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Abstract

The treatment of coronary artery disease (CAD) was revolutionized following the advent of
drug–eluting stents (DES). Since their adoption, patient outcome has significantly improved over
earlier systems devoid of drug, where notable indices such as in–stent restenosis (ISR) and repeat
revascularisations were reduced. However, such indices remain stubbornly high despite this
technological innovation, with patients often returning after one–year for a follow–up procedure.

In an attempt to better understand the physical mechanisms that give rise to ISR, many
computational models have emerged in recent years. Chapter 1 discusses these in more depth,
where the literature is neatly separable into three distinct categories: (i) structural mechanics and
computational fluid dynamics, (ii) drug transport models and (iii) mechano–biological models of
restenosis. Although the first category is important, it is limitations in (ii) and (iii) that are more
pressing. Firstly, drug transport models assume static arteries, where the effect of drug on cell
function is ignored, and the artery does not change in response to the growing population of cells.
As such, Chapter 2 explores this simplification in depth through a variety of different models
describing the effectiveness of drug. Results allude to possible issues with current state–of–the–
art drug transport models, such that when coupled to cell function, they are unable to capture
the dose–dependent effect of drug on cell growth in vitro. In an attempt to better understand
these issues, Chapter 3 explores the efficacy of these drugs when their cell cycle specificity is
accounted for, discussing the possible implications of this, particularly in vivo.

Moreover, mechano–biological models of restenosis often neglect the delivery of drug, with
the devices considered emulating earlier bare metal stents (BMS). Those which do account for
the anti–proliferative nature of drug do so through inadequate means, where key findings from
(ii) are ignored. Thus, building on the efforts of Chapter 2, Chapters 4–6 explore the spatiot-
meporal effect of drug on restenosis, emulating drug delivery in vivo. Key conclusions from
Chapter 5 reveals an intricate interplay between stent drug dose and release rate; simultaneously
illustrating the impact of stent design on performance. The model is then built upon in Chapter
6, with the implications of delayed arterial healing analysed, a recurring issues associated with
DES. The model is the first of its kind to explore the explicit role of anti–proliferative drug
on multiple cell types (endothelial and smooth muscle cells), further highlighting the need for
optimal drug release strategies to ensure the drug is both efficacious and safe.
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Chapter 1

Introduction & Motivation

1.1 Background

Cardiovascular disease (CVD) is present in approximately 7.6 million individuals in the UK at
any given time, equivalent to 11.5% of the population [1]. Specifically, coronary heart disease
(CHD) is the most common type of CVD and is the primary cause of premature death in the UK
as of 2019 [1]. So detrimental is CHD, that every 8 minutes a life is lost in the UK, killing 1
in 8 men, and 1 in 15 women. Although the current death rate associated with CHD is alarm-
ing, vast improvement in both lifestyle and treatment has seen CHD–associated deaths fall by
approximately 65% over the last 40 years [2].

CHD blocks blood flow to parts of the heart, occluding nearby vessels through the build–up
of fatty deposits in the arterial wall. This accumulation of fatty deposits is a progressive disease
called atherosclerosis, where over time the occlusion can become more severe, starving the
heart muscle of oxygenated blood, resulting in myocardial infarction (heart attack) and possibly
death.

Although more common in men than woman, developing twice as fast before the age of
60 [3], the general population is exposed to a list of environmental and genetic factors that
increase the risk of disease progression [3, 4] (Fig. 1.1). Moreover, recent studies have begun
to highlight in more detail the impact sex can have on CHD progression, particularly in women
post–menopause [5].

1.1.1 Structure of the arterial wall

CHD is a disease which impacts the morphology and structure of the arterial vasculature by
altering the state of the vessel wall. Coronary arteries are a compliant structure that function
to deliver blood to heart tissue, and are thus critical in supplying nutrients, thereby sustaining
life. The general structure of an artery can be divided into three layers: the intima, media, and
adventitia as illustrated by Fig. 1.2.
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Figure 1.1: A list of environmental and genetic risk factors that can progress atherosclerosis. ∗

Emerging risk factors under further scientific investigation as noted by [4].

The innermost layer of the artery is the intima, comprised primarily of a thin layer of en-
dothelial cells (ECs), called the endothelium. The primary function of this layer is to act as
barrier between circulating blood and the artery, regulating the movement of molecules across
the wall. These cells have additional responsibilities,. Firstly, ECs are responsible for control
of vascular tone, permitting either vasoconstriction or dilation through the release of numer-
ous chemical mediators [6]. Secondly, these chemical mediators also regulate SMC phenotype.
Lastly, these cells are particularly important in the prevention of thrombosis. Failure in this
layer, termed endothelial dysfunction, is the starting point for disease progression [6, 7].

Figure 1.2: A schematic diagram detailing the structure of the artery wall.

Adjacent to the intima is the media, separated by an internal elastic lamina (IEL). It hosts
several, organized layers of smooth muscle cells (SMCs), embedded within a collagen rich ex-
tracellular matrix (ECM) [8, 9]. When the artery exists in a healthy state, the SMCs are of a
contractile phenotype, differentiating into their synthetic phenotype only in response to disease
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and/or injury, where proliferation and migration occurs, promoting tissue growth and remod-
elling.

The adventitia is the outermost layer of the arterial wall. This is separated from the media by
the external elastic lamina (EEL) and is composed primarily of collagenous fibres and fibroblast
cells. This sheath of connective tissue functions primarily to protect the vessel, supporting it
from rupture at high pressures and to ensure wall rigidity [10]. Moreover, the adventitia hosts
the vasa vasorum which supplies nutrients to the other layers of the artery, as well as immune
cells which function to survey the environment for foreign antigens [11].

1.1.2 Progression of Atherosclerosis

The onset of atherosclerosis is a highly complex process that is triggered following chronic
inflammation to the endothelium. It involves the accumulation of lipids, inflammatory cells,
and fibrous elements; often occurring at predilection sites (such as branches in the artery) where
disturbed flow is present [3, 12, 13]. At the early stages of disease, lipoproteins congregate
within the intima, where monocytes adhere to the endothelium before entering the wall. Upon
transmigration, monocytes proliferate and subsequently differentiate into macrophages taking
up nearby low–density lipoproteins (LDLs) to become foam cells (Fig. 1.3b). This process is
enabled through endothelial dysfunction, where the confluent nature of the cell layer is disturbed,
a consequence of disturbed blood flow or elevated cholesterol and blood pressure [3, 4, 14].
Eventually, foam cells die, which results in debris accumulation within the plaque, forming a
necrotic core. This site of ‘death’ releases chemicals that recruit further monocytes and LDLs to
the site such that the process becomes iterative, and the plaque grows. Additionally, plaque size
may increase through SMCs that undergo a phenotype switch in response to the disease [15].

In time, the increasing burden of disease may result in stenosis: a narrowing of the vessel so
severe that blood flow is disturbed, and possibly occluded. It is the evolution of this plaque that
results in a patient being diagnosed with CHD. With the function of the coronary vessels being
to supply the heart muscle with oxygen, when impeded, vessel performance is inhibited and the
possibility of myocardial infarction arises. Moreover, as the disease progresses, the plaque may
become more vulnerable, notable by its large lipid pool and thin fibrous cap (Fig. 1.3a) [16].
Following rupture, a cardiac event is likely, where a blockage occurs as a result of a blood clot
(thrombus). Therefore, interventional treatments, the focus of Section 1.2, were devised in an
attempt to address the issues associated with atherosclerosis.

1.2 The evolution of treatment for CHD

Traditionally, open heart surgery was performed to treat obstructive CHD. This required a by-
pass, involving the removal of a blood vessel from elsewhere in the body, to provide blood flow
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Figure 1.3: A schematic diagram highlighting: (a) stable versus vulnerable plaque. (b) cell
differentiation. Acquired with permission from [16].

with an alternative pathway away from the diseased occlusion. In time, technological innova-
tions ensued which allowed for a more minimally invasive procedure to be carried out called
percutaneous coronary intervention (PCI), which has since evolved as depicted in Fig. 1.4. Typ-
ically, a small incision is made in the groin (or wrist), permitting the delivery of the medical
device (stent or balloon) by a catheter to the site of disease. The device is deployed by means of
expansion which aims to relieve restricted blood flow by compressing the plaque.

Initially, this treatment utilised balloons (plain old balloon angioplasty, POBA) as the pri-
mary medical device, but drawbacks were apparent, with elastic recoil common and vessel re–
occlusion high by means of restenosis. For example, elastic recoil occurred in 5–10% of pa-
tients immediately after the procedure, where severe adverse events were observed, requiring an
emergency bypass surgery [17]. Even when successful, the severity of injury as a consequence
of the procedure resulted in severe restenosis (re–narrowing) rates of around 40% [20]. If severe
enough, where vessel re–narrowing is >50%, then the regrowth is termed in–stent restenosis
(ISR), where a follow–up procedure is often necessary.

Challenges associated with POBA led to the advent of the bare metal stent (BMS). The
presence of a permanent device within the vessel ensured abrupt closure following expansion
was unlikely. Although charting superior results to POBA, it was not without its own limitations.
The high metallic density and low biocompatibility of these stents meant that the risk of stent
thrombosis (ST) and ISR remained [21]. To combat the former, patients were often prescribed
an oral course of dual–antiplatelet therapy (DAPT), of which the optimal course of treatment is
still under investigation [22].
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Figure 1.4: A schematic diagram highlighting the evolution of percutaneous coronary interven-
tion (PCI). Inspired from [17–19]. Green and red text refer to advantages and disadvantages
of each milestone, respectively. For extensive information on the evolution of CHD treatment,
the reader is referred to the following review articles [17–19]. BMS = bare metal stent, DES =
drug–eluting stents, TLR = target lesion revascularisation, ISR = in–stent restenosis, ST = stent
thrombosis.

At the turn of the century, drug–eluting stents (DES) were deployed into diseased vessels
in an attempt to address limitations associated with BMS, particularly ISR. Their novelty intro-
duced anti–proliferative drug, embedded within a polymer coating on the surface of the stent
to combat excessive restenosis rates present in treatments adopting BMS. DES significantly im-
proved patient outcome where the incidence of target–lesion revascularisation (TLR) compared
to BMS was significantly lowered (6% c.f. 18%) at one year after implantation [22]. Within the
same time window, ST rates were comparable (1.1% c.f. 1.3%) [22]. However, at a long–term
follow–up, these first–generation DES were associated with late–stage thrombosis (LST) with
respect to BMS, demonstrating an increased risk of death through a major adverse cardiac event
(MACE) (7% c.f. 3.2%) [23].

Albeit still the subject of intense research, both the polymer coating and drug have been
attributed to the likelihood of LST as a result of delayed healing; where recovery of the endothe-
lial layer interfacing the wall and lumen is impeded [24–28]. Poor biocompatibility associ-
ated with the polymer coating induces a hypersensitive response, where the inflammation stage
of the healing process was notably prolonged [24]. Moreover, delayed (or dysfunctional) re–
endothelization, may also be attributed to the non–specific nature of the anti–proliferative drug,
inhibiting both endothelial and smooth muscle cell proliferation [29–31]. With these issues in
mind, technological innovation led to a new (2nd) generation of DES which markedly improved
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patient outcome. These devices adopted more biocompatible backbone materials which were
also thinner, reducing the likelihood of ISR [22, 32]. Additionally, the bicompatibility of the
polymer coating also improved, and the hypersensitive reaction of durable stents reduced as a
result [33–36]. Moreover, the drugs coated on stents changed, shifting away from paclitaxel,
where newer devices predominantly included sirolimus or one of its analogues [36]. This was
supported by a large meta–analysis of over 18,000 patients, reporting reduced rates of myocar-
dial infarction, TLR, and ST in favour of sirolimus over paclitaxel [37]. Further changes in
design brought about the 3rd generation. Initially, two alternatives to traditional polymer–coated
DES were considered: (i) a biodegradable polymer coating on a metallic stent backbone [35]
or (ii) a polymer–free approach [38, 39]. However, these novel devices were unable to establish
superiority to durable 2nd–generation devices. For example, meta–analysis studies have demon-
strated a comparable efficacy between DES employing a durable coating and those which are
absent of the coating entirely [39], supported by further evidence which took blood samples for
inflammatory markers [40]. Additionally, no significant difference was charted in MACEs and
TLR rates between stents which employ a durable or biodegradable coating [33–35]. In time,
efforts explored a fully degradable structure, aiming to remove the negative impact associated
with the long–term presence of the device [41]. The AbsorbTM (Abbott Vascular, Santa Clara,
USA) biodegradable scaffold was the first of its kind, presenting efficacy that was compara-
ble with durable second–generation DES at a 1–year follow–up [42]. However, beyond this,
an increasing risk of myocardial infarction and TLR were apparent, most likely because of the
heightened risk of ST compared to durable second–generation DES (2.4% c.f. 0.6%) [22, 43].

Innovation continues as the next generation of DES is approached, with devices now hosting
smaller struts still (ultra–thin < 80 µm), where alternative coating strategies which are abluminal
are considered over the traditional circumferential style [35,44]. Moreover, although significant
changes in the design of DES have been absent over the last decade, imaging modalities have
markedly improved, which in turn benefit patient outcome following PCI by enhancing the vi-
sualisation of both the disease and the procedure [45]. Notably, virtual histology–intravascular
ultrasound (VH–IVUS) was able to highlight the burden of disease by separating the plaque
into distinct categories: calcified, fibro–fatty, fibrous cap, and necrotic core [46]. Optical co-
herence tomography (OCT) was also introduced, which permitted greater resolution over IVUS
at a lower penetration depth, enabling the evaluation of strut apposition, commonly associated
with ST risk [24, 27]. Both modalities present with their own advantages and disadvantages but
both IVUS–guided and OCT–guided PCI demonstrated improved patient outcome over standard
angiography–guided PCI with respect to the incidence of MACEs after 1–year [45, 47].

However, as highlighted by a recent clinical trial [48], the rates of TLR remained high at
6% following the deployment of a 3rd–generation stent at a 1–year follow–up with an expected
annual increase of 3–5%. This places immense pressure on the healthcare system, where in
2018, close to 4.5 million PCI procedures were performed worldwide, an increase of 13% on the
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previous year [49]. Thus, based upon the values above, an estimated quarter of a million patients
will return for a repeat procedure after 1–year, increasing significantly year–on–year thereafter.
Although many factors attribute to TLR rates and stent failure, ISR has been found to be the
primary culprit [50]. Thus, in an attempt to better understand the dynamics of restenosis, and
the performance of DES, recent research has probed measures that permit real–time monitoring
of constituents involved in vessel remodelling [22, 41, 51, 52]. However, there still exists no
means to monitor restenosis in vivo, without the re–appearance of angina or worse; a myocardial
infarction [22]. Thus, in silico models serve as a powerful tool, where computational efforts
which emulate various aspects of the stenting procedure can be devised. This is discussed in
more depth in Section 1.4. First, an understanding of the restenosis process is necessary to
better appreciate how DES work to combat excessive tissue growth.

1.3 Biological response of the artery following stent implan-
tation

Focusing on the biology, one needs to understand how the stent impacts vascular dynamics to
grasp how the process of restenosis may be modelled mathematically. Stent deployment is a
procedure that carries with it much force and destruction. The expansion of the stent from
the balloon catheter system is intended to restore natural blood flow by compressing plaque,
which in some cases may be severely calcified. In doing so, vascular injury is often significant,
which induces a complex biological cascade involving inflammation, growth and remodelling
to promote arterial healing. This section briefly details key biological processes that occur as
a consequence of stenting, where vessel re–narrowing is the result. The section will follow
the structure of Fig. 1.5, which neatly summarises how stent deployment induces injury to the
arterial wall, triggering a healing response where constituents primarily congregate within the
intima to promote vessel re–narrowing, forming what is termed the neointima, until healing is
complete.

The trigger to neointimal growth is the denudation of the endothelial layer that lines the
inside of the vessel [61]. When unperturbed, the ECs within the intima synthesize a plethora of
chemicals (e.g. NO) that are instrumental in regulating vascular tone. However, vascular injury
as a consequence of stenting significantly damages the protective endothelial barrier, triggering
a healing response.

Vascular injury has been strongly linked with restenosis severity, where more intrusive stent
deployment correlates to higher rates of ISR [56, 62]. To establish the severity of stent–induced
damage, various ‘scores’ were devised, most notably the ‘Gunn Injury Score’ [63] which has
been utilised within pre–clinical animal models [64] as well as computational ISR models [65,
66]. Summarised in Table 1.1, there exists 3 categories of the Gunn Injury score across 5 levels
(0→ 4), ranging from no injury (0), to arterial stretch (1 and 2), and finally to deep injury (3 and
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Figure 1.5: A schematic diagram illustrating the process of restenosis. (a) Depicts a healthy
artery, dominated by contractile, quiescent smooth muscle cells (SMCs). (b) Illustrates stent
deployment, where the endothelial layer is denuded [53]. (c) Vascular injury exposes the arterial
wall to circulating growth factors which promote differentiation of cells to their active, synthetic
phenotype [54, 55]. (d) In time, the excessive growth intensifies, and vessel re–narrowing oc-
curs as SMCs proliferate and migrate into the neointima [56, 57]. (e) As the endothelial layer
regenerates, normality begins to resume, and SMCs begin differentiating back to their dormant
phenotype [58, 59]. (f) Ideal state depicting a fully healed vessel with a complete and func-
tional endothelial layer. Predominantly, the majority of growth occurs within the first three
months [56, 60]. Taken with permission from [55]. ET = endothelium, IEL = internal elastic
lamina, EEL = external elastic lamina.

4). The definition of vascular injury is significant, as stretching of the IEL introduces a number
of fenestrations that increase the area of the arterial wall exposed to stimulants circulating in the
blood [56,65,67]. Moreover, deeper tears beyond the EEL trigger constituents in the adventitia,
exacerbating restenosis further [11, 68, 69].

Injury Score Description

0 No injury
1 Stretch: IEL deformed by < 45◦

2 Stretch: IEL deformed by > 45◦

3 Deep injury: IEL ruptured
4 Deep injury: EEL ruptured

Table 1.1: The Gunn Injury Score. Inspired from [63].
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Following vascular injury, restenosis begins through the migration and proliferation of
smooth muscle cells (SMCs) from the media to the intima (Fig. 1.5c–d). Briefly, SMCs respond
to cues following arterial injury, where partial or complete damage to the endothelial barrier
exposes underlying tissue to a plethora of constituents that may induce growth, whilst reducing
inhibitory mediators that maintain vessel quiescence [70]. As such, a SMC phenotype switch
occurs where the once dormant, contractile SMCs (cSMCs) become active, synthetic SMCs
(sSMCs) [71]. This transition is thought to occur through growth factors (GFs) produced as a
result of the following stimuli: injured endothelium and media [62]; ECM degradation [54, 55];
platelets and inflammatory cells at the wound site [56] and; compressive forces within arterial
wall from the deployed stent [54, 56, 71]. Fig. 1.6 presents these two SMC phenotypes, where
differences are present not only in gene and protein expression, but also in cell morphology.

Figure 1.6: Schematic of the differing morphology of each SMC phenotype. The contractile
SMCs exist in healthy arteries, with injured and diseased arteries hosting synthetic SMCs which
proliferate and migrate to form atherosclerotic plaques and neo–intimal growth as a result of
disease or vascular injury, respectively.

Upon differentiation, prolonged exposure to platelet derived growth factor (PDGF) and fi-
broblast growth factor (FGF) from numerous sources permit the migration of sSMCs into the
intima, where proliferation ensues [56]. Subsequently, to promote positive remodelling, these
cells deposit ECM which results in further neointimal growth through the adhesion of cells and
pooling of GFs [55, 56]. The ECM deposited by sSMCs, and other species, is said to contribute
significantly to neointimal growth, more so than cellular species at later times [72, 73].

Excessive tissue growth is eventually halted through the recovery of the once–damaged en-
dothelial layer; the marker of a fully healed vessel, and thus the cornerstone of arterial heal-
ing [56]. Re–endothelization predominantly occurs from surviving patches of ECs post–stent
implantation, stimulated to proliferate by growth factors [62,65,74]. As one can expect, delayed
re–endothelization following stenting has a significant impact on restenosis, a prevalent issue
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following the implantation of DES [25, 62, 75]. This is particularly problematic when vascular
injury is severe, as re–endothelialization is delayed as a result [62]. Thus, a timely recovery of
the endothelium is desired in minimising excessive tissue growth such that, once confluent and
fully functional, the vessel should revert back to its once, healthy state as presented schemati-
cally in Fig. 1.5f [53].

Summarising, the healing process, dominated by the migro–proliferative properties of
SMCs, can be divided generally into three distinct phases: (i) inflammation; (ii) tissue growth
as a consequence of SMC migration, proliferation, and ECM deposition and; (iii) remodelling.
Inflammation occurs immediately following stent deployment and comprises of numerous cells,
where the number of adherent monocytes and macrophages to the wound site are related to the
level of vascular injury [56, 76]. Subsequently, SMCs are recruited to the site of injury and play
a crucial role in vascular healing [70]. Vascular injury triggers their proliferative capacity by
inducing de–differentiation into an active phenotype [54,56,60]. As cells proliferate, additional
matrix is deposited to provide vascular structure and ensure vessel rigidity as part of the re-
modelling process [56, 60]. In time, the neointima becomes hypo–cellular, and matrix synthesis
dominates, comprising approximately 70–80% of the restenotic tissue over the course of several
months [60, 73]. The general time–scale of restenosis is summarised in Fig. 1.7, where various
studies report minimal growth beyond 6 months [55, 60, 77].

Figure 1.7: Time-frame of restenosis, denoting that in time, the neointima stabilises and is thus
dominated by ECM. Inspired from [60, 77].

1.3.1 The action of anti–proliferative drugs

With ISR rates notably high following the deployment of BMS, technology explored the use
of drugs with anti–proliferative properties to combat excessive tissue growth. Required at the
site of injury, these drugs were embedded within a polymer matrix, released from the stent in a
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controlled manner during the active stage of vessel remodelling [78, 79]. Discussed in depth in
the subsequent chapter, the role and purpose of these drugs is briefly summarised below.

First–generation DES considered sirolimus and paclitaxel which impede cell function by dif-
ferent means. The former ceases proliferation by blocking the mammalian target of rapamycin
(mTOR) pathway, whilst the latter does so by binding to microtubules [80, 81]; both present
within the cell. Although profoundly improving patient outcome, notable issues arose with DES
treatment, where MACEs became more common as a result of ST (Fig. 1.4). Further inno-
vation improved stent design which employed more biocompatible coatings and drugs (ana-
logues of sirolimus), reducing ST rates below that present in BMS [22]. However, delayed
arterial healing persisted, where the drug impeded the functionality of both endothelial cells and
SMCs [24, 25]. With recent studies suggesting non–inferiority between durable and biodegrad-
able coatings [34, 35], and TLR rates still stubborn [48], then further investigation into the drug
delivery protocol seems worth pursuing. The significance of anti–proliferative drugs is unques-
tionable, and their benefit evidenced. However, further investigation into the role of drug on
restenosis may aid in the optimization of DES design.

1.4 The role of computational models in understanding stent
performance

Computational modelling is a powerful tool, used in an abundance of applications to gain insight
into various processes. Such models can be employed to improve the understanding of complex
scenarios, which may be difficult to grasp through experimental approaches alone [82]. Of
interest here is advancements in mathematical models of biology, where often a complex cascade
of events occur in response to some trigger. This may be the growth of a tumour [83]; the
response of skin when healing a wound [84]; the flow of blood through vessel architecture [85]
or; the monitoring of electrical stimuli in the treatment of muscle rehabilitation. The point is
that through sufficient research, these models can be built up in complexity such that patient
outcome can be predicted to advise clinicians of the optimal treatment strategy. Preliminary
models provide useful insights into complex behaviours but are often simplistic and not fully
representative of the in vivo environment. In time, model complexity grows in an attempt to
more closely emulate in vivo behaviours, where experimental data is often necessary to fully
validate efforts such that predictions are reliable and experimental turnover may be reduced.

With this in mind, the extensive literature encompassing an array of computational models
of stents is briefly summarised below. Work can often be separated into three distinct categories,
with some overlap (Fig. 1.8). These include models of: (i) structural mechanics and computa-
tional fluid dynamics (CFD); (ii) drug delivery, transport and subsequent drug retention in tissue
and; (iii) mechno–biological models of restenosis. Each aspect of the literature has the same
fundamental aim which is to pursue optimal stent design.
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Figure 1.8: Flow chart dividing the literature into three distinct categories, highlighting key
outcomes from each. CFD = computational fluid dynamics.

1.4.1 The impact of stent deployment: Structural mechanics and fluid dy-
namics

Finite element analysis (FEA) is a numerical simulation technique which has been widely
adopted to evaluate stent performance, particularly investigating the contact between the stent
and the arterial wall, inclusive of plaque if simulating diseased vessels. Pioneering works con-
sidered free–expansion models that investigated various stent designs [86], evaluating conforma-
bility and resistance to compression [87], and the impact of metal–to–artery ratio on stent perfor-
mance [88]. In time, methods became more sophisticated, where stents were expanded following
balloon dilation [89–91]. Subsequent efforts then investigated the impact of both stent and bal-
loon geometrical properties on performance; aiming to depict a possible link to the likelihood
of ISR [92–95].

Simulating disease, preliminary work considered an idealised vessel, where the stenosis
was parabolic and the artery cylindrical [96]. Both the plaque and artery were highly sim-
plified, where material properties were isotropic and homogeneous whilst the stent was ex-
panded through a boundary condition. Within a similar geometry, stent expansion was im-
proved, now simulated by the aid of a balloon catheter, highlighting areas of the wall that in-
curred large stresses during deployment [97]. Methods became more sophisticated, and various
efforts demonstrated the predictive capacity of their models, correlating higher areas of arterial
stress with ISR [98, 99]. In time, models probed methods that informed optimal stent design,
emphasising the importance of increased strut spacing and reduced strut thickness in limiting
high stresses and minimizing strut–induced flow disturbance following stent deployment that
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improved patient outcome (Fig. 1.9) [100–107].

Figure 1.9: Features associated with stenting that correlate with increased restenosis, inclusive of
stent design (strut thickness and strut spacing), procedure (stent expansion), and fluid dynamics
(WSS = wall shear stress).

These preliminary studies demonstrated the significance of FEA as a tool to optimise stent
design. This became clear as the complexity of models increased, where expansion within
patient–specific arteries was considered, permitting the use of these models as preclinical tools
[108, 109]. Subsequent research considered comparative studies, highlighting the performance
of different stents and how plaque composition may influence expansion protocol through in-
creasingly sophisticated constitutive models [100,110,111]. Moreover, complex scenarios have
since been modelled, where efforts have investigated the significance of bifurcations and/or stent
overlap on device performance [112–115].

As rates of ISR and ST remained unsatisfactory, technological innovation led to the devel-
opment of new stents (3rd–generation) hosting different materials. As such, many studies have
recently emerged that investigated the mechanical performance of these newer degradable stents,
where the backbone is composed of a naturally weaker material compared to traditional metallic
options [116–124]. Preliminary results suggested that plaques which are highly calcified may
be troublesome for polymeric stents over metallic ones, where the former was found to have a
lower rate of expansion [118, 122]. This highlights the need for extensive research into further
stent designs which incorporate new materials, with a recent resorbable stent AbsorbTM (Abbott
Vascular, Santa Clara, USA) pulled from the market due to poor patient outcome [22, 43].

Following the deployment of the stent, CFD presents itself as a valuable tool, permitting the
assessment of local haemodynamics; particularly wall–shear stress (WSS) and the oscillatory
shear index (OSI). Various clinical studies at the turn of the century have since demonstrated
a correlation between these indices and subsequent neointimal growth [125, 126]. Preliminary
studies, in agreement with purely expansion studies above, demonstrated that reduction of both
strut number and strut thickness were less likely to subject the vessel to WSS distributions that
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have correlations with high rates of restenosis [127, 128]. This was met with improvements in
other aspects of design, where increased inter–strut spacing was perceived advantageous in ad-
dition to a streamlined strut profile to reduce the severity of recirculation zones adjacent to the
struts (Fig. 1.10) [85, 129–140]. Moreover, with disease predominantly originating at bifurca-
tions, as opposed to along straight geometries [141], significant research where geometries were
either idealised [85, 139, 140, 142, 143] or patient–specific [85, 144–149] has probed alternative
treatment protocols in an attempt to address the difficulty of the current procedures for lesions
of this type.

Figure 1.10: How strut profile may influence WSS values through the presence of recirculation
zones. Image on the left illustrates a default case, demonstrating direction of flow, possible re-
circulation zones (sites of platelet aggregation), and sites of possible areas of low WSS, denoted
by the blue rectangles. Three cases on the right show possible impact of malapposition, strut
thickness and strut protrusion. The dashed black lines separate two cases. All images are pre-
sented to illustrate possible effects from literature (e.g. [150, 151]), and are not too scale. WSS
= wall shear stress.

With the importance of endothelial cells already highlighted, CFD modelling has emerged as
a powerful tool to explore the impact of low shear stress on cell function, and thus arterial heal-
ing [152–154]. For example, CFD analysis has been utilised in conjunction with various clinical
studies, illustrating that low WSS (< 1 Pa) profiles are indicative of severe endothelial dysfunc-
tion [155] and/or plaque progression [156], suggesting the need for continuous innovation in
stent design where optimal strut apposition and size should be at the forefront [150, 157, 158].
These areas of low WSS are a consequence of recirculation zones, particularly evident when
the strut profile is larger, less streamlined, or as a result of poor apposition following expansion
(Fig. 1.10) [150, 151, 159].

Within the last decade, both fluid dynamics and structural mechanics have been considered
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in harmony. To the best of the author’s knowledge, Morlacchi et al. [160] were the first to assess
the impact of flow within stented coronary bifurcations, which has since evolved to probe opti-
mal treatment strategies [85]. Additional efforts alluded to the importance of deformed arterial
geometries on haemodynamics, noting a significant difference to the non–deformed cases across
a range of stent models [161, 162]. Following these findings, research focused on emulating in

vivo conditions, where studies were aimed to demonstrate the use of their models as pre–clinical
tools. In particular, a ‘John Doe’ programme was considered, where computational models
were compared directly to clinical intervention. To emulate the patients’ vessel architecture,
a computational geometry was reconstructed using computerized tomography (CT) and IVUS,
where a XIENCE Primus stent was deployed in a similar fashion to that the patient received in

vivo [149]. Positive findings then suggested that such computational methods could be used in
the future to aid clinicians on the optimal course of treatment, particularly for highly complex
lesions [163]. In light of this, as new stents emerge, structural and fluid dynamics studies should
be considered together to investigate device performance [164].

1.4.2 Drug elution kinetics: Role of drug release, uptake & retention

Drug elution kinetics are critical in device performance, and have thus been the focus of intense
research in an attempt to inform manufacturers of the optimal drug dose and release rate to
combat ISR. DES are often tested in vitro, where the process of drug release is controllable,
ensuring that the desired release profile is repeatable. As such, the validation of mathematical
models is less challenging where variability in the data is smaller compared to in vivo.

For example, preliminary work using one–dimensional (1D) models illustrated that the re-
lease of drug was typically dominated by diffusion in first–generation stents hosting a durable
coating (Eqn. 1.1) [78, 165–167]. Therefore, to date, the release of drug into the arterial wall
from the stent surface is predominantly modelled through a purely diffusive process [168–170]:

∂cp

∂ t
= Dp∇

2cp, cp(0) = c0
p (1.1)

where cp is the concentration of drug within the polymer coating, initially taking the constant
and uniform value c0

p, and Dp is the diffusion coefficient of drug within the coating, typically
assumed to be constant and isotropic. Extensions of this model considered bi–modal diffusion,
where drug has two routes out of the polymer. This can be either through drug–filled pores
or via stored diffusion from the polymer matrix. Release from the former is typically very
fast, slowing down as this empties and the remainder of drug is released from the polymer
matrix [79, 165, 167, 171, 172].

In recognition that drug may exist in two forms on the polymer coating (dissolved and undis-
solved) dissolution–diffusion models appeared [173]. Although [173] presented how one mode
of diffusion detailed the release of drug from the CYPHERTM stent, such models could be used
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in the analysis of different stents that present alternative release profiles. Such a methodology
(or similar) has been widely adopted since when modelling drug release [172,174–179]. This is
inclusive of polymer–free devices [176, 177], biodegradable coatings [180–182] and even fully
biodegradable stents [183]. As such, depending on the situation being modelled, the boundary
conditions imposed may vary from case–to–case. For full details on the modelling of different
devices, the reader is referred to [78].

Following the release of drug, one must understand the mechanisms that occur as the drug
enters the arterial wall, to ensure that the drug is both efficacious and safe. The transport of
free drug within the wall is more complex than in the polymer coating, where the process is
described by an advection–diffusion–reaction equation:

∂c
∂ t

+ vvv ·∇c = ∇ · (DDDccc∇c)−Rc (1.2)

where c is the free drug concentration, vvv is the transmural velocity as a result of the pressure
difference across the wall, DDDccc is the diffusivity tensor of drug which accounts for the different
rates of diffusion in the arterial wall (particularly the media) as a consequence of its layered
structure, and Rc describes the reactions associated with free drug. In simpler models, the trans-
port properties are assumed constant throughout the arterial wall. However, as the wall contains
three layers, each with their own constitutive properties (permeability, porosity, etc.), then re-
cent work has detailed how each layer should employ its own transport properties, where the
separation between layers is described through the elastic membranes using Kedem–Katchalsky
equations [78, 169, 170, 184].

Different drugs incorporate different binding mechanisms, and thus the transport properties
of drug within the wall may vary. Thus, the release from the coating should be tailored accord-
ingly, where various clinical studies have demonstrated that a sirolimus–eluting stent presented
more favourable retention when released over a 60–day period, rather than over a 7–day pe-
riod [185]. However, for paclitaxel, the optimum result was achieved following either a very
slow or very fast release [186–189]. As such, the diffusivity tensor (DDDc) and reaction term (Rc)
are likely to vary from drug–to–drug.

Zunino et al. [166] introduced the concept of drug binding through Rc, found in subsequent
work to be a key mediator in drug efficacy [79]. Initially, the binding process was emulated
via linear kinetics, where free drug was lost at some rate, κL (Eqn. 1.3) [166, 184, 190]. More
complex approaches were later considered, where drug was proposed to exist in two phases (free
and bound), where it could bind via a forward reaction rate, kon, or unbind through a dissociation
rate, ko f f (Eqn. 1.4); a process which has since been deemed essential [78, 165, 191, 192]:

Rc = κLc, (1.3)

Rc =
∂cb

∂ t
= kon c− ko f f cb, (1.4)



17

where cb is the bound drug concentration. However, as the understanding of the binding process
enhanced, models of drug binding increased in sophistication to mimic the receptor/ligand com-
plex. This was first adopted by Sakharov et al. [193], where they modelled the concentration
of free drug, c, and unoccupied binding sites, cu (Eqn. 1.5). Alternatively, Tzafriri et al. [194]
detailed free drug, c, and the number of occupied binding sites, cb (bound drug), which has since
been widely adopted (Eqn. 1.6) [79, 169, 170, 177, 178, 188, 195, 196]:

Rc =
∂cu

∂ t
= kon cu c+ ko f f (Bmax− cu), (1.5)

Rc =
∂cb

∂ t
= kon c(Bmax− cb)− ko f f cb, (1.6)

where all parameters are previously detailed, except Bmax which refers to the maximum density
of binding sites. Following the derivation of these binding kinetics, subsequent work eluded
to the necessity of two binding phases, where bound drug can exist either specifically bound
to target receptors (i.e. SMCs) or to non–specific sites (i.e. ECM) [79]. As such, Rc is now
separated by phase as so:

Ri
c =

∂ci
b

∂ t
= ki

on c(Bi
max− ci

b)− ki
o f f ci

b, i = s,ns, (1.7)

where the superscript, i = s, ns, states whether the binding phase is specific (s) or non-specific
(ns), which themselves are subject to different binding kinetic parameters [78, 178, 179, 197].
The importance of these two binding phases has been alluded to when emulating an in vivo

environment, where drug efficacy is directly related to the percentage of specifically saturated
receptors [79, 178].

With these kinetics established, studies have since explored the optimal design of DES. For
example, Tzafriri et al. [79] modelled the impact of drug release from different sirolimus–eluting
stents, charting specific receptor saturation; an efficacy indicator associated with the number of
occupied specific binding sites (cs

b/Bs
max). They noted that a sustained release of drug over

the course of 30 days results in almost complete saturation during that time, where inhibition
of restenosis is more profound compared with faster release strategies. Similarly, McKittrick et

al. [172] illustrated the difference between two stents that differ in their initial drug coating dose.
In agreement with the general consensus present in the literature, they showed that a higher drug
dose demonstrated a prolonged saturation of specific receptors which in turn reduced neointimal
thickness at the cost of elevated tissue drug content levels, associated with device safety (Fig.
1.11). Further description into the various stent performance indicators discussed (e.g. receptor
saturation) are provided in Chapter 5, where the focus is to simulate the performance of DES.

Summarising efforts which extend the dimensionality of the problem, Bozsak et al. [188]
considered a 2D–axisymmetric model that emulated the release of paclitaxel and sirolimus from
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Figure 1.11: Depiction of stents coated in different dosages of the same drug may influence
patient outcome. A: Generic release profile. B: Safety indicator, tissue drug content. C: Efficacy
indicator, % of specific saturated receptors. D: Patient outcome, measured by severity of re–
narrowing. Responses are not too scale, and represent typical outcome as discussed in [172].

stent struts. Albeit limited in including only one phase of binding, their work clearly high-
lighted how drug transport was mediated by different transport properties, where paclitaxel was
dominated by convection and sirolimus by binding. As such, subsequent efforts explored the
optimization of DES, highlighting how drug release and the initial coating dose for sirolimus
and paclitaxel–coated stents should differ to ensure optimal patient outcome [189]. Further
work built upon this model, investigating how the expansion of the stent influenced drug trans-
port [169] as well as the impact of plaque composition and vessel curvature [196]. More recently,
the same authors adapted their 2D model framework to compare the performance of DES and
drug–coated balloons (DCB) [170]. The authors compared the efficacy and safety of a series of
devices, detailing how DCB can be designed to achieve similar levels of safety and efficacy as
DES. Moreover, several studies adopting a 2D environment have arisen that simulate the influ-
ence of CFD on drug deposition within the arterial wall. Initial work conducted a 2D analysis of
drug transport within biological tissue [198], extended in subsequent work to include thrombus
formation [199] and the release of drug from a polymeric coating, focusing on how stent design
influences drug distribution [169, 188, 200–202].
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Moreover, 3D studies also exist where Kolachalma et al. [138] investigated drug deposition
in both bifurcated and non–bifurcated vessels, where stent position was noted to be signifi-
cant in the former. Further, Zunino et al. [203] presented a highly coupled model considering
stent expansion, CFD, and drug release into the wall. Due to the computational demands, only
information on drug release one hour after implantation was available, and thus cannot fully cat-
egorise drug efficacy or safety adequately. More recently, Colombo et al. [204] implemented an
idealised geometry to investigate drug retention following the deployment of DCB hosting pacli-
taxel; where design characteristics, procedural aspects and arterial geometry influence transport
kinetics of the drug. The authors also considered a more sophisticated drug transport model by
simulating both free and bound drug (one–phase), absent from [138, 203].

Regardless of the drug considered, it is clear that the elution kinetics have a strong impact on
patient outcome. A series of articles have alluded to the significance of specific receptor satu-
ration as an indicator of drug efficacy in sirolimus–eluting stents, with correlations to restenosis
inhibition established [79, 172, 179]. However, these articles all fail to model how the drug
actually impedes cell function and are ultimately incapable of demonstrating how drug release
mediates restenosis. Further investigation illustrated that very few articles exist that examine
the effect of drug on cell function [183, 205–208]. These articles are highly simplified where
neither elution nor retention kinetics are modelled, in line with the current state–of–the–art mod-
els above. Therefore, a clear gap exists, where further analysis could provide insight that may
improve treatment through current PCI strategies. It is essential that the release is optimised
in line with the general healing response, where sSMC proliferation dominates early after stent
implantation [55, 56, 209]. Models which emulate restenosis are thus discussed below, before
summarising the key limitations of the field which aim to be addressed in this thesis.

1.4.3 Modelling restenosis: Arterial response to stenting

There exists a growing array of literature that details the healing response of the artery follow-
ing stent deployment. Such models are mechano–biological, adopting one of two frameworks,
where most commonly, models tend to employ a rule–based approach (Agent–based models,
ABM) to simulate restenosis [53, 54, 57, 65–67, 206, 208, 210–221]. On the other hand, con-
tinuum based models have recently emerged that utilise coupled partial differential equations
(PDE’s) to describe an array of arterial wall constituents and their significance to excessive tissue
growth [55, 115, 208, 222–224]. These two frameworks are summarised in Fig. 1.12, depicting
the overall aim of any mechano–biological model. Briefly, each approach (ABM or continuum)
simulates stent deployment which facilitates the accumulation of inflammatory cells as a mea-
sure of vascular injury. These cells then trigger the activation of various chemicals, notably
growth factors and cytokines, which in turn stimulate a healing response through cell prolifera-
tion and ECM synthesis. It is then the excess production of these constituents in particular that
comprise the restenotic tissue. In a range of articles, CFD analysis is also included, which acts as



20

input to the biological cascade of events, as highlighted by the dashed box (Fig. 1.12) [225–227].
Moreover, emphasised by the purple arrow, in more complex models, time–dependent growth
is also simulated. Here the artery remodels sequentially, at pre–defined time intervals where the
new geometry then influences the subsequent variables within the model [226]. This is a quasi–
time–dependent approach, where growth is modelled as a series of stationary steps, as opposed
to a single step considered in [55, 228].

Figure 1.12: Standard framework for mechano–biological models of restenosis. Dashed entities
(line / box) within the modelling approach box depict optional steps present in current state–
of–the–art models which introduce additional complexities within their framework of arterial
healing.

Briefly, preliminary work by Evans et al. [210] introduced complex autonoma (CxA) models
that then permitted the description of the main physical and biological elements associated with
restenosis through an ABM framework. Since, a series of models by Boyle et al. [54, 57, 211,
212, 215] grew in complexity to highlight the significance of stent design on restenosis. Models
by other authors have also demonstrated the importance of stent design, expansion and re–
endothelialization in 2D before extending efforts to 3D [53, 65–67, 206, 217, 229]. Corti et

al. [225,226] built upon a model of atherosclerosis to detail the growth of restenosis in response
to haemodynamic indices (i.e. WSS). Their analysis showed that areas exposed to lower WSS
(< 0.5 Pa) presented with an increased risk of lumen re–narrowing at a 1–month and 1–year
follow–up [219,226,227]. However, with the focus of their models on femoral arteries, Chen et

al. [220] adopted a similar protocol within a coronary artery environment, establishing a similar
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conclusion.
Recently, continuum models have been proposed as an alternative to ABMs, where a highly

coupled, nonlinear set of PDE’s are implemented to describe ISR following stent deployment.
The current state–of–the–art model considers a 2D–axisymmetric healthy arterial geometry,
where various constituents (SMCs, ECM, GFs etc.) all respond to vascular injury. Moreover, an
alternative continuum framework exists, where the growth model for restenosis is implemented
within the finite element framework describing arterial kinematics [115,208,223,224,230]. Ef-
forts tend to explore sophisticated models of stent expansion, advising clinicians on the optimal
course of treatment, with a particular emphasis on overlapping stents.

In summary, models of arterial healing have advanced significantly in recent years, and
provide insightful information into the physical mechanisms that occur in response to stent de-
ployment. Either in a rule–based or continuum framework, these models have established a
correlation between stent characteristics (deployment depth, strut thickness etc.) and restenosis.
However, very few models consider the influence of drug on healing, and when doing so neglect
the sophisticated drug transport models that dictate drug behaviour within both the polymer
coating and the wall. Current models which do so, with severe limitations, are discussed within
the following section, highlighting key areas which aim to be addressed in this thesis.

1.4.3.1 Cell inhibition: Modelling how drug inhibits restenosis

To the best of the author’s knowledge, very few models exist that consider the influence of drug
on the arterial healing response, and those which do employ simple drug transport kinetics.
For example, in preliminary ABMs, [205, 206] the action of drug was modelled. The binding
process was neglected, where free drug was coupled to cell function by mapping between the
two modelling frameworks: ABM of restenosis and continuum model of drug transport. Sub-
sequently, Rossi et al. [183] simulated drug release and degradation from a bioresorbable stent
whilst considering the influence on SMC growth. Their model assumed an overly simplistic
approach, with drug stimulating cell death through a linear dependence. Moreover, Peddle et

al. [207] considered a theoretical approach to study the impact of drug on SMC proliferation
using a series of PDE models that depict the two SMC phenotypes, contractile and synthetic.
They employed simplified elution kinetics, where binding is again neglected, and an exponen-
tial decay is used to define the diminishing effect of drug on cell function. Finally, more recent
research [208] has probed the effect of DCB on restenosis. Owing to the lack of development
in this field, the effect of drug was simulated by a simple perturbation in the SMC proliferative
parameter, where the simulation of drug transport was absent.
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1.5 Thesis Aims & Outline

Despite all the significant advancements in stent design, where computational efforts have in-
formed manufacturing protocol following analysis of arterial stresses and fluid dynamics, little–
to–no effort has investigated the explicit role of drug on the restenosis process. Instead, an
abundance of literature adopting static arteries [79], where cells and binding sites are constant,
have informed the optimal course of drug release that permits sustained efficacy, without ex-
amining the subsequent impact on cellular function. Investigation into models which couple
drug efficacy and cell function is essential since various clinical studies have demonstrated non–
inferiority between DES employing durable and degradable coatings [34, 35]. This is further
evidenced by a recent clinical trial, [48], which charted stubbornly high TLR rates following
PCI with a modern stent design. Taken together, this suggests that the drug delivery protocol is
under–explored, where further modelling efforts may aid in understanding the current downfalls
of DES, and where possible improvements in design may lie.

With this in mind, the fundamental aim of this thesis is to devise mathematical and com-
putational models that enable the assessment of drug mediation on cellular processes that drive
restenosis. In line with many computational efforts, the following chapter presents a model
which is dimensionally simplified to vary only in time (Ordinary differential equation (ODE)
model). With the aid of in vitro data, the applicability of several models which probe the effect
of drug on cell proliferation are assessed. These efforts are extended in Chapter 3, where the
cyclic behaviour of cell proliferation is accounted for, and the affinity of drug to cell cycle check
points analysed. Chapter 4 then presents a continuum–based restenosis model to simulate how
SMC proliferation drives restenosis through the behaviour of many other constituents involved
in arterial healing. Chapter 5 then incorporates stent–based drug delivery into the restenosis
model. Through sophisticated coupling, the design of DES can be explored and the subsequent
impact on patient outcome analysed in depth. Chapter 6 then addresses key limitations present in
the restenosis model, isolating a key issue of DES: delayed arterial healing. The thesis will then
conclude its findings whilst stating further work to be considered that could enrich modelling
efforts to help better address the fundamental aim of this work.
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Chapter 2

Modelling the effect of anti–proliferative
drug on in vitro smooth muscle cell
proliferation

Although drug–eluting stents (DES) proved revolutionary, reducing rates of in–stent restenosis
(ISR) significantly when compared directly with bare metal stents (BMS) [32], clinical evidence
continues to show that there is room for improvement. For example, the recent FAME 3 clini-
cal trial [48] demonstrated non–inferiority between modern 3rd–generation DES and a coronary
artery bypass graft (CABG) in the treatment of coronary artery disease (CAD); with the latter
known to be significantly more invasive. The outcome of this trial highlighted that approxi-
mately 6% of patients treated with DES required a follow–up procedure (target lesion revascu-
larisation, TLR) after 1–year; with ISR the primary reason for TLRs [50]. Moreover, with rates
of TLR likely to increase at a rate of 3–5% year–on–year [48, 231], and further heightened in
patients with complex lesions [232], deeper exploration into the performance of these devices is
necessary.

