
 
 

 

 

 

 

 

 

Luo, Weicong (2022) Measuring and optimizing accessibility to emergency 

medical services. PhD thesis. 

 

http://theses.gla.ac.uk/83279/  

 

 

 

    

 

 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 

 

 

 

 
 

Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://theses.gla.ac.uk/83279/
mailto:research-enlighten@glasgow.ac.uk


 

 

 

Measuring and Optimizing Accessibility to Emergency 

Medical Services 

 

 

 

 

 

 

 

 

 

Submitted in fulfilment of the requirements of the  

Degree of Doctor of Philosophy 

 

School of Social and Political Sciences 

 College of Social Sciences 

University of Glasgow 

August 2022 

 



 

i 

 

Abstract 

Emergency medical services (EMSs) undertake the responsibility of providing rapid medical 

care to patients suffering from unexpected illnesses or injuries and transferring them to 

definitive care facilities. This research concerns several research gaps that are associated 

with different EMS trips, real-time traffic conditions, improving EMS efficiency and 

equalities. This research aims to develop GIS-based spatial optimization methods to improve 

service efficiency and equality in EMS systems. Specifically, the research intends to achieve 

the following goals: (1) to measure spatiotemporal accessibility to EMS; (2) to improve EMS 

efficiency and provision through spatial optimization approaches; (3) to reduce urban-rural 

inequalities in EMS accessibility and coverage using spatial optimization approaches. The 

proposed approaches are applied in three empirical studies in Wuhan, China.  

To achieve the first objective, the proximity and the enhanced two-step floating catchment 

method (E-2SFCA) are adopted to evaluate spatiotemporal accessibility. First, the EMS 

travel time is estimated for the two related trips as an overall EMS journey: one is from the 

nearest EMS station to the scene (Trip 1), and the other is from the scene to the nearest 

emergency hospital (Trip 2). Then, the E-2SFCA method is employed to calculate the 

accessibility score that integrates both geographic accessibility and availability of EMS. 

Travel time is estimated by using both static road network with standard speed limits and 

online map service considering real-time traffic. 

To achieve the second objective, two facility location models are proposed to improve EMS 

service coverages for two-related trips (Trips 1 and 2). The first model maximizes the amount 

of demand covered by both ambulance coverage (EMS station – demand) and hospital 

coverage (demand – hospital). The second model maximizes the amount of demand that can 

be served by both ambulance coverage and overall coverage (EMS station – demand – 

hospital).  

To achieve the third objective, two bi-objective optimization models are developed. The two 

models have the same primary objective to maximize the total covered demand by 

ambulance. The second objective is to minimize one of the two inequality measures: one 

focuses on accessibility of uncovered rural people, and the other concerns the urban-rural 

inequality in service coverage. 

For the first empirical study with respect to spatiotemporal access to EMS, different spatial 

patterns are found for the three trips (two partial trips and the overall trip). Good accessibility 

to one trip cannot guarantee good accessibility to another trip. In addition, urban-rural 
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inequalities in EMS accessibility and coverage are observed. Finally, it is observed that real-

time traffic conditions greatly affect EMS accessibility, particularly in urban districts. 

Specifically, the accessibility of EMS becomes poor during the morning (7-9 am) and 

evening peak periods (5-7 pm). 

For the second empirical study in relation to EMS optimization involving two related trips, 

the results find that the first proposed model can guarantee that more demand to be covered 

by both ambulance and hospital coverages than the Maximum Coverage Location Problem 

(MCLP). The second proposed model can ensure that as many people as possible to be served 

by both ambulance and overall coverage than the work by ReVelle et al. (1976).  

For the third empirical study attempting to reduce urban-rural inequality in EMS, the results 

show that the first bi-objective model can improve EMS accessibility of uncovered rural 

demand, and the second model can reduce EMS service coverages between urban and rural 

areas.  However, the improvement EMS inequalities between urban and rural areas leads to 

a cost of a decrease in the total covered population, especially in urban areas.  

