

Conclusions

Planning Poker as an expert-based Software Effort Estimation (SEE) method is investigated
in this thesis with the aim of automating its process. Besides covering the literature gap
in studying expert-based SEE methods, the thesis investigated several aspects of SEE using
machine learning (ML) algorithms. While ML algorithms are efficient and automated, they
require careful tuning and access to a large amount of context-related data. The thesis has
shown that, unlike current ML-based methods, expert-based methods are more flexible and
easier to adopt and that the Planning Poker method can be scaled using human computation
techniques deployed on crowdsourcing platforms..

The next section summarises the research activities that took place in this thesis. Then,
Section 10.2 discusses the thesis questions along with their answers. It starts with the eval-
uation of ML-based SEE methods and then covers questions related to CPP design, quality,
automation, and crowd worker behaviour. After that, Section 10.3 explains the thesis con-
tribution to the software engineering and human computation research disciplines. It also
illustrates the learned lessons from the thesis’s experimental work. After that, Section 10.4
states the thesis scope and assesses overall threats to validity, beyond those discussed for spe-
cific experiments. Finally, this chapter concludes with future research directions, including
the investigation of using CPP in industry and the effect of obfuscating sensitive information
on estimate reliability.

10.1 Summary of Research Activity

The overall work presented in this thesis concerns the development of a Planning Poker-
based effort estimation method using crowds of expert workers. There were several steps
in the research, starting with assessing contemporary natural language processing (NLP)
techniques in building an ML model for software effort estimation based on the description

10.2. Questions and Findings 194

text of software development issues.

After evaluating ML algorithms, a series of research and development phases were followed
to develop a semi-automated version of Planning Poker. This work began by investigating
the feasibility of crowdsourcing for the process and studying what working settings could
help crowd workers to play Planning Poker and give an expert-comparable estimate. In that
phase, three pilot experiments were conducted to inspect different crowd settings, resulting
in the Crowd Planning Poker (CPP) method. CPP is an adaptation of Planning Poker for a
crowd environment. One major challenge hindering CPP from being useful was managing
the crowd outcome quality.

The next phase was developing an approach to address the problem of poor quality submis-
sions by workers in the CPP process. The problem is that the majority of workers’ output
was of unacceptable quality, and thus, useless. A quality model with five components was
developed to resolve this quality issue of CPP. The model was able to merge ML algorithms
for inspecting assignment quality and human intelligence (crowd workers) to improve their
assignments. Resolving the quality issue led to an extended experimental work on CPP to
confirm its performance over a large set of software development issues.

The third phase was extending the human computation implementation in CPP to reach a
semi-automated CPP process that is autonomously played by crowd workers. An extended
experiment with thirty issues was conducted to confirm CPP’s ability in producing expert-
comparable estimates. The results suggest that crowd workers using CPP are capable of
predicting estimates that are similar to the expert ones. The extended CPP experiment gen-
erated a large number of crowd worker UI interaction traces.

Finally, fine-grained details about how crowd workers produced software effort estimates and
which CPP component helped them most were still uncovered. Such details are essential
to understanding the dynamics of CPP and thus continuing to improve CPP and software
effort estimation in general. Therefore, an ethnographic-inspired method was used to follow
and study crowd workers’ traces. Several observations and insights into workers’ behaviour
were made by inspecting the UI log. In addition, four personas were developed to represent
four distinguished crowd behaviours. Such personas are helpful in distributing CPP work
to suitable workers while at the same time avoiding unwanted behaviour. To confirm the
observations, crowd workers who took place in previous CPP experiments and had been
subjects of the ethnographic study were questioned about the study findings using a survey.

10.2 Questions and Findings

The thesis’s broad question concerns the ability to combine crowdsourcing and human com-
putation to predict an expert-comparable estimate using a Planning-Poker-style process.

10.2. Questions and Findings 195

However, to answer this question, a list of seven questions need to be addressed first. These
questions are grouped into five categories including: ML algorithms, CPP design, CPP qual-
ity, CPP automation, and crowd behaviour. The following subsections will address these five
categories which in turn will provide a detailed answer for the thesis’s broad inquiry.

10.2.1 ML Algorithms

Before automating an expert-based SEE method, it is wise to study previous automated meth-
ods, such as those that rely on ML algorithms. Therefore, the first question addressed in this
thesis is:

Can recent NLP advancements help in building an ML model that pre-
dicts more reliable estimates than experts?

Chapter 5 demonstrated that current generation algorithms were not able to reliably generate
effort estimates compared with experts. Despite the complication and data demands of ML
methods, two of the state-of-the-art ML algorithms (BERT and RF) failed to provide reliable
estimates that compared with those of experts. This conclusion conforms with the results of
existing studies in the literature. However, the ensemble ML algorithm RF, performed better
and it is probable that it will be helpful in inspecting crowd assignments to determine their
quality.

Most likely, the lack of reliability in ML-based SEE methods originates from the fact that the
estimation process needs much more information about the context. While BERT is able to
extract the semantics from a text corpus, the corpus may not reflect all information about the
software development task. Further, the semantic delta between two text excerpts may not be
representative of the effort delta between the software development tasks that those excerpts
belong to. For instance, the delta between “Develop a web application using JavaScript”
and “Develop a web application using COBOL” from a semantic perspective may not re-
flect the delta in effort required to complete each task. That is also clearly demonstrated in
the behaviour of crowd estimators, with accurate estimates being associated with estimators
who exhibited a looping behaviour around task information and demanded extra background
information about the software development task, as explained in Chapter 9. Therefore,
a structured effort-based data model may help in enhancing the predictability of effort for
software development issues.

10.2.2 CPP Design

Chapter 6 illustrated the design of CPP and the working settings of the crowd environment
for CPP. Originally, Planning Poker was designed for in-person meetings, where participants

10.2. Questions and Findings 196

can discuss and exchange their views. However, in a crowd environment, that becomes
infeasible. Therefore, the question that needs to be addressed here is:

What is the proper process design that can enable crowd workers to
produce software estimates using Planning Poker?

Three main aspects of Planning Poker need to be imitated: the iterative estimation model,
team discussion, and team consensus. A process that recruits crowd workers in rounds is
designed to represent the iterative estimation model. Team discussion is replaced with a
summary of a preceding round, asynchronously conveyed to the current round. The summary
contains estimates and the justifications behind them. Consensus is calculated using Fleiss’
kappa at the end of each round to determine if there is a need for an additional round or
not. A level of fair agreement is used to indicate that the crowd workers have reached to a
consensus. The adopted process is called Crowd Planning Poker (CPP).

Before going on to examine the CPP process design, the size of the crowd and type of back-
ground information about the software development task needs to be determined. Therefore,
the following question also needs to be addressed:

What are the proper size of the crowd team and the types and amount of
information required to play Planning Poker in a crowd environment?

Issue title and description were found to be not sufficient for crowd workers to predict an
effort estimate. The workers needed extra contextual information such as information about
the issue’s project, developers’ comments about the issue, and an explanation of abbrevia-
tions and technical terms in the issue description. A crowd of 70 workers was found to be
large enough to produce a final expert-comparable estimate.

10.2.3 CPP Quality

Chapter 7 demonstrated that crowd assignment quality is a legendary challenge and it was
found to be sensitive in the context of CPP. There are two main components of crowd quality
in the context of CPP: quality assessment and improvement. What makes quality challenging
in crowd settings is that there are a large number of assignments that need to be inspected.
The estimate being subjective is another quality challenge. Manual processing of assign-
ments eliminates the crowdsourcing benefits of being cheap and fast. Therefore, the first
quality question is:

Can the quality of crowd estimates be measured automatically?

Instead of asking the crowd for estimates only, the crowd is asked to answer other associated
questions, such as their experience and a justification for the estimate. Another helpful asso-
ciation is the trace of the worker’s interaction with the CPP software UI. By collecting such

10.2. Questions and Findings 197

information, a classifier can be trained on earlier CPP experiments and then used to classify
new assignments based on the associated information. The classifier’s F1 score was 93%.
After identifying a crowd assignment’s quality level, there may be assignments that almost
qualify for consideration, and revision may boost their quality to the next level. Thus, CPP
needs a quality improvement component to help enhance those assignments, and the next
quality question is:

How can low-quality crowd estimates be improved automatically?

Based on the crowd quality definition in Chapter 7, improving an assignment’s quality will
require additional human resources. Thus, the same crowd worker is asked to improve their
assignment quality after it is automatically assessed. However, time is critical for crowd
workers in general, and to ask a crowd worker to do additional work, they also need encour-
agement or additional incentives. CPP avoided additional financial incentives since this has
been proved in the literature to not be effective. In addition, it increases the financial burden.

Instead, a behavioural economic theory, Loss Attention, is used to encourage the workers to
do the additional work. Loss Attention suggests that individuals increase their attention and
resources when losses are involved in their task. Thus, CPP used a rejection warning for as-
signments that were below the quality threshold before rejecting them. Many of the targeted
crowd workers responded positively to the warning and either improved their assignment or
withdrew from the task.

10.2.4 CPP Automation

Chapter 7 demonstrated an automated crowd quality assessment in the CPP context, which
opened the door to examining CPP performance in a more extended experiment, as illustrated
in Chapter 8. Additional development was also added to CPP by using human computation
in the administration process, meaning that the latest development made CPP autonomous.
However, CPP still needed to be tested against a wide range of software development issues
to address the following question about the latest version of CPP performance:

Does the semi-automated CPP process enable the crowd to produce
expert-comparable estimates?

To answer the question, an experiment that recruited over 700 workers and estimated effort
for 30 different software issues was designed and conducted. The experiment confirms CPP
performance and the crowd workers’ capability of producing expert-comparable estimates.
Crowd workers produced the same estimates as experts in 8 trials, crowd workers were more
accurate in 10 trials, and experts more accurate in 12 trials.

Furthermore, the delta of crowd to expert estimates MMRE is 102.19% across all software
development issues. This is another indication of how good the crowd estimates are. It also

10.3. Contributions and Learned Lessons 198

suggests that crowd workers are more likely to underestimate by a category as compared to
experts who are more likely to overestimate using person hours.

10.2.5 Crowd Behaviour

A deeper understanding of crowd behaviour was essential to undertaking further CPP devel-
opment. In addition, the extended experiment left a large amount of UI interaction traces,
and crowd behaviour could be derived from such logs as had been done before in more than
one ethnographic study. Therefore, a question about the crowd behaviours and their charac-
terisation can be posed:

What are the personas of crowd estimators?

A systematised investigation of the UI log and a post-CPP crowd survey was carried out to
identify four crowd personas and their behavioural archetypes. John is a calm persona who
prefers to read, think, and search before acting. Most accurate and high-quality assignments
will come from him. His behaviour followed a systematic pattern. Johanna is also expected
to submit high-quality work but probably not accurate estimates. She prefers to act first,
then, when she is stuck, she starts thinking, reading, and searching. Some chaos can be
spotted in her behaviour pattern. Sarah shows unpredictable behaviour from the beginning.
She seems to not understand the task and jumps from one place to another. In general, she
does not produce good-quality output. However, she might be accurate sometimes. Sarah
is a person that needs extra training, and revision chances helped her in enhancing her work
quality. Finally, Smith shows a robotic behaviour who spends as little time as possible on
producing his small assignment. He never submits good work and is not willing to accept
calls for revision. Sometimes, Smith acts as a scammer.

10.3 Contributions and Learned Lessons

More broadly, the thesis contribution is within the context of software engineering automa-
tion. In particular, it focuses on automating effort estimation, a task that begins early in a
software project, but continues throughout the lifecycle. The aim is to design more efficient
effort estimation that can lift the heavy load on software developers and reduce the time spent
on manual effort estimation which can be unbearable in large open-source projects.

The thesis assessed SEE by using state-of-the-art NLP and ML algorithms. The research
demonstrated that these methods were inadequate due to a lack of consideration of the wider
context of a task. Next, it selected one of the popular and effective expert-based methods to
automate, Planning Poker. Since all expert-based SEE methods demand human resources
for prediction, the automation was done by employing human computation and using a

10.3. Contributions and Learned Lessons 199

crowd platform to orchestrate the SEE process. Finally, the thesis reviewed crowd estimator
characteristics, in order to understand how crowd estimators were able to produce expert-
comparable estimates. Such understanding is important to continue to improve research into
SEE.

The contribution can be grouped under two umbrellas, Knowledge and Artifact contributions.
The knowledge contributions are:

• Evaluation of NLP/ML-based software estimation, specifically, Random Forest and
BERT, using textual features of software development tasks. These offered no better
estimates than experts.

• The design and implementation of Crowd Planning Poker as a software effort estima-
tion method for large-scale open-source development projects.

• The design and implementation of automatic quality assessment and quality improve-
ment of CPP crowd assignments.

• Providing empirical evidence on CPP reliability compared with expert-based SEE
methods.

• Identification and validation of four crowd worker effort assignment personas, provid-
ing insights into how different workers produce estimates and the artefacts that they
focus on.

The thesis also contributed four artefacts that are publicly available and can be retrieved from
the thesis repository1:

• JIRA Open Source Software Effort (JOSSE) dataset that consists of 16,979 data points
annotated with descriptive text, actual effort, and expert estimates (only 15% of the
data points are annotated with expert estimates).

• Crowd Planning Poker Behaviour (CPPB) dataset that consists of 8,338,021 data points
for over 10,316 crowd workers.

• Crowd Software Effort Estimate (CSEE) dataset that consists of 507 estimates for 30
software development tasks annotated with expert estimates and actual effort.

• Crowd Planning Poker web application that is integrated with Amazon Mechanical
Turk and implements the full process of CPP.

1https://github.com/crowd-planning-poker

10.3. Contributions and Learned Lessons 200

The rest of this section will cast light on more details about the thesis contributions in their
chronological order.

Chapter 4 proposed the new dataset, JOSSE. The dataset can be used to train ML mod-
els. Most of the available data for ML SEE were old and describing whole software projects
rather than smaller software development tasks such as stories and software issues. Although
there are a few datasets with stories, they contain actual effort only, without expert estima-
tion. To the researcher’s knowledge, there were no publicly accessible datasets that represent
small software tasks and contain task descriptions, actual effort, and expert-based effort es-
timates. Thus, JOSSE was collected and cleaned using an extensive cleansing process. The
JOSSE dataset is publicly available in the thesis repository2.

Then, in Chapter 5, BERT was used to extract word embeddings as a context-aware vec-
torisation of a text corpus and compared with the popular TF–IDF vectorisation method in
a comparative study of BERT and RF models. BERT and RF research in the literature used
datasets with no textual attributes, or did not use TF–IDF in comparison with a context-aware
vectorisation such as BERT. However, BERT is added into the comparison matrix to reflect
its impact on the accuracy of estimating the effort of software development tasks.

In the comparative study between different ML models demonstrated in Chapter 5, the
JOSSE dataset was used with six other popular and recent datasets of software effort es-
timates. The comparisons were done across datasets, vectorisation methods, and ML classi-
fication algorithms. The experimental work of Chapter 5 led to work on developing CPP.

Two key learnings from the ML experiment are that the ensemble ML algorithm, namely RF,
generally performs better than a single ML algorithm. In addition, BERT as a factorisation
algorithm might not be the best option, as was assumed, especially when the targeted training
model is an RF model.

Chapter 6 was the first to demonstrate the playing of Planning Poker in a crowd environment,
as proposed by Grenning [215]. The literature, as reviewed by the researcher, has no prior
work of recruiting crowd workers for estimation using a process that is inspired by Plan-
ning Poker. In that chapter, a model process of Crowd Planning Poker was designed. The
model imitated three main features of the original Planning Poker. including iterative esti-
mation, team discussion, and estimate consensus. In addition, Chapter 6 examined a variety
of crowd settings that make CPP work. In particular, it evaluates what kind of informa-
tion crowd workers may need to understand the software issue, and how much information
should be presented to the workers. The other CPP crowd variable was the suitable size of
a crowd to form a reliable estimate. By determining the settings for those variables in two
different experiments, a third experiment was used to perform a preliminary assessment of

2https://github.com/crowd-planning-poker

10.3. Contributions and Learned Lessons 201

the proposed design. This experiment revealed crowd outcome quality as a challenging issue
of playing Planning Poker in a crowd environment.

The learning outcome of the preliminary course of CPP experiments is that crowd workers
can produce useful output, but it will be hidden by an excess of unwanted work. Thus,
quality management is a major component in any crowd work and especially in subjective
work such as estimating effort. In addition, navigating the crowd environment is not as easy
as had been assumed. Rather, it requires a lot of administration work to reach to the final
effort estimate.

To deal with the quality issue of crowd work, Chapter 7 designed a quality model that is built
on three quality suite components: quality definition, assessment, and improvement. The
model automatically assessed and improved workers’ assignment quality. It used human
computation to merge the ML classifier and human analysis to dramatically improve the
quality of the crowd outcome. It is the first to use the behavioural economic theory of loss
attention in the improving element of the quality model. Having resolved the quality issue,
work was done to confirm earlier CPP findings by conducting an experiment with a wider
range of software issues.

This then demonstrates that while the crowd produces a large amount of low-quality output,
machines can identify this fairly clearly in the context of SEE. Despite the promotion of
the crowd as mechanical work, crowd workers are still human, and they can respond to
behavioural theories such as loss attention. This was a major learning point in how to deal
with crowd workers. It also helps in improving the CPP design to make an autonomous
process that can be run by a machine and a crowd.

Chapter 8 also used human computation to deal with the CPP administration effort and dele-
gate the effort estimation process to the machine. The result is an autonomous CPP process

that takes an issue and outputs its expert-comparable estimate. Moreover, the concept of
using a hand-over procedure between rounds is revisited in this chapter. Instead of breaking
down tasks into independent micro-tasks so that workers can work on them, a hand-over
procedure is suggested to crowdsource prolonged dependent tasks. In the same chapter, an
extended CPP experiment that employed over 1,449 crowd workers to estimate 30 software
issues was conducted. The collected crowd estimates, along with the expert estimates and
actual effort, were used to annotate the 30 software issues which were stored in the CSEE
dataset.

The experimental work detailed in Chapter 8 required the development and implementation
of a custom web application to reflect the logic and process design of CPP. The developed
CPP web application uses the AMT API and was designed to ensure a smooth transition for
crowd workers between AMT and the CPP system as if they were a single system.