In particular, over the last 15 years, delayed arterial healing has been a recurring feature with
DES, known to significantly increase the risk of poor patient outcome [24, 25, 27, 75]. With this
initially observed in first and second–generation devices, the durable polymer coating was per-
ceived as the primary culprit [24]. However, various clinical trials have since demonstrated non–
inferiority between durable and degradable coatings that host sufficient biocompatible proper-
ties [33–35]. Further attempts looked to remove the coating entirely (polymer–free) or proposed
a fully bio–resorbable structure. Similar to the degradable coatings, non–inferiority was present
between permanent–polymer and polymer–free devices [39, 40]. However, the polymer–free
BioFreedom (Biosensors, Europe) stent, accompanied by dual–antiplatelet therapy (DAPT) es-
tablished superiority in a particular subset of patients who had a high risk of bleeding. As for the
fully resorbable structures, patient outcome was severely comprised beyond 1–year and devices
were subsequently pulled from the market with further research required [22, 43, 118, 223].
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Taken together, it is clear that the role of drug on restenosis is under–explored, with much
of the focus in recent years associated with the physical design of DES. This was empha-
sised in the introductory chapter, where there was a clear lack of models that detail the ef-
fect of anti–proliferative drugs on smooth muscle cell (SMC) proliferation. Such models are
necessary because the purpose of the drug is to halt SMC proliferation which ultimately has
an impact on restenosis. For example, although current drug transport models have demon-
strated the importance of drug elution kinetics, tissue uptake and retention on key indica-
tors of safety and efficacy, they completely ignore the explicit role of drug on cellular func-
tion [78,79,165,169,170,172,173,177–179,188,189,194,196,203,233]. As such, these models
consider a static artery (where growth is neglected), with the binding sites that drug occupy as-
sumed constant, and the subsequent effect on cell function neglected. Further motivation exists,
where current mechanical models which emulate the deployment of stents in patient–specific
arteries do so with BMS, devoid of drug [85,115,147,219,223,225–227,234,235]. In response
to stent deployment, several mechano–biological models have recently emerged that depict the
process of restenosis. Although these have improved the understanding of the physical mech-
anisms that drive restenosis, the role of drug in inhibiting this process is often neglected or
employed by inadequate means; where a sophisticated model of drug release and transport in
tissue is not considered.

Thus, the aim of this chapter is to better understand how anti–proliferative drug impedes
SMC growth through the use of mathematical models. Prior to simulating drug delivery follow-
ing stent deployment, models adopting ordinary differential equations (ODEs) are considered to
focus solely on the anti–proliferative effects of drug on cell growth. The models are then built
upon in Chapter 5, where the emphasis is on the performance of DES. In this chapter, experi-
mental data from in vitro proliferation assays are obtained to calibrate and validate a series of
models that attempt to capture the dose–dependent effect of drug on cell proliferation. In the
first instance drug is continuously exposed to the cells throughout the experiment. A further
objective is to then test whether each model can capture drug retention and thus the diminishing
effect of drug as the populations of cells re–proliferate. Throughout, the predictive capabilities
of the models are tested in an attempt to obtain the best–fitting parameters for each model whilst
allowing for predictions to be made where possible.

The chapter begins by providing a brief review of the literature, discussing mathematical
models emulating tumour regression and ISR. The role of the anti–proliferative drugs used in the
treatment of ISR is then discussed, with experimental studies illustrating their actions detailed.
A series of mathematical models are then proposed, immediately followed by the numerical
fitting approach implemented to obtain the best–fitting parameters to each model. With two
experimental data sets considered for model calibration, the results are divided into two distinct
categories. The results of the model are then discussed alongside any limitations, highlighting
the possible implications they may have on future research.
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2.1 Review of literature

There are many mathematical models in the literature that emulate the role of anti–proliferative
drug in the treatment of cancer [83, 236–238]. As alluded to briefly in Section 2.1.1, these
models facilitate cell death through the action of drug by means of a cytotoxic effect. Such
models have considered an array of drugs in an attempt to identify optimal treatment therapies
for a plethora of different cancers [237, 238].

Despite the abundance of tumour regression models following drug exposure, very few mod-
els demonstrate the role of anti–proliferative drug on SMC function [183, 205–208]. In fact,
those models which do exist are often borrowed from the cancer literature. This is particularly
problematic given that the fundamental action of drug is different between the two applications.
For example, when treating cancer the drug is cytotoxic, with the primary aim of killing hostile
cells. However, in the treatment of CAD, drugs which were once employed as chemotherapeutic
agents (sirolimus and paclitaxel) had their dosage finely tuned to ensure a cytostatic response,
such that SMC proliferation was halted or delayed without initiating apoptosis [239–241]. More-
over, the administration protocols of drug differ between the treatment of cancer and CAD. In
the former, medication is often routine and administered intravenously or orally to target and
rid the patient of all hostile cells. Whereas, for CAD treatment, drug is delivered by means of a
stent or balloon locally to the site of disease in a one–off application.

With this in mind, the primary purpose of this section is to provide a brief discussion of
mathematical models of in vitro experiments of tumour growth subject to drug exposure. Such
research has inspired model derivation that aims to simulate the anti–proliferative effect of drug
on SMC proliferation. An overview of how such models have been applied to the inhibition
of SMC proliferation is explored in detail. The limitations of these are models are highlighted,
emphasising where improvements can be made.

2.1.1 Brief review of mathematical models of tumour growth

Generally, models that depict the action of drug on the proliferation of tumour cells are of the
following form:

dc
dt

= φc(c)−λ (c) c, (2.1)

where c is the number of cells, φc resembles the growth model of interest (e.g. exponential or
logistic), and λ can is often a constant which mimics the effect of drug, a function of the current
cell number.

Models of the simplest form adopt Eqn. 2.1, where λ is constant, corresponding to the
dose or effect of drug applied. Subsequent models have since amended this approach, where
λ is extended to simulate the impact of drug exposure with or without resistance [237, 242–
244]. Further still, models have explored the cell–cycle nature of these drugs such that the
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cell population is divided into phases [242, 245–248]. Such models are easily divided into two
categories. The first assumes phases to mean the different stages of the cell cycle [242, 246],
which is discussed in more depth in the following chapter, where the focus shifts to the cyclic
behaviour of cells, with an emphasis placed on drug specificity. Or, they assume phases to
mean different cell phenotypes, where drug has a specific role in promoting cell quiescence,
impeding the proliferative capacity of the active cell type, or promoting cell death [245, 247,
248]. A further interesting point was brought to light recently by Jarrett et al. [83], where drugs
with alternative modes of action, intracellular versus extracellular binding, may require different
models to describe their effect on cell function.

It is clear there exists a vast literature of tumour regression models which account for the
effect of anti–proliferative drug [236–238]. Such models have made a profound impact, inves-
tigating the role of drug specificity and resistance with an aim of influencing chemotherapeutic
treatment protocol [245]. Although the underlying mechanisms of the drugs in tumour regres-
sion and the inhibition of restenosis are similar, the administration and goal of these drug com-
pounds differ and thus the models have to be tailored accordingly between the two applications.
For a more thorough discussion on mathematical modelling of tumour growth subject to drug
exposure, the reader is referred to the following reviews [236–238].

2.1.2 Existing models of the effect of drug on smooth muscle cell prolifer-
ation

To the best of the author’s knowledge, Caiazzo et al. [205] were the first to consider the effect of
anti–proliferative drug on SMC function, within a model of restenosis. Their restenosis model
was agent–based, where SMCs and other constituents followed a set of rules in response to some
stimuli. However, the drug transport kinetics were described using a continuum model through
a separate kernel which was mapped to be coincident with the SMCs, where the free drug con-
centration on each cell was approximated. The transport of drug was described through an
anisotropic diffusion equation, where binding kinetics were entirely neglected and drug, there-
fore, existed in only one phase (free). Efforts were subsequently replicated within a model inclu-
sive of flow [206]. Such models pre–dated key findings in the literature, which highlighted the
benefits of specific SMC receptor saturation, particularly for sirolimus–eluting stents [78, 79].
However, this groups’ subsequent models of restenosis [53, 65–67] failed to revisit the perfor-
mance of drug as in inhibitor to this process; possibly owing to the lack of understanding of its
role in modulating arterial healing [25, 208, 249].

In the years following, Rossi et al. [183] published a model study of a bioresorbable
polymer–coated stent. To accompany their models of polymer degradation and drug transport, a
population balanced corpuscular approach was also implemented to describe neointimal thicken-
ing, with the effect of drug considered. Specific details of the coupling of drug to the restenosis
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model and how it subsequently inhibits cell proliferation is not explicitly detailed, with the au-
thors referring the reader to [250] instead. Assuming the same approach is implemented, drug
reduces the proliferative capacity of cells by promoting cellular death through a linear apoptotic
term. Here, cell death is proportional to the concentration of drug via some rate constant (e.g.
Eqn. 2.2). Thus, instead of the desired cytostatic response of anti–proliferative drugs employed
to treat ISR, their model assumes that drug elicits a cytotoxic response. Elaborating further on
the implications of this approach, the following general model of exponential cell proliferation
subject to drug exposure is presented:

dc
dt

= g c− kdrug c, (2.2)

where c is the number of cells, g is the cell growth rate, and kdrug is some rate constant which
defines the effectiveness of drug through apoptosis. Exponential growth occurs in natural cir-
cumstances (kdrug = 0). This is still true when kdrug < g, but invalid when kdrug > g, where
dc/dt < 0 and cell death ensues, reiterated graphically in Fig. 2.1. Moreover, by extending
Eqn. 2.2, it is possible to incorporate the time–dependent effect of drug on cell proliferation
through a general expression, kdrug e−φd tc, where φd is some arbitrary decay constant. With
this, a cytotoxic response is present initially before cell recovery dominates as the effectiveness
of drug diminishes. Regardless of the sophistication of the ‘sink’ term, the fact that dc/dt < 0
is attainable is not warranted in the present application. For example, various experimental–
focused articles have since established that the fine–tuning of the dose of once cytotoxic drugs
(e.g. chemotherapeutic agents, paclitaxel) can enable a cytostatic response [240,251]. The cyto-
static outcome is desirable in the treatment of ISR because cell death, through cytotoxic drugs,
may trigger a prolonged inflammatory response where macrophages are needed to clear residing
debris, a process that could further delay the remodelling process [56, 252]. Thus, unlike [183],
future in silico models of drug effectiveness should employ a reduction in growth rate (cyto-
static) as opposed to promoting death (cytotoxic).

Limitations aside, by means of a fitting protocol which the authors do not detail, the model
proposed was able to adequately capture the dose–dependent effect of drug on cell prolifera-
tion in vitro. This model was then utilised to emulate in vivo conditions, charting neointimal
thickness and making predictions on patient outcome.

Subsequently, Peddle et al. [207] proposed a generic partial differential equation (PDE)
model of SMC proliferation subject to the effects of drug. In a theoretical attempt to emu-
late restenosis, their model of cell behaviour comprised of two phases, mimicking the active and
dormant phenotypes of SMCs. The authors considered two drug–effectiveness models, where
drug was assumed to mediate cell function by either preventing phenotype switching or halting
growth. One limitation is that the first approach assumed that drug blocks the differentiation
from quiescent to proliferative cells, whilst literature often details that drugs commonly coated
on stents (e.g. sirolimus) induce differentiation back to the quiescent phenotype as opposed to a
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Figure 2.1: Exploring the behaviour of Eqn. 2.2. In all simulations g = 0.1. (i) kdrug = 0:
Growth in the absence of drug. (ii) kdrug < g: Curtailed growth due to the presence of drug.
kdrug = 0.05. (iii) kdrug > g: Cell death as a result of drug effectiveness dominating over growth.
kdrug = 0.2. (iv) kdrug(t) = kdrug e−φd t : Time–dependent effect of drug. φd = 0.15, kdrug = 0.2.
(v) kdrug = g: Drug is as effective as cell growth.

complete block to their proliferative state [253–255].
Drug–effectiveness aside, the model proposed is further limited by its drug transport model,

where an exponential decay expression (Eqn. 2.3) that describes the diminishing effect of drug
concentration is implemented as an alternative to more sophisticated transport kinetics that ac-
count for drug binding and retention within tissue:

µD =C exp
(
−1−αt

τ

)
, (2.3)

where µD details drug effectiveness, which decays exponentially given that C and τ are constants
of proportionality, and αt defines the total drug concentration. However, to enable emulation of
patient outcome in vivo, a consideration into more sophisticated transport kinetics of free and/or
bound drug should be considered; as highlighted ubiquitously throughout drug transport models
isolated from cellular function [78, 79, 178, 188, 194].

Very recently, Maes et al. [208] published a constrained mixture model of restenosis follow-
ing balloon expansion. As a tangent from their primary study, the authors explored the effect of
drug, assuming it mediated the SMC population via the following expression:

dφ

dt
=−kdφ − kDEB

d (1− e), (2.4)

where φ is fraction of active SMCs, kd is a rate constant that controls phenotype switching,
e is the extracellular matrix concentration, and kDEB

d is another rate constant associated with
the effect of drug, where kDEB

d ≤ kd such that the change to a more synthetic phenotype is
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reduced as a consequence of drug, an approach similar to that in [207]. However, drug transport
kinetics are ignored in their entirety. Instead the authors proposed a local sensitivity analysis,
concluding that perturbations in kDEB

d presented sensible results, where smaller values presented
with a further decrease in SMC proliferation. The authors attribute this simplification to the
lack of development in the field, such that further model improvements should consider a more
sophisticated approach that encapsulates the drug transport process.

Taken together, all of the aforementioned models fail to adequately incorporate drug deliv-
ery and retention. In particular, none of these models incorporate the state–of–the-art, nonlinear
saturable binding model. This is somewhat surprising given that static drug transport models, re-
viewed in depth in [78], have demonstrated the importance of the drug release rate and retention
on characteristics associated with drug efficacy and safety. Summarising, the state–of–the–art
literature suggests that the saturation of specific receptors (e.g. those present within SMCs) is es-
sential, achieved through a sustained release of drug, at least for sirolimus [79]. Although static
models have demonstrated good agreement with experimental data (e.g. [79, 172]), neglecting
the effect of drug on cell growth is limiting, especially with the aim of adopting such models
as pre–clinical tools which simulate a remodelling, dynamic artery following stent deployment.
Moreover, mathematical models discussing how drug impedes restenosis through the inhibi-
tion of SMC proliferation do not account for these complex binding kinetics. In fact, in [207]
and [208], drug transport kinetics are completely neglected. Therefore, a clear disconnect ex-
ists, where the role of saturable binding on SMC proliferation has not previously been simulated
in a dynamic environment, where the number of cells is increasing, or the tissue is regrowing
(restenosis). With the proliferation of SMCs known to be the driving force behind restenotic
tissue growth, a better understanding of how drug hinders its functionality is necessary.

2.2 The role of anti-proliferative drugs on SMC growth as
demonstrated from in vitro data

2.2.1 Overview

An understanding of how drugs elicit their effect on cell function is beneficial prior to model
development. Of particular interest is the action of anti–proliferative drugs paclitaxel (PTX)
and sirolimus (SIR), present on polymeric coatings of preliminary DES. The inhibition of cell
function, particularly proliferation, has been well established through in vitro studies, where the
effect is dose–dependent [31,80,81,240,251,256–260]. Note, the modes of action of both PTX
and SIR are different, exerting their effect with greater affinity at different checkpoints along the
cell cycle (Fig. 2.2).

Upon entering the cell via passive diffusion [80,261], the drug of interest will elicit its action
by binding to a particular molecule within the cell. PTX will bind to the β subunit of tubulin,
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Figure 2.2: Schematic illustrating the cell cycle as well as the mode of action for SIR (as well
as its analogues) and PTX. Acquired with permission from [249].

present on microtubules, where it will predominantly halt cell cycle progression at G2/M, induc-
ing cell cycle arrest during chromosome separation [80,81,251]. On the other hand, studies have
highlighted an arrest at G0/G1, associated with exposure to a lower dose [251]. SIR molecules
bind to FKBP12 protein which inhibits the functionality of FKBP–rapamycin associated protein
(FRAP), interfering with biological events that may occur as a result of growth factor stimula-
tion. SIR predominantly exerts its effect prior to the first checkpoint, at G1/S, where the cell
cycle is delayed, and cells remain quiescent, unable to proliferate for a prolonged period of
time [80, 258]. A plethora of articles have demonstrated an inhibition of SMC proliferation (in
vitro) following exposure to PTX [81, 240, 251, 257, 259] and/or SIR [31, 256, 262–265].

However, as delayed arterial healing continues to be a prevalent issue with DES, alternative
compounds were considered with the aim of finding a drug which specifically targets SMCs over
endothelial cells (ECs). To name a few, Matter et al. [31] compared sirolimus and tacrolimus,
observing that the latter was more favourable in not adversely inhibiting EC regeneration. Addi-
tionally, analogues of SIR (zotarolimus, everolimus, and biolimus) all demonstrated favourable
inhibition of SMC proliferation and migration [266–268]. Moreover, anti–inflammatory options
were also considered that suppress cyclooxygenase–1,2 (COX–1,2) where Marra et al. [269] in-
vestigated the dose–dependent response of sodium salicylate (SAL) on cell proliferation. Lastly,
alternative drugs that showed promise in the inhibition of tumour cells were considered, where
Sun et al. [270] analysed the dose–dependent behaviour of elemene, illustrating a positive inhi-
bition of SMCs and the stimulation of EC recovery.

Although it is clear that a large array of data exists detailing the anti–proliferative nature
of various drugs on SMC proliferation, the experimental methodologies chosen to depict this
are often not suitable for model calibration and validation. Summarising, various efforts depict
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the dose–dependent response of drug, but as a percentage of the control value, which is not
quoted [31,257,266,267,271]. Other studies may present the data in a desired format, yet do not
account for the effect of multiple doses and/or drug retention [268, 270, 271], a key component
associated with the performance of DES [79, 172, 188, 194].

As a result, the following selection criterion was utilised to identify studies that could provide
suitable data for model calibration and validation: (i) data is presented as cell number/density;
(ii) multiple drug doses are considered to establish a dose–dependent response; and (iii) the
retention capabilities of the drug are examined. Studies that satisfy these are highlighted subse-
quently in Sec. 2.2.2 where the experimental data is presented. Fig. 2.3 schematically details a
generic experimental set–up which follows the proposed selection criteria, assessing the impact
of drug on cell proliferation with a particular emphasis on retention as represented by step three.

Figure 2.3: [1]: Cells are seeded at some number onto a well plate. [2]: Drug is added to the
media (yellow) to inhibit the proliferation of cells. [3]: Drug is removed from the media after
some time to observe the effect of drug retention. [4]: Repeat 1–3 for a range of drug doses, cd .

2.2.2 Studies considered for model calibration

Scheller et al. [81], as part of a larger study on alternate drug administration strategies, analysed
the influence of PTX at various doses and exposure times on SMC proliferation (Fig. 2.4).
Cells exposed to a lower dose (1.46 µM) demonstrated a re–proliferative potential following
a short, 60–minute exposure. A higher dose (14.6 µM) was then applied for three different
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exposure times: 3, 10, and 60 minutes, where no significant difference was observed in SMC
proliferation between the three cases. Upon the removal of the supernatant, cell behaviour was
studied over a 12–day period, in intervals of 3 days. The data were initially presented as a
density (cells/cm2), although for consistency with [269], this has been converted to number of
cells assuming experiments were performed in 48–well plates.

Figure 2.4: PTX at 14.6µM exposed to bovine SMCs for 3, 10, and 60 minutes, and for 60
minutes at 1.46µM. FBS = Fetal bovine serum. Reproduced from [81].

(a) (b)

Figure 2.5: (a) Human saphenous SMCs exposed to 3 doses (0.1mM, 1mM, and 5mM) of SAL
for 10 days. (b) 5mM of SAL removed at day 4, illustrated by change in line style, depicting
cell recovery upon the removal of drug. FCS = Fetal calf serum. Reproduced from [269].
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Marra et al. [269] considered an alternative drug with anti–inflammatory properties, SAL, in
the search for alternatives to PTX and SIR, implemented in previous stenting applications for an
array of purposes (Fig. 2.5) [272–274]. Two separate studies were carried out to investigate: (a)
the dose–dependent response of SMCs to a continuous exposure of SAL for 10 days, in two–day
intervals and (b) the retention properties of SAL following a brief 4–day exposure to a high dose
of drug for a further 8 days, again in 2 day intervals.

The consideration of two separate studies is both advantageous and limiting. It allows for
the model(s) to be tested against different drugs that have distinct retention capabilities, i.e.
PTX is more lipophillic than SAL. On the other hand, the studies are conducted with different
methodologies, where, for example, different cell lines are considered which may have different
proliferative trends [275].

2.3 Methodology

2.3.1 Governing equations

2.3.1.1 Control model: absence of drug

In the absence of drug, a logistic growth model (Eqn. 2.5) is proposed to describe the growth of
cells in vitro; an approach considered ubiquitously within mathematical biology [276]:

dc(t)
dt

= g c(t)
(

1− c(t)
K

)
, t > 0, c(0) = c0, (2.5)

where c(t) describes the number of cells as a function of time, initially at c0, g is the intrinsic
growth rate, and K is the carrying capacity, the maximum number of cells permitted within the
culture plate. Note, it is assumed that the growth serum is present in a high concentration such
that the intrinsic growth rate, g, can be assumed constant. In all models that follow, Eqn. 2.5 can
be returned by assuming that the drug concentration (cd) equals zero.

2.3.1.2 Drug models: presence of drug

To assess the impact of drug on cell proliferation, three (D1, D2, D3) mathematical models
of varying complexity are presented. Each model permits the assessment of either a brief or
continuous exposure of drug, investigating the re–proliferative potential of pre–inhibited cells.
Where binding kinetics are present, the appropriate rate constants (e.g. kon) are assumed to be
dose independent. Alternatives to the aforementioned state–of–the–art non–linear, saturable
binding model are presented, assuming that the internal concentration of drug mediates the
inhibition of SMCs, or that the action of drug is instantaneous.

Model D1
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The most complex model accounts for the state–of–the–art non–linear, saturable binding kinet-
ics [78,79] with a subtle amendment to the upper limit to describe bound drug. The justification
for a time–dependent limit over a constant (steady–state [79]) one is rather trivial. With prolifer-
ation the focus, then an increase in cell number should convey an increased number of receptors
from the initial state, particularly in an environment comprising primarily of a growing cell
population. Moreover, in agreement with [79], Eqn. 2.5 is extended to ensure drug effective-
ness influences the outcome (Eqn. 2.7), where outcome is perceived as the inhibition of SMC
proliferation, such that:

db(t)
dt

= kon cd (Bmax (t)−b(t))− ko f f b(t), t > 0, b(0) = 0, (2.6)

dc(t)
dt

= g c(t)
(

1− c(t)
K

)(
1− b(t)

Bmax (t)

)
, t > 0, c(0) = c0, (2.7)

where b(t) is the bound drug concentration as a function of time and kon and ko f f are the binding
on and off rates, respectively. The concentration of drug in the media is denoted cd and is
assumed time–independent as a consequence of homogeneous distribution. The receptor density,
Bmax(t), is equivalent to:

Bmax(t) = B c(t), (2.8)

where B is the receptor density per cell. In previous nonlinear, saturable binding models, Bmax

is assumed constant [78,79], unperturbed by local changes in the environment as drug transport
is studied in isolation of remodelling processes (i.e. restenosis). Consequently, the expression
proposed allows for the binding site density to vary in time. The principle behind the binding
site density term is unchanged, such that a complete halt in cell proliferation exists when
Bmax(t) = B c(t) as all binding sites are occupied. If this condition is met then a further increase
in binding sites is impossible, hence the rationale for the effect of drug on cell growth in Eqn.
2.7; such that increased receptor saturation correlates to increased drug effectiveness [78, 79].

Model D2

Model D2 adopts a simpler approach and instead assumes that the internalised bound drug me-
diates SMC proliferation. The effectiveness of the drug is defined by a Michaelis–Menten like
term; an approach implemented extensively to describe the dose–dependent response of drug in
various applications (e.g. tumour regression) [237, 277–281]. Adjusting model D1 accordingly,
internalised bound drug and cell growth are described by:
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dbI(t)
dt

= α

(
cd−

bI(t)
KP

)
, t > 0, bI(0) = 0, (2.9)

dc(t)
dt

= g c(t)
(

1− c(t)
K

)(
1− kmax bI(t)

bI(t)+ k50

)
, t > 0, c(0) = c0, (2.10)

where bI(t) represents the internalised bound drug concentration; α is the internalisation rate
and; KP is the non–dimensional partition coefficient such that, in equilibrium, bI = KPcd . To
describe the effect of drug on cell growth, Michaelis–Menten kinetics are considered, where
kmax is the maximum effect the drug has on cell growth and k50 is the drug concentration at
which the effect is half–maximal.

Model D3

Finally, a model which neglects the binding kinetics entirely is considered. Internalised drug,
bI(t), is replaced with cd , the applied dose, which remains constant, assuming a uniform distri-
bution. Model D3 is a special case of D2, where it is assumed that α → ∞ and KP = 1. The
model is divided into two parts such that:

dc(t)
dt

=


g c(t)

(
1− c(t)

K

)(
1− kmax cd

cd + k50

)
, 0 < t ≤ τ, c(0) = c0, (2.11a)

g c(t)
(

1− c(t)
K

)(
1− kmax cd e−kd(t−τ)

cd e−kd(t−τ)+ k50

)
, t > τ, (2.11b)

where Eqn. 2.11a simulates cell growth in the presence of drug. However, removing drug
(cd = 0) would reduce Eqn. 2.11a to the logistic growth model. Thus, in scenarios where the
influence of drug retention on cell growth needs to be established, an extension to Eqn. 2.11a
needs to be considered. To account for drug retention, it is assumed that upon the removal of
drug, its diminishing effect on cell growth (ce) follows linear decay:

dce(t)
dt

=−kdce(t), ce(t = τ) = cd (2.12)

where kd is the relevant rate constant. An analytical solution to Eqn. 2.12 exists. Substituting
this in replace of cd in Eqn. 2.11a gives rise to Eqn. 2.11b, which is only valid when t > τ ,
indicating the removal of the supernatant from the petri dish.

2.3.2 Model parameters

Across the four models (Eqn. 2.5–2.12), there exists an array of different variables and parame-
ters to detail cell growth and the effect of drug, summarised in Table 2.1.
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Parameter Description Unit

Cell Related Parameters

c0 Initial number of cells no. of cells
g Intrinsic growth rate s−1

K Maximum cell number (carrying capacity) no. of cells

Drug Related Parameters

cd Drug concentration in the media M
kon Binding–on rate s−1 M−1

ko f f Binding–off rate s−1

B Average receptor density per cell M
no. of cells

α Internalisation rate s−1

KP Non–dimensional partition coefficient –
kmax Maximum effect drug has on cell growth –
k50 Drug concentration at kmax/2 M
kd The decay of the drug’s effect on cell growth s−1

Table 2.1: Description of the parameters and variables of the mathematical models.

2.3.3 Numerical approach: solution method and inverse estimation of
model parameters

For numerical convenience, and to reduce the number of unknown parameters, all drug models
(D1–D3) were non–dimensionalised. Details on the non–dimensional protocol are provided in
the Appendix (Section A.1). MATLAB (MATLAB 2020a, The MathWorks, Inc., Natwick, MA,
USA) was the software considered to solve the model equations, specifically the ode15s routine,
numerically integrating the equations over a time span defined by the experimental data.

Since two experimental studies are considered, these are used independently of one another,
with the experimental methods differing significantly between [81] and [269]. Firstly, Marra et

al. [269] considered a continuous exposure of twelve days, for three different drug doses: low
(Lm

12), medium (Mm
12), and high (Hm

12), charting a dose–dependent effect on cell proliferation.
Additionally, a baseline study is considered, where cells are permitted to grow free of any drug,
allowing for comparisons to be drawn against simulations which curtail growth (Cm

12). Moreover,
the re–proliferative potential of drug is assessed following a brief four–day exposure to a high
dose of drug (Hm

4 ).
The second study, published by Scheller et al. [81], presents itself as slightly more chal-

lenging. Similarly, a baseline scenario is presented, assessing cell growth in the absence of any
inhibitors (Cs

12). However, the effect of prolonged drug exposure on cell proliferation is not
assessed, where only brief periods of exposure are shown. Considering just two doses, cells are
exposed to the lower dose of drug for 60 minutes (Ls

12), whilst to the higher dose for 3 (Hs
3), 10
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(Hs
10), and 60 (Hs

60) minutes. Upon removal of the supernatant, cell recovery is investigated over
a twelve–day period.

In each aforementioned label, the following format is considered XΨ
ϒ

. X dictates the exper-
imental conditions, which range from the control (C) to a variety of drug doses (Low, Medium,
or High: L, M, or H). The superscript, Ψ, details the study from which the data originates, either
Scheller (s) or Marra (m). Finally, the number on the subscript, ϒ, defines the duration of drug
exposure (if present). For clarity, the various data sets and their syntax have been reiterated in
Table 2.2.

Syntax Label Drug dose (Value) Drug exposure duration

Marra [269]

Hm
12 High dose (5 mM) Continuous: 12 days

Mm
12 Medium dose (1 mM) Continuous: 12 days

Lm
12 Low dose (0.1 mM) Continuous: 12 days

Hm
4 High dose (5 mM) Brief: 4 days

Cm
12 No drug (N/A) Absent: 0 days

Scheller [81]

Hs
60 High dose (14.6 µM) Brief: 60 minutes

Hs
10 High dose (14.6 µM) Brief: 10 minutes

Hs
3 High dose (14.6 µM) Brief: 3 minutes

Ls
60 Low dose (1.46 µM) Brief: 60 minutes

Cs
12 No drug (N/A) Absent: 0 days

Table 2.2: Summary of all experimental data sets used in the inverse estimation of model
parameters. The syntax labels are used in all subsequent plots.

The approach proposed has a number of limitations, primarily associated with the experi-
mental data being obtained from studies using different methodologies. For example, a partic-
ular limitation which presented as a challenge was the lack of measurements in [81] during the
periods of drug exposure, or just after, where there exists no measurement of cell number or
drug concentration. Although it is likely the former is indifferent to the initial condition, the
latter is essential to illustrate the levels of saturation/effect present within each window of ex-
posure. Consequently, the approach considered during the estimation of model parameters was
to simulate drug exposure in a forward simulation. Following its end, the cell number, c(t), and
drug concentrations, b(t) or bI(t), were exported and implemented as initial conditions in the
second phase, where model equations are updated to assess drug retention as cd = 0. Inverse
estimation of appropriate model parameters used the remaining data points (day 3–12) as well
as this new initial condition. Estimation of parameters using [269] are less challenging, where
sufficient data points are present during and after drug exposure.

To estimate model parameters, MATLAB’s ‘fminsearch’ routine was adopted, where a least–
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squares method was implemented to minimise the error (ε) between the experimental (ce
j) and

simulated (c j) data points, normalized with the experimental data:

ε =
N

∑
j=1

T

∑
i=1

(
c j(ti)− ce

j(ti)

ce
j(ti)

)2

, (2.13)

where ti, i = 1,2, ...,T , are the measurement time points. Parameter estimation involves either
one ( j = 1) or multiple ( j > 1) data sets as part of the fitting process such that j, j = 1,2, ...,N,
where N is the total number. In subsequent analysis, the former will be deemed an ‘individual
fit’ whilst the latter a ‘multi–fit’. Note that ‘data sets’ refer to the different curves present within
a given experimental study, produced by either Marra et al. [269] or Scheller et al. [81].

The ‘fminsearch’ routine minimises error using the Nelder–Mead optimization protocol
through a simplex method. The simplex hosts n+ 1 points, one greater than the dimension
(n) of the problem. The parameter space can be visualised as a contour plot, where the simplex
aims to identify the series of parameters that constitute to the smallest error (ε) through a range
of transformations (contraction, expansion, reflection, etc.) presented visually in an example
parameter case (x, y) in Fig. 2.6. The protocol comes to an end either upon approaching some
tolerance limit or following the execution of a pre–defined number of iterations. The former was
set to 10−4 and the latter to 100,000 to ensure the appropriate minimal error was obtained.

Figure 2.6: The image of the left presents a generic contour ((x− 0.5)2 +(y− 1)2− r2 = 0)
of varius radii (0→ 50) representing a random parameter space, x, y. The image on the right
focuses in on a segment of this contour, illustrating various simplex transformations following
an initial parameter guess (black triangle), such that a: (i) reflection, (ii) contraction, or (iii)
expansion are considered following a computation of the centroid of the best two points, as the
simplex aims to converge towards to the minimum (circle centre here).
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A limitation of ‘fminsearch’ is that the algorithm is unconstrained. In the absence of reliable
parameter estimates, it is believed that this approach is adequate at the benefit of computational
cost. However, a manual constraint is put in place such that only absolute values of parameters
are considered, as none of the model parameters should return negative. Moreover, a further lim-
itation of this approach is the possibility of being trapped in a local minimum, where the contour
of the parameter space may present with multiple minima. To prevent this, a multi–search algo-
rithm (Global Search) was also implemented, assessing the reliability of the parameter estimates
for a range of different initial conditions to ensure the global minimum was reached.

The inverse estimation protocol is summarised in Fig. 2.7. Of the parameters listed in Table
2.1, only the initial number of cells (c0) is known prior to model simulation. Information on cell
culture plates is absent, and therefore, in addition to the growth rate, g, the carrying capacity,
K, is also estimated as part of step 1. Moreover, Marra et al. [269] argued a plateau in Fig.
2.5b. However, with only two data points, and large error bars, that conclusion is difficult to
rationalise, and as a result, K, has not been fixed. In simulation tests, fixing this value would
adjust the growth rate parameter accordingly.

For model simulations that include the effect of drug, control parameters (g and K) are fixed.
The next step in the protocol then attempts to acquire the best–fitting parameters for each drug
model (D1–D3) prior to predicting the other responses; testing model robustness. The final
step involves multiple data sets (Eqn. 2.13, j > 1) as part of the fitting process, artificially
constraining model parameters. Note, the associated error for each fitting procedure documented
in Fig. 2.7 is found within its respective table in the Appendix (Section A.2).

2.4 Results

2.4.1 Marra et al. data set: comparisons between the model results and
experimental data

As per step one of the fitting protocol (Fig. 2.7), the best–fitting parameters to the logistic
growth model (Eqn. 2.5) were obtained, demonstrating an adequate agreement with the experi-
mental data in [269] (Fig. 2.8a). The approach returned g = 0.204 s−1 and K = 130,777 for the
intrinsic growth rate and carrying capacity, respectively, with an error of ε = 0.0301. Further
efforts which modelled the effect of drug on cell growth kept these control parameters (g and K)
consistent throughout.

Moving onto step 2 of the fitting protocol (Fig. 2.7), the capability of each model (D1–D3)
to capture the Marra et al. [269] data when drug was exposed to the cells for the duration of the
experiment was tested. To do so, the best–fitting parameters for each model were obtained from
fitting to each data set (dose) separately (Hm

12, Mm
12 and Lm

12). For clarity, the parameters to be
fitted for each model are: (i) Model D1 – kon and ko f f , (ii) Model D2 – kmax, α/k50 and α/KP,
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Figure 2.7: Flowchart detailing the parameter fitting process. Step 1: The logistic growth model
(Eqn. 2.5) hosts two unknowns: g and K, which are then fixed for subsequent drug simulations.
Step 2: For each drug dose considered, an individual fit is performed (Eqn. 2.13, j = 1) to permit
predictions of the other responses present in the data set. Step 3: An alternate fitting strategy is
adopted (Eqn. 2.13, j > 1) where multiple data sets are used simultaneously to acquire the best-
fitting parameters, to then make predictions of the remaining data set(s). Experimental set–ups
differ between [269] and [81] and therefore, the three step fitting process is performed on each
study individually.

and (iii) kmax and k50, which were obtained following the non–dimensional analysis (Appendix:
Section A.1). Although the results demonstrate good agreement with data qualitatively (Fig.
2.8b–2.8d), and the errors between models are similar (Appendix: Table A.3), there is a notable
difference in best–fitting parameters across the three data sets for any given model, and between
models where the same parameter (e.g. kmax: Model D2, D3) applies (Appendix: Table A.1).

Rationalising the results, the discrepancy in parameter values could be a consequence of the
fitting protocol, where the parameters may not be uniquely identifiable or the models themselves
inadequate, requiring further sophistication. The first point made here is emphasised with par-
ticular reference to the two extremes (Hm

12 and Lm
12) of model D1, where a threshold exists such

that further reduction in an already small binding off rate or increase in a rather large binding
on rate, respectively, would have negligible impact on the results. It is in these scenarios where
reliable estimates of such parameters, obtained from experimental data, may aid in the fitting
protocol by constraining parameters of the model to lie within a pre–defined range; hopefully
improving the overall fit as a result. Another explanation is that the parameters may not be
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(a) Control Model (b) Model D1

(c) Model D2 (d) Model D3

Figure 2.8: Comparison between mathematical models (curves) of cell growth and the data
(markers) provided by Marra et al. [269], where c0 = 17,100. (a) Cell growth in the absence
of drug, present in all further figures as a dashed line. (b)–(d): Results of model D1–D3 (b–
d, respectively) following an individual fit to each data set (Hm

12, Mm
12, Lm

12). The best–fitting
parameters obtained from each fit are reported in Table A.1 with the associated errors present in
Table A.3, denoted by the coloured cells.

uniquely identifiable because they may be, for example, dose and drug dependent.
To explore this further, the predictive capabilities of each model (D1 & D2) by assessing

whether they could capture cell recovery following a short, four–day exposure to drug (Hm
4 )

were tested. The best–fitting parameters obtained following a fit to Hm
12 were used, where cd = 0

in the respective models after four days to emulate the removal of drug from the media. Fig.
2.9a and 2.9c chart the predicted model response against the experimental data using the best–
fitting parameters from Hm

12, where Model D1 is clearly a poor predictor (ε = 0.6174), whilst
model D2 illustrates reasonable agreement with the experimental data (ε = 0.0603). The poor
predictive capacity of model D1 could be attributed to an underestimation of ko f f , where previ-
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(a) Model D1: Prediction (b) Model D1: Multi–fit

(c) Model D2: Prediction (d) Model D2: Multi–fit

Figure 2.9: Comparison between mathematical models (curves) of cell growth and the data
(markers) provided by Marra et al. [269] when drug was applied for a finite time (four days),
where c0 = 17,100. (a, c) Predictions of Hm

4 for models D1 and D2, using best–fitting param-
eters from Hm

12, respectively. (b, d) Multi–fit for model D1 and D2, using both Hm
12 and Hm

4
simultaneously to acquire best–fitting parameters, respectively. The associated errors between
the model and experimental data are present in Table A.2.

ously, under constant exposure, the binding on rate, kon, may dominate. As a result of this, the
parameter estimation approach was amended (Step 3: Fig. 2.7) such that best–fitting parameters
for model D1 and model D2 were obtained following a multi–fit of Hm

4 and Hm
12 ( j = 2, Eqn.

2.13) in an attempt to bypass the lack of reliable estimates. As shown in Fig. 2.9b and 2.9d,
model D1 benefits from a significant improvement in agreement with Hm

4 (ε = 0.0126) without
impacting the fit to Hm

12 (ε = 0.0257). This was repeated for consistency with model D2, where
no significant difference was apparent in (ε) values for both data sets (Hm

4 and Hm
12) from the

previous scenario where the best–fitting parameters obtained from fitting the model to Hm
12 were

used to predict Hm
4 (Step 2: Fig. 2.7). Predictions of Hm

4 using the best–fitting parameters of Hm
12
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with model D3 are not possible without the estimation of a further parameter (kd). Performing
a further parameter estimation of kd , the model was able to capture the experimental data (Hm

4 )
well (Fig. 2.10). However, since there is no further experimental data charting the effect of a
brief drug exposure on cell proliferation, the estimation of kd cannot be fully validated.

Figure 2.10: Model D3 captures experimental data well, albeit requiring a further parameter
estimation (kd). Best–fitting parameters and associated errors reported in Table A.3.

Having investigated the capability of each model to capture drug retention, the next step
was to assess the ability of each model (D1–D3) to predict cell growth when exposed to drug
indefinitely. As such, the best–fitting parameters from one case (e.g. Lm

12) are considered, then,
by amending the drug dose (cd) accordingly, the other two responses (e.g. Mm

12 and Hm
12) are

predicted. This was repeated twice such that best–fitting parameters from each data set were
used to predict those remaining. As anticipated, the quality of predictions were poor for all
three models (Appendix: Table A.3). This may be attributed to the large variance in best–fitting
parameters between cases, which could be a consequence of the unconstrained fitting method
proposed.

Therefore, in light of the efforts above which explored the effect of drug retention, the pa-
rameter estimation approach (Step 3: Fig. 2.7) is amended to include multiple data sets ( j > 1,
Eqn. 2.13). For model D1 and D2, a multi–fit of Mm

12, Hm
12 and Hm

4 ( j = 3, Eqn. 2.13) produced
the overall best fit to each data set, whilst sufficiently predicting the remaining data set (Lm

12). On
the other hand, the best prediction using model D3 was obtained when best–fitting parameters
were acquired using Mm

12 and Hm
12 ( j = 2, Eqn. 2.13) and Lm

12 predicted. As before, an additional
fitting procedure is necessary to capture the Hm

4 data set emulating drug retention. Summarising
the results, Fig. 2.11 illustrates that model D1 is the poorest performer. Both model D2 and D3
present good agreement with the experimental data, with both displaying sufficient agreement
to the fitted (solid) and predicted (dotted) data sets. Information on the best–fitting parameters
and error values for each model can be found in the Appendix (Table A.4).
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(a) Model D1 (b) Model D2

(c) Model D3

Figure 2.11: Comparison between data (markers) provided by Marra et al. [269] and mathemat-
ical models (curves) of cell growth and recovery when a multi–fit (Model D1 & D2: Hm

12, Mm
12,

and Hm
4 ), Model D3: Hm

12, Mm
12) is used to obtain the best–fitting model parameters before the

effect of the low drug dose (Lm
12) is predicted (illustrated by the dotted line). In all cases, the

control model (Cm
12) is represented by a black dashed line, distinguishing it from response where

drug is considered. Best–fitting parameters and associated errors reported in Table A.4.

2.4.2 Scheller et al. data set: comparisons between model results and ex-
perimental data

A similar approach is implemented for the Scheller data [81]. First and foremost, Eqn. 2.5 charts
a good agreement with experimental data for cell proliferation in the absence of drug. The best–
fitting parameters for the intrinsic growth rate (g) and carrying capacity (K) were 0.204 s−1 and
130,777 respectively, where the associated error was ε = 0.00382.

Again, individual fitting ( j = 1, Eqn. 2.13) to each data set demonstrated adequate agree-
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ment to the experimental data for models D1–D3 (Fig. 2.12). This is emphasised in Table A.5
(Appendix), where the quality of fits, defined by the ε values, are documented, for which model
D1 performs poorest. The best–fitting parameter values are reported for each case, where, sim-
ilar to earlier work for [269], a difference is not only observed between models emulating the
effect of drug that host the same parameters, but also between data sets. Subsequent efforts
assessed the predictive capacity of each model, where the best–fitting parameters from a single
data set (e.g. Hs

60) were used to determine whether the other responses can be captured by only
adjusting the applied dose (cd). With there being a total of four data sets (Hs

60, Hs
10, Hs

3, Ls
60), the

model (D1–D3) when fitted against one data set is a poor predictor of the remaining data sets,
with associated error values reported in Appendix: Table A.6.

As per Fig. 2.7, step 3 was implemented with the aim of trying to improve agreement
between the model results and experimental data. A series of multi–fits were tested ( j > 1 Eqn.
2.13), with the aim of artificially constraining the parameters to depict various model responses.
To ensure the best multi–fit approach was utilised, a variety of multi–fit combinations were
considered: (i) Hs

60 and Ls
60, (ii) Hs

60 and Hs
3, and (iii) Hs

60, Hs
10, and Ls

60.
The best predictions were obtained from case (i) and model D3, where the 60–minute low

(Ls
60) and high (Hs

60) data sets were used to predict model behaviour at shorter exposure times.
On the other hand, model D1 (Fig. 2.13a) and D2 (Fig. 2.13b) failed to capture the response
of cells to high doses of drug for shorter exposure times (Hs

10 and Hs
3), illustrating a notable

difference between the model responses for each of these data sets; disagreeing with the exper-
imental results. However, in model D3, where binding is neglected and the effects of drug are
instantaneous, a negligible difference is present between the three exposure times (3, 10, and 60
minutes) for a high dose of drug (Fig. 2.13c), where curves are superimposed onto one another.
The reasoning for this, and possible significance behind these results are discussed more in Sec.
2.5. Other tested cases failed to demonstrate reasonable agreement across all models (D1–D3).
For example, in case (ii), although a reasonable prediction for Hs

10 was attainable, the effect of
the lower dose (Ls

60) was severely overestimated and as a result, proliferation was significantly
inhibited. Moreover, in case (iii), which accounted for 3/4 data sets (Hs

60, Hs
10, and Ls

60), the
fitting protocol failed to find best–fitting parameters that could portray an adequate model re-
sponse to these data, particularly Hs

10 and Ls
60, where the prediction of Hs

3 suffered as a result.
Thus, there is some confidence in case (i), which still allows for the prediction of at least one
data set.
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(a) Control Model (b) Model D1

(c) Model D2 (d) Model D3

Figure 2.12: Comparison between mathematical models (curves) of cell growth and the data
(markers) provided by Scheller et al. [81], where c0 = 11,704. (a) Cell growth in the absence
of drug, present in all subsequent figures as a dashed line, distinguishing it from data which
represents the effect of drug. (b)–(d): Results of model D1–D3 (b–d, respectively) following an
individual fit to each data set (Hs

60, Hs
10, Hs

3, and Ls
60). The best–fitting parameters from each

fit are reported in Table A.5 with the associated errors reported in Table A.6, denoted by the
coloured cells.

2.5 Discussion & Limitations

Logistic growth model captures cell proliferation in the absence of drug

The logistic growth model has been ubiquitously used to describe the growth of cells in cul-
ture [276]. For each experimental study considered, Eqn. 2.5 simulates a model response that
agrees well with the data presented. Although neither [81] or [269] discuss their methodolo-
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(a) Model D1 (b) Model D2

(c) Model D3

Figure 2.13: Comparison between data (markers) provided by Scheller et al. [81] and mathemat-
ical models (curves) of cell growth and recovery when a multi–fit, case (i), is used to obtain the
best–fitting model parameters before Hs

10 and Hs
3 are predicted (illustrated by the dotted lines).

In all cases, the control model (Cm
12) is represented by a black dashed line, distinguishing it from

response where drug is considered. The best–fitting parameters and errors associated with each
mutli–fit can be found in Table A.7.

gies in detail, the inferred carrying capacities from the fitting protocol return values broadly in
agreement with those commercially available cell culture plates [282].

Fig. 2.12a presents a clear plateau in the model response, highlighting that cells have indeed
reached their maximal cell number. On the other hand, Fig. 2.8a illustrates that cell growth is
still present. An additional data point would provide more insight, indicating whether the value
for K is an over–estimate or not. If true, subsequent inverse estimation would return a larger
value for g as a result, where cell proliferation is quicker.

Moreover, note the that g and K differ substantially between the two data sets. As for the
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former, [275, 283] demonstrate that the behaviour between different cell species varies, which
can be translated into the in vitro scenario emulated here, where [81] and [269] consider SMCs
of different origins. As for the latter, K, this is likely a consequence of different experimental
set–ups and/or cell size between the two (Scheller et al. [81] and Marra et al. [269]) experimental
studies.