Regarding policy implications, this research suggests that different EMS trips and traffic 

conditions should be considered when measuring spatial accessibility to EMS. Spatial 

optimization research can help improving service efficiency and reduce regional equalities 

in EMS systems. The work presented in this thesis can aid the planning practice of public 

services like EMS and provide decision support for policymakers. 

Keywords: GIS; Spatial optimization; Accessibility; Service coverage; EMS  
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Chapter 1 Introduction 

1.1. Background 

A Chinese proverb states: “a storm may arise from a clear sky, while human fortunes are as 

unpredictable as the weather.” This proverb means that something unexpected may happen 

anytime and anywhere. As a critical component of healthcare systems around the world, 

emergency medical services (EMSs) undertake the responsibility of providing rapid medical 

care to patients suffering from unexpected illnesses or unintentional injuries (e.g., 

cardiovascular diseases, car accidents) and transferring them to definitive care facilities (e.g., 

hospitals, emergency departments) (Sánchez-Mangas et al. 2010). Before the outbreak of 

Coronavirus disease 2019 (COVID-19) pandemic, EMS demands had increased 

dramatically worldwide. In England, annual EMS demands climbed from 7.9 million to more 

than 10 million between 2010 and 2018, an average annual increase of 6% (English NHS 

Ambulance Trusts, 2018). In cities such as New York, United States, EMS responded to 

nearly 1.5 million incidents in 2017, an average of around 4,000 cases per day, representing 

a 36% increase from the year 2000 (Citizens Budget Commission. 2018). During the 

outbreak of COVID-19 pandemic, the EMS demand have increased rapidly around the world. 

For example, one study found the total EMS calls climbed by 23.3% between 2019 and 2020 

in Copenhagen, Demark (Jensen et al., 2020). Similar findings were also reported by Ferron 

et al. (2021). There is no doubt that a high-quality EMS provision is essential to protect 

public health and safety. 

From a historical perspective, the first known EMS system with specialized vehicles was 

developed by Napoleon’s army, which operated in the Battle of Spires in 1793 (Skandalakis 

et al., 2006). Before World War II, many hospitals had offered ambulance services in major 

cities around the world, such as London (Kouwenhoven and Knickerbocker, 1960). The 

modern EMS systems were developed in the 1960s, especially after the development of 

cardiopulmonary resuscitation (CPR), and defibrillation. These new techniques led to a 

revolution in emergency medical care.   

Modern EMS systems can be classified into two major groups: Anglo-American and Franco-

German (Dick, 2003). The former provides basic prehospital emergency care on-site and 

transports patients to hospitals’ emergency departments. The latter provides mobile and 

advanced on-scene medical care, which intends to deliver the “hospital and medical 
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equipment” to the scene. The Anglo-American EMS system has been widely implemented 

in countries such as China, the United Kingdom, the United States, Australia, New Zealand, 

and Canada. The Franco-German system has been adopted in Austria, Finland, Germany, 

France, Russia, and other countries (Van der Vaart et al., 2011). This study focuses on the 

Anglo-American EMS system. 

A high-quality EMS system often provides service in an efficient and fair way. The efficiency 

and equality of EMS are often assessed by accessibility or service coverage. Accessibility 

refers to the ease and speed of action, linked with the distance between demands and 

suppliers. EMS accessibility often pertains to the distance or travel time of an overall journey 

consisting of two one-way trips (see Figure 1-1): Trip 1 (EMS station – scene) and Trip 2 

(scene – hospital). The overall journey (EMS station – scene – hospital) includes the two 

one-way trips, and hereafter referred to as the overall trip. In general, all trips can affect the 

quality of EMS system. Good ambulance accessibility allows patients to receive rapid 

prehospital medical care, which implies better health outcomes (O’Keeffe et al., 2010; 

Sinden et al. 2020). As most ambulances are equipped with basic and limited medical 

equipment, many patients need to transfer to hospitals to receive further and specialized 

medical treatments. Therefore, good hospital accessibility or overall accessibility is also 

important as they affect the timeliness of receiving specialized medical care (Ouma et al. 

2018; Carr et al. 2018).  

