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Abstract

The Theory of Poroelasticity is embraced to model the effective mechanical behaviour of

a porous elastic structure with fluid percolating in the pores. Key examples of the linear

theory include hard hierarchical tissues, such as the bones, the interstitial matrix in healthy

and tumorous biological tissues, the human eye, artificial constructs and biomaterials, as

well as rocks and soil. Nonlinear poroelasticity has been applied to modelling tumour

growth and in imaging to locate tumours in an incompressible medium, to the lungs and

to consider the perfused myocardium. Poroelasticity has also been applied to studying the

artery walls.

The current modelling approaches assume simplistic microstructures for the materials

which are in general unrealistic for the desired applications. This thesis will extend the

current literature by proposing exciting, novel computationally feasible macroscale models

that account for realistic microstructures and can help capture the true behaviour of

materials. To fulfil this modelling goal we use the asymptotic homogenization technique.

To provide a complete overview of the area we begin with a re-derivation of stan-

dard Biot’s poroelasticity via the asymptotic homogenization technique. In the following

chapters we build upon this to create appropriate models for complex, realistic biological

scenarios.

We begin our development by deriving the quasi-static governing equations for the

macroscale behaviour of a linear elastic porous composite comprising a matrix interacting

with inclusions and/or fibres, and an incompressible Newtonian fluid flowing in the pores.

This is a novel model that can account for interactions between a variety of phases at the

porescale which is much more realistic of biological tissues than the previously assumed

matrix homogeneity. We then further extend this theory to assume that both the matrix

and fibres/inclusions are hyperelastic, thus providing one of the first few works to use

asymptotic homogenization in the context of nonlinear elasticity and making the theory
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more applicable to the heart and arteries.

We continue the development by considering an approach over three microstructural

scales. We derive the balance equations for a double poroelastic material which comprises

a matrix with embedded subphases. Both the matrix and subphases can be described by

Biot’s anisotropic, heterogeneous, compressible poroelasticity. This gives us a macroscale

model that can account for the difference in a full set of poroelastic parameters and encodes

structural details on three scales.

We complete our analysis by investigating our novel poroelastic composite model nu-

merically. We perform a study to investigate the role that the microstructure of a poroe-

lastic material has on the resulting elastic parameters. We are considering how important

an effect that multiple elastic and fluid phases at the same scale have on the estimation

of the material’s elastic parameters when compared with a standard poroelastic approach.

This work justifies the work of this thesis. That is, the introduction of novel models with

detailed microstructures should be used instead of the previously known Biot’s poroelas-

ticity for materials with non-homogeneous microstructures. The final part of this thesis

applies the novel poroelastic composite model to investigate how physiologically observed

microstructural changes induced by myocardial infarction impact the elastic parameters

of the heart.
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Chapter 1

Introduction

The Theory of Poroelasticity [12–15] is a widely known modelling framework which is

usually embraced to model the effective mechanical behaviour of a fluid-filled porous elastic

structure. There exists a large variety of physical systems where porescale interactions

between a deformable solid and a fluid phase take place, thus motivating a poroelastic

modelling approach. Key examples include hard hierarchical tissues, such as the bone [30,

117], the interstitial matrix in healthy and tumorous biological tissues (see, e.g., [16, 40]),

the human eye [20, 55], artificial constructs and biomaterials ( [21, 57]), as well as rocks

and soil [60, 115].

Due to the desire to apply poroelasticity to biological tissues, the theory was adapted

to nonlinearities in [8, 11, 77, 122]. The poroelastic modelling framework is applicable to

a wide variety of physical scenarios, in particular to biological tissues, where the defor-

mations are in general nonlinear. For example, a poroelastic approach has been taken to

model organs such as lungs (see, e.g., [9]) and to consider the perfused myocardium [22,66].

The theory has also been applied to studying the artery walls (see, e.g., [5,121]). Another

application is to modelling tumour growth [41] and in imaging to locate tumours in an

incompressible medium [6]. It is also of interest in porous thermoelasticity (see [46]). For

a general overview of the micromechanics of porous media, we refer the reader to [37],

where an overview of upscaling techniques, the linear theory of porous media and also the

extension of the analysis to the nonlinear homogenization of a large range of scenarios in-

cluding strength homogenization, non saturated microporomechanics, microporoplasticity

and microporofracture and microporodamage theory were discussed.

The types of materials that can be classified as poroelastic media generally exhibit an

intrinsically multiscale structure. That is, the average pore radius and also the distance

22
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between the pores (the porescale), is generally much smaller than the average size of the

entire medium (the macroscale) which is effectively behaving as a poroelastic material.

Models of materials at one scale, either the macroscale or microscale, are unsatis-

factory. Generally a macroscale model is too simplistic and even though they are cheap

computationally they cannot describe the material well enough to gain any insight into the

behaviour. A thorough understanding of the effective macroscale properties of the mate-

rial requires relating them to the properties and interactions of the porescale constituents.

However, computationally it would be potentially impossible to resolve all the porescale

details and interactions. For this reason multiscale models are developed to reduce the

computational cost whilst still retaining important microstructural information.

Figure 1.1: Image taken from [124] showing the different physical phenonmena occurring at
different microstructural levels in the arteries and the modelling approaches to bridge the
scales. The figure has been edited to add additional summary points relating to multiscale
modelling.

For the reasons discussed previously, a variety of homogenization techniques have been

developed. The coupled fluid–structure balance equations that describe the material on

the porescale can be used in an upscaling process to obtain the macroscale governing

equations of a poroelastic material. The upscaling process can be carried out by a variety

of homogenization techniques. These homogenization techniques include effective medium

theory, mixture theory, volume averaging and asymptotic homogenization. These tech-

niques were discussed and described in [33, 51] where they provide a comparison between

the alternative approaches for both fluid and solid mechanics, respectively.

The techniques effective medium theory and mixture theory represent micromechanical

approximations which can provide an estimate of the macroscale coefficients for specific
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geometries of the pores (such as ellipsoidal, penny-shaped or spherical), or for diluted pores

(see, e.g. [25]), as well as closed form analytic formulas relating drained and undrained

poroelastic coefficients, as those reported for example in [10, 65, 115]. Volume averaging

approaches are suitable for deriving the functional form of the macroscale equations, and

are based on relationships between the porescale and macroscale energy of the system,

see also [51]. However, with volume averaging approaches the macroscale coefficients

are usually not related to the underlying microstructure, and physical arguments and/or

experimental data are to be supplemented in order to determine them. This is indeed a

key difference between this technique and the asymptotic homogenization technique that

allows for precise prescription of the macroscale coefficients.

The asymptotic homogenization technique ( [4], [48], [68], [90]) exploits the sharp

length scale separation which exists in the system to decouple spatial variations that

occur on different scales. The relevant fields (e.g. velocities, displacements, and pressures)

are expressed in terms of power series of the ratio between representative microscopic and

macroscopic length scales. The resulting governing equations describe the behaviour of the

system in terms of the leading (zero-th) order fields in a homogenized macroscale domain

where the microstructure is smoothed out. This technique is in general characterized by

a higher algebraic complexity compared to average fields approaches, however, it provides

a precise prescription for computing the coefficients of the model. These are based on

the solution of microstructural differential problems where the constitutive behaviour and

geometrical arrangement of the individual phases is clearly specified.

In the asymptotic homogenization literature, the majority of the applications are fo-

cussed on linearised balance equations. This is due to the fact that in the linearised case,

it is possible to fully decouple the porescale and the macroscale (under some simplifying

assumptions). This decoupling then leads to a large reduction in the computational com-

plexity of the system. In the literature, the homogenization of systems involving nonlinear

mechanics is generally carried out by other homogenization techniques, such as average

field techniques (see, e.g., [95, 96] and the references therein). These other techniques do

not provide a precise description of the model coefficients in the way that the asymptotic

homogenization technique can and, instead, provide bounds for the model coefficients.

The asymptotic homogenization technique has been applied to poroelastic materials

by [19], [115] and [62]. The theory has since been extended to model a vast range of scenar-

ios including growth of poroelastic materials [87], vascularised poroelastic materials [91].
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Recently there has also been a development of the theory for nonlinear poroelastic materi-

als. In [17], the effective poroelastic model of Biot was extended to a nonlinear Biot model

that includes porescale deformation. In [28], a system of effective equations that describe

the flow, elastic deformation and transport in an active medium was derived. The au-

thors considered the spatial homogenization of a coupled transport and fluid–structure

interaction model. In [102], the asymptotic homogenization technique was applied to the

equations that describe the dynamics of a heterogeneous material with an evolving mi-

crostructure to obtain a set of effective equations. The heterogeneous body is assumed

to be composed of two hyperelastic materials, and the evolution of the microstructure

is through plastic-like distortions. The theory has also been investigated with various

additional scales such as poroelastic materials with elastic inclusion [105] and [24].

Current poroelastic models focus on a microstructure where the deformable solid is ho-

mogeneous, this however is not in general representative of the biological tissue to which

these theories are applied. In this thesis we aim to tackle this issue by extending the

theory of poroelasticity to incorporate detailed microstructures that are more represen-

tative of the biological scenarios that we wish to study. We begin with a re-derivation

of the model of standard Biot’s poroelasticity in [92]. We then begin to extended the

theory by incorporating a variety of different solid phases with the percolating fluid in a

novel theoretical model for poroelastic composites [69]. This was then extended to the

situation where the solid composite structure exhibits nonlinear elastic behaviour in our

novel theoretical model for poroelastic composites [71]. Then by considering a hierarchical

structure of the material we have proposed the novel model for double poroelastic mate-

rials [70], where the microstructure is composed of a variety of poroelastic materials with

different properties. These models are applicable to a wide variety of biological scenarios,

including bones, tendons, heart and lungs, with the added benefit that they all possess

more microstructural detail than standard poroelasticity. We show the benefit of using a

model with a more detailed microstructure than the standard poroelastic approach in [73].

We then can use the more detailed microstructural models to focus on the application to

modelling the elastic parameters of the heart (both healthy and infarcted).

The models developed through this thesis have a wide range of applications. The linear

elastic models can be straight away applied to hard hierarchical materials such as bones

and tendons as these materials have small deformations. We can also take a piecewise

linear approach to use the linear models for soft biological tissues such as the heart and
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lungs. Or of course the nonlinear models are indeed a good fit for applications such as the

heart, lungs and other soft biological tissues.

Figure 1.2: Image created from pictures found in [47], [104], showing the different potential
biological applications, with their microstructure, for the models developed in this thesis.

The bones can be modelled by a poroelastic approach. In Fig. 1.2 we can see that the

bones have a matrix made of collegen and mineral with water interplaying through the

pores [30,117].

In particular, the lungs have previously been approached in a biphasic (tissue and air)

manner [9]. However, the lung microstructure is more complex, and there exist colla-

gen and elastin fibres embedded in the matrix and in the fluid, so it could therefore be

beneficial to use a more detailed microstructural approach to modelling, such as a non-

linear poroelastic composite. Another key example in the modelling of arteries. the work

[121] considers the interaction between pulsatile blood flow and the arterial wall mechan-

ics. The blood flow was modelled as an incompressible viscous fluid, confined by Biot’s

equations of poroelasticity for the artery wall. Since artery wall microstructure is not

homogeneous, it would be appropriate to consider as a poroelastic composite or a double

poroelastic material.

The heart muscle has three layers, the middle of which is the myocardium that has a

structure where there are cardiac myocytes (muscle cells) embedded in a collagen matrix,

which is produced by the cardiac fibroblasts, with an interconnected fluid (blood) flow

through permeating vasculature. These structures are visible on a microscale length which
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is much smaller than the size of the heart muscle. The myocardial microstructure is

complex geometrically and is strongly impacted by a variety of diseases, in particular

myocardial infarction (heart attack). In the case of myocardial infarction blood flow is

reduced to an area of myocardium tissue, this results in the death of the cardiac myocytes

and in their place, we find collagen rich scar tissue produced by the fibroblasts to retain the

structural integrity of the myocardium [39], [54]. The size and amount of scar tissue affects

the heart’s functionality post recovery [38]. As a result of the loss of cardiac myocytes,

the remaining myocytes in the area surrounding the infarct increase in volume to attempt

to retain homeostasis in the heart [59]. The growth and remodelling of the surviving

myocytes corresponds to the infarct size [79], [78], [3].

There have been a variety of approaches taken to model the heart summarised in

the review articles [84], [80], [108]. The most prominent of these include constitutive

non-linear elastic approaches using Holzapfel-Ogden Law [50]. The work [50] describes

the myocardium as a non-homogeneous, anisotropic, nonlinear elastic and incompressible

material and then proposes a general theoretical framework that uses invariants associated

with the three orthogonal directions that can be identified within the material. This

method proposes a strain energy function for the materials with parameters that are

informed from biological measurements. This work has paved the way for a variety of

extensions in an attempt to understand the phenomena of the heart behaviour such as

in [45] and [116], and different methods of numerical implementation such as [94]. A

viscoelastic approach to understanding the myocardium has also been taken by [43] and

[76]. Within these works there is the aim to address the viscoelastic phenonmena observed

experimentally by modifying the constitutive laws previously used for the myocardium.

There has also been a poroelastic approach taken by [66], [29] and [23]. This approach aims

to incorporate the porescale fluid flow into the overall behaviour of the myocardium and

to consider the perfused muscle. Our novel model in this thesis aims to investigate how

the microstructural changes induced by myocardial infarction affect the elastic parameters

of the heart.

In Chapter 2 we provide a re-derivation of the governing equations of poroelasticity.

This chapter can be thought of as the starting point from which the following chapters de-

velop theoretically and numerically. In Chapter 3 we extend the theory by deriving a novel

model for poroelastic composites. This model extends standard poroelasticity by describ-

ing the interactions of multiple solid and elastic phases at the porescale and therefore is
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more biologically realistic. We then extend this work in Chapter 4 by extending to nonlin-

ear poroelastic composites which is among the first nonlinear asymptotic homogenization

works and can be useful in modelling the heart and lungs. In Chapter 5 we propose a novel

model for a multiscale structure that upscales the governing equations of poroelasticity

to obtain a theoretical model for double poroelastic materials, where the new model can

account for the difference in a complete set of poroelastic parameters. In Chapter 6 we

investigate numerically the benefit of using a model with a more detailed microstructure

compared with standard poroelasticity when considering the elastic parameters. In Chap-

ter 7 we investigate the elastic parameters of the heart (healthy and infarcted) using our

novel model for poroelastic composites. Finally in Chapter 8 we provide some concluding

remarks.



Chapter 2

Introduction to the theory of

poroelasticity

In this chapter we focus on the derivation of the equations of poroelasticity for a porous,

elastic material characterized by a Newtonian incompressible fluid flowing, at low Reynolds

number, in the pores (which is often the case for biological tissues), and we embrace the

asymptotic homogenization technique to derive the macroscale system of partial differen-

tial equations (PDEs). In Sec. 2.1 we introduce the fluid-structure interaction problem for

our stucture, which we then non-dimensionalise in Sec. 2.2. We then apply the asymptotic

homogenization technique in Sec. 2.3 to upscale the fluid-structure interaction problem to

obtain the system of governing macroscale PDEs which we present in Sec. 2.4. Overall

this chapter aims to provide an introductory example of applying the asymptotic homoge-

nization technique that will be applied to a variety of scenarios in the chapters that follow

and also to introduce the macroscale model of poroelastic materials that the novel models

derived in the following chapters build upon and advance.

2.1 The fluid-structure interaction formulation

We begin by considering a set Ω ∈ R3 where Ω is the union of a porous solid compartment

Ωs and a fluid compartment Ωf satisfying Ω̄ = Ω̄s ∪ Ω̄f , where the ¯ denotes that the

boundaries are included in each domain. We assume a structure where the typical length

scale of the pores, denoted by d, is small compared to the size of the domain, which we

29
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denote L. This means that we have the ratio

d

L
= ϵ≪ 1. (2.1)

Figure 2.1: A 2D sketch representing the domain Ω, where the domain has length L and
it is shown that the pores have length d.

We make the assumption that the porous solid compartment is an anisotropic linear

elastic solid, the mechanics of which can be described by

∇ ·Ts = 0 in Ωs, (2.2)

where we have that Ts is the solid stress tensor. We then can define the solid Cauchy

stress tensor by

Ts = C∇u, (2.3)

where u is the elastic displacement in the porous solid and C is the fourth rank elastic-

ity tensor with components Cijkl. We note that C is equipped with major and minor

symmetries namely,

Cijkl = Cijlk, (2.4)

Cijkl = Cklij , (2.5)

and therefore also left minor symmetries follow by combining (2.4-2.5). In particular, by

applying right minor symmetries we can equivalently rewrite the constitutive equation

(2.3)

Ts = Cξ(u), (2.6)
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where

ξ(•) = ∇(•) + (∇(•))T

2
(2.7)

In the fluid compartment we begin with Navier Stokes equation

ρ
Dv

Dt
= ∇ ·Tf + b (2.8)

where D
Dt is the material time derivative. Since we are considering a quasi-static regime,

neglecting inertia and with no body forces this reduces to

∇ ·Tf = 0 in Ωf , (2.9)

where Tf is the fluid stress tensor which is defined by

Tf = −pI+ 2µξ(v) with ξ(v) =
∇v + (∇v)T

2
(2.10)

and v, p, µ are the fluid velocity, pressure and viscosity, respectively. The incompressibility

constraint reads

∇ · v = 0 in Ωf . (2.11)

We note here that computing the divergence of Tf in (2.10) using (2.11) gives

µ∇2v = ∇p, (2.12)

which represents, together with constraint (2.11), the Stokes’ problem for an incompress-

ible Newtonian fluid. We now need to setup an appropriate fluid-structure interaction

problem between the fluid and solid phases. We therefore require interface conditions

across the interface between Ωs and Ωf . We define the boundary between the phases as

Γ := ∂Ωs ∩ ∂Ωf and assume continuity of velocities and tractions across the interface,

namely

u̇ = v on Γ (2.13)

Tfn = Tsn on Γ, (2.14)

where u̇ is the solid velocity.
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Figure 2.2: A 3D sketch representing a single periodic cell in our structure. We have the
fluid, which is three interconnected cylinders and the solid elastic phase.

We can sketch a 2D schematic of this structure as follows.

Figure 2.3: A 2D sketch representing a single periodic cell in our structure. We have the
fluid, which is a cross-section of three interconnected cylinders, shown in white and the
solid elastic phase shown in red and their interface Γ is highlighted in blue.

2.2 Non-dimensionalization of the FSI problem

It is important to formulate the model in non-dimensional form in order to understand the

proper asymptotic behaviour of the model with respect to the scale separation parameter

ϵ. We rescale using

x = Lx′, ∇ =
1

L
∇′, C = CpLC′, u = Lu′, v =

Cpd
2

µ
v′,

Ts = CpLT
′
s, Tf = CpLT

′
f , p = CpLp

′
(2.15)
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where Cp is the characteristic pressure gradient. Then using (2.15) and dropping the

primes for simplicity of notation, equations (2.2), (2.3), (2.10)−(2.14) become

∇ · (Cξ(u)) = 0 in Ωs (2.16)

∇ ·Tf = 0 in Ωf (2.17)

−pI+ ϵ2(∇v + (∇v)T) = Tf in Ωf (2.18)

u̇ = v on Γ (2.19)

ϵ2∇2v = ∇p in Ωf (2.20)

Tfn = Tsn on Γ (2.21)

Ts = Cξ(u) in Ωs (2.22)

∇ · v = 0 in Ωf (2.23)

∇ ·Ts = 0 in Ωs. (2.24)

2.3 The Asymptotic Homogenization Technique

Within this section we will use a two-scale asymptotic expansion to derive a macroscale

model for the equations (2.16)− (2.24). Since ϵ ≪ 1, we can enforce a sharp length scale

separation between the microscale d and the macroscale L with

y =
x

ϵ
. (2.25)

We will now be assuming that x and y are independent variables which represent the

macroscale and the microscale respectively. We also have that the elasticity tensor C =

C(x,y) (i.e. is a function of both variables) and the gradient operator becomes

∇ → ∇x +
1

ϵ
∇y. (2.26)

We now can perform the multiple scales expansion in power series of ϵ for every field φ.

In particular, we assume that the latter, which collectively denotes each field and material

property appearing in (2.16)−(2.24), is given by

φϵ(x,y, t) =
∞∑
l=0

φ(l)(x,y, t)ϵl. (2.27)
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We also assume regularity of the microstructure, so that we have φ(l) and C are y-periodic.

Applying the asymptotic homogenization technique the equations (2.16) − (2.24) then

become

∇y · (Cξy(uϵ)) + ϵ∇y · (Cξx(uϵ)) + ϵ∇x · (Cξy(uϵ)) + ϵ2∇x · (Cξx(uϵ)) = 0 (2.28)

∇y ·Tϵ
f + ϵ∇x ·Tϵ

f = 0 (2.29)

Tϵ
f = −pϵI+ ϵ(∇yv

ϵ + (∇yv
ϵ)T) + ϵ2(∇xv

ϵ + (∇xv
ϵ)T) (2.30)

u̇ϵ = vϵ (2.31)

ϵ3∇2
xv

ϵ + ϵ2∇x · (∇yv
ϵ) + ϵ2∇y · (∇xv

ϵ) + ϵ∇2
yv

ϵ = ∇yp
ϵ + ϵ∇xp

ϵ (2.32)

Tϵ
fn = Tϵ

sn (2.33)

ϵTϵ
s = Cξy(uϵ) + ϵCξx(uϵ) (2.34)

∇y · vϵ + ϵ∇x · vϵ = 0 (2.35)

∇y ·Tϵ
s + ϵ∇x ·Tϵ

s = 0. (2.36)

Remark 1. We make the assumption of regularity of the microstructure for the sake of

convenience. In order to solve the problem, we need to restrict our analysis to a finite

subset of the given microstructure. By assuming y-periodicity, we are achieving the de-

sired restriction, although the equations of poroelasticity can be derived by assuming local

boundedness of the fields only, see [19]. In the case of assuming local boundedness of the

fields we can only obtain the functional form of the macroscale model. This is since the

prescriptions of the coefficients obtained this way are related to microscale problems which

are, in principle, to be solved on the whole microstructure. Therefore, they cannot be used

in practice unless further geometrical restrictions, such as periodicity of the microstruc-

ture, are imposed. This is the advantage of the asymptotic homogenization technique versus

RVE tecniques as we obtain a precise prescription of the model coefficients.

2.4 Macroscopic Model

We substitute power series of the type (2.27) into the relevant fields in (2.28)−(2.36). Then

by equating the coefficients of ϵl for l = 0, 1, ... this allows us to derive the macroscale

model for the poroelastic material in terms of the relevant leading order fields. Whenever

a component in the asymptotic expansion retains a dependence on the microscale, we can
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take the integral average, which we define as

⟨φ⟩i =
1

|Ω|

∫
Ωi

φ(x,y, t)dy i = f, s, (2.37)

where the integral average can be performed over one representative cell due to the as-

sumption of y-periodicity and |Ω| is the volume of the periodic cell, with solid and fluid

portions still denoted by Ωs and Ωf , respectively.

Equating coefficients of ϵ0 in (2.28)− (2.36) gives

∇y · (Cξy(u(0))) = 0 in Ωs (2.38)

∇y ·T(0)
f = 0 in Ωf (2.39)

T
(0)
f = −p(0)I in Ωf (2.40)

u̇(0) = v(0) on Γ (2.41)

∇yp
(0) = 0 in Ωf (2.42)

T
(0)
f n = T(0)

s n on Γ (2.43)

Cξy(u(0)) = 0 in Ωs (2.44)

∇y · v(0) = 0 in Ωf (2.45)

∇y ·Ts
(0) = 0 in Ωs. (2.46)

Similarly we now wish to equate the coefficients of ϵ1 in equations (2.28)−(2.36) which

gives

∇y · (Cξy(u(1))) +∇y · (Cξx(u(0))) +∇x · (Cξy(u(0))) = 0 in Ωs (2.47)

∇y ·T(1)
f +∇x ·T(0)

f = 0 in Ωf (2.48)

T
(1)
f = −p(1)I+ (∇yv

(0) + (∇yv
(0))T) in Ωf (2.49)

u̇(1) = v(1) on Γ (2.50)

∇2
yv

(0) = ∇yp
(1) +∇xp

(0) in Ωf (2.51)

T
(1)
f n = T(1)

s n on Γ (2.52)

T(0)
s = Cξy(u(1)) + Cξx(u(0)) in Ωs (2.53)

∇y · v(1) +∇x · v(0) = 0 in Ωf (2.54)

∇y ·Ts
(1) +∇x ·Ts

(0) = 0 in Ωs (2.55)
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From equations (2.39) and (2.40) we can see that p(0) does not depend on the microscale

y, so

p(0) = p(0)(x, t). (2.56)

We also have from equation (2.44) that u(0) is a rigid body motion and therefore, by

y-periodicity

u(0) = u(0)(x, t) (2.57)

does not depend on the microscale y.

2.4.1 Fluid Flow on the Macroscale

We now wish to investigate the leading order of the velocity which we denoted v(0). We

can define

w(x,y, t) = v(0)(x,y, t)− u̇(0)(x,y, t), (2.58)

where w is the relative fluid-solid velocity. Using equations (2.40), (2.41), (2.48) and (2.49)

we have a Stokes’-type periodic boundary value problem which is given by

∇2
yw −∇yp

(1) −∇xp
(0) = 0 in Ωf (2.59)

∇y ·w = 0 in Ωf (2.60)

w = 0 on Γ, (2.61)

equipped with periodicity conditions on ∂Ωf \Γ. Exploiting linearity and using (2.56), we

state the following ansatz

w = −W∇xp
(0), (2.62)

p(1) = −Π∇xp
(0) + c(x), (2.63)

where p(1) is defined up to an arbitrary y-constant function, c(x). Equation (2.63) is the

solution of the problem (2.59-2.61) provided that the auxiliary second rank tensor W and

vector Π satisfy the following cell problem
∇2

yW
T −∇yΠ+ I = 0 in Ωf

∇y ·WT = 0 in Ωf

W = 0 on Γ,

(2.64)
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where once again periodic conditions apply to the boundary ∂Ωf \Γ and a further condition

is to be imposed on Π for the solution to be unique (e.g. zero average on periodic cell).

Taking the integral average of (2.62) over the fluid domain and keeping in mind the

definition (2.58) we have

⟨w⟩f = −⟨W ⟩f∇xp
(0), (2.65)

i.e. the average relative leading order fluid velocity is described by Darcy’s law.

2.4.2 Poroelasticity on the Macroscale

We now require the macroscale equations to close the system for the solid elastic displace-

ment u(0) and the fluid pressure p(0). Summing up the cell averages of equations (2.48)

and (2.55) over Ωs and Ωf , respectively we have

∫
Ωs

∇y ·T(1)
s dy +

∫
Ωf

∇y ·T(1)
f dy +

∫
Ωs

∇x ·T(0)
s dy +

∫
Ωf

∇x ·T(0)
f dy = 0. (2.66)

Applying the divergence theorem with respect to y to the first two integrals and rearrang-

ing the last two terms we obtain

∫
∂Ωs/Γ

T(1)
s nΩsdS−

∫
Γ
T(1)

s ndS +

∫
∂Ωf/Γ

T
(1)
f nΩf

dS (2.67)

+

∫
Γ
T

(1)
f ndS +∇x ·

∫
Ωs

T(0)
s dy +∇x ·

∫
Ωf

T
(0)
f dy = 0,

where we recall that n is the unit outward normal to Γ with respect to the fluid region

Ωf , which is therefore pointing into the solid region, i.e. the corresponding unit outward

normal to Γ with respect to the solid region Ωs is given by −n. The unit vectors nΩs and

nΩf
are the outward normals corresponding to ∂Ωs/Γ and ∂Ωf/Γ, respectively.

Remark 2. In equation (2.67) we have assumed that the microstructure is macroscopically

uniform, i.e. the periodic cell portions Ωs and Ωf do not retain any parametric dependence

on the macroscale variable x. This assumption can in principle be relaxed by assuming

that the medium is not macroscopically uniform. This way, only local periodicity is as-

sumed, whereas the periodic representative cell is parametrically varying with respect to the

macroscale coordinate, leading to macroscopically heterogeneous coefficients and additional

terms in (2.67) due to proper application of the generalized Reynolds transport theorem.

This approach [86, 87] requires the solution of a periodic cell problem (of the type solved

in the present manuscript) for each point of the macroscale domain, thus leading to an
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increase in the computational cost, although alternative strategies to reduce it are rapidly

emerging in the literature, see, e.g. [32].

Since the contributions over the external boundaries of Ωs and Ωf cancel out due to

y-periodicity (2.67) becomes

−
∫
Γ
T(1)

s ndS +

∫
Γ
T

(1)
f ndS +∇x ·

∫
Ωs

T(0)
s dy +∇x ·

∫
Ωf

T
(0)
f dy = 0. (2.68)

Since equation (2.52) holds, the first two terms in (2.68) disappear and the final two

terms become

∇x · ⟨T(0)
s ⟩s − ϕ∇xp

(0) = 0, (2.69)

where ϕ := |Ωf |/|Ω| is the porosity of the material.

Exploiting (2.56) and (2.57) we can write equations (2.43), (2.46) and (2.53) as the

following problem for u(1)

∇y · (Cξy(u(1))) +∇y · (Cξx(u(0))) = 0 in Ωs (2.70)

(Cξy(u(1)) + Cξx(u(0)))n = −p(0)n on Γ, (2.71)

with y-periodicity in Ωs. Due to local periodicity u(1) is a bounded vector function of y.

The solution to the problem given by equations (2.70) and (2.71), exploiting linearity, is

given as

u(1) = Aξx(u
(0)) + ap(0), (2.72)

where A is a tensor of order 3 and a is a vector. This is provided that the auxiliary

quantities A and a solve the following cell problems. We have
∇y · (Cξy(A)) +∇y · C = 0 in Ωs

(Cξy(A))n+ Cn = 0 on Γ,
(2.73)

and 
∇y · (Cξy(a)) = 0 in Ωs

(Cξy(a) + I)n = 0 on Γ.
(2.74)

To ensure the uniqueness of the solution, we also require a further condition on A and a,
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for example:

⟨A⟩s = 0 and ⟨a⟩s = 0. (2.75)

Since we have that u(1) is related to T
(0)
s in equation (2.53), then (2.72) shows that

T
(0)
s is a function of the gradient of u(0) and p(0). Substituting u(1) into equation (2.53)

gives

T(0)
s = CMξx(u

(0)) + CQp(0) + Cξx(u(0)), (2.76)

where we have fourth rank tensor M and second rank tensor Q defined as

M = ∇yA and Q = ∇ya. (2.77)

Then taking the integral average of (2.76) over the solid domain we obtain

⟨T(0)
s ⟩s = ⟨CM+ C⟩sξx(u(0)) + ⟨CQ⟩sp(0). (2.78)

From (2.69) we have

∇x ·TEff = 0, (2.79)

where we can define TEff as

TEff := ⟨T(0)
s ⟩s − ϕp(0)I

= ⟨CM+ C⟩s∇xu
(0) + (⟨CQ⟩s − ϕI)p(0), (2.80)

as the effective stress. We can describe (2.79) and (2.80) as the average force balance

equations for the poroelastic material.

We now return to the incompressibility constraint equation (2.54) and integrate. Ap-

plying the divergence theorem to the first integral, then using (2.50) and applying the

divergence theorem again we obtain

0 = −
∫
Ωs

Tr(∇yu̇
(1))dy +∇x · ⟨v(0)⟩f . (2.81)

That is,

∇x · ⟨v(0)⟩f = ⟨Tr(∇yu̇
(1))⟩s. (2.82)
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Using (2.72) and (2.77) we have that

∇yu
(1) = M∇xu

(0) +Qp(0), (2.83)

and taking the time derivative we obtain

∇yu̇
(1) = M∇xu̇

(0) +Qṗ(0). (2.84)

Therefore we can rewrite (2.82) by taking the integral average over the solid domain of

the trace of (2.84). That is,

∇x · ⟨v(0)⟩f = ⟨TrM⟩s : ∇xu̇
(0) + ⟨TrQ⟩sṗ(0). (2.85)

Returning to the expression for relative fluid-solid velocity, (2.58), restated here for con-

venience, we have that

w(x,y, t) = v(0)(x,y, t)− u̇(0)(x, t). (2.86)

Then taking the cell average over the fluid domain we obtain

⟨w⟩f = ⟨v(0)⟩f − ϕu̇(0), (2.87)

where we can define the porosity as ϕ := |Ωf |/|Ω|. Rearranging (2.87) gives

⟨v(0)⟩f = ⟨w⟩f + ϕu̇(0). (2.88)

Then using (2.88), we can rewrite (2.85) as

∇x · (⟨w⟩f + ϕu̇(0)) = ⟨TrM⟩s : ∇xu̇
(0) + ⟨TrQ⟩sṗ(0), (2.89)

where we can expand the left hand side to obtain

∇x · ⟨w⟩f + ϕ∇x · u̇(0) = ⟨TrM⟩s : ∇xu̇
(0) + ⟨TrQ⟩sṗ(0). (2.90)

We should note that we can write ϕ∇x · u̇(0) as ϕI : ∇xu̇
(0) in equation (2.90) and we also

note that ϕ = Constant due to the assumed geometric uniformity. We can now rearrange
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(2.90) to determine an expression for ṗ(0). That is,

ṗ(0) =
1

⟨TrQ⟩s
(
∇x · ⟨w⟩f + (ϕI− ⟨TrM⟩s) : ∇xu̇

(0)
)
, (2.91)

where we can define

M :=
−1

⟨TrQ⟩s
and α := ϕI− ⟨TrM⟩s. (2.92)

It is important to consider that in the case of isotropy that α in (2.92) will reduce to

α = αI. Continuing we can re-write (2.91) using (2.92) as

ṗ(0) = −M(∇x · ⟨w⟩f +α : ∇xu̇
(0)). (2.93)

Then dividing through by M gives

ṗ(0)

M
= −∇x · ⟨w⟩f −α : ∇xu̇

(0), (2.94)

and when M → +∞ and in the case of isotropy we have

∇x · ⟨w⟩f + α · ∇xu̇
(0) = 0, (2.95)

meaning we can deduce the α is the ratio of fluid to solid volume changes.

We have now derived all the equations required to be able to state our macroscale

model. The equations in the macroscale model describe the effective poroelastic behaviour

of the material relating to the pressure, the average fluid velocity and the elastic displace-

ment. Therefore the macroscale model to be solved is given by



⟨w⟩f = −⟨W ⟩f∇xp
(0),

∇x ·TEff = 0,

TEff = ⟨CM+ C⟩s∇xu
(0) + (⟨CQ⟩s − ϕI)p(0),

ṗ(0)

M
= −∇x · ⟨w⟩f −α : ∇xu̇

(0),

(2.96)

where we have that p(0) is the macroscale pressure, u(0) is the macroscale solid displace-

ment, u̇(0) is the solid velocity and w is the average fluid velocity. The first equation of the

macroscale model represents Darcy’s law for w, where w is the relative fluid-solid veloc-

ity. The second of the macroscale PDEs is the stress balance equation for the poroelastic
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material where the material has the constitutive law given by the third equation in our

macroscale model. The final equation describes the conservation of mass for a poroelastic

material. It also relates changes in the fluid pressure to changes in the fluid and solid

volumes. We therefore have that the mechanical behaviour of the poroelastic material can

be fully described by the effective elasticity tensor ⟨CM+C⟩s, the hydraulic conductivity

⟨W ⟩f , Biot’s tensor of coefficients α and Biot’s modulusM . This macroscale model is that

of Biot (up to a choice in notation) and is the starting point for the models developed in

the following chapters of this thesis.

2.5 Scheme for Solving the Macroscale Model

We now aim to provide a clear step-by-step guide to how the macroscale model could be

solved. The steps are generic to allow for this to be seen as a guide to the process with either

numerical or analytical solutions computed within the steps. When we are considering a

case where macroscopic uniformity applies then we can propose the following steps as a

method for solving the macroscale model. The process is:

1. We begin by fixing the original material properties of the poroelastic material in-

cluding fixing the elasticity tensor C and fixing the fluid viscosity µ.

2. Then, we must fix the microscale structure by defining the cell geometry of a unit

cell in the material.

3. Then the cell problems can be solved. In this case we have that we can now solve the

cell problems (2.64), (2.73) and (2.74). This can be done numerically or for specific

geometries analytically.

4. In order to calculate the coefficients in the corresponding macroscale model we use

the cell problem solutions that we obtained in step 3 with (2.77) and the integral

average (2.37). Then we can substitute the obtained model coefficients into the

macroscale equations.

5. The geometry of the macroscale must also be prescribed. The boundary conditions

for the homogenized cell boundary, ∂ΩH , must be given, and the system is to be

supplemented by appropriate initial conditions for u(0) and p(0).
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6. Finally the macroscale equations (2.96) for the material can be solved. This can

again be numerically or analytically for specific geometries.

The latter algorithm has been recently enforced in [35] to investigate variations of the

effective poroelastic parameters against porosity and compressibility of the solid matrix

in the context of tumour modelling. The next natural step is the application of relevant

multiscale models for diffusion of solutes [110], see, e.g. [64] for an example of application

for a rigid, porous tumour mass. Extension of such approaches to deformable structures

via poroelasticity, such as those studied in [91], will pave the way to gain a thorough

understanding of the relative importance of the various factors which affect diffusion in

porous media.

2.6 Concluding Remarks

We have performed a re-derivation of the governing equations of a poroelastic material.

We begin by presenting the fluid-structure interaction problem (FSI) that characterises

an elastic porous matrix with a low Reynolds number Newtonian incompressible fluid

flowing in the pores. This structure is applicable to many real world scenarios including

biological tissues, artificial constructs, soil and rocks. We then embrace the asymptotic

homogenization technique to derive the macroscale system of partial differential equations

(PDEs). The model encodes the properties of the microstructure in the coefficients of the

model, i.e. the effective hydraulic conductivity tensor, elasticity tensor, Biot’s modulus

and Biot’s tensor of coefficients, which are to be computed by solving appropriate periodic

cell problems.

This model is derived by assuming periodicity of the microstructure and aims to pro-

vide an introductory example of applying the asymptotic homogenization technique that

will be applied to a variety of scenarios in the chapters that follow. This chapter also intro-

duces the macroscale model for standard Biot’s poroelastic materials. The novel models

derived in the following chapters aim to build upon and advance this model to increase

the applicability to real world problems.

The model of standard poroelasticity has limitations and is open to a variety of exten-

sions. The present formulation provides the effective governing equations in a quasi-static,

linearised setting, and accounting for incompressibility of the fluid phase. It also makes

the assumption that the elastic matrix is homogeneous. These assumptions make the
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model not particularly accurate when it comes to real world applications of the theory. It

is clear that for many applications, in particular biological ones that these assumptions

cannot be realistic of the materials true properties. For this reason we are able to extend

the theory without these assumptions. We can derive models with a more complicated

microstructure, considering also nonlinear elastic materials. These novel models despite

addressing a more complicated microstructure are computationally no more expensive than

the standard Biot’s poroelasticity.

In the next chapter we make the first steps towards creating more realistic poroelastic

models. We derive the novel macroscale model for poroelastic composites. This work

presents the governing equations for a poroelastic material that has an inhomogeneous

matrix comprising a variety of different elastic subphases and inclusions. This type of

structure is much more representative of biological tissues microstructure.



Chapter 3

Effective balance equations for

poroelastic composites

In this work we aim to determine the effective behaviour of a material where the microstruc-

ture comprises both an elastic fluid-filled porous matrix, and a number of embedded elastic

inclusions/fibres which can interplay with both the matrix and the fluid phase. Our chief

motivation is the study of poroelastic composites, i.e. complex, multiscale physical sys-

tems where multiple adjacent elastic phases interacting with a fluid can be identified on

the porescale. For example, this is the case in the biological tissues interstitial matrix,

which can be considered a composite made of multiple constituents, such as cells and

different type of collagen fibres [61], which are interacting with the fluid flowing in the in-

terstitial space [40] on the porescale [106]. A similar scenario is encountered when dealing

with hard hierarchical materials, such as bone and tendons, where water is interplaying

with both collagen and mineral at the finest hierarchical levels of organization [117], as

well as with the constituents of the osteonal structures [30].

In the present work we embrace the asymptotic homogenization technique to upscale

the interaction between a number of linear elastic inclusions and/or fibres embedded in a

porous matrix saturated with an incompressible Newtonian fluid. Both the elastic matrix

and the various subphases are in general assumed to be interacting with the fluid flowing

in the pores. We assume that the scale at which the various solid subphases are clearly

resolved is comparable with the porescale and collectively denote it as the microscale,

which is in turn assumed to be much smaller than the macroscale. The upscaling is then

carried out by accounting for continuity of tractions and displacements across the interfaces

45
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between solid phases, and continuity of tractions and velocities across at the fluid-solid

interfaces. The resulting governing equations, which are presented in the quasi-static case,

are of Biot’s type and read as a generalization of both the standard formulation for linear

elastic composites [89], and standard poroelasticity [19]. These two models are recovered

when assuming that the matrix is not porous and that no elastic phase other than the

matrix is present, respectively. The coefficients of the model encode the properties of

the microstructure, and are to be computed by solving local differential problems which

combine the properties of those arising in the context of multiscale composites [88,89] and

poroelasticity [35].

The paper is organised as follows. In Sec. 3.1 we introduce the fluid-structure inter-

action problem which describes the interplay between the elastic matrix, subphases, and

fluid percolating in the pores. In Sec 3.2 we perform a multiscale analysis of the system

of partial differential equations illustrated in Section 3.1 and derive the new macroscale

model which governs the homogenized mechanical behaviour of poroelastic composites. In

section 3.3 we discuss the macroscale results and prove rigorous properties of the arising

effective elasticity tensor, Biot’s modulus, and Biot’s tensor of coefficients. In section 3.4

we conclude our work by discussing the limitations of the model and further perspectives.

3.1 A multiphase fluid-structure interaction problem

We begin by considering a set Ω ∈ R3, where Ω represents the union of a solid porous

matrix ΩII, a connected fluid compartment Ωf , and a collection ΩI of N disjoint sub-

phases,which could represent either inclusions (fully embedded in the matrix) or fibres

(running the length of the domain), Ωα, such that

ΩI =

N⋃
α=1

Ωα, (3.1)

and Ω̄ = Ω̄I∪ Ω̄II∪ Ω̄f and Ω̄s = Ω̄I∪ Ω̄II, Where the notation ¯ denotes that the domain

is including its own boundary. A sketch of a cross-section of the three dimensional domain

Ω is shown in Figure 3.1.

The balance equations in the solid domains Ωα and ΩII, by neglecting volume forces

and inertia then read, ∀α = 1...N

∇ · Tα = 0 in Ωα, (3.2)
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and

∇ · TII = 0 in ΩII. (3.3)

The symbols Tα and TII that appear in relationships (3.2-3.3) denote the solid stress

tensors corresponding to each subphase Ωα and the one corresponding to the matrix ΩII,

respectively. We then assume that both the matrix and each subphase are anisotropic

linear elastic solids, so that the constitutive equations for Tα and TII are given by

Tα =Cα∇uα, (3.4)

TII =CII∇uII, (3.5)

where uα and uII are the elastic displacement in each subphase and the matrix, respectively.

Figure 3.1: A 2D sketch representing a cross-section of the 3-dimensional domain Ω. The
fluid phase flowing in the pores is represented in white, the porous elastic matrix is shown
in red, and the subphases, which can be inclusions or fibres, are shown in blue. The
inclusions and/or fibres can potentially be in contact with both the matrix and the fluid
flowing in the pores or alternatively they can be fully embedded in the matrix or fully
surrounded by the fluid, as illustrated throughout our schematic of the domain Ω.

In order to emphasise that the domain we are considering is 3D we have produced the

following figure which is just an example of a subset of Ω.
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Figure 3.2: A 3D example of a section of the domain shown in Fig. 3.1 to show that the
fluid flow is interconnected cylinders in 3 directions

The fourth rank tensors Cα and CII are the elasticity tensors in each subphase and the

matrix, respectively, with corresponding components Cα
ijkl and C

II
ijkl, for i, j, k, l = 1, 2, 3.

We note that each Cα and CII are equipped with right minor and major symmetries,

namely

Cα
ijkl = Cα

ijlk; CII
ijkl = CII

ijlk, (3.6)

Cα
ijkl = Cα

klij ; CII
ijkl = CII

klij , (3.7)

and therefore also left minor symmetries follow by combining (3.6-3.7). In particular,

by applying right minor symmetries we can equivalently rewrite constitutive equations

(3.4-3.5) as

Tα =Cαξ(uα), (3.8)

TII =CIIξ(uII), (3.9)

where

ξ(•) = ∇(•) + (∇(•))T

2
(3.10)

is the symmetric part of the gradient operator.
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The balance equation in the fluid compartment reads

∇ · Tf = 0 in Ωf , (3.11)

where Tf is the fluid stress tensor. We assume that the fluid compartment is an incom-

pressible Newtonian fluid, so that the constitutive equation for Tf is given by

Tf = −pI+ 2µξ(v), (3.12)

where v denotes fluid velocity, p the pressure and µ the viscosity, together with the in-

compressibility constraint

∇ · v = 0 in Ωf . (3.13)

Substituting relationship (3.12) in (3.11) and using the the divergence-free condition (3.13)

yields the Stokes’ problem

µ∇2v = ∇p in Ωf . (3.14)

In order to close the fluid structure interaction problem in the whole domain Ω we also

require interface conditions between the fluid and the solid phases. We first define the

interface between the fluid phase and the α inclusion/fibre as Γα := ∂Ωα ∩ ∂Ωf and the

interface between the matrix and the fluid phase as ΓII := ∂ΩII ∩ ∂Ωf . We then impose

continuity of velocities and tractions across each Γα and ΓII, namely

u̇α = v on Γα, (3.15)

Tfnα = Tαnα on Γα, (3.16)

u̇II = v on ΓII, (3.17)

TfnII = TIInII on ΓII, (3.18)

∀α = 1...N , where u̇α and u̇II are the solid velocities in each subphase Ωα and the matrix

ΩII, respectively. The unit outward (i.e. pointing into the fluid domain Ωf) vectors normal

to the interfaces Γα and ΓII are denoted by nα and nII, respectively. Finally, we require

continuity of tractions and displacements across the interface between each elastic subphase

and the matrix. We define this boundary as ΓαII := ∂Ωα ∩ ∂ΩII, so that

TαnαII = TIInαII on ΓαII. (3.19)



CHAPTER 3. BALANCE EQNS FOR LINEAR POROELASTIC COMPOSITES 50

uα = uII on ΓαII, (3.20)

∀α = 1...N , where nαII is the unit vector normal to the interface ΓαII pointing into the

fibre/inclusion Ωα.

In the next section we perform a multiscale analysis by (a) non-dimensionalizing the

partial differential equations (PDEs) described in this section and introducing two well-

separated length scales, (b) applying the asymptotic homogenization technique to the

resulting non-dimensional systems of PDEs, and (c) deriving the effective governing equa-

tions for the material as a whole.

3.2 Multiscale analysis

We now perform a multiscale analysis of the fluid-structure interaction problem introduced

in the previous section, which is summarized below

∇ · Tα = 0 in Ωα, (3.21)

∇ · TII = 0 in ΩII, (3.22)

∇ · Tf = 0 in Ωf , (3.23)

∇ · v = 0 in Ωf , (3.24)

u̇α = v on Γα, (3.25)

u̇II = v on ΓII, (3.26)

Tfnα = Tαnα on Γα, (3.27)

TfnII = TIInII on ΓII, (3.28)

TαnαII = TIInαII on ΓαII, (3.29)

uα = uII on ΓαII, (3.30)

where, by means of the constitutive relationships (3.8), (3.9), and (3.12), together with

the incompressibility constraint (3.24), the balance equations (3.21), (3.22), and (3.23) can

also be rewritten as

∇ · (Cαξ(uα)) = 0 in Ωα (3.31)

∇ · (CIIξ(uII)) = 0 in ΩII (3.32)
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µ∇2v = ∇p in Ωf , (3.33)

∀α = 1...N . The problem (3.21-3.30) is then to be closed by prescribing suitable external

boundary conditions on ∂Ω. We assume that there exist two typical length scales in

the system. In particular, we denote the average size of the whole domain Ω by L (the

macroscale), while d refers to the porescale (the microscale), which in this work is assumed

to be comparable with the distance between adjacent subphases interacting with the matrix

and the fluid domain. In order to emphasize the difference between such scales, it is helpful

to perform a non-dimensional analysis of the system of PDEs (3.21-3.30).

3.2.1 Non-dimensional form of the equations

We carry out the non-dimensional analysis by assuming that the system is characterized

by a reference pressure gradient Cp, and that the characteristic (reference) fluid velocity

is given by the typical parabolic profile proportional to that of a Newtonian fluid slowly

flowing in a cylinder of radius d. This is the appropriate scaling that captures the scale

separation between the microscale d and the macroscale L in a porous domain, as also

discussed in [87]. Although different scaling choices for the fluid velocity are formally

possible, these would not account for the appropriate effective behaviour of a fluid flowing

through a porous solid matrix. An example of alternative choices which lead to an effec-

tive viscoelastic-type behavior are illustrated in [19]. The scalings that we use here are

consistent throughout this work and are the same as those used in the previous chapter.

Therefore, in our case we have

x = Lx′, Cα = CpLC′
α, CII = CpLC′

II,

uα = Lu′
α, uII = Lu′

II, v =
Cpd

2

µ
v′, p = CpLp

′.
(3.34)

From (3.34) we can deduce that time is scaled by

L

V
=

µL

Cpd2
, (3.35)

where

V =
Cpd

2

µ
(3.36)

is the reference parabolic fluid profile which is embraced to upscale a fluid-structure in-
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teraction problem to a poroelastic problem, as also explained in [87]. Equation (3.35)

therefore represents the (macro) reference time scale for a fluid slowly flowing in the pores

and is assumed to be analogous to the time scale for deformation of the elastic material,

for the sake of consistency with continuity of velocities at the interface. We then exploit

(3.34) and observe that

∇ =
1

L
∇′ (3.37)

to obtain the non-dimensional form of the system of PDEs (3.21-3.30), namely

∇ · Tα = 0 in Ωα (3.38)

∇ · TII = 0 in ΩII (3.39)

∇ · Tf = 0 in Ωf (3.40)

∇ · v = 0 in Ωf (3.41)

u̇α = v on Γα (3.42)

u̇II = v on ΓII (3.43)

Tfnα = Tαnα on Γα (3.44)

TfnII = TIInII on ΓII (3.45)

TαnαII = TIInαII on ΓαII (3.46)

uα = uII on ΓαII (3.47)

∀α = 1...N , where we have dropped the primes for the sake of simplicity of notation. The

non-dimensionalized counterparts of constitutive relationships (3.8), (3.9), and (3.12) are

given by

Tf = −pI+ ϵ2(∇v + (∇v)T) (3.48)

Tα = Cαξ(uα) (3.49)

TII = CIIξ(uII), (3.50)

so that the balance equations (3.38-3.40) rewrite

ϵ2∇2v = ∇p in Ωf (3.51)

∇ · (Cαξ(uα)) = 0 in Ωα (3.52)

∇ · (CIIξ(uII)) = 0 in ΩII, (3.53)
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where

ϵ =
d

L
. (3.54)

In the next section we introduce the asymptotic homogenization technique which is used

to upscale the non-dimensional system of PDEs (3.38-3.47) by formally assuming that the

microscale and the macroscale are well separated.