Each experimental data set can be captured, but predictions are poor

Attaining the best–fitting parameters to each model individually presented a good agreement
to the experimental data for both studies (Fig. 2.8b–2.8d and Fig. 2.12b–2.12d); although
the values obtained for the best–fitting parameters varied significantly between the different
data sets. Moreover, when considering these best–fitting parameters to capture the response
of the other data sets (e.g. parameters from Hs

60 are used to predict Hs
10, Hs

3, and Ls
60), the

quality of all predictions were generally poor (Appendix: Table A.3 & A.6). Probing further, the
poor predicative capacity of each model could be explained by the large variance in best–fitting
parameters between successive data sets (Appendix: Table A.1 & A.5). The lack of reliable
estimates of each parameter value may be attributed to this, where no constraints were placed
on the bounds for each parameter. Acknowledging this, a multi–fit protocol was devised, where
numerous data sets were used to acquire best–fitting parameters, artificially fitting them to the
various extremes observed in the data. Although promising, a key disadvantage of this approach
is that the number of data sets available to predict are reduced. Therefore, additional data sets are
required, or more thorough studies of drug behaviour that allow for reliable estimates of model
parameters to be obtained more readily. Moreover, the identifiablity of the parameters has been
questioned. The fitting protocol could be the culprit, however, another possible explanation is
that the associated parameters are both drug and or dose dependent. This has not been considered
in the present work, but further research should design experimental studies to investigate this
possibility in more depth.

The simplest drug model performs the best

Two studies were considered for model calibration and validation (Scheller et al. [81], Marra et

al. [269]), of which model D3 was able to best capture all data following a series of individual
fits (Fig. 2.8d & 2.12d). Moreover, as the fitting strategy was updated, model D3 also presented
most favourable here, agreeing with experimental data for model responses that were both fitted
and also those that were predicted, a pitfall of the other two models, particularly for [81] (Fig.
2.11c & 2.13c). This may be somewhat counter intuitive given that the binding kinetics present
in D1 are widely adopted in the literature. A possible explanation as to why is discussed in more
depth below.

It is clear that the experimental data in Scheller et al. [81] presents no significant difference
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between the three exposure times (3, 10, and 60 minutes) for the high dose of PTX. Thus, even
an extremely brief exposure of cells to PTX elicits an inhibitory response that is long–lasting (at
least 12 days). In particular, it is model D1 and D2 that fail to agree with this trend. Investigat-
ing further, Fig. 2.14 presents how the bound drug concentration for each model varies across
the first 60 minutes, where the drug is present in culture. Looking at the high dose curves, it
is clear that in both models, the bound drug concentration at 3 minutes is much lower than that
at 60 minutes, rationalising the poor performance present earlier (Fig. 2.13a & 2.13b). Note,
the level of bound drug concentration after 60 minutes following low dose exposure presents
adequate when capturing the experimental data. As a result, the comparable levels of concen-
tration between Hs

10, Hs
3, and Ls

60 in both models rationalises why the models may not give good
agreement to the experimental data. Therefore, it is clear that for all doses to be captured with
model D1 and D2, the parameters associated with binding kinetics need to be dose–dependent.

Moreover, a superior performance of model D3 is noted when emulating the experimental
data in Scheller et al. [81]. In this model, drug binding is neglected entirely, where the effect
of drug on cell proliferation is described via the applied dose (cd) directly. In other words, this
simplified approach assumes that the drug is bound instantaneously. Since the applied drug dose
is constant, for 3, 10, and 60 minutes, the level of drug influencing cell growth is the same,
where only the time of exposure differs. As a consequence, the effect on cell proliferation was
indifferent between the three as present in the experimental data.

The other data set, Marra et al. [269], hosts three different drug doses, two of which present
as extremes; where the low dose illustrates a response indistinguishable from the control case
and the high dose is an almost complete inhibitor of cell growth. As a consequence, the fitting
procedure considered the high and medium doses, whilst the response to a lower dose was pre-
dicted. However, model D1 was unable to capture the response to both the high and medium
dose, whilst simultaneously predicting the the remaining data set (Lm

12: Fig. 2.11a). Reconsid-
ering Fig. 2.5b, the experimental data shows that SAL is poorly retained in cells, where the
re–proliferative potential is high following the removal of the supernatant. The improved per-
formance of model D2 and D3, which considers simpler or no binding kinetics, captures this
process as well the as the effect of prolonged exposure. The simpler kinetics have no ramp up

period, and thus the effect of drug on cell proliferation is quick in comparison to model D1
which may explain why model D2 and D3 better capture the experimental data.

Although the simpler models present themselves as the favourable option, the description
of cell growth here is applied within the in vitro environment only. A further model analysis
should be considered in a setting that depicts a more realistic environment before drafting final
conclusions. Rationale for the better performance of the simpler models is present in this work,
but further analysis is necessary.
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(a) (b)

(c) (d)

Figure 2.14: Following a multi-fit to Hs
60 and Ls

60, the bound drug concentration behaviour is
presented within the short exposure window, where drug is present. (a) Model D1. (b) Model
D2. (c) First 15 minutes of D1. (d) First 15 minutes of D2.

Possible implications for further research

The results presented question the applicability of the state–of–the–art binding model to infer
cell proliferation subject to drug exposure in vitro, assuming that drug effectiveness is defined
by receptor saturation. Such a model often details drug transport kinetics in isolation of cell
behaviour. The approaches presented here are the first of their kind to couple the processes to-
gether, where bound drug is assumed to influence cell proliferation directly (model D1). Simpler
kinetics are also presented, which outperform those deemed to be more sophisticated.

Results demonstrated that neither the response of cells to SAL or PTX following in vitro

exposure are adequately captured by model D1 across a range of drug doses and exposure times.
This implies that the natural delay present in Eqn. 2.6 as drug binds is inadequate, or, that each
parameter associated with (un–) binding should indeed be drug and or dose–dependent. To fully
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explore the validity of these models, experimental efforts should investigate the performance of
additional drugs (e.g. analogues to SIR).

It should be noted that the models presented here describe the behaviour of cells in vitro

where factors such as drug specificity are neglected. Following release in vivo, drug binds to a
plethora of sites, deemed either specific (e.g. SMCs) or non-specific (e.g. ECM) [79, 178, 178,
188]. Therefore, the effectiveness of drug could be detailed through an alternate mechanism
which has not been considered in this work.

2.6 Conclusion

In conclusion, a series of mathematical models have been presented that explore the effect of
drug on cell proliferation within an in vitro environment. The models of drug effect on cell
proliferation range in complexity, inclusive of either: sophisticated, non–linear saturable binding
kinetics; simpler, linear binding kinetics; or no binding of drug, where the applied dose (cd)
influences cell growth directly. Results demonstrate, that overall, simpler models outperform
the more sophisticated ones when compared with the available data. However, these discussions
are only valid within the environment emulated for the drugs considered. For example, models
of drug uptake and binding are often parametrised using in vitro or ex vivo data, where they are
extended into more complex, multiphysics models which try to capture the in vivo environment.
Efforts here demonstrate the importance of attaining reliable parameter values, where model
calibration and validation should be inclusive of numerous data sets, incorporating multiple
drug doses and exposure times. It is anticipated that binding parameters alike will vary on a
drug–to–drug basis, so this should be repeated for every subsequent drug considered. More
sophisticated experimental set–ups should also be devised to ensure that model descriptions of
drug effectiveness are accurate. For example, the in vitro data here is assumed uniform in space,
although there is expected to be a spatiotemporal gradient of specific (and possibly non–specific)
receptors in vivo which could have a knock–on effect on drug performance.

Moreover, the efforts of this chapter should be extended to address the various limitations
present. Such work should consider the cyclic behaviour of cells in a similar way to those
proposed when modelling cancer. This phenomenon should be explored more within a cardio-
vascular setting, where it is known that cells are inhibited by cell–cycle specific drugs. As a
result, more sophisticated models depicting the effect of drug may be developed, such that com-
parisons between the simpler iterations can be made. Furthermore, efforts should also extend
models to a higher dimension, where behaviours present in vivo can be studied in more confi-
dence such that results can be translated into the context of DES, where spatiotemporal patterns
of drug release exist. Such models can infer the effectiveness of various stent designs on the
inhibition of restenosis, where drug impacts the behaviour of other species implicitly. Finally,
with delayed arterial healing a profound issue in DES, co–cultures of EC/SMC proliferation
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should be examined further, emulated through mathematical models. Here, the specificity of
drugs to each of these cell types can be explored in more detail, providing possible insights into
why a delay in re–endothelialization occurs and the possible implications on patient outcome.
All of these concerns, within some capacity, are addressed in subsequent chapters within this
thesis, building upon the work presented here.
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Chapter 3

Mathematical model of cell cycle specific
drug inhibition of smooth muscle cell
proliferation

In Chapter 2, mathematical models were proposed to describe the effect of various concen-
trations of drug on smooth muscle cell (SMC) proliferation. The results of the models were
compared with experimental data, where some models performed notably worse than others.
For example, it was somewhat surprising that the state–of–the–art nonlinear saturable binding
model failed to capture the dose–dependent effect of drug on SMC proliferation in vitro. Al-
though a good fit to the experimental data was achieved across the models on a dose–by–dose
basis, their predictive capabilities were poor when using the best–fitting parameters acquired
from one dose to predict another.

With this in mind, a major limitation of the models proposed in Chapter 2 are that they
assume that the drug elicits its effect on cell growth without regard for its current phase within
the cell cycle. However, it is known drugs on stents (e.g. sirolimus and paclitaxel) tend to
elicit their action at particular checkpoints along the cell cycle: they are cell cycle specific.
Therefore, with the models in Chapter 2 not accounting for this behaviour, they could be under
or over–estimating the anti–proliferative effect of drug, which could be contributing to the poor
predictive capabilities of these models.

Although proliferation assays have been an essential tool to investigate the impact of drug
exposure on cell growth, a common limitation is that cell cycle behaviour is ignored. Typi-
cally, cells are grown in culture using a growth serum, supplemented with a particular drug at
various concentrations, assessing the dose–dependent effect on cell proliferation. These tech-
niques have been essential in understanding the pharmacodynamic effects of drug, where data
drives therapeutic dose ranges in vivo. Generally, these experimental techniques involve some
sort of standardisation, where all cells are arrested in G1 through a serum starvation protocol,
ready to progress through the cell cycle in a synchronous fashion thereafter. However, when
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implementing this standard serum starvation approach, Vittadello et al. [284], in the context of
cancer, observed an inherent synchronization with the cell population across several indepen-
dent experiments. In other words, the body of cells appeared to exist in several sub–populations,
completing their cycle of growth at different times. As such, the authors questioned the repro-
ducibility of proliferation assays and any mathematical models calibrated from them. Therefore,
Vittadello et al. [284–286] employed an experimental technique that utilised cell cycle indica-
tors (e.g. fluorescent universal cell cycle indicator, FUCCI) for mathematical model calibration
and validation [284, 287, 288]. This allowed for real–time visualisation of cell behaviour as
the population proliferated towards its carrying capacity. Although not considered within their
modelling framework, it is likely that the issues of reproducibility will be compounded in assays
which include anti–proliferative drugs. With these drugs (e.g. sirolimus) being cell cycle spe-
cific, it is likely that the initial distribution of cells could influence the perceived efficacy of the
drug. Especially if the distribution of cells among the cell cycle is different from one experiment
to the next.

With the efforts [284–288] focused on carcinogenic cell lines, no known literature exists
which explores such a phenomenon on SMCs, particularly within the context of stenting. Given
that SMCs are the driving force behind restenosis, exploration into the specific nature of how
drugs inhibit their proliferative capacity may help in deriving more finely tuned models, capable
of making better predictions.

A further limitation of experimental techniques is that the spatiotemporal aspect of drug
delivery is commonly ignored, with cells exposed to a constant, uniform dose of drug. Such a
feature may not be as important in carcinogenic applications, but is of the utmost importance
in the success of drug–eluting stents (DES) [79]. With the initial distribution of cells likely to
impact the efficacy of drug when exposed to cells from the start of the experiment, it is expected
that any differences in drug performance will be further exacerbated in situations where the drug
is released over a finite period of time. Therefore, to translate drug effectiveness adequately to
the in vivo scenario, it is essential to simulate the release of drug into the environment where
cells reside, assessing the role of cell cycle specific drugs when the cyclic behaviour of cells is
accounted for.

As such, the first goal of this chapter is to understand if any discrepancies exist between a
model which accounts for cell cycle dynamics versus one that does not, when modelling in vitro

SMC proliferation. With the emphasis of this chapter being to better understand the role of anti–
proliferative drugs on SMC proliferation, the mathematical models from Chapter 2 (where cell
cycle behaviour was ignored) are built upon to account for this. The second goal of this chapter
is to then assess whether any discrepancies between models which simulate cell cycle behaviour
versus those which do not are exacerbated when a cell cycle specific, anti–proliferative drug is
considered. With the importance of drug delivery in stenting applications noted, the final goal is
to then assess whether spatiotemporal drug delivery exacerbates any differences further.
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The chapter begins by providing an overview of the stages of the cell cycle. A review of rel-
evant literature is then presented, highlighting recent work which has alluded to the importance
of modelling the cell cycle process in the presence and absence of drug; providing rationale for
the aforementioned goals of this chapter. The chapter is then separated into two distinct parts:
one detailing a 0D model and the other a 1D model. The sections comprising of the 0D model
will make direct comparisons between models neglecting or including cell cycle dynamics in
the absence and presence of two drugs which are cell cycle specific. These are termed drug 1, a
G1/S transition blocker (e.g. sirolimus) and drug 2, a mitosis (M) blocker (e.g. paclitaxel). Here,
it assumed that the drug is uniformly exposed to the cells. The second section will then extend
the dimensionality of the model (1D), assessing the impact of spatiotemporal drug delivery on
cell proliferation in the presence of the aforementioned anti–proliferative drugs. Here, possi-
ble implications are extrapolated to the in vivo environment, where the drug release strategy is
known to be an important mediator for the success of DES.

3.1 Incorporating the cell cycle into mathematical models of
cell proliferation

3.1.1 The cell cycle

With the primary goal of this chapter being to assess the benefit of models accounting for cell
cycle dynamics following exposure to anti–proliferative, cell cycle specific drugs, an overview
of the cell cycle itself is necessary. The cell cycle is a fundamental process which details the
step–by–step progression of cell growth as it undergoes division. Within the cycle, there exists
4 stages: G1, S, G2, and M, as summarised in Fig. 3.1. There is an additional fifth stage,
G0, where cells are quiescent, awaiting activation for growth via a stimulus (e.g growth factor
binding). Summarising, the G1 phase is where the cell prepares for division prior to in–house
checks at the first restriction checkpoint, immediately before entering the second phase. In the
S–phase, DNA synthesis occurs, where the genetic material is copied. In the third phase, G2, the
material is condensed and organised in preparation for division, where the second checkpoint
occurs. The final stage, M, is known as mitosis, where cells undergo a series of steps that ensure
the equal division of chromosomes between the two daughter cells. This is concluded with
cytokinesis, the process directly involved in the division of the parent cell into two daughter
cells, where the cycle can begin again.



56

Figure 3.1: Schematic of the cell cycle. Separated into 4 growth phases (G1, S, G2, and M) and
one quiescent phase, G0. The M phase, has various steps associated with mitosis followed by
cytokinesis, the ultimate splitting of the cell into two daughter cells.

3.1.2 Mathematical models of cell proliferation where cell cycle behaviour
is considered

To highlight the importance of simulating cell proliferation as a cyclic process, various mathe-
matical models have been devised. Although the majority of these place a particular emphasis
on gene expression, as detailed extensively in various review articles [289–292], other models
have recently emerged which allude to the importance of accounting for cell cycle behaviour
when modelling cell proliferation [284–286]. Through the aid of experimental data, these au-
thors noted an oscillatory proliferative response, a consequence of emerging sub–populations
within the general population of cells. As such, the authors questioned the consistency and
reproducibility of standard proliferation assays, and mathematical models calibrated from them.

The mathematical models focused on emulating cell proliferation reduced the cell cycle to
two phases. Phase 1 describes the G0/G1 stages, where the cell grows in size and phase 2,
capturing S, G2, and M, details the phases following DNA synthesis, where the genetic mate-
rial has since doubled from phase 1. Supporting this mathematical modelling approach is an
experimental technique called FUCCI. This enables the real time visualisation of cell cycle dy-
namics through a staining protocol of particular proteins present in each phase: CDT1 for phase
1 (green), and geminin for phase 2 (red) [293]. More sophisticated protocols exist that can vi-
sualise 3 or 4 phases separately, but efforts in [285] discuss the ambiguity of such approaches,
where, for example, an intermediate phase (eS), between G1 and S, can be visualised in yellow:
a combination of red and green.
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Summarising, these new cyclic proliferation models by Vitadello et al. [284–286] have
demonstrated the importance of accounting for cell cycle behaviour. The model presented
in [284] simulated the exponential growth of cells over a short time frame (48 hours). When
calibrated against experimental data, an oscillatory proliferation of cells was observed. This
was a result of an inherent synchronization present within a pre–manipulated culture of cells,
where even after cell cycle arrest was induced, a heterogeneous distribution of cells throughout
the cell cycle was noted. The authors then alluded to the possible significance of this finding,
where such a result may question the reproducibility of standard proliferation assays, particu-
larly if the distribution of cells throughout the cell cycle were to differ from one experiment to
the next.

The spatiotemporal behaviour of the cell population was also assessed in a scratch wound
assay by Vittadello et al. [285]. As such, exponential models were extended to account for cell
migration via a diffusive term, and the inhibition of proliferation as a consequence of spatial
restrictions through the logistic growth model. Simple, two–phase models were able to well–
capture the valley response present as cells migrated and proliferated over a wound following a
scratch assay. Particularly with scratch assays, the idea of proliferation and/or migration can be
ambiguous. Investigating further, Vittadello et al. [286] challenged the ‘go–or–grow’ hypothe-
sis, stating that the motility of cells, across varies cell lines, is independent of their phase within
the cell cycle. Moreover, cell cycle inhibiting drugs which induced G1 arrest were considered in
their experiments. Although the effect of drug itself was not explicitly modelled, left to future
work by the authors, experimental results demonstrated that these cells had only minor variation
in motility with respect to a cell population not treated by drug.

Vittadello et al. [284–286] demonstrated the possible importance of modelling cell prolif-
eration as a cyclic process. Although not considered within their efforts, it is clear that the
applicability of cell cycle specific drugs within this context may be significant. For example,
the effect of such drugs in the context of cancer has been studied experimentally using FUCCI,
where results have highlighted the importance of such experimental protocols when planning
chemotherapeutic treatment strategies [287, 288]. However, to the best of the author’s knowl-
edge, an extension to other application areas remains under–explored, particularly within the
context of SMCs and the progression of in–stent restenosis (ISR). For example, with drugs like
sirolimus eliciting their effect at a particular checkpoint in the cell cycle (Chapter 2: Section
2.2), then the distribution of cells throughout the cell cycle may have an impact on the perceived
efficacy of the drug; especially if the distribution of cells varied from one experiment to the next.
As such, mathematical models that emulate the specific action of drug may permit fine–tuning
of best–fitting parameters associated with drug efficacy, improving the predictive capacity of as-
sociated mathematical models. A brief review of mathematical models depicting the behaviour
of cell cycle specific anti–proliferative drugs on carcinogenic cells is discussed in Section 3.1.3.
How these models can then be extended and applied to better understand how drug modulates
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arterial healing is also discussed.

3.1.3 Mathematical models of drugs inhibiting cell cycle progression

Generally, the cell cycle (consisting of 5 phases) can be separated into two distinct phases [242,
284, 285], where the former is associated with pre–DNA synthesis, whilst the latter represents
post–DNA synthesis:

dP1

dt
= 2λ2P2−λ1P1, (3.1)

dP2

dt
= −λ2P2 +λ1P1, (3.2)

where Pχ describes the cell phase, and λχ is the transition rate between each phase, where
χ = 1,2. Note that the factor of 2 in first term on the right–hand side of Eqn. 3.1 accounts for
cell division. The model presented by Eqn. 3.1–3.2 captures cell behaviour in the absence of
drug.

Roe–Dale et al. [242] adopted a simple model framework to explore optimal treatment strate-
gies for breast cancer. Fig. 3.2 illustrates their control model (absence of drug) framework,
where the cell cycle is divided into two stages: P1 = G1 and S, whilst P2 = G2 and M. This
is quite different from the work presented in [284–286], where phase 1 does not include the S
stage of the cell cycle, with it instead being captured by phase 2. However, the modelling efforts
in [284–286] were supported by an experimental technique called FUCCI which was used to
calibrate the authors’ results. The approach suggested in [284–286] is adopted here, with a view
to using a technique like FUCCI to validate the model results in the future.

Figure 3.2: Schematic illustrating how the cell cycle is reduced from five phases to two in Roe–
Dale et al. [242].

Nonetheless, in an attempt to influence current treatment strategies, the authors extended
Eqn. 3.1–3.2 to be inclusive of drug. To do so, the authors re–wrote Eqn. 3.1–3.2 in matrix–
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vector form:

dPPP
dt

=

dP1
dt

dP2
dt

=

(
−λ1 2λ2

λ1 −λ2

)
PPP. (3.3)

Modelling the effect of two drugs, it was assumed that each would kill cells in P1 and P2

through different mechanisms. As such, treating the cells with the drugs in an alternating order
should result in different outcomes, as illustrated by the authors. Further complexity was intro-
duced into their model by accounting for drug resistance. Despite the differences to [284–286],
the authors agreed that if the initial distribution of cells differed from one experiment to the
next, the outcome may be affected as a result. They concluded that the implementation of such
models could provide insight into multi–treatment chemotherapeutic strategies. However, it is
clear that the modelling framework would differ when applied to the treatment of ISR, where
drugs acts to reduce proliferation over inducing apoptosis through cytotoxic effects.

Other mathematical models have extended the cell cycle to account for all stages of the cell
cycle when simulating tumour regression in the presence of drug [294]. As part of a highly
nonlinear model, the cytotoxic effects of paclitaxel and 5–fluorouracil were simulated using
Monod–type kinetics. The conclusions emphasised the significance of drug diffusion (i.e. re-
lease) and the quantification of proliferating cells in culture to enhance the models’ predictive
capacity. These findings emphasise the rationale for further exploration here, in the context of
SMCs, where the administration and effect of drug differ to chemotherapeutic agents, and where
controlled drug release is of the utmost importance to ensure optimal patient outcome [79].

Additional cell cycle models also exist in the tumour modelling literature. For example,
Del Bene et al. [246] published a highly coupled model which emulated the progression of
death as the drug induced its cytotoxic effect on the cell population. Simulating the behaviour
of many drugs, the authors present their model as a possible tool to further optimize in vitro

experimental design in the pursuit of optimal drug therapies. Various other articles [242, 247,
248] also consider ODE cell cycle models to illustrate how drug may impact the progression of
cells through the cell cycle, with a particular significance on drug resistance, out with the scope
of this work.

Finally, an alternative to the traditional cell cycle models has also been proposed, where dif-
ferent cell phenotypes are considered instead of the different stages the cell progresses through
when stimulated to divide. This is interesting given that drugs such as sirolimus have been shown
to possibly induce cell differentiation back to their dormant phenotype [254,255]. In the context
of cancer, such an approach was considered by Panetta et al. [245], where cells were deemed to
be either (i) proliferating or (ii) quiescent, in an attempt to better understand how breast cancer
progression was hindered following treatment with paclitaxel. Although such models emulating
phenotype switching are out with the scope of this work, the authors noted an important result.
They detailed the significance of drug retention on cell behaviour, where a simple on/off switch
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to describe the effect of drug was inadequate. In stenting applications, Tzafriri et al. [79] state
the importance of drug retention on inhibiting restenosis, without modelling its effect on the cell
population. Although such models failed to capture in vitro data in Chapter 2, such models may
be essential in vivo, where the environment is heterogeneous and less controllable.

Taken together, there has been a clear demand for simulating cell cycle behaviour when
assessing the effect of chemotherapeutic agents on tumour regression. Although similar drugs
are implemented in the treatment of ISR, the delivery and effect are different. Thus to fully
appreciate the efficacy of these cell cycle specific drugs, models that portray the cell cycle and
the precise action of such drugs in this context should be considered. Moreover, Vittadello
et al. [284–286] demonstrated the importance of the initial distribution of cells in the absence
of drug. As such, a comparison between mathematical models accounting for SMC cycle be-
haviour (multi–phase) and those neglecting it (single–phase) are considered, as per the first goal
of this chapter. It is then expected that any discrepancies between these models will be further
exacerbated when drug is introduced: the second goal of this chapter. Moreover, the models can
be further extended to study the importance of attributes more unique to DES. For example, the
delivery of drug from stents introduces spatiotemporal gradients of drug within the arterial wall.
As such, it is likely that this may further compound the aforementioned issues with the initial
distribution of cells throughout the cell cycle and is the final objective to be studied within this
chapter; albeit considered within a more simplistic environment.

3.2 Methodology: 0D Model

3.2.1 Governing model equations

3.2.1.1 Single–phase model

Control model: no drug

The single–phase model, which emulates cell proliferation when neglecting cell cycle dynamics,
is given as:

dc(t)
dt

= gc(t)
(

1− c(t)
K

)
, c(0) = c0, (3.4)

where c(t) is the number of cells at some initial level, c0, the intrinsic growth rate is given as
g, and K is the carrying capacity. This model is referred to as the control model, where drug is
absent.

Inclusion of drug
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Including the effect of drug, Eqn. 3.4 is altered to:

dc(t)
dt

= gc(t)
(

1− c(t)
K

)(
1−

kmax c∗d
c∗d +1

)
︸ ︷︷ ︸
Drug Interference

, c∗d =
cd

k50
, c(0) = c0, (3.5)

where the expression governing the effect of drug is denoted by the underbrace, ‘Drug Inter-
ference’. This follows Michaelis–Menten–like kinetics as discussed in Chapter 2. This expres-
sion is responsible for reducing the cell growth rate, where cd is the free drug concentration,
0 < kmax < 1 details the maximum effect drug has on cell growth, and k50 is drug concentration
at which the effect of drug is half its maximal value. Note that cd , the free drug concentration,
is scaled with k50 to give c∗d . This facilitates the application of the model to a variety of different
drugs and doses, simultaneously reducing the number of unknown parameters in the model. All
model parameters are described in Table 3.1. In all models, unless stated otherwise, the initial
number of cells (c0) is assumed to be 10,000 whilst the maximum cell number (K) is assumed
to be 100,000, in line with values presented in Chapter 2.

3.2.1.2 Multi–phase model

Control model: no drug

The model considered here takes inspiration from Vitadello et al. [284]. Differently from Vi-
tadello et al. [284], who considered an exponential cell growth model, a logistic cell growth
model similar to earlier efforts in [285] is considered here to introduce the significance of spa-
tial restrictions on cell proliferation [276]. Thus, the multi–phase model in the absence of drug
is:

dc1(t)
dt

= 2g2 c2(t)
(

1− c(t)
K

)
−g1 c1(t), (3.6)

dc2(t)
dt

= −g2 c2(t)
(

1− c(t)
K

)
+g1 c1(t), (3.7)

c(0) = c0
1 + c0

2 = c0,

where the cell population is divided in two, c1(t) and c2(t), referring to the number of cells
in phase 1 (G0/G1) and phase 2 (S/G2/M) of the cell cycle, respectively. The total number
of cells, c(t), is given by the addition of c1 and c2 at any time, initially taking the value c0.
Additionally, the intrinsic growth rate, g, present in the single–phase control model (Eqn. 3.4)
is now replaced by g1 and g2, corresponding to the transition rates between the phases of the
cell cycle. Eqn. 3.6 refers to the rate of change of cells in phase 1, where the first term on the
right–hand side presents the growth of cells entering from phase 2 as they divide (hence the 2),
and the second details the decline of cells in phase 1 as they progress through the cell cycle. All
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model parameters are described in Table. 3.1.

Parameter Description Unit

Cell Related Parameters

c0 Total initial number of cells no. of cells
c0

1 Initial number of cells in phase 1 no. of cells
c0

2 Initial number of cells in phase 2 no. of cells
g Intrinsic growth rate (single–phase) day−1

g1 Rate of change of cells from phase 1 to phase 2 day−1

g2 Rate of change of cells from phase 2 to phase 1 day−1

K Maximum cell number (Carrying capacity) no. of cells

Drug Related Parameters

cd Free drug concentration in the media, assumed constant M
kmax Maximum effect drug has on cell growth -
k50 Drug concentration at which the effect (kmax) is 50% of its maximal value M
c∗d Ratio of cd/k50 -

Table 3.1: Description of the variables and parameters used throughout the models: Eqn. 3.4–
3.11.

Drug 1, G1/S transition blocker (e.g. sirolimus)

In this section, drugs which predominantly elicit their effect prior to the first restriction check-
point (G1/S) are considered (e.g. sirolimus [80]). The following model is proposed to convey
the effect of drugs of this type on cell growth:

dc1(t)
dt

= 2g2 c2(t)
(

1− c(t)
K

)
−g1 c1(t)

(
1−

kmax c∗d
c∗d +1

)
︸ ︷︷ ︸
Drug Interference

, (3.8)

dc2(t)
dt

= −g2 c2(t)
(

1− c(t)
K

)
+g1 c1(t)

(
1−

kmax c∗d
c∗d +1

)
︸ ︷︷ ︸
Drug Interference

, (3.9)

c(0) = c0
1 + c0

2 = c0,

where drug acts explicitly to reduce the rate at which cells transition from phase 1 (c1(t)) to
phase 2 (c2(t)).

Drug 2, M Blocker (e.g. paclitaxel)

Now drug 2 is considered, which exerts its effect on cells in phase 2, where the purpose is to
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block cell division (M), inducing mitotic arrest. The model is given by:

dc1(t)
dt

= 2g2 c2(t)
(

1− c
K

)(
1−

kmax c∗d
c∗d +1

)
︸ ︷︷ ︸
Drug Interference

−g1 c1(t), (3.10)

dc2(t)
dt

= g1 c1(t)−g2 c2(t)
(

1− c
K

)(
1−

kmax c∗d
c∗d +1

)
︸ ︷︷ ︸
Drug Interference

, (3.11)

c(0) = c0
1 + c0

2 = c0.

3.2.2 Problem workflow and model syntax

The problem is approached with the aim of comparing the behaviours between models which
exclude the cell cycle dynamics (single–phase) and those which emulate the cell cycle dynamics
(multi–phase).

Figure 3.3: Flow chart detailing the problem approach, separated into two distinct paths which
looks at models in either the absence (path 1) or presence of drug (path 2).

Fig. 3.3 demonstrates the workflow, where analysis between single and multi–phase models
are placed in two distinct paths: (i) path 1: control and (ii) path 2: drug. The former investigates
the parameters associated with cell proliferation, investigating the significance of growth rates
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and spatial restrictions in the absence of drug. The latter, for a given growth regime, will explore
the role of different drug types, assessing their efficacy through perturbations in kmax and c∗d .
Looking more closely at path 2, Fig. 3.4 illustrates the parameter perturbation regime in the
presence of drug for the multi–phase model, detailing the various values considered for c∗d and
kmax.

Figure 3.4: Flow chart detailing the sensitivity analysis for path 2, in the presence of drug. A
particular growth regime is considered before selecting the drug: drug 1 (sirolimus, SIR) or
drug 2 (paclitaxel, PTX). A series of parameter combinations are selected that begin with kmax
from which a range of c∗d values are simulated. The kmax value is then updated and the process
repeated until all combinations considered. Upon the completion of all drug 1 simulations, drug
2 is selected after which the growth regime considered is updated. Single–phase models follow
a similar workflow, where for a given growth rate, g, the values associated with drug efficacy are
perturbed, given that the model does not distinguish between the phase the drug acts in.

The process is then repeated for each drug considered and then again for the various growth
regimes (lengths of the cell cycle phases). A similar workflow is adopted for the single–phase
model. The value for g is selected such that the turnover is comparable to the timespan of the
cell cycle in the multi–phase model. In other words, the timespan details the length of the cell
cycle, and the total time taken for both phases of the cell cycle to be completed. In the absence
of drug specific parameters, a general sensitivity analysis is considered for all model parameters
detailing drug–effectiveness.
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A fundamental aspect of the multi–phase model is the choice of initial conditions for each
phase. This is explored in depth within this work and thus Table 3.2 summaries the different
initial conditions considered, and the syntax used within all plots that feature in the results.

Label Description Number of cell per phase initially
SP Single–phase N/A

MP1 Multi–phase: IC 1 All cells in phase 1 (c0
1 = c0)

MP2 Multi–phase: IC 2 75:25 split between phase 1 and phase 2
MP3 Multi–phase: IC 3 50:50 split between phase 1 and phase 2 (c0

1 = c0
2 =

c0

2 )
MP4 Multi–phase: IC 4 25:75 split between phase 1 and phase 2
MP5 Multi–phase: IC 5 All cells in phase 2 initially (c0

2 = c0)

Table 3.2: Syntax for the different initial condition (IC) cases considered. Used ubiquitously in
all plots within this chapter.

The numerical method employed is the same as that in Chapter 2, where the ‘ode15s’ rou-
tine in MATLAB (MATLAB 2020a, The MathWorks, Inc., Natwick, MA, USA) was used to
numerically integrate the differential equations over a pre–defined timespan.

3.3 Results & Discussion: OD Model

3.3.1 Path 1 (Control: no drug)

3.3.1.1 Stage 1: single–phase

Considering the single–phase model first, perturbations in its model parameters illustrate be-
haviour that is expected. As the growth rate is increased, the cells approach the carrying ca-
pacity more quickly (Fig. 3.5a). Whereas, increasing K for a fixed growth rate only alters the
maximum cell number, not the time taken to reach this maximum (Fig. 3.5b). Results of simu-
lating Eqn. 3.4 demonstrate the characteristic profiles expected from the logistic growth model.
This parameter analysis presents a simplistic representation of curtailed growth through a re-
duction in g (Fig. 3.5a), artificially mimicking the action of an anti–proliferative drug. Whereas
perturbations in K symbolise the response of cells in different experimental set–ups.

3.3.1.2 Stage 2: multi–phase

Exploring the multi–phase model in depth, the initial conditions (Table 3.2) and cell cycle
growth rates are varied. Table 3.3 summaries the different cases considered with respect to
the cells growth rate: (S21

g) assumes both phases are equal in duration, (S22
g) assumes that phase

1 is shorter than phase 2, whilst (S21
g) considers the opposite to (ii).
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(a) Varying g (b) Varying K

Figure 3.5: How perturbations in (a) g and (b) K influences cell proliferation in the single–phase
model (Eqn. 3.4) in the absence of drug. In (a) K is fixed to 100,000. In (b) g is fixed to 0.6.

Label Case (Rate [ /day]) Description

S21
g Case 1: g1(0.75) = g2(0.75) The rates of transition for both phases are equal

S22
g Case 2: g1(0.9)> g2(0.6) Phase 1 is shorter than phase 2

S23
g Case 3: g1(0.6)< g2(0.9) Phase 1 is longer than phase 2

Table 3.3: Labels and description of each growth rate case considered. Uppercase S2 depicts
the stage (2) the analysis is in per the workflow (Fig. 3.3), the superscript separates the different
cases (1, 2, or 3) whilst the subscript (g) denotes that the analysis is with respect to the growth
of cells i.e. cell cycle duration. The values have been arbitrarily selected such that cell growth
concludes within 15 days for all cases.

Fig. 3.6a–3.6c illustrates how the cell response varies in time for the different initial condi-
tions simulated. In the absence of drug, the difference between any profile is minimal across the
three different cell cycle durations considered. For any given case tested (S21−3

g ), the time taken
to reach K/2 differs by approximately 1 day between the two extreme initial conditions (MP1

and MP5). The gap between MP1 and MP5 increases in S23
g, where cells can grow more freely

with the inhibition by space (phase 2) reduced in time. In general, the trends presented across
all scenarios are as expected such that more cells present in phase 2 initially permits a quicker
growth to the maximum number, K.

Looking specifically at the variability present between duration of each of the cell cycle
phases, Fig. 3.6d shows cell proliferation in time for a given initial condition (MP3, where cells
are equally divided between the two phases). Here, S22

g gives rise to the slowest growth profile.
This is expected since cells spend longer in phase 2, where spatial restrictions are influencing
cell proliferation for a increased period of time; approaching the conditions of the single–phase
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(a) S21
g (b) S22

g

(c) S23
g (d) MP3: S21→3

g

Figure 3.6: How the initial conditions (MP1−5) and the cell cycle durations influence the pro-
liferative capacity of cells. (a) S21

g, (b) S22
g, (c) S23

g. Plot (d) Compares the three different cell
cycle duration cases within one initial condition (MP3). Inset highlights the three responses
across a three day (5-8) period.

model, where spatial restrictions are always present.

3.3.1.3 Stage 3: Single versus multi–phase

To explore the similarities and differences present between the singe and multi–phase models,
a level of consistency is required. For example, in the single–phase model, an intrinsic growth
rate (g) is prescribed whilst in the multi–phase model, two transition rates (g1,g2) are proposed
to detail the growth of cells in each phase of the cell cycle. Thus, to ensure the two approaches
are comparable, the time to divide between the models is set to be consistent, where a variety
of different cases are considered (Table 3.4). Two of the four cases (S31

g and S34
g) propose that

the two phases of the cell cycle are equal in length, but that the total length of the cell cycle
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is different. The other two cases explore the impact of different cell cycle patterns, where the
transition rates favour either a longer phase one (S32

g) or phase two (S33
g). Estimates for the

baseline duration (S31
g) are acquired from [67], where the duration of each phase is the same,

corresponding to an approximate cell turnover of 32 hours. Other cases explore perturbations
in these values, assessing the impact when simulated alongside the single–phase model. The
intrinsic growth rate (g) in the single–phase model was estimated assuming that cells would
naturally grow under exponential circumstances (g = ln(2)

Timespan ). The transition rates were then
trivially computed assuming that g = g1 +g2, according to the splits detailed in Table 3.4.

Label Case [Cell duration] Description

S31
g Case 1: 50:50 split [32 hours] Phase 1 and 2 are of equal length (Long time)

S32
g Case 2: 70:30 split [32 hours] Phase 1 is longer than 2

S33
g Case 3: 30:70 split [32 hours] Phase 1 is shorter than 2

S34
g Case 4: 50:50 split [26 hours] Phase 1 and 2 are of equal length (Short time)

Table 3.4: Labels and description of each growth case considered. Uppercase (S3) refers to
stage 3 of the workflow (Fig. 3.3), the superscript (1,2,3, or 4) separates the different cases
whilst the subscript (g) states that the analysis is with respect to the growth of cells i.e. cell
cycle duration.

In the absence of drug, across the majority of cases considered, the single and multi–phase
models are in broad agreement. In scenarios where the cell cycle length is the same between the
two phases (Fig. 3.7a and 3.7d), the single–phase model is comparable to MP5 at early times,
and to MP1 at later times, where the overall time to reach capacity is slower. This is because the
single–phase model is under constant spatial restrictions. However, at early times, exponential
growth is dominant since space is currently not limited, but in time, cells populate the domain
and the rate of change decreases beyond the inflection point (K/2), hence the slower approach
to capacity in the single–phase model.

When the length of each phase differs, the behaviour between the two modelling approaches
changes. For a longer phase 2 (Fig. 3.7c), a very similar response is observed between the single
and mulit–phase models. When phase 2 is longer, cells are exposed to spatial restrictions for
prolonged periods of time, similar to the single–phase model, alluded to in Section 3.3.1.2. On
the other hand, when the duration of phase 1 is longer (Fig. 3.7b), growth is notably quicker in
the multi–phase modelling approach.

3.3.2 Path 2 (Drug)

3.3.2.1 Stage 4: Single–phase

Within this section, a sensitivity analysis is considered, investigating the role of cell growth in
parallel with drug efficacy across a range of parameter regimes. Table 3.5 details the baseline
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(a) S31
g (b) S32

g

(c) S33
g (d) S34

g

Figure 3.7: How the single (SP) and multi–phase (MP) models compare across a range of dif-
ferent cell duration cases (Table 3.4). (a)–(d): Presentation of the various cases in order from,
S31→4, respectively. All insets highlight the differences present between the initial conditions
(MP1→5) within the multi–phase models, and how they compare to the results of the single–
phase model around the inflection point of each curve (K/2)

values for each parameter present in the model, to which perturbations in each are assessed in
turn whilst the others are fixed.

Parameter Baseline value [Unit] Range of variation

g 0.6 [day−1] [0.4→ 0.8]
c∗d 5 [0.5→ 50]

kmax 0.75 [0.5→ 1]

Table 3.5: The baseline and range of values considered for each parameter within the single–
phase drug model (Eqn. 3.5).
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Observing the results, Fig. 3.8a demonstrates how an increased growth rate promotes a
more prompt recovery in cell proliferation, under the assumption that both the growth serum
and drug are applied constantly. The result of perturbations to kmax is depicted in Fig. 3.8b,
where an increase in its value notably curtails cell growth. However, as this value approaches
zero, a behaviour similar to cell growth in the absence of drug is observed, where the Eqn. 3.5
would naturally return the logistic growth model (Eqn. 3.4). Fig. 3.8c highlights the impact of
perturbations in c∗d on cell growth; previously defined as the ratio of cd/k50. Thus, as this ratio
increases, referring to either a higher drug dose or lower k50 value, cells exhibit a reduction in
their proliferative capacity. Although free drug is considered, and binding kinetics are neglected,
it is noted that the results of the model theoretically approach an upper limit. In other words,
when cd >> k50, then negligible differences in cell behaviour are apparent.

(a) Varying g (b) Varying kmax

(c) Varying c∗d

Figure 3.8: How perturbations to a variety of parameters (Table. 3.5) influence cell proliferation
following continuous drug exposure. Variations in the following paramaters are considered: (a)
g, (b) c∗d , and (c) kmax.
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Exploring this concept in more depth, a generalised response is presented in Fig. 3.9a,
which illustrates how the effect of drug varies as c∗d is increased. Clearly, as the ratio c∗d is
increased, the drug becomes more efficacious. However, beyond some value, the effect of drug
on cell growth plateaus, highlighted at high values of c∗d which corresponds to when cd >> k50.
Looking more closely at the response in Fig. 3.9a, the change in the value on the vertical axis
(effect of drug) is approximately 8% from c∗d = 10 to 50 (effect of drug from 0.9091 to 0.9755).
Thus, with approximately 90% of the response captured between 0 < c∗d ≤ 10 (Fig. 3.9b), it can
be assumed that c∗d ≥ 10 refers to cd >> k50. Moreover, when kmax is reduced, a linear shift in
the effect of drug is noted (Fig. 3.9c).

(a) (b)

(c)

Figure 3.9: (a) Generic response of kmaxc∗d
c∗d+1 to establish how perturbations in c∗d may influence

cell proliferation following exposure to drug. c∗d is the ratio of cd/k50. Inset: Highlights the
behaviour at lower values of c∗d . (b) % of vertical axis covered by the range of c∗d simulated,
denoted by the rectangular boxes. (c) How reducing kmax influences the effect of drug.

Examining the model further, contour maps are generated which illustrate the number of
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cells after 15 days for 121 different parameter combinations (Fig. 3.10), where the horizontal
(kmax) and vertical (c∗d) axes are consistent throughout.

(a) g = 0.4 day−1 (b) g = 0.8 day−1

(c) g = 0.4day−1 (d) g = 0.8 day−1

Figure 3.10: Contour maps detailing how various parameter combinations of kmax and c∗d in-
fluence number of cells after 15 days for (a,c) g = 0.4 day−1 and (b,c) g = 0.8 day−1. Top row
(a,b) looks at the full range (0 < c∗d ≤ 50) of c∗d , whilst the bottom row (c,d) look at shorter range
(0 < c∗d ≤ 10).

Fig. 3.10 clearly demonstrates the significance of all model parameters across a large range
of values. Firstly, comparing Fig. 3.10a (g = 0.4) and 3.10b (g = 0.8) directly, which considers
the full range of c∗d , it is clear that cells are allowed to grow more quickly as a result of g being
higher, particularly when drug is less efficacious (low kmax and c∗d). In both plots, the choice
of kmax becomes important when c∗d is large, emphasised in Fig. 3.10b, where cell response is
similar across all kmax values when c∗d is low. This is further emphasised in Fig. 3.10c and Fig.
3.10d, where the range of c∗d considered is smaller. Moreover, it clear from Fig. 3.10b and 3.10d
that in cases where cell growth is quick, the dose of drug is insignificant when kmax is low, for
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the 15–day period considered.
Within this simpler, single–phase model, a wide exploration into the parameter values

present has been considered. It is clear that perturbations in not only cell growth (g), but also
drug dependent parameters (kmax, cd and k50) can result in a variety of different behaviours.
As such, by visualising the model results through contour plots, one can identify the parameter
space that achieves the primary goal of the drug: to minimise cell proliferation. This is partic-
ularly evident in Fig. 3.10d, where a large range of parameters do not achieve this goal, and
cells approach their capacity (yellow area). However, the upper right corner illustrates the small
range of parameters that do notably inhibit cell proliferation (blue area). Therefore, manufac-
turers designing novel drugs to combat cell proliferation could use such tools as a measure of
identifying which drugs achieve their intended goal. This application can be extended to the
multi–phase model, where the explicit action of cell cycle specific drugs can be simulated, and
the action of drug is more precise.

3.3.2.2 Stage 5: Multi–phase

Drug 1, G1/S transition blocker (e.g. sirolimus)

Fig. 3.11 demonstrates the effect of drug 1 (Eqn. 3.8 & 3.9) on cell proliferation. The left–hand
column illustrates simulation results assuming an initial condition of MP1 (all cells initially in
phase 1) whilst the figures on the right–hand side present the opposing extreme, MP5 (all cells
initially in phase 2). The first row (a, b) corresponds to the model results for the full range of c∗d ,
whilst the bottom row (c, d) reduces the range (0 < c∗d < 10).

Firstly, comparing tiles adjacent to one another (left versus right or MP1 versus MP5), it is
apparent that for any c∗d , the response differs when the opposing initial conditions are simulated.
When drug elicits a more potent response, (high c∗d and high kmax) the difference between the
initial condition cases (MP1 and MP5) increases, where fewer cells are present in the former,
emphasised by the larger deep blue colours at the top right corner of each contour map. As to
why, with drug 1 eliciting its effect at the transition point between phase 1 and 2, those cells
already in phase 2 at the time of drug exposure are likely to complete their cycle and divide,
before succumbing to the effects of drug. Lowering the range of c∗d (Fig. 3.11c & 3.11d) it is
clear that when c∗d is high, the value of kmax is more significant.

Looking at parameter pairs explicitly (Table 3.6), as highlighted by the different coloured
markers in Fig. 3.11a–3.11b, results show that the difference in cell proliferation is most signifi-
cant when the drug is most efficacious, as expected. As the drug decreases in effectiveness (Point
4: [0.6, 1]), cell behaviour tends towards its control response, where drug is absent (c∗d = 0), and
the percentage difference between initial conditions is notably decreased. Fig. 3.12 presents
the quantitative results from Table 3.6, whilst simultaneously showing the time taken for the cell
population to reach the inflection point (K/2); an alternative measure to highlight the differences
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(a) MP1 (b) MP5

(c) MP1 (d) MP5

Figure 3.11: Contour maps for 121 parameter combinations of kmax and c∗d when the action of
drug 1 is considered. The first row (a,b) portrays the full range of c∗d whilst the bottom row (c,d)
considers a shorter range. The left column (a,c) are the response for MP1 (all cells initially in
phase 1) and the right column (b,d) presents the response for MP5 (all cells initially in phase 2).
Markers (P1: Red star, P2: Yellow square, P3: Blue triangle, and P4: Black cross) in (a) and (b)
denote parameter pairs (P) considered for subsequent analysis, as noted in Table 3.6.

between MP1 and MP5 across the various parameter combinations.
The results further emphasise the significance of the initial number of cells per phase within

an in vitro setting, where drugs of type 1 inhibit cell proliferation. For example, when drug is
very potent (Point 1: [0.9, 25]), the difference in the time taken to reach the inflection point is
approximately 5.2 days between the two initial conditions. However, this notably decreases as
the drug becomes less efficacious (Fig. 3.12).