 

Figure 1-1. Common Procedure of EMS. 

Service coverage is defined as the number or proportion of underlying demands located 

within the service standard for travelling (e.g., maximal distance or travel time). The 

measurement of service coverage often varies for different trips in various EMS systems. 

First, many EMS systems worldwide have specific standards for service coverage for Trip 1 

(namely ambulance coverage). For example, the UK National Health Service (2017) stresses 

that 75% of urban emergency calls must be serviced within 8 minutes (hereafter called min) 

and 95% within a maximum of 19 min after the EMS call coming. In China, the standard 

varies between different cities, such as 12 min in Beijing or 10 min in the urban area of 
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Wuhan (Beijing government 2018; Wuhan Municipal Health Commission, 2020). Service 

coverage in relation to Trip 2 (namely hospital coverage) and service coverage for the overall 

trip (namely overall coverage) are commonly dictated in EMS provisions. For instance, 

South Korea defines those patients are underserved by EMS if they require over 30 min to 

reach local emergency departments or over 60 min to reach regional emergency departments 

from their residences (Jiang et al., 2021). The National Stroke Center (2021) highlights EMS 

overall coverage for stroke patients, stating that stroke hospitals should be reachable within 

60 min of stroke onset in China. 

Poor accessibility and EMS service coverage are common problems for many EMS systems 

worldwide. The former is often attributed to a high level of the geographic barrier (i.e., long 

travel distance or travel time) to reaching the services, which affects EMS response times, 

utilization of services, and health outcomes (e.g., Hung et al., 2009; Branas et al., 2013; 

Gabrysch et al., 2011). The latter implies that EMS cannot meet many potential demands 

outside a pre-defined maximal coverage standard. For example, one study reported the 

inefficient emergency obstetric services in rural Zambia, finding that more than 50% of 

births were to mothers living more than 25 km from their nearest emergency obstetric 

facilities, which caused high maternal mortality and low EMS utilization (Gabrysch et al., 

2011). Branas et al. (2013) found that the percentage of the population covered by trauma 

centers within a 60-min service coverage in some US states was much lower than the national 

average – 71.5%, such as 31.13% in Iowa or 36.03% in Oklahoma. 

Inequalities in EMS remain challenges to be addressed in many countries and localities, 

which have been widely reported in the form of health outcomes, travel distance/time, 

facility utilization, finances, urbanization speed and other factors (e.g., Jennings et al., 2006; 

Moore et al., 2008; Aftyka et al., 2014; do Nascimento Silva and Padeiro, 2020; Luo et al., 

2020). Inequalities in travel distance/time have been widely documented in particular (e.g., 

Vukmir, 2004; Gonzalez, 2009; Fatovich et al., 2011; Horeczko et al., 2014). For example, 

Jennings et al. (2006) found that patients in Victoria, Australia who suffered from out-of-

hospital cardiac arrests in urban areas had much lower mortality rates than those in rural 

regions; this was mainly caused by disparities in distance and travel time to the nearest EMS 

station. In Lisbon, one study reported that low-income areas generally had a higher number 

of geographic barriers to EMS than affluent areas (do Nascimento Silva and Padeiro, 2020). 

The outbreak of COVID-19 has aggravated such inequalities and their implications for 

healthcare. EMS have undertaken an essential role in the pandemic response but have also 

suffered much pressure due to inelastic and limited EMS capacity worldwide (Al Amiry and 
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Maguire, 2021). Improving equalities in EMS is still a significant challenge to various 

national and local governments and authorities. 

This study will use Geographic information systems (GISs)-based methods to evaluate EMS 

accessibility, and then develop GIS-based spatial optimization approaches to address two 

problems in EMS planning: the improvement of EMS provision/efficiency and the reduction 

of inequalities in EMS, taking into account of EMS accessibility and service coverage. The 

proposed approaches will be applied in empirical studies in Wuhan, China.  

