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Abstract

There is increasing interest in the detection and estimation of discontinuities in regression 

problems with one and two covariates, due to its wide variety of applications. Moreover, 

in many real life applications, we are likely to encounter a certain degree of dependence in 

observations that are collected over time or space. Detecting changes in dependent data 

in the presence of a smoothly varying trend, is a much more complicated problem that 

previously has not been adequately studied. Hence, the aim of this thesis is to respond to the 

immense need for a nonparametric discontinuity test which is capable of incorporating robust 

estimation of the underlying dependence structure (if unknown) into the test procedure in 

one and two dimensions.

By means of a difference-based method, using a local linear kernel smoothing technique, a 

global test of the hypothesis that an abrupt change is present in the smoothly varying mean 

level of a sequence of correlated data is developed in the one-dimensional setting. Accurate 

distributional calculations for the test statistic can be performed, using standard results on 

quadratic forms.

Extensive simulations are carried out to examine the performance of the test in the cases 

both of correlation known and unknown. For the latter, the effectiveness of the different 

algorithms that have been devised to incorporate the estimation of correlation, for both the 

equally and unequally spaced designs, is investigated. Various factors that affect the size 

and power of the test are also explored. In addition, a small simulation study is performed 

to compare the proposed test with an isotonic regression test proposed by Wu et al. (2001).

The utility of the techniques is demonstrated by applying the proposed discontinuity 

test to three sets of real-life data, namely the Argentina rainfall data, the global warming



data and the River Clyde data. The analysis of the results are compared to those using the 

isotonic regression test of Wu et al. (2001) and the Bayesian test of Thomas (2001).

Finally, the test is also extended to detect discontinuities in spatially correlated data. 

The same differencing principle as in the one-dimensional case is utilised here. However, 

the discontinuity in this context does not occur only at a point but over a smooth curve. 

Hence, the test has to take into account the additional element of direction. A two stage 

algorithm which makes use of a partitioning process to remove observations that are near the 

discontinuity curve is proposed. A motivating application for the approach is the analysis 

of radiometric data on cesium fallout in a particular area in Finland after a nuclear reactor 

accident in Chernobyl.

The procedures outlined for both the one and two dimensional settings are particularly 

useful and relatively easy to implement. Although the main focus of the work is not to 

identify the exact locations of the discontinuities, useful graphical tools have been employed 

to infer their likely locations. The dissertation closes with a summary and discussion of the 

results presented, and proposes potential future work in this area.
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Chapter 1

Introduction

1.1 M otivation

The last two decades have seen a burgeoning interest in the area of “change-point” analysis, 

equivalently known as “discontinuity” analysis. It is often assumed in regression analysis 

that the underlying “true” function is continuous. However, as will be illustrated later in 

this section, there are numerous real life applications where this assumption does not hold.

If the main focus of a statistical analysis is to estimate the underlying regression function, 

an increased bias will result in the estimation if one assumes that the function is continuous 

when it is not. Furthermore, important scientific information will be lost. Hence it is 

important to check the statistical homogeneity of the observed data before estimation of the 

parameters of statistical models, to obtain a more consistent estimate. In some instances, 

the main purpose might be to accurately model the underlying trend function in a setting of 

possible discontinuities and as such the actual locations of the discontinuities are of secondary 

importance. In other applications, detecting the possible presence of a discontinuity may be 

of primary interest and importance, as this might correspond to some physical intervention 

or phenomenon that the investigator is very keen to detect.

To illustrate the importance of change-point analysis, let us refer to some interesting 

examples that have appeared in past literature.

In the study of growth in biology, it is normally assumed that a log linear relationship

1
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exists between the sizes of two body parts, and this relationship persists throughout the 

stable growth period. However, any structural shift in this relationship may be of interest 

as that might indicate the start of a new phase (Krishnaiah and Miao, 1988).

A recent analysis of the growth of infants by Muller and Stadmiiller (1999) provides an­

other interesting example. The given controversy here is whether the growth occurs smoothly 

or whether there exist discontinuities in the infant growth. The data were obtained by Lampl 

et al. (1992), who claimed in their findings that jump discontinuities do occur during the 

growth of infants, but an article by Heinrichs et al. (1995) argued that the claim was highly 

doubtful.

One of the most popular examples, analysed by several statisticians, is the annual volume 

of the Nile river flow data, which was shown to contain a discontinuity in the underlying 

mean function (Cobb, 1978, Muller, 1992). Independent evidence on tropical rainfall to 

support the possible drop in volume was mentioned by Cobb (1978).

In addition to the scientific fields of medicine and hydrology, the literature in this topic 

of change-point analysis is growing rapidly due to its wide range of applications in quality 

control, econometrics, signal and image processing and many other physical sciences. Indeed, 

it has been a popular topic of research for more than fifty years (see, for example, the books 

of Brodsky and Darkhovsky (1993, 2000) or Basseville and Nikiforov (1993)).

One motivating real-life application (yet to be published) is whether there has been any 

abrupt change in the dissolved oxygen level in the River Clyde, after an improved sewage 

treatment plant was implemented by the Scottish Environment Protection Agency, SEPA 

in 1985. As the data are collected over time, there might exist a certain degree of serial 

correlation, which will affect the discontinuity test if it is not accounted for. This points to 

the research question: is there a discontinuity in the River Clyde data after accounting for 

the possible presence of correlation? Furthermore, if we allow the trend to vary smoothly, 

by using nonparametric regression (the advantage of such a technique will be discussed in 

the next section), a test developed to answer this question will be useful in such a setting as 

well as in many other practical situations.

Similarly in a two-dimensional spatial setting, dependence often exists between values 

which are close together. One interesting application that will be analysed in this work is to
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investigate if there is any abrupt variation in the deposits of cesium in an area in Finland, due 

possibly to different terrains. The underlying trend may be complex and using nonparametric 

regression to model the surface is greatly beneficial here. The research question here is: does 

the underlying surface of cesium deposits vary smoothly, or are there discontinuities present, 

perhaps due to the different terrains that are mapped?

This directs us to the main aim of this thesis: to detect discontinuities in the one­

dimensional and two-dimensional settings, in the presence of a smoothly varying trend and 

correlation.

1.2 Different Types of Change-Point Problems

A change-point can be defined as a point which separates a series of observations, xi,X 2 , . . .  , 

into two groups, each of which follows a ‘different’ statistical model. The subscripts may 

denote time (equally or unequally spaced) or some other ordering of the observations. The 

last observation before the change or the first observation after the change can be defined 

as the change-point. In this work, we will refer to the change-point as the last observation 

before the change.

There are different kinds of change-point problems. According to the method of data 

acquirement, there exist two fundamental formulations.

The retrospective change-point problem (also known as the off-line, posterior or non­

sequential view) is where the whole data set is complete at the time of analysis. It can emerge 

as a hypothesis testing problem, whereby the concern is whether a change has occurred, or 

as an estimation problem, concerning the location of the change-point if a change is present. 

The examples that are provided in Section 1.1 are all off-line change-point problems.

On the other hand, the sequential change-point problem, also known as on-line, surveil­

lance or turning-point detection, is concerned with the setting where additional observations 

will be made available as time goes on. The objective is to detect any change in the ob­

servations as soon as possible, without too many ‘false alarms’. On-line problems occur in 

numerous monitoring systems, for instance in areas of quality control, where successive ob­

servations of the process are monitored, and an alarm is sounded if there is a deviation from
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a pre-set standard value. There are also applications in econometrics where one is interested 

in diagnosing the changes of an economy (also known as turning-points), and in medicine, 

such as the supervision of the heart rate of a patient, etc.

Various terms have been used to describe change-point analysis in its diverse fields of 

applications. It is most commonly referred to as “change-point” or “discontinuity”, but 

also as “failure (fault) detection” in quality control and “structural break/change” or “in­

tervention analysis” in time series. Other terms include “abrupt change”, “level shift” or 

“shock detection”. In this work, the author will restrict the terms to either “change-point” , 

“discontinuity” or “abrupt change” .

There can exist a single change-point or multiple change-points. There are also different 

kinds of changes, such as abrupt changes, gradual changes, sometimes expressed in terms 

of changes in model parameters. Abrupt changes, which are changes that occur very fast, 

if not instantaneously, with respect to the sampling period of the measurements, have been 

the most well-studied over the years. Abrupt changes in regression equations are also known 

as switching regressions or two-phase regression problems.

To illustrate some of the different change-point situations one may encounter, diagrams 

(l)-(3) of Figure 1.1 display an abrupt change in a constant mean, a switching regression 

and an abrupt change in a smoothly varying trend. Diagram (4) displays an abrupt change 

in slope, which is also an example of a switching regression with the addition of a continuity 

constraint. The bottom middle and right panels display abrupt changes in variance and 

correlation of a similar simulated set of data. The change-point occurs at the mid-point of 

the data for all these diagrams.

The underlying trend (away from the jump point) can be modelled parametrically, non- 

parametrically or with a semiparametric model. The parametric regression approach is based 

on the assumption that the regression function is expressed as a function with a finite known 

number of (unknown) parameters, whereas the nonparametric diagnosis simply assumes that 

the regression function is a smooth unknown function of the predictor variable, with no finite 

dimensional parameter space. The semiparametric diagnosis is intermediate between the two 

extreme positions, with a combination of a smooth unknown function and an unknown finite 

dimensional parameter space.
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Figure 1.1. Different types of abrupt changes

The mean structures in diagrams (1) and (2), which are modelled by a constant and 

linear trend respectively, are the simplest forms of the parametric family. The number 

of parameters can be increased to give polynomial regression, such as quadratic or cubic 

regression. Though this is quite a frequent choice in modeling nonlinear curves, as Fan and 

Gijbels’ (1996) work illustrates, one of the main shortcomings of polynomial regression is 

that it is still not flexible enough to model many real-life situations, thus resulting in many 

biases. Moreover, it might be very sensitive to the presence of outliers, which could have a 

great influence on remote parts of the estimated curve.

Regression is one of the most widely used statistical tools, but conventional parametric 

regression models are too restrictive; and other practical techniques are needed. Therefore, 

the rapidly growing field of nonparametric regression, whose policy is to “let the data speak 

for themselves”, is an important and popular tool for modelling data and for inferential 

purposes. It is extremely flexible and enables the derivation of information from data, 

imposing very weak assumptions on the mean function, which cannot otherwise be explained 

by a parametric model. In fact, the key assumption for nonparametric regression is the 

presence of some degree of smoothness in the underlying trend. This meets the needs of many
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analysts who deal with real-life data from a diverse range of fields, such as the environmental 

and medical fields, where the underlying trend may be too complex to permit the use of 

simple equations to accurately model it. With the same intention in mind, the author was 

motivated to develop a change-point algorithm that allows for a smoothly varying trend, 

so that it can contribute more significantly to practical real-life applications. Diagram (3) 

displays an example of a change-point model with an underlying smooth trend.

1.3 Scope of thesis

This thesis consists of seven chapters. In this chapter, an introduction and overview of 

the different change-point problems often encountered is given along with some illustrative 

examples. Chapter 2 provides a survey of previous literature to tackle different types of 

change-point problem, using both parametric and nonparametric approaches, with indepen­

dent and dependent data in the one-dimensional setting. This then leads on to the main focus 

of the work which is using nonparametric smoothing techniques for change-point detection 

in an inferential context, particularly in the presence of correlated errors.

In Chapter 3, the discontinuity testing algorithm is thoroughly described and developed 

for the one-dimensional equally spaced case for correlated data. Different estimators of 

correlation and variance are proposed. An extensive simulation is carried out to evaluate the 

performance of the test both in the correlation known and unknown cases as we vary different 

factors that influence the results of the test. Comparison of the proposed nonparametric 

algorithm to the isotonic regression test proposed by Wu et al. (2001) is also investigated.

In Chapter 4, some modifications are made to the algorithm to extend the application 

to an unequally spaced setting. The structure is similar to that of Chapter 3. The test 

takes correlation into account by using a variogram. A new test statistic is also considered 

here and comparison is made with the original proposal. Simulations are carried out to see 

how the two test statistics perform in finite samples, and with different experimental factors, 

both in the correlation known and unknown cases.

Chapter 5 consists of the analysis of three real-life datasets. They are the Argentina 

data (Wu et al., 2001), the global warming data (Wu et al., 2001) and the River Clyde data.
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The proposed nonparametric regression approach is used, and the results are compared with 

those using two other approaches; a Bayesian approach by Thomas (2001) and an isotonic 

regression test by Wu et al. (2001).

Chapter 6 extends the discontinuity test proposed in the one-dimensional case to the two- 

dimensional spatial setting, along with simulations representing both equally and unequally 

spaced data. The algorithm is then applied to investigate if there is abrupt variation in the 

mapping of cesium in an area in Finland (RESUME-95, 1997).

Chapter 7 concludes with an overall summary and discussion of this work, and proposes 

future developments.



Chapter 2

Statistical Approach to Change-Point 

Problems

Current literature on the general topic of “change-point detection” is too extensive to review 

here. Thus, in this chapter we will confine our attention to research in the one-dimensional 

setting that is mainly centered on abrupt changes in the mean structure, though a brief 

mention of the other types of change points will also be made. The list is not exhaustive. 

As our main interest is in a nonparametric regression approach, the whole of Section 2.2 is 

dedicated to this field of research. Detecting discontinuities in the two-dimensional setting 

will be discussed later in Chapter 6.

The organisation of this chapter is as follows. We will begin our tour by making a passing 

mention of sequential change-point detection and refer the reader to several cited references. 

The focus then turns to retrospective detection. A brief survey of the commonly used 

parametric approaches, namely Bayesian and maximum likelihood change-point detection, 

as well as nonparametric methods, will be made, starting from the independent setting and 

subsequently progressing to the dependent setting. The chapter ends with a section on 

detecting discontinuities using nonparametric regression.

8
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2.1 History

The sequential change-point problem, with its connections to statistical quality control, 

started all the way back with Shewhart (1931), who approached on-line detection of a change 

by comparing individual means. He proposed the use of Control Charts in the manufacturing 

industry to decide if a manufacturing process or the quality of a manufactured product is in 

statistical control. Shewhart developed the use of 3-sigma control limits as action limits. An 

‘alarm’ is sounded and the process is considered out-of-control if the quality characteristic 

goes beyond these limits.

Page (1954) dealt with on-line detection using the successive cumulative sums (CUSUM) 

instead, and thereby laid the fundamental basis for the widely used CUSUM-procedures for 

on-line detection of changes. Barnard (1959) extended the analysis further by modelling the 

underlying observations using a parametric model and basing an analysis on the estimated 

parameters. For more on on-line detection, see Basseville and Nikiforov (1993) or an anno­

tated bibliography by Shaban (1980), Zacks (1983), and a recent paper of Lai (2001, Section 

3) who gives a comprehensive survey of sequential change-point detection. The rest of this 

chapter is mainly focused on retrospective change-point detection, unless otherwise stated.

The retrospective change-point problem was formally introduced by Page (1955) who 

proposed the CUSUM procedure to test for a change in a parameter occurring at an unknown 

change-point. The problem was originally formulated to improve Shewhart’s (1931) 3-sigma 

control chart procedures in quality control. Page’s works stimulated several broad approaches 

to retrospective change-point problems.

In general, the model often considered in change-point problems is of the form

Yi = f( i/n )  +  £i\ i =  l , . . .  ,n  (2.1)

where 6i is usually assumed to be independent and identically distributed (i.i.d) random 

variables with zero means and finite variances. For convenience and without loss of generality, 

the total time of observations has been scaled to the interval [0,1]. It is of interest to 

investigate whether /  suffers from any abrupt jumps or sudden changes in slope (or gradual
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changes in the mean level), at one or more of the points i /n  where i =  1, . . .  , n. For the 

parametric approaches, a specific form of /  is assumed, as illustrated in diagrams (1) and (2) 

of Figure 1.1. Diagram (1) can also be viewed as one where the data are independent with no 

additional covariate information; while diagram (2) shows that the response y varies linearly 

across covariate x. The nonparametric regression approach on the other hand, allows /  to 

vary smoothly, as in diagram (3) of Figure 1.1.

There are two main aspects in change-point problems: inference, i.e. to test if there is a 

change-point; and estimation, to find the location of the change-point and/or its jump size, 

assuming that a jump is present. On the other hand, sometimes the main objective might 

be to estimate the underlying piecewise regression functions that are sub-divided by the 

change-points. This might involve an initial step of estimating the change-point locations.

A pioneering work in the Bayesian parametric approach to change-point detection is 

that proposed by Chernoff and Zacks (1964). They applied it to the problem of a one­

sided likelihood ratio test for changes at unknown times in the level mean of a sequence 

of independent Normal random variables, using a quadratic loss function to test if there 

is a jump. An arbitrary prior is used here for the possible location of the change-points. 

Kander and Zacks (1966) generalised this one-sided test to exponential families. Gardner 

(1969) studied the testing problem for normal random variables when Hi is two-sided. Smith

(1975) also used Bayesian inference on the location of a change-point for data that follow a 

normal or binomial distribution.

Jandhyala and MacNeill (1989, 1991) also approached the change-point problem from 

a Bayesian framework and derived Cramer-von Mises type statistics expressed in terms of 

the sequence of partial sums of weighted regression residuals. The same authors, Jandhyala 

and MacNeill (1999), also proposed a one-sided test, using iterated partial sum sequences of 

regression residuals to detect change-points of segmented polynomials which are continuous 

at the change-points. The simplest case is the piecewise simple linear model as shown in 

diagram (4) of Figure 1.1. For a comprehensive survey of the Bayesian approach, see Zacks 

(1983) and Thomas (2001, Part I).

A key feature to highlight regarding the Bayesian approach to change-point analysis is 

that the unknown change-point location is considered as a random quantity and a probability
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distribution is attributed to it. A prior probability is required for the unknown parameters in 

the Bayesian analysis. The improper or vague prior, such as the uniform prior, is commonly 

used. This implies that each position of the data has an equal probability of being the change- 

point location. On the contrary, the maximum likelihood method, which is a frequentist 

approach, considers the change-point location as an unknown but fixed quantity.

As an alternative to Bayesian methods, Hinkley (1970) proposed another important para­

metric approach, based on the maximum likelihood test to detect abrupt mean shifts as in 

diagram (1) of Figure 1.1. He based his inferences on the asymptotic sampling distribution 

of the maximum likelihood estimator of the change-point. The asymptotic distribution of 

the likelihood ratio statistic for testing the hypothesis about the change-point was derived 

and a large sample approximation for the p-value of the test was suggested.

Other work using maximum likelihood approaches includes that of Worsley (1983, 1986) 

which focused on detecting a change in the mean for a sequence of independent exponen­

tial family random variables. Siegmund (1986) developed a generalized likelihood ratio test 

(LRT) to avoid the case where the likelihood ratio statistic does not have a limiting dis­

tribution. Employing a method devised to solve boundary crossing problems in sequential 

analysis, Siegmund (1986) also obtained an approximation for the p-value of the test, which 

is reasonably accurate for small sample sizes. James et al. (1987) extended the results of 

Siegmund (1986) to the case where the variance is unknown and made comparisons of the 

performance of LRT with other tests. Kim and Siegmund (1989) also used likelihood ratio 

tests for discontinuity testing in simple linear regression models. Their alternative hypoth­

esis can be a change simply in the intercept or a change in both the intercept and slope as 

in diagram (2) of Figure 1.1.

For more detailed discussions on change-point detection in parametric models for inde­

pendent data, see Shaban (1980), Krishnaiah and Miao (1988), Basseville and Nikiforov

(1993) and Chen and Gupta (2000).

One of the most dynamically developing areas of retrospective change-point detection for 

random sequences is the nonparametric approach. There are two very different aspects of this 

nonparametric approach. One is known as nonparametric because the method of detection 

is based on nonparametric methods using rank or score functions. This is useful when the
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underlying distribution of the data is not assumed to be known. The other is referred to 

as nonparametric because no parametric form is assumed for the underlying trend. It is 

allowed to be smooth and modelled using nonparametric regression. This latter aspect will 

be discussed in greater detail in Section 2.2, but let us first discuss the former, which we will 

refer to as the nonparametric method.

For the nonparametric method, the goal is to address the question of whether the data are 

generated by one or by more probabilistic mechanisms. For instance, let Yi be independent 

and identically distributed random variables such that

Yi . . . , Y t has cdf F  

FT+ i . . . , F n has cdf G (2.2)

where r  € {2, 3 , . . . ,  n — 1} is the possible unknown change-point and F  and G are unknown 

probability distributions. In the case where there is no change, we would expect F  =  G.

The first retrospective nonparametric change-point detection methods was proposed by 

Bhattacharya and Johnson (1968). They considered the model as expressed in Equation (2.2). 

Their test statistic is based on the ranks of observations, Rk, k =  1 ,. . .  , n, where Rk —

YLi<n^Vi — Vk) and n 1S the number of observations. The difference between their test

statistic and that of Chernoff and Zacks (1964) lies in the values of the data: yi are replaced 

by ranks Ri in the nonparametric case.

Darkhovshky (1976) and Schechtman (1982) developed their test statistic based on the 

Mann Whitney statistic. Other work has also considered using generalised variants of the 

Kolmogorov-Smirnov test used for checking the equality of distributions (see e.g. Carlstein, 

1988, Diimbgen, 1991, Darkhovsky, 1994). An alternative nonparametric test statistic is 

that based on the [/-statistic type processes (Csorgo and Horvath, 1988).

For a survey of nonparametric methods in the setting of just one change-point, especially 

in testing, refer to Wolfe and Schechtman (1984). Csorgo and Horvath (1988) also provided 

an extensive bibliography of nonparametric methods for discontinuity testing as well as the 

problem of sequential detection of change in a random process. Refer also to Brodsky and 

Darkhovsky (1993, 2000).
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Most of the earlier works considered only the detection of a single change-point. There 

has been very little research dedicated to detecting multiple change-points until recent years. 

This is a much more complex problem, especially when there is no prior knowledge of the 

number of changes.

Pettitt (1980) recommended an ad hoc sequential procedure involving a cumulative sum 

(CUSUM) method. Yao (1988) estimated the number of jumps in a sequence of independent 

normal sequence using the Schwarz’ criterion, whilst Lomard (1987) proposed rank statistics 

for detecting single and multiple abrupt and smooth change-points. Schechtman and Wolfe

(1985) proposed a sequential algorithm for estimating the number and the location of change- 

points of data from an unknown distribution, extending earlier work by Schechtman (1982). 

Hawkins (2001) developed an algorithm to obtain maximum likelihood estimates of the 

change-points of data from an exponential family distribution, by executing a multiway split 

instead of obtaining them sequentially.

For detection of multiple change-points from a Bayesian perspective, refer to a recent pa­

per by Rotondi (2002) who used the reversible jump Markov chain Monte Carlo (RJMCMC) 

first proposed by Green (1995), and the references therein. The reversible jump MCMC 

permits the sampler to move between parameter subspaces of another dimensionality, unlike 

the standard MCMC which is constrained to situations of the same dimensionality. However, 

this technique does bring with it a substantial increase in computational load.

Most of the earlier literature has dealt only with change-point detection where the data 

are assumed to be independent. However, this assumption may not hold in many real- 

life applications. For instance, assuming independence for repeated measurements of the 

heart rate of a patient upon giving a treatment (which would naturally show some degree of 

dependency) does seem too optimistic. Hence, it would be very beneficial if a test can cope 

with both independent and correlated data. The call for improved statistical techniques to 

deal with such real-life applications has prompted many statisticians to venture into this 

area.

The importance of taking correlation into account was emphasized by several researchers, 

including Tang and MacNeill (1993) and Kim (1996), who showed that failure to account for 

correlation will affect the performance of various change-point test statistics in terms of the
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size and power of the test. Hence it is essential to correct the test for correlation to ensure 

an accurate conclusion from the test.

Tang and MacNeill (1993) suggested a large sample correction factor for various test 

statistics defined in terms of partial sums of residuals that were considered in the independent 

case. This includes the test statistics proposed by Chernoff and Zacks (1964), James et al. 

(1987), Kim and Siegmund (1989), Jandhyala and MacNeill (1989, 1991) and many others.

Kim (1996) extended the generalised likelihood ratio test (LRT) developed by Siegmund

(1986), which was mentioned earlier, to the situation where the data are correlated. He 

also demonstrated that if correlation of an AR(1) model is not taken into account, the 

true p-values will be underestimated or overestimated for positive or negative correlations 

respectively.

If the data follow a more specific time series model, analysis of abrupt and gradual changes 

are often referred to as intervention analysis. The central method of intervention analysis is 

to include more terms in the initial time series model and test for significant parameters (see 

Box et al. (1995) for a more in-depth discussion of this topic). However, the main drawback 

of intervention analysis might be that it is model specific, requiring the data to follow a 

particular time series structure. Hence it cannot be easily modified to a model free setting.

One of the pioneering contributions to the detection of change-points of dependent ran­

dom sequences is by Box and Tiao (1965). They used a Student’s t-test to detect a change 

in the mean value of observations, using a non-stationary moving average model, assuming 

a known change-point.

For sequential change-point analysis, Bagshaw and Johnson (1975) examined the effect 

of ARMA noise on the run length distribution for CUSUM. Yashchin (1993) proposed an 

alternative approach to assess the run length of a CUSUM control scheme in the presence of 

serial correlation. His main idea involves replacing the correlated series by an i.i.d. sequence 

which has similar run length characteristics. Recently, a new technique, Singular Spectrum 

Analysis (SSA), has also been proposed to detect change-point in time series (Moskvina, 

2001).

Moving our focus back to retrospective detection, Kulperger (1985) considered polyno­

mial regression and extended the results of MacNeill (1978) to autoregressive error processes
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of order p. Picard (1985) used a maximum likelihood approach to detect a single change- 

point in the mean of a Gaussian autoregressive process, the order of which is known. This 

was also extended to detect a change in the mean and autoregressive parameters simultane­

ously. Bai (1994) extended these results by proposing a least squares estimate of the location 

of a single change-point in the mean of a linear process. This was further applied to multiple 

change-points by Bai and Perron (1996) for weakly dependent processes. Subsequently, Bai

(1997) looked at least squares estimation of a change-point in multiple regression models, 

allowing for some or all the coefficients to have an abrupt change at an unknown time. Bai 

(1999) proposed a likelihood-ratio-type test for detecting multiple change-points in polyno­

mial trend. A much related work includes that of Kao and Ross (1995) who used a modified 

CUSUM test to examine if there is a change-point in a linear regression model with serially 

correlated errors. Their test includes an initial estimate of the autoregressive coefficient for 

the errors, which is then used to transform the data.

Other researchers who have examined change-point detection in time series include Tsay 

(1986, 1990) who proposed some procedures for detecting outliers, level shifts, and variance 

changes in univariate time series.

Prom a Bayesian perspective, Henderson (1986) considered a Bayesian test approach 

for data that form a series of correlated normal variables, assuming both the error and 

correlation are known. In the same vein, Nagaraj (1990) obtained the likelihood ratio test 

statistic for a change in the mean of correlated data, under several different assumptions of 

known and unknown mean and variance. Thomas (2001) also suggested a Bayesian approach 

to retrospective detection of change-points of an AR(1) model. In Thomas (2001, Paper II), 

he proposed using approximate inference in the case where autocorrelation is unknown. This 

is computationally faster than the Markov Chain Monte Carlo techniques that he proposed 

in Thomas (2001, Paper III) which allows for exact inference to be carried out. The approach 

by Thomas (2001, Paper II) will be revisited in Chapter 5.

A test for a constant mean function when the data are dependent was also devised by Kim 

and Hart (1998). Under the null hypothesis, the underlying mean is a constant, while the 

alternative can be at least one level shift or a smoothly varying trend. Their test statistics are 

obtained from a Fourier series smoother that minimises an estimate of the mean integrated
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squared error.

Epps (1988) focused on dependent data with abrupt changes at some known times and 

proposed a chi-squared statistic for testing stationarity of a Gaussian process. Lavielle and 

Moulines (2000) extended the approach by Yao (1988) and studied a penalised least-square 

estimate of an unknown number of multiple changes in a larger class of dependent processes, 

including strongly mixing and long-range dependent processes (see also Lavielle, 1999).

Using a nonparametric method, with Kolmogorov-Smirnov type tests for dependent data, 

Giraitis et al. (1996) tackled the problem in the setting where the distribution is unknown. 

For a detailed survey of tests developed to cope with dependent data till 1997, see Antoch 

et al. (1997) and the references therein.

In recent years, there has also been a growing interest in using an alternative fuzzy 

statistical technique for the estimation of multiple abrupt and gradual change-points of 

nonlinear time series; see Wu and Chen (1999) and Kumar and Wu (2001). The work by 

Kumar and Wu (2001) involves first detecting the location of the change-points using fuzzy 

logic, followed by fitting a linear regression model with time between the estimated change- 

points. They then used a partial F statistic to test if the slopes or the levels of the two 

consecutive lines are the same.

For work on change-point detections of variance in time series data, see Wiche et al.

(1976), Davis (1979), Inclan and Tiao (1994) and Lee and Park (2001).

2.2 Nonparametric Regression Approach

This section is mainly focused on using nonparametric regression to estimate a smooth 

underlying trend which might contain discontinuities at certain locations, as illustrated in 

diagram (3) of Figure 1.1.

As mentioned in the earlier section, a parametric approach to the regression change-point 

model assumes simple linear or polynomial regression before and after a possible change- 

point, with the possible occurrence of a jump in the function or its first derivative. In 

practice, it is often difficult to find a suitable parametric method to model the underlying 

trend and to estimate the location and the sizes of the jumps in the regression function.
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On the other hand, there has been considerable development in the use of nonparamet­

ric regression methods for change-point analysis since the 1990s. This is mainly because it 

is an attractive alternative when no appropriate parametric model is available. Nonpara­

metric regression can produce a smooth fit of a regression function and its characteristics 

from noisy data, without any knowledge of the initial distribution of the data. Requiring 

weaker assumptions simply of general smoothness and differentiability as compared to para­

metric models, nonparametric regression enables a large class of regression functions to be 

considered.

In nonparametric regression analysis, it is conventionally assumed that the underlying 

smooth trend is continuous. However it is quite common, in a real-life setting, that the 

regression function may have discontinuities due to the occurrence of some external forces. 

From recent research (see e.g. Muller and Stadmiiller, 1999), it has been highlighted that 

ignorance of the possible existence of discontinuities in a regression function may result 

in inflated bias in the regression estimate, as well as possible loss of valuable information. 

This points us to an inference problem, with a key question to tackle: is the smooth trend 

continuous or discontinuous?

However, besides the issue of inference, there is another scope of change-point analysis, 

which is the estimation problem of the change-point locations, and/or the underlying regres­

sion function (away from the change-points). If the focus is on the latter, the technique to 

estimate the discontinuous smooth regression function could be direct or indirect. The direct 

technique estimates the trend adapting to possible breaks, while the indirect one first esti­

mates the location of the change-points before estimating the trend functions of each segment 

sub-divided by the change-points. The estimation problem has surprisingly received greater 

attention in the change-point literature using nonparametric regression than the inference 

problem, although there are some overlaps of both in certain papers.

One of the most common nonparametric smoothing techniques for change-point analysis 

is kernel estimates. This comprises of work by Muller (1992), Hall and Titterington (1992), 

Wu and Chu (1993), Chu (1994), Speckman (1994) and Eubank and Speckman (1994), 

among many others. Several authors who have used local polynomial methods are Mc­

Donald and Owen (1986), Muller (1993), Loader (1996), Qiu and Yandell (1998), Spokoiny
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(1998), Gregoire and Hamrouni (2002a) and Bowman et al. (2003). Speckman (1995) and 

Cline et al. (1995) proposed fitting curves with possible discontinuities in the mean function 

or its derivatives using semiparametric change-point methods. Both the kernel and local 

polynomial approaches will be discussed in greater detail in the next section.

Besides kernel and local polynomial techniques, other forms of nonparametric smoothing 

which have been used for change-point estimation or discontinuous trend include wavelets, 

splines and M-smoothers.

Using a wavelet-based method, Wang (1995) tests for jumps and sharp cusps in the case 

of a continuously observed signal, with Gaussian white noise. The change-point estimator 

converges at rate n - 1(logn)1_hS where n is the number of sample points and 8 > 0. The con­

vergence rate can be refined to n - 1(logn)1̂ 2 for Normal errors. However, it was commented 

by Gijbels et al. (1999) that wavelets are either rough, fractal-like graphs or smooth graphs 

with numerous turning points and thus to obtain the rate of n“1(logn)1/2 is in practice, very 

difficult. In other words, it is difficult to identify the specific location where the appropri­

ate maximum absolute value of the empirical wavelet coefficient occurs. Other work using 

wavelets include Raimondo (1998), Oudshoorn (1998) and Antoniadis and Gijbels (2002).

Another established smoothing technique to retrieve discontinuous but smooth trends 

is spline-based methods. Some of the concerns encountered here are the selection of the 

number and position of knots within each spline, and possibly the number and location of 

the discontinuities. In particular, the principle behind Koo (1997) is to add additional knots 

near the discontinuities to cope better with jumps or cusps present in the regression function.

In the same vein, approaching the problem from a Bayesian framework, Denison et al.

(1998) assumed that the underlying smooth trend can be estimated by several low order 

piecewise polynomials. The number and locations of the knots which link the polynomials 

are unknown parameters to be inferred. Their proposed algorithm was shown to approximate 

functions that had discontinuities or were rapidly varying. For related work using smoothing 

via spline-based techniques, see also Lee (2002).

Of late, an edge preserving technique based on an M-smoother, which directly estimates 

the regression function in an automatic fashion without first obtaining the discontinuities, 

has been employed by Chu et al. (1998) in the field of image processing. Other related work
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using this technique includes that of Kauermann (2000) and Burt (2000). The latter extends 

the work by Chu et al. (1998) by proposing an automatic bandwidth selection criteria for 

the M-smoother.

For more details on the other approaches, the reader is referred to the references men­

tioned above and those cited within. The next section will only concentrate on the use of 

kernel and local polynomial regressions.

2.2.1 Using kernel and local polynom ial regression

In fact, though there are slight deviations from the basic idea, the strategy of most of the 

kernel and local polynomial change-point techniques are similar. The most popular approach 

is based on finding the differences between the left and right smooths of the data at an 

evaluation point z. The left and right smooths are obtained by smoothing over only data at 

the left and right sides of z respectively. A natural estimator of the possible change-point 

location is where the difference between the two smooths is maximised.

Before we discuss aspects of some of the key work that has been presented in this field, 

it would be helpful first to summarise some of the main differing features and assumptions:

1. smoothing techniques (e.g. use of different types of kernel function and assumptions 

made on them; use of different degrees of local polynomials.)

2. fixed or random design of covariate x

3. assumptions of errors: a typical assumption is independent and homoscedastic errors 

but some have also assumed normality, heteroscedastic errors or dependent errors

In Muller (1992), the following fixed design regression model was considered.

y{ =  g(xi) +  £i Xi e  [0,1], 1 < i < n (2.3)

where yi are noisy measurements of the smooth regression function g, taken at equidistant 

points Xi =  i/n  where i =  1 . . .  , n, and £» are i.i.d. errors with E(ei) =  0, var(ei) =  o2 < oo.
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To illustrate the main idea of the approach by Miiller (1992), we will simply focus on 

the detection of an abrupt change in the mean (though Muller’s approach is applicable to 

changes in the derivatives as well) with just one change-point.

Assume that the regression function is continuous until a particular change-point r  where 

there is a jump of A and that a continuous function /  exists such that

g(x)  = /(x ) +  A/[Ttl](x) 0 < £ < 1, (2.4)

where /#(•) is the indicator function of a set B , and A is the jump size at the possible

change-point r. If there is no discontinuity, we would expect A to be 0. On the other hand,

if there is a discontinuity an estimator of r  can be expressed as

f  =  argmax \g-(x)  -  g+(x)\  (2.5)
X

where the left and right smooths of x  are denoted as g-  and g+ respectively.

The estimated jump size at f  is then

A =  g - ( f )  -  g+( f )  (2.6)

To estimate the final regression function g , the segments divided by the change-point can 

then be estimated separately using the user’s preferred smoothing techniques.

Muller (1992) uses the Gasser Muller (1979) kernel estimator as his smoother,

= J  K± (nr) du
1 S i - 1

where s* =  ti,n+̂ tl,n. K + and K -  are right and left one-sided smooth kernels with the support 

K + = [—1,0] and K -  =  [0,1], K -x =  K x and K+(—1) =  #+(0) =  0. The bandwidth h 

satisfies h —► 0, nh —> oo as n —> oo, lim sup nb2̂ +1 < oo.
n-» oo

Based on asymptotic properties of Muller’s (1992) one-sided kernel estimates, asymptotic
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confidence intervals for both the location and size of the change-point are derived. In ad­

dition, it was shown that the rate of convergence is 0 (n-1+7) for arbitrary 7 > 0, which is 

slower than 0 (n ~ l) in the parametric case for the change-point location r.

The method proposed by Muller (1992) assumes that there is only one discontinuity. Qiu

(1994) generalized it to the situation with an unknown number of discontinuities but placed 

a  restriction such that the jump sizes have a known lower bound.

Wu and Chu (1993) employed a similar approach based on Gasser-Muller kernel esti­

mators to obtain change point locations on an equally spaced fixed-design nonparametric 

regression model as in Equation (2.3) of Muller (1992). Improvements to the performance 

were made by using two different bandwidths for estimating the change-point location and 

the jump size.

Eubank and Speckman (1994) suggested a different approach based on semiparametric 

estimators and weighted least squares estimators to obtain the size and location of the change 

point in the first derivative of an otherwise smooth function. The semiparametric method is 

asymptotically related to Muller’s (1992) kernel estimate.

Several authors have noted the very advantageous property of the absence of edge effects 

when using odd local polynomial smoothing as opposed to kernel smoothing; see e.g. Hastie 

and Loader (1993), Fan and Gijbels (1996) and Loader (1996). The rate of convergence of 

the asymptotic bias between the left and right smooths is equal for the boundaries as well as 

for the interior points. Hence, asymptotically, odd numbered local polynomials will provide 

superior results for change-point inference and estimation. This will be discussed in greater 

detail in Chapter 3, Section 3.2.4.

Using a local polynomial smoothing technique, Loader (1996) proposed an estimate for 

an unknown change-point r  in the regression function g that attains a better convergence 

rate of Op(n~l) in the case where the noise is Gaussian with constant variance. He uses a 

similar regularly spaced model as in Equation (2.3).

The principle to obtain the change-point is similar to Muller (1992) with the exception 

of the smoothing techniques and the different conditions on K  that Loader (1996) imposed, 

which led to different asymptotic performances. The use of the vital condition if(0) > 0  by 

Loader (1996) allows him to produce a superior convergence rate than Muller (1992) who
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used A^O) =  0 for the change-point estimate.

In addition, Loader (1996) demonstrated that the change-point estimate has the same 

asymptotic distribution as the maximum likelihood estimates used in the parametric ap­

proach. His approach is built on ideas from likelihood based inference in a parametric 

model, where the limit distribution of n ( f  — r) is related to the location of a maximum of a 

two-sided random walk (see Hinkley (1970) and Kim and Siegmund (1989)).

Qiu and Yandell (1998) suggested a local polynomial jump detection algorithm to detect 

an unknown number of change-points in regression functions or their derivatives. To detect 

abrupt changes in the mean trend, the technique involves fitting a least square line in a 

neighbourhood of each design point and examining the derivatives of these estimates. Making 

use of the asymptotic property of the local linear estimates, which is approximately normal, 

they obtain a threshold value which can be used to decide whether a particular design point 

can be considered a change-point. The performance of their algorithm is compared to that 

of Wu and Chu (1993) and it is shown in their simulation that their algorithm, which takes 

into account the derivatives in discontinuity detection, performs better when the underlying 

regression function is steep but continuous.

Assuming that a change-point exists, Gregoire and Hamrouni (2002a) used a local linear 

approach to estimate the change-point location by means of the technique of differences 

between the two smooths as in Equation (2.6). The model is similar to Equation (2.3) except 

that they considered a regression model that allows for random design and heteroscedastic 

errors, and no assumption has been made on the noise unlike that in Loader (1996). A 

continuous right-sided kernel function K +(-) supported on [—1, 0] is used and K -(x)  =  

* + ( —x). They also assumed that AT_(0) > 0 and achieved the same rate of convergence 

of 0 (n~ l) as Loader (1996) for h —> 0 and nh —>• oo. They obtained convergence of the 

jump size A, showed that f  is consistent and derived the asymptotic normality of both the 

estimators of the location r  and the jump size at the change-point location, A(f).

Other authors have proposed a two-step procedure to obtain the change-point estimator. 

This includes the work by Muller and Song (1997) and Gijbels et al. (1999).

To improve the asymptotic rate of convergence of the change point location r  obtained 

by Muller (1992) from 0 (n -1+7) to 0 (n -1) in the fixed jump case, Muller and Song (1997)
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propose a two-step procedure for the case of one jump discontinuity. A regularly spaced 

design similar to Muller (1992) in Equation (2.3), which only requires mild conditions on the 

error distribution, is studied here.

The first step involves obtaining a kernel-based pilot estimator of the change-point loca­

tion, f  using the difference based approach as in Equation (2.6). Under suitable conditions, 

it was shown that P(\t — t \ < hn) converges to 1 as n —► oo. The second step then comprises 

maximising the weighted left and right differences of the mean of the data that falls within 

the subintervals obtained using the pilot estimator f  in the first step. The final change-point 

estimator is the location where the weighted difference is maximised. The idea behind this 

approach is that important observations to determine the change-point location are those 

that are close to it and, asymptotically, this can be found by using step functions.

Like Muller and Song (1997), Gijbels et al. (1999) employed a two-step method to estimate 

change-points in a smooth underlying trend, requiring only mild conditions on the error 

distribution. However, they also consider the detection of the locations of multiple change- 

points where the number is known. The first step involves using a kernel estimator and 

obtaining an initial pilot estimator of the change-point at the location where the estimate of 

the first derivative is maximized. This leads to a convergence rate of n - 1(logn)1/2, provided 

that the error distribution has a finite moment generating function. Gijbels et al. (1999) then 

combined this with a local least squares step, fitting curves that are locally constant within 

an interval of the pilot estimator found in the first step, to obtain the final change-point 

estimator f. They showed that this improves the convergence rate to n_1.

Two different bandwidths are used in the estimation procedure above, which undoubtedly 

do affect the performance of the estimator f . Gijbels and Goderniaux (2002a) investigated 

the data-driven choices for both bandwidths using a bootstrap procedure with a suitable 

error criterion and showed by the use of simulations that the method performs well. ,

Instead of the popular difference based approach to detect discontinuities, Jose and Ismail 

(1997) established an alternative algorithm based on the analysis of the residuals from the 

nonparametric kernel regression estimate in a fixed design. They estimated the location and 

size of a jump in the regression function or its first derivative, as well as the discontinuous 

regression function. Jose and Ismail (1999) improved the algorithm to identify the number,
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order, location and size of the multiple discontinuities in the function or its derivatives. It 

can be applied not only to a fixed design, but also to a random design. They compared 

their method with that of Loader (1996) based on sample mean squared error (MSE). Their 

method performs better in estimating the change-point and size of jump in the nonparametric 

regression function.

Whilst the objective of some work is to estimate the locations of the change-points and the 

corresponding jump sizes, there are several works that are more concerned with estimating 

the discontinuous regression function.

Kang et al. (2000) focused on the estimation of the entire regression function, which 

is assumed to be smooth, except for a finite number of points of discontinuities in a fixed 

design model, using an indirect technique. Their main idea is to first find estimators of the 

change-point location r  and the corresponding jump size A which possess good performance. 

The estimated size of the jump is then subtracted from all the observations yi obtained after 

the estimated change-point. The adjusted data can then be considered smooth and be 

estimated by an ordinary kernel regression estimator. Subsequently, the final regression 

function is obtained by adding the jump back to observations after the change-point. Their 

global L2 rates of convergence for the proposed regression function is demonstrated to have 

the same rate of convergence as the ordinary kernel regression estimators of smooth curves.

Several authors have also proposed algorithms to estimate the discontinuous smooth 

functions directly, instead of first obtaining the change-point locations. One such algorithm is 

suggested by McDonald and Owen (1986) who estimated the discontinuous function directly 

by using three smoothed estimates of the regression function, that are obtained via data on 

the right, center and left of a point by least squares. A split linear fit of the data is then 

obtained by using weighted averages of the three estimates, where the weights are decided 

by the goodness-of-fit values of the estimates. In the setting where there is a discontinuity, 

only some of these three estimates will produce good fits.

Hall and Titterington (1992) studied edge-preserving and peak-preserving by smoothing, 

and provided an algorithm that is easier to apply than McDonald and Owen (1986), to 

estimate the discontinuous regression function. Their algorithm is also based on construct­

ing three smooths: right, central and left. Comparisons are then made between the three
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smoothers, which are expected to be very different at a discontinuity point.

Approaching the problem from a similar perspective, a recent paper by Qiu (2003) sug­

gests using local linear estimation to fit a smooth regression curve automatically, preserving 

any jumps present, without first estimating the change-points or assuming any knowledge of 

the number of change-points. The main difference of the algorithm compared to McDonald 

and Owen (1986) and Hall and Titterington (1992) is that the fitted value of the regression 

function at a particular point is obtained by either the left or right piecewise fitted line which 

has a lower weighted residual sum of squares.

Having reviewed past literature, it is quite apparent that considerable attention has 

been given to both testing and estimation of change-point using parametric models. On 

the other hand, discontinuity detection using nonparametric regression has grown speedily 

in popularity in recent years, as it gives greater flexibility to the model. However, in this 

research field, the main focus of most of the papers as discussed earlier, particularly those 

using kernel and local linear polynomial smoothing techniques, have been on estimating 

the locations of one or more change-points, or estimating the discontinuous but otherwise 

smooth function. There appears to be less attention specifically devised for inference, to first 

evaluate whether the underlying regression is smoothly varying or that there exists certain 

points where the smooth curve is discontinuous.

Some authors who have undertaken the challenge of inference in the early 1990s include 

Wu and Chu (1993) and Speckman (1994). Wu and Chu (1993) used the difference-based 

kernel smoothing approach and suggested a global test for the number of change-points 

in an equally spaced fixed design model. The null hypothesis is stated as p =  0 versus 

the alternative p > 0, where p is the number of change-points. They also give asymptotic 

intervals for the sizes of jumps in the regression functions, using the limiting distribution 

of the kernel type estimators. Speckman (1994) suggested a semiparametric change-point 

estimator based on kernel smoothing to detect one or more change-points in the mean or 

one of its derivatives.

In the last four years, Muller and Stadmiiller (1999), Horvath and Kokoszka (2002) and 

Gregoire and Hamrouni (2002b) have also proposed tests based on asymptotic approxima­

tions.
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Instead of the popular difference-based approach of the left and right smoothers, Muller 

and Stadmiiller (1999) proposed a global test where their test statistic is based on the sums 

of the squared differences of the observations, formed over various span sizes in an equally 

spaced fixed design regression model. The test statistic can be expressed as an asymptotic 

simple linear model which involves the parameters of the sum of squared jump sizes and the 

error variance. They showed that both parameters can be estimated consistently. Their test 

evaluates if there is any discontinuity by examining whether the sum of the squared sizes of 

the jump of all change-points is close to 0 or significantly greater than 0.

Horvath and Kokoszka (2002) used local polynomial smoothing techniques, and also 

considered a fixed equally spaced model as in Equation (2.3). No assumption is made on the 

error distribution. Just as in the papers previously described, the difference-based approach 

is used, where local polynomials of degree v are fitted at the left and right of each evaluation 

point, to evaluate if the appropriate coefficients of the two polynomials are significantly 

different. Under the null hypothesis of the global test, the function g or its derivatives gW 

is continuous, versus the alternative, where the left and right smooths are not equal at the 

change-point t ,  i.e. g _ \r )  ±  g+ \r). Horvath and Kokoszka (2002) also showed consistency 

of the change-point estimates under various conditions of the kernel functions.