A final interesting aspect to study is the effect of drug when the length of the cell cycle varies
(Fig. 3.13), and in particular the time spent within each phase of the cell cycle. Although an
approximate length for the cycle of SMCs is documented, deviations are known to exist [67].
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Drug 1: Difference in number of cells (c) after 7.5 days

Co–ordinate [kmax, c∗d] c: MP1 c: MP5 % Difference:
(

1− c: MP1

c: MP5

)
×100

Point 1 (P1): [0.9, 25] 2.06×104 3.547×104 41.9
Point 2 (P2): [0.8, 10] 3.382×104 5.143×104 34.2
Point 3 (P3): [0.7, 5] 4.807×104 6.55×104 26.6
Point 4 (P4) : [0.6, 1] 7.084×104 8.3×104 14.7

Drug 2: Difference in number of cells (c) after 7.5 days

Co–ordinate [kmax, c∗d] c: MP1 c: MP5 % Difference:
(

1− c: MP1

c: MP5

)
×100

Point 1 (P1): [0.9, 25] 1.946×104 2.119×104 8.2
Point 2 (P2): [0.8, 10] 3.105×104 3.523×104 11.9
Point 3 (P3): [0.7, 5] 4.392×104 5.055×104 13.1
Point 4 (P4): [0.6, 1] 6.723×104 7.593×104 11.5

Table 3.6: Number of cells for two cases MP1 (all cells initially in phase 1) and MP5 (all cells
initially in phase 2) at a series of different co-ordinates, highlighted in Fig. 3.11. Thus, c : MP
refers to the number of cells at 7.5 days for that initial condition: MP1 or MP5. Cell duration
is S31

g, where phases are equal in length with both drugs 1 and 2 inhibiting cell growth. The
location of all parameter pairs (P) are highlighted in Fig. 3.11a–3.11b: P1: Red star, P2: Yellow
square, P3: Blue triangle, and P4: Black cross.

Figure 3.12: The significance of cell initial condition (MP1 and MP5) across different parameter
pairs listed in Table 3.6. Left–hand axes: Difference in time taken for each initial condition to
reach K/2. Right–hand axes: % Difference in number of cells between the initial condition cases
after 7.5 days. Symbol colours refer to the matching coloured y–axes: black squares correspond
to left–hand axes, whilst red triangle to the right–hand axes.

Adopting the different phase lengths detailed in Table 3.4 (S31
g–S33

g), the difference in model
response is observed assuming drug efficacy is defined by Point 1 [0.9, 25] (Table 3.6). As
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expected, cells which exist in phase 1 for the majority of their cell cycle are more notably
inhibited by drugs of type 1. On the other hand, when phase 2 occupies the majority of a
cells life, drug performance is at its poorest. Moreover, looking at the time taken to reach the
inflection point (K/2), the difference between MP1 and MP5 is smallest (at approximately 3.3
days) when phase 2 is longest. When phase lengths are equivalent, the time taken to reach K/2
is approximately 5.2 days, increasing even more to 7.2 days, when phase 1 is longer than phase
2. As is shown from Fig. 3.12, the discrepancy between the two initial conditions will diminish
as the drug becomes less effective (i.e. lower c∗d and/or lower kmax) across the different growth
cases tested.

Figure 3.13: How the number of cells change in time when phase lengths differ for a single
parameter co–ordinate pair, Point 1 (Table 3.6) assuming the action of drug 1. Solid lines refer
to MP1 (all cells initially in phase 1), and dashed lines to MP5 (all cells initially in phase 2). The
black dashed horizontal line corresponds to K/2.

In summary, it is apparent that the distribution of cells across each phase initially is critical
in determining the efficacy of drugs of type 1 that block cell cycle progression at the G1/S
checkpoint. Additionally, the intrinsic cell cycle length has been shown to be important when
exploring drug efficacy, particularly when drugs elicit their action with cell cycle specificity in
mind.

Drug 2, M Blocker (e.g. paclitaxel)

With drug 2 (e.g paclitaxel) eliciting its action at a different location within the cell cycle, an
investigation into the various parameter regimes are considered once again; with results pre-
sented in Fig. 3.14. The results demonstrate that perturbations in parameter values present less
significant changes across the two initial condition cases (MP1 and MP5) compared with drug 1.
The smaller difference between the two initial conditions is a consequence of cells in the second
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phase experiencing both a reduction in growth due to spatial restrictions and as a result of drug.
Additionally, when cells all exist in phase 2 initially, drug blocks proliferation before cells can
divide, which is not the case when drug 1 is considered, where cells complete their cycle, divide
and are then inhibited by drug as new daughter cells.

(a) MP1 (b) MP5

(c) MP1 (d) MP5

Figure 3.14: Contour maps for 121 parameter combinations of kmax and c∗d when the action of
drug 2 is considered. The first row (a,b) portray the full range of c∗d whilst the bottom row (c,d)
considers a shorter range. The left column (a,c) are the responses for MP1 (all cells initially in
phase 1) and the right column (b,d) presents the responses for MP5 (all cells initially in phase
2).

Exploring cell inhibition in more depth for drug 2, the parameter pairs in Table 3.6 are
considered once again. Clearly, across all four drug parameter combinations, the number of
cells in each phase is lower when drug 2 is considered over drug 1. This is emphasised in
Fig. 3.14 where larger deep blue regions (1–2.5)×104 are present for both initial conditions
simulated. Moreover, the more potent the drug (higher c∗d or kmax) the smaller the difference
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between the two phases for drug 2, contrary to what is observed with drug 1. The reason for
this is because cells already present in phase 2 can divide prior to succumbing to the effect of
drug 1, whereas regardless of the initial distribution of cells within each phase, drug 2 will elicit
its inhibitory effect prior to any cell division. Although the % difference in the number of cells
increases as drug 2 becomes less potent (Table 3.6) there are exceptions to the rule (Point 4:
[0.6, 1]). This is simply because cells have grown significantly over the 15 days, and inhibition
of growth reoccurs through logistic growth.

Moreover, when exploring the significance of the intrinsic cell cycle length, it is apparent
that when phase 1 is longest, cells proliferate more quickly, whilst cell proliferation is signifi-
cantly inhibited when phase 2 is longer than phase 1 (Fig. 3.15); opposing the trends present
when cells are exposed to drug 1. This is expected, since drug 2 now elicits its effect in phase 2,
so a prolonged duration would allow more time for the drug to act. The results generally show
that the inhibition of cell growth is more substantial when drug 2 is considered over drug 1, for
the same set of efficacy parameters.

Figure 3.15: How the number of cells changes in time when phase lengths differ for a single
parameter case, Point 1 (Table 3.6) assuming the action of drug 2. Solid lines refer to MP1 (all
cells initially in phase 1), and dashed lines to MP5 (all cells initially in phase 1). The black
dashed horizontal line corresponds to K/2.

Drug 1 vs. Drug 2

Results have highlighted that clear differences are present between the effectiveness of drug 1
and 2, with the latter more profoundly halting cell growth for a fixed set of efficacy parame-
ters. This was emphasised through quantitative analysis of the contour maps (Table 3.6), where
the number of cells was lower following exposure to drug 2 across all parameter co–ordinates.
Another significant difference between the two drugs is the discrepancy between the two initial
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conditions, MP1 and MP5, across all parameter pairs, which is a consequence of drug 2 inhibit-
ing all cells, regardless of their initial phase prior to division. Whereas, drug 1 will allow cells
initially residing in phase 2 (MP5) to divide before impeding further cell growth. As a conse-
quence, the difference between the two initial conditions (MP1 and MP5) increases for drug 1
as it becomes more potent, with the opposite trends present for drug 2. This is emphasised in
Fig. 3.16, where the % difference in the number of cells at 7.5 days (Fig. 3.16a) between the
two initial conditions and the time taken to reach K/2 (Fig. 3.16b) is examined, assuming the
duration of the cell cycle is equally split between the two phases (32 hours total: 16 hours per
phase).

(a) (b)

Figure 3.16: The difference between MP1 and MP5 across both drug types, investigating the
difference in: (a) % difference in the number of cells at 7.5 days (contour maps), and (b) time
taken, in days, for each case to reach the inflection point (K/2) , and Inset: Highlights a slight
declining trend for drug 2.

Fig 3.16a displays the results of Table 3.6 graphically, clearly depicting the difference be-
tween MP1 and MP5 for drug 1 and 2. This is further emphasised in Fig. 3.16b, where the
difference in time taken for both initial condition cases to reach the inflection point is signifi-
cantly longer for drug 1, particularly when drug is more efficacious. However, for drugs of type
2, there is a minimal difference between each case, with a slight declining trend present (high-
lighted by the inset). Moreover, for both types of drug, as they become less efficacious (P4),
then spatial restrictions also impede cell growth after the inflection point is passed. This will act
in parallel with drug, where both will delay cell growth. Hence, this results in the % difference
in the number of cells across the two initial conditions being smaller at Point 4 for drug 2 than
that at point 3 (Fig. 3.16a), breaking the established trend.

Investigating the intrinsic duration of each phase within the cell cycle, it is noted that the
inhibition of cell growth is more profound following exposure to drug 1 when phase 1 is longer.
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Figure 3.17: The time taken for MP1 to reach the inflection point for each growth case considered
(Table 3.4), where τx defines a given phase, where x = 1 or 2, for phase 1 and 2, respectively.
Drug efficacy case Point 1 ([0.9, 25]) is considered (Table 3.6).

Whereas a longer phase 2 inhibits cell growth more notably when drug 2 is considered. This is
emphasised in Fig. 3.17 which summarises the effect of phase length across the two different
drug types assuming Point 1 (Table 3.6), by plotting the time taken for MP1 (all cells initially
reside in phase 1) to pass the inflection point.

3.3.2.3 Stage 6: Single–phase versus multi–phase model

In the absence of drug, generally the single–phase model presents a slower approach to capacity
(K) across all growth regimes tested (Fig. 3.7). Now, following the inclusion of drug, the differ-
ence in response between the models, differing by drug type and initial condition is compared
(Fig. 3.18).

The results illustrate that for all parameter co–ordinate pairs (Table 3.6), the inhibition of cell
proliferation is most profound in the single–phase (SP) model. Moreover, results again clearly
demonstrate that exposure to drug 2, for the same efficacy parameters, is more inhibitory than
that of drug 1. In both initial condition cases MP1 (Fig. 3.18a) and MP5 (Fig. 3.18b), as the
drug becomes less efficacious (Point 4: P4) then all models converge to a similar result, where
the time taken to reach the inflection point is negligible.

Thus, these modelling efforts demonstrate a clear difference between multi and single–phase
models in the presence of drug, particularly when drug efficacy is high. Moreover, the difference
in drug performance is also present between the two different drug types, which act to either
block cell progression (drug 1) or cell division (drug 2). This is further mediated by the initial
distribution of cells throughout the cell cycle. These results provide justification to employ
experimental techniques (e.g. FUCCI) that can calibrate and validate these models. This would
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(a) (b)

Figure 3.18: The time taken to reach K/2 for MP (multi–phase) drug 1 and 2 and SP (single–
phase) models. (a) MP simulations adopt MP1 (all cells initially in phase 1) as the initial condi-
tion. (b) MP simulations adopt MP5 (all cells initially in phase 2) as the initial condition.

be to able to assess whether models accounting for cell cycle dynamics may be more predictive
than those which do not, detailed in Chapter 2.

Although the results here highlight the significance of anti–proliferative drug on inhibiting
cell proliferation when accounting for cell cycle dynamics, the drug is uniformly exposed to
cells. However, in vivo, ISR is treated through the delivery of drug. In order to bridge this gap,
it would be of interest to explore spatiotemporal models, making comparisons with 0D models.
This is explored in more depth in Section 3.4.

3.4 Methodology: 1D Model

3.4.1 Motivation: Why the extension?

Firstly, prior to highlighting the methodology, it is necessary to further emphasise the motivation
for this increase in model dimensionality. Simply, its purpose is to examine the role of cell cycle
specific drugs on cell proliferation, where spatial gradients of drug are now introduced by means
of drug delivery. Following stent deployment, it is known that a heterogeneous proliferation and
migration of cells exist. The release of drug from the stent introduces a spatiotemporal gradient
that further heightens this heterogeneity, and it is highly likely that cells within the arterial
wall will exist at different stages of the cell cycle from their neighbours. In other words, the
heterogeneous nature of the cell population, coupled with the spatiotemporal delivery of drug
then implies that the effectiveness of the drug on a given cell will be different, depending on cell
location within the arterial wall.
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However, prior to exploring this phenomenon within a sophisticated in vivo model, it is
sensible to first explore this behaviour within an in vitro model which can be fully controlled
experimentally. As such, the model proposed emulates a simplistic 3D experimental set–up
inclusive of one cell type (SMCs) that has been reduced to 1D for mathematical simplicity (Fig.
3.19); justified in subsequent sections.

3.4.2 Computational model

To explore the role of spatiotemporal drug gradients on cell proliferation within a multi–phase
model, a simplistic 1D geometry is proposed, mimicking a prospective in vitro experimental set
up (Fig. 3.19). A polymeric insert of some thickness (e.g. 20 µm) will be appended to the culture
plate where cells reside. Drug will then be released from the coating, with the impact on cell
proliferation assessed. Fig. 3.19 presents a 2D top–down view of the proposed 3D device, which
dimensionally emulates a single well from a 24–well plate, with the geometry and dimensions
amended accordingly to permit the addition of a polymeric insert. It is assumed that the depth
of the fluid is equivalent to height of the polymer insert. Therefore, the symmetry in the set–up
allows for cell behaviour to be explored in 1D, simplifying the problem. The proposed set–up is
inspired by [52], where the aim there was to assess impedance of different cell lines.

The role of drug on inhibiting cell proliferation is modelled in the same way as in Section
3.2.1, however, the drug concentration (cd) is now a variable in space and time (cd (x, t)). As per
the set–up (Fig. 3.19), drug initially resides on a polymer coated insert. Assuming the release
of drug from this coating is a diffusion driven process, then:

∂cp(x, t)
∂ t

= Dp∇
2cp(x, t), cp(x,0) = c0

p, 0 < x < xp, t > 0, (3.12)

where cp(x, t) is the concentration of drug on the polymer coating, initially taking the constant
value c0

p. Upon leaving the coating, drug enters the domain where cells reside. To facilitate this
a continuity of flux and concentration is assumed at the boundary, ΓI , between the coating (Ωp)
and the cells (Ωc). Neglecting the process of binding, it is assumed that drug transport within
the culture is a diffusion dominated process:

∂cd(x, t)
∂ t

= Dcd ∇
2cd(x, t), cd(x,0) = 0, xp < x < xc + xp, t > 0, (3.13)

where Dcd describes the diffusion of free drug, cd(x, t). Initially, the concentration of drug
present in the cell domain is zero.

The migration of cells is ignored with the emphasis placed on proliferation in culture, as was
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true for the 0D model. As such, the equation describing the effectiveness of drug is:

dc(x, t)
dt

= gc(x, t)
(

1− c(x, t)
K

)(
1− kmax cd(x, t)

cd(x, t)+ k50

)
, c(0) = c0, xp < x < xp+xc, t > 0,

(3.14)
with cd(x, t) now a variable, as opposed to a constant.

Figure 3.19: Illustration of the 1D model geometry considered in COMSOL Multiphysics 5.6a
(COMSOL AB, Burlington, MA, USA), which is derived from the 2D schematic presented. The
cells exist only within the square (beige) inset (Ωc), which is mounted within a larger chamber.
There exists two domains and three boundaries within the 1D model, denoted by Ω and Γ,
respectively. Ωp denotes the polymer coating while Ωc refers to the culture plate, the domain
where cells reside within. The boundaries, ΓL, ΓR, and ΓI refer to the left, right, and interface,
receptively and are highlighted by the inset in the 2D schematic. The lengths of each domain
are xp and xc, respectively. Table 3.7 provides numerical values for each aspect of the geometry.

When modelling drug release, a zero–flux condition is imposed at the left boundary (ΓL)
of the coating, assuming that all the drug is released into the culture plate. Although in vivo

it is likely that some drug is lost to flow, within this environment, it is expected that release
can sufficiently be controlled and all drug enters the domain of interest. Moreover, drug is
not permitted to leave the culture plate via a zero–flux condition on the right–hand side (ΓR).
Between the two domains (ΓI), continuity of flux and concentration is assumed. As for the
cell population, a zero–flux is imposed on both sides of the cell domain (ΓI , ΓR), assuming cell
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growth is not permitted on the insert. The 1D problem is schematically depicted in Fig. 3.19,
where all boundaries (Γ) and domains (Ω) are labelled.

3.4.3 Consistency between 0D and 1D models

In order to make comparisons between the 0D and 1D model, a degree of consistency between
the model frameworks should be established. As such, several assumptions are necessary which
are elaborated on within this section.

Firstly, similar to the 0D case, in an attempt to reduce the number of unknown parameters,
the drug concentrations are scaled with k50 such that:

c∗p =
cp

k50
, c∗d =

cd

k50
. (3.15)

Applying these scalings to Eqn. 3.12 and Eqn. 3.13, then:

∂c∗p
∂ t

= Dcp∇
2c∗p, c∗p(0) = c0∗

p , 0 < x < xp, t > 0, (3.16)

∂c∗d
∂ t

= Dcd ∇
2c∗d, c∗d(0) = 0 xp < x < xc + xp, t > 0. (3.17)

The scalings are then applied to the boundary conditions imposed for each variable. For free
drug in the polymer, these become:

∂c∗p
∂x

= 0, at x = 0, (3.18)

c∗p = c∗d at x = xp, (3.19)
∂c∗p
∂x

=
∂c∗d
∂x

, at x = xp, (3.20)

whereas for the free drug in culture plate where cells reside, these become:

∂c∗d
∂x

∣∣∣∣
x=xp+xc

= 0 (3.21)

Applying the scaling to Eqn. 3.14 which describes the cell population, then:

∂c(x, t)
∂ t

= gc(x, t)
(

1− c(x, t)
K

)(
1−

kmax c∗d(x, t)
c∗d(x, t)+1

)
, c(0) = c0, xp < x < xc + xp, t > 0,

(3.22)
matching that of the 0D model. Note, the above derivation is with respect to the single–phase
model. The same principle applies for the multi–phase model (Eqn. 3.8–3.11), where the same
scaling is adopted.
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One then has to ensure consistency between the non–dimensional drug concentration that
the cells are exposed to (c∗d) between the 0D and 1D model. In the former, regardless of the
working volume, the cells see the same c∗d value as a consequence of the 0D implementation.
Thus, in an attempt to establish consistency between 0D and 1D, the concentration of drug
loaded onto the polymer coating should be sufficiently high such that upon complete release, the
non–dimensional concentration (c∗d) exposed to the cells is the same as present in the 0D model.
To do so, a variety of assumptions are necessary. The first is to assume that the polymer insert
is no higher than the cell layer (ch), which is computed as:

ch =
Vc×Cell No.

SA
, (3.23)

where Vc is the volume of a SMC [55], SA is the surface area (1.96 cm2 [282]) hosting a total
number of cells (Cell No.) of 100,000 at confluence. This results in a height close to 3.5 µm
which falls close to the range of values (2.78 µm ± 0.59 µm) reported in literature [295]. The
volume of the coating (Vp) can then be computed as Vp = xc xp ch ≈ 9.8×10−3 mm3. Then, the
volume of the cell layer in culture is given by Vcl =Vc× Cell No. = 0.686 mm3.

It is assumed that the total mass of drug presented to the cells in culture between the 0D
(M0D) and the 1D (M1D) implementation is the same. Moreover, it is also assumed that the total
mass of drug present on the polymer coating (Mp) is equivalent to M0D and M1D:

M0D ≡M1D = c∗d k50 Vcl ≡Mp = c0∗
p k50 Vp, (3.24)

where the dimensional drug concentration (cd) is replaced with the non–dimensional substitute
as reported in Eqn. 3.15. The same is repeated for the mass on the polymer coating (Mp) where
c0∗

p is the initial non–dimensional concentration of drug on the polymer coating. Rearranging
Eqn. 3.24 for c0∗

p gives the following:

c0∗
p = c∗d

Vcl

Vp
, (3.25)

meaning that the non–dimensional concentration of drug initially on the coating (c0∗
p ) is ap-

proximately 70 times greater than c∗d in the 0D model. However, having established the above
relationship means that once drug is completely released, the values of c∗d the cells are exposed
to will be the same in 0D and 1D. In other words, when all drug is released, i.e. c∗p→ 0, then the
non–dimensional concentration of drug (c∗d) in 0D and 1D should be the same. Fig. 3.20 sup-
ports this, showing that for three different release profiles, achieved by amending the diffusion
coefficient in the polymer (R1

p: Dp = 5 ×10−16 m2 s−1, R2
p: Dp = 1 ×10−15 m2 s−1, and R3

p:
Dp = 5 ×10−15 m2 s−1), that all points in the domain (x = xp, x = (xp+xc)/2, and x = xp+xc)
converge to the same non–dimensional drug concentration (c∗d = 25).
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(a) (b)

(c)

Figure 3.20: How c∗d varies in time as the drug release profile is perturbed at three points in the
domain (Fig. 3.19): x = xp, x = (xp + xc)/2, and x = xp + xc. (a) R1

p. (b) R2
p. (c) R3

p. Spatial
points (x) are in reference to the 1D geometry (Fig. 3.19).

3.4.4 Model parameters & Sensitivity analysis

The primary aim of this work is to assess the impact of spatiotemporal drug gradients on cell
proliferation. As such, parameters which are associated with drug delivery are varied. These are
Dp, the drug diffusion coefficient in the polymer and c0∗

p , the initial non–dimensional coating
drug concentration. An extensive analysis of other parameters associated with the cell cycle,
such as the initial distribution of cells within each phase and the intrinsic growth rates have been
explored in depth previously (Section 3.3).

Within this 1D framework, both a single and multi–phase model are considered. For the
single–phase model, one value for g is considered, corresponding to an intrinsic rate where a
cell divides every 32 hours. As for the multi–phase model, a similar fixed intrinsic growth rate
is implemented (50:50 split between phases) for the two extreme initial conditions, MP1 (all
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cells initially reside in phase 1) and MP5 (all cells initially reside in phase 2). Thus, there exists
three different models: SP, MP1, and MP5. For each of the multi–phase models, two drugs (1
and 2 from Eqn. 3.8–3.11) are again considered. Within each, perturbations in the following
parameters are simulated: Dp, c0∗

p , and kmax as depicted in Fig. 3.21. Note that in the 0D model,
the parameter pairs were defined as [kmax, c∗d]. As per Eqn. 3.25, the parameter pairs used in
the 1D model are updated to [kmax, c0∗

p ], as demonstrated in Fig. 3.22b. As such, the four new
parameter pairs are given as: Point 1 [0.6, 70], Point 2 [0.7, 350], Point 3 [0.8, 700], and Point
4 [0.9, 1750].

Figure 3.21: Flow chart detailing the problem approach for the 1D model. Upon selection of
the model (SP: single–phase, MP1: multi–phase with all cells initially in phase 1, and MP5:
multi–phase with all cells initially in phase 2), each of the 4 parameter combinations (P1–P4:
Fig. 3.22b) are considered. For each parameter combination, three different release profiles (Rp)
are simulated (Fig. 3.22a). The process is repeated until all models are simulated.

The various drug release profiles and parameter combinations considered are presented in
Fig. 3.22a & 3.22b, respectively. The baseline drug release profile (R1

p) was selected to ensure
approximately all of the drug was released from the coating in the 15–day window (Dp = 5
× 10−16 m2s−1). The other two drug release profiles permit a quicker release of drug, moving
towards the 0D case, where drug is immediately available to the cells at a constant concentration.
As for the model parameters, these are summarised in Table 3.7. The culture plate dimensions
are estimated to provide a surface area comparable to a single well within a 24–well plate, whilst
the breadth of the coating is estimated to be 20 µm. The diffusion coefficient for drug in the
medium is acquired from [172]. All parameters associated with the cell population are as before,
assuming the duration of the cell cycle is 32 hours, and that a spatially uniform initial number
of cells is present on the plate initially (c0 = 10,000).
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(a) (b)

Figure 3.22: (a): Different drug release profiles (Rp) considered. Baseline value for Dp is
illustrated by the solid black line. R1

p: Dp = 5 ×10−16 m2 s−1, R2
p: Dp = 1 ×10−15 m2 s−1,

and R3
p: Dp = 5 ×10−15 m2 s−1. (b) Different parameter pairs, [c0∗

p , kmax], considered when
exploring model behaviour: Point 1 [0.6, 70], Point 2 [0.7 350], Point 3 [0.8 700], and Point 4
[0.9 1750].

Parameter Description Value [Unit] Reference
xc Culture plate length 14 [mm] Estimated
xp Polymer coating thickness 20 [µm] Estimated

Dcd Drug diffusion coefficient 2×10−10 [m2 s−1] [172]
Dp Polymer coating diffusion coefficient 5×10−16 [m2 s−1] Estimated

Table 3.7: Description of the parameters for the 1D model and their baseline values.

3.4.5 Numerical methods & Analysis of results

The commercially available software COMSOL Multiphysics 5.6a (COMSOL AB, Burlington,
MA, USA) was used to mesh the 1D geometry and numerically solve the model. The mesh was
chosen to host approximately 7,000 elements to ensure that error in the release of drug at t = 0
was less than 0.5%.

3.5 Results & Discussion: 1D Model

To demonstrate the difference between each of the cases presented in Fig. 3.21, the time taken
for the number of cells in each model to reach K/2 is recorded, illustrated in Fig. 3.23. As
anticipated, when the rate of drug release is increased, the time taken for cells to reach their
inflection point is increased. All four figures (Fig. 3.23a–d), regardless of the parameter efficacy
combination considered, illustrate this result. In other words, as the rate of drug release is
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accelerated, the model results for each case (SP, MP1: Drug etc.) approach the result obtained
from the previous 0D simulations, where drug was exposed to the cells from t = 0 (Section
3.3.2).

(a) P1 (b) P2

(c) P3 (d) P4

Figure 3.23: How different parameter combinations: (a) P1, (b) P2, (c) P3, and (d) P4 as
defined in Fig. 3.22b influence the time taken for the cell population, computed as an average
of the domain (Ωc), to reach half their carrying capacity (K/2) across a range of different drug
release rates. R1

p: Dp = 5 ×10−16 m2 s−1, R2
p: Dp = 1 ×10−15 m2 s−1, and R3

p: Dp = 5 ×10−15

m2 s−1. 0D assumes that drug is always present to cells from t = 0. SP = single–phase, MP1 =
multi–phase, all cells initially in phase 1, MP5 = multi–phase, all cells initially in phase 2. Drug
1 is the G1/S transition blocker and drug 2 is the mitosis (M) blocker.

All results in Fig. 3.23 present the time taken for the number of cells within the domain Ωc to
reach the inflection point. However, another interesting aspect worth exploring is how the growth
of cells varies between the two extremes of the domain: x = xp and x = xp + xc. Therefore, for
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the four different multi–phase models, the cell growth profile is presented in Fig. 3.24 at the
two extremes under the parameter condition P2 [0.9, 700] over the original 15–day period. As
expected, irrespective of the model proposed, or the initial condition of the cell population, the
number of cells is insensitive to the release profile immediately adjacent to the polymer coating
boundary (x = xp). This result can be attributed to the drug release profiles presented back in
Fig. 3.20. At x = xp the drug concentration is high, decreasing in time as it diffuses through
the domain. However, at the edge of the culture dish, x = xp + xc, drug concentration is low
initially before increasing towards an upper threshold, c∗d (Eqn. 3.25). Thus, the drug release
profile matters most to cells at the opposite side of the domain from the drug source, which are
exposed to drug much later than those at x = xp.

(a) MP1: Drug 1 (b) MP5: Drug 1

(c) MP1: Drug 2 (d) MP5: Drug 2

Figure 3.24: How the cell profile varies in time at either end of the domain. Cell interfacing
the polymer coating (x = xp) are denoted by solid lines, whilst cells at the opposite end of the
domain from the drug source (x = xc + xp) by dashed lines. MP1: all cells initially in phase 1
and MP5: all cells initially in phase 2.
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Although it could be argued that the difference in model response is subtle between each
of the drug release profiles considered, the fact that one exists is important. Such a result may
have significant implications in a setting which is more heterogeneous. For example, stents are
deployed within severely diseased vessels, where the transport properties of drug are known to
differ throughout [46]. Therefore, if drug is unable to reach the injured areas, where remodelling
is actively present, then cells will be able to migrate and proliferate freely until drug eventually
inhibits their capacity to do so. Moreover, as demonstrated in Fig. 3.23, as well as in prior
0D work (Section 3.3.2), this becomes even more significant depending upon the phase the cell
resides within when drug is present, with drugs (e.g. sirolimus and paclitaxel) known to be
cell cycle specific. All of this taken together suggests that spatiotemporal gradients associated
with the delivery of drug could have an impact on cell proliferation in vivo and thus vessel re–
narrowing. However, before adopting more complex in vivo models, subsequent efforts should
explore experimental calibration and validation techniques (e.g. FUCCI) to fully assess whether
these models have an advantage over traditional ‘single–phase’ approaches in demonstrating the
dose–dependent effect of drug on cell proliferation.

3.6 Limitations & Future work

A number of assumptions have necessarily been made when devising the above mathematical
models, which are justified in the preceding text. For example, SMC migration has been ignored
throughout with the focus being on the anti–proliferative properties of drug. However, with the
aid of experimental techniques (e.g. FUCCI), one can visualise the motility of cells under the
effect of drug, similar to [286], and derive appropriate models that account for cell migration
through a diffusive parameter; where drugs like sirolimus have demonstrated an inhibition of
cell motility in vitro [296]. Moreover, multiple sources [240, 259] have reported that drugs of
type 2 (e.g. paclitaxel) induce permanent cell senescence at high doses. In this phase, cells were
unable to migrate or proliferate, but still remained viable. As such, extensions to the model
proposed (Eqn. 3.10 & 3.11) could be considered to explore the possible significance of this
third phase. However, this would be aided significantly by the use of experimental techniques
(e.g. FUCCI), such that real time imaging of the cell population can aid in determining the
experimental conditions which drive cells into this phase, and what they do once there.

Note that the effects of contact inhibition have been ignored within the current modelling
framework. Although spatial restrictions are considered during mitosis, no spatial check is
present in the model which halts cells from entering phase 2 if there is no space to divide.
In other words, the steady state solution of Eqn. 3.6–3.7 means that all cells will be in phase 2
as c→ K. As such, these cells are primed to divide if space does become available. However,
various articles suggest that a lack of space for cell division induces cell cycle arrest within the
first phase of the cell cycle, G1 (c1), by means of contact inhibition, before cells fully commit
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to division [297, 298]. Thus, model improvements could be considered which incorporate this
behaviour. Although this is left to future work, the g1c1 term on both Eqn. 3.6–3.7 may be
improved by introducing a step function. In other words, the transition of cells from phase 1 to 2
may be blocked if space will no longer be available once the cells already within phase 2 divide.
One should look at [299–303] for inspiration, where cell–to–cell adhesion is discussed in depth.

As alluded to throughout, experimental techniques should be considered to aid in model
calibration and validation, assessing whether a more sophisticated iteration (multi–phase over
single–phase) of the model is necessary. This could then provide justification to pursue the
significance of such a model in emulating in vivo conditions. The improvement of the model by
addressing these limitations has been left to future work.

3.7 Conclusions

The results of this chapter demonstrate that not only does the model description matter (single–
phase versus multi–phase), but also the distribution cells throughout the cell cycle prior to being
exposed to drug. Moreover, as demonstrated in the 1D model, the spatiotemporal gradients
present as a consequence of drug release are important, where differences in model responses are
noted. It is expected that these differences would be significantly exacerbated in scenarios where
disease and other environmental factors that hinder drug transport are present. As such, vessel
re–narrowing could be significantly increased as a result. Therefore, the work in this chapter has
demonstrated the possible significance of modelling cell proliferation as a cyclic process. Given
that drugs coated on stents are cell cycle specific, modelling the precise timing of their effect may
have an importance on future modelling efforts. For example, throughout the different models
proposed, the single–phase model, for the same set of efficacy parameters, has demonstrated a
more profound inhibition of cell proliferation. This may allude to why the predictive capacity of
such models were poor when compared with experimental data in Chapter 2, where the models
may be under or over–estimating the efficacy of drug. To explore this in full, it is essential
that experimental methods such as FUCCI are implemented to calibrate a cell cycle specific
model [284–286]. From this, a more thorough conclusion on discrepancies with the single–
phase model can be made. Although this was out with the scope of the work presented here,
following the validation of these cell cycle models, implementation into capturing dynamics in

vivo could then be attempted in the pursuit of optimal stent design.
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Chapter 4

An in silico model of restenosis following
stent deployment

The previous two chapters investigated the influence of drug on smooth muscle cell (SMC)
proliferation alone, within an in vitro environment. However, it is known that these cells are
fundamental to the evolution of restenosis following stent deployment, where their behaviour
is mediated by many other constituents such as growth factors and extracellular matrix, in re-
sponse to mechanical stimuli. Therefore, the focus of this chapter is to present a sophisticated
computational model than can effectively portray this process. The subsequent chapter will then
incorporate drug delivery and retention, observing how this modulates the evolution of excessive
tissue growth.

The chapter begins by providing the reader with an overview of relevant mathematical mod-
els of restenosis, categorising them either as: (i) agent–based models (ABMs), or (ii) continuum
models. The framework to be adopted in this work is then discussed. The model geometry
and governing model equations are then described in detail before simulations are performed
using COMSOL Multiphysics 5.6a (COMSOL AB, Burlington, MA, USA). The key results
are presented and analysed, immediately followed by a discussion of the key limitations of the
computational model.

4.1 Review of restenosis modelling literature

The process of in–stent restenosis (ISR) is highly heterogeneous, where a complex, multiscale
network of events occur at different spatio–temporal scales to permit vessel healing within a
timely manner. Nonetheless, it is stent–induced vascular damage following deployment and the
subsequent alterations to vessel haemodynamics that have been found to play significant roles in
the progression, and severity, of restenotic tissue. With the processes difficult to monitor directly,
mechano–biological models, inspired by biological principles, have emerged to investigate the
underlying mechanisms that drive ISR. Such models often employ an agent–based framework,
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where constituents (e.g. cells, growth factors, and extracellular matrix) follow a set of rules in
response to stent deployment, and are commonly solved in geometries of varying complexity:
from simple 2D segments of an idealised artery to simulations encompassing 3D patient–specific
profiles [53, 54, 57, 65–67, 206, 210–219, 225, 230]. On the other hand, a handful of continuum
models also exist that implement a finite element framework to simulate restenosis [55, 115,
208, 222–224, 304]. These either describe species evolution (the variables tracked in the model)
explicitly, where a series of highly nonlinear, coupled partial differential equations (PDE’s)
are solved to emulate restenosis [55, 222, 304], or by proposing a kinematic growth model to
describe the growth in mass of tissue following stent deployment [115,223,224]. More recently,
a hybrid methodology aiming to address the limitations of the two continuum approaches above
was presented [208]. The authors utilised homogenized constrained mixture theory such that the
biofidelic and kinematic growth approaches are harmonized.

4.1.1 ABMs of restenosis

Pioneering work by Evans et al. [210] introduced the idea of complex multiscale models (CxA)
to describe the main physical and biological elements associated with restenosis. From this, over
the last 15 years, an array of modelling literature has been published that investigates the impact
of stent deployment on restenosis. Efforts have primarily focused on stent design, observing how
mechanical stimuli and and subsequent fluid dynamics may hinder the remodelling process.

In the years following Evans et al. [210], Boyle et al. [211] presented a cell–centred model
that encompassed multiple constituents, which followed a set of rules in response to injury and
inflammation within a 2D setting. Results alluded to the significance of stent deployment, where
an increased deployment depth resulted in a more aggressive healing response. Limitations asso-
ciated with the model geometry were addressed in subsequent iterations [212], where the focus
shifted to the simulation of clinically adopted stents with an aspiration of such models to be
implemented as pre–clinical tools. A Moonley–Rivlin constitutive model was also considered,
accounting for the effect of stent deployment on arterial tissue, which directly influenced the
inflammatory response [57]. At a similar time, Zahedmanesh et al. [54,214,215] published a se-
ries of articles on the subject of vascular remodelling. Their preliminary models highlighted the
importance of stent design, in particular strut thickness, on arterial wall stresses [214]. Assessing
SMC behaviour in isolation of restenosis, their following publication demonstrated the response
of SMCs to vascular injury within a tissue engineering scaffold [215]. Adding complexity to the
model, a fully–coupled ABM framework was established, introducing other key constituents in-
volved within restenosis (e.g. extracellular matrix) [54]. Albeit within a simplified environment
(2D), their simulations of stent–induced vascular injury demonstrated qualitative agreement with
clinical data, where increased strut thickness and deployment depth were attributed with greater
levels of restenosis.

Moreover, a significant series of ABMs were developed over several years, where prelimi-
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nary efforts modelled restenosis in a 2D geometry [53,65,67,206] before extending their efforts
to three dimensions and emulating restenosis within patient–specific geometries [66, 217, 229].
With the clinical agenda on improving stent design, Tahir et al. [206] focused on the significance
of stent deployment on ISR. Although proliferation of cells within their model followed logistic
growth, their ability to grow was mediated by several rules which accounted for spatial restric-
tions (contact inhibition) and wall shear stress (WSS) levels, where blood flow was modelled
using the Lattice Boltzmann method (LBM), with blood described as a Newtonian fluid. With
these limitations in mind, their model demonstrated good agreement with clinical findings at the
time, where a shift to a more streamlined, thinner strut design was associated with reduced rates
of ISR. A key limitation, however, was the absence of the endothelial layer, which was consid-
ered in a subsequent model [53]. As such, their rule–based approach was updated to inhibit SMC
proliferation following the presence of a functional endothelial cell (EC) agent. The recovery of
the endothelial layer was defined by a sparse data set, existing of only two points. Thus, to probe
sensitivity in this recovery, different re–endothelialzation cases were considered. Their results
show the significance of this layer and its role in ISR prevention, where the authors admit that
further experimental data is essential, albeit difficult to capture, to fully assess their model’s po-
tential. The authors then explored the importance of EC origin in vessel remodelling [67]. They
concluded that it was most likely surviving patches around the stent struts that permitted en-
dothelial regrowth, as opposed to migration from healthy sites adjacent to the lesion. Their final
2D efforts investigated the significance of vascular injury on ISR [65]. Here, the focus shifted
away from ECs and towards SMC behaviour, where their migratory and proliferative capacities
were significantly heightened following more intrusive stent deployment. As such, the cells were
allowed to behave more freely as a consequence of greater exposure to circulating factors in the
lumen following deep fenestrations in the internal elastic lamina (IEL). Subsequently, the au-
thors presented the first fully–coupled 3D model of ISR, with the primary aim of it to be adopted
as a pre–clinical tool to predict patient outcome [66]. Their model grouped methods from previ-
ous publications, investigating the role of vascular injury, stent design and re–endothelialization
recovery speed. Although qualitative trends agreed well with experimental data, especially at
early times (15 days) further advancements were necessary to depict long–term restenosis. To
address these limitations, the model was extended to account for extracellular matrix (ECM)
synthesis. In doing so, the results of their in silico model agreed well with histological data
from in vivo models depicting restenosis over a longer duration [217, 229].

A correlation between WSS and ISR outcome has been established following stent deploy-
ment, such that low levels of WSS is a predictor of restenosis [127, 128, 227]. As a result,
aforementioned articles [53, 66, 67, 217, 229] incorporated the effects of WSS on SMC prolif-
eration through a LBM. However, more recent efforts have proposed a multiscale model that
couples a finite element model of computational fluid dynamics (CFD) within an ABM frame-
work [218,219,225,227,305]. Notably, relevant haemodynamic indices (e.g. WSS) are exported
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from the CFD module and fed into the ABM, having a direct impact on constituent behaviour.
For example, Corti et al. [226] applied this framework within simulations emulating stent de-
ployment in human femoral arteries, where WSS directly influenced the functionality of ECs
through a damage index that was directly related to WSS. Low levels of WSS (< 0.5 Pa) were
primarily located in areas adjacent to stent struts, and stimulated vessel re–narrowing. The model
was able to demonstrate good agreement with an in vivo patient model at a 1–month follow–up.
However, limitations were present, where focal restenosis profiles present in the patient models
were not captured by the in silico model at later times (e.g. 1–year follow–ups). In an attempt
to address this, the authors proposed the inclusion of vascular injury to their model, where the
arterial wall responds to stenting through a polynomial strain energy function [306]. The authors
alluded to the importance of incorporating constitutive laws that describe the arterial response to
stenting, where without it, focal stenosis cannot be captured which may result in a local lumen
loss increasing the possibility of an adverse cardiac event.

With femoral arteries the primary focus of the models in [226, 306], efforts have recently
been extended to coronary arteries. For example, Chen et al. [220] presented a very similar
approach to Corti et al. [226, 306], where WSS influenced a damage index through a linear
interpolation which directly mediated the behaviour of constituents present in the healing re-
sponse. This is an alternative method to that present in Zahedmanesh et al. [54], where the
linear interpolation instead encompassed shear stresses associated with arterial mechanics. In
agreement with [218,219,227,305,306] greater neointimal thicknesses were observed in regions
where WSS was low. However, in the absence of experimental data for validation, the model
only agrees qualitatively with clinical trends. As such, Chen et al. [220] have indicated that fur-
ther work will explore an animal model in tandem with in silico efforts, whilst simultaneously
increasing the sophistication of the ABM of restenosis such that the phenotype of SMCs are also
considered.

4.1.2 Continuum models of restenosis

Whilst there exists a large array of ABMs, those which adopt a continuum framework are less
frequent. The continuum modelling strategy permits a more natural coupling to the mechanical
aspects of the problem, whilst simultaneously modelling the explicit spatiotemporal behaviour
of constituents that contribute to ISR. As such, these models tend to couple the deployment of the
stent, modelled via a finite element framework, to a series of PDEs that detail constituents (e.g.
smooth muscle cells, endothelial cells, growth factors, extracellular matrix, matrix–degrading
metalloproteinases, and damage) interaction as tissue growth ensues. The current state–of–the–
art continuum model was published by Escuer et al. [55]. The authors detail species evolution
and tissue growth following a finite element simulation of stent expansion. To stimulate vascular
healing, they propose a variable termed ‘damage’ that emulates the inflammatory response and is
a consequence of arterial stresses present following stent deployment. While the model was able
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to broadly capture clinical trends, it suffers from a series of limitations. In particular, excessive
ECM synthesis is noted, SMC proliferation is highly simplified, EC regeneration is present
in isolation from other processes, and the constitutive law used to describe arterial kinematics
is simplified, failing to account for collagen fibre dispersion in the wall. Nonetheless, good
qualitative agreement with clinical trends are present, where further advancements will only
serve to enrich the model.

Similarly, Boland et al. [222] adopted a continuum based restenosis model, amending the
approach published by Lally et al. [304] to incorporate a ghost mesh strategy that conveys
restenotic tissue growth following the degradation of a magnesium stent. Unlike Escuer et

al. [55], flow is considered within the model, highlighting the significance of both arterial
stresses and WSS on patient outcome [220,226,306]. Although inclusive of flow, the restenosis
model is highly simplified, accounting for only a single cellular species. Note, other key con-
stituents involved (e.g. growth factors) are neglected, and the restenosis process is driven purely
by arterial and wall stresses as a consequence of stent deployment and fluid flow, respectively.

Although adopting a continuum modelling framework, alternative strategies exist that model
tissue growth directly within the constitutive model applied to the arterial tissue, as opposed to
the modelling of species growth explicitly as present in [55, 222, 304]. To the best of the au-
thor’s knowledge, Fereidoonnezhad et al. [224] present the first kinematic growth model in the
context of balloon angioplasty in an idealised, straight geometry. Their model incorporates a
growth stretch parameter that emulates lumen loss, where trends agree well with those observed
clinically over the course of six months. Addressing a particular limitation, He et al. [223]
implemented a similar growth model, but extended previous efforts to include soft tissue dam-
age through the Mullins effect. Assessing the clinical relevance of their model, three different
stent designs were simulated, where the authors focused on the significance of materials, expan-
sion severity, and the impact of overlapping stents on restenosis. With early models simulating
ISR within idealised geometries, subsequent research considered patient–specific cases, where
the authors aimed to advise on possible treatment strategies for complex lesions that required
overlapping stents [115]. Moreover, Gierig et al. [230] considered a highly coupled chemo–
mechano–biological model of restenosis, where the change in mass of local constituents drives
the growth of tissue at a macroscopic level, accounting for the effects from mechanical contri-
butions of stent deployment.

Maes et al. [208] considered a different approach which employed a homogenized con-
strained mixture model, which in essence is a hybrid of the kinematic and biofidelic modelling
strategies. Their primary focus was on balloons as opposed to stents, assessing the arterial re-
sponse to balloon expansion. Their constitutive framework is the most sophisticated to date, al-
lowing for the effects of mechanical stimuli on individual species (e.g. SMCs) to be considered.
However, several limitations exist, most of which are a result of the simplified homogeneous 2D
geometry. Further work, with the benefit of experimental data, should pursue a more complete
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representation of the arterial response to vascular injury.
In light of the aforementioned efforts, [115, 208, 223, 224, 230], the authors noted the need

for further experimental data. This would allow for models proposed to describe soft tissue
mechanics to be validated such that their predictive capacity could be improved.

4.1.3 Model framework selection

A series of different modelling strategies are discussed above, where they fall into one of two
categories: ABMs or continuum. Although promising and by far the most prominent choice,
ABMs do not naturally lend themselves to coupling with drug transport, which ubiquitously
adopts a continuum description [79, 169, 172, 188]. With the role of drug a key aspect of this
thesis, then it appears more natural to adopt a framework which is consistent across the two
models: restenosis and drug transport. While a coupling between models adopting separate
frameworks is possible (e.g. [205]), a number of computational difficulties arise. In particular,
the small time steps required for the drug transport model as a consequence of the nonlinear
binding kinetics may require more coupling iterations than previously discussed in [226]; which
may significantly add to an already lengthy computational time.

Of the two continuum frameworks, those which model cell behaviour explicitly are more
desirable for the overall aim of this thesis. In line with previous chapters that explore the effect of
drug on SMC growth, these models would permit seamless integration of a drug transport model
coupled to restenosis. With Escuer et al. [55] publishing the current state–of–the–art for models
of this type, the aim of this chapter is to then build upon this model, making notable changes that
improve its realism. Prior to the inclusion of drug (Chapter 5), the restenosis model proposed
is investigated, analysing how stent expansion and perturbations in strut configuration influence
the restenotic response, assessing results against clinical trends. Subsequent limitations of the
model are then discussed and explored in subsequent chapters, where appropriate.

4.2 Methodology

4.2.1 Overview

Illustrated in Fig. 4.1, the computational model proposed can be easily divided into three distinct
steps: expansion, species evolution, and remodelling. As such, the methodology is broken down
into sections, detailing the model geometry before describing the three different steps separately.