3.2.2 The asymptotic homogenization technique

In this section we introduce the two-scale asymptotic homogenization technique which is

used to derive a macroscale model for the equations (3.38−3.47). We first assume that the

microscale (where the pores and individual inclusions/fibres are clearly resolved), denoted

by d, is small compared to average size of the domain L, i.e.

ϵ≪ 1. (3.55)

We then introduce a local spatial variable to capture microscale variations of the field via

setting

y =
x

ϵ
. (3.56)

The spatial variables x and y are to be considered formally independent and represent the

macroscale and the microscale, respectively. The gradient operator then transforms as

∇ → ∇x +
1

ϵ
∇y. (3.57)

We further assume that all the fields uII,uα,v, p,Tf ,Tα,TII, as well as the elasticity tensors

CII and Cα, ∀α = 1...N , are functions of both x and y. We also assume that the fields

uII,uα,v, p,Tf ,Tα,TII can be represented in terms of a series expansion in powers of ϵ, i.e.

φϵ(x,y, t) =

∞∑
l=0

φ(l)(x,y, t)ϵl, (3.58)

where φ collectively denotes each field involved in the present analysis.

Remark 3 (Microscale periodicity). We are now interested in obtaining a closed system

of PDEs in terms of the leading (zero-th) order pressure, velocity, and displacement fields.

This is done by applying relationships (3.57) and (3.58) to the system (3.38-3.47) and

constitutive equations (3.48-3.50), and in turn to relationships (3.51-3.53). This way, by
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equating coefficients of the same power of ϵ, we can obtain various sets of differential con-

ditions which can be combined to obtain a system of PDEs which holds on the macroscale

x ∈ ΩH . The domain ΩH represents the homogenized domain where microscale hetero-

geneities are smoothed out. The coefficients of the model are then typically expressed

averaging the solution of appropriate microscale local problems. As each coefficient φ(l)

that appears in (3.58) is required to be well-defined for arbitrary small values of ϵ, it is

in principle necessary to assume that all the fields are locally bounded, i.e. finite with

respect to the microscale variable y when ϵ→ 0, see also [48,90]. This is the least restric-

tive assumption that is to be embraced to successfully perform upscaling of a given system

of PDEs when dealing with formal asymptotic homogenization. In [19] the authors derive

Biot’s equations of poroelasticity by assuming local boundedness of the fields. However,

this approach is appropriate when the main goal is the functional form of the macroscale

model only. This is since the prescriptions of the coefficients obtained this way are related

to microscale problems which are, in principle, to be solved on the whole microstructure.

Therefore, they cannot be used in practice unless further geometrical restrictions, such as

periodicity of the microstructure, are imposed, as indeed suggested in [19]. We therefore

assume that every φ(l), Cα, and CII are y-periodic. This latter technical assumption allows

us to restrict the analysis of the microstructure to a single periodic cell, which could in any

case contain several different subphases characterized by different geometry, arrangement

and elastic properties, as shown in Figure 3.3.

Remark 4 (Macroscopic uniformity). The microscale geometry can in principle vary with

respect to the macroscale, however, this potential dependence is often (most of the time

implicitly) neglected. Here, we assume that the medium is macroscopically uniform, i.e.

the microscale geometry does not depend on the macroscale variable x. In particular, this

assumptions leads to the straightforward differentiation under the integral sign

∫
Ω
∇x · (•) dy = ∇x ·

∫
Ω
(•) dy. (3.59)

Whenever Ω = Ω(x), equation (3.59) is not satisfied, and application of the generalized

Reynolds’ transport theorem may lead to additional macroscale contributions, see, e.g.

[48,87,88].

Finally, for the sake of clarity of presentation and without loss of generality with respect

to the properties of the model, we can restrict our analysis by assuming that only one
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Figure 3.3: A 2D sketch representing a single periodic cell in our structure. This is a
section of the domain Ω in Fig. 3.1 that has been zoomed in around one pore. We have
the fluid represented in white, the porous matrix in red and the subphases in blue. The
inclusions Ωα for α = 1...N , can be in contact with both the matrix and the fluid or be
fully embedded in either the matrix or the fluid. Each of these cases is highlighted in the
figure.

subphase is contained in each periodic cell, as shown in Figure 3.4. The model can be easily

extended to a number of subphases within the periodic cell if necessary for a particular

application, as done in the context of simple elastic composites in [88]. Therefore, the

index α is no longer needed and we adjust the notation accordingly. We identify the

domain Ω with its corresponding periodic cell, with fibre/inclusion, matrix, and fluid cell

portions denoted by ΩI, ΩII, and Ωf , respectively. The interfaces between the different

phases are then denoted by ΓI := ∂ΩI ∩ ∂Ωf , ΓII := ∂ΩII ∩ ∂Ωf , and ΓIII := ∂ΩI ∩ ∂ΩII,

with corresponding unit normal vectors nI, nII, and nIII, where ΓI is the interface between

the fluid and the inclusion, ΓII is the interface between the fluid and the matrix and ΓIII

is the interface between the matrix and the inclusion.



CHAPTER 3. BALANCE EQNS FOR LINEAR POROELASTIC COMPOSITES 56

Figure 3.4: This is a 2D sketch representing the periodic cell that we focus on. In our case
we focus on geometry case 2 from Fig. 3.3. We have one subphase fibre shown in blue that
is in contact with the porous, solid, elastic matrix shown in red and the fluid flowing in
the pores is shown in white. We also highlight the interfaces ΓI which is shown in green
between the inclusion and the fluid, ΓII shown in black between the matrix and the fluid
and ΓIII shown in grey between the inclusion and the matrix.

3.2.3 Derivation of the Macroscale Model

We apply the asymptotic homogenization assumptions (3.57) and (3.58) to equations (3.38-

3.53) to obtain, accounting for periodicity, the following multiscale system of PDEs

∇y · Tϵ
I + ϵ∇x · Tϵ

I = 0 in ΩI (3.60)

∇y · Tϵ
II + ϵ∇x · Tϵ

II = 0 in ΩII (3.61)

∇y · Tf
ϵ + ϵ∇x · Tf

ϵ = 0 in Ωf (3.62)

∇y · vϵ + ϵ∇x · vϵ = 0 in Ωf (3.63)

u̇ϵ
I = vϵ on ΓI (3.64)

u̇ϵ
II = vϵ on ΓII (3.65)

Tf
ϵnI = Tϵ

InI on ΓI (3.66)

Tf
ϵnII = Tϵ

IInII on ΓII (3.67)

Tϵ
InIII = Tϵ

IInIII on ΓIII (3.68)

uϵ
I = uϵ

II on ΓIII, (3.69)
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equipped with multiscale constitutive equations for the fluid and solid stress tensors Tf
ϵ,

Tϵ
I , T

ϵ
II, given by

Tf
ϵ = −pϵI+ ϵ(∇yv

ϵ + (∇yv
ϵ)T) + ϵ2(∇xv

ϵ + (∇xv
ϵ)T) (3.70)

ϵTϵ
I = CIξy(u

ϵ
I ) + ϵCIξx(u

ϵ
I ) (3.71)

ϵTϵ
II = CIIξy(u

ϵ
II) + ϵCIIξx(u

ϵ
II), (3.72)

while the balance equations in terms of the elastic displacement, fluid velocity and pressure

uϵ
II, u

ϵ
I , v

ϵ, pϵ read

∇y · (CIξy(u
ϵ
I )) + ϵ∇y · (CIξx(u

ϵ
I )) +

ϵ∇x · (CIξy(u
ϵ
I )) + ϵ2∇x · (CIξx(u

ϵ
I )) = 0 in ΩI

(3.73)

∇y · (CIIξy(u
ϵ
II)) + ϵ∇y · (CIIξx(u

ϵ
II)) +

ϵ∇x · (CIIξy(u
ϵ
II)) + ϵ2∇x · (CIIξx(u

ϵ
II)) = 0 in ΩII

(3.74)

ϵ3∇2
xv

ϵ + ϵ2∇x · (∇yv
ϵ) + ϵ2∇y · (∇xv

ϵ) + ϵ∇2
yv

ϵ

= ∇yp
ϵ + ϵ∇xp

ϵ in Ωf

(3.75)

We can now substitute power series of the type (3.58) into the relevant fields in

(3.60−3.75). Then by equating the coefficients of ϵl for l = 0, 1, ... we derive the macroscale

model for the material in terms of the relevant leading (zero-th) order fields. Whenever a

component in the asymptotic expansion retains a dependence on the microscale, we can

take the integral average, which we define as

⟨φ⟩i =
1

|Ω|

∫
Ωi

φ(x,y, t)dy i = f, I, II (3.76)

where φ is a field, and also where the integral average can be performed over one repre-

sentative cell due to y-periodicity and |Ω| is the volume of the domain and the integration

is performed over the microscale. We note that |Ω| = |Ωf | + |ΩI| + |ΩII|. Due to the

assumption of y-periodicity, the integral average can be performed over one representative

cell. Therefore (3.76) represents a cell average. For the sake of brevity, we also introduce

the notation

⟨φI + φII⟩s =
1

|Ω|

(∫
ΩI

φI(x,y, t)dy +

∫
ΩII

φII(x,y, t)dy

)
, (3.77)
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for fields φ with components φI and φII defined in the solid cell portions ΩI or ΩII, respec-

tively.

Equating coefficients of ϵ0 in (3.60−3.69) we obtain

∇y · T(0)
I = 0 in ΩI (3.78)

∇y · T(0)
II = 0 in ΩII (3.79)

∇y · Tf
(0) = 0 in Ωf (3.80)

∇y · v(0) = 0 in Ωf (3.81)

u̇
(0)
I = v(0) on ΓI (3.82)

u̇
(0)
II = v(0) on ΓII (3.83)

Tf
(0)nI = T

(0)
I nI on ΓI (3.84)

Tf
(0)nII = T

(0)
II nII on ΓII (3.85)

T
(0)
I nIII = T

(0)
II nIII on ΓIII (3.86)

u
(0)
I = u

(0)
II on ΓIII (3.87)

and the constitutive equations (3.70−3.72) for Tf
ϵ, Tϵ

I , T
ϵ
II have coefficients of ϵ0

Tf
(0) = −p(0)I in Ωf (3.88)

CIξy(u
(0)
I ) = 0 in ΩI (3.89)

CIIξy(u
(0)
II ) = 0 in ΩII (3.90)

and the balance equations (3.73−3.75) have coefficients of ϵ0

∇y · (CIξy(u
(0)
I )) = 0 in ΩI (3.91)

∇y · (CIIξy(u
(0)
II )) = 0 in ΩII (3.92)

∇yp
(0) = 0 in Ωf (3.93)

Similarly we now wish to equate the coefficients of ϵ1 in equations (3.60−3.69) which

gives

∇y · T(1)
I +∇x · T(0)

I = 0 in ΩI (3.94)

∇y · T(1)
II +∇x · T(0)

II = 0 in ΩII (3.95)
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∇y · Tf
(1) +∇x · Tf

(0) = 0 in Ωf (3.96)

∇y · v(1) +∇x · v(0) = 0 in Ωf (3.97)

u̇
(1)
I = v(1) on ΓI (3.98)

u̇
(1)
II = v(1) on ΓII (3.99)

Tf
(1)nI = T

(1)
I nI on ΓI (3.100)

Tf
(1)nII = T

(1)
II nII on ΓII (3.101)

T
(1)
I nIII = T

(1)
II nIII on ΓIII (3.102)

u
(1)
I = u

(1)
II on ΓIII (3.103)

and the constitutive equations (3.70−3.72) for Tf
ϵ, Tϵ

I , T
ϵ
II have coefficients of ϵ1

Tf
(1) = −p(1)I+ (∇yv

(0) + (∇yv
(0))T) in Ωf (3.104)

T
(0)
I = CIξy(u

(1)
I ) + CIξx(u

(0)
I ) in ΩI (3.105)

T
(0)
II = CIIξy(u

(1)
II ) + CIIξx(u

(0)
II ) in ΩII (3.106)

and the balance equations (3.73−3.75) have coefficients of ϵ1

∇y · (CIξy(u
(1)
I )) +∇y · (CIξx(u

(0)
I )) +∇x · (CIξy(u

(0)
I )) = 0 in ΩI (3.107)

∇y · (CIIξy(u
(1)
II )) +∇y · (CIIξx(u

(0)
II )) +∇x · (CIIξy(u

(0)
II )) = 0 in ΩII (3.108)

∇2
yv

(0) = ∇yp
(1) +∇xp

(0) in Ωf (3.109)

We can now see from (3.80) and (3.88) that the leading order pressure p(0) does not

depend on the microscale y. That is

p(0) = p(0)(x, t). (3.110)

We also have from (3.89) and (3.90) that u
(0)
I and u

(0)
II , which are the leading order solid

displacements, are rigid body motions and therefore, by y-periodicity, do not depend on

the microscale y. That is

u
(0)
I =u

(0)
I (x, t) (3.111)

u
(0)
II =u

(0)
II (x, t). (3.112)
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Since we have the boundary condition u
(0)
I = u

(0)
II on ΓIII given by (3.87) we can define

u(0) = u
(0)
I = u

(0)
II , (3.113)

which we will use throughout the following sections.

3.2.4 Fluid Flow on the Macroscale

We now wish to investigate the leading order of the velocity which we denoted v(0). We

can define the relative fluid-solid displacement, w, by

w(x,y, t) = v(0)(x,y, t)− u̇(0)(x,y, t), (3.114)

Using equations (3.88), (3.82), (3.83), (3.96) and (3.104), exploiting notation (3.113), we

have a Stokes’-type boundary value problem which is given by

∇2
yw −∇yp

(1) −∇xp
(0) = 0 in Ωf (3.115)

∇y ·w = 0 in Ωf (3.116)

w = 0 on ΓI ∪ ΓII. (3.117)

Now exploiting linearity and using (3.110) we can propose the following ansatz for the

stokes-type boundary value problem (3.115−3.117),

w = −W∇xp
(0), (3.118)

p(1) = −Π∇xp
(0) + c(x), (3.119)

where p(1) is defined up to an arbitrary y-constant function. Equation (3.119) is the

solution to the problem (3.115−3.117) provided that second rank tensor W and vector Π

satisfy the following cell problem
∇2

yW
T −∇yΠ+ I = 0 in Ωf

∇y ·WT = 0 in Ωf

W = 0 on ΓI ∪ ΓII,

(3.120)
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where periodic conditions apply on the boundary ∂Ωf\ΓI ∪ ΓII and a further condition is

to be placed on Π for the solution to be unique (for example zero average on the fluid cell

portion). Taking the integral average of (3.118) over the fluid domain leads to

⟨w⟩f = −⟨W ⟩f∇xp
(0), (3.121)

meaning that the fluid flow is described by Darcy’s law in the macroscale. As expected,

this is the same result as standard poroelasticity with only one solid phase.

3.2.5 Poroelasticity on the Macroscale

We now require the macroscale equations to close the system for the elastic displacement

u(0) and p(0). Summing up the integral averages of equations (3.94), (3.95) and (3.96) we

have

∫
ΩI

∇y · T(1)
I dy +

∫
ΩII

∇y · T(1)
II dy +

∫
Ωf

∇y · Tf
(1)dy +∫

ΩI

∇x · T(0)
I dy +

∫
ΩII

∇x · T(0)
II dy +

∫
Ωf

∇x · Tf
(0)dy = 0. (3.122)

Applying the divergence theorem to the first three integrals and rearranging the last three

integrals by means of macroscopic uniformity (3.59) we obtain

∫
∂ΩI\ΓI∪ΓIII

T
(1)
I nΩI\ΓI∪ΓIII

dS +

∫
ΓI

T
(1)
I nIdS−

∫
ΓIII

T
(1)
I nIIIdS +∫

∂ΩII\ΓII∪ΓIII

T
(1)
II nΩII\ΓII∪ΓIII

dS +

∫
ΓII

T
(1)
II nIIdS +

∫
ΓIII

T
(1)
II nIIIdS +∫

∂Ωf\ΓI∪ΓII

Tf
(1)nΩf\ΓI∪ΓII

dS−
∫
ΓII

Tf
(1)nIIdS−

∫
ΓI

Tf
(1)nIdS +

∇x ·
∫
ΩI

T
(0)
I dy +∇x ·

∫
ΩII

T
(0)
II dy +∇x ·

∫
Ωf

Tf
(0)dy = 0, (3.123)

where nI, nII, nIII, nΩI\ΓI∪ΓIII
, nΩII\ΓII∪ΓIII

and nΩf\ΓI∪ΓII
are the unit normals correspond-

ing to ΓI, ΓII, ΓIII, ∂ΩI \ΓI ∪ΓIII, ∂ΩII \ΓII ∪ΓIII and ∂Ωf \ΓI ∪ΓII. Since the contributions

over the external boundaries of ΩI, ΩII and Ωf cancel out due to y-periodicity (3.123)

becomes

∫
ΓI

T
(1)
I nIdS +

∫
ΓII

T
(1)
II nIIdS−

∫
ΓI

Tf
(1)nIdS −∫

ΓII

Tf
(1)nIIdS−

∫
ΓIII

T
(1)
I nIIIdS +

∫
ΓIII

T
(1)
II nIIIdS +
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∇x ·
∫
ΩI

T
(0)
I dy +∇x ·

∫
ΩII

T
(0)
II dy +∇x ·

∫
Ωf

Tf
(0)dy = 0. (3.124)

The first six integrals in (3.124) cancel out due to (3.100), (3.101) and (3.102) and the

final three terms can be written as

∇x · ⟨T(0)
I + T

(0)
II ⟩s − ϕ∇xp

(0) = 0, (3.125)

where ϕ := |Ωf |/|Ω| is the porosity of the material.

Exploiting (3.110) and (3.113) we can write the following problem for u
(1)
I and u

(1)
II

using (3.78), (3.79), (3.84), (3.85), (3.86), (3.88), (3.103), (3.105) and (3.106)

∇y · (CIξy(u
(1)
I )) +∇y · (CIξx(u

(0))) = 0 in ΩI (3.126)

∇y · (CIIξy(u
(1)
II )) +∇y · (CIIξx(u

(0))) = 0 in ΩII (3.127)

CIξy(u
(1)
I )nIII − CIIξy(u

(1)
II )nIII = (CII − CI)ξx(u

(0))nIII on ΓIII (3.128)

u
(1)
I = u

(1)
II on ΓIII (3.129)

(CIξy(u
(1)
I ) + CIξx(u

(0)))nI = −p(0)nI on ΓI (3.130)

(CIIξy(u
(1)
II ) + CIIξx(u

(0)))nII = −p(0)nII on ΓII (3.131)

The solution to the problem given by (3.126−3.131), exploiting linearity is given as

u
(1)
I = AIξx(u

(0)) + aIp
(0) (3.132)

u
(1)
II = AIIξx(u

(0)) + aIIp
(0) (3.133)

where AI and AII are third rank tensors and aI and aII are vectors. The auxiliary fields

AI, AII, aI and aII solve the following cell problems.

∇y · (CIξy(AI)) = −∇y · CI in ΩI (3.134)

∇y · (CIIξy(AII)) = −∇y · CII in ΩII (3.135)

CIξy(AI)nIII − CIIξy(AII)nIII = (CII − CI)nIII on ΓIII (3.136)

AI = AII on ΓIII (3.137)

(CIξy(AI))nI = −CInI on ΓI (3.138)

(CIIξy(AII))nII = −CIInII on ΓII (3.139)
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and

∇y · (CIξy(aI)) = 0 in ΩI (3.140)

∇y · (CIIξy(aII)) = 0 in ΩII (3.141)

(CIξy(aI))nIII = (CIIξy(aII))nIII on ΓIII (3.142)

aI = aII on ΓIII (3.143)

(CIξy(aI))nI + nI = 0 on ΓI (3.144)

(CIIξy(aII))nII + nII = 0 on ΓII (3.145)

To ensure the uniqueness of the solution, we also require a further condition on AI, AII, aI

and aII, for example:

⟨AI⟩I + ⟨AII⟩II = 0 and ⟨aI⟩I + ⟨aII⟩II = 0. (3.146)

We can also write the cell problems for AI, AII, aI and aII with corresponding components

AI
ikl, A

II
ikl, a

I
i and a

II
i as

∂

∂yj

(
CI
ijpqξ

kl
pq(A

I)

)
+
∂CI

ijkl

∂yj
= 0 in ΩI (3.147)

∂

∂yj

(
CII
ijpqξ

kl
pq(A

II)

)
+
∂CII

ijkl

∂yj
= 0 in ΩII (3.148)

CI
ijpqξ

kl
pq(A

I)nIII
j − CII

ijpqξ
kl
pq(A

II)nIII
j = (CII − CI)ijkln

III
j on ΓIII (3.149)

AI
ikl = AII

ikl on ΓIII (3.150)

CI
ijpqξ

kl
pq(A

I)nI
j + CI

ijpqn
I
j = 0 on ΓI (3.151)

CII
ijpqξ

kl
pq(A

II)nII
j + CII

ijpqn
II
j = 0 on ΓII (3.152)

and

∂

∂yj

(
CI
ijpqξpq(a

I)

)
= 0 in ΩI (3.153)

∂

∂yj

(
CII
ijpqξpq(a

II)

)
= 0 in ΩII (3.154)

CI
ijpqξpq(a

I)nIII
j = CII

ijpqξpq(a
II)nIII

j on ΓIII (3.155)

aI
i = aII

i on ΓIII (3.156)

CI
ijpqξpq(a

I)nI
j + nI

j = 0 on ΓI (3.157)
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CII
ijpqξpq(a

II)nII
j + nII

j = 0 on ΓII (3.158)

where we have used the notation

ξklpq(A
I) =

1

2

(
∂AI

pkl

∂yq
+
∂AI

qkl

∂yp

)
; ξklpq(A

II) =
1

2

(
∂AII

pkl

∂yq
+
∂AII

qkl

∂yp

)
. (3.159)

We should note that the problems in terms of ai and Ai, where i = I, II, are to be solved

on the solid cell portion Ωs, where Ω̄s := Ω̄I ∪ Ω̄II.

Remark 5 (Compatibility Condition for the Cell Problems). We have the Compatibility

Condition (also known as the solvability condition) for the cell problems, see, e.g. [27].

We first take the integral average of the sum of the left hand sides of (3.134) and (3.135)

and apply the divergence theorem. That is,

∫
ΩI

∇y · (CIξy(AI))dy +

∫
ΩII

∇y · (CIIξy(AII))dy (3.160)

=

∫
ΓI

(CIξy(AI))nIdS+

∫
ΓIII

(CIξy(AI))nIIIdS+

∫
∂ΩI\ΓI∪ΓIII

(CIξy(AI))nΩI\ΓI∪ΓIII
dS

+

∫
ΓII

(CIIξy(AII))nIIdS−
∫
ΓIII

(CIIξy(AII))nIIIdS+

∫
∂ΩII\ΓII∪ΓIII

(CIIξy(AII))nΩII\ΓII∪ΓIII
dS

(3.161)

where nI, nII, nIII, nΩI\ΓI∪ΓIII
and nΩII\ΓII∪ΓIII

are the unit normals corresponding to ΓI,

ΓII, ΓIII, ∂ΩI \ ΓI ∪ ΓIII and ∂ΩII \ ΓII ∪ ΓIII. Terms on the external boundaries of ΩI and

ΩII cancel due to y-periodicity. So (3.161) becomes

=

∫
ΓI

(CIξy(AI))nIdS+

∫
ΓII

(CIIξy(AII))nIIdS+

∫
ΓIII

(CII − CI)nIIIdS (3.162)

where we have used the interface condition (3.136) and we can now also use (3.138) and

(3.139) to write (3.162) as

=

∫
ΓIII

(CII − CI)nIIIdS−
∫
ΓI

CI · nIdS−
∫
ΓII

CII · nIIdS. (3.163)

On the other hand we are able to re-write (3.160) using (3.134) and (3.135) as

∫
ΩI

∇y · (CIξy(AI))dy +

∫
ΩII

∇y · (CIIξy(AII))dy (3.164)

= −
∫
ΩI

∇y · CIdy −
∫
ΩII

∇y · CIIdy (3.165)
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We can then apply the divergence theorem to obtain

= −
∫
ΓI

CI · nIdS−
∫
ΓIII

CI · nIIIdS−
∫
∂ΩI\ΓI∪ΓIII

CI · nΩI\ΓI∪ΓIII
dS

−
∫
ΓII

CII · nIIdS+

∫
ΓIII

CII · nIIIdS−
∫
∂ΩII\ΓII∪ΓIII

CII · nΩII\ΓII∪ΓIII
dS

where the unit normals are as above. The contributions over the periodic boundaries cancel

to give

= −
∫
ΓI

CI · nIdS−
∫
ΓII

CII · nIIdS+

∫
ΓIII

(CII − CI)nIIIdS. (3.166)

We can see that (3.163) and (3.166) are equal, and therefore this proves the compatibility

condition which is necessary for the problem to admit a solution, which can be made unique

by imposing an additional condition, such as zero average of the auxiliary variables on the

periodic cell.

We now consider the leading order solid stress tensors. Since from (3.105) and (3.106)

we have that u
(1)
I and u

(1)
II are related to T

(0)
I and T

(0)
II respectively we can exploit (3.132)

and (3.133) to write

T
(0)
I = CIMIξx(u

(0)) + CIQIp
(0) + CIξx(u

(0)) (3.167)

and

T
(0)
II = CIIMIIξx(u

(0)) + CIIQIIp
(0) + CIIξx(u

(0)) (3.168)

where we define

MI = ξy(AI), MII = ξy(AII),

QI = ξy(aI), QII = ξy(aII). (3.169)

Adding (3.167) and (3.168) and taking the integral average over the solid domain gives

⟨T(0)
I + T

(0)
II ⟩s = ⟨CIMI + CI + CIIMII + CII⟩sξx(u(0)) + ⟨CIQI + CIIQII⟩sp(0). (3.170)

From (3.125) we have that

∇x · T̂Eff = 0 (3.171)
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where

T̂Eff = ⟨T(0)
I + T

(0)
II ⟩s − ϕp(0)I

= ⟨CIMI + CI + CIIMII + CII⟩sξx(u(0))

+ (⟨CIQI + CIIQII⟩s − ϕI)p(0). (3.172)

Equations (3.171)-(3.172) represent the average force balance equations for our poroelastic

composite material.

We now return to (3.97), the incompressibility condition and integrate to obtain

0 =

∫
Ωf

∇y · v(1)dy +

∫
Ωf

∇x · v(0)dy. (3.173)

Applying the divergence theorem twice to the first integral and using (3.98) and (3.99)

and also rearranging the second integral we obtain

0 = −
∫
ΩI

∇y · u̇(1)
I dy −

∫
ΩII

∇y · u̇(1)
II dy +∇x · ⟨v(0)⟩f (3.174)

= −
∫
ΩI

Tr(ξy(u̇
(1)
I ))dy −

∫
ΩII

Tr(ξy(u̇
(1)
II ))dy +∇x · ⟨v(0)⟩f . (3.175)

Therefore we have

⟨Tr(ξy(u̇(1)
I ) + ξy(u̇

(1)
II ))⟩s = ∇x · ⟨v(0)⟩f . (3.176)

Using (3.132) and (3.133) with (3.169) we have that

ξy(u̇
(1)
I ) + ξy(u̇

(1)
II ) = (MI +MII)ξx(u̇

(0)) + (QI +QII)ṗ
(0). (3.177)

So using (3.177) then equation (3.176) becomes

∇x · ⟨v(0)⟩f = ⟨Tr(MI +MII)⟩s : ξx(u̇(0)) + ⟨Tr(QI +QII)⟩sṗ(0). (3.178)

Now returning to (3.114), the expression for relative fluid-solid displacement, and taking

the integral average over the fluid domain we obtain

⟨w⟩f = ⟨v(0)⟩f − ϕu̇(0), (3.179)
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where ϕ is the porosity of the material. Then rearranging we obtain

⟨v(0)⟩f = ⟨w⟩f + ϕu̇(0). (3.180)

We then use this relation to rewrite (3.178) as

∇x · (⟨w⟩f + ϕu̇(0)) = ⟨Tr(MI +MII)⟩s : ξx(u̇(0)) + ⟨Tr(QI +QII)⟩sṗ(0). (3.181)

We can expand the left hand side of (3.181) and then rearrange to obtain the following

expression for ṗ(0). We note that we are able to express ϕ∇x · u̇(0) as ϕI : ξx(u̇
(0)). Then

ṗ(0) =
1

⟨Tr(QI +QII)⟩s

(
∇x · ⟨w⟩f + (ϕI− ⟨Tr(MI +MII)⟩s) : ξx(u̇(0))

)
. (3.182)

We can then define

M̂ :=
−1

⟨Tr(QI +QII)⟩s
and α̂ := ϕI− ⟨Tr(MI +MII)⟩s (3.183)

and then we can use (3.183) to write (3.182) as

ṗ(0) = −M̂(∇x · ⟨w⟩f + α̂ : ξx(u̇
(0))). (3.184)

Finally dividing through by M̂ we obtain

ṗ(0)

M̂
= −∇x · ⟨w⟩f − α̂ : ξx(u̇

(0)). (3.185)

We have now derived all the equations required to be able to state our macroscale model

for a poroelastic composite. Within the next section we will state our novel macroscale

model for poroelastic composites and will then prove properties of the effective coefficients

of this model.

3.3 The macroscale result and properties of the effective

coefficients

The equations in the macroscale model describe the effective poroelastic behaviour of the

material in terms of the pore pressure, the average fluid velocity and the elastic displace-
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ment. The macroscale model is then given by



⟨w⟩f = −⟨W ⟩f∇xp
(0),

∇x · T̂Eff = 0,

T̂Eff = ⟨CIMI + CI + CIIMII + CII⟩sξx(u(0)) + (⟨CIQI + CIIQII⟩s − ϕI)p(0),

ṗ(0)

M̂
= −∇x · ⟨w⟩f − α̂ : ξx(u̇

(0)),

(3.186)

where we have that p(0) is the macroscale pressure, u(0) is the solid displacement, u̇(0) is

the solid velocity and w is the leading order relative fluid-solid velocity. The first equation

of the macroscale model represents Darcy’s law for w, where w is the relative fluid-solid

velocity. This is the same equation that we would obtain for standard poroelasticity. The

second of the macroscale system of PDEs is the stress balance equation for the poroelastic

composite material. The constitutive equation is of poroelastic type, with drained effective

elasticity tensor given by

Ĉ = ⟨CIMI + CI + CIIMII + CII⟩s. (3.187)

The final equation in our macroscale model describes the conservation of mass for a poroe-

lastic material and relates changes in the fluid pressure to changes in the fluid and solid

volumes. We therefore have that the mechanical behaviour of the poroelastic composite

material can be fully described by the effective elasticity tensor Ĉ, the hydraulic conduc-

tivity tensor ⟨W ⟩f , the tensor α̂ and the scalar coefficient M̂ .

Our new model has a key difference from the model of classical poroelasticity. That is,

our model is able to account for multiple elastic phases interacting at the porescale, whereas

the model for classical poroelasticity is applicable when the matrix can be approximated

as homogeneous at the porescale. The addition to the model of the extra interactions

between multiple phases particularly beneficial to physical applications. For example,

in bones water is interplaying with both collagen and mineral at the finest hierarchical

levels. It is useful to be able to account for the mineral and collagen fibres separately in

the model, especially for numerical simulations, as both constituents have very different

elastic and mechanical properties. The differences in elastic and mechanical properties

are accounted for by the multiple elasticity tensors CI, CII and by MI, MII, QI and QII
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in the coefficients of the model. A similar argument is applicable to biological tissues

such as the interstitial matrix, which is a composite consisting of different types of cells

and collagen fibres with fluid flowing in the interstitial space, we again believe that we

would obtain a much more representative description of the behaviour of the material

by accounting for the multiple constituents and their varying properties in the model.

Another key difference between the model in our work and classical poroelasticity is the

model coefficients. Here we propose novel cell problems from which the model coefficients

are calculated. The cell problems given in our work are different from the cell problems in

classical poroelasticity and also the cell problems for elastic composites. Overall our new

model reads as a comprehensive frame work to describe materials where their constituents

cannot be assumed to be homogeneous at the porescale.

Remark 6 (Limit cases for the macroscale model). It is important to note that our

macroscale model (3.186) reduces to previously obtained results when we consider the fol-

lowing limit cases. In the limit of only one elastic phase then this macroscale model reduces

to the macroscale model for a standard poroelastic material (See the no growth limit in [87],

as well as [19, 68]). In this case our model would retain all four equations presented in

(3.186) however, the coefficient of p(0) in the third equation, the effective elasticity tensor

Ĉ, the tensor α̂ and the scalar coefficient M̂ would reduce to only one elastic phase. This

is because the contributions on the interface between the different elastic phases are no

longer present in this case. We also note that in the limit of zero fluid (no pores) then

this macroscale model reduces to the macroscale model for a standard elastic composite

(See [89]). In this case, the mechanical behaviour of the system is entirely described by the

equations for the balance in the solid phase, the pressures and fluid velocity reduces to zero,

and the cell problem do not comprise any contribution related to the fluid phase, i.e. the

only relevant cell problem (i.e. which results in non-trivial solutions) is the one involving

the discontinuity in the elastic constants (3.134-3.139). That is, the model would coincide

with the standard one described in the literature for elastic composites, see, e.g. [89].

Next we rigorously prove the following properties of the effective coefficients. We prove

a) the symmetries of the effective elasticity tensor, b) an analytical identity that allows us

to identify the tensor α̂ with Biot’s coefficient tensor, and c) the positive definiteness of

the M̂ , which can therefore be identified with the Biot’s modulus for the whole material.

These proofs generalize those proposed in [68] for standard poroelastic materials.
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Theorem 1 (Symmetries of Ĉ). The fourth rank effective elasticity tensor Ĉ defined by

Ĉ = ⟨CIMI + CI + CIIMII + CII⟩s, (3.188)

is major and minor symmetric.

Proof. We wish to show that the effective elasticity tensor Ĉ is major and minor symmetric.

That is,

Ĉijkl = Ĉjikl = Ĉijlk = Ĉklij . (3.189)

We know that the elasticity tensor Cυ for υ = I, II is major and minor symmetric. We have

that the first two equalities in (3.189) follow by definition. That is, CυMυ for υ = I, II, is

both left and right minor symmetric since we have the left minor symmetry of Cυ and the

right minor symmetry of Mυ. In order to prove major symmetry we have to show that

⟨CI
klpqξ

rs
pq(A

I) + CII
klpqξ

rs
pq(A

II)⟩s = ⟨CI
rspqξ

kl
pq(A

I) + CII
rspqξ

kl
pq(A

II)⟩s (3.190)

To show this we begin with the cell problems (3.147) and (3.148) and multiplying by AI
irs,

AII
irs respectively and then integrating these terms over ΩI and ΩII respectively. We have

∫
ΩI

∂

∂yj
(CI

ijpqξ
kl
pq(A

I))AI
irsdy +

∫
ΩI

∂

∂yj
(CI

ijkl)A
I
irsdy

+

∫
ΩII

∂

∂yj
(CII

ijpqξ
kl
pq(A

II))AII
irsdy +

∫
ΩII

∂

∂yj
(CII

ijkl)A
II
irsdy = 0. (3.191)

Then integrating by parts we obtain

∫
ΩI

∂

∂yj
(CI

ijpqξ
kl
pq(A

I)AI
irs)dy −

∫
ΩI

CI
ijpqξ

kl
pq(A

I)
∂AI

irs

∂yj
dy

+

∫
ΩI

∂

∂yj
(CI

ijklA
I
irs)dy −

∫
ΩI

CI
ijkl

∂AI
irs

∂yj
dy

+

∫
ΩII

∂

∂yj
(CII

ijpqξ
kl
pq(A

II)AII
irs)dy −

∫
ΩII

CII
ijpqξ

kl
pq(A

II)
∂AII

irs

∂yj
dy

+

∫
ΩII

∂

∂yj
(CII

ijklA
II
irs)dy −

∫
ΩII

CII
ijkl

∂AII
irs

∂yj
dy = 0. (3.192)

Applying the divergence theorem we obtain

∫
ΓI

CI
ijpqξ

kl
pq(A

I)AI
irs · nI

jdS−
∫
ΓIII

CI
ijpqξ

kl
pq(A

I)AI
irs · nIII

j dS
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+

∫
∂ΩI\ΓI∪ΓIII

CI
ijpqξ

kl
pq(A

I)AI
irs · n

ΩI\ΓI∪ΓIII

j dS−
∫
ΩI

CI
ijpqξ

kl
pq(A

I)ξrsij (A
I)dy

+

∫
ΓI

CI
ijklA

I
irs · nI

jdS−
∫
ΓIII

CI
ijklA

I
irs · nIII

j dS

+

∫
∂ΩI\ΓI∪ΓIII

CI
ijklA

I
irs · n

ΩI\ΓI∪ΓIII

j dS−
∫
ΩI

CI
ijklξ

rs
ij (A

I)dy

+

∫
ΓII

CII
ijpqξ

kl
pq(A

II)AII
irs · nII

j dS +

∫
ΓIII

CII
ijpqξ

kl
pq(A

II)AII
irs · nIII

j dS

+

∫
∂ΩII\ΓII∪ΓIII

CII
ijpqξ

kl
pq(A

II)AII
irs · n

ΩII\ΓII∪ΓIII

j dS−
∫
ΩII

CII
ijpqξ

kl
pq(A

II)ξrsij (A
II)dy

+

∫
ΓII

CII
ijklA

II
irs · nII

j dS +

∫
ΓIII

CII
ijklA

II
irs · nIII

j dS

+

∫
∂ΩII\ΓII∪ΓIII

CII
ijklA

I
irs · n

ΩII\ΓII∪ΓIII

j dS−
∫
ΩII

CII
ijklξ

rs
ij (A

II)dy = 0 (3.193)

where nI, nII, nIII, nΩI\ΓI∪ΓIII
and nΩII\ΓII∪ΓIII

are the unit normals corresponding to ΓI,

ΓII, ΓIII, ∂ΩI \ ΓI ∪ ΓIII and ∂ΩII \ ΓII ∪ ΓIII. The terms on the boundaries ∂ΩI \ ΓI ∪ ΓIII

and ∂ΩII \ ΓII ∪ ΓIII cancel due to periodicity and we can rewrite (3.193) as

∫
ΩI

CI
ijpqξ

kl
pq(A

I)ξrsij (A
I)dy +

∫
ΩII

CII
ijpqξ

kl
pq(A

II)ξrsij (A
II)dy

+

[ ∫
ΓIII

CI
ijpqξ

kl
pq(A

I)AI
irs · nIII

j dS−
∫
ΓI

CI
ijpqξ

kl
pq(A

I)AI
irs · nI

jdS

+

∫
ΓIII

CI
ijklA

I
irs · nIII

j dS−
∫
ΓI

CI
ijklA

I
irs · nI

jdS

−
∫
ΓII

CII
ijpqξ

kl
pq(A

II)AII
irs · nII

j dS−
∫
ΓIII

CII
ijpqξ

kl
pq(A

II)AII
irs · nIII

j dS

−
∫
ΓII

CII
ijklA

II
irs · nII

j dS−
∫
ΓIII

CII
ijklA

II
irs · nIII

j dS

]
+

∫
ΩI

CI
ijklξ

rs
ij (A

I)dy +

∫
ΩII

CII
ijklξ

rs
ij (A

II)dy = 0. (3.194)

The terms in the bracket cancel due to the cell problems (3.149) and (3.151−3.152) and

we obtain

∫
ΩI

CI
ijpqξ

kl
pq(A

I)ξrsij (A
I)dy +

∫
ΩII

CII
ijpqξ

kl
pq(A

II)ξrsij (A
II)dy

+

∫
ΩI

CI
ijklξ

rs
ij (A

I)dy +

∫
ΩII

CII
ijklξ

rs
ij (A

II)dy = 0, (3.195)
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which we can rearrange to obtain

∫
Ωs

ξrsij (A
I)CI

ijpqξ
kl
pq(A

I) + ξrsij (A
II)CII

ijpqξ
kl
pq(A

II)dy

= −
(∫

Ωs

ξrsij (A
I)CI

ijkl + ξrsij (A
II)CII

ijkldy

)
= −

(∫
Ωs

CI
klijξ

rs
ij (A

I) + CII
klijξ

rs
ij (A

II)dy

)
. (3.196)

Rewriting the second equality in (3.196) interchanging r and s and k and l and using the

symmetry Cijpq = Cpqij we obtain

∫
Ωs

ξklij (A
I)CI

pqijξ
rs
pq(A

I) + ξklij (A
II)CII

pqijξ
rs
pq(A

II)dy

= −
(∫

Ωs

CI
rsijξ

kl
ij (A

I) + CII
rsijξ

kl
ij (A

II)dy

)
. (3.197)

Since the left hand sides of (3.196) and (3.197) are the same then so to are the right hand

sides. Taking ij as pq in (3.196) and (3.197) we have that

⟨CI
klpqξ

rs
pq(A

I) + CII
klpqξ

rs
pq(A

II)⟩s = ⟨CI
rspqξ

kl
pq(A

I) + CII
rspqξ

kl
pq(A

II)⟩s (3.198)

as required. Therefore Ĉ posessess major and minor symmetries.

The following two Theorems relate to the resulting Biot’s tensor of coefficients and

Biot’s modulus of the macroscale model. The coefficients of the macroscale model can be

defined as

α̂ := ϕI− ⟨Tr(MI +MII)⟩s, (3.199)

γ := ⟨CIQI + CIIQII⟩s − ϕI, (3.200)

β := Tr⟨QI +QII⟩s, (3.201)

where α̂ is from (3.183) and β is the denominator of the Biot’s Modulus M̂ also in (3.183).

We obtain γ from (3.172), where γ is the coefficient of the leading order pressure in the

effective stress, T̂Eff . We are able to give a physical interpretation of these coefficients

following the descriptions given in [91]. The coefficient β (denominator of M̂) can be

thought of as a variation in the fluid volume in response to a variation in pore pressure.

M̂ is a poroelastic coefficient that depends on the pore scale geometry and porosity and
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on the properties of the elastic matrix [19]. We can describe α̂ as the ratio of change in

interstitial fluid volume to changes in solid volume.

We can now state the following theorem that will provide an analytical identity allowing

us to define an effective Biot’s coefficient.

Theorem 2 (Biot’s Coefficient). We have the following analytical identity

γij = −α̂ij (3.202)

which allows us to define an effective poroelastic Biot’s coefficient tensor.

Proof. In index notation we can write γ and α̂ as

γij = ⟨CI
ijklξkl(a

I) + CII
ijklξkl(a

II)⟩s − ϕδij (3.203)

α̂ij = ϕδij − ⟨ξklij (AI) + ξklij (A
II)⟩sδkl. (3.204)

We use (3.147) and (3.148) from the cell problems and multiply by aI
i, a

II
i respectively. We

then integrate these expressions over ΩI and ΩII, respectively, to obtain

∫
ΩI

∂

∂yj
(CI

ijpqξ
kl
pq(A

I))aI
idy +

∫
ΩI

∂

∂yj
(CI

ijkl)a
I
idy

+

∫
ΩII

∂

∂yj
(CII

ijpqξ
kl
pq(A

II))aII
i dy +

∫
ΩII

∂

∂yj
(CII

ijkl)a
II
i dy = 0. (3.205)

Then integrating by parts we obtain

∫
ΩI

∂

∂yj
(CI

ijpqξ
kl
pq(A

I)aI
i)dy −

∫
ΩI

CI
ijpqξ

kl
pq(A

I)
∂aI

i

∂yj
dy +

∫
ΩI

∂

∂yj
(CI

ijkla
I
i)dy

−
∫
ΩI

CI
ijkl

∂aI
i

∂yj
dy +

∫
ΩII

∂

∂yj
(CII

ijpqξ
kl
pq(A

II)aII
i )dy −

∫
ΩII

CII
ijpqξ

kl
pq(A

II)
∂aII

i

∂yj
dy

+

∫
ΩII

∂

∂yj
(CII

ijkla
II
i )dy −

∫
ΩII

CII
ijkl

∂aII
i

∂yj
dy = 0. (3.206)

Applying the divergence theorem we have

∫
ΓI

CI
ijpqξ

kl
pq(A

I)aI
i · nI

jdS−
∫
ΓIII

CI
ijpqξ

kl
pq(A

I)aI
i · nIII

j dS

+

∫
∂ΩI\ΓI∪ΓIII

CI
ijpqξ

kl
pq(A

I)aI
i · n

ΩI\ΓI∪ΓIII
j dS−

∫
ΩI

CI
ijpqξ

kl
pq(A

I)ξij(a
I)dy

+

∫
ΓI

CI
ijkla

I
i · nI

jdS−
∫
ΓIII

CI
ijkla

I
i · nIII

j dS +

∫
∂ΩI\ΓI∪ΓIII

CI
ijkla

I
i · n

ΩI\ΓI∪ΓIII
j dS
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−
∫
ΩI

CI
ijklξij(a

I)dy +

∫
ΓII

CII
ijpqξ

kl
pq(A

II)aII
i · nII

j dS +

∫
ΓIII

CII
ijpqξ

kl
pq(A

II)aII
i · nIII

j dS

+

∫
∂ΩII\ΓII∪ΓIII

CII
ijpqξ

kl
pq(A

II)aII
i · nΩII\ΓII∪ΓIII

j dS−
∫
ΩII

CII
ijpqξ

kl
pq(A

II)ξij(a
II)dy

+

∫
ΓII

CII
ijkla

II
i · nII

j dS +

∫
ΓIII

CII
ijkla

II
i · nIII

j dS +

∫
∂ΩII\ΓII∪ΓIII

CII
ijkla

I
i · n

ΩII\ΓII∪ΓIII
j dS

−
∫
ΩII

CII
ijklξij(a

II)dy = 0 (3.207)

where nI, nII, nIII, nΩI\ΓI∪ΓIII
and nΩII\ΓII∪ΓIII

are the unit normals corresponding to ΓI,

ΓII, ΓIII, ∂ΩI \ΓI∪ΓIII and ∂ΩII \ΓII∪ΓIII, and cancelling terms on the periodic boundaries

due to y-periodicity and accounting for the interface conditions (3.149) and (3.151-3.152)

we obtain

∫
ΩI

ξij(a
I)CI

ijpqξ
kl
pq(A

I)dy +

∫
ΩI

CI
klijξij(a

I)dy +

∫
ΩII

ξij(a
II)CII

ijpqξ
kl
pq(A

II)dy

+

∫
ΩII

CII
klijξij(a

I)dy = 0. (3.208)

Hence we have

⟨ξij(aI)CI
ijpqξ

kl
pq(A

I) + ξij(a
II)CII

ijpqξ
kl
pq(A

II)⟩s = −⟨CI
klijξij(a

I) + CII
klijξij(a

II)⟩s. (3.209)

We now wish to multiply (3.140) and (3.141) from the cell problems by AI
ikl, A

II
ikl respec-

tively and then integrate over ΩI and ΩII respectively. Integrating by parts we obtain

∫
ΩI

∂

∂yj
(CI

ijpqξpq(a
I)AI

ikl)dy −
∫
ΩI

CI
ijpqξpq(a

I)
∂AI

ikl

∂yj
dy

+

∫
ΩII

∂

∂yj
(CII

ijpqξpq(a
II)AII

ikl)dy −
∫
ΩII

CII
ijpqξpq(a

II)
∂AII

ikl

∂yj
dy = 0. (3.210)

Applying the divergence theorem and using (3.144) and (3.145) we obtain

−
∫
ΓI

AI
ikln

I
idS−

∫
ΩI

1

2

(
∂AI

ikl

∂yj
+
∂AI

jkl

∂yi

)
CI
ijpqξpq(a

I)dy

−
∫
ΓII

AII
ikln

II
i dS−

∫
ΩII

1

2

(
∂AII

ikl

∂yj
+
∂AII

jkl

∂yi

)
CII
ijpqξpq(a

II)dy = 0 (3.211)

where terms on the boundaries have cancelled due to periodicity. Then reversing the
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divergence theorem we have

−
∫
ΩI

∂AI
ikl

∂yi
dy −

∫
ΩII

∂AII
ikl

∂yi
dy −

∫
ΩI

ξklij (A
I)CI

ijpqξpq(a
I)dy

−
∫
ΩII

ξklij (A
II)CII

ijpqξpq(a
II)dy = 0. (3.212)

Hence

−
〈
∂AI

ikl

∂yi
+
∂AII

ikl

∂yi

〉
s

= ⟨ξij(aI)CI
ijpqξ

kl
pq(A

I) + ξij(a
II)CII

ijpqξ
kl
pq(A

II)⟩s. (3.213)

Using (3.209) and (3.213) we have that Tr⟨(MI +MII)⟩s = ⟨CIQI +CIIQII⟩s. Therefore

using this in the definitions of α̂ij and γij we have that γij = −α̂ij as required.

We should note here that the coefficients α̂ and γ are defined by different cell problems

for AI, AII and for aI, aII respectively. By having an analytical identity as in Theorem. 2

we can reduce computations as the numerics then do not have to be carried out for the

cell problems involving aI, aII.

Now that we have proved this analytical identity we can use it to restate the macroscale

model for a poroelastic composite material. We have



⟨w⟩f = −⟨W ⟩f∇xp
(0),

∇x · T̂Eff = 0,

T̂Eff = Ĉξx(u(0))− α̂p(0),

ṗ(0)

M̂
= −∇x · ⟨w⟩f − α̂ : ξx(u̇

(0)).

(3.214)

We will now state our final theorem relating to the Biot’s Modulus of our system.