A similar asymptotic test of the same nature is proposed by Gregoire and Hamrouni 

(2002b) using local linear regression with the difference-based approach, but both the local 

and global tests of whether the size of the jump is significantly greater than 0 are considered 

here.

Although these methods have served current research reasonably well, the dependence 

on asymptotic laws is limiting in real-life settings, particularly in the case of finite samples.

On the contrary, Gijbels and Goderniaux (2002b) proposed a fully data-driven bootstrap 

test which does not depend on asymptotic laws because it estimates the sample distribu­

tion of the test statistic using a bootstrap approach. The test comprises of a data-driven 

choice of bandwidth. When Gijbels and Goderniaux (2002b) compared their test via simu­

lations to those by Muller and Stadmiiller (1999) and Gregoire and Hamrouni (2002b), they 

demonstrated that their bootstrap test performs better.

Similarly, Bowman et al. (2003) also proposed a difference-based test that does not depend
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on asymptotic approximations, but has an additional assumption of the normality of errors. 

A local linear smoothing approach is proposed. By expressing the test statistic as a ratio 

of quadratic forms, an accurate estimate of the error variance is not required, unlike most 

asymptotic tests, such as those of Wu and Chu (1993), Speckman (1994) and Muller and 

Stadmiiller (1999), which require a consistent variance estimator. This might not be possible 

in finite sample sizes. In situations where the error variance might be underestimated, this 

will result in an increase in the type 1 error or the size of the test. However, the method by 

Bowman et al. (2003) is not fully data-driven as in Gijbels and Goderniaux (2002b) since the 

choice of an automatic bandwidth is not addressed here. To address this issue from another 

perspective, Bowman et al. (2003) proposed using a significance trace instead to examine 

how the significance of the test varies as the bandwidth changes. The main advantage of the 

test over that of Gijbels and Goderniaux (2002b) is that it is computationally less intensive.

However, these papers have only considered the independent setting. Extending the 

tests to allow for possible correlation will be of great utility and practical value in real- 

life applications. Several authors have dealt with this issue using parametric models as 

mentioned earlier. However, detecting abrupt changes in the presence of a smoothly varying 

mean is a much more difficult problem which has not been adequately studied. A closely 

related work is that of Wu et al. (2001) who used isotonic regression in the dependent setting. 

This is in fact also a form of nonparametric regression, but instead of a smooth underlying 

trend, it consists of piecewise step functions. A likelihood ratio test is used to examine if the 

trend is constant. Their alternative hypothesis supports the existence of an abrupt jump or 

monotonic trend. This technique will be discussed in greater detail in Chapter 5.

Nonetheless, approaching the problem by allowing for a smooth trend, in the presence 

of correlated errors, will broaden the practicality of discontinuity testing to a substantial 

magnitude. The work proposed in this thesis is a response to the pressing need for further 

methodological developments in this area.
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The four primary research objectives of this dissertation are:

1. To extend the test proposed by Bowman et al. (2003) to a correlated setting in the 

one-dimensional setting, which does not rely on asymptotic results. By expressing the 

test statistic as a ratio of quadratic forms, an accurate estimate of the error variance 

is not necessary.

2. To develop robust ways of estimating correlation in both the equally and unequally- 

spaced one-dimensional setting.

3. To extend the test to a two-dimensional setting, incorporating a robust estimation of 

correlation in both the equally and unequally spaced settings.

4. Finally, to provide user friendly graphical tools to illustrate where the discontinuities 

might occur in both one and two dimensional settings



Chapter 3 

Testing for Discontinuities in 

One-Dimensional Correlated Data: 

Equally Spaced Setting

3.1 Introduction

In many real life situations, we may have an unknown number of discontinuities in an other­

wise smooth regression function. Some examples of such data-sets are the well-known Nile 

data (Cobb, 1978), the Mine accident data (Jarrett, 1979), the Argentina data (Wu et al., 

2001), and the global warming data (Wu et al., 2001, Jones et al., 2001). As the data are col­

lected over time, there often exists a certain degree of correlation which should be accounted 

for when applying a discontinuity test to detect possible change-points.

One of the primary objectives of this work is to develop a test to detect discontinuities in 

the one-dimensional correlated data setting. The methodology is designed to cope with two 

different types of design spaces: equally-spaced and unequally-spaced. This chapter develops 

a test that uses a local linear nonparametric kernel regression approach in the equally-spaced 

setting. In the next chapter, this methodology will be extended to cope with data that are 

irregularly spaced.

The advantages of this approach are that it not only allows for a smoothly varying mean

29
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structure, but it also does not rely on asymptotic approximations. These are favourable 

properties, especially for small to moderate sample sizes, compared to other testing proce­

dures which also use nonparametric regression for discontinuity testing, but are based on 

asymptotic results, such as Wu and Chu (1993), Miiller and Stadmiiller (1999) and Gregoire 

and Hamrouni (2002b). However, the test developed here does require the assumption of 

the normality of errors.

Chapters 3 and 4 follow the same structure. Firstly the test statistic is developed. This 

is then followed by a simulation study designed to investigate how different design factors 

affect the size and power of our test.

The simulation study consists of two main parts. Firstly, the correlation, E, is assumed 

known. Secondly, E is estimated using two different methods, to assess their effects on the 

test’s performance in practice.

3.2 M ethodology

3.2.1 Statistical M odel

A nonparametric regression setting is considered:

y{ = g(xi) + £i (3.1)

where g is the nonparametric regression function, allowing the mean to be smoothly varying, 

and £i are correlated and normally distributed errors £ =  (ei , . . .  ,£n) ~  Nn(0,a 2E) for 

i =  1,. . .  , n where E is the correlation matrix. Here we take our covariates Xi to be equally 

spaced fixed design points, that is Xi = i/n  over 0 to 1, without loss of generality.

There are several assumptions that have to be made about the true underlying regression 

function.

• The regression function g is taken to be a piecewise continuous function, Cr on the 

interval [0,1]. This implies that g is smooth except possibly at several points T\ , . . .  , t«* 

between 0 and 1, where g is discontinuous.
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• The left and right limits g(rj-)  and g(rj+) exist and g(rj-)  /  g(Tj+) at each discon­

tinuity point Tj, but they are identical at other points.

•  g is also assumed to have at least 2 derivatives, at each x  € [0, 1]\{0, Ti,. . .  , 1}.

• The error variance and correlation of the data are assumed to be the same throughout 

the range of x.

There are two possible kinds of tests: a local test and a global test In the case of a 

local test, the change-point location is assumed to be known and hence the test involves 

examining whether there is a discontinuity at that particular location. On the other hand, 

in the case of a global test, no information is given on the change-point locations. The test 

then involves examining more generally whether there may be one or more change-points in 

the underlying smooth regression function.

Bowman et al. (2003) considered a discontinuity test for independent data. We will 

extend their approach to detect possible discontinuities in correlated data.

3.2.2 The test statistic

Our methodology is based on a simple yet ingenious difference-based idea that was introduced 

earlier in Section 2.2.1. At each evaluation point, 2, where we wish to test for a discontinuity, 

we compare two linear smooths, the left smooth and right smooth of the data, which are 

obtained by looking at the data to the left and right of the evaluation point respectively. At 

a particular evaluation point where the change-point occurs, we can expect the difference 

between the two smooths to be large.

The global test will first be introduced, followed by discussion on how this can be sim­

plified to a local test if the change-point location is pre-specified.

3.2.2.1 Global test

Here, no prior knowledge of the possible change-point locations is given. Our interest lies 

in testing whether there are any discontinuities in the smooth regression function, g. The 

hypotheses can be stated as:
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Ho: g is continuous over the equally-spaced interval (0,1).

H\: g is discontinuous at one or more particular points over the equally-spaced interval 

(0 ,1).

The evaluation point, z , is taken as the midpoint of pairs of adjacent design points, i.e. 

Zi = (x i  +  £ j + i ) / 2 ,  where the data are assumed to be ordered by x. The first and last 

5 observations are not considered. Ignoring the possibility of discontinuities, we apply a 

smoother to estimate g(z) at z 6 (0, 1) as

n

g(z{) = = W'Y  (3-2)
j = 1

where Y  =  ( y i , . . .  ,yn) is the vector of observations, Wij is a weight function, and is depen­

dent on the smoothing parameter, h. The weight function can be obtained using various 

smoothing techniques. This will be discussed in greater detail in Section 3.2.4.

From Equation (3.2), we can obtain the left smooth by smoothing over data that lie on 

the left of the evaluation point, 2*. This can be expressed as

n

S l(z< )  =  y^W ij I (xj < zt)Yj
J=1

n

=  T , w^  = W^ Y  (3-3)
j= 1

where I  is the indicator function.

Similarly, the right smooth can be obtained via

n

9r (z,) =  > Zi)Yj
j= 1 

n

= J 2 w^  = w ^ Y  (3-4)
j= i

Note Wi,WLi and are row vectors in Equations (3.2),(3.3) and (3.4) respectively.
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The difference between the left and right smooths

n  =  adzi) -  gn(zi) 

= ( W ^ - W ^ Y (3.5)

gives an estimate of the jump size. We would expect that r* will be small if no discontinuity

of the differences of the left and right smooths, r, can be written as D Y , where D  is an n x n 

matrix and has as its ith row — W rJ.

The idea proposed by Bowman et al. (2003) to deal with independent data was to carry 

out distributional calculations based on the test statistic

evaluation point divided by an estimate of error variance, o2.

An alternative form of the test statistic arises from the fact that individual comparisons 

U =  h(z i )  ~ 9R.{zi) have different variances. Those r< in the middle of the series have smaller 

variances as more information is provided to create the two smooths. These are given by the 

diagonal elements of the variance matrix

is present but will be large if a discontinuity is present. In computational terms, the vector

Y TDTD Y
(3.6)

which is simply the sum of the squared differences of the left and right smooths at each

Var(r) = DVar(Y)DT = a2DDT

If Ui denotes the f'th diagonal element of DDT, then the test statistic is given as

Y TDTA'DY
(3.7)

where A' is the inverse of the diagonal matrix whose diagonal entries are those of DDT.
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The noise variance o2 can be estimated in a variety of ways, all of which can be written 

in quadratic form, Y TBY.  The role of the quadratic form for o2 in the denominator is to 

create a test statistic of the form which scales out the unknown variance of the model, 

and hence is independent of the true value of o2. This will be discussed in greater detail in 

Section 3.2.6.

The results when using test statistics Fi(h) and Fiijh) discussed in Equations (3.6) and

(3.7) respectively will be slightly different. This is because the latter accounts for the fact that 

the variances of the individual differences between the left and right smooths are different 

since they depend on the amount of data to the left and right of the evaluation point, z. 

In contrast, Fi(h) just takes a constant error variance over all the evaluation points. Hence 

/^(/i) will be more powerful if discontinuities occur in the middle of the series.

When the data are correlated, the basic idea follows through. Though the variance 

estimator o2 proposed in the independent case in Equation (3.6) no longer provides a valid 

estimate of a2, it does not fundamentally alter the operation of the test. This is because the 

main role of the denominator is to make the test statistic independent of a2 by constructing 

the test statistic as a ratio and this remains true in the case of correlated data.

The distribution of the test statistic is, however, not independent of E, as it is an integral 

part of the quadratic form calculations. One strategy of the test in the case of correlated 

data is simply to plug in a suitable estimate of E in the distributional calculations. This will 

be discussed later in Section 3.2.3.

Adjustment for correlation in the variances of 7% follows from

Var(r) =  DVar(Y)DT =  o2DY,DT (3.8)

with diagonal vector <r2v. This leads to the test statistic

n *.2
Fs(h) = “  a2Vi t=i

Y TDTM DY
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where A' is the inverse of the diagonal matrix whose diagonal entries are those of DEDT. The

plug-in estimate of E can be used in computing the test statistic. This will, however, produce

simply look at the particular location of interest, say r, where we wish to examine if there 

is a discontinuity.

The hypotheses can be stated as:

Ho: g is continuous at r.

Hi: g has a jump discontinuity at t .

In other words, under the null hypothesis, the difference between the left and right smooths 

at t should be approximately zero. However, if a jump is present, then there will be a 

substantial difference between the two smooths.

Equation (3.9) of the global test can be simplified to

where wl ,wr and d are vectors of length n, d =  (wi — wr) is evaluated at r  and vT = dEcF. 

An alternative test statistic is

very similar results as the test statistic in Equation (3.7) when the correlation matrix, E, is 

incorporated in the distributional calculations for both test statistics.

3.2.2.2 Local test

In the situation where there is prior information about the possible location of a change- 

point, and interest lies in whether the change is an abrupt shift or one that can be attributed 

to random variation, the test is a simplified version of the global test. Instead of obtaining 

the sum of the squared differences between the two smooths at various evaluation points, we

vTo2
Y T( f d Y

b2vr
(3.10)

Y T<FdY
(3-11)

with E taken into account in the distributional calculations for both test statistics.
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3.2.3 Reference distribution of the test statistics

To assess the significance of the observed differences, we use the observed value of F(h), 

which is of the form F(h) =  X*b y ' can ^  any the test statistics mentioned

above. We will reject H0 if the observed value of the test statistic F(h) is bigger than some 

critical value cQ, when H0 is true, i.e.

P(F(h) > ca) = a

Let the constant k be the observed value of the test statistic, then the p-value of the test 

can be written as

p =  P(F(h) > k\H0 is true)
Y TA Y  
Y TB Y  >

= P ( Y t (A -  k B )Y  > 0)

= P {Yt Q Y  > 0) (3.12)

where A and B are positive definite matrices and Q =  A — kB.

If, as will be discussed in Section 3.2.4, the bias term of the difference between the left and

right smooths which are involved in computing Y TA Y  cancels, then F(h) can be written 

as the ratio of two quadratic forms where the random variables are normal with means 

approximately zero. Hence

Y t QY  «  eTQe where e ~  N(0,  <j2E),

where E is the correlation matrix of Y.  We can take the variance, cr2 as 1 because of the

original scaling form of the test statistic.

Based on well established general results about the distribution of quadratic forms (John­

son and Kotz, 1972), the probability p can be evaluated to any desired level of accuracy, in 

numerical form. The cumulants of eTQe are calculated easily as functions of tr(QE)-7. The
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exact expression is given by

Kj =  -  1 V M Q E y ,  (3.13)

where tr(-) denotes the trace operator. From expression (3.13), we can compute the mean 

(ki) and variance (/c2) and any higher order cumulants.

However, for the purpose of hypothesis testing, three significant figures will be sufficient 

for evaluating the p-values. They can be more conveniently obtained by matching the first 

three or four moments of the distribution of eTQe to a more accessible distribution. Bowman 

and Azzalini (1999) suggested that the final quadratic form, Y TQ Y , can be handled through 

an accurate approximation by matching moments to a shifted and scaled x2 distribution of 

the form a \ l  +  c.

The constants a, b and c can be obtained via the expressions below

a =  |«3|/ (4«2), ^ = ( 8«2) / /c3> c = k\ — ab.

The p-value of the observed test statistic can then be estimated as 1 — <7, where q is the 

probability lying below the point —c/a in a x2 distribution with b degrees of freedom.

3.2.4 Choice of sm oothing techniques

The smoothers used throughout the thesis are linear smoothers, which can be written in 

the form gn = S Y , where S  is a suitable n x n smoothing matrix whose rows consist of the 

weights corresponding to each observed covariate value x and Y  is the vector of observed 

responses. A favourable property of such linear smoothers is that the means and variances 

of the estimators are easily calculated.

In addition, most of the important distributional properties of nonparametric regression 

estimators follow from their characterisations as linear functions of the response variables y*. 

For instance, in our test statistic, if the response variables are assumed to be normal, then 

having an estimator D Y  as a linear structure of the response variables allows us to write the 

numerator of our test statistic in quadratic from as Y TDTDY.  We can then make use of



CHAPTER 3. Discontinuities in One-dimensional Equally Spaced Setting 38

distributional results from the theory of quadratic forms of random variables to assess the 

significance of our test as described above.

As our test statistic is dependent on the left and right smooths of the data, which are 

therefore estimating at a boundary, the performance of how well the smoothers g perform 

at the boundary should be considered in the choice of smoothers to be used. Boundary be­

haviour in smoothers has been studied quite extensively in the literature (TYevor and Loader, 

1993), and local polynomial estimators have been found to perform reasonably well in this 

aspect (Wand and Jones, 1995). Furthermore, the generalisation of how these estimators can 

be used to estimate higher dimensional surfaces is quite straightforward. Hence throughout 

this work, the local polynomial estimators, which are a form of linear smoothers since they 

can be expressed as weighted arithmetic means of the observed F ’s are used.

A Taylor expansion for sufficiently smooth functions is given as

g(z) «  g(x) -I- g'(x)(z -  x) +  gf,(x)(z -  x )2^  H------ b g{p)(x)(z -  x)p- \  (3.14)pi

A general local polynomial estimator of degree p of g(z) proceeds by fitting a polynomial 

of degree p via weighted least squares, locally around x. In other words, g(z) is /30, where 

(/?o,. . .  , /3P) is minimised by 0 O, . . .  , j3p) in the expression

^ { Y i  - $ > - • • • “  0p{xi -  z)p}2K h(xi -  z) (3.15)

where /£&(•) is a kernel weight function defined as A/»(*) =  K(*/h)/h,  and #*(•) is a symmet­

ric (around zero) probability density K(-) and h is the bandwidth or smoothing parameter 

which controls the size of the local neighbourhood.

An exact expression for a general polynomial estimator can be obtained, (see Wand and 

Jones, 1995, pg. 119). Two special members of the local polynomial smoothers are the local 

mean estimators (p =  0) and the local linear estimators (p = 1).

The local mean estimators are also known as local constant fits, since they correspond 

to fitting local polynomials of degree zero. This is also known as the Nadaraya-Watson 

estimator (Nadaraya, 1964), defined as
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h(r) =  E L  Kh[Xt -  z)Yt 
E L  Kh(Xi -  z)

A further well-known kernel estimator is the Gasser-Muller estimator (Gasser and Muller, 

1979), defined as

7
9(z ) = Y l Yi /  K h ( u - z ) d u  

»=i , ,S i - 1

with Si =  (Xi+Xi+i)/2, X q =  — oo and Xn+i =  +oo, where the data are sorted in increasing 

order over the X  variable. This is an estimator of a different type and its advantage over 

the Nadaraya-Watson estimator is that it does not require a normalising denominator as its 

weights sum to 1. This property is helpful in the derivation of the asymptotic theory of the 

smoother. It is also suitable to be used with both equally and unequally spaced designs. 

The local linear estimator can be explicitly defined as

T n w Y-
g(z) =  -1, Wi = Kh(Xi -  z)(Sna -  (Xi -  z)Sn i)

2^i=i wi

where Sn>i =  Z i =i K h(Xi -  z)(Xi -  z)K

In particular, the behaviour of the boundary bias of the local linear regression estimator 

(p =  1) is superior to that of the local constant estimator (p =  0), and is comparable to 

other linear estimators (Fan, 1993). In addition, the local linear smooths have a favourable 

design adaptive property in that the bias component does not depend on the pattern of 

the design points, described by the density function /(x ), at least asymptotically. Another 

favourable property of the local linear estimate is that it has no sample bias if the true 

regression function is linear (Ruppert and Wand, 1994), whereas the local mean estimator 

does not possess this finite sample property (see Fan and Gijbels, 1996, pg. 63).

Fan and Gijbels (1996) showed that for p odd, the asymptotic conditional bias and 

variance are of the same order, hp+1, in the interior as well as the boundary, unlike that for 

p even, where the leading term in the asymptotic bias has a more complicated form. Hence
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it is possible to extend the local linear smoothers to higher odd powered local polynomials.

Since correlation does not affect the bias but does have a considerable effect on the 

variance, at a point 2 on the boundary the asymptotic bias of the local polynomial estimator 

of degree p is similar to the independent case, and can be expressed as

TiP+l
E(g(z)) -  g(z) =  +  o(/i”+1) (3.16)

where B(k) is a function of the kernel (Wand and Jones, 1995, Section 5.4, 5.5). From 

Equation (3.16), we can express the biases of the left and right smooths of a local linear 

estimator respectively as

E(gL(zi)) -  g(zi-) = y  £ (% "(* * -)  +  o(h2), (3.17)

and E(gR(zi)) -  g(zr I-) = y  B(k)g"(zi+) +  o(h2), (3.18)

Under the null hypothesis, where there is no change-point, we have g(z{—) =  g(zi+) — 

g(zi). It then follows from Equations (3.17) and (3.18) that

E(n) = E(gL(Zi) -  gR(zi))

= E(gL(zi)) -  E(gR(zi))

= o(h?) (3.19)

The bandwidth, h = hn is taken to be a sequence satisfying h —¥ 0 and nh —¥ oo as n —> oo. 

For a more general p, where p is odd, E(rj) =  o(hp+1).

Taking Dy = Dg +  De, which can be written as Dy = o(h2) +  De , it then follows

that Y TDTD Y  =  eTDTDe + o(h2). Hence, we can observe that the numerator of the test

statistic Y TDTD Y  is approximately equivalent to eTDTDe. This leads to F(h) being the 

ratio of quadratic forms in Normal random variables with means approximately zero. This 

is particularly attractive for inference since the distributional properties of a quadratic form 

for centred, zero mean normal random variables are well established (Johnson and Kotz, 

1972, Chapter 29).
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Other linear smoothers can also be considered for our discontinuity test if they have 

favourable boundary behaviour. For the choice of the kernel function, we have adopted the 

Gmssian probability density as its unboundedness provides finite conditional and uncondi­

tional variance of the estimators (see Simonoff, 1996, pg. 141). However, it has been noted 

tlat the performance of the resulting estimators is not influenced very much by the choice of 

tie kernel function, both theoretically and empirically (see Fan and Gijbels, 1996, pg. 76).

The choice of the smoothing parameter is a more crucial question, which we will discuss 

in the following section.

32.5 Choice of sm oothing parameter

Tie smoothing parameter or bandwidth, h, defines the width of the kernel function and 

heice determines the degree of smoothing applied to the data. Using a normal probability 

deisity as the kernel function, Kh(x — z;h) = <j>{x — z\h), where (j>(x — 2; h) is the normal 

deisity function with mean 0 and standard deviation h, a smoothing parameter value of h 

wil imply smoothing over an effective distance of 4h on the covariate axis.

As we can see from the various forms of the test statistic, F(h) is dependent on the value 

ofthe smoothing parameter h used. In the author’s proposed nonparametric regression test, 

tk  choice of the smoothing parameter makes an implicit assumption on the smoothness of 

thj underlying trend. The remaining smooth variation is attributed to the correlation of the 

er»rs.

There are numerous reasons why it will be very difficult to choose an appropriate smooth­

ing parameter h for our discontinuity testing.

• Firstly, even in the simplest case, with independent data, the degree of smoothing 

is important, as it determines the nonparametric estimate of the trend function to a 

large extent. The most appropriate smoothing parameter depends on the roughness 

of the unknown underlying function g(-) expressed in the derivative <7;/(*)- Without 

this knowledge, it is extremely difficult to decide how much of the irregularity of the 

observed data to attribute to the trend, and how much to the error variance.

• In addition, if correlation is present, the difficulty becomes greater when we have no
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prior knowledge of either the parametric shape of the trend or the correlation function. 

Local trends in the data may be due either to movement in the underlying regression 

function or to correlation in the errors.

• To avoid having to use a smoothing parameter chosen by trial and error, data-driven 

selection methods that account for correlation have been developed to select appro­

priate values (see e.g. Altman (1990), Herrmann et al. (1992) and a recent survey by 

Opsomer et al. (2001)). Other works include that of Hart (1991,1994) who showed that 

when the errors are positively correlated, the conventional cross validation approaches 

will tend to undersmooth even when the correlation is low. Though cross-validation 

provides an automatic choice of smoothing parameter, it is computationally very inten­

sive and often suffers from high variability (Hall and Johnstone, 1992). Moreover, to 

complicate the issue further, these bandwidth selection methods, even after correcting 

for correlations, break down in the presence of discontinuities in the regression function. 

Consequently, the selected bandwidth is underestimated, as these automatic selection 

techniques perceive the mean function to be rougher than it really is. Thus applications 

of such automatic selection techniques are unlikely to be that straightforward.

• Oversmoothing or undersmoothing might lead to inaccurate conclusions on the pres­

ence of change-points.

In summary, it is difficult to make an appropriate global bandwidth choice when both 

correlation and discontinuities may be present. Without prior knowledge of the irregularity 

of the underlying function g"(x) and the correlation of the error, the complications of this 

highly challenging task become even greater.

However, although the choice of the smoothing parameter is highly influential in the 

performance of our test, our main aim here is to use it for inference and not to estimate the 

underlying regression. If the latter is our intent, then techniques to optimise the properties 

of the estimator in their choice of smoothing parameter should be used. However, if the 

smoothing parameter is to be used for the purpose of inference, then its selection may not 

be as critical.
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To avoid the specific selection of the smoothing parameter, Azzalini and Bowman (1993) 

proposed the idea of a significance trace, which is simply a plot of p-values against the 

smoothing parameters. In this approach, they avoided specifying the value of h that is to be 

used for the discontinuity testing. This approach is implemented here, not only because of 

the reasons that are mentioned above, but also due to the fact that the smoothing parameter 

will be random, if an automatic data driven technique is adopted, since it will be a function 

of the responses, Y.  The weight function, W  which are functions of h will also be random 

and hence the smooth g(z) is no longer a simple linear function of Y.

Henceforth, we will use a fixed bandwidth in our methodology. In certain situations, 

some knowledge of the application might be able to be used to suggest an appropriate size 

of smoothing parameter, for example from knowledge of the physical distance over which a 

disturbance in the system generating the data may have an effect.

3.2.6 Choice of variance estim ator

In order to carry out inference, we require not only to estimate the underlying regression 

function g but also the error variance, a 2. This latter estimate is also very important.

In this section, we will discuss some of the variance estimators that can be considered for 

the discontinuity test. In order for the final test statistic to be expressed in the form of a 

ratio of quadratic forms, so that the distributional results described above can be employed, 

variance estimators that can be written in quadratic form Y TB Y  are used. Here, B  denotes 

a n x n matrix, consisting of constants, depending on the design space.

A natural variance estimator that can be considered is the Residual Sum of Squares (RSS) 

based estimator of a 2, which defines the residuals as differences between the responses, yi 

and a fitted value, g(xi). In the nonparametric setting,

n

R S S  =

= yT(I -  S)T(I -  S)y  (3.20)

where S  is the smoothing matrix obtained using bandwidth h. The RSS based estimator is
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then given by

* * =  i F ~  (3-2i)m erro r

where the RSS is adjusted by dferran the error degrees of freedom.

Analogous to the linear parametric model, d f error denotes the difference between the 

sample size n and the degrees of freedom of the smoother. Hastie and Tibshirani (1990, 

pg 52-55) provided various suggestions for error degrees of freedom, and one of them being 

d fe rro r  =  n — tr(2S — S TS ), assuming that the errors are independent. This is motivated by 

the expection of the RSS from a fitted nonparametric model.

E(RSS) = E{yT(I -  S)T(I -  S)y}

=  £{(<, + e)T( I - S ) T( I - S ) ( g  + e)}

=  E{gT(I -  S)T(I -  S)g + eT{I -  S)T(I -  S)e + 2gT(I -  S)T(I -  S)e}

= E{gT(I -  S)T(I -  S)g} +  E(eTIe) -  2E(eTSe) + E(eTS TSe)

= gT(I  -  S)T(I -  S)g + t u t 2 -  2ohr(SE) +  o‘i tr(STS'£.)

= gT(I -  S)T(I -  S)g +  cr2{n -  tr(2SE -  Sr 5E)} (3.22)

Here, in the case where the data are independent, E is simply the identity matrix, and the 

dferror = ti — tr(2S — S TS) is as recommended above. However, we have allowed for E in our 

notation, for later reference. The first term gT(I — S)T(I — S)g is the sum of the squared 

biases over the design points, and if it is negligible, then Equation (3.21) with the defined 

dferror» will give a good estimator of o2. However as all nonparametric models do contain 

bias, gT(I — S)T(I — S)g will be greater than 0, and so the estimator will overestimate o2 

to some extent.

One disadvantage of the RSS estimator is that it is very dependent on the fit to the data.

In particular, it also raises the question of what smoothing parameter is appropriate. In

his simulation study, Bock (1999) suggested that undersmoothing yields a better estimate 

of cr2 in terms of bias. However one still has to decide what degree of undersmoothing is 

suitable. This highlights the advantage of the next class of variance estimators, difference
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based estimators, which are independent of the smoothing parameter. It was highlighted by 

Bock (1999) that the accuracy of these difference based estimators is comparable to the best 

RSS based estimators over both the equally and unequally spaced design settings.

The difference based estimator defines the residuals differently from the RSS approach. 

The residuals here are obtained by differencing the observed responses via various ways to 

remove the trend. Hence it neither requires the regression function to be estimated explicitly, 

nor any type of smoother or smoothing parameter. Different forms of these exist in the 

univariate case, two of which are investigated here, namely that of Rice (1984) (first order 

differences, r =  1), and Gasser et al. (1986) (second order differences, r =  2).

A simple estimator proposed by Rice (1984) for independent data is expressed as

o2 =
2 (n 3 y r  _  y*P

'  1 = 1

(3.23)

where it is assumed that the observations (xi,yi) have been ordered by X{. This estimator 

can also be expressed in matrix form as

<r2 =
Y TA Y

trA
(3.24)

where the matrix A is defined as

f

1 - 1 0  • • •
>

0

- 1  2 - 1 I

> II 0  - 1

2

0

- 1

0 • • • 0 1 i—
1

1

By considering the expected value of (j/j — yi~i)2,

E(Vi ~  Vi- i)2 = £[{yi-0(zi)}Myi-i-0(*i-i)} + {0(zi)-0(zi-i)}]2,
= E ( e 2) -  2E(ei£i-i) +  E ( e i - 2) +  (p fo ) -  g(x{. 1)}2 

= 2cr2 -  2cov(£i, £i_i) +  {g(xi) -  g(xi-i)}2, (3.25)
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we can see that when the data are independent, cov(ei,£i-i) =  0, so E(yi — yi~\)2 =  2cr2 +  

{g{xi) — g(xi-\)}2 and that o2 is inflated due to the fluctuation in the underlying regression 

function g. However this effect will decrease if the amount of data increases such that the 

covariate values are spread more densely over the whole design space.

A second order difference estimator proposed by Gasser et al. (1986), involves creating 

pseudo-residuals, by taking the difference between yi and the line which connects its two 

nearest neighbours.

~ %i+1 ~ Xi Xi — Xi— i  ( ^
£* =  ------- 1— V*-i + Z------ 1— Vi+I-Vi  (3-26)

• ^ t+ l  •£*—1 %i+ 1 %i—1

By expressing £» =  ai2/*_i + btyi+i — yi: Gasser’s error variance estimator is provided as

This estimator is more capable of reducing the effect of the underlying function in inflating 

the estimate.

These estimators also have the properties of having a small bias for small sample sizes 

(Dette et al., 1998, pg. 754-755) and of being very simple computationally. Though they 

do not achieve the optimal rate of some residual based estimators, their performance can be 

comparable (see Hall and Marron, 1990).

Dette et al. (1998) did an extensive simulation study which showed that factors such as 

sample size, magnitude of residual variance, and the order of differencing of the difference 

based estimators do influence the performance of the different estimators. However, the most 

significant factor is still the underlying trend function itself. In the presence of possibly highly 

oscillating functions, or faced with extremely noisy data, the variance estimator of Gasser 

(r =  2) or any order greater than 2 might be preferable.

The variance estimators that have been discussed so far in this section are evaluated 

for errors that are independent, where E =  I. However, in the setting where the data are 

correlated, these estimators will break down if the data are treated as independent. To 

estimate the variance of a set of correlated data, we need to apply a correction factor to the
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variance estimators for independent data, as we can observe from the expected values of the 

estimators in Equation (3.22) and (3.25). Nevertheless, for the purpose of inference, as the 

test statistic is constructed in such a way to scale out the unknown variance of the model, it 

is not necessary to correct for correlation for the variance estimation. A good estimation of 

the variance in correlated data is however required in the construction of the reference band 

of the estimator. The latter will be discussed in Section 3.2.8.

In fact, when the variance estimator can be written in quadratic forms, yTD„Dvy, the 

general form of the expected values are

E(yTD*Dvy) = gTD^Dv9 + a2tr (D lD v E) (3.28)

If gTD^Dvg is negligible, then

2 _  jFD*Dvy
°  -  W )  (3-29)

From Equation (3.29), we can see that it is quite straightforward to adjust the estimators 

used in the independent setting to correct for the presence of correlation. For instance, in 

the RSS based estimator, Dv is simply I  — S. The estimator, however, requires knowledge of 

the often unknown parameter, E. Section 3.2.7 will discuss how this can be estimated. The 

issue of variance estimation in the nonparametric regression setting with time series errors 

is also discussed in Francisco-Fernandez and Villar-Fernandez (2001) and Hall and Keilegom 

(2002).

In our test procedure, we have used the Rice and Gasser variance estimators, because 

overall, they have more favourable properties than the RSS based approach. The perfor­

mance of the test will depend on how well each variance estimator performs under different 

settings of the model, for example how Rice’s method performs under a smoother trend 

compared to Gasser’s.
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3.2.7 Adjusting the test for correlation

Another difficulty that we encounter, in addition to that of the choice of the smoothing 

parameter for the discontinuity test, is the estimation of the underlying correlation of the 

data. Since the correlation is a nuisance parameter, it is not crucial that we model it exactly. 

It seems reasonable in most cases to adopt a simple AR(1) model as it is convenient and 

should capture most of the main structure of the correlation. In our test for data which are 

equally spaced, we therefore use a correlation matrix E that follows an autoregressive AR(1) 

model to model the correlation. This can be expressed as

Ei = Q€{—i +  Z%

where Zi is a purely random process with E(Z{) =  0 and Var(Zi) =  <r2, and a  is the AR(1) 

correlation coefficient. The series will converge if |a | < 1 and E can be expressed as

1 a a 2 •

i-------

ie3

a 1 a

<N1e3

a 2 a 1 • :

i-H1C$
______

i

. . . 1

To estimate this unknown correlation, we need first to remove the trend that might be 

present in the data. It is a common time series procedure to estimate the trend of the series 

by some method and then analyse the residual series. In the situation where the trend is 

smoothly varying, it will be most appropriate to apply nonparametric regression to remove 

the trend and obtain the residuals. We will refer to this technique as the residual approach.

However, this approach faces several challenges. The first one being the choice of the 

smoothing parameter which is denoted here as h.trend, to remove the trend. This is similar 

to the difficulties encountered in the choice of the smoothing parameter for the discontinuity 

test that has been mentioned earlier in Section 3.2.5.

It is difficult to select a suitable h.trend in the presence of an unknown correlation, and
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this difficulty is enhanced even more in the presence of discontinuities. However, using an 

appropriate h.trend to remove the trend function is of considerable importance, as the resid­

uals obtained as a result are used to estimate the correlation present in the data. Using too 

small a smoothing parameter will trace the data too closely, and correlation of the residuals 

will be underestimated, resulting in inflation of the size of discontinuity test. Using too large 

a smoothing parameter will oversmooth the data. For example, a very large bandwidth will 

result in almost fitting a straight line, when a more smoothly varying function might be more 

suitable. As the trend of the data is not totally removed, it will ‘flow’ into the residuals and 

cause the correlation to be overestimated. In addition, if a jump is present, oversmoothing 

will result in a set of consecutive residuals that appear to be correlated, possibly causing an 

overestimation of the correlation. This might result in the test having lower power.

Since the bandwidth parameter for the discontinuity test, denoted as h.test, makes an 

implicit assumption on the smoothness of the underlying trend, it would be natural to 

proceed using the same bandwidth to remove the trend, i.e. h.trend =  h.test. However 

in view of the fact that there might be possible jumps present in the data, an alternative 

proposal would be using a smaller h.trend, e.g. h.trend =  h.test — 2/n. (Subtraction of 2/n 

effectively reduces the number of observations over which smoothing takes place by 8, at 

any particular point.) The reasoning behind this is that in being slightly conservative in our 

choice of h.trend (compared to h.test), we hope to not only remove any underlying trend,

The residual approach
1st stage:

• Remove the trend in the data by fitting a smooth curve using a particular 
smoothing parameter, h.trend.

• Using the residuals, we obtain an estimate of the correlation matrix, E, by 
estimating the sample correlation coefficient, d.

2nd stage:

• Insert the estimate of E into the discontinuity test, with smoothing parameter, 
h.test and obtain the p-value of the test.

F igure 3.1. The residual approach
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but also any considerable jump that might be present. Then the remaining variation in the 

residuals will be attributed to the correlation in the data to obtain a better estimate. It thus 

seems reasonable to use a slightly smaller bandwidth for the first step. The procedure can 

be summarised in Figure 3.1.

Another estimator of correlation that can be considered is based on a moving window

approach. Unlike the residual approach, where we have to decide on the smoothing parameter

for the trend removal, this technique avoids this extremely difficult task by assuming that

the data considered within a moving window size are stationary (with constant mean and no

discontinuity). However, the size of the moving window, 6, has to be selected. The procedure

is outlined in Figure 3.2.
" . _

The moving window approach 
1st stage:

• Use a moving window of size b and find the sample correlation of the first b 
data points, yi, 2/2, . . .  , t/6, in that particular window.

• Shift the moving window of size b by one observation, and find the sample 
correlation of the next b data points, yi, 2/3 , . . .  , 2/6+1- Repeat this till it covers 
the last observation.

• The estimated sample correlation of the whole data-set is obtained by the 
median of the estimated sample correlations in (n — b) windows.

2nd stage:

•  Insert the estimate of E into the discontinuity test, with bandwidth, h.test, 
and obtain the p-value of the test.

F igure 3.2. The moving window approach

The sizes of the moving windows that we have considered are b =  {n/5 ,n /4 , n/3} which 

are moderate in size. The advantage of the moving window procedure is that it might 

be more robust to the presence of jumps in the data, compared to the residual approach. 

However, it is not without drawbacks. Care has to be taken to select the moving window 

size. A small window size might result in underestimation of correlation, causing an inflation 

in size. On the other hand, too large a window might result in overestimation of correlation
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if most of the moving windows calculate the sample correlations in the presence of trends or 

jumps.

In the situation where the location of a possible change-point is given, it is much easier 

to calculate the correlation of the data. The correlation can be estimated by considering the 

two segments partitioned by the potential change-point separately. Alternatively, a left and 

right smooth can be fitted at the potential change-point location. Any difference between 

the two smooths is evaluated and the data are adjusted to remove the discontinuity. A 

smooth curve can be used to remove any underlying trend to obtain the residuals, which are 

then used to estimate the correlation of the data. After obtaining an estimate of £, this is 

then used in the reference distribution calculations to evaluate if the test of discontinuity is 

significant.

3.2.8 Reference band

In the situation where the null hypothesis is rejected, providing sufficient evidence to suggest 

that there is at least one discontinuity in the data, it will be useful to have a graphical tool 

to indicate where the possible discontinuities might be located. To examine that, we can 

observe how different the left and right smooths are at different evaluation points. This 

can be done by plotting the left and right smooths, superimposed with a reference band 

(Bowman et al., 2003).

If it is appropriate to assume that the error variance follows a normal distribution, then 

the nonparametric estimator g(x) will also be normally distributed. Even in cases where 

it might not be appropriate to assume normality for the error variance, mild assumptions 

might still allow a normal approximation to be employed for g(z), by utilising a form of the 

central limit theorem.

Because of the normality of g(z), the random variable,

Q(z) = ( h ( z ) - g K(z))
\ /Var(gL(z) -  gR(z))

has a standard normal distribution under Hq.
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Then for each evaluation point 2 in the interval, and under Ho, it is expected with an 

approximate probability of 95% that

- 2 y/Var(gL{z) -  gR(z)) < gL(z) -  gR(z) < 2y/Var(gL(z) -  gR(z)) (3.30)

where the computation of Var(gL(z)—gR(z)) involves using both Equations (3.8) and (3.29).

Instead of plotting the above functions, we first divide through by 2, and then center the 

plot on the average of the left and right smooths, (gL +  gR) / 2. The reference band is thus 

constructed by taking the average of the left and right smooths plus or minus one estimated 

standard deviation of ^  -  gR. Under H0, it is expected that the left and right smooths 

should lie in the reference band with a probability of 0.95. It is a useful graphical follow- 

up to indicate where the possible change-points might be, since if both the left and right 

smooths leave the shaded region (reference band) then they are separated by more than two 

standard deviations, indicating the possible presence of a discontinuity. On the other hand, 

it can also help to explain why certain apparent differences between the two smooths do not 

lead to a significant result, through the structure of the variance.

However, the reference band is only a visual guide as an approximate graphical tool for 

checking discontinuities due to the pointwise nature of the bands, as it does not take into 

account the multiple testing problem.

As can be observed from Equation (3.30), the construction of the reference bands involves 

the error variance. Hence, a good estimate of the error variance in the presence of correlation 

is very important.

3.2.9 Change-point Significance Trace (C PST)

As the estimated change-point locations often depend on the smoothing parameter that is 

used for the discontinuity testing, it will be useful to see how these change over a range 

of smoothing parameters. A change-point locator plot is proposed to serve this purpose. 

This comprises of an image plot that shows the probable change-point locations, which have 

absolute values of the standardised differences greater than 2.5, i.e. \st.diff\ > 2.5, over 

the range of smoothing parameters. The intensity of the tones of the images are determined
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by the values of the standardised differences. The higher the absolute value, the darker the 

tone is at that particular location and bandwidth.

This plot together with the significance trace, and the plot of the size of the highest stan­

dardised difference between the left and right smooths (which corresponds to the most prob­

able change-point location), is termed as the change-point significance trace , CP ST.  

This is very useful because the significance of the test, the possible change-point locations, 

and the size of abrupt change at the most probable change-point location, over various 

smoothing parameters, can all be visualised.

3.3 Simulation Study

In this section, we report on a simulation study to investigate how the discontinuity test 

performs when it is applied to a set of equally spaced data that are correlated. The global 

test is used for this section, except for Section 3.4.7 where we investigate the size and power 

of the local test.

The size of each test is assessed by simulating 200 sets of data from a model which 

follows a particular dependence structure, and applying the discontinuity test. The power 

simulations are carried out by using the same pattern of simulations, but adding a change- 

point of a particular jump size at the mid-point of the data. The empirical size and power 

are used to assess the performance of the discontinuity test and the effects of a variety of 

factors.

An extensive simulation study is carried out to investigate the effects of varying the 

following features of the data:

• shape of trend function

• size of correlation

• sample size

• ratio of jump to standard deviation

and the following aspects of the testing procedure:
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• smoothing parameter (global bandwidth)

• estimators of error variance

• estimators of correlation

Given the complexities of the different factors that influence the test, the simulations are 

carried out incorporating a range of smoothing parameters. In other words, the simulations 

are repeated at several levels of the smoothing parameter and plots are made of the empirical 

size (a =  0.05) and the power against the smoothing parameter values, h.test.

Firstly, we will consider the scenario where the correlation is known in Section 3.4, and 

then in Section 3.5, where the correlation is unknown. Although in practice we rarely know 

the true correlation of the observed data, the known correlation case is considered here in 

order to assess the behaviour of the discontinuity test when other factors are varied, and 

also later to assess the performance of the estimators of correlation.

In the following sections, 200 simulated sets of an AR(1) model, with a specified trend 

function, are generated over an equally-spaced setting between 0 and 1. The simulations are 

initialised using the same random number seed. In other words, the same 200 different sets of 

noise sequences are used throughout the study. The data conditions and parameters used in 

the test approaches are summarised in Table 3.1. The sample sizes of 50 and 100 are chosen 

to represent low and moderate values often encountered in practice. The following values for 

the data conditions and test approaches as shown in bold are the ones used by default unless 

specified otherwise. A considerable jump of 3 in the presence of noise variance, o 2 of 1 is 

used for most simulations, as we hope to observe the difference in the performance of a large 

range of parameters, in particular from low to highly correlated data. However, the effects 

of other jump sizes are considered in Section 3.4.6. As the value of a 2 is kept constant 

throughout the simulations, this implies that the variance of the noise, a2 is <Jz2/{ 1 — a 2). 

The effect of correlation is thus confounded with the effect of the signal to noise ratio. The 

global test statistic F$(h) from Equation (3.9) is used.
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Data conditions
Design space 
No. of simulations 
Sample size 
Trend function 
Error

Correlation 
Size of Jump

Equally-Spaced
200
n = 50,100
flat, linear, quadratic and sine functions 
e N ( 0, <r2E) where =  ae<_i -f- Z*
with Var(Zi) — a  2 =  1
a = corr = (-0 .8 , —0.6, —0.4, —0.2,0,0.2,0.4,0.6,0.8} 
jump =  1, 2, 3 at midpoint of data

Test Approaches
Smoothing parameter 
Estimator of error variance 
Algorithm to adjust 
for correlation

h.test =  {0.08,0.12,0.16,0.2,0.24,0.28}
Rice, Gasser
- none (for Section 3.4);
- residual approach using 

h.trend =  {0.06,0.08,0.1,0.12}
- moving window approach using b — {n/5,n/4, n/3}

Table 3.1. Simulation settings for one-dimensional equally spaced data. The parameters in 
bold are the ones used by default in the simulations, unless specified otherwise.

3.4 Equally spaced setting: correlation known

In this section, we examine how the test performs under different data conditions, when the 

correlation is assumed known. In each of the subsequent sections, only the parameter of 

interest is varied, leaving the rest of the data, or parameters for test approaches unchanged. 

Sections 3.4.1 - 3.4.6 examine in sequence the effects of trend function, of treating correlated 

data as independent, of correlation, sample size, variance estimator and ratio of jump to 

standard deviation respectively. Lastly, in Section 3.4.7, the local test statistic (provided in 

Equation (3.10)) is compared to the global test.

3.4.1 Effects of shape of trend function

To begin with, we will look at the effect of the shape of trend functions on the size and power 

of the test. This is done to assess how well the test performs when there is an underlying
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trend in the data, which often occurs in time series data. Four different trend functions are 

considered. They are namely the

• Flat function, g(x) =  0, or any constant,

• Linear function, g(x) =  x,

• Quadratic function, g(x) = 4x2, and

• Smoothly varying (or sine) function g(x) = sin(2itx).

As an illustration, the different trend functions are displayed in the top panel of Figure 3.3.

Sets of 100 realisations from an AR(1) process with correlations of 0 and 0.6, and error

Flat Punotlon Unaar Funotlon Quadratlo Function Sin* Function

Figure 3.3. The top panel displays the four trend functions: Flat, Linear, Quadratic and 
Sine (from left to right plots). The middle and bottom panels display data with the various 
trends and with correlations of 0 and 0.6 respectively. A jump of 2 is also added at the 
midpoint of the data.
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variance of 1, are simulated and added to the different trend functions, shown in the middle 

and bottom panels of the same figure respectively. A jump of size 2 at the midpoint of the 

data is also added. Two main observations from the figures can be made.

1. The jump is more obvious in the first three functions (flat, linear and quadratic) than 

in the sine function as the data appear to vary more in the latter case. Hence we would 

expect that the power to detect a jump in the sine function will be lower.

2. A high correlation of 0.6 seems to make the jump less obvious to the eye. The data 

appear to be more variable. The correlated data is also equivalent to a reduced sample 

size with less information. Thus, we would expect that it would be more difficult to 

detect a jump when the data are highly correlated. This difficulty is further enhanced 

when the underlying trend is more irregular.