Further, the experimental work in Chapter 8 resulted in the logging of a large number of

10.3. Contributions and Learned Lessons 202

y = 29 + 0.23 x

R2 = 0.029

0%

10%

20%

30%

40%

50%

60%

70%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Round Number

R
ej

ec
tio

n
R

at
e

First batch (Oct 2019)
y = 35 − 0.69 x

R2 = 0.099

0%

10%

20%

30%

40%

50%

60%

70%

1 3 5 7 9 11 13 15 17 19 21 23 25
Round Number

R
ej

ec
tio

n
R

at
e

Second batch (Nov 2019)
y = 58 − 1.4 x

R2 = 0.62

10%

20%

30%

40%

50%

60%

70%

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Round Number

R
ej

ec
tio

n
R

at
e

Third batch (Dec 2019)

Figure 10.1: Activity stream map for poor assignments (Class D).

crowd UI interaction traces. The collected UI interaction traces represented the behaviour of
crowd workers while they were playing Planning Poker. The collected data were stored in
the CPPB dataset and can be accessed via the thesis publicly available repository1.

A data cleansing process was done to remove duplicate and sensitive data. In addition,
any workers’ identification was removed. Moreover, the eXtensible Event Stream (XES)
standard was used to produce a friendly version of the log which was stored in the same
thesis repository1.

A learned lesson from the extended CPP experiment is that once the CPP process is able
to distinguish good and bad assignments, the accuracy of the crowd estimate is improved.
Surprisingly, crowd workings often also provided extensive breakdowns of tasks as part of
their rationale. Others proposed tools and places to get the right assistance. Moreover, some
assignments were insightful in considering things like documentation and testing that would
be needed to accomplish the task implementation. Another lesson is that, once the automated
quality check is enabled and the crowd feedback loop is established, crowd workers recog-
nise you as a requester who does due diligence and cares about quality. Thus, the number
of unwanted assignments did not disappear immediately, but rather in a gradual pattern, as
illustrated in Figure 10.1. The 30 software development tasks used in the extended CPP ex-
periment and detailed in Chapter 8 were estimated by crowd workers in three batches over
three months (October, November, and December). In the first batch, the trend line for the
rejection rate was upward. In the second batch, the trend-line direction changed to down-
ward. Then, in the third batch, the trend-line slope significantly increased and its direction
remained downward. This further benefited workers making high-quality submissions, since
they were more likely to be recognised.

On the side, crowd workers are also using special scripts and advanced technology for their
own benefit. For example, a worker sent an apology message after being rejected by the
quality model several times trying to justify that the tools being used by the worker were be-
hind the bad assignments. That was surprising for the researcher, since a general assumption
was that crowd HITs were being processed and resolved by humans. Yet, humans are smart,

1https://github.com/crowd-planning-poker

10.4. Thesis Scope and Validity 203

and they delegate the work to machines again for their own benefit. Here is an excerpt from
the worker email.

“Hi there, I’m worker [*****] and I wanted to explain what happened
with a batch of your hits today. As you may know, many Mturk workers
use scripts to help them ... One of the scripts I use for this purpose was
recently updated and something went horribly wrong...”

Such a delegation resulted in a large number of low quality assignments as illustrated in
previous experiments. This may make the requester job harder or may invalidate the original
promise of crowdsourcing that rely on the consensus of the majority.

Chapter 9 utilised the large number of UI logs gathered in previous experiments to conduct
an ethnographic study. Such a study is one among few ethnographic studies of effort estima-
tion. By investigating the UI interaction log, four crowd estimator personas (John, Johanna,
Sarah, and Smith) were developed to describe different workers engaging in their software
effort estimation tasks. Their behavioural traces helped identify them and associating these
personas with their outcomes.

While drawing the personas, a realisation came about which part of the CPP process should
be handled by which worker. As mentioned earlier, workers are human and their skills vary,
and thus, some of them may be better doing the first part of the CPP and others complete the
rest.

Based on that behaviour, John is suggested for the first round of CPP, then Johanna for the
next rounds. Sarah can be helpful but extra training is necessary. Smith is the crowd worker
that needs to be prevented from participating in the game. Further analysis of the log data
may help to derive additional conclusions..

Moreover, crowd problems do not necessarily need technical solutions; sometimes, be-
havioural theory can be very effective, as shown by the use of loss attention in the exper-
iment.

10.4 Thesis Scope and Validity

One concern of the thesis outcome is how generalisable are the results. Since the popula-
tion of software issues is unknown, non-probability sampling techniques are used. Namely,
Quota sampling is used along with Convenience sampling to select the experiment’s issues.
In addition, the estimation process is carried out over software issues rather than a whole
software project. The advantages of this are that software issues are atomic workable items
that do not significantly differ from a software project to another. This gives the flexibility to
generalise the outcome to the issue or task level of a given software project, especially if it is

10.4. Thesis Scope and Validity 204

developed using the same technology and programming language as of the selected issues,
e.g. Java.

Moreover, looking to generalisation from an estimation view, different lengths of actual ef-
forts and difficulty levels are selected to examine the crowd worker response, regardless how
accurate their estimates are. The experimental work proves that crowd workers respond pos-
itively to the issue difficulty by raising their estimate for difficult and lengthy issues and
lowering their estimate for easier ones. This means that, even if the crowd worker is not
accurate, they are responsive to different issues, which suggests that crowd workers are able
to identify the difficulty level regardless of the issue in hand.

A limitation of the study was employing issues created for open-source projects. This deci-
sion was necessary as the experiment required a source of software tasks that could be pro-
vided to anonymous crowd workers and that had been annotated with the expert-estimated
and actual work cost. This meant there was a risk that the crowd workers could access the
issue trackers themselves and simply supply the actual reported cost, creating a threat to the
validity of the reliability results.

This risk was mitigated in several ways. First, the issue identifiers were not supplied to the
crowd workers, and issues were selected from issue trackers that required user registration.
This created an additional step to deter workers. Second, workers were asked for a category
of estimate, rather than an absolute person-hour value, creating an additional step if the
source issue was accessed. Finally, workers were encouraged to supply their estimate and
it was clear that payment was not contingent on supplying the correct result. Consequently,
there is no evidence in the behaviour logs that the workers accessed project issue trackers,
although this may have occurred outside the CPP user interface.

Confidentiality was a challenge that directed the research towards data available from open-
source software projects. Private organisations are not willing to publish their internal soft-
ware issues to be estimated by the public crowd. Although software issues from the open-
source community use the same technology and programming languages, e.g. Java, timing
in the context of open-source projects might not be as critical as it is in commercial software
projects.

As a response, the selected issues represent the issues that have the best expert estimates
among the other issues in the JOSSE dataset, as explained in Chapter 8 Section 8.2. In ad-
dition, the crowd estimates were judged by using the logged time as a ground truth. Logged
time is the actual time spent in resolving an issue, excluding any kind of stopping or work
pauses. In addition, the estimation is based on the issue, not the whole project, where signif-
icant differences between open-source and commercial projects accrue. Moreover, different
types of issues, such as bugs and software enhancements, were selected to ensure coverage
of possible issues that may occur in a commercial project.

10.5. Future CPP Research Work 205

While the result of the thesis’s experimental work suggests that crowd workers are able to
produce estimates as good as those of experts, it does not mean that such estimates might be
acceptable for a given development team. The usability of CPP outcomes in a development
team needs to be further investigated, as explained in the future work section of this chapter.

While this thesis addresses software effort estimation scalability by making Planning Poker
more efficient, another scalability concern regards the availability of human capital willing to
take on CPP-like tasks and produce the required estimates. Thus, it is important to investigate
whether the wider scope of a software development team that includes people working for the
same organisation or in the same community would demonstrate the same ability to produce
effort estimates for their project. Doing so would enable CPP to be played by the same
development team, which may resolve a need for external human resources to undertake
the estimation tasks. Perhaps future advancements of NLP/ML algorithms may enable the
processing of contextual data, which will help in closing this gap.

10.5 Future CPP Research Work

This thesis started the investigation of a new research niche, crowd effort estimation using
Planning Poker. This means that several related topics have still to be researched and devel-
oped to improve comprehension of the method, for example, applying the proposed CPP in
an industrial software development project. Moreover, other challenges have also appeared
which need to be addressed, such as data confidentiality. This section will detail several
future research directions.

10.5.1 Applying Crowd Planning Poker in an Industrial Case Study

This thesis provides answers to some fundamental questions, and it also examined some
hypotheses in several open-source communities. However, there is still a gap around using
CPP in an industrial context. Among other aspects, there are three demanding dimensions
that need to be investigated in the industrial context:

• Effects of CPP on the software development team: this dimension should investi-
gate how CPP can affect the development team members and their response to such
a change. It also looks into the team’s perspective and reception of such estimates.
Will the development team accept software effort estimates predicted from outside the
team, and will the team act upon those estimates?

• Reliability and efficiency of CPP estimates in an industry software project using an
internal crowd, e.g. company employees, and an external public crowd, e.g. AMT.

10.5. Future CPP Research Work 206

Varying the source of the crowd may impact the estimates’ reliability, especially if the
crowd has a conflict of interest that may introduce bias in the final estimates. Further,
using an internal crowd may seem efficient since no extra cost will accrue, but will the
workers in an organisation be willing to participate in CPP?

• The best use of CPP in an industrial software development team may be the use of
the estimates as informative rather than determinative. What other situations are there
where CPP is most helpful, e.g. during pandemics?

However, one challenge to research in this area is data confidentiality. Commercial organi-
sations may be reluctant to use CPP since software stories and issues may contain sensitive
information that they cannot disclose to a public crowd. Such a challenge may be resolved
by using an internal crowd, e.g. company employees, or obfuscation techniques. Therefore,
CPP could be used by a software team to obtain an initial estimate for a task along with some
initial guidance, prior to the task being triaged by a team member. Further studies are needed
to understand how a software team could incorporate crowd estimates within existing triage
workflows.

10.5.2 Investigating the Effects of Obfuscating on Estimate Re-
liability

As a further work in this direction, it is necessary to investigate the extent to which issues can
be obfuscated to address the confidentiality concern, without reducing the reliability of the
estimate. Obfuscating can be used as a technique to resolve the issue of disclosing sensitive
information among other details of a software task that needs to be estimated by a public
crowd. Several directions need to be addressed in this regard:

• Obfuscating issue descriptions may have a negative impact since such details may be
connected to the overall effort. Therefore, what kind of details can be obfuscated
without a large impact on the estimate’s reliability?

• Obfuscating may introduce generality in the software task description, therefore how
can such generality be addressed or specified?

• What obfuscation techniques should be employed, and what are the contexts that they
work best in?

If an obfuscation technique has no impact on estimate reliability and it can protect the orig-
inating party’s confidentiality, then a software tasks repository can be proposed where each

10.5. Future CPP Research Work 207

task is annotated with estimated and actual effort to be used in future software effort estima-
tion.

Moreover, a possible future research direction is to develop a repository to store and track
effort for software stories and issues. Such a repository can help in ML SEE methods as
well. It would also enable a deep investigation of factors and techniques affecting software
effort reliability.

Equally important is to investigate the possibility of measuring the specificity of an issue, as
issues that concern less project-specific activities may be less sensitive for a project. Doing
so would take software development projects a step closer to systematised and automated
software development.

10.5.3 Extending Crowd Planning Poker Applications

While this thesis focuses on software effort estimation using CPP, there are other applica-
tions with similar needs to software effort estimation, such as expert judgement, crowd avail-
ability, and asynchronous communication. Other applications of CPP could include budget
estimation for complex projects that involve international working teams, assignee selection
for large-scale development projects, and code writing for distributed development teams.

CPP also can help in assisting and assessing machine-based software development, perhaps
synthesising machine and human decision making in automated software development, for
instance, machine-directed software architecture. More different applications can be identi-
fied given that the need for experts can be substituted with a carefully orchestrated crowd, as
demonstrated in this thesis’s application to software effort estimation. Therefore, we take a
step closer to the automation of software development.

10.5.4 Extending Ethnographic Effort Estimation Study

As demonstrated in Chapter 9, the qualitative analysis of crowd estimators’ behaviour using
ethnographic tools was a key to discovering and identifying four personas. Therefore, it
identified future improvements as explained in this chapter, one of which is to conduct an
ethnography study on the in-person Planning Poker (the original version) to address several
aspects of the process, including participants, moderation, and activities.

Further, the results of such a study can be compared with the results of the ethnography
study of CPP to find and address weaknesses and strengths of both methods by exchanging
process designs for both methods. That might result in a hybrid method that uses CPP for the
majority of issues which do not require extensive communication and calls upon the team
for issues that require a face-to-face meeting in order to resolve them.

10.6. A Final Thought... 208

10.6 A Final Thought...

Automation is what software does for other real-world disciplines, including accounting,
administration, and an organisation’s business processes. However, despite a plethora of
assistive tools, including compilers, version control systems, interactive development en-
vironments and continuous integration platforms, software development remains a labour
intensive discipline. As Martin [271] argues in his classic, Clean Code,

“Some have suggested that we are close to the end of code... That soon
all code will be generated instead of written. That programmers simply
won’t be needed... Nonsense!”

Nevertheless, while the research of software engineering has advanced toward systematised,
measurable, and reproducible software development methods, there is plenty of work to do
in the area to push the boundaries of the automatable in software engineering.

It is not an easy topic to tackle. Many authors refer to software development as an art, or craft,
rather than an engineering discipline, see, for example the books of Martin [271], Knuth
[272] and Hunt and Thomas [273]. To make headway in this agenda, rather than attempting
automation in the difficult space between requirements and implementation, the automation
of smaller niches in software development, e.g. automated methods to develop business-
process-based software can be investigated. Contemporary software development has a range
of high friction, high frequency micro-tasks, of which SEE is just one. Introducing automa-
tions that reduce the cost of any single task type could have significant economic benefits for
the practice of software engineering.

209

Appendix A

Details of JOSSE Open Source
Software Project

The JOSSE dataset consists of multiple open-source software projects. While the dataset
refers to those projects using a project key, Table A lists additional details about each project.

Project Community Brief Type

ACCUMULO Apache Apache Accumulo is a sorted key-
value database based on Google’s
Bigtable. It is a distributed sys-
tem with high scalability. It relies
on other Apache systems such as
Hadoop and it was developed using
Java.

Database
Software

AEROGEAR jBoss AeroGear is a cross-platform mobile
application development platform. It
is an open-source RedHat project
that is created for enterprise mobile
apps.

Mobile
Development

AMBARI Apache Apache Ambari was designed to help
system administrators manage and
integrate a Hadoop cluster.

Data Process-
ing software

ARROW Apache Apache Arrow is a data analytics
framework for developing data soft-
ware. It is based on a column-
oriented format of data memory.

Data Process-
ing software

210

ARTEMIS Apache Apache ActiveMQ is a messaging
hub designed for enterprise commu-
nication systems

Enterprise
system

BATCH Spring Spring Batch is a lightweight batch
handling framework. It enables
batch development for enterprise
systems.

Software de-
velopment

BEAM Apache Apache Beam provides a unified
model for creating data processing
pipelines used in ETL, for instance.

Data Process-
ing software

CALCITE Apache Apache Calcite offers a framework
and tools kit to develop data manage-
ment systems.

Database
Software

CARBONDATA Apache Apache CarbonData is column-
oriented storage that can be used for
Apache Hadoop ecosystem.

Database
Software

DAFFODIL Apache Apache Daffodil implements Data
Format Description Language and
provides a parser to transform from
DFDL format to XML/JSON.

Data Process-
ing software

EXOJCR JBoss eXo JCR is an implementation of
Java Specification Request.

Software de-
velopment

FLINK Apache Apache Flink is a framework for
dataflow streaming engines.

Data Process-
ing software

GEODE Apache Apache Geode offers a platform to
manage data. It provides consistent
real-time and data-intensive access
to applications using a distributed
computing cloud.

Data Process-
ing software

GTNPORTAL JBoss GateIn Portal is an enterprise web
portal. It also provides a portal de-
velopment framework.

Web Devel-
opment

HDDS Apache Hadoop Distributed Data Store is a
storage layer for distributed blocks
with no namespace.

Data Process-
ing software

211

IGNITE Apache Apache Ignite is a distributed
caching platform that offers large
volume storage and computation
across clustered nodes.

Database
Software

INT Apache Apache Ant is a Java library for exe-
cuting build files dependent on soft-
ware packages.

Software de-
velopment

JBAS JBoss Jboss Application Server, also
known as WildFly.

Enterprise
system

JBEAP JBoss JBoss Enterprise Application Plat-
form is an application server runtime
platform used as an environment for
transactional applications.

Enterprise
system

JBESB JBoss JBoss Enterprise Service Bus is one
component of an SOA Platform. It is
an integrator of Enterprise Applica-
tions.

Enterprise
system

JBFORUMS JBoss JBoss Forums is a web portlet cre-
ated as subcomponent of JBoss Por-
tal software.

Web Devel-
opment

JBLAB JBoss JBoss Labs provide an incubation
environment for new JBoss projects.
This project is closed.

Communication
Platform

JBPORTAL JBoss JBoss Portal offers a framework to
build web portals.

Web Devel-
opment

JBTM JBoss JBoss jBPM is an engine that runs
BPMN processes. It also provides a
toolkit for creating process-oriented
business applications.

Enterprise
system

METRON Apache Apache Metron is a security analyt-
ics framework to get benefits from
security data and be able to respond
to security incidents.

Security
Framework

MNG Apache Apache Maven is a software depen-
dency management system that helps
in software building, reporting, and
documentation.

Software de-
velopment

212

MXNET Apache Apache MXNet is a deep neural net-
works learning framework. It offers
training and deployment for neural
networks.

Data Process-
ing software

NETBEANS Apache NetBeans is a Java integrated devel-
opment environment (IDE). It offers
a Java development environment us-
ing different software modules and
components.

Software de-
velopment

NIFI Apache Apache NiFi is a data flow manage-
ment framework that helps data to
commute between systems.

Data Process-
ing software

RF JBoss RichFaces is a library for JSF to en-
able AJAX in business applications.

Software de-
velopment

SLING Apache Apache Sling is a web framework to
create content-centric Java software
that relies on a content repository
such as Apache Jackrabbit.