The scientific literature indicates that arterial restenosis as a consequence of injury is com-
plex, where an abundance of species interact with one another with an aim to restore quiescence
within the arterial wall [56]. This process is initiated by stent deployment (step 1). Highlighted
in Fig. 4.2, the idealised geometry (a) is deformed (b) following stent expansion, where the
resulting Von Mises stress field is assumed proportional to a variable termed damage. Devised
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Figure 4.1: Flow chart depicting the various stages of the model. Step 1: Stent deployment
deforms the artery and then triggers the restenosis model by coupling stress to damage. Step
2: Restenosis ensues, where damage upregulates species (GFs and MMPs) which interact with
other constituents to drive tissue growth. Here, green solid arrows refer to stimulation, red
dashed arrows to inhibition, black solid arrows as a neutral step, and blue arrows to remod-
elling. Step 3: Remodelling, where an increase in specific constituents gives rise to excess
tissue growth.

to mimic an inflammatory response, this species is associated with the stimulation of the healing
response by triggering a response from various constituents (step 2). Most notably, the produc-
tion of growth factors (GFs) and matrix–degrading metalloproteinases (MMPs). Although both
GFs and MMPs promote the proliferation of SMCs, they do so by different means. The former
does this explicitly whilst the latter mediates ECM degradation which induces a SMC pheno-
type switch to an active state which can then proliferate more freely as space becomes available.
Through time, these active SMCs deposit ECM, providing structural support to the vessel as it
heals and remodels. As detailed ubiquitously in the literature, SMCs and ECM are the primary
components that contribute to excess tissue growth [60]. At early times, SMCs populate the
neointima in response to injury, with ECM dominating tissue growth at later times, providing
structural support. Thus, in the model proposed, it is these two species that contribute primarily
to tissue growth, covered by a thin endothelial layer (step 3).
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Figure 4.2: a: Longitudinal section view of the arterial wall prior to stent expansion. b: Longi-
tudinal section view following stent expansion (20%). The inset highlights the polymer coating,
intima, and denuded endothelium. Ω j defines the various domains, where subscript j = p,m, i
denotes the polymer coating, media, and intima, respectively. Γ is the symbol used to denote
the different interfaces. The denuded and healthy endothelium are defined by Γet,d and Γet,h,
respectively. The polymer coating boundary is in contact with either the wall (Γpw) or lumen
(Γpl), whilst Γps is the interface between the coating and the strut. The boundary between the
intima and media is Γiel whilst the perivascular edge is denoted Γeel . Upstream from the stent,
the boundaries for the intima and media are Γi,up and Γm,up, respectively.
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4.2.2 Model geometry

The baseline model considers a multi–layered (intima and media), 2D–axisymmetric geometry
which depicts a healthy segment of a coronary artery. In line with the newer generation of stents
(e.g. Orsiro TM Biotronik, Bülach, Switzerland), the computational model considers a strut with
a thickness in the ultra–thin range (< 80 µm). Recently, promising results have been presented
in a meta analysis against earlier devices hosting either ‘thin’ (80–100 µm) or ‘thick’ (> 100
µm) struts [44]. The struts are coated circumferentially with a durable polymer of 8 µm in
thickness, currently employed on commercial stents (e.g. Xience V TM, Abbott Laboratories,
Abbott Park, IL, USA). Moreover, an appropriate inter–strut spacing has to be defined. Various
articles adopt a constant spacing of 0.7 mm between struts [55,169,188,196,307], of which the
struts themselves are typically larger than those considered in this work. However, as suggested
in [200], optimal inter–strut spacing for drug–eluting stents (DES) is often a consequence of the
strut thickness, with the desired distance defined as 7×Tst , where Tst is the total strut thickness.
Finally, as is the case with other models of ISR, the struts are pre–embedded by 50% prior to
stent expansion [55, 169]. All geometrical parameters associated with the computational model
are listed in Table 4.1.

Parameter Description Value / Expression Reference(s)
st Strut thickness 65 µm [308–310](?)
δss Strut spacing 7 × Tst [200]
δi Intima domain thickness 0.01 mm [55, 169]
δm Media domain thickness 0.5 mm [55, 169]
δp Polymer coating thickness 0.008 mm [169]
rh

l Lumen radius 1.5 mm [188]
Tst Total strut thickness 81 µm -

Table 4.1: Parameters of the baseline computational model. (?): Representative of ultra–thin
stent strut thickness range, for example: Orsiro TM (Biotronik, Bülach, Switzerland: 60 µm),
MiStent TM (MiCell Technologies, Durham, NC, USA: 64 µm), and Coroflex ISAR TM (B.
Braun Melsungen AG, Germany: 65 µm).

Fig. 4.2 schematically depicts the geometries considered: (a) a healthy and (b) a deformed
artery. The lumen radii in both geometries are denoted by rl,h and rl,re f , respectively. The dif-
ference in these values defines the impact of stent deployment, termed % overexpansion. Within
the geometry, there exists two key areas of interest: the stented and therapeutic domain. Within
the stented domain, the spatiotemporal behaviour of key model constituents are tracked. The
therapeutic domain is defined as 3×δss from the centre of the outermost strut and tracks species
behaviour either side of the stented lesion [55]. Beyond the therapeutic domain, a further exten-
sion in the model geometry is necessary such that the boundary conditions upstream/downstream
from the lesion can be justified [55]. Fig. 4.2 also details the various domains (Ω) and bound-
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aries (Γ) present in the model. Details of these are presented in the figure, with each referenced
within the text where appropriate.

In the computational model proposed, fluid flow within the lumen is not considered, with
justification for neglecting the influence of fluid dynamics on restenosis provided in Section
4.4.3. Taken together with the idealised cylindrical arterial configuration, this assumption al-
lows further reduction in the complexity of the geometry. Specifically, through symmetry, the
model governing equations need only be solved on half of the arterial wall domain, with an
axis of symmetry imposed between the middle two struts (Fig. 4.2). Thus, the baseline model
considers 2 equally spaced struts, with symmetry implying a stent totalling 4 struts. However,
the explicit number of total struts is not particularly important, where remodelling assuming a
locally isotropic growth model demonstrates tissue growth profiles between struts that are iden-
tical, as noted by Escuer et al. [55]. Preliminary simulations supported this finding, where no
difference in restenosis was observed in a stent hosting 4, 7, and 10 struts.

4.2.3 Step 1: stent expansion

The arterial model considered hosts two layers, the intima and media, of which both are mod-
elled as hyperelastic, incompressible materials. The assumption of incompressibility has often
been employed when analysing arterial wall elasticity [311]. Although supporting evidence is
somewhat incomplete, Carew et al. [311] induced strains on thoracic aorta from dogs, showing
that the volumetric strain was negligible, with similar studies also performed on an array of other
arteries (carotid, iliac, etc.). This assumption has been supported by further evidence [312].
However, there is still some uncertainty on this topic as detailed in [313], with further work
needed to explore this assumption in more detail. With the parameters of the constitutive model
(Eqn. 4.1 [314]) attained under the assumption of incompressibility, the same assumption is
then employed here for consistency.

Unlike the model proposed by Escuer et al. [55], which implements a Yeoh constitutive
model, a more sophisticated model of arterial kinematics is considered. As such, the following
strain energy function (SEF), devised by Gasser et al. [315], is considered:

Ψx = µ(I1−3)︸ ︷︷ ︸
ψx,a

+

ψx,b︷ ︸︸ ︷
∑

α=4,6

k1

2k2

[
exp
{

k2 [κI1 +(1−3κ) Iα −1]2
}
−1
]
, (4.1)

where collagen fibre dispersion within each arterial layer is accounted for. The SEF (Ψx) is
detailed in two parts: ψx,a and ψx,b, where subscript x = i,m, for each layer present within the
model. The former represents the isotropic potential of non–collagenous matrix, simulated as
an incompressible isotropic material through a Neo–Hookean model. The parameter µ , related
only to the isotropic response of the arterial tissue, defines the shear modulus, whilst I1 = tr(CCC),
represents the first invariant of the right Cauchy–Green deformation tensor, CCC [316].
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The second term (ψx,b) represents the structure tensor associated with collagen fibre distri-
bution in each arterial layer. The key parameter here is κ , which is structural, and defines the
distribution of collagen fibres such that κ = 0 and κ = 1/3 are the two extreme cases. The for-
mer (κ = 0) represents the case where fibres are perfectly aligned, and the latter (κ = 1/3) where
the material is isotropic and a random distribution of collagen fibres is present [315]. Acquired
from mechanical tests of tissue, k1 and k2 define the anisotropic contribution of collagen to the
stress–strain response [314]. Anisotropy is introduced through the invariants I4 > 1 and I6 > 1,
where fibres are active only when extended and bear no load when compressed [315, 316]. The
invariants I4 and I6 describe the anisotropy of the arterial tissue and are measures of stretch for
each family of collagen fibres. Associated with fibre stretch, I4 and I6 are defined as:

I4,6 =CCC : MMM4,6, (4.2)

where MMM4,6 is the fibre–structure tensor, such that MMM4 = aaa111⊗aaa111 and MMM6 = aaa222⊗aaa222 [316, 317].
The orientations of the two fibre families (aaa1,2) are given as aaa111 = [0,cosβ ,sinβ ] and aaa222 =

[0,cosβ ,−sinβ ] [316, 317]. The two fibre families are aligned ±β with respect to the circum-
ferential direction of the 2D–axisymmetric artery, documented schematically in Fig. 4.3 [317].

(a) (b)

Figure 4.3: Illustration of collagen fibres within the arterial wall. (a) Illustration of fibre families
in the COMSOL model. Red fibres represent the media. Blue fibres represent the adventitia,
discussed in Section 4.3.3. (b) Schematic representation illustrating mean angle (βm) between
the two families of collagen fibres in the media.

More details on the derivation of this constitutive model within a 2D–axisymmetric geom-
etry can be found in [315–318]. Table 4.2 summarises the material parameters implemented
within the constitutive model, acquired from [169]. The best–fitting parameters were obtained
following a fit to experimental data in [314] which performed mechanical tensile tests on human
coronary arteries, in vitro.

Mechanical models are also implemented for both the stent struts and the polymeric coating.
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Newer stent designs often employ a cobalt chromium backbone (CoCr) as opposed to stainless
steel, where higher radial strength and radio–opacity properties permit the adoption of these
ultra–thin struts [319]. As simulated in [320], the metallic strut is modelled assuming a bilinear
elastic–plastic relationship emulating the material properties of cobalt chromium alloy L6505.
The mechanical properties implemented include the Young’s modulus (E), density (ρ), Poisson’s
ratio (ν), yield strength (Sy), and an ultimate tensile strength (Et) [118, 169, 320]. Similarly,
it is assumed that the stent coating considers a phosphorylcholine (PC)–based polymer and is
modelled as a non–linear elastic material with bi–linear behaviour [169,320,321]. The parameter
values proposed to describe the mechanical properties of the stent strut and polymer coating are
detailed in Table 4.2.

M1: Arterial wall constitutive model parameters

Layer µ (kPa) k1 (kPa) k2 κ β (◦) Reference

Intima 26.16 10485.2 20 0.165 50.02 [169]
Media 1.93 149.1 51.74 0.262 37.47 [169]

M2: Strut and coating model parameters

Domain E (MPa) ρ (kg/m3) ν Sy (MPa) Et (MPa) Reference

Strut 2.43·105 9700 0.3 476 680 [320]
Coating 240 1200 0.4975 16 7.7 [320, 321]

Table 4.2: (M1) Material parameters used to describe SEF (Eqn. 4.1) of the arterial wall layers.
(M2) Values used to describe the mechanical properties of the polymeric coating and stent strut.

Within the 2D–axisymmetric model, the strategy for stent deployment presented in [55,169]
is implemented here. The lumen–interface boundary (Γet,d , Γet,h) is pressurised at 100 mmHg,
emulating physiological conditions. A displacement condition is then prescribed on each indi-
vidual strut to simulate stent deployment. Three clinically relevant levels of overexpansion (OE)
are considered (10/20/30%), defined as:

%OE =

(
rl,re f

rl,h
−1
)
×100, (4.3)

where rl,re f is the lumen radius within the stented domain, post–expansion, and rl,h is the lumen
radius within the unstented domain, equivalent to that present pre–expansion in a healthy vessel,
as detailed in Fig. 4.2. To couple the stent expansion and species evolution model, the deformed
configuration (Fig. 4.2b) and the Von Mises stress (σvm) map are exported from the former and
utilised within the latter to stimulate the healing response.
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4.2.4 Step 2: species evolution

Fig. 4.1 summaries the key species implemented within the restenosis model, of which there are
seven in total: damage, GFs, synthetic smooth muscle cells (sSMCs), contractile smooth muscle
cells (cSMCs), ECM, MMPs, and ECs. The complexity of this process is truly immeasurable
with much of the biology still unknown [56]. Thus, the species simulated are those where an
understanding of the biological interactions are relatively well characterised. Within the intima
and media, the proliferation, migration, differentiation and apoptotic nature of cellular species
are considered with the productive and degenerative properties of non–cellular constituents also
modelled. The adventitia is presented only as a boundary condition (Γeel) with the effects of
flow also neglected. Details on all model limitations are discussed in more depth in Sec. 4.4. In
general, the species evolution model in [55] is adopted here, with significant changes made to
equations that describe the sSMC and ECM species.

4.2.4.1 Damage (d)

The biological cascade of events which formulates excessive tissue growth is triggered via a me-
chanical stimulus [322,323]. Note that the mechanical factors associated with stent deployment
are not explicitly modelled within this work and the mechanotransduction of ECs, for example,
are ignored [56, 61, 324]. Instead, a protocol presented in [54, 55] is considered, where a degree
of injury (0→ 1) is assigned to the artery in proportion to the stress (σvm) present following stent
deployment. Damage, d(r,z, t), is the variable implemented to emulate vascular injury. Inferior
(σvm,in f ) and superior (σvm,sup) stress limits which correlate to minimum (0) and maximum (1)
levels of damage, respectively are acquired from [314]. As a result, the initial level of damage
(d0) is defined by these limits, where a linear piecewise function details the response between
these upper and lower bounds:

d0 =


0 if σvm ≤ σvm,in f ,

σvm−σvm,in f

σvm,sup−σvm,in f
if σvm,in f < σvm < σvm,sup, in Ωi & Ωm, t = 0. (4.4)

1 if σvm ≥ σvm,sup,

the level of damage is then assumed to decay continuously [55]:

∂d
∂ t

=−kd d cmmp, in Ωi & Ωm, t > 0, (4.5)

where kd , the rate of decay of damage, is linked directly to the current MMP concentration,
cmmp(r,z, t).



106

4.2.4.2 Growth factors (GFs)

Upon injury, the inflammatory response involves the infiltration of leukocytes and macrophages
[56]. These cells then secrete chemicals which upregulate the production of an abundance of
growth factors including, but not limited to, platelet–derived GF (PDGF), epidermal GF (EGF),
and transforming GF (TGF) which behave in harmony to promote healing [56]. With the specific
behaviour of each still poorly understood, the efforts here encompass the behaviour of all growth
factors within a single species, cg f (r,z, t). The rate of change of GFs is detailed by:

∂cg f

∂ t
= Dg f ∇

2cg f +gg f d
(

1−
cg f

Kg f

)
− kg f

(
cg f − c0

g f

)
, in Ωi & Ωm, t > 0, (4.6)

where c0
g f defines the concentration of GFs at t = 0, assumed constant throughout the intima

and media. Moreover, the movement of growth factors is mediated by diffusion, with associated
diffusion coefficient, Dg f , assumed constant and isotropic. The production of GFs to some upper
limit, Kg f , is controlled by the level of injury (d) present within the wall at any given time. Other
sources of GF production exist, where either concentration can be modelled as in–flux through
the endothelium, where entry is permitted in relation to the functionality of the semi–permeable
membrane, simulated recently in [221]. However, to simplify an already complex model, it is
assumed that the increase in GFs is mediated by damage alone. This mimics the inflammatory
response, a key event responsible for the large surplus in species that promote healing. Moreover,
the degradation of GFs is assumed constant, controlled by kg f .

4.2.4.3 Smooth muscle cells (SMCs)

The heterogeneity of the vascular wall is modelled by accounting for both SMC phenotypes.
Within a healthy vessel, the contractile SMCs dominate, where vessel quiescence is maintained
through chemical mediators released from the endothelial layer [70]. However, following vas-
cular injury, a phenotype switch is induced where a surge in active, synthetic SMCs is present.
Various mechanisms are associated with the de–differentiation of SMCs, inclusive of: a rise in
GF concentration; drop in nitric oxide concentration as a result of absent and/or dysfunctional
endothelium; low vessel shear stress; and a drop in ECM concentration [54,56,70,71,325,326].
The cSMC species is given by:

∂ccsmc

∂ t
=−kdi f f

csmc ccsmc Kecm
ssmc + kdi f f

ssmc cssmc Kecm
csmc, in Ωi & Ωm, t > 0, (4.7)

where ccsmc (r,z, t) defines the concentration of contractile SMCs, initially present at a con-
centration of c0

csmc within the media only, assuming that no SMCs exist in the intima prior to
vascular injury. The de–differentiation (kdi f f

cSMC) and differentiation (kdi f f
ssmc) rates mediate pheno-

type conversion to a synthetic and contractile phenotype, respectively. Similar to [54, 55], the
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ECM concentration is assumed to control SMC phenotype through the following expressions:

Kecm
ssmc =−(e−((c

0
ecm/cecm)−1)−|(c0

ecm/cecm)−1|−1), (4.8)

Kecm
ssmc =−(e−((cecm/c0

ecm)−1)−|(cecm/c0
ecm)−1|−1), (4.9)

where a decrease in ECM concentration (cecm < c0
ecm) results in a surge of sSMCs, whilst

the opposite is true when ECM repopulates the domain and surpasses its initial concentration
(cecm ≥ c0

ecm). It is assumed that the dormant phenotype is unperturbed by growth factors and
other mediators that stimulate growth, where their migratory and proliferative capacities are
notably less than that of the active phenotype, where filaments and proteins within the cell dif-
fer [71]. The more active, synthetic phenotype, cssmc (r,z, t), is modelled as:

∂cssmc

∂ t
= Dssmc∇

2cssmc−
∂ccsmc

∂ t
+Pssmc− kssmc cssmc in Ωi & Ωm, t > 0, (4.10)

where the initial density is zero at t = 0, and only appear following vascular injury as given by
∂ccsmc/∂ t. The proliferation of synthetic SMCs (Pssmc) is governed by:

Pssmc = gssmc cg f cssmc

(
1− cecm

K1
ecm

)
, (4.11)

where the increase in sSMCs is primarily a consequence of increased GF concentration, similar
to what was assumed in [55]. However, differently from [55], here spatial elements are intro-
duced, where ECM controls the rate of proliferation through a logistical expression, where the
upper limit, K1

ecm, is defined by Eqn. 4.13. Moreover, the current density of sSMCs is also
accounted for, known to increase GF production as they proliferate [327]. The death of sSMCs
is possible through apoptosis, described by a linear decay rate constant, kssmc. The migration of
cells is accounted for through a diffusive term, where the diffusion coefficient, Dssmc, is assumed
constant and isotropic.

4.2.4.4 Extracellular matrix (ECM)

The ECM is an essential constituent present in the arterial wall, providing structural support to
the vessel; responsible for cell–matrix interactions throughout the remodelling process [60,326].
Moreover, as the restenotic tissue matures, ECM becomes its dominant constituent, and SMC
proliferation is minimal. [56, 60, 76]. In the model proposed, collagen is considered to be the
dominant component of ECM. The model governing ECM is:
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∂cecm

∂ t
= gecmcssmc

(
1− cecm

K1
ecm

)
− kecm

(
cmmp− c0

mmp
)(

1− K2
ecm

cecm

)
, (4.12)

in Ωi & Ωm, t > 0,

where cecm (r,z, t) is the ECM concentration, initially present in all domains at a healthy con-
centration, c0

ecm. The synthesis of ECM is predominantly mediated by SMCs [328] at a rate gecm

and degraded at a rate of kecm through an increase in MMP production. Improving upon the
arbitrary upper limit considered in [55], ECM synthesis is now assumed to be mediated by the
level of damage present in the wall following stent deployment:

K1
ecm = c0

ecm(1+θ), (4.13)

where θ is the mean damage (d) present in the stented area at t = 0, computed as:

θ =
1
Vs

∫
Vs

d dVs, (4.14)

where Vs is the volume of the stented domain.
In line with trends present clinically, the model ensures that vascular injuries of greater sever-

ity allow for increased ECM synthesis during vessel remodelling [329]. Moreover, degradation
to a lower limit of K2

ecm ensured that negative concentrations are not possible.

4.2.4.5 Matrix metalloproteinases (MMPs)

MMPs are a large family of enzymes that exist to mediate ECM degradation. Similar to [55],
the model proposed specifically refers to MMP–2. This particular enzyme is responsible for
cleaving a large range of ECM constituents, where elevated serum levels have been observed
clinically in follow–ups where significant levels of ISR was present [56, 60, 330]. The rate of
change of MMPs is described by the following equation:

∂cmmp

∂ t
= Dmmp∇

2cmmp +
(
gssmc

mmpcssmc +gcsmc
mmpccsmc

)
d
(

1−
cmmp

Kmmp

)
(4.15)

− kmmp
(
cmmp− c0

mmp
)
, in Ωi & Ωm, t > 0,

where cmmp (r,z, t) is the MMP concentration, initially c0
mmp within the arterial wall. Both SMC

phenotypes (ccsmc and cssmc) synthesise additional MMPs through gssmc
mmp and gcsmc

mmp, respectively,
further upregulated by d to initiate an inflammatory response that drives healing by increasing
MMP concentration to some upper limit, Kmmp. The movement of MMPs is enabled through a
diffusive term, which is assumed constant and isotropic (Dmmp). The degradation of MMPs is
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controlled through a linear rate constant, kmmp.

4.2.4.6 Endothelial cells (ECs)

A fully functional endothelial layer present after stent deployment represents a healed artery.
Responsible for many tasks, the presence of this layer ensures natural order within the vessel,
where the release of numerous chemical mediators (e.g. nitric oxide) help maintain vessel qui-
escence [53,58,331]. Moreover, ECs have established mechanotransduction capabilities, where
mechanical forces influence their behaviour [322, 324]. However, vessel quiescence is absent
following stent deployment, where vascular injury is apparent through the denudation of the en-
dothelial layer. The absence of this layer triggers a series of events which stimulate the healing
response through the recruitment of inflammatory cells, halted only by the presence of a fully
functional sheet of ECs. Similarly to Escuer et al. [55], EC regeneration is modelled indepen-
dently of other species such that:

∂cec

∂ t
= Dec∇

2cec +gec cec

(
1− cec

Kec

)
, in Ωi, t > 0 (4.16)

where cec (r,z, t) is the density of ECs permitted to migrate via Dec, gec is the rate of EC recovery
and Kec is the upper limit, depicting a healed endothelial layer. To elicit a healing response, it
is assumed that the number of ECs residing with the stented domain initially is approximately
zero, mimicking endothelial denudation as a consequence of stent deployment [53, 67]. In the
domains unaffected by stenting, the initial EC concentration (c0

ec) is equivalent to Kec.

4.2.4.7 Model parameters

The species evolution model hosts an array of parameters, describing the diffusion, produc-
tion/proliferation, and death/degradation of many constituents. Most parameters have been ac-
quired from [55], with the exception of gssmc and K1

ecm. The former exhibits different units, with
sSMC equation now amended to be influenced by several species. The value was chosen such
that the proliferative trends were comparable with [55]. As for the latter, its value is dictated by
Eqn. 4.13, proportional to the level of damage present in the artery following stent deployment.
Table 4.3 summarises all parameters and their values.

4.2.4.8 Boundary conditions

For the species evolution model, constituents reside generally within two domains, the in-
tima (Ωi) and the media (Ωm). Only cec is exclusive to a single domain (Ωi). As a re-
sult, a zero–flux condition, −nnn · (−Dec∇cec) = 0, is imposed on all relevant boundaries
(Γet,h,Γet,d,Γi,up, and Γiel), where nnn is the unit normal vector. As for the remaining six species
(cssmc,ccsmc,cg f ,cmmp,cecm, and d), a zero–flux condition is imposed on all outer boundaries
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Parameter Description Value Reference

kd Damage degradation 0.5 m3 mol−1 s−1 [55]
gg f GF production 8×10−13 mol m−3 s−1 [55]
kg f GF degradation 1.27×10−6 s−1 [57]
gcsmc

mmp MMP production by cSMCs 3×10−26 mol cell−1 s−1 [55]
gssmc

mmp MMP production by sSMCs 6×10−26 mol cell−1 s−1 [57]
kmmp MMP degradation 4.63×10−6 s−1 [55]
gecm ECM synthesis 2.157×10−11 g cell−1 s−1 [228]
kecm ECM degradation 2×103 s−1 [55]

kdi f f
csmc cSMC differentiation 5×10−7 s−1 [211]

kdi f f
ssmc sSMC differentiation 2.314×10−6 s−1 [211]

gssmc (?) sSMC proliferation rate 3.5 m3 mol−1 s−1 Estimated
kssmc sSMC apoptosis 2.2×10−10 s−1 [183]
gec EC proliferation 1×10−6 s−1 [275]
Dg f GFs 2.6×10−11 m2 s−1 [332]
Dmmp MMPs 1.2×10−12 m2 s−1 [55]
Dssmc sSMCs 1.85×10−13 m2 s−1 [304]
Dec ECs 8×10−14 m2 s−1 [332]
c0

g f GFs 3.48×10−7 mol m−3 [333]
c0

mmp MMPs 3.83×10−7 mol m−3 [334]
c0

ecm ECM 6.67 mol m−3 [334]
c0

csmc cSMCs 3.16×1013 cell m−3 [335]
c0

ssmc sSMCs 0 cell m−3 [336]
c0

ec ECs 5×1011 cell m−3 [337]
Kg f GFs 10×c0

g f [55]
Kmmp GFs 10×c0

mmp [55]
K1

ecm (?) ECM upper limit c0
ecm(1+θ) Estimated

K2
ecm ECM lower limit 0.1×c0

ecm [55]
rec EC radius 17.87 µm [54]
rsmc SMC radius 3.75 µm [55]
lsmc SMC length 115 µm [55]
ρecm ECM density 1 g ml−1 [334]

Table 4.3: Model parameters for the restenosis model. Estimated parameters are denoted with
a ?.

(Γet,h,Γet,d,Γeel,Γi,up, and Γm,up) whilst continuity is assumed between the two layers of the
artery (Γiel). The reader is referred to Fig. 4.2 where all boundaries have been defined.
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4.2.5 Step 3: remodelling

Following the evolution of species, the depiction of excess tissue growth is necessary. Similar
to [55,228,336,338] the growth of biological tissue within a continuum framework is considered.
Volumetric tissue growth is simulated as an open system, where interactions between species
drive a change in the geometrical configuration. Accordingly, the balance of mass within the
system must satisfy:

∂ρ0
η

∂ t
= Πη −∇ ·Mη , (4.17)

where η indicates the species contributing to growth. The concentration of species within the
reference configuration is denoted by ρ0

η . Mη and Πη correspond to the mass flux and source
and sink terms (e.g. proliferation, production, death, and degradation) of all model constituents,
respectively.

With the model encompassing many species, the total material density (ρ0) can simply be
computed as the sum of all its constituents, such that ρ0 = ∑η ρ0

η . Through the previously de-
scribed species evolution model, it is known that each variable, denoting constituent behaviour,
evolves in time which would consequently alter the reference configuration. In other words,
the configuration will swell if the domain is populated in excess or shrink following a decrease
in the concentration and/or density of its constituents. With this approach assuming that vol-
umetric changes are locally isotropic, then the following growth deformation tensor is defined
Fg

η = ρ0
η/ρ init

η III [55, 338], where ρ init
η is the initial density of species η in the reference con-

figuration and III is the isotropic tensor of the second order. Moreover, under the small strain
hypothesis, then:

∇ · vη =
ρη

ρ init
η

, (4.18)

where vη is the velocity of material points [55,228]. Although the remodelling process is inclu-
sive of many cellular and non–cellular constituents, it is ECs, ECM, and SMCs (contractile and
synthetic) that are the primary components of restenotic tissue [60]. As a result, isotropic tissue
growth that leads to restenosis is given by:

∇ · vη =
∂∆cec

∂ t
Vec +

∂∆csmc

∂ t
Vsmc +

∂∆cecm

∂ t
1

ρecm
, (4.19)

where ∆cη defines the difference in species concentration from its initial value in the reference
configuration, ρ0

η . The volume (Vη ) of cellular components and the density (ρη ) of non–cellular
components give rise to tissue growth. Although more complex in shape, for simplicity, it is
assumed that the volume of ECs are spherical (Eqn. 4.20) [54, 55] and SMCs ellipsoidal (Eqn.
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4.21) [71]:

Vec =
4
3

πr3
ec, (4.20)

Vsmc =
4
3

πr2
smclsmc, (4.21)

where ECs have a characteristic radius, rec, and SMCs have a characteristic radius and length of
rsmc and lsmc, respectively.

4.2.6 Numerical methods

The commercially available software COMSOL Multiphysics 5.6a (COMSOL AB, Burlington,
MA, USA) was used to create the finite element (FE) mesh and to numerically solve the mul-
tiscale model. The computational model proposed can be separated into three distinct steps as
presented in Fig. 4.1. The initial step involves the deformation of the artery, where, through a
stationary study, the stent struts are displaced into the arterial wall subjecting the geometry to
high levels of stress. The second step utilises the deformed configuration and arterial stresses
from step 1 to trigger the biological cascade of events which defines restenosis, simulated as a
transient process. Finally, remodelling by means of volumetric tissue growth is simulated as a
further stationary study. Here, the difference between the initial and final concentration/density
of key species are computed to quantify the severity of excess tissue after some time.

A mesh independence study was considered to ensure results were accurate, investigating
the impact of mesh coarseness on damage and % area restenosis (defined in Section 4.2.8). The
computational model employs two different geometries and thus two model files, highlighted in
Fig. 4.2. The initial stationary step involves stent deployment, where the damage field generated
is an essential component of the subsequent species evolution model. Testing the nine different
built–in mesh options within COMSOL, labelled: extremely coarse (M1), extra coarse (M2),
coarser (M3), coarse (M4), normal (M5), fine (M6), finer (M7), extra fine (M8), and extremely
fine (M9), the resulting damage field, along a line between the middle two struts (2 and 3) is
examined within the 30% expansion case (Fig. 4.4a). The inset highlights a negligible difference
in response between M5–9. However, with computational time similar across the five cases, M9
is considered moving forward to ensure the most accurate depiction of damage across the entire
domain.

The next step is the species evolution model which couples together the behaviour of many
species. Although many of the model constituents could be tracked to test mesh accuracy, the
computation of % area restenosis is considered as the index of choice, a consequence of the
interplay between all species. To ensure optimal mesh selection, a change in the index of interest
below 0.5% across multiple iterations is desired. Similar to the previous step, there are nine
meshes such that the labels Ma→h detail the difference in % area restenosis across two successive
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(a) (b)

Figure 4.4: Mesh study using all of COMSOLs in–built mesh operations. (a) The damage profile
directly between strut 2 and 3. The inset highlights M5/7/9. (b) % change in area restenosis
(AR) values between consecutive meshes for the species evolution model (computation detailed
in Section 4.2.8). Horizontal red line depicts the threshold of interest (0.5% change).

meshes, where Ma is the difference between extremely and extra coarse and so on. From Fig.
5.3, it is clear that mesh labels Mg and Mh are sufficient which consider meshes that are finer,
extra fine, and extremely fine, respectively.

Although a ‘finer’ mesh is adequate, with ‘extremely fine’ considered, the computational
time is still very low, under 20 minutes for a mesh hosting approximately 32,000 elements.
Moreover, further efforts (Chapter 5) will explore the role of drug on restenosis, which is known
from literature [169, 196] to require particularly fine meshes as a consequence of non–linear
binding. Thus, to ensure consistency between simulations employing and neglecting drug bind-
ing, the finest mesh is considered.

In all cases, the mesh discretized each domain of the model with a combination of triangular
and quadrilateral elements. The baseline model hosted approximately 32,000 elements (halved
geometry) and 58,000 elements in the complete model. However, the former value increased
towards 75,000 elements in larger domains which explored perturbations in strut thickness and
stent design. In the baseline model, the total computation time was approximately 35 min-
utes, increasing beyond an hour for longer domains where mesh element number was notably
increased.

For all stationary problems, a direct linear solver (MUMPS) was considered with a relative
error tolerance of 10−3. The implicit backward differentiation formula (BDF) method was used
for the time discretization of the transient study step with a variable order of accuracy rang-
ing from one to five in order to obtain better stability and maintain a suitable time–step size.
Further stability was ensured by enabling the nonlinear controller and restricting the maximum
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time–step to 10,000 seconds. The relative and absolute tolerances were set to 10−3 and 10−4,
respectively. All simulations employed 16 cores of an AMDTM Ryzen 9 5950X CPU @ 3.40
GHz processor.

4.2.7 Summary of investigated cases

Stent design is an important factor in determining patient outcome following percutaneous coro-
nary intervention (PCI), where strut thickness and inter–strut spacing have been focal points
since bare metal stents (BMS) were first deployed [32]. Thus, a variety of different cases are con-
sidered that examine the impact of: strut thickness (ST), strut embedment (SE), and inter–strut
spacing (SS) following stent deployment. Details of each of the different cases are summarised
in Table 5.4.

Study A: Rationale for model changes from [55]

Case Name % OE ST [µm] SE [%] SS Constitutive model(s)

A1 Replication of the SEM in [55] 10, 20, 30 65 50 7×Tst HGO
A2 No ECM in restenotic tissue 10, 20, 30 65 50 7×Tst HGO
A3 New ECM threshold 10, 20, 30 65 50 7×Tst HGO & Yeoh
A4 New sSMC proliferation expression 10, 20, 30 65 50 7×Tst HGO & Yeoh

Study B: Impact of stent expansion and geometry

Case Name % OE ST [µm] SE [%] SS Constitutive model

B1 Baseline model (R4) 10, 20, 30 65 50 7×Tst HGO

B2a Impact of ST 20, 30 65, 105, 145 50 7×Tst HGO
B2b Impact of SE 20, 30 65 30, 50, 70 7×Tst HGO
B2c Impact of SS 20, 30 65 50 SSsmall & SSlarge HGO
B3 Sensitivity study 20 65 50 7×Tst HGO

Study C: Exploring further model improvements

Case Name % OE ST [µm] SE [%] SS Constitutive model

C1 Inclusion of adventitia 20, 30 65 50 7×Tst HGO

Table 4.4: Summary of the different cases considered. Study A: To explore rationale for model
changes from [55]. SEM = Species evolution model. Study B: Investigates stent design. Case
B1 investigates species behaviour across the three expansion profiles. Cases B2a-c looks at
perturbations in stent design, focusing on the impact on % area restenosis. Case B3 studies
the impact of perturbations in certain model parameters (gssmc,gecm,kecm). Study C: Investigates
further model improvements in isolation of the fully coupled system. HGO = Holzapfel–Gasser–
Ogden model, as defined in Eqn. 4.1.

Firstly, the previously published species evolution model by Escuer et al. [55] is revisited,
where a new constitutive model has been implemented (A1). A series of additional cases are
then considered, inclusive of: (A2) only SMCs contribute to restenotic tissue, (A3) a new ECM
threshold expression, and (A4) a new sSMC proliferation term. The aim of these being to pursue
a more realistic model of species evolution, and thus restenosis.
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Following the derivation of the baseline model to be used in all subsequent simulations
(A4), three different expansion profiles are simulated and the behaviour this has on the model
constituents is explored in Study B. The importance of strut configuration is then assessed,
where amendments in strut thickness (ST) and strut embedment (SE) are considered within the
baseline configuration, where strut spacing (SS) follows the 7×Tst expression as referred to
earlier. When assessing the impact of SS, different stent designs are proposed, where the strut
number varies within the stented lesion. As such, two different cases are proposed: SSsmall and
SSlarge. The former comprises of 7 struts within a fixed lesion of 5 mm, whilst the latter hosts just
four struts, where SS is significantly increased as a result; an approach similar to that proposed
in [101]. The final case (B3) of study B is a local sensitivity analysis of certain model parameters.
With adjustments made to the sSMC and ECM species (A3, A4), the key constituents that drive
restenosis, the effect of sSMC proliferation (gssmc), ECM synthesis (gecm), and ECM degradation
(kecm) are explored where the effect on tissue growth is likely to be significant. Perturbations in
all other model parameters have been discussed in depth in [55], to which the reader is referred
to for further details.

Finally, a third study is proposed that investigates specific attributes of the computational
model in isolation of the fully coupled system; assessing the inclusion of the adventitia layer on
the stress distribution following stent deployment.

4.2.8 Analysis of results

To facilitate comparison between all cases within a given study, the difference in % area resteno-
sis (% AS) is computed. With efforts focusing on an idealised, healthy artery, it is assumed that
the smallest radius within the stented region defines the severity of restenosis. Therefore, assum-
ing the geometry to be cylindrical at this point, the area which depicts growth can be considered
circular. Thus, comparing the lumen radius post expansion (rl,re f ) and following remodelling
(rl,g) the severity of tissue growth is given as:

%AS =

(
1−

πr2
l,g

πr2
l,re f

)
×100, (4.22)

as depicted schematically in Fig. 4.5. The level of tissue growth should portray significant
changes in key species behaviour, in particular SMC proliferation and ECM synthesis, covered
by a fully functional endothelial layer. In addition to the computation above, constituent be-
haviour is tracked at various points within the domain, highlighting how their response varies
following stent deployment. Unless otherwise stated, a point of interest 0.05 mm behind the
second stent strut is considered to visualise the response of all medial species, whilst ECs are
visualised immediately adjacent to the strut.

Initially, species evolution is simulated over a 300–day period, with tissue growth computed
thereafter. However, shorter periods of growth are also considered, noting the significance of the
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Figure 4.5: Deformed configuration depicts severity in overexpansion, highlighting difference
in lumen radii pre (rl,h) and post–expansion (rl,re f ). The geometry comprising the healed artery
highlights volume of tissue growth, where severity in restenosis can be computed by the differ-
ence present between rl,re f and rl,g.

healing response at early times, providing justification for computational time to be shortened
in subsequent chapters inclusive of drug.

4.3 Results and discussion

4.3.1 Study A: rationale for model changes

Although the state–of–the–art continuum model of ISR published by Escuer et al. [55] is able
to demonstrate broad agreement with clinical trends, there are notable aspects which could be
improved. Firstly, case A1 replicates the species evolution model in [55] and notes an over syn-
thesis of ECM when the HGO SEF (Eqn. 4.1) is implemented. This was further emphasised in
case A2, which was purely investigatory in nature, where the contribution of ECM to restenosis
was neglected. In other words, Eqn. 4.19 simplifies such that only an excess of SMCs and ECs
give rise to restenotic tissue. Moreover, K1

ecm was chosen to be equal to c0
ecm in Eqn. 4.12, such

that ECM was not able to synthesise in excess of its initial concentration. Following this, in an
attempt to improve the realism of the species evolution model, amendments to ECM synthesis
(A3) and sSMC proliferation (A4) are proposed. Note that direct comparisons cannot be made
with [55] in A1 as a result of the differences in the geometrical configuration. Nonetheless, the
significance of a more sophisticated constitutive law is demonstrated in A3 and A4, where two
versions of the restenosis model are proposed: one which implements a Yeoh constitutive law,
and the other a HGO constitutive law.

4.3.1.1 Investigation of the species evolution model

In case A1, the restenosis model is updated to account for a new constitutive model of arte-
rial kinematics, yet the species evolution model is indifferent to that in [55]. The results (Fig.
4.6) of A1 noted an excessive production of ECM within restenotic tissue as part of the vessel
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remodelling process at lower stent expansions (e.g. 10%). This becomes clearer when com-
paring A1 and A2 simultaneously, where the former is a direct implementation of the species
evolution model in [55] and the latter is the same model, but limits ECM synthesis to its initial
concentration only (c0

ecm).

(a) A1 vs. A2: % AS (b) A1 vs. A2: ECM

Figure 4.6: Comparing A1 and A2 across three (10/20/30%) different expansions after 300
days: (a) % Area restenosis values. (b) Final ECM concentration (cF

ecm). Value 0.05 mm behind
strut 2 (Fig. 4.2). A1 is a direct replica of the species evolution model (SEM) in [55] but uses the
HGO constitutive model rather than Yeoh. A2 is the same model but changes the upper limit,
K1

ecm, of ECM synthesis to not exceed the initial concentration, c0
ecm.

In Fig. 4.6a, significant levels of restenosis across all three expansions (10–30%) are ob-
served in A1, which is markedly reduced in A2 when ECM contributions to restenosis are ne-
glected. Looking at the final concentration of the ECM (cF

ecm), at 300 days 0.05 mm behind the
second strut, ECM synthesis is greatest when the expansion is lowest for A1, which is contra-
dictory to findings in literature [56, 60]. The impact of this is further emphasised in Fig. 4.7
where the temporal behaviour of ECM at this point is presented. In Fig. 4.7a, ECM synthesis
is notably more profound when stent expansion is lower, owing to the large restenosis profiles
observed following an overexpansion of 10% (Fig. 4.6a), even when damage is minimal (Table
4.5). However, a more distinct difference in restenosis is observed in A2 (Fig. 4.6b), when ECM
in all expansion scenarios converge to the same value (Fig. 4.7b). These results highlight two
key findings. Firstly, ECM heavily contributes to restenosis, a well known phenomenon from
histological evidence [60,76]. Secondly, it also illustrates that the initial model (A1) synthesises
ECM in excess, particularly in scenarios where damage following stent deployment is minimal,
emphasised the θ values, representing the mean damage, in Table 4.5.
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(a) A1 (b) A2

Figure 4.7: Investigating ECM concentration (cecm) evolution in time at a point 0.05 mm behind
second stent strut. (a) A1. (b) A2.

4.3.1.2 Introducing a condition for the ECM threshold concentration

In attempt to address the aforementioned issues, when further analysing [55], it was noted that
an arbitrary constant threshold for ECM synthesis is proposed. In [55], the threshold condition
was defined as 1.5 × c0

ecm. Thus, when ECM degradation is less severe, more ECM is synthe-
sised as a result, as illustrated in Fig. 4.7a. This is because there is less space to fill following
stent deployment which means synthesis may be more excessive. In other words, if the parame-
ter for the maximum ECM concentration (K1

ecm) is an arbitrary constant, not influenced by stress
or damage, the limit to which ECM synthesises towards will always be the same. However, this
will be approached more quickly in situations where damage is less severe as ECM degradation
is driven by MMP production, which is upregulated by damage and is more prevalent following
greater stent expansion. Therefore, an alternative upper limit is proposed, case A3, where the
ECM threshold condition is defined by Eqn. 4.13. To recap, this expression states that the limit
of ECM synthesis is proportional to the level of damage after stent deployment. This expres-
sion, like in [55], still ensures that restenotic tissue becomes more profound as stent expansion
increases (Fig. 4.8a) and that more ECM degradation following a deeper stent deployment is
observed (Fig. 4.10a). However, the new expression for the ECM threshold concentration en-
sures ECM synthesis is also increased as stent deployment becomes more intrusive, a feature
not captured in case A1 (Fig. 4.8b) nor in [55].

4.3.1.3 Improving the expression for SMC proliferation

A further change made to the restenosis model is how the proliferation of sSMCs (Pssmc) is
described. In [55], cells were allowed to freely proliferate in proportion to the growth factor
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(a) A1 vs. A3: % AS (b) A1 vs. A3: ECM

Figure 4.8: Comparing A1 and A3 across three (10/20/30%) different expansions. For A3, two
different constitutive models are considered, HGO and Yeoh. (a) % Area restenosis values. (b)
Final ECM concentration (cF

ecm). A1 is the same species evolution model as [55], where the
ECM threshold is given by K1

ecm = 1.5× c0
ecm. A3 proposes a new ECM threshold expression

(Eqn. 4.13), given by K1
ecm = c0

ecm(1+θ).

concentration:

Pssmc = gssmc(cg f − c0
g f ), (4.23)

where sSMC growth is governed by the difference between the current and initial growth factor
concentration. Here it is proposed that the proliferative term (Eqn. 4.11) still accounts for the
surplus in GF concentration as a result of increased damage, but also introduces mediation of
cell growth through the current cell density and ECM concentration. In particular, the influence
through ECM suggests that as more space becomes available then cells can grow more quickly
through the logistical expression considered. Comparing how the model response varies as a
result, Fig. 4.9a charts the effect on restenosis between A1 and A4, whilst Fig. 4.9b details the
trend in the final ECM concentration. Across the different expansions, a much larger increase
in tissue growth is noted. In other words for A1, the difference between restenosis profiles is no
greater than 10% between any two expansions, yet for A4 the severity of restenosis more than
triples from when expansion ratio increases from 10 to 20% and approximately doubles from
20 to 30%. Moreover, the ECM trends, as was true with A3 (Fig. 4.9), are more appropriate,
where the final concentration increases alongside stent expansion severity. Finally, plotting the
ECM concentration at a given point (Fig. 4.10b), the temporal trends observed are consistent
with those in case A3 (Fig. 4.10a), increasing as vascular injury increases.
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(a) A1 vs. A4: % AS (b) A1 vs. A4: ECM

Figure 4.9: Comparing A1 and A4 across three (10/20/30%) different expansions. For A4, two
different constitutive models are considered, HGO and Yeoh. (a) % Area restenosis values. (b)
Final ECM concentration (cF

ecm). A1 is the same species evolution model as [55], where sSMC
proliferation is given by Eqn. 4.23. A3 proposes a new expression for sSMC proliferation, given
by Eqn. 4.11.

(a) R3 (b) R4

Figure 4.10: Investigating ECM concentration (cecm) evolution in time at a point 0.05 mm
behind second stent strut. (a) A3. (b) A4. In all cases, solid lines (–) refer to simulations that
employ the HGO model, whilst dash-dot (-.) lines to the Yeoh model.

4.3.1.4 The significance of the constitutive model

Although alluded to in Section 4.3.1.2 and 4.3.1.3 when discussing A3 and A4, respectively,
the significance of arterial kinematics is reiterated here, where two constitutive models were
considered: HGO and Yeoh. The results demonstrate that with simpler arterial kinematics, the
level of restenosis following a fixed expansion is more severe (Fig. 4.8 & 4.9) as a consequence
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Expansion Profile
10% 20% 30%

Case θ cF
ecm [mol m−3] θ cF

ecm [mol m−3] θ cF
ecm [mol m−3]

A1 n/a 8.5 n/a 7.86 n/a 7.66
A2 n/a 6.67 n/a 6.67 n/a 6.67

A3 – HGO 0.023 6.815 0.234 7.36 0.612 7.8
A3 – Yeoh 0.222 7.33 0.636 7.78 0.959 7.97

A4 – HGO 0.023 6.813 0.234 7.08 0.612 7.44
A4 – Yeoh 0.222 7.1 0.636 7.5 0.959 7.8

Table 4.5: Comparison between θ , the average damage in the stented domain and the ECM
concentration at the final time, 300 days, directly behind the second strut (cF

ecm).

of increased arterial stresses. This is further emphasised in Table 4.5 where the θ values are
higher within a given expansion across the two constitutive models simulated. This alludes to
the importance of arterial kinematics, where models that do not accommodate for the family of
collagen fibres (e.g. Yeoh) may overestimate the effect of stent deployment by means of arterial
stresses [315].

Moving forward, the computational model will implement the HGO constitutive law to de-
scribe arterial kinematics, where the dispersion of collagen fibres is accounted for. Moreover,
the upper limit to ECM synthesis will be given by Eqn. 4.13, where stent deployment has a direct
impact on vascular remodelling. Additionally, sSMC proliferation is inclusive of more realistic
dynamics, where spatial considerations through the ECM concentration is proposed alongside
the current density of sSMCs, directly mediating their proliferative capacity.

4.3.2 Study B: Impact of stent expansion and geometry

4.3.2.1 Stent expansion

Case B1 explores the impact of stent expansion on restenosis, analysing how species behaviour
varies across the different deployment depths. An important definition in the model is the ini-
tial condition for damage (Eqn. 4.4), highlighted in Fig. 4.11a. Using this definition, the
species evolution model simulated within the deformed geometry can be initialised with a spa-
tiotemporal damage field, which is a consequence of the arterial stresses present following the
displacement of the struts (Fig. 4.11b).