Here, we will carry out a study of 200 simulations of data with correlation 0.2, having 

four different trend functions. For the power calculations, the data are shifted by a jump size 

of 2 added at the midpoint. (A jump of 2 is considered here to allow the reader to observe 

the difference in performance among the four trend functions.) A wide range of smoothing 

parameters, h.test from 0.08 to 0.28 and Rice’s variance estimator are used. A point to 

highlight is that a smoothing parameter of 0.16 and above is effectively smoothing over quite 

a large range of at least 0.64 of the data. The results are shown in the Table 3.2 and are 

plotted in Figure 3.4.

h.test Size Pow er
Flat Linear Quad Sine Flat Linear Quad Sine

0.08 0.050 0.050 0.050 0.055 0.170 0.170 0.165 0.170
0.12 0.030 0.030 0.025 0.040 0.340 0.340 0.340 0.325
0.16 0.025 0.025 0.030 0.110 0.525 0.525 0.535 0.375
0.20 0.030 0.030 0.035 0.245 0.645 0.645 0.655 0.330
0.24 0.040 0.040 0.050 0.385 0.710 0.710 0.720 0.295
0.28 0.040 0.040 0.065 0.505 0.765 0.765 0.770 0.275

Table 3.2. Simulation results for n =  100, corr =  0.2 and jump  =  2 at midpoint for four 
different trend functions.
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F igure 3.4. Simulation results for n =  100, corr = 0.2, ju m p  = 2 at midpoint for four 
different trend functions. The trend functions are denoted as F: flat; L: linear; Q: quadratic; 
S: sine. Rice variance estimator is used.

The size and power of the test for the first three functions are quite similar, all having 

a size of approximately 0.05, over the whole range of h.test. The power increases as h.test 

increases. However, the size for the sine function is only within limits for h.test of 0.08 

and 0.12, and power increases but levels off at higher h.test. The power is also much lower 

than for the former three trends. The highest power (with appropriate size) is 0.325, using 

h.test = 0.12.

The first three functions have very good size and power as they are very simple functions, 

the linear and quadratic functions being monotonically increasing trends. In the situation 

where a very large bandwidth is used, it is almost equivalent to fitting two straight lines, 

which would be most appropriate if the underlying trend is flat or linear, hence the size 

remains at 0.05. For the quadratic function, the size is about 0.05, at the range of h.test 

considered. It will however start to go out of limits at extremely large band widths.
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In the case of a sine function, it is not only a non-monotonic trend, it has in fact two 

turning points. To trace the underlying trend, a moderate bandwidth has to be used. Using 

too large a bandwidth will result in false alarms, as it forces the left and right smooths to be 

almost linear (oversmoothing), resulting in a larger (overestimated) sum of the differences 

between the two smooths. Thus it tends to give a significant p-value even when the data do 

not have a discontinuity. As expected, the power of the sine function is lower than that of 

the flat function, simply because the standardised differences between the two smooths at 

all evaluation points are affected by the sine trend present and are thus lower.

The shape of the three functions plays an influential role in the effectiveness of the 

discontinuity test. If the underlying trend is a simple function (flat, linear or quadratic), 

power increases as h.test increases while size remains at an appropriate level of 0.05. However 

if the trend involves functions that are oscillating (eg. sine), a moderate h.test value should 

be used to obtain a suitable size. The power is lower and tends to level off at higher 

bandwidths. It is of interest to note that by using the same random seed, the variation in 

the simulations has been reduced.

Since the performances of the test on the flat, linear and quadratic trend functions are 

quite similar, in the following sections we will focus on the effects of the different factors 

only with the flat and sine trend functions over a smaller range of smoothing parameters, 

h.test =  {0.08,0.12,0.16,0.2}.

3.4.2 Effects of treating correlated data as independent

Before we look further into the performance of the test taking into account the known 

correlation, let us first look at how detrimental it would be to the test if we have not taken 

the correlation of the data into account, when the data are in fact correlated. In this case, 

E is set equal to I  in Equations (3.9) and (3.13). Figures 3.5 and 3.6 display the effects 

of treating data as independent when they are correlated for sample sizes of 50 and 100 

respectively, under the flat and sine trends. Correlations ranging from -0.8 to 0.8 are used, 

and a jump of size 3 is added at the midpoint of the data for the power calculations.

We can observe that the sizes for negatively correlated data are more conservative, staying
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F igure  3.5. Treating correlated data as independent for n = 50. The top graphs show the 
size and power for the flat function, while the bottom graphs show the size and power for 
the sine function, over a range of correlations from -0.8 to 0.8. The values on the curves 
denote the correlation of the data.
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Figure 3.6. Treating correlated data as independent for n = 100. The top graphs show 
the size and power for the fiat function, while the bottom graphs show the size and power 
for the sine function, over a range of correlations from -0.8 to 0.8. The values on the curves 
denote the correlation coefficients of the AR(1) errors.
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almost at zero at the different bandwidths for both sample sizes of 50 and 100. On the other 

hand, all the sizes for positively correlated data are over 0.05, and they increase as correlation 

increases. The inflation of sizes for positive correlation is also greater when the sample size 

is larger and when the bandwidth increases.

In other words, for negative correlation, the test will be conservative and hence less 

powerful, having reduced size and power compared to the situation where we take the cor­

relation into account. However in the case of positive correlation, the test will detect more 

false change-points, having higher size and power. (These can be compared to Figures 3.8 

and 3.7 for n =  50 and 100 respectively in the later section, where the correlation is taken 

into account). Note that only the test with correlation 0 gives a good size for all smoothing 

parameters under a flat trend, and for low and moderate bandwidths under a sine trend.

This study thus highlights the importance of taking correlation into account if present, 

in order to ensure good size properties.

3.4.3 Effects of correlation

In this section, we will consider the same setting as the previous section, but the test has 

been correctly adjusted for the presence of correlation of an AR(1) model. A sample size of 

100 is used.

Looking first at the flat function displayed at the top panel of Figure 3.7, the size of the 

test is approximately 0.05 for all bandwidths and correlations, except for a correlation of 

-0.8, which seems to be slightly conservative. There is a general trend that power increases 

as the correlation gets more negative. In fact, power for zero and negative correlations are 

approximately 1, for bandwidths of 0.12 and above. On the other hand, as positive correlation 

increases, power decreases. Hence the corresponding power for negatively correlated data 

is higher than that of their corresponding positively correlated data (eg. Power for corr =  

—0.4 > Power for corr =  0.4). For data with a high positive correlation of 0.8, power is very 

low and increases only slightly when the bandwidth is increased.

One possible way of explaining this phenomenon is related to the better estimation of 

the underlying curve for negatively correlated data. This can be seen from the following
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F igure  3.7. Effects of correlation and smoothing parameter for n — 100. The top graphs 
show the size and power for the flat function, while the bottom graphs show the size and 
power for the sine function, over a range of correlations at different h.test. The values on 
the curves denote the correlation coefficients of the AR(1) errors.
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equation,

var(g(xi)) = var(^2  wiVi) =  ^ 2  +  2 ^ 2  wiwj coviy%̂ Vj) (3 -3 1 )
t i<j

In the independent case, the second term is zero, and a2 =  o 2. However, in the case where 

the correlation is positive, the second term is positive and the first term is increased by 

a factor of 1/(1 — a 2), hence the overall variance is increased. Correspondingly, the more 

positive the correlation is, the more variable the underlying regression will be. This leads 

to a decrease in power with increasing positive correlation. On the other hand, when the 

correlation is negative, the second term is negative, but the first term is increased by a factor 

of 1/(1 — a2). Nonetheless, the overall variance is decreased. This leads to a more precise 

estimate of the underlying regression function and hence the power is higher for negatively 

correlated data, compared to positively correlated ones.

In the situation where the underlying trend is a sine function, the size of the test is 

approximately 0.05 for bandwidths below 0.16, but increases as bandwidth increases. The 

power of the test, however, shows a similar pattern for the effects of correlation and band­

widths as that for a flat function, except that it begins to level off at higher bandwidths. 

However, care has to be taken when using large bandwidths, as these tend to give false 

alarms of change-points, which we have mentioned earlier in Section 3.4.1.

3.4.4 Effects of sample size

In Section 3.4.3, we have seen the effects of correlation for a sample of n  =  100 which are 

illustrated in Figure 3.7. Here, we are interested to compare the similarities or differences 

when a smaller sample size of 50 is used. The simulation for n =  50 follows exactly the same 

setting as Section 3.4.3 for n — 100, and is presented in Figure 3.8.

Comparing these two figures, the size for the flat trend is approximately 0.05 across 

the whole range of bandwidths considered. However, a substantial increase in power for all 

correlations (except 0.8) over different smoothing parameters can be observed as sample size 

increases. It is as expected that as the sample size increases, power increases, since more
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power for the sine function, over a range of correlations and h.test. The values on the curve 
denote the correlation coefficients of the AR(1) errors.
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data are present and the variability of the estimators decreases.

However, the increase in power, due to a larger sample size, decreases as correlation 

increases from -0.8 to 0.8. For a highly negative correlation of -0.8, the increase in power 

is exceptionally high, when n is increased from 50 to 100. On the contrary, only a slight 

increase is observed for correlation of 0.8, whose power is less than 0.1 even for a larger 

sample size of 100.

In the presence of a sine trend, the size of the test for both sample sizes is approximately 

0.05 for bandwidths of 0.16 and below. However, at higher bandwidths, the size of the 

test gets more inflated for a larger sample of 100. This indicates that if an inappropriate 

bandwidth is used for the discontinuity test, there will be more false alarms of change-points 

for a larger sample than for a smaller one. This is probably because for a fixed bandwidth, 

the bias is approximately the same but the variance is smaller for the higher sample size. 

The mis-targetting is therefore more severe for a larger sample, giving a larger size. The 

power of the test, however, shows a similar pattern to that of the flat function, where it 

increases as sample size increases.

As negative correlations are less common in practice, the remaining simulations will 

concentrate on positively correlated data.

3.4.5 Effects of variance estimator

This section focuses on two different variance estimators, proposed by Rice (1984) and Gasser 

et al. (1986), discussed in Section 3.2.6, and investigates how they might affect the discon­

tinuity test. Two sample sizes n =  50 and 100 are considered.

Figure 3.9 displays the effects of the test using Rice and Gasser variance estimators for 

n =  50. In the situation where the underlying trend is flat, the size of test is approximately

0.05. Power is slightly lower for Gasser for all correlations, compared to Rice, except for 

correlation 0.8, where both are similar. The difference in power in using the two variance 

estimators decreases when correlation increases.

In the presence of a sine trend, the size for Gasser is slightly lower than that of Rice, 

but in all cases, the size increases as bandwidth increases. Care has to be taken once again,
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f ig u re  3.9. Effects of variance estimators for n =  50. The top and bottom panels display 
ihe results for the flat and sine trends respectively, solid: Rice, dotted: Gasser. The values 
on the curve denote the correlation coefficients of the AR(1) errors.
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Figure 3.10. Effects of variance estimators for n = 100. The top and bottom panels display 
the results for the flat and sine trends respectively, solid: Rice, dotted: Gasser. The values 
on the curve denote the correlation coefficients of the AR(1) errors.
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in using the appropriate bandwidth. Gasser’s method allows for a larger bandwidth to be 

used, while maintaining a good size. However that does not improve the power compared to 

using Rice’s approach with a slightly lower bandwidth.

Figure 3.10 displays the results for all the various correlation against bandwidth for 

n = 100. Gasser performs slightly worse than Rice for correlations 0 to 0.4, but is quite 

similar to Rice for higher correlations. However, the difference in power in using these two 

variance estimators is slightly lesser compared to that for n =  50.

From the simulation results, the test is more effective in detecting change-points for 

low to moderately correlated data under both the trend functions using the Rice variance 

estimator. This difference is somewhat more prominent for a smaller sample size.

The Rice variance estimator seems to be preferred here as both the flat and sine trends 

that we have considered are relatively smooth. If the regression function is rougher, Gasser’s 

approach might be preferred (Dette et al., 1998).

3.4.6 Effects of ratio of jump to standard deviation

This section will investigate the effects of jump size on power. As the overall effects of this 

factor over all correlations are similar, we will focus on two correlations 0.2 and 0.4, which 

are representative of values commonly met in practice, for both n =  50 and 100. Jump sizes 

of 1,2 and 3 with o\ =  1 are used. Their size graphs have been illustrated previously in 

Figure 3.8 and Figure 3.7. The performance of the test is dependent not just on the jump 

size, but rather on the ratio of the jump size to standard deviation of the data, sometimes 

referred to as the signal-to-noise ratio.

As we can observe from Figure 3.11, a larger jump to noise ratio will give a higher power, 

as it is then easier to detect a jump. This is because a larger ratio increases the value of 

the test statistic, which is based on the standardised differences between the left and right 

smooths.

For both the flat and sine functions for sample sizes of 50 and 100, we can observe that 

at h.test =  0.14, as the signal to noise ratio increases from 2 to 3, the power increases by 

about 0.2 for n =  50, and by 0.4 for n =  100. This illustrates that the jump size to standard
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Figure 3.11. Effects of size of jump and error variance. The top panel display graphs for 
n = 50, with both flat and sine trend functions, while the bottom panel presents results 
for n = 100. Blue, solid: corr = 0.2, Brown, dotted: corr = 0.4. The values on the curve 
indicate the jump size.

deviation ratio does have a great influence on how effective the test is in detecting change- 

points and the effects of this increased ratio are greater for a larger sample size, using the 

same bandwidth.

3.4.7 Local test

In this section, the size and power of the local test is investigated. This is used when it is 

of interest to examine if a particular point in the data is the location where a discontinuity 

has occured.
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Figures 3.12 and 3.13 display the size and power for the local test for a sample size of 

50 and 100 respectively, with the correlations assumed to be given. We can observe similar 

features, in terms of the effects of smoothing parameter, correlation and sample sizes as in 

the global test. However, one distinct difference observed by comparing Figures 3.8 and 3.12 

for n = 50 and Figures 3.7 and 3.13 for n = 100, is that the the power of the local test is 

much higher than that of the global test. For instance, power for corr =  0.4, with n = 100, 

h.test =  0.12, and a sine trend, is approximately 0.4 for the global test, but 0.9 for the local 

test.

The result is as expected since the test statistic for the local test only involves the squared 

standardised differences between the left and right smooths at one location of interest, com­

pared to the global test which involves looking at many evaluation points. Hence the latter 

adds more noise to the test statistic at evaluation points where no discontinuity has occurred, 

resulting in a decrease in the power to detect a discontinuity.

A high correlation of 0.8 which has poor power (less than 0.1) for both sample sizes in 

the global test, shows a substantial improvement in the local test. This implies that for 

highly correlated data, it will be very helpful to have prior knowledge of where possible 

change-points might have occurred. Another interesting feature is that when the sample size 

is increased from 50 to 100, the power for corr = 0.8 does not seem to alter much, compared 

to other cases with lower correlations where the power increases as expected.

3.4.8 Remarks

Of interest, it can be highlighted that, when comparing the simulation studies using a flat 

trend for independent data, it is observed that the proposed asymptotic tests by Muller and 

Stadmiiller (1999) and Wu and Chu (1993) produced inflated sizes, while the discontinuity 

test developed here remains within limits for corr =  0 (refer to Figures 3.8 and 3.7). This 

could possibly be due to the fact that the former two tests are sensitive to the estimated 

error variance, but not the latter.
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3.4.9 Conclusions

In summary, these simulations have shown the following features when correlation is assumed 

known.

1. For a flat trend, size is approximately 0.05 for all bandwidths, and power increases as 

bandwidth increases, and eventually levels off.

2. In the presence of a sine trend, care has to be taken in the bandwidth choice. Although 

power increases as bandwidth increases (and levels off eventually), oversmoothing will 

result in an inflation of the size of test. This inflation of size is greater if the sample 

size is larger.

3. The power is higher if the underlying trend is smoother. Hence the power is always 

higher for a flat or linear function compared to a sine function.

4. In the situation where correlated data are treated as independent, the discontinuity 

test will be more conservative for negative correlations, having lower size and power. 

It will give more false alarms (higher size) for positively correlated data.

5. It is much easier to detect change-points for negatively correlated data than for posi­

tively correlated data. Power increases as correlation increases negatively (except for 

corr =  —0.8), but decreases as correlation increases positively. It is noteworthy that 

as the simulations have been carried out keeping o 2 constant, the presence of corre­

lation will increase the variance of the noise, which in turn affects the signal to noise 

ratio and hence the performance of the test. Thus, the sole effect of correlation on the 

discontinuity test is confounded with the effect of the signal to noise ratio.

6. The power of the test increases as sample size increases from n =  50 to n =  100. 

This difference decreases as correlation increases from -0.8 to 0.8. Hence, for highly 

correlated data, the increase in power is negligible.

7. As the ratio of jump size to standard deviation increases, the power of the test increases.
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8. Gasser’s variance estimator performs worse than Eice for the flat and sine trends, but 

the difference is negligible if the sample size is large.

9. The power of the local test is higher than that of the global test. There is a substantial 

increase in power even for highly correlated data, unlike for the global test.

3.5 Equally-spaced Setting: correlation unknown

In the previous part of the simulation study, we have assumed that the correlation of the 

data is known. However, in practice, this is seldom the case, and the correlation has to be 

estimated.

A number of problems occur when nonparametric regression is attempted in the pres­

ence of correlated errors. Indeed, in the most general setting, where no parametric shape is 

assumed either for the mean or the correlation function, the model is essentially unidentifi­

able, so that it is theoretically impossible to estimate either function separately. However, 

the bandwidth parameter (denoted as h.test here) makes an implicit assumption on the 

smoothness of the underlying trend. Any remaining smooth variation is attributed to the 

correlation.

The rest of the simulation study focuses on the performance of the test when the correla­

tion is estimated using various procedures that were discussed earlier in Section 3.2.7, namely 

the residual approach and the moving window approach. Data simulated with correlations 

of 0.2 and 0.4 are used as they represent low and moderate values that are more commonly 

met in practice. Sample size of 100 and jump sizes of 2 and 3 at the midpoint of the data 

are used, in the presence of flat and sine underlying trends. We have used Rice’s variance 

estimator which performs better than Gasser for these two trend functions. As we have seen 

earlier in our simulations, the size is greatly inflated when a large bandwidth is used in the 

presence of a more irregular trend, like the sine function. Hence to accommodate for this, 

we have narrowed down our range of h.test values to 0.08 to 0.16.

We will first examine how the test performs using the residual approach in Section 3.5.1 

and then the moving window approach in Section 3.5.2.
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3.5.1 The Residual Approach

As mentioned in Section 3.2.7, this approach to estimating E involves the choice of h.trend 

used to remove the trend, and possibly any jump, in the data.

The simulation study was carried out using different h.trend values, to illustrate how 

important this factor is in the performance of the test. Different h.test values are also used. 

It was suggested in Section 3.2.7 to either use the same h.trend value as the one for h.test, 

or a slightly smaller h.trend value for trend removal compared to h.test. The graphs are 

plotted over different h.test for each h.trend used to investigate how this suggestion fares in 

the simulations. The true size and power curves (denoted as “true”, “true.j2” and “true.j3” 

for jumps 0, 2 and 3 respectively) are also plotted.

Figure 3.14 presents the size and power results, with jumps of 2 and 3, when estimating 

a correlation of 0.2. From the top left panel, which displays the size for a flat trend, it can 

be observed that the inflation of size occurs when too low a h.trend value is used to remove 

the trend. In order to obtain appropriate sizes, suitable h.trend values of 0.1 and 0.12 can 

be used over all h.test values or h.trend =  0.08 coupled with lower h.test values of 0.08 or 

0 .1.

The top right panel illustrates the corresponding power for jumps of 2 (dotted lines) 

and 3 (solid lines) using different h.trend values. As expected, power increases as h.test 

increases since the trend function is flat. The power of the test with h.trend =  0.1 or 0.12 

(which control the size) is generally lower than the true power for jum p  =  3. However, its 

performance is much better for a jump of 2. The best h.trend value is 0.1 as it traces the true 

power quite closely for h.test >0.1. Hence, for an appropriate size and good power, using 

h.test =  h.trend +  2/n as suggested in Section 3.2.7, i.e. h.trend =  0.1 with h.test =  0.12, 

works well. Next, we will investigate if this is also true for the sine trend.

The bottom panel of the figure presents the results for the sine trend. The same suitable 

h.trend values of 0.1 and 0.12 as before, will give sizes that are within limits with moderate 

h.test. Similarly, the size is inflated when too low h.trend values are used.

The corresponding power for the sine trend is lower than that of the flat function as 

seen earlier. The power using h.trend =  0.1 traces the true power quite closely and would
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be the recommended value in terms of both size and power considerations. The sizes for 

both are within limits, but using h.trend =  0.1 with h.test =  0.12 gives a better power than

h.test =  h.trend =  0.12 for both jumps.

Figure 3.15 presents the results for corr =  0.4. A slightly larger h.trend than the ones 

for corr =  0.2 is required to give good size values. From the top left plot, a suitable h.trend 

value is 0.12 over all h.test values, or h.trend =  0.1 coupled with h.test =  0.08 to 0.12. In 

fact, the power using those suggested h.trend values and h.test =  h.trend 4- 2/ n is similar to 

that of the true power at that particular h.test value, for both trends. It also performs better 

when the magnitude of the jump is small. For instance, the power curves for corr =  0.4, 

using h.trend =  0.12 when jum p  =  3, generally falls below the true power curve, but is 

comparable to the true power curve for jum p  =  2, for both trend functions.

3.5.2 The Moving Window Approach

In this section, we will investigate how the test performs when the moving window approach 

is applied to estimate correlation. The description of this approach was given in Section 3.2.7. 

Instead of the choice of h.trend in the residual approach in the previous section, this tech­

nique requires the choice of the size of the moving window, b. Figure 3.16 displays the results 

for corr =  0.2 using different moving window sizes 63, 64, 65 (where 63 =  ra/3, 64 =  rc/4, 

65 =  n /5).

In terms of size considerations, the three different moving window sizes used are all 

suitable for both the flat and sine trends. However, in terms of power, 65 gives the best 

power as the curve traces the true power curve very closely for both jump sizes and trends.

It appears to perform slightly better in the flat trend scenario.

As the size of the moving window increases from 65 to 63, the power decreases as a larger 

moving window will be less capable of estimating the correlation efficiently in the presence 

of jumps and/or trends, hence making the test more conservative. From the top right and 

bottom right, we can see that the power using 63 is much lower than the true curve for both 

jumps.

However, care has to be taken if too small a moving window is used as the size will be
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higher. Though the size is within limits for both the flat and sine trends, in this case for 

corr =  0.2, it can be noted that size for 65 >size for 64 > size for 63.

Figure 3.17 displays the results for simulations using data with corr =  0.4. For the flat 

trend, the size is inflated when 65 is used but is within limits for 63 and 64. This indicates 

that a larger moving window is required to get a good estimate of a more highly correlated 

data.

In terms of both size and power considerations, 64 is the best moving window for a flat 

trend. Its performance is slightly poorer for jum p  =  3 as it lies beneath the true power curve 

(denoted as “true.j3”) over all h.test, but traces the true power curve for jump 2 (“true.j2”) 

closely. This indicates that it works better in the presence of smaller jumps. Using 63 gives 

very low power for all cases.

In the presence of a sine trend, both 64 and 65 can be used. However to keep the size 

within limits, a h.test value of less than 0.14 should be used for 65. The power using 65 

performs well as it traces the true power curve very closely.

A possible explanation as to why 65 can be used for the sine trend, but not in the case 

of the flat trend, is that due to the presence of a sine trend, the estimated correlation using 

this size of moving window is increased slightly, hence giving a more favourable size than in 

the flat trend.

3.5.3 Discussion

In the first part of our simulation study in Section 3.4, the correlation is assumed to be 

known and the effects of various factors (such as the effects of trend functions, correlation, 

smoothing parameter, etc) on the discontinuity test are assessed. The summary of these 

effects are provided in Section 3.4.9.

The second part of the study focused on the performance of the test when the correlation 

is unknown and has to be estimated in different settings of different magnitudes of jump. 

We kept the other factors investigated earlier constant, since the effects will be similar. Two 

techniques, namely the residual approach, in Section 3.5.1, and the moving window approach 

in Section 3.5.2, are proposed to tackle this task. Both techniques require the choice of one
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parameter; the bandwidth for trend removal, h.trend, for the residual approach and the size 

of the moving window, 6, for the moving window approach. Both tests perform reasonably 

well when suitable values are used.

For the residual approach, it is not surprising that the test is very sensitive to the h.trend 

values used to remove the trend. When too small a h.trend value is used, the smoother traces 

the data too closely, hence the correlation is underestimated, resulting in an inflation of size. 

More highly correlated data will hence require a larger h.trend value to give well-controlled 

size. On the other hand, if too large a h.trend value is used, the test will be conservative, 

giving lower power, due to overestimation of the correlation of the data where the trend 

and/or the jump might not be efficiently removed. This gets more severe when the jump is 

large. One way to tackle this is to use a smaller h.trend value relative to the h.test value, 

to remove the jump. This suggestion is shown to achieve better performance than using 

h.trend =  h.test in the simulations.

Our simulation results show that the moving window approach is capable of coping with 

both trend functions and jumps considerably well. For data with low correlations, all three 

sizes of the moving window can be used, though it is preferable to use the smallest one, 65 

to give a high power. However, for highly correlated data, a larger moving window 64 might 

be required to give a good estimate. On the other hand, if a trend is present, there might 

be a need to compromise in the increase of the size of the moving window to cope with this.

As the performance of the test is dependent on how well the two approaches estimate the 

underlying correlation in the presence of possible trends and jumps, let us now examine the 

estimated correlations under various settings that have been considered in the simulations.

Figure 3.18 gives a graphical summary of the estimated correlations 0.2 (top panel) and 

0.4 (bottom panel) using boxplots for different h.trend values, in the presence of both trend 

functions and jump sizes. Each plot is divided into three segments, where each segment 

contains boxplots plotted over h.trend values from 0.06 to 0.14. The first segment is with 

jump 0, while the second and third are with jumps 2 and 3 respectively. Similarly, Figure 3.19 

presents a graphical summary for both estimated correlations with different sizes of moving 

windows in various settings.

From both figures, we can see an upward trend in the estimated correlations when h.trend
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and b increase. The medians of the estimated correlations using different h.trend  and b are 

generally slightly lower than the true correlations under the null hypothesis when jum p  = 0. 

The test seems to be able to cope quite well with a slight underestimation of the correlation 

such as with h.trend = 0.1,0.12 and b = n/4, but the size does go outside limits if it is 

greatly underestimated.

Keeping h.trend and b fixed, it can also be observed that the estimated correlation 

increases as the jump sizes increases. The estimated correlations for the sine function are 

only marginally higher than those in the flat trend, for the residual approach in comparison 

to the moving window approach. This implies that the residual approach copes better when 

a trend is present. To examine this closer, Table 3.3 presents the medians of the estimated
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Figure 3.19. Boxplots of estimated correlations of 0.2 and 0.4 using the moving window 
approach for both flat and sine underlying trends. The constants, b and j  in the symbol 
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correlation 0.2 using the two approaches with their suggested parameters, h.trend and b. 

We can observe that the residual approach can handle trend quite well, since the difference 

between the estimated correlations under the flat and sine trends is negligible. The moving 

window, on the other hand, shows a slight difference between that of the flat and sine trend.

However, in the presence of a jump, the residual approach performs worse than the moving 

window approach. Under both trends, its median correlation rises by a higher margin as the 

jcmp size increases compared to the moving window approach. The correlations estimated 

by the residual approach using h.trend = 0.1 are further from the true value of 0.2 and 

hence are much worse than those estimated by the moving window approach, as it is not 

an optimum choice. Nonetheless, this table illustrates that the residual approach operates
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Trend M edian of estim ated  correlation  0.2
R esidual A pproach [h.trend =  0.1) M oving W indow  A pproach (6 =  n/5)
jum p  =  0 jum p  = 2 jump  = 3 jum p — 0 jum p  =  2 jum p  =  3

Flat 0.114 0.177 0.244 0.131 0.191 0.201
Sine 0.127 0.172 0.235 0.168 0.185 0.224

Table 3.3. Median (of 200 simulated samples) of estimated correlation 0.2, using the residual 
approach with h.trend =  0.1 and the moving window approach with b = n /5, for a flat and 
sine trend.

slightly better in the presence of trend compared to the moving window approach. However, 

it is less robust to jumps than the moving window approach.

In summary, both the residual approach and the moving window approach, proposed 

to incorporate the estimation of correlation in the discontinuity test, are sensitive to the 

parameters of h.trend and b used respectively. The former is shown to perform slightly better 

in the presence of trend, while the latter copes better in the presence of jumps. Another 

advantage of the moving window approach over the residual approach, is that it seems more 

stable across the different h.test values, as the power curves tend to be approximately parallel 

to the true power curve over different h.test values used. Hence, it is the preferred choice.

3.6 Comparison with the isotonic regression test

After looking at the various properties of the nonparametric regression test in the previous 

sections, in this section we will examine how it performs compared to an another change- 

point detection test using isotonic regression (Wu et al., 2001), that has also been devised 

for detecting change-point with correlated data. This test was briefly mentioned in Chapter

2. It will be discussed in greater detail in Chapter 5, where it will also be used to apply to 

three real-life data-sets.

A simulation study is carried out to compare the performances of the two tests. Using 

the data settings as described in Table 3.4, we will present three different sets of simulation. 

The first, in Figure 3.20, presents a simulation study with flat and sine trends assuming 

that the parameters required for both tests are known. The second, in Figure 3.21, does not
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D ata  conditions
Design Space 
No. of simulations 
Trend Function 
Error

Correlation

Equally-Spaced
200
flat, sine, —4x2, —2x2 trends 
e ~  N(0, <j2E) where =  <*£*_i +  Zi 
with Var(Zi) = o2 = I 
a  =  corr =  {0,0.4}

Test A pproaches
Smoothing Parameter 
Estimator of Error Variance 
Estimator of Correlation

h.test =  {0.08,0.12,0.16,0.2} (Tl)
Rice (Tl) and Lag window estimators (T2) 
moving window approach (Tl)

Table 3.4. Simulation settings for comparison of two discontinuity tests. T1 and T2 refer 
to the proposed nonparametric regression test and Wu’s test respectively.

make the assumption that the correlation and error variance are known. These unknown 

parameters, correlation (for T l) and error variance (for T2), are estimated according to 

the procedures that the tests’ creators proposed. The last set of simulations, displayed in 

Figure 3.22, shows how the two tests perform under two underlying trends, which are not 

monotonically increasing though the jump is positive. True parameters are assumed here. 

Correlations of 0 and 0.4 are used for all the above, and are displayed at the top and bottom 

panels of the figures respectively.

The graphs are plotted over a range of magnitudes of jump to see how well the two tests 

perform. As our test is very much dependent on the smoothing parameter used for the 

discontinuity test, h.test, a few power curves obtained using different h.test are also plotted.

From the top left plot in Figure 3.20, we can observe that the power of the test for 

jum p  =  0 (i.e. size), under a flat trend, is approximately 0.05 for the two tests considered. 

The power of the isotonic test for different jumps is higher than our test.

In the presence of a sine trend, Wu’s test for power with jum p  =  0 drops to zero, 

but using moderate smoothing parameters of 0.08 and 0.12, the size of our test remains at 

approximately 0.05. Wu’s test only starts to pick up as the magnitude of jump increases
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and performs better than our test when the jump is 1.5 or greater. We can observe a similar 

pattern for corr =  0.4 shown at the bottom panel of the figure for both trends. The decrease 

in power for our test as correlation increases from 0 to 0.4, is greater than that of Wu’s test, 

which remains reasonably high.

In the previous study, we have plugged-in the true variance for the isotonic regression 

test. Next, let us investigate how it performs when this parameter has to be estimated. 

This study is similar to the previous ones, except that all the variances and correlations are 

estimated. We used the moving window approach with b =  n/4  to estimate the correlation.

From Figure 3.21, we can observe that the test results using the isotonic regression 

approach, has size that goes off limits (greater than 0.15) for both corr = 0 and 0.4. This 

is due to the great variability of their estimated variance. In fact, it is underestimated most 

of the time (its median is lower than the true value.). Our test, however, performs very well 

for all h.test used in the flat trend and for moderate h.test values in the sine trend situation, 

for both correlations using 6 =  n/4.

Next, it would be interesting to examine how the isotonic test performs if the underlying 

trend is of a decreasing function. The results using trend functions —Ax2 and — 2x2 for both 

correlations 0 and 0.4 are presented in Figure 3.22. Here, we will plug-in the true variance 

for Wu’s test and the true correlation for our test (similar to the first study).

The isotonic test performs badly for a trend function of —Ax2. The power remains at 0 

over various jumps, and only starts to increase when jum p > 2.5. However our test performs 

very well and has generally higher power than Wu’s test over all h.test and jumps. With 

a trend function of —2a;2, the power for the isotonic test is lower than the nonparametric 

regression test for jum p < 2, but is better at higher jumps. A similar pattern can be seen 

for corr — 0.4.

3.6.1 Comments

In summary, if the variance is correctly estimated and the underlying function is flat, the 

isotonic regression test is generally better in detecting a change-point than the nonparametric 

regression test. However, in the presence of a sine trend, the isotonic test performs poorly
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Figure 3.20. Power curves for the isotonic regression test (red, “Iso”) and nonparametric 
regression test with flat and sine trends (with different h.test values indicated on the curves). 
True correlations of 0 (first row) and 0.4 (2nd row) are used.
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Figure 3.21. Power curves for the isotonic regression test (red, “Iso”) and nonparametric 
regression test with flat and sine trends (with different h.test values indicated on the curves). 
Correlations and error variance are unknown. Correlation of 0 (first row) and 0.4 (2nd row) 
are used.
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Figure 3.22. Power curves for the isotonic regression test (red, “Iso”) and nonparametric 
regression test with quadratic trends, —Ax2 and —2a:2 (with different h.test values indicated 
on the curves). True correlations of 0 (first row) and 0.4 (2nd row) are used.
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for low jumps, since one required assumption of the test is that the underlying trend is 

monotonically increasing. This assumption inevitably breaks down in the case of a sine 

trend. Hence, to be able to detect any discontinuities, it requires any jump present to be 

more than 1. If the trend is decreasing, such as —2x2 or —4a;2, an even larger jump is 

required for the test to be significant.

Nevertheless, Wu’s test is more capable of detecting change-points when the data are 

positively correlated. The decrease in power as the data become more correlated is reasonably 

small, compared to a substantial decrease for our test.

If it is valid to assume that the underlying trend and jump if present, are monotonically 

increasing, Wu’s test is more powerful than our test. This is because it takes advantage 

of the correct assumption of a monotonically increasing trend. However, in many real life 

applications, the trend function is seldom known and if it is of the form of a decreasing 

function, the power of the isotonic regression will be very much affected. Our approach, 

however, relaxes any assumption on the trend function and hence, has the advantage of 

generality by allowing the trend to vary freely. As the test uses a local kernel regression 

approach, it allows the flexibility of increasing the smoothing parameter to give a linear 

trend as well. Furthermore, because of the restriction of the assumption of monotonicity, the 

isotonic approach is incapable of detecting any abrupt drops, unlike our test. An additional 

point that is highlighted in the simulations is: in the practical setting where the parameters 

such as correlation and error variance are unknown, the author’s proposed algorithm to 

estimate these performs considerably better than the isotonic regression test.



Chapter 4 

Testing for Discontinuities in 

One-Dimensional Correlated Data: 

Unequally Spaced Setting

4.1 Introduction

In the previous chapter, we dealt with data that are equally spaced in the one-dimensional 

setting. However, in many real-life settings, observations might not be collected over regular 

intervals. This chapter discusses how our methodology can be extended to detect discon­

tinuities in an unequally spaced setting for one-dimensional data. This is then followed by 

an extensive simulation study to examine the properties of our test under the influence of 

various factors. Structurally, this chapter is similar to Chapter 3.

As the observations are irregularly spaced over time or distance, a traditional tool known 

as the variogram will be used to describe the underlying dependence or correlation struc­

ture. Thus, before we proceed further, let us first consider some elementary concepts and 

definitions in spatial analysis, including the variogram.

93
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4.1.1 Estim ation of the Variogram

Let D be a subset of 5Rd (d-dimensional Euclidean space). Suppose {Z(s),s  £ D} is a 

collection of random variables indexed by s, whose mean p(s) is a constant and hence, the

differences Z(s Ah) — Z(s) have zero mean and the variance of the differences depends only

on h, for any h €

E { Z ( s A h ) ~  Z(s)) = 0 

Var(Z(s +  h) — Z{s)) =  27((s -I- h) — s)

=  2^(h)

where 7 (h) is the semi variogram. A process which satisfies this property is considered to be 

intrinsically stationary. The function 7(h) is known as the semivariogram and 27(h) as the 

variogram which is a function only of the increment h (Cressie, 1991).

Since E(Z(s A h) — Z(s)) =  0,

Var(Z(s A h ) -  Z(s)) = E[Z(s A h ) -  Z (s)]2 -  [E{Z(s A h ) -  Z(s))]2

27(h) =  E[Z(s +  h) -  Z(s)\2

Furthermore, if 27(h) =  27(|h|), i.e. a function only of the length h, then the process is also 

known as isotropic.

Another important property that the variogram must possess is called conditional negative 

definiteness (Cressie, 1991).

m mEE aiaJ27(/t) < 0
t= l j=1

where the a* are real numbers, {a* : i =  1, . . .  , m} such that a* =  0

A natural estimator of the variogram is to take the average squared differences between 

points separated by a distance h. This method of moments estimator is often known as the 

classical variogram estimator (Matheron, 1963).
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2 m  =  J M h ) i  ^ (z(S i )  ~  z ( $ j ) ) 2  (4'1}
' '  N(h)

where N(h) =  { (s* , Sj) : |s* — Sj\ = h, i , j  = l , . . . , n }  are the pairs of observed data points 

separated by a distance of h, |iV(h)| is the number of pairs in N(h) and Z(s{), Z(sj) are the 

data values at spatial locations (or times) s* and Sj respectively. This classical variogram 

estimator in Equation (4.1) is unbiased for 2ry{.) when Z(.) is intrinsically stationary .

However, one concern about using this method of estimation is that it is not robust 

against outliers or contamination of the data (Cressie, 1991). We note that if the process 

Z(t) is assumed to be Gaussian, then (Z(ti) — Z(tj))2 will be distributed as 2~/(h)x2(l), which 

is highly skewed. Hence, it may be useful to transform it to obtain a more Gaussian-like 

distribution.

Cressie and Hawkins (1980) observed that if Y  ~  x 2i taking Y< will give a nearly 

symmetric distribution. This implies that taking sample averages of |Z(si) — Z(s j)12 is much 

more robust against outliers than |Z(si) — Z(sj) |2. Their proposed variogram estimator, 

which is approximately unbiased, is given as

27(A) =
0.457+ 0.494/|Af(A)|

£  \Z(st) — Z(sj)\* (4.2)

where the constant 1/(0.457 +  0.494/|7V(/i)|) is a bias correction factor.

Another delightful property of using Equation (4.2), instead of (4.1), is that it has higher 

efficiency in estimating the variogram. This is because, although the summands in both esti­

mators are not independent, those in Equation (4.2) are less dependent. In other words, if the 

normal random variables, X 2 have zero means and unit variances, and have a correlation 

coefficient p =  Corr(X i,X 2), then Corr(X\2, X 22) =  p2, but Corr( |X i|1/2, \X2\1̂ 2) < p2. 

(Cressie, 1991)

They also proposed another estimator based on the median of the fourth root of the
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squared differences.

27(J0 =  med^\Z(si) -  Z(sj)\* : {s^Sj)  €  7V(/i)|j /B(h)  (4.3)

where the bias correction factor B(h) is 0.4571 asymptotically (Cressie and Hawkins, 1980).

Other possible robust estimators of the variogram are the scale and quantile estimators 

and the slope estimator. The scale and quantile estimators are shown to be equivalent to 

Equation (4.3) asymptotically, while properties such as the bias and variance of the slope 

estimator are not clear (Cressie, 1991). Through simulations, it was demonstrated that the 

robust estimator, 27(h) is more efficient than 27(h) in Equation (4.3) (Taylor, 1987, Cressie 

and Hawkins, 1980).

For the rest of the thesis, the robust variogram estimator is chosen because of its slightly 

more superior properties, especially in the presence of outliers, which might occur in the 

presence of change-points. However, accurate estimation of our correlation structure is not 

of utmost concern to us here as it is just a means to an inferential end. The main objective 

of a variogram analysis is to construct a variogram that gives a reasonable estimate of the 

underlying covariance structure or correlation. Note that when the variance is constant, the 

relationship between the variogram and the covariance or correlation function is

Co v(Z(s),Z(s + h)) = a2 — 7(h),

Con{Z(s),Z(s + h)) =  ~  2 ^

There are other factors which have to be considered in obtaining the construction of the 

empirical variogram. These are:

• lag or bin width of the variogram, e.g. lag =  0.01 means pairs which are of a distance 

0.01 +/-0.005 apart are grouped in one bin;

• lag tolerance, which is the distance tolerance and in the above example, the value is

0.005. It is often taken as lag/2, allowing for unequally spaced data. In the above 

example where lag =  0.01, the lag tolerance is then 0.005;
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•  number of lags to be computed, nlag;

•  maximum distance, maxdist, where the empirical variogram is computed, normally 

taken as half the maximum distance of the data as that is the distance of reliability 

suggested by Journel and Huijbregts (1978). However, if we have highly correlated 

data, this maximum distance of evaluation might have to be increased, in order to 

obtain a better estimate of the correlation structure.

• minimum number of pairs allowed is suggested to be minpairs =  30 (Journel and 

Huijbregts, 1978).

4.1.2 M odelling the Empirical Variogram

Figure 4.1 illustrates an idealised empirical variogram. The semivariogram is plotted against

the distance between two spatial locations. It increases smoothly as a function of the distance.

The basic structural parameters of the variogram are:

• apparent range: representing the distance at which the data are no longer correlated

• nugget variance: representing measurement error or micro-scale variation

• sill: representing the variance of the random field, i.e. the limit of 7(h) at h — range 

or as h —► 00

sill

o
so
©

CDO
o
o

0.60.0 0.2 0.4 0.6 1.0 1.2 1.4

Figure 4.1. An example of a semivariogram showing the sill, range and the nugget variance.
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To ensure that the necessary properties of the variogram are satisfied, the empirical vari- 

ogram can be modelled using theoretical variogram functions. There are various isotropic 

variogram models proposed by Journel and Huijbregts (1978, pg. 161-195) that have the nec­

essary properties. Some of these are the spherical, linear, exponential and gaussian models. 

In our simulation study, we have considered the exponential model, whose range is approxi­

mately one-third the apparent range, where the apparent range is the distance at which the 

data are no longer correlated. The exponential variogram model is expressed as

7 (h) =  Co +  ci[l -  exp(~h/a)] (4.4)

where the nugget variance and the sill are denoted as Co and c\ respectively, and the range 

parameter is a, but the effect of correlation disappears at distance 3a. In the case where 

the nugget, cq is taken as 0, as in the setting here, the total variance is simply the sill, ci,

i.e. ci =  <t2. One of the main advantages of using the exponential model is that it is a 

relatively simple positive correlation function which decreases with increasing distance, and 

should be sufficient to capture most of the dependence present in nearby observations. (For 

the spherical and gaussian models, the range is the apparent range.)

To fit this theoretical variogram model, various procedures such as maximum likelihood 

(ML), restricted maximum likelihood (REML), ordinary least squares, weighted least squares 

(WLE) or generalized least squares (GLE) can be used. The topic of modelling the variogram 

is very interesting in its own right and various authors have compared the performances of 

these procedures (see Cressie, 1991, pg. 99-100 for a set of references). Since this concerns the 

estimation of the correlation of the data, which is a factor that affects our discontinuity test, 

it is indeed an important issue. However it is not the principal focus of the work. We have 

decided to adopt the weighted least squares approach, because on the overall performance 

scale it fares reasonably well in terms of bias, mean-squared error and coverage probability 

of the classical 95% prediction interval (Zimmerman and Zimmerman, 1991). Furthermore, 

it not only does well for the Gaussian model, but its performance is comparable for non- 

Gaussian models too (Cressie, 1991).
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We made use of the various functions provided from the Splus add-on module, Spatial 

Stats, to construct the empirical variogram. The estimation of the parameters, such as 

range, sill and nugget, are undoubtedly influenced by the various factors such as lag, nlag 

and maxdist that we have discussed earlier in Section 4.1.1. In our simulation study, we 

have set the suggested minimum number of pairs, maximum distance, and lag tolerance as 

stated above, and nlag is set to the sample size, n. Lags or bin widths of 0.01 and 0.02 are 

considered in the estimation of the variogram.

4.2 M ethodology

4.2.1 Statistical M odel

Just as in Chapter 3, the basic nonparametric model is considered:

Vi = 9(xi) +  £i (4.5)

where g is the nonparametric regression function, allowing the mean to be smoothly varying, 

and £{ are correlated and normally distributed errors e — (e i , . . .  ,en) ~  Nn{0 ,<r2E) for 

i = 1,. . . , n and E is the correlation matrix. Here we take our covariates, X{ to be unequally 

spaced fixed design points over 0 to 1. The assumptions about the true underlying regression 

function are similar to those for the equally spaced design in Section 3.2.1.

4.2.2 The test statistic

Our methodology for the unequally spaced setting is again based on the differences between 

the left and right smooths as discussed in Section 3.2.2. The global test will first be intro­

duced in Section 4.2.2, followed by the local test in Section 4.4.2.

4.2.2.1 Global test

Here, there is no prior knowledge of the possible change-point locations. Our interest lies 

in testing whether there are any discontinuities in the smooth regression function, g. The
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hypotheses are as listed below.

H0: g is continuous over the interval (0,1).

Hi: g is discontinuous at least one point in the interval (0,1).

Following the same notation as that for the equally spaced setting, in computational 

terms, the vector of the differences of the left and right smooths, r can be written as D Y , 

where D is an n x n matrix, and has its zth row (W — W^ ) .

Two main forms of test statistic can be considered here. The first form is the same as 

the test statistic that have been used in the equally spaced setting, F3(/i) in Equation (3.9) 

from Section 3.2.2, where the error variance is estimated by expressing it in quadratic form, 

• It shall be denoted as the original test statistic, Fo• It is expressed as

Y TDTM DY
Fo(h) = <72

y t d t m d y
y t b y  
1V(bT

where A' is the inverse of the diagonal matrix whose diagonal entries are those of DEDT; E is 

obtained via the variogram approach and a2 is expressed in quadratic form and substituted

a* y T b y  ^  tr(B) ’

As discussed previously in Chapter 3, although a2 does not give a good estimation of 

o’2 when the data are correlated, this does not invalidate the test. By incorporating the 

estimation of a2 via quadratic forms into the test statistic, a ratio of quadratic forms is 

created which makes the test statistic independent of the true value of a2. This test statistic 

also computes the variation of the data by taking into account the amount of data lying on 

the left and right smooths of each evaluation point, by introducing A' in its form. Hence 

it is slightly superior compared to Fi(h) (in Equation 3.6) which is of a similar form but 

does not include the weighted variances, A'. As in the equally spaced setting, we shall focus 

our attention on the weighted version as expressed in Equation (4.6) because of its more 

favourable properties.

In the previous section, we introduced the variogram as a tool to model the dependence 

structure of unequally spaced data. In fact, the modelling of the underlying correlation
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structure is one of the main differences between the equally and unequally spaced designs in 

our test. The former is assumed to follow an AR(1) correlation structure, while the latter is 

modelled via a theoretical exponential variogram function, discussed earlier in Section 4.1.2.

Since, in fitting the variogram, we not only obtain the range of the data, which describes 

the dependence structure, but also acquire an estimate of the error variance through the 

sill of the variogram, we could consider an alternative test approach. This is to regard the 

variance as a “plug-in” estimator of o2 obtained from the sill of the variogram, which we then 

treat as the true value. Hence, the random nature of the denominator is not incorporated 

into the distributional calculations with the test statistic. This new form of test statistic is 

denoted asFjy. It can be expressed explicitly as,

„ , L. Y t Dt A,D Y
FN(h) =  ------ -3------  4.7C7£

where A' is the inverse of the diagonal matrix whose diagonal entries are those of DEDT; d2 

and £  are plug-in estimates, estimated from the sill and range of the variogram respectively.