Software de-
velopment

SPR Spring Spring Framework is a Java devel-
opment framework that offers a pro-
gramming model for Java software.

Software de-
velopment

STDCXX Apache Apache C++ Standard Library that
offer classes and functions in C++.

Software de-
velopment

STORM Apache Apache Storm is a framework that
is written using the Clojure language
for stream computation in distributed
environments.

Data Process-
ing software

STS Spring Spring Tool Suite is a plugin for
the Eclipse IDE that is designed for
Spring-based development. It offers
a set of ready-made modules and li-
braries for deployment, debugging,
and testing.

Software de-
velopment

SWS JBoss Kiali is a management suite for con-
nections and microservices of Istio.

Cloud Com-
puting

TS Apache Traffic Server is a caching proxy
server that is compliant with HTTP
1.1 and HTTP 2.

Web Server

213

ZOOKEEPER Apache Apache ZooKeeper provides a name
registry for distributed systems.

Database
Software

Table A.1: An overview brief of each project included in the JOSSE dataset.

214

Appendix B

Detailed ML Results For Each
Dataset

While Chapter 5 lists a summarised version of the ML experiment, Table B.1 in this appendix
shows the results for each dataset.

Dataset Project Method Fold F-Score AUC ROC

PPI CPP IN

RF-BERT 5 0.3876 0.6038
BERT-BERT 5 0.502 0.618
RF-TFIDF 5 0.6156 0.7538

JOS

ACCUMULO

RF-BERT 5 0.9564 0.5214
BERT-BERT 5 0.9668 0.594
RF-TFIDF 5 0.9668 0.5356

AEROGEAR
RF-BERT 5 0.418 0.5532
BERT-BERT 5 0.6054 0.5112
RF-TFIDF 5 0.514 0.6034

AMBARI
RF-BERT 5 0.769 0.6034
BERT-BERT 5 0.7974 0.6316
RF-TFIDF 5 0.8458 0.5598

ARROW
RF-BERT 5 0.7274 0.6128
BERT-BERT 5 0.712 0.6352
RF-TFIDF 5 0.809 0.5446

ARTEMIS
RF-BERT 5 0.6232 0.3724
BERT-BERT 5 0.7456 0.4784
RF-TFIDF 5 0.6836 0.5302

BATCH
RF-BERT 5 0.5846 0.646
BERT-BERT 5 0.6142 0.6864

215

RF-TFIDF 5 0.6438 0.6124

BEAM
RF-BERT 5 0.5192 0.5466
BERT-BERT 5 0.5188 0.56
RF-TFIDF 5 0.5222 0.5298

CALCITE
RF-BERT 5 0.7226 0.5754
BERT-BERT 5 0.8202 0.5652
RF-TFIDF 5 0.7848 0.4084

CARBONDATA
RF-BERT 5 0.5324 0.5896
BERT-BERT 5 0.6068 0.595
RF-TFIDF 5 0.5748 0.5664

EXOJCR

RF-BERT 5 0.2958 0.561
BERT-BERT 5 0.4452 0.5758
RF-TFIDF 5 0.3478 0.5604
RF-BERT 5 0.895 0.5452
BERT-BERT 5 0.9046 0.5902
RF-TFIDF 5 0.9252 0.48

GTNPORTAL
RF-BERT 5 0.5564 0.576
BERT-BERT 5 0.609 0.6132
RF-TFIDF 5 0.5214 0.5574

HDDS
RF-BERT 5 0.7102 0.5448
BERT-BERT 5 0.844 0.4788
RF-TFIDF 5 0.8432 0.5784

INT
RF-BERT 5 0.5632 0.6272
BERT-BERT 5 0.5724 0.6102
RF-TFIDF 5 0.5524 0.6144

JBAS
RF-BERT 2 0.3335 0.5515
BERT-BERT 2 0.41 0.5355
RF-TFIDF 2 0.4595 0.5575

JBEAP
RF-BERT 5 0.83 0.6692
BERT-BERT 5 0.8606 0.6018
RF-TFIDF 5 0.8078 0.7636

JBESB
RF-BERT 5 0.4626 0.5372
BERT-BERT 5 0.4602 0.5272
RF-TFIDF 5 0.4592 0.5264

JBFORUMS
RF-BERT 5 0.3288 0.4878
BERT-BERT 5 0.5506 0.4866
RF-TFIDF 5 0.4558 0.439

JBLAB
RF-BERT 5 0.2518 0.4892

216

BERT-BERT 5 0.4936 0.5174
RF-TFIDF 5 0.336 0.4684

JBPORTAL
RF-BERT 3 0.369 0.5427
BERT-BERT 3 0.499 0.545
RF-TFIDF 3 0.3693 0.5263

JBTM
RF-BERT 5 0.3758 0.5038
BERT-BERT 5 0.4762 0.4788
RF-TFIDF 5 0.4974 0.547

METRON
RF-BERT 5 0.6124 0.5734
BERT-BERT 5 0.6876 0.5996
RF-TFIDF 5 0.6198 0.4862

MNG
RF-BERT 2 0.7355 0.511
BERT-BERT 2 0.806 0.539
RF-TFIDF 2 0.7925 0.507

MXNET
RF-BERT 5 0.5032 0.5544
BERT-BERT 5 0.4942 0.5278
RF-TFIDF 5 0.496 0.5138

NETBEANS
RF-BERT 5 0.7734 0.5156
BERT-BERT 5 0.8208 0.444
RF-TFIDF 5 0.7962 0.5426

NIFI
RF-BERT 5 0.8916 0.6108
BERT-BERT 5 0.9108 0.6096
RF-TFIDF 5 0.9012 0.5152

RF
RF-BERT 5 0.4788 0.5996
BERT-BERT 5 0.5554 0.6042
RF-TFIDF 5 0.549 0.6112

SLING
RF-BERT 5 0.9522 0.4028
BERT-BERT 5 0.9522 0.6058
RF-TFIDF 5 0.9522 0.5442

SPR
RF-BERT 5 0.7708 0.5972
BERT-BERT 5 0.847 0.47
RF-TFIDF 5 0.829 0.4334

STDCXX
RF-BERT 5 0.589 0.6214
BERT-BERT 5 0.59 0.6322
RF-TFIDF 5 0.512 0.551

STORM
RF-BERT 5 0.7174 0.5176
BERT-BERT 5 0.7678 0.5322
RF-TFIDF 5 0.802 0.5834

217

STS
RF-BERT 5 0.5272 0.532
BERT-BERT 5 0.6868 0.5502
RF-TFIDF 5 0.575 0.4868

SWS
RF-BERT 5 0.9092 0.525
BERT-BERT 5 0.9304 0.5416
RF-TFIDF 5 0.9304 0.3918

TS
RF-BERT 5 0.5606 0.5034
BERT-BERT 5 0.6922 0.5872
RF-TFIDF 5 0.6976 0.6124

ZOOKEEPER

RF-BERT 5 0.5592 0.5614
BERT-BERT 5 0.536 0.5578
RF-TFIDF 5 0.6096 0.5232

PORRU

MESOS

RF-BERT 5 0.3562 0.5614
BERT-BERT 5 0.416 0.5432
RF-TFIDF 5 0.3328 0.5654

MULE
RF-BERT 5 0.3008 0.5786
BERT-BERT 5 0.3542 0.5936
RF-TFIDF 5 0.3036 0.5692

TIMOB
RF-BERT 2 0.278 0.5175
BERT-BERT 2 0.4195 0.52
RF-TFIDF 2 0.3315 0.55

XD

RF-BERT 5 0.3212 0.5646
BERT-BERT 5 0.4262 0.6256
RF-TFIDF 5 0.3772 0.627

DEEP-SE

APSTUD

RF-BERT 5 0.363 0.6176
BERT-BERT 5 0.4294 0.626
RF-TFIDF 5 0.4112 0.6226

BAM
RF-BERT 3 0.4013 0.538
BERT-BERT 3 0.4923 0.6027
RF-TFIDF 3 0.3993 0.5343

CLOV
RF-BERT 5 0.299 0.5754
BERT-BERT 5 0.4632 0.6416
RF-TFIDF 5 0.407 0.5914

STUDIO
RF-BERT 5 0.3004 0.544
BERT-BERT 5 0.4086 0.538
RF-TFIDF 5 0.3566 0.553

TDQ
RF-BERT 4 0.2942 0.6065
BERT-BERT 4 0.322 0.62

218

RF-TFIDF 4 0.2858 0.5842

TESB
RF-BERT 2 0.4605 0.6555
BERT-BERT 2 0.5035 0.6865
RF-TFIDF 2 0.503 0.6355

TIMOB

RF-BERT 3 0.3127 0.576
BERT-BERT 3 0.4157 0.6537
RF-TFIDF 3 0.3833 0.591

Table B.1: Performance of ML models and feature extraction methods. Both F-Score and
AUC-ROC are used to measure the performance.

1.

Skip to question 2

Here are links to the Participant Information Sheet and Consent Form. By taking this
survey, you give the consent as described in the Crowd Planing Poker Survey Consent
Form. Please answer the following questions to the best of your knowledge

Participants Information Sheet
https://gla-
my.sharepoint.com/:b:/g/personal/m_alhamed_1_research_gla_ac_uk/EfzOrgxIJHNDj-
J4S9WL0tgBCdjH0pDMRlvBPFX_KrTPEg?e=hoPfrq

Consent Form
https://gla-
my.sharepoint.com/:b:/g/personal/m_alhamed_1_research_gla_ac_uk/Eb6wId8ARJJJqeYymn_J
oigBPKVcrbq7MDF4WNCpcmZF3A?e=DcJ5bd

2.

Mark only one oval.

Not at all familiar

1 2 3 4 5

Very familiar

The POST Crowd Planning Poker
Survey
This is an invitation-only survey. You must enter your Worker ID. Start With
Your ID.
* Required

Your Worker ID *

How familiar you are with Planning Poker? *

219

Appendix C

POST Crowd Planning Poker Survey

This appendix shows the survey that was given to crowd workers to further investigate their
experience of Crowd Planning Poker. It is also used to draw and confirm behavioural con-
clusions, as explained in Chapter 9.

1.

Skip to question 2

Here are links to the Participant Information Sheet and Consent Form. By taking this
survey, you give the consent as described in the Crowd Planing Poker Survey Consent
Form. Please answer the following questions to the best of your knowledge

Participants Information Sheet
https://gla-
my.sharepoint.com/:b:/g/personal/m_alhamed_1_research_gla_ac_uk/EfzOrgxIJHNDj-
J4S9WL0tgBCdjH0pDMRlvBPFX_KrTPEg?e=hoPfrq

Consent Form
https://gla-
my.sharepoint.com/:b:/g/personal/m_alhamed_1_research_gla_ac_uk/Eb6wId8ARJJJqeYymn_J
oigBPKVcrbq7MDF4WNCpcmZF3A?e=DcJ5bd

2.

Mark only one oval.

Not at all familiar

1 2 3 4 5

Very familiar

The POST Crowd Planning Poker
Survey
This is an invitation-only survey. You must enter your Worker ID. Start With
Your ID.
* Required

Your Worker ID *

How familiar you are with Planning Poker? *

3.

Mark only one oval per row.

4.

5.

Mark only one oval.

Not at all familiar

1 2 3 4 5

Very familiar with the type of project or issue

When you were estimating an issue how useful did you find each
of the following sources of information. *
(1=not at all useful, 5=very useful)

1 2 3 4 5

The specific issue
description

General project
information and
context

Comments made by
issues contributors

Peer estimates and
justifications from
previous crowd
planning poker
rounds

The specific issue
description

General project
information and
context

Comments made by
issues contributors

Peer estimates and
justifications from
previous crowd
planning poker
rounds

Please write any other source of information you found useful in
estimation.

Thinking about the *LAST* issue you estimated, How familiar were
you with the nature of the issue to be estimated ? *

6.

Mark only one oval per row.

7.

Thinking about the *LAST* issue you estimated, how much time do
you allocate to each of these estimation activities? *

Reading the
present issue

(issue description,
project information

and comments)

Thinking
about
similar
issues

Analysing
and

breaking
down the
issue sub

tasks

Searching the
web for

supplementary
information

Little
Time

Some
Time

Most
of the
Time

Little
Time

Some
Time

Most
of the
Time

Please write any other estimation activity not mentioned above
and how much time you did allocate to it (Little, Some, Most of the
time)

8.

Mark only one oval per row.

9.

Thinking about an issue you were asked to estimate that did not
seem familiar (the nature of the project or the work involved was
unfamiliar), which of the following activities would you do ? *
(1=not at all likely, 5=very likely)?

1 2 3 4 5

Look at every
information in the
page and probably
click on every button
to reveal as much
information as
possible

Pick any estimate
and write any
justification

Withdraw from the
estimation page and
exit

Ask a friend or a
colleagues about it

Search for similar
issues

Look at every
information in the
page and probably
click on every button
to reveal as much
information as
possible

Pick any estimate
and write any
justification

Withdraw from the
estimation page and
exit

Ask a friend or a
colleagues about it

Search for similar
issues

If an activity you did for unfamiliar issue is not listed above, please
write here and how likely you would do it (1=not at all likely, 5=very
likely)?

10.

Mark only one oval.

Yes

No Skip to question 13

Maybe

11.

Other:

Check all that apply.

Revise my estimate selection

Revise my justification

Closed the webpage (exit the CPP task)

Withdraw from the feedback page and exit

Submit it without revising it

12.

Other:

Check all that apply.

The estimate that I have selected<

The justification and comments that I have written

The specific issue description

General project information and context

Comments made by issues contributors

Peer estimates and justifications from previous crowd planning poker
rounds

When working on a Crowd Planning Poker issue, did you receive a
warning about the quality of any of your estimates, saying that
your assignment might be rejected? *

what did you do after reading the warning feedback ? *
Select all that apply

When I'm revising my estimate, I review the following sources of
information: *

13.

Mark only one oval per row.

14.

This content is neither created nor endorsed by Google.

What do you think makes for a good justification for an estimate
? *
(1=not at all useful, 5=very useful)

1 2 3 4 5

The justification is
composed of
descriptions of
smaller tasks

The justification is
composed of
estimates for a
series of smaller
sub-tasks

A reference to a
similar issue

A reference to
previous estimation
on the same issue
done in the previous
round

The justification is
composed of
descriptions of
smaller tasks

The justification is
composed of
estimates for a
series of smaller
sub-tasks

A reference to a
similar issue

A reference to
previous estimation
on the same issue
done in the previous
round

Other things that you think they make a good justification

 Forms

BIBLIOGRAPHY 226

Bibliography

[1] B. W. Boehm, “Software engineering economics,” Software Pioneers, p. 641686,
2002. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-59412-0 38

[2] M. Jørgensen, B. W. Boehm, and S. Rifkin, “Software development effort estimation:
Formal models or expert judgment?” IEEE Softw., vol. 26, no. 2, pp. 14–19, 2009.
[Online]. Available: https://doi.org/10.1109/MS.2009.47

[3] L. H. Putnam, “A general empirical solution to the macro software sizing and
estimating problem,” IEEE Trans. Software Eng., vol. 4, no. 4, pp. 345–361, 1978.
[Online]. Available: https://doi.org/10.1109/TSE.1978.231521

[4] P. M. Johnson, C. A. Moore, J. A. Dane, and R. S. Brewer, “Empirically guided
software effort guesstimation,” IEEE Softw., vol. 17, no. 6, pp. 51–56, 2000. [Online].
Available: https://doi.org/10.1109/52.895168

[5] M. Cohn, Agile Estimating and Planning, ser. Robert C. Martin Series. Pearson
Education, 2005.

[6] M. Jørgensen, “A review of studies on expert estimation of software development
effort,” J. Syst. Softw., vol. 70, no. 1-2, pp. 37–60, 2004. [Online]. Available:
https://doi.org/10.1016/S0164-1212(02)00156-5

[7] ——, “Top-down and bottom-up expert estimation of software development effort,”
Information and Software Technology, vol. 46, no. 1, p. 316, Jan 2004. [Online].
Available: http://dx.doi.org/10.1016/s0950-5849(03)00093-4

[8] J. Grenning, “Planning poker or how to avoid analysis paralysis while release plan-
ning,” Hawthorn Woods: Renaissance Software Consulting, vol. 3, pp. 22–23, 2002.

[9] H. S. Hamza, A. Kamel, and K. M. Shams, “Software effort estimation using
artificial neural networks: A survey of the current practices,” in Tenth International

Conference on Information Technology: New Generations, ITNG 2013, 15-17 April,

2013, Las Vegas, Nevada, USA, S. Latifi, Ed. IEEE Computer Society, 2013, pp.
731–733. [Online]. Available: https://doi.org/10.1109/ITNG.2013.111

http://dx.doi.org/10.1007/978-3-642-59412-0_38
https://doi.org/10.1109/MS.2009.47
https://doi.org/10.1109/TSE.1978.231521
https://doi.org/10.1109/52.895168
https://doi.org/10.1016/S0164-1212(02)00156-5
http://dx.doi.org/10.1016/s0950-5849(03)00093-4
https://doi.org/10.1109/ITNG.2013.111

Bibliography 227

[10] Z. abdelali, H. Mustapha, and N. Abdelwahed, “Investigating the use of random
forest in software effort estimation,” Procedia Computer Science, vol. 148, p. 343352,
2019. [Online]. Available: http://dx.doi.org/10.1016/j.procs.2019.01.042

[11] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes,
“How effective is tabu search to configure support vector regression for effort
estimation?” in Proceedings of the 6th International Conference on Predictive

Models in Software Engineering, PROMISE 2010, Timisoara, Romania, September

12-13, 2010, T. Menzies and G. Koru, Eds. ACM, 2010, p. 4. [Online]. Available:
https://doi.org/10.1145/1868328.1868335

[12] L. von Ahn, “Human computation, december 7, 2005,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, 2005.