Theorem 3 (Biot’s Modulus). We have that the Biot’s Modulus defined by

M̂ :=
−1

⟨Tr(QI +QII)⟩s

is positive definite. That is

M̂ > 0. (3.215)

Proof. In order to prove this we only need to prove that the denominator of M̂ which we

defined as β is less than zero. We can begin by recalling β from (3.201) and then in index
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notation

β = Tr⟨QI +QII⟩s =
〈
∂aI

i

∂yi
+
∂aII

i

∂yi

〉
s

. (3.216)

We can then multiply equations (3.140) and (3.141) from the cell problems by aI
i, a

II
i and

integrate over ΩI, ΩII respectively. That is,∫
ΩI

aI
i

∂

∂yj
(CI

ijklξkl(a
I))dy +

∫
ΩII

aII
i

∂

∂yj
(CII

ijklξkl(a
II))dy = 0. (3.217)

Integrating by parts we obtain

∫
ΩI

∂

∂yj
(CI

ijklξkl(a
I)aI

i)dy −
∫
ΩI

CI
ijklξkl(a

I)
∂aI

i

∂yj
dy

+

∫
ΩII

∂

∂yj
(CII

ijklξkl(a
II)aII

i )dy −
∫
ΩII

CII
ijklξkl(a

II)
∂aII

i

∂yj
dy = 0. (3.218)

Then applying the divergence theorem we obtain

∫
ΓI

CI
ijklξkl(a

I)aI
i · nI

jdS−
∫
ΓIII

CI
ijklξkl(a

I)aI
i · nIII

j dS

+

∫
∂ΩI\ΓI∪ΓIII

CI
ijklξkl(a

I)aI
i · n

ΩI\ΓI∪ΓIII

j dS−
∫
ΩI

CI
ijklξkl(a

I)ξij(a
I)dy

+

∫
ΓII

CII
ijklξkl(a

II)aII
i · nII

j dS +

∫
ΓIII

CII
ijklξkl(a

II)aII
i · nIII

j dS

+

∫
∂ΩII\ΓII∪ΓIII

CII
ijklξkl(a

II)aII
i · nΩII\ΓII∪ΓIII

j dS−
∫
ΩII

CII
ijklξkl(a

II)ξij(a
II)dy = 0 (3.219)

where nI, nII, nIII, nΩI\ΓI∪ΓIII
and nΩII\ΓII∪ΓIII

are the unit normals corresponding to ΓI,

ΓII, ΓIII, ∂ΩI \ ΓI ∪ ΓIII and ∂ΩII \ ΓII ∪ ΓIII. The terms on the boundaries cancel due to

periodicity and then using equations (3.142), (3.144) and (3.145) from the cell problems

we obtain

−
∫
ΓI

aI
in

I
idS−

∫
ΩI

ξij(a
I)CI

ijklξkl(a
I)dy

−
∫
ΓII

aII
i n

II
i dS−

∫
ΩII

ξij(a
II)CII

ijklξkl(a
II)dy = 0. (3.220)

Accounting for y-periodicity and relationship (3.143), the sum of the first and third in-

tegrals above are equal to the sum of the corresponding integrals (with corresponding

normals) on the boundaries ∂ΩI and ∂ΩII, so that we can apply the divergence theorem in
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reverse to obtain

−
∫
Ωs

(
∂aI

i

∂yi
+
∂aII

i

∂yi

)
dy −

∫
ΩI

ξij(a
I)CI

ijklξkl(a
I)dy

−
∫
ΩII

ξij(a
II)CII

ijklξkl(a
II)dy = 0. (3.221)

We can write this as

−
∫
Ωs

(
∂aI

i

∂yi
+
∂aII

i

∂yi

)
dy =

∫
ΩI

ξij(a
I)CI

ijklξkl(a
I)dy

+

∫
ΩII

ξij(a
II)CII

ijklξkl(a
II)dy. (3.222)

Since the two terms on the right hand side are positive, we therefore have that

∫
Ωs

(
∂aI

i

∂yi
+
∂aII

i

∂yi

)
dy < 0 (3.223)

and so using the integral average notation we have

β =

〈
∂aI

i

∂yi
+
∂aII

i

∂yi

〉
s

< 0. (3.224)

Since β < 0 we therefore have that M̂ > 0. That is, the Biot’s modulus is positive

definite.

3.4 Concluding Remarks

We have presented a poroelastic system of PDEs with novel model coefficients which de-

scribe the effective behaviour of poroelastic composites. In section 3.1 we have begun by

considering the quasi-static multiphase fluid-structure interaction problem which describes

the mechanics of a number of linear elastic inclusions/fibres embedded in a porous, linear

elastic matrix, filled by a slowly-flowing incompressible Newtonian fluid. In Section 3.2 we

have then enforced the length scale separation between the microscale and the macroscale

to upscale the non-dimensionalized system of PDEs via asymptotic homogenization. In

particular, we have assumed that both the pores and the elastic subphases (i.e. inclusions

or fibres) are clearly resolved on the microscale, while the macroscale represents the av-

erage size of the macroscale domain. In Section 3.3 we show that the new model is both

formally and substantially of poroelastic-type, by proving minor and major symmetries
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of the effective elasticity tensor, positive definiteness of the macroscale Biot’s modulus,

and existence of a global macroscale Biot’s coefficient tensor. The new model encodes

the properties of the microstructure in the coefficients of the model, i.e. the effective

hydraulic conductivity tensor, elasticity tensor, Biot’s modulus and Biot’s tensor of coeffi-

cients, which are to be computed by solving appropriate periodic cell problems. The latter

comprise both a stress jump condition on the solid-solid interface (as in the cell problems

for elastic composites), and inhomogeneous Neumann-type conditions on the fluid-solid

interface (typical of the cell problems arising in poroelasticity).

The results are derived by assuming periodicity of the microstructure, and are presented

by assuming that only one elastic subphase is contained in the representative periodic cell

for the sake of simplicity. The new model is a natural generalization of the standard

formulations for poroelastic media and composite materials derived via asymptotic ho-

mogenization, which are both recovered as particular cases.

Our model is relevant to the description of physical scenarios where the interactions

between multiple elastic constituents take place at the porescale. The standard formulation

of poroelasticity is appropriate when the interactions between the individual constituents of

the solid phase and the fluid can be ignored, i.e. when the solid phase can be geometrically

approximated as a homogeneous matrix at the porescale.

Our model also has some limitations and is open to a number of improvements that

could enhance its range of applicability. The present formulation provides the effective gov-

erning equations in a quasi-static, linearized setting, and accounting for incompressibility

of the fluid phase.

Generalization of our model to linearized inertia and compressibility of fluid is in

principle straightforward, as it could be carried out as in [19], thus resulting in the corre-

sponding changes on the macroscale. Leading order linearized inertia would appear in the

effective balance equations for the poroelastic stress. Furthermore, the definition of the

effective Biot’s modulus would comprise the fluid bulk modulus, while the former depends

only on the properties of the microstructure when the fluid phase is incompressible, see

also [87]. However, the functional form of the elastic cell problems would not be affected by

such changes, while the fluid cell problem is actually not affected by considering multiple

elastic phases, and is simply the same as in standard poroelasticity in both cases. A rele-

vant system where such an extension could provide a more accurate poroelastic modelling

framework is the lung, where the investigation of the acoustic properties can be used in
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the context of non-invasive diagnosis for pulmonary diseases, see, e.g., [107].

Mathematical modelling of nonlinear constitutive behaviour of the individual con-

stituents is challenging in the context of asymptotic homogenization. However, there

have been recent theoretical developments concerning both multiphase elastoplastic com-

posites [99], and hyperelastic growing porous media, see [28]. Combining these approaches

to extend our formulation would provide a comprehensive multiscale modelling framework

for nonlinear poroelastic composites. The latter could then be used to formulate realistic

predictions when large strains are relevant, as in the case of soft tissues such as arteries,

see, e.g. [18, 49].

The results that we have illustrated here can also serve as a basis towards a more

realistic modelling of hierarchical materials characterized by multiple separated scales (see,

e.g. [100, 101] in the context of elastic composites). In this case, as the coefficients are to

be computed at the porescale, our results could be exploited as a starting point to model

the interaction between a poroelastic matrix and another fluid or elastic compartment, as

done in the recent works [91, 123], [24, 105] for vascularized and fibre/inclusion reinforced

poroelastic materials, respectively.

The next natural step is to obtain solutions of the model on the basis of a given

microstructure, ideally parameterized by real-world images, for example related to bi-

ological tissues or artificial constructs, as described in the Introduction. For instance,

three-dimensional numerical simulations of the asymptotic homogenization cell problems

for elastic composites and poroelastic materials have been recently performed in [35, 88],

respectively. As such, strategies developed therein could be adapted to compute the poroe-

lastic coefficients presented here, which are obtained by solving cell problems which gener-

alize those solved in [35,88]. This way, predictions of the model could be validated against

experimental data and/or used to optimize the design of poroelastic artificial constructs.

In the next chapter we continue with our aim to strengthen the applicability of poroe-

lastic models to real world applications by deriving the model for poroelastic composites

assuming that the elastic behaviour of the constituents is nonlinear. By incorporating the

nonlinear behaviour in the model it will make it much more applicable to biological soft

tissues such as the heart, arteries and the lungs. This generalisation is in general difficult

in the context of asymptotic homogenization however, the following chapter is among the

first few works that have been able to present a novel model that includes the nonlinear

deformations and proposes a scheme that could be used to solve the model numerically.



Chapter 4

Homogenized balance equations

for nonlinear poroelastic

composites

We investigate materials that are subject to large deformations that have the underlying

microstructure comprised of both a hyperelastic-fluid-filled porous matrix and a number

of embedded hyperelastic subphases (fibres or inclusions). We then assume that both the

matrix and the subphases interact with each other and the fluid at the porescale. This

type of structure can be described as a poroelastic composite material that undergoes large

deformations. For example, this is applicable to artery walls, which can be considered as a

composite nonlinear elastic material consisting of a matrix with two families of symmetri-

cally arranged embedded collagen and elastin fibres as well as fibroblast cells that interact

with the fluid that is flowing in the pores [18,49,56,58,121]. If we wish to consider the

artery walls in our framework, then the matrix can be identified with our matrix in the

model, and the fibres and fibroblast cells could all be considered as the elastic subphases

that are embedded in the matrix. The fluid in this setting would be the water that flows in

the pores of the matrix. This modelling approach is applicable to the myocardium in the

heart, which is a nonlinear elastic porous structure that consists of a matrix with muscle

cells, fibroblasts, collagen fibres and embedded blood vessels [22,29,66]. Again, here, the

various muscle cells, fibroblasts and fibres would all be the elastic subphases embedded

in the matrix. By considering these systems as poroelastic composites, we are able to

account for the mechanical contribution of each of the various phases individually.

80
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Here, we generalise [69], Chapter 3, to account for nonlinear deformations by using

the asymptotic homogenization technique to upscale the interaction between a hyperelas-

tic porous matrix where there is an incompressible Newtonian fluid flowing in the pores

and a number of embedded hyperelastic subphases. We make the assumption that both

the hyperelastic matrix and subphases interact with the fluid that is flowing in the pores.

We assume that the length scale where the individual hyperelastic subphases are clearly

visible from the surrounding matrix is comparable to the pore size. We therefore deter-

mine that this scale will be the porescale of the material, that is the distance between

adjacent subphases is comparable with the size of the pores. This length is assumed to

be much smaller than the size of the whole domain, which is denoted the macroscale.

The upscaling process is then used taking into account the continuity of the tractions and

elastic displacements across the interfaces between the matrix and the subphases, as well

as the continuity of the tractions and velocities across the interfaces between the fluid and

solid domains. Furthermore, an appropriate coordinate transformation is carried out on

some quantities to formulate the full problem in the undeformed/reference configuration,

i.e., by solely using Lagrangian coordinates. The resulting system of governing equations

is of poroelastic type and is a generalization of the formulations for (a) multiphase elasto-

plastic composites [102] in the limit of no plastic distortions and (b) the formulations for

hyperelastic porous media [17] in the limit of only one elastic phase. It is also a natu-

ral extension to the formulation for linear poroelastic composites [69]. All three of these

formulations are recovered as particular cases by assuming that: (a) our matrix is not

porous; (b) that no elastic phase other than the matrix is present; and (c) by performing

a linearisation. The coefficients of the model encode the properties of the microstructure

and are computed by solving local differential problems.

The paper is organised as follows. In Section 4.1, we formulate the fluid–structure

interaction problem that characterises the behaviour of the hyperelastic porous matrix,

the hyperelastic subphases and the fluid flowing in the pores. We also perform a change

of coordinates, which allows the fluid–structure interaction problem to be formulated in

the reference configuration. In Section 4.2, we apply the asymptotic homogenization tech-

nique to the system of PDEs that were described in Section 4.1 and determine the new

model that describes the effective macroscale mechanical behaviour of nonlinear poroelas-

tic composites. In Section 4.3, we discuss the general nonlinear macroscale model before

prescribing a specific strain energy function, namely the de Saint-Venant, for the material
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and then give a physical interpretation of the novel terms. We also consider particular

cases for our new model and are able to obtain previously known models from the litera-

ture. Section 4.4 concludes our work by highlighting and discussing the limitations of the

current model and by providing further directions in which the model could be extended

for particular biological applications.

4.1 Formulation of the Fluid–Structure Interaction Problem

We assume that we have a continuum body that is not subject to any surface or body

forces to have a reference configuration, which we denote by B0 ∈ R3. The body B0 has

a periodic microstructure that consists of the union of a porous hyperelastic matrix Ω0
II,

an interconnected fluid compartment Ω0
f and a set Ω0

I of N disjoint hyperelastic subphases

Ω0
α, where:

Ω0
I =

N⋃
α=1

Ω0
α, (4.1)

and Ω̄0 = Ω̄0
I ∪ Ω̄0

II ∪ Ω̄0
f , where ¯ denotes that the domain includes the interface. We

note that when any domain, interface or normal vector has the superscript 0 then it is in

the reference configuration. We provide a sketch of this structure as shown in Figure 4.1.

The body undergoes a deformation described by the deformation function χ, and the

deformed body is denoted by Bt. Each point x ∈ Bt is such that x = χ(X, t) with

X ∈ B0 being the point in the reference configuration. We assume that the periodicity

of the body’s microstructure is preserved during the deformation, and we now denote

the deformed solid porous matrix as Ωt
II, the deformed connected fluid compartment as

Ωt
f and the set of N disjoint deformed subphases Ωt

α as Ωt
I in Bt. The assumption that

the microstructure retains its periodicity is of course just one possible assumption. This

option has been embraced for comparison with previous works e.g. [102] and also for the

application to biological tissues where cells remain intact and with the same structures

even when undergoing deformation. When any domain, interface or normal vector has the

superscript t, this denotes the current configuration. The deformation from B0 to Bt is

described by the deformation gradient F = Gradχ. Figure 4.1 highlights the description

of this structure pictorially.

We now wish to describe the equations for the fluid and the solid compartments and

the interface conditions in our structure. These equations however are not all in the same

coordinate systems. We wish to work in the reference configuration so we have to perform
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a pull back to some of the equations that are described in the current configuration. We

begin by describing all equations in their natural coordinate systems before discussing the

coordinate transformations.

The balance equations for the various hyperelastic domains Ωα and ΩII can be written

as, ∀α = 1, . . . , N ,

∇X ·Pα = 0 in Ω0
α, (4.2)

and:

∇X ·PII = 0 in Ω0
II, (4.3)

where we neglect any volume forces and inertia. The tensors Pα and PII are the first Piola

stresses. Each subphase Ωα has the Piola stress tensor Pα, and the porous matrix ΩII has

Piola stress tensor PII. The matrix and the subphases are anisotropic, hyperelastic solids,

and therefore, the constitutive laws for Pα and PII are given in terms of strain energy

functions,

Pα =
∂ψα

∂Fα
in Ω0

α, (4.4)

PII =
∂ψII

∂FII

in Ω0
II, (4.5)

where Fα and FII are the deformation gradients in the subphases and the matrix, re-

spectively, and ψα and ψII are the strain energy functions in the subphases and matrix,

respectively. We do not define a specific strain energy function at this stage and wait until

Section 4.3.1 to specify it.

We also require equations for the fluid phase. The balance equation is given as:

∇x · Tf = 0 in Ωt
f , (4.6)

where we denoted the fluid stress tensor by Tf . The fluid is assumed to be an incompressible

Newtonian fluid and, so, has the constitutive law:

Tf = −pI+ µ((∇xv) + (∇xv)
T) in Ωt

f , (4.7)

where v is the fluid velocity, p is the fluid pressure and µ is the fluid viscosity. As we
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consider an incompressible fluid, the incompressibility condition reads:

∇x · v = 0 in Ωt
f . (4.8)

We can substitute the constitutive law (4.7) into the balance Equation (4.6), and then,

by using (4.8), we obtain the Stokes problem:

0 = −∇xp+ µ∇x · ((∇xv) + (∇xv)
T) in Ωt

f . (4.9)

In order to set up an appropriate fluid–structure interaction problem, we require inter-

face conditions between the fluid and the various solid phases and also interface conditions

between the various solid subphases and the matrix. The conditions we impose are the

continuity of velocities, the continuity of tractions and the continuity of displacements.

This presents an issue since the fluid and solid equations are described in different coordi-

nate systems. The fluid equations are currently presented in Eulerian coordinates and the

solid equations in Lagrangian coordinates. It is not possible to properly express continuity

on the interface between the fluid and solid whilst the governing equations are in different

coordinate systems. For this reason, we only describe the interface conditions between

the elastic subphases and the matrix here and wait until Section 4.1.1 to describe the

interface conditions between the fluid and solids once we have formulated all equations

in Lagrangian coordinates. We define the interface between each elastic subphase and

the matrix as Γ0
αII := ∂Ω0

α ∩ ∂Ω0
II and impose continuity of tractions and displacements,

namely:

Pαn
0
αII = PIIn

0
αII on Γ0

αII, (4.10)

uα = uII on Γ0
αII, (4.11)

∀α = 1, . . . , N , where we define the unit vector normal to the interface Γ0
αII as n

0
αII, and it

is pointing into the subphase Ω0
α and where uα and uII are the elastic displacements in

each subphase and the matrix, respectively.

We describe the deformation from B0 to Bt by the deformation gradient F = Gradχ.
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For convenience, we use the notation:

F =


Fα in Ω0

α,

FII in Ω0
II,

Ff in Ω0
f ,

(4.12)

where we have the deformation gradient in the α-th subphase, the matrix and the fluid

respectively.

Figure 4.1: A 2D sketch that shows the poroelastic composite microstructure of the body
in the reference configuration B0. It also shows the deformation F and gives the resulting
microstructure of the deformed/current configuration Bt. In both configurations, the
porous matrix is shown in red, the subphases in green and the fluid in blue.

We note that our deformation gradient is in general discontinuous. It is however

useful here to consider the definition of the deformation gradient in terms of the elastic

deformations:

F = I+Gradu, (4.13)

where I is the identity tensor and Gradu is the gradient operator of the elastic displace-

ment. We use the notation Grad with a capital G to denote the gradient in Lagrangian

coordinates and grad for Eulerian coordinates. We can specialise relationship (4.13) in

each of the reference elastic subphases as follows:

F =


Fα = I+Graduα in Ω0

α,

FII = I+GraduII in Ω0
II.

(4.14)

We should note that the sketch here highlights a number of possible arrangements for

the subphases. We can have subphases fully embedded in the matrix, fully embedded in



CHAPTER 4. BALANCE EQNS NONLINEAR POROELASTIC COMPOSITES 86

the fluid or in contact with both the matrix and the fluid. We set up our fluid–structure

interaction with the assumption that all elastic phases are in contact with each other and

the fluid.

4.1.1 Fluid–Structure Interaction in Lagrangian Coordinates

Within this section, we apply a coordinate transformation to the equations in the fluid–

structure interaction (FSI) in order to obtain a full system of PDEs that describe the

structure in the reference configuration. We do this in order to preserve the local period-

icity of the microstructure, as was done in [28]. We define the Piola transformation, G,

and the Jacobian, J , by:

J = detF and G = JF−1, (4.15)

where we have that:

G =


Gα = JαF

−1
α in Ω0

α,

GII = JIIF
−1
II in Ω0

II,

Gf = JfF
−1
f in Ω0

f .

(4.16)

Here, we wish to make a remark regarding the continuity of the Piola transformation.

Remark 7 (Continuity of GT). Here, we wish to explain the continuity of GT across the

various interfaces appearing in our structure. We begin with Nanson’s formula:

nda = JF−TNdA, (4.17)

where n is a general unit normal and da is a general area element in the current configu-

ration and N is a general unit normal and dA is a general area element in the reference

configuration. Using our notation for the Piola transform, we can rewrite this as:

nda = GTNdA. (4.18)

By using this relationship, we are able to deduce the continuities on our various inter-

faces Γα, ΓII and ΓαII, that is,

GT
αn

0
α = GT

f n
0
α on Γα, GT

IIn
0
II = GT

f n
0
II on ΓII,

and GT
αn

0
αII = GT

IIn
0
αII on ΓαII.

(4.19)
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These formulas are used in later sections of this work.

We use the following formulas to make the change of the coordinate systems. For a

scalar ζ, a vector z and a tensor Z, we have:

∇xζ = F−T∇Xζ and ∇xz = (∇Xz)F−1. (4.20)

By again using Nanson’s formula:

nda = JF−TNdA, (4.21)

the transformation rule for a general volume element:

dv = JdV, (4.22)

and by applying the divergence theorem, we obtain the coordinate changes:

∇x · z =
1

J
∇X · (Gz) and ∇x · Z =

1

J
∇X · (ZGT). (4.23)

We are now able to use (4.20) and (4.23) to write our FSI problem in the reference con-

figuration. The equations governing the fluid in the reference configuration are therefore

given by:

∇X · (TfG
T
f ) = 0 in Ω0

f , (4.24)

with the fluid stress tensor Tf transformed as:

TfG
T
f = −pGT

f + µ((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (4.25)

to correspond to the fluid balance equation, where V is the fluid velocity in the reference

configuration. The incompressibility condition also transforms as follows:

∇X · (GfV) = 0 in Ω0
f . (4.26)

The Stokes’ problem in the reference configuration is obtained by substituting (4.25)

into (4.24) and using (4.26), that is,

0 = −GT
f ∇Xp+ µ∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f . (4.27)
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Now that all our governing equations are described in the Lagrangian framework, we

are able to describe the interface conditions between the fluid and solid phases that we

require to set up an appropriate FSI problem. We note that these interface conditions

take place on the interfaces between the fluid and the elastic subphases in the reference

configuration. Defining the interfaces between the fluid phase and each of the α subphases

in the reference configuration as Γ0
α := ∂Ω0

α ∩ ∂Ω0
f and defining the interface between the

matrix and the fluid phase, again in the reference configuration, as Γ0
II := ∂Ω0

II ∩ ∂Ω0
f , we

can impose the continuity of the velocities and tractions on the various interfaces. We

therefore have:

∂uα

∂t
= V on Γ0

α, (4.28)

TfG
T
f n

0
α = Pαn

0
α on Γ0

α, (4.29)

∂uII

∂t
= V on Γ0

II, (4.30)

TfG
T
f n

0
II = PIIn

0
II on Γ0

II, (4.31)

∀α = 1, . . . , N . We have that ∂uα/∂t and ∂uII/∂t are the solid velocities in each of the

subphases and the matrix, respectively. We have that n0
α and n0

II are the unit outward

normals to the interfaces Γ0
α and Γ0

II, respectively.

Our complete FSI problem in the reference configuration is therefore given by (4.2)–

(4.5), (4.10)–(4.11), (4.14) and (4.24)–(4.31).

Within the next section, we carry out our analysis by first nondimensionalising the

system of partial differential equations (PDEs) that we formulate in the reference config-

uration within this section. We introduce two well-separated length scales that allow us

to apply the two-scale asymptotic homogenization technique to the nondimensionalised

PDEs. This allows the derivation of the macroscale governing equations.

4.2 The Asymptotic Homogenization Method

Here, we summarise the fluid–structure interaction problem in the reference configuration

that we introduced in the previous section. We will then be ready to perform a multiscale

analysis.

∇X ·Pα = 0 in Ω0
α, (4.32)
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∇X ·PII = 0 in Ω0
II, (4.33)

∇X · (TfG
T
f ) = 0 in Ω0

f , (4.34)

∇X · (GfV) = 0 in Ω0
f , (4.35)

∂uα

∂t
= V on Γ0

α, (4.36)

∂uII

∂t
= V on Γ0

II, (4.37)

TfG
T
f n

0
α = Pαn

0
α on Γ0

α, (4.38)

TfG
T
f n

0
II = PIIn

0
II on Γ0

II, (4.39)

Pαn
0
αII = PIIn

0
αII on Γ0

αII. (4.40)

uα = uII on Γ0
αII, (4.41)

We have that the constitutive relationships for the fluid and the multiple solid phases

are given as:

TfG
T
f = −pGT

f + µ((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (4.42)

Pα =
∂ψα

∂Fα
in Ω0

α, (4.43)

PII =
∂ψII

∂FII

in Ω0
II. (4.44)

We then use the constitutive relationship (4.42) with the incompressibility constraint (4.35)

in the balance Equation (4.34) to obtain:

0 = −GT
f ∇Xp+ µ∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f . (4.45)

We also have the deformation gradients for each of the solid phases:

Fα = I+∇Xuα in Ω0
α, (4.46)

FII = I+∇XuII in Ω0
II, (4.47)

∀α = 1, . . . , N . We assume that the system possesses two distinct length scales. The whole

domain has a length scale, which we denote by L, and this is referred to as the macroscale.

There also exists a second length scale, which we denote by d, and this describes the

porescale. The length d is comparable to the intersubphase distance and the size of the

pores. Therefore, to capture the true difference between the two scales, it is useful to
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perform a nondimensional analysis of the system of PDEs (4.32)–(4.47). This nondimen-

sionalisation is carried out in the next section.

We should note that this fluid–structure interaction is the nonlinear counterpart to

the one found in [69] for linear poroelastic composites. We also highlight that this FSI

problem is formulated with the intention that all elastic phases are in contact with each

other and the fluid.

4.2.1 Non-dimensionalisation

We carry out the non-dimensionalisation process by relying on the standard parabolic fluid

velocity in the pores, which is quadratic in the pore-scale d and proportional to a given

pressure gradient Cp. This scaling is the classical one, which ensures that a Newtonian

fluid flowing in the pores is macroscopically governed by porous media flow equations (e.g.,

of Darcy’s type) (see [87], where this is discussed). There are of course alternative scalings

available for the fluid velocity; however, these scalings do not account for the appropriate

effective behaviour of a fluid flow in porous media.

Therefore, we choose the scalings:

x = Lx′, uα = Lu′
α, uII = Lu′

II, V =
Cpd

2

µ
V′, p = CpLp

′, Pα = CpLP
′
α,

PII = CpLP
′
II.

(4.48)

We then use (4.48), and the gradient operator becomes:

∇ =
1

L
∇′, (4.49)

and the nondimensionalised form of the system of the PDEs (4.32)–(4.41) is given by,

∇X ·Pα = 0 in Ω0
α, (4.50)

∇X ·PII = 0 in Ω0
II, (4.51)

∇X · (TfG
T
f ) = 0 in Ω0

f , (4.52)

∇X · (GfV) = 0 in Ω0
f , (4.53)

∂uα

∂t
= V on Γ0

α, (4.54)

∂uII

∂t
= V on Γ0

II, (4.55)
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TfG
T
f n

0
α = Pαn

0
α on Γ0

α, (4.56)

TfG
T
f n

0
II = PIIn

0
II on Γ0

II, (4.57)

Pαn
0
αII = PIIn

0
αII on Γ0

αII, (4.58)

uα = uII on Γ0
αII. (4.59)

We also non-dimensionalise the constitutive relationships for the fluid and the solid,

and these are given by:

TfG
T
f = −pGT

f + ϵ2((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (4.60)

Pα =
∂ψα

∂Fα
in Ω0

α, (4.61)

PII =
∂ψII

∂FII

in Ω0
II. (4.62)

We also have the non-dimensionalised fluid balance equation and solid deformation

gradients given by:

0 = −GT
f ∇Xp+ ϵ2∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f , (4.63)

Fα = I+∇Xuα in Ω0
α, (4.64)

FII = I+∇XuII in Ω0
II, (4.65)

where in (4.50)–(4.65), we drop the primes for the sake of a simpler notation, and we have

the parameter:

ϵ =
d

L
. (4.66)

Within the next section, we introduce the two-scale asymptotic homogenization tech-

nique, which we then use to upscale our system (4.50)–(4.65) in order to obtain our

macroscale model.

4.2.2 The Two-Scale Asymptotic Homogenization Method

Here, we now introduce the asymptotic homogenization technique, which we will use to

derive the effective macroscale governing equations for our structure. As described above,

we have the porescale, denoted by d, and the macroscale, which is the average size of the
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whole material, denoted by L. We assume that these scales are well separated, i.e.,

ϵ =
d

L
≪ 1. (4.67)

We can describe ϵ as the scale separation parameter. We require a local scale spa-

tial variable, which will capture the porescale variations of each of the fields appearing

in (4.50)–(4.65), that is,

Ȳ =
X

ϵ
. (4.68)

We also have the macroscale variable:

X̄ = X. (4.69)

The newly introduced spatial variables X̄ and Ȳ represent the macroscale and the

porescale respectively and are to be considered formally independent. The gradient oper-

ator also transforms, by the application of the chain rule, to become an operator of both

scales, which we can write as:

∇X → ∇X̄ +
1

ϵ
∇Ȳ. (4.70)

We also make the assumption that all the fields in (4.50)–(4.65), ∀α = 1, ..., N , are

functions of the two spatial variables X̄ and Ȳ and that every field can be written as a

power series expansion in ϵ:

φϵ(X̄, Ȳ, t) =

∞∑
l=0

φ(l)(X̄, Ȳ, t)ϵl, (4.71)

where φ is used to denote a general field in (4.50)–(4.65).

Remark 8 (Porescale periodicity). We assume that every field φ(l) in our analysis is

Ȳ-periodic, and this allows us to focus our attention on a single periodic cell in our struc-

ture. This is a technical assumption that is related solely to the microscale. The fields

can still vary with respect to the macroscale. Making this assumption means that we for-

mulate the porescale differential problems on this periodic cell, and it is these problems

that are to be solved to determine the macroscale model coefficients. In [35], the authors

assumed that all the fields are periodic in the porescale variable and are able to compute

the coefficients of the model of standard poroelasticity obtained via asymptotic homogeniza-

tion. In comparison, in [34], the macroscale model of poroelasticity was solved. As such,
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although the effective coefficients used are those computed by following the methodology

described in [35], the illustrated solution solely depends on the macroscale and is in gen-

eral not periodic. It is possible to relax this assumption that all fields are Ȳ-periodic and

assume instead that all the fields are locally bounded. This assumption is less strict than

local periodicity and means that all the fields are finite with respect to the porescale variable

Ȳ when ϵ → 0, but not necessarily periodic. This assumption however only permits the

functional form of the macroscale model to be derived and does not in general allow for

the model coefficients to be computed without further assumptions (see [48,90] for further

details) in multidimensional problems [90].

We have that our periodic cell could potentially contain a variety of subphases and

these subphases could possess various geometries and elastic properties. This assumption

is particularly useful as it allows us to solve the differential problems obtained from the

asymptotic homogenization technique on a single periodic cell instead of the whole material

domain, therefore reducing the computational complexity. This periodic cell where we solve

the differential problems is shown in Figure 4.2.

Remark 9 (Macroscopic uniformity). We know that the porescale structure of a material

can vary with respect to the macroscale position (see [19, 32, 48, 86, 87]). In general, this

dependence is neglected in the literature due to wanting to simplify the analysis. Here, we

assume that the porescale geometry does not depend on the macroscale variable X̄, i.e.,

the material is macroscopically uniform. This assumption allows for simple differentiation

under the integral sign to take place, that is:

∫
Ω
∇X̄ · (•)dȲ = ∇X̄ ·

∫
Ω
(•)dȲ. (4.72)

If we do not assume macroscopic uniformity, then (4.72) is not satisfied, and in this

case, the application of the Reynolds’ transport theorem is required. This may lead to

additional terms appearing in the macroscale governing equations.

Remark 10 (Porescale geometry). In our description so far, we assume that there are

various different subphases included within our periodic cell; however, without loss of gen-

erality, we can focus our attention on the case where each periodic cell contains only one

hyperelastic subphase. This structure is shown in Figure 4.3. Therefore, we do not require

the index α, and the notation can be adjusted as follows. We have the continuum body

B0, which has a periodic microstructure. Within B0, we have many periodic cells; how-
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ever, due to periodicity, we can identify the domain Ω0 with the periodic cell, which has

a hyperelastic subphase, hyperelastic matrix and fluid portions denoted by Ω0
I , Ω

0
II and Ω0

f ,

respectively. We are also able to simplify the notation we use for the different interfaces.

The interface between the subphase and the fluid is Γ0
I := ∂Ω0

I ∩∂Ω0
f ; the interface between

the matrix and the fluid is Γ0
II := ∂Ω0

II ∩ ∂Ω0
f ; the interface between our two hyperelastic

solid phases is Γ0
III := ∂Ω0

I ∩ ∂Ω0
II, with corresponding unit normal vectors n0

I , n
0
II and n0

III.

If a specific application required multiple subphases to be contained in the periodic cell,

then it would be simple to extend the formulation, as has been done in the case of elastic

composites [88].

Figure 4.2: A 2D cross-section of a single periodic cell in our structure. We have the fluid
represented in blue, the hyperelastic porous matrix in red and the hyperelastic subphases
in green. We highlight that the subphases Ωα for α = 1, . . . , N can interact with both the
matrix and the fluid or be fully embedded in the either the matrix or the fluid.

We should note that our periodic structure is 3D, that is, the fluid flow is in three

interconnected cylinders. For an example of the geometry of our 3D structure see Fig. 3.2

in Chapter 3, where we are considering the same microstructure but for small (linear)

deformations.

Figure 4.3: This is a sketch of a 2D cross-section of the periodic cell on which we focus.
We have one hyperelastic subphase shown in green that is in contact with the hyperelastic
matrix shown in red and the fluid shown in blue. We also highlight the interfaces ΓI, ΓII

and ΓIII between the phases.
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4.2.3 The Macroscale Results

The assumptions (4.70) and (4.71) of the asymptotic homogenization technique can be

applied to Equations (4.50)–(4.65). We then obtain the following multiscale system of

PDEs:

∇Ȳ ·Pϵ
I + ϵ∇X̄ ·Pϵ

I = 0 in Ω0
I , (4.73)

∇Ȳ ·Pϵ
II + ϵ∇X̄ ·Pϵ

II = 0 in Ω0
II, (4.74)

∇Ȳ · (Tf
ϵ(Gϵ

f )
T) + ϵ∇X̄ · (Tf

ϵ(Gϵ
f )

T) = 0 in Ω0
f , (4.75)

∇Ȳ · (Gϵ
fV

ϵ) + ϵ∇X̄ · (Gϵ
fV

ϵ) = 0 in Ω0
f , (4.76)

∂uϵ
I

∂t
= Vϵ on Γ0

I , (4.77)

∂uϵ
II

∂t
= Vϵ on Γ0

II, (4.78)

Tf
ϵ(Gϵ

f )
Tn0

I = Pϵ
In

0
I on Γ0

I , (4.79)

Tf
ϵ(Gϵ

f )
Tn0

II = Pϵ
IIn

0
II on Γ0

II, (4.80)

Pϵ
In

0
III = Pϵ

IIn
0
III on Γ0

III, (4.81)

uϵ
I = uϵ

II on Γ0
III, (4.82)

as well as the multiscale constitutive equations for Tf
ϵ(Gϵ

f )
T, Pϵ

I and Pϵ
II, which are given

by:

Tf
ϵ(Gϵ

f )
T =− pϵ(Gϵ

f )
T + ϵ((∇ȲV

ϵ)(Fϵ
f )

−1(Gϵ
f )

T + (Fϵ
f )

−T(∇ȲV
ϵ)T(Gϵ

f )
T)

+ ϵ2((∇X̄V
ϵ)(Fϵ

f )
−1(Gϵ

f )
T + (Fϵ

f )
−T(∇X̄V

ϵ)T(Gϵ
f )

T) in Ω0
f , (4.83)

Pϵ
I =

∂ψϵ
I

∂Fϵ
I

in Ω0
I , (4.84)

Pϵ
II =

∂ψϵ
II

∂Fϵ
II

in Ω0
II, (4.85)

and the fluid balance equation and the solid deformation gradients are given by:

0 = −(Gϵ
f )

T(ϵ∇X̄p
ϵ +∇Ȳp

ϵ) + ϵ∇Ȳ · ((∇ȲV
ϵ)Gϵ

f (F
ϵ
f )

−T

+ (Gϵ
f )

T(∇ȲV
ϵ)T(Fϵ

f )
−T) +O(ϵ2) in Ω0

f , (4.86)

ϵFϵ
I = ϵI+ ϵ∇X̄u

ϵ
I +∇Ȳu

ϵ
I in Ω0

I , (4.87)

ϵFϵ
II = ϵI+ ϵ∇X̄u

ϵ
II +∇Ȳu

ϵ
II in Ω0

II, (4.88)
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where the power series representation (4.71) is implied in Equations (4.73)–(4.88) through

the use of the superscript ϵ. We then proceed with the technique by equating the coeffi-

cients of ϵl for l = 0, 1, ..., and this way, we derive the effective macroscale model in terms

of the relevant zeroth-order fields. Following the asymptotic expansion, if any term still

retains a dependence on the porescale, then we can apply the integral average formula.

The integral average can be defined as:

⟨φ⟩i =
1

|Ω0|

∫
Ω0

i

φ(X̄, Ȳ, t)dȲ i = f, I, II, (4.89)

and again, φ is a general field. The integral average is performed over one representative

cell due to the assumption of Ȳ-periodicity, as discussed in Remark 8, so it is therefore a

cell average. We have that the volume of the domain is given by |Ω0| = |Ω0
f |+ |Ω0

I |+ |Ω0
II|.

We can equate the coefficients of ϵ0 in (4.73)–(4.82) to obtain:

∇Ȳ ·P(0)
I = 0 in Ω0

I , (4.90)

∇Ȳ ·P(0)
II = 0 in Ω0

II, (4.91)

∇Ȳ · (Tf
(0)(G

(0)
f )T) = 0 in Ω0

f , (4.92)

∇Ȳ · (G(0)
f V(0)) = 0 in Ω0

f , (4.93)

∂u
(0)
I

∂t
= V(0) on Γ0

I , (4.94)

∂u
(0)
II

∂t
= V(0) on Γ0

II, (4.95)

Tf
(0)(G

(0)
f )Tn0

I = P
(0)
I n0

I on Γ0
I , (4.96)

Tf
(0)(G

(0)
f )Tn0

II = P
(0)
II n0

II on Γ0
II, (4.97)

P
(0)
I n0

III = P
(0)
II n0

III on Γ0
III, (4.98)

u
(0)
I = u

(0)
II on Γ0

III. (4.99)

The constitutive Equations (4.83)–(4.85) have coefficients of ϵ0 given by:

Tf
(0)(G

(0)
f )T = −p(0)(G(0)

f )T in Ω0
f , (4.100)

P
(0)
I =

∂ψ
(0)
I

∂F
(0)
I

in Ω0
I , (4.101)

P
(0)
II =

∂ψ
(0)
II

∂F
(0)
II

in Ω0
II, (4.102)
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and the fluid balance equation and the deformation gradients (4.86)–(4.88) have coefficients

of ϵ0:

(G
(0)
f )T∇Ȳp

(0) = 0 in Ω0
f , (4.103)

∇Ȳu
(0)
I = 0 in Ω0

I , (4.104)

∇Ȳu
(0)
II = 0 in Ω0

II. (4.105)

Now, equating the coefficients of ϵ1 in Equations (4.73)–(4.82) gives:

∇Ȳ ·P(1)
I +∇X̄ ·P(0)

I = 0 in Ω0
I , (4.106)

∇Ȳ ·P(1)
II +∇X̄ ·P(0)

II = 0 in Ω0
II, (4.107)

∇Ȳ · (Tf
(1)(G

(0)
f )T) +∇Ȳ · (Tf

(0)(G
(1)
f )T) +∇X̄ · (Tf

(0)(G
(0)
f )T) = 0 in Ω0

f , (4.108)

∇Ȳ · (G(0)
f V(1)) +∇Ȳ · (G(1)

f v(0)) +∇X̄ · (G(0)
f V(0)) = 0 in Ω0

f , (4.109)

∂u
(1)
I

∂t
= V(1) on Γ0

I , (4.110)

∂u
(1)
II

∂t
= V(1) on Γ0

II, (4.111)

(Tf
(1)(G

(0)
f )T + Tf

(0)(G
(1)
f )T)n0

I = P
(1)
I n0

I on Γ0
I , (4.112)

(Tf
(1)(G

(0)
f )T + Tf

(0)(G
(1)
f )T)n0

II = P
(1)
II n0

II on Γ0
II, (4.113)

P
(1)
I n0

III = P
(1)
II n0

III on Γ0
III, (4.114)

u
(1)
I = u

(1)
II on Γ0

III, (4.115)

and the coefficients of ϵ1 in the constitutive Equations (4.83)–(4.85) are:

Tf
(1)(G

(0)
f )T + Tf

(0)(G
(1)
f )T = −p(1)(G(0)

f )T − p(0)(G
(1)
f )T

+((∇ȲV
(0))(F

(0)
f )−1(G

(0)
f )T + (F

(0)
f )−T(∇ȲV

(0))T(G
(0)
f )T) in Ω0

f , (4.116)

P
(1)
I =

∂ψ
(1)
I

∂F
(1)
I

in Ω0
I , (4.117)

P
(1)
II =

∂ψ
(1)
II

∂F
(1)
II

in Ω0
II, (4.118)

while the fluid balance equation and the deformation gradients (4.86)–(4.88) have coeffi-

cients of ϵ1:

0 = −(G
(0)
f )T(∇X̄p

(0) +∇Ȳp
(1)) +∇Ȳ · ((∇ȲV

(0))G
(0)
f (F

(0)
f )−T
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+(G
(0)
f )T(∇ȲV

(0))T(F
(0)
f )−T) in Ω0

f , (4.119)

F
(0)
I = I+∇X̄u

(0)
I +∇Ȳu

(1)
I in Ω0

I , (4.120)

F
(0)
II = I+∇X̄u

(0)
II +∇Ȳu

(1)
II in Ω0

II. (4.121)

We can show that the Piola transformation (Gϵ)T, where we exploit the notation (4.16),

is divergence free and derive some useful identities. We have:

∫
B0

∇X · GTdVX =

∫
∂B0

GT ·NdA =

∫
∂B0

JF−TNdA =

∫
∂Bt

I · nda

=

∫
Bt

∇x · IdVx = 0, (4.122)

where we have used Nanson’s formula (4.21) and N is normal to the boundary of the

reference body and n is normal to the boundary of the current body and so, (Gϵ)T is

divergence free. We can also consider the expansion of (Gϵ)T, which is:

(Gϵ)T = (G(0))T + ϵ(G(1))T + o(ϵ2), (4.123)

and the expansion of ∇X · (Gϵ)T is:

(ϵ∇X̄ +∇Ȳ) · ((G(0))T + ϵ(G(1))T + o(ϵ2)) = 0. (4.124)

Then, equating the coefficient of ϵ0 gives:

∇Ȳ · (G(0))T = 0, (4.125)

and equating the coefficient of ϵ1 gives:

∇X̄ · (G(0))T +∇Ȳ · (G(1))T = 0 =⇒ ∇X̄ · (G(0))T = −∇Ȳ · (G(1))T. (4.126)

We can use the notation (4.16) to write (4.125) and (4.126) as their counterparts in

each of the solid domains and the fluid domain as:

∇Ȳ · (G(0)
I )T = 0, ∇Ȳ · (G(0)

II )T = 0, ∇Ȳ · (G(0)
f )T = 0, (4.127)
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and:

∇X̄ · (G(0)
I )T = −∇Ȳ · (G(1)

I )T, ∇X̄ · (G(0)
II )T = −∇Ȳ · (G(1)

II )T,

∇X̄ · (G(0)
f )T = −∇Ȳ · (G(1)

f )T.
(4.128)

Here, we also wish to perform the multiscale expansion of (4.19). We have:

(Gϵ
I )

Tn0
I = (Gϵ

f )
Tn0

I on ΓI, (Gϵ
II)

Tn0
II = (Gϵ

f )
Tn0

II on ΓII,

(Gϵ
I )

Tn0
III = (Gϵ

II)
Tn0

III on ΓIII,
(4.129)

and equating the coefficients of ϵ0 gives:

(G
(0)
I )Tn0

I = (G
(0)
f )Tn0

I on ΓI, (G
(0)
II )Tn0

II = (G
(0)
f )Tn0

II on ΓII,

(G
(0)
I )Tn0

III = (G
(0)
II )Tn0

III on ΓIII.
(4.130)

Similarly, equating the coefficients of ϵ1 gives:

(G
(1)
I )Tn0

I = (G
(1)
f )Tn0

I on ΓI, (G
(1)
II )Tn0

II = (G
(1)
f )Tn0

II on ΓII,

(G
(1)
I )Tn0

III = (G
(1)
II )Tn0

III on ΓIII.
(4.131)

Equating higher powers of epsilon leads to the continuity at higher orders also. We

use these expressions in later sections.

We can see using (4.92), (4.100) and (4.125) that (G
(0)
f )T∇Ȳp

(0) = 0. This implies that

p(0) does not depend on the pore-scale Ȳ, that is:

p(0) = p(0)(X̄, t) (4.132)

We can deduce from (4.104) and (4.105) that u
(0)
I and u

(0)
II do not depend on the

pore-scale Ȳ, that is,

u
(0)
I = u

(0)
I (X̄, t), (4.133)

u
(0)
II = u

(0)
II (X̄, t), (4.134)

and since we have the boundary condition (4.99), we can write:

u(0) = u
(0)
I = u

(0)
II . (4.135)

We use (4.132) and (4.135) throughout the remainder of this work.
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4.2.4 The Macroscale Fluid Flow

We can investigate the leading order velocity, which we denote by v(0). We begin by

defining the relative fluid–solid velocity, w, as:

w := V(0) − ∂u(0)

∂t
. (4.136)

We can rearrange (4.136) to obtain:

V(0) = w + u̇(0) (4.137)

We are then able to use (4.137) and Equations (4.93), (4.94), (4.95), (4.100), (4.108)

and (4.116) to form a Stokes’-type boundary value problem given by:

−(G
(0)
f )T(∇X̄p

(0) +∇Ȳp
(1)) +∇Ȳ ·

(
(∇Ȳw)G

(0)
f (F

(0)
f )−T

+(G
(0)
f )T(∇Ȳw)T(F

(0)
f )−T

)
= 0 in Ω0

f , (4.138)

∇Ȳ · (G(0)
f w) = 0 in Ω0

f , (4.139)

w = 0 on Γ0
I ∪ Γ0

II. (4.140)

The boundary value problem (4.138)–(4.140) admits a solution. Exploiting linearity,

the solution is given by:

w = −Ŵ∇X̄p
(0), (4.141)

p(1) = −Π̂∇X̄p
(0) + c(X̄), (4.142)

where p(1) is defined up to an arbitrary Ȳ-constant function given by c(X̄). The second

rank tensor Ŵ and the vector Π̂ are the solution to the cell problem given by:

∇Ȳ ·
(
(∇ȲŴ )G

(0)
f (F

(0)
f )−T + (G

(0)
f )T(∇ȲŴ )T(F

(0)
f )−T

)
+(G

(0)
f )T(I−∇ȲΠ̂) = 0 in Ω0

f , (4.143)

∇Ȳ · (G(0)
f Ŵ ) = 0 in Ω0

f , (4.144)

Ŵ = 0 on Γ0
I ∪ Γ0

II, (4.145)

This cell problem is to be supplemented by periodic conditions on the boundary

∂Ω0
f \(Γ0

I ∪ Γ0
II), and for the uniqueness of the solution, a further condition on the aux-
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iliary variable Π̂ is required, i.e., ⟨Π̂⟩f = 0. Since the quantity Ŵ retains a dependence on

the porescale, we take the integral average of (4.141) over the fluid domain, which leads

to:

⟨w⟩f = −⟨Ŵ ⟩f∇X̄p
(0) (4.146)

Therefore, the macroscale fluid flow is described by Darcy’s law.

We also consider the incompressibility constraint (4.109), and we integrate over the

fluid domain to obtain:

∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Ω0

f

∇Ȳ · (G(1)
f V(0) + G

(0)
f V(1))dȲ = 0. (4.147)

Applying the divergence theorem to the second integral and using (4.94), (4.95), (4.110)

and (4.111) give:

∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0
I

(G
(1)
f u̇(0) + G

(0)
f u̇

(1)
I )n0

I dS

+

∫
Γ0
II

(G
(1)
f u̇(0) + G

(0)
f u̇

(1)
II )n0

IIdS = 0. (4.148)

We are able to rewrite this as:

∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0
I

(u̇(0)(G
(1)
f )T + u̇

(1)
I (G

(0)
f )T)n0

I dS +

∫
Γ0
II

(u̇(0)(G
(1)
f )T

+ u̇
(1)
II (G

(0)
f )T)n0

IIdS = 0, (4.149)

and accounting for the continuity of the transpose of the Piola transformations applied to

the normal (4.130) and (4.131) gives:

∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0
I

(u̇(0)(G
(1)
I )T + u̇

(1)
I (G

(0)
I )T)n0

I dS

+

∫
Γ0
II

(u̇(0)(G
(1)
II )T + u̇

(1)
II (G

(0)
II )T)n0

IIdS = 0. (4.150)

This can be rewritten as:

∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0
I

(G
(1)
I u̇(0) + G

(0)
I u̇

(1)
I )n0

I dS

+

∫
Γ0
II

(G
(1)
II u̇(0) + G

(0)
II u̇

(1)
II )n0

IIdS = 0, (4.151)
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where we use the notation that (̇) = ∂()/∂t. We wish to apply the divergence theorem

again; however, to do this, we must include the terms on the interface ΓIII, that is:∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0
I

(G
(1)
I u̇(0) + G

(0)
I u̇

(1)
I )n0

I dS

+

∫
Γ0
II

(G
(1)
II u̇(0) + G

(0)
II u̇

(1)
II )n0

IIdS +

∫
Γ0
III

(u̇(0)(G
(1)
I )T + u̇

(1)
I (G

(0)
I )T)n0

IIIdS

−
∫
Γ0
III

(u̇(0)(G
(1)
II )T + u̇

(1)
II (G

(0)
II )T)n0

IIIdS = 0, (4.152)

where we can add these terms on ΓIII because they are effectively zero because of the

continuity of the transpose of the Piola transform (4.130) and (4.131). Applying the

divergence theorem again gives:

∇X̄ · ⟨G(0)
f V(0)⟩f −

∫
Ω0

I

∇Ȳ · (G(1)
I u̇(0) + G

(0)
I u̇

(1)
I )dȲ

−
∫
Ω0

II

∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇

(1)
II )dȲ = 0. (4.153)

Therefore, we can write this as:

∇X̄ · ⟨G(0)
f V(0)⟩f = ⟨∇Ȳ · (G(1)

I u̇(0) + G
(0)
I u̇

(1)
I )⟩I + ⟨∇Ȳ · (G(1)

II u̇(0) + G
(0)
II u̇

(1)
II )⟩II. (4.154)

Since we have that w = V(0) − u̇(0) from (4.136), then this can be rearranged, and

multiplying by G
(0)
f gives G

(0)
f V(0) = G

(0)
f w + G

(0)
f u̇(0). We then take the integral average

over the fluid domain, which gives ⟨G(0)
f V(0)⟩f = ⟨G(0)

f w⟩f + ⟨G(0)
f ⟩f u̇(0), and this can be

used to replace the LHS of (4.154). Therefore, we have:

∇X̄ ·
(
⟨G(0)

f w⟩f + ⟨G(0)
f ⟩f u̇(0)

)
= ⟨∇Ȳ · (G(1)

I u̇(0) + G
(0)
I u̇

(1)
I )⟩I

+ ⟨∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇

(1)
II )⟩II. (4.155)

Then, we wish to expand the two terms on the RHS of (4.155), which gives:

∇Ȳ · (G(1)
I u̇(0) + G

(0)
I u̇

(1)
I ) +∇Ȳ · (G(1)

II u̇(0) + G
(0)
II u̇

(1)
II )

= Tr∇Ȳ(G
(1)
I u̇(0) + G

(0)
I u̇

(1)
I ) + Tr∇Ȳ(G

(1)
II u̇(0) + G

(0)
II u̇

(1)
II )

= (∇Ȳ · (G(1)
I )T) · u̇(0) + (∇Ȳ · (G(1)

II )T) · u̇(0) + G
(0)
I : ∇Ȳu̇

(1)
I

+ G
(0)
II : ∇Ȳu̇

(1)
II + (∇Ȳ · (G(0)

I )T) · u̇(1)
I + (∇Ȳ · (G(0)

II )T) · u̇(1)
II
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+ G
(1)
I : ∇Ȳu̇

(0) + G
(0)
II : ∇Ȳu̇

(0). (4.156)

We can cancel the terms in (4.156) due to u(0) = u(0)(X̄, t) and using (4.127) and then

rewrite (4.155) using (4.156) as:

∇X̄ ·
(
⟨G(0)

f w⟩f + ⟨G(0)
f ⟩f u̇(0)

)
= −

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

)
· u̇(0)

+ ⟨G(0)
I : ∇Ȳu̇

(1)
I ⟩I + ⟨G(0)

II : ∇Ȳu̇
(1)
II ⟩II, (4.157)

where we also use (4.128) to replace the first two terms in (4.156). We return to this

expression in Section 4.3.