4.2.2.2 Local test

This is a simplified version of the global test, where there is prior information about the 

possible location of a change-point, r. Here, our focus zooms in onto that particular point of 

interest, r , to investigate if the change is a significant abrupt shift, or if it can be attributed 

to random variation.

The hypotheses can be stated as:

Ho: g is continuous at r  over the interval (0, 1).

Hi : g has a jump discontinuity at r  in the interval (0, 1).

The first form of the test statistic of the global test, Equation (4.6), can be simplified to

Y T<FdY /A
P o.locai\h)  —  Y t B Y  (  )

tr{B) Vt

where d, wi  and wr are vectors of length n, d =  (wl — wr) is evaluated at r , and vT = dEdF.
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The new test statistic which was introduced in Equation (4.7) for the global test can also 

be simplified to give

Y T<fdY
F N . l o c a l ( h )  =  T5-----  (4.9)(7*Vt

where cr2 is estimated from the sill of the variogram.

4.2.3 Reference distribution of test statistic

To assess the significance of the observed differences, we use the observed value of F(h), 

which is of the form F(h) =  This arises when o2 can be expressed in quadratic form,

as in the equally spaced setting. Hq is rejected if the observed value of the test statistic, 

F(h) is bigger than some critical value, cQ when H0 is true, i.e.

P(F(h) > ca) = a

Then the p-value of the test for the first form of test statistic, Fo , is expressed as in Equa­

tion (3.12) for the equally spaced setting.

However for the new test statistic, Fjv, there will be some slight changes in the evaluation

of the p-value. Let k be the observed value of the test statistic, then the p-value of the test

is

p =  P(F(h) > k\H0 is true)

=  p  ( y t ^ A ^ - Y  > fc) (4.10)

=  P  (Y t Dt A'DY > a2k) (4.11)

=  P (Y t Q Y > <r2fc)

where Q is a symmetric matrix, Q =  DTA'D, and A' is the inverse of the diagonal matrix 

whose diagonal entries are those of DEDT.

If the bias term in Y TQ Y  is approximately zero, then F(h) has the distribution of a
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quadratic form where the random variables are normal with means approximately zero, i.e.

Y t QY  «  eTQe where e ~  N (0, o2E),

where E is the correlation matrix of Y.

Once again, we make use of the general results about the distribution of quadratic forms 

(Johnson and Kotz, 1972), to compute the probability p. This is done by matching the 

moments of the final quadratic expression, Y TQY, to a x2 distribution of the form ay2 +  c. 

The cumulants of eTQe are obtained as functions of £r(Q<T2E)J. This is given in the expression 

below.

Kj = 2j~l (j -  l)\tr(Qd2T,y, (4.12)

The p-value for Fn is estimated as 1 -  q, where q is the probability lying below the 

point (—c +  d2k)/a  in a x2 distribution with b degrees of freedom. This is different from 

the procedure for the p-value for Fq, where q is simply the probability lying below the point 

—c/a in a x2 distribution with b degrees of freedom.

Alternatively, from Equation (4.10), we can also express Q as ° T£ iD. The cumulants of 

eTQe are still obtained as functions of tr(Qo2E)J, using the covariance matrix, as above. 

The p-value for Fn can be evaluated as 1 — q, where q is the probability lying below the 

point (—c +  k)/a  in a x2 distribution with b degrees of freedom. This gives the same p-value 

as above.

4.2.4 Choice of variance estimator

As o2 is unknown, as is almost always the case in practice, an estimator of o2 has to be 

incorporated into the test procedure. Two possible estimators, Rice and Gasser, that we 

have seen earlier in the previous chapter can be considered here for Fo.

As the data are irregularly spaced, the variogram has been proposed to model the depen­

dence structure of the data. This not only gives an estimate of the strength of dependence of 

the data from the estimated range, it also provides an estimate of the error variance from the



CHAPTER 4. Discontinuities in One-dimensional Unequally Spaced Setting 104

estimated sill. Hence a plug-in estimate of the sill of the variogram can also be considered 

as the variance estimator. This is used in the new test statistic, F/y.

In the situation where the range of dependence is known, the new test statistic then 

requires only the estimation of the sill. However, before computing the empirical variogram 

model of the data, it is critical that the mean of the data is constant, in order for the 

stationary assumption of the variogram to be valid. Hence it is important that we first 

remove any trend or jump that might be present in the data. To do this, the data are first 

detrended by fitting a nonparametric smooth curve using a smoothing parameter, h.trend. 

The residuals thus obtained are then used for the variogram estimation via Equation (4.2). 

An exponential theoretical variogram model is subsequently fitted to the empirical variogram 

by weighted least squares to obtain the sill. Finally, the discontinuity test is carried out using 

a smoothing parameter, h.test.

However, if both the range and sill are unknown, the estimation of both of these quantities 

is required for F^. On the other hand, Fo only requires a plug-in estimate of the range. The 

estimation of the correlation will be discussed in greater detail in the following section.

4.2.5 Adjusting the test for correlation

Here, we face a similar challenging task as that in the equally spaced setting in estimating 

the correlation of the data. As the data are dependent, we need to estimate the correlation 

structure before carrying out the discontinuity test. Hence, this requires us to carry out a two 

stage procedure, whereby the aim of the first stage is to estimate the correlation structure, 

E of the data. The second stage involves carrying out the discontinuity test, taking E into 

account.

In this section, various ways for incorporating the estimation of the correlation through 

the fitting of an empirical variogram model in the first stage of the discontinuity test will be 

discussed.
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T he Residual-V ariogram  procedure 
1st stage:

• Remove the trend in the data by fitting a smooth curve using a particular 
smoothing parameter, h.trend.

• Using the residuals, we obtain an estimate of the correlation matrix, E, by 
weighted nonlinear least squares fitting of the variogram to get the range and 
sill.

2nd stage:

• Insert the estimate of E into the discontinuity test using either Fo or FJy 
as the test statistic, with bandwidth, h.test, and obtain the p-value of the test.

F igure 4.2. The Residual-Variogram procedure

4.2.5.1 T he Residual-V ariogram  approach

One particular proposed technique here is the residuol-variogram approach, which is very 

similar to the residual approach that we have discussed in the equally spaced setting in 

Section 3.2.7. The only difference is that the dependence structure is estimated using the 

variogram, and hence is computationally more intensive than computing the sample corre­

lation coefficient of an AR(1) model.

After detrending the data with a smoothing parameter h.trend, the residuals are then 

used to obtain the empirical variogram via Equation (4.2). Subsequently, an exponential 

variogram model is then fitted to model the underlying correlation structure of the data. This 

procedure is referred to as the residuol-variogram approach and is summarised in Figure 4.2.

The possible difficulty we might encounter using this first method to estimate correlation 

is that the resulting residuals are highly sensitive to the smoothing parameter, h.trend, used 

to remove the trend. Furthermore, if a considerable jump is present in the data, using 

a smooth curve might not succeed in removing it. This might result in the correlation 

being overestimated, hence a decrease in power. This is similar to the difficulties we have 

discussed in the equally spaced setting in Section 3.2.7, where it is suggested that a slightly 

lower h.trend should be used in the first stage, compared to the second stage.



CHAPTER 4. Discontinuities in One-dimensional Unequally Spaced Setting 106

4.2.5.2 The Double Discontinuity Test approach (DDT)

The second suggested technique evaluates the significance of the hypothesis that there is 

discontinuity by carrying out the discontinuity test twice. Hence we will term it the double 

discontinuity test. It tries to remove any possible jump that might be present by adding an 

extra step in this first stage of correlation estimation. This is done by first carrying out the 

discontinuity test, treating the data as independent. As we have seen in the earlier chapter, 

treating positively correlated data as independent (as in the case here), will increase the 

probability of detecting a jump, even if it is absent.

If the test is significant, the regression function is then adjusted for the jump identified 

at the position that has the highest standardised jump. The same smoothing parameter is 

used for both the first stage discontinuity testing where the data are treated as independent, 

and for the trend removal of the adjusted data, since the selection of these is dependent on 

how smooth we believe the underlying trend is, under the null hypothesis of no jumps. We 

will denote this by hi . The smoothing parameter for the final discontinuity test is denoted 

by h.test. The algorithm is summarised in Figure 4.3.

4.2.5.3 Remarks

The moving variogram approach, an analogy of the moving window approach discussed in 

Section 3.2.7, could also be considered here. The idea is similar, whereby an empirical vari­

ogram is fitted to each “moving” set of b observations, assumed to have constant trend and 

without discontinuity. An alternative but similar approach is to use a segmented variogram 

approach. This involves dividing the data into several segments and obtaining an estimated 

E for each of these segments, which are assumed to be stationary. For both techniques, the 

final estimated E is obtained by taking the median of all the estimated ranges (and sill, if 

using Fn ) in each of the separate segments.

However, the main drawbacks are that they are not only computationally intensive, but 

a relatively large data set will be required to obtain a good estimate of E. Hence, we will 

proceed to the estimation of the dependence structure in an unequally spaced setting via the 

residual-variogram approach and the double discontinuity test in our simulation study. Both
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T he D ouble D iscontinuity  Test procedure, D D T 
1st stage:

• Step 1:

— Treating the data as independent, the discontinuity test is carried out 
with a smoothing parameter, h l i p  < 0.05, then adjust the data at the 
change-point location (with the highest standardised jump). This step 
removes any jump that might be present.

• Step 2:

— Remove the trend in the data by fitting a smooth curve using the same 
smoothing parameter as before, hi

— Using the residuals, we obtain an estimate of the correlation matrix, E, 
by weighted nonlinear least squares fitting of the variogram to get the 
range and sill. (This step is similar to the residual-variogram approach)

2nd stage:

• Insert the estimate of E into the discontinuity test using either Fo or Fn as 
the test statistic, with bandwidth, h.test, and obtain the p-value of the test.

F igure 4.3. The Double-Discontinuity Test procedure, DDT

the original test statistic, Fo or the new test statistic F^ can be used. The latter makes use 

of both the range and sill estimates from the variogram fitting.

4.3 Simulation Study

In this section, we will report on a simulation study to investigate how the discontinuity test 

performs when it is applied to a set of unequally spaced correlated data. The global test is 

used for the rest of this chapter, except for Section 4.4.2 where we investigate the size and 

power using the local test.

We consider a model

V = g (x )+ e

where g(x) is the regression function of x or trend of the data, x  is irregularly spaced between
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0 and 1 and s is the correlated noise.

To obtain our simulated data, we first simulate an irregularly spaced set of 100 points 

between 0 and 1, denoted as £, from the uniform distribution. Figure 4.4 shows the simulated 

locations x. We then proceed to simulate a series of correlated data, y, which has an 

exponential covariance structure over the set of points, x. The point ‘m’ denotes the median 

of the data, which is taken as the change-point location for the power simulations.

m
mm m m  i— t m m* m  m i m* i |« im im i  « ■ mtmmmm ***** m **

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

Figure 4.4. The figure shows the locations of the unequally spaced observations, x. The 
letter ‘m’ denotes the median of the data, located at 0.456.

As in the simulations done in the equally spaced setting, the performance of the test 

under a variety of factors, namely the effects of correlation size, variance estimator and its 

performance in a local test will be investigated. However, the study will be of a smaller scale 

as factors such as effects of trend function, treating correlated data as independent, and 

sample size will have similar results to those reported in the equally spaced setting. Similar 

to Chapter 3, the simulations are repeated at several levels of the smoothing parameter and 

plots are made of the empirical size and the power against the smoothing parameter values.

Table 4.1 shows the data conditions of the simulation study. Both forms of test statistic, 

Fo and Fw, will be used. We will first investigate how the various factors affect the perfor­

mance of our test, by assuming that the correlation is known. In the later section, we will 

then investigate the performance of the suggested algorithms to adjust the test for correla­

tion, by incorporating the correlation estimation in the procedure. To estimate the range 

and/or sill, the robust estimator of the variogram introduced in Section 4.1.2 is produced 

using the factors as suggested at the end of the section. Lags or bin widths of 0.01 and 0.02,
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which bin observations into bins that are 0.01 and 0.02 distance apart respectively, are used 

as they do affect the estimation of the variogram to a certain extent.

D ata  conditions
Design Space 
No. of simulations 
TYend Function 
Sample size 
Error
Error Variance 
Covariance Structure 
Correlation 
Size of Jump

Unequally-spaced, generated from Un(0,l)
200
flat and sine 
n = 100 
e ~  iV(0,<r2£ )
1
exponential
Range, r = {0.005,0.01,0.02,0.04,0.08,0.12,0.16} 
jump  = 2, 3 at median of data, m

Test Approaches
Smoothing Parameter 
Estimator of Error Variance 
Estimator of Correlation

Algorithm to adjust 
for correlation

h.test = {0.08,0.12,0.16,0.2}
Rice (F0), Gasser (Fo), sill (Fn ) 
weighted least squares fitting of variogram 
using maxdist=0.5, nlag=n and lag=0.01,0.02.
- none (for Section 4.4);
- Residual-Variogram approach using 

h.trend =  {0.06,0.08,0.1,0.12}
- Double Discontinuity Test (DDT) using hi

Table 4.1. Simulation settings for one-dimensional unequally spaced data. The parameters 
in bold are the ones used by default in the simulations, unless specified otherwise.

To provide a better understanding of the degree of dependence of the different ranges of 

the exponential variogram as compared to the correlation coefficient of an equally spaced 

AR(1) model, let us first consider the theoretical connections between these models.

For an exponential variogram model as expressed in Equation (4.4),

Cov(Z(s), Z(s + h)) = <t2 — 7(/i)

=  cr2[l — (1 — exp(—h/a))\.

Therefore Corr(Z(s), Z(s +  h)) =  p{h) =  exp(—h/a).

If one samples a continuous-time process with autocorrelation function p(h) =  exp (—h/a)
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at equal intervals of t time units, the resulting discrete-time process is an AR(1) model with 

parameter a  = exp(—t/a).

To provide an illustration of this result, Table 4.2 displays the approximate equivalent 

correlation of an AR(1) model for the different ranges when the data are equally spaced with 

n =  50 and 100. These results are obtained by simulating 200 sets of 50 and 100 data-points 

with different ranges over an equally spaced interval, and then computing the median of the 

200 corresponding correlation coefhents of an AR(1) model.

For n =  100, the data are sampled at 0.01 time units. Hence c*ioo =  exp(—0.01/a). The 

time interval for n =  50 is 0.02. Hence a 50 =  exp(—0.02/a) =  aioo2 for the same range a. 

Thus, keeping the range a fixed, the correlation coefficient of an AR(1) model for n =  50 

is the square of the correlation coefficient for n =  100. For instance, for range of 0.02, the 

estimated correlation coefficient for n =  100 is 0.59 and the correlation coefficient for n =  50 

is 0.34, which is the approximate square of 0.59 as observed from Table 4.2.

Conversely, to obtain the same correlation coefficient for n =  50 and n =  100, i.e. 

<*50 =  £*ioo> t îe range f°r the former has to be twice that of the latter. This can be observed 

from Table 4.2, where for r =  0.01, the correlation for n =  100 is approximately the same 

as for r  =  0.02 for n =  50.

C orresponding A R (1) correlation  coefficient, corr for range, r
Range, r corr for n =  100 corr for n — 50

0.01 0.36 0.11
0.015 0.50 0.23
0.02 0.59 0.34
0.03 0.69 0.47
0.04 0.76 0.57
0.08 0.86 0.72
0.12 0.89 0.79
0.16 0.91 0.82

Table 4.2. Corresponding estimated correlation coefficients of an AR(1) model of different 
ranges of an exponential covariance model for n =  50 and 100.
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4.4 Unequally Spaced Setting: Correlation known

This section investigates the influence of various factors on the discontinuity test, assuming 

that the correlation of the data, corresponding to the range of dependence, r, is given in 

the unequally spaced setting. The effects of different ranges, r on the performance of the 

test, using both forms of test statistic, will be investigated in Section 4.4.1. This section also 

investigates the performance of the discontinuity test using different variance estimators, 

namely Rice or Gasser for Fo, where it is incorporated into the test statistic via quadratic 

forms; and the plug-in sill estimate of the variogram fitting for F/y.

Lastly we have also displayed results using a local test, which we would expect to perform 

better than the global test as seen earlier in the equally spaced setting.

4.4.1 Effects of correlation and variance estim ators

In this section, we investigate the effects of different degrees of dependence, namely the 

range of dependence, denoted by r, and the variance estimators, on the power and size of 

the discontinuity test.

For illustrative purposes, let us first look at Figure 4.5 which consists of sets of data with 

different ranges r, comprising of r  =  0.005 to r  =  0.16 simulated over locations x  (as shown 

in Figure 4.4), with error variance of 1. These data are simulated from the same seed, which 

explains the apparent decreasing trend in all the plots. As the data are unequally spaced, 

and are quite sparse around 0.7, some of the data appear to have a discontinuity even though 

it is absent. This is very evident especially for data with stronger dependence structures, 

such as r  > 0.01.

Figure 4.6 displays the size and power of the test using Fo and F/y, for both the flat 

and sine functions over different smoothing parameters, with range of dependence, r of 

0.005, 0.01, 0.08 and 0.16. The first two values of r  represent low and moderate dependence 

structures, while the last two correspond to highly dependent data. The results obtained 

using Rice and Gasser in Fo, and sill from variogram estimation in F/y are represented by 

red, blue and green lines respectively. To obtain the sill for the latter, the procedure as 

mentioned earlier in Section 4.2.4 is used. Lags or bin widths of 0.01 and 0.02 are used and
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Figure 4.5. An example of sets of simulated 100 data-points with different ranges over fixed 
unequally spaced locations x  (under the null hypothesis of no discontinuity). A flat trend 
function is used, with error variance of 1.

represented by solid and dotted green lines respectively.

In the situation where the trend is flat, the size is approximately 0.05 over all h.test and 

r  for both variance estimators of Rice and Gasser using Fo- On the other hand, using Fn , 

the size of the test is within limits for r  =  0.005 and 0.01, but is greatly inflated for high 

ranges such as 0.08 and 0.16 at low h.test but conservative at higher h.test.

The corresponding power using Rice is higher than Gasser over all r  and h.test. They 

both have substantially better power than Fn for r  =  0.005 and 0.01. For large r, the power 

using Fo is low. On the other hand, power for Fn cannot be interpreted as the size is not 

well controlled. The power using lag 0.02 is generally slightly higher than that using lag 

0 .01 .

The bottom panel of Figure 4.6 displays the size and power for the sine trend. A similar 

pattern as described above can be found for the size using both Fo and Fn . The only 

difference is that the size is only within limits for low to moderate h.test for Fo. The 

corresponding power for the sine trend is lower than that for the flat function. The Rice
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Figure 4.6. Effects of Variance Estimators. Size and Power using Rice (red), Gasser (blue) 
variance estimators for Fo and estimated sill (green) for Fn , assuming correlation is known. 
Both flat and sine trends are used with jum p  = 3 for power calculations. The numbers on 
the curve indicate the range, r. Solid: lag 0.01; dotted: lag 0.02.
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variance estimator still performs better than the Gasser one. Both have very much more 

superior power than the new test statistic with the sill.

The poor performance of the new test statistic can be due to the fact that the sill is not 

wrell estimated. Next, we shall look at the graphical summaries of the estimated sill under 

HO and HI for both trend functions, and for r =  0.005 and r =  0.08 in Figures 4.7 and 4.8 

respectively, to investigate the possible causes.

From Figure 4.7, it can be observed that the sill is quite well estimated for r =  0.005 under 

HO with both the fiat and sine trends, using different h.trend. However, it is greatly inflated 

under HI for both trends, with a worse performance in the flat function, thus resulting in 

low power. On the other hand, using a small smoothing parameter such as h.trend = 0.08 

for r  =  0.08 causes the sill to be very much underestimated, because this traces the data too 

closely. This causes the size to be greatly inflated as seen in Figure 4.6. The inflation of the 

sill estimate under HI for r = 0.08 increases as h.trend  increases. This results in the test

ide i MO. F la t fu n c tio n sill u n d e r  M1; F la t fu n o tlo n

2 20| 1 20|2 a| 1 B|2 1 21 1 1 2|2 16|1 1 8|2 2Q| 1 20|2

sill u n d e r  MO; S in e  fu n o tlo n  aill u n d e r  M l; S in e  fu n c tio n

¥ ¥ 5 ■? f  5 5 5
1B|2 20|1 20|2 S|1 a|2 12|1 12|2 16|1 IS|2 20| 1 20|2

Figure 4.7. Boxplots of estimated sill from variogram used in FN, for models under HO and 
HI. Both flat and sine trends and range, r =  0.005 (assumed known) are used.
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F ig u re  4.8. Boxplots of estimated sill from variogram used in Fn , for models under HO and 
HI. Both flat and sine trends and range, r =  0.08 (assumed known) are used.

being very conservative, having power close to 0 at high h.test — h.trend. These features 

explain why the new test statistic has not performed well as the sill estimate is very sensitive 

to the h.trend value used. Hence its performance is poorer than Fo which does not require 

the plug-in estimate.

Another general notable feature in all the boxplots is that the estimated sill is slightly 

lower using lag 0.02, as there is more averaging involved in binning observations that are

0.02 apart, compared to 0.01. Hence the size and power for lag 0.02 are generally higher 

than that of 0.01 for Fn .

4.4.2 Local test

In this section, we will investigate the test performance for a local test using Fo . Here, 

the only evaluation point is at the median of the data, which is at location m, as shown in 

Figure 4.4.
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From Figure 4.9, we can observe that the size for the local test shows similar features 

to that for the global test for both trend functons. The power, however, for the local test 

for both test statistics is very much higher than that for the global test (compare with 

Figure 4.6). For instance, power for a very high range such as 0.16 with a flat trend is 

approximately 0.08 in the global test, but has increased to 0.85 for Fo (at h.test =  12). 

This indicates that it is greatly beneficial to the detection of a change-point if additional 

information as to where the possible change-point might occur is given, especially for data 

with a very high range.

From Figure 4.9, a very interesting feature that is not apparent in the global test for Fo 

is observed. At higher h.test, the power decreases as the degree of dependence, r  increases 

as seen earlier in the global test. However, at lower h.test, power for large r, such as 0.08, 

0.12 and 0.16, is higher than at 0.02 and 0.04. In fact, for these three high ranges, power 

appears to decrease as h.test increases. This feature can also be observed in the sine trend.

4.4.3 Remarks

In the situation where the correlation is assumed to be given, the simulations have shown 

the following features in an unequally spaced design.

1. The newly introduced test statistic, Fn , is found to perform differently to the original 

test statistic, Fo- The difference is effectively due to the different estimators of error 

variance used and how they have been incorporated into the test. The original test 

statistic incorporates the variance estimation via quadratic forms in its test statistic, 

and hence does not depend on its true value, while the Fn uses a plug-in estimate 

obtained from the sill of the variogram estimation. Both the Rice and Gasser estimators 

for Fo perform better than the plug-in sill for Fn over all r. The estimation of the sill 

is investigated and is shown to be inflated for high range and sensitive to the value of 

h.trend used to remove the trend. It also does not cope well in the presence of jumps. 

This explains why the size is not well controlled and the power is lower.

However, the estimation of the sill might be linked with the range and in this case, we 

have assumed the latter to be known. Hence, it would be worthwhile to revisit this
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Figure 4.9. Effects of correlation and smoothing parameter for local test using Fq (with 
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the curves denote the range, r.
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new test statistic again in the later section where both of these unknown parameters 

are estimated.

2. The Gasser variance estimator performs slightly poorer than the Rice one for both the 

flat and sine trends.

3. For both test statistics, there is a general pattern that as the degree of dependence 

r increases, power decreases. This is because a large range corresponds to a greater 

dependence structure in the data, and hence will result in lower power since it is equiv­

alent to having a smaller number of independent observations. Another explanation of 

this phenomenon is that the correlation in the data results in a less precise estimate 

of the underlying regression function, as shown in Equation (3.31), resulting in lower 

power. The power for high dependence of r > 0.08 is very low at < 0.2 for both trends 

using F0 .

4. Similarly as in the equally spaced setting, the size is within limits over all smoothing 

parameters for a flat trend. It is however only within limits for low to moderate 

smoothing parameters for a sine trend. The power is also higher for the flat trend.

5. The power of the local test with Fo is investigated and shown to be substantially higher 

than that of the global test, particularly for the higher range of dependence.

4.5 Unequally-spaced setting: correlation unknown

In this section, the correlation is not assumed to be known and has to be estimated. The 

correlation/covariance structure of the data will be modelled via the exponential variogram 

model, using the two proposed techniques, namely the residual-variogram approach and the 

double discontinuity test, which were discussed in Section 4.2.5, to investigate how they 

perform, using both Fo and F^. In the situation where it is impossible to fit the exponential 

variogram via nonlinear weighted least squares fitting, which often occurs when the range of 

dependence is low, the range is then set to zero. Only the sill is estimated.
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The results obtained using the residual-variogram approach are presented in Section 4.5.1, 

followed by the double discontinuity test in Section 4.5.2.

4.5.1 Residual-variogram approach

Figure 4.10 presents the results for data with a range of 0.005 using Fo . The values on the 

figure indicate the values of h.trend that are used to remove the trend. The coloured solid 

lines represent the size and power produced using lag 0.01, and the dotted lines represent 

those using lag 0.02 for the variogram estimation. Graphical summaries of the estimated 

range and sill under the null and alternative hypothesis (with jum p  =  3) using different 

h.trend for both trends, are also provided in Figures 4.18 and 4.19.

Let us first focus on the size of the test under both trend functions displayed on the left 

panel of Figure 4.10. The size is within limits over all h.trend evaluated, though it increases 

as h.trend decreases for both trends. The size is highest for h.trend =  0.06, but is still 

within sensible limits.

From the right panel, it can be observed that as h.test increases, power increases as 

expected for both trends. Other notable features are that as h.trend decreases, power in­

creases; and power for lag 0.01 is generally greater than that for 0.02. Using a value of 

h.trend =  0.06 give results that are quite close to the size and power curves with the true 

E (represented by a black solid line) for both trends, while using a higher value of h.trend 

will result in a decrease in power.

Next, we will investigate how the new test statistic, Fn perform. Figure 4.11 presents 

the results with the same 200 simulated sets of 100 data-points. Here, both the estimates of 

the sill and range of the exponential variogram model are required.

The power using Fn is higher than that of Fo for each h.trend, but it should be noted 

that the size is also higher. For the flat trend with Fn , using a value of h.trend — 0.06 

gives power that is close to the true power (i.e. with true E), but the size is quite high at 

approximately 0.1 over the range of h.test considered. Hence a higher h.trend value should 

be recommended in this case. The ‘best’ power, with controlled size is then approximately 

the same as that using Fo. It can be noted too that the power using the true covariance in
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Fn is higher than that using only true correlation in Fo.

Subsequently, the performance of the two test statistics, Fo and Fn , is also investigated 

for a higher range of r  = 0.01. Figures 4.12 and 4.13 present the size and power curves 

using Fo and Fn respectively. From Figure 4.12, we can observe that the most suitable 

h.trend value is 0.08 for the flat function, and 0.1 for the sine function. The best power 

for the flat and sine functions, with appropriate size, is about 0.6 (with h.trend =  0.08 and 

h.test =  0.16) and 0.24 (with h.trend =  0.1 and h.test =  0.14) respectively. However, the 

resulting power using these estimators is lower than that when the true correlation is known, 

especially in the presence of the sine trend. We can note that the values of recommended 

h.trend for r =  0.01 are higher than that for a lower range, r  =  0.005.

In the case where Fn is used for the discontinuity test, the power is generally higher than 

for Fo- However, the size is higher too, as is seen in the earlier case for r =  0.005.

From our simulations, we can see that the residual-variogram approach is very sensitive to 

the values of the smoothing parameter, h.trend, which is used to remove the trend in the first 

stage of the discontinuity test, because this determines the estimated correlation/covariance. 

The size and power increase as the value of h.trend decreases. This is because a lower value 

of h.trend will give a smaller estimate of the correlation, and hence increase the power to 

detect abrupt changes. However, if too low a value of h.trend is used, the correlation might 

be underestimated, resulting in an inflation of the size of test. Conversely, using a large 

value of h.trend might cause an overestimation of the correlation, resulting in the test being 

more conservative. On the whole, the proposal to use a slightly lower h.trend than h.test 

for the first stage, does perform reasonably well for both trend functions and test statistics.

The algorithm performs reasonably well in the situation for low range, r  =  0.005 when 

suitable h.trend values are used, but fares poorly for a higher range, r  =  0.01. In the latter 

case, the highest power, with controlled size, is very much lower than that for the power when 

the true correlation is known. This indicates that it is not able to capture the underlying 

correlation of the data well.

If the dependence structure in the data is strong, a higher value of h.trend is required 

to give an appropriate size. However, some form of compromise would be inevitable here, 

because using too high a h.trend value will result in the correlation being overestimated,
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Figure 4.10. Size and Power of the residual-variogram approach with estimated E using 
Fq (with Rice), for r =  0.005 and jum p = 3. solid: lag 0.01, dotted: lag 0.02. The values 
on the curves denote the values of h.trend. The size and power using true E are represented 
by black, solid lines.
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using Fn , for r = 0.005 and jum p = 3. solid: lag 0.01, dotted: lag 0.02. The values on the 
curves denote the values of h.trend. The size and power using true a 2£  are represented by 
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Figure 4.12. Size and Power of the residual-variograrn approach with estimated E using 
Fo (with Rice), for r = 0.01 and jum p  =  3. solid: lag 0.01, dotted: lag 0.02. The values on 
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partly due to jumps that have not been completely removed, as well as any trend that might 

still be present.

Overall, Fo seems to be more stable and perform slightly better than F/v, when the 

correlation and the error variance have to be estimated. This could be due to the fact 

that Fn is dependent on both the range and sill estimates, which are in turn dependent on 

h.trend. If either or both the range and sill are underestimated, the size might be inflated, 

whereas in Fo, inflation of the size will only occur if the range is underestimated.

Another notable difference between Fo and F^ for both trends, is that the difference 

in size and power using lags 0.01 and 0.02 in the variogram estimation, differs more in 

magnitude for the former than the latter. For Fo, the size and power for lag 0.01 are usually 

higher than for lag 0.02. Using a larger lag of 0.02 involves more averaging and this might 

result in it being less capable of capturing a good range of the data. Hence, it is more prone 

to giving a larger range than when lag 0.01 is used. This feature can also be observed from 

the boxplots in Figure 4.18 where the range for lag 0.01 is generally slightly lower than for 

lag 0.02. In spite of this, there might be situations where it will perform better than lag 

0.01, particularly when there are very few observations that are 0.01 apart in the first bin 

which is crucial to the estimation of the variogram.

On the other hand, there is little difference between the two lags for F#, as it makes use 

of both the estimated range and sill. An overestimated range tend to give a slightly under­

estimated sill. Hence, there might be some kind of balance here, resulting in less difference 

using either lag. This feature can be observed in the boxplots provided in Figures 4.18 and 

4.19 for both trends.

4.5.2 Double discontinuity test approach, D D T

This section will consider the double discontinuity test, DDT, as proposed in Section 4.2.5, 

to incorporate the estimation of the correlation in the discontinuity test. Both Fo and Fn 

will again be used with two similar low and moderate ranges as before, r =  0.005,0.01. 

It is of interest to investigate how this algorithm performs and how it compares with the 

residual-variogram approach.
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Figures 4.14 and 4.15 display the simulation results for r =  0.005 using Fo and 

respectively for both the flat and sine trends. A wide range of smoothing parameters, 

hi =0. 1 to 0.18 is used for the first stage, with different h.test for the second stage. The 

first stage comprises of carrying out the discontinuity test with hi, treating the data as 

independent to find the possible change-point location. It then removes the trend using the 

same smoothing parameter after adjusting the data by the jump size.

From the left panel of Figure 4.14, we can observe that the size increases only marginally 

with decreasing hi for both trends, but is well-calibrated regardless of what smoothing 

parameter is used in the first stage. It is also consistent over all h.test, for both lags 0.01 

and 0.02 for the flat trend, and consistent over moderate h.test for the sine trend.

The right panel shows that the power increases marginally as hi decreases for both trends. 

The power for lag 0.01 is slightly higher than that for lag 0.02. Interestingly, the power curves 

using lag 0.01 for most hi follow the true power curve very closely and some are even slightly 

higher. The size and power results for both trends illustrate that the approach is only slightly 

sensitive to the hi value used for the first stage (in estimating the correlation).

Next, we will look at the performance using F^. From the left panel of Figure 4.15, we 

can see that the size for Fn is generally higher than that for Fo. Larger hi values of 0.14 

and above are required to give good size. The power differs marginally for the different hi 

used, and is somewhat higher than the power curve for the true plugged-in estimate of o2E, 

except for a large value of 0.18, where there is a considerable decrease (particularly for the 

flat trend). The feature of negligible difference in using lag 0.01 or 0.02 for all the hi values, 

except 0.18, for Fn can be observed again.

The simulation results for r  =  0.01 are presented graphically in Figures 4.16 and 4.17 

using Fo and Fn respectively for both the flat and sine trends.

The size for r  =  0.01 using Fo is generally higher than that for r  =  0.005. A larger hi 

value, such as 0.16 or 0.18, is required to keep the size within limits for the first stage, under 

both the flat and sine trend functions. One interesting feature of the power curves that is 

evident here again, is that the power for using hi = 0.16 or 0.18 is considerably higher than 

that for the true power curve. This feature is observed for the sine trend too.

As for Fn in Figure 4.17, the inflation of size is greater. It appears that a large h.trend =
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Figure 4.14. Size and Power of the double discontinuity test with estimated E using Fo 
(with Rice), with r  =  0.005 and jum p = 3. solid: lag 0.01, dotted: lag 0.02. The values on 
the curves denote the values of hi used for the 1st stage. The size and power using true E 
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0.18 is needed to ensure a good size for both the flat and sine trends. This value gives a 

power that is close to the true power curve.

In summary, the results have shown that the double discontinuity test approach returns 

reasonably well-calibrated sizes for a range of smoothing parameters. The clear advantage 

over the residual-variogram approach is that though a slightly larger h\ value is required for 

both techniques when the dependence of the data is strong, it is generally less sensitive to the 

choice of smoothing parameter used in the 1st stage to estimate the correlation. Therefore, 

it reduces the need of choosing an appropriate but unknown parameter from the procedure. 

Using a larger hi for the first stage only decreases the power of the test slightly, but might 

improve the size of the test considerably. Hence it is recommended that a slightly larger 

smoothing parameter, h\, is used for the first stage, especially if one suspects that the data 

may be highly correlated.

Another obvious advantage is that the power of the double-discontinuity test for both 

low and moderate ranges that are considered, not only outperforms the residual-variogram 

approach but is comparable and sometimes higher than the power curves which have the 

true plugged-in correlation/covariance matrix.

Though Fff performs better than F0 using certain h\ values, it is less stable than Fo. 

This can be due to the fact that it involves the plug-in estimate of both the range and sill of 

the variogram, while Fo incorporates the variation of the error variance using Rice estimator 

in its distributional calculations. This feature is also seen in the residual variogram approach.

4.5.3 Discussion

The key factor that causes the difference in the performance of the two techniques, the 

residual-variogram and the double discontinuity test, lies in their estimation of the range and 

sill of the variogram under the null and alternative hypothesis. Next, we shall investigate 

this difference by looking at the estimated parameters using these approaches. To allow for 

comparison, all the graphs for the same range are drawn on the same scale. As the features 

are quite similar for both ranges, we shall just focus our discussion on r =  0.01.

Figures 4.20 and 4.21 show the boxplots of the range and sill of the 200 simulated data
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sets under H0 and H\ for r =  0.01, using the residual-variogram approach for the flat and 

sine trends respectively, with different h.trend and lags 0.01 and 0.02. Similarly, Figures 4.24 

and 4.25 display the boxplots using the double discontinuity test. The first number on the 

symbol “a |6” represents a smoothing parameter of a x 10-2 for the first stage, and the second 

number represents the lag or bin width, b x 10-2, where a and b are constants.

There are not many differences in the features observed from the estimated range and 

sill of the variogram under the two different trends, flat and sine, hence we shall summarise 

them together. Table 4.3 presents the summary results for the residual-variogram approach, 

while Table 4.4 presents that for the double discontinuity test.

From the summary tables, one clear reason why the residual-variogram test performs 

worse than the double discontinuity test, is because at well-calibrated sizes, where the range 

is well-estimated under Ho, it is often overestimated under H\. Hence the power is low, and 

in fact, it is often lower than the power with the true plugged-in range. On the other hand, 

the range for the double discontinuity test is fairly similar for the model under Ho and Hi, 

where its median is slightly lower than the true range of 0.01 over all hi considered. Hence, 

this helps the double discontinuity test to have comparable powers as that of the true power.

M odel under H0 M odel under Hi
R ange mostly underestimated at low h.trend, 

but increases marginally as 
h.trend increases

mostly underestimated at how h.trend, 
but as h.trend increases, range is over­
estimated. Genearally higher than H0.

lag 0.02 is slightly higher than lag 0.01 lag 0.02 is slightly higher than lag 0.01
variability of estimate stays 
fairly constant.

variability increases as h.trend 
increases.

Sill slightly underestimated but increases , 
marginally as h.trend increases

well-estimated at low h.trend, 
but increases and is overestimated at high 
h.trend values. Generally higher 
than Ho.

lag 0.02 is slightly lower than lag 0.01 lag 0.02 is slightly lower than lag 0.01
variability of estimate stays 
fairly constant.

variability of estimate increases as h.trend 
increases

Table 4.3. Summary of estimated range and sill using the residual variogram approach for 
both the flat and sine trends.
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M odel under H0 M odel under Hi
R ange mostly underestimated at low hi, 

but increases marginally as 
hi increases

mostly underestimated at low hi, 
but improves marginally as hi 
increases. The estimate is approximately 
the same as under Ho

lag 0.02 is slightly higher than lag 0.01 lag 0.02 is slightly higher than lag 0.01
variability of estimate stays 
fairly constant.

variability is similar to H0 and 
stays fairly constant

Sill slightly underestimated thoroughout 
range of hi

slightly underestimated throughtout 
range of hi. The estimate is 
approximately the same as those 
under Ho.

lag 0.02 is slightly lower than lag 0.01 lag 0.02 is slightly lower than lag 0.01
variability of estimate stays 
fairly constant.

variability is similar to H0 and 
stays fairly constant

Table 4.4. Summary of estimated range and sill using the double discontinuity test approach 
for both the flat and sine trends.

Moreover, using the residual variogram approach, there is a substantial increase in the 

estimate of the range with increasing h.trend, while there is only marginal increase for the 

double discontinuity approach with h\. The variability of the estimate also increases with 

increasing h.trend for the former, but is fairly similar for the latter approach with increas­

ing hi. This explains why the double discontinuity test is less sensitive to the smoothing 

parameter used in the first stage.

Another feature to highlight is that lag 0.02 tends to give a larger estimate of range, but 

a lower estimate of sill, than lag 0.01. Consequently, this results in a slightly lower power 

for lag 0.02 than lag 0.01 for both algorithms when Fo is used. On the other hand, the 

difference in using these two lags is negligible for F^.

We noted in our previous discussion that Fn somehow tends to give a higher size com­

pared to Fo, using the same smoothing parameter. Prom the boxplots, it can be observed 

that when too low a value of h.trend is used, both the range and sill are greatly underes­

timated. This will affect F'n more as it considers both plug-in estimates of the range and 

sill.
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As the Fq performs better overall, we have also investigated how the two algorithms 

perform with a smaller jump of 2 using this test statistic. The size remains the same as 

discussed earlier. Figures 4.26 and 4.27 display the size and power for the residual-variogram 

and DDT algorithms with a jump of 2. The power with well controlled size for the residual- 

variogram is much lower than the true power, but for the DDT, the power is comparable to 

the true power.

Though the double discontinuity test is computationally more intensive than the residual 

variogram approach, it has certainly proven itself to be a much superior technique to detect 

discontinuity in correlated data. It is not only robust against jumps and trends, but also 

capable of producing powers that are comparable or higher than the power obtained using 

the true range. Furthermore, it has the favourable property of not being too dependent on 

the smoothing parameter used in the first stage.

Estimated range and sill for r=0.005 withi FLAT trend
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Figure 4.18. Boxplots of estimated range and sill using residual-variogram approach with 
a flat trend for r =  0.005.
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Estimated range and sill for r=0.005 with SIIMEE trend
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Figure 4.19. Boxplots of estimated range and sill using residual-variogram approach with 
a sine trend for r  =  0.005.

Estimated range and sill for r=0.01 with FLAT trend
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Figure 4.20. Boxplots of estimated range and sill using residual-variogram approach with 
a flat trend for r =  0.01.
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Estimated range and sill for r=0.01 with SINE trend
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Figure 4.21. Boxplots of estimated range and sill using residual-variogram approach with 
a sine trend for r =  0.01.
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Figure 4.22. Boxplots of estimated range and sill using double discontinuity test with a
flat trend for r  =  0.005.
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Estimated range atrtd sill for r=0.005 with sin© trend
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Figure 4.23. Boxplots of estimated range and sill using double discontinuity test with a 
sine trend for r =  0.005.
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Figure 4.24. Boxplots of estimated range and sill using double discontinuity test with a
flat trend for r =  0.01.
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Estimated range and sill for r=0.01 with sine trend 
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Figure 4.25. Boxplots of estimated range and sill using double discontinuity test with a 
sine trend for r =  0.01.

4.6 D ifferent sets of unequally  spaced locations

In all the previous sections, we have only looked at data that are simulated over a single 

set of unequally spaced locations, denoted here as set 1. In this section, we will investigate 

whether there is any difference in the size and power if different sets of unequally spaced 

locations are used.

Four other sets of locations are simulated and denoted as set 2 to set 5. Figure 4.28 

displays all five different sets, with “m” indicating the median of the data.

A simulation study is carried out using r =  {0.005, 0.01, 0.02} for each of these sets over a 

range of h.test, assuming that r is known. The results using Fo are displayed in Figure 4.29. 

The size curves are similar for the different sets. However, power curves (with jum p  = 3) 

appear to have two “clusters’” , with set 5 being the highest, followed by set 1 and then set

4. The other cluster consists of set 2 and 3, where power of set 3 is slightly lower.

The most probable explanation for the differing powers in these 5 sets lies in the vicinity 

of the change-point. From Figure 4.28, it can be observed that the neighbourhood where the
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Figure 4.26. Size and Power of the residual-variogram approach for estimated E using Fo 
(with Rice) for r =  0.01 and jum p = 2. solid: lag 0.01, dotted: lag 0.02. The values on 
the curves denote the values of h.trend. The size and power using true E are represented by 
black, solid lines.
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Figure 4.27. Size and Power of the double discontinuity test with estimated E and sill 
using Fo, with r = 0.01 and jum p = 2. solid: lag 0.01, dotted: lag 0.02. The values on the 
curves denote the values of h\ used for the 1st stage. The size and power using true E are 
represented by black, solid lines.
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location of the change-point is located, is sparse for both sets 2 and 3. The neighbourhood 

for the rest, however, are less sparse, hence the power of detecting a discontinuity is higher. 

This is because our test statistic consists of the sum of the standardised differences between 

the left and right smooths. If there are more points located near a change-point, then the 

increase in the observed test statistic will be greater, as the standardised differences between 

the left and right smooths will be higher. Hence this improves the performance of the test.

4.7 C oncluding R em arks

This chapter brings to an end the development and the study of the discontinuity test in the 

one-dimensional setting. We started off by developing the test statistic that is suited for an 

unequally spaced design, and introduced the variogram as a tool to describe the dependence 

structure of the data in such a setting.

The two test statistics introduced here are F0 and TV The former is the same as that 

used in the equally spaced design, where the error variance is unknown and is incorporated 

into the test statistic, by placing it in quadratic form. Since fitting a theoretical (exponential)

Figure 4.28. Plots of 5 different sets of unequally spaced observations, x l, x2, x3, x4 and 
x5. The letter ‘m ’ denotes the position of the median of the data.
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Figure 4.29. Effects of different sets of unequally spaced locations x. Size and Power for 
four different sets of locations with r = {0.005,0.01,0.02}. Set 1 (original): red, Set 2: 
orange; set 3: pink; set 4: blue; set 5: green.
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variogra,m model gives an estimate of both the range (strength of dependence) as well as the 

sill (error variance) of the data, Fn considers a plug-in estimate of error variance from the 

sill of the variogram, which it then treats as the true value. Both the global and local tests 

were considered.

An extensive simulation was then carried out to study the effects of the different factors. 

It is also of interest to compare and contrast the performance of the two test statistics 

introduced here. The difference is mainly attributed to the different variance estimators and 

how they are incorporated into the test statistic.

It is not surprising that the effects of most of the factors, such as shape of trend function, 

smoothing parameter and strength of dependence, are similar to the equally spaced design. 

Rice generally performs better than Gasser over different ranges and smoothing parameters, 

and the difference between these two estimators increases as the range increases.

When the range is assumed known, but the error variance is unknown, the new test 

statistic performs worse than the original one. This is because it is very sensitive to the 

value of h.trend used to remove the trend first before obtaining the estimate of the sill from 

the variogram. Using too low a value will cause inflation of the test, while using a high value 

will cause a substantial decrease in power.

Two different techniques, namely the residual-variogram approach and the double dis­

continuity test, are proposed to estimate the dependence structure of the data. The latter 

adds an extra step to remove any potential jump present first before removing the trend. 

This is done by carrying out the discontinuity test in the first stage, treating the data as 

independent. This extra effort appears to pay off as the double discontinuity test performs 

better than the residual variogram approach. The results demonstrate that the former is 

less sensitive to the smoothing parameter used in the 1st stage. It gives better and, ap­

proximately, similar estimates of range and sill under Ho and H \t hence keeping the size 

well-calibrated and, at the same time, produces good power at appropriate smoothing pa­

rameters. Nonetheless, a larger smoothing parameter is required for the first stage to capture 

the dependence structure for the two approaches if the data are highly correlated.

It is not surprising that when the error variance is known, Fn performs better that Fo. 

However, when both the error variance and the correlation are unknown, Fq is recommended
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as it is more stable. This is because F'n is more sensitive to the smoothing parameter 

used in the first stage as the latter not only influences the estimate of the strength of 

dependence structure (the range) but also the error variance (the sill). Hence if an unsuitable 

smoothing parameter is used, FN will be more affected than Fo, which is only influenced by 

the estimation of the range.

In the last section, the size and power properties for other sets of unequally spaced 

observations are investigated. The simulation results using true ranges, revealed that while 

the sizes are similar, the power properties are dependent on the vicinity where the change- 

point is located. If the data are quite sparse near the change-point, the power might be 

lower. It is expected that the effects of other factors discussed earlier would also apply for 

different sets of unequally spaced observations, though the magnitude of the power might 

differ.

In the following chapter, the discontinuity test is applied to various real-life data sets 

that are collected over time, to examine if there are any discontinuities present.



Chapter 5 

Applications

In this chapter, we will be looking at three sets of data: rainfall data in Argentina in 

Section 5.2, data on global warming in Section 5.3 and water quality data in the River Clyde 

in Section 5.4. The first two data sets have been analysed by Wu et al. (2001), while the 

third data has not yet been published. We will investigate if there are any abrupt changes 

in these three sets of data using the isotonic regression approach (Wu et al., 2001) and a 

Bayesian approach (Thomas, 2001), and compare them with the nonparametric regression 

approach that we have proposed in Chapters 3 and 4. The former two tests are selected as 

they are representatives of some of the change-point detection approaches that have been 

developed to cope with correlated data.