1.2. GIS and Public Health Planning  

GISs are computer-based systems for integrating, analyzing, managing, and storing spatial 

data from different resources (Longley and Batty,1997). Traditionally, GIS applications have 

helped healthcare planners understand the prevalence, etiology, transmission, and treatment 

of diseases (Rushton, 2003; Richardson et al., 2013). The development of GIS-based 

techniques has led to a rapid growth in the scope of contributions to social science and 

healthcare planning criteria (Wang, 2020). Cromley and McLafferty (2011) summarize the 

roles of GIS in public health into the following eight dimensions:  

1. Mapping Healthcare Information: An essential function of GIS is the 

representation of spatial information. Healthcare information is often linked with 

environmental and social features to identify spatial associations. Mapping is a 

productive process of viewing, exploring, and analyzing those spatial features. For 

example, Carlin (2003) used a point map to depict residential locations of health 

survey respondents in Long Island. 

2.  Investigating Spatial Clustering of Health Events: Public health planning usually 

involves investigating unusual public health events (e.g., soil pollution or diseases) 

from a spatiotemporal perspective. GIS can play an important role in exploring the 

spatial clusters of these events. For example, Devine and Lewis (1994) employed 

spatial statistical approaches based on GIS to measure the spatial clustering of 

disease in a population and investigate variations in health outcomes and the 

prevalence of disease over time. 

3. Investigating Environmental Hazards: Environmental health problems relate to 

many agents and cause adverse public health outcomes, often leading to physical, 

chemical, or biological nature. Human beings are likely to contact these agents 

through eating, drinking, breathing, or daily physical activities. GIS can aid 
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environmental authorities in monitoring environmental conditions, assessing 

environmental quality, evaluating the risks of environmental hazards, and 

preventing the occurrence of environmental problems. For example, a GIS-based 

Soil and Water Assessment Tool was employed to analyze the environmental 

conditions of two sub-watersheds in the Great Lakes Basin because surface run-

off and agricultural chemicals increase the risk of environmental problems 

(Grunwald and Qi, 2006). 

4. Analyzing the Ecology of Vector-Borne Diseases: Emergency zoonotic diseases 

such as swine influenzas have increased public awareness of the seriousness of 

vector-borne diseases linking animal and human groups. The transmission vector 

is often a living organism, and the distribution area of the vector usually has 

significant spatial characteristics. GIS applications on vector-borne and zoonotic 

diseases often attempt to understand and model how humans live with the living 

vectors (e.g., animals) in a particular ecological system over space and time (e.g., 

Bretsky, 1995; Rupprecht et al., 1995).  

5. Exploring the Spread and Risk of Infectious Diseases: The resurgence of an 

infectious disease often spreads from human to human. This topic has been 

highlighted in current public health planning under the ongoing COVID-19 

pandemic. Transmission factors of infectious diseases are strongly linked with 

spatial and geographical features, such as land-use change, urbanization, 

transportation and population mobility, or changes in food and water delivery 

methods. GIS can help healthcare planners explore the speed of disease spread, 

analyze the spatial and temporal distribution of the infected population, and 

investigate the potential impacts on human being (Jennings et al., 2005; Bherwani 

et al., 2020).  

6. Measuring accessibility to Health Services: Good accessibility to public services 

means that demands for such health services (e.g., primary care, emergency care) 

can be easily met, leading to better public health outcomes. Due to uneven 

distributions of demands and healthcare suppliers, accessibility to health services 

usually varies by location. GIS applications can measure accessibility to healthcare 

services from both spatial (e.g., distance or travel time) and non-spatial (e.g., 

demographic or socioeconomic status) aspects, helping healthcare planners 

identify medical shortage areas and improve the deployment and service capacity 

of health resources (e.g., Wang and Luo,2005; Berke and Shi, 2009).  
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7. Spatial Optimization of Healthcare Locations: The spatial optimization of 

healthcare facilities is a critical factor affecting accessibility to healthcare services. 

The approach selected to explore the distribution of health services can affect the 

identification of underserved regions; it can also influence decisions on where 

additional medical facilities and staff should be located. GIS applications in public 

health are commonly used to adjust the locations of existing facilities and seek the 

best sites for new facilities in order to improve healthcare provision (e.g., Wang 

and Tang, 2013; McLay and Mayorga, 2013; Enayati et al., 2019). 