4.2.5 The Macroscale Poroelastic Relationships

We require the macroscale constitutive relationship. To begin, we sum up the integral

averages of Equations (4.106), (4.107) and (4.108), that is,

∫
Ω0

I

∇Ȳ ·P(1)
I dȲ +

∫
Ω0

II

∇Ȳ ·P(1)
II dȲ +

∫
Ω0

f

∇Ȳ · (Tf
(1)(G

(0)
f )T)dȲ

+

∫
Ω0

f

∇Ȳ · (Tf
(0)(G

(1)
f )T)dȲ +

∫
Ω0

I

∇X̄ ·P(0)
I dȲ +

∫
Ω0

II

∇X̄ ·P(0)
II dȲ

+

∫
Ω0

f

∇X̄ · (Tf
(0)(G

(0)
f )T)dȲ = 0. (4.158)

We apply the divergence theorem to the first four integrals and then rearrange the last

three integrals due to the assumption of macroscopic uniformity (4.72) to obtain:

∫
∂Ω0

I \(Γ
0
I∪Γ

0
III)

P
(1)
I n0

Ω0
I \(Γ

0
I∪Γ

0
III)

dS +

∫
Γ0
I

P
(1)
I n0

I dS−
∫
Γ0
III

P
(1)
I n0

IIIdS +∫
∂Ω0

II\(Γ
0
II∪Γ

0
III)

P
(1)
II n0

Ω0
II\(Γ

0
II∪Γ

0
III)

dS +

∫
Γ0
II

P
(1)
II n0

IIdS +

∫
Γ0
III

P
(1)
II n0

IIIdS +∫
∂Ω0

f \(Γ
0
I∪Γ

0
II)

T
(1)
f (G

(0)
f )Tn0

Ω0
f \(Γ

0
I∪Γ

0
II)
dS−

∫
Γ0
II

T
(1)
f (G

(0)
f )Tn0

IIdS−
∫
Γ0
I

T
(1)
f (G

(0)
f )Tn0

I dS +∫
∂Ω0

f \(Γ
0
I∪Γ

0
II)

T
(0)
f (G

(1)
f )Tn0

Ω0
f \(Γ

0
I∪Γ

0
II)
dS−

∫
Γ0
II

T
(0)
f (G

(1)
f )Tn0

IIdS−
∫
Γ0
I

T
(0)
f (G

(1)
f )Tn0

I dS +

∇X̄ ·
∫
Ω0

I

P
(0)
I dȲ +∇X̄ ·

∫
Ω0

II

P
(0)
II dȲ +∇X̄ ·

∫
Ω0

f

Tf
(0)(G

(0)
f )TdȲ = 0, (4.159)

where n0
I , n

0
II, n

0
III, n

0
Ω0

I \(Γ
0
I∪Γ

0
III)

, n0
Ω0

II\(Γ
0
II∪Γ

0
III)

and n0
Ω0

f \(Γ
0
I∪Γ

0
II)

are the unit normals

corresponding to the interfaces Γ0
I , Γ

0
II, Γ

0
III, ∂Ω

0
I \ (Γ0

I ∪ Γ0
III), ∂Ω

0
II \ (Γ0

II ∪ Γ0
III) and ∂Ω

0
f \
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(Γ0
I ∪Γ0

II). The contributions over the external boundaries of Ω
0
I , Ω

0
II and Ω0

f cancel due to

Ȳ-periodicity, so (4.159) becomes:

∫
Γ0
I

P
(1)
I n0

I dS−
∫
Γ0
I

T
(1)
f (G

(0)
f )Tn0

I dS−
∫
Γ0
I

T
(0)
f (G

(1)
f )Tn0

I dS +

∫
Γ0
II

P
(1)
II n0

IIdS −∫
Γ0
II

T
(1)
f (G

(0)
f )Tn0

IIdS−
∫
Γ0
II

T
(0)
f (G

(1)
f )Tn0

IIdS−
∫
Γ0
III

P
(1)
I n0

IIIdS +

∫
Γ0
III

P
(1)
II n0

IIIdS +

∇X̄ ·
∫
Ω0

I

P
(0)
I dȲ +∇X̄ ·

∫
Ω0

II

P
(0)
II dȲ +∇X̄ ·

∫
Ω0

f

Tf
(0)(G

(0)
f )TdȲ = 0. (4.160)

The first eight integrals cancel using the continuity of tractions (4.112), (4.113) and

(4.114), so we obtain:

∇X̄ · ⟨P(0)
I ⟩I +∇X̄ · ⟨P(0)

II ⟩II −∇X̄ ·
(
p(0)⟨(G(0)

f )T⟩f
)
= 0, (4.161)

where we use (4.100). Then, we have that:

∇X̄ · T̄Eff = 0, (4.162)

where:

T̄Eff = ⟨P(0)
I ⟩I + ⟨P(0)

II ⟩II − p(0)⟨(G(0)
f )T⟩f . (4.163)

We can describe (4.162) and (4.163) as the average stress balance and constitutive law

for our nonlinear poroelastic composite material.

We can write the following problem for u
(1)
I and u

(1)
II using (4.90), (4.91), (4.96), (4.97),

(4.98), (4.100) and (4.115):

∇Ȳ ·P(0)
I = 0 in Ω0

I , (4.164)

∇Ȳ ·P(0)
II = 0 in Ω0

II, (4.165)

u
(1)
I = u

(1)
II on Γ0

III, (4.166)

P
(0)
I n0

III = P
(0)
II n0

III on Γ0
III, (4.167)

P
(0)
I n0

I = −(p(0)(G
(0)
f )T)n0

I on Γ0
I , (4.168)

P
(0)
II n0

II = −(p(0)(G
(0)
f )T)n0

II on Γ0
II. (4.169)

Since our solid stress tensorsPI andPII are described by a constitutive law, our problem

here is the general case. It is possible to state a generalised ansatz to this problem and
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state the cell problems. However, we wait to do this until the constitutive law has been

specified. Within the next section, we state the macroscale model for this general case

and then specify this problem for a specific choice of the constitutive law.

4.3 The Macroscale Model and Particular Cases

We begin by stating the general nonlinear macroscale model for poroelastic composite

materials undergoing large deformations where the specific constitutive law for the material

has not yet been specified, that is,

⟨w⟩f = −⟨Ŵ ⟩f∇X̄p
(0),

∇X̄ · T̄Eff = 0,

T̄Eff =

〈
∂ψ

(0)
I

∂F
(0)
I

〉
I

+

〈
∂ψ

(0)
II

∂F
(0)
II

〉
II

− p(0)⟨(G(0)
f )T⟩f ,

∇X̄ · ⟨G(0)
f w⟩f = −

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II + ⟨∇X̄ · (G(0)

f )T⟩f
)
· u̇(0)

+ ⟨G(0)
I : ∇Ȳu̇

(1)
I ⟩I + ⟨G(0)

II : ∇Ȳu̇
(1)
II ⟩II − ⟨G(0)

f ⟩f : ∇X̄u̇
(0),

where ψI and ψII are the strain energy functions for the material in the subphase and

matrix, respectively. This model comprises Darcy’s law for the relative fluid–solid velocity.

The second and third equations are the stress balance and the constitutive law for the

nonlinear poroelastic composite material. The constitutive law is to be specified further

by choosing a specific strain energy function for the matrix and the subphase, relevant to

the intended application. The final equation is the conservation of mass equation. This

equation is also be influenced by the choice of strain energy function for the matrix and

the subphase. Within the next subsection, we prescribe a particular constitutive law for

the elastic materials, and this leads to a specified model that reduces to three previously

known models under appropriate simplifying assumptions.

4.3.1 Constitutive Law

Within this section we specialise the model for a choosen constitutive law. We choose the

very simple de Saint-Venant strain energy function given by:

ψv =
1

2
Ev : Cv : Ev in Ω0

v where v = I, II, (4.170)
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where ψv is described by different parameters depending on the solid domain that it is

describing and Ev is the Green-Lagrangian strain tensor for each solid domain, that is,

ψv =


ψI =

1

2
EI : CI : EI in Ω0

I ,

ψII =
1

2
EII : CII : EII in Ω0

II.
(4.171)

We make this choice since it will allow us to recover the linear elastic case and the other

few works in the literature that have used asymptotic homogenization in the nonlinear

setting.

We adopt the notation that:

C =


CI in Ω0

I

CII in Ω0
II

(4.172)

and the subscript v = I, II, where I is the subphase and II is the matrix throughout this

section. We have that the expansion of ψv is given by:

ψϵ
v =

1

2
Eϵ

v : C : Eϵ
v, (4.173)

and we note that C is the fourth rank elasticity tensor with major and minor symme-

tries, namely:

Cijkl = Cjikl = Cijlk = Cklij . (4.174)

We can now determine Ev. We have:

Ev =
1

2
((Fv)

TFv − I) =
1

2
((∇Xuv + I)T(∇Xuv + I)− I)

=
1

2
((∇Xuv)

T∇Xuv + (∇Xuv)
T +∇Xuv), (4.175)

where the subscript v = I, II denotes the subphase and the matrix. We now apply the

asymptotic homogenization technique to (4.175). Using the transformation of the gradient

operator (4.70):

∇X → ∇X̄ +
1

ϵ
∇Ȳ, (4.176)
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we can write Eϵ
v as:

Eϵ
v =

1

2

[
(∇X̄u

ϵ
v +

1

ϵ
∇Ȳu

ϵ
v)

T(∇X̄u
ϵ
v +

1

ϵ
∇Ȳu

ϵ
v) + (∇X̄u

ϵ
v +

1

ϵ
∇Ȳu

ϵ
v)

T + (∇X̄u
ϵ
v +

1

ϵ
∇Ȳu

ϵ
v)

]
=
1

2

[
(∇X̄u

ϵ
v)

T∇X̄u
ϵ
v +

1

ϵ
(∇X̄u

ϵ
v)

T∇Ȳu
ϵ
v +

1

ϵ
(∇Ȳu

ϵ
v)

T∇X̄u
ϵ
v +

1

ϵ2
(∇Ȳu

ϵ
v)

T(∇Ȳu
ϵ
v)

+∇X̄u
ϵ
v +

1

ϵ
∇Ȳu

ϵ
v + (∇X̄u

ϵ
v)

T +
1

ϵ
(∇Ȳu

ϵ
v)

T

]
. (4.177)

Then, using (4.177), we are able to write the expansion of the strain energy function

ψϵ
v as:

ψϵ
v =

1

8

[(
(∇X̄u

ϵ
v)

T∇X̄u
ϵ
v +

1

ϵ
(∇X̄u

ϵ
v)

T∇Ȳu
ϵ
v +

1

ϵ
(∇Ȳu

ϵ
v)

T∇X̄u
ϵ
v +

1

ϵ2
(∇Ȳu

ϵ
v)

T(∇Ȳu
ϵ
v)

+∇X̄u
ϵ
v +

1

ϵ
∇Ȳu

ϵ
v + (∇X̄u

ϵ
v)

T +
1

ϵ
(∇Ȳu

ϵ
v)

T

)
: C :

(
(∇X̄u

ϵ
v)

T∇X̄u
ϵ
v

+
1

ϵ
(∇X̄u

ϵ
v)

T∇Ȳu
ϵ
v +

1

ϵ
(∇Ȳu

ϵ
v)

T∇X̄u
ϵ
v +

1

ϵ2
(∇Ȳu

ϵ
v)

T(∇Ȳu
ϵ
v)

+∇X̄u
ϵ
v +

1

ϵ
∇Ȳu

ϵ
v + (∇X̄u

ϵ
v)

T +
1

ϵ
(∇Ȳu

ϵ
v)

T

)]
. (4.178)

Multiplying (4.178) by ϵ2, we obtain:

ϵ2ψϵ
v =

1

8

[(
ϵ2(∇X̄u

ϵ
v)

T∇X̄u
ϵ
v + ϵ(∇X̄u

ϵ
v)

T∇Ȳu
ϵ
v + ϵ(∇Ȳu

ϵ
v)

T∇X̄u
ϵ
v + (∇Ȳu

ϵ
v)

T∇Ȳu
ϵ
v

+ ϵ2∇X̄u
ϵ
v + ϵ∇Ȳu

ϵ
v + ϵ2(∇X̄u

ϵ
v)

T + ϵ(∇Ȳu
ϵ
v)

T

)
: ϵ2C :

(
ϵ2(∇X̄u

ϵ
v)

T∇X̄u
ϵ
v

+ ϵ(∇X̄u
ϵ
v)

T∇Ȳu
ϵ
v + ϵ(∇Ȳu

ϵ
v)

T∇X̄u
ϵ
v + (∇Ȳu

ϵ
v)

T∇Ȳu
ϵ
v + ϵ2∇X̄u

ϵ
v

+ ϵ∇Ȳu
ϵ
v + ϵ2(∇X̄u

ϵ
v)

T + ϵ(∇Ȳu
ϵ
v)

T

)]
. (4.179)

We can then equate the coefficients of ϵ0, ϵ1 and ϵ2 in (4.179). For ϵ0, we have:

0 =
1

8

[(
(∇Ȳu

(0))T∇Ȳu
(0)

)
:

(
(∇Ȳu

(0))T∇Ȳu
(0)

)]
= 0. (4.180)

Equating the coefficients of ϵ1 gives:

0 =
1

8

[(
(∇X̄u

(0))T∇Ȳu
(0) + (∇Ȳu

(0))T∇X̄u
(0) + (∇Ȳu

(1)
v )T∇Ȳu

(0) + (∇Ȳu
(0))T∇Ȳu

(1)
v

+∇Ȳu
(0) + (∇Ȳu

(0))T
)

:

(
(∇X̄u

(0))T∇Ȳu
(0) + (∇Ȳu

(0))T∇X̄u
(0) + (∇Ȳu

(1)
v )T∇Ȳu

(0)

+ (∇Ȳu
(0))T∇Ȳu

(1)
v +∇Ȳu

(0) + (∇Ȳu
(0))T

)]
= 0, (4.181)
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and finally, equating the coefficients of ϵ2 gives:

ψ(0)
v =

1

8

[(
(∇X̄u

(0))T∇X̄u
(0) + (∇X̄u

(0))T∇Ȳu
(1)
v + (∇Ȳu

(1)
v )T∇X̄u

(0) + (∇Ȳu
(1)
v )T∇Ȳu

(1)
v

+∇X̄u
(0) +∇Ȳu

(1)
v + (∇X̄u

(0))T + (∇Ȳu
(1)
v )T

)
: C :

(
(∇X̄u

(0))T∇X̄u
(0)

+ (∇X̄u
(0))T∇Ȳu

(1)
v + (∇Ȳu

(1)
v )T∇X̄u

(0) + (∇Ȳu
(1)
v )T∇Ȳu

(1)
v +∇X̄u

(0) +∇Ȳu
(1)
v

+ (∇X̄u
(0))T + (∇Ȳu

(1)
v )T

)]
=
1

2
E(0)

v : C : E(0)
v , (4.182)

where we have that:

E(0)
v = (∇X̄u

(0))T∇X̄u
(0) + (∇X̄u

(0))T∇Ȳu
(1)
v + (∇Ȳu

(1)
v )T∇X̄u

(0)

+ (∇Ȳu
(1)
v )T∇Ȳu

(1)
v +∇X̄u

(0) +∇Ȳu
(1)
v + (∇X̄u

(0))T + (∇Ȳu
(1)
v )T. (4.183)

Therefore, we have that the leading order term of the constitutive law in the subphase

and the matrix respectively are:

ψ
(0)
I =

1

2
E

(0)
I : CI : E

(0)
I and ψ

(0)
II =

1

2
E

(0)
II : CII : E

(0)
II . (4.184)

Now that we have an expression for ψ
(0)
v , we can use this to find the leading order term

of the second Piola–Kirchoff stress, that is we take the derivatives of (4.184) with respect

to E
(0)
I and E

(0)
II , respectively. Therefore, we have:

S(0)
v =

∂ψ
(0)
v

∂E
(0)
v

= C : E(0)
v , (4.185)

where we have a different second Piola–Kirchoff stress for both the subphase and the

matrix, respectively, that is,

S(0)
v =


S
(0)
I = CI : E

(0)
I in Ω0

I ,

S
(0)
II = CII : E

(0)
II in Ω0

II.
(4.186)

We now wish to linearise the second Piola–Kirchoff stress S
(0)
v . To do this, we can use
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the expression F
(0)
v = I+H where:

H =


HI = ∇X̄u

(0) +∇Ȳu
(1)
I in Ω0

I ,

HII = ∇X̄u
(0) +∇Ȳu

(1)
II in Ω0

II.
(4.187)

Therefore, carrying out the linearisation, we have that:

S(0)
v =C : E(0)

v

=C :

(
1

2
((F(0)

v )TF(0)
v − I)

)
=C :

(
1

2
((I+H)T(I+H)− I)

)
(4.188)

=C :

(
1

2
(H+HT +HTH)

)
. (4.189)

We will now ignore the nonlinear terms to obtain:

(S(0)
v )lin = C :

(
1

2
(H+HT)

)
= C : SymH. (4.190)

We are now able to use the second Piola–Kirchoff stress S
(0)
v to find the first Piola–

Kirchoff stress:

P(0)
v = F(0)

v S(0)
v

= (I+H)C : E(0)
v , (4.191)

where we can define the first Piola stressP(0) in both of the solid constituents, the subphase

and matrix, as:

P(0)
v =


P

(0)
I = (I+HI)CI : E

(0)
I in Ω0

I ,

P
(0)
II = (I+HII)CII : E

(0)
II in Ω0

II.
(4.192)

We can also linearise the first Piola–Kirchoff stress P
(0)
v . Therefore, we have:

(P(0)
v )lin = C : SymH, (4.193)

and since we have that C is major and minor symmetric, then we can write this as:

(P(0)
v )lin = C : H. (4.194)
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We perform these linearisations of the stresses as this will allow us to reach a differential

problem that can be solved by a linear ansatz. This allows us to obtain a final model with

cell problems that are solvable yet we will still retain the non-linearity in the coefficients

and in the arising additional terms in the model.

We therefore can define the solid stresses in the subphase and matrix as:

(P
(0)
I )lin = CI : (∇X̄u

(0) +∇Ȳu
(1)
I ) in Ω0

I , (4.195)

(P
(0)
II )lin = CII : (∇X̄u

(0) +∇Ȳu
(1)
II ) in Ω0

II, (4.196)

respectively, for our chosen constitutive law. These stresses are reminiscent of the stresses

found in Chapter 3 for the linear poroelastic composites, however the following problem

still contains the non-linear transformations (G
(0)
f )T which mean that when this problem

is solved to find the model coefficients then the non-linearity is still encoded.

We can then use these expressions (4.195) in the problem for u
(1)
I and u

(1)
II given by

Equations (4.164)–(4.169), that is,

∇Ȳ · (CI∇Ȳ(u
(1)
I )) +∇Ȳ · (CI∇X̄(u

(0))) = 0 in Ω0
I , (4.197)

∇Ȳ · (CII∇Ȳ(u
(1)
II )) +∇Ȳ · (CII∇X̄(u

(0))) = 0 in Ω0
II, (4.198)

u
(1)
I = u

(1)
II on Γ0

III, (4.199)

CI∇Ȳ(u
(1)
I )n0

III − CII∇Ȳ(u
(1)
II )n0

III = (CII − CI)∇X̄(u
(0))n0

III on Γ0
III, (4.200)

(CI∇Ȳ(u
(1)
I ) + CI∇X̄(u

(0)))n0
I = −(p(0)(G

(0)
f )T)n0

I on Γ0
I , (4.201)

(CII∇Ȳ(u
(1)
II ) + CII∇X̄(u

(0)))n0
II = −(p(0)(G

(0)
f )T)n0

II on Γ0
II. (4.202)

This differential problem again reminds of the differential problem presented in Chapter 3

however, here we see that in (4.201) and (4.202) we have the tensor (G
(0)
f )T appearing. This

is a nonlinear transformation that is based on the deformation gradient of the materials

and it is through this quantity that the model coefficients will still retain the non-linear

character post linearisation.

The problem given by (4.197)–(4.202) admits a unique solution up to a Ȳ-constant

function. Exploiting the imposed linearity, the solution is given as:

u
(1)
I = ÂI∇X̄(u

(0)) + âIp
(0) + c1(X̄), (4.203)

u
(1)
II = ÂII∇X̄(u

(0)) + âIIp
(0) + c2(X̄), (4.204)
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where c1(X̄) and c2(X̄) are Ȳ-constant functions. The third rank tensors ÂI and ÂII are

the solutions of the porescale problems given by:

∇Ȳ · (CI∇Ȳ(ÂI)) +∇Ȳ · CI = 0 in Ω0
I , (4.205)

∇Ȳ · (CII∇Ȳ(ÂII)) +∇Ȳ · CII = 0 in Ω0
II, (4.206)

ÂI = ÂII on Γ0
III, (4.207)

CI∇Ȳ(ÂI)n
0
III − CII∇Ȳ(ÂII)n

0
III = (CII − CI)n

0
III on Γ0

III, (4.208)

(CI∇Ȳ(ÂI))n
0
I + CIn

0
I = 0 on Γ0

I (4.209)

(CII∇Ȳ(ÂII))n
0
II + CIIn

0
II = 0 on Γ0

II, (4.210)

and the vectors âI and âII are the solution to this porescale problem:

∇Ȳ · (CI∇Ȳ(âI)) = 0 in Ω0
I , (4.211)

∇Ȳ · (CII∇Ȳ(âII)) = 0 in Ω0
II, (4.212)

âI = âII on Γ0
III, (4.213)

(CI∇Ȳ(âI))n
0
III = (CII∇Ȳ(âII))n

0
III on Γ0

III, (4.214)

(CI∇Ȳ(âI) + (G
(0)
f )T)n0

I = 0 on Γ0
I , (4.215)

(CII∇Ȳ(âII) + (G
(0)
f )T)n0

II = 0 on Γ0
II. (4.216)

Both (4.205)–(4.210) and (4.211)–(4.216) are to be solved on the periodic cell. To ensure

the uniqueness of the solution, we also require a further condition on ÂI, ÂII, âI and âII,

for example:

⟨ÂI⟩I + ⟨ÂII⟩II = 0 and ⟨âI⟩I + ⟨âII⟩II = 0. (4.217)

Here, we wish to discuss in detail the cell problems (4.143)–(4.145), (4.205)–(4.210)

and (4.211)–(4.216) and how they can potentially be solved. These porescale periodic cell

problems are to be solved to determine the model coefficients of the final macroscale model.

It is through these model coefficients that the complexity of the materials microstructure

is encoded in the final model.

In general, with the asymptotic homogenization technique, these cell problems would

only depend on the pore-scale and therefore can be solved in a straight-forward way.

For example, solving the porescale asymptotic homogenization cell problems for linear

elastic composites was carried out in [88], and for linear poroelasticity, the problems were
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solved in [35]. Similarly, it would be possible to solve the cell problems arising from

linear poroelastic composites by combining the techniques used in both of these previ-

ous works. In the linear case, we have the problems (4.143)–(4.145), (4.205)–(4.210) and

(4.211)–(4.216) with the simplification that (G
(0)
f )T approaches the identity. This simpli-

fication means that the two scales are fully decoupled, and we can solve the fluid and the

elastic-type cell problems.

However, due to the nonlinearity of the system we consider here, the two scales are

coupled, meaning that the porescale periodic cell problems have a dependence on the

macroscale and therefore cannot be easily solved. This dependence is through the quan-

tity (G
(0)
f )T appearing in (4.143)–(4.145) and (4.215)–(4.216). This quantity is the Piola

transform, which involves the leading order deformation gradient F(0). This depends on

both the porescale and the macroscale, as can be seen in Equations (4.120) and (4.121).

This means that the two scales are not fully decoupled, and therefore, this dramatically

increases the computational complexity.

It is however crucial for a realistic analysis of the scenarios of interest (such as biological

tissues) to be able to solve problems of this type. Despite the complexity, there are

some potential emerging techniques that may mean it would be possible to solve this

model numerically in the future. A recent example of a proposed method that could

be potentially used to solve the types of problems arising in this work is found in [36].

This work investigated the potential of using Artificial Neural Networks (ANNs) for quick,

accurate upscaling and localisation of problems. The method involves an incremental

numerical approach where there is a rearrangement of the cell properties relating to the

current deformation, and this means that there is a remodelling of the macroscopic model

after each incremental time step. This method is applicable to finite strain and large

deformation problems, whilst there will only be infinitesimal deformation within each

incremental time step. Reference [36] investigated the full effects of the coupling between

the macroscale and microscale for the first time in the analysis of fluid-saturated porous

media. We believe that by following an approach similar to the one set out in [36], we

could obtain a solution to our model numerically.

We can use our expressions (4.203) and (4.204) for u
(1)
I and u

(1)
II to rewrite (P

(0)
I )lin

and (P
(0)
II )lin. We have:

(P
(0)
I )lin =CI∇Ȳ(ÂI∇X̄u

(0) + âIp
(0)) + CI∇X̄u

(0)
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=CI∇ȲÂI∇X̄u
(0) + CI∇ȲâIp

(0) + CI∇X̄u
(0)

=CIMI∇X̄u
(0) + CI∇X̄u

(0) + CIQIp
(0)

=(CIMI + CI)∇X̄u
(0) + CIQIp

(0), (4.218)

and:

(P
(0)
II )lin =CII∇Ȳ(ÂII∇X̄u

(0) + âIIp
(0)) + CII∇X̄u

(0)

=CII∇ȲÂII∇X̄u
(0) + CII∇ȲâIIp

(0) + CII∇X̄u
(0)

=CIIMII∇X̄u
(0) + CII∇X̄u

(0) + CIIQIIp
(0)

=(CIIMII + CII)∇X̄u
(0) + CIIQIIp

(0), (4.219)

where we define the porescale gradients of the auxiliary variables as:

M̂I = ∇ȲÂI, M̂II = ∇ȲÂII, Q̂I = ∇ȲâI, Q̂II = ∇ȲâII. (4.220)

Then, we can return to (4.163) and use our linearised solid stresses to find the effective

stress:

T̄Eff =⟨(P(0)
I )lin⟩I + ⟨(P(0)

II )lin⟩II − p(0)⟨(G(0)
f )T⟩f

=
(
⟨CIM̂I + CI⟩I + ⟨CIIM̂II + CII⟩II

)
∇X̄u

(0) +
(
⟨CIQ̂I⟩I + ⟨CIIQ̂II⟩II

− ⟨(G(0)
f )T⟩f

)
p(0). (4.221)

Again this effective stress will remind of the effective stress in the linear case Chapter 3.

Here however we see that it contains the tensor (G
(0)
f )T which is the nonlinear transfor-

mation and also the quantities M̂I, M̂II, Q̂I and Q̂II. These are to be found by solving cell

problems (4.205)–(4.210) and (4.211)–(4.216) which again contain nonlinear transforma-

tions.

As mentioned in Section 4.2.4, we return to the expression (4.157), restated here for

convenience,

∇X̄ ·
(
⟨G(0)

f w⟩f + ⟨G(0)
f ⟩f u̇(0)

)
= −

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

)
· u̇(0)

+ ⟨G(0)
I : ∇Ȳu̇

(1)
I ⟩I + ⟨G(0)

II : ∇Ȳu̇
(1)
II ⟩II (4.222)
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We obtain expressions for u̇
(1)
I and u̇

(1)
II by taking the time derivative of (4.203) and

(4.204), and we then substitute these expressions into (4.222) to obtain:

∇X̄ ·
(
⟨G(0)

f w⟩f + ⟨G(0)
f ⟩f u̇(0)

)
= ⟨G(0)

I : ∇ȲÂI⟩I : ∇X̄u̇
(0) + ⟨G(0)

I : ∇ȲâI⟩Iṗ(0)

+ ⟨G(0)
II : ∇ȲÂII⟩II : ∇X̄u̇

(0) + ⟨G(0)
II : ∇ȲâII⟩IIṗ(0)

−
(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

)
· u̇(0). (4.223)

Expanding the LHS in (4.223) and using (4.220), we obtain:

∇X̄ · ⟨G(0)
f w⟩f +∇X̄ ·

(
⟨G(0)

f ⟩f u̇(0)
)
= ⟨G(0)

I : M̂I⟩I : ∇X̄u̇
(0) + ⟨G(0)

I : Q̂I⟩Iṗ(0)

+ ⟨G(0)
II : M̂II⟩II : ∇X̄u̇

(0) + ⟨G(0)
II : Q̂II⟩IIṗ(0)

−
(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

)
· u̇(0). (4.224)

Expanding the second term on the LHS further and rearranging, we obtain:

∇X̄ · ⟨G(0)
f w⟩f + ⟨G(0)

f ⟩f : ∇X̄u̇
(0) =⟨G(0)

I : M̂I⟩I : ∇X̄u̇
(0) + ⟨G(0)

I : Q̂I⟩Iṗ(0)

+⟨G(0)
II : M̂II⟩II : ∇X̄u̇

(0) + ⟨G(0)
II : Q̂II⟩IIṗ(0) −

(
⟨∇X̄ · (G(0)

I )T⟩I

+⟨∇X̄ · (G(0)
II )T⟩II + ⟨∇X̄ · (G(0)

f )T⟩f
)
· u̇(0). (4.225)

Rearranging and collecting ṗ(0) terms gives:

ṗ(0) =
1

⟨G(0)
I : Q̂I⟩I + ⟨G(0)

II : Q̂II⟩II

[
∇X̄ · ⟨G(0)

f w⟩f +
(
⟨G(0)

f ⟩f − ⟨G(0)
I : M̂I⟩I

− ⟨G(0)
II : M̂II⟩II

)
: ∇X̄u̇

(0) +

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

+ ⟨∇X̄ · (G(0)
f )T⟩f

)
· u̇(0)

]
. (4.226)

We define:

M̄ :=
−1

⟨G(0)
I : Q̂I⟩I + ⟨G(0)

II : Q̂II⟩II
, (4.227)

and:

ᾱ := ⟨G(0)
f ⟩f − ⟨G(0)

I : M̂I⟩I − ⟨G(0)
II : M̂II⟩II, (4.228)
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and we can then use (4.227) and (4.228) to rewrite (4.226) as:

ṗ(0) =− M̄
[
∇X̄ · ⟨G(0)

f w⟩f + ᾱ : ∇X̄u̇
(0) +

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

+ ⟨∇X̄ · (G(0)
f )T⟩f

)
· u̇(0)

]
. (4.229)

Finally, we can divide by M̄ to obtain:

ṗ(0)

M̄
=−∇X̄ · ⟨G(0)

f w⟩f − ᾱ : ∇X̄u̇
(0) −

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

+ ⟨∇X̄ · (G(0)
f )T⟩f

)
· u̇(0). (4.230)

We therefore have now derived the effective macroscale governing equations for a non-

linear poroelastic composite that has the constitutive law given by the de Saint-Venant

strain energy function. We state our novel macroscale model and then consider limit cases

for the model where we obtain previously known results from the literature. The equa-

tions in the macroscale model represent a poroelastic-type system of PDEs. Therefore,

the macroscale model is given by:

⟨w⟩f = −⟨Ŵ ⟩f∇X̄p
(0), (4.231)

∇X̄ · T̄Eff = 0, (4.232)

T̄Eff =
(
⟨CIM̂I + CI⟩I + ⟨CIIM̂II + CII⟩II

)
: ∇X̄u

(0) +
(
⟨CIQ̂I⟩I + ⟨CIIQ̂II⟩II

− ⟨(G(0)
f )T⟩f

)
p(0), (4.233)

ṗ(0) =
1

⟨G(0)
I : Q̂I⟩I + ⟨G(0)

II : Q̂II⟩II

[
∇X̄ · ⟨G(0)

f w⟩f +
(
⟨G(0)

f ⟩f − ⟨G(0)
I : M̂I⟩I

− ⟨G(0)
II : M̂II⟩II

)
: ∇X̄u̇

(0) +

(
⟨∇X̄ · (G(0)

I )T⟩I + ⟨∇X̄ · (G(0)
II )T⟩II

+ ⟨∇X̄ · (G(0)
f )T⟩f

)
· u̇(0)

]
, (4.234)

where the macroscale pressure is denoted by p(0), u(0) is the leading order elastic displace-

ment, the solid velocity is represented by u̇(0) and, finally, w is the leading order relative

fluid–solid velocity. Equation (4.231) in the macroscale model is Darcy’s law for w. Equa-

tion (4.232) of the macroscale model is the stress balance equation with the effective stress

tensor T̄Eff . The constitutive equation given by (4.233) is of poroelastic type; however,

it contains a nonlinear coordinate transformation. The effective elasticity tensor for the
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material is given by:

C̃ = ⟨CIM̂I + CI⟩I + ⟨CIIM̂II + CII⟩II (4.235)

Finally, (4.234) is the conservation of mass for a nonlinear poroelastic composite ma-

terial. The three terms in our expression for ṗ(0) that are the divergence of the Piola

transforms in the subphase, matrix and fluid, respectively, describe the volume changes

related to the deformation and can be viewed as a correction term that maintains the

conservation of mass despite the nonlinear coordinate transformations.

We can say that the effective mechanical behaviour of our nonlinear poroelastic com-

posite material can be fully described by the model coefficients, that is the effective elas-

ticity tensor C̃, the hydraulic conductivity tensor ⟨Ŵ ⟩f , the transformed Biot’s tensor of

coefficients, ᾱ and the transformed Biot’s modulus, M̄ . We note that although, struc-

turally, this model is similar to that of linear poroelasticity, the key novelty resides in the

model coefficients that capture the nonlinear deformations and the additional terms. These

model coefficients are to be obtained by solving the novel cell problems (4.143)–(4.145),

(4.205)–(4.210) and (4.211)–(4.216)

It would indeed be possible to make the choice of other strain energy functions and

follow a similar process as we have just carried out to obtain a model with different

coefficients and additional terms that would also describe nonlinear poroelastic composites.

We emphasise here that the choice of strain energy function influences the cinstitutive law

and the conservation of mass equations in the final macroscale model.

Next, we consider particular cases for our model and are able to derive previously

known models that were developed using the asymptotic homogenization technique.

4.3.2 Comparison with Linear Poroelastic Composites

We begin with the case where the poroelastic composite solids that we are considering

are linearly elastic. This setting is applicable to many situations including the interstitial

matrix of biological tissues and when describing hard hierarchical materials such as bones

and tendons where deformations are very small. We note that to reduce to the linear

elastic case, we have that G(0) → I. We also introduce the notation:

⟨φI⟩I + ⟨φII⟩II = ⟨φI + φII⟩s, (4.236)
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for fields φ with components φI and φII defined in the solid cell portions Ω0
I or Ω0

II, respec-

tively. This means that the model (4.231)-(4.234) reduces to:

⟨w⟩f = −⟨Ŵ ⟩f∇X̄p
(0),

∇X̄ · T̄Eff = 0,

T̄Eff = ⟨CIM̂I + CI + CIIM̂II + CII⟩s∇X̄u
(0) + (⟨CIQ̂I + CIIQ̂II⟩s − ϕI)p(0),

ṗ(0) =
1

⟨Tr(Q̂I + Q̂II)⟩s

(
∇X̄ · ⟨w⟩f + (ϕI− ⟨Tr(M̂I + M̂II)⟩s) : ∇X̄u̇

(0)

)
,

(4.237)

This is identically the model for linear poroelastic composites presented in [69] and

Chapter 3 (3.186) (up to the difference in notation). We note that the integral average

over the fluid domain of the identity tensor, ⟨I⟩f , is ϕI. We also have that ⟨G(0)
υ : Qυ⟩υ,

where υ = I, II becomes ⟨TrQυ⟩υ in the limit G(0) → I. Similarly, ⟨G(0)
υ : Mυ⟩υ : ∇X̄u̇

(0)

becomes ⟨TrMυ⟩υ : ∇X̄u̇
(0). As a result of taking the limit G(0) → I, we also have that

F(0) → I, and using this in the cell problems (4.143)–(4.145), (4.205)–(4.210) and (4.211)–

(4.216), we recover the same cell problems as in [69] and therefore obtain exactly the same

model coefficients under this limit and therefore we can equate the notation used in both

models.

We also note, as remarked in [69], that if we consider only one elastic phase, then the

model reduces to the macroscale model for a standard poroelastic material (see the no

growth limit in [87], as well as [19,68]). Furthermore, in the limit of zero fluid (no pores),

then this macroscale model reduces to the model for an elastic composite [89].

4.3.3 Comparison with Nonlinear Poroelasticity

We now wish to recover previous work on nonlinear poroelasticity. For this, we assume that

our material has only one hyperelastic phase, the matrix that we denote by ΩII, with fluid

flowing in the pores. We wish to compare our equation (4.225) under the assumption of

only one elastic phase (the matrix) with the generalised Biot fluid equation found in [17].

We can rewrite our equation with only one elastic phase as:

−∇X̄ · ⟨G(0)
f Ŵ ⟩f∇X̄p

(0) = ⟨G(0)
II : M̂II⟩II : ∇X̄u̇

(0) + ⟨G(0)
II : Q̂II⟩IIṗ(0) − ⟨∇X̄ · (G(0)

II )T⟩II · u̇(0)

−∇X̄ · (⟨G(0)
f ⟩f u̇(0)). (4.238)

We note that we do not consider any body forces, so the f appearing in [17] equals zero
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here. A general ansatz for u(1) was also used in [17], but we are still able to make some

identifications between the terms in our equation (4.238) and the terms in their generalised

Biot fluid equation. We note that the model coefficients of [17] all involve (G(0))T, so we

should point out that due to a different choice in the definition of the Piola transformation

between this work and [17], we have that (G(0))T in [17] equals G(0) in this work. We also

use a modified (4.16) where we only have G(0) = G
(0)
II in Ω0

II and G(0) = G
(0)
f in Ω0

f . This

means that we can identify the coefficients:

K∗ = −⟨G(0)Ŵ ⟩f , A∗ = ⟨∇Ȳ(G
(0)
II ÂII)⟩II = ⟨G(0)

II : M̂II⟩II,

B∗ = ⟨∇Ȳ(G
(0)
II âII)⟩II = ⟨G(0)

II : Q̂II⟩II, D∗ = ⟨G(0)⟩Ω.
(4.239)

The difference in sign between K∗ and Ŵ is due to the difference in the choice of ansatz

for the fluid problem. We therefore can recover the generalised Biot fluid equation from

our equation (4.238).

We now wish to compare the macroscale elasticity equation in [17] with our macroscale

balance equation and constitutive law (4.232) and (4.233). We first should note that in

our work, we are not considering any body forces, and therefore, we can assume that the

f and b appearing in [17] are both zero. Using (4.233) in (4.232) and reducing to only one

elastic phase (the matrix), we obtain:

∇X̄ ·
(
⟨CIIMII + CII⟩II : ∇X̄u

(0) +
(
⟨CIIQII⟩II − ⟨(G(0)

f )T⟩f
)
p(0)

)
= 0 (4.240)

We are able to make the identifications between the macroscale elasticity equation

of [17] using a generalised ansatz and our equation (4.240), where a specific ansatz is

used. The term Cex(u0) can be identified with our term CII : ∇X̄u
(0). Similarly, the term

Cey(N(p0,∇xu0)) can lead to our terms CIIMII : ∇X̄u
(0)+CIIQp

(0) when using our ansatz.

Finally, we need to compare the term ϕ1(p0,∇xu0)∇xp0 appearing in [17] with the final

term in (4.240). The final term in (4.240) can be expanded as:

−∇X̄ ·
(
⟨(G(0)

f )T⟩fp(0)
)
= −⟨(G(0)

f )T⟩f∇X̄p
(0) − (∇X̄ · ⟨G(0)

f ⟩f)p(0) (4.241)

The term ϕ1(p0,∇xu0)∇xp0 can be identified with the first term in (4.241), and when

we assume that G
(0)
f is a constant, then we recover exactly the macroscale elasticity equa-

tion of [17].
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We also wish to make a comparison between the cell problems found in [17] and our

cell problems. The fluid cell problem (4.143)–(4.145) matches exactly the first cell problem

found in [17]. We however do not require the second cell problem found in [17] as we do not

include any forces in our formulation, so f = 0. We also have the two elastic cell problems

(4.205)–(4.210) and (4.211)–(4.216), and these cannot be directly compared with the cell

problems found in [17] as these arise after the application of a specific ansatz. We can

however compare the elastic problem of [17] with (4.165) and (4.169), and it is clear that

if (4.165) and (4.169) are identical, up to a choice of sign, to the balance equation of [17]’

and continuity of tractions, then the same ansatz would produce the same cell problems.

4.3.4 Comparison with Nonlinear Elastic Composites

We now consider the case that our structure has no pores and therefore can be described as

a composite comprised of two hyperelastic materials. We can instantly reduce our model

(4.231)-(4.234) by removing the equations that govern the fluid. We are able to obtain the

model derived in [102], where we make the assumption that plastic distortions are absent,

that is assuming Fp = I in [102].

When we assume that Fp = I in [102], then we have that the plastic Green–Lagrange

strain tensor E
(0)
p = 1

2((F
(0)
p )TF

(0)
p − I) = 1

2(I − I) = 0. This means the first Piola stress

obtained in [102] becomes:

T
(0)
lin = CR : H, (4.242)

and we can make the identifications in the notation that CR = C and T
(0)
lin = (P

(0)
v )lin in

our case. Therefore, the first Piola stress tensor (4.194), that we obtained here matches

the first Piola stress obtained by [102].

We should note that within this work, we use notation to specifically identify the

two constituents of the composite, whereas [102] kept the different constituents implicit.

We can modify our problem (4.197)–(4.202) to remove the involvement of the fluid. We

therefore end up with the problem for elastic composites, which is given by:

∇Ȳ · (CI∇Ȳ(u
(1)
I )) +∇Ȳ · (CI∇X̄(u

(0))) = 0 in Ω0
I , (4.243)

∇Ȳ · (CII∇Ȳ(u
(1)
II )) +∇Ȳ · (CII∇X̄(u

(0))) = 0 in Ω0
II, (4.244)

u
(1)
I = u

(1)
II on Γ0

III, (4.245)

CI∇Ȳ(u
(1)
I )n0

III − CII∇Ȳ(u
(1)
II )n0

III = (CII − CI)∇X̄(u
(0))n0

III on Γ0
III. (4.246)
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When using the notation of [102], we can write (4.243)–(4.246) as:

DivȲ T
(0) = 0, (4.247)

[[u(1)]] = 0, (4.248)

[[T (0) ·N]] = 0. (4.249)

This matches identically the problem given by [102]. The reduced problem (4.243)–

(4.246) has the ansatz:

u
(1)
I = ÂI∇X̄u

(0) and u
(1)
II = ÂII∇X̄u

(0), (4.250)

where ÂI and ÂII are third rank tensors. This is the ansatz (4.203) and (4.204) where we

take p(0) = 0. This leads to the cell problem for ÂI and ÂII:

∇Ȳ · (CI∇Ȳ(ÂI)) +∇Ȳ · CI = 0,

∇Ȳ · (CII∇Ȳ(ÂII)) +∇Ȳ · CII = 0,

ÂI = ÂII,

CI∇Ȳ(ÂI)n
0
III − CII∇Ȳ(ÂII)n

0
III = (CII − CI)n

0
III,

(4.251)

which is again cell problem (4.205)–(4.210) reduced under the assumption that our

material has no pores. In [102], they remarked about the case of no plastic distortions

occurring and stated the cell problem they obtained under those circumstances, and this

is identical to the cell problem (4.251) where we make the identification that TGradȲ ξ =

∇ȲÂ = M̂ in our work and where we use the implicit notation that:

M̂ =


M̂I in Ω0

I ,

M̂II in Ω0
II.

(4.252)

Therefore, the cell problem from [102] that matches (4.251) is given by:


DivȲ (C + C : TGradȲ ξ) = 0,

[[ξ]] = 0,

[[(C + C : TGradȲ ξ) ·N]] = 0.

(4.253)

Finally, under the assumption of no fluid-filled pores, our macroscale model (4.231-
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(4.234)) can be reduced to:
∇X̄ · T̄Eff = 0,

T̄Eff = ⟨CIMI + CI + CIIMII + CII⟩s∇X̄u
(0).

(4.254)

We can make the identification that T̄Eff = Ĉ : GradX̄u
(0), then we can see that (4.254)

matches the model obtained in [102] in the absence of plastic distortions. This is given by:
DivX̄⟨Ĉ : GradX̄u

(0)⟩s = 0,

⟨Ĉ : GradX̄u
(0)⟩s = ⟨C : TGradȲ ξ + C ⟩sGradX̄u

(0).
(4.255)

Therefore, we can conclude that our model for nonlinear poroelastic composites can

reduce to the model of [102] under the assumption of no plastic distortions.

4.4 Concluding Remarks

We derived a novel framework consisting of partial differential equations that describe

the effective mechanical behaviour of nonlinear poroelastic composites. These structures

are comprised of a porous hyperelastic matrix with embedded hyperelastic subphases,

both of which interact with the fluid flowing in the pores. This type of structure is

applicable to many real-world situations, including modelling of soft biological tissues. We

began by considering the multiphase fluid–structure interaction (FSI) problem among all

the constituents. The problem is closed by appropriate interface conditions arising from

the continuity of tractions, displacements and velocities. We also performed a coordinate

transformation on certain quantities in the FSI problem in order to obtain a formulation in

the reference configuration. We exploited the length scale separation between the porescale

(where the pores and elastic subphases are clearly visible) and the macroscale (average

size of the material domain) to apply the asymptotic homogenization technique to the

non-dimensionalised system of PDEs in order to obtain a macroscale system of governing

equations. We were able to recover previously known results in the literature by considering

particular limit cases of our model. The new model encodes the detailed properties of the

microstructure in its coefficients, that is the microstructural details are encoded in the

effective hydraulic conductivity tensor, the Biot modulus and Biot’s tensor of coefficients.

These are computed by solving the arising differential problems on the periodic cell.
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The model obtained here is a generalisation of the formulations for multiphase elasto-

plastic composites [102] in the limit of no plastic distortions and the formulations of hy-

perelastic porous media [17]. The model is also a natural extension to the formulation for

linear poroelastic composites [69]. All three of these models are recovered as particular

cases of our new macroscale model.

The key novelty of this work is the ability to describe a scenario where the hypere-

lastic matrix is inhomogeneous at the porescale, that is we are able to account for the

interactions between various hyperelastic phases and the fluid flowing in the pores. This is

generally the case in biological tissues. This means that this model is applicable to a wide

range of biological scenarios including modelling lungs. The lungs have previously been

approached in a biphasic (tissue and air) manner [9]. However, the lung microstructure

is more complex, and there exist collagen and elastin fibres embedded in the matrix and

in the fluid, so it could therefore be beneficial to use a nonlinear poroelastic composite

approach to modelling. Another example is [121], where the interaction between pulsatile

blood flow and the arterial wall mechanics was modelled. The blood flow was modelled as

an incompressible viscous fluid, confined by Biot’s equations of poroelasticity for the artery

wall. This model could be generalised by considering the wall as a nonlinear poroelastic

composite of the type we modelled in this work.

The formulation of standard nonlinear poroelasticity is applicable when the solid phase

can be approximated as a homogeneous matrix. The linear formulation of poroelastic

composites is applicable to situations where the deformations are small such as in hard

hierarchical material such as bones (see, e.g., [83, 117]). Our novel model provides a

formulation that bridges a gap that has not previously been considered and can be grouped

with those found in [37] for strength homogenization, nonsaturated microporomechanics,

microporoplasticity and microporofracture and microporodamage theory as an extension

to the nonlinear homogenization of porous media.