[13] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA: using hard AI
problems for security,” in Advances in Cryptology - EUROCRYPT 2003, International

Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,

Poland, May 4-8, 2003, Proceedings, ser. Lecture Notes in Computer Science,
E. Biham, Ed., vol. 2656. Springer, 2003, pp. 294–311. [Online]. Available:
https://doi.org/10.1007/3-540-39200-9 18

[14] A. J. Quinn and B. B. Bederson, “Human computation,” Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, May 2011. [Online].
Available: http://dx.doi.org/10.1145/1978942.1979148

[15] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of crowdsourcing in
software engineering,” J. Syst. Softw., vol. 126, pp. 57–84, 2017. [Online]. Available:
https://doi.org/10.1016/j.jss.2016.09.015

[16] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold, “Software effort estimation
terminology: The tower of Babel,” Inf. Softw. Technol., vol. 48, no. 4, pp. 302–310,
2006. [Online]. Available: https://doi.org/10.1016/j.infsof.2005.04.004

[17] T. S. Group, “The CHAOS report 2015,” The Standish Group, Tech. Rep., 2015.

[18] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile software
development: a survey on the state of the practice,” in Proceedings of

the 19th International Conference on Evaluation and Assessment in Software

Engineering, EASE 2015, Nanjing, China, April 27-29, 2015, J. Lv, H. J.
Zhang, and M. A. Babar, Eds. ACM, 2015, pp. 12:1–12:10. [Online]. Available:
https://doi.org/10.1145/2745802.2745813

http://dx.doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.1145/1868328.1868335
https://doi.org/10.1007/3-540-39200-9_18
http://dx.doi.org/10.1145/1978942.1979148
https://doi.org/10.1016/j.jss.2016.09.015
https://doi.org/10.1016/j.infsof.2005.04.004
https://doi.org/10.1145/2745802.2745813

Bibliography 228

[19] L. Taff, J. Borchering, and W. Hudgins, “Estimeetings: development estimates
and a front-end process for a large project,” IEEE Transactions on Software

Engineering, vol. 17, no. 8, p. 839849, 1991. [Online]. Available: http:
//dx.doi.org/10.1109/32.83918

[20] K. Schwaber, Agile project management with Scrum. Microsoft press, 2004.

[21] “Welcome to kernel.org bugzilla.” [Online]. Available: https://bugzilla.kernel.org/

[22] “Firefox bug list at bugzilla.” [Online]. Available: https://bugzilla.mozilla.org/buglist.
cgi?product=Firefox

[23] “Red har issue tracker.” [Online]. Available: https://issues.redhat.com/projects

[24] A. Trendowicz and R. Jeffery, Software Project Effort Estimation - Foundations

and Best Practice Guidelines for Success. Springer, 2014. [Online]. Available:
https://doi.org/10.1007/978-3-319-03629-8

[25] K. Moharreri, A. V. Sapre, J. Ramanathan, and R. Ramnath, “Cost-effective
supervised learning models for software effort estimation in agile environments,” 2016

IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
Jun 2016. [Online]. Available: http://dx.doi.org/10.1109/compsac.2016.85

[26] K. Moløkken-Østvold, N. C. Haugen, and H. C. Benestad, “Using planning poker for
combining expert estimates in software projects,” J. Syst. Softw., vol. 81, no. 12, pp.
2106–2117, 2008. [Online]. Available: https://doi.org/10.1016/j.jss.2008.03.058

[27] E. Yechiam and G. Hochman, “Loss-aversion or loss-attention: The impact of losses
on cognitive performance,” Cognitive Psychology, vol. 66, no. 2, p. 212231, Mar
2013. [Online]. Available: http://dx.doi.org/10.1016/j.cogpsych.2012.12.001

[28] V. R. Basili, “The experimental paradigm in software engineering,” in Experimental

Software Engineering Issues: Critical Assessment and Future Directions,

International Workshop Dagstuhl Castle, Germany, September 14-18, 1992,

Proceedings, ser. Lecture Notes in Computer Science, H. D. Rombach, V. R. Basili,
and R. W. Selby, Eds., vol. 706. Springer, 1992, pp. 3–12. [Online]. Available:
https://doi.org/10.1007/3-540-57092-6 91

[29] V. Basili, “The role of experimentation in software engineering: past, current,
and future,” Proceedings of IEEE 18th International Conference on Software

Engineering, 1996. [Online]. Available: http://dx.doi.org/10.1109/icse.1996.493439

http://dx.doi.org/10.1109/32.83918
http://dx.doi.org/10.1109/32.83918
https://bugzilla.kernel.org/
https://bugzilla.mozilla.org/buglist.cgi?product=Firefox
https://bugzilla.mozilla.org/buglist.cgi?product=Firefox
https://issues.redhat.com/projects
https://doi.org/10.1007/978-3-319-03629-8
http://dx.doi.org/10.1109/compsac.2016.85
https://doi.org/10.1016/j.jss.2008.03.058
http://dx.doi.org/10.1016/j.cogpsych.2012.12.001
https://doi.org/10.1007/3-540-57092-6_91
http://dx.doi.org/10.1109/icse.1996.493439

Bibliography 229

[30] D. I. K. Sjøberg, T. Dybå, and M. Jørgensen, “The future of empirical
methods in software engineering research,” in International Conference on Software

Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE

2007, May 23-25, 2007, Minneapolis, MN, USA, L. C. Briand and A. L.
Wolf, Eds. IEEE Computer Society, 2007, pp. 358–378. [Online]. Available:
https://doi.org/10.1109/FOSE.2007.30

[31] D. Budgen and P. Brereton, “Performing systematic literature reviews in software
engineering,” Proceedings of the 28th international conference on Software

engineering, May 2006. [Online]. Available: http://dx.doi.org/10.1145/1134285.
1134500

[32] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller, “Replication's role in software
engineering,” in Guide to Advanced Empirical Software Engineering. Springer
London, 2008, pp. 365–379. [Online]. Available: https://doi.org/10.1007/978-1-
84800-044-5 14

[33] F. Shull, V. R. Basili, J. C. Carver, J. C. Maldonado, G. H. Travassos,
M. G. Mendonça, and S. C. P. F. Fabbri, “Replicating software engineering
experiments: Addressing the tacit knowledge problem,” in 2002 International

Symposium on Empirical Software Engineering (ISESE 2002), 3-4 October 2002,

Nara, Japan. IEEE Computer Society, 2002, pp. 7–16. [Online]. Available:
https://doi.org/10.1109/ISESE.2002.1166920

[34] N. Juristo and S. Vegas, “The role of non-exact replications in software engineering
experiments,” Empirical Software Engineering, vol. 16, no. 3, p. 295324, Aug 2010.
[Online]. Available: http://dx.doi.org/10.1007/s10664-010-9141-9

[35] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn better: On
the importance of pre-training compact models,” arXiv preprint arXiv:1908.08962v2,
2019.

[36] S. Easterbrook, J. Singer, M. D. Storey, and D. E. Damian, “Selecting empirical
methods for software engineering research,” in Guide to Advanced Empirical

Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. Springer, 2008,
pp. 285–311. [Online]. Available: https://doi.org/10.1007/978-1-84800-044-5 11

[37] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Springer Berlin Heidelberg, 2012.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-29044-2

[38] R. L. Glass, “Pilot studies: What, why, and how,” J. Syst. Softw., vol. 36, no. 1, pp.
85–97, 1997. [Online]. Available: https://doi.org/10.1016/0164-1212(95)00197-2

https://doi.org/10.1109/FOSE.2007.30
http://dx.doi.org/10.1145/1134285.1134500
http://dx.doi.org/10.1145/1134285.1134500
https://doi.org/10.1007/978-1-84800-044-5_14
https://doi.org/10.1007/978-1-84800-044-5_14
https://doi.org/10.1109/ISESE.2002.1166920
http://dx.doi.org/10.1007/s10664-010-9141-9
https://doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1016/0164-1212(95)00197-2

Bibliography 230

[39] M. Kasunic, “Conducting effective pilot studies,” CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, Tech. Rep., 2004.

[40] F. Macias, M. Holcombe, and M. Gheorghe, “Empirical experiments with xp,” in
Proc. 3rd International Conference on eXtreme Programming and Agile Processes in

Software Engineering-XP, 2002, pp. 225–228.

[41] D. S. Janzen, C. S. Turner, and H. Saiedian, “Empirical software engineering in
industry short courses,” in 20th Conference on Software Engineering Education and

Training (CSEE&T 2007), 3-5 July 2007, Dublin, Ireland. IEEE Computer Society,
2007, pp. 89–96. [Online]. Available: https://doi.org/10.1109/CSEET.2007.20

[42] P. Brink and M. Wood, Advanced Design in Nursing Research. SAGE Publications,
1998. [Online]. Available: https://books.google.co.uk/books?id=hDRwa-JwmdcC

[43] E. van Teijlingen and V. Hundley, “The importance of pilot studies,” Nursing

Standard, vol. 16, no. 40, p. 3336, Jun 2002. [Online]. Available: http:
//dx.doi.org/10.7748/ns2002.06.16.40.33.c3214

[44] L. M. Connelly, “Pilot studies,” Medsurg Nursing, vol. 17, no. 6, p. 411, 2008.

[45] “University of Glasgow - Colleges - College of Science & Engineering -
Information for staff - Committees - Ethics Committee.” [Online]. Available: https:
//www.gla.ac.uk/colleges/scienceengineering/staff/committees/ethicscommittee/

[46] S. Pink, H. Horst, J. Postill, L. Hjorth, T. Lewis, and J. Tacchi, Digital

Ethnography: Principles and Practice. SAGE Publications, 2015. [Online].
Available: https://books.google.co.uk/books?id=tKViCgAAQBAJ

[47] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study of copy and
paste programming practices in oopl,” Proceedings. 2004 International Symposium

on Empirical Software Engineering, 2004. ISESE 04., 2004. [Online]. Available:
http://dx.doi.org/10.1109/isese.2004.1334896

[48] [Online]. Available: http://dx.doi.org/10.1109/ieeestd.2017.8016712

[49] T. DeMarco, Controlling Software Projects: Management, Measurement & Estima-

tion, ser. Yourdon computing series. Yourdon Press, 1982.

[50] P. Bourque and R. E. Fairley, SWEBOK: Guide to the software engineering body of

knowledge. IEEE Computer Society, 2014.

[51] B. Leonard, GAO Cost estimating and assessment guide: Best practices for

developing and managing capital program costs. DIANE Publishing, 2009.
[Online]. Available: www.whitehouse.gov/omb/circulars/index.html.

https://doi.org/10.1109/CSEET.2007.20
https://books.google.co.uk/books?id=hDRwa-JwmdcC
http://dx.doi.org/10.7748/ns2002.06.16.40.33.c3214
http://dx.doi.org/10.7748/ns2002.06.16.40.33.c3214
https://www.gla.ac.uk/colleges/scienceengineering/staff/committees/ethicscommittee/
https://www.gla.ac.uk/colleges/scienceengineering/staff/committees/ethicscommittee/
https://books.google.co.uk/books?id=tKViCgAAQBAJ
http://dx.doi.org/10.1109/isese.2004.1334896
http://dx.doi.org/10.1109/ieeestd.2017.8016712
www.whitehouse.gov/omb/circulars/index.html.

Bibliography 231

[52] P. G. Armour, “To plan, two plans,” Commun. ACM, vol. 48, no. 9, pp. 15–19, 2005.
[Online]. Available: https://doi.org/10.1145/1081992.1082007

[53] F. P. B. Jr., The mythical man-month - essays on software engineering (2. ed.).
Addison-Wesley, 1995.

[54] I. Sommerville, Software engineering, 8th Edition, ser. International computer
science series. Addison-Wesley, 2007. [Online]. Available: https://www.worldcat.
org/oclc/65978675

[55] W. Zuill, “No Estimate Programming Series – Intro Post,” dec 2012. [Online].
Available: http://zuill.us/WoodyZuill/2012/12/10/no-estimate-programming-series-
intro-post/

[56] M. Isaacs, “An unbiased look at the #NoEstimates debate.” [Online]. Avail-
able: https://techbeacon.com/app-dev-testing/noestimates-debate-unbiased-look-
origins-arguments-thought-leaders-behind-movement

[57] J. Hope and R. Fraser, “Beyond budgeting: how managers can break free from the
annual performance trap,” Choice Reviews Online, vol. 41, no. 05, p. 412908412908,
Jan 2004. [Online]. Available: http://dx.doi.org/10.5860/choice.41-2908

[58] T. Vera, S. F. Ochoa, and D. Perovich, “Survey of software development effort esti-
mation taxonomies,” Technical Report. Pending ID. Computer Science Department,
University of Chile, Tech. Rep., 2017.

[59] K. Moløkken and M. Jørgensen, “A review of surveys on software effort estimation,”
in 2003 International Symposium on Empirical Software Engineering (ISESE 2003),

30 September - 1 October 2003. Rome, Italy. IEEE Computer Society, 2003, pp.
223–231. [Online]. Available: https://doi.org/10.1109/ISESE.2003.1237981

[60] R. Britto, V. Freitas, E. Mendes, and M. Usman, “Effort estimation in global
software development: A systematic literature review,” in IEEE 9th International

Conference on Global Software Engineering, ICGSE 2014, Shanghai, China, 18-21

August, 2014. IEEE Computer Society, 2014, pp. 135–144. [Online]. Available:
https://doi.org/10.1109/ICGSE.2014.11

[61] N. Dalkey and O. Helmer, “An experimental application of the DELPHI method to
the use of experts,” Management Science, vol. 9, no. 3, pp. 458–467, apr 1963.
[Online]. Available: https://doi.org/10.1287/mnsc.9.3.458

[62] B. W. Boehm, “Software engineering economics,” IEEE Transactions on Software

Engineering, vol. SE-10, no. 1, p. 421, Jan 1984. [Online]. Available:
http://dx.doi.org/10.1109/tse.1984.5010193

https://doi.org/10.1145/1081992.1082007
https://www.worldcat.org/oclc/65978675
https://www.worldcat.org/oclc/65978675
http://zuill.us/WoodyZuill/2012/12/10/no-estimate-programming-series-intro-post/
http://zuill.us/WoodyZuill/2012/12/10/no-estimate-programming-series-intro-post/
https://techbeacon.com/app-dev-testing/noestimates-debate-unbiased-look-origins-arguments-thought-leaders-behind-movement
https://techbeacon.com/app-dev-testing/noestimates-debate-unbiased-look-origins-arguments-thought-leaders-behind-movement
http://dx.doi.org/10.5860/choice.41-2908
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1109/ICGSE.2014.11
https://doi.org/10.1287/mnsc.9.3.458
http://dx.doi.org/10.1109/tse.1984.5010193

Bibliography 232

[63] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological
variations, and system approaches,” AI Communications, vol. 7, no. 1, p. 39–59,
1994. [Online]. Available: http://doi.org/10.3233/AIC-1994-7104

[64] D. Yang, Y. Wan, Z. Tang, S. Wu, M. He, and M. Li, “Cocomo-u: An extension of
cocomo ii for cost estimation with uncertainty,” Lecture Notes in Computer Science,
p. 132141, 2006. [Online]. Available: http://dx.doi.org/10.1007/11754305 15

[65] M. Jørgensen, “Forecasting of software development work effort: Evidence on expert
judgement and formal models,” International Journal of Forecasting, vol. 23, no. 3,
p. 449462, Jul 2007. [Online]. Available: http://dx.doi.org/10.1016/j.ijforecast.2007.
05.008

[66] Digital.ai, “15th annual state of agile report,” Digital.ai, Tech. Rep., 2021. [Online].
Available: https://digital.ai/resource-center/analyst-reports/state-of-agile-report

[67] K. Moløkken and M. Jørgensen, “Software effort estimation: unstructured group dis-
cussion as a method to reduce individual biasis.” in PPIG, 2003.

[68] “”guesstimate, n.” OED Online,” 2020. [Online]. Available: www.oed.com/view/
Entry/82257

[69] C. A. Moore, “Investigating individual software development: an evaluation of the
leap toolkit,” Ph.D. dissertation, University of Hawaii at Manoa, 2000.

[70] J. A. Farquhar, “A preliminary inquiry into the software estimation process,” RAND
CORP SANTA MONICA CALIF, Tech. Rep., 1970.

[71] A. Stellman and J. Greene, Applied software project management. ” O’Reilly Media,
Inc.”, 2005.

[72] M. G. Stochel, “Reliability and accuracy of the estimation process - wideband delphi
vs. wisdom of crowds,” in Proceedings of the 35th Annual IEEE International

Computer Software and Applications Conference, COMPSAC 2011, Munich,

Germany, 18-22 July 2011. IEEE Computer Society, 2011, pp. 350–359. [Online].
Available: https://doi.org/10.1109/COMPSAC.2011.53

[73] K. Moløkken-Østvold and M. Jørgensen, “Group processes in software effort
estimation,” Empir. Softw. Eng., vol. 9, no. 4, pp. 315–334, 2004. [Online]. Available:
https://doi.org/10.1023/B:EMSE.0000039882.39206.5a

[74] M. Elkjaer, “Stochastic budget simulation,” International Journal of Project

Management, vol. 18, no. 2, p. 139147, Apr 2000. [Online]. Available:
http://dx.doi.org/10.1016/s0263-7863(98)00078-7

http://doi.org/10.3233/AIC-1994-7104
http://dx.doi.org/10.1007/11754305_15
http://dx.doi.org/10.1016/j.ijforecast.2007.05.008
http://dx.doi.org/10.1016/j.ijforecast.2007.05.008
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
www.oed.com/view/Entry/82257
www.oed.com/view/Entry/82257
https://doi.org/10.1109/COMPSAC.2011.53
https://doi.org/10.1023/B:EMSE.0000039882.39206.5a
http://dx.doi.org/10.1016/s0263-7863(98)00078-7

Bibliography 233

[75] J.-S. Chou, “Cost simulation in an item-based project involving construction
engineering and management,” International Journal of Project Management,
vol. 29, no. 6, pp. 706–717, aug 2011. [Online]. Available: https://doi.org/10.1016/j.
ijproman.2010.07.010

[76] M. J. Shepperd and M. Cartwright, “Predicting with sparse data,” IEEE Trans.