The Argentina and Global Warming case studies are both equally-spaced, whilst the River 

Clyde case study is unequally spaced. The isotonic regression and Bayesian approaches are 

developed to cope with equally-spaced data only. The author’s proposed nonparametric 

regression approach, however, is developed to cope with both equally and unequally spaced 

observations.

Both the isotonic regression and nonparametric regression approaches allow for a non­

parametric trend in the data, but in the former, only a nondecreasing step function is allowed 

for the mean trend while the latter allows for a smoothly varying mean. The Bayesian ap­

proach is more restricted as it assumes a constant mean. However, while the variance and 

autocorrelation structure of the data are assumed to remain constant throughout the study

145
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for our nonparametric test and that by isotonic regression, the Bayesian approach allows for 

a change in all three: variance, autocorrelation or mean.

All three approaches assume normality of errors which might not be completely satis­

fied in practice. The assumptions will be checked to see if they are valid. If necessary, 

transformation of the data can be considered for the normality assumption to be valid.

5.1 Different approaches to change-point detection

In this section, we discuss the different features of the three change-point algorithms, namely 

isotonic regression (Wu et al., 2001), a Bayesian approach (Thomas, 2001) and nonparametric 

regression.

5.1.1 Features of the Isotonic Regression Approach

Let us first consider Wu et al’s (2001) isotonic regression test, which is a test capable of 

detecting the existence of monotonic trends and/or abrupt changes in the mean level, in 

short range dependent sequences.

Isotonic regression is a nonparametric method appropriately used when a dependent 

response variable is monotonically related to an independent explanatory variable. The 

fitted model consists of level sets of increasing value, for which the estimated response is 

constant. The model used is similar to the nonparametric regression model, except that the 

means pt are modelled using an isotonic regression function.

The model is assumed to be

yt = p t + £u £ =  l , . . . , rc,  (5.1)

where et is normally distributed with mean 0 and finite covariance 7(t) =  cov(ei, £*+*) =  

E(e0et). Suppose that the means are ordered < P2 < • • • < and consider testing the 

hypothesis Ho : p\ =  p? =  . . .  =  //n. This is the null hypothesis encountered in many change 

point problems, but the alternative is different. The latter can be due to the presence of a 

monotonic trend, or abrupt monotonic changes.
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Wu et al. (2001) considered the unpenalised  likelihood ratio test of Hq, and also de­

veloped the penalised  likelihood ratio test of Ho and its asymptotic distribution. The 

asymptotic distribution is derived under the more general assumption that the errors are 

part of a zero mean, square integrable, stationary ergodic process that exhibits suitable 

short range dependence.

The motivation to develop the penalised likelihood ratio test was to cope with the “spik­

ing” problem in large samples, which might have a great influence on the test statistic, when 

the first isotonic mean /q is too small and the last isotonic mean, pn is too large. Wu et al. 

(2001) introduced a penalised term to rectify this problem. This is done by increasing the 

value of the first observation and decreasing the value of the last observation. This gives rise 

to the modified test statistic known as the penalised log likelihood ra tio  te s t s ta tis tic  

(see Wu et al., 2001, Equation (8)).

To estimate the error variance, the trend is first removed by taking the difference between 

the raw data and the isotonic unpenalised/penalised means, pt to give the residuals, it  =  

yt — p f  Then using lag window estimators (Brockwell and Davis, 1991), a2 can be estimated 

as

/  i \
ct2 =  7(0) +  2 ^ w (  —  )y(k);  (5.2)

k=l

(see Wu et al., 2001, Equation (19)), where the lag window w(x) is an even, piecewise 

continuous function of x  satisfying the conditions w(0) =  1, w(x) — 0 for |z| > 1 and 

M #)| < 1 for all x\ and *f(k) is the sample autocovariance function, obtained by 7(&) = 

£ Yl*i=i £i£i+k- • The size of the truncated window is controlled by ran, which is recommended 

to be mn =  n 1/3. We will use this same value for all the sets of data that we will look at in 

the rest of this chapter. (We have seen earlier in the brief simulation study in Section 3.6, 

that the isotonic regression test is sensitive to the estimation of this error variance).

As the asymptotic null distribution of the penalised ratio test statistic is complicated, the 

percentiles of the asymptotic null distribution of the test statistic is computed by simulating 

30,000 Brownian motions instead. This is provided in Table 1 of Wu et al. (2001), which we 

will refer to in our analysis in later sections.
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Taking order restrictions into account makes the inference carried out by using isotonic 

regression favourable, as it is a one-sided test which is certainly more powerful than a two- 

sided test. However, great caution has to be taken as the hypothesized order restriction may 

not necessarily hold.

5.1.2 Features of the Bayesian approach

The next method that we shall look at is Thomas’ Bayesian approach. One of the main 

differences between the frequentist and the Bayesian approaches is that the Bayesians view 

unknown quantities as random parameters and assign prior distributions to them, while the 

frequentists view the parameters as fixed (though unknown) and not random. For instance, 

in the Bayesian approach to change-point analysis, the change-point locations are random 

and probability distributions are assigned to them.

Thomas’ (2001) approach is developed to cope not only with abrupt changes in the mean 

level, but also possible combinations of abrupt changes in the variance and autocorrelation 

structure of the data. His model is assumed to be piecewise stationary, and the presence 

of a change-point indicates a switch to a different process, which we can refer to as an 

abrupt change in the mean level, variance level and/or autocorrelation structure. The mo­

tivating application of his work is in the field of road maintenance; to partition roads into 

homogeneous parts.

The model used by Thomas is

yt = a + /3yt-i  +  e t , f = l , . . . , n ,  (5.3)

where a  and are unknown parameters; with a representing a constant term and ft denoting 

the correlation coefficient of an AR(1) model with \/3\ < 1. The et are independent and 

normally distributed errors, with mean 0 and variance <72, i.e. et ~  N (0, cr2).

Thomas’ method addresses the question of whether an abrupt change is present some­

where in the data by evaluating the Bayes factor using improper priors. The indeterminacy 

of the Bayes factor due to comparisions of models with different dimensions (the dimension 

of a model without a change-point is lower than that which has a change-point) is resolved
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using the minimal imaginary training sample approach, introduced by Smith and Spiegel- 

halter (1981), Speigelhalter and Smith (1982). Exact analytical solutions can be obtained, 

conditional on the starting values of the process, if the autocorrelation is known. In more 

practical situations where the autocorrelation structure and the starting values are unknown, 

exact inference is still possible using Markov Chain Monte Carlo techniques (see Thomas, 

2001, Paper III). An alternative approach that he proposed is to use approximate inference 

which has the favourable property of being computationally faster and more efficient.

By making use of the fact that AR(1) processes are reversible, the approximate model 

with no change-point is given as

yt =  a  +  +  et, t = 2, . . . , n - l ,

or yt =  a +  /3yt+x +  eu t = 2, . . .  , n -  1 (5.4)

and the approximate model with change-point r, is given as

Vt =  + PiVt-i + £ =  2, . . . , r ,

yt =  a2 +  fayt+i + et, t =  r  +  l , . . . , n - l  (5.5)

Noninformative priors are used for the unknown parameters. The overall evidence of a 

change somewhere in the series can then be computed by comparing the evidence pooled 

from all the models placing one change-point in the model with no change-point present. 

This is denoted as p(change), the posterior probability of a change. No rules have been 

set as to when p(change) is high enough to conclude that a change-point exists. However 

a posterior probability of greater than 0.7 might be sufficient since it implies that there is 

stronger evidence of a single change in the series, compared to a probability of 0.3 of no 

change.

If there is sufficient evidence to indicate a change has occurred, the next step will be to 

locate the change-point. The posterior distribution of the possible locations of a change-point 

conditional on the assumption that it exists, allows inference about the probable locations 

of the change-point. The posterior mode can be taken as a natural estimate of the possible
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change-point location.

Thomas’s model assumes that the trend is a constant. That results in one of the disad­

vantages of this approach since if the data do possess a trend or are not reasonably smooth 

with well-defined abrupt changes in level, this method will not perform well. This is because 

it assumes that the segments are homogeneous and hence exchangeable, but this is not the 

case above. The method gives very different results too when different segments of the whole 

data are subjected to analysis, as each observation contains information about the existence 

and location of a change-point. Thomas commented too that the approach might not be 

numerically stable in situations where the datasets are extremely large, with very large or 

small values.

The assumption that the trend is constant might not be feasible for all three of our 

datasets. Nevertheless, we will carry out his test on the raw dataset (where no trend is 

removed), as well as on the residuals obtained after a nonparametric smooth curve is use to 

remove the trend. It is not surprising that the latter might affect the value of p(change). In 

situations where p(change) is lowered, this could be due to the trend removal, as performing 

the latter might conceal the very location and impact the size of the jump, hence affecting 

the discontinuity test.

Another possible setback to Thomas’ approach is that it assumes that there is at most one 

change-point in the model and hence might not be able to cope with data that have several 

change-points. In situations where numerous change-points exist, the overall evidence of a 

change, p(change) might be quite unpredictable, where it either increases or decreases in 

value. For instance, there can be cases whereby the value of p(change) is low when several 

change-points are actually present in the data, (see Thomas, 2001, Paper IV)

Two different iterative ad hoc procedures for carrying out the algorithm can be considered. 

The first procedure is carried out by analysing the full dataset and, if it is justifiable to 

insert a change-point, the data are partitioned into two separate parts and reanalysed to 

investigate if there are any further change-points. In cases where there might be multiple 

change-points in a considerably large dataset, Thomas suggested Procedure 2, which uses 

overlapping segments. If p(change) is high in a segment, it is then partitioned and checked 

for further change-points. The reason for using the overlapping segments is to avoid finding
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no change-point when there are in fact several present. We will carry out both procedures 

in our analysis.

5.1.3 Features of the Nonparametric Regression Approach

This methodology has been introduced and described in great detail in Chapters 3 and 4 

and simulation studies have been carried out extensively on both the equally and unequally 

spaced settings. In this section, we will describe in further detail the different features and 

steps of our algorithm, informed by the results of the simulation study.

The model for both the former two methods under the null hypothesis is that the mean 

is constant. Wu’s test has the alternative that there is a monotonically increasing trend 

and/or an abrupt change occurring in the data. Thomas’ test has as alternative that there 

is an abrupt change present. Our algorithm tests the alternative that there is at least one 

abrupt change, in the presence of a smoothly varying trend and correlated data.

Firstly, before carrying out the discontinuity test, we should check if the data can be 

assumed to be independent. This will make the algorithm much simpler, as we will not 

need to estimate the underlying correlation structure of the data. For the equally spaced 

setting, this can be done simply by fitting a smooth trend to obtain the residuals. From 

the ACF plot of the residuals, we will be able to deduce if the independence assumption is 

reasonable. In the case of unequally spaced data, the test of constant variogram devised by 

Diblasi and Bowman (2001) can be used to examine the independence assumption. This is 

in fact applicable for both equally and unequally spaced data. As the constant variogram 

test assumes a linear trend, we first have to remove any underlying smooth trend present in 

the data. This can be done by fitting a nonparametric smooth curve to the data. There are 

four parameters in this algorithm, namely the bandwidth to remove the trend in the data, 

h.trend; the distances at which the empirical variogram is computed, maxdist; the number of 

bins to group the pairwise differences, nbins, and the bandwidth to use to test for a constant 

variogram, h.test. The sensitivity of the test to the different parameters is considered. A 

test with p-value greater than 0.05 will indicate that there is insufficient evidence to reject 

the null hypothesis that there is no spatial dependence in the data. Reference bands can
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be used as a graphical tool to give an indication of the nature of any spatial dependence or 

correlation. It is expected that under the null hypothesis, at every evaluated distance of the 

variogram, the smoothed variogram should be contained within the reference bands, with a 

probability of 95% at the 0.05 level.

If the independence assumption is feasible, the discontinuity test is then carried out, 

treating the data as independent. However, if it is not reasonable to do so, the correlation 

structure has to be estimated, as neglecting this aspect will increase the size of the test, 

resulting in the detection of false change-points.

The main difference in the algorithm for the equally and unequally spaced observations 

is in the way the correlation is estimated. For the equally spaced setting, to incorporate 

an estimated correlation, the moving window approach is used as it has been shown to 

outperform the residual approach in the simulation study in Chapter 3. The correlation 

structure is modelled using an AR(1) model. For the unequally spaced setting, both the 

residual variogram and the Double Discontinuity Test (DDT) algorithms are used. The 

correlation of the residuals is estimated via the variogram by fitting an exponential covariance 

structure. Since the correlation is a nuisance parameter, it is not crucial that we model it 

exactly. It seems reasonable to adopt a simple model of an AR(1) correlation structure or 

an exponential model as it is convenient and should capture most of the main structure.

If the test is significant, this indicates that there is at least one abrupt change in the 

presence of a smoothly varying trend. The sensitivity of the test to the different parameters 

involved (namely the size of moving window, b, the trend to remove the data, h.trend, and 

the bandwidth for the discontinuity test, h.test) is then investigated.

5.2 Application 1: The Argentina data

The volume of yearly rainfall in Argentina, collected from 1884 to 1996, was provided by 

Eng Cesar Lamelas, a meteorologist from the Agricultural Experimental Station Obispo 

Colombres, Tucuman. During 1952 to 1962, a dam was constructed, which is believed to 

have affected the volume of rainfall. It is thus of interest to investigate if there has been a 

change in the mean rainfall volume over this period. This analysis has been done previously
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by Wu et al. (2001). The dataset is made up of 113 equally spaced observations.

5.2.1 Using the Isotonic Regression Approach

Figure 5.1 shows the volume of yearly Argentina rainfall, collected from 1884 to 1996, with 

both the unpenalised and penalised isotonic regression functions, using a penalty factor of 

0.15 for the latter. The top left panel gives the raw data, which seems to show a decrease 

from 1880 to about 1950s and an increase after that. However, Wu’s approach assumes that 

the mean trend is monotonically increasing (i.e. it ignores the possibility of any decrease).

The top and bottom right panels display the same plot but with fitted unpenalised and 

penalised functions respectively. The difference between the fitted unpenalised and penalised 

isotonic estimators is that the first and last values are slightly suppressed for the penalised 

estimators. It is noticeable that in 1884, the first observation is low, and this is suppressed 

in the penalised isotonic regression. Using the unpenalised and penalised likelihood ratio 

tests, the test statistic values are 21.27 and 18.0 respectively, which are both significant at 

the 0.05 level, indicating the presence of a change-point. From both plots, we can observe 

that there is an abrupt jump sometime between 1955 and 1956 in the annual rainfall volume.

The bottom left panel displays the ACF plot of the residuals after removal of trend by 

isotonic regression. Most of the ACF for the different lags are low and insignificant, hence 

indicating a very weak short range dependence. These residuals are used to estimate the 

error variance, taking into account the short range dependence in the data. This gives 

<r2 =  253.57.

The assumption of normality is checked in Figure 5.2. The raw data appears positively 

skewed. There is a slight indication that the detrended data is also slightly positively skewed, 

but an assumption of normality is reasonable.

Wu et al. (2001) claimed that the conclusion of the presence of an abrupt change at 1955 

is in line with what the meteorologist expected, due to the construction of the dam.
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5.2.2 Using the Bayesian Approach

We will first attempt to run the Bayesian change-point algorithm taking the trend as constant 

and modelling the correlation using an AR(1) model. The top panel of Figure 5.3 gives the 

volume of rainfall for each year over the whole period. The dotted line indicates where the 

most probable location of the change-point. This corresponds to the posterior mode (peak) 

of the posterior probabilities conditional on the presence of a change-point.

The posterior probability of an abrupt change occurring somewhere in the series, p(change),
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Figure 5.1. Argentina data: Detecting a change-point using isotonic regression with un­
penalised and penalised functions with penalty factor 0.15. The top left panel displays the 
raw data; the top and bottom right panels display the raw data with the fitted unpenalised 
and penalised isotonic regression functions respectively. The bottom left panel presents the 
ACF plot of the residuals after removal of trend by isotonic regression.



CHAPTER 5. Applications 155

20 40 60 80 100 120 140 -60 -40 -20 0 20 40 60
Raw data Detrended data

Figure 5.2. Argentina data: Checking normality of data. The left and right panels show his­
tograms of the raw and detrended data using isotonic regression respectively, superimposed 
with their corresponding expected normal density curves.

is very low, at only 0.039. Hence, there is very little evidence to suggest any abrupt change 

in the data.

Next we will look at the plot of the posterior probabilities of the possible locations of a 

change-point conditional on its existence, shown at the bottom of the figure. This plot is 

however not helpful here as the value of p(change) is too low to suggest any abrupt change 

occuring in the data. Nevertheless, for illustrative purposes, from the plot, the highest peak 

(posterior mode) indicates that the most probable change-point occurs at 1955. This is the 

same as that suggested by Wu’s approach in section 5.2.1. The second highest is 1967.

We will consider Procedure 2 which uses overlapping segments of the data, with years 

1887-1953 and 1933-1996. The value of p(change) is low at 0.0276 for the first segment, 

indicating no change-point. However, for the second segment, p(change) is moderate at

0.48. Though not convincing, there is now a much stronger indication of the presence of a 

change. Figure 5.4 shows the results using the second segment and from the bottom panel, 

the most probable change-point location indicated by the posterior mode is 1955, which is 

similar to that found by Wu.

In Table 5.1, we present the results using different combinations of overlapping segments. 

It is found that the result is very sensitive to the segments considered. Besides the two
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The data used for the analysis
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Figure 5.3. Argentina data: A Bayesian approach to detect a change-point, assuming a 
constant trend. The top panel shows the full data under study, with a dotted line indicating 
where the most probable change-point might occur if one assumes its existence. The bot­
tom panel shows the resulting probability distribution over the location of a change-point 
conditional on its existence.

overlapping segments that are considered (highlighted in bold), the rest do not have sufficient 

evidence to indicate any abrupt change.

Next, let us now assume that there is an underlying trend in the data, and attempt to 

remove it by first fitting a nonparametric smooth curve to obtain the residuals. We then 

carry out Thomas’s test on the residuals to see if there is a change-point.
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The data used for the analysis
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Figure 5.4. Argentina data: The top panel shows the second segment of the data under 
study, from year 1933-1996. The bottom panel shows the resulting probability distribution 
over the location of a change-point conditional on its existence.

Using a bandwidth of 13 to remove the trend gives p(change) of 0.0053. As p(change) is 

so low, it again suggests that the presence of a change-point in the series is unlikely. However, 

this result might be dependent on the bandwidth used to remove the trend to obtain the 

residuals. The use of a variety of values of h.trend is thus investigated. As presented in 

Table 5.2, h.trend does not affect the values of p(change), which remains less than 0.01 for 

all values of h.trend considered. Using Procedure 2 with different overlapping segments of 

the detrended data does not alter the value of p(change) much.
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Segm ent p(change) posterior mode
1884-1933 0.0318 1929
1884-1943 0.0301 1933

1884-1953 0.0276 1949
1884-1963 0.0173 1957
1923-1996 0.2209 1955

1933-1996 0.4775 1955
1943-1996 0.0852 1955
1953-1996 0.0233 1956

Table 5.1. This table presents the results of p(change) and possible change-point location 
indicated by the posterior mode, using different segments of the Argentina data.

h.trend p(change) posterior mode
1 0.005695 1888
10 0.005114 1888
15 0.005448 1992
20 0.005889 1888
40 0.007013 1888

Table 5.2. Argentina data: This table gives the p(change) and possible change-point 
location indicated by the posterior mode, using a variety of h.trend values to remove the 
trend before carrying out the discontinuity test.

The assumption of normality of the detrended data (as shown in Figure 5.5) seems 

reasonable. Overall, the Bayesian approach does not provide sufficient evidence to support 

the presence of any abrupt change.

5.2.3 Using Nonparametric Regression

In this section, we will apply our nonparametric regression approach to detect discontinuities. 

We will first test for independence in the data via the ACF plot. If the independence 

assumption is valid, the discontinuity test is then carried out, without any incorporation 

of correlation. On the other hand, if the data show any possibility of correlation, we will 

then carry out the discontinuity test, accounting for correlation. As the Argentina data are 

equally spaced, the moving window approach will be used to model the correlation using an
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Figure 5.5. Argentina data: Checking normality of residuals after removal of trend using 
smoothing parameter of 13. The figure show a histogram of the residuals, superimposed 
with its corresponding expected normal density curves.

AR(1) model.

5.2.3.1 Test for independence

In this section, we are interested to test if there is any dependence structure in the data. As 

the data are equally spaced, we can simply look at the ACF plot to deduce if the independent 

data assumption is reasonable.

To evaluate the correlation of the data, we first remove the trend present in the data by 

fitting a smooth curve of a particular bandwidth, h.trend. Fig.5.6 shows the ACF plots of 

the residuals obtained using h.trend =  7 and h.trend =  14. Most of the lags are insignificant 

for both, implying that the data are almost independent. (This agrees with the ACF plot 

produced earlier for the isotonic regression approach, displayed in Figure 5.1.) Hence it 

seems reasonable to treat our data as independent in Section 5.2.3.2.

5.2.3.2 T reating  th e  d a ta  as independent

In this section, we will consider carrying out the discontinuity test based on independence. 

Figure 5.7 shows the left (solid) and right (dotted) smooths of the data using smoothing 

parameters h.test =  7 and h.test =  14 for the discontinuity testing, and their corresponding
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Figure 5.6. Argentina data: ACF plots of residuals obtained using h.trend =  7 (left 
diagram) and h.trend =  14 (right diagram).

reference bands. The latter are obtained by taking the average of the left and right smooths 

at each evaluation points, + / — the estimated standard error, e.se., of the differences between 

the two smooths. This provides a useful guide as to whether change-points are present. We 

would expect that if there are change-points, the left and right smooths will not both be 

contained within the reference bands. (This implies that the two smooths are more than 2 

standard errors apart). Hence, a good estimate of the locations of change-point are positions 

that have very large standardised difference st .di f f .  The latter is the difference between 

the two smooths divided by its corresponding estimated standard error of the differences 

between the two smooths.

The discontinuity test for h.test =  7 gives a p-value of 0.03. This indicates that the test 

is significant and hence there is sufficient evidence to support the claim that at least one 

abrupt change is present in the data. The years 1933, 1961 and 1955 (in decreasing order of 

st .di f f )  are not within the reference bands, suggesting possible change-point locations. The 

bottom panel displays the test with h.test =  14. Although the years 1955, 1975 and 1933 

are not contained within the reference band, the p-value is 0.17, which is not significant. 

Therefore there is not sufficient evidence to support the claim of any abrupt change here. 

Notice that the left and right smooths here are smoother compared to those in the top plot, 

as a larger bandwidth is used.
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Discontinuity test with h.test=7, p= 0.028
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Figure 5.7. Argentina data: Treating data as independent with different bandwidths. 
The top panel shows the graph with its left (solid) and right (dotted) smooths and its 
corresponding reference bands, with bandwidth, h.test = 7. The bottom panel was obtained 
using h.test = 14.

The difference in p-values for h.test = 7 and h.test =  14 suggests that the test is very 

sensitive to the value of h.test used. The change-point significance trace (CPST) that is 

proposed in Section 3.2.9 is displayed in Figure 5.8. From this plot, we can visualise the 

performance of the test in terms of how the significance of the test, the possible change- 

point locations, and the size of the abrupt change at the most probable location vary across 

different values of the smoothing parameters, h.test.

From the significance trace in the left panel, we can see that the test is significant only 

for h.test =  4 to 8. It is interesting to note from the change-point locator plot that the
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Figure 5.8. Argentina data: The left panel is a significance trace for a range of h.test 
from 3 to 20. The corresponding possible change-point locations are provided in the change- 
point location plot. The darker the tone of the line, the larger is the standardised difference 
between the left and right smooths, st .di f f .  Only values of \st.diff\  > 2.5 are plotted. The 
plot at the far right shows the corresponding differences between the left and right smooths 
with the highest st.d if / ,  at each bandwidth, h.test

change-point locations vary as h.test increases. For instance, at h.test =  7, the standardised 

differences of abrupt changes in descending order occur at 1933 (4,), 1961 ( |)  and 1955 (t), 

where the first two are abrupt drops, denoted by (4.) and only year 1955 shows an abrupt 

increase, denoted by (t). However as h.test increases above 12, the only year that has 

high standardised differences is 1955 (t), but the test is not significant. The change-point 

locations of the test when the p-value is significant are summarised in Table 5.3. Lastly, 

from the right panel, for p < 0.05, the abrupt changes as h.test increases from 4 to 7 are all 

positive, indicating abrupt drops in volume with decreasing magnitudes. The only exception 

is with h.test = 8 which shows an abrupt increase.

Figure 5.9 displays the fitted left and right smooths at the most probable change-point 

locations for various bandwidths, h.test — 4 to 14. It is quite clear that when a small
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h.test p value possible change-point locations arranged in decreasing order
4 0.025 1933 ( |), 1961 (;), 1909 (t)
5 0.021 1933 (4,), 1961 (4.)
6 0.023 1933 (;), 1961 ( |) , 1955 (t)
7 0.028 1933 (;), 1961 ( |) , 1955 (t)
8 0.038 1955 (t), 1933 (;), 1961 (I)

Table 5.3. Argentina data: Treating the data as independent using our nonparametric 
regression approach. This table gives the possible change-point locations for different h.test, 
where the discontinuity test is significant (p < 0.05). (|): abrupt drop, (t): abrupt increase
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Figure 5.9. Argentina data: Fitting left and right smooths at the estimated change-point 
locations. The jump sizes are given in the right panel of Figure 5.8

bandwidth, h.test is used, the nonparametric curve traces the data closely. The left and 

right smooths become much smoother when higher values of h.test are used. The choice of 

h.test thus rests upon the degree of smoothness we would like to attribute to the underlying 

trend.

Since the test is only significant at 4 < h.test < 8, our results are similar to those of
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Wu’s only when h.test =  8 is used where it gives an abrupt increase at 1955 with a jump 

size of 30. The other significant results suggest the most probable abrupt change is a drop at 

1933 instead. Using larger band widths from 9 to 20, the largest abrupt standardised change 

is also registered at 1955 with a jump size of about 21.5, but this is non-significant. The 

error variance, o2 is estimated by using the Rice’s variance estimator. Treating the data as 

independent, it is obtained as 244.21, which is lower than that estimated by Wu.

It is justifiable to treat the data as independent as the correlation in the data is very 

low. However, to allow for comparison to Wu’s test which accounted for correlation, we shall 

proceed to carry out our discontinuity test using the moving window approach, to account 

for correlation in the next section.

5.2.3.3 Modelling Correlation - Equally Spaced Setting

In this section, the moving window approach will be used to incorporate the estimation of 

correlation in the discontinuity test. This can also serve as a check on the sensitivity to the 

assumptions about the correlation structure.

Figure 5.10 shows the Argentina data with the left and right smooths with its corre­

sponding reference bands, that is obtained with a smoothing parameter h.test =  7 and using 

moving window of size 6 =  7, which gives an estimated correlation of 0.027. (Notice that the 

reference band is slightly wider than that in the independent case using the same smoothing 

parameter in Figure 5.7.) The p-value of the test is just significant at 0.048, indicating the 

presence of an abrupt change. The largest abrupt change is a decrease at 1933 (^), followed 

by 1961 (I) and 1955 (t). The estimated error variance is 257.9 which is quite close to that 

estimated by Wu.

The change-point significance trace is displayed in Figure 5.11. The left panel shows the 

significance trace using 6 =  7, with its corresponding plots of change-point locations and size 

of abrupt change. The test is significant only for h.test =  4 to 7, which is a subset of that 

for the independent case (h.test =  4 to 8). Similarly, the change-point locator plot produced 

here is simply a subset of that for the independent case. The most abrupt change picked out 

by the test for h.test =  4 to 7 is a drop in 1933 (|) . This is different from that obtained by
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Discontinuity test with b=7 and h.test=7, p= 0.048
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Figure 5.10. Argentina data: This figure shows the raw data with the left and right smooths 
with its reference bands, taking h.test = 7 and b = 7. This gives a significant result for the 
discontinuity test with p = 0.048.

Wu. However, the size of the most probable abrupt change over different h .test, is similar 

in both the correlated and independent cases.

As the test is sensitive to both the smoothing parameter, h.test, as well as the estimated 

correlation 6, we will proceed next to do a sensitivity analysis, varying the size of b over 

different h.test. Figure 5.12 shows several significance traces to indicate how the p-values 

change if different sizes of moving windows b are used to estimate the correlation, over 

different h.test. The test is significant only when small values of b are used with small 

bandwidths, h.test.

The choice of b does affect the result of the discontinuity test. The test is significant 

only when a small moving window of less than 10 observations is used, i.e. b < 10 with 

h.test < 8. This corresponds to lower estimated correlation as shown in Table 5.4. As b 

increases, the estimated correlation increases. This is as expected because as the size of the 

moving window increases, it will include observations where there might be abrupt jumps or 

it might be influenced by the presence of trend, resulting in an overestimation of correlation. 

This in turn will decrease the probability of detecting a jump. In light of the fact that the 

data are almost independent, and allowing for moderate smoothing, the use of b = 7 and

h.test = 7 in our earlier analysis seems appropriate.
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Figure 5.11. Argentina data: A moving window of size b = 7 is used to estimate the 
correlation of the data. The left plot is a significance trace over a range of h.test from 3 to 
20. The middle plot is the change-point locator plot. The plot at the far right shows the 
corresponding differences between the left and right smooths which have the highest s t . d i f f , 
at each bandwidth, h.test.

window size, b estimated correlation
5 -0.03
6 0
7 0.03
8 0.03
10 0.04
15 0.07
20 0.08
25 0.11
30 0.12

Table 5.4. Argentina data: Estimated correlations using different moving window sizes, b
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Figure 5.12. Argentina data: This figure shows the significance traces computed with 
different values of b indicated on the plot, over a range of h.test.

5.2.4 Summary of Argentina data analysis

In the analysis of the Argentina data, we have applied three different approaches to detect 

discontinuities.

Firstly, Wu’s isotonic regression test is significant, which indicates that the mean is not 

constant. The rejection of his null hypothesis does not necessarily imply the presence of an 

abrupt change, as it could also be due to an increasing trend. In this set of data however, it 

does seem tenable to suggest that the test for both the penalised and unpenalised functions 

are significant due to the presence of an abrupt change in 1955 (refer to Figure 5.1).

Using the Bayesian approach, there seems to be insufficient evidence to support the 

presence of any change-point. We first carry out the analysis assuming that the underlying 

trend is piecewise constant. There is no evidence of any change when the full dataset is used 

since the overall evidence of a change in the series, p(change), is very low. Using the segment 

1933-1996, p(change) is at the borderline case of 0.48, suggesting a possible change-point at 

1955, which is the same as that obtained by Wu. The test is however very sensitive to the 

length of the segment chosen. The values of p(change) are much lower for the other range of
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segments considered. We also consider removing a smooth trend in the data before carrying 

out the test. This results in even weaker evidence of any abrupt change. Hence there is no 

convincing evidence to support any abrupt change using this approach.

Next, for the nonparametric regression approach, we first look at the ACF plots of the 

detrended data using different h.trend to examine if there is any evidence of correlation 

present in the data. There is insufficient evidence to support any dependence in the data, 

hence it is justifiable to carry out the test treating the data as independent. This gives a 

significant result for low to moderate smoothing parameters, 4 < h.test < 8. The most 

probable change-points is at year 1933 (I) for 4 < h.test < 7, which is different from 

Wu’s. Our test gives the same significant result as Wu’s with a jump at 1955 (t) only when

h.test =  8 is used.

There is not much difference in the conclusion when the data are analysed with the 

moving window approach using a suitable moving window size 6, which gives an estimated 

correlation of less than 0.03. The test is however significant at a smaller range of h.test,

i.e. 4 < h.test < 7, which picks out the most abrupt change as a drop in 1933. As there 

appears to be a trend in the data, using a moderate smoothing parameter in this case, seems 

appropriate.

In summary, both the isotonic regression and our nonparametric regression approaches 

have sufficient evidence to suggest that the data are discontinuous, but not the Bayesian ap­

proach. However, the former two approaches differ in their proposed change-point locations. 

Wu’s test picks up 1955 (t) while our test suggests either 1933 (I) or 1955 (t) as the most 

probable change-points allowing for a moderately smooth trend. The year 1933 might not 

have been picked up by Wu as it is a monotonic test. A possible reason why the Bayesian 

approach has failed to detect any abrupt changes could be because it assumes a constant 

trend, which might not be the case in this data.

5.3 Application 2: The Global Warming D ata

For at least the past decade, the warming of our climate has been a topic of great concern 

for many scientists, policy-makers, and citizens. Some scientists perceive that the changes in
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global-mean temperatures are due to anthropogenic forcing influences (greenhouse warming), 

which are produced as a result of human activities and technology, and natural variability 

(Wigley et al., 1997, Jones et al., 2001). Others have remarked that it could be due to several 

other forces. Factors such as increase in solar luminosity, decrease in volcanic stratospheric 

aerosols, warming of carbon dioxide and increase in anthropogenic carbon aerosols (soot 

emissions) can result in an increase in the global temperature, while factors such as increased 

anthropogenic sulphur aerosols (Kaufman and Fraser, 1997) and stratospheric cooling due 

to decrease in ozone concentrations in the stratosphere can result in a decrease in global 

temperature.

Several IPCC Climate Models attribute the warming of 1940 to anthropogenic carbon 

dioxide, and cooling from 1940 to 1970 to anthropogenic sulphate aerosols, and resumed 

warming from 1970 to the present to the anthropogenic carbon dioxide (IPCC, 1995, 2001).

Most people think of global changes in temperature as varying smoothly, especially when 

we look at the gradual increase in temperatures over the past 30 years. However, history 

has revealed the harsh reality that there have been many instances where there were sudden 

shifts in temperatures, and these can possibly happen again, in the imminent future. The 

sudden impact that these could have on us and our environment might be costly, if we are 

caught unprepared (Abrupt Climate Change - Inevitable Surprises, 2002).

Hence, one of the first steps, which is of great importance, is to analyse our past data to 

examine if abrupt changes have indeed occurred, and to investigate what the possible causes 

could be. That will certainly advance our understanding of the climate, and help us to be 

more prepared to face the unavoidable surprises.

The global warming data considered here, which are a combination of both land and 

marine data, are provided by Jones et al. (2001). They consist of 145 equally spaced an­

nual temperature anomalies from 1856-2000, which are expressed in degrees Celsius and are 

relative to the 1961-1990 mean.

We shall apply the three different discontinuity tests to the data. Though it is appar­

ent that there is a general increase in the temperature, there are also periods of cooling 

(sometimes, abrupt) and thus, using isotonic regression might not be the most appropriate 

method. In the work presented by Wu et al. (2001), the natural variability is attributed
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to the short range dependent background noise; while the mean trend is attributed to the 

different external forces that are causing changes in the temperature. He tested nonpara- 

metrically for an increase. In the author’s approach, natural variability is also attributed to 

short range dependent background noise, but the trend is allowed to be smoothly varying, 

with no restriction that it has to be an increase, and interest lies in whether there is an 

abrupt shift in the smooth trend. On the other hand, the Bayesian approach assumes the 

trend to be piecewise constant and tests for an abrupt change in either the mean, correlation 

or variance simultaneously.

5.3.1 Using the Isotonic Regression Approach

Figure 5.13 shows the yearly global warming temperature anomalies, collected from 1856 to 

2000, with both the unpenalised and penalised isotonic regression functions by Wu et al. 

(2001), using a penalty of 0.15 for the latter.

Looking at the top left panel which shows the raw data against year, the overall impression 

is that there is an increase in the annual year anomalies from 1856 to 2000. However, there 

also seems to be some abrupt drops in temperature around 1910 and 1950. The top right 

panel gives the same plot with the addition of a fitted unpenalised function. The test 

statistic value is 383.52 which is highly significant, indicating that the mean is not constant. 

Looking at the unpenalised isotonic regression function, there seems to be intervals where 

the temperatures are fairly constant and intervals where there are gradual increases over 

a period of time. For instance, there is an increasing trend from 1856 to the mid 1860s. 

The temperatures then remain fairly constant, before another increasing trend, occurring 

from 1920 to 1940, and another one from 1980 to 2000. (This is very different from the 

unpenalised or penalised function in the Argentina data, which displays an abrupt jump 

in 1955.) The autocorrelation plot in the bottom left panel indicates the presence of short 

range dependence. Only the first lag is significant. The bottom right panel shows the plot 

of the raw data with the penalised isotonic regressions using a penalty factor of 0.15. Wu et 

al. (2001) estimated o2 =  0.01558 and showed that their test statistic is highly significant 

at both the 0.05 and 0.01 level.
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From Figure 5.14, the raw data appears positively skewed, which could be due to the 

presence of both trend and possibly abrupt changes. However, the normality assumption for 

the detrended data using isotonic regression seems reasonable.

The significant result of Wu’s test is only able to tell us that there is sufficient evidence 

to reject the null hypothesis and conclude that there is a change in the mean level of the 

global temperatures. However, it is not able to tell us if that is due to the presence of a 

monotonic trend or an abrupt change.

Looking at Figure 5.13, it is not obvious that the increase in temperatures occurs abruptly.
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Figure 5.13. Global Warming data: Detecting a change-point using isotonic regression with 
unpenalised and penalised functions of penalty factor 0.15. The top left panel displays the 
raw data; the top and bottom right panels display the raw data with the fitted unpenalised 
and penalised isotonic regression functions. The bottom left panel presents the ACF plot of 
the residuals after removal of the trend by isotonic regression.



CHAPTER 5. Applications 172
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Figure 5.14. Global Warming data: Checking normality of data. The left and right 
panels show histograms of the raw and detrended data using isotonic regression respectively, 
superimposed with their corresponding expected normal density curves.

Instead, it appears to have increased over a certain period of time. Hence it is plausible that 

the significance of the isotonic test is due to the presence of monotonically increasing trends.

5.3.2 Using the Bayesian Approach

In this section, the Bayesian change-point algorithm is first carried out on the raw data, 

as shown in Figure 5.15. The overall posterior probability of an abrupt change occurring 

somewhere in the series is 0.9428, which is very high. Hence it is highly likely that there is 

an abrupt change in the data.

The bottom plot of Figure 5.15 shows the posterior probabilities of the possible locations 

of a change-point conditional on its existence. The peak or posterior mode occurs at 1929, 

wlich gives the possible change-point location. Examining the data before and after 1929, 

the abrupt change can be attributed to a shift in the mean, rather than the correlation or 

va’iance.

As Thomas’ approach only assumes that the model has at most one change-point, the 

presence of several change-points might affect the analysis in an unpredictable way, as men- 

ticned in Section 5.1. We will apply both Procedures 1 and 2 mentioned in Section 5.1 to 

investigate if there are any further change-points.
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The data used for the analysis

1880 1900 1920 1960 20001860 1940 1980
Observations

Posterior probabilities conditional on existence of change-point

p(change) = 0.9428

1925
1933

1936
1919

1940 1960 1980 20001860 1880 1900 1920
Location of change-point

Figure 5.15. Global Warming data: A Bayesian approach to detect a change-point, as­
suming a constant trend. The top panel shows the full data under study, with a dotted line 
indicating where the most probable change-point might occur if one assumes its existence. 
From the plot of posterior probabilities conditional on a change-point at the bottom panel, 
the posterior mode gives a possible change-point location at year 1929.

For Procedure 1, the analysis is carried out using the first 74 observations. The value of 

p(change) is low at 0.02969, and hence there is unlikely to be any change-point in this segment 

(from 1856-1929). However, if one insists on inserting a change-point, the most probable 

location is 1864. The p(change) for the second segment, from 1930-2000, is moderate at 

0.6093, and the most probable change-point location is 1986. This is displayed in Figure 5.16.
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Further segmentation of the data gives very low p(change) values, hence we can conclude 

that there could possibly be just two abrupt changes, occurring at 1929 and 1986.

Using Procedure 2, with overlapping segments 1856-1945 and 1935-2000 gives p(change) 

of 0.7706 and 0.5856 respectively, and similar change-point locations as Procedure 1. The 

data are then partitioned at their change-point location and subjected to the change-point 

algorithm again. Subsequent analysis give very low p(change), implying no other change 

point present.

The test is however sensitive to the segment that is being used for the change-point 

analysis. Table 5.5 shows how the values of p(change) and the change-point location vary as 

different segments of the data are used, but most segments include a possible change-point 

at 1929. The other possible change-points are 1986 and 1948, though arguments against 

those points are that the overall evidence is not very strong for the former, while the latter 

is not very consistent when different ranges of segments are used.

segm ent p(change) posterior mode
1856-1940 0.343 1864
1856-1945 0.771 1929
1856-1955 0.572 1929
1856-1965 0.694 1929
1856-1975 0.913 1929
1856-1985 0.969 1929
1856-1995 0.976 1929
1856-2000 0.943 1929
1925-2000 0.500 1986
1930-2000 0.609 1986
1935-2000 0.586 1986
1945-2000 0.828 1948
1955-2000 0.384 1986
1965-2000 0.482 1978

Table 5.5. Analysis of change-point using different segments of the Global Warming data, 
via the Bayesian approach.

Next, we attempt to remove the trend in the data, using h.trend =  13, and carry out the 

change-point algorithm again. The value of p(change) is very low at 0.004815, indicating no 

support to reject the hypothesis that the mean is constant. Table 5.6 presents the results
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The data used for the analysis
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Figure 5.16. Global Warming data: Bayesian approach to detect change-point using part 
of the data from 1930 to 2000. The overall posterior probability of a change is 0.6093, which 
is relatively high. The bottom plot displays the posterior probabilities conditional on a 
change-point. The posterior mode gives a possible change-point location at the year 1986.

when other values of h.trend are used. The overall evidence of any change remains very low.

If the underlying trend in the data is assumed to be constant, then the change-point 

algorithm detects presence of an abrupt change at 1929. Another change could be present, 

but the evidence for that is not that strong. However, if the trend of the data is removed 

and the test carried out on the residuals, there is no evidence that there is any possible 

change-point in the series since p(change) is low.
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h.trend p(change) posterior mode
10 0.005114 1888
15 0.005448 1992
20 0.005889 1888
40 0.007013 1888

Table 5.6. Global Warming data: This table gives the p(change) and possible change-point 
location indicated by the posterior mode, using a variety of h.trend values to remove the 
trend before carrying out the discontinuity test.

5.3.3 Using a Nonparametric Regression Approach

We will now consider the approach that we have developed, a nonparametric regression 

approach to change-point detection. We will first consider the ACF plot of the residuals to 

see if it is justifiable to assume that the data are independent.

5.3.3.1 Test for independence

Series : res.h7 Series : res.h14

COcz>

a>

O 10 2 0  . 3 0Lag ■40 SO

co

CSI
o 10 2 0  . 3 0Lag 4 0 5 0

Figure 5.17. Global Warming data: ACF plots of residuals obtained using h.trend =  7 
and h.trend =  14

Figure 5.17 displays the ACF plots of the residuals obtained using h.trend =  7 and 

h.trend =  14. Only the first lag is significant for both. (This is quite similar to the ACF 

plot obtained using isotonic regression in Figure 5.13.) This can imply either that there
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is correlation present in the data (if we have successfully removed the trend), or that the 

correlation can be due to the trend which has not been completely removed, and hence it 

‘flows’ into the residuals. Abrupt changes in the data might also contribute.

It seems reasonable to assume the presence of short range dependence structure, and 

proceed to carry out the discontinuity test, using the moving window approach to account 

for correlation.

5.3.3.3 M odelling C orre la tion  - Equally  Spaced S e ttin g

In this section, the moving window approach is used to model the underlying correlation in 

the discontinuity test.

D is co n tin u ity  te s t w ith  b = 7  a n d  h .te s t= 7 , p =  0 .0 3 6

COd

S*

1060 20001660 1880 1900 1920 1940

F igure 5.18. Global Warming data: This figure shows the raw data with the left and right 
smooths with its reference bands, taking h.test =  7 and 6 =  7. This gives a significant result 
for the discontinuity test with p =  0.036.

Figure 5.18 shows the global warming data with the left and right smooths with their 

corresponding reference band, which is obtained using moving window of size, 6 =  7 and a 

smoothing parameter, h.test = 7. The estimated correlation coefficient is 0.2. The p-value 

of the test is significant at 0.036, indicating the presence of an abrupt change. The largest 

abrupt change is a decrease at 1945 (!), followed by 1956 (t), 1901 (4.) and 1895 (t).

The change-point significance trace is displayed in Figure 5.19. The left panel shows 

the significance trace using 6 =  7 and its corresponding plots of change-point locations and
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Figure 5.19. Global Warming data: A moving window of size b = 7 is used to estimate 
the correlation of the data. The left plot is a significance trace over a range of h.test from 3 
to 20. The middle plot is the change-point locator plot, showing the possible change-point 
locations. The plot at the far right shows the corresponding differences between the left and 
right smooths which have the highest st .di f f ,  at each bandwidth, h.test

size of abrupt change. The test is significant for moderate to large smoothing parameters, 

7 < h.test < 20.

The change-point locator plot in the middle panel displays the possible positions of 

the change-points, and shows that the change-point locations vary as h.test varies. For 

h.test = 7, the largest drop occurs at 1945 (4), followed by abrupt changes in 1956 (t) and 

1901 ( |) . For h.test = 8 and 9, the largest drop occurs at 1945 ( |) ,  followed by another 

abrupt cooling between 1901- 1902 ( |) , and an abrupt jump at 1956 (t). For h.test = 10 — 12, 

the three plausible change-points are all abrupt coolings at around 1944-1947 ( |) , 1901-1903 

( |) , and 1963 (4,), in descending order. As h.test increases further, years 1901-1903 ( |)  take 

over as the most probable change-point of abrupt cooling, followed by 1945-1947 ( |)  and 1963 

( |). It is interesting to note that for h.test > 9, the three most probable change-points with 

highest standardised differences greater than 2.5, are all points of abrupt cooling. Table 5.7
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h.test p — value possible change-point locations arranged in decreasing order
7

8,9
10-12
13-16

17
18-20

0.036 
0.029,0.027 

0.025,0.019, 0.01 
0.004, 0.001, 0,0 

0 
0

1945 ( |) , 1956 (t), 1901 (!) 
1945 (4), 1901 (!)
1945 (J,), 1901 (!)

1901 (!), 1945 (!), 1963 (!) 
1901 (!), 1963 (!), 1945 (!) 
1901 (!), 1963 (!), 1929 (t)

Table 5.7. Global warming data: The table displays the three most possible change-point 
locations where \st.dif f \  > 2.5 for 7 < h.test < 20 where the discontinuity test is significant 
(p < 0.05). (!): abrupt drop, (t): abrupt increase

summarises the three most plausible change-points (which are at least 5 years apart), whose 

\st .diff\  > 2.5 and p < 0.05.

From the plot of the size of the abrupt changes displayed at the right panel of Figure 5.19, 

we can see that most of the abrupt changes over the smoothing parameters are positive, which 

indicate rapid drops in temperature anomalies of about 0.21-0.26 degree Celsius.

Next, we do a sensitivity analysis by varying the size of the moving window b over different 

h.test. The estimated correlations using different b are provided in Table 5.8. As the size 

of b increases, the estimated correlation increases. Using a small moving window is almost 

equivalent to assuming that the data are independent. From Figure 5.20, we can observe 

that the test is significant for almost all h.test for low b (less than 8). For moderate 6, the 

test is significant for moderate h.test and above.

We have selected the use of a small moving window of size 6 =  7 in our analysis. It seems 

justifiable to use this value since by looking at the data, there appears to be the presence 

of both trend and abrupt changes. In such a situation, a small moving window would be 

recommended as it is more robust to the presence of trends and jumps. However, by doing 

this, we are also assuming that the correlation is not very large. This seems a reasonable 

assumption, since by looking at the ACF plots in Figure 5.17, the correlation of the first 

lag is only about 0.3, after quite a large smoothing parameter is used to remove the trend. 