There are some limitations of the current model, and there are a number possible

theoretical extensions that could potentially improve its applicability to certain biological

systems. At present, the macroscale model is derived by accounting for a quasi-static

regime and only considering the incompressibility of the fluid. Within this work, we used

the de Saint-Venant strain energy function for the sake of simplicity. To study a wider

range of scenarios, we would need to select a variety of more detailed constitutive laws

and then use those to formulate the problem before finding the corresponding cell prob-
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lems and the homogenized macroscale model. Strain energy functions specific to certain

applications could be used in our formulation, for example the Holzapfel–Ogden Law for

the myocardium. Another possible extension, which would be of particular interest, is

to incorporate growth and remodelling in our framework. Growth and remodelling are

of particular importance to settings such as arteries or heart subject to disease or age-

ing. Finally, a third theoretical extension we could consider would be the assumption

that the solid matrix and the subphases are both incompressible, in addition to the fluid

incompressibility, which was already assumed in this work. This would require the in-

compressibility constraint to be imposed when defining the strain energy function and

when determining the Piola stresses in the material. This would lead to alternative cell

problems and macroscale model. Moreover, it would be possible to assume that the fluid

was in fact compressible, and this would lead to the appearance of the fluid bulk modulus

in the resulting Biot’s modulus of our system. This modification could be particularly

useful to modelling applications in lungs where acoustic properties can be used to aid the

diagnosis of respiratory diseases [9,107]. It would also be possible to consider a three-scale

approach where there would exist an intermediate local scale between the porescale and

macroscale that is still well separated. To do this, we could follow the approach taken

in [103] and [101] for fibre-reinforced composites.

There are a number of potential next steps for this work; however, potentially the

most important of these is to investigate the model by numerical simulations. Recently,

the numerical simulations of the cell problems arising from the asymptotic homogenization

technique when studying linear elastic composites and linear poroelasticity were carried

out by [35, 88]. The simulations for a linear poroelastic composite could be obtained

by using the techniques in [35, 88] to compute the poroelastic coefficients in the linear

problem. Obtaining numerical results for the nonlinear macroscale model is significantly

more complex due to the coupling between the macroscale variables and the cell problems.

Developing suitable computational schemes is a current active area of research. A recent

example of a proposed method that could be potentially used to solve the types of problems

arising in this work is found in [36]. It is important to note that the potential results of

any simulations should be validated by experimental data, which could be related to

biological tissues.

In the next chapter we propose a novel theoretical model for hierarchical multiscale

porous materials. This is another development in the aim to create accurate real world
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poroelastic models. We derive the effective governing equations for double poroelastic

materials i.e. a poroelastic matrix with embedded poroelastic subphases. By addressing

this type of microstructure we can incorporate structural details from three scales into our

model meaning that we can produce more detailed results for applications.



Chapter 5

Double poroelasticity derived from

the microstructure

Within this work we will focus specifically on multiscale deformable porous media, in

particular we consider materials which have three different length scales. These materials

have a porous structure and the interactions that occur between the fluid and the solid

take place on a scale (the porescale), which is much smaller than the size of the whole

material (the global scale). However, a hierarchical porous medium is in general also

characterised by intermediate length scale(s). For example, it is possible to identify a

local scale related to poroelastic heterogeneities (see Fig. 5.1) and it is this scale and the

global scale that are focused on here. In this work, we are not addressing a full three-scale

modelling approach, see, e.g. [100] for an example related to elastic composites. We refer

to the underlying porescale microstructure as the equations used here are those that would

arise from upscaling of the porescale fluid-structure interaction between the fluid and solid

phases, see [19], [92]. These equations are Biot’s anisotropic, heterogeneous, compressible

equations for poroelasticity. This is the most general formulation and is not usually taken

into account, as most of the works in the literature typically refer to isotropic, and also

incompressible poroelasticity. It would be possible to indeed incorporate a third scale

(porescale) into this work where we would see the fluid flowing in the pores, however it

would not change the theoretical model derivation.

In this work we aim to determine the effective behaviour of a material which has the un-

derlying microstructure comprising both a poroelastic matrix and a number of embedded

poroelastic subphases (i.e. fibres, inclusions and strata) which are interacting with each

125
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other. We assume that the various phases are, in general, anisotropic and heterogeneous.

The main motivation behind this work is to study the behaviour of materials which com-

prise multiple poroelastic phases which are interacting on the local scale. This structure

has been considered by [85] where the authors study a poroelastic extracellular matrix in

which poroelastic cells are embedded. They develop a set of equations describing such a

material and use these equations to study the consolidation of a one-dimensional sample

of tissue. The interstitial matrix of biological tissues, which comprises many poroelastic

subphases such as cells and different types of collagen fibres embedded in the matrix [61],

is an example of this type of structure. In [105] and [24], the authors use the asymptotic

homogenization technique to provide an analysis of a system comprising a poroelastic ma-

trix with an embedded subphase. In these cases the simplification that the subphase is

purely elastic is made, which provides a model with different applications to which we

wish to consider here.

In the present work we generalise [105] and [24] by using the asymptotic homogeniza-

tion technique to upscale the interaction between the matrix and the subphases, where

each phase is described by Biot’s anisotropic, heterogeneous, compressible poroelasticity.

We assume the scale at which the various subphases are clearly resolved, denoted by the

local scale, is much smaller than the size of the whole domain, denoted global scale. The

upscaling can then be carried out, accounting for continuity of tractions, displacements,

pressures and fluxes across the interface between the phases. The resulting global scale

model is of Biot-type. The coefficients of the model encode the properties of the mi-

crostructure and are to be computed by solving differential problems on a finite subset

of the domain. The model recovers the works [105] and [24] under a set of consistent

simplifying assumptions.

The chapter is organised as follows. In Sec. 5.1 we consider the quasi-static, multi-

phase problem consisting of the governing equations for both the poroelastic matrix and the

poroelastic subphases and the appropriate interface conditions. The governing equations

for the matrix and the subphases are the equations of Biot’s anisotropic, heterogeneous,

compressible poroelasticity. In Sec. 5.2 we introduce the two-scale asymptotic homoge-

nization method. In Sec. 5.3 we enforce the length scale separation that occurs between,

the inter-subphase distance (the local scale) and the overall size of the domain (the global

scale) to apply the asymptotic homogenization technique to upscale the problem to a sys-

tem of global scale PDEs. In Sec. 5.4 we provide a detailed description of the effective



CHAPTER 5. DOUBLE POROELASTICITY FROM THE MICROSTRUCTURE 127

coefficients of our novel global scale model. We then prove that our novel global scale

model is both formally and substantially of poroelastic type by proving a) the existence

of a global scale Biot’s tensor of coefficients and b) that the effective Biot’s Modulus of

the system is positive. Sec. 5.5 concludes our work by discussing limitations of the model

and by providing further perspectives. We also provide an appendix in which we recover

previously known models by taking appropriate limiting cases of our global scale model

and provide an explicit computational scheme for solving the global scale model.

5.1 Formulation of the problem

We have a set Ω ∈ R3, where Ω is the union of a poroelastic matrix ΩM and a collection

of K disjoint embedded poroelastic subphases ΩSub, where we can write

ΩSub =
N⋃
η=1

Ωη. (5.1)

We have that Ω̄ = Ω̄M∪Ω̄Sub and ΩM∩ΩSub = ∅. A sketch of a cross section of the domain

Ω is shown in Fig. 5.1, where we highlight the hierarchical structure of the material we

are considering. At the local scale, Fig. 5.1 b), we have the various subdomains ΩM and

Ωη for η = 1, . . . , N. When zooming in on each of these subdomains separately, Fig. 5.1

c), we find that ΩM and Ωη have a standard poroelastic structure (see [19], [92]).

To set up an appropriate problem we require the governing equations for each of the

subdomains and interface conditions. The balance equations in the matrix and each of the

subphases are given by

∇ · σM = 0 in ΩM, (5.2)

∇ · ση = 0 in Ωη, (5.3)

respectively. We have σM and ση appearing in (5.2-5.3), these are the effective stress

tensors in the matrix and subphases respectively. These are given by

σM = CM : ξuM −αMϑM in ΩM, (5.4)

ση = Cη : ξuη −αηϑη in Ωη, (5.5)
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Figure 5.1: A schematic representing a cross section of the domain Ω showing the poroelas-
tic matrix ΩM in red and the various subphases Ωη in blue at the local scale. We highlight
the local scale periodic cell with embedded subphases and highlight the hierarchical struc-
ture of the materials we are considering here by also showing their porescale structures.

where

ξ(•) = ∇(•) + (∇(•))T

2
, (5.6)

is the symmetric part of the gradient operator. We have that uM and uη are the elastic

displacements in the matrix and each of the subphases respectively and ϑM and ϑη are

the pressures in the matrix and the subphases respectively. The CM and Cη are the

effective elasticity tensors which would be obtained from the homogenization at the finer

hierarchical level. CM and Cη are the effective elasticity tensors obtained in ( [19], [92])

for a standard poroelastic material. These effective elasticity tensors also possess major

and minor symmetries as proved in [68]. We can therefore write the fourth rank effective

elasticity tensors in components as CM
ijkl and Cη

ijkl, for i, j, k, l = 1, 2, 3. Therefore we have

CM
ijkl = CM

jikl = CM
ijlk = CM

klij , (5.7)

Cη
ijkl = Cη

jikl = Cη
ijlk = Cη

klij . (5.8)

The αM and αη appearing in (5.4-5.5) are the effective Biot’s tensors of coefficients in the

matrix and the subphases respectively, which have been obtained from the homogenization

at finer hierarchical scales. The second rank tensors αM and αη are related to the ratio of

fluid to solid volume changes at constant pressure in their respective poroelastic phases.
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We also have Darcy’s law for both the matrix and the subphases. That is,

wM = −KM∇ϑM in ΩM, (5.9)

wη = −Kη∇ϑη in Ωη, (5.10)

where KM and Kη are the hydraulic conductivities in the matrix and the subphases re-

spectively and the wM and wη are the relative fluid-solid velocities in the matrix and

subphases respectively1.

The last governing equation of each compartment is the conservation of mass equations

given by

ϑ̇M
MM

= −αM : ξu̇M −∇ ·wM in ΩM, (5.11)

ϑ̇η
Mη

= −αη : ξu̇η −∇ ·wη in Ωη, (5.12)

for the matrix and subphases respectively. The coefficients MM and Mη are the Biot’s

moduli in each compartment, which can as well be obtained from the homogenization

process at finer hierarchical scales. MM and Mη can be described physically as poroelastic

coefficients that depend on the porescale geometry, porosity and the fluid bulk modulus.

They also depend on the elastic properties of the matrix and subphases respectively. We

can interpret MM and Mη as the inverse of the variation of fluid volume in response to

a variation in pore pressure. MM and Mη are positive definite (see [68], for proof of this

property).

In order to close the problem in the whole domain Ω we require interface conditions

between the matrix and each of the embedded subphases. We define the interfaces as

Υη := ∂ΩM ∩ ∂Ωη for η = 1, .., N . Then we impose continuity of tractions, displacements,

pressures and fluxes. That is,

σMnη = σηnη on Υη, (5.13)

uM = uη on Υη. (5.14)

ϑM = ϑη on Υη, (5.15)

wM · nη = wη · nη on Υη, (5.16)

1They should be in principle multiplied by the porosities, however, the latter can be incorporated in
the definition of each hydraulic conductivity tensor
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where the unit outward vectors (i.e pointing into the subphase Ωη) normal to the interfaces

Υη are denoted by nη for η = 1, . . . , N .

The problem is also to be closed by appropriate boundary conditions on the external

boundary ∂Ω. The latter could be, for example, of Dirichlet-Neumann type, as noted

in [99]. The conditions on the external boundary typically do not play a role in the

derivation of results carried out by formal asymptotic homogenization.

Within the next section we decouple spatial variations by introducing two distinct

variables, we then introduce the two-scale asymptotic homogenization method and discuss

the assumptions made to carry out the required analysis in the sections that follow.

5.2 The two-scale asymptotic homogenization method

Here we summarise the problem that we introduced in the previous section and now wish

to perform a multiscale analysis of this system,

∇ · σM = 0 in ΩM, (5.17)

∇ · ση = 0 in Ωη, (5.18)

σM = CM : ξuM −αMϑM in ΩM, (5.19)

ση = Cη : ξuη −αηϑη in Ωη, (5.20)

wM = −KM∇ϑM in ΩM, (5.21)

wη = −Kη∇ϑη in Ωη, (5.22)

ϑ̇M
MM

= −αM : ξu̇M −∇ ·wM in ΩM, (5.23)

ϑ̇η
Mη

= −αη : ξu̇η −∇ ·wη in Ωη, (5.24)

σMnη = σηnη on Υη, (5.25)

uM = uη on Υη, (5.26)

ϑM = ϑη on Υη, (5.27)

wM · nη = wη · nη on Υη, (5.28)

up to conditions on the external boundary ∂Ω. We assume that the system can be charac-

terised by two different length scales. The whole domain Ω has the average size denoted by

D. This is the global scale. We assume the second length scale, L, to be the inter-subphase
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distance. This is the local scale.

We will now introduce the asymptotic homogenization technique which we will use to

upscale (5.17-5.28) to a system of global scale PDEs. We make the assumption that the

local length scale (this is where the individual subphases are distinctly visible from the

surrounding matrix) denoted by L, is small compared to the average size of the global

scale domain denoted by D. That is,

ϵ :=
L

D
≪ 1. (5.29)

We also must introduce a spatial variable y. This variable captures local scale variations

of the fields, that is

y =
x

ϵ
. (5.30)

The global scale and local scale have corresponding spatial variables x and y respectively.

These variables are formally independent. The gradient operator with the corresponding

two-scales becomes

∇ → ∇x +
1

ϵ
∇y. (5.31)

We assume that all fields in the system of equations (5.17-5.28) as well as CM, Cη, KM,

Kη, MM, Mη, αM and αη for η = 1, . . . , N are functions of both the spatial variables x

and y. We also assume that each of the fields can be written as a power series in ϵ. That

is,

φϵ(x,y, t) = φ(0)(x,y, t) + ϵφ(1)(x,y, t) + ϵ2φ(2)(x,y, t) + · · · (5.32)

where formally the series comprises an infinite number of terms and φ represents a typical

field in the current work.

Remark 11. (Local scale Periodicity) We assume that every field φ(l) in (5.17-5.28),

CM, Cη, KM, Kη, MM, Mη, αM and αη are y-periodic. This allows the analysis of

the microstructure to be carried out on a single periodic cell. We make this assumption

as it allows us to solve the local scale problems that we will obtain from the asymptotic

homogenization technique on a finite subset of the domain. However, the analysis that

follows could be carried out by assuming local boundedness of fields only (see, for example,

[19] and [90]).

Remark 12. (Uniformity on the global scale) It is clear that in principle the local scale

geometry can vary with respect to the global scale (See [87], [19], [48], [88], [32]). This
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dependence is however, in general neglected for the sake of simplicity. This means that the

material can be described as macroscopically uniform, i.e the local scale geometry does not

depend on the global scale variable x. We make this assumption here. This means that we

have the simple differentiation under the integral sign given by

∫
Ω
∇x · (•)dy = ∇x ·

∫
Ω
(•)dy, (5.33)

where (•) denotes a tensor or a vector quantity.

Remark 13. (Local scale Geometry) Up to this point we have assumed that there are many

different subphases in each periodic cell, this is highlighted in Fig. 5.1 (b). In general the

microstructure of biological tissues is very heterogeneous and will have many local scale

subphases. Therefore, by beginning the formulation with many subphases we are relating

our problem to this type of microstructure. However, for the sake of simplicity and without

loss of generality it is possible to restrict our analysis to the situation where there is only

one subphase embedded within each periodic cell. This is shown in Fig. 5.2 below. It

would be simple to extend the model to account for a number of subphases contained in the

periodic cell if this was appropriate for a specific application (See [88] where this has been

done for simple elastic composites). Therefore the subscript η is no longer needed. Due

to periodicity, we can identify the domain Ω with the periodic cell, which has matrix and

subphase sections denoted by ΩM and ΩSub respectively. The interface and corresponding

normal can be defined by Υ := ∂ΩM ∩ ∂ΩSub and nΥ.

Figure 5.2: A 2D sketch of the simplified microstructure where we assume that there is
only one subphase included in each periodic cell. The poroelastic matrix is shown in red
and the poroelastic subphase is shown in blue. The interface Υ between the phases is
shown in black.

Remark 14. (Strain gradient effects) In this work we embrace the traditional, zeroth-order
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asymptotic homogenization method (also used for example in the derivation of the standard

Biot’s equations in [19]), which means that we focus on obtaining a closed system of PDEs

for the zero-th order fields. We therefore formally derive the global scale model in the limit

ϵ → 0. The homogenised, zero-th order solution, (provided that the condition (5.29) is

met) is supposed to be accurate assuming that strain gradient effects, which would be taken

into account by fully considering further terms in the power series expansion (5.32), are

negligible. In this work, this condition is deemed acceptable as we are assuming that there

exists a sharp length scale separation in the system and we are considering a quasi-static

scenario (i.e. inertia is neglected), so that rates are supposed to be small. However, it is

possible not to enforce the strict limit as ϵ → 0 (motivated by either the presence of non-

negligible strain gradients triggered by fast rates and/or by ϵ not being sufficiently small

for higher order terms to be ignored) and to extend the macroscopic stress-strain relation

to include strain gradients in the formulation. For a clear derivation of this extended

macroscopic stress-strain relation for periodic elastic media see [42]. Additionally, for

further details see [109], [111] and [2], and the large number of references therein, where

strain gradient effects are discussed in detail for a variety of physical scenarios of interest.

Next, we exploit the two-scale asymptotic homogenization method to obtain the global

scale equations describing the behaviour of the double poroelastic material.

5.3 The global double poroelastic results

The assumptions (5.31) and (5.32) of the two-scale asymptotic homogenization technique

can now be applied to the system of equations (5.17-5.28). This gives the following mul-

tiscale PDEs

ϵ∇x · σϵ
M +∇y · σϵ

M = 0 in ΩM, (5.34)

ϵ∇x · σϵ
S +∇y · σϵ

S = 0 in ΩSub, (5.35)

ϵσϵ
M = CM : ξyu

ϵ
M + ϵCM : ξxu

ϵ
M − ϵαMϑ

ϵ
M in ΩM, (5.36)

ϵσϵ
S = CS : ξyu

ϵ
S + ϵCS : ξxu

ϵ
S − ϵαSϑ

ϵ
S in ΩSub, (5.37)

ϵwϵ
M = −KM∇yϑ

ϵ
M − ϵKM∇xϑ

ϵ
M in ΩM, (5.38)

ϵwϵ
S = −KS∇yϑ

ϵ
S − ϵKS∇xϑ

ϵ
S in ΩSub, (5.39)

ϵ
ϑ̇ϵM
MM

= −αM : ξyu̇
ϵ
M − ϵαM : ξxu̇

ϵ
M −∇y ·wϵ

M − ϵ∇x ·wϵ
M in ΩM, (5.40)
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ϵ
ϑ̇ϵS
MS

= −αS : ξyu̇
ϵ
S − ϵαS : ξxu̇

ϵ
S −∇y ·wϵ

S − ϵ∇x ·wϵ
S in ΩSub, (5.41)

σϵ
MnΥ = σϵ

SnΥ on Υ, (5.42)

uϵ
M = uϵ

S on Υ, (5.43)

ϑϵM = ϑϵS on Υ, (5.44)

wϵ
M · nΥ = wϵ

S · nΥ on Υ, (5.45)

where representation (5.32) is implied in relationships (5.34-5.45) and indicated by the

superscript ϵ. We also have periodic conditions on the cell boundary ∂Ω \ Υ. We then

proceed by equating the same terms multiplying the various powers of ϵl, l = 0, 1, . . . . This

way, we derive the global double poroelastic model in terms of the zero-th order variables.

We can equate the coefficients of ϵ0 in equations (5.34-5.45), which gives,

∇y · σ(0)
M = 0 in ΩM, (5.46)

∇y · σ(0)
S = 0 in ΩSub, (5.47)

CM : ξyu
(0)
M = 0 in ΩM, (5.48)

CS : ξyu
(0)
S = 0 in ΩSub, (5.49)

∇yϑ
(0)
M = 0 in ΩM, (5.50)

∇yϑ
(0)
S = 0 in ΩSub, (5.51)

αM : ξyu̇
(0)
M +∇y ·w(0)

M = 0 in ΩM, (5.52)

αS : ξyu̇
(0)
S +∇y ·w(0)

S = 0 in ΩSub, (5.53)

σ
(0)
M nΥ = σ

(0)
S nΥ on Υ, (5.54)

u
(0)
M = u

(0)
S on Υ, (5.55)

ϑ
(0)
M = ϑ

(0)
S on Υ, (5.56)

w
(0)
M · nΥ = w

(0)
S · nΥ on Υ. (5.57)

From (5.48) and (5.49) we can see that u
(0)
M and u

(0)
S are rigid body motions in y for each

x and so by y-periodicity we deduce that

u
(0)
M = u

(0)
M (x, t) and u

(0)
S = u

(0)
S (x, t), (5.58)

respectively. Since we also have the continuity of leading order displacements (5.55) then
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we can define

u(0)(x, t) := u
(0)
M = u

(0)
S . (5.59)

From (5.50) and (5.51) we have that

ϑ
(0)
M = ϑ

(0)
M (x, t) and ϑ

(0)
S = ϑ

(0)
S (x, t), (5.60)

respectively. Again since we also have the continuity of leading order pressures (5.56) then

we can define

ϑ(0)(x, t) := ϑ
(0)
M = ϑ

(0)
S . (5.61)

We will use the new notations (5.59) and (5.61) in the remainder of this work.

Now equating the coefficients of ϵ1 in the system of PDEs (5.34-5.45) we obtain,

∇x · σ(0)
M +∇y · σ(1)

M = 0 in ΩM, (5.62)

∇x · σ(0)
S +∇y · σ(1)

S = 0 in ΩSub, (5.63)

σ
(0)
M = CM : ξyu

(1)
M + CM : ξxu

(0) −αMϑ
(0) in ΩM, (5.64)

σ
(0)
S = CS : ξyu

(1)
S + CS : ξxu

(0) −αSϑ
(0) in ΩSub, (5.65)

w
(0)
M = −KM∇yϑ

(1)
M − KM∇xϑ

(0) in ΩM, (5.66)

w
(0)
S = −KS∇yϑ

(1)
S − KS∇xϑ

(0) in ΩSub, (5.67)

ϑ̇(0)

MM
= −αM : ξyu̇

(1)
M −αM : ξxu̇

(0)
M −∇y ·w(1)

M −∇x ·w(0)
M in ΩM, (5.68)

ϑ̇(0)

MS
= −αS : ξyu̇

(1)
S −αS : ξxu̇

(0)
S −∇y ·w(1)

S −∇x ·w(0)
S in ΩSub, (5.69)

σ
(1)
M nΥ = σ

(1)
S nΥ on Υ, (5.70)

u
(1)
M = u

(1)
S on Υ, (5.71)

ϑ
(1)
M = ϑ

(1)
S on Υ, (5.72)

w
(1)
M · nΥ = w

(1)
S · nΥ on Υ. (5.73)

We also define the specific cell average operator as

⟨φ⟩v =
1

|Ω|

∫
Ωv

φv(x,y, t) dy v = M, S. (5.74)

Here, φv is any of the components of the fields involved in our analysis in their respective
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subdomains, and |Ω| represents the volume of the periodic cell. As such we have

|Ω| = |ΩM|+ |ΩSub|. (5.75)

The cell average over the whole periodic cell is defined as

⟨φM + φS⟩Ω =
1

|Ω|

(∫
ΩM

φM(x,y, t) dy +

∫
ΩSub

φS(x,y, t) dy

)
. (5.76)

5.3.1 The global scale poroelastic constitutive relationship

Using equations (5.46), (5.47), (5.64), (5.65), (5.54) and (5.71) we can write the problem

for u
(1)
M and u

(1)
S . That is,

∇y · (CMξyu
(1)
M ) = −∇y · (CMξxu

(0)) +∇y · (ϑ(0)αM) in ΩM, (5.77)

∇y · (CSξyu
(1)
S ) = −∇y · (CSξxu

(0)) +∇y · (ϑ(0)αS) in ΩSub, (5.78)

(CMξyu
(1)
M − CSξyu

(1)
S )nΥ = ((CS − CM)ξxu

(0) − (αS −αM)ϑ(0))nΥ on Υ, (5.79)

u
(1)
M = u

(1)
S on Υ. (5.80)

The problem (5.77-5.80) admits a unique solution up to a y constant function. The

solution, exploiting linearity, is given as,

u
(1)
M = BMξxu

(0) + bMϑ
(0) + c1(x), (5.81)

u
(1)
S = BSξxu

(0) + bSϑ
(0) + c2(x), (5.82)

where c1(x) and c2(x) are y constant functions. The third order tensors BM and BS are

the solutions of the local scale problems given below

∇y · (CMξyBM) = −∇y · CM in ΩM, (5.83)

∇y · (CSξyBS) = −∇y · CS in ΩSub, (5.84)

(CMξyBM − CSξyBS)nΥ = (CS − CM)nΥ on Υ, (5.85)

BM = BS on Υ. (5.86)
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The vectors bM and bS satisfy the elastic-type problem given by

∇y · (CMξybM) = ∇y ·αM in ΩM, (5.87)

∇y · (CSξybS) = ∇y ·αS in ΩSub, (5.88)

(CMξybM − CSξybS)nΥ = −(αS −αM)nΥ on Υ, (5.89)

bM = bS on Υ. (5.90)

Both the problems (5.83-5.86) and (5.87-5.90) are to be solved on the cell and be equipped

with periodic conditions on ∂Ω\Υ. We also require one further condition on the auxiliary

variables BM, BS, bM and bS to ensure uniqueness, for example

⟨BM + BS⟩Ω = 0 and ⟨bM + bS⟩Ω = 0. (5.91)

For the cell problems (5.83-5.86) and (5.87-5.90) in components see Appendix A.2.

We can use (5.81-5.82) to write the leading order effective stress tensors in both the

matrix and the subphase respectively as

σ
(0)
M = CMξy(BMξxu

(0) + bMϑ
(0)) + CMξxu

(0) −αMϑ
(0)

= (CMLM + CM)ξxu
(0) + (CMτM −αM)ϑ(0), (5.92)

where we have the auxiliary tensors

LM = ξyBM and τM = ξybM, (5.93)

and

σ
(0)
S = CSξy(BSξxu

(0) + bSϑ
(0)) + CSξxu

(0) −αSϑ
(0)

= (CSLS + CS)ξxu
(0) + (CSτ S −αS)ϑ

(0), (5.94)

where we have the auxiliary tensors

LS = ξyBS and τ S = ξybS. (5.95)
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Summing up the integral averages of (5.62) and (5.63) gives

∫
ΩM

∇y · σ(1)
M dy +

∫
ΩSub

∇y · σ(1)
S dy +

∫
ΩM

∇x · σ(0)
M dy +

∫
ΩSub

∇x · σ(0)
S dy = 0. (5.96)

Application of the divergence theorem to the first two integrals and applying the assump-

tion of macroscopic uniformity to the last two integrals gives

∫
∂ΩM\Υ

σ
(1)
M n

ΩM\Υ
Υ dS +

∫
Υ
σ
(1)
M nΥdS +

∫
∂ΩSub\Υ

σ
(1)
S n

ΩSub\Υ
Υ dS−

∫
Υ
σ
(1)
S nΥdS

+∇x ·
∫
ΩM

σ
(0)
M dy +∇x ·

∫
ΩSub

σ
(0)
S dy = 0, (5.97)

where nΥ, n
ΩM\Υ
Υ and n

ΩSub\Υ
Υ are the unit normals corresponding to Υ, ∂ΩM \ Υ and

∂ΩSub \Υ. The terms on the boundaries ∂ΩM \Υ and ∂ΩSub \Υ cancel due to periodicity

and the terms on Υ cancel due to (5.70). So we have

∇x · ⟨σ(0)
M ⟩M +∇x · ⟨σ(0)

S ⟩S = 0, (5.98)

which can be written as

∇x · ⟨σ(0)
M + σ

(0)
S ⟩Ω = 0, (5.99)

by exploiting notation (5.76). We therefore have

∇x · σeff = 0, (5.100)

where

σeff = ⟨σ(0)
M + σ

(0)
S ⟩Ω (5.101)

= ⟨CMLM + CM + CSLS + CS⟩Ω : ξxu
(0) + ⟨CMτM + CSτ S −αM −αS⟩Ωϑ(0).

Relationship (5.101) represents the global scale constitutive equation for the double poroe-

lastic material, where the effective drained elasticity tensor is defined as

C̄ = ⟨CMLM + CM + CSLS + CS⟩Ω. (5.102)

Next, we derive the effective Darcy’s law and close the global scale system of PDEs.
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5.3.2 The effective Darcy’s law

We can use (5.52), (5.53), (5.72) and (5.57) to write the following problem for ϑ
(1)
M and

ϑ
(1)
S

∇y ·w(0)
M = 0 in ΩM, (5.103)

∇y ·w(0)
S = 0 in ΩSub, (5.104)

ϑ
(1)
M = ϑ

(1)
S on Υ, (5.105)

w
(0)
M · nΥ = w

(0)
S · nΥ on Υ. (5.106)

Using the expressions (5.66) and (5.67) for w
(0)
M and w

(0)
S we can rewrite the problem

(5.103-5.106) as

∇y · (KM∇yϑ
(1)
M ) = −∇y · (KM∇xϑ

(0)) in ΩM, (5.107)

∇y · (KS∇yϑ
(1)
S ) = −∇y · (KS∇xϑ

(0)) in ΩSub, (5.108)

ϑ
(1)
M = ϑ

(1)
S on Υ, (5.109)

(KM∇yϑ
(1)
M − KS∇yϑ

(1)
S ) · nΥ = ((KS − KM)∇xϑ

(0)) · nΥ on Υ. (5.110)

The problem given by (5.107-5.110) admits a unique solution up to a y constant function

(see [27], [7]). Exploiting linearity we have,

ϑ
(1)
M = ϑ̂M · ∇xϑ

(0) + c3(x), (5.111)

ϑ
(1)
S = ϑ̂S · ∇xϑ

(0) + c4(x), (5.112)

where c3(x) and c4(x) are y constant functions and ϑ̂M and ϑ̂S are vectors which satisfy

the following cell problem

∇y · (∇yϑ̂MKT
M) = −∇y · KT

M in ΩM, (5.113)

∇y · (∇yϑ̂SK
T
S ) = −∇y · KT

S in ΩSub, (5.114)

ϑ̂M = ϑ̂S on Υ, (5.115)

(∇yϑ̂MKT
M −∇yϑ̂SK

T
S )nΥ = (KS − KM)TnΥ on Υ. (5.116)

The anisotropic Poisson’s-type cell problem (5.113-5.116) is to be supplemented by periodic

conditions on the boundary ∂Ω \ Υ and a further condition has to be placed on ϑ̂M and
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ϑ̂S to ensure the solution is unique, for example

⟨ϑ̂M + ϑ̂S⟩Ω = 0. (5.117)

For cell problem (5.113-5.116) in components see Appendix A.1.

Using the expressions (5.111) and (5.112) for ϑ
(1)
M and ϑ

(1)
S in (5.66) and (5.67) and

taking the integral average (5.74) gives

⟨w(0)
M ⟩M = −⟨KM(∇yϑ̂M)T⟩M∇xϑ

(0) − ⟨KM⟩M∇xϑ
(0)

= −⟨KMRM + KM⟩M∇xϑ
(0), (5.118)

where we have used the notation

RM = (∇yϑ̂M)T, (5.119)

and

⟨w(0)
S ⟩S = −⟨KS(∇yϑ̂S)

T⟩S∇xϑ
(0) − ⟨KS⟩S∇xϑ

(0)

= −⟨KSRS + KS⟩S∇xϑ
(0), (5.120)

where we have used the notation

RS = (∇yϑ̂S)
T. (5.121)

Then we have the effective Darcy’s law

weff := ⟨w(0)
M +w

(0)
S ⟩Ω = −⟨KMRM + KM + KSRS + KS⟩Ω∇xϑ

(0). (5.122)

We can define the hydraulic conductivity tensor for this structure as

W = ⟨KMRM + KM + KSRS + KS, ⟩Ω (5.123)

and rewrite Darcy’s Law as

weff = −W∇xϑ
(0). (5.124)

We now wish to obtain the conservation of mass equation. We integrate the expressions
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(5.68) and (5.69) in ΩM and ΩSub respectively. That is

∫
ΩM

ϑ̇(0)

MM
dy +

∫
ΩSub

ϑ̇(0)

MS
dy = −

∫
ΩM

αM : ξxu̇
(0)dy −∇x ·

∫
ΩM

w
(0)
M dy

−
∫
ΩSub

αS : ξxu̇
(0)dy −∇x ·

∫
ΩSub

w
(0)
S dy −

∫
ΩM

αM : ξyu̇
(1)
M dy

−
∫
ΩSub

αS : ξyu̇
(1)
S dy −

∫
ΩM

∇y ·w(1)
M dy −

∫
ΩSub

∇y ·w(1)
S dy. (5.125)

Applying the divergence theorem and using (5.73) cancels the final two integrals and we

can rewrite the remaining terms as

(
⟨MM +MS⟩Ω
⟨MM⟩M⟨MS⟩S

)
ϑ̇(0) = −⟨αM +αS⟩Ωξxu̇(0) −∇x · ⟨w(0)

M +w
(0)
S ⟩Ω

− ⟨αM : ξyu̇
(1)
M +αS : ξyu̇

(1)
S ⟩Ω. (5.126)

We can use the expressions for u
(1)
M and u

(1)
S from (5.81) and (5.82) to obtain u̇

(1)
M and u̇

(1)
S

and using these in (5.126) we obtain

(
⟨MM +MS⟩Ω
⟨MM⟩M⟨MS⟩S

)
ϑ̇(0) = −

(
⟨αM +αS⟩Ω : ξxu̇

(0) +∇x ·weff (5.127)

+ ⟨LT
M : αM + LT

S : αS⟩Ω : ξxu̇
(0) + ⟨αM : τM +αS : τ S⟩Ωϑ̇(0)

)
. (5.128)

Rearranging (5.127) to obtain an expression for ϑ̇(0) we obtain

ϑ̇(0) = −M̄
(
∇x ·weff + ⟨αM +αS + LT

M : αM + LT
S : αS⟩Ω : ξxu̇

(0)

)
, (5.129)

where we define

M̄ :=
⟨MM⟩M⟨MS⟩S

⟨MM⟩M + ⟨MS⟩S + ⟨MM⟩M⟨MS⟩S(⟨αM : τM⟩M + ⟨αS : τ S⟩S)
, (5.130)

which reminds of the Biot’s modulus for the system. We can also define the tensor

α̃ := ⟨αM +αS + LT
M : αM + LT

S : αS⟩Ω, (5.131)

which has the form of an effective Biot’s tensor of coefficients.

Equations (5.100), (5.101), (5.122), (5.129), collectively represent, from a formal stand-

point, a poroelastic-type system of PDEs in terms of the zero-th order displacement, ve-
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locity, and pressure fields, i.e.

∇x · σeff = 0, (5.132a)

σeff = ⟨CMLM + CM + CSLS + CS⟩Ω : ξxu
(0) + ⟨CMτM + CSτ S

−αM −αS⟩Ωϑ(0), (5.132b)

weff = −⟨KMRM + KM + KSRS + KS⟩Ω∇xϑ
(0), (5.132c)

ϑ̇(0) = −M̄
(
∇x ·weff + α̃ : ξxu̇

(0)
)
, (5.132d)

where we have that ϑ(0) is the global scale pressure, weff comprises the average of w
(0)
M

and w
(0)
S which are the leading order relative fluid velocities in the matrix and subphase

respectively, u(0) is the solid displacement and u̇(0) is the solid velocity. Our model (5.132)

is formally of poroelastic-type. We can conclude from our global scale model that the me-

chanical behaviour of a double poroelastic material can be fully described by the material’s

effective elasticity tensor C̄, the hydraulic conductivity tensor W, the tensor α̃ which is

reminiscent of the classical Biot’s tensor of coefficients and the scalar quantity M̄ which

can be identified with the Biot’s modulus. For a step-by-step guide to solving the global

scale model (5.132) see Appendix A.2.

It is important to note that our global scale model (5.132) reduces to previously ob-

tained results when we consider the following limit cases. The first case is in the limit of

no fluid present in either our matrix or subphases. In this case the model reduces to that

of elastic composites (see [89]). When we assume that the subphase is purely elastic and

the matrix remains poroelastic we recover the works of [105] and [24]. We provide a more

detailed description and recover these limits in the appendix A.1.

Within the next section we will discuss each of the global scale coefficients in detail as

well as discussing the key novelties of the new model. We will then prove that our model

is both formally and substantially of poroelastic type by defining a global Biot’s tensor of

coefficients and proving the resulting Biot’s modulus is positive.

5.4 Properties of the coefficients on the global scale

The coefficients of the global scale model (5.132) that fully characterize the mechanical

behaviour of the double poroelastic material are the effective elasticity tensor C̄, the hy-

draulic conductivity tensor W, the Biot’s tensor of coefficients α̃ and the scalar Biot’s
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modulus M̄. These can be interpreted physically as follows. The constitutive law, which

is of poroelastic-type, has the drained effective elasticity tensor given by

C̄ = ⟨CMLM + CM + CSLS + CS⟩Ω. (5.133)

We should note here that the CM and CS are actually the effective elasticity tensors from

carrying out the homogenization process at the finer scale. These effective elasticity tensors

are positive semi-definite and possess both major and minor symmetries. The hydraulic

conductivity tensor is given by

W = ⟨KMRM + KM + KSRS + KS⟩Ω. (5.134)

This hydraulic conductivity tensor comprises the hydraulic conductivities KM and KS from

the matrix and subphase respectively, as well as two additional terms KMRM and KSRS

which account for the differences in the hydraulic conductivities of the subphase and the

matrix at different points on the local scale. This hydraulic conductivity tensor can be

found by solving the cell problem (5.113-5.116).

We can consider the effective Biot’s tensor of coefficients α̃.

Remark 15. (Effective Biot’s tensor of coefficients α̃) We have the effective Biot’s tensor

of coefficients given by

α̃ := ⟨αM +αS + LT
M : αM + LT

S : αS⟩Ω. (5.135)

The first two terms are the Biot’s tensors from the matrix and subphase respectively and

we should view the third and fourth terms of this expression as the contributions arising

from considering the changing compressibility at different points on the microstructure.

These final two terms can be thought of as a correction term to the typical cell average

(see (5.74)). We should note however, that when αM = αS = α, where α is a constant

then we can write α̃ as

α̃ = ⟨α+ α+ α(LM + LS)⟩Ω. (5.136)

We have that ⟨LM+LS⟩Ω = 0, as proved in [89], where the notation M has been used by [89]

instead of L to denote the same auxiliary tensor. This holds here since the cell problem

(5.83 - 5.86) for LM and LS is the cell problem for composites found in [89]. Therefore in

this specific case α̃ is the proper cell average of the Biot’s tensor of coefficients from the
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individual phases given by

α̃ = ⟨α+ α⟩Ω = ⟨α⟩M + ⟨α⟩S. (5.137)

Finally, the resulting Biot’s modulus M̄ comprises the coefficients MM and MS as well

as other terms involving αM, αS, τM and τ S. We can consider the physical interpretations

of M̄ for two possible scenarios. When αM and αS are not equal or constants then M̄

comprises the average of MM and MS and two other terms that account for local changes

in the compressibility occurring on the microstructure. When αM = αS = α, where α is a

constant then the effective Biot’s modulus M̄ is given by the harmonic mean. The effective

Biot’s modulus M̄ is the inverse of a storage coefficient. Under constant volumetric strain,

it can be defined as the increase in the amount of fluid as a result of a unit increase in

pore pressure.

Our new model has key features that make it differ substantially from other models of

poroelasticity, poroelastic composites or composite materials. That is, this model is able to

account for the behaviour of two different poroelastic compartments and the interactions

between them. We are therefore able to address the scenario where there exists a difference

in the poroelastic properties of the material which could potentially be dictated by a

difference in the elastic, fluid and geometrical properties at the local scale. This model

is of particular benefit to physiological applications. For example, in the cardiac muscle

the interstitial matrix with embedded fibroblast cells can be considered using this model

(see [74]). The interstitial matrix is clearly poroelastic and so too are the fibroblast

cells, so using our novel model in this situation would allow the poroelastic behaviour

of each of these phases to be considered individually leading to a much more realistic

description of the material. The key distinction between the current model and previous

models in the literature is the fact that our model coefficients can encode the difference

in a full set of poroelastic parameters. These coefficients are to be calculated by solving

differential problems on a finite subset of the given microstructure. The cell problem (5.87-

5.90), is novel and is the key feature that encodes the changes in compressibility, stiffness

and geometry of the two phases in the model coefficients. This means that these local

scale variations in compressibility, stiffness and geometry are encoded in the global scale

coefficients such as the average Biot’s modulus and the Biot’s tensor of coefficients, which

provides a precise description of the effective material behaviour. Overall our novel model
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reads as a comprehensive framework to describe materials that are composites comprising

of two different poroelastic structures.

Within the next subsection we will prove properties of the effective coefficients of the

model which allow us to conclude that our novel global scale model is truly of poroelastic

type.

5.4.1 Biot’s tensor of coefficients and Biot’s modulus

In this Section we demonstrate a) the existence of a tensor which plays the role of the

classical Biot’s tensor of coefficients via a suitable analytical identity and b) the global

scale coefficient M̄ is positive, which then qualifies as the global Biot’s modulus for the

double poroelastic material. Throughout the proofs of these properties we will use the cell

problems in components which can be found in Appendix A.2. We will also make use of

Gauss’ (divergence) theorem. The following two theorems involve the global scale model

coefficients which we summarise here, for convenience, as

α̃ := ⟨αM +αS + LT
M : αM + LT

S : αS⟩Ω, (5.138)

γ̄ := ⟨CMτM + CSτ S −αM −αS⟩Ω, (5.139)

M̄ :=
⟨MM⟩M⟨MS⟩S

⟨MM⟩M + ⟨MS⟩S + ⟨MM⟩M⟨MS⟩S(⟨αM : τM⟩M + ⟨αS : τ S⟩S)
, (5.140)

where α̃ and M̄ are from (5.130) and (5.131) respectively. The coefficient γ̄ multiplies the

global scale pressure ϑ(0) in the constitutive equation (5.101). We now state and prove

the first theorem. We start by focusing on the Biot’s tensor of coefficients.

Theorem 4 (Biot’s tensor of coefficients). The global scale coefficients γ̄ and α̃ are related

by the following relationship

γ̄ = −α̃. (5.141)

The existence of this equality guarantees that the tensor α̃ can be regarded as the Biot’s

tensor of coefficients for the double poroelastic material on the global scale.

Proof. We begin by writing γ̄ and α̃ in components as

γ̄ij = ⟨CM
ijklξkl(b

M) + CS
ijklξkl(b

S)− αM
ij − αS

ij⟩Ω, (5.142)

α̃ij = ⟨αM
ij + αS

ij + ξijkl(B
M)αM

kl + ξijkl(B
S)αS

kl⟩Ω. (5.143)
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We use (5.83) and (5.84) from the cell problems, in components, and multiply by bMi ,

bSi (which are the cell problem solutions) respectively. Integrating over ΩM and ΩSub,

respectively, yields

∫
ΩM

∂

∂yj
(CM

ijpqξ
kl
pq(B

M))bMi dy +

∫
ΩM

∂

∂yj
(CM

ijkl)b
M
i dy

+

∫
ΩSub

∂

∂yj
(CS

ijpqξ
kl
pq(B

S))bSi dy +

∫
ΩSub

∂

∂yj
(CS

ijkl)b
S
i dy = 0. (5.144)

We perform integration by parts to obtain

∫
ΩM

∂

∂yj
(CM

ijpqξ
kl
pq(B

M)bMi )dy −
∫
ΩM

CM
ijpqξ

kl
pq(B

M)
∂bMi
∂yj

dy +

∫
ΩM

∂

∂yj
(CM

ijklb
M
i )dy

−
∫
ΩM

CM
ijkl

∂bMi
∂yj

dy +

∫
ΩSub

∂

∂yj
(CS

ijpqξ
kl
pq(B

S)bSi )dy −
∫
ΩSub

CS
ijpqξ

kl
pq(B

S)
∂bSi
∂yj

dy

+

∫
ΩSub

∂

∂yj
(CS

ijklb
S
i )dy −

∫
ΩSub

CS
ijkl

∂bSi
∂yj

dy = 0. (5.145)

Enforcing Gauss’ theorem and using minor symmetries of CM and CS we have

∫
Υ
CM
ijpqξ

kl
pq(B

M)bMi · njdS +

∫
∂ΩM\Υ

CM
ijpqξ

kl
pq(B

M)bMi · nΩM\Υ
j dS

−
∫
ΩM

CM
ijpqξ

kl
pq(B

M)ξij(b
M)dy +

∫
Υ
CM
ijklb

M
i · njdS +

∫
∂ΩM\Υ

CM
ijklb

M
i · nΩM\Υ

j dS

−
∫
ΩM

CM
klijξij(b

M)dy −
∫
Υ
CS
ijpqξ

kl
pq(B

S)bSi · njdS (5.146)

+

∫
∂ΩSub\Υ

CS
ijpqξ

kl
pq(B

S)bSi · n
ΩSub\Υ
j dS−

∫
ΩSub

CS
ijpqξ

kl
pq(B

S)ξij(b
S)dy

−
∫
Υ
CS
ijklb

S
i · njdS +

∫
∂ΩSub\Υ

CS
ijklb

S
i · n

ΩSub\Υ
j dS−

∫
ΩSub

CS
klijξij(b

S)dy = 0,

where nΥ, n
ΩM\Υ
Υ and n

ΩSub\Υ
Υ are the unit normals corresponding to Υ, ∂ΩM \ Υ and

∂ΩSub \ Υ, and cancelling terms on the periodic boundaries due to y-periodicity and

accounting for the interface conditions (5.85) we obtain

∫
ΩM

ξij(b
M)CM

ijpqξ
kl
pq(B

M)dy +

∫
ΩM

CM
klijξij(b

M)dy +

∫
ΩSub

ξij(b
S)CS

ijpqξ
kl
pq(B

S)dy

+

∫
ΩSub

CS
klijξij(b

S)dy = 0. (5.147)
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Therefore we have

⟨ξij(bM)CM
ijpqξ

kl
pq(B

M) + ξij(b
S)CS

ijpqξ
kl
pq(B

S)⟩Ω = −⟨CM
klijξij(b

M) + CS
klijξij(b

S)⟩Ω. (5.148)

We now wish to multiply (5.87) and (5.88), in components, by the cell problem solutions

BM
ikl, B

S
ikl respectively and then integrate over ΩM and ΩSub respectively to obtain

∫
ΩM

∂

∂yj
(CM

ijpqξpq(b
M))BM

ikldy −
∫
ΩM

∂αM
ij

∂yj
BM

ikldy

+

∫
ΩSub

∂

∂yj
(CS

ijpqξpq(b
S))BS

ikldy −
∫
ΩSub

∂αS
ij

∂yj
BS

ikldy = 0. (5.149)

We perform integration by parts

∫
ΩM

∂

∂yj
(CM

ijpqξpq(b
M)BM

ikl)dy −
∫
ΩM

CM
ijpqξpq(b

M)
∂BM

ikl

∂yj
dy −

∫
ΩM

∂

∂yj
(αM

ijB
M
ikl)dy

+

∫
ΩM

αM
ij

∂BM
ikl

∂yj
dy +

∫
ΩSub

∂

∂yj
(CS

ijpqξpq(b
S)BS

ikl)dy −
∫
ΩSub

CS
ijpqξpq(b

S)
∂BS

ikl

∂yj
dy

−
∫
ΩSub

∂

∂yj
(αS

ijB
S
ikl)dy +

∫
ΩSub

αS
ij

∂BS
ikl

∂yj
dy = 0. (5.150)

We apply Gauss’ theorem and using both minor and major symmetries of CM and CS we

have

∫
Υ
(CM

ijpqξpq(b
M)BM

ikl) · njdS +

∫
∂ΩM\Υ

(CM
ijpqξpq(b

M)BM
ikl) · n

ΩM\Υ
j dS

−
∫
ΩM

ξij(b
M)CM

ijpqξ
kl
pq(B

M)dy −
∫
Υ
(αM

ijB
M
ikl) · njdS−

∫
∂ΩM\Υ

(αM
ijB

M
ikl) · n

ΩM\Υ
j dS

+

∫
ΩM

αM
ij

∂BM
ikl

∂yj
dy −

∫
Υ
(CS

ijpqξpq(b
S)BS

ikl) · njdS +

∫
∂ΩSub\Υ

(CS
ijpqξpq(b

S)BS
ikl) · n

ΩSub\Υ
j dS

−
∫
ΩSub

ξij(b
S)CS

ijpqξ
kl
pq(B

S)dy +

∫
Υ
(αS

ijB
S
ikl) · njdS−

∫
∂ΩSub\Υ

(αS
ijB

S
ikl) · n

ΩSub\Υ
j dS

+

∫
ΩSub

αS
ij

∂BS
ikl

∂yj
dy = 0, (5.151)

where nΥ, n
ΩM\Υ
Υ and n

ΩSub\Υ
Υ are the unit normals corresponding to Υ, ∂ΩM \ Υ and

∂ΩSub\Υ. Cancelling terms on the periodic boundaries due to y-periodicity and accounting

for the interface conditions (5.89) and (5.86) the terms of Υ cancel. So we can write (5.151)
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as

∫
ΩM

αM
ij

∂BM
ikl

∂yj
dy +

∫
ΩSub

αS
ij

∂BS
ikl

∂yj
dy =

∫
ΩM

ξij(b
M)CM

ijpqξ
kl
pq(B

M)dy

+

∫
ΩSub

ξij(b
S)CS

ijpqξ
kl
pq(B

S)dy. (5.152)

Hence we have

⟨ξij(bM)CM
ijpqξ

kl
pq(B

M) + ξij(b
S)CS

ijpqξ
kl
pq(B

S)⟩Ω = ⟨αM
ij ξ

kl
ij (B

M) + αS
ijξ

kl
ij (B

S)⟩Ω. (5.153)

From (5.153) and (5.148) we have that ⟨CMτM + CSτ S⟩Ω = −⟨LT
M : αM + LT

S : αS⟩Ω.

Therefore using this in the definitions of γ̄ and α̃, we have that γ̄ = −α̃ as required.

The model (5.132) can be recast to show its genuine poroelastic character by means of

the identity we proved, namely:

∇x · σeff = 0,

σeff = C̄ : ξxu
(0) − α̃ϑ(0),

weff = −W∇xϑ
(0),

ϑ̇(0) = −M̄
(
∇x ·weff + α̃ : ξxu̇

(0)
)
,

(5.154)

where we have

C̄ = ⟨CMLM + CM + CSLS + CS⟩Ω and W = ⟨KMRM + KM + KSRS + KS⟩Ω. (5.155)

We can now state and prove our second theorem relating to our global scale coefficients

Theorem 5 (The Biot’s Modulus is positive). The Biot’s modulus that arises from our

system, defined by

M̄ :=
⟨MM⟩M⟨MS⟩S

⟨MM⟩M + ⟨MS⟩S + ⟨MM⟩M⟨MS⟩S(⟨αM : τM⟩M + ⟨αS : τ S⟩S)
, (5.156)

is positive i.e.