Software Eng., vol. 27, no. 11, pp. 987–998, 2001. [Online]. Available:
https://doi.org/10.1109/32.965339

[77] R. Saaty, “The analytic hierarchy process—what it is and how it is used,”
Mathematical Modelling, vol. 9, no. 3-5, pp. 161–176, 1987. [Online]. Available:
https://doi.org/10.1016%2F0270-0255%2887%2990473-8

[78] T. L. Saaty, “Decision-making with the AHP: why is the principal eigenvector
necessary,” Eur. J. Oper. Res., vol. 145, no. 1, pp. 85–91, 2003. [Online]. Available:
https://doi.org/10.1016/S0377-2217(02)00227-8

[79] “Trademark Status & Document Retrieval: Planning Poker,” jul 2008.
[Online]. Available: http://tsdr.uspto.gov/{#}caseNumber=3473287{&}caseType=
US{ }REGISTRATION{ }NO{&}searchType=statusSearch

[80] M. Cohn, User Stories Applied: For Agile Software Development, ser. Addison-
Wesley Signature Series (Beck). Pearson Education, 2004. [Online]. Available:
https://books.google.co.uk/books?id=DHZP YL3FxYC

[81] V. Mahnic and T. Hovelja, “On using planning poker for estimating user stories,”
J. Syst. Softw., vol. 85, no. 9, pp. 2086–2095, 2012. [Online]. Available:
https://doi.org/10.1016/j.jss.2012.04.005

[82] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review
of machine learning based software development effort estimation models,”
Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59, 2012. [Online]. Available:
https://doi.org/10.1016/j.infsof.2011.09.002

[83] A. Ali and C. Gravino, “A systematic literature review of software effort prediction
using machine learning methods,” J. Softw. Evol. Process., vol. 31, no. 10, 2019.
[Online]. Available: https://doi.org/10.1002/smr.2211

[84] A. Idri, T. M. Khoshgoftaar, and A. Abran, “Can neural networks be easily
interpreted in software cost estimation?” in Proceedings of the 2002 IEEE

International Conference on Fuzzy Systems, FUZZ-IEEE’02, Honolulu, Hawaii,

USA, May 12 - 17, 2002. IEEE, 2002, pp. 1162–1167. [Online]. Available:
https://doi.org/10.1109/FUZZ.2002.1006668

https://doi.org/10.1016/j.ijproman.2010.07.010
https://doi.org/10.1016/j.ijproman.2010.07.010
https://doi.org/10.1109/32.965339
https://doi.org/10.1016%2F0270-0255%2887%2990473-8
https://doi.org/10.1016/S0377-2217(02)00227-8
http://tsdr.uspto.gov/{#}caseNumber=3473287{&}caseType=US{_}REGISTRATION{_}NO{&}searchType=statusSearch
http://tsdr.uspto.gov/{#}caseNumber=3473287{&}caseType=US{_}REGISTRATION{_}NO{&}searchType=statusSearch
https://books.google.co.uk/books?id=DHZP_YL3FxYC
https://doi.org/10.1016/j.jss.2012.04.005
https://doi.org/10.1016/j.infsof.2011.09.002
https://doi.org/10.1002/smr.2211
https://doi.org/10.1109/FUZZ.2002.1006668

Bibliography 234

[85] K. Dutta, V. Gupta, and V. S. Dave, “Analysis and comparison of neural
network models for software development effort estimation,” J. Cases Inf.

Technol., vol. 21, no. 2, pp. 88–112, 2019. [Online]. Available: https:
//doi.org/10.4018/JCIT.2019040106

[86] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models
for software development effort estimation: a comparative study,” Neural

Comput. Appl., vol. 27, no. 8, pp. 2369–2381, 2016. [Online]. Available:
https://doi.org/10.1007/s00521-015-2127-1

[87] M. M. Moshizi and V. K. Bardsiri, “The application of artificial neural networks in
software effort estimation,” Journal of Advanced Computer Science and Technology

Research, vol. 7, no. 2, pp. 42–56, 2017.

[88] A. Idri, F. a. Amazal, and A. Abran, “Analogy-based software development
effort estimation: A systematic mapping and review,” Information and Software

Technology, vol. 58, p. 206230, Feb 2015. [Online]. Available: http://dx.doi.org/10.
1016/j.infsof.2014.07.013

[89] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “A comparison between
decision trees and decision tree forest models for software development effort
estimation,” 2013 Third International Conference on Communications and

Information Technology (ICCIT), Jun 2013. [Online]. Available: http://dx.doi.org/10.
1109/iccitechnology.2013.6579553

[90] Z. Abdelali, M. Hicham, and N. Abdelwahed, “An ensemble of optimal trees for
software development effort estimation,” Lecture Notes in Networks and Systems, p.
5568, 2019. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-11914-0 6

[91] J. Nayak, B. Naik, and H. S. Behera, “A comprehensive survey on support vector
machine in data mining tasks: Applications & challenges,” International Journal

of Database Theory and Application, vol. 8, no. 1, p. 169186, Feb 2015. [Online].
Available: http://dx.doi.org/10.14257/ijdta.2015.8.1.18

[92] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, and E. Mendes, “Using
support vector regression for web development effort estimation,” in Software

Process and Product Measurement, International Conferences IWSM 2009 and

Mensura 2009, Amsterdam, The Netherlands, November 4-6, 2009. Proceedings, ser.
Lecture Notes in Computer Science, A. Abran, R. Braungarten, R. R. Dumke, J. J.
Cuadrado-Gallego, and J. Brunekreef, Eds., vol. 5891. Springer, 2009, pp. 255–271.
[Online]. Available: https://doi.org/10.1007/978-3-642-05415-0 19

https://doi.org/10.4018/JCIT.2019040106
https://doi.org/10.4018/JCIT.2019040106
https://doi.org/10.1007/s00521-015-2127-1
http://dx.doi.org/10.1016/j.infsof.2014.07.013
http://dx.doi.org/10.1016/j.infsof.2014.07.013
http://dx.doi.org/10.1109/iccitechnology.2013.6579553
http://dx.doi.org/10.1109/iccitechnology.2013.6579553
http://dx.doi.org/10.1007/978-3-030-11914-0_6
http://dx.doi.org/10.14257/ijdta.2015.8.1.18
https://doi.org/10.1007/978-3-642-05415-0_19

Bibliography 235

[93] J.-M. Desharnais, “Analyse statistique de la productivite des projets de developpement
en informatique a partir de la technique des points de fonction,” Master’s thesis, Univ.

du Quebec a Montreal, 1989.

[94] J. W. Bailey and V. R. Basili, “A meta-model for software development resource ex-
penditures,” in Proceedings of the 5th international conference on Software engineer-

ing. IEEE Press, 1981, pp. 107–116.

[95] A. J. Albrecht and J. E. G. Jr., “Software function, source lines of code,
and development effort prediction: A software science validation,” IEEE

Trans. Software Eng., vol. 9, no. 6, pp. 639–648, 1983. [Online]. Available:
https://doi.org/10.1109/TSE.1983.235271

[96] Y. Kultur, B. Turhan, and A. B. Bener, “Ensemble of neural networks
with associative memory (ENNA) for estimating software development costs,”
Knowl. Based Syst., vol. 22, no. 6, pp. 395–402, 2009. [Online]. Available:
https://doi.org/10.1016/j.knosys.2009.05.001

[97] S. M. Satapathy and S. K. Rath, “Effort estimation of web-based applications
using machine learning techniques,” in 2016 International Conference on

Advances in Computing, Communications and Informatics, ICACCI 2016, Jaipur,

India, September 21-24, 2016. IEEE, 2016, pp. 973–979. [Online]. Available:
https://doi.org/10.1109/ICACCI.2016.7732171

[98] F. S. Gharehchopogh, “Neural networks application in software cost estimation: A
case study,” in 2011 International Symposium on Innovations in Intelligent Systems

and Applications. IEEE, jun 2011. [Online]. Available: https://doi.org/10.1109/
inista.2011.5946160

[99] B. Baskeles, B. Turhan, and A. Bener, “Software effort estimation using machine
learning methods,” in 2007 22nd international symposium on computer and

information sciences. IEEE, nov 2007. [Online]. Available: https://doi.org/10.1109/
iscis.2007.4456863

[100] S. M. Satapathy, B. P. Acharya, and S. K. Rath, “Early stage software effort estimation
using random forest technique based on use case points,” IET Softw., vol. 10, no. 1,
pp. 10–17, 2016. [Online]. Available: https://doi.org/10.1049/iet-sen.2014.0122

[101] J. Shivhare and S. K. Rath, “Software effort estimation using machine learning
techniques,” in 7th India Software Engineering Conference, Chennai, ISEC

’14, Chennai, India - February 19 - 21, 2014, D. Janakiram, K. Sen,
and V. Kulkarni, Eds. ACM, 2014, pp. 19:1–19:6. [Online]. Available:
https://doi.org/10.1145/2590748.2590767

https://doi.org/10.1109/TSE.1983.235271
https://doi.org/10.1016/j.knosys.2009.05.001
https://doi.org/10.1109/ICACCI.2016.7732171
https://doi.org/10.1109/inista.2011.5946160
https://doi.org/10.1109/inista.2011.5946160
https://doi.org/10.1109/iscis.2007.4456863
https://doi.org/10.1109/iscis.2007.4456863
https://doi.org/10.1049/iet-sen.2014.0122
https://doi.org/10.1145/2590748.2590767

Bibliography 236

[102] E. Mendes, N. Mosley, and S. Counsell, “Investigating web size metrics for early
web cost estimation,” J. Syst. Softw., vol. 77, no. 2, pp. 157–172, 2005. [Online].
Available: https://doi.org/10.1016/j.jss.2004.08.034

[103] M. Kassab and G. Destefanis, “Requirements effort estimation: The state of the prac-
tice,” Collegium of Economic Analysis Annals, no. 43, pp. 87–102, 2017.

[104] D. Yang, Q. Wang, M. Li, Y. Yang, K. Ye, and J. Du, “A survey on software
cost estimation in the chinese software industry,” in Proceedings of the Second

International Symposium on Empirical Software Engineering and Measurement,

ESEM 2008, October 9-10, 2008, Kaiserslautern, Germany, H. D. Rombach, S. G.
Elbaum, and J. Münch, Eds. ACM, 2008, pp. 253–262. [Online]. Available:
https://doi.org/10.1145/1414004.1414045

[105] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan, H. Gallis, A. C. Lien, and
S. E. Hove, “A survey on software estimation in the norwegian industry,” in 10th

IEEE International Software Metrics Symposium (METRICS 2004), 11-17 September

2004, Chicago, IL, USA. IEEE Computer Society, 2004, pp. 208–219. [Online].
Available: https://doi.org/10.1109/METRIC.2004.1357904

[106] B. Tanveer, L. Guzmán, and U. M. Engel, “Effort estimation in agile software
development: Case study and improvement framework,” J. Softw. Evol. Process.,
vol. 29, no. 11, 2017. [Online]. Available: https://doi.org/10.1002/smr.1862

[107] M. Usman, R. Britto, L.-O. Damm, and J. Brstler, “Effort estimation in
large-scale software development: An industrial case study,” Information

and Software Technology, vol. 99, p. 2140, Jul 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2018.02.009

[108] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra, “Research patterns and trends in
software effort estimation,” Inf. Softw. Technol., vol. 91, pp. 1–21, 2017. [Online].
Available: https://doi.org/10.1016/j.infsof.2017.06.002

[109] T. T. Moores and J. S. Edwards, “Could large uk corporations and computing
companies use software cost estimating tools? a survey,” European Journal of

Information Systems, vol. 1, no. 5, p. 311320, May 1992. [Online]. Available:
http://dx.doi.org/10.1057/ejis.1992.3

[110] [Online]. Available: http://dx.doi.org/10.1109/ieeestd.2017.7955095

[111] T. Addison and S. Vallabh, “Controlling software project risks: an empirical study of
methods used by experienced project managers,” in Proceedings of the 2002 annual

https://doi.org/10.1016/j.jss.2004.08.034
https://doi.org/10.1145/1414004.1414045
https://doi.org/10.1109/METRIC.2004.1357904
https://doi.org/10.1002/smr.1862
http://dx.doi.org/10.1016/j.infsof.2018.02.009
https://doi.org/10.1016/j.infsof.2017.06.002
http://dx.doi.org/10.1057/ejis.1992.3
http://dx.doi.org/10.1109/ieeestd.2017.7955095

Bibliography 237

research conference of the South African institute of computer scientists and informa-

tion technologists on Enablement through technology. South African Institute for
Computer Scientists and Information Technologists, 2002, pp. 128–140.

[112] K. Moløkken-Østvold, “Effort and schedule estimation of software development
projects,” Ph.D. dissertation, PhD thesis, University of Oslo, Norway, 2004.

[113] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “Turkit: human computation
algorithms on mechanical turk,” in Proceedings of the 23rd Annual ACM Symposium

on User Interface Software and Technology, New York, NY, USA, October 3-6, 2010,
K. Perlin, M. Czerwinski, and R. Miller, Eds. ACM, 2010, pp. 57–66. [Online].
Available: https://doi.org/10.1145/1866029.1866040

[114] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R.
Karger, D. Crowell, and K. Panovich, “Soylent: a word processor with a crowd
inside,” Commun. ACM, vol. 58, no. 8, pp. 85–94, 2015. [Online]. Available:
https://doi.org/10.1145/2791285

[115] E. Kamar, S. Hacker, and E. Horvitz, “Combining human and machine intelligence in
large-scale crowdsourcing,” in Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems - Volume 1, ser. AAMAS ’12. Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems, 2012,
p. 467–474.

[116] D. Sobel, Longitude : the true story of a lone genius who solved the greatest scientific

problem of his time. London: Harper Perennial, 2005.

[117] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp. 1–4, 2006.

[118] E. E. Arolas and F. González-Ladrón-de-Guevara, “Towards an integrated
crowdsourcing definition,” J. Inf. Sci., vol. 38, no. 2, pp. 189–200, 2012. [Online].
Available: https://doi.org/10.1177/0165551512437638

[119] M. Hosseini, A. Shahri, K. Phalp, J. Taylor, and R. Ali, “Crowdsourcing: A
taxonomy and systematic mapping study,” Comput. Sci. Rev., vol. 17, pp. 43–69,
2015. [Online]. Available: https://doi.org/10.1016/j.cosrev.2015.05.001

[120] T. W. Malone, R. Laubacher, and C. N. Dellarocas, “Harnessing crowds: Mapping
the genome of collective intelligence,” SSRN Electronic Journal, 2009. [Online].
Available: http://dx.doi.org/10.2139/ssrn.1381502

[121] H. Landemore, Democratic Reason. Princeton University Press, Dec 2012. [Online].
Available: http://dx.doi.org/10.23943/princeton/9780691155654.001.0001

https://doi.org/10.1145/1866029.1866040
https://doi.org/10.1145/2791285
https://doi.org/10.1177/0165551512437638
https://doi.org/10.1016/j.cosrev.2015.05.001
http://dx.doi.org/10.2139/ssrn.1381502
http://dx.doi.org/10.23943/princeton/9780691155654.001.0001

Bibliography 238

[122] D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart, Eds., Social

Collective Intelligence. Springer International Publishing, 2014. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08681-1

[123] E. Bonabeau, “Decisions 2.0: The power of collective intelligence,” MIT Sloan man-

agement review, vol. 50, no. 2, p. 45, 2009.

[124] F. Wang, K. M. Carley, D. Zeng, and W. Mao, “Social computing: From social
informatics to social intelligence,” IEEE Intell. Syst., vol. 22, no. 2, pp. 79–83, 2007.
[Online]. Available: https://doi.org/10.1109/MIS.2007.41

[125] M. Niazi, S. Mahmood, M. Alshayeb, A. A. B. Baqais, and A. Q. Gill,
“Motivators for adopting social computing in global software development: An
empirical study,” J. Softw. Evol. Process., vol. 29, no. 8, 2017. [Online]. Available:
https://doi.org/10.1002/smr.1872

[126] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and R. Tonelli, “The
JIRA repository dataset: Understanding social aspects of software development,” in
Proceedings of the 11th International Conference on Predictive Models and Data

Analytics in Software Engineering, PROMISE 2015, Beijing, China, October 21,

2015, A. Bener, L. L. Minku, and B. Turhan, Eds. ACM, 2015, pp. 1:1–1:4.
[Online]. Available: https://doi.org/10.1145/2810146.2810147

[127] M. D. Storey, A. Zagalsky, F. M. F. Filho, L. Singer, and D. M. Germán, “How
social and communication channels shape and challenge a participatory culture in
software development,” IEEE Trans. Software Eng., vol. 43, no. 2, pp. 185–204,
2017. [Online]. Available: https://doi.org/10.1109/TSE.2016.2584053

[128] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. M. Nezhad, E. Bertino, and
S. Dustdar, “Quality control in crowdsourcing systems: Issues and directions,”
IEEE Internet Comput., vol. 17, no. 2, pp. 76–81, 2013. [Online]. Available:
https://doi.org/10.1109/MIC.2013.20

[129] J. Corney, C. Torres-Snchez, A. Jagadeesan, X. Yan, W. Regli, and H. Medellin,
“Putting the crowd to work in a knowledge-based factory,” Advanced Engineering

Informatics, vol. 24, no. 3, p. 243250, Aug 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.aei.2010.05.011

[130] P. Donmez, J. G. Carbonell, and J. G. Schneider, “Efficiently learning the accuracy
of labeling sources for selective sampling,” in Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

Paris, France, June 28 - July 1, 2009, J. F. E. IV, F. Fogelman-Soulié, P. A.

http://dx.doi.org/10.1007/978-3-319-08681-1
https://doi.org/10.1109/MIS.2007.41
https://doi.org/10.1002/smr.1872
https://doi.org/10.1145/2810146.2810147
https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1109/MIC.2013.20
http://dx.doi.org/10.1016/j.aei.2010.05.011

Bibliography 239

Flach, and M. J. Zaki, Eds. ACM, 2009, pp. 259–268. [Online]. Available:
https://doi.org/10.1145/1557019.1557053

[131] V. Bhardwaj, R. J. Passonneau, A. Salleb-Aouissi, and N. Ide, “Anveshan: A frame-
work for analysis of multiple annotators’ labeling behavior,” in Proceedings of the

Fourth Linguistic Annotation Workshop, ser. LAW IV ’10. USA: Association for
Computational Linguistics, 2010, p. 47–55.