8. Exploring and Reducing health-related Inequalities: Variations in healthcare 

outcomes exist on the global, regional, and local scales, and such disparities are 

often attributed to factors such as physical barriers, limited health resources, 

shortages of funds, and finances. GIS applications have been widely employed to 

visualize differences in health outcomes (e.g., Krieger et al., 2003), explore 

relevant factors for causing disparities (e.g., Kamphuis et al., 2008), or use spatial 

methods to reduce such inequalities from a spatial perspective (e.g., Chanta et al., 

2014).   

This research focuses on the following three roles of GIS in public health management and 

planning: (1) measuring accessibility to health services, (2) optimizing healthcare facilities, 

and (3) reducing health-related inequalities.  

1.2.1. Measures of healthcare accessibility  

Over the past few decades, many GIS-based metrics have been proposed to assess potential 

spatial accessibility of healthcare, mainly including proximity-based measures, provider-to-

population ratios (PPRs), and gravity models. Distance and travel time are two common 

indexes of the proximity-based measures. The former is frequently represented by the 

straight-line or road network distance between locations of demand and service supplier. The 

latter refers to the time required to travel to seek health service by a transport mode, such as 

walking, driving, or public transport. The PPR is often calculated as the ratio of the supplier’s 

capacity (e.g., the number of physicians or ambulances) to demands (e.g., population) using 

data aggregated at certain geographic scales. Gravity-based models integrate the above two 

methods and account for the spatial interactions between demands and service providers, 

following a distance/travel time-decay function. The most well-known gravity-based models 

since the groundbreaking work by Joseph and Bantock (1982) is probably the two-step 
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floating catchment area (2SFCA) (Luo and Wang, 2003) and its extensions such as the 

enhanced 2SFCA (E-2SFCA) (Luo and Qi, 2009). 

All aforementioned types of methods have been broadly employed to measure the quality of 

EMS sector, with the consideration of accessibility or service coverage (e.g., Tansley et al., 

2015; Joyce et al., 2018; Xia et al., 2019). For accessibility, Joyce et al. (2018) employed 

GIS to measure the travel time to the nearest emergency hospitals between different 

demographic groups in Ohio State, the United States. They found that deprived communities, 

elderly, or black people were highly associated with the longer travel times in Ohio State, 

the United States. For service coverage, Tansley et al. (2015) used GIS to conduct to measure 

spatial accessibility to emergency services in Namibia and Haiti. They found that around 25% 

and 50% of the populations in Namibia and Haiti respectively lived in an EMS underserved 

area where the nearest EMS facility was at least 50 km away. 

1.2.2. Spatial optimization of healthcare facilities 

Spatial optimization aims to seek the best spatial configuration of facilities/resources or land 

use activities in relation to certain objectives, usually subject to travel distance/time or cost 

constraints (Church, 2001). The development of spatial optimization is mainly attributed to 

the availability of accurate spatial data, progress in optimization algorithms, computer 

technology, and the evolution of geographical information science. 

In recent years, there has been a proliferation in spatial optimization applications in 

healthcare planning, mainly attributed to the advances in GIS including data collection and 

mapping, the measurement of distance and travel time, and result visualization (Church 2002, 

Church and Murray 2009, Murray 2010). First, GIS is a powerful tool for preparing and 

describing spatial information as input for spatial optimization models through desktop 

mapping software. For example, data aggregation, which is usually applied in spatial 

optimization approaches to facilitate model formulation or reduce the problem size, can be 

easily and quickly achieved through GIS by extracting data at a specific spatial scale.  