M̄ > 0. (5.157)

Proof. To show that M̄ > 0, we need to show that the denominator of (5.156) is positive.
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So we rearrange the denominator and we then need to show that

⟨αM : τM⟩M + ⟨αS : τ S⟩S > −
(

1

⟨MM⟩M
+

1

⟨MS⟩S

)
, (5.158)

where MM and MS are positive definite from the homogenization process at the finer

scale. We are able to show that

⟨αM : τM⟩M + ⟨αS : τ S⟩S = ⟨αM : τM +αS : τ S⟩Ω ≥ 0, (5.159)

which means that (5.158) will be satisfied. To do this we begin by multiplying (5.87) and

(5.88) by bMi and bSi respectively and integrate over ΩM and ΩSub. That is

∫
ΩM

∂

∂yj
(CM

ijpqξpq(b
M))bMi dy −

∫
ΩM

∂αM
ij

∂yj
bMi dy

+

∫
ΩSub

∂

∂yj
(CS

ijpqξpq(b
S))bSi dy −

∫
ΩSub

∂αS
ij

∂yj
bSi dy = 0. (5.160)

Performing integration by parts

∫
ΩM

∂

∂yj
(CM

ijpqξpq(b
M)bMi )dy −

∫
ΩM

CM
ijpqξpq(b

M)
∂bMi
∂yj

dy −
∫
ΩM

∂

∂yj
(αM

ij b
M
i )dy

+

∫
ΩM

αM
ij

∂bMi
∂yj

dy +

∫
ΩSub

∂

∂yj
(CS

ijpqξpq(b
S)bSi )dy −

∫
ΩSub

CS
ijpqξpq(b

S)
∂bSi
∂yj

dy

−
∫
ΩSub

∂

∂yj
(αS

ijb
S
i )dy +

∫
ΩSub

αS
ij

∂bSi
∂yj

dy = 0. (5.161)

By enforcing Gauss’ theorem and using minor symmetries of CM and CS we have

∫
Υ
(CM

ijpqξpq(b
M)bMi ) · njdS +

∫
∂ΩM\Υ

(CM
ijpqξpq(b

M)bMi ) · nΩM\Υ
j dS

−
∫
ΩM

ξij(b
M)CM

ijpqξpq(b
M)dy −

∫
∂ΩM\Υ

(αM
ij b

M
i ) · nΩM\Υ

j dS−
∫
Υ
(αM

ij b
M
i ) · njdS

+

∫
ΩM

αM
ij

∂bMi
∂yj

dy −
∫
Υ
(CS

ijpqξpq(b
S)bSi ) · njdS +

∫
∂ΩSub\Υ

(CS
ijpqξpq(b

S)bSi ) · n
ΩSub\Υ
j dS

−
∫
ΩSub

ξij(b
S)CS

ijpqξpq(b
S)dy +

∫
Υ
(αS

ijb
S
i ) · njdS−

∫
∂ΩSub\Υ

(αS
ijb

S
i ) · n

ΩSub\Υ
j dS

+

∫
ΩSub

αS
ij

∂bSi
∂yj

dy = 0, (5.162)

where nΥ, n
ΩM\Υ
Υ and n

ΩSub\Υ
Υ are the unit normals corresponding to Υ, ∂ΩM \ Υ and

∂ΩSub \ Υ. Cancelling terms on the periodic boundaries due to y-periodicity and using
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(5.89) and (5.90) the terms on Υ cancel and so we can write (5.162) as

∫
ΩM

αM
ij

1

2

(
∂bMi
∂yj

+
∂bMj
∂yi

)
dy +

∫
ΩSub

αS
ij

1

2

(
∂bSi
∂yj

+
∂bSj
∂yi

)
dy

=

∫
ΩM

ξij(b
M)CM

ijpqξpq(b
M)dy +

∫
ΩSub

ξij(b
S)CS

ijpqξpq(b
S)dy. (5.163)

The two terms on the RHS of (5.163) are positive, so we therefore have that

∫
Ω
(αM

ij ξij(b
M) + αS

ijξij(b
S))dy > 0. (5.164)

Equivalently,

⟨αM : τM +αS : τ S⟩Ω > 0. (5.165)

In the case where αM = αS = constant then

⟨αM : τM +αS : τ S⟩Ω = 0. (5.166)

Therefore we have that M̄ > 0 and the proof is complete.

We have now proved both these properties for our model coefficients. This means that

our novel global scale model is both formally and substantially of poroelastic type.

5.5 Conclusion

We have presented the poroelastic system of PDEs with novel coefficients that describe

the effective behaviour of double poroelastic materials, i.e. a poroelastic matrix with em-

bedded poroelastic subphases. This type of structure represents many real-world scenarios

including biological soft tissues (e.g. cardiac muscle, artery walls and tumours), soil and

porous rocks. We have considered a quasi-static, multiphase problem, in the absence of

body forces, consisting of the governing equations for both the poroelastic matrix and

the poroelastic subphases (5.17-5.24). The governing equations for the matrix and the

subphases are the equations of Biot’s poroelasticity assuming anisotropy. The problem

is closed by the application of the appropriate interface conditions (5.25-5.28) that arise

from the continuity of tractions, displacements, pressures and fluxes across the boundary

between each of the subphases and the matrix. We have then enforced the length scale

separation that occurs between, the inter-subphase distance (the local scale) and the over-
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all size of the domain (the global scale) to apply the asymptotic homogenization technique

to upscale the structure-structure interaction problem to the system of global scale PDEs

(5.132). We prove that our novel global scale model (5.132) is both formally and sub-

stantially of poroelastic type by proving a) the existence of a global scale Biot’s tensor of

coefficients and b) the effective Biot’s Modulus is positive.

The model obtained in this work generalises [105] and [24] and is also a next natural step

in the modelling of hierarchical multiscale materials. The key novelty of this work resides

in taking into account the difference in a full set of poroelastic parameters characterising

the matrix and the subphases. This is reflected in the new cell problem (5.87-5.90). This

cell problem is driven by the changes in compressibility of the matrix and the subphase at

different points in the microstructure. Solving this cell problem encodes this detail of the

varying compressibility, stiffness and geometry of the microstructure in the quantities τM

and τ S, which appear in the coefficients of the global scale model. This means that the

local scale complexity is accounted for even at the global scale within the average Biot’s

modulus and the Biot’s tensor of coefficients. We have therefore addressed the scenario

where there exists a difference in the poroelastic properties of the material which could

potentially be dictated by a difference in the elastic, fluid and geometrical properties of

the material at the local scale. For these reasons our new formulation provides a robust

framework for fully describing double poroelastic materials effectively.

The current model assumes two standard poroelastic phases at the local scale, however,

it is possible to assume that one or both phases are a poroelastic composite [69]. This

situation would not change the overall global scale model however, different properties

would be encoded in the model coefficients due to the different porescale microstructure.

The problem detailed in Sec. 5.1 would instead use the global scale model derived in [69]

as the governing equations for the matrix compartment and continue with the upscaling

as carried out here. The effective elasticity tensor would encode the properties of the

inhomogeneous porescale material in the contributions CM and CS. A situation like this

could provide a more realistic setup for biological applications.

Our current model has some limitations and there are possible extensions to this current

work that would extend the applicability to a wider range of scenarios. At present the

model has been formulated to provide the global scale model in a quasi-static, linearized

setting.

It would be straight-forward to generalise our model to include linearized inertia and
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would result in additional terms in our global scale model. These changes would include

the appearance of leading order linearized inertia in the effective balance equation for the

effective stress (5.132a). The addition of these terms could help provide a more realistic

poroelastic modelling framework for biological tissues such as organs. For example, in the

lungs, this model with the addition of the inertia could lead to advances in the under-

standing of the acoustic properties of the lungs and be of use in non-invasive diagnosis of

pulmonary diseases [107]. The extension of this work to a nonlinear elasticity setting is

more challenging whilst using the two-scale asymptotic homogenization technique. There

have however, been recent advances in the literature (see, for example [99] and [28]).

The natural next step would be to obtain solutions to the model on the basis of a spe-

cific microstructure with parameters specified by real-world data. This data could relate to

a wide variety of biological examples. In the literature there have been three-dimensional

numerical simulations carried out on the cell problems obtained from asymptotic homog-

enization for elastic composites and poroelastic/porous materials ( [88], [35], [101]). The

numerical simulations for the cell problems associated with this model would combine the

strategies used within the literature. It would be possible to indeed incorporate a third

scale (porescale) into this work through the computational results. With experimental

data that characterised our material on the porescale and the local scale then we would

be able to produce numerical simulations for our model on three scales. The porescale

problems, where the fluid is flowing in the pores, would first be solved and this information

would then be used as the input data in the local scale cell problems. The local scale cell

problems would then be solved to provide the global scale model coefficients.

In the next chapter we carry out numerical simulations to highlight the advantages of

using our novel model for poroelastic composites, detailed in Chapter 3 [69], compared

with a standard Biot’s poroelastic approach when investigating the elastic parameters of

poroelastic materials. The results of this emphasise the necessity for the development of

poroelastic models with detailed microstructures such as that of poroelastic composites.



Chapter 6

Micromechanical analysis of the

effective stiffness of poroelastic

composites

Within this chapter we will compare the resulting elastic parameters arising from solving

the LMRP model [L. Miller and R. Penta, Effective Balance Equations for Poroelastic

Composites, Continuum Mechanics and Thermodynamics, 32, 1533-1557 (2020) ] [69],

which is derived in Chapter 3, for poroelastic composites compared to the parameters

that arise from solving a model for an elastic composite where the matrix is poroelastic.

In other words we determine the effect of considering the interactions of three different

phases (two elastic and one fluid) at the porescale compared to considering the interactions

of two elastic phases one of which results from a further homogenization problem at a

finer scale [19], [35]. When a material’s microstructure comprises a matrix, embedded

elastic subphases and fluid filled pores then using the models that are currently available

in the literature (excluding the LMRP model) gives two choices. These are making the

assumption that the matrix is homogeneous (ignore the subphases) or carry out a two-step

process. The two-step process involves first solving the Biot’s porous matrix problem and

then solving the elastic composite problem that comprises the subphases and the results of

the porous matrix simulations (the so-called standard poroelastic approach in this work).

This second approach means that even when considering the three phases, these are not

all at the same scale, which is what the intended application actually possesses as a

microstructure. This means that estimations of the parameters cannot be fully reliable.

153



CHAPTER 6. ANALYSIS OF STIFFNESS OF POROELASTIC COMPOSITES 154

We therefore developed the LMRP model to remove this issue. This analysis will highlight

under which circumstances the LMRP model provides a more accurate description of the

effective elastic parameters of a poroelastic material. We can describe our computational

platform for the LMRP model as robust, in the sense that it is very applicable to a variety

of situations. That is, the platform can be altered for a variety of geometries including

short fibres, various directions of fluid flow, a variety of different shaped inclusions and a

wide range of constitutive properties of the constituents.

The chapter is organised as follows. In Sec. 6.1, we introduce the LMRP model for

poroelastic composites, derived in [69], and also introduce a comparative setup that fo-

cusses on a standard poroelastic (Biot’s poroelasticity) approach. In Sec. 6.2 we have

a variety of subsections each individually aimed at introducing the computational setup

that would be required to solve the 3D and also the reduced 2D cell problems that arise

from both models introduced in Sec. 6.1. In Sec. 6.3, we provide the results of our 2D

simulations and give an example of the applicability of the model to investigating the

elastic parameters of the human heart. In Sec. 6.4 we carry out 3D simulations for a

different geometrical setup, namely the case of short fibre elastic inclusions, and obtain

the elastic parameters. In Sec. 6.5, we conclude this chapter by discussing the limitations

of the current simulations and provide further perspectives of the types of problems that

the model could investigate and the biological scenarios where it would be best applied.

We also have an appendix which contains a detailed 2D reduction of the cell problems for

the LMRP model for poroelastic composites for orthotropic constituents. This cases is the

most general and under simplifying assumptions it can also be used as a framework for the

2D cell problems for standard poroelasticity and elastic composites with elastic properties

with any possible symmetries.

6.1 Governing Equations

In this section we describe the governing equations for a poroelastic composite, the LMRP

model [69] which is derved in Chapter 3, and the governing equations for standard Biot’s

poroelastic materials with elastic inclusions. In Fig. 6.1 we can see a comparison of the

microstructure of each model setup. We note that in order to exemplify the difference

that being able to account for multiple elastic and fluid phases all at the same scale

has in comparison to the existing computational frameworks we have chosen the simplest
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geometry that considers uniaxial flow and uniaxial fibre/subphase elongation. Also for the

sake of symmetry we arrange the fluid flow as four cylinders in the corners of the cell. This

means that we will use a modified version of the LMRP model presented in Chapter 3

where only one solid phase is in contact with the fluid. We also chose this microstructure

as it allows for the reduction of the microstructural cell problems to 2D, which we present

clearly in the appendix in a way that can be used as guidance to the reader who would

also like to reduce to 2D their own different cell problems.

On the right-hand side of Fig. 6.1 we have the porescale microstructure (periodic cell)

of the LMRP model for poroelastic composites. We can see that this structure comprises a

porous matrix ΩII, and elastic inclusion ΩI and fluid filled pores Ωf . The interface between

the matrix and the inclusion is denoted ΓIII and the interface between the matrix and the

fluid is denoted ΓII.

Figure 6.1: Comparison of the two models microstructures 2D sketch of the 3D domains

In Fig. 6.1 we have presented the different choices for the microstructures showing both

the 3D and a 2D cross section of the domain.

Here we will introduce the effective balance equations for a poroelastic composite de-

rived by the asymptotic homogenization technique in [69]. The model is derived by con-
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sidering the fluid-structure interaction between a linear elastic porous matrix, ΩII, with

embedded linear elastic subphases, ΩI, with a Newtonian fluid, Ωf , flowing in the pores.

The fluid structure interaction problem consists of balance equations for each elastic do-

main and the fluid domain, as well as constitutive laws. We also have the incompressibility

contraint for the fluid and interface conditions such as continuity of tractions, elastic dis-

placements and velocities. We make the assumption that the size of the materials pores

(the porescale) is comparable with the distance between the adjacent subphases. This

length is then taken to be much smaller than the size of the whole domain (the macroscale).

This allows us to decouple the spatial scales, embracing the asymptotic homogenization

technique, and we derive the new macroscale model. The asymptotic homogenization tech-

nique applies the assumption that all fields in the fluid structure interaction problem can

be written as a power series of the scale sepatation parameter and then performing a mul-

tiple scale expansion we can derive the cell problems that determine the model coefficients.

The system of partial differential equations that arises from applying the technique is of

poroelastic-type. The coefficients of the model encode the properties of the microstructure,

and can be computed by solving appropriate cell problems which reflect the complexity of

the underlying material microstructure. The macroscale model comprises the balance of

linear momentum

∇x · TLMRP
Eff = 0, (6.1)

and the conservation of mass equation

ṗ(0)

MLMRP
= −∇x · ⟨w⟩f −αLMRP : ξxu̇

(0), (6.2)

where we have that ∇x is the macroscale gradient operator, (we note that with the sub-

script y this would be the microscale gradient operator), TLMRP
Eff is the stress tensor (the

superscript LMRP is used to show that this is the stress that arises specifically from this

model), p(0) is the macroscale pressure, ξx is the symmetric part of the macroscale gradient

operator, u̇(0) is the leading order solid velocity, w is the average fluid velocity,MLMRP and

αLMRP are the resulting Biot’s modulus and tensor associated with the system respectively.

The conservation of mass equation relates changes in the fluid pressure to changes in the

fluid and solid volumes. The macroscale model also comprises Darcy’s law

⟨w⟩f = −⟨W ⟩f∇xp
(0), (6.3)
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where ⟨W ⟩f is the hydraulic conductivity tensor, and the constitutive law

TLMRP
Eff = ⟨CIMI + CI + CIIMII + CII⟩sξxu(0) + γLMRPp(0), (6.4)

where Cv where v = I, II is the elasticity tensor for the inclusion and matrix respectively.

We can define the effective elasticity tensor C̃LMRP as

C̃LMRP = ⟨CIMI + CI + CIIMII + CII⟩s. (6.5)

We should note that our effective elasticity tensor possesses tetragonal symmetry, that is,

possessing six distinct elastic entries. The reason for this is that, while if we began with the

orthotropic elasticity tensor, we would have 9 different elastic entries, as the geometry we

selected is a cube with embedded cylinders with circular bases, then the x and y directions

are equivalent, and hence the reduction to 6 independent elastic parameters.

We therefore have that the behaviour of the poroelastic composite material can be

fully described by the effective elasticity tensor C̃LMRP, the hydraulic conductivity ⟨W ⟩f ,

the Biot’s tensor of coefficients αLMRP and the Biot’s coefficient MLMRP. We have that

these macroscale coefficients read

αLMRP = ϕI− ⟨Tr(MII)⟩s, MLMRP =
−1

⟨Tr(QII)⟩s
, γLMRP = ⟨CIIQII⟩s − ϕI, (6.6)

where the fourth rank tensors MI, MII and the second rank tensor QII are to be computed

by solving the microscale cell problems that will be discussed in the next section.

We note that the notation ⟨φ⟩ is a cell average defined as

⟨φ⟩k =
1

|Ω|

∫
Ωk

φ(x,y, t)dy k = f, s (6.7)

where φ is a general field in our system and |Ω| is the volume of the domain and the

integration is taken over the porescale.

Now we wish to consider the governing equations for our alternative comparison setup.

That is, the governing equations for a poroelastic material containing an elastic inclusion

derived via the asymptotic homogenization technique. This standard poroelastic setup is

merely created to act as a comparison highlighting how to approach a material that pos-

sesses a microstructure comprising a matrix, embedded elastic subphases and fluid filled

pores using the computational models already available in the literature (assuming we had
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not yet created the LMRP model). This approach uses Biot’s poroelasticity plus elastic

composites however doesn’t allow for the multiple elastic and fluid phase all to be consid-

ered at the same scale, hence firstly justifying the introduction of the LMRP model as well

as showing that calculating the elastic parameters via this standard poroelastic approach

cannot be entirely appropriate. We emphasise that this work focuses on the compari-

son between the drained elasticity tensors computed via the LMRP and SP approaches,

respectively, see also Remark 16.

We can determine that this microstructure is a limit case of the double poroelasticity

model [70] when there is no fluid in the inclusion. This is also the geometry considered

in [24] and [105]. This means that we are considering a linear elastic problem where the

interactions take place between a matrix (that is porous at a finer scale), ΩPM, and an

embedded linear elastic inclusion ΩI. We should note that the elastic inclusion ΩI is the

same in both model setups, that is, it possesses exactly the same elastic properties and

volume fraction, and it is only the scale at which the matrix is porous that varies between

this setup and the LMRP model. This structure is shown in Fig. 6.1. The interface

between the inclusion and the porous matrix is denoted ΓPM. We assume that the distance

between the embedded subphases (the microscale) is small compared with the size of the

whole domain (the macroscale). By enforcing this scale separation we can decouple the

spatial scales and and derive the effective governing equations for the poroelastic material

with an elastic inclusion. The governing equations are those presented in the appendix

of [70] in the limit of only fluid in one phase. The stress balance is given by

∇x · TSP
Eff = 0, (6.8)

with the constitutive law

TSP
Eff = ⟨CSP

I MSP
I + CSP

I + CPMMSP
II + CPM⟩sξxû(0) + γSPp̂(0). (6.9)

where p̂(0) is the macroscale pressure, û(0) is the leading order elastic displacement and

γSP = ⟨CSP
I Q

SP
I + CPMQ

SP
II ⟩s −αM. (6.10)

We have used the superscript SP to denote that this approach compares with Standard

Poroelasticity. The second rank tensors QSP
I , QSP

II are to be computed by solving microscale
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cell problems that encode details of the materials microstructure and the second rank

tensor αM is the Biot’s tensor of coefficients that arises from the homogenization of the

porous matrix at the finer scale. We can define the effective elasticity tensor C̃SP as

C̃SP = ⟨CSP
I MSP

I + CSP
I + CPMMSP

II + CPM⟩s. (6.11)

Where we have that CPM is the effective elasticity tensor that arises from carrying out the

asymptotic homogenization technique on the porous matrix, CSP
I is the elasticity tensor for

the inclusion in this model setup, and is equal to CI from the LMRP model. The fourth

rank tensors MSP
I , MSP

II are to be computed by solving the microscale cell problems that

will be discussed in the next section. We should note that our effective elasticity tensor

possesses tetragonal symmetry for the same geometrical reasons as described for C̃LMRP

previously.

The macroscale model also comprises the conservation of mass equation given by

˙̂p(0)

MSP
= −∇x · ⟨w′

eff⟩f −αSP : ξx ˙̂u
(0), (6.12)

where ˙̂u(0) is the leading order solid velocity,MSP and αSP are the resulting Biot’s modulus

and tensor associated with the system respectively and are given by

αSP = ⟨αM + (MSP
II )

T : αM⟩s, MSP =
⟨MPM⟩s

1 + ⟨MPM(αM : QSP
II )⟩s

(6.13)

where MPM is the Biot’s modulus of the porous matrix and the w′
eff is given as the final

macroscale equation (Darcy’s law)

⟨w′
eff⟩f = −⟨W ′⟩f∇xp̂

(0), (6.14)

where the second rank tensorW ′ is a modified hydraulic conductivity tensor that accounts

for the differences in hydraulic conductivities at different points in the microstructure.

Remark 16 (Undrained Effective Elasticity tensors). We have presented a brief summary

of the LMRP model [69] and the comparative setup SP that combines standard poroelas-

ticity with elastic composites. We have presented the whole model for each of these setups

for the sake of completeness however, the simulations focus on only computing the effec-

tive drained elasticity tensor. However, it would be possible to also compute the equivalent
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tensors for the undrained case. To do this first for the LMRP model we would assume

that we had a static fluid filling phase and the undrained elasticity tensor could be obtained

using a static (6.2) in (6.4). This gives the undrained effective elasticity tensor

C̃LMRP
undrained = C̃LMRP +ααM. (6.15)

In exactly the same way we would assume a static (6.12) and use in (6.9) to obtain the

undrained elasticity tensor for the standard poroelastic with elastic inclusion approach.

C̃SP
undrained = C̃SP + α̃α̃M. (6.16)

By carrying out further simulations (which are beyond the scope of this particular work),

we could also compute this undrained effective elasticity tensor for each of these setups.

We also note that despite it not being a focus of this particular work that all the

poroelastic coefficients of both model setups are able to be obtained. The additional problems

which are not presented here and that would need to be solved to compute the Biot’s modulus

and tensor of coefficients and hydraulic conductivity can be found in [69].

6.2 Computational setup

Within this section we consider the numerical setups and describe the 3D cell problems

required to compute the effective elasticity tensor for both the LMRP model and the

standard poroelasticity with an elastic inclusion. We then also provide the 2D reduction for

each of the cell problems by simplifying the framework for a 2D reduction of a poroelastic

composite with orthotropic elastic phases that is provided in detail in the appendix. B.1.

Here we summarise the specific equations for each of the 9 particular cell problems that

we present in detail in the following 4 subsections. For the 3D LMRP model cell problem

see (6.19)-(6.23) and for the 2D equivalent of the LMRP model see (B.23)-(B.27) (in-plane)

and (6.50)-(6.54) (anti-plane). For the standard poroelastic with inclusion setup we have

two steps, first the standard cell problem for poroelasticity in 3D is given by (6.73)-(6.74)

and the 2D equivalent of this is given by (B.24) and (B.27) (in-plane) and (6.95) and

(6.96) (anti-plane). We then have the second step where the 3D elastic composite problem

is given by (6.77)-(6.80) and the 2D equivalent of this is given by (B.23)-(B.26) (in-plane)

and (6.105)-(6.108) (anti-plane).
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6.2.1 3D Cell Problems for LMRP model

We are able to compute the fourth rank effective elasticity tensor C̃LMRP for the LMRP

model and by using its components calculate the two Young’s moduli and two shear moduli

corresponding to our model. The effective elasticity tensor is given by

C̃LMRP = ⟨CIMI + CI + CIIMII + CII⟩s. (6.17)

We can see that this comprises the fourth rank tensor Mi, where i = I, II, which can be

defined as

MI = ξklpq(A
I) =

1

2

(
∂AI

pkl

∂yq
+
∂AI

qkl

∂yp

)
; MII = ξklpq(A

II) =
1

2

(
∂AII

pkl

∂yq
+
∂AII

qkl

∂yp

)
. (6.18)

We can then write the cell problems for third rank tensors AI and AII, found in [69] and

Chapter 3, with corresponding components AI
ikl and A

II
ikl as

∂

∂yj

(
CI
ijpqξ

kl
pq(A

I)

)
+
∂CI

ijkl

∂yj
= 0 in ΩI (6.19)

∂

∂yj

(
CII
ijpqξ

kl
pq(A

II)

)
+
∂CII

ijkl

∂yj
= 0 in ΩII (6.20)

CI
ijpqξ

kl
pq(A

I)nIII
j − CII

ijpqξ
kl
pq(A

II)nIII
j = (CII − CI)ijkln

III
j on ΓIII (6.21)

AI
ikl = AII

ikl on ΓIII (6.22)

CII
ijpqξ

kl
pq(A

II)nII
j + CII

ijkln
II
j = 0 on ΓII. (6.23)

The solutions to the problem (6.19)-(6.23), ξklpq(A
I) and ξklpq(A

II), are found by solving six

elastic-type cell problems by fixing the couple of indices (k, l). By doing this the ξklpq(A
I)

and ξklpq(A
II) that appear in (6.19)-(6.23) represent a strain. Then for every fixed couple

(k, l) we have a linear elastic problem which has the following forces driving each of the

six cell problems (6.19)-(6.23) which depend on the jump in the elastic constants between

the matrix and the subphase and on the geometry of the subphase, that is encoded in the

normal nIII to the interface between the matrix and inclusion ΓIII

kl = 11 CI
ijpqξ

11
pq (A

I)nIII
j − CII

ijpqξ
11
pq (A

II)nIII
j = (CII − CI)ij11n

III
j ,

where fΓIII
i = (CII − CI)ij11n

III
j (6.24)

kl = 22 CI
ijpqξ

22
pq (A

I)nIII
j − CII

ijpqξ
22
pq (A

II)nIII
j = (CII − CI)ij22n

III
j ,
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where fΓIII
i = (CII − CI)ij22n

III
j (6.25)

kl = 33 CI
ijpqξ

33
pq (A

I)nIII
j − CII

ijpqξ
33
pq (A

II)nIII
j = (CII − CI)ij33n

III
j ,

where fΓIII
i = (CII − CI)ij33n

III
j (6.26)

kl = 23 CI
ijpqξ

23
pq (A

I)nIII
j − CII

ijpqξ
23
pq (A

II)nIII
j = (CII − CI)ij23n

III
j ,

where fΓIII
i = (CII − CI)ij23n

III
j (6.27)

kl = 13 CI
ijpqξ

13
pq (A

I)nIII
j − CII

ijpqξ
13
pq (A

II)nIII
j = (CII − CI)ij13n

III
j ,

where fΓIII
i = (CII − CI)ij13n

III
j (6.28)

kl = 12 CI
ijpqξ

12
pq (A

I)nIII
j − CII

ijpqξ
12
pq (A

II)nIII
j = (CII − CI)ij12n

III
j ,

where fΓIII
i = (CII − CI)ij12n

III
j (6.29)

where nIII is the unit outward normal corresponding to the interface ΓIII. In order to solve

(6.19)-(6.23) we also have interface conditions between the matrix and the fluid, ΓII. We

are still fixing every couple (k, l) to find the following forces that account for the difference

between the elastic matrix and the void where the fluid has been removed since we are

computing the drained coefficients. The normal nII encodes the geometry of the voids as

it is the normal to the interface ΓII. The forces therefore are

kl = 11 CII
ijpqξ

11
pq (A

II)nII
j = −CII

ij11n
II
j , where fΓII

i = CII
ij11n

II
j (6.30)

kl = 22 CII
ijpqξ

22
pq (A

II)nII
j = −CII

ij22n
II
j , where fΓII

i = CII
ij22n

II
j (6.31)

kl = 33 CII
ijpqξ

33
pq (A

II)nII
j = −CII

ij33n
II
j , where fΓII

i = CII
ij33n

II
j (6.32)

kl = 23 CII
ijpqξ

23
pq (A

II)nII
j = −CII

ij23n
II
j , where fΓII

i = CII
ij23n

II
j (6.33)

kl = 13 CII
ijpqξ

13
pq (A

II)nII
j = −CII

ij13n
II
j , where fΓII

i = CII
ij13n

II
j (6.34)

kl = 12 CII
ijpqξ

12
pq (A

II)nII
j = −CII

ij12n
II
j , where fΓII

i = CII
ij12n

II
j (6.35)

where nII is the unit outward normal corresponding to the interface ΓII. We assume that

the fourth rank elasticity tensors CI
ijpq and CII

ijpq are isotropic at the porescale. That is

CI
ijpq = λIδijδpq + µI(δipδjq + δiqδjp) (6.36)

CII
ijpq = λIIδijδpq + µII(δipδjq + δiqδjp) (6.37)

We can then use (6.36) and (6.37) in the interface loads to determine the forces fΓIII
i on

ΓIII and the forces fΓII
i on ΓII. We note that for the forces fi the superscript given refers
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to the interface on which the force is applied, we will use this convention throughout this

chapter. Firstly the forces on the matrix inclusion interface ΓIII

kl = 11 fΓIII = (λII − λI)nIII + 2(µII − µI)nIII
1 e1 (6.38)

kl = 22 fΓIII = (λII − λI)nIII + 2(µII − µI)nIII
2 e2 (6.39)

kl = 33 fΓIII = (λII − λI)nIII + 2(µII − µI)nIII
3 e3 (6.40)

kl = 23 fΓIII = (µII − µI)(nIII
3 e2 + nIII

2 e3) (6.41)

kl = 13 fΓIII = (µII − µI)(nIII
3 e1 + nIII

1 e3) (6.42)

kl = 12 fΓIII = (µII − µI)(nIII
2 e1 + nIII

1 e2) (6.43)

where we have used nIII
1 , nIII

2 and nIII
3 to mean the components of the unit vector normal to

the interface ΓIII and we have used the standard unit vectors in the Cartesian coordinate

system e1, e2 and e3. Similarly for the fluid-matrix interface, ΓII we have the forces

kl = 11 fΓII = λIInII + 2µIInII
1 e1 (6.44)

kl = 22 fΓII = λIInII + 2µIInII
2 e2 (6.45)

kl = 33 fΓII = λIInII + 2µIInII
3 e3 (6.46)

kl = 23 fΓII = µII(nII
3 e2 + nII

2 e3) (6.47)

kl = 13 fΓII = µII(nII
3 e1 + nII

1 e3) (6.48)

kl = 12 fΓII = µII(nII
2 e1 + nII

1 e2) (6.49)

where we have used nII
1 , n

II
2 and nII

3 to mean the components of the unit vector normal to

the interface ΓII and we have used the standard unit vectors in the Cartesian coordinate

system e1, e2 and e3. We note that because of the geometry that we have chosen for the

periodic cell (see Fig. 6.1) that we only have two interfaces so this is a limit case of the

cell problems shown in Chapter 3 where we have all inclusions interacting with the fluid.

The cell problem (6.19)-(6.23) is a three dimensional problem. Our interface condi-

tions (6.38)-(6.43) and (6.44)-(6.49) are also 3D. For each pair of boundary loads given

in (6.38)-(6.43) and (6.44)-(6.49) we compute a corresponding numerical solution of the

elastic-type problem (6.19)-(6.23). This can be done using the finite element software

Comsol Multiphysics employing its Structural Mechanics Module. We wish to perform 2D

simulations so we must reduce our cell problems.
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The cell problem (6.19)-(6.23) is a three dimensional problem. Our interface conditions

(6.38)-(6.43) and (6.44)-(6.49) are also 3D. We wish to perform 2D simulations so we must

reduce our cell problems.

6.2.2 2D Cell Problems for LMRP model

We now wish to consider the 2D reduction of the cell problems. The geometry of our

periodic cell is such that we have a cube with a cylindrical elastic inclusion extending in

the e3 direction from the top to the bottom of the cell as well as 4 cylindrical voids placed

in each of the corners of the cube also extending from the top to the bottom of the cell in

the e3 direction. This means that at every cross-section in the e3 direction gives a square

with a circular inclusion and 4 circular voids. This geometry is shown in the 2D sketch

Fig. 6.2.

Figure 6.2: Schematic of the 2D domain for LMRP model microstructure

We can consider the 2D reduction presented in the appendix and assume that both the

inclusion and the matrix are isotropic materials. This means that we have that Ci
1111 =

Ci
2222 = Ci

3333 = λi + 2µi, Ci
2323 = Ci

1313 = Ci
1212 = µi and Ci

1122 = Ci
2211 = Ci

1133 =

Ci
3311 = Ci

2233 = Ci
3322 = λi where i = I, II. Using this in the anti-plane problem (B.18)-

(B.22) we obtain

µI
∂AI

3kl

∂y21
+ µI

∂AI
3kl

∂y22
= 0 in DI (6.50)

µII
∂AII

3kl

∂y21
+ µII

∂AII
3kl

∂y22
= 0 in DII (6.51)

µI
∂AI

3kl

∂y1
nIII
1 + µI

∂AI
3kl

∂y2
nIII
2 −

(
µII
∂AII

3kl

∂y1
nIII
1 + µII

∂AII
3kl

∂y2
nIII
2

)
= (CII

31kln
III
1 + CII

32kln
III
2 )− (CI

31kln
III
1 + CI

32kln
III
2 ) on ∂DI ∩ ∂DII (6.52)

AI
3kl = AII

3kl on ∂DI ∩ ∂DII (6.53)

µII
∂AII

3kl

∂y1
nII
1 + µII

∂AII
3kl

∂y2
nII
2 + CII

31kln
II
1 + CII

32kln
II
2 = 0 on ∂Df (6.54)
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where the notation DI, DII are the corresponding 2D slices of ΩI and ΩII. The interfaces

in 2D are represented as ∂DI ∩ ∂DII for the matrix inclusion interface and ∂Df for the

fluid-matrix interface. We also note that our normals to the interfaces ∂DI ∩ ∂DII and

∂Df are the same normals (but with only two components) as in the 3D case as these

were normals to cylindrical surfaces so are still the normals to the curved surfaces of the

circular voids and inclusion.

The solutions to the problem (6.50)-(6.54) are found by solving the two anti-plane

problems by fixing the couple (k,l)=(1,3)=(3,1), (2,3)=(3,2). Then for every fixed couple

we have the Poisson problem with the following interface conditions. The first force we

require to solve (6.50)-(6.54) is on the matrix inclusion interface, ∂DI ∩ ∂DII, and it is, for

each fixed couple,

kl = 23 µI∂A
I
323

∂y1
nIII
1 + µI∂A

I
323

∂y2
nIII
2 −

(
µII∂A

II
323

∂y1
nIII
1 + µII∂A

II
323

∂y2
nIII
2

)
= (CII

3123n
III
1 + CII

3223n
III
2 )− (CI

3123n
III
1 + CI

3223n
III
2 ),

where f∂DI∩∂DII
anti = (CII

3123n
III
1 + CII

3223n
III
2 )− (CI

3123n
III
1 + CI

3223n
III
2 ) (6.55)

kl = 13 µI∂A
I
313

∂y1
nIII
1 + µI∂A

I
313

∂y2
nIII
2 −

(
µII∂A

II
313

∂y1
nIII
1 + µII∂A

II
313

∂y2
nIII
2

)
= (CII

3113n
III
1 + CII

3213n
III
2 )− (CI

3113n
III
1 + CI

3213n
III
2 ),

where f∂DI∩∂DII
anti = (CII

3113n
III
1 + CII

3213n
III
2 )− (CI

3113n
III
1 + CI

3213n
III
2 ) (6.56)

where the forces can be written using the assumption of isotropy of both phases as

kl = 23 f∂DI∩∂DII
anti = CII

3223n
III
2 − CI

3223n
III
2 = µIInIII

2 − µInIII
2 (6.57)

kl = 13 f∂DI∩∂DII
anti = CII

3113n
III
1 − CI

3113n
III
1 = µIInIII

1 − µInIII
1 . (6.58)

The second force we require to solve (6.50)-(6.54) is on the matrix fluid interface, ∂Df ,

and we have

kl = 23 µII∂A
II
323

∂y1
nII
1 + µII∂A

II
323

∂y2
nII
2 = −(CII

3123n
II
1 + CII

3223n
II
2 ),

where f∂Df
anti = CII

3123n
II
1 + CII

3223n
II
2 (6.59)

kl = 13 µII∂A
II
313

∂y1
nII
1 + µII∂A

II
313

∂y2
nII
2 = −(CII

3113n
II
1 + CII

3213n
II
2 ),

where f∂Df
anti = CII

3113n
II
1 + CII

3213n
II
2 (6.60)
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where the forces can be written using the assumption of isotropy of both phases as

kl = 23 f∂Df
anti = CII

3223n
II
2 = µIInII

2 (6.61)

kl = 13 f∂Df
anti = CII

3113n
II
1 = µIInII

1 . (6.62)

We now need to consider the in-plane problems. Using (B.23)-(B.27) from the appendix

we can consider the interface loads on both the matrix inclusion interface ∂DI ∩ ∂DII and

on the matrix fluid interface and ∂Df . In the LMRP model we assume that both elastic

phases are isotropic. Each interface load is a vector with two components, due to i = 1, 2.

We fix the couple (k,l) and obtain on the matrix inclusion interface ∂DI ∩ ∂DII

kl = 11 f∂DI∩∂DII
11 = (CII

i111n
III
1 + CII

i211n
III
2 )− (CI

i111n
III
1 + CI

i211n
III
2 )

=

CII
11n

III
1 − CI

11n
III
1

CII
12n

III
2 − CI

12n
III
2


=

(λII − λI + 2(µII − µI))n
III
1

(λII − λI)n
III
2

 (6.63)

kl = 22 f∂DI∩∂DII
22 = (CII

i122n
III
1 + CII

i222n
III
2 )− (CI

i122n
III
1 + CI

i222n
III
2 )

=

CII
12n

III
1 − CI

12n
III
1

CII
22n

III
2 − CI

22n
III
2


=

 (λII − λI)n
III
1

(λII − λI + 2(µII − µI))n
III
2

 (6.64)

kl = 33 f∂DI∩∂DII
33 = (CII

i133n
III
1 + CII

i233n
III
2 )− (CI

i133n
III
1 + CI

i233n
III
2 )

=

CII
13n

III
1 − CI

13n
III
1

CII
23n

III
2 − CI

23n
III
2


=

(λII − λI)n
III
1

(λII − λI)n
III
2

 (6.65)

kl = 12 f∂DI∩∂DII
12 = (CII

i112n
III
1 + CII

i212n
III
2 )− (CI

i112n
III
1 + CI

i212n
III
2 )

=

CII
66n

III
1 − CI

66n
III
1

CII
66n

III
2 − CI

66n
III
2


=

(µII − µI)n
III
1

(µII − µI)n
III
2

 , (6.66)
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where we have used voigt notation for the entries as in [88]. We will use interchangeably

the standard index notation for a fourth rank tensor and the Voigt notation representation

throughout the remainder of this work and the associated appendix. We also need the

interface loads on the fluid matrix interface ∂Df . We have that

kl = 11 f∂Df
11 = CII

i111n
II
1 + CII

i211n
II
2 =

(λII + 2µII)n
II
1

λIIn
II
2

 (6.67)

kl = 22 f∂Df
22 = CII

i122n
II
1 + CII

i222n
II
2 =

 λIIn
II
1

(λII + 2µII)n
II
2

 (6.68)

kl = 33 f∂Df
33 = CII

i133n
II
1 + CII

i233n
II
2 =

λIIn
II
1

λIIn
II
2

 (6.69)

kl = 12 f∂Df
12 = CII

i112n
II
1 + CII

i212n
II
2 =

µIIn
II
1

µIIn
II
2

 . (6.70)

6.2.3 3D Cell problems for standard poroelasticity with elastic inclusion

Here we wish to compute the fourth rank effective elasticity tensor C̃SP for the poroelastic

material with elastic inclusion and by using its components calculate the two Young’s

moduli and two shear moduli corresponding to this setup.

This model requires two steps. We begin by finding the effective elasticity tensor for

a poroelastic material and we use components of that tensor as the parameters for the

matrix ΩPM at the next scale. The problem we consider is for a porous matrix ΩM with

fluid flowing in the pores, shown in the zoomed in area of Fig. 6.1, and we wish to find

the effective elasticity tensor CPM (porous matrix). That is

CPM = ⟨CMatMMat + CMat⟩s, (6.71)

where CMat is the elasticity tensor for the elastic matrix and the fourth rank tensor MMat

is defined as

MMat = ∇yB =
1

2

(
∂Bpkl

∂yq
+
∂Bqkl

∂yp

)
. (6.72)

We have that the third rank tensor B solves the following cell problem. We have

∇y · (CMat∇yB) +∇y · CMat = 0 in Ωs (6.73)

(CMat∇yB)n+ CMatn = 0 on ΓM, (6.74)
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where n is the unit normal pointing into the fluid. This problem can be solved as done

in [35]. The solution of the problem, which is the fourth rank tensor MMat, can be obtained

by solving six elastic-type cell problems by fixing the couple of indices in the component

wise representation of problem (6.73)-(6.74). This allows each component of MMat to be

interpreted as a strain and this means that for each couple of indices that are fixed we

have a linear elastic problem with inhomogeneous Neumann interface conditions. The

component wise cell problem and the corresponding interface conditions can be found

in [35].

The second problem within this setup that we consider is for a composite comprising

a matrix that is poroelastic at a finer scale, with parameters supplied from the effective

elasticity tensor CPM, and an isotropic elastic inclusion. We begin by formulating the 3D

problems.

Here we will be obtaining the effective elasticity tensor, C̃SP, for our standard poroe-

lastic material with inclusion. That is

C̃SP = ⟨CSP
I MSP

I + CSP
I + CPMMSP

II + CPM⟩s. (6.75)

We can see that this comprises the fourth rank tensor MSP
i , where i = I, II, which can be

defined as

MSP
I = ξklpq(F

I) =
1

2

(
∂F I

pkl

∂yq
+
∂F I

qkl

∂yp

)
; MSP

II = ξklpq(F
II) =

1

2

(
∂F II

pkl

∂yq
+
∂F II

qkl

∂yp

)
. (6.76)

We can then write the cell problems for third rank tensors FI and FII with corresponding

components F I
ikl and F

II
ikl as

∂

∂yj

(
CISP

ijpqξ
kl
pq(F

I)

)
+
∂CISP

ijkl

∂yj
= 0 in ΩI (6.77)

∂

∂yj

(
CPM
ijpqξ

kl
pq(F

II)

)
+
∂CPM

ijkl

∂yj
= 0 in ΩPM (6.78)

CISP

ijpqξ
kl
pq(F

I)nPM
j − CPM

ijpqξ
kl
pq(F

II)nPM
j = (CPM − CISP)ijkln

PM
j on ΓPM (6.79)

F I
ikl = F II

ikl on ΓPM (6.80)

where nPM is the unit normal to the interface ΓPM. We also have introduced the notation

CISP

ijkl, this is the component representation of CSP
I and the notation CPM

ijkl which is the

component wise representation of CPM. The solutions to the problem (6.77)-(6.80), ξklpq(F
I)
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and ξklpq(F
II), are found by solving six elastic-type cell problems by fixing the couple of

indices (k, l). By doing this the ξklpq(F
I) and ξklpq(F

II) that appear in (6.19) and (6.23)

represent a strain, Then for every fixed couple (k, l) we have a linear elastic problem

which has the following interface conditions

kl = 11 CISP

ijpqξ
11
pq (F

I)nPM
j − CPM

ijpqξ
11
pq (F

II)nPM
j = (CPM − CISP)ij11n

PM
j ,

where fΓPM
i = (CPM − CISP)ij11n

PM
j (6.81)

kl = 22 CISP

ijpqξ
22
pq (F

I)nPM
j − CPM

ijpqξ
22
pq (F

II)nPM
j = (CPM − CISP)ij22n

PM
j ,

where fΓPM
i = (CPM − CISP)ij22n

PM
j (6.82)

kl = 33 CISP

ijpqξ
33
pq (F

I)nPM
j − CPM

ijpqξ
33
pq (F

II)nPM
j = (CPM − CISP)ij33n

PM
j ,

where fΓPM
i = (CPM − CISP)ij33n

PM
j (6.83)

kl = 23 CISP

ijpqξ
23
pq (F

I)nPM
j − CPM

ijpqξ
23
pq (F

II)nPM
j = (CPM − CISP)ij23n

PM
j ,

where fΓPM
i = (CPM − CISP)ij23n

PM
j (6.84)

kl = 13 CISP

ijpqξ
13
pq (F

I)nPM
j − CPM

ijpqξ
13
pq (F

II)nPM
j = (CPM − CISP)ij13n

PM
j ,

where fΓPM
i = (CPM − CISP)ij13n

PM
j (6.85)

kl = 12 CISP

ijpqξ
12
pq (F

I)nPM
j − CPM

ijpqξ
12
pq (F

II)nPM
j = (CPM − CISP)ij12n

PM
j ,

where fΓPM
i = (CPM − CISP)ij12n

PM
j . (6.86)

In this case we assume that the fourth rank elasticity tensor CISP

ijpq is isotropic at the

microscale and CPM
ijpq has components calculated by solving the poroelastic problem (6.73)-

(6.74) above. That is

CISP

ijpq = λISPδijδpq + µISP(δipδjq + δiqδjp) (6.87)

and

CPM =



CPM
11 CPM

12 CPM
13 0 0 0

CPM
12 CPM

11 CPM
13 0 0 0

CPM
13 CPM

13 CPM
33 0 0 0

0 0 0 CPM
44 0 0

0 0 0 0 CPM
44 0

0 0 0 0 0 CPM
66


(6.88)

where we have used Voigt notation to represent the components of the tenor CPM. We
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should note that this effective elasticity tensor possesses tetragonal symmetry, that is,

possessing six distinct elastic entries. The reason for the six entries is due to our choice

of geometry (see Fig. 6.1 cube with cylindrical voids ) which means that our x and y

directions are equivalent hence the reduction from the nine entries in the orthotropic case

to the six entries we have here.

We can then use (6.87) and (6.88) in the interface loads to determine the fΓPM
i . That

is

kl = 11 fΓPM = diag


CPM
11

CPM
12

CPM
13

nPM − λISPnPM − 2µISPnPM
1 e1 (6.89)

kl = 22 fΓPM = diag


CPM
12

CPM
11

CPM
13

nPM − λISPnPM − 2µISPnPM
2 e2 (6.90)

kl = 33 fΓPM = diag


CPM
13

CPM
13

CPM
33

nPM − λISPnPM − 2µISPnPM
3 e3 (6.91)

kl = 23 fΓPM = diag


−µISP

CPM
44 − µISP

CPM
44 − µISP

 (nPM
3 e2 + nPM

2 e3) (6.92)

kl = 13 fΓPM = diag


CPM
44 − µISP

−µISP

CPM
44 − µISP

 (nPM
3 e1 + nPM

1 e3) (6.93)

kl = 12 fΓPM = diag


CPM
66 − µISP

CPM
66 − µISP

−µISP

 (nPM
2 e1 + nPM

1 e2) (6.94)

where we have used nPM
1 , nPM

2 and nPM
3 to mean the components of the unit vector normal

to the interface ΓPM and we have used the standard unit vectors in the Cartesian coordinate

system e1, e2 and e3.

This current setup is for solving the 3D problem. We are again able to perform a

reduction so that we instead study the 2D problem.
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6.2.4 2D Cell problems for standard poroelasticity with elastic inclusion

We now wish to consider the 2D reduction of the cell problems that have been presented

in the previous subsection. Within this model set up we have two different cell problems

to solve. The first is the cell problem for a porous matrix. The geometry of our periodic

cell in this case is such that we have a cube with 4 cylindrical voids placed in each of the

corners of the cube extending from the top to the bottom of the cell in the e3 direction.

This means that at every cross-section in the e3 direction gives a square with 4 circular

voids.

Figure 6.3: 2D domain for Porous matrix microstructure

We can consider the 2D reduction presented in the appendix where we assume that

there is only the matrix DM and the voids and assuming the matrix is isotropic. This

means that we have that C1111 = C2222 = C3333 = λM+2µM, C2323 = C1313 = C1212 = µM

and C1122 = C2211 = C1133 = C3311 = C2233 = C3322 = λM. Using these assumptions in

the anti-plane problem (B.18)-(B.22), where we only require (B.19) and (B.22)

µM∂B3kl

∂y21
+ µM∂B3kl

∂y22
= 0 in DM (6.95)

µM∂B3kl

∂y1
n1 + µM∂B3kl

∂y2
n2 + CM

31kln1 + CM
32kln2 = 0 on ∂Df ∩ ∂DM (6.96)

where the notation DM is the corresponding 2D slice of ΩM and the interface ∂Df ∩ ∂DM

is the 2D projection of ΓM. We also note that the normal to the interface n is the same

normal in 3D as in 2D since it is the outward normal to a cylinder in 3D and is the same

to the circle in the 2D slices but with only components n1 and n2.

The solutions to the problem (6.95) and (6.96) are found by solving the two anti-plane

problems by fixing the couple (k, l) = (1, 3) = (3, 1), (2, 3) = (3, 2). Then for every fixed
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couple we have the Poisson problem with the following interface conditions.

kl = 23 µM∂B323

∂y1
n1 + µM∂B323

∂y2
n2 = −(CM

3123n1 + CM
3223n2),

where f∂Df∩∂DM
anti = CM

3123n1 + CM
3223n2 (6.97)

kl = 13 µM∂B313

∂y1
n1 + µM∂B313

∂y2
n2 = −(CM

3113n1 + CM
3213n2),

where f∂Df∩∂DM
anti = CM

3113n1 + CM
3213n2 (6.98)

where the forces can be written using the assumption of isotropy of both phases as

kl = 23 f∂Df∩∂DM
anti = CM

3223n2 = µMn2 (6.99)

kl = 13 f∂Df∩∂DM
anti = CM

3113n1 = µMn1. (6.100)

We now need to consider the in-plane problems. We have the problem (B.23)-(B.27)

from the appendix, however for the case of a porous matrix we only require (B.23) and

(B.27). We can consider the interface loads on the matrix fluid interface (B.29). We

assume that the matrix material is isotropic. Each interface load is a vector with two

components, due to i = 1, 2. We fix the couple (k, l) and obtain

kl = 11 f∂Df∩∂DM
11 = CM

i111n1 + CM
i211n2 =

(λM + 2µM)n1

λMn2

 (6.101)

kl = 22 f∂Df∩∂DM
22 = CM

i122n1 + CM
i222n2 =

 λMn1

(λM + 2µM)n2

 (6.102)

kl = 33 f∂Df∩∂DM
33 = CM

i133n1 + CM
i233n2 =

λMn1

λMn2

 (6.103)

kl = 12 f∂Df∩∂DM
12 = CM

i112n1 + CM
i212n2 =

µMn1

µMn2

 (6.104)

The second cell problem is for an elastic composite that comprises the porous matrix

and the elastic inclusion. The geometry of our periodic cell in this case is a cube with an

embedded cylinder placed in the centre extending from the top to the bottom of the cell in

the e3 direction. This means that at every cross-section in the e3 direction gives a square

with an embedded circle in the centre.