[132] D. Oleson, A. Sorokin, G. Laughlin, V. Hester, J. Le, and L. Biewald, “Programmatic
gold: Targeted and scalable quality assurance in crowdsourcing,” in Workshops at the

Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[133] S. Zhu, S. K. Kane, J. Feng, and A. Sears, “A crowdsourcing quality control model
for tasks distributed in parallel,” in CHI Conference on Human Factors in Computing

Systems, CHI ’12, Extended Abstracts Volume, Austin, TX, USA, May 5-10, 2012,
J. A. Konstan, E. H. Chi, and K. Höök, Eds. ACM, 2012, pp. 2501–2506. [Online].
Available: https://doi.org/10.1145/2212776.2223826

[134] A. J. Mashhadi and L. Capra, “Quality control for real-time ubiquitous
crowdsourcing,” Proceedings of the 2nd international workshop on Ubiquitous

crowdsouring - UbiCrowd 11, 2011. [Online]. Available: http://dx.doi.org/10.1145/
2030100.2030103

[135] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon mechanical
turk,” Proceedings of the ACM SIGKDD Workshop on Human Computation -

HCOMP 10, 2010. [Online]. Available: http://dx.doi.org/10.1145/1837885.1837906

[136] A. D. Sarma, A. G. Parameswaran, and J. Widom, “Towards globally optimal
crowdsourcing quality management: The uniform worker setting,” in Proceedings

of the 2016 International Conference on Management of Data, SIGMOD

Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, F. Özcan,
G. Koutrika, and S. Madden, Eds. ACM, 2016, pp. 47–62. [Online]. Available:
https://doi.org/10.1145/2882903.2882953

[137] Y. Baba and H. Kashima, “Statistical quality estimation for general crowdsourcing
tasks,” in The 19th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, I. S.
Dhillon, Y. Koren, R. Ghani, T. E. Senator, P. Bradley, R. Parekh, J. He, R. L.
Grossman, and R. Uthurusamy, Eds. ACM, 2013, pp. 554–562. [Online]. Available:
https://doi.org/10.1145/2487575.2487600

https://doi.org/10.1145/1557019.1557053
https://doi.org/10.1145/2212776.2223826
http://dx.doi.org/10.1145/2030100.2030103
http://dx.doi.org/10.1145/2030100.2030103
http://dx.doi.org/10.1145/1837885.1837906
https://doi.org/10.1145/2882903.2882953
https://doi.org/10.1145/2487575.2487600

Bibliography 240

[138] T. D. LaToza, W. Ben Towne, A. van der Hoek, and J. D. Herbsleb, “Crowd
development,” 2013 6th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), May 2013. [Online]. Available:
http://dx.doi.org/10.1109/chase.2013.6614737

[139] S. L. Lim and A. Finkelstein, “Stakerare: Using social networks and collaborative
filtering for large-scale requirements elicitation,” IEEE Transactions on Software

Engineering, vol. 38, no. 3, p. 707735, May 2012. [Online]. Available:
http://dx.doi.org/10.1109/tse.2011.36

[140] K.-J. Stol and B. Fitzgerald, “Twos company, threes a crowd: a case study
of crowdsourcing software development,” Proceedings of the 36th International

Conference on Software Engineering, May 2014. [Online]. Available: http:
//dx.doi.org/10.1145/2568225.2568249

[141] K. Stol and B. Fitzgerald, “Researching crowdsourcing software development:
perspectives and concerns,” in Proceedings of the 1st International Workshop on

CrowdSourcing in Software Engineering, CSI-SE 2014, Hyderabad, India, June 2,

2014, G. Fraser, T. D. LaToza, L. Mariani, F. Pastore, and N. Tillmann, Eds. ACM,
2014, pp. 7–10. [Online]. Available: https://doi.org/10.1145/2593728.2593731

[142] W. Li, M. N. Huhns, W.-T. Tsai, and W. Wu, Eds., Crowdsourcing: Cloud-Based

Software Development. Springer Berlin Heidelberg, 2015. [Online]. Available:
https://doi.org/10.1007/978-3-662-47011-4

[143] H. Yu, C. Miao, Z. Shen, J. Lin, C. Leung, and Q. Yang, “Infusing human factors into
algorithmic crowdsourcing,” in Twenty-Eighth IAAI Conference, 2016.

[144] W.-T. Tsai, W. Wu, and M. N. Huhns, “Cloud-based software crowdsourcing,”
IEEE Internet Computing, vol. 18, no. 3, p. 7883, May 2014. [Online]. Available:
http://dx.doi.org/10.1109/mic.2014.46

[145] P. Minder and A. Bernstein, “Crowdlang: A programming language for the
systematic exploration of human computation systems,” in Social Informatics - 4th

International Conference, SocInfo 2012, Lausanne, Switzerland, December 5-7,

2012. Proceedings, ser. Lecture Notes in Computer Science, K. Aberer, A. Flache,
W. Jager, L. Liu, J. Tang, and C. Guéret, Eds., vol. 7710. Springer, 2012, pp.
124–137. [Online]. Available: https://doi.org/10.1007/978-3-642-35386-4 10

[146] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

http://dx.doi.org/10.1109/chase.2013.6614737
http://dx.doi.org/10.1109/tse.2011.36
http://dx.doi.org/10.1145/2568225.2568249
http://dx.doi.org/10.1145/2568225.2568249
https://doi.org/10.1145/2593728.2593731
https://doi.org/10.1007/978-3-662-47011-4
http://dx.doi.org/10.1109/mic.2014.46
https://doi.org/10.1007/978-3-642-35386-4_10

Bibliography 241

Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, S. K.
Rajamani and D. Walker, Eds. ACM, 2015, pp. 677–688. [Online]. Available:
https://doi.org/10.1145/2676726.2676973

[147] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek, “Microtask
programming: building software with a crowd,” in The 27th Annual ACM Symposium

on User Interface Software and Technology, UIST ’14, Honolulu, HI, USA, October

5-8, 2014, H. Benko, M. Dontcheva, and D. Wigdor, Eds. ACM, 2014, pp. 43–54.
[Online]. Available: https://doi.org/10.1145/2642918.2647349

[148] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &

Policy, vol. 12, no. 3, p. 2349, Sep 1999. [Online]. Available: http:
//dx.doi.org/10.1007/s12130-999-1026-0

[149] M. Jiménez, M. Piattini, and A. Vizcaı́no, “Challenges and improvements in
distributed software development: A systematic review,” Adv. Softw. Eng., vol. 2009,
pp. 710 971:1–710 971:14, 2009. [Online]. Available: https://doi.org/10.1155/2009/
710971

[150] M. Harman and B. F. Jones, “Search-based software engineering,” Information and

Software Technology, vol. 43, no. 14, p. 833839, Dec 2001. [Online]. Available:
http://dx.doi.org/10.1016/s0950-5849(01)00189-6

[151] A. Kittur, J. V. Nickerson, M. S. Bernstein, E. Gerber, A. D. Shaw, J. Zimmerman,
M. Lease, and J. J. Horton, “The future of crowd work,” in Computer Supported

Cooperative Work, CSCW 2013, San Antonio, TX, USA, February 23-27, 2013,
A. S. Bruckman, S. Counts, C. Lampe, and L. G. Terveen, Eds. ACM, 2013, pp.
1301–1318. [Online]. Available: https://doi.org/10.1145/2441776.2441923

[152] V. Casey, “Virtual software team project management,” J. Braz. Comput. Soc.,
vol. 16, no. 2, pp. 83–96, 2010. [Online]. Available: https://doi.org/10.1007/s13173-
010-0013-3

[153] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project memory
for software development,” IEEE Trans. Software Eng., vol. 31, no. 6, pp. 446–465,
2005. [Online]. Available: https://doi.org/10.1109/TSE.2005.71

[154] I. Omoronyia, J. D. Ferguson, M. Roper, and M. Wood, “Using developer activity
data to enhance awareness during collaborative software development,” Comput.

Support. Cooperative Work., vol. 18, no. 5-6, pp. 509–558, 2009. [Online]. Available:
https://doi.org/10.1007/s10606-009-9104-0

https://doi.org/10.1145/2676726.2676973
https://doi.org/10.1145/2642918.2647349
http://dx.doi.org/10.1007/s12130-999-1026-0
http://dx.doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1155/2009/710971
https://doi.org/10.1155/2009/710971
http://dx.doi.org/10.1016/s0950-5849(01)00189-6
https://doi.org/10.1145/2441776.2441923
https://doi.org/10.1007/s13173-010-0013-3
https://doi.org/10.1007/s13173-010-0013-3
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1007/s10606-009-9104-0

Bibliography 242

[155] M. Handel and J. D. Herbsleb, “What is chat doing in the workplace?” in CSCW

2002, Proceeding on the ACM 2002 Conference on Computer Supported Cooperative

Work, New Orleans, Louisiana, USA, November 16-20, 2002, E. F. Churchill, J. F.
McCarthy, C. Neuwirth, and T. Rodden, Eds. ACM, 2002, pp. 1–10. [Online].
Available: https://doi.org/10.1145/587078.587080

[156] G. Fitzpatrick, P. Marshall, and A. Phillips, “CVS integration with notification and
chat: lightweight software team collaboration,” in Proceedings of the 2006 ACM

Conference on Computer Supported Cooperative Work, CSCW 2006, Banff, Alberta,

Canada, November 4-8, 2006, P. J. Hinds and D. Martin, Eds. ACM, 2006, pp.
49–58. [Online]. Available: https://doi.org/10.1145/1180875.1180884

[157] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen, “Communication
in open source software development mailing lists,” in Proceedings of the

10th Working Conference on Mining Software Repositories, MSR ’13, San

Francisco, CA, USA, May 18-19, 2013, T. Zimmermann, M. D. Penta, and
S. Kim, Eds. IEEE Computer Society, 2013, pp. 277–286. [Online]. Available:
https://doi.org/10.1109/MSR.2013.6624039

[158] M. Korkala and F. Maurer, “Waste identification as the means for improving
communication in globally distributed agile software development,” J. Syst. Softw.,
vol. 95, pp. 122–140, 2014. [Online]. Available: https://doi.org/10.1016/j.jss.2014.
03.080

[159] A. Flostrand, “Finding the future: Crowdsourcing versus the delphi technique,”
Business Horizons, vol. 60, no. 2, p. 229236, Mar 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.bushor.2016.11.007

[160] J. Kaivo-oja, T. Santonen, and Y. Myllylä, “The crowdsourcing delphi: combining the
delphi methodology and crowdsourcing techniques,” in ISPIM Conference Proceed-

ings. The International Society for Professional Innovation Management (ISPIM),
2013, p. 1.

[161] A. Alkhatib, M. S. Bernstein, and M. Levi, “Examining crowd work and gig
work through the historical lens of piecework,” in Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems, Denver, CO, USA, May

06-11, 2017, G. Mark, S. R. Fussell, C. Lampe, m. c. schraefel, J. P. Hourcade,
C. Appert, and D. Wigdor, Eds. ACM, 2017, pp. 4599–4616. [Online]. Available:
https://doi.org/10.1145/3025453.3025974

[162] T. Hoßfeld, M. Hirth, and P. Tran-Gia, “Modeling of crowdsourcing platforms and
granularity of work organization in future internet,” in Proceedings of the 23rd Inter-

https://doi.org/10.1145/587078.587080
https://doi.org/10.1145/1180875.1180884
https://doi.org/10.1109/MSR.2013.6624039
https://doi.org/10.1016/j.jss.2014.03.080
https://doi.org/10.1016/j.jss.2014.03.080
http://dx.doi.org/10.1016/j.bushor.2016.11.007
https://doi.org/10.1145/3025453.3025974

Bibliography 243

national Teletraffic Congress, ser. ITC ’11. International Teletraffic Congress, 2011,
p. 142–149.

[163] A. P. Kulkarni, M. Can, and B. Hartmann, “Turkomatic: automatic recursive task
and workflow design for mechanical turk,” in Proceedings of the International

Conference on Human Factors in Computing Systems, CHI 2011, Extended Abstracts

Volume, Vancouver, BC, Canada, May 7-12, 2011, D. S. Tan, S. Amershi, B. Begole,
W. A. Kellogg, and M. Tungare, Eds. ACM, 2011, pp. 2053–2058. [Online].
Available: https://doi.org/10.1145/1979742.1979865

[164] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in 15th

European Conference on Software Maintenance and Reengineering, CSMR 2011,

1-4 March 2011, Oldenburg, Germany, T. Mens, Y. Kanellopoulos, and
A. Winter, Eds. IEEE Computer Society, 2011, pp. 249–258. [Online]. Available:
https://doi.org/10.1109/CSMR.2011.31

[165] C. Li and M. Shan, “Team formation for generalized tasks in expertise social
networks,” in Proceedings of the 2010 IEEE Second International Conference on

Social Computing, SocialCom / IEEE International Conference on Privacy, Security,

Risk and Trust, PASSAT 2010, Minneapolis, Minnesota, USA, August 20-22, 2010,
A. K. Elmagarmid and D. Agrawal, Eds. IEEE Computer Society, 2010, pp. 9–16.
[Online]. Available: https://doi.org/10.1109/SocialCom.2010.12

[166] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k team
recommendation and its variants in spatial crowdsourcing,” Data Science and

Engineering, vol. 2, no. 2, p. 136150, Mar 2017. [Online]. Available:
http://dx.doi.org/10.1007/s41019-017-0037-1

[167] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi, “Online
team formation in social networks,” in Proceedings of the 21st World Wide Web

Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, A. Mille, F. Gandon,
J. Misselis, M. Rabinovich, and S. Staab, Eds. ACM, 2012, pp. 839–848. [Online].
Available: https://doi.org/10.1145/2187836.2187950

[168] C. H. Park, K. Son, J. H. Lee, and S. Bae, “Crowd vs. crowd: large-scale cooperative
design through open team competition,” in Computer Supported Cooperative Work,

CSCW 2013, San Antonio, TX, USA, February 23-27, 2013, A. S. Bruckman,
S. Counts, C. Lampe, and L. G. Terveen, Eds. ACM, 2013, pp. 1275–1284.
[Online]. Available: https://doi.org/10.1145/2441776.2441920

https://doi.org/10.1145/1979742.1979865
https://doi.org/10.1109/CSMR.2011.31
https://doi.org/10.1109/SocialCom.2010.12
http://dx.doi.org/10.1007/s41019-017-0037-1
https://doi.org/10.1145/2187836.2187950
https://doi.org/10.1145/2441776.2441920

Bibliography 244

[169] M. A. Valentine, D. Retelny, A. To, N. Rahmati, T. Doshi, and M. S. Bernstein,
“Flash organizations: Crowdsourcing complex work by structuring crowds as
organizations,” in Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems, Denver, CO, USA, May 06-11, 2017, G. Mark, S. R. Fussell,
C. Lampe, m. c. schraefel, J. P. Hourcade, C. Appert, and D. Wigdor, Eds. ACM,
2017, pp. 3523–3537. [Online]. Available: https://doi.org/10.1145/3025453.3025811

[170] J. Huang, X. Sun, Y. Zhou, and H. Sun, “A team formation model with personnel
work hours and project workload quantified,” Comput. J., vol. 60, no. 9, pp.
1382–1394, 2017. [Online]. Available: https://doi.org/10.1093/comjnl/bxx009

[171] W. Wang, J. Jiang, B. An, Y. Jiang, and B. Chen, “Toward efficient
team formation for crowdsourcing in noncooperative social networks,” IEEE

Trans. Cybern., vol. 47, no. 12, pp. 4208–4222, 2017. [Online]. Available:
https://doi.org/10.1109/TCYB.2016.2602498

[172] M. F. Bosu and S. G. Macdonell, “Experience: Quality benchmarking of datasets used
in software effort estimation,” Journal of Data and Information Quality, vol. 11, no. 4,
2019.

[173] M. Arora, S. Verma, Kavita, and S. Chopra, “A systematic literature review
of machine learning estimation approaches in scrum projects,” Advances in

Intelligent Systems and Computing, p. 573586, 2020. [Online]. Available:
http://dx.doi.org/10.1007/978-981-15-1451-7 59

[174] A. Idri, M. Hosni, and A. Abran, “Systematic literature review of ensemble effort
estimation,” J. Syst. Softw., vol. 118, pp. 151–175, 2016. [Online]. Available:
https://doi.org/10.1016/j.jss.2016.05.016

[175] P. Sharma and J. Singh, “Systematic literature review on software effort estimation
using machine learning approaches,” 2017 International Conference on Next

Generation Computing and Information Systems (ICNGCIS), Dec 2017. [Online].
Available: http://dx.doi.org/10.1109/icngcis.2017.33

[176] “Software Project Benchmarking - Home Page - ISBSG.” [Online]. Available:
https://www.isbsg.org/

[177] S. K. T. Ziauddin and S. Zia, “An effort estimation model for agile software develop-
ment,” Advances in computer science and its applications (ACSA), vol. 2, no. 1, pp.
314–324, 2012.

[178] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating story
points from issue reports,” in Proceedings of the The 12th International Conference

https://doi.org/10.1145/3025453.3025811
https://doi.org/10.1093/comjnl/bxx009
https://doi.org/10.1109/TCYB.2016.2602498
http://dx.doi.org/10.1007/978-981-15-1451-7_59
https://doi.org/10.1016/j.jss.2016.05.016
http://dx.doi.org/10.1109/icngcis.2017.33
https://www.isbsg.org/

Bibliography 245

on Predictive Models and Data Analytics in Software Engineering, PROMISE 2016,

Ciudad Real, Spain, September 9, 2016. ACM, 2016, pp. 2:1–2:10. [Online].
Available: https://doi.org/10.1145/2972958.2972959

[179] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of Software
Engineering Databases.” School of Information Technology and Engineering,
University of Ottawa, Canada, 2005. [Online]. Available: http://promise.site.uottawa.
ca/SERepository

[180] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies, “A deep
learning model for estimating story points,” IEEE Trans. Software Eng., vol. 45, no. 7,
pp. 637–656, 2019. [Online]. Available: https://doi.org/10.1109/TSE.2018.2792473

[181] A. Zakrani, A. Idri, and M. Hain, “Software effort estimation using an optimal
trees ensemble: An empirical comparative study,” Proceedings of the 8th

International Conference on Sciences of Electronics, Technologies of Information

and Telecommunications (SETIT18), Vol.1, p. 7282, Jul 2019. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-21005-2 7

[182] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula, “Examining the feasibility of
a case-based reasoning model for software effort estimation,” MIS Quarterly, vol. 16,
no. 2, p. 155, Jun 1992. [Online]. Available: http://dx.doi.org/10.2307/249573

[183] M. J. Shepperd and C. Schofield, “Estimating software project effort using analogies,”
IEEE Trans. Software Eng., vol. 23, no. 11, pp. 736–743, 1997. [Online]. Available:
https://doi.org/10.1109/32.637387

[184] G. Boetticher, “Using machine learning to predict project effort: Empirical case stud-
ies in data-starved domains,” in Model Based Requirements Workshop, 2001, pp. 17–
24.