Second, GIS can help measure the spatial relationship (e.g., in distance or travel time) 

between healthcare needs and services, which is often an essential component for the 

location optimization of healthcare facilities. For instance, calculating distance or travel 

distance is a fundamental function of GIS. Also, the service area of a hospital or clinic can 

be derived with buffer analysis within a GIS environment.  
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Third, solutions from spatial optimization models can be depicted in GIS that has powerful 

visualization capability, like mapping hospital demand and hospital desert areas during the 

COVID-19 in the United Kingdom (Verhagen et al., 2020). Visualization is essential in 

describing and understanding objectives, decisions, and model spaces (Densham, 1994) and 

investigating underlying problems that otherwise cannot be found (Murray, 2005). 

Spatial optimization approaches have contributed to the high-quality delivery of healthcare 

services (e.g., Ndiaye and Alfares., 2008; Shariff et al., 2012; Chanta et al., 2014). Common 

spatial optimization models that have been applied in healthcare planning can be grouped 

into two categories: (1) coverage-based models developed by Toregas et al. (1971) and 

Church and ReVelle (1974) and (2) median and center problems proposed by Hakimi (1964). 

The former concern the maximal service area of each facility, and the latter focus on 

(weighted) distance or travel time between demands and their nearest facilities.  

1.2.3. Visualization and reduction of health-related inequalities. 

This section concerns the roles of GIS in addressing healthcare access inequalities, including 

(1) identifying the effect of inequalities, (2) visualizing inequalities, and (3) reducing 

inequalities.  

First, GIS plays an essential role in measuring inequalities in healthcare services, especially 

in identifying such inequalities in the spatial dimension. On the one hand, distance/travel 

time calculated by GIS can assess the inequality in accessibility to healthcare services by 

measuring and comparing the shortest distance or travel times between patients and their 

nearest facilities (Hasnat et al., 2018). On the other hand, healthcare capacity (e.g., number 

of ambulances in EMS station), demand volume (e.g., the total population), demographic 

and socioeconomic factors (e.g., race, income) can be linked to geographic locations in GIS, 

helping explore healthcare inequalities from different aspects (Luo and Wang et al., 2003; 

Wang and Luo, 2005). 

Second, GIS has been used to visualize healthcare-related inequalities by mapping, depicting 

the spatial distribution of distance/travel time to healthcare service or other accessibility 

indexes. Clusters of communities with high or low travel times can be highlighted using 

spatial statistical methods (e.g., Luo et al., 2018). Visualizing inequalities in EMS 

accessibility can help healthcare planners to find medically underserved areas for further 

deployment of health resources. Meanwhile, non-spatial factors affecting accessibility to 

healthcare (such as race, income, education level) can be assessed spatially through GIS 
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application (Wang and Luo, 2005). Geographic locations and non-spatial attributes can be 

integrated to visualize and identify those with poor accessibility to healthcare services. 

Many methods that attempt to reduce health-related inequalities have been incorporated into 

GIS. For example, classic spatial optimization models (e.g., p-center problem) have been 

incorporated into GIS software such as ArcGIS or optimization software (e.g., Gurobi 

package based on R or python modelling language), which can be employed to achieve the 

goal of reducing inequality by seeking out the locations of new medical facilities or 

optimizing the locations of existing medical facilities. In addition, some operational studies 

have adopted GIS functions. For example, Chanta et al. (2014) used a commercial GIS 

software (ArcGIS 10) to classify urban and rural areas in order to improve rural healthcare 

accessibility by locating service facilities.  

1.3. Case Study City: Wuhan, China 

Wuhan is the capital city of the Hubei province and the largest city in Central China; it is 

also the only sub-provincial city in the six central provinces. The city lies in the confluence 

of the Yangtze River and the Han River, covering an area of 8,569.15 km2. Wuhan consists 

of 13 districts: 7 districts in the urban area and 6 districts in the suburban and rural areas. 