We can consider the 2D reduction presented in the appendix in the case where there
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Figure 6.4: 2D domain for Standard Poroelastic setup microstructure

is no void. We assume that the inclusion is isotropic CSP
1111 = CSP

2222 = CSP
3223 = λSP

I + 2µSP
I ,

CSP
2323 = CSP

1313 = CSP
1212 = µSP

I and CSP
1122 = CSP

2211 = CSP
1133 = CSP

3311 = CSP
2233 = CSP

3322 = λSP
I ,

and the matrix has its input from CPM. Using this in the anti-plane problem, where we

require only (B.18)-(B.21) we obtain

µISP
∂F I

3kl

∂y21
+ µISP

∂F I
3kl

∂y22
= 0 in DI (6.105)

CPM
3131

∂F II
3kl

∂y21
+ CPM

3232

∂F II
3kl

∂y22
= 0 in DPM (6.106)

µISP
∂F I

3kl

∂y1
nPM
1 + µISP

∂F I
3kl

∂y2
nPM
2 −

(
CPM
3131

∂F PM
3kl

∂y1
nPM
1 + CPM

3232

∂F PM
3kl

∂y2
nPM
2

)
= (CPM

31kln
PM
1 + CPM

32kln
PM
2 )− (CI

31kln
PM
1 + CI

32kln
PM
2 ) on ∂DI ∩ ∂DPM (6.107)

F I
3kl = F II

3kl on ∂DI ∩ ∂DPM (6.108)

where DI, DPM are the 2D slices of ΩI and ΩPM and the interface ∂DI ∩ ∂DPM is the 2D

projection of ΓPM and nPM
1 and nPM

2 are the two components of the normal nPM that are

used in the 2D cell problem.

The solutions to the problem (6.105)-(6.108) are found by solving the two anti-plane

problems by fixing the couple (k,l)=(1,3)=(3,1), (2,3)=(3,2). Then for every fixed couple

we have the Poisson problem with the following interface conditions. On the matrix

inclusion interface we have

kl = 23 µISP ∂F
I
323

∂y1
nPM
1 + µISP ∂F

I
323

∂y2
nPM
2 −

(
CPM
3131

∂F PM
323

∂y1
nPM
1 + CPM

3232

∂F PM
323

∂y2
nPM
2

)
= (CPM

3123n
PM
1 + CPM

3223n
PM
2 )− (CI

3123n
PM
1 + CI

3223n
PM
2 ),

where,

f∂DI∩∂DPM
anti = (CPM

3123n
PM
1 + CPM

3223n
PM
2 )− (CI

3123n
PM
1 + CI

3223n
PM
2 ) (6.109)

kl = 13 µISP ∂F
I
313

∂y1
nPM
1 + µISP ∂F

I
313

∂y2
nPM
2 −

(
CPM
3131

∂F PM
313

∂y1
nPM
1 + CPM

3232

∂F PM
313

∂y2
nPM
2

)
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= (CPM
3113n

PM
1 + CPM

3213n
PM
2 )− (CI

3113n
PM
1 + CI

3213n
PM
2 ),

where,

f∂DI∩∂DPM
anti = (CPM

3113n
PM
1 + CPM

3213n
PM
2 )− (CI

3113n
PM
1 + CI

3213n
PM
2 ) (6.110)

where the forces f∂DI∩∂DPM
anti on the interface ∂DI ∩ ∂DPM can be written using the assump-

tion of isotropy of the inclusion and using the entries of CPM for the matrix

kl = 23 f∂DI∩∂DPM
anti = CPM

3223n
PM
2 − CI

3223n
PM
2 = CPM

44 n
PM
2 − µISPnPM

2 (6.111)

kl = 13 f∂DI∩∂DPM
anti = CPM

3113n
PM
1 − CI

3113n
PM
1 = CPM

55 n
PM
1 − µISPnPM

1 . (6.112)

We now need to consider the in-plane problems. Using (B.23)-(B.26) from the appendix

where we assume that the inclusion is isotropic and we use the values of CPM. Each

interface load is a vector with two components, due to i = 1, 2. We fix the couple (k,l)

and obtain on the matrix inclusion interface

kl = 11 f∂DI∩∂DPM
11 = (CPM

i111n
PM
1 + CPM

i211n
PM
2 )− (CI

i111n
PM
1 + CI

i211n
PM
2 )

=

CPM
11 n

PM
1 − CI

11n
PM
1

CPM
12 n

PM
2 − CI

12n
PM
2


=

(CPM
11 − λSP

I − 2µSP
I )nPM

1

(CPM
12 − λSP

I )nPM
2

 (6.113)

kl = 22 f∂DI∩∂DPM
22 = (CPM

i122n
PM
1 + CPM

i222n
PM
2 )− (CI

i122n
PM
1 + CI

i222n
PM
2 )

=

CPM
12 n

PM
1 − CI

12n
PM
1

CPM
22 n

PM
2 − CI

22n
PM
2


=

 (CPM
12 − λSP

I )nPM
1

(CPM
22 − λSP

I − 2µSP
I )nPM

2

 (6.114)

kl = 33 f∂DI∩∂DPM
33 = (CPM

i133n
PM
1 + CPM

i233n
PM
2 )− (CI

i133n
PM
1 + CI

i233n
PM
2 )

=

CPM
13 n

PM
1 − CI

13n
PM
1

CPM
23 n

PM
2 − CI

23n
PM
2


=

(CPM
13 − λSP

I )nPM
1

(CPM
23 − λSP

I )nPM
2

 (6.115)

kl = 12 f∂DI∩∂DPM
12 = (CPM

i112n
PM
1 + CPM

i212n
PM
2 )− (CI

i112n
PM
1 + CI

i212n
PM
2 )
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=

CPM
66 n

PM
1 − CI

66n
PM
1

CPM
66 n

PM
2 − CI

66n
PM
2


=

(CPM
66 − µSP

I )nPM
1

(CPM
66 − µSP

I )nPM
2

 (6.116)

6.3 Applications & Results

Within this section we present the results of solving the 2D cell problems that were pre-

sented for each of the two different setups described in Sec. 6.1 using COMSOL Multi-

physics 4.3. The solution is computed by following the procedures detailed in Sec. 6.2. We

present the difference in the elastic parameters, Young’s and Shear moduli, for the two

different model setups. We interpret under which scenarios each model should be used.

We also highlight how this framework could be applied to modelling of the heart.

6.3.1 2D Simulation Results

Within this section we solve the 2D cell problems setup in the previous sections Sec. 6.2.2

and Sec. 6.2.4. We set up our problems on a unit square cell with the circular elastic

subphase accounting for 20% volume fraction and the porosity varying from 2% - 30%

divided among the four cylinders.

We solve the cell problems using the following parameters. For the LMRP model

we have the matrix DII with Poisson ratio 0.4 and Young’s modulus 80 kPa, we have

the elastic inclusion DI with volume fraction 20% with Poisson ratio 0.49 and Young’s

modulus 35 kPa. These values have been selected at random to have a difference in

stiffness and compressibility between the two elstic phases yet keeping them on the same

order of magnitude.

For the standard poroelastic material with elastic inclusion we have two steps, the

first is the porous matrix problem where we have the matrix DM with Poisson ratio 0.4

and Young’s modulus 80 kPa, and for the second step we have the problem between the

inclusion and the porous matrix, where we have the matrix informed by the results from

the porous matrix simulations and the elastic inclusion DI with volume fraction 20% with

Poisson ratio 0.49 and Young’s modulus 35 kPa. This keeps the parameters consistent

between the two model setups.

We begin by considering the comparison of the two Young’s moduli E1 transverse and
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E3 axial for the LMRP model and the standard poroelasticity with inclusion setup. Using

the components of the effective elasticity tensors that we compute for each of the models

at varying porosities we have the formulas for the Young’s moduli given by

Eθ
1 =

(Cθ
12 − Cθ

11)(2C
2θ
13 − Cθ

12C
θ
33 − Cθ

11C
θ
33)

(−Cθ2
13 + Cθ

11C
θ
33)

(6.117)

Eθ
3 =

(2C2θ
13 − Cθ

12C
θ
33 − Cθ

11C
θ
33)

(−Cθ
12 − Cθ

11)
(6.118)

where the superscript θ = LMRP, SP determines which model we are using. We have

plotted the results of these Young’s moduli with a range of porosities from 2% − 30% in

the figures Fig. 6.5a and Fig. 6.5b
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(a) E1 versus porosity

(b) The difference between the two models vs porosity

Figure 6.5: Results of Young’s Modulus E1 simulations

By considering Fig. 6.5a we can see that the Young’s modulus E1 (transverse) decreases

with increasing porosity. We can also see that the transverse Young’s modulus is lower for

the LMRP model. For this reason we have plotted the difference between the LMRP model

and the standard poroelastic with inclusion setup in Fig. 6.5b. From this plot we can see

that at approx 5% porosity there is already a difference of 5 % between the two different

model setups. This difference between the models increases to approx 22% at 30% porosity.

This means that the influence that the porosity has on the overall material stiffness, when

directly being considered with the other phases, is considerably more prominant than when
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considering the porosity at the finer scale.

(a) E3 versus porosity

(b) Absolute difference between the two models vs porosity

Figure 6.6: Results of Young’s Modulus E3 simulations

We can now consider Fig. 6.6a and we can see that the Young’s modulus E3 (axial)

also decreases with increasing porosity. Similarly to the transverse Young’s modulus, we

can see that the axial Young’s modulus is also lower for the LMRP model. We have again

plotted the absolute difference between the LMRP model and the standard poroelastic

setup in Fig. 6.6b. From this plot we can see that at approx 10% porosity there is already

a difference of 2.5 % between the two different model setups, rising to almost 10% at

30% porosity. This again means that the influence that the porosity has on the overall
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material stiffness when directly being considered with the other phases is considerably

more prominent than when considering the porosity at the finer scale. However, the effect

is slightly less prominent on the axial Young’s modulus than the transverse one.

The other two elastic parameters that we compare for the two different model setups

are the shear moduli Cθ
44 and Cθ

66, where θ = LMRP,SP. These parameters are taken

directly from the computed effective elasticity tensor for each of the models. We have

plotted the comparison of the shear moduli over a range of porosities from 2%− 30%.

(a) Shear C44 versus porosity

(b) Absolute difference between the two models vs porosity

Figure 6.7: Results of Shear Modulus C44 simulations

In Fig. 6.7a we see that the shear C44 decreases with increasing porosity and that the
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LMRP model decreases more than the standard poroelastic type setup. For C44 the force

is being applied in the axial direction which is the direction in which the inclusion and

the voids elongate. This means that when the force is applied the material deforms and

the voids flatten out, the voids just make it softer allowing for the decrease in shear with

increasing porosity. The standard poroelastic type model has less of a decrease in shear

due to the fact that is does not have the voids present at this scale but accounts for the

increasing porosity of the matrix at a finer scale (where the voids are present). We also see

that the difference between the two models is increasing with increasing porosity. For these

reasons we wish to consider the absolute difference between the two model setups, and this

has been done in Fig. 6.7b. We can see that for 5% porosity we have approximately a 2%

difference between the two model setups. This increases to a 16% discrepancy for a 30%

porosity. This means that when the porosity exceeds 5% it is more useful and accurate

to use the LMRP model to describe the behaviour of the material parameter C44. For

porosities below 5% then the standard poroelastic setup can be realistically used.

In Fig. 6.8a we can see that there is very little difference between the in-plane shear

for both models when the porosity is less than 20%, however after this point the difference

becomes more pronounced. This is confirmed by the absolute difference plot, see Fig. 6.8b,

where we can see that up to 20% porosity the discrepancy between the models does not

exceed 2%, however after this point it reaches 13% when porosity is 30%. For C66 the

force is being applied in the x-direction (transverse). Therefore for the LMRP model the

force is being applied taking a cross section of structure which contains the voids and

inclusions. At higher porosities this makes the material weaker as the larger voids deform

and hence the larger decrease in shear compared with C44. Up until approx 20% porosity

the difference in the two models is negligible (< 2%), this is explained by a critical level

of porosity where the scale at which the porosity is being considered becomes important

with this direction of shear. When the porosity is low, the pores in the LMRP structure

are small and do not influence the shear. When the porosity is higher the pores are much

larger so the distance between the voids and the inclusion becomes less and then the

difference this make to the shear value become apparent. This critical level of porosity

where we begin to see the difference between the models is also influenced by the length of

the embedded fibre. The shorter the fibre the more pronounced the difference between the

models is at a lower porosity. We can see this is the case in the following section Sec. 6.4

where we consider a variety of fibre lengths.
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(a) Shear C66 versus porosity

(b) Absolute difference between the two models vs porosity

Figure 6.8: Results of Shear Modulus C66 simulations

We can now summarise the findings and explain exactly how they should be inter-

preted. When a material possesses a microstructure comprising a matrix, embedded elas-

tic subphases and fluid filled pores then using the models that are currently available in

the literature (excluding the LMRP model) offers two approaches. These are either make

the assumption that the matrix is homogeneous (ignore the subphases) which is not true,

or carry out a two-step process first solving the Biot’s porous matrix problem and then

solving a composite that comprises the subphases and the results of the porous matrix

simulations. This second approach means that even though we are considering the three
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phases, we are not considering them all at the same scale which is what the intended

application actually possesses as a microstructure. This means that the estimations of the

parameters cannot be fully reliable. We therefore developed the LMRP model to remove

this issue. With this novel model it is possible to account for multiple elastic phases all

with different properties as well as the fluid all at the same scale. It is for this reason that

the LMRP model results can be thought to be more accurate for these types of applica-

tions as we are truly capturing the correct microstructure by using our model. These are

the results that we have shown in the previous plots, where we assume 2% discrepancy

as a threshold for determining when the LMRP model should be used. We indeed see

that when using the two-step approach, the stresses are much higher (especially for large

porosities) than the LMRP model.

After considering all four of our elastic parameters we can now summarise our findings

in Table 6.1, where we have set the critical model discrepancy percentage to be 2%. We

find that at porosities exceeding 20% then the LMRP model is the more effective at

determining the true elastic parameters. However, even at lower porosities (< 20%) the

LMRP model is more effective at determining E1, E3 and C44 and is equally effective at

determining C66 as the standard poroelastic type model.

Table 6.1: Threshold porosities for when model discrepancy exceeds 2% (long fibres)

model E1 E3 C44 C66

LMRP > 2% >8% >5% >20%

SP <2% <8% <5% <20%

6.3.2 Applicability of these results to heart modelling

We now wish to give a brief insight into a potential application where the LMRP model

can be more efficient at determining the elastic parameters than a standard poroelastic

approach.

The human heart has four chambers each of which has a muscular wall with three

distinct layers, the endocardium, the myocardium, and the epicardium. The endocardium

and epicardium are the thin inner and outer layers, whereas the myocardium is the middle

contractile layer. It is supplied by the coronary arteries and is the layer most affected by

a variety of diseases, e.g., myocardial infarction, angina and the effects of ageing. For this
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reason the modelling approach can be focussed on the myocardium [120], [118], [98].

The myocardium has a structure where there are cardiac myocytes (muscle cells) em-

bedded in a collagen matrix, which is produced by the cardiac fibroblasts, with an inter-

connected fluid (blood) flow through permeating vasculature. These structures are visible

on a microscale length which is much smaller than the size of the heart muscle. The my-

ocardium microstructure is complex geometrically and is strongly impacted by a variety

of diseases, in particular myocardial infarction (heart attack). In the case of myocardial

infarction blood flow is reduced to an area of myocardium tissue, this results in the death

of the cardiac myocytes and in their place, we find collagen rich scar tissue produced by

the fibroblasts to retain the structural integrity of the myocardium. The size and amount

of scar tissue affects the heart’s functionality post recovery [39], [54].

We wish to model the bundles of myocytes found in the myocardium, both healthy and

diseased, and can identify the structural components with the different phases considered

in the LMRP model. Firstly in the healthy case, the collagen matrix corresponds to

the matrix domain, the single myocyte and fibroblast cells can be treated as individual

elastic inclusions and the permeating vasculature is the fluid flow through the matrix. The

volume fraction of the cardiac myocyte and the fluid volume fraction (porosity) in each

cell should be equivalent to be realistic to the structure found in the myocardium. This

volume fraction is approximately 20% using the parameters found in [63]. This means that

we want to consider all the plots in the previous section (Sec. 6.3.1) for porosities above

20% to determine if the LMRP model will provide a more realistic result for the elastic

parameters than standard poroelasticity. We can see from Fig. 6.5b − Fig. 6.8b above

that when the porosity is 20% or above then the two Young’s moduli and the two shear

moduli are likely better to be calculated by the LMRP model as it will better encode the

complicated structural geometry and this can be validated using experimental data.

In the case of diseases such as myocardial infarction, the LMRP model can also be

used. In this case we could perform a parametric analysis where the inclusion volume

fraction and geometry are changed to simulate the loss of myocytes and the replacement

with fibrous collagen matrix scar tissue. This would simulate the behaviour of the heart

during the myocardial infarction.

We note that of course our model here uses linear elasticity and the heart is of course

nonlinear. However, we can obtain results by using a piecewise linear approach as done

in [52], [53]. By doing this we can approximate the nonlinear behaviour using simple,
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computationally cheap simulations. We should also remark that of course the hearts overall

behaviour is nonlinear but by considering the microstructure as individual cells (where the

LMRP model could be applied to the different cellular components) the deformations will

be much smaller and even linear.

6.4 3D Application - short fibres

Within this section we discuss the comparison of elastic parameters for short fibre models.

This can be an interesting application since the difference in the elastic parameters varies

depending on whether or not the subphases are connected between the cells. It can also

be useful for biological applications where specific cells are inclusions and not subphases.

Here we must use a 3D framework since our embedded inclusion does not run from the top

of our periodic cell to the bottom but is in fact fully embedded (i.e. a short fibre), therefore

the fibres do not connect between cells. In this case we cannot use the 2D simulations

since some of the slices in the e3 direction would not include the fibre. We therefore

perform 3D simulations to solve the 3D cell problems (6.19)-(6.23) for LMRP, and for

the comparative standard poroelastic model (6.73)-(6.74) and (6.77)-(6.80), presented in

the previous sections Sec. 6.2.1 and Sec. 6.2.3. We can justify that our 3D simulations

are accurate by considering the absolute error plots between the 2D and 3D long fibres

simulations presented in the appendix B.3, where we see that there is less than 1% error

for all parameters considered.

Figure 6.9: Short fibres periodic cell

For the short fibre case we will again be considering the Young’s moduli E1 transverse

and E3 axial as well as the two shears C44 and C66. We begin by considering the differ-

ence in the Young’s Moduli between the two model setups. In this case we choose that



CHAPTER 6. ANALYSIS OF STIFFNESS OF POROELASTIC COMPOSITES 185

the cylindrical fibres are length 0.8 out of a length one cube and are placed in the centre.

For further details about how the model is setup in COMSOL Multiphysics see the Ap-

pendix B.2 for the short fibres. In Fig. 6.10 we have carried out the 3D simulations to give

Figure 6.10: short fibres E1 and E3 versus porosity

a comparison between our two different computational setups for both the Young’s moduli

E1 and E3 for short fibres. We see that both E1 and E3 are lower for the LMRP model.

This can be explained by the fact that using the LMRP model explicitly considers the

fluid contribution at the porescale along with the matrix and the inclusion. In particular,

the LMRP model fully considers the influence of the porosity (which appears as a void in

the microscale geometry) thus leading to a lower value of the stiffness moduli.

To confirm our deductions we have plotted the absolute difference between the model

setups for both of the Young’s moduli.

Figure 6.11: Absolute difference between the two models
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In Fig. 6.11 we can see that the discrepancy between the two models for E1 increases

from 1.5% to 19% with increasing porosity. This means that for very low porosities then

both LMRP and Standard poroelastic type model both produce similar results, but for

materials with higher porosities the LMRP model will provide the most accurate repre-

sentation of the parameters. Similarly for E3 the absolute difference increases from 0.5%

to 9% with increasing porosity. This means that for low porosities (less than 10%) then

both LMRP and Standard poroelastic type model both produce similar results. When the

materials however, have higher porosities then again the LMRP model will provide the

most accurate representation of the parameters.

We also wish to consider the difference in the shear moduli. In Fig. 6.12a and Fig. 6.13a

we have carried out the 3D simulations to give a comparison between our two different

computational setups for both the Shear moduli C44 and C66 for short fibres. Here we are

again using the 3D framework since our embedded inclusion does not run from the top of

our periodic cell to the bottom but is in fact fully embedded (i.e. a short fibre).

(a) Short fibre C44 versus porosity (b) Absolute difference between the models

Figure 6.12: Results of short fibre Shear Modulus C44 simulations

In Fig. 6.12a we see that for shear C44 that the LMRP model decreases more than

the standard poroelastic type model and that the difference between the two models is

increasing with increasing porosity. The LMRP model considers the voids and the two

elastic phases at the same scale and this contributes to the greater decrease in shear. The

standard poroelastic material with inclusion has less of a decrease in shear due to the

fact that is does not have the voids present at this scale but accounts for the increasing

porosity of the matrix at a finer scale. We also plot the absolute difference between the

two models. In Fig. 6.12b we see that for very low porosities that the difference between
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the two models is less than 2%, however, for increasing porosities the discrepancy reaches

18%. This means that if we have a material with a porosity greater than 5% then the

standard poroelastic approach will not capture the true elastic parameter and it would

be much more appropriate to use the LMRP model. Yet still for materials with very low

porosities both models will produce similar results.

(a) Short fibre C66 versus porosity (b) Absolute difference between the models

Figure 6.13: Results of short fibre Shear Modulus C66 simulations

For short fibre C66 the physical description of the deformation is the same as the long

fibre case. In Fig. 6.13a we can see that up until approx 15% porosity the difference in

the two models is negligible, this could be explained by a critical level of porosity where

the scale at which the porosity is being considered becomes important with this direction

of shear. This is because at low porosities the size of the voids is very small in the LMRP

model and so therefore do not influence the shear more than the pores at a finer scale.

However, once the porosity exceeds 15% then the pores are large enough to influence

the shear. This is confirmed by Fig. 6.13b where we can see that for porosities up to

15% that the difference between the models is less than 2%. This means that up to this

level of porosity the standard poroelastic approach or the LMRP model are capturing the

behaviour similarly. However for porosities greater than 15% then the discrepancy between

the models approaches 16% this highlights than in this case it would be more realistic to

use the LMRP model. This critical level of porosity where we begin to see the difference

between the models is influenced by the length of the embedded fibre. The shorter the fibre

the difference between the models becomes more pronounced at a lower porosity. This is

due to us keeping the volume of the fibre consistent even though the length is decreasing,

so the fibre becomes shorter but thicker meaning the distance between the voids and the
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fibres is smaller in the shorter fibre models and this means that the voids can have an

influence on the shear at a lower porosity. Note that this idea can be further enforced by

the plot of C66 Fig. 6.8a where we see that up until approx 20% porosity the difference in

the two models is negligible. We further confirm this idea by performing the simulations

for a range of fibre lengths from 0.6-1 , results shown in Table 6.2 and Fig. 6.14.

Figure 6.14: Absolute difference between the two models for a variety of fibre lengths with
line at error threshold 2%

Table 6.2: Threshold porosities for when model discrepancy exceeds 2% for C66 for a
variety of fibre lengths

Fibre length 1 0.9 0.8 0.7 0.6

Porosity 19.6% 18.9% 16.5% 13% 9.3%

From considering all four elastic parameters we can now summarise or findings for the

short fibre simulations in Table. 6.3. We find that at porosities exceeding 15% then the

LMRP model is the more effective at encoding the complex microstructural detail in the

elastic parameters and may indeed be more effective at determining the elastic parameters

where this second point can be reinforced using experimental data. However, even at low

porosities (< 15%) the LMRP model is more effective at determining E1, E3 and C44

and is equally effective at determining C66 as the standard poroelastic type model. We

also note that the range of the discrepancy between the models with increasing porosity

is higher for the short fibre than the long fibre setting.
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Table 6.3: Threshold porosities for when model discrepancy exceeds 2% (short fibres 0.8
length)

model E1 E3 C44 C66

LMRP >5% >10% >5% >15%

SP <5% <10% <5% <15%

6.5 Conclusions and Future Perspectives

Within this chapter we have created a robust computational platform that has allowed

for a valid comparison between the LMRP model for poroelastic composites and an ap-

proach that uses standard poroelasticity with elastic inclusions. We describe our platform

as robust due to the wide range of situations where it can be used for computations. That

is, the platform can be altered for a variety of geometries including short fibres, various

directions of fluid flow, a variety of differently shaped inclusions and a wide range of con-

stitutive properties of the constituents. We investigated a variety of elastic parameters

obtained by solving the 2D cell problems, which were derived in the appendix accompa-

nying this chapter, to determine under which circumstances the approach by the LMRP

model is most appropriate to be used.

We begin our analysis by providing a summary of the macroscale LMRP model for

poroelastic composites that has been derived via asymptotic homogenization in [69]. We

then present the 3D cell problem (6.19)-(6.23) that is to be solved to obtain the model

coefficients such as the effective elasticity tensor. From this problem we write down ex-

plicitly the boundary loads that are required to solve the problem numerically. In order

to be computationally less expensive we carry out, and present, the reduction of the cell

problems to 2D, where we again present the appropriate boundary loads. Since the aim

of this chapter is to have a valid comparison that uses a standard poroelastic approach we

then derive the comparison model setup using asymptotic homogenization. The compari-

son standard poroelastic with inclusion model has two steps, firstly the porous matrix and

then a composite between the porous matrix and an elastic inclusion. This means that we

have two 3D cell problems (6.73)-(6.74) and (6.77)-(6.80) that are to be solved to provide

the model coefficients. We again write down explicitly the boundary loads that are re-

quired to solve these two problems numerically. Again in keeping with the comparison, we
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carry out and present the reduction of both of these cell problems to 2D, again presenting

the appropriate boundary loads. We are then able to solve numerically the cell problems

for a simplified geometry where we have unidirectional flow and only one fibre direction.

We then plot and compare the elastic parameters Young’s moduli and shear moduli.

We also present a discussion on how our current modelling approach can be applicable

to modelling of the heart, in particular the myocardium. We then present an example

of our computational platform solving the 3D cell problems, justified by the error plots

between the 3D and 2D simulations showing less than 1% error.

The results of our numerical simulations show that whenever investigating a poroelastic

composite material with porosity exceeding 5% then the LMRP model should be used to

compute the Youngs moduli E1 and E3 and the shear C44 and when the porosity exceeds

20% it should also be used to investigate the shear C66. We find that for material with

less than 5% porosity a standard poroelastic approach or the LMRP model produce the

same results.

The model simulations have the current limitations and are subject to the following

extensions. Within this chapter we have only focussed on the parameters of the elastic

matrix. It is also of interest to investigate the fluid flow and solve the cell problem in order

to obtain the hydraulic conductivity tensor for the material.

The simulations in this chapter have also only been carried out for a simplified geometry

(unidirectional flow and fibre direction) so as to show the difference in the two models in

the simplest possible case. It would however be possible, due to the robustness of the

3D computational platform highlighted by the 3D example, to consider a much more

complex geometry consisting of additional fibres and also fibre angles and fluid flow in

many directions.

We should also note that in this work we are focussing solely on solving the microscale

cell problems that determine the model coefficients. It would however, be posible to solve

the complete macroscale model that is presented in Sec. 6.1.

The derivation and numerical simulations have focussed on a general set of parameters

since we we aiming just to capture the effects of the LMRP model and the settings where

it is most applicable. The next step would be to apply the LMRP model to a realistic set

of parameters and geometry and this will allow for model validation by comparing with

experimental data, as done for example by [24]. Another important aspect which is to be

considered is the model validation in terms of how well it converges to the actual behaviour
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of the physical system whenever scales become more and more separated. This is indeed

a problematic issue primarily due to the required computational cost, although one next

natural step is indeed the development of direct numerical simulations (for example per-

formed on reference heterogeneous geometries in two-dimensions). This approach (which

is carried out for example in [31] in the context of three-scale asymptotic homogenisation

for a one-dimensional example) would increase the reliability of these results, and in gen-

eral, of any model derived via homogenisation techniques, and will become more and more

realistic following advances in computational resources available. This specific validation

will also better elucidate the role of the heterogeneities as a discriminant in determining

which homogenised model better represents the actual physical system at hand.

Finally, the simulations could be extended to investigate changing the volume fraction

and/or geometry of the inclusion. This could have many relevant biological applications.

Such as to myocardial infarction where the cardiac myocytes die and become replaced by

fibrous collagen matrix.

In the next chapter we use the model for poroelastic composites, derived in Chapter 3,

to describe the microstructure of the myocardium. Using the model we investigate how

physiologically observed microstructural changes induced by myocardial infarction impact

the elastic parameters of the heart. This is a first study to show how useful detailed

microstructural poroelastic models can be at modelling the response of biological tissues

[72].



Chapter 7

Investigating the effects of

microstructural changes induced

by myocardial infarction on the

elastic parameters of the heart

The human heart has four chambers each of which have a muscular wall with three distinct

layers, the endocardium, the myocardium, and the epicardium. The endocardium and

epicardium are the thin inner and outer layers, whereas the myocardium is the middle

and most dominant layer. It is supplied by the coronary arteries and is the layer most

affected by a variety of diseases, e.g., myocardial infarction, angina and the effects of

ageing [120], [118].

The myocardium has a structure where there are cardiac myocytes (muscle cells) em-

bedded in a collagen matrix, which is produced by the cardiac fibroblasts, with an inter-

connected fluid (blood) flow through permeating vasculature. These structures are visible

on a microscale length which is much smaller than the size of the heart muscle. The my-

ocardium microstructure is complex geometrically and is strongly impacted by a variety

of diseases, in particular myocardial infarction (heart attack). In the case of myocardial

infarction blood flow is reduced to an area of myocardium tissue, this results in the death

of the cardiac myocytes and in their place, we find collagen rich scar tissue produced by

the fibroblasts to retain the structural integrity of the myocardium [39], [54]. The size and

amount of scar tissue affects the heart’s functionality post recovery [38]. As a result of

192
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the loss of cardiac myocytes, the remaining myocytes in the area surrounding the infarct

increase in volume to attempt to retain homeostasis in the heart [59]. The growth and

remodelling of the surviving myocytes corresponds to the infarct size [79], [78], [3].

Within this work we aim to investigate the effects of microstructural changes induced

by myocardial infarction (MI) on the elastic parameters of the heart. In Sec. 7.1 we sum-

marise the LMRP [69] (see Chapter 3) model for poroelastic composites which we will use

to model the microstructure of the myocardium. Within the sections that follow we will

investigate a variety of changes to the parameters and geometry of the microstructure in

order to simulate a variety of phenomena observed post myocardial infarction. We account

for the anisotropy of the heart microstructure through the inclusion of the myocytes in

one direction. In Sec. 7.2 we will investigate the comparison between healthy elastic pa-

rameters and the parameters obtained in the post myocardial infarction setting of loss of

myocyte and increased fibrosis. Then in Sec. 7.3 we consider the effect that the increase in

myocyte volume fraction has on the elastic parameters of the myocardium post myocar-

dial infarction. Finally in Sec. 7.4 we propose a 3D frame work to model the myocytes

connected via intercalated discs. We conclude this work by providing the future prospects

of developing this model and its potential as a diagnostic tool to aid clinicians.

7.1 The Mathematical Model

We use the LMRP model for poroelastic composites [69] (see Chapter 3) to describe the

microstructure of the myocardium tissue. The myocardium is predominantly comprised

of an extracellular matrix with embedded blood vessels and cardiac myocyte cells. We

therefore have two elastic phases and a fluid interacting on the microscale.

Figure 7.1: Image of heart microstructure and the assumed microstructural geometry of
our model. LHS of diagram redrawn taking inspiration from [44]
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Here we summarise the mathematical model for a poroelastic composite derived by the

asymptotic homogenization technique in [69] and Chapter 3 that we will use to describe

the myocardium microstructure. The model derivation is carried out by setting up an

appropriate fluid-structure interaction problem between a linear elastic porous matrix,

ΩII, with embedded linear elastic subphases, ΩI, with a Newtonian fluid, Ωf , flowing in the

pores. When applying this to the myocardium we make the identifications that ΩII is the

extracellular matrix, ΩI is the myocyte and Ωf is the permeating vasculature of the heart.

We make the assumption that the radius of the blood vessels (the porescale) is comparable

with the distance between the adjacent myocytes [97], [112]. Overall this length is much

smaller than the size of the entire myocardium (the macroscale). Having this difference in

lengths allows us to decouple the spatial scales and apply the asymptotic homogenization

technique to derive the macroscale model. The new system of partial differential equations

is of poroelastic-type. The model equations contain coefficients that encode the properties

of the underlying material microstructure, and can be computed by solving appropriate

cell problems. Here we summarise the four governing equations. We are using the LMRP

model of Chapter 3, summarised in Chapter 6, with some small differences in subscripts to

clearly show the application to the myocardium modelling. The first macroscale equation

is the balance of linear momentum

∇x · TLMRP
Eff = 0, (7.1)

where we have the constitutive law

TLMRP
Eff = ⟨CMyoMMyo + CMyo + CIMMIM + CIM⟩sξxu(0) + γLMRPp(0), (7.2)

where Cv with v = Myo, IM is the elasticity tensor for the myocyte and interstitial matrix

respectively. We can define the effective elasticity tensor C̃LMRP as

C̃LMRP = ⟨CMyoMMyo + CMyo + CIMMIM + CIM⟩s, (7.3)

The system also comprises the conservation of mass equation

ṗ(0)

MLMRP
= −∇x · ⟨w⟩f −αLMRP : ξxu̇

(0), (7.4)

where we have that p(0) is the macroscale pressure, u̇(0) is the leading order solid velocity,
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w is the average fluid-solid velocity, MLMRP and αLMRP are the resulting Biot’s modulus

and tensor of coefficients associated with the system respectively. The final macroscale

equation is Darcy’s law

⟨w⟩f = −⟨W ⟩f∇xp
(0), (7.5)

where ⟨W ⟩f is the hydraulic conductivity tensor.

From our governing equations we have that the behaviour of the poroelastic composite

material (myocardium) can be fully characterised by the model coefficients, that is, by

the effective elasticity tensor C̃LMRP, the hydraulic conductivity ⟨W ⟩f , the Biot’s tensor of

coefficients αLMRP and the Biot’s coefficient MLMRP. These coefficients can be written as

αLMRP = ϕI− ⟨Tr(MIM)⟩s, MLMRP =
−1

⟨Tr(QIM)⟩s
, γLMRP = ⟨CIMQIM⟩s − ϕI, (7.6)

where the fourth rank tensors MMyo, MIM and the second rank tensor QIM are to be com-

puted by solving the microscale cell problems arising from the application of asymptotic

homogenization. The asymptotic homogenization technique provides six elastic type cell

problems that are to be solved to compute the strains MMyo, MIM. These can then be used,

along with the original input elasticity tensors for the material CMyo, CIM to compute the

effective elasticity tensor. To see these elastic type problems explicitly see Appendix C.1

and for even further details consider the references therein. The asymptotic homogeniza-

tion technique also gives rise to a further vector problem that can be solved to obtain the

tensor QIM. By solving the seven problems we obtain the three tensors required that we

can compute all the coefficients of our novel macroscale model.

Within this work since our analysis will focus predominantly on the elastic parame-

ters of the myocardium in both healthy and diseased scenarios we will only compute the

necessary components of the effective elasticity tensor C̃LMRP.

Lastly we note the notation ⟨φ⟩, which is a cell average defined as

⟨φ⟩k =
1

|Ω|

∫
Ωk

φ(x,y, t)dy k = f, s (7.7)

where ⟨φ⟩s = ⟨φ⟩IM + ⟨φ⟩Myo, and where φ is a general field in our system and |Ω| is the

volume of the domain and the integration is taken over the porescale.
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7.2 Loss of myocytes and increased fibrosis

Within this section we wish to compare the elastic parameters (Young’s and shear moduli)

for the healthy myocardium versus the infarcted myocardium. The healthy myocardium is

proposed to consist of a number of cardiac myocytes embedded in an extracellular matrix

surrounded by a network of blood vessels supplying the myocytes. This structure is shown

in Fig. 7.2. In the infarct region we have a loss of myocytes due to the interruption in

the blood flow supplying them which causes them to die or become damaged. In order to

retain the structural integrity of the heart the extracellular matrix forms a collagen rich

scar to replace the damaged and lost myocytes. In order to provide a first approximation

to this myocyte damage we have created the below geometry, Fig. 7.3 where the myocyte

is missing a section and in its place we increase the stiffness of the extracellular matrix.

Figure 7.2: 3D geometry healthy intact myocyte
embedded in soft extracellular matrix with four
blood vessels

Figure 7.3: 3D geometry myocyte that has been
injured as a result of infarction embedded in the
stiffer collagen rich extracellular matrix with four
blood vessels

Within this section we make the assumption that both the healthy and the damaged

myocytes run from the top of the cell to the bottom as a single fibre. This means that

we can cut the plane and perform 2D simulations to solve the cell problems of LMRP.

The details of the 3D cell problems can be found in the Appendix C.1 and the reduction

of these problems to 2D can be found in [73] and Appendix B.1. We show the assumed

equivalent 2D geometry in Fig. 7.4 and Fig. 7.5.
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Figure 7.4: 2D geometry for healthy myocyte em-
bedded in the healthy extracellular matrix with four
blood vessels

Figure 7.5: 2D cross-section showing a myocyte
that has been injured as a result of infarction em-
bedded in the stiffer collagen rich extracellular ma-
trix with four blood vessels

We use the following input parameters to carry out our simulations. These parameters

come from a variety of sources [1], [26], [63]. We require a Young’s modulus E and a

Poisson ratio ν for both the interstitial matrix and the myocyte in both the healthy and

the infarcted state.

Table 7.1: Input parameters for the following simu-
lations obtained from [1], [26], [63]

Model Emyo (kPa) Ematrix (kPa) νmyo νmatrix

Healthy 35 40 0.49 0.4

Infarcted 35 80 0.49 0.4

Due to the geometry we are assuming for the microstructure we are including the

effects of anisotropy of the myocardium tissue in our results. This means that we have

more than one independent shear and more than one independent Young’s modulus. Our

healthy material is not fully orthotropic with three Young’s moduli and three shears since

there is a symmetry in x and y. Therefore due to the symmetries imposed by our choice

of healthy geometry we should note that the shear C44 is the same as the shear C55, so

we consider shears C44 and C66. We also only have the two Young’s moduli E1 and E3,

since E1 is the same as E2. Even though we do not possess the symmetry in x and y for

the infarcted case, since we wish to make a comparison with the healthy case we chose to
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present only the parameters Young’s moduli E1 and E3 and shears C44 and C66. However,

it is clear from the geometry that the infarcted case will also have a different E2 and C55.

Here we compare the shear modulus C44 for a healthy myocyte embedded in the ex-

tracellular matrix with a setup where there has been loss of myocyte volume fraction and

increased fibrosis of the matrix designed to represent the case of myocardial infarction.

The parameter C44 is taken directly from the computed effective elasticity tensor for the

model. We have plotted the comparison of the shear moduli for the healthy and infarcted

cases over a range of porosities from 2%− 30%. This is shown in the figures below.

Figure 7.6: Shear C44 versus porosity for both the healthy heart and the infarcted case.

We see in Fig. 7.6 that the healthy setup has much lower values for shear and produces

an overall smaller decrease in shear with increasing porosity than the diseased case. The

shear is being applied in the axial direction (where the myocytes and voids elongate) so

the material deforms into the voids and they flatten out allowing for the decrease in shear

as the voids increase in size (larger porosity). The diseased case has a higher initial value

for shear due to the increased stiffness of the matrix and the unusual geometry of the

damaged myocyte, compared to the healthy case which has the normal soft extracellular

matrix and regular myocyte. The higher the shear the stiffer the overall material, this

means in the case of infarction even with reperfusion (increase in porosity) the stiffness of
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the myocardium still does not return to the normal healthy value. However, the increased

porosity does improve the overall compliance of the diseased material.

We also carry out the same comparison for the shear modulus C66.

Figure 7.7: Shear C66 versus porosity for both the healthy heart and the infarcted case.

In Fig. 7.7 we see that the healthy setup begins with a much lower shear value even at

small porosities compared with the infarcted case. The healthy case produces an overall

much smaller decrease in shear with increasing porosity than the diseased case. The shear

is being applied in the x-direction (transverse). Therefore for both the diseased and healthy

cases the force is being applied taking a cross section of structure which contains the voids

and the myocyte. At higher porosities this makes the material weaker as the larger voids

deform more easily hence why the decrease in shear is observed in both cases. The diseased

case has a higher initial value for shear C66 due to the increased stiffness of the matrix and

the unusual geometry of the damaged myocyte, compared to the healthy case which has

the normal soft extracellular matrix and regular myocyte. Again the increase in porosity

(to mimic reperfusion) in the diseased case does reduced to overall stiffness of the material

to attempt to return to a similar stiffness as the healthy. Comparing the shear C66 with

shear C44 we can see that C66 has higher initial values but with increasing porosity actually

becomes lower than C44. This can be explained by the geometry and the direction in which
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the myocytes elongate and the presence of the voids. The voids have the larger influence

on shear when applying in the C66 direction as they deform easily with less influence from

the myocyte.

We also wish to consider the comparison between the two Young’s moduli E1 (trans-

verse) and E3 (axial) for the healthy and the infarcted heart using the LMRP model.

We compute the components of the effective elasticity tensor for both the healthy and

infarcted cases and use in the formulas for the Young’s moduli. These formulas, which can

be derived via inverting the elasticity tensor and comparing with the material compliance

tensor, such as in [114], are given by

E1 =
(C12 − C11)(2C

2
13 − C12C33 − C11C33)

(−C2
13 + C11C33)

(7.8)

E3 =
(2C2

13 − C12C33 − C11C33)

(−C12 − C11)
. (7.9)

We plot the comparison of Young’s moduli between the healthy and infarcted cases.

Figure 7.8: E1 versus porosity for both the healthy heart and the infarcted case.

Fig. 7.8 shows that the infarcted myocardium has a much higher transverse Young’s

modulus than the healthy case (almost double the stiffness). This is explained by the fact
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that the matrix in the infarcted case is much stiffer than in the healthy case and therefore

influences the overall stiffness of the material to a large extent. The infarcted case also

has the damaged myocyte which has lost volume and been replaced by the stiffer matrix

which also influences the overall stiffness of the myocardium. We see that the stiffness

of the infarcted case reduces dramatically with increasing porosity of the material. This

means that with reperfusion of the infarcted tissue then the stiffness of the myocardium

can be reduced with the benefit that the overall compliance of the tissue will then improve,

thus improving heart function. We do see however that even at the highest porosities the

diseased case never reaches the standard healthy E1 value that would be approximately

30kPA. The difference between these two cases is two-fold and is due to both the additional

complexity in the geometry and the increased stiffness in the matrix. By changing just

one of these factors in the healthy case would not be enough to remove the discrepancy

between the two cases and illustrates the necessity of model coefficients that incorporate

geometry and material properties.

Figure 7.9: E3 versus porosity for both the healthy heart and the infarcted case.

In Fig. 7.9 we consider the Young’s modulus E3. We can again see that the healthy

myocardium has a much lower axial Young’s modulus than the infarcted case. In fact the

infarcted Young’s modulus is approximately double that of the healthy case. Overall again
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the increasing porosity does have an effect in reducing the overall stiffness in both cases

with the effects of the increasing porosity being shown more clearly in the diseased case.

The increasing porosity has a much greater effect on the infarcted case in an attempt to

improve the compliance of the overall heart muscle.

We can compare E3 with E1. We find that both the healthy and infarcted axial Young’s

moduli (E3) are initially higher than both the healthy and infarcted transverse Young’s

moduli (E1). We can see that the infarcted E3 is always higher than the infarcted E1. We

can also observe that the healthy E3 is also always higher than the healthy E1. This is

due to the fact that the myocytes and voids elongate in the axial direction which is also

considered a contributory factor to the stiffness in that direction.

7.3 Changing myocyte volume fraction

Following myocardial infarction we see a decrease in the volume fraction of myocytes in the

infarct zone due to the death and damage of myocytes, however, in the regions surrounding

the infarct zone the intact myocytes increase in volume to attempt to compensate for the

section of damaged heart [79], [3]. We therefore wish to investigate the influence that

this change in volume has on the overall elastic parameters of the heart. We assume our

increase in myocyte volume fraction corresponds to different infarct sizes and not a time

dependant increase following the infarction [78], [3].

Within this section we make the assumption that the myocytes run from the top of

the cell to the bottom as a single cylindrical fibre. The myocytes here are intact cylinders

since they have not been damaged by the infarction. This means that we can cut the plane

and perform 2D simulations to solve the cell problems of LMRP. For a description of the

cell problems see Appendix C.1 and for the complete 2D reduction of the model see [73]

and Appendix B.1.

We solve the cell problems using the following parameters, found in [1], [26], [63],

summarised in the table below.

Table 7.2: Input parameters for the following simu-
lations obtained from [1], [26], [63]

Parameter Emyo (kPa) Ematrix (kPa) νmyo νmatrix

Value 35 80 0.49 0.4

We carry out the simulations for four fixed fluid volume fractions ϕf =
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5%, 10%, 15%, 20% and for each of these varying the myocyte volume fraction from

5%−30%. The fluid volume fractions have been chosen to represent the following settings;

5% reduced flow leading to infarction, 10%-15% normal range of healthy perfusion, 20%

over perfused leading to myocardial injury.

We begin by considering the two Young’s moduli E1 and E3 for the infarcted heart.

Figure 7.10: E1 versus myocyte volume fraction for four different fixed fluid volume frac-
tions.

In Fig. 7.10 we see that the transverse Young’s modulus E1 decreases with increasing

myocyte volume fraction and this behaviour is consistent across the four fixed fluid volume

fractions that we have considered. The Young’s modulus can be thought of as a measure

of material stiffness so in the case of low myocyte volume fraction the extracellular matrix

is the dominating parameter in influencing the stiffness of the overall material. A stiffer

material leads to less elastic compliance which can be detrimental for overall function of

the heart. This is why in the regions surrounding a myocardial infarction the myocyte

volume fractions increase as their increase in volume actually reduces the overall stiffness

and hence improves the overall compliance of the material. This biological mechanism is

highlighted in the results of our simulations. We also note that the fluid volume fractions

contribute to the overall stiffness, with the stiffest setting being the one with only a 5%
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fluid volume fraction with the material getting progressively more compliant with the

increase in the fluid contribution.

We also wish to consider the axial Young’s modulus E3. This Young’s modulus is in

the same direction that the myocytes and voids elongate.

Figure 7.11: E3 versus myocyte volume fraction for four different fixed fluid volume frac-
tions.

In Fig. 7.11 we see that the axial Young’s modulus E3 also decreases with increasing

myocyte volume fraction and this behaviour is consistent across the four fixed fluid volume

fractions that we have considered. In the case of E3 the values are higher for each of the

fixed fluid volume fractions when compared to the transverse Young’s modulus E1. This

is due to the fact that the myocytes elongate in this direction which adds to the increased

stiffness. Again since the matrix is stiffer as a result of the myocardial infarction then

the increase in myocyte volume fraction helps to reduce the stiffness and improve the

compliance of the material, which again emphasises the observed physiological response.

The other two elastic parameters that we consider for varying myocyte volume fraction

are the shear moduli C44 and C66. These parameters are taken directly from the computed

effective elasticity tensor for the model. In the same way as with the Young’s moduli we

have plotted the comparison of the shear moduli over a range of myocyte volume fractions
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from 5%−35% at the four fixed fluid volume fractions. This is shown in the figures below.

Figure 7.12: Shear C44 versus myocyte volume fraction for four different fixed fluid volume
fractions.

From Fig. 7.12 we can see that the shear C44 decreases with increasing myocyte volume

fraction. In the case of C44 the force is being applied in the axial direction, this is the

direction in which the myocytes and blood vessels elongate. The blood vessels can be

thought of as empty channels since we are considering the drained parameters. This means

that when the force is applied to the material it deforms and the channels flatten out. This

means that the empty channels just make it softer allowing for the decrease in shear with

the increasing fluid volume fraction. When the myocytes have a low volume fraction,

such as in the case where myocyte damage and death has occurred due to myocardial

infarction, then we see that, for all four fixed fluid volumes, the shear values are higher

than for a larger myocyte volume fraction. The stiffest scenario is for fixed 5% fluid

volume and low myocyte volume fraction and this can be representative of the situation

directly following myocardial infarction where fluid flow to the tissue has been dramatically

reduced resulting in the loss of myocyte volume. We see that by increasing the myocyte

volume fraction the shear decreases at all four fluid volumes, meaning that we have a softer

more compliant material once the myocytes increase in size. Physiologically this occurs to
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help the myocardium return to homeostasis after infarction and this mechanism is clearly

observed from our simulations.

Figure 7.13: Shear C66 versus myocyte volume fraction for four different fixed fluid volume
fractions.

In Fig. 7.13 the shear C66 decreases with increasing myocyte volume fraction for all

four fixed fluid volumes. For C66 the force is being applied in the transverse direction, that

is, the force is being applied taking a cross section of structure where we have the myocyte

and the channels. At the lowest fluid volume fraction and smallest myocyte volume (the

scenario representing immediately post myocardial infarction) we see that the shear is

the largest, this means that under this setting the myocardium is very stiff. The typical

healthy shear for the myocardium would be approx. 10kPa which is much lower that the

24.2kPa value we see for the infarcted setup. This motivates the myocardium’s biological

response to increase the myocyte volume fraction in order to try to return the tissue to

the correct shear values so that the stiffness and compliance of the material is closer to

the healthy case and leads to greater efficiency of the recovered muscle. If we compare

C66 with C44 we see that C44 has the higher values across the increasing myocyte volume

fraction. This is due to the fact that the shear C44 is being applied in the direction the

myocyte elongates so the increase in its volume influences the material in that direction
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making it stiffer. The behaviour we see here has a more ’nonlinear’ appearance than the

behaviour in the previos plots. This can be caused by the geometry and the direction we

are taking the shear in. The distance between the myocyte and the voids gets closer as

the myocyte volume increases and this smaller distance causes the slightly more non-linear

drop in shear.