[185] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and C. Lokan, “The usage
of ISBSG data fields in software effort estimation: A systematic mapping
study,” J. Syst. Softw., vol. 113, pp. 188–215, 2016. [Online]. Available:
https://doi.org/10.1016/j.jss.2015.11.040

[186] M. J. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on
the NASA software defect datasets,” IEEE Trans. Software Eng., vol. 39, no. 9, pp.
1208–1215, 2013. [Online]. Available: https://doi.org/10.1109/TSE.2013.11

[187] A. K. Bardsiri, S. M. Hashemi, and M. Razzazi, “Statistical analysis of the most pop-
ular software service effort estimation datasets,” Journal of Telecommunication, Elec-

tronic and Computer Engineering (JTEC), vol. 7, no. 1, pp. 87–96, 2015.

https://doi.org/10.1145/2972958.2972959
http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.1109/TSE.2018.2792473
http://dx.doi.org/10.1007/978-3-030-21005-2_7
http://dx.doi.org/10.2307/249573
https://doi.org/10.1109/32.637387
https://doi.org/10.1016/j.jss.2015.11.040
https://doi.org/10.1109/TSE.2013.11

Bibliography 246

[188] B. A. Kitchenham and E. Mendes, “Why comparative effort prediction studies
may be invalid,” in Proceedings of the 5th International Workshop on Predictive

Models in Software Engineering, PROMISE 2009, Vancouver, BC, Canada,

May 18-19, 2009, T. J. Ostrand, Ed. ACM, 2009, p. 4. [Online]. Available:
https://doi.org/10.1145/1540438.1540444

[189] P. Phannachitta, J. Keung, K. E. Bennin, A. Monden, and K. Matsumoto, “Filter-inc:
Handling effort-inconsistency in software effort estimation datasets,” 2016 23rd

Asia-Pacific Software Engineering Conference (APSEC), 2016. [Online]. Available:
http://dx.doi.org/10.1109/apsec.2016.035

[190] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung, “Exploiting the
essential assumptions of analogy-based effort estimation,” IEEE Transactions on

Software Engineering, vol. 38, no. 2, p. 425438, Mar 2012. [Online]. Available:
http://dx.doi.org/10.1109/tse.2011.27

[191] T. K. Le-Do, K.-A. Yoon, Y.-S. Seo, and D.-H. Bae, “Filtering of inconsistent
software project data for analogy-based effort estimation,” 2010 IEEE 34th Annual

Computer Software and Applications Conference, Jul 2010. [Online]. Available:
http://dx.doi.org/10.1109/compsac.2010.56

[192] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W. Keung, “When to use
data from other projects for effort estimation,” in ASE 2010, 25th IEEE/ACM

International Conference on Automated Software Engineering, Antwerp, Belgium,

September 20-24, 2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 2010,
pp. 321–324. [Online]. Available: https://doi.org/10.1145/1858996.1859061

[193] M. F. Bosu and S. G. MacDonell, “A taxonomy of data quality challenges in empirical
software engineering,” in 22nd Australian Conference on Software Engineering

(ASWEC 2013), 4-7 June 2013, Melbourne, Victoria, Australia. IEEE Computer
Society, 2013, pp. 97–106. [Online]. Available: https://doi.org/10.1109/ASWEC.
2013.21

[194] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[195] F. N. David and J. W. Tukey, “Exploratory data analysis,” Biometrics, vol. 33, no. 4,
p. 768, Dec 1977. [Online]. Available: http://dx.doi.org/10.2307/2529486

[196] J. P. Kincaid, R. Braby, and J. E. Mears, “Electronic authoring and delivery of
technical information,” Journal of Instructional Development, vol. 11, no. 2, p. 813,
Jun 1988. [Online]. Available: http://dx.doi.org/10.1007/bf02904998

https://doi.org/10.1145/1540438.1540444
http://dx.doi.org/10.1109/apsec.2016.035
http://dx.doi.org/10.1109/tse.2011.27
http://dx.doi.org/10.1109/compsac.2010.56
https://doi.org/10.1145/1858996.1859061
https://doi.org/10.1109/ASWEC.2013.21
https://doi.org/10.1109/ASWEC.2013.21
http://dx.doi.org/10.2307/2529486
http://dx.doi.org/10.1007/bf02904998

Bibliography 247

[197] “Spell and grammar checker.” [Online]. Available: https://languagetool.org/

[198] T. Menzies and M. J. Shepperd, “Special issue on repeatable results in software
engineering prediction,” Empir. Softw. Eng., vol. 17, no. 1-2, pp. 1–17, 2012.
[Online]. Available: https://doi.org/10.1007/s10664-011-9193-5

[199] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “Impact of discretization
noise of the dependent variable on machine learning classifiers in software
engineering,” IEEE Trans. Software Eng., vol. 47, no. 7, pp. 1414–1430, 2021.
[Online]. Available: https://doi.org/10.1109/TSE.2019.2924371

[200] V. Ionescu, “An approach to software development effort estimation using
machine learning,” in 13th IEEE International Conference on Intelligent Computer

Communication and Processing, ICCP 2017, Cluj-Napoca, Romania, September 7-9,

2017. IEEE, 2017, pp. 197–203. [Online]. Available: https://doi.org/10.1109/ICCP.
2017.8117004

[201] “Open sourcing bert: State-of-the-art pre-training for natural language processing,”
Nov 2018. [Online]. Available: https://ai.googleblog.com/2018/11/open-sourcing-
bert-state-of-art-pre.html

[202] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,” Studies in Linguistic Analysis

(special volume of the Philological Society), vol. 1952-59, pp. 1–32, 1957.

[203] Z. S. Harris, “Distributional structure,” WORD, vol. 10, no. 2-3, p. 146162, Aug
1954. [Online]. Available: http://dx.doi.org/10.1080/00437956.1954.11659520

[204] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017, pp. 5998–6008.

[205] S. P. Sotiroudis, S. K. Goudos, and K. Siakavara, “Neural networks and random
forests: A comparison regarding prediction of propagation path loss for nb-iot
networks,” in 8th International Conference on Modern Circuits and Systems

Technologies, MOCAST 2019, Thessaloniki, Greece, May 13-15, 2019. IEEE, 2019,
pp. 1–4. [Online]. Available: https://doi.org/10.1109/MOCAST.2019.8741751

[206] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz, “Predicting
development effort from user stories,” in Proceedings of the 5th International

Symposium on Empirical Software Engineering and Measurement, ESEM 2011,

Banff, AB, Canada, September 22-23, 2011. IEEE Computer Society, 2011, pp.
400–403. [Online]. Available: https://doi.org/10.1109/ESEM.2011.58

https://languagetool.org/
https://doi.org/10.1007/s10664-011-9193-5
https://doi.org/10.1109/TSE.2019.2924371
https://doi.org/10.1109/ICCP.2017.8117004
https://doi.org/10.1109/ICCP.2017.8117004
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
http://dx.doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1109/MOCAST.2019.8741751
https://doi.org/10.1109/ESEM.2011.58

Bibliography 248

[207] P. Ardimento and C. Mele, “Using bert to predict bug-fixing time,” 2020 IEEE

Conference on Evolving and Adaptive Intelligent Systems (EAIS), May 2020.
[Online]. Available: http://dx.doi.org/10.1109/eais48028.2020.9122781

[208] E. M. Fávero, D. Casanova, and A. R. Pimentel, “Se3m: A model for software effort
estimation using pre-trained embedding models,” arXiv preprint arXiv:2006.16831,
2020.

[209] “Transformers.” [Online]. Available: https://huggingface.co/transformers/index.html

[210] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[211] C. McCormick, 2021. [Online]. Available: https://www.chrismccormick.ai/the-bert-
collection

[212] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8,
pp. 861–874, 2006. [Online]. Available: https://doi.org/10.1016/j.patrec.2005.10.010

[213] Y. Sasaki et al., “The truth of the f-measure. 2007,” 2007.

[214] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal

of the Royal Statistical Society: Series B (Methodological), vol. 36, no. 2, p. 111133,
Jan 1974. [Online]. Available: http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x

[215] J. Grenning, “Agile 2008 - wisdom of crowds keynote and planning poker,” https:
//blog.wingman-sw.com/archives/20, August 2008.

[216] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few.
Abacus, March 2005.

[217] S. K. M. Yi, M. Steyvers, M. D. Lee, and M. J. Dry, “The wisdom of the crowd in
combinatorial problems,” Cogn. Sci., vol. 36, no. 3, pp. 452–470, 2012. [Online].
Available: https://doi.org/10.1111/j.1551-6709.2011.01223.x

[218] “Manifesto for Agile Software Development.” [Online]. Available: https://
agilemanifesto.org/

[219] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger, “Crowds in two seconds:
enabling realtime crowd-powered interfaces,” in Proceedings of the 24th Annual ACM

Symposium on User Interface Software and Technology, Santa Barbara, CA, USA,

October 16-19, 2011, J. S. Pierce, M. Agrawala, and S. R. Klemmer, Eds. ACM,
2011, pp. 33–42. [Online]. Available: https://doi.org/10.1145/2047196.2047201

http://dx.doi.org/10.1109/eais48028.2020.9122781
https://huggingface.co/transformers/index.html
https://www.chrismccormick.ai/the-bert-collection
https://www.chrismccormick.ai/the-bert-collection
https://doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://blog.wingman-sw.com/archives/20
https://blog.wingman-sw.com/archives/20
https://doi.org/10.1111/j.1551-6709.2011.01223.x
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1145/2047196.2047201

Bibliography 249

[220] F. Qi, X. Jing, X. Zhu, X. Xie, B. Xu, and S. Ying, “Software effort estimation based
on open source projects: Case study of Github,” Inf. Softw. Technol., vol. 92, pp.
145–157, 2017. [Online]. Available: https://doi.org/10.1016/j.infsof.2017.07.015

[221] J. L. Fleiss, “Measuring nominal scale agreement among many raters.” Psychological

Bulletin, vol. 76, no. 5, p. 378382, 1971. [Online]. Available: http://dx.doi.org/10.
1037/h0031619

[222] J. R. Landis and G. G. Koch, “The measurement of observer agreement for
categorical data,” Biometrics, vol. 33, no. 1, p. 159, Mar 1977. [Online]. Available:
http://dx.doi.org/10.2307/2529310

[223] B. J. McInnis, D. Cosley, C. Nam, and G. Leshed, “Taking a HIT: designing around
rejection, mistrust, risk, and workers’ experiences in amazon mechanical turk,” in
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,

San Jose, CA, USA, May 7-12, 2016, J. Kaye, A. Druin, C. Lampe, D. Morris,
and J. P. Hourcade, Eds. ACM, 2016, pp. 2271–2282. [Online]. Available:
https://doi.org/10.1145/2858036.2858539

[224] D. Hovy, T. Berg-Kirkpatrick, A. Vaswani, and E. Hovy, “Learning whom to trust
with mace,” in Proceedings of the 2013 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,
2013, pp. 1120–1130.

[225] H. Yu, Z. Shen, C. Miao, and B. An, “Challenges and opportunities for
trust management in crowdsourcing,” in 2012 IEEE/WIC/ACM International

Conferences on Intelligent Agent Technology, IAT 2012, Macau, China, December

4-7, 2012. IEEE Computer Society, 2012, pp. 486–493. [Online]. Available:
https://doi.org/10.1109/WI-IAT.2012.104

[226] V. Naroditskiy, N. R. Jennings, P. Van Hentenryck, and M. Cebrian, “Crowdsourcing
contest dilemma,” Journal of The Royal Society Interface, vol. 11, no. 99, p.
20140532, Oct 2014. [Online]. Available: http://dx.doi.org/10.1098/rsif.2014.0532

[227] G. Akerlof, “The market for lemons: Quality uncertainty and the market
mechanism,” Essential Readings in Economics, p. 175188, 1995. [Online]. Available:
http://dx.doi.org/10.1007/978-1-349-24002-9 9

[228] R. Snow, B. OConnor, D. Jurafsky, and A. Y. Ng, “Cheap and fast—
but is it good?” Proceedings of the Conference on Empirical Methods

in Natural Language Processing - EMNLP 08, 2008. [Online]. Available:
http://dx.doi.org/10.3115/1613715.1613751

https://doi.org/10.1016/j.infsof.2017.07.015
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.2307/2529310
https://doi.org/10.1145/2858036.2858539
https://doi.org/10.1109/WI-IAT.2012.104
http://dx.doi.org/10.1098/rsif.2014.0532
http://dx.doi.org/10.1007/978-1-349-24002-9_9
http://dx.doi.org/10.3115/1613715.1613751

Bibliography 250

[229] J. M. Rzeszotarski and A. Kittur, “Instrumenting the crowd: using implicit behavioral
measures to predict task performance,” in Proceedings of the 24th Annual ACM

Symposium on User Interface Software and Technology, Santa Barbara, CA, USA,

October 16-19, 2011, J. S. Pierce, M. Agrawala, and S. R. Klemmer, Eds. ACM,
2011, pp. 13–22. [Online]. Available: https://doi.org/10.1145/2047196.2047199

[230] M. Kutlu, T. McDonnell, Y. Barkallah, T. Elsayed, and M. Lease, “Crowd vs. expert:
What can relevance judgment rationales teach us about assessor disagreement?”
in The 41st International ACM SIGIR Conference on Research & Development

in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018,
K. Collins-Thompson, Q. Mei, B. D. Davison, Y. Liu, and E. Yilmaz, Eds. ACM,
2018, pp. 805–814. [Online]. Available: https://doi.org/10.1145/3209978.3210033

[231] R. Lukyanenko, J. Parsons, and Y. F. Wiersma, “The iq of the crowd: Understanding
and improving information quality in structured user-generated content,” Information

Systems Research, vol. 25, no. 4, p. 669689, Dec 2014. [Online]. Available:
http://dx.doi.org/10.1287/isre.2014.0537

[232] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann,
“Crowdsourcing linked data quality assessment,” in The Semantic Web - ISWC 2013

- 12th International Semantic Web Conference, Sydney, NSW, Australia, October

21-25, 2013, Proceedings, Part II, ser. Lecture Notes in Computer Science, H. Alani,
L. Kagal, A. Fokoue, P. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy,
C. Welty, and K. Janowicz, Eds., vol. 8219. Springer, 2013, pp. 260–276. [Online].
Available: https://doi.org/10.1007/978-3-642-41338-4 17

[233] F. Sidi, P. H. S. Panah, L. S. Affendey, M. A. Jabar, H. Ibrahim, and
A. Mustapha, “Data quality: A survey of data quality dimensions,” in 2012

International Conference on Information Retrieval & Knowledge Management,

Kuala Lumpur, Malaysia, March 13-15, 2012, R. Mahmod, R. Abdullah, L. N.
Abdullah, T. M. T. Sembok, A. F. Smeaton, F. Crestani, S. Doraisamy, R. A.
Kadir, and M. Ismail, Eds. IEEE, 2012, pp. 300–304. [Online]. Available:
https://doi.org/10.1109/InfRKM.2012.6204995

[234] F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allahbakhsh, “Quality
control in crowdsourcing: A survey of quality attributes, assessment techniques, and
assurance actions,” ACM Comput. Surv., vol. 51, no. 1, pp. 7:1–7:40, 2018. [Online].
Available: https://doi.org/10.1145/3148148

[235] T. McDonnell, M. Lease, M. Kutlu, and T. Elsayed, “Why is that relevant? collecting
annotator rationales for relevance judgments,” in Fourth AAAI Conference on Human

Computation and Crowdsourcing, 2016.

https://doi.org/10.1145/2047196.2047199
https://doi.org/10.1145/3209978.3210033
http://dx.doi.org/10.1287/isre.2014.0537
https://doi.org/10.1007/978-3-642-41338-4_17
https://doi.org/10.1109/InfRKM.2012.6204995
https://doi.org/10.1145/3148148

Bibliography 251

[236] A. Dumitrache, O. Inel, L. Aroyo, B. Timmermans, and C. Welty, “Crowdtruth
2.0: quality metrics for crowdsourcing with disagreement,” arXiv preprint

arXiv:1808.06080, 2018.

[237] S. Dow, A. P. Kulkarni, S. R. Klemmer, and B. Hartmann, “Shepherding the
crowd yields better work,” in CSCW ’12 Computer Supported Cooperative Work,

Seattle, WA, USA, February 11-15, 2012, S. E. Poltrock, C. Simone, J. Grudin,
G. Mark, and J. Riedl, Eds. ACM, 2012, pp. 1013–1022. [Online]. Available:
https://doi.org/10.1145/2145204.2145355

[238] R. Drapeau, L. B. Chilton, J. Bragg, and D. S. Weld, “Microtalk: Using argumen-
tation to improve crowdsourcing accuracy,” in Fourth AAAI Conference on Human

Computation and Crowdsourcing, 2016.