Following stent expansion, the subsequent impact on species evolution is observed (Fig.
4.12). Across all constituents, the trends present match those expected, where an increase in
damage following more intrusive stent deployment stimulates an increase in mediators associ-
ated with healing. For example, GFs and MMPs are two species which are directly upregulated
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(a) (b)

Figure 4.11: (a) Definition of the damage initial condition. Linear piecewise function (Eqn.
4.4) between two limits, σvm,in f and σvm,sup [54, 55, 314]. (b) Initial damage following each
expansion. Upper: 10% (θ = 0.023), Middle: 20% (θ = 0.234), and Lower: 30% (θ = 0.612).
All cases were simulated using the HGO constitutive model.

by damage. Thus, Fig. 4.12a and 4.12b clearly show an increase in production for each of these
species as stent deployment depth is increased. With an increase in GFs and MMPs, a rise in
the total SMC density is present (Fig. 4.12c & 4.12d) which in turn synthesises more ECM
(Fig. 4.12e). Tissue growth is formulated as a consequence of excess SMC growth and ECM
synthesis, which becomes more profound as deployment depth increases (Fig. 4.13 & 4.14a),
agreeing with physiological trends present clinically [56, 60, 63, 206].

Taking a closer look at the tissue growth profiles, similar to [55], it is assumed that the
minimum radius within the stented domain defines restenosis. As a result, a more schematic
depiction using concentric circles can be considered to aid in the visual representation of ex-
cessive tissue growth, where direct comparisons can be made with the level of overexpansion
following stent deployment (Fig. 4.13). The image on the left (a) corresponds to the change in
lumen radius following expansion. The inner most circle (white) depicts the healthy artery, pre–
expansion, with a radius of rl,h. Adopting three clinically relevant expansion ratios (10/20/30%),
changes in the lumen radius can then be observed (to scale with respect to rl,h). Alluded to ear-
lier, each expansion results in the deformation of the arterial wall, where the resultant stress
field between ratios is different. As such, the growth profiles are notably different, as presented
in Fig. 4.13b, where rl,n is the normalized lumen radius, such that rl,n = 1 and corresponds to
the lumen radius immediately after expansion, as given by rl,re f (R), where R = 10, 20, or 30%.
Therefore, although rl,re f differs between expansion ratios, the normalised radius means that all
growth profiles can be superimposed onto a single figure, where the severity of tissue growth can
be visualised graphically. With excess tissue growth computed by Eqn. 4.22, then a percentage
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: How the different species: (a) GF, (b) MMP, (c) sSMC, (d) cSMC, (e) ECM, and
(f) EC vary as stent expansion is increased. Points: A is 0.05 mm behind the second strut; B is
at the far edge of the domain (media, Γm,up); C is in the intima, between strut 2 and 3; and D is
at the far edge of the domain (intima, Γi,up).
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value is outputted. This is a percentage increase in tissue growth with respect to the expanded
radius (rl,re f ), which rl,n has been normalized with. Thus, with the lumen radius normalised,
the tissue growth profiles for each expansion scenario can be superimposed onto a single figure
(Fig. 4.13b).

Figure 4.13: Impact of stent expansion (legend) on restenosis. (a) Schematic representation of
the different lumen radii (rl,re f ) post–expansion. Healthy artery (rl,h) = 1.5 mm. Expansions
of 10, 20, and 30% result in a radius of 1.65, 1.8, and 1.95 mm, respectively. (b) Schematic
representation of the different lumen radii following restenosis after 300–days (rl,g), where rl,n
is the normalized lumen radius, normalized with respect to the reference radius (rl,re f ) for each
case and denoted the emboldened line. The normalized lumen radius in each growth case is:
rl,g(10%) = 0.9731, rl,g(20%) = 0.9093, and rl,g(30%) = 0.8235 computed from restenosis values
in Table 4.6.

As expected, a more obtrusive deployment protocol (outermost circle: Fig. 4.13a) results
in an increased vessel re–narrowing (innermost circle: Fig. 4.13b) as a result of higher arterial
stress.

The quantitative results are presented in Fig. 4.14a, illustrating the significance of stent ex-
pansion on excessive tissue growth. Clearly, the majority of growth occurs within the first 50
days (≈ 90%), agreeing with [55], where only subtle changes in growth were present after 2
months with regeneration of the EC layer not yet complete. Note, across the three expansions,
the recovery of the EC layer is indifferent (Fig. 4.12f). This is a consequence of the model
formulation, where ECs behave independently of other constituents. Additional efforts in Chap-
ter 6 explore amendments to the equation detailing the behaviour of EC species, introducing
coupling with other key species in the restenosis process.
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(a) (b)

(c) (d)

Figure 4.14: Exploring the significance of stent expansion and geometry. (a) Baseline model,
parameters listed in Table 4.3, across three expansion profiles (10, 20, 30%) over a 50 and 300–
day period. The impact of (b) ST, (c) SE, and (d) SS on %area restenosis over a 300 day period
for two expansion profiles, 20% and 30%.

4.3.2.2 Stent geometry

Cases B2a–c explore the effect of strut configuration on % area restenosis (Fig. 4.14b–4.14d),
where perturbations in strut thickness, strut embedment and inter–strut spacing are analysed,
respectively. Quantitative values for each of these simulations are reported in Table 4.6, where
it is further emphasised that approximately 90% of growth occurs within the first 50 days across
all cases simulated.

Results demonstrate qualitative agreement with trends present in both experimental and clin-
ical literature. In particular, both an increase in strut thickness and decrease in inter–strut spacing
expose the arterial wall to higher stresses following stent deployment. As a result, with how the
initial condition is defined (Fig. 4.11a), the trigger of restenosis is more potent as a conse-
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quence of the higher stresses, hence the more profound restenosis profiles (Fig. 4.14b & 4.14d).
The impact of increased strut thickness has been extensively explored in other models of ISR
( [54, 55, 206]), which the results here agree with. Moreover, this satisfies trends present clini-
cally, where various studies have demonstrated the superior performance of thinner struts with
respect to key indices such as ISR and stent thrombosis [339–341]. Fig. 4.14b illustrates the
quantitative results across the different stent expansions for each strut thickness, while Fig. 4.15
presents the direct comparisons between each of the tissue growth profiles as produced by the
computational model.

Figure 4.15: Severity of volumetric tissue growth for each strut thickness (65, 105, and 145
µm) when the stent has been expanded by 20 and 30% after 300 days. The quantitative values
detailing the severity of tissue growth are reported in Table 4.6. Volumetric change is measured
as the change in volume divided by the original volume of the arterial wall (∆V/V ).

To assess the significance of inter–strut spacing, a comparison between different stent de-
signs (SSsmall versus SSlarge) within a fixed domain length demonstrates that an increased num-
ber of struts (reduced inter–strut spacing) produces greater levels of restenosis. This result is
in agreement with Timmins et al. [101], who compare computational efforts with animal data,
noting that an increased number of struts across a fixed lesion length subjects the artery to higher
stresses, where tissue growth as a result is more prominent. Other more haemodynamically fo-
cused efforts suggest that WSS is significantly lower in configurations where inter–strut spacing
is smaller, further exacerbated in cases where the struts are thicker and when inter–strut spacing
is uneven [137, 342]. Thus, if the effects of flow were introduced into the model proposed, it
is anticipated that greater levels of restenosis would be expected in configurations where strut
spacing was reduced, where recirculation zones become more apparent [137, 343].

Finally, the pre–embedment depth was varied, assessing the impact of different, but still uni-
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Model Expansion Profile: % Area Restenosis

10% 20% 30%
50 days 300 days 50 days 300 days 50 days 300 days

Baseline 2.45 2.69 8.22 9.07 15.82 17.58

Varying ST

65µm (?) 8.22 9.07 15.82 17.58
105µm 11.23 12.63 20.29 23.08
145µm 13.6 15.28 22.8 25.94

Varying SE

30% 8.19 9.02 15.78 17.46
50% (?) 8.22 9.07 15.82 17.58

70% 8.35 9.29 15.94 17.73

Varying Stent Design

Low stress 5.64 7.06 14.9 17.34
High stress 12.47 13.82 22.23 25.69

Table 4.6: How % area restenosis varies across the various cases considered in study B. The
growth at both 50 and 300 days are presented. (?) cases are those which overlap with the
baseline geometry.

form, embedment depths on restenosis. Results illustrate that the healing response is indifferent
across the various cases (Fig. 4.14c). Note, however, that the model proposed considers an ide-
alised geometry, where deep arterial tears and malapposition are not simulated. In particular, an
abundance of literature has stated the impact of malapposition on patient outcome, attributed to
both ISR and stent thrombosis [32,137,344]. Future work should therefore look to simulate such
cases where malapposition and/or deep arterial tears are possible. The main purpose of these
different embedment profiles was to assess their impact on drug delivery, which is considered in
Chapter 5.

4.3.2.3 Model sensitivity study

With the effect of the stent geometry and expansion explored in depth, a local sensitivity analysis
was carried out to observe the significance some of the model parameters (gssmc,gecm,kecm) have
on tissue growth within the baseline geometrical configuration. With all model parameters ex-
plored in depth in [55], only those changed as per Study A are considered for further assessment.
Fig. 4.16 demonstrates that the model results are sensitive to petrubation in all three parameters
when the parameter of interest is varied by an order of magnitude that promotes growth. For ex-
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ample, increasing the rate of sSMC proliferation (gssmc) notably increases restenosis, with these
cells primarily contributing to the process. Moreover, an increase in ECM (kecm) degradation
or decrease in ECM synthesis (kecm) has the same effect, with more space made available for
the sSMCs to proliferate. Although the latter point may appear counter–intuitive, this is not the
case. This is because of the new definition for the ECM threshold as per Eqn. 4.13, where the
upper limit for ECM synthesis is now governed by stent expansion as opposed to approaching
an arbitrary constant as was true in [55].

Figure 4.16: The effect varying parameters gssmc,gecm, and kecm has on restenosis. RV = Refer-
ence value as described in Table 4.3.

With the parameters of this model acquired from a plethora of different studies (Table 4.3),
additional work is necessary in acquiring a more consistent data set that aids in improving the
predictability of the model. Although it is likely that the rates at which species like GFs are
produced at will vary on a patient-to-patient basis (consequence of damage), the rate of sSMC
proliferation and ECM synthesis are likely to be similar within a species [275], only fluctuating
implicitly through an increase influx of GFs or delayed regeneration of the endothelial layer.

4.3.3 Study C: the effect of incorporating the adventitia

Case C1 considers the implementation of all arterial layers, accounting for the mechanical sig-
nificance of the adventitia which was previously absent. The computational model (Fig. 4.2) is
thus extended by 0.4 mm radially, representative of the thickness of adventitial tissue, obtained
from [169], along with the constitutive model parameters. All other aspects of the mechanical
model are unchanged, and stent deployment is simulated as before through the displacement of
stent struts.

Observing the damage profile between two struts, it is notably reduced throughout the intima
(I) and media (M) when accounting for the adventitial layer (Fig. 4.17). For lower expansions,
the difference between damage profiles is less. Moreover, an interesting behaviour is observed
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for more intrusive cases (30% – Fig. 4.17b), where an increase in damage is observed towards
the boundary between the media and adventitia (external elastic lamina, EEL). Such intrusive
stent expansion could result in the stimulation of adventitial cells (e.g. fibroblasts), which has
been reported in the literature following the presence of deep arterial tears through the EEL
[345, 346]. Thus, model extensions could probe the inclusion of cells residing in the adventitia
where stent expansion is so profound that damage/stresses present in the adventitia stimulate
deeper cell activity. Alternatively, the damage map present following deeper stent protrusion
(30%) may be a consequence of the simplistic stent expansion methodology employed.

(a) (b)

(c) (d)

Figure 4.17: How inclusion or absence of adventitia influences the damage profile between two
struts (2 and 3) following stent deployment. I = Intima, M = Media, and A = Adventitia. (a, b)
How damage varies within I and M with (w/) and without (w/o) the adventitial layer following
(a) 20% expansion or (b) 30% expansion. (c) How damage profiles vary across full wall thick-
ness (I+M+A) following 20% and 30% expansions. Solid lines refer to simulations including
the adventitial layer, whereas dashed lines are those which neglect it. (d) 2D representation of
damage profiles within stented domain.
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The reduction in damage throughout the medial layer following the implementation of the
adventitia layer is explainable. Although hosting numerous responsibilities, the adventitia is
essentially a sheath of connective tissue comprising of a collagen–rich ECM to provide vessel
rigidity [10]. Highlighted in [315, 347], when subject to significant levels of strain, the adven-
titia layer stiffens which prevents the artery from overstretch or even rupture, conferring the
protective function of this layer.

However, the inclusion of the adventitia significantly increases computational time. For
example, the expansion process alone is increased by approximately ten fold prior to simulating
species evolution and drug transport (Chapter 5). With species behaviour in this layer still poorly
understood and conflicting [60], the presence of this layer is ignored, similar to [55]. Complete
justification for neglecting the adventitia in the full computational model is provided in Section
4.4.

4.4 Limitations & Future work

As is common with computational models, a number of assumptions have necessarily been
made. As justified throughout, the key limitations associated with the multiscale model relate
to: (i) arterial wall complexity, (ii) stent deployment, (iii) neglecting CFD, and (iv) the resteno-
sis and tissue growth model. The following discussion will elaborate on each in more depth,
suggesting avenues for improvement as part of further work which would serve to enrich the
current model.

4.4.1 Arterial wall complexity

The baseline 2D–axisymmetric model is comprised of only two layers, the intima and media.
Study C, however, probed the role of the adventitia from a mechanical viewpoint, assessing how
its presence notably reduced the arterial stress present following stent deployment, across a range
of clinically relevant expansion ratios. Further work should elaborate on this, with the inclusion
of adventitial cells in restenosis considered, where recent evidence has suggested the role of
myofibroblasts, particularly following deep arterial tears [346]. However, with the function of
such cells still poorly understood during this process, and evidence existing that contradicts this
notion [56,60,348], the inclusion of the adventitia has been left to further work, where additional
experimental evidence can hopefully provide more insight.

Moreover, subsequent efforts should look to explore the impact of disease on restenosis.
This model, as is true for many others (e.g. [53–55, 65–67, 206, 215]), deploys the stent within
a healthy, idealised vessel. However, as imaging modalities improve, better visualisation and
characterisation of plaque burden is available [46,235]. As such, the labelling of different types
of plaque is possible, from regions hosting cells (fibrous cap) to those composed predominantly
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of calcium (calcified plaque). However, the heterogeneous nature of atherosclerosis ensures that
plaque composition differs substantially from patient–to–patient, alluded to in a recent model
of atherosclerosis progression [218]. Even so, this model does not simulate a variety in plaque
composition, instead just labelling the disease as a lipid core. The progression of disease is
particularly difficult to emulate computationally, especially given that the process is highly time–
dependent such that the lesions’ cellular composition varies substantially as the disease evolves,
having a demonstrable impact on computational time [349, 350]. Nonetheless, through the aid
of histological data, as considered in [218], one can validate the effectiveness of their model
at emulating disease progression in a once healthy vessel. Then, once the vessel is in a state
that would require clinical intervention, the impact of stent deployment can be considered in

silico initially to facilitate the optimal course of treatment in vivo. The natural next step would
then be to assess drug release in diseased vessels, where the complex composition of plaque has
been shown to influence drug transport and retention [196]. However, first an assessment of the
performance of drug within a healthy vessel is needed, investigated in depth over Chapter 5–6.

4.4.2 Stent deployment

Although a significant improvement from [55] has been made with respect to the constitutive
model that describes arterial kinematics, the process of stent deployment remains simplified.
Nonetheless, the current approach simplistically captures the essence of the process, such that it
produces realistic stress–distributions that trigger the restenosis model. Although the expansion
process involves prescribing a simple displacement to each strut, the 50% pre–embedment pro-
file is what presents most uncharacteristic of the true deployment process. Further work should
look to implement a more sophisticated approach, where deployment is permitted by means of
a balloon catheter to achieve the desired level of overexpansion. This would be a much more
complex contact problem, significantly increasing computational cost. Notwithstanding, such
an approach would still be limited within an idealised vessel and should be considered in tan-
dem with progression in both model dimension (2D → 3D) and diseased state, as suggested
recently [115, 122, 223].

4.4.3 Neglecting CFD

Probably the most prominent limitation is the lack of fluid dynamics, and its impact on the
process of tissue growth. In recent years, several studies have demonstrated with the aid of
experimental evidence, that low levels of WSS give rise to more severe growth profiles [218,
220,221,226,227]. However, these articles all fail to simulate the explicit role of vascular injury
on restenosis, where arterial stress distribution following stent deployment has been known to
significantly influence tissue growth [54, 55, 65, 214]. In fact, [218, 220, 226, 227] all propose
a continuous or linear piecewise function similar to Eqn. 4.4, where minimum and maximum
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bounds of damage refer to WSS levels of 0 and 1 Pa, respectively. These trigger restenosis by
assigning each model agent with a level of damage between 0 and 1, a method similar to the one
employed here, which instead considers the Von Mises stresses present following deployment.
To the best of the authors knowledge, only Jansen et al. [221] propose an alternative method,
where WSS levels dictate the influx of growth factors through the damaged endothelial layer, for
which the authors explicitly state that the precise dependence is unknown. In reality, it is likely
that both WSS and arterial wall stress influence the restenosis profile, and should be considered
together in future models [222,306]. The former has particularly been evidenced as a mediator in
endothelial cell dysfunction [151,155,351,352], with the latter influencing constituent behaviour
deeper in the arterial wall [55, 56, 65], where the role of WSS transmission into deeper arterial
layers is still poorly understood [55, 218, 226]. This is particularly emphasised in [226] where a
diffusion equation is employed to describe the loss of damage through the wall as a consequence
of WSS at the lumen–wall interface. As such, further work should look to investigate the role of
both arterial stress and WSS on restenosis, similar to [306], as the understanding of the complex
phenomenon becomes more clear.

4.4.4 Restenosis & Tissue growth model

Aside from the inclusion of species residing within the adventitia, other limiting factors associ-
ated with the species evolution model exist, with the majority of these discussed in depth in [55].
Addressing some of these, the current model proposed amendments to the proliferation of SMCs
and synthesis of ECM. The former introduced spatial restrictions, where increased space as a
consequence of ECM degradation heightened the proliferative capacity of SMCs. The latter
introduced an expression for the threshold associated with ECM synthesis, permitting a fair
representation of remodelling in response to deeper vascular injury [56].

However, a key limitation that remains is the model proposed to detail the evolution of ECs
(Eqn. 4.16). Currently, the timescale of EC regeneration is in line with the degradation of
damage such that all events associated with healing occur in a timely manner. An alternative
approach would be to allow the EC species to directly influence key mediators in the restenosis
process, particularly the SMC population as proposed in [53, 65–67]. Thus, upon the regener-
ation of the endothelium, the artery can be categorised as being ‘healed’. However, with the
species residing in distinct domains, a direct coupling between these two cell types is more chal-
lenging given the current framework. As such, amendments to the restenois model are probed
in Chapter 6, where a direct coupling between ECs and SMCs is proposed, with the role of drug
specificity also examined.

Finally, limitations are also apparent in the tissue growth model. Currently, a continuum
biological tissue growth framework is proposed [55,228,336,338], where changes in the density
/ concentration of key species drives excessive tissue growth by means of a stationary study.
Further work should look to increase the sophistication of this approach, where growth is instead
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transient. Initial thoughts tend towards a moving boundary approach, where the mesh would
change as the tissue swells or shrinks. Due to the complexity of such a problem, a preliminary
1D model should be considered first before extending efforts to the 2D framework presented
here.

4.5 Conclusion

In conclusion, this chapter builds upon an already existing mathematical model [55], making sig-
nificant improvements that serve to enrich it. These include amendments to the constitutive laws
implemented to describe arterial kinematics, as well changes to SMC proliferation and ECM
synthesis. The model involves numerous steps, most notably accounting for the mechanical
damage as a consequence of stent deployment, a process known to induce the healing response.
As such, species within the arterial wall respond accordingly to stimulate healing, resulting in
excessive tissue growth. The results suggest good qualitative agreement with clinical trends,
and thus chart responses similar to many different models of ISR [53–55, 65, 66]. Although, it
should be noted that with such a complex model there exists a large number of parameters, for
which estimation is needed as discussed in [55]. With the source of these ranging across animal
species (e.g. rabbits, pigs, etc.), further work should look to devise a knowledgeable parameter
base true to each, where perturbations in the healing process are known to vary [275].

Although several limitations are present, true to any computational model, a key limiting fac-
tor present currently is the model equation derived to describe the EC population (Eqn. 4.16).
Thus, to address this, Chapter 6 investigates possible model alterations that ensure the EC pop-
ulation, the key marker for arterial healing, is directly linked to crucial species (e.g. SMCs)
involved in tissue growth. As such, the role of drug specificity can then be analysed, where the
effect on multiple cell types is simulated, and the possibility of delayed healing probed [24,25].
Prior to this, a novel coupling must be established between the current restenosis model, and one
which details the transport of drug from the stent coating through the arterial wall. This is the
focus of Chapter 5, where the anti–proliferative properties of drug on SMC growth is assessed,
with the subsequent effect on restenosis explored.



134

Chapter 5

An in silico model of stent–induced drug
delivery and its role in the inhibition of
restenosis

5.1 Introduction

Chapter 4 developed a novel in silico model of in–stent restenosis (ISR). However, a major
limitation of the model, as is true in almost all models of ISR, is the absence of state–of–the–
art drug transport kinetics. With drug–eluting stents (DES) known to significantly reduce the
likelihood of ISR over bare metal stents (BMS), it is important for models aspiring to be adopted
as pre–clinical tools to consider the delivery, and importantly, the effect of drug on vascular
remodelling following stent deployment.

Computational models illustrating the performance of DES are ever pressing given that re-
cent clinical evidence has illustrated the non–inferiority of percutaneous coronary intervention
(PCI) with DES to more invasive procedures (coronary artery bypass grafting, CABG) [48].
Fearon et al. [48] noted that ISR is still an important clinical problem, where approximately 6%
of patients required a repeat procedure after 1–year. This is expected to then increase annually at
a rate of 3–5 % thereafter [353], heightened further in more complex lesions [232]. These rates
equate to hundreds of thousands of patients worldwide re–visiting hospital for a repeat, invasive
procedure, which has a notable impact on healthcare, resources, and cost. While many factors
could be attributed to the stubbornly high number of repeat procedures needed, it is known that
ISR is often the primary culprit [50]. With the stent industry focusing primarily on the materials
aspect of stent design (e.g. different polymers, metal alloys, and strut thicknesses), the aspect
of drug has been under–explored, except for the consideration of new limus drugs. Thus, the
drug–delivery protocol is worth re–visiting as a potential target for further optimisation in stent
design.

With this in mind, it is somewhat surprising that very few models exist that detail the effect
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of drug on cell proliferation and subsequently restenosis [183, 205–208]. Such models were
discussed in depth in Chapter 2, where the governing equations implemented to describe the
action of drug were examined. These models range in complexity, from ordinary differential
equations (ODE’s), where drug impedes growth by different mechanisms: phenotype blocker,
growth inhibitor, apoptotic inducer [183, 207], or even simpler still, where the explicit action
of drug is neglected and a small sensitivity analysis on the proliferative parameter of SMCs is
considered to convey the presence of drug [208]. Nonetheless, regardless of the model proposed
to detail the inhibitory effect of drug, inadequate drug transport kinetics are often employed. For
example, drug release into the arterial wall is either: (i) absent [208], (ii) simulated by means of
an exponential condition that emulates drug release [207], or (iii) simulated assuming simpler
transport kinetics, differing from the current state–of–the–art [183, 205, 206]. However, models
which do employ the current state–of–the–art drug transport kinetics (e.g. [172, 178, 188, 200])
entirely neglect cellular dynamics, where the artery is assumed static (does not account for tissue
growth) and constituents (e.g. cells) that are influenced by drug ignored. Therefore, the focus
of this chapter is to develop a novel computational model which simulates restenosis subject to
the spatiotemporal delivery of drug, assessing the impact of features associated with the design
of DES on patient outcome.

The methodology immediately follows, focusing on the drug transport model and its explicit
coupling to smooth muscle cell (SMC) function within the spatiotemporal framework of resteno-
sis presented in Chapter 4. Efforts are then separated into two studies: examining the impact of
stent design and different models of drug–effectiveness. As part of the latter, the validity of the
static artery assumption in an environment that is naturally heterogeneous and time–dependent
is tested. The results are discussed extensively before addressing the key limitations, where
further work suggests possible improvements to the current model.

5.2 Methodology

To assess the impact of spatiotemporal drug delivery on cell proliferation and thus restenosis,
the multi–step computational model implemented in Chapter 4 is adjusted accordingly. To do
so, step 2 detailing species evolution is extended to integrate a drug transport model within the
framework. This is highlighted in Fig. 5.1, which is an amendment to Fig. 4.1: Chapter 4,
emphasising the process of drug release and how it subsequently modulates restenosis through
the inhibition of SMC proliferation. The geometry of the model is unchanged from Chapter 4
(Fig. 2) which defines all boundaries and domains. Moreover, the first and last step, detailing
stent expansion and tissue growth, respectively are also indifferent from Chapter 4, where the
reader is again referred to for more details on these aspects.
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Figure 5.1: Schematic highlighting the action of drug subsequent to release from the polymer–
coated stent and how it is integrated into the multi–step model of restenosis.

5.2.1 Drug transport model

Drug release from a durable polymer coating is considered, which is commonly described in the
literature as a diffusion driven process [78]:

∂cp

∂ t
= Dp∇

2cp, in Ωp, t > 0, (5.1)

where cp (r,z, t) is the free drug concentration in the polymer coating, with an effective constant
diffusion coefficient of Dp. The initial coating concentration (c0

p) is computed by dividing the
initial mass of drug per strut (M0) by the volume of the coating (Vp) per strut. The domains (Ω)
and boundaries (Γ) are presented in Chapter 4: Fig. 4.2. Following release from the coating,
the free drug enters the arterial wall, denoted by cw (r,z, t), and is described by means of a
reaction–diffusion equation:

∂cw

∂ t
= ∇ · (DDDw∇cw)−

∂bns

∂ t
− ∂bs

∂ t
, in Ωi & Ωm, t > 0, (5.2)

where cw is initially zero. With the arterial wall heterogeneous, diffusion of free drug is governed
by the following diffusivity tensor, DDDwww:

DDDw =

(
Dr 0
0 Dz

)
, (5.3)
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noting that diffusion in the radial (Dr) and axial (Dz) directions differ. The second and third term
on the right–hand side of Eqn. 5.2 detail the depletion of free drug as a consequence of binding.
The former denotes non–specifically bound drug, bns (r,z, t), which binds to constituents such
as extracellular matrix (ECM). The latter details specifically bound drug, bs (r,z, t), which is
assumed to bind to intracellular receptors present within SMCs. The rate of change of concen-
tration of specific and non–specific bound drug are governed by:

∂bs

∂ t
= ks

on cw(Bs
c−bs)− ks

o f f bs, (5.4)

∂bns

∂ t
= kns

on cw(Bns
c −bns)− kns

o f f bns, (5.5)

where ki
on and ki

o f f (i = s,ns) denote the binding on and off rates whilst Bi
c (i = s,ns) refers to

the maximum local density of binding sites present, which is assumed constant in the baseline
model, in keeping with the current state–of–the–art models [78, 79, 178].

In the computational model proposed, only the action of sirolimus is considered. Of all
drugs used clinically for DES, this is the most widely studied in the context of drug transport
and retention following the release from endovascular devices. As such, there exists a full set of
parameters available in the literature, displayed in Table 5.1 [79, 170, 172, 188, 196]. Moreover,
further motivation exists, where several models that assess sirolimus drug efficacy neglect to
consider how the drug interferes with cell proliferation [79, 172]. Additionally, most drugs
coated on modern generation stents are derivatives of sirolimus [22], further emphasising the
relevance of its selection here.

Parameter Description Value Reference

Dr Radial drug diffusion coefficient 7×10−12 m2 s−1 [197]
Dz Axial drug diffusion coefficient 4×10−11 m2 s−1 [197]
ks

on Specific binding on rate 800 m3 mol−1 s−1 [79]
ks

o f f Specific binding off rate 1.6×10−4 s−1 [79]
Bs Specific binding site density 3.3×10−3 mol m−3 [79]
kns

on Non–specific binding on rate 2 m3 mol−1 s−1 [79]
kns

o f f Non–specific binding off rate 5.2×10−3 s−1 [79]
Bns Non–specific binding site density 0.366 mol m−3 [79]
Mw Sirolimus molecular weight 914.172 g mol−1 [197]
ρt Density of wet arterial tissue 0.983 g ml−1 [79]

Table 5.1: List of model parameters that depict the behaviour of sirolimus.

To ensure no drug enters the metallic strut, a zero–flux condition is imposed at the interface
between the coating and the stent strut (Γps) [55, 188]. With the domain sufficiently large in
the axial direction, a zero–flux condition is imposed upstream/downstream from the stent (Γi,up,
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Γm,up) similar to [169, 170, 188, 189, 196]. To permit the transport of drug through the wall,
continuity of flux and concentration is assumed between the coating and the wall (Γpw) and
between the two layers of the artery considered (Γiel). As published by Escuer et al. [170], free
drug concentrations in the lumen were very low as a consequence of blood flow. Thus, an infinite
sink is imposed on the lumen–coating interface (Γpl) and the boundary that interfaces the lumen
and the wall (Γet,h, Γet,d). An infinite sink condition is also imposed at the interface between
the media and adventitia (Γeel), with the latter neglected in the current modelling framework
[169, 188]. Table 5.2 summarises all the relevant boundary conditions imposed within the drug
transport model as well as a description of where they are imposed within the geometry (Fig.
4.2: Chapter 4).

Boundary Description Condition
Γps Polymer–strut interface Zero–flux

Γi,up / Γm,up Up–stream boundaries: Intima (i), Media (m) Zero–flux
Γpw Polymer–wall interface Continuity
Γiel IEL: Interface between intima and media Continuity
Γpl Polymer–lumen interface Infinite sink

Γet,h Γet,d Healthy (h) and damaged (d) endothelium: Lumen–wall interface Infinite sink
Γeel EEL: Interface between media and adventitia Infinite sink

Table 5.2: List of all boundary conditions imposed in the drug transport model. Please refer to
Fig. 2: Chapter 4 for a schematic presentation of all boundary locations. Boundary conditions
are consistent with the existing literature [169,170,188,196,307]. Continuity refers to continuity
of both concentration and flux.

5.2.2 Coupling drug release and transport to restenosis

The key novelty associated with this work is the coupling of drug transport directly to cellular
function, which in turn modulates restenosis. In Chapter 2, where the influence of drug on cell
proliferation in vitro was considered, the validity of various models were tested. These models
adopted either Michaelis–Menten kinetics to detail the effectiveness of drug, or assumed that
saturated receptors through bound drug directly mediated the proliferative capacity of SMCs.
In Chapter 2, it was noted that the former performed best, particularly when binding kinetics
were neglected. However, it is not clear that this will be the case in vivo, particularly where
the environment is significantly more heterogeneous. As such, this chapter proposes four dis-
tinct approaches to modelling the effect of drug on cell proliferation. These are: RSc–Receptor
saturation by bound drug, assuming a constant binding site density; MMf–Michaelis–Menten ki-
netics neglecting drug binding; MMb–Michaelis–Menten kinetics accounting for drug binding;
and RSv–Receptor saturation by bound drug, assuming a variable binding site density. To sim-
ulate these different models, the proliferative capacity of sSMCs (Pssmc), presented in Chapter 4
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(Eqn. 2.11), is amended accordingly.

5.2.2.1 Model 1: RSc

The efficacy associated with sirolimus is attributed to the sustained saturation of specific binding
sites [79, 172]. Thus, the baseline drug model assumes that sSMC proliferation is reduced in
proportion to the fraction of specific binding sites (Bs

c) that are bound by drug (bs):

PsSMC = gsSMC cg f csSMC

(
1− cecm

K1
ecm

) (
1− bs

Bs
c

)
︸ ︷︷ ︸

Drug Interference

, (5.6)

where complete efficacy is assumed when bs = Bs
c and all specific binding sites are occupied

such that sSMC proliferation is ceased. Note, in the preliminary model, it is assumed that the
number of available binding sites is constant, hence the c subscript. This is in agreement with
the static artery assumption adopted ubiquitously in drug transport models in this field [78, 79].

5.2.2.2 Model 2: MMf

The first alternative model of drug effectiveness neglects binding kinetics completely, where the
drug transport model (Eqn. 5.2) in the arterial wall reduces to a simple anisotropic diffusion
equation, and free drug (cw) mediates cell growth via:

PsSMC = gsSMC cg f csSMC

(
1− cecm

K1
ecm

)(
1− kmax cw

cw + k50

)
︸ ︷︷ ︸

Drug Interference

, (5.7)

where kmax and k50 are parameters that correspond to drug performance, with the former detail-
ing the maximum effect of drug on cell proliferation and the latter the drug dose at which this
effect is 50% of its maximum. With the bound drug population ignored, such a model is unable
to capture the lasting effects of drug retention on cellular function. Hence, only the free drug
present to cells at any given time mediates the proliferative capacity of sSMCs.

5.2.2.3 Drug Model 3: MMb

To assess the significance of free versus bound drug, Eqn. 5.7 is amended such that specifically
bound drug (bs) replaces free drug (cw):

PsSMC = gsSMC cg f csSMC

(
1− cecm

K1
ecm

)(
1− kmax bs

bs + k50

)
︸ ︷︷ ︸

Drug Interference

, (5.8)

where binding kinetics are detailed by Eqn. 5.4. Here, the model, like RSc, accounts for the
importance of receptor saturation. However, it does so implicitly through Eqn. 5.4, where the
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term detailing the effectiveness of drug is now more complex, inclusive of additional parameters
not present in Model 1: RSc.

5.2.2.4 Drug Model 4: RSv

In all previous models, where binding kinetics are considered, specifically bound drug (bs) ap-
proaches an upper limit (Bs) which is assumed constant, while the artery remodels. In other
words, models which detail drug effectiveness assume a static artery [78,79,172] where the num-
ber of cells and binding sites do not change with time and are unperturbed by vascular injury.
However, it is known that sirolimus exerts its effect on cellular function by binding to FKBP12,
a cytosolic protein located within SMCs. As such, histological evidence has suggested that an
increase in FKBP12 expression is present at early times, where sSMC proliferation dominates,
decreasing in time as the neointima matures, becoming hypocellular [60,354,355]. Therefore, a
new binding site density, Bs

v, is proposed, which is dynamic, varying in proportion to the number
of sSMCs:

Bs
v(c) = Rc× cssmc, (5.9)

where Rc is a non–dimensional quantity that captures the receptor expression per cell. Naturally,
this expression replaces Bs

c in Eqn. 5.6. Although an issue arises, where a singularity is present
if the density of sSMCs is assumed zero. To overcome this, a small density (10−3) of sSMCs is
assumed to exist initially in all domains of the arterial wall. The value was chosen to correspond
to a density an order of magnitude below that present in the drug–free simulations after 5 sec-
onds. Assessing the validity of this assumption, no difference in model response was observed
when values two orders of magnitude below were considered. Differences present were only
in relation to the initial peak (Fig. 5.2a), a consequence of this assumption. Moreover, in the
absence of reliable estimates for Rc, it is assumed that:

Rc =
Bs

c
Xssmc

, (5.10)

where Xssmc corresponds to one of three values associated with the spatially–averaged sSMC
concentration across the therapeutic domain: (i) maximum in time (ii) time–averaged over 50
days or (iii) time–averaged over 21 days. Note, the therapeutic domain is defined in Fig. 4.2:
Chapter 4, given as 3×δss (δss is the inter–strut spacing) from the centre of the outermost strut
in the stented lesion [169]. The corresponding values for Rc for each case (i–iii) is presented
in Table 5.3. Note, these values are computed only for the sSMC profile following an expan-
sion of 20%. These are likely to vary as the expansion ratio changes, owing to the complex
heterogeneity of arterial healing.
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(a) (b)

Figure 5.2: (a) How the initial condition of sSMCs influences the receptor saturation curve. (b)
sSMC mean concentration within the therapeutic domain. Vertical dashed line corresponds to
the profile peak (21 days).

Label Xssmc value used to compute Rc Rc Value

R1
c (i) Maximum sSMC density in time – 50 days 1.435×10−3

R2
c (ii) Time–averaged sSMC concentration – 50 days 1.72×10−3

R3
c (iii) Time–averaged sSMC concentration – 21 days 2.163×10−3

Table 5.3: Investigating different variable binding site densities (Bs
v = Rc× cssmc) through dif-

ferent Rc values. The various Xssmc behaviours make reference to the sSMC profile in Fig. 5.2b,
illustrating the spatially–averaged concentration throughout the therapeutic domain.

5.2.3 Numerical methods

The numerical method employed is similar to that considered within Chapter 4. However, the in-
clusion of drug transport is associated with increased computational demands [170]. With large
concentration gradients present, and rapid binding kinetics, mesh amendments were necessary
to achieve reliable results. Using the ‘extremely fine’ mesh option as a foundation, additional
refinements were implemented that reduced mesh size, whilst ensuring a consistent mesh both
radially and axially through the wall. Moreover, a number of boundary layers (8) were required
at the interface between the coating, lumen and wall (Γpw,Γpl,Γet,h, and Γet,d). Fig. 5.3 illus-
trates the mesh of the baseline model, where further reductions in mesh element size presented
no significant change in % area restenosis. However, further improvements in mesh quality
were necessary in scenarios where gradients were larger as a consequence of the larger inter–
strut spacing (i.e. SSlarge). Thus, as a consequence of the various strut configurations, the total
number of mesh elements varied significantly from 55,000–150,000 elements whilst still achiev-
ing an average element quality ≥ 0.91. Note, as a result of the highly variable geometries and
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meshes, computational time varied from 2–23 hours.

Figure 5.3: An illustration of the mesh considered for the baseline drug model: RSc. Detail A:
Stented domain. Detail B: Stent strut. Detail C: Boundary layers.

5.2.4 Summary of investigated cases

To explore the effect of drug on vessel re–narrowing thoroughly, a variety of different cases are
considered, as presented in Table 5.4. Description of the geometrical set–up has been reduced
to a single column displaying the information in the form of a matrix, where each entry defines
the (range of) values considered for each aspect: % Overexpansion (OE), strut thickness (ST),
strut embedment (SE), and inter–strut spacing (SS).

In addition to perturbation in physical design, parameters unique to DES are varied, includ-
ing the initial drug loading per strut (DM) and the drug release rate (RP), influenced by the
polymer diffusion coefficient (Dp). Thus, unless otherwise stated, all simulations use the re-
spective values presented in Table 5.5. The default drug release profile (RP2) is selected as it
emulates the moderate release of drug from a XienceTM (Abbott Vascular, Santa Clara, CA,
USA) stent, where approximately 80% drug is eluted within 30 days. RP1 and RP3 vary the
polymer diffusion coefficient (Dp) an order of magnitude either side of this value. All release
profiles are illustrated in Fig. 5.4. The initial drug masses are quoted per strut (Table 5.5).
To be consistent with commercially used stents, the largest drug mass (DM3) considered is
taken from [170]. Since this value is at the higher end for drug loadings on commercial stents,
three smaller, arbitrary values (DM0–2) are proposed to assess the possibility of DES hosting
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Study A: Impact of stent expansion and geometry

Case Drug Model Description Model configuration [% OE; ST; SE; SS]

A1 RSc Impact of stent expansion [20/30; 65 µm; 50%; 7 × Tst ]

A2 RSc Impact of strut thickness (ST) [20; 65/105/145 µm; 50%; 7 × Tst ]

A3 RSc Impact of strut embedment (SE) [20; 65 µm; 30/50/70%; 7 × Tst ]

A4 RSc Impact of inter–strut spacing (SS) [30; 65 µm; 50%; SSlarge/SSsmall]

Study B: Exploring alternative models of drug effectiveness

Case Drug Model Description Model configuration [% OE; ST; SE; SS]

B1 MMf Free drug MM model [20; 65 µm; 50%; 7 × Tst ]

B2 MMb Bound drug MM model [20; 65 µm; 50%; 7 × Tst ]

B3 RSv Variable binding site density model [20; 65 µm; 50%; 7 × Tst ]

Table 5.4: Summary of the different cases considered. Study A: to explore how stent design
coupled with spatiotemporal drug delivery influence restenosis. Study B: to investigate a variety
of different models that detail the effectiveness of drug.

lower initial drug loadings. Such a notion has been proposed in recent clinical studies involving
sirolimus [356, 357] and paclitaxel [358, 359], where the drug loadings are comparable to the
values proposed in this study.

RP Dp [m2/s] DM M0 [µg]
1 1.5 × 10−18 0 0.05
2† 1.5 × 10−17 1† 0.1
3 1.5 × 10−16 2 1

3 5

Table 5.5: Different parameter values for the effective diffusion coefficient of the polymer coat-
ing (Dp), which govern the different drug release profiles (RP) and the initial drug mass present
in each strut (DM). The baseline parameters are denoted by a † symbol.

In total, there exists two studies (A and B). The first explores stent design changes coupled
with spatiotemporal drug delivery, and the subsequent impact on restenosis. To do so, the study
is separated into four cases that examine: (A1) two clinically relevant stent expansions (20 and
30%); (A2) the impact of ST; (A3) the impact of SE; and (A4) the impact of SS by means of
different stent designs. Study B then assesses the effect of different models of drug effectiveness
on restenosis within the baseline geometrical configuration: Case A1, Table 5.4. As per Section
5.2.2, three alternative models of drug effectiveness are considered. For each case in study A
and B, the impact of drug mass and release rate is assessed (Table 5.5).
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Figure 5.4: Sirolimus release profile for various polymer diffusion coefficients (Dp).

5.2.5 Analysis of results

In addition to monitoring % area restenosis as defined in Chapter 4, further indicators, measured
within the therapeutic domain, are introduced which are linked with the safety and efficacy of
DES. Firstly, drug content (DC, µg drug/g tissue), associated with safety, is given by:

DC(t) =
Mw

ρtVw

∫
Vw

(cw +bs +bns) dVw, (5.11)

where Vw denotes the volume of the arterial wall, ρt is the density of wet arterial tissue, and Mw

is the molecular weight of drug.
Moreover, drug efficacy is assessed by observing the saturation of specific receptors, in line

with various articles that assume static arteries [79, 172]. It is this variable which influences the
proliferative capacity of cells in models which consider binding, and is computed as:

%RSs =
100
Vw

∫
Vw

bs

Bs
T

dVw, (5.12)

where %RSs is the percentage of saturated specific binding sites and subscript T denotes the
different binding site considerations, either constant (T = c) or variable (T = v).

Additionally, Chapter 4 demonstrated that over 90% of tissue growth occurred within the
first 50 days. As a result, unless otherwise stated, all results depict model behaviour after a
50–day period.



145

5.3 Results & Discussion

5.3.1 Study A: RSc Model

Case A1 examines the role of stent expansion on restenosis following drug release, with the key
results presented in Fig. 5.5. Focusing on a single expansion scenario first (20%), it is clear that
the choice of both the initial drug mass (DM) and drug release rate (RP) are important.

(a) Study A1–RP (b) Study A1–DM

Figure 5.5: Significance of drug release profile (RP) and initial drug mass per strut (DM) on
restenosis across two different expansion profiles (20/30%) for a period of 50 days. (a) Study
A1–RP: Solid lines refer to DM3 whilst dashed lines to DM1. (b) Study A1–DM: Solid lines
correspond to RP2, whilst dashed lines refer to RP3. Inset: Highlights the differences between
cases where only drug is considered. In all cases, ND corresponds to the drug–free simulation.

Firstly, Fig. 5.5a demonstrates that although the moderate drug release profile (RP2) per-
forms best across the drug masses considered, the choice of a slower or quicker release is heavily
influenced by the initial drug loading. For example, the slow release profile (RP1) performs well
when the initial drug mass is high (DM3). However, this would be at the cost of elevated tissue
drug content for a long period of time, where safety may be compromised as a result (Fig. 5.6).
When a lower drug mass is considered (DM1), then a quicker release of drug is more desirable,
ensuring that cells are exposed to sufficient drug concentrations during the active phase of re-
modelling. If the release of drug is too slow (RP1), then restenosis is notably higher (Fig. 5.5a).
Taken together, this suggests an intricate balance between design parameters for DES, where an
increase in drug mass and drug release rate is not always the best approach. Furthermore, it is
apparent that as stent expansion is increased (30%), higher masses than DM1 would be required
to combat excessive tissue growth to the same degree as an expansion ratio of 20%. This is a
result of increased vessel stress, heightening damage throughout the arterial wall, stimulating a
surplus of constituents (e.g. GFs) that contribute to cell proliferation and excessive remodelling.
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(a) Study A1–DM (RP2) (b) Study A1–DM (RP3)

(c) Study A1–RP (DM1) (d) Study A1–RP (DM3)

Figure 5.6: How tissue drug content varies across the different parameter cases simulated.
Impact of different DMs for a fixed drug release profile: (a) RP2 and (b) RP3. Impact of different
RPs for a fixed initial drug mass: (c) DM1 and (d) DM3. Drug content in tissue is computed by
Eqn. 5.11.

Next, perturbations in the initial drug loading across multiple release rates are explored (Fig.
5.5b), again highlighting an intricate interplay between RP and DM. Analysing the results of the
20% expansion ratio first, as drug mass is increased, restenosis decreases towards some thresh-
old value, where further increase in mass would present negligible changes to vessel resteno-
sis. However, the threshold this value approaches differs depending upon the drug release rate
selected. If drug is released and washed away to quickly (RP3), the threshold value is no-
tably higher as a consequence of increased cell proliferation, where specific receptors are not
completely saturated across the active period of cell growth (Fig. 5.7). At lower drug masses
(DM0/1), the difference in vessel response is significant between the 20 and 30% expansion ra-
tios. However, as the mass of drug is increased, values approach a similar threshold value, made
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clear by the inset in Fig. 5.5b. This is interesting, suggesting that lower drug doses may be
applicable in cases where stent expansion inflicts lower levels of injury within the vessel wall.
Thus, in time, through the aid of complex models acting as pre–clinical tools, clinicians may be
able to tailor treatment on a patient–by–patient basis if the level of injury the patient is subject
to following stent deployment may be predicted a priori.

(a) Study A1–DM (RP2) (b) Study A1–DM (RP3)

(c) Study A1–RP (DM1) (d) Study A1–RP (DM3)

Figure 5.7: How specific receptor saturation varies across the different parameter cases simu-
lated. Impact of different DMs for a fixed drug release profile: (a) RP2 and (b) RP3. Impact of
different RPs for a fixed initial drug mass: (c) DM1 and (d) DM3. Specific receptor saturation
is computed by Eqn. 6.12 and is the same across 20 and 30% expansions when binding site
density is assumed constant.

Subsequent efforts (Case A2–4) explore the impact of stent geometry on % area restenosis.
First, the impact of strut thickness (ST) is analysed. Across the various release profiles, it is
apparent that as the strut thickness is increased, more drug is required to combat the higher
levels of vascular injury present following stent expansion (Fig 5.8a & 5.8b).
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(a) Study A2–RP (b) Study A2–DM

(c) Study A3–RP (d) Study A3–DM

Figure 5.8: Significance of drug release profile (RP) and initial drug mass per strut (DM) on
restenosis across different stent configuration regimes: variation in strut thickness (ST) or vari-
ation in strut embedment (SE) for a period of 50 days. All simulations are conducted within the
20% expansion profile. (a) Study A2 - RP. (b) Study A2 - DM. (c) Study A3 - RP. (d) Study
A3 - DM. Inset: Highlights the differences between cases at higher drug masses. In all studies,
when varying RP the mass is fixed at DM1 and when varying DM, the release profile is fixed to
RP2. In all cases, ND corresponds to the drug-free simulation.

Simulating a lower fixed mass (DM1), trends follow those charted in Fig. 5.5, where a sus-
tained release of drug (RP2) is most desirable (Fig. 5.8a). Moreover, as drug mass is increased,
each strut thickness geometry approaches a local plateau, which varies across the different con-
figurations. In other words, further increase in drug mass will have a minimal effect on the
inhibition of restenosis. This is most likely a consequence of the inter–strut spacing condition
(7× Tst ) which means the distance between two adjacent struts varies as as a consequence of
strut thickness. Thus, the results suggest that more mass, or indeed more tailored release kinet-
ics would be required in such a case. Another (although unlikely) reason is the assumption of
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a constant binding site density, where the current model is unable to account for the increase in
receptors as a result of cell proliferation.