7.4 3D Simulations Results - Intercalated discs

Within this section we extend the current computational platform to 3D to allow us

incorporate more structural details that will give us an even more detailed picture of the

true elastic response of the heart. We now consider a setup where we have the myocyte

with intercalated discs at either end embedded in the extracellular matrix with the four

blood vessels in each corner. The intercalated disks are thin connecting plates found at

either end of the myocytes that allow for connection to the next myocyte cell [75]. The

more detailed 3D geometry we consider is shown in Fig. 7.14.

Figure 7.14: 3D geometry myocyte with intercalated disks at both ends embedded in the
extracellular matrix with four blood vessels.

Here we make the assumption that the myocytes have a height of 0.8 in the unit cell

of length 1. This is centred so there is a gap of 0.1 height between the myocyte ends and

the top and bottom of the cell. In this gap we place the intercalated discs that connect

the myocytes between cells. This means that we must perform 3D simulations to solve the

cell problems of LMRP since for every slice in the z direction we do not have the same
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microstructure so we cannot reduce to 2D.

We solve the cell problems using the following parameters, found in [1], [26] and [63].

As far as can be determined from the literature there is no clear Young’s modulus for

the intercalated disc, this can be attributed to the fact they are composed of a variety

of different proteins all with different elastic parameters. However, we do know that the

intercalated discs between myocytes are exposed to substantially higher forces than the

equivalent cell-cell junctions in other organs [67]. This leads to the assumption that discs

should be stiffer than the myocyte but on the same order of magnitude. We should note

that given some experimental data on the effective elastic parameters of the material

overall, it may be possible to perform an inverse analysis to obtain a value of say the

Youngs moduli for the intercalated discs. We have the following parameters and the

values we have selected for the intercalated discs.

Table 7.3: Input parameters 3D simulations found in [1], [26] and [63]

Parameter Emyo (kPa) Ematrix (kPa) Edisc (kPa) νmyo νmatrix νdisc
Value 35 80 60 0.49 0.4 0.49

We carry out the simulations for four fixed fluid volume fractions ϕf =

5%, 10%, 15%, 20% and for each of these varying the myocyte volume fraction from

5%−25%. The fluid volume fractions have been chosen to represent the following settings;

5% reduced flow leading to infarction, 10%-15% normal range of healthy perfusion, 20%

over perfused leading to myocardial injury. We should note that the intercalated disc is the

connection between the myocytes, therefore we are assuming that the intercalated discs

are growing with the myocytes so that the radii of both are consistently the same. This

means that we are losing a larger percentage of the matrix with the increase in myocyte

volume fraction at the expense of the larger discs.

We begin our analysis by considering the Young’s moduli.
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Figure 7.15: Young’s Modulus E1 versus myocyte volume fraction for four different fixed
fluid volume fractions.

From Fig. 7.15 we can see that for each fixed fluid volume fraction that the Young’s

modulus E1 decreases with increasing myocyte volume fraction. As before the Young’s

modulus is a measure of the material stiffness and therefore gives information about the

overall elastic compliance of the heart. The heart should be soft and elastic when healthy

with an overall Young’s modulus of 35kPA [63]. This means we can determine a range of

conclusions from the simulations that agree with physiological findings. Post myocardial

infarction intact, surviving myocytes enlarge in an attempt to regulate the stiffness of the

heart caused by the increasing stiffness of the extracellular matrix. Here we see exactly

this phenomena, with the larger the myocyte volume and the greater the fluid volume

fraction the closer the E1 parameter gets to that of the healthy heart.
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Figure 7.16: Young’s Modulus E3 versus myocyte volume fraction for four different fixed
fluid volume fractions.

Here, in Fig. 7.16, we consider the axial Young’s modulus E3. We again can see that

with increasing myocyte volume fraction the value of E3 (the stiffness) decreases for all

four fixed fluid volumes. We again see that this behaviour is again representative of what

happens physiologically in the heart to try to maintain homeostasis post infarction. We

also can compare E3 with E1. We see that E3 changes more than E1 when we compare

line-by-line (for each fluid volume fraction) and that the starting values of E3 are higher

than that of E1. This can be explained by the fact that since the myocytes elongate in E3

this creates the stiffer Young’s modulus in this direction compared with the E1 Young’s

modulus.

We also wish to consider the two shear moduli C44 and C66 for the four fixed fluid

volumes with increasing myocyte volume.
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Figure 7.17: Shear C44 versus myocyte volume fraction for four different fixed fluid volume
fractions.

In Fig. 7.17 we see that the shear C44 decreases with increasing myocyte volume fraction

at all four fluid volumes. This shear is applied in the direction that the myocyte and

channels elongate. This means that for small myocyte volume fractions the matrix and

the specified fluid volume fraction have most influence on the stiffness of the material.

When the myocytes and discs increase in volume they play a role in reducing the overall

stiffness since they are softer than the matrix. The higher the value of the shear then

the stiffer the overall material is. The results of our simulations again agree with the

physiologically observed behaviour that the increased myocyte volume aims to reduce the

overall stiffness of the myocardium caused by the infarct scar in an attempt to return to

homeostasis.



CHAPTER 7. EFFECTS OF MI ON ELASTIC PARAMETERS OF THE HEART 212

Figure 7.18: Shear C66 versus myocyte volume fraction for 4 different fixed fluid volume
fractions.

The final parameter we have considered is the shear C66 as shown in Fig. 7.18. This

shear is applied taking a cross-section of the material where we will see matrix, channels

and intercalated disc. This shear again decreases with increasing myocyte volume. We

can compare the behaviour with C44. We see that for the 5% fluid volume fraction that

C66 decreases more than C44, however for 10%, 15% and 20% fluid volume fractions C44

shows the greater decrease with increasing myocyte volume fraction. We note that C44

has higher values across all myocyte volume fractions for all four fluid volume fractions

than C66. This can be explained by the different directions the shear is applied in. The

increase in the myocyte volume does indeed decrease the overall stiffness since the myocyte

and the discs are taking up a larger volume of the whole structure and are softer than the

matrix. However C44 is being applied against the base of the disc/myocyte fibre and as

the volume of this increases it has an influence when the force is applied. The voids with

the C44 shear only flatten out rather than deforming with the shear. Both of these reasons

are what keeps the value of the shear C44 higher that that of C66.
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7.5 Conclusions and future directions

Within this work we have created a robust computational platform that has allowed for a

first study of how different microstructural features, that can be observed clinically follow-

ing myocardial infarction, affect the elastic parameters of the heart. We have investigated

a variety of elastic parameters obtained by solving the asymptotic homogenization cell

problems of [69] and Chapter 3 for poroelastic composites.

We begin this work by firstly summarising the LMRP model for poroelastic compos-

ites. We provide an Appendix C.1 with the specific cell problems that we have solved to

produce the results of this work, as well as references to inform the reader of the numerical

procedures that are carried out. We then consider the first microstructural change that

occurs as the result of myocardial infarction. That is, the loss of myocyte volume and

increasing matrix fibrosis and we consider this versus porosity. For this microstructural

change we make the comparison with the healthy heart for the four elastic parameters

(Young’s moduli E1 and E3 and shear moduli C44 and C66). We find that in all cases the

diseased/infarcted heart is much stiffer across the range of porosities considered. This is

in line with the expected physiological response post infarction.

We continue our analysis by considering the effect of increasing the volume fraction

of the myocyte with the extracellular matrix still being stiffer than in the healthy case.

Physiologically this happens in the areas surrounding the infarct region in an attempt

to counter balance the increased stiffness of the matrix with scar tissue. The results we

obtain for all four elastic parameters, for all four different fixed fluid volume fractions,

confirms this physiological phenomenon. For both of these cases it was possible to carry

out the simulations in 2D since our geometry is identical for each z.

The final part of our analysis extends the previous section by the addition of the

intercalated disks that are stiffer than the myocytes and connect myocytes cell-to-cell.

The analysis carried out in this section requires 3D simulations since the microstructure

varies with the z coordinate. In this setting it is again the increase in the myocyte volume

fraction that is considered. We again see that with increasing myocyte volume all of

the elastic parameters that we have considered here decrease, meaning the stiffness of

the overall myocardium is decreasing. Once again our numerical results were replicating

the physiological response (i.e. increasing myocyte volume in order to try to reduce the

stiffness of the complete organ caused by the scar tissue).

The numerical simulations carried out in this work can be thought of as a first at-
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tempt to model some basic microstructural changes that can be observed post myocardial

infarction. The simulations here are computationally cheap (approximately 15 seconds

computing time to obtain each data point) and can provide realistically observed phsio-

logical responses.

Our current model does have some limitations and possible extensions. The model

currently assumes a simplified microstructure. By increasing the complexity (i.e. the

number of phases and shape of the interfaces) we would obtain differences in the overall

elastic parameters but the generic behaviour would be similiar. We could for example

extend the 3D simulations in Sec. 7.4 to include also the influence of the fibroblast cells

on the parameters. It would also be possible to split the heart into regions such as infarct

zone, the infarct border and the remaining unaffected tissue. By doing this we would

obtain different macroscale coefficients for each of the regions that can be used to solve

the overall macroscale model.

It is important to note that micromechanical modelling approaches other than asymp-

totic homogenization could also be of use to obtain reasonable approximations of these

elastic parameters. Other methods such as effective medium theory and mixture theory

are able to accommodate multiple phases and various shaped inclusions and various spe-

cific shaped pores (ellipsoidal, penny-shaped or shperical) however they cannot account

for the unusual or complex geometries with the same precise prescription as asymptotic

homogenization.

Currently this work has used linear elasticity however, we are able to make use of this

computational platform to represent a more accurate nonlinear behaviour of the heart

by using a piecewise approach to modelling as done in [52], [53]. By doing this we can

approximate the nonlinear behaviour using simple, computationally cheap simulations.

Future extensions to this model that could allow it to be used as a predictive tool

for clinicians would be adding additional microstructural features that have an influence

on the overall behaviour of the heart. As well as obtaining additional data from medical

imaging that would allow us to create a patient specific profile of the elastic parameters

post infarction and in the recovery period. By solving the macroscale model, which is

not done in this work, we would obtain values for pressure that could be compared with

pressure-volume loop data obtained from patients.

Another useful source of data for model comparison and validation would come from

elastography of the heart. The elastography technique uses vibrations applied to the
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skin and measures the responses from the underlying tissues since stiffer tissue responds

differently to softer tissue [119]. This can be used to assess changes in myocardial elasticity

during the cardiac cycle [113]. These measurements along with our model predictions can

provide valuable insight to clinicians on the stiffness of the heart and inform treatment

choices.



Chapter 8

Summary and Conclusions

We have derived a variety of novel theoretical models that consist of partial differential

equations that describe the effective mechanical behaviour of poroelastic materials with

various different microstructures. This has been used to enhance the literature surrounding

poroelasticity and has allowed for a range of choices of models when faced with real world

applications that feature a detailed microstructure.

Our analysis begins firstly in Chapter 2 where we present a re-derivation of the quasi

static governing equations of a porous elastic matrix with an incompressible Newtonian

fluid flowing in the pores. We assume that the size of the pores is much smaller than the

size of the whole domain and therefore embrace the asymptotic homogenization technique

to derive the model. The governing equations are that of Biot’s poroelasticity [12–15]

which have previously been derived via homogenization by [19]. This chapter serves as

a first example of the application of the asymptotic homogenization technique and as

a standard for comparison with our novel models derived in later chapters that aim to

improve upon the applicability of poroelastic models to real-world scenarios.

In Chapter 3 we derive the novel quasi-static governing equations for the macroscale

behaviour of a linear elastic porous composite comprising a matrix interacting with in-

clusions and/or fibres, and an incompressible Newtonian fluid flowing in the pores. We

assume that the size of the pores (the microscale) is comparable with the distance be-

tween adjacent subphases and is much smaller than the size of the whole domain (the

macroscale). We then decouple spatial scales embracing the asymptotic (periodic) homog-

enization technique to derive the new macroscale model by upscaling the fluid–structure

interaction problem between the elastic constituents and the fluid phase. The resulting

system of partial differential equations is of poroelastic type and encodes the properties of

216
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the microstructure in the coefficients of the model, which are to be computed by solving

appropriate cell problems which reflect the complexity of the given microstructure. The

model reduces to the limit case of simple composites when there are no pores [89], and

standard Biot’s poroelasticity whenever only the matrix–fluid interaction is considered [19]

and [92]. We further prove rigorous properties of the coefficients, namely (a) major and

minor symmetries of the effective elasticity tensor, (b) positive definiteness of the resulting

Biot’s modulus, and (c) analytical identities which allow us to define an effective Biot’s

coefficient.

In Chapter 4 we extend this work to a nonlinear framework. Within this work, we up-

scale the equations that describe the porescale behaviour of nonlinear porous elastic com-

posites, using the asymptotic homogenization technique in order to derive the macroscale

effective governing equations. A porous hyperelastic composite can be thought of as being

comprised of a matrix interacting with a number of subphases and percolated by a fluid

flowing in the pores (which is chosen to be Newtonian and incompressible here). A gen-

eral nonlinear macroscale model is derived and is then specified for a particular choice of

strain energy function, namely the de Saint-Venant function. This leads to a macroscale

system of PDEs, which is of poroelastic type with additional terms and transformations

to account for the nonlinear behaviour of the material. Our new porohyperelastic-type

model describes the effective behaviour of nonlinear porous composites by prescribing the

stress balance equations, the conservation of mass and Darcy’s law. The coefficients of

these macroscale equations encode the detailed microstructure of the material and are to

be found by solving porescale differential problems. The model reduces to the following

limit cases of (a) linear poroelastic composites when the deformation gradient approaches

the identity [69], (b) nonlinear composites when there are no pores [102] and (c) nonlinear

poroelasticity when only the matrix–fluid interaction is considered [17].

We further develop the poroelastic modelling literature with our novel model for double

poroelastic materials, that is, materials with a poroelastic matrix with embedded poroe-

lastic subphases. This is derived in Chapter 5. We assume that the distance between the

subphases (the local scale) is much smaller than the size of the domain (the global scale).

We assume that at the local scale both the matrix and subphases can be described by

Biot’s anisotropic, heterogeneous, compressible poroelasticity (i.e. the porescale is already

smoothed out). We then decompose the spatial variations by means of the two-scale ho-

mogenization method to upscale the interaction between the poroelastic phases at the local
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scale. This way, we derive the novel global scale model which is formally of poroelastic-

type. The global scale coefficients account for the complexity of the given microstructure

and heterogeneities. These effective poroelastic moduli are to be computed by solving

appropriate differential periodic cell problems. The model coefficients possess properties

that, once proved, allow us to determine that the model is both formally and substantially

of poroelastic-type. The properties we prove are a) the existence of a tensor which plays

the role of the classical Biot’s tensor of coefficients via a suitable analytical identity and

b) the global scale scalar coefficient M̄ is positive which then qualifies as the global Biot’s

modulus for the double poroelastic material.

We then begin our numerical analysis of our novel models. In Chapter 6 we investigate

the role that the microstructure of a poroelastic material has on the resulting elastic

parameters. We are considering the effect that multiple elastic and fluid phases at the

same scale (LMRP model from Chapter 3) have on the estimation of the materials elastic

parameters when compared with a standard poroelastic approach. We present a summary

of both the LMRP model and the comparable standard poroelastic approach both derived

via the asymptotic homogenization approach. We provide the 3D periodic cell problems

with associated boundary loads that are required to be solved to obtain the effective

elasticity tensor for both model setups. We then perform a 2D reduction of the cell

problems, again presenting the 2D boundary loads that are required to solve the problems

numerically. The results of our numerical simulations show that whenever investigating a

poroelastic composite material with porosity exceeding 5% then the LMRP model should

be used to compute the Young’s moduli E1 and E3 and the shear C44 and when the

porosity exceeds 20% it should also be used to investigate the shear C66. We find that for

materials with less than 5% porosity a standard poroelastic approach or the LMRP model

produce the same results.

Finally in Chapter 7 we apply our novel model for poroelastic composites to investi-

gating the elastic parameters of the heart post myocardial infarction. Within this work

we investigate how physiologically observed microstructural changes induced by myocar-

dial infarction impact the elastic parameters of the heart. We use the LMRP model for

poroelastic composites [69] to describe the microstructure of the myocardium and investi-

gate microstructural changes such as loss of myocyte volume and increased matrix fibrosis

as well as increased myocyte volume fraction in the areas surrounding the infarct. We

also consider a 3D framework to model the myocardial microstructure with the addition
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of the intercalated disks, which provide the connections between adjacent myocytes. The

results of our simulations agree with the physiological observations that can be made post-

infarction. That is, the infarcted heart is much stiffer than the healthy heart but with

reperfusion of the tissue it begins to soften. We also observe that with the increase in my-

ocyte volume of the non-damaged myocytes the myocardium also begins to soften. With

a measurable stiffness parameter the results of our model simulations could predict the

range of porosity (reperfusion) that could help return the heart to the healthy stiffness. It

would also be possible to predict the volume of the myocytes in the area surrounding the

infarct from the overall stiffness measurements.

The current work has extended the literature surrounding poroelastic materials and

has produced computationally feasible models. There are of course many extensions to

the research lines that have been developed in this thesis and there have been specific

comments made on these in the concluding remarks of the individual chapters. Overall

there are a variety of novel models that could still be developed in order to extend and

develop the understanding of perfusion and mechanics in real world poroelastic materials.



Appendix A

Appendix: Double poroelastic

material model

A.1 Limit cases for the global scale model

It is important to note that our global scale model (5.132) reduces to previously obtained

results when we consider the following limit cases. The first case is in the limit of no fluid

present. This means that we are able to set ϑ(0) to zero and therefore ϑ̇(0) is also zero and

the relative fluid velocitieswM andwS are both zero. In this case the mechanical behaviour

of the material is described by only the balance equation with no pressure contribution in

the effective stress, Therefore the model reduces to only two equations and has the form


∇x · σeff = 0,

σeff = ⟨CMLM + CM + CSLS + CS⟩Ω : ξxu
(0).

(A.1)

This is the model for a simple elastic composite material. We also note that the only cell

problem that is relevant in this case is (5.83-5.86). This model coincides with the models

for elastic composites found in the literature [89].

The second limit case we consider is where our subphase has no fluid (i.e the subphase is

purely elastic) and our matrix remains poroelastic. This is the setting considered by [105]

and, assuming also incompressibility of the phases, [24]. To reduce our model to this case

we assume that αS = 0, wS = 0 and that ϑS = 0. Under this assumption our model looks

220
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like 

∇x · σ′
eff = 0,

σ′
eff = C̄′ : ξxu

(0) + γ̄ ′ϑ(0),

w′
eff = −W′∇xϑ

(0),

ϑ̇(0) = −M̄′(∇x ·weff − α̃′ : ξxu̇
(0)

)
,

(A.2)

where

M̄′ =
⟨MM⟩M

1 + ⟨MM(αM : τM)⟩M
, γ̄ ′ = ⟨CMτM + CSτ S −αM⟩Ω, w′

eff = ⟨w(0)
M ⟩Ω,

W′ = ⟨KMRM + KM⟩Ω, α̃′ = ⟨αM + LT
M : αM⟩Ω, (A.3)

and C̄′ is the same as in (5.133). The effective behaviour of our material under these

assumptions is characterised by the coefficients C̄′, α̃′, W′, γ̃ ′ and M̄′. We can make the

following identifications in our notation with the notation used in [105], where a weak

formulation has also been used, which are

C̄′ = Ceff , α̃′ = Geff , −γ̄ ′ = Aeff ,
1

M̄′ = Beff , W′ = Keff . (A.4)

We have that our γ̄ ′ is identifiable with [105]’s Aeff up to a change in sign due to the

difference in sign used within the ansatz between their work and ours. As noted by [105]

the effective elasticity tensor found here is that of elastic composites [89]. It is also possible

to show that Aeff = Geff and that Beff is positive as in [105]. We can also identify

our coefficients with those used in [24]. We enforce the assumption that our material

is incompressible in both phases to our coefficients in (A.3) and then we can make the

following identifications

C̄′ = Ceff , α̃′ = Seff , γ̄ ′ = Geff ,
1

M̄′ = Γeff , W′ = Keff . (A.5)

We can also find a correspondence the cell problems found in [105] and [24] and those

found here. The cell problem (5.83-5.86) which is the cell problem for elastic composites

is the cell problem found in [24] when the assumptions of isotropy and incompressibility

are applied and the cell problem found in [105] where a weak formulation has been used.

The second cell problem (5.87-5.90) reduces in this limit case. We have that αS = 0 due
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to there being no fluid in the subphase. The reduced cell problem is

∇y · (CMξybM) = ∇y ·αM in ΩM, (A.6)

∇y · (CSξybS) = 0 in ΩS, (A.7)

(CMξybM − CSξybS)n = αMn on Υ, (A.8)

bM = bS on Υ. (A.9)

When the assumptions of isotropy and incompressibility are made we also have that αM =

1. This means that the right hand side of (A.6) and (A.7) are both zero. This again

coincides with the cell problems found in [24] and [105]. The anisotropic Poisson problem

(5.113-5.116) reduces in this limit also. Since there is no fluid in the subphase from

the commencement then there is no requirement for the continuity of pressure interface

condition or for a Darcy’s law equation in the subphase, that is wS = 0. This means that

the problem retains only two equations. The reduced cell problem is therefore

∇y · (∇yϑ̂MKT
M) = −∇y · KT

M in ΩM, (A.10)

(∇yϑ̂MKT
M)n = −KT

Mn on Υ. (A.11)

This corresponds to the cell problem in [105] and the cell problem in [24] when again

in this latter case the assumptions of isotropy and incompressibility are made as well as

assuming the hydraulic conductivity tensor KM = 1.

A.2 Computational scheme

We aim to provide a clear step-by-step guide to finding our effective coefficients and solving

our global scale model (5.132) encoding structural details from three scales. We also

provide, where available, particular references that would assist the reader with the type

of numerical simulations that would need to be carried out. Since we have made the

assumption of global scale uniformity of the material then we can propose the following

steps to solve the model. The process is as follows:

1. We begin by fixing the original material properties of the poroelastic matrix and the

poroelastic subphases at the local scale. We require the effective elasticity tensors CM

and CS, the Biot’s tensors αM and αS, the Biot’s moduli MM and MS and finally
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the hydraulic conductivities KM and KS from both the matrix and the subphases.

Under the assumption of isotropy we are required to fix 5 parameters for the matrix

and 5 parameters for the subphase. These parameters are two independent elastic

constants e.g the Poisson ratio and Young’s modulus (or alternatively the Lamé

constants), hydraulic conductivity, Biot’s coefficient and Biot’s modulus.

2. The local scale geometry then must be defined and we fix a single periodic cell at

this stage.

3. We would then be able to solve the elastic-type cell problems (5.83 - 5.86) and (5.87

- 5.90) to obtain the auxiliary tensors LM,LS, τM and τ S which appear in the global

scale model coefficients. The cell problems to be solved are, in components,

∂

∂yj

(
CM
ijpqζ

kl
pq(B

M)
)
+
∂CM

ijkl

∂yj
= 0 in ΩM, (A.12)

∂

∂yj

(
CS
ijpqζ

kl
pq(B

S)
)
+
∂CS

ijkl

∂yj
= 0 in ΩSub, (A.13)

CM
ijpqζ

kl
pq(B

M)nj − CS
ijpqζ

kl
pq(B

S)nj = (CM − CS)ijklnj on Υ, (A.14)

BM
ikl = BS

ikl on Υ, (A.15)

as well as another elastic-type cell problem driven by variations in the constituents’

compressibility

∂

∂yj

(
CM
ijpqζpq(b

M)
)
=
∂αM

ij

∂yj
in ΩM, (A.16)

∂

∂yj

(
CS
ijpqζpq(b

S)
)
=
∂αS

ij

∂yj
in ΩSub, (A.17)

CM
ijpqζpq(b

M)nj − CS
ijpqζpq(b

S)nj = −(αS − αM)ijnj on Υ, (A.18)

bMi = bSi on Υ, (A.19)

where we have used the notation

ζklpq(B
v) =

1

2

(
∂Bv

pkl

∂yq
+
∂Bv

qkl

∂yp

)
and ζpq(b

v) =
1

2

(
∂bvp
∂yq

+
∂bvq
∂yp

)
, (A.20)

and the superscript v = M,S refers to either the matrix or the subphase. The

solution of the problem (A.12-A.15) can be obtained by solving six elastic-type cell

problems by fixing the couple of indices k, l = 1, 2, 3. By doing this we can see
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that ζklpq(B
v) represents a strain and that for each fixed couple of indices k, l we

have a linear elastic problem. For an example of where this cell problem has been

solved computationally, see the recent works [88] and [89]. The solution of problem

(A.16-A.19) is obtained by solving 3 cell problems for each i = 1, 2, 3.

The auxiliary second rank tensors RM and RS can be computed by solving the

vector cell problem given by (5.113-5.116). The latter corresponds to three scalar

anisotropic Poisson’s problems (for each j = 1, 2, 3) equipped with continuity and

transmission interface conditions, component-wise. The cell problem in components

is

∂

∂yi

(
KM

il

∂ϑ̂Mj
∂yl

)
= −

∂KM
ij

∂yi
in ΩM, (A.21)

∂

∂yi

(
KS

il

∂ϑ̂Sj
∂yl

)
= −

∂KS
ij

∂yi
in ΩSub, (A.22)

ϑ̂Mj = ϑ̂Sj on Υ, (A.23)(
KM

il

∂ϑ̂Mj
∂yl

−KS
il

∂ϑ̂Sj
∂yl

)
ni = (KM −KS)ijni on Υ. (A.24)

This problem is the same as the classical problem that arises from applying the

asymptotic homogenization technique to the diffusion problem and porous media

problems, see [27], [7], and [93]

4. We also require one more condition to ensure uniqueness of solution. We can enforce

that the cell averages of the cell problem solutions are zero. That is, ⟨BM+BS⟩Ω = 0,

⟨bM + bS⟩Ω = 0 and ⟨ϑ̂M + ϑ̂S⟩Ω = 0

5. The auxiliary tensors arising form the cell problems (i.e. the quantities LM, LS, τM,

τ S, RM and RS) can then be used to determine the global scale model coefficients.

6. The geometry at the global scale then must be prescribed. The boundary condi-

tions for the homogenized cell boundary must also be given, and the system is to

be supplemented with initial conditions for the global scale solid displacement and

pressure.

7. Finally, the global scale model (5.132) for a double poroelastic material can then be

solved.

Remark 17. (Computational scheme on three scales) If porescale data was available for
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our material then we would be able to obtain a solution encoding structural detail on three

scales. We would begin by fixing the original material properties on the porescale. This

includes fixing the stiffness of the solid phase in both the matrix and subphase, defining

the pore structures, and determining the fluid properties, which are, the viscosity and

potentially the bulk moduli for compressible fluids. At this scale we are considering both

these poroelastic materials separately. We then must define the porescale geometry for both

the matrix and the subphases. This includes fixing a periodic cell in both the matrix and

the subphases. We would then be able to solve the separate cell problems for the matrix and

the subphase. These cell problems are the standard cell problems of poroelasticity found

in [19] and with a step-by step computational scheme found in [92]. These cell problem

solutions would then be used to determine the local scale coefficients such as the elasticity

tensors CM and CS, the Biot’s tensors of coefficients in the matrix and the subphases αM

and αS, the Biot’s moduli MM and MS, and the hydraulic conductivities KM and KS,

which would then be used in Step 1 above. For an example of where these elastic and fluid

cell problems have been solved numerically see the recent work [35].



Appendix B

Appendix: Analysis of stiffness of

poroelastic composites

This appendix contains firstly the 2D reduction of the cell problems for poroelastic com-

posites shown in Sec. 6.2.1 with orthotropic elastic constituents. This reduction is the

most general and can have different assumptions applied so it can be reduced to the 2D

problems for the model in Sec. 6.2.3. The second function of this appendix is to pro-

vide details of the numerical setup and justification of our computational setup for 3D

simulations.

B.1 2D reduction

Our 2D reduction of the problem will be carried out for the most general case, which in

this work is the poroelastic composite where both elastic phases are orthotropic. From

this problem which comprises five equations we can make some simplifying assumptions

which allow the reduction to also be applicable to the porous matrix problem and to the

composite comprising the porous matrix and the elastic inclusion. In order to carry out

our 2D reduction we consider and build upon [82], [81], [88]

Since we are beginning with the case of poroelastic composites we will use the notation

of the LMRP model in Sec. 6.2.1. We begin our reduction by making the assumption

that the elasticity tensors CI and CII are constant with respect to both the porescale and

macroscale. This will also be the case for CM, CSP
I and CPM for the other problems. This

means that we can re-write the 3D cell problem (6.19)-(6.23) for third rank tensors AI
ikl

226
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and AII
ikl as follows

CI
ijpq

∂AI
pkl

∂yj∂yq
= 0 in ΩI (B.1)

CII
ijpq

∂AII
pkl

∂yj∂yq
= 0 in ΩII (B.2)

CI
ijpq

∂AI
pkl

∂yq
nIII
j − CII

ijpq

∂AII
pkl

∂yq
nIII
j = (CII − CI)ijkln

III
j on ΓIII (B.3)

AI
ikl = AII

ikl on ΓIII (B.4)

CII
ijpq

∂AII
pkl

∂yq
nII
j + CII

ijkln
II
j = 0 on ΓII (B.5)

In the above cell problem the summation over repeated indices j, p, q = 1, 2, 3 is under-

stood. We note that our unknown third rank tensors AI and AII do not depend on y3

due to symmetry, neither do the third rank tensors B, F I or F II that we use in the other

cell problems presented in Sec. 6.2.3. We also have that our normals to the interfaces are

also only functions of y1 and y2. This, along with the elasticity tensors being y-constant,

means that AI and AII only depend on y1 and y2. The cell problem (B.1)-(B.5) can now

be solved in two dimensions, so we can rewrite as

CI
iαsβ

∂AI
skl

∂yα∂yβ
= 0 in DI (B.6)

CII
iαsβ

∂AII
skl

∂yj∂yq
= 0 in DII (B.7)

CI
iαsβ

∂AI
skl

∂yβ
nIII
α − CII

iαsβ

∂AII
skl

∂yβ
nIII
α = (CII − CI)iαkln

III
α on ∂DI ∩ ∂DII (B.8)

AI
ikl = AII

ikl on ∂DI ∩ ∂DII (B.9)

CII
iαsβ

∂AII
skl

∂yβ
nII
α + CII

iαkln
II
α = 0 on ∂Df (B.10)

In the problem (B.1)-(B.5) the summation over repeated indices s = 1, 2, 3 and α, β = 1, 2

is understood. We also have the domains DI and DII which represent the two-dimensional

cross section of the periodic cell where the subscripts I and II represent the inclusion and

matrix respectively. We also have the interfaces ∂DI ∩ ∂DII which corresponds to a 2D

cross section of ΓIII and ∂Df is the 2D cross section of ΓI.

We assume that our CI
iαsβ and CII

iαsβ are orthotropic, that is, the following represen-
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tations for CI and CII holds

CI =



CI
11 CI

12 CI
13 0 0 0

CI
12 CI

22 CI
13 0 0 0

CI
13 CI

13 CI
33 0 0 0

0 0 0 CI
44 0 0

0 0 0 0 CI
55 0

0 0 0 0 0 CI
66


(B.11)

CII =



CII
11 CII

12 CII
13 0 0 0

CII
12 CII

22 CII
13 0 0 0

CII
13 CII

13 CII
33 0 0 0

0 0 0 CII
44 0 0

0 0 0 0 CII
55 0

0 0 0 0 0 CII
66


(B.12)

where we have used voigt notation for the entries as in [88].

We expand problem (B.1)-(B.5) using s = 1, 2, 3 and α, β = 1, 2. That is

CI
i111

∂AI
1kl

∂y21
+ CI

i121

∂AI
2kl

∂y21
+ CI

i131

∂AI
3kl

∂y21
+ CI

i112

∂AI
1kl

∂y1∂y2
+ CI

i122

∂AI
2kl

∂y1∂y2

+ CI
i132

∂AI
3kl

∂y1∂y2
+ CI

i211

∂AI
1kl

∂y2∂y1
+ CI

i221

∂AI
2kl

∂y2∂y1
+ CI

i231

∂AI
3kl

∂y2∂y1

+ CI
i212

∂AI
1kl

∂y22
+ CI

i222

∂AI
2kl

∂y22
+ CI

i232

∂AI
3kl

∂y22
= 0 in DI (B.13)

CII
i111

∂AII
1kl

∂y21
+ CII

i121

∂AII
2kl

∂y21
+ CII

i131

∂AII
3kl

∂y21
+ CII

i112

∂AII
1kl

∂y1∂y2
+ CII

i122

∂AII
2kl

∂y1∂y2

+ CII
i132

∂AII
3kl

∂y1∂y2
+ CII

i211

∂AII
1kl

∂y2∂y1
+ CII

i221

∂AII
2kl

∂y2∂y1
+ CII

i231

∂AII
3kl

∂y2∂y1

+ CII
i212

∂AII
1kl

∂y22
+ CII

i222

∂AII
2kl

∂y22
+ CII

i232

∂AII
3kl

∂y22
= 0 in DII (B.14)

CI
i111

∂AI
1kl

∂y1
nIII
1 + CI

i121

∂AI
2kl

∂y1
nIII
1 + CI

i131

∂AI
3kl

∂y1
nIII
1 + CI

i112

∂AI
1kl

∂y2
nIII
1 + CI

i122

∂AI
2kl

∂y2
nIII
1

+ CI
i132

∂AI
3kl

∂y2
nIII
1 + CI

i211

∂AI
1kl

∂y1
nIII
2 + CI

i221

∂AI
2kl

∂y1
nIII
2 + CI

i231

∂AI
3kl

∂y1
nIII
2 + CI

i212

∂AI
1kl

∂y2
nIII
2

+ CI
i222

∂AI
2kl

∂y2
nIII
2 + CI

i232

∂AI
3kl

∂y2
nIII
2 −

(
CII
i111

∂AII
1kl

∂y1
nIII
1 + CII

i121

∂AII
2kl

∂y1
nIII
1 + CII

i131

∂AII
3kl

∂y1
nIII
1
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+ CII
i112

∂AII
1kl

∂y2
nIII
1 + CII

i122

∂AII
2kl

∂y2
nIII
1 + CII

i132

∂AII
3kl

∂y2
nIII
1 + CII

i211

∂AII
1kl

∂y1
nIII
2 + CII

i221

∂AII
2kl

∂y1
nIII
2

+ CII
i231

∂AII
3kl

∂y1
nIII
2 + CII

i212

∂AII
1kl

∂y2
nIII
2 + CII

i222

∂AII
2kl

∂y2
nIII
2 + CII

i232

∂AII
3kl

∂y2
nIII
2

)
= (CII

i1kln
III
1 + CII

i2kln
III
2 )− (CI

i1kln
III
1 + CI

i2kln
III
2 ) on ∂DI ∩ ∂DII (B.15)

AI
ikl = AII

ikl on ∂DI ∩ ∂DII (B.16)

CII
i111

∂AII
1kl

∂y1
nII
1 + CII

i121

∂AII
2kl

∂y1
nII
1 + CII

i131

∂AII
3kl

∂y1
nII
1 + CII

i112

∂AII
1kl

∂y2
nII
1 + CII

i122

∂AII
2kl

∂y2
nII
1

+ CII
i132

∂AII
3kl

∂y2
nII
1 + CII

i211

∂AII
1kl

∂y1
nII
2 + CII

i221

∂AII
2kl

∂y1
nII
2 + CII

i231

∂AII
3kl

∂y1
nII
2 + CII

i212

∂AII
1kl

∂y2
nII
2

+ CII
i222

∂AII
2kl

∂y2
nII
2 + CII

i232

∂AII
3kl

∂y2
nII
2 + CII

i1kln
II
1 + CII

i2kln
II
2 = 0 on ∂Df (B.17)

Now we have our problem we can set i = 1, 2 to get the in-plane problems and i = 3 for the

anti-plane problems and use the entries from the matrices (B.11) and (B.12) to simplify.

We have four in-plane problems and two anti-plane problems in total.

We first consider the anti-plane problem, so we put i = 3 in (B.13)-(B.17) and use the

entries from the matrices (B.11) and (B.12), not in Voigt notation, to simplify. That is,

CI
3131

∂AI
3kl

∂y21
+ CI

3232

∂AI
3kl

∂y22
= 0 in DI (B.18)

CII
3131

∂AII
3kl

∂y21
+ CII

3232

∂AII
3kl

∂y22
= 0 in DII (B.19)

CI
3131

∂AI
3kl

∂y1
nIII
1 + CI

3232

∂AI
3kl

∂y2
nIII
2 −

(
CII
3131

∂AII
3kl

∂y1
nIII
1 + CII

3232

∂AII
3kl

∂y2
nIII
2

)
= (CII

31kln
III
1 + CII

32kln
III
2 )− (CI

31kln
III
1 + CI

32kln
III
2 ) on ∂DI ∩ ∂DII (B.20)

AI
3kl = AII

3kl on ∂DI ∩ ∂DII (B.21)

CII
3131

∂AII
3kl

∂y1
nII
1 + CII

3232

∂AII
3kl

∂y2
nII
2 + CII

31kln
II
1 + CII

32kln
II
2 = 0 on ∂Df (B.22)

Now similarly for the in-plane problem, so we put i = 1, 2 simultaneously in (B.13)-

(B.17) and use the entries from the matrices (B.11) and (B.12) to simplify to obtain a

vector problem of the form

∇ ·
(
CI∇AI

kl

)
= 0 in DI (B.23)

∇ ·
(
CII∇AII

kl

)
= 0 in DII (B.24)
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(
CI∇AI

kl − CII∇AII
kl

)
nIII = fkl on ∂DI ∩ ∂DII (B.25)

AI
kl = AII

kl on ∂DI ∩ ∂DII (B.26)

CII∇AII
kln

II + CIInII = 0 on ∂Df (B.27)

where AI
kl and AII

kl are vectors with two components i = 1, 2 for each fixed couple

(k,l)=(1,1), (2,2), (3,3), (1,2). The force on the interface ∂DI ∩ ∂DII between the two

elastic phases f∂DI∩∂DII
kl can be written as

f∂DI∩∂DII
kl = (CII

i1kln
III
1 + CII

i2kln
III
2 )− (CI

i1kln
III
1 + CI

i2kln
III
2 ) (B.28)

We also have a second interface between the fluid and the matrix ∂Df and this has the

interface load

f∂Df
kl = CII

i1kln
II
1 + CII

i2kln
II
2 (B.29)

again for each fixed couple (k,l)=(1,1), (2,2), (3,3), (1,2).

We therefore have that the 2D problems to be solved are the two anti-plane (B.18)-

(B.22) for (k,l)=(1,3), (2,3) and the four in-plane (B.23)-(B.27) for (k,l)=(1,1), (2,2),

(3,3), (1,2). For the LMRP model we see these specified for isotropic elasticity tensors

in Sec. 6.2.2. We can simplify these problems for the porous matrix problem by using

only (B.19) and (B.22) for (k,l)=(1,3), (2,3) and (B.24) and (B.27) for (k,l)=(1,1), (2,2),

(3,3), (1,2). We also assume that the matrix has an isotropic elasticity tensor which we

illustrate in Sec. 6.2.4. Also for the problem between the inclusion and the porous matrix

we require only (B.18)-(B.21) for (k,l)=(1,3), (2,3) and the four in-plane (B.23)-(B.26) for

(k,l)=(1,1), (2,2), (3,3), (1,2). We also make the assumption that the inclusion is isotropic

and use the results from the 2D porous matrix simulations to inform the elasticity tensor

for the matrix. This can be seen in Sec. 6.2.4.

B.2 Numerical Simulations and Meshing

Within this section we aim to give an overview of the steps carried out in COMSOL

Multiphysics to compute the results presented in this work. To do this in the most clear

and useful way we will begin with the set up for the 3D simulations platform, and then

explain the simplified 2D simulations which have results presented in Fig. 6.5a - 6.8a.

We can now discuss the 3D simulations that are applicable to long fibres embedded
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in the matrix with the fluid cylinders. We can then mention the small modification for

the case of short fibres, with results shown in Fig. 6.10 - 6.13a. For the LMRP model the

cell problem (6.19)-(6.23) is a three dimensional problem. Our interface conditions (6.38)-

(6.43) and (6.44)-(6.49) are also 3D. For each pair of boundary loads given in (6.38)-

(6.43) and (6.44)-(6.49) we compute a corresponding numerical solution of the elastic-

type problem (6.19)-(6.23). This can be done using the finite element software COMSOL

Multiphysics employing its Structural Mechanics Module.

We use this software to compute the 36 entries of the tensors MI and MII. Then once

we have these results they can be used in (6.5) to obtain the entries of C̃LMRP. Once we

have the complete tensor C̃LMRP then we can use the components in the formulas for our

elastic moduli E1 and E3 and take the shears directly from the tensor.

We will now give some details of how this process in COMSOL is carried out. The

finite element software creates a mesh for the periodic cell Ω. It does so in such a way

that it creates a surface mesh for the interfaces between the phases and around the voids.

It then extends the surface mesh into a three-dimensional one for the entire periodic cell

Ω. By using this method it allows for both interface conditions described by boundary

pairs and interfaces on the drained fluid voids. This is beneficial since it allows for a

particularly refined mesh on the interfaces (where the important physics takes place) and

the surrounding area which gets gradually coarser the further away from the subphase and

void interfaces that we are.

We know from the cell problem (6.19)-(6.23) that the stress-jump condition on the

matrix-subphase interface as well as the condition on the interface between the matrix

and fluid are the driving forces for the solution of the cell problems. This means that

we require a sufficiently fine mesh on these interfaces to ensure we obtain an accurate

numerical solution. Therefore, to capture these areas where the important physics is

taking place, our mesh in Ω is set to be much more refined around the boundary pairs and

voids representing the interfaces than in the remainder of the domain further away from

these interfaces. It is important we mention that we can use a sequence of increasingly

refined meshes of Ω. These meshes are predefined by COMSOL Multiphysics and range

in refinement from extremely coarse to extremely fine.

In cell problem (6.19)-(6.23) the stress balance equations (6.19)-(6.20) are simple since

we have zero volume forces and a constant, isotropic elasticity tensor for both the matrix

ΩII and the subphase ΩI. The stress jump and the continuity of the auxiliary tensors AI
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and AII (6.21)-(6.22) across the interface between the two elastic phases are encoded by

conditions on each boundary pair. The condition between the matrix and the void (6.23)

is encoded on the interface. We then impose periodic boundary conditions on the outer

boundary ∂Ω. By using this framework the solution of the elastic-type problem will be

unique up to a constant. The constant here is unimportant since it will disappear when

the partial derivatives of the solution are taken to allow us to determine MI and MII. That

being said, computationally we do require a unique solution of the elastic-type problems

in our periodic cell. To obtain this we can add an additional constraint in COMSOL that

fixes the auxiliary displacement to zero in one corner point of Ω. This fixes the constant

that is obtained. COMSOL Multiphysics uses the principle of virtual work to implement

the elastic-type problem described above in weak form.

As we do not have continuity of stresses the problem for the auxiliary variables AI and

AII is solved in the geometrical setting in the Comsol feature assembly. If we were to use

the union setting then the subdomains ΩII and ΩI would be merged to form a simple union

with continuity which is not the case in our materials. By using the assembly feature

we are able to retain the boundaries for each phase of the domain, which allows for the

necessary flexibility in the application of the interface conditions.

The entries of the third rank tensors AI and AII are numerically approximated once

the six elastic-type problems (6.19)-(6.23) corresponding to the six pairs of interface loads

(6.38)-(6.43) and (6.44)-(6.49) have been solved. The derivatives of the entries of AI and

AII are linear functions that can be evaluated without additional error and therefore so

can all entries of the auxiliary fourth rank tensors MI and MII. The entries of the effective

elasticity tensor C̃LMRP are then computed using (6.5) by calculating the averages without

additional errors. All the steps carried out such as the finite element approximations for AI

and AII to the computation of the effective elasticity tensor C̃LMRP is obtained in COMSOL

Multiphysics by using its integral post-processing tools.

For the short fibre simulations the same setup is used however, in this case the boundary

pairs are on the full cylindrical surface (curved walls and circular ends) of the embedded

subphase rather than just on the curved surface of the cylinder since it is fully embedded

in the matrix. The rest of the setup and post-processing remains the same procedure.

A very similar setup can be employed for the standard poroelastic setting. Here we

have created a platform comprising 3 phases (and many more could be added) but by

assuming limit cases of the details just provided we can split this platform into the two
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steps required by the standard poroelastic approach. We first have this setup assuming the

subphase does not exist which would mean it would be a porous matrix set up with only

the interface between matrix and void. Secondly the setup can be modified assuming the

voids do not exist, for further details on this second step see the [88] where the numerical

simulations for a composite have been carried out.

In terms of the 2D problems, the setup is almost identical although this time we

are using a 2D domain and the interfaces are lines not surfaces. We again do not have

continuity of stresses so the problem for the auxiliary variables AI and AII is still solved in

the geometrical setting using the COMSOL feature assembly where the interface is just a

circle. We have our voids on which the forces are placed on the interfaces. We have the

corresponding periodic conditions which are applied on the external edges (lines) making

the boundary. For uniqueness of solution a constraint in COMSOL is placed that fixes

the auxiliary displacement to zero in one corner of the square domain. In the same way

all the steps carried out such as the finite element approximations for AI and AII to the

computation of the effective elasticity tensor C̃LMRP are obtained in COMSOL Multiphysics

by using its integral post-processing tools. This time using surface integration rather than

volume integration.

B.3 Error Plots

Within this section of the appendix we show the plots of the error we obtained between

carrying out the 3D and 2D simulations for both the LMRP model and the standard

poroelasticity type model. All the plots have at most a 1% error between the 3D and 2D

simulations which justifies the accuracy of the 3D simulations that we have carried out

and justifies the results obtained for the short fibres in Sec. 6.4.
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(a) Absolute error between 2D and 3D for E1 (b) Absolute error between 2D and 3D for E3

(a) Absolute error between 2D and 3D for C44 (b) Absolute error between 2D and 3D for C66

Figure B.2: Error between 2D and 3D simulations



Appendix C

Appendix: Effects of MI on elastic

parameters of the heart

C.1 Cell problems

Within this appendix we present the cell problems for poroelastic composites arising from

the asymptotic homogenization technique as found in [69] and Chapter 3. These cell

problems allow us to compute all of the macroscale model coefficients.

We are able to compute the fourth rank effective elasticity tensor C̃ for the LMRP

model and by using its components calculate the two Young’s moduli and two shear moduli.

The effective elasticity tensor is given by

C̃LMRP = ⟨CMyoMMyo + CMyo + CIMMIM + CIM⟩s. (C.1)

We see this comprises the fourth rank tensor Mv, where v = Myo, IM, which are defined

as

MMyo = ξklpq(A
Myo) =

1

2

(
∂AMyo

pkl

∂yq
+
∂AMyo

qkl

∂yp

)
; MIM = ξklpq(A

IM) =
1

2

(
∂AIM

pkl

∂yq
+
∂AIM

qkl

∂yp

)
. (C.2)

We can then write the cell problems for third rank tensors AMyo and AIM, found in [69],

with corresponding components AMyo

ikl and AIM
ikl as

∂

∂yj

(
CMyo

ijpqξ
kl
pq(A

Myo)

)
+
∂CMyo

ijkl

∂yj
= 0 in ΩI (C.3)

∂

∂yj

(
CIM
ijpqξ

kl
pq(A

IM)

)
+
∂CIM

ijkl

∂yj
= 0 in ΩII (C.4)
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CMyo

ijpqξ
kl
pq(A

Myo)nIII
j − CM

ijpqξ
kl
pq(A

M)nIII
j = (CIM − CMyo)ijkln

III
j on ΓIII (C.5)

AMyo

ikl = AIM
ikl on ΓIII (C.6)

CIM
ijpqξ

kl
pq(A

IM)nII
j + CIM

ijkln
II
j = 0 on ΓII (C.7)

The solutions to the problem (C.3)-(C.7), ξklpq(A
Myo) and ξklpq(A

IM), are found by solving six

elastic-type cell problems by fixing the couple of indices (k, l). By doing this the ξklpq(A
Myo)

and ξklpq(A
IM) that appear in (C.3)-(C.7) represent a strain, Then for every fixed couple (k,

l) we have a linear elastic problem which has interface conditions between the matrix and

inclusion determined by using the elasticity tensor in (C.5) and between the matrix and

the fluid that can be determined using (C.7).

We also wish to be able to determine the other macroscale coefficients such as the Biot’s

modulus and the Biot’s tensor of coefficients (see (7.6)). We see that these coefficients

contain the tensors QMyo and QIM. These can be defined as

QMyo = ξpq(a
Myo) =

1

2

(
∂aMyo

p

∂yq
+
∂aMyo

q

∂yp

)
; QIM = ξpq(a

IM) =
1

2

(
∂aIM

p

∂yq
+
∂aIM

q

∂yp

)
. (C.8)

We then have the cell problems for the vectors aMyo and aIM, which is given by

∂

∂yj

(
CMyo

ijpqξpq(a
Myo)

)
= 0 in ΩI (C.9)

∂

∂yj

(
CIM
ijpqξpq(a

IM)

)
= 0 in ΩII (C.10)

CMyo

ijpqξpq(a
Myo)nIII

j = CIM
ijpqξpq(a

IM)nIII
j on ΓIII (C.11)

aMyo

i = aIM
i on ΓIII (C.12)

CIM
ijpqξpq(a

IM)nII
j + nII

j = 0 on ΓII (C.13)

The solutions to the problem (C.9)-(C.13), ξpq(a
Myo) and ξpq(a

IM), are found by solving

the linear elastic problem with inhomogeneous Neumann conditions between the matrix

and the fluid and continuity of auxiliary stresses between the two elastic phases.

These are the 3D cell problems and the ones used to compute the elastic parameters

in Sec. 7.4. We must use the 3D problems when we have a variation in the z direction (i.e.

in Sec. 7.4 we have cross-sections in the z direction that are disk and matrix or myocyte

and matrix since this is different we must use the 3D problems). If the z cross-sections

are all the same then it is possible to reduce these cell problems to 2D, which reduces the
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computational complexity. It is the reduced cell problems that are used in Sec. 7.2 and

Sec. 7.3. For the complete detailed reduction of these cell problems to 2D please see [73].
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