Considering the fact that this value might be overestimated due to the presence of abrupt 

changes that might not be fully removed, the underlying correlation may be less than that.
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window size, b estimated correlation
5 0.07
6 0.13
7 0.20
8 0.23
9 0.30
10 0.31
15 0.36
20 0.46
25 0.50
30 0.54

Table 5.8. Global Warming data: Estimated correlations using different sizes of moving 
windows, b.
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Figure 5.20. Global warming data: This figure shows the significance traces computed 
with different values of b indicated on the plot, over a range of h.test.

Hence from Table 5.8, the recommended values of b will be less than 10.

The normality assumption of the detrended data using h.trend =  7 and 14 is checked 

and it appears reasonable (refer to Figure 5.21). Using our discontinuity test, accounting 

for correlation, there is convincing evidence to suggest that the data are discontinuous, as

Significance trace at different b
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Figure 5.21. Global Warming data: Checking normality of data. The left and right 
panels show histograms of detrended data using smoothing parameter h.trend =  7 and 14 
respectively, superimposed with their corresponding expected normal density curves.

the test is significant over a wide range of smoothing parameters, 7 < h.test < 20. Though 

the locations of the change-points are sensitive to the value of h.test used, which is the 

degree of smoothness attributed to the underlying trend, they all indicate abrupt coolings. 

This suggests that though global temperatures are increasing over the years, there have been 

periods of abrupt coolings.

5.3.4 Summary of Global Warming data analysis

The results of all three tests are significant. For the isotonic regression approach, the test 

using both penalised and unpenalised loglikelihood ratio test statistics, gives significant 

results, and so we reject the null hypothesis that the mean level is constant. The fitted 

isotonic regression function seems to suggest that this might be due more to monotonically 

increasing trends over certain periods of time, rather than abrupt changes.

For the Bayesian approach, the test gives significant results, implying that the underlying 

mean structure is not constant. The algorithm is first applied to the raw dataset with no 

trend removed. Procedures 1 and 2 give indications that there are two abrupt changes present 

in the series, namely an abrupt increase in 1929, followed by possibly another one in 1986, 

although the evidence for the latter is not strong. However, when overlapping segments are
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used in Procedure 2, the test is sensitive to how the segments are partitioned. A smooth 

curve is also fitted to remove the trend in the data, and the test is conducted again on the 

residuals. This gives a non-significant result, possibly because the smooth curve might have 

removed any possible abrupt changes present.

For the nonparametric regression approach, we first investigate if the data can be assumed 

to be independent. From the ACF plot of the residuals, obtained after fitting a smooth curve 

of a particular smoothing parameter to remove the trend, only the first lag is shown to be 

significant.

Accounting for correlation in the data, the discontinuity test is carried out using the 

moving window approach with an appropriate window of size b = 7. The test is significant 

over a wide range of smoothing parameters. Hence there is convincing evidence to suggest 

that there are abrupt changes in the data, in the presence of a smoothly varying trend. 

The change-point locations are however sensitive to the smoothing parameter used, though 

they do reach a common agreement that the most probable change-point at each smoothing 

parameter is an abrupt drop in temperature. Moreover, it is possible that there might be 

more than one change-point, as indicated from the change-point locator plot, which shows 

mainly abrupt drops in temperature, except for a few exceptions. Hence, allowing for a 

moderate to very smooth underlying trend, there is convincing evidence that there have been 

periods of abrupt coolings in global temperatures. Nonetheless, the test is also sensitive to 

the moving window size that is used to estimate the correlation in the data. A small moving 

window is recommended in this case as it is more robust to the presence of both trends and 

jumps.

In conclusion, though the three discontinuity tests are all significant, they differ in the 

interpretation of the results. Wu’s test suggests that the mean is not constant, possibly due 

to the monotonic trend of increasing global temperatures. As for the Bayesian approach, 

the overall evidence of an abrupt change present is very high and it gives the most probable 

change-point at 1929. It is not surprising that this change-point is also picked up by our 

test when we use a large smoothing parameter of 18 and above to give a very smooth (close 

to linear) trend. However, allowing for a moderate to a very smooth underlying trend, our 

discontinuity test has managed to pick up the presence of other abrupt changes in the data.
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In fact, the more prominent ones are actually abrupt coolings in 1901, 1945 and 1963. This 

is in line with what several scientists have been concerned about regarding sudden shifts in 

temperatures (Abrupt Climate Change - Inevitable Surprises, 2002). The isotonic regression 

test is obviously unable to pick this up since it is monotonic. The Bayesian approach, on the 

other hand, might have been affected by the presence of positive trend in the data, which in 

turn hindered the detection of the abrupt drops in temperature.

5.4 Application 3: The River Clyde D ata

Water quality in the River Clyde in Scotland is routinely monitored by the Scottish Envi­

ronment Protection Agency (SEPA), which is the public body in charge of environmental 

protection in Scotland. In 1985, a sewage treatment plant was upgraded. It is of interest to 

investigate if this new treatment has improved the quality of the water, by analysing the level 

of the dissolved oxygen in the river, which is a variable that is closely linked to the quality 

of the water. Measurements of the surface level dissolved oxygen at one station on the river 

have been collected from 1982 to 1988. There are 70 data-points which are unequally spaced 

over time.

Plot of dissolved oxygen level against year Plot of residuals after removal of seasonal effects
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Figure 5.22. River Clyde data: The left panel shows the original dissolved oxygen with a 
fitted cosine curve to remove the seasonal effects present, while the right panel shows the 
residuals obtained after removal of seasonal effects.
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The left panel in Figure 5.22 shows the original dissolved oxygen level against year (1982 

to 1988), with a cosine curve fitted by nonlinear least squares to remove the seasonal effects 

present in the data. The right panel shows the residuals after seasonal effects have been 

removed. These will be the observations used for analysis in the following sections, to 

investigate if there is any abrupt change in the mean level of dissolved oxygen.

Subjectively, there appears to be a gradual decrease in dissolved oxygen level from 1982 

to 1985 and possibly an abrupt increase mid 1985, and a continual decrease from 1985 to 

1988. There seems to be a considerable amount of variation in the data, which might suggest 

that the seemingly abrupt increase we observe in 1985 could be due to random variation, 

instead of an abrupt change. We would expect, however, that it will be difficult to detect a 

jump, in the presence of such high variation.

Though the River Clyde data are unequally spaced, they are quite regularly spaced in 

terms of seasons and thus it can be said to be predominantly a regularly-spaced dataset. 

Hence we will first look at the data, treating them as equally spaced and compare the 

analysis, using the three approaches in Sections 5.4.1, 5.4.2 and 5.4.3, as we have done in the 

earlier two applications. This also allows a comparison of the three methods. Lastly, we will 

also carry out our nonparametric regression approach that is adapted for unequally spaced 

observations in discontinuity testing, to see if there is any difference in the results.

5.4.1 Using the Isotonic Regression Approach

In this section, we will apply the isotonic regression approach to the data where the seasonal 

effects have been removed.

The top left panel in Figure 5.23 shows the plot of the dissolved oxygen level after the 

removal of the seasonal effects, measured from 1982 to 1988. The top and bottom right 

panels display the unpenalised and penalised isotonic regression functions respectively. The 

latter uses a penalty factor of 0.15. The error variance is estimated as 3.50. The unpenalised 

test statistic takes the value 7.075, which is significant at the 0.05 level, hence allowing us to 

reject the hypothesis that the underlying mean trend is constant. However, using a penalty 

factor of 0.15 for the penalised isotonic regression gives a test statistic value of 5.483, which
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test statistics 7.075 , no penalty
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Figure 5.23. River Clyde data: Detecting a change-point using isotonic regression with 
unpenalised and penalised functions of penalty factor 0.15. The top left panel displays the 
raw data; the top and bottom right panels display the raw data with the fitted unpenalised 
and penalised isotonic regression functions. The bottom left panel presents the ACF plot of 
the residuals after removal of the trend by isotonic regression.

is not significant at the 0.05 level, with reference to the critical values generated by Wu et al. 

(2001). Subsequent values of the test statistic using smaller penalty factors of 0.05 and 0.1, 

are 6.506 and 5.982 respectively, which are both not significant at the 0.05 level. Hence, 

using penalised isotonic regression suggests no evidence to reject a constant mean.

From the ACF plot at the bottom left panel of Figure 5.23, almost all the lags are 

insignificant, indicating that the data can actually be assumed to be independent. From 

Figure 5.24, we can observe that the raw data on the left panel appears to be positively 

skewed. The assumption of normality is more reasonable for the detrended data using
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isotonic regression from the adjacent plot.

Using the isotonic regression approach, the test is only just significant if we use the 

unpenalised log likelihood ratio test statistics, which suggests an abrupt change at mid 

1985. On the other hand, using a penalty factor of 0.05 and above gives insignificant results, 

implying that there is insufficient evidence to reject the hypothesis that the underlying mean 

structure is constant.

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Raw data Detrended data

Figure 5.24. River Clyde data: Checking normality of data. The left and right pan­
els show histograms of the raw and detrended data using isotonic regression respectively, 
superimposed with their corresponding expected normal density curves.

5.4.2 Using the Bayesian Approach

In this section, we apply Thomas’ Bayesian change-point algorithm to the data. As the 

sample size is quite small, only Procedure 1 which uses the whole dataset is considered for 

the analysis. His model assumes that the underlying trend is constant which might not be 

applicable in this data.

We will first attempt to run his change-point algorithm, taking the trend as constant. The 

top plot of Figure 5.25 gives the volume of dissolved oxygen level against year. The dotted 

line indicates where the most probable change-point occurs if one assumes its existence, 

which is about March 1986. It appears that there might be some differences in the variances
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The data used for the analysis
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Figure 5.25. River Clyde data: A Bayesian approach to detect a change-point. The 
top panel shows the dissolved oxygen level with a dotted line indicating where the most 
probable change-point might occur if one assumes its existence. From the plot of posterior 
probabilities conditional on a change-point at the bottom panel, the posterior mode gives a 
possible change-point location at year 1986.26

between the two segments before and after the change-point. However, the evidence of the 

presence of any change is too weak to reach any conclusion.

Next, let us attempt to remove any trend in the data before carrying out Thomas’ 

algorithm. Using h.trend =  1, the value of p(change) obtained is very low at 0.091, indicating 

no support of a change in the series. The analysis is repeated with a range of h.trend and
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h.trend p(change) posterior mode
0.4 0.092 47
0.7 0.095 46
1.0 0.091 46
1.3 0.081 46
1.6 0.070 53
1.9 0.064 53
2.2 0.052 53
3.0 0.065 53

Table 5.9. River Clyde data: This table gives the p(change) and possible change-point 
location indicated by the posterior mode, using a variety of h.trend values to remove the 
trend before carrying out the discontinuity test.

the results are displayed in Table 5.9. The value of p(change) remains very low.

Applying the Bayesian approach to both the raw and detrended data, there appears to 

be no evidence to support the presence of a change-point in the series.

5.4.3 Using the Nonparametric Regression Approach

We will now consider the approach that we have developed, using nonparametric regres­

sion approach for change-point detection. The structure of this section follows that of Sec­

tion 5.2.3, with the addition of the modelling of the correlation structure in an unequally 

spaced setting.

5.4.3.1 Test for independence

As the River Clyde data are unequally spaced, we will just focus on the test of constant 

variogram devised by Diblasi and Bowman (2001), to test if there is a dependence structure 

in the data, instead of using the ACF plot. This test involves the choice of a few parameters, 

namely, h.trend, maxdist, nbins and h.test as mentioned earlier in Section 5.1.3. We first 

look at how the test performs as we vary the distance at which the empirical variogram is 

evaluated with maxdist =  6,5,4,3, fixing the others at nbins =  50 and h.trend =  h.test = 

1.4.

The top left panel in Figure 5.26 displays the square root of the pairwise differences
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Figure 5.26. River Clyde data: A test for constant variogram using maxdist =  3, 4, 5,6, 
coupled with nbins =  50, h.test = h.trend = 1.4.

of the absolute values of the residuals used to obtain the empirical variogram after the 

removal of trend with h.trend =  1.4 at maxdist =  6. The p-value of the test is 0.18, 

which is not significant, and hence there is insufficient evidence to reject the hypothesis 

that the underlying data are independent. As in the conclusions drawn from the p-value, 

the smoothed variogram is indeed contained within the 95% reference bands. However, as 

the value of maxdist decreases, the p-value also decreases and is significant at 0.005 for 

maxdist = 3. As expected, the smoothed variogram is not contained within the reference 

bands as can be observed from the bottom right panel. Hence the distance at which the 

empirical variogram is evaluated does affect the test to a certain extent.

Besides varying the value of m axdist, the sensitivity of the test to the other parameters, 

h.trend , nbins, over different h.test is also investigated. The significance traces using dif­

ferent h.trend and nbins are plotted in the left and right panels of Figure 5.27 respectively. 

We have fixed nbins = 50 for the former, and h.trend = 1 .4  for the latter.

From the left panel, we can observe that as h.trend  increases, the p-value decreases from 

above to below the 0.05 level. This implies that if a large smoothing parameter is used to



CHAPTER 5. Applications 190

Significance trace at different h.trend Significance trace at different no. of bins

o 5 1 o 1 5 2 0

60'

0 5 10 1 5 2.0 2 5

F igure 5.27. River Clyde data: The left panel shows the significance trace using different 
h.trend  as denoted on the plot, with nbins =  50 for a test of constant variogram. The 
right panel displays a significance trace using different nbins, with h.trend = 1.4. Both have 
maxdist fixed at 5.

remove the trend in the data, the test will be significant, over almost all h.test < 2. This 

is not too surprising as using a small smoothing parameter to remove the trend, might also 

remove any correlation that is present in the data. However, the issue that correlation might 

be falsely introduced if the trend or jump is not properly removed, remains. The test is 

however not sensitive to the choice of nbins.

Most of the p-values are non-significant for a wide range of parameters that we have 

investigated, indicating no dependence structure is present. Nevertheless, the result is not 

very conclusive, as it seems to be dependent on some of the parameters used in the algorithm, 

namely h.trend and to a lesser degree maxdist and h.test. Hence, we will proceed to analyse 

the data, treating it as independent as well as modelling the correlation.
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5.4.3.2 Treating the data as independent

In this section, the data are assumed to be independent. Figure 5.28 shows the discontinuity 

test being carried out for h.test =  0.7 and 1.7. Their left and right smooths are super­

imposed onto the plot with the corresponding reference band. The p-values are 0.68 and 

0.045 respectively, whereby only the latter is significant, indicating the presence of at least 

one discontinuity. The presence of a discontinuity is more obvious from the bottom panel 

where the widths of the reference bands are narrower and the left and right smooths are not 

contained within the 95% reference band around 1985-1986. The error variance is estimated 

as 3.12, slightly lower than that estimated by Wu et al. (2001).

The great difference in p-values for h.test =  0.7 and h.test = 1 .7  suggests that the test is 

very sensitive to the value of h.test used. The change-point significance trace, CPST, shown 

in Figure 5.29 illustrates how the test performs when a variety of h.test values are used, 

together with the possible change-point locations and the sizes of the most abrupt changes.

We can observe from the left panel that the test is significant for values of h.test greater 

than 1.6, and is insignificant otherwise. The corresponding change-point locations for the 

former are around mid 1985 with a jump of about 3. In fact, there is only a slight variation 

in the change-point locations, all being around mid to late 1985, over the range of h.test 

considered. The abrupt changes are mainly abrupt increases, except at lower bandwidths, 

h.test < 1, which are abrupt drops.

Figure 5.30 illustrates the possible change-point locations with the fitted left and right 

smoothers, using h.test =  0.4 to 2.2. When bandwidths h.test of 1.6 and 2.2 are used, the 

underlying trend of the data is close to linear. As expected, using a smaller bandwidth gives 

a more irregular trend. However, since the test is significant only for h.test > 1.6, there is 

convincing evidence that there is an abrupt increase in mid 1985 only if we are willing to 

assume that the underlying trend is very smooth.

5.4.3.3 Modelling Correlation - Equally Spaced Setting

In this section, we will incorporate the estimation of the correlation in the data using the 

moving window approach in our discontinuity test. Though the data are irregularly spaced,
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F igure  5.28. River Clyde data: Treating data as independent with different bandwidths. 
The top panel shows the graph with its left (solid) and right (dotted) smooths and its cor­
responding reference bands, with bandwidth, h.test = 0.7. The bottom panel was obtained 
using h.test = 1.7.

the correlation is still modelled using an AR(1) model to allow for comparisons with the 

other two tests.

Figure 5.31 presents the data with the left and right smooths and their reference band, 

using b = 15 and the same smoothing parameter as used earlier, h.test = 1.7. The estimated 

correlation coefficient is negative at -0.081. This gives a significant result with a lower p- 

value of 0.011 than in the independent case. The largest abrupt change is still registered at 

mid 1985. The error variance is estimated at 2.88. This results in the reference bands being 

narrower than those in the independent case with the same smoothing parameter.
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F ig u re  5.29. River Clyde data: The left plot is a significance trace which is a plot of the 
p-values over a range of h.test from 0.4 to 2.8. The corresponding possible change-point 
locations are provided in the adjacent plot. The plot at the far right shows the size of the 
most abrupt change.

The change point significance trace (CPST) is displayed in Figure 5.32, which is quite 

similar to Figure 5.29 for the independent case. The differing features are that the test is 

significant over a wider range of smoothing parameters, h.test > 1 . 2  and with the addition 

of a few other possible change-point locations.

Next, we perform a sensitivity analysis by varying the size of the moving window b over 

different values of h.test. From Figure 5.33, we can observe that the test is significant over 

a wider range of h.test for lower b. However, the test is not significant over all h.test only 

when a large b of size 28 is used, which corresponds to an estimated correlation of 0.069. The 

estimated correlations using different b are provided in Table 5.10. As the size of b increases, 

the estimated correlation increases. It is interesting to note that using a moving window 

size of less than 25 gives a negative correlation, while a size of 25 and above gives positive 

correlations.

0.5 1.0 1.5 2.0 2.5
B an d w id th , h .te st
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F igu re  5.30. River Clyde data: Fitting left and right smooths at the estimated change-point 
locations. The jump sizes are given in right plot in Figure 5.29.
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F igure  5.31. River Clyde data: This figure shows the raw data with the left and right 
smooths and its reference bands, taking h.test = 1 . 7  and b = 15. This gives a significant 
result for the discontinuity test with p = 0.011.
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F ig u re  5.32. River Clyde data: A moving window of size b =  15 is used to estimate the 
correlation of the data. The left plot is a significance trace over a range of h.test from 0.4 
to 2.8. The middle plot is the change-point locator plot. The plot at the far right shows the 
size of the most probable abrupt change.

size of m oving w indow estimated correlation
4 -0.293
7 -0.134
10 -0.088
13 -0.089
15 -0.081
16 -0.069
19 -0.067
22 -0.038
25 0.001
28 0.069
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T able 5.10. River Clyde data: This table shows the estimated correlation coefficient of 
an AR(1) model, using the moving window approach. The estimated correlations are all 
relatively low, and are negative for b < 25 and positive for b > 25.
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Figure 5.33. River Clyde data: This figure shows the significance traces computed with 
different values of b indicated on the plot, over a range of h.test.

At first sight, the significant results for b < 25 for a wider range of h.test might seem 

surprising in comparison to the independent case. However, this is because using b < 25 gives 

negative correlations. The power of the test to detect discontinuities is better if the data 

are negatively correlated. This gives more convincing evidence of the presence of an abrupt 

change in mid 1985, as the test is significant over a wider range of smoothing parameters.

5.4.3.4 M odelling C orrelation - U nequally Spaced S etting

As the data are in fact unequally spaced, it would be more appropriate to model the un­

derlying correlation using the variogram approach, as we will attempt to do in this section. 

First, we will use the residual variogram approach introduced in Section 3.2.7.

As displayed at the top left panel of Figure 5.34, a small bandwidth, h.trend =  0.4, is 

used to remove the underlying trend of the data. This gives the residuals as seen in the 

adjacent plot. An empirical variogram is then produced where a theoretical exponential 

covariance structure is fitted by non-linear least squares to obtain an estimate of the under­

lying correlation structure. The range and sill are estimated as 0.016 and 3.23 respectively, 

using lag =  0.2, maxdist =  5 and minpairs = 30. For a range of 0.016 of an exponential
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F igure 5.34. River Clyde data: An example to illustrate the estimation of the dependence 
structure via the variogram approach. We use h.trend = 0.4 and h.test = 2.5 for the 
discontinuity test. This gives a p-value of 0.042, which is significant indicating the presence 
of an abrupt change.

model, the apparent range is 0.048 indicating a low correlation where only data within half 

a month are dependent.

The discontinuity test is then carried out, accounting for correlation, to see if there is 

any presence of discontinuity. A p-value of 0.042 is obtained, thus providing evidence of a 

discontinuity which appears to occur in mid 1985, as can be seen in the bottom right panel 

of Figure 5.34.

As shown earlier in the simulation study, the bandwidth to remove trend, h.trend , has 

a great influence on the power to detect a change-point. Since our discontinuity test is 

only dependent on the range and not the sill of the variogram, we will just concentrate on 

the range that is estimated when different h.trend are used to remove the trend. This is 

illustrated in Figure 5.35 with the corresponding estimated ranges for each h.trend given
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Figure 5.35. River Clyde data: The figure displays a significance trace using different 
h.trend, as denoted on the plot, to obtain residuals which are then used to estimate an 
exponential covariance structure.

bandw idth , h .trend estimated range
0.4 0.016
0.5 0.019
0.7 0.024
1 0.029

1.3 0.034
1.6 0.037
1.9 0.040
2.2 0.042

Table 5.11. River Clyde data: This table shows the estimated ranges of an exponential 
ocvariance structure using different h.trend

in Table 5.11. The test is only significant for h.test > 2 when a small h.trend of 0.4 is 

used. Using the other values of h.trend, the test is not significant over the range of h.test 

considered.

An alternative approach to incorporating the estimation of correlation in an unequally 

spaced setting is to use the DDT algorithm. The estimated correlation using different 

smoothing parameters for the first stage, hi =  h.trend, is provided in Table 5.12. We
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bandw idth , h.trend estim ated  range
lag =  0.16 lag =  0.2

0.4 0.017 0.016
0.7 0.021 0.024
1 0.025 0.029

1.3 0.028 0.034
1.6 0.030 0.037
1.9 0.025 0.028
2.2 0.026 0.029

Table 5.12. River Clyde data: This table shows the estimated ranges of an exponential 
ocvariance structure using different hi =  h.trend for the first stage of the DDT algorithm.

have also investigated the use of different lags to examine how much this factor influences 

the estimation. The rest of the parameters, maxdist and minpairs, are similar to those used 

earlier.

As we can observe from Table 5.12, the estimated ranges with lag =  0.2 are similar to 

Table 5.11 (obtained earlier using the residual variogram approach) until h.trend =  1.6, 

and are much lower for subsequent h.trend. This is not surprising since the adjustment 

of the data occurs only when the test is significant for hi > 1.6 for the first stage of the 

DDT algorithm. This demonstrates the usefulness of the DDT algorithm and how it avoids 

overestimation of the correlation in the presence of abrupt changes.

Nevertheless, using the DDT algorithm in this data set, does not improve the result of 

the discontinuity test already obtained using the residual variogram approach, as the test is 

only significant if the estimated range is less than 0.02 over large h.test.

From Table 5.12, the estimation of the correlation is shown to be very sensitive to the 

parameter lag that is used. It is not possible to estimate the range at all using lags of 0.1 to 

0.15, but it is possible with values of 0.16 and 0.2, which involve more averaging and may 

not give a good estimation of the actual range. There are some differences in the ranges 

estimated by the latter too.

The difficulty in obtaining a good estimate of the range may be due to the fact that 

the data are almost independent; or possibly negatively rather than positively correlated; or 

simply that the dataset is too small, resulting in too few observations nearer the origin, to
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aid the estimation of the range.

An example to illustrate the use of the DDT algorithm is featured in Figure 5.36 with 

hi =  h.trend =  h2 = 1.7, using lag of 0.2. The left panel shows the first step of the 

algorithm, carried out assuming that the data is independent with h.test =  1.7, which gives 

a significant p-value of 0.028. The data are then adjusted at the most probable change- 

point located at mid 1985. The top right panel shows a smooth curve fitted using the same 

bandwidth used to remove the trend in the data. The residuals thus obtained are used 

to compute the empirical variogram as shown at the bottom left panel. An exponential 

variogram model is fitted by nonlinear least squares to obtain the range and sill as 0.028 

and 3.31 respectively. The discontinuity test is carried out again, accounting for correlation. 

This gives a non-significant p-value of 0.18. From the significance trace, the test is not 

significant over a wide range of h.test values considered. However, when lag =  0.12 is 

used instead, the data are almost independent. (It is not possible to fit the exponential 

variogram model as the variogram estimate for the first bin is higher than that of its three 

nearest neighbours). This is displayed in Figure 5.37. The data are then assumed to be 

independent. The corresponding significance trace is similar to that in the independent case 

seen earlier.

The assumption of normality of the detrended data using h.trend =  0.7 and 1.7 seems 

reasonable, as displayed in Figure 5.38.

5.4.4 Summary of River Clyde data analysis

In the analysis of the River Clyde data, which is irregularly spaced over time, the seasonal 

patterns are first removed before the residuals examined for any change-point in the data.

The evidence from the isotonic regression is not very strong. Results from the tests using 

the unpenalised and penalised isotonic regression functions do not agree. Only the former is 

just significant, suggesting a change-point in mid 1985. The test might have been affected by 

the decreasing trend before 1985. There is also insufficient evidence to support any presence 

of a discontinuity using the Bayesian approach.

Lastly, the nonparametric regression approach was applied to the data. From the test
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F igu re  5.36. River Clyde data: Using the DDT approach with hi = h.trend = h2 =  1.7. 
The top left panel shows the 1st stage of DDT being carried out, which gives a significant 
p-value. The vertical line indicates the most probable change-point located, i.e. mid 1985. 
The top right panel shows the adjusted data with a fitted smooth trend. The middle left 
panel shows the empirical variogram with a fitted exponential model. The middle right panel 
displays the 2nd stage of the DDT test. The bottom panel shows the significance trace for 
different values of h2

of constant variogram, most of the p-values using different values of the parameters are not 

significant, hence suggesting no presence of dependence structure. This in fact agrees with 

the ACF plot of the detrended data obtained via the isotonic regression approach. However,
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Figure 5.37. River Clyde data: The left panel shows the empirical variogram with a fitted 
exponential model using lag =  0.12. The right panel displays the significance trace over 
different h2.
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Figure 5.38. River Clyde data: Checking normality of data. The left and right panels show 
histograms of detrended data using smoothing parameter h.trend =  0.7 and 1.7 respectively, 
superimposed with their corresponding expected normal density curves.

the sensitivity of the test to the parameters used in the algorithm makes it not entirely 

conclusive. Hence, the test is then carried out both assuming that the data are independent, 

as well as incorporating the modelling of the correlation.

There is not much difference in the analysis assuming that the data are independent 

and modelling the correlation using the moving window approach, though the latter shows 

slightly more convincing significant results if the estimated correlations are negative. There
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is some difficulty in modelling the correlation using an exponential covariance structure in 

this setting, due to its high sensitivity to the lag parameter that is used. Taking into account 

the irregularity of the observations across time with the very small number of observations 

may complicate the estimation procedure using the variogram. This is particulary the case 

if the dependence is weak, as is possible in this situation.

Overall, the difficulty in detecting any abrupt changes in this analysis could be because 

the dataset is relatively small with only about 70 observations. There also appears to be 

quite a lot of variation. The fact that it is irregularly spaced over time also complicates the 

issue further. Nonetheless, overall, using the nonparametric regression approach, there is 

convincing evidence to suggest that there is a discontinuity in mid 1985 if the trend can be 

assumed to be relatively smooth and in the presence of low positive or negative correlation. 

Hence, we can conclude that the improvement in the sewage treatment plant has significantly 

improved the quality of the water in the River Clyde. A similar conclusion is established by 

the isotonic regression approach using the unpenalised isotonic function. This improvement is 

however, not detected by the Bayesian approach, which is possibly affected by the decreasing 

monotonic trend present before and after the change-point.

5.5 Discussion

In this chapter, we have looked at three different approaches that have been adapted to 

analyse correlated data in three data-sets.

As there are differing features in each approach, the conclusion drawn from each test 

will undoubtedly be different. For instance, the mean is expected to be constant under the 

null hypothesis for both the models used by Wu et al. (2001) and Thomas (2001), while the 

underlying model used by the nonparametric regression approach is smoothly varying.

Concurring with Wu’s analysis, the isotonic regression test, using both the unpenalised 

and penalised test statistics, is significant for both the Argentina data and global warming 

data, where the former is due to an abrupt change, whilst the latter is more likely due to an 

increasing trend in temperature over the years. The test is however just significant for the 

River Clyde data using the unpenalised likelihood ratio test, but not with the penalised one.
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We note that the applications of the isotonic regression test as implemented by Wu et al. 

(2001) on both the Argentina rainfall data and the global warming data are unlikely to be 

appropriate as the assumption of monotonicity might be in doubt. In particular, it is obvious 

that though it is apparent that there is a general increase in global temperatures over 145 

years, there are also periods of cooling. It is important that the restrictive assumption of 

monotonicity should be carefully checked to determine the suitability of this technique before 

carrying out the analysis.

On the other hand, using the Bayesian approach, a change-point is interpreted as an 

abrupt change in one or more combinations of the mean, variance, or correlation. It is 

shown to be very sensitive to the segments considered. There is only sufficient evidence to 

suggest that an abrupt change has occurred in the global warming data, but not in the other 

two data-sets. This could possibly be due to the fact that the Bayesian test is affected by 

the trend present in the data.

The nonparametric regression approach, however, interprets a change-point as an abrupt 

change in the mean structure that is given the flexibility to be smoothly varying. The 

degree of smoothness is controlled by the smoothing parameter. The flexibility given to the 

underlying trend increases its applicability and seems more appropriate in the environmental 

applications seen in this chapter, rather than the assumption of monotonicity or constant 

trend. As expected, the test is sensitive to the smoothness that one is willing to attribute 

to the trend function. In the case of the Argentina data, the test is only significant if the 

trend is moderate, whereas for the River Clyde data, only a high smoothing parameter give 

a significant result. The global warming data however, is less sensitive to this parameter, as 

it is significant over a wider range of smoothing parameter.

The test will also undoubtedly be sensitive to the values of the parameters used in the 

estimation of the correlation. Without detailed knowledge of the context of the problem, it 

is very difficult to decide on the level of correlation in the data. An overestimated correla­

tion will reduce information in the data, and hence increases the difficulty in detecting the 

discontinuities in the trend. On the other hand, an underestimated correlation will result 

in false alarms. In the analysis of the Argentina and global warming data, the choice of the 

moving window size is recommended to be small, about 7, so that it will be robust to the
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trend and abrupt changes present. The choice of b is not so crucial in the River Clyde data, 

as most values give negative correlation.

Nonetheless, the main aim of the proposed test is not to give a definitive answer as to 

the choice of the smoothing parameter, or the parameters used in the estimation of the 

correlation. It is hard to determine what is the best value of smoothing parameter to use. 

Methods for bandwidth selections such as cross validation, break down even in the simple 

case of independent data when abrupt changes are present. This is because it will select a 

smoothing parameter that is smaller than it really should be. Without detailed knowledge 

of the context of the problem, such as the meteorological systems that might be involved, 

it is very difficult to attribute a level of correlation to the data, as well as the degree of 

smoothness of the trend. Instead, we have introduced the significance traces to allow the 

user to visualise and interpret the sensitivity of the test to the different parameters that are 

used for the estimation of correlation. The change-point significance trace is also proposed as 

a graphical tool to illustrate how the significance of the test, the locations of change-points 

and the size of the most probable change might vary, over different smoothing parameters, 

at a certain level of estimated correlation.



Chapter 6 

Testing for Discontinuities in 

Two-dimensional Correlated Data

6.1 Introduction

In the previous chapters, we have so far been confined to looking at discontinuities in the 

univariate setting, where the response y depends on only one covariate, x. In many practical 

applications, the behaviour of y might be dependent on more than one covariate. There has 

been increasing interest in detecting and estimating discontinuities in regression with two 

covariates, due to its wide variety of applications, for instance in image processing, spatial 

analysis, oceanography, meteorology, and other areas. As it is often difficult to obtain a 

suitable parametric form to model the functional relationship between the responses and the 

two covariates in surface regression analysis, which may be very complicated, smoothing by 

nonparametric regression is a very useful tool to adopt here.

Discontinuities in the one-dimensional setting are very different from the two-dimensional 

case. The search in the univariate setting is for just one or more discontinuities in a;, but in 

the bivariate setting the discontinuities are considered to take the form of an abrupt change 

along an entire curve of unknown location and shape. Identification of the discontinuity thus 

involves estimation of both its position as well as its direction. The locus of the discontinuity 

is frequently referred to as the jump location curve.

206
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In image analysis, there has been a lot of research on edge detection and edge preserving 

image reconstruction as they are very important issues (Bracewell, 1995). To obtain a good 

overview of computer edge detection, one could refer to Peli and Malah (1982), Torre and 

Poggio (1986) and Gonzalez and Woods (1992). In fact, edge detection is closely linked 

to jump detection, and edge preserving image reconstruction is similar to jump preserving 

surface recovery in nonparametric statistics. At the boundary of the object, the image 

intensity function can be regarded as a regression surface having step discontinuities between 

the object and its background. This is commonly referred to as step edges. There are many 

other forms of edges discussed in this field, but we will focus on the step edge which is similar 

to the jump location curve of the regression surface.

Much of the earlier work in the statistical literature has focused on the estimation of the 

jump location curve. Korostelev and Tsybakov (1993) and Tsybakov (1994) assumed the 

presence of a jump location curve and investigated the estimation of different boundaries of 

the object in an image using piecewise polynomials, where the polynomial coefficients are 

estimated by maximum likelihood. Their estimators are shown to reach the minimax optimal 

rate of convergence. Rudemo and Stryhn (1994) studied two types of two region image 

models with univariate boundary representation and suggested a “nonparametric histogram­

like contour estimator”. O’Sullivan and Qian (1994) detect object boundaries by defining 

a contrast statistic. They assumed that there is only one jump location curve which is a 

“smooth, closed” curve. Wang (1998) proposed a method based on wavelet transformation to 

estimate jump and sharp cusp curves of a function on a plane. Hall and Rau (2000) suggested 

a different approach, using a sequential, “tracking” algorithm to estimate a smooth fault line.

Other work includes Muller and Song (1994) which assumed that the number of jump 

location curves is known and that they are closed curved sets. Qiu (1997a) proposed the 

rotational difference kernel estimator when there is only one discontinuity curve. Both of 

these approaches use two one-sided kernel smoothers constructed from data on either side of 

a line of a particular direction at a point of interest. As this procedure involves a search over 

all directions for a possible jump direction at each design point, it is computationally very 

intensive. To present a technique that is less demanding computationally, Qiu and Yandell 

(1997) and Qiu (1998) suggested using coefficients obtained by fitting a local least squares
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plane at the point of interest, giving a possible angle of orientation of the discontinuity.

Jose and Ismail (2001) assumed that the jump curve is at least first order differentiable 

and that it does not need to be of any explicit form. They proposed a simpler procedure, 

using information from opposites sides of the four quadrants of a neighbourhood of a point 

of interest, to fit kernel weighted least squares regression estimators. In other words, two 

regression smoothers are fitted at directions perpendicular to each other.

In a recent paper, Qiu (2002) also avoided the maximization approach by considering 

differences in kernel estimators at a number of specified directions at a particular point of 

interest. They performed a simulation study to investigate how the estimator of the jump 

location curve performs as the number of directions is increased. The number of jump 

location curves can be unknown.

Qiu and Bhandarkar (1996) proposed an edge detection algorithm based on the com­

bination of local smoothing and hypothesis testing. At each pixel location, a 9x9 mask is 

centered, and a search for a grey-level discontinuity at four different directions is conducted. 

If it exceeds the evaluated threshold value, the point is then flagged as a step edge pixel. 

In this setting, the jump location curve is regarded as a point set in the design space and 

the aim is to find these step edge pixels. This strategy to detect jumps by regarding the 

discontinuity curve to be a set of points, gives more flexibility in the shape of the jump loca­

tion curves and it often does not require the number of curves to be assumed. Other papers 

such as Qiu and Yandell (1997), Qiu and Yandell (1998), Qiu (2002) and Jose and Ismail 

(2001) have also adopted this approach. The other main strategy to detect discontinuities 

is to search for a particular form of jump location curve from a population of all possible 

candidates (Muller and Song, 1994, Qiu, 1997b, O’Sullivan and Qian, 1994, Korostelev and 

Tsybakov, 1993, Rudemo and Stryhn, 1994). This, however, requires stricter assumptions 

on the jump location curve, such as the number of curves is assumed known.

Other popular edge detection techniques include the Markov random field approach (see 

Geman and Geman, 1984, Besag, 1984, Besag et al., 1995). Qiu (2002) provides a good list 

of references to other techniques.

The papers above are concerned with the estimation of the jump location curve, (com­

monly referred to as jump or edge detection) of a discontinuous regression surface, assuming
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that the data are independent. Very little work has been devoted to inference in the global 

context; to test if there is a discontinuity. Moreover, in the spatial setting, there is likely 

to be spatial dependence. Earlier work in Chapter 3 on discontinuity testing in autocor­

related time series data has shown that not accounting for the correlation present in the 

data or underestimating the underlying correlation will result in a higher rate of false alarms 

in hypothesis testing. It might also result in an inaccurate estimation of the position of 

discontinuity.

In an unpublished paper, Bowman et al. (2003) explored a global test to detect disconti­

nuities in the two-dimensional setting, assuming that the data are independent. In view of 

the wide applications, it makes it very profitable to propose a test procedure which is able 

to account for dependence in the data. We will build on their work to detect discontinuities, 

taking spatial dependence into account.

6.1.1 Concept of spatial dependence

In the two-dimensional setting, we are dealing with observations of spatial data, which may 

be dependent as with time series data. In the latter case, later observations may depend on 

the earlier ones; this dependence is commonly referred to as autocorrelation. The ordering of 

the data is clear here. On the other hand, spatial data may be viewed as observations taken 

at points on a surface, since this occurs in two-dimensions. One can expect that data that 

are located closer together in space tend to exhibit greater similarity than those separated 

by larger distances. We can thus define spatial dependence as the tendency of a variable to 

exhibit similar values as a function of distance between the spatial locations at which they 

are obtained.

There is a body of tools specifically designed to explore spatial information, collectively 

known as geostatistics (Issaks and Srivastava, 1990). Geostatistics has a very wide domain. 

We will focus on modelling spatial dependence. In Chapter 4, we used the variogram to 

model the correlation/covariance structure of the one-dimensional unequally spaced data. 

The variogram is in fact more commonly used to model spatial dependence in the two- 

dimensional setting. By fitting a theoretical variogram model to the empirical variogram,
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we can obtain an estimate of the range and sill which give the degree of spatial dependence 

present in the data. The higher the range and sill, the stronger is the correlation and the 

variability of the data respectively. In this work, the term “spatial dependence” refers to the 

covariance structure, comprising both the range and sill, while the term “spatial correlation” 

simply refers to the correlation structure, comprising only of the range. We will adopt the 

same technique as discussed in Section 4.1.2 to model the spatial dependence structure, using 

an exponential model.

Similar to the one-dimensional case, a positive correlation function like the isotropic 

exponential model should be widely applicable since it models a smooth decrease in spatial 

correlation as the distance between the observations increases. Moreover, as this is just for 

an inference end, a relatively simple model that is sufficient to capture most of the spatial 

correlation present is appealing.

The format of this chapter is, firstly, to give an introduction to the methodology, along 

with the test statistic and reference distribution. This is then followed by an extensive 

simulation study in the equally and unequally spaced setting. Lastly, the methodology is 

illustrated by analysis of a set of spatial radioactivity data undertaken to map cesium fallout 

in a chosen area in Finland after the nuclear reactor accident in Chernobyl (RESUME-95, 

1997).

6.2 M ethodology - Nonparametric Regression Approach

In this section, we will extend our discontinuity testing to a nonparametric regression model 

with two covariates. The bivariate case has numerous features which makes it very profitable 

to explore. From a methodological point of view, theoretical properties such as asymptotic 

bias are known. On a practical point, the scope of this class of models is very wide, comprising 

different forms of nonparametric regression function, ranging from a complete linear plane 

to a smoothly varying surface, with different degrees of smoothness. This pleasant property 

increases the flexibility and applicability of the model and makes it very attractive in real life 

applications where the underlying trend structure is rarely known over the spatial locations 

involved.
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6.2.1 Statistical M odel

Consider samples of n  triplets of variables ( x u , X 2 i , V i ) ,  where observations {3/*} are related 

by

yi = m(xUlX2i)+ei (6.1)

where ( x u , X 2 i ) ,  i =  1, 2, . . .  , n  are regularly spaced design points in [0, 1] x [0, 1], and £{ 

are correlated and normally distributed errors e = (£1, . . .  ,£n) ~  ATn(0,cr2E), where o2 is 

the unknown (constant) error variance, and E is an n  x n  correlation matrix. The smooth 

bivariate regression function, m ( x i , x2) allows the surface to be smoothly varying, and is 

continuous over [0, l ]2 except at the jump location curves.

6.2.2 The test statistic

The main idea of the methodology proposed for the two covariate setting is similar to the 

univariate setting, which involves the differences between two smooth estimates. However, 

there is an added element of direction here. At a particular point, the difference between 

the left and right smooths changes as the direction changes. Even if the point lies on the 

jump location curve, the differences between the two smooths might not be large if it is not 

taken along the right direction (which is perpendicular to the angle of orientation of the 

discontinuity curve). Any test statistic proposed in this spatial setting will have to take this 

new parameter into account. As a result of this, there is an added complication to the whole 

test procedure. Any approach to estimating these directions using data-based methods might 

create problems in the distributional calculations.

Bowman et al. (2003) proposed a test statistic introduced in the next Section 6.2.2.1, 

which involves only a particular number of directions, 6, since the support of a jump is 

unlikely to change very much with 6. They suggested it will be sufficient to just consider 

four different directions, namely 0* =  {A;7r /4, k =  1, . . .  4}. The test developed here will build 

on their work, which is constructed to cope only with independent errors, and extend it to 

incorporate a dependence structure.
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Letting the evaluation points lie on a regular grid, contained within the data points, 

expressed as {(^ir , Z2a) : r, s =  1, . .  .#}, then using a linear smoother, the fitted values can 

be written simply as fh(zi, z2) =  Sy  where 5 is a g2 x n smoothing matrix of known constants. 

The computation of S  will be discussed in greater detail in Section 6.2.4.

At each evaluation point (zir, Z2S), the differences between the two bivariate smooths is 

obtained at either side of the dividing line with direction 0k,0<  Ok < 7T, where k =  1, . . .  , p. 

If there is a discontinuity at that particular point of evaluation and direction, one would 

expect the difference between the left and right smooths, friLok(zir, Z2S) — mR9k(zir, Z2a), to 

be large. The values of the differences at the evaluation points {{z\r,Z2a) : r,s  =  l >- *0} 

with direction, 0* can then be expressed in matrix notation as (Si$k — Siwk)y =  Dgky.

6.2.2.1 Global test

The global test in the two-dimensional setting is similar to the one-dimensional case. The 

main difference is that the search for any sign of discontinuity in the form of a jump location 

curve in the spatial context, involves both the position as well as the direction.

The hypotheses can be listed as below.

Ho: m  is continuous over (0, 1) x (0, 1).

Hi : m is discontinuous on at least one particular jump location curve in (0, 1) x (0, 1).

The proposed test statistic consists of the sum of the squared standardised differences be­

tween the left and right smooths at each evaluation point, over four different angles of 

orientation, 0*, where {0* =  &7r /4, k =  1, . . .  ,4}. The idea is that if there is no discontinuity 

present, then all the differences will be small. However, if there is a discontinuity, some of 

the differences will be large. The test statistic is given by

TSj(h) =  ~ Z2s)\ 2
k = 1  r , s = l  \  G  /

where a2 is the estimator of the noise variance, chosen such that it can be expressed in 

quadratic form yTB y , where B  is an n x n matrix as before. This will be discussed in 

greater details in Section 6.2.5. In matrix notation, the test statistic in Equation (6.2) can
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be expressed as

TSi(h) =  ^ * -=1 yT? ° k D>k-a
yT[EUDekTDek]y

/t2 (6.3)

The final expression yT U *=1 DokTDq̂ \ y is a quadratic form, and this allows the usual

quadratic form calculations that we have seen in the earlier chapters to be applied.

As proposed earlier in Section 3.2.2, we can consider another test statistic whose variances

test statistic which is a ratio of two quadratic forms

yT Ay 
yTBy

where the unknown variance of the data is scaled out.

6.2.2.2 Local test

In the situation where there is prior knowledge of a possible jump location curve, we can 

perform the discontinuity test, taking this knowledge into account. This simplifies the test, 

as the jump location curve with the appropriate angles of orientation in the comparisons 

are given. We then just obtain the differences between the two smoothers at the points and 

directions on the curve where the discontinuity exist.

The hypotheses can be listed as below.

at each evaluation point vary, depending on the amount of information that is available to 

produce the differences between the two smooths. These variances are given by the diagonal 

elements of a2{DgkDekT).

The test statistic is then formulated as

(6.4)

A' is the inverse of the diagonal matrix whose diagonal entries are those of DgkDgkT.

Since the estimator of a2 can also be expressed in quadratic form, we will then have a
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H0: m  is continuous at the jump location curve over an interval (0,1) x (0,1).

Hi : m  is discontinuous at the jump location curve over an interval (0, 1) x (0, 1)

The test statistic is similar to the global one in Equation (6.3), but the matrix D  will be 

different here, as the computation of differences between the two smooths is performed only 

at or near the proposed jump location curve.

6.2.3 Reference distribution of test statistic

As the test statistic can be expressed in the form we can make use of the quadratic 

form calculations to compute the p-value of the test, taking the correlation matrix E into 

account, for dependent data in the reference distribution calculations. This is previously 

mentioned in Section 3.2.3.

6.2.4 Choice of smoothing techniques

The same principle of local linear smoothing as described in the one-dimensional case in 

Section 3.2.4, can be extended to the two covariate case without much difficulty (see Fan 

and Gijbels, 1996). This presents an advantage of borrowing information from neighbouring 

points to obtain a smooth fit. However, with the increase in dimensions, we are faced with 

the widely known issue of the curse of dimensionality (Bellman, 1961). This causes the 

efficiency of the nonparametric surface estimator to decrease rapidly as the dimensions of 

the design space increases. In fact, as the number of dimensions increases, the sample size 

has to increase exponentially to maintain a good fit.