Perturbations in strut embedment are also assessed (Fig. 5.8c & 5.8d). Although in the
absence of drug (ND), the restenotic profile is comparable across all cases, the inclusion of drug
demonstrates different trends, where deeper strut protrusion reduces excessive tissue growth at
the cost of elevated tissue drug content levels. At lower drug masses, the difference between the
embedment profiles is exacerbated, diminishing as the mass of drug entering the artery increases.
Thus, similar to the case investigating different expansion profiles, lower masses of drug may be
appropriate when strut protrusion is deeper, assuming the level of injury caused following stent
deployment is not significantly increased, as the mass of drug entering the tissue is increased.

The final case (A4) considers the impact of inter–strut spacing by means of different stent
designs, where lesion length is fixed (5 mm) and the stent hosts either 4 (SSlarge) or 7 struts
(SSsmall). In agreement with all other cases, the sustained release of drug (RP2) is optimal (Fig.
5.9a). Moreover, as was true in earlier cases which exhibited increased vascular injury across
stent designs, more drug is required to combat tissue growth in scenarios where arterial stress is
heightened: in this case, as a consequence of the increased strut number (Fig. 5.9b).

(a) Study A4–RP (b) Study A4–DM

Figure 5.9: Significance of drug release profile (RP) and initial drug mass per strut (DM) on
restenosis when inter-strut spacing (SS) is varied. All simulations are conducted within the 30%
expansion profile for a period of 50 days. (a) Study A4–RP. Inset: Highlights the differences
between release profiles. (b) Study A4–DM. Inset: Highlights the differences between cases at
higher drug masses. In all studies, when varying RP the mass is fixed at DM1 and when varying
DM, the release profile is fixed to RP2. In all cases, ND corresponds to the drug-free simulation.
The key associated with DM differs here from Table 5.5, where masses are reported with respect
to the full stent length: DM0 = 1 µg, DM1 = 5 µg, DM2 = 10 µg, and DM3 = 25 µg.

All cases taken together, it is clear that the parameters associated with stent design (RP, DM)
are important to consider for the success of DES. Throughout the various cases, the stent con-
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figurations which increase vessel stress, and thus damage following stent expansion appear to
require higher masses of drug to combat excessive tissue growth. Moreover, although a sus-
tained release (RP2) is desirable, the choice of a faster or slower release may be applicable, but
is dependent upon the initial coating mass. In agreement with state–of–the–art drug transport
models that assume static arteries [79, 172, 178, 188], results of this model allude to the impor-
tance of controlled release kinetics and sustained saturation of specific receptors in ensuring the
optimal inhibition of restenosis.

5.3.2 Study B

The results of study B are divided into two parts. The first explores, in depth, alternate models
of drug effectiveness in depth (Case B1 & B2). The second part investigates the validity of the
assumption of a constant binding site density (Case B3), replacing the static approach consid-
ered in many drug transport models with a dynamic term that evolves in space and time as a
consequence of SMC phenotype change and proliferation.

5.3.2.1 Case B1 & B2: MMf Model

In addition to varying parameters associated with stent design (DM & RP), parameters detail-
ing the effectiveness of drug (kmax and k50) are perturbed (Eqn. 5.7 & 5.8). As such, a local
sensitivity analysis is performed, where the range of values considered is presented in Table 5.6.

Case B1: Free-drug MM model

Parameter Value range

kmax 1, 0.5
k1

50 2.5×10−5

k2
50 2.5×10−6

k3
50 2.5×10−7

Case B2: Bound-drug MM model

Parameter Value range

kmax 1
k1

50 Bs
c/2

k2
50 Bs

c/5

Table 5.6: Study B: Different parameter values kmax and k50 used within a given global parameter
regime, defined by Table 5.5.

Assessing model MMf first (Case B1), it is observed that as the drug mass is increased within
a given set of parameters, kmax = 1 (Fig. 5.10a) or when kmax = 0.5 (Fig. 5.10b), the inhibition
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of restenosis is more profound. In the absence of drug binding, where the effectiveness of drug
approaches an upper limit, it is both the initial drug mass and the efficacy parameters (kmax,
k50) that define drug performance, alongside the drug release rate. Elaborating on this, at higher
drug masses, the difference between successive k50 values is minimal, and it is likely the model
approaches some upper value. Similarly, it is noted that for k3

50 that a further increase in mass
would also have negligible difference in arterial response.

(a) Study B1 - DM: kmax = 1 (b) Study B1 - DM: kmax = 0.5

(c) Study B1 - RP

Figure 5.10: How % area restenosis varies across the different parameter regimes. Markers
and colours highlight the different initial drug masses or release profiles simulated. Line styles
separate the different kmax values such that: Solid lines = kmax = 1 and Dashed lines = kmax = 0.5.
(a): How drug mass influences % area restenosis for kmax = 1. (b): How drug mass influences
% area restenosis for kmax = 0.5. (c): How drug release profile influences % area restenosis for
kmax = 1 and kmax = 0.5. All simulations were run over a period of 50 days.

In addition to assessment of the initial drug mass, perturbations in drug release rates were
considered. Results (Fig. 5.10c) show that the quickest drug release rate (RP3) is by far the
worst, giving rise to the highest levels of restenosis. With drug released from the coating in
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less than 10 days, and in the absence of drug retention, the drug is readily removed from the
artery prior to the peak of cell proliferation (Fig. 5.2b). The other release profiles chart similar
responses, with the performance of drug improving as k50 decreases, towards some threshold
value.

Case B2 introduced an alternative model (Eqn. 5.8), where specifically bound drug medi-
ates cell proliferation. Adopting the Michaelis–Menten–like term introduces additional param-
eters that control drug performance whilst receptor saturation still influences drug effectiveness
through non–linear binding kinetics (Eqn. 5.4). Assessing the performance of Case B2 in iso-
lation first (Fig. 5.11a and 5.11b) it is apparent that an upper limit on % area restenosis is
approached for each k50 considered. This is particularly prominent in Fig. 5.11a where, depend-
ing upon the value of k50, the threshold value approached changes as the drug mass is increased.
Compared with the free drug model (MMf), particularly when drug mass is varied (Fig. 5.11c),
a limiting behaviour is more notable in the bound drug case (MMb), a consequence of receptor
saturation, which is non–existent in the free drug model. Moreover, as expected, the adoption of
RP3 drastically increases the severity of restenosis when free drug mediates cell function, where
drug binding and retention in tissue is neglected.

In summary, although the free drug Michaelis–Menten model performed well when com-
pared with in vitro proliferation data, it is unlikely that such an approach can be implemented
within a model depicting in vivo conditions without adequate amendments to account for drug
retention, a feature that is present in the bound drug Michaelis–Menten model. Thus, the re-
ceptor saturation (RS, baseline model: RSc) and Michaelis–Menten (MMb) bound drug models
present themselves as possible options to detail the effect of drug on sSMC proliferation in vivo,
where trends present are broadly similar across the two. The key difference being that the latter
introduces additional unknown parameters that aid in the definition of drug efficacy.

5.3.2.2 Case B3: RSv Model

With various mathematical models of drug transport adopting static arteries [79, 172, 178], the
validity of this assumption is examined, assessing how the definition of a variable binding den-
sity compares with the constant one. In the absence of reliable estimates for the FKBP12 re-
ceptor expression per cell, three different values are considered for Rc (Table 5.3). These are
non–dimensional quantities estimated with respect to the average sSMC density within the thera-
peutic domain (Fig. 5.2b). Note, the computation of these estimates are naturally biased towards
the constant assumption (Eqn. 5.10), with numerical and experimental evidence suggesting that
Bs

c is an adequate steady state assumption of the specific receptor density [79, 233].
The results of the model equations simulating Bs

v are presented in Fig. 5.12a–5.12c, each
considering different Rc values. Although only the spatially–averaged temporal behaviour of Bs

v

across the therapeutic domain is illustrated in these figures, it is noted that the concentration of
binding sites is highest directly behind the stent struts where damage following stent deployment
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(a) Study B2 - DM (b) Study B2 - RP

(c) Study B2 - DM (d) Study B2 - RP

Figure 5.11: How % area restenosis varies across different parameter regimes for MMb, com-
pared directly to the free drug model (MMf). (a) How different k50 values influence response
across the different initial drug masses assuming RP2. (b) Repeat of (a) for different drug re-
lease rates assuming DM1. (c) Trend comparison between free drug and bound drug MM model
for the different initial drug masses assuming RP2. The free drug model employs k2

50 whilst
the bound drug model considers k1

50. Both models employ maximal value for kmax = 1. (d)
Repeat of (c) for different drug release rates assuming DM1. In both (c) and (d), the solid lines
denote bound drug model response and dashed lines correspond to the free drug iteration. All
simulations were run over a period of 50 days.

is most profound, declining as the outward edge of the therapeutic domain is approached and
the severity of damage diminishes (Fig. 5.13).

To assess the binding site density assumption in depth, a dose–dependent study is performed
for each Rc value. Across all simulations, the receptor density increases as the value of Rc

increases. Of the three estimates considered, all with the exception of R1
c peak above the steady–

state value of Bs
c; suggesting that this may underestimate the receptor expression per cell. Some-

what unsurprising is that regardless of the Rc value considered, as the drug dose is increased
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(a) Study B3 - R1
c (b) Study B3 - R2

c

(c) Study B3 - R3
c (d) Study B3

Figure 5.12: Analysis of different receptor per cell (Rc) values. (a)-(c): How the receptor density
(Bs(t)) varies as a function of time, compared directly to the constant assumption (Bs

c – dashed
black line) for each Rc value: (a) R1

c=1.435×10−3, (b) R2
c=1.72×10−3, (c) R3

c=2.163×10−3.
(d) Compares % area restenosis values between the three approaches across the 50 day time
period. Inset: Focused on the different drug masses. All simulations were performed on 20%
expansion profile and used RP2 release profile of the baseline stent configuration. In all cases,
ND corresponds to the drug–free simulation.

a decrease in receptor density is observed, alluding to the idea that the expression of FKBP12
is dose–dependent. Thus, it would appear to be more physiologically representative of what
occurs in reality, where the elution of anti–proliferative drug reduces cell growth, which in turn
would decrease the specific receptor density. Of all values tested, only R3

c peaks above Bc
s in all

simulations. Moreover, the general trends of the dynamic receptor density (Bs
v) are in agreement

with [354, 355], where receptor expression peaks when cell proliferation dominates, declining
thereafter as ECM synthesis takes over and cells differentiate back to their dormant phenotype.
Finally, Fig. 5.12d documents how % area restenosis varies across the different Rc values as the
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Figure 5.13: How the variable binding site density (Bs
v) varies spatially throughout the domain

at 21 days, the approximate peak of proliferation within the 20% expansion profile. From top to
bottom: R1

c=1.435×10−3, R2
c=1.72×10−3, and then R3

c=2.163×10−3.

drug dose is increased. At lower doses, R3
c presents with the most profound restenotic profile.

This is understandable, as with an increase in receptor number, then cell proliferation must also
increase in cases where drug is unable to fully saturate all of the binding sites. This is empha-
sised in Fig. 5.14 which illustrates the saturation of specific receptors assuming Bs

c (Fig. 5.14a)
or Bs

v (Fig. 5.14b). However, as the initial drug loading is increased, the difference between
the R1→3

c cases is negligible as specific receptors are quickly saturated regardless of the receptor
expression per cell (Fig. 5.14b).

(a) Study A (b) Study B3

Figure 5.14: How receptor saturation varies between the two binding site density approaches:
(a) Bs

c (solid lines) and (b) Bs
v = R2

c cssmc (dashed/dotted lines). Simulations are considered
across various drug masses where RP2 is considered within the 20% expansion ratio of the
baseline stent configuration.
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Investigating the receptor saturation curves in more detail, it becomes apparent that under the
assumption of a constant binding site density (Bs

c), the curves rise steeply at early times before
a slower incline towards peak saturation. Following this, a gradual decline ensues as the free
drug concentration source depletes (Fig. 5.14a). Trivially, the steepness of the curve and height
of the peak are greater when the initial drug loading is higher. These trends are reciprocated
in models that adopt the variable binding site (Bs

v) assumption (Fig. 5.14b). However, a more
peculiar profile is present, particularly evident at lower drug masses. Fig. 5.15 elaborates on
these profiles in depth, taking DM1 from Fig. 5.14b as an example, where sections of the
receptor saturation (RS) curve are colour–coded as so: RS1 (blue), RS2 (red), and RS3 (green).
RS1 has been alluded to earlier as it highlights the initial peak in the saturation of receptors,
a consequence of the initial condition prescribed for the sSMC population. RS2 denotes the
decline in receptor saturation, where the transition of cells from contractile to synthetic occurs
on a quicker timescale than the release and binding of drug, highlighted in the red box where the
gradients of Bs

v and bs are shown. Finally, RS3 analyses the long linear region, which in some
cases is met with a plateau. The linear region is a consequence of the rate of change of Bs

v and
bs being similar, noted towards the end of curves presented in RS2. For lower masses (DM1:
Fig. 5.14b), the plateau occurs following a decline in the cell population as bs→ Bs

v. At higher
masses this peculiar profile is less prominent due to the large amount of drug entering the artery,
where receptors are quickly bound with drug as a result.

In addition to perturbations in the initial drug mass, similar trends are apparent following
analysis into the different release rates (Fig. 5.16). Interestingly, when adopting the variable
binding site density (Bs

v), the quicker release rate (RP3) approaches levels of inhibition similar
to RP2, overtaking it when the receptor expression per cell is equivalent to R3

c . This implies that
when the number of binding sites per cell is increased, drug needs to be released more quickly
during the active phase of remodelling to combat restenosis. This is emphasised in Fig. 5.16a,
where the crossover between RP2 and RP3 occurs later as Rc is increased. This may suggest that
R3

c is an over–estimate, since literature has illustrated that a sustained release (RP2) is the optimal
selection for the design of DES [79]. Moreover, taken together with previous efforts, this study
heightens the need for further exploration into the drug delivery aspect of stenting, particularly
when coupled directly to cell functionality. Results suggest that the definition of binding site
density has a clear impact on the overall performance of the stent within this model of restenosis.
Experimental data would provide further insight, where the validity of the estimates for Rc can
be probed in depth.

Summarising this study, regardless of whether Bs
c or Bs

v is considered, the correct trends with
respect to receptor saturation and restenosis are observed. Both show, as Eqn. 5.6 suggests,
that the saturation of specific receptors defines drug efficacy, and thus more profoundly inhibits
excessive tissue growth.
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Figure 5.15: A schematic breakdown of the receptor saturation curve (DM1: Fig. 5.14b) under
the assumption of a variable binding site density, Bs

c. RS1 – Impact of the initial condition for
c0

ssmc. RS2 – Why the dip in RS occurs. N = bs or Bs
v. RS3 – The linear increase in the RS plot.

5.4 Limitations & Future work

With limitations of the restenosis model discussed in depth in Chapter 4, the limitations associ-
ated with the drug transport model and how it couples to the tissue growth model are discussed
in depth here. There are three key limitations present: (i) the complexity of the drug transport
model, (ii) lack of an investigation into additional drug compounds, and (iii) the influence of
drug on other key cell types is neglected. Each of these is elaborated on within the following
sections.

5.4.1 Complexity of the drug transport model

Addressing the key limitation first, it is clear that the model lacks complete realism by neglecting
flow. Although state–of–the–art drug transport models assume steady Navier Stokes [78, 169,
188, 189, 196], recent efforts have shown that in idealised cases, free drug concentrations in
the lumen are several orders of magnitude lower than in the tissue, meaning that the lumen
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(a) Study B3 (b) Study B3

Figure 5.16: Analysis of receptor saturation curves for different drug release profiles (RP) for
each Rc value when drug mass is fixed at DM1. (a) Receptor saturation curves for RP2 (orange)
and RP3 (blue) across the different Rc values. (b) % Area restenosis values across all Rc values
and drug release profiles (RP) across a simulation time of 50 days.

essentially acts as a sink for the drug [170]. However, other models have simulated fluid flow
within the tissue [169,170,188,196]. This is typically considered through the implementation of
Darcy’s law, which can contribute towards the speeding up of drug transport depending upon the
magnitude of the velocity field. As such, drug may become available to the binding sites more
quickly, where receptor saturation profiles will likely peak earlier as a result. Sophistication of
the model can then be further increased by making necessary changes to the geometrical model.
For example, the transport properties of drug in each layer should be different, aided by the
implementation of Kedem–Katchalsky equations which describe the flux of species transport
across the boundaries within the arterial wall [169, 170]. These improvements are discussed
in Chapter 7 (Conclusions and further work), where the drug–transport model is coupled to an
ABM of restenosis.

However, the key rationale for neglecting flow here was a result of its absence from the
restenosis model in Chapter 4. With the underlying effect of flow, and particularly WSS on cell
function deep into the wall (e.g. SMCs) still absent [55, 226], it was deemed inappropriate to
include its effect on drug–transport when missing from the tissue growth model. Moreover, the
assumption of neglecting advection is valid in cases where the arterial Peclet number (Pe) is less
than 1, in which cases diffusion dominates over advection.

However, upon introducing flow into the model, as an immediate next–step, one could con-
sider how WSS influences EC recovery mathematically, in line with articles present in the lit-
erature [152, 154, 155], whilst mechanical induced arterial stresses mediate cell behaviour deep
within the wall through a damage index, as currently proposed. Further model enhancements
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could ensure that SMCs exposed to blood–flow are also influenced by WSS levels, with the
subsequent effects deeper into the wall only considered as the understanding of the complex
phenomena improves.

Moreover, further experimental evidence on specific receptor expression per cell should be
made available to fully assess the implications of a constant versus dynamic binding site density.
For example, [354, 355] qualitatively depict the evolution of FKBP12 in time, but provide no
physical data on the possible values that can be used for Rc in this model. As such, further
in vitro and/or ex vivo data may aid in improving the estimate of Rc and thus the predictive
capabilities of this model.

5.4.2 Lack of additional drug compounds

This model considers the effect of just one drug, sirolimus, as a consequence of insufficient data
detailing the binding kinetics of other drugs. For example, although there is data available for
paclitaxel [169, 188, 194, 360], the binding parameters reported vary quite significantly, where
recent data has even presented binding on and off rates similar to sirolimus [360]. Moreover, as
stents shift to the adoption of alternative drugs (analogues of sirolimus, e.g. biolimus), data on
their binding kinetics is needed to permit a comparative analysis between the drug considered in
this computational model.

5.4.3 Neglecting the effect of drug on additional cell types

Delayed arterial healing is a recurring problem, particularly prevalent in arteries receiving
DES [24, 25]. For example, in an animal study involving rabbits, Nakawza et al. [25] was able
to demonstrate poor endothelial strut coverage for a variety of different DES over the traditional
BMS. Initially, the hypersensitive reaction associated with the long–term presence of the poly-
mer coating was perceived to be the primary culprit of delayed healing [24]. However, a series of
studies have since demonstrated non–inferiority between durable stent coatings with enhanced
bicompatibility versus those which host biodegradable properties [33–35] or neglect the coating
entirely [39, 40]. Therefore, in an attempt to better understand the concept of delayed arterial
healing, the computational model developed here should be extended to consider the effect of
drug on multiple cell types, especially ECs. For example, in vitro data exists that charts similar
responses with respect to the inhibition of proliferation between ECs and SMCs when sirolimus
is considered [31]. Moreover, various 2D–axisymmetric computational models emulating drug
release have demonstrated the presence of high concentrations of drug present in the endothelial
layer, particularly at early times, establishing the importance of stent design when defining stent
efficacy and safety [189,361]. Such efforts focused on CFD, where stent design has been known
to influence the size and location of recirculation zones at stent struts which may prolong the
length of time the endothelial surface is exposed to increased drug concentrations. Therefore,
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further efforts should initially explore how drug mediates the EC population; the topic of Chap-
ter 6. With data associated with binding kinetics on the EC population unavailable, this will be
proof of concept in an attempt to demonstrate the significance of delayed arterial healing. To do
so, the methodology is amended from the current model to ensure that the EC and SMC popu-
lation are explicitly coupled such that EC regrowth has a direct impact on key species involved
in excessive tissue growth. Following this, sophisticated co–culture experiments can then be
used to provide data that may help validate such a model. Then, in time, efforts should also be
extended to be inclusive of CFD, where the impact of recirculation zones and low WSS on drug
distribution and thus EC function can be assessed.

5.5 Conclusion

In conclusion, this chapter presents a novel computational model, explicitly coupling drug trans-
port kinetics with cell behaviour, and thus tissue growth as a consequence of spatiotemporal drug
delivery from a stent. Results highlight that an intricate interplay in the initial coating drug dose
and release rate exists, and that the choice of these parameters are important when optimising the
design of DES. Despite the aforementioned limitations, the model charts expected trends, high-
lighting that in scenarios where arterial stress is greater following stent deployment, an increase
in drug dose should be considered to combat the heightened healing response. This suggests that
different stent designs could incorporate different drug release rates and initial drug loadings.
Further work should explore the role of drug across multiple cell types whilst also increasing
model sophistication to be inclusive of flow, observing its impact on both drug transport and
cellular functionality in harmony.
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Chapter 6

An improved model of restenosis:
Understanding the possible implications of
delayed arterial healing

6.1 Introduction

The computational model in Chapter 5 demonstrated the role of anti–proliferative drug on the
inhibition of restenosis. However, a limitation of the model in Chapter 5 was that it did not
incorporate the effect of anti–proliferative drug on the endothelial cell (EC) population. This
is particularly important given that clinical and experimental evidence has highlighted the oc-
currence of delayed arterial healing, the inhibition of EC recovery, following the deployment of
drug–eluting stents (DES) [24,25,362]. From preliminary bare metal designs, initial DES hosted
two significant differences: the inclusion of a polymer coating and drug. As such, these were
noted as the two possible explanations for the occurrence of delayed arterial healing following
the deployment of DES.

The first was associated with physical stent design, where the permanence of the polymer
coating and/or device subjected the patient to a hypersensitive reaction, prolonging inflamma-
tion [24]. As such, stent design shifted to devices absent of a polymer coating or the em-
ployment of biodegradable materials and resorbable structures [22]. However, clinical stud-
ies have since highlighted that with increased biocompatibility, adverse patient outcome was
indifferent between these newer devices versus the traditional durable, polymer coated ap-
proach [33–35, 39, 40].

The second proposed explanation for delayed arterial healing was associated with the drug
delivery strategy. Evidence has shown that drugs coated on stents inhibit the proliferation of
both ECs and smooth muscle cells (SMCs). For example, Nakawaza et al. [25] illustrated poor
endothelial strut coverage across a range of commercial DES when deployed in rabbit iliac
arteries. Additionally, Matter et al. [31] noted within an in vitro study that the proliferative
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capacity of ECs were hindered to an extent similar to SMCs, when exposed to the same dose of
drug (sirolimus and tacrolimus).

Elaborating further on the drug delivery strategy, despite the large array of drug transport
models discussed in Chapter 1 and 2, it is to the best of the author’s knowledge that none of
those models account for the impact of drug on the explicit function of cells. In other words,
these models adopted static arteries, where tissue remodelling through cell proliferation was
not considered. Nonetheless, the importance of the drug delivery strategy was highlighted by
Tzafriri et al. [79, 194], where the sustained release of drug over the course of 30 days reduced
the occurrence of in–stent restenosis (ISR). However, here the focus was primarily on drug
binding to SMCs and to non–specific sites (e.g. extracellular matrix), with drug’s effect on ECs
not considered. Drug delivery was further analysed by Bozsak et al. [188] who were pursuing
the optimal design of DES. Following the derivation of a 2D–axisymmetric drug delivery model,
their results demonstrated how the transport kinetics of different drugs varied within the arterial
wall. With these drugs coated on commercial stents, the study suggested that the release kinetics
of DES should be tailored to the drug used. This was further emphasised in their subsequent
paper, where the optimal course of drug release was found to be markedly different between
paclitaxel and sirolimus–eluting stents [189]. The former involved depositing drug very quickly,
or over the course of months to a year. Whereas sirolimus–eluting stents performed best only
when drug release was slow. The importance of stent design was then explored by Seo et al.

[361], investigating its impact on flow disturbance and the concentration of drug at the interface
between the lumen and the intima. The results of this study did indeed show that stent design
was an important factor on the concentration of drug that ECs were exposed too. Although
consideration has been given to the optimum duration and conditions for drug delivery to ensure
the sufficient recovery of the endothelial layer [189, 361, 363], the explicit behaviour of drug on
EC functionality does not appear to have been modelled to date.

Despite re–endothelialization rates improving in newer generation devices [364], repeat pro-
cedures remain unsatisfactory at 1–year follow–ups [48], with ISR known to be the primary
culprit [50]. The re–endothelialization process is crucial to vessel re–narrowing, given that the
presence of a fully functional endothelium is known to halt further SMC proliferation and thus
tissue growth [62, 66, 67]. Thus, motivation for an improved restenosis model exists, where the
original model in Chapter 4 assumes that the EC population behaves independently of the other
model constituents. However, it is known from literature that EC recovery is directly impeded
by vascular injury as a result of stent expansion (Fig. 6.1a) [62]. As such, justification exists for
coupling EC recovery to damage, a variable associated with vessel injury in the model.

Moreover, it has been well documented in both experimental and modelling literature that
increased vascular injury stimulates a more aggressive healing response [56, 60, 62, 65, 66]. For
example, Zun et al. [66] produced the model data presented in Fig. 6.1b, which demonstrated
the effect of stent deployment on restenosis (neointima thickness). Within their framework, re–
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(a) (b)

Figure 6.1: (a) How vascular injury impedes EC regeneration in rabbit iliac arteries. Data repro-
duced from [62]. (b) Increase in tissue growth (neointima thickness) following more intrusive
stent deployment. IS = Injury score. IS1: Stent only touches the internal elastic lamina (IEL),
IS2: Stent minimally pressed into IEL at angle of less than 45◦, and IS3: Stent is further pressed
into IEL at angle of greater than 45◦. Full details on the injury score can be found in [63]. Data
reproduced from [66].

endothelialization is a key marker of healing, where upon the regeneration of a fully functional
endothelium, the healing process is stopped. To the best of the author’s knowledge, such an
approach has not yet been considered within a continuum framework. Although the restenosis
model in Chapter 4 has previously demonstrated more profound healing profiles when stent
deployment is more intrusive, it fails to synchronously capture the behaviour of both ECs and
SMCs as the artery heals. Therefore, in order to be able to fully capture the implications of
delayed arterial healing following drug delivery, it is necessary to explore a coupling where the
regrowth of the endothelial layer limits the proliferative capacity of SMCs.

The notion of delayed arterial healing is made particularly interesting following drug deliv-
ery, where the competition of drug between different cell types (ECs and SMCs [31]) is crucial.
This is important given that a trade–off following drug delivery exists. For example, in Chapter 5
an intricate interplay was revealed between parameters associated with the design of DES when
the inhibition of only one cell type (SMCs) was considered. However, in reality, this intricate
interplay is further compounded by the fact that drug needs to be delivered in high enough con-
centrations to inhibit SMC growth without adversely impeding EC functionality. This balance
suggests that an optimal drug delivery strategy exists which warrants further investigation.

Thus, the aim of this chapter is to devise a computational model which simulates the effect
of drug on both ECs and SMCs in an attempt to better understand how the drug delivery strategy
has an impact on delayed arterial healing. Prior to the inclusion of drug, the first objective is to
propose changes to the restenosis model from Chapter 4 such that ECs have a direct influence
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on the behaviour of key model constituents. To enable the success of this objective, two key
model changes are proposed. The first model change establishes a coupling between damage

and ECs, such that vascular injury has a direct impact on the time taken for the artery to heal.
Following this, the second change to the restenosis model proposes a coupling between ECs
and SMCs. Therefore, the recovery of the EC layer, directly mediated by vascular injury as
per model change 1, will have a notable impact on the proliferative capacity of SMCs. In
other words, a delay in re–endothelialization should promote a prolonged period of active SMC
behaviour [65, 67]. Direct comparisons are made with the original restenosis model proposed
in Chapter 4 for both of these model changes. The second key objective is to then test different
drug transport models, assessing the effect of drug on the proliferation of ECs and SMCs and the
possible implications on patient outcome. Following a description of the computational model,
each of the aforementioned objectives are considered in turn.

6.2 Computational model

6.2.1 Geometry, assumptions and simplifications

With the present study more focused on EC and SMC behaviour, and to reduce computational
time, the full geometry implemented in previous chapters (4 and 5) is reduced in length, (Fig.
6.2), equivalent to an inter–strut space (δss = 7×Tst ;Tst = 81µm), hosting just a single strut. This
is considered for two stent expansion scenarios (20 and 30%) to capture the impact of damage
induced by stress within the model. The expansion step considers the full geometrical model
(Chapter 4), from which the slice in Fig. 6.2 was exported along with the spatiotemporal Von
Mises stress map. For clarity, all boundaries and domains are highlighted in Fig. 6.2, of which
all except Γl and Γr are the same as in Chapter 4. All boundary conditions implemented within
the species evolution and drug transport models are detailed in Table 6.1.

To ensure the time–course of the re–endothelialzation process is similar to that proposed
in [53,66], various parameter values (gec and kd) are amended (Table 6.2) following the coupling
of ECs with damage and SMCs. The rate of these parameters have been increased such that
healing, described as the degradation of damage and recovery of ECs, occurs over a 50–day
period following an expansion of 30%. However, with drug likely to further delay EC recovery,
simulation time will be extended towards 80 days when drug delivery is considered. This is
to assess the longer term effects of drug on the EC and SMC populations. Moreover, as a
consequence of the simplified geometry, restenosis is not evaluated. However, it is known from
Chapter 4, that with increased SMC number and ECM concentration, a rise in restenosis severity
would be observed.

As in Chapter 4 and 5, the commercially available software COMSOL Multiphysics 5.6a
(COMSOL AB, Burlington, MA, USA) was used to mesh and numerically solve the compu-
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Figure 6.2: Simplified geometry (20% expansion) hosting a single strut with a domain length
of a single inter-strut space (δss). The 30% geometry (not shown) is of identical length. All
domains are denoted by Ω (Ωp: polymer coating, Ωm: media, and Ωi: intima). All boundaries
are denoted by Γ (Γet : endothelium, Γiel: internal elastic lamina, Γeel: external elastic lamina,
Γl: left–wall, Γr: right–wall, Γpw: polymer–wall interface, Γpl: polymer–lumen interface, and
Γps: polymer–strut interface). Detail A.1 highlights the intima and polymer coating. Various
points of interest include: A (green)–intima adjacent to the strut, B(blue)–far end of the domain
(Γr), and C (orange)–media 0.05 mm behind the stent strut.

Boundary condition
Boundary Location Species evolution model Drug transport model

Γpw Polymer–wall interface Zero–flux Continuity
Γps Polymer–strut interface N/A Zero–flux
Γps Polymer–lumen interface N/A Infinite sink
Γet Endothelium Zero–flux Infinite sink
Γiel IEL Zero–flux† / Continuity‡ Continuity
Γeel EEL N/A† / Continuity‡ Infinite sink

Γl & Γr Left and right Zero–flux Zero–flux

Table 6.1: List of all boundary conditions imposed in the species evolution and drug transport
model. Please refer to Fig. 6.2 for a schematic presentation of all boundary locations. In
the species evolution model, boundary conditions vary between the ECs, existing only in the
intima (Ωi) and species residing in the intima and media (e.g. SMCs and ECM). The boundary
conditions imposed on ECs are denoted by a † whilst all other species are represented by a ‡. If
symbol not shown then the BC is the same for all species. Continuity refers to a continuity of
flux and concentration.

tational model. The reader is referred to Chapter 4 (Section 4.2.6) for a discussion on the nu-
merical implementation and to Chapter 5 (Fig. 5.3) for an illustration of the mesh considered,
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particularly detail B.

Parameter Description Previous Value (Chapter 4) New Value

gec EC proliferation 1×10−6 [s−1] 2.5×10−6 [s−1]
kd Degradation of damage 0.5 [m3 mol−1 s−1] 2.5 [m3 mol−1 s−1]

kdi f f
csmc Differentiation: Contractile to synthetic 5e-7 [s−1] 3.5e-7 [m3 mol−1 s−1]

kecm ECM synthesis 7.19e-5 [s−1] 3.2e-5 [s−1]
k1

20% θ e 20% decay constant N/A 8.58×10−2 [s−1]
k2

30% θ e 30% decay constant N/A 9.3×10−2 [s−1]
θ 0

20% Initial mean damage: 20% N/A 0.2489
θ 0

30% Initial mean damage: 30% N/A 0.5789

Table 6.2: New model parameters associated with the updated restenosis model. New parameter
values for gec,kd,k

di f f
csmc, and kecm are estimated such that the time–course of endothelial cell

recovery occurs within 50 days. The other parameters, not previously considered in Chapter 4
are detailed in depth in Section 6.3.

6.3 Model change 1: Vascular injury influences endothelial
cell recovery

The first model change from Chapter 4 considers an amendment to the equation describing the
rate of change of the EC population such that vascular injury mediates its recovery [62]. To
facilitate this, a direct coupling is established between ECs and the artificial construct damage,
emulating the inflammatory response that stimulates arterial healing. From amendments made
to the ECM species in Chapter 4, it is noted that the mean damage (θ ) within the stented domain
differs significantly across the expansion ratios. Thus, it is this measure which is considered to
ensure that EC recovery differs as stent deployment varies. In particular, it is the depreciation of
this variable (θ ) in time that is of interest (Fig. 6.3a).

A disadvantage to this approach is that computing θ at every time–step increases computa-
tional time, significantly. In an attempt to find an alternative strategy, it is clear that the response
presented in Fig. 6.3a produces a curve which closely matches exponential decay. As such, the
mean damage is instead computed through the following expression:

θ
e(t) = θ

0
P% e−k1

P% t , (6.1)

where θ 0
P% is the initial mean damage present following stent expansion and k1

P% is a linear
decay constant that adequately emulates how θ changes in time throughout the healing process.
The subscript, P%, in each term refers to the expansion ratio present following stent deployment.
By interpolating a series of points across the line which conveys the change in θ through time
(Fig. 6.3b), a best–fitting parameter can be obtained for k1

P% in Eqn. 6.1 by using the least
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(a) (b)

(c) (d)

Figure 6.3: (a): How mean damage (θ (t)) varies in time across the domain. (b): Interpolating
a series of points (P) through the model (M). Where M is how the mean damage (θ ) depreciates
in time using COMSOLs in–built average function. (c): Agreement between the original model
(M) data using COMSOLs average function and the estimation of this data (F) provided by Eqn.
6.1. (d): How mean damage through an exponential interpretation (θ e) impacts EC proliferation
for different expansions ratios.

squares method. Fig. 6.3c demonstrates the quality of the estimation, where the result of θ e (F)
is indifferent to the curve generated by COMSOL (M) which computes the average at every time
step. Note, the values for the best–fitting parameters obtained for k1

P% are presented in Table 6.2.
With distinct damage profiles now present between the expansion ratios, a link between

damage, d, and EC regeneration can be established such that:

∂cec

∂ t
= Dec∇

2cec +gec cec

(
1− cec

Kec

)
(1−θ

e (t)) , in Ωi, t > 0, (6.2)

where the proliferative capacity of ECs (cec) is now hindered by damage. This is emphasised in
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Fig. 6.3d which demonstrates the impact that damage has on EC recovery through the different
expansion ratios; where it is known from Chapter 4 that increased stent expansion results in
higher levels of stress and thus damage, heightening the healing response. Such a result qual-
itatively agrees with the trends discussed in Kipshidze et al. [62], as documented in Fig. 6.1a.
Whereas, when considering the original restenosis model from Chapter 4, it is noted there is no
distinction in EC recovery between the two expansion profiles (Fig 6.4). Although the original
model is used, the new values in Table 6.2 are considered except for kdi f f

csmc, where the units differ
due to differences in governing equations that describe ECM synthesis in the original model
(Chapter 4: Eqn. 4.8).

Figure 6.4: EC density at Point A (Fig. 6.2) when adopting the governing equations of the
original model from Chapter 3.

6.4 Model change 2: ECs influence the proliferation of SMCs

6.4.1 Model formulation

With a coupling between vascular injury and EC regeneration established, a natural next step is
to propose a model amendment such that EC recovery directly influences SMC behaviour. With
stent expansion, and thus damage explicitly impeding growth of the former, sufficient coupling
between ECs and SMCs will ensure that the proliferative capacity of SMCs is directly controlled
by the regeneration of the endothelium [53,67]. To facilitate this, assumptions are required such
that the growth of endothelial cells, present only in the intima (Ωi), influences the growth of
SMCs present in all wall domains (Ωi and Ωm).

As was present in the baseline model (Chapter 4), it is assumed that ECs initially exist at
a small, uniform density throughout the intima, allowed to migrate through a diffusive term
(Dec). However, the timescale of EC migration is very quick due to the intima dimensions being
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comparatively small. Thus, the density of these cells varies very little spatially throughout the
domain. In an attempt to reduce model complexity, the density of the ECs (c?ec(t)) is observed
at just a single point, A (Fig. 6.2), immediately adjacent to the stent strut. To support this
assumption, Fig. 6.5 depicts the EC response at Point A and B, where the latter is at the edge of
the domain (Fig. 6.2), where no difference in cell density is noted.

Figure 6.5: EC density at Point A and B, as detailed in Fig. 6.2.

Chapter 4 elucidated the role of ECs in maintaining vessel quiescence, where numerous
chemicals (e.g. nitric oxide) are released to regulate vascular tone [53, 58, 331]. However,
following stent deployment, this protective endothelial layer is often completely denuded, ex-
posing the underlying tissue to circulating factors present in the blood [53, 56]. This is studied
in depth in [53, 65–67], where the authors acknowledge that damage to this layer is what initi-
ates the healing response, becoming more aggressive as the fenestrations in the IEL increase in
severity [65]. Nonetheless, similar to [54, 55], the phenotype behaviour of SMCs in the initial
restenosis model (Chapter 4) was controlled by ECM concentration, another aspect known to
mediate the proliferative capacity of SMCs [54, 56, 70, 71, 325, 326]. However, to establish a
direct coupling between ECs and SMCs, the terms associated with cell differentiation have been
amended. Now cell differentiation, and thus the contractile SMC population is modelled via:

∂ccsmc

∂ t
=−kdi f f

csmc ccsmc (Kec− c?ec)+ kdi f f
ssmc cssmc

(
c?ec− c0

ec
)
, in Ωi & Ωm, t > 0, (6.3)

which replaces the equation describing the contractile SMC (cSMC) population in the original
restenosis model (Chapter 4: Eqn. 4.8), with kdi f f

csmc and kdi f f
ssmc still dictating the rate of dif-

ferentiation to and from the synthetic phenotype, respectively. The switch from contractile to
synthetic is fast initially where the current EC density is close to zero following stent expansion
(cec = c0

ec ≈ 0). As the species regenerates, c?ec→ Kec and the differentiation back to the con-
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tractile phenotype from synthetic dominates. To ensure trends were somewhat comparable with
the baseline model, multiple parameters (kdi f f

csmc and kecm) were amended, with the previous and
new values stated in Table 6.2.

6.4.2 Results

Model change 1 ensured that damage, as a consequence of stent deployment (20 versus 30%
expansion), directly influenced the recovery of ECs. With a coupling now also established be-
tween ECs and SMCs (Section 6.4.1), an examination of the effect on key model constituents is
necessary before further extending the model to account for drug transport. With only species
evolution simulated, and tissue growth not calculated as a consequence of the geometry, the
behaviour of SMCs (particularly sSMCs) and ECM are presented, species known to directly
influence vessel re–narrowing (Fig. 6.6). Note that the response of ECs across different stent
expansions have been shown previously (Fig. 6.3d).

Fig. 6.6a charts a significant change in sSMC behaviour from the original model (Fig. 6.6c),
where the peak is not only heightened following increased arterial stress but also shifted such that
the ‘active’ cells remain in their proliferative state for longer. The higher peak is associated with
increased GF production as a consequence of damage, a behaviour illustrated in Chapter 4. How-
ever, the temporal peak shift is new and is a consequence of the delay to re–endothelialization
following more intrusive stent deployment (Fig. 6.3d). Within the original model (shown in
Chapter 4), the sSMC population is uncoupled from the re–endothelialization and thus only the
height of the peak varies between expansions (Fig. 6.6c). With re–endothelialization delayed in
the updated model of arterial healing, and the sSMC profile influenced, a significant impact on
ECM synthesis is apparent (Fig. 6.6b). Here, the initial degradation is not only more profound,
but occurs more quickly as a consequence of the increased synthetic SMC density. Thus, the
new model is able to qualitatively agree with the trends illustrated in Fig. 6.1b, where a more in-
trusive stent deployment results in a more profound restenotic profile. Within the original model,
similar to the sSMC population, only a change in the minimum peak of ECM is observed (Fig.
6.6d).

Summarising, a clear benefit of the updated model of arterial healing from the original one
in Chapter 4 is that the healing is ceased as a consequence of the endothelial layer recovering.
This feature was absent in Chapter 4, where the ECs acted independently of all other model con-
stituents. Such a result alludes to the possible significance of delayed arterial healing, where an
impairment to the recovery of ECs (through the delivery of anti–proliferative drug or increased
vessel injury) could have a significant impact on patient outcome.
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(a) (b)

(c) (d)

Figure 6.6: (a)–(b) How coupling EC and SMC species influences the behaviour of key species
involved in restenosis within the updated model of arterial healing. (a) sSMC density. (b) ECM
concentration. (c)–(d) Results adopting the restenosis model governing equations from Chapter
4. New parameter values (Table 6.2) are used for this model except for kdi f f

csmc where the units
differ. (c) sSMC density. (d) ECM concentration. Results of all species behaviour are presented
at Point C (Fig. 6.2).

6.4.2.1 Impact of EC regeneration

With the results of the various couplings established (damage with ECs, and then ECs with
SMCs), it is apparent that as a consequence of stent deployment, increased damage permits a
delay in EC regeneration which has a subsequent impact on the proliferative profile of sSMCs.
The next step is to then further analyse the possible implications of delayed arterial healing as a
consequence of drug delivered from DES. Clinical and experimental data [25,27] has noted that
re–endothelialization is impaired following the delivery of drug. However, to explore the justifi-
cation for the inclusion of a drug transport model, a small sensitivity analysis is considered. The
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purpose of this being to observe the impact of perturbations in the EC proliferation parameter
(gec) on key model species: SMCs and ECM (Fig. 6.7). Given that the effect of stent expansion
has already been assessed, the following sensitivity analysis is conducted for a single expansion
ratio (20%).

(a) (b)

(c)

Figure 6.7: Investigating how EC proliferation (gec) influences the response of other species
contributing to restenosis following a 20% stent expansion. (a) EC. (b) sSMC. (c) ECM. All
species profiles illustrate the behaviour at point C (Fig. 6.2).

Fig. 6.7 presents the behaviour of three key species (EC, sSMC, and ECM) across a range
of values for gec. Trivially, as the parameter is increased, the recovery of the ECs is faster,
with the proliferative capacity of sSMCs hindered and ECM synthesis reduced. However, as EC
recovery reduces, artificially emulating the presence of drug, more sSMCs proliferate, with the
peak more profound in height and width, synthesising additional ECM as a result. Hence, with
the new coupling term proposed between ECs and damage (Eqn. 6.2), and then ECs and SMCs
(Eqn. 6.3), the endothelial barrier which interfaces the arterial wall is now intrinsically linked
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to arterial healing. In other words, the healing process is halted as the number of ECs approach
their healthy value (cec→Kec), and any delay in that would result in additional neointimal tissue
being produced.

With the importance of EC regeneration demonstrated, the next stage is to explicitly account
for drug, and its impact on EC recovery. Note, importantly, that drug will also be inhibiting
the proliferation of SMCs. As such, the model proposed (Section 6.5) will explore the effect of
drug on multiple cell types, investigating the possible implications of delayed arterial healing
following treatment with DES [24, 25, 27, 362].

6.5 Accounting for the impact of drug on multiple cell types:
ECs and SMCs

6.5.1 Governing equations

The drug transport model introduced in Chapter 5 is considered here, where drug resides initially
within a polymer coating before diffusing into the arterial wall, binding to sites which are either
specific or non–specific. To explore the effect of drug on the EC population and as a result
arterial healing, additions and changes are made to the drug transport model, summarised in the
list below:

• The introduction of a third bound drug phase (EC bound).

• Amendment to drug transport kinetics: diffusion in the intima (Ωi) and media (Ωm) now
differ, as suggested in [170, 196].

• Amendments to the proliferative term for ECs (Eqn. 6.2) such that saturation of their
receptors by drug mediates their growth.

The transport of drug in the polymer coating is identical to that proposed in Chapter 5, Eqn.
5.1. To account for the layer–specific transport properties, the free drug concentration in the
wall (cw (r,z, t)) is now amended to:

∂cx

∂ t
= ∇ · (Dx∇cw)−Rx, in Ωx, t > 0,x = i,m, (6.4)

where free drug (cx) is present in all domains, differing in its transport properties (Dx) and
reaction kinetics (Rx) between each of the layers, where superscript x denotes the layer, either
intima (i) or media (m). As in Chapter 5 (Eqn. 5.3), diffusion of free drug in the media is
assumed to be anisotropic. As for the intima (Ωi), an isotropic effective diffusion coefficient is
acquired from literature such that Di = 1.67×10−11 m2 s−1. The reaction kinetics, Rx, differ on
a layer–by–layer basis and are governed by the following expressions:
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Ri =
∂bs

∂ t
+

∂bns

∂ t
+

∂bec

∂ t
in Ωi, t > 0, (6.5)

Rm =
∂bs

∂ t
+

∂bns

∂ t
in Ωm, t > 0, (6.6)

where there now exists a total of three bound drug concentrations: bs (r,z, t), bns (r,z, t), and
bec (r,z, t) which represent specifically bound drug to SMCs, non–specifically bound drug to
ECM and drug bound to ECs, respectively. The first two types exist in all domains, whilst the
EC bound drug exists only within the intima. The rate of change of each of these species is
presented below:

∂bs

∂ t
= ks

oncx(Bs−bs)− ks
o f f bs, in Ωx, t > 0, (6.7)

∂bns

∂ t
= kns

oncx(Bns−bns)− kns
o f f bns, in Ωx, t > 0, (6.8)

∂bec

∂ t
= kec

onci(Bec−bec)− kec
o f f bec, in Ωi, t > 0, (6.9)

where all binding parameters (kon, ko f f , B) are as before (Chapter 5: Table 5.1), differing in
value for each different phase of binding. The selection of binding parameters for the ECs is
discussed in Section 6.5.2.

The final consideration of the computational model is the impact of drug on the EC pop-
ulation. Prior efforts, assessing the effect of drug on SMCs, implemented a range of models.
Here, to provide focus, only a single model is considered, assuming that receptor saturation me-
diates the proliferative capacity of both ECs and SMCs. Thus, the equation corresponding to EC
growth (Eqn. 6.2) is amended as so:

∂cec

∂ t
= Dec∇

2cec +gec cec

(
1− cec

Kec

)
(1−θ

e(t))
(

1− bec

Bec

)
︸ ︷︷ ︸

Drug interference

, in Ωi, t > 0, (6.10)

where EC proliferation is naturally impeded by space and vascular injury, as if drug was absent.
The new term, labelled drug interference, further inhibits EC growth following drug delivery
by means of receptor saturation; similarly to how drug hinders SMC proliferation in the model
(Chapter 5: Eqn. 5.6).
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6.5.2 Summary of cases

State–of–the–art drug transport models in static arteries have accounted for two binding phases,
specific and non–specific, for which binding parameters exist assuming the action of sirolimus
[79, 170, 188]. Clinical and experimental literature has also suggested that drug impedes the
functionality of ECs, delaying the regeneration of the endothelium, where strut coverage is
significantly impaired following the deployment of DES [27, 75]. However, to the best of the
authors knowledge, there has been no distinction made between drug that is specifically bound
to either SMCs or ECs. As such, the parameters of the drug binding model (Eqn. 6.8) associated
with the binding of drug to ECs are undocumented and do not appear in the literature. Studies
that do provide such parameters focus on the action of sirolimus or paclitaxel on SMCs [79,194].
It may be the case that the binding parameters are similar between these two cell types, given
that the target receptors are the same [365]. Nonetheless, perturbations in kon, ko f f , and B are
considered, such that the rate of drug binding to ECs matches specific, non–specific or some
intermediate value (Table 6.3). In permitting the binding of drug to ECs, the simultaneous effect
on the SMC population is also assessed, exploring the implications of delayed healing on other
model constituents.