Since the Chinese economic reform and opening, Wuhan has become the core of the urban 

agglomeration and the engine of the rise of Central China. In 2019, Wuhan's economic 

aggregate ranked among the top ten cities in China, and the city achieved a regional GDP of 

235 billion US dollars, showing a year-on-year increase of 7.4% at comparable prices. In 

2019, the city's per capita GDP was 21,100 US dollars, while the per capita disposable 

income of Wuhan residents was 6,677.79 US dollars—which is 1,586 US dollars higher than 

the average level in China—with a year-on-year increase of 9.2% (Wuhan Statistics Bureau, 

2020). Specifically, the average disposable income was 7,504 and 3,595.94 US dollars per 

urban and rural resident, respectively (Wuhan Statistics Bureau, 2020). In 2020, Wuhan's 

general health expenditure budget was 2.29 billion US dollars, ranking eighth among 

Chinese cities (Wuhan Municipal Health Commission, 2020 b). In the next few years, 

Wuhan government plans to build a large number of hospitals and EMS stations to provide 

people with more convenient public health services. 

Wuhan has been experiencing fast population growth and it faces the problem of an aging 

population. By the end of 2020, the total population in Wuhan reached 11.2 million, with a 

natural growth rate of 0.25% (Wuhan Statistics Bureau, 2021). Figure 1-2 depicts the spatial 

variation of population density in Wuhan. Specifically, the urban population accounted for 
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73.7% of the total population, with an annual increase rate of 0.2%, while the rural 

population growth ratio was near 0.5%. Due to rapid urbanization and economic 

achievements, Wuhan has attracted a large number of migrants in recent years. The net 

migration rates increased by 19.78%, 26.55%, and 18.95% between 2017 and 2019. In 

addition, Wuhan has seen a severely aging population. By the end of 2018, Wuhan's elderly 

population (aged over 60) reached 1.88 million, accounting for 21.27% of the total 

population (Wuhan Civil Affairs Bureau, 2019). Annual growth rates of Wuhan's elderly 

population have ranged between 0.4% and 0.7% from 2014 to 2018, and the growth rate is 

likely to increase in the next decade. Due to the sharp increase in population (especially the 

elderly population), the existing healthcare resources are under great pressure for meeting 

the rapidly growing demands, resulting in retrogression in the quality of healthcare service 

and therefore affecting public health outcomes (Wuhan Municipal Health Commission, 

2019).  

 

Figure 1-2. Population density in Wuhan. 
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1.3.1. EMS development in Wuhan, China 

EMS in China follows the Anglo-American system. Before the 1980s, the EMS system in 

China was organized by provincial or local authorities. In 1983, the Association of 

Emergency Medicine was established to facilitate the development of the EMS system in 

China, and a national framework was established explicitly to adapt to the local EMS 

systems. The framework stipulates that regional or local authorities can operate their own 

EMS departments under the organization of the Ministry of Public Health. In other words, 

China has built a top-down administrative framework for EMS, with stepwise planning from 

the central government delivered to the regional and local authorities (Thomas and Clem, 

1999). China’s EMS system includes three major parts: prehospital care, emergency 

department (i.e., hospital) care, and the intensive care unit (ICU). The three parts have 

organized a survival channel from ambulance dispatching to on-scene medical care and then 

to transportation to definitive in-hospital medical treatment. 

The Wuhan EMS system was established in 1958. Before 2000, the efficiency and 

governance of EMS in Wuhan were still backward (Wuhan Emergency Center, 2017). Since 

the early 2000s, the local EMS system has started to develop rapidly attributed to a lot of 

political and financial support from provincial and municipal authorities. Currently, the 

Wuhan EMS system is a non-profit and well-organized medical unit under the Ministry of 

Public Health that provides prehospital care, transportation services, and specialized in-

hospital medical treatment. It plays an essential role in protecting public health and safety 

and disseminating knowledge related to emergency care. By the end of 2020, there are 79 

EMS stations in total, and a large number of new EMS stations are going to build in the 

further (Wuhan Government, 2021). Wuhan EMS stations have implemented advanced 

technologies, such as whole-process computer scheduling, synchronous real-time recording, 

ambulance GPSs, wireless tracking systems, and video monitoring. In addition, a whole-

course dynamic management system for sharing EMS information has been implemented in 

the EMS command center. Wuhan’s EMS system offers purely prehospital care and 

transportation services, with no inpatient beds for specialized or definitive medical care. At 

present, there are several operating modes for Wuhan EMS stations: (1) hospital-based 

stations, (2) independent operating stations, and (3) private operating stations. Some EMS 

stations are at the same locations as the hospitals, but other stations are established at 

different sites. After the COVID-19 pandemic in Wuhan, the local municipal government 

plans to provide more policy and financial support to develop the local EMS system in order 

javascript:;
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to improve the capacity of emergency management (Wuhan Municipal Health Commission, 

2020).   