At a particular evaluation point, say (Z\r, z2s), a local plane is fitted and the fitted value 

of Pq from the least square problem in Equation (6.5) gives the bivariate smooth estimate of 

the regression function at that point (zir,^*)-

n
- " F I  “  A  -  Pifau -  Zir) -  p2{x2i -  Z2s ) } 2 w ( x u  -  zlr;hl)w(x2i -  z2s; h2) (6.5)P0.Pl.P2 “ ~

1 = 1

The kernel function w denotes a probability function with standard deviation h. A  normal
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density function is used here. In matrix notation, we denote by X z an n x 3 matrix whose zth 

row is (l,£ ii — Zir,X2i — Z2S), and Wz contains the normal product kernels. It is a diagonal 

matrix with its (z, i) element as

Wi = w(xu -  zlr; h1)w(x2i -  z2s; h2);

then the solution of the least square problem to obtain /?o is expressed as

[1,0,0]( X?W zX z)~1X j'W zy

In the case where equal smoothing applied along the two coordinate axes of the covariates, 

then hi =  /z2-

Ruppert and Wand (1994) derived the asymptotic conditional bias of m(x; H) at the 

boundary +in Theorem 2.2 of their paper, given by Equation (6.6).

eTN~l f
E(m(x; H) -  m(x)\XU • •. , X n) = - j

d x ,h

K(u)uTH 1/2/Hm(x)H1/2udu +  optr(H)

(6.6)

where x  =  (a;i, ar2) in our notation; H 1!2 is the bandwidth matrix which denotes the amount 

of smoothing; 'Hm is the Hessian matrix which is an indication of the curvature of m  at x 

in different directions. Provided that all the second order derivatives of m  are continuous, 

then the leading term of the above equation should cancel when the expected value of the 

differences between the left and right smoothers under the null hypothesis is taken, since 

m L(x) = t71r ( x ) .  This gives

E(friL(x; H) -  i t i r ( x ; H)) =  o(tr(H)) =  o(h\ +  h\) (6.7)

It follows that, since the sequence of bandwidth H 1/2 taken is such that n~1\H\ and each entry 

of H  tends to 0 as n —> oo, with H  being symmetric and positive definite, then J?(m i(i; H) — 

171r ( x ; H)) is approximately 0. It follows then that the test statistic in Equation (6.4) is a
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ratio of quadratic forms in Normal random variables with means approximately zero and 

with the same variance.

6.2.5 Choice of variance estimator

Similar to what was discussed in the univariate setting in Section 3.2.6, we hope to consider 

a variance estimator that can be written in quadratic form Y TB Y ,  so that the test will be 

independent of the true value of o2. Extending the approaches used in the univariate to the 

bivariate case is not straightforward, as we do not have a simple ordering of the response z/* 

in the latter setting.

In an unpublished paper, Bock et al. (2001) suggested a simple variance estimator making 

use of the residual sum of squares approach. Recall that in the univariate setting, from 

Equation (3.20),

n
R SS  = -  fh(xi)}2

i = 1

This can be easily generalised to a bivariate setting as

n
R SS  = ^ { y i - f h { x i i , x 2i)}2

t=i

In matrix notation, this can be expressed as yT(I — S)T(I — S)y  where S  is the smoothing 

matrix and fh =  Sy  is the vector of bivariate smooth estimates. From the expression of the 

expected values of the RSS estimator given in Equation (3.22), the first term is the sum of 

the squared biases of the design spaces. These can also be written as Y^=i{mi ~  E fa i ) }2 

where m* and m* denote the regression surface and its estimate at the ith location.

In order to reduce the bias in the univariate setting, it was suggested that a small smooth­

ing parameter should be used. The same idea follows in the two-dimensional case to reduce 

the bias. Instead of fitting a regression surface using a global bandwidth, Bock et al (2001) 

suggested assigning only substantial weights to the three nearest observations at a point
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(xu,X2i). These three nearest neighbours can be defined by evaluating the neighbour dis­

tances in simple Euclidean form and picking up those whose distances from the point of 

interest are within the third shortest, d3. In the situation where the two dimensions have 

different units, the distance between points should be standardised by the the standard 

deviations, s\ and S2 , of the data in each dimension. This is expressed as

(*̂ 1 i % \j  \  ( 3'2i 3'2j \

By setting the smoothing parameter of a normal kernel function as (sid3/2, $2̂ 3/ 2), only 

the three nearest neighbours will be given substantial weights in computing an estimate 

m(xu, X2i) at the zth point of interest. Note that in this approach, different smoothing 

parameters have been used at each point, as this is determined by the distance of its third 

nearest neighbour, d3.

This RSS based estimator which only makes use of three nearest neighbours can then 

be standardised either via an external standardisation procedure or by standardising each 

individual contribution (Bock et al., 2001). For the latter case, this is expressed as

where v(xi) denotes the weights attributed to the variance of y* — ra(xj). In this way, a point 

which has neighbours closer to it, will contribute more to the overall estimated variance since 

it will contain more information. The weights v(xi) can be easily computed as the diagonal 

elements of (I — S)(I  — S)T.

Equation (6.8) can be written in matrix notation as

^ f v - s r v y - s i ,  ( 6 9 )

where T ' is a matrix filled with zero but with diagonal elements that is obtained by the 

inverse of a matrix with diagonal elements of ( /  — S) ( /  — S)T.

Bock et al. (2001) performed a simulation study to compare this RSS based estimator
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with other bivariate variance estimators, such as the difference based estimator proposed by 

Herrmann et al. (1995), which was an extension of Gasser’s approach (Gasser et al., 1986) 

given in Equation (3.27). They showed that the RSS based estimator in Equation (6.8) 

performs better than the difference based estimator. This is because the latter is based on 

local interpolation using the Dirichlet tesselation which might be subject to greater variability 

if it draws in neighbouring observations that might in fact be quite far from the point of 

interest. Because of the favourable property of the RSS based estimator using three nearest 

neighbours, we have chosen to incorporate it in our test statistic.

6.2.6 Estim ation of jump location curve

As mentioned earlier in Section 6.1, many authors have focused attention on obtaining a 

good estimate of the jump location curve. Though the main aim of this chapter is inference, 

it would be useful to produce an estimate of the jump location curve if the test is significant, 

to indicate where the possible discontinuities might be. This section is set aside for this 

purpose, not with the aim of obtaining an accurate estimation, but to provide a useful and 

user-friendly graphical visualisation of the location of the jump curves.

There are some similarities and differences between the techniques used to carry out 

the test procedure and to obtain the jump location curve. The former involves finding 

the differences between the left and right smooths on either side of the dividing line at 

a set number of directions 0 where 9 =  (0 ,7r /4, 7t /2, 37t /4}. However, the latter involves 

firstly, finding the angle of the maximum slope at each evaluation point, (z \r , Z2S), where 

r, s =  ( 1, . . .  , g} are located on a regular grid. The differences of the smoothers are then 

taken at the direction that is perpendicular to that obtained angle.

To obtain the angle of the maximum slope, we fit a local least square plane at each 

evaluation point (zir,Z2S)-

Vrs  =  0o +  Pl(xi -  Z l r )  + A (̂ 2 “  Z2s )  (6.10)

By considering the polar coordinates where x\ = acos9ra and X2 =  asin0rs, with a as a
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constant, we have

firs = A) +  A (a cos 9rs -  Z l r )  +  A (a sin 0rs -  z2s) (6.11)

To attain the direction of the maximum slope, 9rs where 0 < 9ra < 7r, we find the turning 

points of fira in Equation (6.11) by differentiating it with respect to 9rs, and setting the 

derivative equal to zero to obtain

—A asin0rs +  Aacos0rs =  0
, n Atan 0rs =  —

A
Q . - l f t9rs =  tan —

Pi

The direction of the “dividing line” at each evaluation point is then at 0rs +  tt/2. The 

corresponding difference between the left and right smooths on either side of this dividing 

line is then given as fhLgra — fhjtf In matrix notation, the estimates of the differences over 

all the evaluation points can be expressed as (SL§ — Sj^)y  =  D^y. To obtain a smoother 

jump location curve, we then smooth these differences again, giving SD^y. We refer to 

this approach of smoothing the data twice as double smoothing (dsT). Its main function is 

to obtain a better estimate of the jump location curve, as it smooths out the differences 

between the left and right smooths with the view that the data are more sparse in the two- 

dimensional than in the one-dimensional case. However, there is a danger of oversmoothing 

if the underlying trend or jump location curve is quite irregular.

The standardised differences for this doublesmoothed data are then given by

SD«V =  S D £ 'y  ,
^/Var(SDsy) a

where £' is the inverse of the matrix that is filled with zero but with diagonal elements 

SDgEDjST and £  is the correlation matrix. This computation takes into account the 

dependence structure of the data. If spatial dependence exists, but the data are treated as
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independent, these standardised differences would be overestimated.

At locations where discontinuities exist, we would expect the differences between the two 

smooths to be high. To obtain a graphical illustration of where the discontinuities might lie, 

a contour plot of different levels of standardised differences with magnitude greater than 2 

can be produced.

Finally, to illustrate this technique, a data set with range of 0.03 and variance of 1 is 

simulated with a jump of 2 for data within a circular jump location curve. Figure 6.1 displays 

the data of size 17 x 17. At each evaluation point, the direction of maximum slope, 9ra is 

evaluated, and the perpendicular to it gives the “dividing line”, indicated by the small blue 

lines. The standardised differences of the left and right smooths are then taken on either 

side of the dividing line. The test is carried out assuming knowledge of the range of 0.03. 

It is significant at 0.006. Any standardised differences greater than or equal to 2.5 are then 

indicated by the contours (solid black lines). We can observe that the contour of level 2.5 is 

very close to the actual jump location curve.

The computation of these standardised differences as shown in Equation (6.12), involves 

the covariance structure, i.e. both the correlation and the variance of the data, which are 

often unknown and have to be estimated. The next Section 6.2.7 describes an estimation of 

this quantity which can simply be plugged into Equation (6.12) to obtain the standardised 

differences. Alternatively, we could use the estimated correlation but estimate the variance 

by means of the RSS based estimator instead of using the sill from the variogram fitting. The 

variance estimators mentioned in Section 6.2.5 are, however, only applicable for independent 

data. A slight adjustment for the estimator in Equation (6.9) in the correlated setting is 

easily computed as

^  f V - s f r W - S ) ,
n

where is a matrix filled with zero but with diagonal elements that is obtained by the 

inverse of a matrix with diagonal elements of (I — S)E (I — S)T.

This method of estimating the jump location curve in interval form is coordinate free
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Figure 6.1. The figure displays a set of simulated data with range, r = 0.03. The blue 
lines indicate the dividing line at each evaluation point. Perpendicular to the line is thea
direction of maximum slope, 9rs. The red curve indicates the actual jump location curve. 
Superimposed on them are the contours of standardised differences of 2.5 and 5, indicated 
by solid black lines.

and does not require that the functional form of the discontinuity curve is of any paramet­

ric structure or of closed form. Moreover this approach makes use of fitting least square 

planes (similar to Qiu and Yandell, 1997), which avoids the computationally very intensive 

maximization of the differences between the two one-sided kernels with respect to direction 

at each design point (Muller and Song, 1994; Qiu, 1997a). However, as mentioned earlier 

in Section 6.2.2, in the computation of the test statistic, it would not be possible to es­

timate suitable directions using data-based methods, as this might create problems in the 

distributional calculations.
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6.2.7 Adjusting the test for spatial dependence

This section is devoted to introducing an algorithm to adjust the test, taking into account 

the spatial dependence that might be present in the data, by incorporating the estimation 

of this unknown quantity obtained via variogram fitting, into the test.

In the one-dimensional unequally spaced setting in Chapter 4, we proposed the two- 

stage double discontinuity test (DDT) algorithm to carry out the discontinuity test twice. 

However, estimation of the dependence structure in a two-dimensional spatial setting, where 

there might be both trend and discontinuities, is a highly complicated task. There is a need 

to create a new algorithm. This is because, unlike the one-dimensional case with DDT, it is 

impossible to adjust for the magnitude of the jump in the first stage in this more complex 

setting, if we do not have any knowledge of the jump location curve. Even if we do assume 

knowledge of the latter, we would also have to assume a constant jump enclosed within the 

jump location curve if we are to be able to adjust the size of the jump before estimating 

the correlation via variogram fitting. However, this would introduce more restrictions to the 

model, which might not be as applicable in real-life settings, compared to allowing the jump 

to vary smoothly. The algorithm that is introduced here therefore does not assume that 

the model has a constant jump. It is intended to cope with both the presence of trend and 

discontinuities which might affect the estimation of the dependence structure.

Similar to the DDT algorithm, the proposed method is a two-stage process, where the 

discontinuity test is carried out twice. The first stage involves carrying out the discontinuity 

test, treating the data as independent. A smooth surface is then fitted to remove the trend 

in the data, giving what is termed the “detrended data”. If the p-value of the discontinuity 

test is less than 0.05, a partitioning process is performed, whereby detrended data that have 

standardised differences greater than a particular set value, say 2.5, are removed. This step 

is intended to remove any points that might be located near the jump location curve, which 

would affect the estimation of the correlation. The remaining residuals are then used to 

generate the empirical variogram which is modeled using nonlinear weighted least squares 

fitting to obtain the range and sill. The discontinuity test is then carried out again, taking 

the correlation into account, to obtain the p-value of the adjusted test. This algorithm is
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The Double Discontinuity Test with Partition (D D TP)
1st stage:
Aim: Estimation of correlation

• Step 1:

-  Treating the data as independent, the discontinuity test is carried out 
with double smoothing, using a smoothing parameter of hi. The p-value 
and the standardised differences, s t .d i f f  1 obtained are carried over to 
the next step.

• Step 2:

-  The trend in the data is removed by fitting a smooth two-dimensional 
plane using the same smoothing parameter as before, h.trend — h i, to 
obtain the residuals.

-  If p < 0.05, we will partition the data into two different segments, ac­
cording to whether the standardised differences, s t .d i f f  1 are smaller or 
larger than a particular set limit, std. Only the detrended data with 
s t .d i f f  1 less than std, will be used. This step removes any data points 
which might be located near the jump curve.

-  Using the detrended and partitioned data, we obtain an estimate of the 
correlation matrix, E, by weighted nonlinear least squares fitting of the 
variogram to get the range and sill.

2nd stage:

•  Accounting for the estimated E, the discontinuity test is carried out with single 
smoothing using bandwidth, h2, to obtain the p-value of the test.

• If a graphical plot is required, the resulting standardised differences, st.di f f  2 
which incorporates the spatial covariance structure (obtained via the vari­
ogram modelling), are used to produce a contour plot of possible locations of 
the jump location curve (see Section 6.2.6).

Figure 6.2. The Double-Discontinuity Test with Partition (DDTP)

referred to as the Double Discontinuity Test with Partition and the details are provided in 

Figure 6.2.

The algorithm recommends double smoothing for the first stage of the algorithm to 

give a better smooth. However, if the trend in the data is quite rough, double smoothing
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might cause false claims of possible discontinuities at certain locations due to oversmoothing. 

Nonetheless, the algorithm uses this for the first stage, as by performing the first discontinuity 

test with double smoothing, a better estimate of the jump location curve is obtained. This is 

useful as it results in a more accurate removal of observations (with standardised differences 

greater than a specified value) near the jump location curve. These observations, if not 

properly removed, might result in an overestimation of the correlation, resulting in low 

power. Even if there might be some incorrectly removed observations, this would not prove 

to be much of a problem as long as there are sufficient remaining to be used for variogram 

fitting.

Doublesmoothing has also been proposed for the trend removal, as we have assumed 

the trend to be relatively smooth, in the presence of correlated data. The presence of 

correlation in the data creates a “false trend” in the data. As we want to avoid tracking 

the data too closely, it would be better to oversmooth. There is a valid concern that, if 

discontinuities exist, oversmoothing might result in an overestimated range, amidst other 

concerns. However, it is hoped, with the combination of the partitioning process, that 

observations near the jump location curve are removed.

In modelling the empirical variogram, we have used nonlinear weighted least squares to 

fit an exponential variogram, with lag = 0.05, lag tolerance =  lag/2, nlag =  n, distance 

used, maxdist=half of maximum pairwise distance or maximum distance, minimum number 

of pairs, minpairs =  30.

The algorithm has chosen to remove the trend using all the data before partitioning the 

data. The partitioning process could also be considered first, followed by trend removal using 

only the chosen segment of the data. However the former approach has been performed as 

it is of interest to look at sample sizes which are quite moderate in size. If a large amount 

of data is removed during the partitioning process, there may be problem in obtaining a 

good estimate of the trend present. In the case of a larger sample size, partitioning the data 

before removing the trend can be considered. The second stage of the test then involves 

carrying out the discontinuity test, adjusting for the estimated correlation, without double 

smoothing. The latter will be referred to as single smoothing (dsF).

Note that the standardised differences here, s t .d i f f1 do not have any statistical meaning
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if the data are dependent, as the covariance of the data is not taken into account, when 

computing this value. It is simply part of the algorithm to remove any unwanted observations. 

However, s t .d i f f2 takes into consideration the spatial dependence and hence gives a better 

estimation of the possible locations of discontinuity.

The effectiveness of this algorithm depends not only on the sample size, the jump location 

curves, trend function, but also the size of the jump and its error variance. Its performance 

might differ even though the data might have the same signal to noise ratio. For instance, 

it might be easier to cope with data with a jump of 1 and noise of 0.5, compared to a jump 

of 2 and noise of 1. In other words, if the magnitude of jump is smaller, it might produce a 

more accurate estimate of the range.

6.2.8 Remarks

The methodology can be easily extended to irregularly spaced observations, or a regularly 

spaced grid with missing observations. The regular grid of evaluation points (z\r , ) can

be used for the discontinuity test as well as to locate the jump location curve. Nonetheless, 

the standardised differences can also be computed on the actual data-points, rather than the 

evaluation points.

However, in order to carry out the partitioning process of the DDTP algorithm, it is 

essential that standardised differences, s t .d i f f  1 are computed at the actual data locations 

for both settings.

6.3 Simulation Study

In this section, we will investigate the influence of various factors on the discontinuity test. 

It is subdivided into two main sections: an equally spaced setting (Section 6.4) and an 

unequally spaced setting (Section 6.5), where both the scenarios of correlation known and 

unknown are considered.

The size of each test is assessed by generating sets of data where no discontinuity is 

present, while the power of each test is obtained from data with discontinuities at the jump
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location curve. A 99% confidence interval based on a binomial distribution with nsim  =no 

of simulations and p =  0.05 can be used to assess the empirical size of the test for substantial 

departures from the specified a  =  0.05 level. In the setting where nsim  = 200 and p =  0.05, 

the 99% confidence interval for the empirical size is (0.015,0.095).

We have kept certain parameters constant throughout the whole simulation study. These 

include using an isotropic exponential variogram model with error variance of 1, and a 

jump location curve, given by (xl — 0.5)2 +  (x2 — 0.5)2 =  0.252. The latter is a circle 

centered at (0.5,0.5) with radius of 0.25. The data conditions and the parameters used in 

the test approaches are summarised in Table 6.1. Those highlighted in bold are used by 

default in the simulations, unless specified otherwise. Note that single smoothing is used in 

the discontinuity test and double smoothing is only considered during the 1st stage of the 

DDTP algorithm.

6.4 Equally Spaced Setting

This section will investigate the performance of the test, when the data are equally spaced 

on a square grid. In Section 6.4.1, we will first assume knowledge of the correlation, and vary 

the other factors involved in the discontinuity test, while in Section 6.4.2, we will embark 

on the challenging task of estimating the unknown spatial correlation in different settings, 

using the DDTP algorithm introduced in Section 6.2.7. The data conditions and parameters 

used in the test are stated in Table 6.1.

6.4.1 Equally Spaced Setting: Correlation known

This section will assume knowledge of the correlation in an equally spaced grid. In each of 

the following sections, only the parameters of interest are varied, with the rest of the factors 

remaining unchanged. Section 6.4.1.1 examines the effects of trend while Sections 6.4.1.2 

and 6.4.1.3 investigate the effects of correlation and sample size respectively.
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Data conditions
Design Space

No. of simulations 
Error
Error Variance 
TVend Function 
Correlation 
Sample size 
Size of Jump 
Jump curve

- Equally-Spaced (for Section 6.4)
- Unequally-Spaced (for Section 6.5) 

simulated from Uniform distribution, 
different for both axis

200
e ~  iV(0, <t2E)
1
Flat, Qiu, Ismail
exponential model, X), with range, r  =  {0.03,0.05} 
n = 11 x 11,17 x 17,21 x 21,24 x 24
jump , jp  =  2, 3
(si -  0.5)2 +  (s2 -  0.5)2 =  0.252, 
red dotted line as shown in Figure 6.1
Test Approaches

No. of evaluation points 
Smoothing Parameter 
Estimator of Error Variance 
Estimator of Correlation

ngrid = 15 x 15
h.test = {0.1,0.15,0.2,0.25,0.3}
RSS based estimator, <73
- None (for Section 6.4.1 and 6.5.1);
- Double Discontinuity with Partition (DDTP) 

using hi =  h.trend =  {0.2,0.3,0.4,0.5,0.6}, 
h2 G {hi, hi — 0.1, hi  — 0.2},
std =  2.5,3.5, and 
maxdist— 0.7,1.4.

Table 6.1. Simulation setting for equally and unequally paced two-dimensional data. The 
parameters in bold are the ones used by default in the simulations, unless specified otherwise.

6.4.1.1 Effects of tren d  function and  sm oothing p a ram eter

It is expected that the underlying trend in the data, and the degree of smoothness would 

affect the result of the discontinuity test. We have also seen this feature in earlier simulation 

studies in the one-dimensional case. Here, we will look at data with range 0.03, and with 

three different trend functions: Flat, Qiu and Ismail. These are given by trend = 0, —0.5 — 

x2 +  3(xl — 0.5)2 and l +  2sm(3xl +  2a;2) respectively. (The last two trend functions are used 

by Qiu and Yandell, 1997 and Jose and Ismail, 2001 respectively). These three functions are
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0®

0 0

Flat T rend Qiu T rend Ismail T rend

Figure 6.3. The figure displays the different trend functions: Flat, Qiu and Ismail, drawn 
over the same scale on a 17 x 17 evaluation points.

h.test Size Pow er
Flat Qiu Ismail Flat Qiu Ismail

0.10
0.15
0.20
0.25
0.30

0.065
0.060
0.050
0.055
0.055

0.065
0.060
0.050
0.065
0.120

0.070
0.060
0.180
0.485
0.785

0.420
0.795
0.965
0.995
0.995

0.420
0.795
0.960
0.995
0.995

0.440
0.865
0.995
1.000
1.000

Table 6.2. Simulation results for n = 17 x 17, ngrid =  15 x 15, range =  0.03 and jum p — 2 
with three different trend functions. IVue correlation is assumed. Single smoothing is used.

displayed in Figure 6.3, drawn on the same scale. It can be observed that the Ismail trend 

is the roughest among the three, followed by the Qiu trend.

The simulation results are presented in Table 6.2. The size for the flat function is ap­

proximately 0.05 over all smoothing parameters, h.test. It remains within limits for the Qiu 

trend, except at h.test =  0.3. However, for a rougher function such as the Ismail trend, the 

size is only within limits for low smoothing parameter values of 0.10 and 0.15.

Powers for the Flat and Qiu trends are similar. They increase as the smoothing parameter 

increases. At sizes which are within limits, the powers for the Ismail trend are higher 

compared to the former two.



CHAPTER 6. Testing for Discontinuities in Two-dimensional Correlated Setting 229

6.4.1.2 Effects of correlation

Here, we are interested to investigate how different degrees of spatial correlation would affect 

the performance of the test. This section also serves to give a useful reference to the later 

Section 6.4.2, where no knowledge of correlation is assumed, and has to be estimated. In 

situations where the correlation is estimated fairly well, the size and power should be similar 

to that if the true correlation is assumed known.

The simulation results with r =  0.03 and 0.05 under both trend functions are displayed in 

Table 6.3. Under the flat trend, the size for both ranges is within limits, and power increases 

as smoothing parameter increases. Power for r = 0.03 is however higher than for r  =  0.05. 

Under the Qiu trend, size remains within limits for both ranges for all h.test, except at 

h.test =  0.3. Similar features for power as in the flat function can be observed, where power 

is higher for lower range. In fact, power for both ranges is similar under the Flat and Qiu 

trends, highlighting that the Qiu trend is fairly smooth.

h.test F la t Function Qiu Function
Size Power Size Power

r =  0.03 r  =  0.05 r = 0.03 r =  0.05 r =  0.03 r =  0.05 r  =  0.03 r =  0.05
0.10 0.065 0.055 0.420 0.330 0.065 0.055 0.420 0.330
0.15 0.060 0.060 0.795 0.580 0.060 0.060 0.795 0.580
0.20 0.050 0.045 0.965 0.800 0.050 0.045 0.960 0.800
0.25 0.055 0.050 0.995 0.885 0.065 0.065 0.995 0.865
0.30 0.055 0.065 0.995 0.890 0.120 0.120 0.995 0.885

Table 6.3. Simulation results for n =  17 x 17, range, r =  0.03,0.05, jum p  =  2, o2 =  1 for 
both flat and Qiu’s trend functions, with single smoothing.

6.4.1.3 Effects of sam ple size

In this section, the focus is on the effects of sample size on the test. Four sample sizes are 

considered here, namely n =  11 x 11,17 x 17,21 x 21 and 24 x 24. Figure 6.4 shows the data 

points for these various sample sizes and their evaluation points (indicated by green dots). 

The number of evaluation points is constant at 15 x 15, which are regularly spaced out from
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Equally spaced: n=11x11, ngrid=15x15 Equally spaced: n=17x17, ngrid=15x15
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Figure 6.4. The figure displays three different sample sizes, n = 11 x 11,17 x 17, 21 x 21 
and 24 x 24. The evaluation points (ngrid = 15x15) are represented by green dots. The red 
dotted line denotes the jump location curve, and the points with jump added are denoted 
as “H” , while the rest are denoted as “L” .

the second row and column to the second last row and column. We shall consider only the 

flat trend here, with two different correlations, over different smoothing parameters.

From Table 6.4, we can observe that for all sample sizes, the size for r =  0.03 remains 

within limits over all smoothing parameters. An interesting feature in the results for power 

is that the power for n =  17 x 17 is higher compared to n = 21 x 21. This effect is more 

prominent at lower h.test. However, both are considerably higher than at 11 x 11. Similar
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h.test n = l l x l l n= 17x!7 n=21x21 n=24x24
Size Power Size Power Size Power Size Power

0.10
0.15
0.20
0.25
0.30

0.045
0.055
0.055
0.050
0.070

0.110
0.335
0.755
0.800
0.960

0.065
0.060
0.050
0.055
0.055

0.420
0.795
0.965
0.995
0.995

0.025
0.040
0.055
0.055
0.050

0.260
0.770
0.970
0.990
0.995

0.050
0.035
0.050
0.050
0.050

0.590
0.885
1.000
1.000
1.000

Table 6.4. Simulation results for three different sample sizes, n =  11 x 11,17 x 17,21 x 21, 
24 x 24, range, r  =  0.03 and jump  = 2, with a flat trend function, with single smoothing.

h.test n = l l x l l n = 1 7 x l7 n=21x21 n=24x24
Size Power Size Power Size Power Size Power

0.10
0.15
0.20
0.25
0.30

0.040
0.045
0.050
0.075
0.075

0.095
0.285
0.655
0.800
0.855

0.055
0.060
0.045
0.050
0.065

0.330
0.580
0.800
0.885
0.890

0.025
0.040
0.055
0.065
0.065

0.160
0.445
0.715
0.850
0.875

0.050
0.040
0.045
0.060
0.080

0.370
0.585
0.820
0.945
0.960

Table 6.5. Simulation results for three different sample sizes, n =  11 x 11,17 x 17,21 x 21, 
24 x 24, range, r =  0.05 and jump  = 2, with a flat trend function, with single smoothing.

features can also be observed for r  = 0.05 as displayed in Table 6.5. This feature is indeed 

surprising as we would intuitively expect power to increase with an increase in sample size.

The same range has been used for all three sample sizes. This has different implications to 

the degree of correlation in each case. A larger sample size corresponds to a finer resolution, 

where the spatial autocorrelation between neighbouring observations is stronger than one 

with a smaller sample size. This might affect the power of the test. However a more obvious 

cause which might have a more prominent effect, could be the positions of the evaluation 

points for the four samples. More evaluation points for n =  17 x 17 sit exactly at the 

data points which have been raised to a particular height, compared t o n = l l x l l  and 

n = 21 x 21. Hence this might result in the power being higher for the former especially at 

lower h.test.

To investigate if it is due to the location or number of the evaluation points, the exper­

iment is repeated with ngrid =  (n — 2) x (n — 2). In this setting, the evaluation points sit
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h.test n = l l x l l n = 1 7 x l7 n=21x21 n=24x24
Size Power Size Power Size Power Size Power

0.10
0.15
0.20
0.25
0.30

0.020
0.060
0.065
0.045
0.045

0.090
0.275
0.630
0.850
0.890

0.065
0.060
0.050
0.055
0.055

0.420
0.795
0.965
0.995
0.995

0.055
0.060
0.055
0.055
0.055

0.395
0.750
0.980
0.995
0.995

0.065
0.035
0.045
0.045
0.060

0.565
0.855
1.000
1.000
1.000

Table 6.6. Simulation results for n =  11 x 11, 17 x 17, 21 x 21 and n = 24 x 24 with 
range, r  =  0.03 and jump  =  2 with a flat trend function, with single smoothing. The no. of 
evaluation points, ngrid =  (n — 2) x (n — 2) is used for to compare to the results obtained 
in Table 6.4.

h.test n = l l x l l n = 1 7 x l7 n=21x21 n=24x24
Size Power Size Power Size Power Size Power

0.10
0.15
0.20
0.25
0.30

0.020
0.070
0.045
0.050
0.045

0.090
0.250
0.495
0.685
0.750

0.055
0.060
0.045
0.050
0.065

0.330
0.580
0.800
0.885
0.890

0.045
0.035
0.070
0.070
0.065

0.320
0.575
0.805
0.880
0.925

0.045
0.040
0.035
0.060
0.060

0.380
0.575
0.810
0.945
0.960

Table 6.7. Simulation results for n =  11 x 11, 17 x 17, 21 x 21 and n =  24 x 24 with range, 
r =  0.05 and jump  =  2 with a flat trend function, without double smoothing. The no. of 
evaluation points ngrid = (n — 2) x (n — 2) is used for to compare to the results obtained in 
Table 6.5. .

exactly at the data points, excluding those at the first and last row and column. The results 

are shown in Tables 6.6 and 6.7 for r =  0.03 and r  =  0.05 respectively. For r =  0.03, the 

powers for n = 21 x 21 are much higher especially at lower band widths than those for the 

same sample size shown in Table 6.4, which uses ngrid =  15 x 15. In fact, they are compara­

ble to those produced for n — 17x17. The power for n =  24 x 24 is approximately the same, 

but for n =  11 x 11, the power is slightly lower when less evaluation points, ngrid =  9 x 9  

are used instead. The features are similar for r  =  0.05. This indicates that the test may be 

sensitive to the position and number of evaluation points especially at lower bandwidths.
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6.4.2 Equally Spaced Setting: Correlation unknown

In a real-life setting, the spatial correlation in the data is rarely known. A fairly good 

estimate of the unknown correlation is quite crucial to the performance of the test. This 

section investigates how the DDTP algorithm that was proposed in Section 6.2.7 performs 

in various data conditions of different degrees of spatial correlation (r =  0.03,0.05), under 

the null and alternative hypothesis. The same data that were simulated in the Section 6.4.1 

were used here. Only the Flat and Qiu trends are considered. To estimate correlation in the 

presence of a rougher function like the Ismail trend for such a small sample size would be 

difficult.

The first stage of the DDTP uses the same smoothing parameter, i.e. h i = h.trend and is 

carried out with double smoothing (dsT), while the second stage explores different smoothing 

parameters, h2 6 {hi, hi — 0.1, hi — 0.2} with just single smoothing (dsF), as applied in the 

previous sections. A wide range of smoothing parameters has been used, from 0.1 to 0.6 and 

a distance of 0.7 for variogram modelling. The value of std used for the partitioning process 

is set first at 2.5. If the results for the size are unsatisfactory, higher values of std =  3.5 are 

then considered. Only those simulation results that give reasonable size and power, denoted 

here as Sizel and Powerl, are displayed in Tables 6.8 - 6.11. Simulations which give sizes 

that are within limits are highlighted in bold.

Tables 6.8 and 6.9 display results for r  =  0.03, with Flat and Qiu trends respectively. 

A large smoothing parameter h i =  h.trend > 0.4, is required to give a good size. Size is 

inflated for lower hi  =  h.trend. The power of the test for those with appropriate sizes are 

comparable to the true power. Using std =  2.5 gives reasonable results.

As with the data of r =  0.03 with a Qiu trend, a slightly smaller smoothing parameter 

(eg. hi =  0.3) than that for the flat function can be used to give a good size. However, using 

a smoothing parameter of 0.4 gives very low power. The best power of 0.85 is obtained using 

a smoothing parameter of 0.3 for both stages. This is slightly lower but still comparable 

to the true power. Using std =  2.5 gives reasonable results. For both trend functions, at 

the same value of h i, power stays the same or increases as h2 increases, while size remains 

approximately the same. Hence a recommended value of h2 is h2 G {hi, h i — 0.1}. Size and
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Flat function for r  = 0.03
std hi =  h.trend (dsT) h i  (dsF) Sizel Powerl Size2 Power2
2.5 0.30 0.10 0.170 0.505 - -

2.5 0.30 0.20 0.150 0.945 - -

2.5 0.30 0.30 0.145 0.985 - -

2.5 0.40 0.20 0.105 0.875 - -

2.5 0.40 0.30 0.085 0.930 0.120 0.980
2.5 0.40 0.40 0.085 0.960 0.105 0.995
2.5 0.50 0.30 0.070 0.840 - -

2.5 0.50 0.40 0.085 0.870 0.085 0.920
2.5 0.50 0.50 0.085 0.860 0.085 0.920

Table 6.8. Table shows results for n = 17 x 17, range, r =  0.03 and jum p  =  2 with a flat 
trend, when correlation is estimated using the DDTP approach. Sizel, Powerl: size and 
power with maxdist =  0.7; Size2, Power2: size and power with maxdist =  1.4

Qiu function for r = 0.03
std hi = h.trend (dsT) h i  (dsF) Sizel Powerl Size2 Power2
2.5 0.20 0.10 0.205 0.450 - -

2.5 0.20 0.20 0.235 0.940 - -

2.5 0.30 0.10 0.080 0.260 - -

2.5 0.30 0.20 0.060 0.750 0.060 0.750
2.5 0.30 0.30 0.090 0.850 0.090 0.935
2.5 0.40 0.20 0.035 0.160 - -

2.5 0.40 0.30 0.035 0.215 0.040 0.375
2.5 0.40 0.40 0.055 0.215 0.055 0.400

Table 6.9. Table shows results for n =  17 x 17, range, r  =  0.03 and jum p  =  2 with a Qiu 
trend, when correlation is estimated using the DDTP approach. Sizel, Powerl: size and 
power with maxdist =  0.7; Size2, Power2: size and power with maxdist =  1.4

power increase as h i =  h.trend decreases.

Next, we shall look at the ability of the DDTP algorithm to capture a higher range of 0.05 

in the presence of both trend functions. Tables 6.10-6.11 display the results for r  =  0.05 

with Flat and Qiu trends respectively. Using std =  2.5 does not give a good size for a wide 

range of smoothing parameters. However, using std =  3.5 gives appropriate sizes at high 

smoothing parameters. The power with appropriate sizes at h i =  h.trend =  0.6, h2 =  0.4 is
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F lat function for r = 0.05
std hi = h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
2.5 0.40 0.20 0.285 0.775 - -

2.5 0.40 0.30 0.260 0.830 - -

2.5 0.40 0.40 0.225 0.830 - -

2.5 0.50 0.30 0.165 0.685 - -

2.5 0.50 0.40 0.165 0.685 - -

2.5 0.50 0.50 0.160 0.685 - -

2.5 0.60 0.40 0.125 0.545 - -

2.5 0.60 0.50 0.125 0.545 - -

2.5 0.60 0.60 0.120 0.530 - -

3.5 0.40 0.20 0.210 0.790 - -

3.5 0.40 0.30 0.160 0.840 - -

3.5 0.40 0.40 0.160 0.835 - -

3.5 0.50 0.30 0.160 0.675 - -

3.5 0.50 0.40 0.150 0.675 - -

3.5 0.50 0.50 0.150 0.675 - -

3.5 0.60 0.40 0.095 0.490 - -

3.5 0.60 0.50 0.090 0.490 0.095 0.615
3.5 0.60 0.60 0.080 0.490 0.095 0.605

Table 6.10. Table shows results for n = 17 x 17, range, r  =  0.05 and jum p  = 2 with a Flat 
trend, where correlation is estimated using the DDTP approach. Sizel, Powerl: size and 
power with maxdist =  0.7; Size2, Power2: size and power with maxdist =  1.4

constant at 0.49, regardless of the value of h2 used.

As with the data of r =  0.05 with a Qiu trend, using std =  2.5 also does not give a good 

size for a wide range of smoothing parameters. The only one that has size within the 99% 

Cl is with hi = h.trend =  0.4, h2 = 0.3, which gives a power of 0.300. This is very much 

lower compared to the true power of 0.885. The value of std =  3.5 is then used, and this 

gives more controlled sizes at the same smoothing parameters. The best power of 0.48 can 

be obtained using hi =  h.trend =  0.35, h2 =  0.25. This is still much lower than the true 

power of 0.87. We see the same feature as observed earlier for r =  0.03, whereby power 

increases as h2 increases for the same hi, while size remains approximately the same. Hence 

using h2 =  hi or hi — 0.1 is recommended for good power. Size and power decrease with 

increasing hi =  h.trend. However, a larger hi =  h.trend is at times necessary to get a good
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Qiu function for r  = 0.05
std hi = h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
2.5 0.30 0.10 0.220 0.410 - -

2.5 0.30 0.20 0.230 0.730 - -

2.5 0.30 0.30 0.235 0.795 - -

2.5 0.35 0.15 0.190 0.360 - -

2.5 0.35 0.25 0.160 0.540 - -

2.5 0.35 0.35 0.190 0.570 - -

2.5 0.40 0.20 0.100 0.250 - -

2.5 0.40 0.30 0.095 0.300 0.115 0.575
2.5 0.40 0.40 0.100 0.300 - -

3.5 0.30 0.10 0.175 0.335 - -

3.5 0.30 0.20 0.155 0.670 - -

3.5 0.30 0.30 0.130 0.770 - -

3.5 0.35 0.15 0.115 0.250 - -

3.5 0.35 0.25 0.090 0.475 0.110 0.665
3.5 0.35 0.35 0.120 0.480 - -

3.5 0.40 0.20 0.060 0.195 - -

3.5 0.40 0.30 0.055 0.250 0.095 0.52
3.5 0.40 0.40 0.070 0.235 0.110 0.500

Table 6.11. Table shows results for n = 17 x 17, range, r =  0.05 and jum p  =  2 with a Qiu 
trend, where correlation is estimated using the DDTP approach.

size. Using a larger std gives a better size, but this results in a decrease in power.

In ths first round of simulations, the variogram distance to model the correlation was set 

at half the maximum pairwise distance, which is maxdist =  0.7. As maxdist might be a 

factor that influences the estimation of the range and sill, the simulations have been repeated 

for those which give appropriate size (< 0.1) and better powers (using h2 =  hi, h i —0.1) with 

maxdist =  1.4, which is the maximum pairwise distance. The other conditions stay the same. 

The corresponding size and power are denoted as “Size2” and “Power2” in Tables 6.8 - 6.11.

Using maxdist = 1 .4  gives sizes that are slightly inflated at certain smoothing parameters 

for r  =  0.03 with a flat trend, but are within limits for the Qiu trend. For those with 

appropriate sizes, the powers are higher than when maxdist =  0.7 is used. Sizes for data 

with range 0.05 are within limits for the Flat function, but most are inflated for the Qiu 

function. A similar feature where power is higher for those with appropriate size can be
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observed. Using a larger distance of maxdist =  1.4 gives a better power when the size is 

appropriate. However, it appears to be less stable, giving inflated sizes. Nonetheless, it copes 

better with a lower range.

As the algorithm does not perform very well for a jump of 2 for a high range of 0.05, the 

jump size is increased to 3 to investigate if this will improve its performance. Only those 

simulations with conditions that give appropriate sizes are carried out with maxdist =  0.7. 

Tables 6.12 and 6.13 display the power with jump 3, along with the results obtained earlier 

with jump 2.

From the simulation results, power for the Flat function is increased from 0.49 to 0.795, 

while power is increased by approximately 40% for the Qiu function at various combinations 

of smoothing parameters. The best is with hi — h.trend =  0.35, h2 =  0.25, giving a high 

power of 0.9.

F la t function for r  =  0.05
std hi = h.trend (dsT) h2 (dsF) Sizel Powerl (jp=2) Powerl (jp=3)
3.5 0.60 0.40 0.095 0.490 0.795
3.5 0.60 0.50 0.090 0.490 0.795
3.5 0.60 0.60 0.080 0.490 0.795

Table 6.12. Table shows results for n =  17 x 17 and range, r  =  0.05, with a FLAT trend, 
where correlation is estimated using the DDTP approach for Power with jumps of 2 and 3 
with controlled sizes.

Qiu function for r =  0.05
std h i =  h.trend (dsT) h2 (dsF) Sizel Powerl (jp=2) Powerl (jp=3)
2.5 0.40 0.30 0.095 0.300 0.715
3.5 0.35 0.25 0.090 0.475 0.905
3.5 0.40 0.20 0.060 0.195 0.665
3.5 0.40 0.30 0.055 0.250 0.695
3.5 0.40 0.40 0.070 0.235 0.67

Table 6.13. Table shows results for n = 17 x 17 and range, r  =  0.05, with a Qiu trend, 
where correlation is estimated using the DDTP approach, for Power with jump of 2 and 3 
with well controlled sizes.
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Qiu Trend Noise of variance 1 with range 0.03
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Figure 6.5. The figure displays the Qiu trend, the correlated noise of range 0.03 and 
variance of 1, data with trend and noise, and data with trend and noise and jump of size 2 
within the jump location curve, hi = h.trend = h2 =  0.3, std =  2.5.

Next, as an illustration, Figures 6.5 and 6.6 display examples of a simulated set with the 

Qiu trend function and a normal error of variance 1 with dependence structure of range, 

r =  0.03 and 0.05 respectively, drawn over the same scale to allow for ease of comparison. 

The top left and right panels of Figure 6.5, displays the Qiu trend and a simulated set of 

noise of variance 1 with range 0.03 respectively. The bottom left and right panel display the 

data with trend and noise (i.e. model under the null hypothesis), and the model with trend, 

noise and jump of 2 added within the jump location curve (i.e. model under the alternative 

hypothesis) respectively.
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Qiu Trend Noise of variance 1 with range 0.05

Trend + Noise, p=0.23 Trend + Noise + Jump of 2, p=0.005
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Figure 6.6. The figure displays the Qiu trend, the correlated noise of range 0.05 and 
variance of 1, data with trend and noise, and data with trend and noise and jump of size 2 
within the jump location curve, hi = h.trend =  0.35, h2 =  0.25, std =  3.5.

Using hi =  h.trend =  h2 =  0.3, std =  2.5, the DDTP algorithm is applied, which gives 

an estimated range, sill and p-value of 0.0279, 0.985 and 0.19 respectively, for the model 

under the null hypothesis. It gives an estimated range, sill and p-value of 0.0276, 0.991 

and 0.005 respectively, for the model under the alternative hypothesis. Hence the test has 

correctly given the right conclusions of whether any discontinuities existed.

Figure 6.6 shows a similar simulated set, but with range of 0.05. The DDTP is applied 

with hi =  h.trend =  0.35, h2 =  0.25 and std =  3.5, which gives estimated range and sill 

of 0.045 and 0.967 respectively, and a p-value which is not significant at 0.23, under the
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model with no discontinuity. As for the model with discontinuity, it correctly rejects the null

hypothesis with a p-value of 0.005. Its estimated range and sill are 0.045, and 1.02.

From Figures 6.5 and 6.6, as the sample size is small there appears to be quite a lot of 

variation with noise variance of 1 for both dependence structures, as shown in the top right 

panel. From the bottom right panel of both figures, it is not obvious to the eye whether the 

irregularity could be due to the presence of discontinuity in the data, or due to trend and/or 

random variation. However, the DDTP has correctly detected discontinuities in both cases 

when they are present. It gives quite a good estimate of the range and sill, under both the 

null and alternative hypothesis, highlighting the effectiveness of introducing the partitioning 

process in the algorithm.

6.5 Unequally Spaced Setting

Often, data might not be collected at regular intervals. In this section, it is of interest to

see how the discontinuity test performs and whether its performance would be affected if 

the data are unequally spaced. This could apply to cases where the intervals between data- 

points are not equal, or it could refer to locations that form a regular grid, but there might 

be missing data at certain locations.

In the following simulations, we obtained two sets of unequally spaced locations in both 

directions by simulating from a Un(0,1) distribution. The irregular spatial locations are kept 

constant throughout the study. Figure 6.7 shows the position of the unequally spaced data, 

the evaluation points and the jump location curve. The data conditions and parameters 

used in the test approaches are similar to those used in the equally spaced case. These are 

displayed earlier in Table 6.1.

Assuming knowledge of the true correlation, we will explore how the test works in this 

design setting in Section 6.5.1, and then apply the DDTP algorithm in Section 6.5.2 to 

estimate the unknown spatial correlation. A smaller scale of simulation study is done here 

compared to the equally spaced setting, as we would expect the features of the influence 

of various factors on the discontinuity test to be quite similar. (We have seen this in the 

one-dimensional case in Chapters 3 and 4.)
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Unequally spaced: n=17x17, ngrid=15x15
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F ig u re  6.7. The figure displays the unequally spaced data points (n = 17 x 17). The 
evaluation points (ngrid =  15 x 15) are represented by green The red dotted line
represents the jump curve, and the points with jump added are denoted as “H”, while the 
rest are denoted as “L”.

6.5.1 Unequally Spaced Setting: Correlation known

Here, knowledge of both ranges, 0.03 and 0.05 are assumed. Table 6.14 presents the sim­

ulation results under both trend functions. This table can be used as a reference to the 

expected size and power of the test if the range and sill are accurately estimated.

h.test F la t Function Q iu F unction
Size Pow er Size Pow er

r = 0.03 r = 0.05 r = 0.03 r =  0.05 r -  0.03 r =  0.05 r = 0.03 r =  0.05
0.10 0.055 0.080 0.470 0.405 0.060 0.080 0.470 0.410
0.15 0.070 0.085 0.755 0.520 0.070 0.080 0.755 0.515
0.20 0.040 0.055 0.970 0.730 0.050 0.060 0.965 0.710
0.25 0.035 0.050 1.000 0.855 0.050 0.060 1.000 0.850
0.30 0.045 0.050 1.000 0.930 0.080 0.075 1.000 0.910

Table 6.14. Simulation results for n = 17 x 17, range, r  =  0.03,0.05 and jum p  = 2 for 
both flat and Qiu’s trend functions, with single smoothing, for unequally spaced data.
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In accordance to Table 6.14, there is a similar pattern in the results as in the equally 

spaced setting, displayed in Table 6.3, where the power is higher for data with lower range, 

and increases with increasing smoothing parameter, under both trend functions. The size 

however remains within limit over all h.test for both trends, unlike that in the equally spaced 

setting, where it goes off limit at higher h.test for the Qiu trend.

6.5.2 Unequally Spaced Setting: Correlation unknown

This section examines how the DDTP algorithm copes with unequally spaced data. Only 

those simulations with various smoothing parameters used in the DDTP algorithm, that give 

well-controlled size in the equally spaced setting (Section 6.4.2) are used. Tables 6.15- 6.18 

display the results for both r =  0.03 and 0.05, under Flat and Qiu trends. Comparisons 

will be made to the results obtained here with those in Section 6.4.2 obtained in the equally 

spaced setting. As mentioned earlier, Sizel, Powerl denote the size and power obtained using 

maxdist =  0.7, while Size2, Power2 denote the size and power obtained with maxdist =  1.4.

From Tables 6.15 and 6.16, we can observe that some of the sizes are inflated for r =  0.03 

under both Flat and Qiu trends respectively. Power is comparable to that of the equally 

spaced setting for the Flat trend. It appears to perform better for the Qiu trend at higher 

smoothing parameters. In accordance to Table 6.17, size for r  =  0.05 is within limits for the 

Flat trend, and power is slightly higher than that for the equally spaced setting. The sizes 

are however more inflated for the Qiu trend as shown in Table 6.18.

Using the maximum distance of 1.4 gives a better power and the size generally remains 

well-controlled under different smoothing parameters.