Case Description Binding Parameters Value [Unit]

A1 EC binding parameters match non–specific kec
on ≡ kns

on 2 m3 mol−1 s−1

binding parameters kec
o f f ≡ kns

o f f 5.2×10−3 s−1

Bec ≡ Bns 0.366 mol m−3

A2 EC binding parameters are the mean of specific and kec
on =

ks
on+kns

on
2 401 m3 mol−1 s−1

non–specific binding parameters kec
o f f =

ks
o f f+kns

o f f
2 2.68×10−3 s−1

Bec = Bs+Bns

2 0.185 mol m−3

A3 EC binding parameters match SMC specific kec
on ≡ ks

on 800 m3 mol−1 s−1

binding parameters kec
o f f ≡ ks

o f f 1.6×10−4 s−1

Bec ≡ Bs 3.3×10−3 mol m−3

Table 6.3: Different parameter cases considered when simulating the binding of drug to ECs.

Similar to work in Chapter 5, the impact of stent design parameters (the initial drug mass,
DM) is considered in parallel with changes to the binding parameters. The different initial drug
masses selected are displayed in Table 6.4. Moreover, with the impact of vascular injury by
stent deployment demonstrated, this analysis considers a single expansion ratio (20%). In all
simulations, the drug release rate is fixed, where the diffusion coefficient in the polymer is given
as Dp = 1.5×10−17 m2s−1.
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Parameter Key Value [Unit]

Initial drug mass (DM) 0 0.05 [µg]
1 0.1 [µg]
2 1 [µg]
3 5 [µg]

Table 6.4: Parameter values corresponding to the different drug masses initially coated on the
polymer coating of the stent strut (M0).

6.5.3 Analysis of results

With the effect of drug on cell proliferation mediated by the saturation of receptors, the percent-
age of receptors occupied by drug with respect to time is expected to be a key indicator of drug
efficacy. Thus, receptor saturation is computed via:

%RSs =
100
Vx

∫
Vx

bs

Bs dVx, (6.11)

%RSec =
100
Vi

∫
Vi

bec

Bec dVi, (6.12)

where %RSs and %RSec are the percentage of specifically SMC and specifically EC receptors
saturated by drug, respectively. The SMC specific receptor saturation is computed in all do-
mains, hence the x subscript, where x = i,m, and the volume (V ) corresponds to the entire
arterial wall. As for the saturation of EC receptors, these cells exist only within the intima,
hence the i subscript.

In addition to receptor saturation, the EC and sSMC species will be tracked at Point A and C
(Fig. 6.2), respectively, with the possible implications on patient outcome discussed. Therefore,
for each case (Table 6.3), four plots will be illustrated: sSMC, EC, %RSs, and %RSec.

6.5.4 Results & Discussion

With a modelling framework established that permits the binding of drug to both ECs and SMCs,
the purpose is now to assess the significance of drug delivery on arterial healing, and whether
it may have implications on patient outcome. Other factors such as stent thrombosis are not
considered within this model and are left to future work.

As per Table 6.3, Case A1 assumes that drug binds to ECs with the same affinity as non–
specific binding sites. The results of this are presented in Fig. 6.8. Following the release of
drug from the polymer coating, drug is initially at high concentrations within the intima before
quickly depleting towards zero [188, 189]. This is reiterated in Fig. 6.8a, where across the
different drug masses proposed, the difference in EC recovery is negligible. This is supported
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by Fig. 6.8c, where the peak of saturated endothelial receptors is minimal, and only present
within the first few days post stent deployment. Therefore, as the density of EC binding sites is
assumed to be so high, then the level of drug delivered to the artery is unable to come close to
complete saturation of EC receptors. As such, EC regeneration is unaffected by drug, and only
the peak of SMC proliferation is altered as a consequence of drug binding to specific receptors,
inhibiting their proliferative capacity (Fig. 6.8b). The inhibition of SMCs is supported by Fig.
6.8d, where a clear saturation of specific receptors is present, particularly at higher drug masses
(DM2 and DM3). Although DM2 falls away from its peak value more quickly than DM3, the
SMC response is almost identical between the two. This is because drug saturates the specific
receptors for long enough during the active phase of remodelling (3 weeks), where depreciation
from this value after that has no consequence on the outcome. The findings of case A1 seem to
suggest that delayed arterial healing would be minimal to non–existent and do not agree with
trends present in [25], assuming the density of EC binding sites is similar to that of the non–
specific sites.

Considering Case A2, it is assumed that the rate at which drug binds to ECs is equivalent to
the mean of the specific and non–specific binding parameters. A limitation of this approach is
that the parameters are biased towards the non–specific case due to the parameter values being
over an order of magnitude higher (Table 6.3). Nonetheless, Fig. 6.9 illustrates how ECs and
thus the sSMC population are affected when adopting these binding parameters.

At lower drug masses (DM0 and DM1), akin to Case A1, the endothelial population recovers
at a rate similar to when drug is absent (Fig. 6.9a). Here, the saturation of endothelial receptors
again peaks at early times before tending towards zero (Fig. 6.9c). However, as there is a slight
inhibition in EC recovery, the peak of SMCs is not only reduced as a result of drug but is also
inhibited temporally, where the peak is shifted to the right. This suggests that SMCs remain in
their active, proliferative state for longer as a consequence of the delayed re–endothelialization.
However, as the mass of drug is increased (DM2 and DM3), the recovery of ECs becomes
significantly impaired, where the time to reach its healthy value (Kec) is almost doubled for the
highest drug mass considered. Here, the percentage of drug bound to endothelial receptors is
notably increased (Fig. 6.9c). Although %RSec still quickly depreciates from its peak value, it
never reaches zero within the 80–days considered for this simulation when DM3 is proposed.
As such, the duration SMCs spend in their active, proliferative state is notably increased (Fig.
6.9b). Although drug specifically bound to specific SMC receptors is still high (Fig. 6.9d), the
role of drug is to only inhibit proliferation and not to induce differentiation back to the quiescent,
contractile phenotype in this model. Therefore, when drug mass is increased (DM3), the peak
of SMC is not only shifted temporally to the right but also upwards. In other words, although
drug is inhibiting the proliferation of sSMCs, with the recovery of the endothelial population
delayed, more SMCs are permitted to transition from their contractile to synthetic phenotypes,
as demonstrated by the significant peak in Fig. 6.9b for DM3. This is alluded to in more depth
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(a) A1: EC (b) A1: sSMC

(c) A1: RSec (d) A1: RSs

Figure 6.8: Results of the drug transport model coupled with re–endothelialization: Case A1.
(a) EC. (b) sSMC. (c) Endothelial receptor saturation (RSec). (d) Specific receptor saturation
(RSs). ND = No drug. DM0–3 are the various drug masses, reported in Table 6.4. All species
profiles (EC and sSMC) illustrate the behaviour at point C (Fig. 6.2).

following the results of Case A3. Although the total SMC density does not increase, with more
sSMCs now present, then ECM synthesis is increased, where vessel re–narrowing is likely to be
more profound as a result (Fig. 6.7).

Assuming that drug binds to ECs with the parameters proposed in Case A2, then the effects
of delayed arterial healing are noteworthy. Although SMC proliferation is still significantly in-
hibited by drug, the number of active, synthetic SMCs is drastically increased when the recovery
of ECs is impaired, which may have implications on patient outcome with respect to the volume
of ECM synthesised.

Finally, the most extreme scenario is considered: Case A3. Here, it is assumed that drug
will bind to both ECs and SMCs with the same affinity. This, of all the cases, is likely to
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(a) A2: EC (b) A2: sSMC

(c) A2: RSec (d) A2: RSs

Figure 6.9: Results of the drug transport model coupled with re–endothelialization: Case A2.
(a) EC. (b) sSMC. (c) Endothelial receptor saturation (RSec). (d) Specific receptor saturation
(RSs). ND = No drug. DM0–3 are the various drug masses, reported in Table 6.4. All species
profiles (EC and sSMC) illustrate the behaviour at point C (Fig. 6.2).

be the closest to reality given that both cell types possess the same intracellular receptors for
drug [365]. Moreover, by means of an in vitro proliferation assay, Matter et al. [31] demonstrated
that sirolimus elicited a similar dose–dependent response on ECs and SMCs in separate cultures.

Unsurprisingly, EC proliferation is significantly curtailed for all drug doses considered (Fig.
6.10a). This is reinforced by the receptor saturation curves (Fig. 6.10c). At higher drug masses
(DM2 and DM3), the saturation of receptors is close to 100% at early times before slowly de-
clining from its peak across the 80–day period of interest. As such, EC proliferation is minimal,
particularly at DM3, where growth barely exceeds the initial value. Alluded to in Case A2, this
has a significant impact on the sSMC curves (Fig. 6.10b). For all doses, the peak of each curve
exceeds the height of the drug–free scenario. Moreover, there is also a temporal shift for each
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(a) A3: EC (b) A3: sSMC

(c) A3: RSec (d) A3: RSs

Figure 6.10: Results of the drug transport model coupled with re–endothelialization: Case A3.
(a) EC. (b) sSMC. (c) Endothelial receptor saturation (RSec). (d) Specific receptor saturation
(RSs). ND = No drug. DM0-3 are the various drug masses, reported in Table 6.4. All species
profiles (EC and sSMC) illustrate the behaviour at point C (Fig. 6.2).

curve, where the time taken to reach the peak is a direct consequence of the time taken for the
EC species to reach the inflection point (Fig. 6.10a). At higher drug masses, as was true in Case
A2, sSMC proliferation is minimal, and the increase in sSMC density is a consequence of pre-
dominantly phenotype switching. However, for lower drug masses (DM0 and DM1), complete
saturation of specific (SMC) receptors is not achieved. Thus, it is likely that the increase in SMC
density (Fig. 6.9b) is a result of proliferation and phenotype switching. To examine this further,
a direct comparison is made between the synthetic and contractile curves when no drug (ND) is
considered as well as at the two mass extremes, DM0 and DM3 (Fig. 6.11).

Fig. 6.11a presents each of the contractile SMC curves, which can be directly compared
with the sSMC curves in Fig. 6.10b. However, to visualise differences between these curves
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(a) A3: cSMC (b) A3: cSMC versus sSMC (ND)

(c) A3: cSMC versus sSMC (DM0) (d) A3: cSMC versus sSMC (DM3)

Figure 6.11: Results of the drug transport model coupled with re–endothelialization: Case A3.
(a) cSMC. (b)–(d) cSMC versus sSMC for (b) ND, (c) DM0, and (d) DM3. Here, the magnitude
of the cSMC minimum has been computed, and superimposed onto the sSMC curve. Difference
between the sSMC curve and this value are denoted by a shaded blue region, highlighting the
change in cell density as a result of proliferation. Solid lines refer the sSMC species, whilst
dashed lines to the cSMC one. ND = No drug. DM0–3 are the various drug masses, reported in
Table 6.4

simultaneously, Fig. 6.11b–6.11d was devised. To facilitate this comparison, the minimum
peak of the cSMC curve was identified (vertical blue line) from the initial density of cells,
c0

csmc (horizontal blue line). The magnitude of this peak (Pv) was computed by, Pv = c0
csmc−

min(ccsmc). The height of Pv was then superimposed onto the sSMC profile by adding it from
zero. To further emphasise the density of proliferating cells, the areas of the sSMC curve which
surpass Pv are shaded in blue. Unsurprisingly, the shaded area is most profound in the case
where drug is absent (Fig. 6.11b). For lower drug masses, DM0, a small shaded area exists (Fig.
6.11c), illustrating that because EC recovery is notably delayed (Fig. 6.10a), and the sSMC
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specific receptors are not completely saturated (Fig. 6.10d), then excess SMC proliferation is
enabled. Although much of the increase in sSMC density following exposure to DM0 is a result
of an increased number of cells differentiating from contractile to synthetic, it is clear that the
rise in sSMC peak is also a consequence of sSMC proliferation. Finally, no shaded area exists
following exposure to DM3 (Fig. 6.11d). This suggests that the increase in sSMC density
is predominantly a consequence of phenotype conversion from cSMCs, where proliferation is
minimal (Fig. 6.11b).

Summarising, if it is assumed that drug binds to ECs and SMCs with the same affinity,
then the drug delivery strategy has the potential to have a notable impact on the timeline of
arterial healing. Although sSMC proliferation is minimal, particularly at higher masses (Fig.
6.10b, 6.10d, and 6.11d), increased vessel re–narrowing is likely to occur with ECM synthesis
increased as a result of the increased density of sSMCs. On the other hand, at lower masses
(DM0), where the proliferation of both cell types is impeded but not halted, then an increase in
sSMC also occurs through proliferation due to a delay in the recovery of the endothelial layer;
an important implication of delayed arterial healing.

The model presented here is the first of its kind to explore the effect of drug on multiple cell
types (ECs and SMCs) within the context of arterial healing. Whilst the results presented are
interesting, additional work is necessary to fully appreciate the implications of drug on ECs and
the subsequent impact on patient outcome. These aspects are discussed in Section 6.6.

6.6 Limitations & Future work

With the model presented in this chapter being preliminary, limitations are evident. One key
limitation is with respect to the model geometry proposed. A simple, shorter geometry was
considered to focus closely on EC and SMC behaviour. However, subsequent efforts should
implement a geometry like that in Chapter 4. This would represent a more realistic environment
and enable measures such as % area restenosis to be calculated.

Although the results of the model proposed here demonstrate that drug has an impact on EC
recovery, there are other factors that undoubtedly contribute to the process of delayed arterial
healing. One of these being low wall shear stress (WSS) as a consequence of disturbed blood
flow following stent deployment. Various models of ISR have recently emerged that correlate
this index (WSS) with patient outcome [220, 221, 226]. Moreover, other models, where tissue
growth is absent, have highlighted importance of stent design features (deployment depth, strut
shape, and strut thickness) on disturbed flow profiles adjacent to the stent struts [361, 366].
Additionally, the inclusion of fluid dynamics would also permit the assessment of recirculation
zones on drug deposition, and its impact EC functionality and thus patient outcome [200, 361,
366]. Taken together, in time, one can begin to explore other aspects associated with poor patient
outcome as a consequence of disturbed flow profiles such as stent thrombosis, commonly linked
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with delayed arterial healing [24, 362].
Finally, the purpose of this chapter was to consider a direct coupling between ECs and SMCs:

inspired from agent–based models (ABMs) which follow a rule based approach [53,65–67]. To
the best of the authors knowledge, this is the first model that proposes such an idea within a
continuum modelling framework. To facilitate the coupling between ECs and SMCs, the term
associated with the phenotype switch of SMCs was updated (Eqn. 6.3). This new term dictates
the number of active, synthetic SMCs depending on whether ECs have surpassed their inflection
point of the logistic growth profile or not. It would be beneficial to test the validity of this
mathematical expression, perhaps through the aid of in vitro co–culture proliferation assays
comprising of both cell types, where experimental data could help calibrate and validate the
model proposed.

6.7 Conclusions

In conclusion, amendments to the original restenosis model in Chapter 4 have been proposed that
consider the impact of damage on endothelial recovery [62], and the subsequent effect a delay
in re–endothelialization may have on patient outcome through an increase in SMC number and
proliferation [53, 65–67]. With DES the focus of this work, the drug transport model was also
extended to explore the effect of drug on multiple cell types: SMCs and ECs. As such, the
model was able to illustrate delayed arterial healing as a consequence of drug binding to sites
within ECs. Through a series of cases, results suggested that this could possibly have an impact
on patient outcome through an increase in SMC number, primarily a consequence of phenotype
switching as opposed to proliferation, but that the results are drug dose–dependent.

Further work should aim to address the limitations proposed in an attempt to enrich the com-
putational model. In doing so, one can begin to examine the implications of DES more thor-
oughly, assessing the impact of drug possibly being present in the intima for prolonged periods
of time [361], where fenestrations in the IEL through a dysfunctional endothelium may promote
vessel remodelling that could result in patient complications: all a consequence of delayed arte-
rial healing. Moreover, the effect of different drug release rates should also be considered as in
Chapter 5, where it is likely that the release of drug more slowly or quickly into the artery will
have implications on both EC recovery and SMC proliferation through a range of different drug
masses. Finally, upon the inclusion of fluid dynamics, a more thorough investigation into adverse
outcomes associated with stent–induced flow disturbances can be considered [24, 25, 27, 361].
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Chapter 7

Conclusions and future work

This chapter summarises the key conclusions of this thesis, proposing possible avenues for fur-
ther work. The chapter is broken into two distinct sections. The first details the importance of
the in vitro models presented in Chapters 2 and 3. These models were then built upon in com-
plexity to simulate the role of anti–proliferative drug within an in vivo environment: the focus
of the second section, making reference to Chapters 4–6.

Mathematical models calibrated and validated from in vitro experimental
data

Chapters 2 and 3, through a series of mathematical models, demonstrated the effect of anti–
proliferative drug on smooth muscle cell (SMC) proliferation within an in vitro environment.
The importance of such experimental methods cannot be underestimated to appreciate the phar-
macodynamic effects of drug on cellular function, which in turn drives therapeutic dose ranges
in vivo [22,78]. In Chapter 2, the models varied in complexity, where somewhat surprisingly, the
ubiquitously used, nonlinear saturable binding model was unable to capture the dose–dependent
effect of drug on SMC growth unless the best–fitting parameters used to detail drug binding ki-
netics varied on a dose–by–dose basis, meaning its predictive capacity was significantly limited.
Models depicting simpler kinetics were able to effectively capture all of the experimental data,
where subsequent predictions were adequate. These results suggest that, when available in large
enough concentrations, drugs like paclitaxel are able to elicit their effect very quickly (complete
inhibition of cell proliferation following 3–60 minute exposure); perhaps explaining the success
of such drugs on drug–coated balloon devices [22, 170, 360], where the is only a very short
window to delivery the drug. Moreover, the models were able to capture the differences in the
lipophillic properties of two drugs (paclitaxel and sodium salicylate), simulating cell recovery,
or lack thereof, following the removal of the supernatant. Although the model which neglected
binding performed best, its predictive capabilities were limited by the data available, where ad-
ditional data is necessary to fully validate the model. Moreover, the poor quality of predictions
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of these models could also be attributed to a number of factors. Possible explanations include
the best–fitting parameter protocol perhaps being sub–optimal, or that the parameters detailing
the binding kinetics were drug and/or dose dependent. However, an alternative explanation is
that an inadequate model description was proposed in Chapter 2, where the precise action of
the drugs was not considered. In other words, the models assumed the drug acts without regard
for the cyclic behaviour of a proliferating cell: ignoring the cell cycle specificity of such drugs.
Chapter 3 addressed these issues, simulating the cell cycle as the population of cells proliferated
to capacity. As such, two different drugs were tested: (i) G1/S transition blocker (e.g. sirolimus)
and (ii) a mitosis, M, blocker (e.g. paclitaxel). Thus, the models derived for each drug ensured
the timing of its action within the cell cycle was different. The results of these efforts concluded
the following:

• Differences were noted when cell cycle dynamics were neglected (single–phase) or con-
sidered (multi–phase). As anticipated, the former inhibited cell proliferation more pro-
foundly.

• When simulating cell cycle dynamics, the initial distribution of cells throughout the cell
cycle has a direct impact on drug efficacy.

• The effect of drug is further exacerbated when spatiotemporal gradients of drug are intro-
duced, i.e. drug delivery.

These appear to be the first modelling strategies that have explored this concept within the
context of SMC proliferation. To fully appreciate the benefits of considering cell cycle behaviour
within mathematical models, further work should explore sophisticated experimental techniques
(e.g. fluorescent universal cell cycle indicator, FUCCI [284–286]) to calibrate and validate the
mathematical models. Such experimental data has been known to inform clinicians of the op-
timal treatment strategies for chemotherapy [287, 288], and could thus be applied within the
context of in–stent restenosis (ISR) in the pursuit of optimal stent design.

Moreover, although Chapter 3 highlighted the importance of spatiotemporal drug delivery
on the efficacy of drug, it is clear that a translation into an in vivo environment is needed. With
anti–proliferative drug known to elicit its effect on the cell (e.g. SMC) population, these in vivo

models will aid in understanding the subsequent impact on patient outcome through restenosis;
where SMCs are known to be the driving force in its evolution. With stent–induced vascular
injury known to trigger a heterogeneous healing response, one can explore the impact of stent
design on patient outcome, with a particular emphasis placed on the drug delivery strategy.
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In vivo modelling reveals an intricate interplay between drug release rate
and dose on arterial restenosis

Chapter 4 derived a novel, multiscale model of ISR, illustrating the impact of stent design on
patient outcome, where trends agreed with those present in the modelling, clinical, and experi-
mental literature [53,65–67,101]. The model illustrated that increased vascular injury, as a con-
sequence of increased strut thickness or reduced inter–strut spacing, resulted in more profound
tissue growth profiles. However, a notable limitation of the model, as is true with many models
of ISR [53–55, 57, 65–67, 101, 211, 220, 221, 226], was that the role of anti–proliferative drug
was neglected. Moreover, state–of–the–art drug transport models assume static arteries, where
the remodelling process of the artery following stent deployment is neglected [78, 79,172,178].
With this in mind, Chapter 5 built upon the model proposed in Chapter 4, explicitly coupling a
sophisticated model of drug transport with cellular function. The results revealed an intricate in-
terplay between the rate at which drug was delivered and the initial coating drug mass on vessel
re–narrowing, where simply increasing either did not always improve patient outcome. This was
explored across a range of stent designs proposed in Chapter 5, demonstrating that in situations
where vascular injury was more profound, higher masses of drug were necessary to combat a
more aggressive healing response. With drug release dictating the rate at which the mass of drug
in tissue changed, the optimal patient outcome was achieved following an intermediate rate of
drug delivery. This achieved a sustained saturation of binding site receptors across the active
phase of remodelling [79]. However, faster or slower rates of delivery were acceptable when the
initial drug loading varied from high to low, respectively.

Moreover, with the in vivo environment naturally heterogeneous, the model proposed in
Chapter 5 assessed the validity of a constant binding site density, adopted ubiquitously in drug
transport models. In such situations, the artery is assumed static, where cell proliferation is
ignored and the number of binding sites does not change in space or time [78,79]. Alternatively,
based upon histological evidence [60, 354, 355], Chapter 5 proposed a variable binding site
density that was regulated by the density of active, proliferating cells. In other words, the density
of drug binding sites increased early in response to injury and depreciated in time as the artery
healed, and the neointima matured, becoming hypocellular [56, 60]. Although reliable data on
the average receptor expression per cell was absent, the model demonstrated similar trends to the
constant binding assumption, again emphasising the importance of stent design parameters on
patient outcome. Furthermore, it is likely that the variable binding site density would be further
heightened in diseased vessels, where the morphology is significantly more heterogeneous.

Nonetheless, the models proposed in both Chapters 4 and 5 have limitations. Firstly, in
Chapter 4, the recovery of the endothelial cell (EC) population was simulated in isolation of
all other model constituents. Thus, in Chapter 5, the implications of delayed arterial healing
could not be fully assessed. As such, Chapter 6 proposed an alternative approach to modelling
arterial healing, where the recovery of ECs was directly influenced by vascular injury [62], and
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that the ECs were directly responsible for the proliferative capacity of SMCs [65, 67]. The drug
transport model in Chapter 5 was then extended to enable the binding of drug to ECs. With
data on the binding kinetics of drug to ECs absent, a series of cases were simulated which
illustrated the possible implications of delayed arterial healing on patient outcome. To reduce
computational time, these simulations were considered within a shortened segment of the full
geometrical model in Chapter 4 and 5. As such, the immediate next step should be to simulate
this effect within the full computational model. Nonetheless, following an examination of key
model species (extracellular matrix, ECM and SMCs) within the model, the results alluded to the
possible significance of delayed arterial healing through the inhibition of EC recovery following
the delivery of drug.

The models proposed in Chapters 4–6 are limited by other factors which should be explored
in further research. Firstly, the role of the adventitia on restenosis was ignored. Although its
significance in stent deployment was highlighted, with the function of the cells residing in the
adventitia still poorly understood [56, 348] its inclusion within the restenosis model is left to
future work, where it is hoped that experimental evidence may provide more insight. Secondly,
the complexity of the geometrical model could be increased. In the first instance, this could
include disease, where imaging modalities like virtual histology–intravascular ultrasound (VH–
IVUS) could be considered to characterise the severity of disease within the blood vessel. Upon
the derivation of a computational model which depicts this disease profile, the impact on drug
transport and thus restenosis could be assessed. On the other hand, the dimensionality of the
model geometry could be extended to 3D, allowing one to explore the possible implications of
deep arterial tears and strut malapposition on patient outcome in depth. Additionally, patient–
specific geometries could also be explored with 3D geometries introduced.

Moreover, the restenosis model in particular is limited by the fact that the tissue growth
profile is computed in a separate, stationary study. To improve the realism of the model, a
moving boundary problem could be considered, where the leading front of the restenosis profile
is dynamic, transgressing through the lumen as cells proliferate and synthesise ECM. It remains
unclear how such a model would be derived and implemented, but initial efforts should strip
back model complexity to 1D before introducing it within a more complex environment (2D or
3D).

Lastly, a limitation present within all models in Chapters 4–6 is the absence of flow, and its
effect on both tissue growth and drug transport. Although its effect on the latter has been well
characterised, its contribution to tissue growth is still poorly understood [55]. Several models
of ISR have established a link between wall–shear stress (WSS) and ISR [219, 220, 225, 305],
where efforts often propose a linear or continuous piecewise function to assign levels of damage
to agents in their model, an approach similar in principle to the definition of damage in Chapter 4
(Eqn. 2.5). In such models, the role of vascular injury is notably absent, only introduced recently
in [306], who highlighted its significance in focal lumen loss. Although the importance of WSS
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on EC functionality has been studied extensively [200, 361], with a particular focus on strut
design, its underlying effect deeper into the arterial wall is still poorly understood [55,225,226].
In particular, [226], the most sophisticated agent–based model (ABM) of ISR to date simulated
the transmission of WSS through the artery by a simple diffusion equation to assign each agent
with its own level of damage. Moreover, Jansen et al. [221] also noted that the effects of WSS
on growth factor influx within their model was purely theoretical and that further evidence was
needed. Thus, with the effects of flow absent in the tissue growth model, its contribution to drug
transport was neglected, where the magnitude of the advective velocity field is expected to only
decrease the time taken for binding sites to be saturated.

The majority of drug transport models which do not account for arterial remodelling assume
steady Navier Stokes when modelling blood flow in the lumen [78, 188, 189, 196]. However, in
idealised vessels, Escuer et al. [170] demonstrated that free drug concentrations in the lumen
were orders of magnitude below those in the tissue due to clearance by blood flow. Therefore,
in an attempt to reduce model complexity, only fluid flow in tissue was simulated through the
implementation of Darcy’s Law [169, 170, 188, 189, 196].

Derivation of a multiscale model of ISR subject to drug delivery: ABM of
restenosis coupled with a continuum model of drug transport

In an attempt to address the limitations associated with the lack of flow, a collaborative project
with a research group in Politecinico di Milano was devised. The primary aim of this work
was to develop a novel multiscale model of ISR which coupled an ABM of restenosis within a
continuum model of drug transport. The former was derived and simulated by colleagues from
Politecinico di Milano, where fluid flow was known to mediate tissue growth as in [226, 306].
As such, the drug transport model introduced fluid flow within the tissue through Darcy’s law,
where each layer of the arterial wall possesses its own unique transport properties. The method
adopted is discussed extensively in [170]. Not detailed in depth here, the reader is referred
to [170] for full details on the drug transport model, where subtle simplifications have been
made, as discussed in the following text.

Fig. 7.1 presents the geometry implemented within COMSOL Multiphysics 5.6a (COMSOL
AB, Burlington, MA, USA), with Fig. 7.2 noting some preliminary results. To be consistent with
the ABM in [226,306], a 2D cross–sectional geometry is proposed for the drug transport model.
Emulating the design of a shorter Xience V TM stent, 12 equally spaced struts (θss = 30◦) are
considered, with a strut thickness (st) of 81 µm and a coating thickness (δp) of 8 µm. The
arterial wall comprises of three layers: intima, media, and adventitia. However, with the former
notably thin (10 µm), then distinction from the media is challenging within the ABM of ISR.
Thus, it is assumed that the transport properties of these two layers are identical, emulating that
of the medial layer. Layer thickness are taken from literature [169], and summarised in Table
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7.1 along with the other parameters associated with the geometrical configuration.

Figure 7.1: A: Illustrates the entire 2D geometry, where struts are separated by an angle of 30◦

(θss). A.1: Shows a single strut and surrounding layers. A.2: Focuses in on the stent strut.
All domains and boundaries are denoted Ω and Γ, respectively. Domains include: polymer
coating (Ωp), media (Ωm), and the adventitia (Ωadv). The boundaries include: endothelium (Γet),
internal elastic lamina (Γiel), external elastic lamina (Γeel), perviascular edge (Γadv), polymer-
lumen interface (Γpl), polymer-wall interface (Γpw), and polymer-strut interface (Γps).

Parameter Description Value Reference(s)
st Strut thickness 81 µm [170]
δp Polymer coating thickness 8 µm [169, 170]
θss Strut spacing 30◦ †
δi Intima domain thickness 0.01 mm [55, 169]
δm Media domain thickness 0.5 mm [55, 169]

δadv Adventitia domain thickness 0.4 mm [169, 170]
rl Lumen radius 1.5 mm [188]

Table 7.1: Parameters of the baseline computational model. References denoted by a † are
estimated assuming that the stent struts are uniformly separated.

Fig 7.2a again illustrates the baseline geometry imposed for the drug transport model. How-
ever, Fig. 7.2b portrays an example of a geometry after some time where growth has occurred,
as a consequence of the ABM. Fig. 7.3 presents a high–level presentation of the work flow
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(a) Baseline geometry (b) Geometry following growth

(c) RS curves (d) Lumen area

Figure 7.2: (a) Baseline geometry as detailed in Fig. 7.1. (b) A geometric profile where tissue
growth has occurred. (c) Receptor saturation (RS) curves from the drug transport model for a
range of cases, S1–S6 (Table 7.2). (d) Lumen area curves from the drug transport model for a
range of cases, S1–S6 (Table 7.2). The shaded areas adjacent to the curves represent uncertainty,
with the ABM stochastic in nature. Results of (c) and (d) assume a single coupling between the
drug transport and agent–based models (Fig. 7.3.

to be considered in future work. Initially, a 3D geometry is obtained from optical coherence
tomography (OCT) images and meshed within ANSYS FLUENT (ANSYS Canonsburg, PA,
USA). Here, a computational fluid dynamics (CFD) simulation is performed to obtain WSS val-
ues along the lumen interface. A 2D slice of one of the planes highlighted in the CFD simulation
is created in COMSOLMultiphysics 5.6a (COMSOL AB, Burlington, MA, USA) (Fig. 7.2a),
where a drug transport simulation (detailed in [170]) is performed. In the initial study, a series of
receptor saturation curves (Fig. 7.2c) are plotted across a 30–day period. These are exported and
treated as inputs into the ABM simulated in MATLAB (MATLAB 2020a, The MathWorks, Inc.,
Natwick, MA, USA). In such a study, the coupling is just one–way between the drug transport
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and ABM frameworks, where the relevant lumen areas are as shown in Fig. 7.2d. Similarly to
Chapter 5, it is clear that the choice of both drug release rate and initial drug loading are im-
portant mediators of outcome. Details of each of the simulations (S1–S6) are discussed in Table
7.2. In subsequent efforts, a more iterative coupling between the drug transport and agent–based
model should be considered, where the ‘new’ geometry (i.e. Fig. 7.2b) is fed back into the drug
transport model, with the simulation continued. The methodological process for this is high-
lighted in Fig. 7.3 by the optional step process (dashed lines) which makes use of Rhinoceros
(Rhinoceros 3D, Version 6.0, Seattle, WA, USA) for manipulation of the geometry.

Figure 7.3: Flowchart of methodology established in a collaborative effort with Milan re-
search group. A combination of four software packages are used: ANSYS FLUENT (ANSYS
Canonsburg, PA, USA), COMSOL Multiphysics 5.6a (COMSOL AB, Burlington, MA, USA),
MATLAB (MATLAB 2020a, The MathWorks, Inc., Natwick, MA, USA), and Rhinoceros
(Rhinoceros 3D, Version 6.0, Seattle, WA, USA).

Within the preliminary work of this novel, multiscale, hybrid model of ISR subject to drug
delivery, the results chart trends present in Chapter 5. Although vascular injury is absent from the
ABM (see [226]), as the initial drug mass loading is increased, the resultant loss in lumen area is
reduced (Fig. 7.2b). Moreover, the choice of the drug release rate is important, where all profiles
are notably different. In future work, efforts should establish the importance of iterative coupling
as the drug dose and release rate are perturbed. It is anticipated that as the drug coating dose
is decreased, the need for more frequent coupling steps is increased as the tissue growth profile
is likely to be more severe with the number of saturated receptors decreased. Furthermore,
additional work should investigate the impact of vessel heterogeneity on the type of coupling
considered: (i) time–dependent receptor saturation curves or (ii) 2D spatial maps of bound drug
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Label (Fig. 7.2) Description Drug mass [µg cm−2] Polymer coating diffusion coefficient [m2 s−1]

S1 Drug mass 1 (†) 100 1.5×10−17

S2 Drug mass 2 10 1.5×10−17

S3 Drug mass 3 2.5 1.5×10−17

S4 Drug mass 4 1 1.5×10−17

S5 Fast drug release 2.5 1.5×10−16

S6 Slow drug release 2.5 1.5×10−18

Table 7.2: Different cases explored in the initial collaboration with Milan research group. Drug
mass 1, denoted by †, is acquired from FDA document on Xience V TM eluting stents [187].
Other drug masses are selected to pursue the possibility of future stents employing lower initial
drug loadings [358, 359]. Different drug release rates are consistent with those presented in
Chapter 5 (Fig. 5.4).

concentration (Fig. 7.3).

Concluding remarks and next steps

Despite the key insights the models in Chapter 4–6 have provided, there is clear scope to extend
the work further to ensure that the model devised is as realistic as possible. As such, further
work should firstly look to build upon the novel multiscale model of ISR subject to the delivery
of drug. Immediately thereafter, subsequent iterations should explore possible improvements
that enrich the computational model, such as the inclusion of: (i) disease, (ii) increased model
dimensionality, (iii) cell cycle behaviour on vessel re–narrowing, and (iv) stent–induced flow
disturbances (i.e. possibility of stent thrombosis on patient outcome). Then, in time, model
sophistication can be further increased to be inclusive of time–dependent tissue growth.

For example, addressing (i) first, the in vivo environment is notably heterogeneous following
stent deployment, further exacerbated when disease is present, where the transport properties
of drug are known to differ from healthy tissue throughout the lesion: particularly in necrotic
and calcified regions [46]. As such, focal vessel re–narrowing may occur where drug is unable
to reach proliferating SMCs in a timely manner following vascular injury as a consequence
of stent deployment. Moreover, if the components of plaque which drug struggles to diffuse
through directly interface the lumen, then drug concentrations may be sufficiently large at this
boundary. This is likely to then have a negative impact on the regeneration of the endothelial
layer, possibly contributing to the occurrence of delayed arterial healing [24, 25].

Model dimensionality (ii) could be improved by extending the computational models in
Chapter 4–6 to 3D. This would be met with drastically increased computational costs, but would
allow for simulations to emulate a more realistic setting.

The importance of cell cycle behaviour (iii) was demonstrated in Chapter 3. Following
calibration and validation of those models, a natural next step would be to observe the impact
of such models within an in vivo environment. As such, SMC proliferation in either restenosis
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model (Chapter 4 or 6) could be extended to introduce the role of anti–proliferative drug when
cell cycle specificity is accounted for. Particularly when the effect of drug on multiple cell types
is considered, further insight could be gained from such models in the pursuit of the optimal
drug delivery strategy.

Finally, inclusion of CFD (iv) within the lumen could further enrich the model. This would
facilitate the inclusion of stent–induced flow disturbances into the model, where consideration
of the importance of stent thrombosis could be analysed within a tissue remodelling framework.
Furthermore, as detailed in [200,361], the impact of flow disturbances on drug deposition could
be assessed, particularly in highly deformed arteries where recirculation zones are known to
exist. Such modelling may allude to events that increase the probability of delayed arterial
healing.

It is clear that there are several avenues to pursue in future work, all which only serve to im-
prove the models detailed within this thesis. Each studied in isolation should enable researchers
to improve their understanding of the performance of drug–eluting stents (DES). However, taken
together, it is likely that, in time, such a model could be incorporated as a pre–clinical tool to aid
in the optimal course of treatment in the clinic. With ISR still the primary culprit associated with
the need for repeat procedures [48,50], more sophisticated computational models of the process
can only serve to improve one’s understanding, and highlight the possible pitfalls in stent design
and/or procedure that promote its prevalence.
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Appendix A

Appendix

A.1 Supplemental Equations: Non-dimensional analysis

A.1.1 Non-dimensionalisation of Model D1

The dimensional model equations are given by Eqn. 2.6–2.7 in the main text. These equations
are non-dimensionalised using the scalings:

t∗ = gt, c∗ =
c
K
, b∗ =

b
BK

. (A.1)

Applying Eqn. A.1 to Eqn. 2.6–2.7 results in the following equations, where asterisks have
been omitted from variables for convenience:

db(t)
dt

= β
D1
1 (c(t)−b(t))−β

D1
2 b(t), t > 0, b(0) = 0, (A.2)

dc(t)
dt

= c(t)(1− c(t))
(

1− b(t)
c(t)

)
, t > 0, c(0) =C0. (A.3)

The three non-dimensional constants appearing in Eqn. A.2–A.3 are given by:

β
D1
1 =

kon cd

g
, β

D1
2 =

ko f f

g
, C0 =

c0

K
. (A.4)

A.1.2 Non-dimensionalisation of Model D2

The dimensional equations are given by Eqn. 2.9–2.10 in the main text. These equations are
non-dimensionalised using the scalings:

t∗ = gt, c∗ =
c
K
, bI∗ =

bI

k50
. (A.5)
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Applying Eqn. A.5 to Eqn. 2.9–2.10 results in the following equations, where asterisks have
been omitted from variables for convenience:

dbI(t)
dt

= β
D2
1 −β

D2
2 bI(t), t > 0, bI(0) = 0, (A.6)

dc(t)
dt

= c(t)(1− c(t))
(

1− kmax bI(t)
bI(t)+1

)
, t > 0, c(0) =C0, (A.7)

The three new non-dimensional constants appearing in Eqn. A.6–A.7 are given by

β
D2
1 =

αcd

gk50
, β

D2
2 =

α

gKp
, C0 =

c0

K
. (A.8)

A.1.3 Non-dimensionalisation of Model D3

The dimensional model equations are given by Eqn. 2.11a–2.11b in the main text. These equa-
tions are non-dimensionalised using the scalings:

t∗ = gt, τ
∗ = gτ, c∗ =

c
K
, c∗d =

cd

k50
. (A.9)

Applying Eqn. A.9 to Eqn. 2.11a–2.11b results in the following equations, where asterisks
have been omitted from variables for convenience:

dc(t)
dt

=


c(t)(1− c(t))

(
1−

kmax c∗d
c∗d +1

)
, 0 < t ≤ τ, c(0) =C0, (A.10a)

c(t)(1− c(t))

(
1−

kmax c∗d e(−β D3
1 (t−τ))

c∗d e(−β D3
1 (t−τ))+1

)
, t > τ. (A.10b)

The two new non-dimensional constants appearing in Eqn. A.10a–A.10b are given by

β
D3
1 =

kd

g
, C0 =

c0

K
. (A.11)

A.2 Supplemental Tables

Table A.1–A.4 presents information associated with the Marra data set. In order: Table A.1
documents the best–fitting paramaters following an individual fit to each data set; Table A.2
compares the error of model D1 and D2 for two different fitting protocols; Table A.3 presents
the various error values when one data set is used to predict all remaining response; and Table
A.4 documents the best–fitting parameters and associated error values following the optimal
fitting regime (Step 3, Fig. 2.7). Table A.5–A.7 presents the same information but for the
Scheller data set, excluding a repeat of Table A.2, since continuous exposure is absent in the
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Scheller study.

Best-fitting Parameter(s)
Model D1 Model D2 Model D3

Data set kon ko f f kD2
max

α

k50

α

KP
kD3

max k50

Hm
12 596.16 0.021 1.127 1.31e3 0.922 14.416 0.0706

Mm
12 142.35 0.117 17.077 9.407 0.344 10.4171 0.0347

Lm
12 1.96e-6 0.0021 0.4 6.16e-2 0.542 5.266 0.1906

Table A.1: Inversely estimated parameters of models D1, D2 and D3 when fitting is performed
against each individual data set of Marra et al. [269] The best fitting parameters vary not only
across the different doses for a given model, but also between the models (e.g. kmax).

Model response following washing: Quality of fit / prediction (ε)
Hm

12 Fit / Hm
4 Prediction Multi-fit: Hm

12 Fit and Hm
4

Model εHm
12

εHm
4

εHm
12

εHm
4

D1 0.0229 0.6174 0.0257 0.0126
D2 0.0235 0.0603 0.062 0.062

Table A.2: The table presents the series of cases from Fig. 2.9. Divided into two, where the
left shows how fitting to Hm

12 can predict Hm
4 for model D1 and D2 (Fig. a & c). Note, here

the column (εHm
12

) is the same values as Table A.1. The right–hand column presents the results
following a multi–fit to both of the aforementioned data sets (Fig. b & d).
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Quality of Predictions - ε

Model D1
F P εHm

12
εMm

12
εLm

12

Hm
12 Lm

12 & Mm
12 0.0229 0.551 0.111

Mm
12 Lm

12 & Hm
12 0.912 0.0238 0.052

Lm
12 Mm

12 & Hm
12 26.57 0.427 0.0455

Model D2
F P εHm

12
εMm

12
εLm

12

Hm
12 Lm

12 & Mm
12 0.0235 0.8243 0.4637

Mm
12 Lm

12 & Hm
12 1.3106 0.0163 0.0521

Lm
12 Mm

12 & Hm
12 26.5717 0.4287 0.0455

Model D3
F P εHm

12
εMm

12
εLm

12

Hm
12 Lm

12 & Mm
12 0.0273 0.0652 0.05

Mm
12 Lm

12 & Hm
12 0.9015 0.0294 0.0529

Lm
12 Mm

12 & Hm
12 18.3403 0.3537 0.046

Table A.3: Quality of predictions when best–fitting model parameters based on a single Marra
et al. [269] data set are used in the prediction of the other Marra et al. [269] data sets. Coloured
cells correspond to the error value (ε) of the data set on which the fit was performed. F and P
refer to the fitted and predicted data set(s), respectively.

Parameter Error - ε

Model kon ko f f - εHm
12

εMm
12

εLm
12

εHm
4

D1 4.31e2 0.283 - 0.17 0.158 0.074 0.076

kD2
max

α

k50

α

KP
εHm

12
εMm

12
εLm

12
εHm

4

D2 1.79 2.088e2 0.828 0.051 0.021 0.055 0.078

kD3
max k50 kd εHm

12
εMm

12
εLm

12
εHm

4

D3 2.65 8.54e-3 0.253 0.035 0.03 0.053 0.038

Table A.4: Best–fitting parameters and associated error for each of three models D1, D2 and
D3, when a multi–fit is used to inversely estimate the model parameters before the effect of the
low dose drug Lm

12 is predicted to the Marra et al. [269] dataset. For Models D1 and D2, the Mm
12,

Hm
12 and Hm

4 data sets were used in the multi-fit. For Model D3, the Mm
12 and Hm

12 data sets were
used in the multi-fit with a subsequent fitting step using the Hm

4 data set required to estimate the
parameter associated with drug retention (kd).
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Best-fitting Parameter(s)
Model D1 Model D2 Model D3

Data set kon ko f f kD2
max

α

k50

α

KP
kD3

max k50 kd

Hs
60 8.87e6 1.61e-4 0.977 1.027e7 7.38e-4 2.65 3.01e-5 1.25e-4

Hs
10 5.059e7 8.02e-5 1.979 8.135e6 1.24e-2 2.72 2.98e-5 1.27e-4

Hs
3 2.078e8 8.68e-4 1.823 3.27e7 6.37e-4 1.58 1.01e-5 2.54e-8

Ls
60 2.028e7 1.41e-4 2.569 3.32e6 2.3e-3 3.61 1.08e-5 1.52e-4

Table A.5: Inversely estimated parameters of models D1, D2 and D3 when fitting is performed
against each individual data set of Scheller et al. [81] The best fitting parameters vary not only
across the different doses for a given model, but also between the models.

Quality of Predictions - ε

Model D1
F P εHs

60
εHs

10
εHs

3
εLs

60

Hs
60 Hs

10, Hs
3 & Ls

60 0.2649 18.66 36.38 0.2746
Hs

10 Hs
60, Hs

3 & Ls
60 0.531 0.096 20.23 0.725

Hs
3 Hs

60, Hs
10 & Ls

60 0.529 0.482 0.173 2.07
Ls

60 Hs
60, Hs

10 & Hs
3 0.509 7.83 31.77 0.057

Model D2
F P εHs

60
εHs

10
εHs

3
εLs

60

Hs
60 Hs

10, Hs
3 & Ls

60 0.0786 8.3835 30.1301 0.0248
Hs

10 Hs
60, Hs

3 & Ls
60 3.1154 0.0284 21.88 0.322

Hs
3 Hs

60, Hs
10 & Ls

60 3.2635 2.5687 0.0356 2.8331
Ls

60 Hs
60, Hs

10 & Hs
3 3.2313 2.9855 30.065 0.0052

Model D3
F P εHs

60
εHs

10
εHs

3
εLs

60

Hs
60 Hs

10, Hs
3 & Ls

60 0.0549 0.0304 0.1378 0.4848
Hs

10 Hs
60, Hs

3 & Ls
60 0.0863 0.0593 0.0463 0.4729

Hs
3 Hs

60, Hs
10 & Ls

60 0.1259 0.0967 0.0346 0.3062
Ls

60 Hs
60, Hs

10 & Hs
3 3.5872 3.6166 3.6055 0.0048

Table A.6: Quality of predictions when best-fitting model parameters based on a single Scheller
et al. [81] data set are used in the prediction of the other Scheller et al. [81] data sets. Coloured
cells correspond to the error value (ε) of the data set on which the fit was performed. F and P
refer to the fitted and predicted data set(s), respectively.
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Parameter Error - ε

Model kon ko f f - εHs
60

εHs
10

εHs
3

εLs
60

D1 1.642e7 3.01e-3 - 0.33 11.01 33.33 0.083
kD2

max
α

k50

α

KP
εHs

60
εHs

10
εHs

3
εLs

60

D2 0.95 1.13e7 2.3e-3 0.13 8.2 29.75 0.02
kD3

max k50 kd εHs
60

εHs
10

εHs
3

εLs
60

D3 0.95 2.14e-5 2.14e-4 0.13 0.10 0.45 0.019

Table A.7: Best-fitting parameters and associated error for each of three models D1, D2 and D3,
when a multi-fit is used to inversely estimate the model parameters to the Scheller et al. [81]
dataset. The 60 min exposure of low and high drug dose data sets were used simultaneously to
find the best fitting parameters, with the effect of the shorter exposure times of the high drug
dose predicted.
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