[239] W. A. Mason and D. J. Watts, “Financial incentives and the ”performance of
crowds”,” in Proceedings of the ACM SIGKDD Workshop on Human Computation,

Paris, France, June 28, 2009, P. N. Bennett, R. Chandrasekar, M. Chickering, P. G.
Ipeirotis, E. Law, A. Mityagin, F. J. Provost, and L. von Ahn, Eds. ACM, 2009, pp.
77–85. [Online]. Available: https://doi.org/10.1145/1600150.1600175

[240] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under
risk,” Econometrica, vol. 47, no. 2, p. 263, Mar 1979. [Online]. Available:
http://dx.doi.org/10.2307/1914185

[241] D. Li, L. Qiu, J. Liu, and C. Xiao, “Analysis of behavioral economics in crowdsensing:
A loss aversion cooperation model,” Sci. Program., vol. 2018, pp. 4 350 183:1–
4 350 183:18, 2018. [Online]. Available: https://doi.org/10.1155/2018/4350183

[242] L. Wang, T. Xu, and J. Chen, “Research on decision-making behavior of
crowdsourcing task based on loss aversion and incentive level,” Kybernetes, vol. 49,
no. 5, p. 15071528, Aug 2019. [Online]. Available: http://dx.doi.org/10.1108/k-12-
2018-0689

[243] L. Walasek and N. Stewart, “Context-dependent sensitivity to losses: Range and
skew manipulations.” Journal of Experimental Psychology: Learning, Memory,

and Cognition, vol. 45, no. 6, p. 957968, Jun 2019. [Online]. Available:
http://dx.doi.org/10.1037/xlm0000629

[244] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in 22nd

IEEE/ACM International Conference on Automated Software Engineering (ASE

2007), November 5-9, 2007, Atlanta, Georgia, USA, R. E. K. Stirewalt,
A. Egyed, and B. Fischer, Eds. ACM, 2007, pp. 34–43. [Online]. Available:
https://doi.org/10.1145/1321631.1321639

https://doi.org/10.1145/2145204.2145355
https://doi.org/10.1145/1600150.1600175
http://dx.doi.org/10.2307/1914185
https://doi.org/10.1155/2018/4350183
http://dx.doi.org/10.1108/k-12-2018-0689
http://dx.doi.org/10.1108/k-12-2018-0689
http://dx.doi.org/10.1037/xlm0000629
https://doi.org/10.1145/1321631.1321639

Bibliography 252

[245] “CreateHIT - Amazon Mechanical Turk.” [Online]. Avail-
able: https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/
ApiReference{ }CreateHITOperation.html

[246] L. Irani, “Amazon mechanical turk,” The Blackwell Encyclopedia of Sociology, p. 13,
Jun 2017. [Online]. Available: http://dx.doi.org/10.1002/9781405165518.wbeos0994

[247] S. R. Munoz and S. I. Bangdiwala, “Interpretation of kappa and b statistics measures
of agreement,” Journal of Applied Statistics, vol. 24, no. 1, p. 105112, Feb 1997.
[Online]. Available: http://dx.doi.org/10.1080/02664769723918

[248] H. Sharp and H. Robinson, “An ethnographic study of XP practice,” Empir. Softw.

Eng., vol. 9, no. 4, pp. 353–375, 2004. [Online]. Available: https://doi.org/10.1023/B:
EMSE.0000039884.79385.54

[249] P. H. Carstensen, C. Sørensen, and T. Tuikka, “Let’s talk about bugs!” Scandinavian

Journal of Information Systems, vol. 7, no. 1, p. 6, 1995.

[250] H. Unphon and Y. Dittrich, “Software architecture awareness in long-term software
product evolution,” Journal of Systems and Software, vol. 83, no. 11, p. 22112226,
Nov 2010. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2010.06.043

[251] H. Shah, S. Sinha, and M. J. Harrold, “Outsourced, offshored software-
testing practice: Vendor-side experiences,” 2011 IEEE Sixth International

Conference on Global Software Engineering, Aug 2011. [Online]. Available:
http://dx.doi.org/10.1109/icgse.2011.32

[252] D. B. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville, “‘good’ organisational
reasons for ‘bad’ software testing: An ethnographic study of testing in a small
software company,” in 29th International Conference on Software Engineering (ICSE

2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE Computer Society, 2007,
pp. 602–611. [Online]. Available: https://doi.org/10.1109/ICSE.2007.1

[253] C. Passos, D. S. Cruzes, T. Dybå, and M. G. Mendonça, “Challenges of
applying ethnography to study software practices,” in 2012 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM ’12, Lund,

Sweden - September 19 - 20, 2012, P. Runeson, M. Höst, E. Mendes, A. A.
Andrews, and R. Harrison, Eds. ACM, 2012, pp. 9–18. [Online]. Available:
https://doi.org/10.1145/2372251.2372255

[254] H. Sharp, Y. Dittrich, and C. R. B. de Souza, “The role of ethnographic studies
in empirical software engineering,” IEEE Trans. Software Eng., vol. 42, no. 8, pp.
786–804, 2016. [Online]. Available: https://doi.org/10.1109/TSE.2016.2519887

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference{_}CreateHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference{_}CreateHITOperation.html
http://dx.doi.org/10.1002/9781405165518.wbeos0994
http://dx.doi.org/10.1080/02664769723918
https://doi.org/10.1023/B:EMSE.0000039884.79385.54
https://doi.org/10.1023/B:EMSE.0000039884.79385.54
http://dx.doi.org/10.1016/j.jss.2010.06.043
http://dx.doi.org/10.1109/icgse.2011.32
https://doi.org/10.1109/ICSE.2007.1
https://doi.org/10.1145/2372251.2372255
https://doi.org/10.1109/TSE.2016.2519887

Bibliography 253

[255] K. Rönkkö, “Software practice from the inside: Ethnography applied to software en-
gineering,” Ph.D. dissertation, Blekinge Institute of Technology, 2002.

[256] J. ONeill and D. Martin, “Relationship-based business process crowdsourcing?”
Lecture Notes in Computer Science, p. 429446, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40498-6 33

[257] J. O’Neill, S. Roy, A. Grasso, and D. B. Martin, “Form digitization in BPO: from
outsourcing to crowdsourcing?” in 2013 ACM SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, Paris, France, April 27 - May 2, 2013, W. E.
Mackay, S. A. Brewster, and S. Bødker, Eds. ACM, 2013, pp. 197–206. [Online].
Available: https://doi.org/10.1145/2470654.2470683

[258] N. Gupta, “An ethnographic study of crowdwork via amazon mechanical turk in in-
dia,” Ph.D. dissertation, University of Nottingham, 2017.

[259] N. Gupta, D. Martin, B. V. Hanrahan, and J. ONeill, “Turk-life in india,” Proceedings

of the 18th International Conference on Supporting Group Work, Nov 2014. [Online].
Available: http://dx.doi.org/10.1145/2660398.2660403

[260] M. L. Gray, S. Suri, S. S. Ali, and D. Kulkarni, “The crowd is a collaborative network,”
in Proceedings of the 19th ACM Conference on Computer-Supported Cooperative

Work & Social Computing, CSCW 2016, San Francisco, CA, USA, February 27 -

March 2, 2016, D. Gergle, M. R. Morris, P. Bjørn, and J. A. Konstan, Eds. ACM,
2016, pp. 134–147. [Online]. Available: https://doi.org/10.1145/2818048.2819942

[261] A. Cooper et al., The inmates are running the asylum:[Why high-tech products drive

us crazy and how to restore the sanity]. Sams Indianapolis, 2004, vol. 2.

[262] D. Ford, T. Zimmermann, C. Bird, and N. Nagappan, “Characterizing software
engineering work with personas based on knowledge worker actions,” in 2017

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM 2017, Toronto, ON, Canada, November 9-10, 2017, A. Bener,
B. Turhan, and S. Biffl, Eds. IEEE Computer Society, 2017, pp. 394–403. [Online].
Available: https://doi.org/10.1109/ESEM.2017.54

[263] S. Faily and J. Lyle, “Guidelines for integrating personas into software
engineering tools,” Proceedings of the 5th ACM SIGCHI symposium on

Engineering interactive computing systems - EICS 13, 2013. [Online]. Available:
http://dx.doi.org/10.1145/2494603.2480318

[264] M. Aoyama, “Persona-and-scenario based requirements engineering for software
embedded in digital consumer products,” 13th IEEE International Conference on

http://dx.doi.org/10.1007/978-3-642-40498-6_33
https://doi.org/10.1145/2470654.2470683
http://dx.doi.org/10.1145/2660398.2660403
https://doi.org/10.1145/2818048.2819942
https://doi.org/10.1109/ESEM.2017.54
http://dx.doi.org/10.1145/2494603.2480318

Bibliography 254

Requirements Engineering (RE05), 2005. [Online]. Available: http://dx.doi.org/10.
1109/re.2005.50

[265] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R.
Karger, D. Crowell, and K. Panovich, “Soylent: a word processor with a crowd
inside,” in Proceedings of the 23rd Annual ACM Symposium on User Interface

Software and Technology, New York, NY, USA, October 3-6, 2010, K. Perlin,
M. Czerwinski, and R. Miller, Eds. ACM, 2010, pp. 313–322. [Online]. Available:
https://doi.org/10.1145/1866029.1866078

[266] O. Ayalon and E. Toch, “Crowdsourcing privacy design critique: An empirical
evaluation of framing effects,” Proceedings of the Annual Hawaii International

Conference on System Sciences, 2018. [Online]. Available: http://dx.doi.org/10.
24251/hicss.2018.598

[267] D. Stergiadis, “Persona modeling by crowdsourcing using the repertory grid tech-
nique,” 2017.

[268] G. Kazai and I. Zitouni, “Quality management in crowdsourcing using gold judges
behavior,” in Proceedings of the Ninth ACM International Conference on Web Search

and Data Mining, San Francisco, CA, USA, February 22-25, 2016, P. N. Bennett,
V. Josifovski, J. Neville, and F. Radlinski, Eds. ACM, 2016, pp. 267–276. [Online].
Available: https://doi.org/10.1145/2835776.2835835

[269] W. Reinhardt, B. Schmidt, P. Sloep, and H. Drachsler, “Knowledge worker
roles and actions-results of two empirical studies,” Knowledge and Process

Management, vol. 18, no. 3, p. 150174, Jul 2011. [Online]. Available:
http://dx.doi.org/10.1002/kpm.378

[270] “Process Mining and Process Analysis - Fluxicon.” [Online]. Available: https:
//fluxicon.com/

[271] R. C. Martin, Clean Code - a Handbook of Agile Software Craftsmanship. Prentice
Hall, 2009. [Online]. Available: http://vig.pearsoned.com/store/product/1,1207,store-
12521 isbn-0132350882,00.html

[272] D. E. Knuth, The art of computer programming, Volume I: Fundamental

Algorithms, 3rd Edition. Addison-Wesley, 1997. [Online]. Available: https:
//www.worldcat.org/oclc/312910844

[273] A. Hunt and D. Thomas, The Pragmatic Programmer : From Journeyman to Master.
Addison-Wesley Professional, 1999.

http://dx.doi.org/10.1109/re.2005.50
http://dx.doi.org/10.1109/re.2005.50
https://doi.org/10.1145/1866029.1866078
http://dx.doi.org/10.24251/hicss.2018.598
http://dx.doi.org/10.24251/hicss.2018.598
https://doi.org/10.1145/2835776.2835835
http://dx.doi.org/10.1002/kpm.378
https://fluxicon.com/
https://fluxicon.com/
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0132350882,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0132350882,00.html
https://www.worldcat.org/oclc/312910844
https://www.worldcat.org/oclc/312910844

Bibliography 255

[274] G. Mark, S. R. Fussell, C. Lampe, m. c. schraefel, J. P. Hourcade, C. Appert, and
D. Wigdor, Eds., Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems, Denver, CO, USA, May 06-11, 2017. ACM, 2017. [Online].
Available: https://doi.org/10.1145/3025453

[275] A. S. Bruckman, S. Counts, C. Lampe, and L. G. Terveen, Eds., Computer Supported

Cooperative Work, CSCW 2013, San Antonio, TX, USA, February 23-27, 2013.
ACM, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=2441776

[276] J. S. Pierce, M. Agrawala, and S. R. Klemmer, Eds., Proceedings of the 24th

Annual ACM Symposium on User Interface Software and Technology, Santa

Barbara, CA, USA, October 16-19, 2011. ACM, 2011. [Online]. Available:
https://doi.org/10.1145/2047196

[277] K. Perlin, M. Czerwinski, and R. Miller, Eds., Proceedings of the 23rd Annual ACM

Symposium on User Interface Software and Technology, New York, NY, USA, October

3-6, 2010. ACM, 2010. [Online]. Available: https://doi.org/10.1145/1866029

https://doi.org/10.1145/3025453
http://dl.acm.org/citation.cfm?id=2441776
https://doi.org/10.1145/2047196
https://doi.org/10.1145/1866029

	Thesis Cover Sheet
	2022AlhamedPhD
	1 Introduction
	1.1 Background
	1.1.1 Software Effort Estimation
	1.1.2 Planning Poker
	1.1.3 Human Computation and Crowdsourcing

	1.2 Motivation
	1.3 Thesis Statement
	1.4 Contribution
	1.5 Thesis Outline

	2 Research Methodology
	2.1 Software Engineering Empirical Research
	2.2 Literature review
	2.3 Replication
	2.4 Empirical Experiments
	2.4.1 Pilot Experimentation
	2.4.2 Laboratory Experiments

	2.5 Ethnography
	2.6 Summary

	3 Literature Review
	3.1 Characterising Software Effort Estimation
	3.1.1 Definitions
	3.1.2 Different Perspectives of Software Effort Estimation
	3.1.3 SEE Methods Classification

	3.2 Expert-based Software Effort Estimation Methods
	3.2.1 Guesstimation
	3.2.2 Wideband Delphi
	3.2.3 Estimeetings
	3.2.4 Stochastic Budget Simulation (SBS)
	3.2.5 Sparse Data Method (SDM) using Analytic Hierarchy Process
	3.2.6 Planning Poker

	3.3 Machine Learning Software Effort Estimation
	3.3.1 Artificial Neural Network (ANN)
	3.3.2 Case-Based Reasoning (CBR)
	3.3.3 Decision Tree (DT)
	3.3.4 Support Vector (SV)
	3.3.5 Performance of ML-Based
	3.3.6 Contexts Where ML-Based is Recommended

	3.4 Review of Comparative Research of Expert-Based and ML-Based SEE
	3.5 Human Computation
	3.5.1 Crowdsourcing
	3.5.2 Collective Intelligence
	3.5.3 Social Computing
	3.5.4 Quality Assignment in Human Computation

	3.6 Software Engineering Applications in Human Computation
	3.7 Summary

	4 JIRA Open Source Software Effort Dataset
	4.1 Publicly Available SEE Datasets
	4.2 Software Effort Estimation Datasets Research Studies
	4.3 Collection of the JOSSE Dataset
	4.4 JOSSE Dataset Refinement Options
	4.4.1 Quantity of Data Points Per Project
	4.4.2 Dataset Outliers
	4.4.3 Dataset Dissension
	4.4.4 Dataset Readability
	4.4.5 Discretising Software Effort Estimates
	4.4.6 Dataset Domain and Origin
	4.4.7 The Quality Taxonomy Assessment

	4.5 Summary

	5 Evaluation of Language-Based Transfer Model for Software Effort
	5.1 Background on ML and Software Effort Estimation
	5.1.1 Converting Text Corpus for Use in ML Models
	5.1.2 BERT and RF as Machine Learning Models

	5.2 Experiment Design
	5.2.1 Experiment Datasets
	5.2.2 Estimation Method
	5.2.3 Evaluation Metrics

	5.3 Results
	5.3.1 RQM1: Accuracy of ML models
	5.3.2 RQM2: Evaluation of Feature Extraction Methods
	5.3.3 RQM3: ML models compared with expert-based estimates

	5.4 Discussion
	5.5 Summary

	6 Crowd Planning Poker: A Preliminary Study
	6.1 General Considerations of Planning Poker
	6.2 Crowd Planning Poker (CPP) General Model
	6.3 Experimental Design
	6.3.1 Dataset
	6.3.2 Measures
	6.3.3 Experiment Trials and Variables
	6.3.4 Evaluation and Result Test

	6.4 Results
	6.4.1 Information Experiment
	6.4.2 Crowd Size Experiment
	6.4.3 Process Design Experiment

	6.5 Discussion
	6.5.1 PRQ1: Proper working settings for CPP
	6.5.2 PRQ2: Proper process design for CPP
	6.5.3 PRQ3: Feasibility of producing expert-comparable estimates
	6.5.4 Beyond Estimates – Crowd Insights
	6.5.5 Evaluation of Costs in Pilot Studies
	6.5.6 Threat to Validity – Issue Availability

	6.6 Summary

	7 Quality Assessment and Enhancement of Crowd Planning Poker
	7.1 Exploring the Quality of Crowd Assignments in the CPP Context
	7.2 Measuring Quality of Crowd Assignments
	7.2.1 User Behaviour Quality
	7.2.2 Manual Assessment of Issue Quality
	7.2.3 Machine Learning

	7.3 Improving Crowd Quality
	7.3.1 Crowd Feedback Loop
	7.3.2 Encouraging Improvement Using Loss Attention
	7.3.3 Handling Rejected Cases Using Soft-Reject
	7.3.4 Quality Improvement Experiment Design
	7.3.5 Experiment Results

	7.4 Discussion
	7.5 Summary

	8 Human Computation of Software Effort Estimates
	8.1 Full Design of Crowd Planning Poker Using Human Computation
	8.2 Experimental Design
	8.3 Result and Evaluation
	8.3.1 Crowd Performance Compared with Experts
	8.3.2 CPP Scalability

	8.4 Discussion
	8.4.1 Threats to Validity – Issue Availability

	8.5 Summary

	9 Crowd Estimator Personas: an Ethnographic Study of Crowd Behaviour
	9.1 Related Work
	9.2 Design of Systematic Behaviour Scanning Study
	9.2.1 UI Interaction Log Systematic Scanning
	9.2.2 Behaviour Descriptors for Crowd Personas

	9.3 Results of Behaviour Analysis and Crowd Personas
	9.3.1 Combined Class A and B
	9.3.2 Class C
	9.3.3 Class D
	9.3.4 Identified Personas

	9.4 Post CPP Survey Study
	9.4.1 Survey Design
	9.4.2 Survey Results

	9.5 Discussion
	9.6 Summary

	10 Conclusions
	10.1 Summary of Research Activity
	10.2 Questions and Findings
	10.2.1 ML Algorithms
	10.2.2 CPP Design
	10.2.3 CPP Quality
	10.2.4 CPP Automation
	10.2.5 Crowd Behaviour

	10.3 Contributions and Learned Lessons
	10.4 Thesis Scope and Validity
	10.5 Future CPP Research Work
	10.5.1 Applying Crowd Planning Poker in an Industrial Case Study
	10.5.2 Investigating the Effects of Obfuscating on Estimate Reliability
	10.5.3 Extending Crowd Planning Poker Applications
	10.5.4 Extending Ethnographic Effort Estimation Study

	10.6 A Final Thought...

	A Details of JOSSE Open Source Software Project
	B Detailed ML Results For Each Dataset
	C POST Crowd Planning Poker Survey
	Bibliography