6.6 Discussion of Simulation Results

The simulation study is divided into two main sections: the equally spaced setting in Sec­

tion 6.4 and the unequally spaced setting in Section 6.5. In the simulation study for the 

equally spaced setting, knowledge of correlation is first assumed to investigate the effects
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F lat function for r  = 0.03
std hi =  h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
2.5 0.40 0.30 0.075 0.905 0.095 0.905
2.5 0.40 0.40 0.090 0.935 0.095 0.925
2.5 0.50 0.40 0.080 0.885 0.100 0.900
2.5 0.50 0.50 0.090 0.890 0.110 0.920

Table 6.15. Table shows results for n — 17 x 17, range, r  =  0.03 and jum p  =  2, with a flat 
trend, when correlation is estimated using the DDTP approach, for unequally spaced data.

Qiu function for r = 0.03
std hi =  h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
2.5 0.30 0.20 0.065 0.725 0.105 0.755
2.5 0.30 0.30 0.100 0.915 0.100 0.935
2.5 0.40 0.30 0.065 0.595 0.065 0.735
2.5 0.40 0.40 0.070 0.655 0.075 0.795

Table 6.16. Table shows results for n = 17 x 17, range, r  =  0.03, and jum p — 2 with a Qiu 
trend, when correlation is estimated using the DDTP approach, for unequally spaced data.

of other factors, such as trend function and smoothing parameter (Section 6.4.1.1), correla­

tion (Section 6.4.1.2) and sample size (Section 6.4.1.3). In the later section, correlation is 

unknown, and is estimated using the DDTP algorithm for different ranges and trends. A 

similar structure of simulation study for the unequally spaced setting is also used.

As we have seen in previous simulation studies, the smoothness of the underlying function 

is determined by the smoothing parameter. Both of these factors play an individual as well 

as combined role in the performance of the test. If the trend is very smooth, as in the 

case with the Flat and Qiu trend, power increases with increasing value of the smoothing 

parameter and the size stays within limits. However, if the trend is irregular, as in the Ismail 

trend, oversmoothing will result in an inflated size.

As contemplated, if the range is increased, power is decreased. Power, however, is high 

for both ranges. At h.test =  0.2, power for r  =  0.03 and 0.05 with an underlying Flat or 

Qiu trend, are about 0.96 and 0.8 respectively.
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Flat function for r = 0.05
std h i =  h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
3.5 0.60 0.50 0.090 0.560 0.075 0.690
3.5 0.60 0.60 0.090 0.565 0.075 0.690

Table 6.17. Table shows results for n = 17 x 17, range, r  =  0.05 and jum p  =  2 with a Flat 
trend, where correlation is estimated using the DDTP approach, for unequally spaced data

Qiu function for r = 0.05
std h i = h.trend (dsT) h2 (dsF) Sizel Powerl Size2 Power2
2.5 0.40 0.30 0.110 0.605 0.125 0.735
2.5 0.40 0.40 0.120 0.625 0.140 0.770
3.5 0.35 0.25 0.120 0.670 0.130 0.780
3.5 0.35 0.35 0.125 0.755 0.130 0.850
3.5 0.40 0.30 0.085 0.540 0.090 0.695
3.5 0.40 0.40 0.095 0.585 0.115 0.760

Table 6.18. Table shows results for n — 17 x 17, range, r =  0.05 and jum p  =  2, with a Qiu 
trend, where correlation is estimated using the DDTP approach, for unequally spaced data

Lastly, the effects of sample size are investigated. Generally, there is an increase in power 

as sample size increases. However the powers forn  =  17x17 ,21x21 and 24 x 24 differ only 

slightly for low smoothing parameter but is approximately the same for moderate to large 

smoothing parameter. From the simulation results, it is also shown that the test may be 

sensitive to the position and number of evaluation points, ngrid used. For instance, the use 

of ngrid =  19 x 19 instead of 15 x 15 makes a considerable difference in power for a sample 

of size n =  21 x 21.

It is interesting to note that the power for a moderate dependence structure of r  =  0.05 

with a jump of 2 is much higher in this two-dimensional setting compared to the one­

dimensional setting that we have seen earlier in Chapters 3 and 4. Though the curse of 

dimensionality exists, where the data are considered more sparse in a higher dimension, 

the power of the discontinuity test is not affected. This is because the discontinuity in the 

former case occurs over a curve, hence there are more evaluation points which have high
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standardised differences compared to the latter which is just at a point.

The above has so far assumed that the correlation is known, but this is rarely the case in 

practice. Moreover, in the spatial context, there is often trend present which complicates the 

issues. To be able to obtain a precise estimate of the spatial dependence of the data in the 

presence of both an unknown trend and possible discontinuities is a challenging task. The 

DDTP algorithm is proposed in Section 6.2.7 to tackle this issue. It comprises estimating 

and removing the trend in the data using local linear smoothing; and secondly removing 

observations near a possible jump location curve. Both of these, if unaccounted for, will 

cause an increase in the estimated range and hence result in low probability of any success 

to detect discontinuities if present. The capability of the algorithm to be able to handle 

different data settings is investigated in Section 6.4.2.

Overall, DDTP seems to work markedly better for a lower range, eg. r  =  0.03 than 0.05. 

Using appropriate smoothing parameters for both stages gives power that is quite close to 

the true power for r  =  0.03.

For a flat function, a fairly large smoothing parameter has to be used in the first stage 

in order to get a good estimate of the correlation, giving good size for both ranges. Using a 

low smoothing parameter will result in tracking the data too closely, hence underestimating 

the range in the data. This causes the size to go off limits.

Increasing the smoothing parameter for the first stage will result in a decrease in power, 

while an increasing smoothing parameter in the second stage will result in an increase in 

power. This is because the first stage involves trend removal. Oversmoothing might result 

in overestimation of the range, hence giving lower power. On the other hand, increasing 

the smoothing parameter for the second stage will cause an increase in power as both trend 

functions, Flat and Qiu are relatively smooth.

The DDTP procedure does not work well for a higher range like r =  0.05 when std =  2.5 

is used (as in the earlier simulations for r =  0.03). However, if std is increased to 3.5, the 

size is more well-controlled. This is because data of such a high dependence, when treated 

as independent, will give very high standardised differences. Hence a lot of observations are 

inaccurately removed during the partitioning process in the first stage. To avoid this, std 

has to be increased. However there has to be a balance, as having too large a std might
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result in not having an efficient removal of the observations near the jump location curve. 

This would in turn cause an overestimation of the range of the model under the alternative 

hypothesis, hence decreasing the power.

Nonetheless, powers for both the Flat and Qiu trends for r  =  0.05 of a jump size of 2 are 

only about half of their true power. By increasing the jump of size 2 to 3 for a higher range 

of 0.05, the power for the DDTP increases considerably. Hence for the DDTP algorithm to 

be capable of a higher success rate in detecting discontinuities, accounting for the presence 

of both trend and moderately high correlation, a higher jump to noise ratio is helpful.

Another feature that we can observe from the simulation study is that a larger smoothing 

parameter is required to estimate a higher range. The reasoning is similar to what we have 

seen earlier in our previous simulation study in the one-dimensional case. Using a low 

h.trend will result in tracking the data too closely, giving a lower estimate of correlation. 

However, while the flat function works better when a large smoothing parameter is used, 

in the presence of a less smooth function such as Qiu, a smaller smoothing parameter is 

preferred.

Another factor that was investigated was the effects of the distance used for variogram 

fitting on the estimated correlation, which would affect the discontinuity test to a certain 

extent. The simulation study was repeated using a larger distance of 1.4, and the results 

show that it does affect the size and power of the test. A larger distance tends to result in 

inflation of the sizes, giving non-conservative tests. However, at well-controlled sizes, it gives 

better power if suitable conditions in the test approach are used. This could be partly due 

to the location of the discontinuities. In our simulations, this is located in the middle. If the 

maximum pairwise distance is considered, it allows observations that are far apart and not 

located near the discontinuity to be included in the variogram fitting, giving a more accurate 

range estimate in the model under the alternative hypothesis. Hence though it might not be 

a very crucial factor, it might be useful to vary the distance of the variogram fitting when 

analysing data for discontinuities.

In the unequally spaced setting, the performance of the DDTP algorithm is comparable 

to that in the equally spaced setting for low range of 0.03 and for a flat function with a 

high range of 0.05. However, in the presence of a Qiu trend, the sizes are mostly inflated.
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Increasing the distance for variogram fitting is also investigated. Results indicate a better 

power for all, but sizes are slightly inflated for some.

In conclusion, the DDTP works well in the presence of both the Flat and Qiu trends if 

the range is lower at 0.03. The latter gives powers that are comparable to the true power 

under suitable conditions. The best power is about 0.9. However, for a higher range of 0.05, 

the power is somewhat lower than that of the true power. A larger jump is required to 

increase the success rate of detecting a discontinuity when present.

The DDTP algorithm might not work very well for a high range, as the sample size is 

very small, and in the presence of both trend and correlation, this problem becomes even 

more complicated. With a larger set of data, it will certainly work better, as we would have 

more data during the partitioning process in the first stage, which would provide a better 

fitting of the trend, before the estimation of correlation.

The sensitivity of the algorithm to the smoothing parameter used is inevitable. To allow 

for flexibility and wider applications, the DDTP algorithm has not made any assumptions 

about the underlying trend functions, allowing it to be smoothly varying. The shape of the 

jump location curve is also not assumed. Hence it faces a complicated and challenging task 

to estimate correlation under these conditions. One of the trend functions in the simulation 

study is the Flat function, which basically means that no trend is present. By trying to 

remove this nonexistent trend, with a small smoothing parameter that is not sufficiently 

large, the data would be tracked too closely, causing an underestimation of the range. This 

will prove to be a bigger problem if the range of dependence is high, as we have seen in our 

simulation study.

6.7 An Application to Mapping Radioactivity

6.7.1 Introduction &; Background

This section describes the analysis of a data set collected during a field test RESUME-95 

(Rapid Environmental Surveying Using Mobile Equipment) exercise, organised by Nordic 

Nuclear Safety Research (NKS). Two of the main objectives of the RESUME-95 exercise
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were to test the capability of several airborne, car-borne and in-situ instruments to map 

radioactive contamination, in this case from Chernobyl fallout; and to compare the results 

obtained using different monitoring tools, under similar controlled conditions.

The study location, denoted as Area II in the exercise RESUME-95 (1997), was rect­

angular in shape and 6 x 3  km2 area. It is made up of typical Finnish countryside, with 

a mixture of forest lakes, marsh ground, rocky terrain, and some open agricultural fields. 

The general topography was quite flat, with most higher ground less than 50m in height. 

However, some of the lake sides were quite steep. The area for this exercise was selected as it 

was contaminated with man-made radionuclides in the days following the Chernobyl nuclear 

reactor accident. It was found to have high Cs-137 deposition based on earlier airborne 

survey results collected by the Geological Survey of Finland (GSF).

Due to the diverse mixture of terrains present in Area II, there might be considerable 

variation in the deposition of Cesium-137 over the whole area. The aim of this analysis is to 

investigate if there are any significant sharply varying depositions in such a terrain.

6.7.2 Description of Data

In order to analyse in detail Cs-137 activities, 21 parallel survey lines of 6 kilometres were 

flown by a helicopter carrying the detector in August 1995; line spacing was 150 metres. 

Each observation consists of the average helicopter position and the counts per second from 

a spectrum representing an energy scale, (X1,X2,Y). A coloured map of the original data 

which had undergone some smoothing can be found in Plate 7 of RESUME-95 (1997).

To compensate for differences in the sampling time and variations in the flight tracks of 

different monitoring tools, the data set has been re-gridded. The original flight lines had a 

bearing of 22/202 degrees and were 150 meters apart. To obtain a new right-angular grid, 

the observations were shifted 22 degrees anti-clockwise and arranged in cells of size 150m and 

300m perpendicular and along the lines respectively. The final rectangular grid is regularly 

spaced with 22 rows x 21 columns. The mean value of all the observations within each cell 

is taken as the value for that grid cell. The unit is given as Cps, which denotes counts per 

second (Hovgaard and Scott, 1997).
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There are 411 data points with 51 missing values. The maximum was 173 Cps, minimum 

was 22 with standard deviation of 25.5. The summary statistics of these data are provided 

in Table 6.19.

Sum m ary S tatistics of a irbo rne  d a ta
N Number missing Min 1st Quartile Median Mean 3rd Quartile Max
411 51 22.00 108.75 124.50 121.65 139.50 173.25

Table 6.19. Summary statistics for cesium data

We first do a bivariate interpolation over the xl and x2 coordinates to obtain a fitted 

value for the missing z to be used for a contour plot. Another visualization technique that 

would be useful to see the spatial distribution is an image plot, where the darker the tone 

in a particular region, the higher the concentration of the airborne data. The contour and 

image plots are displayed in Figure 6.8, which highlight the fact that there is considerable 

variation in the whole area. Another feature that can be observed is that the highest levels 

of Cs-137 occur on the central and northern parts of the area, which were largely forested 

areas. The lower levels are mainly associated with cultivated areas or villages and lakes. The 

Cs-137 activity is lower in villages where it has been washed away from paved surfaces, and 

in cultivated areas where the soil has been turned over. The radioactivity map does produce 

results that indicate interesting correlations with land use.

Perspective plots of the smoothed airborne data using different degrees of smoothing are 

displayed in Figure 6.9. It can be observed from the diagram that using a small smoothing 

parameter tracks the data closely and is more capable of picking up fine features, while 

using a large smoothing parameter results in a much smoother trend. There are considerable 

differences in the features that are being picked out using h =  0.1 and 0.2, but the differences 

are minimal as we increase from h =  0.3 to 0.4.

Note that in this section, the imputation of missing observations using bivariate interpo­

lation, is for illustrative purposes. The subsequent sections make use of the original data, 

without any imputed values.
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Figure 6.8. Cesium data: A contour and image plot of the airborne data (HPGe) measured 
in Cps (Counts per second) after interpolation over exact xl and x2 locations

6.7.3 D etecting discontinuities: Analyses &; Results

In this section, we will investigate if there are any discontinuities by carrying out the proposed 

discontinuity test, taking into account the spatial correlation that might be present in the 

data. There is a motivation to consider the structure of dependence of deposition of Cs-137 

over their spatial locations as that is supported not only by the geographical characterisation 

of the area, but also because the area has been re-gridded. The value of the regridded cell 

is obtained by taking the mean of all the observations that fall in that cell. The raw data 

has thus been somewhat smoothed.

As it is not obvious how a parametric regression model can be used to model the data, 

nonparametric smoothing using local linear regression is particularly appropriate here. The 

smoothed data are obtained by taking a weighted average of their nearby spatial neighbours.

The Double Discontinuity Test with Partition (DDTP) algorithm introduced in Sec­

tion 6.2.7, is applied. This involves the incorporation of the estimation of the correlation in
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Figure 6.9. Cesium data: Perspective plots of smoothing original data using different 
smoothing parameters.

the discontinuity test. In the test approach, 17 x 17 equally spaced evaluation points (as 

shown in Figure 6.10), have been selected as this gives 289 evaluation points, which is of a 

reasonably high resolution. The parameters used for a robust variogram fitting by nonlinear 

weighted least squares fitting, are the maximum pairwise distance, lag of 0.05 and minimum 

pairs of 30 in each lag. The value for the partitioning process, std, was set at 2.5.

The first stage of the algorithm involves carrying out the discontinuity test with double 

smoothing, treating the data as independent. A smoothing parameter of 0.1 was selected 

as the area is made up of many different terrains, which one would suspect to result in 

quite an irregular trend. Hence, a small smoothing parameter might be more appropriate
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in order to prevent oversmoothing the fine features. Using this smoothing parameter gives 

a p-value of 0, indicating that there is strong evidence of discontinuities when the data 

are treated as independent. This is then followed by using a similar smoothing parameter, 

h.trend =  0.1, with double smoothing , to detrend the data. As the p-value is less than 

0.05, only observations with standardised differences, s t .d i f f  1, less than std =  2.5 are used 

to fit the variogram and obtain the range and sill. The 2nd stage of DDTP is then carried 

out using h2 =  0.1, taking into account the estimated correlation in the data. The test is 

significant at 0.003.

Figure 6.11 illustrates the different stages of the test. From left, the first plot shows the 

(xl, x2) locations of the airborne data, with several missing values. Contours of various levels 

illustrate the locations where the values of the standardised differences, s t .d i f f  1 are greater 

than or equal to 2.5. It is important to stress here that the values of s t .d i f f  1 are obtained 

assuming the data are independent. The next plot shows step 2 of the 1st stage process, i.e. 

the empirical variogram of the detrended and partitioned data used to obtain the range and 

sill, which are 0.057 and 326 respectively. The discontinuity test is then carried out again,

Data points and a  17 x 17 avakiatlon points
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Figure 6.10. Cesium data: Location of data points with a regular grid of 17 x 17 evaluation 
points indicated by “o” .
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taking into account the spatial correlation of the data. Contours of s t .d i f f2 at levels 2.5 

and 5 are displayed in the next diagram.

We can observe that the contours are different for the first and third plots, as the contours 

in the latter plot takes into consideration the spatial covariance structure obtained from the 

estimated range and sill of the variogram. The former, however, assumes independent data, 

and hence the standardised differences are overestimated. In fact, the particular region 

within the contour of level 5 is where the cesium concentration is low, with the surrounding 

area being substantially higher (refer to Figure 6.8). By looking at the colour maps in Plates 

7 and 19 of RESUME95, we can see that this area actually corresponds to a lake surrounded 

by forest.

Finally, the last plot is the significance trace, showing how the significance of the final 

discontinuity test depends on the smoothing parameter, h2. In our simulations, we have 

suggested using either the same smoothing parameter as the first stage, i.e. h i =  h.trend =  

/i2, or a slightly smaller one. However, for completeness, we have shown how the p-values 

vary with a range of smoothing parameters. From the plot, we have convincing evidence 

to conclude that discontinuities do exist in the data, regardless of the amount of smoothing 

used in this latter stage.

6.7.3.1 Checking the normality Assumption

Our test assumes that the errors are normally distributed. This section is devoted to in­

vestigating if this assumption is valid. Figure 6.12 displays three different plots of the data 

at different stages of the test. The left plot shows the data that have undergone both the 

detrending and partitioning process in stage 1 with double smoothing ; while the next plot 

displays the data that have undergone the same process as the former one but with single 

smoothing. The right plot shows the original data, that have only undergone the partition­

ing process. A smoothing parameter of 0.1 has been used throughout. An expected normal 

curve is superimposed on all the plots

Though there is a slight indication that it might be negatively skewed, from the plots it 

seems reasonable to assume normality.
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treating data as independent, h1=0.1, p= 0 ht=h.trend=0.1, r= 0.057, s= 326 h2= 0.1, r= 0.0573, p= 0.003 Significance trace with r= 0.0573
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Figure 6.11. Cesium data: Different stages of the DDTP algorithm with hi =  h2 =  0.1 
and significance trace for different h2. From left: contour plot of levels with s t .d i f f  1 > 2.5; 
empirical variogram of detrended and partitioned data; contour plot with s t .d i f f2 > 2.5; 
significance trace obtained using different h2.

8
tn

i l
to

1 1 5

1%

$$t
1•

I

9IO 9i ' i $§$

%%1 •••••99 1

8 / i ll k • e§
!l_ lil

-so c
Ilk.. I

» SO
jiil

-so o

I 81̂— J
SO

O v t r e n d e d  a n d  P a n t t t o n a d  d a t a  ( d e T ) D a t r a n d a d  t ■ r t i t i o n a d  d a t a  ( d a F )

Figure 6.12. Cesium data: Checking normality of the data. From left: data that have 
undergone detrending (with double smoothing , dsT) and partitioning; data that have been 
detrended (with single smoothing, dsF), and data that have only been through partitioning. 
The smoothing parameter used is hi = h.trend =  0.1, with std = 2.5 for partitioning.

6.T.4 Sensitivity Analysis

In this section, we investigate how the different parameters used by our test approach will 

affect the performance of our test. It is subdivided into four different parts. The first part
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involves plugging in a variety of dependence structures and performing the test using various 

smoothing parameters. It does not involve any estimation of the correlation structure. The 

subsequent parts, however, involve the different parameters used in the DDTP algorithm: 

each investigating the aspect of varying a particular factor in the algorithm. Sections 6.7.4.2 - 

6.7.4.4 respectively consider: varying the degree of smoothing in the DDTP algorithm; the 

value of std during the partitioning process and the distance used for variogram fitting. In 

each of these subsections, only the parameter of interest is varied, the rest stay the same as 

specified earlier.

6.7.4.1 Effects of dependence s tru c tu re  and  sm oothing param eter

In this section, different degrees of correlation determined by the range, r, with several 

smoothing parameters, h2 are introduced to examine how the discontinuity test performs. 

Table 6.20 shows the p-value of the test under different conditions. Most of the p-values 

are significant for r  < 0.08 at all smoothing parameters. The test is only insignificant when 

r =  0.10.

In fact, r =  0.10 of an exponential variogram model gives a very high dependence struc­

ture, as the data are correlated up to a distance of 0.3 apart. From this table, we have 

convincing evidence that under low to fairly high dependence structure of r  =  0.08, the 

test is significant regardless of the smoothing parameter used. However, for a high range of 

r  =  0.09 and 0.10, the test is only significant at certain /i2.

p-value
h2 r=0.02 r= 0 .04 r= 0 .05 r=0 .06 r= 0 .07 r= 0 .08 r= 0 .09 r= 0 .10
0.05 0.039 0.02 0.015 0.012 0.010 0.008 0.007 0.007
0.10 0 0 0.001 0.005 0.018 0.043 0.075 0.112
0.20 0 0 0 0 0 0.000 0.003 0.014
0.30 0 0 0 0 0 0.003 0.018 0.060
0.40 0 0 0 0 0.001 0.012 0.054 0.139

Table 6.20. Cesium data: Effects of different correlation structure and smoothing parameter

This section highlights the feature that if our estimated range is less than or equal



CHAPTER 6. Testing for Discontinuities in Two-dimensional Correlated Setting 256

to 0.08, then the test will be significant regardless of the amount of smoothing used in 

the discontinuity test. This will be a useful source of reference for the following sections, 

where we investigate introducing different parameters in the DDTP algorithm to estimate 

correlation and account for it in our discontinuity testing.

6.7.4.2 Effects of varying the smoothing parameter in the D D T P algorithm

As the DDTP algorithm involves the use of local linear regression to remove the trend which 

requires the specification of a smoothing parameter to govern the amount of smoothing 

involved, this in turn affects the estimation of our dependence structure in the first stage. 

Overestimation of this dependence structure might result in the test not being significant. 

In fact, the second stage also requires a smoothing parameter, h2, which would normally be 

taken as the same as hi, or slightly smaller, but to give a more complete picture, we have 

chosen to use the significance trace.

In the earlier analysis, we have used a smoothing parameter of h i =  h.trend =  0.1. 

On one hand, one could argue that by looking at the contour and image plot in Fig 6.8, it 

appears that there is quite a lot of variation in the data, which could be due to the different 

terrains. Hence it might be better to use a small smoothing parameter such as 0.1, to pick 

out any fine features. On the other hand, it is also reasonable to assume a very smooth 

trend of Cs-137 over the region as the topology is relatively flat. As discussed before in 

previous chapters, the trend and the dependence structure might combine to give the overall 

“movement” of the data, hence it might be safer to apply a larger smoothing parameter, so 

that the rest of the variation in the data can be attributed to the correlation present.

In this section, keeping the rest of the parameters as used earlier, we use different smooth­

ing parameters in the DDTP algorithm, and investigate if the performance of our test is 

sensitive to this parameter. In other words, the question to be answered here is whether 

using different hi = h.trend will change the conclusions of the presence of abrupt changes 

in the Cesium-137 activity in the region in our earlier analysis in Section 6.7.3.

Table 6.21 provides a summary of the estimated range and sill of the variogram when 

different smoothing parameters, hi =  h.trend, are used in the first stage. The corresponding
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h i  =  h .tre n d r s p-value
0.10 0.0573 331 0.003
0.20 0.0711 457 0
0.30 0.0790 478 0.002
0.40 0.078 516 0.008

Table 6.21. Cesium data: Estimated range and sill for different h i = h.trend in the DDTP 
algorithm

treating data as independent, hi =02, p= 0 h1=h.trend=02,r= 0.071,s= 457
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Figure 6.13. Cesium data: Different stages of the DDTP algorithm with h i =  h2 =  0.2 
and significance trace for different h2. From left: contour plot of levels with s t .d i f f  1 > 2.5; 
empirical variogram of detrended and partitioned data; contour plot with st.d if f  2 > 2.5; 
significance trace obtained using different h2.

p-values using h2=hl are also given. We can observe that the estimates of the range and 

sill generally increase as h i =  h.trend increases. There is comparably a higher jump in the 

range as h.trend increases from 0.1 to 0.2. However the test is still significant, giving a 

very low p-value. (Though not shown on this table, different h2 have also been investigated 

for the second stage, and the result stays significant.) Hence regardless of the amount of 

smoothing used for the first or second stage in the DDTP algorithm, the result is significant, 

giving convincing evidence of the presence of discontinuities.
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Figure 6.14. Cesium data: Different stages of the DDTP algorithm with hi =  h2 =  0.3 
and significance trace for different h2. From left: contour plot of levels with s t .d i f f  1 > 2.5; 
empirical variogram of detrended and partitioned data; contour plot with s t .d i f f2 > 2.5; 
significance trace obtained using different h2.

Figures 6.13 and 6.14 display the results of the test when a smoothing parameter of 0.2 

and 0.3 are used in the DDTP algorithm respectively. The final contour plot which takes 

into account the dependence structure in Figure 6.11 is similar to the one in Figure 6.13, but 

is different when a higher smoothing parameter of 0.3 is used as displayed in Figure 6.14.

Hence, though using different smoothing parameters does not affect the significance of 

the test, it does give very different pictures of possible jump location curves. Using a higher 

smoothing parameter will give observations that have lower final standardised differences. 

This could be attributed to the fact that the range and sill might be overestimated in the 

latter.

6.7.4.3 Effects of varying std

In this section, the value of std that is used for the partitioning process, is varied. Values of 

std =  2.5 — 8 are used and the estimated range and sill are provided in Table 6.22. As the 

value of std increases, more data are included in the variogram fitting.



CHAPTER 6. Testing for Discontinuities in Two-dimensional Correlated Setting 259

s td r s p-value
2.5 0.0573 331 0.003
3 0.0599 457 0
4 0.0695 478 0.002
5 0.0674 516 0.008
6 0.0634 516 0.008
8 0.0576 516 0.008

Table 6.22. Cesium data: Estimated range and sill for h i =  h.trend =  0.1 in the DDTP 
algorithm using different values of std

We can observe that as std increases from 2.5 to 4, the estimates of the range increases, 

but as it increases from 5 to 8, the range decreases. The sill, on the other hand, increases 

from 331 to 516 with increasing std.

As the value of std increases, more data are included in the variogram fitting. These might 

include observations that are quite near to the jump location curve, causing an overestimation 

of the dependence structure.

However, in this example, the p-value stays significant over a wide range of std. Hence 

the test is not sensitive to this value. A similar study was done using h i =  h.trend =  0.2, 

and the result remains significant regardless of the value of std used.

6.7.4.4 Effects of varying the  distance of th e  variogram  fitting

The next parameter that might cause a difference in the estimation of the dependence struc­

ture, is the distance to model the empirical variogram. We have used four different distances, 

maxdist =  {1.12,1.49,1.68,2.4} which are 1/2,2/3,3/4,1 of the maximum pairwise distance 

of the spatial locations.

Table 6.23 displays the estimation of the range and sill for h i =  h.trend =  0.1 in the 

DDTP algorithm using different distances, and their corresponding p-value with h2 =  0.1. 

There are only slight differences between the estimation of the range and sill. The p-value 

remains significant regardless of the distance used for the variogram fitting. Hence, the result 

is not sensitive to this parameter of modelling the dependence structure.

A similar study was done with hi = h.trend =  h2 =  0.2 and the result stays significant
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m a x d is t r s p-value
1.12 0.0601 326 0.005
1.49 0.0589 337 0.004
1.68 0.0586 340 0.004
2.24 0.0573 351 0.003

Table 6.23. Cesium data: Estimated range and sill for hi = h.trend = h2 = 0.1 in the 
DDTP algorithm using different values of distances for variogram fitting

with differing distances used.

6.7.5 Conclusions

We first used a smoothing parameter of 0.1 in our DDTP algorithm to investigate the 

presence of discontinuities. The result was significant with p-value less than 0.003. We 

then did a sensitivity analysis by varying the different parameters used in the algorithm 

which might affect the test. These include the smoothing parameter; the value to partition 

the data, std and the distance for variogram modeling. As all the various combinations of 

parameters give rise to estimated ranges of less than 0.09, the test is significant with very 

low p-values for most cases.

There is strong evidence to suggest that there are discontinuities in this radioactivity 

map of cesium. This is hardly surprising as the studied area involves different terrains, 

which 10 years after the accident will reflect different environmental behaviours of cesium 

fallout. The particular region with high standardised differences that is being picked out in 

our analysis as the possible jump location curve corresponds to a lake which has very low 

cesium deposition, compared to its surrounding forestry areas.



Chapter 7

Conclusions

7.1 Introduction

There is no doubt that nonparametric smoothing offers a flexible graphical tool for exploring 

relationships in data. It is also well-known that ignoring discontinuities can lead to false 

conclusions in statistical analysis. In the area of change-point analysis, there has been 

quite a lot of focus in recent years on the estimation of change-points or the discontinuous 

but otherwise smooth trend. However, what is lacking is an inferential tool to address a 

primary and vital question of whether the model is continuous or discontinuous. Moreover, 

in many real-life applications, data that are collected over time or space are often correlated. 

Therefore, for the purpose of correct inference, incorporating a satisfactory estimation of the 

correlation into the discontinuity test is of vital importance because it has a considerable 

influence on the performance of the test. The challenge of this thesis was to develop a 

discontinuity test in dependent data for one and two-dimensional settings, allowing the 

trend to be smoothly varying.

Even though the previous chapters contained their respective discussions and conclusions 

of particular issues, it is helpful to summarise and further discuss those key findings together 

with suggestions for areas of future research. This concluding chapter is organised as follows: 

the findings of the one-dimensional case and its proposed future work, followed by the two- 

dimensional case discussed in a similar manner.

261
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7.2 Discontinuity testing in one-dimensional setting

7.2.1 Summary and Discussion

The discontinuity test proposed by Bowman et al. (2003) exhibits good promise for detect­

ing discontinuities and for inference. By expressing the test statistic as a ratio of quadratic 

forms, it not only does not need an accurate estimate of error variance, it also does not rely 

on asymptotic results. Nevertheless, it does require the normality assumption. Furthermore, 

this test assumes independent errors, which might not be applicable in many real-life appli­

cations. As demonstrated in the simulation study in Section 3.4.2, assuming independence 

of the data when there exists some degree of correlation will inflate the size of the test, thus 

causing greater false alarms.

Hence, one of the key objectives of this dissertation is to extend the global discontinuity 

test for correlated data of Bowman et al. (2003) to that of a correlated setting. This was 

developed and studied in Chapter 3 for the equally spaced setting. An extensive simulation 

study was conducted in settings of small and moderate sample sizes, to investigate how 

the various factors influence the test. The underlying correlation was modelled using an 

AR(1) model. Both the cases of known and unknown correlation were considered. The main 

findings of the simulation study for the global test were that the power increases in cases 

where there is an increase in bandwidth; a smoother trend function (flat compared to sine 

trends); an increase in ratio of jump to standard deviation; a decrease in correlation for 

positively correlated data, but an increase in correlation for negatively correlated data; and 

where Rice’s variance estimator is used rather than Gasser’s particularly for small sample 

size. Unsurprisingly, the power for the local test is higher than that for the global test. On 

the other hand, the size of the test is well-behaved for the flat trend and is not sensitive to the 

choice of bandwidth. However, if the trend is less smooth like the sine trend, oversmoothing 

will cause a higher rate of false alarm.

In the case where the correlation is unknown, the consequences of inaccurate estimation 

of the correlation in the possible presence of trend and discontinuities were noted for finite 

samples. Two algorithms, namely the moving window approach and the residual approach,
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were devised to tackle this issue by incorporating a robust estimation of correlation in the 

discontinuity test. Both approaches performed reasonably well when suitable values of the 

size of moving window 6, and the bandwidth for trend removal, h.trend  were used respec­

tively, though it was also noted that they were quite sensitive to the choice of these values. 

The residual approach copes better in the presence of trend as it attem pts to first remove 

the trend before estimating the underlying correlation. However, when a considerable jump 

is present in the data, using a smooth curve might not be successful in removing it. Its 

correlation might thus be overestimated, resulting in a decrease in power. Overall, the mov­

ing window approach demonstrates a slightly superior performance as it is more stable and 

performs better than the residual approach when the jump size is large.

After examining the properties of the proposed discontinuity test, its performance was 

also compared with the isotonic regression test (Wu et al., 2001) via a small simulation study. 

Different trend functions were studied. The main findings are: if the variance is known and 

the underlying function and abrupt change is monotonic, then the isotonic regression test 

is more powerful than the author’s discontinuity test, as it takes advantage of the correct 

but more restrictive assumption of monotonicity. However, its performance is affected if the 

trend or jump is not monotonic. Furthermore, it is noteworthy that in a practical setting 

where the variance is unknown, the isotonic regression test with their recommended way 

of estimating variance, does not work well. The size of their test is inflated under the flat 

trend. On the other hand, the size of the author’s proposed technique using a moderate size 

of moving window is within limit.

Chapter 4 extended the discontinuity test further to the situation where the data are 

unequally spaced. The main difference of the test here compared to the equally spaced case 

is the modelling of the correlation using a variogram instead of an AR(1) model. In addition 

to the original test statistic, a new test statistic which considers a plug-in error variance 

estimated via the sill of the variogram, was also developed here. Two new algorithms, the 

residual-variogram and the double discontinuity test (DDT), which incorporate the modelling 

of the correlation structure via variogram fitting, were proposed.

From the simulation studies, the performance of the original test was generally superior to 

the new test. This is most likely due to the fact that the latter requires estimation of both
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the unknown correlation and error variance, while the former only requires a satisfactory 

estimate of the correlation. The key conclusion is that in practice, it is highly recommended 

that the original test is used unless both the unknown parameters of variance and correlation 

are known in advance.

The DDT algorithm has shown itself to be an improvement over the ordinary residual- 

variogram approach. Despite the fact that there is a slight increase in computational load 

for the former, this is worthwhile as it is not only robust against jumps and trends, but is 

also capable of producing powers that are comparable or higher than the power obtained 

using the true correlation. In addition, in the various settings that were considered, it was 

shown to be relatively insensitive to the smoothing parameter that was used in the initial 

stage. Though the DDT algorithm has not been used in the simulations for Chapter 3, it 

can certainly be considered in the equally spaced setting as well. The mechanism of the 

DDT algorithm is essentially the same, except for the correlation model, which can still be 

an AR(1).

In fact, the novel idea behind the DDT algorithm was inspired by the findings that the 

test tends to give a false alarm when the data are treated as independent when they are 

in fact positively correlated. Hence by including an initial stage of adjusting the data at 

the most probable change-point if the test is significant under the independence assumption, 

before removing the trend, this will give an improved estimate of the underlying correlation 

structure.

There are several difficulties encountered when attempting to model the empirical vari­

ogram using nonlinear weighted least squares, to fit an exponential variogram model. In the 

case where the correlation is low, the algorithm has difficulty in obtaining an estimate of 

the range, as it is too close to zero. Moreover, the estimation of the correlation appears to 

be quite sensitive to the different lags used to bin the observations to produce the empirical 

variogram. Hence, though using the variogram increases the diversity of correlation struc­

tures that can be considered, it does bring along with it an additional level of complexity 

and uncertainty, and is computationally more intensive.

In modelling the underlying correlation, a relatively simple AR(1) and exponential model 

have been selected for the equally and unequally spaced settings respectively. For the equally
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spaced case, higher orders of an autoregressive model can also be considered. However this 

will involve estimating more parameters which makes the problem more complicated. Since 

the estimation of the correlation, though crucial, is only a means to an inferential end, a 

simpler correlation model such as an AR(1) should be adequate. Similar arguments can be 

given for the unequally spaced case.

The primary goals in Chapter 5 are to apply the developed nonparametric smoothing 

technique to analyse three real-life data sets, and to compare its results with those of the 

other two approaches that have also been developed for correlated data, namely the isotonic 

regression test (Wu et al., 2001), and the Bayesian test (Thomas, 2001). The conclusions 

drawn from each test will undoubtedly be different, as there are differing features in each 

approach.

There is however common agreement among all three tests that there is convincing evi­

dence to reject the null hypothesis and conclude that the mean is not constant for the global 

warming data. The main difference to highlight is that Wu’s test suggests that the mean is 

not constant, possibly due to the monotonic trend of increasing global temperatures. The 

Bayesian approach on the other hand suggests a plausible abrupt increase in 1929. However, 

using the nonparametric smoothing approach, the more prominent abrupt changes over a 

wide range of smoothing parameter were actually abrupt coolings.

In fact, there was no convincing evidence to indicate any presence of abrupt change 

using the Bayesian test for the other two data-sets. This could possibly be due to the fact 

that it assumes a constant mean which might not have been applicable in these data-sets. 

On the other hand, for the Argentina rainfall data, there was convincing evidence of an 

abrupt change using Wu’s test, and the author’s proposed test with a small moving window, 

if a moderate trend is undertaken. As for the River Clyde data, the isotonic regression 

test was only just significant when the unpenalised likelihood ratio test was used, but was 

nonsignificant with the penalised one. Its results could possibly be affected by the decreasing 

trend before 1985. However, using the nonparametric smoothing approach (which is not 

restricted by the assumption of monotonicity), there was convincing evidence to conclude 

that there was an abrupt increase in the level of dissolved oxygen level in mid 1985, if the 

estimated correlation is low and the underlying trend is relatively smooth. This suggests
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that the sewage treatment plant has significantly improved the quality of the water after its 

implementation in 1985.

The significance of the nonparametric regression test will unavoidably be affected by 

the values of the parameters used in the estimation of the correlation, as well as by the 

smoothing parameter which attributes the degree of smoothness to the underlying trend. 

Nonetheless, the main aim of the test is not to give a definitive answer to the choice of these 

parameters. In many real-life settings, where we are confronted by limited knowledge of the 

context of the problem, it is difficult to attribute a level of correlation to the data, as well as 

the smoothness of the trend, in the complex situations of possible discontinuities. Moreover, 

using a fully data-driven technique might increase the computational load to a substantial 

magnitude. (This will be raised again in Section 7.2.2.)

Approaching the problem from a different perspective, the preference is to utilise the 

idea of significance trace (Bowman and Azzalini, 1999) and introduce a graphical plot of 

significance traces to allow the user to assess and interpret the sensitivity of the test to the 

different parameters that are used for the estimation of the correlation. In addition, the user- 

friendly three-in-one graphic referred to as the change-point significance trace (CPST) was 

devised. This multipurpose tool enables the user to visualise and assess how the significance 

of the test, the possible change-point locations and the size of the most probable abrupt 

change, vary with the choice of the smoothing parameter at an attributed level of correlation.

7.2.2 Future Work

In this section, we will discuss some of the possible developments of the proposed disconti­

nuity test in the one-dimensional setting.

First of all, making use of yet another attractive feature of local polynomial regression, 

a natural extension of the discontinuity test can be to detect a jump in the vth derivative 

of the regression function. In this case, a degree of at least v of the local polynomials has 

to be fitted. The correlation can still be estimated using the moving window and residual 

approaches. However, for the DDT algorithm, we would have to modify the test slightly to 

consider only the segments that are partitioned by the change-points separately.
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As one would expect, though the simulation studies performed in this work have been 

considerably extensive, one could further explore the influence of various factors on the 

proposed algorithms. Factors such as greater variety of smooth trend functions, different 

error variance, multiple change-points and even the effects of misspecification of correlation 

structure could be considered.

The DDT algorithm indeed shows a lot of promise. Various extensions and improvements 

can be made to widen its practicality and utility. The following outlines some of the possible 

future developments.

Despite the drawbacks of the cross-validation method being computationally very inten­

sive and often suffering from high variability (see Hall and Johnstone, 1992), it can still be 

very appealing to acquire an automatic choice of bandwidth. Moreover, with the improve­

ment in computer technology, the issue with computational load might no longer be such a 

restrictive factor.

The following outlines how a cross validation approach to select a suitable bandwidth for 

correlated data can be incorporated into the DDT algorithm.

•  First stage

-  Carry out the discontinuity test, assuming that the data are independent. If 

p < 0.05, the most probable change-point location is located and the data are 

adjusted accordingly.

-  After adjustment, the trend can be presumed to be continuous and smoothly 

varying. A suitable cross-validation criteria for correlated data (see e.g. Altman 

(1990) and Yao and Tong (1998)) can be employed to obtain a suitable smoothing 

parameter, hcv, which is then used to fit a smooth curve to remove the trend.

-  Subsequently, the residuals are used to estimate the underlying correlation via 

variogram fitting.

• Second stage

-  The discontinuity test is carried out again, accounting for correlation, using the 

same smoothing parameter hcv as obtained earlier.
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This proposal seems to have quite a lot of potential and may emerge to be very useful in 

practice if proven to work well. Hence it would be worthwhile to explore further simulations 

to determine its performance in various settings.

Currently, the DDT algorithm only allows for one adjustment. Nevertheless, this can 

easily be extended to cope better in the presence of multiple change-points, by allowing 

for several adjustments at locations which have high standardized differences, e.g. above 

2.5, though this will only perform well if the data are large enough. This will increase the 

capability of the DDT algorithm to obtain a better estimate of correlation in the presence 

of multiple jumps, and hence improve the power of the test.

The algorithm is also specifically devised for positively correlated data. Though, in prac­

tice positively correlated data are more common, as one would normally expect correlation to 

decrease with increasing distance, it may be advantageous to extend this algorithm further to 

cope with negatively correlated data as well. Instead of carrying out the discontinuity test in 

the first stage, assuming that the data are independent, one possible strategy could be to first 

assume that at least one discontinuity exists and estimate the possible locations by means 

of the standardized differences. The locations which have high standardized differences are 

removed. Smooth trends are then fitted to each segment sub-divided by the change-points 

and the residuals thus obtained are used for the estimation of the underlying correlation. 

Further simulations will be required to ascertain the performance of this proposal.

In addition to the above, a minor modification will be needed in the modelling of the 

correlation structure. An alternative variogram function which possesses the necessary prop­

erties can be used to model the negatively correlated data, instead of the relatively simple 

exponential variogram function that has been used to model positively correlated data.

Following the rejection of the null hypothesis that there is at least one discontinuity 

present, it might be of interest to find out the number of change-points present. The reference 

band and the change-point significance trace have been employed as helpful graphical tools 

to observe the possible locations of the abrupt changes, and give a subjective idea of the 

number of possible change-points (i.e. those observations whose standardised differences are 

greater than 2 or 2.5). Subsequently, smooth trends can be fitted to the segments separately. 

However, an alternative approach using cross-validation, suggested by Muller and Stadmiiller
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(1999), can be utilised here too. The concept behind their proposal is simply to choose the 

number of change-points, d, which would minimise the cross-validation sum of squares

C V SS(d) =  X > ,  -  g ^ H x i) )2 (7.1)
i= l

at a pre-defined smoothing parameter (which could be selected via a cross validation criteria). 

The smooth fit is estimated at x*, assuming that there are d change-points, with

the exclusion of the data point (rr*,?/i).

7.3 Discontinuity testing in two-dimensional setting

7.3.1 Summary and Discussion

In Chapter 6, the discontinuity test was developed and extended further to a two covariates 

dependent setting. The aim is to detect discontinuities in regression surfaces using local 

linear smoothing techniques. In this two-dimensional setting, the discontinuity is considered 

to take the form of an abrupt change in the mean level over a smooth curve, referred to 

as the “jump location curve”. Identification of the discontinuity thus involves estimation of 

both its position as well as direction.

The Double Discontinuity Test with Partition (DDTP) algorithm is devised to incor­

porate the estimation of correlation into the test. The idea is similar to that of the DDT 

algorithm, where the discontinuity test is carried out in the first stage, assuming that the data 

are independent. However, instead of then adjusting the data at the detected change-point 

location, which will be difficult in a spatial setting, the DDTP algorithm opts to remove the 

data that are near the jump location curve, which presumably would have high standardised 

differences. Only the remaining data are used for the estimation of the correlation. In finite 

samples, one possible drawback might be that very few observations are left to estimate 

the dependence structure. However, one of the appealing properties of the algorithm is its 

capability to cope with multiple jump locations, which could be of various unknown shapes.

Simulations were conducted both in the equally and unequally spaced setting using finite
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sample sizes. Overall, the DDTP works reasonably well in tackling a highly challenging 

task of detecting discontinuities in a small sample size of 17 x 17 data-points. It performs 

better for a lower but moderate range of 0.03. Using appropriate smoothing parameters for 

both stages gives good size and power that are quite close to the true power for both trend 

functions, particularly for moderate range. As expected, the algorithm is dependent on a 

good estimate of the correlation and the smoothing parameter used to obtain the correlation, 

as well as that attributed to the trend in the final discontinuity test. The test will certainly 

be more effective in detecting discontinuities if the sample size increases. However, this will 

also increase its computational workload.

A motivating application for our approach is the analysis of cesium (Cs-137) fallout data 

in a particular area in Finland. Applying the DDTP algorithm using the same smoothing 

parameter of 0.1 for both stages, the test was highly significant. A sensitivity analysis was 

also carried out, by varying the various parameters used in the algorithm, including the 

smoothing parameter, and the test remained significant. Hence there is convincing evidence 

to suggest that there are sharply varying areas of deposition. The particular region with 

high standardized differences that was picked out by the contour plot corresponds to a lake 

which has very low cesium activity.

7.3.2 Future Work

The above-mentioned suggestions for future work in the one-dimensional case can also be 

considered here for future research. For instance, extension to discontinuities in the deriva­

tives and more simulations in various settings to evaluate the performance of the DDTP 

algorithm can be considered. In the case of larger samples sizes, modifications to the DDTP 

algorithm can be adopted, by revising the order of the trend removal and the partitioning 

process in the first stage. A suitable cross-validation criteria (e.g. see Francisco-Fernandez 

and Opsomer (2003)) to choose an appropriate smoothing parameter can also be utilised, 

by only taking into consideration the fitting of smooth trends to the remaining data after 

the partitioning process in the DDTP algorithm. The simulations have used the exponential 

variogram model, but similarly, a negative correlation structure can be employed instead.
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Whilst this is not a main focus of this work, the estimation of the jump location curve 

could be further explored. It might also be useful to identify the number of jump location 

curves. However, extending the cross validation criteria by Muller and Stadmiiller (1999) 

for selecting the number of change-points in the one-dimensional case to the number of 

jump location curves in the two-dimensional case may not be straightforward. The major 

hindrance may well be that accurate estimates of the jump location curves are required, and 

that might only be feasible with a larger sample size.

However, inevitably, the computational load for the two-dimensional setting is substan­

tially higher than the one-dimensional setting. Its future developments might be dependent 

on improvement in computational power and speed.

7.4 Final Comments

The above ideas for future research are just a small portion of the questions that can be 

tackled using the proposed discontinuity test, adjusting for correlation using various devised 

algorithms. On the whole, the research objectives (as stated at the end of Chapter 2) of 

(l)-(3): developing a discontinuity test that incoporates a robust estimation of correlation 

in one and two dimensional settings; and (4): providing useful graphical tools to infer their 

likely locations, have been achieved. Nevertheless, this test still contains immense potential 

for further development and application.

The importance of inference in detecting discontinuities using nonparametric regression 

is progressively becoming more recognised today. This thesis has in turn endeavoured to add 

to the currently emerging interest, by extending it further to cope with correlated data in 

small to medium sized samples.
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