1.3.2. Challenges for EMS planning and management   

Accessibility and inequalities are two problems faced by many EMS systems worldwide 

(e.g., Branas et al., 2013; Luo et al., 2018), and there is no exception in Wuhan. Currently, 

the Wuhan EMS system has two major problems: relatively poor accessibility to EMS and 

spatial inequality in EMS between urban and rural areas. Thus, the major aim of future EMS 

planning in Wuhan include: (1) to improve accessibility of EMS and (2) to reduce regional 

inequalities (Wuhan Municipal Health Commission, 2020 c; Wuhan Government, 2021). 

On the one hand, poor EMS accessibility and inefficient provision remain a challenge to 

Wuhan local authority. With the rapid urbanization and the ageing population in Wuhan, the 

total population has increased in recent years, resulting in relatively poor accessibility. 

According to Wuhan Municipal Health Commission (2019), many people are still not 

encompassed by the EMS service standard especially in suburban and rural areas, which can 

negatively affect public health and increase the health disparities between urban and rural 

areas. The COVID-19 pandemic has stressed the urgent need to improve EMS provision 

efficiency. Wuhan government (2021) plans to provide more EMS resource during the next 

few years to improve EMS accessibility and service coverage in the whole city and improve 

the capacity to handle different large-scale emergencies, achieving the goal that the 

proportion of ambulances to population reach to 1:30,000 (Wuhan Municipal Health 

Commission, 2020c). In addition, traffic congestion in Wuhan is an additional problem that 

affects EMS accessibility. In detail, the road density in Wuhan only ranks eighteenth among 

Chinese cities. However, the total number of private motor vehicles is in the top ten among 

Chinese cities (China Academy of Urban Planning & Design, 2021). According to Baidu 

Map (2021), Wuhan is one of the six most congested cities in China. The average traffic 

speed is only 28.89 km/hour during peak traffic periods, and traffic congestion occurs more 

frequently in the urban area. Severe traffic congestion will likely reduce ambulances’ 

running speeds and increase the risk of EMS arrival delays, leading to poor health outcomes 

(Earnest et al., 2011).  

On the other hand, the Wuhan Municipal Health Commission (2019) has highlighted that a 

great challenge to be addressed in the near future is EMS inequalities between different 

regions within Wuhan, especially between urban and rural areas. The primary reason for 

such inequalities is related to fast urbanization speed and insufficient EMS resources, such 
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as funding, equipment, training of personnel, or road infrastructure. In the end of 2019, 

Wuhan Municipal Health Commission (2019) reported that only 11 EMS stations and 30 

ambulances were located in rural districts in Wuhan. Although EMS resources have been 

increased in rural districts in these years, which still cannot meet the larger number of 

demands. Thus, EMS inequalities impede the service quality of EMS in achieving better 

health outcomes, and therefore improving equality in EMS within and across regions 

remains a significant challenge in the near future (Wuhan Municipal Health Commission, 

2019). 

1.4. Research Aim and Objectives 

This research aims to use GIS-based approaches to measure spatial accessibility to EMS and 

develop GIS-based spatial optimization models for improving service efficiency and 

equality in EMS systems. Empirical studies will be carried out using the data from Wuhan, 

China. Specifically, three objectives are to be achieved through this research:  

• Research objective 1: to measure spatiotemporal accessibility to EMS using GIS-

based spatial analyses. 

• Research objective 2: to improve EMS provision/efficiency by developing new 

facility location models.  

• Research objective 3: to reduce regional inequalities in EMS accessibility and 

service coverage through improving current spatial optimization research. 

1.5. Structure of Thesis 

This thesis consists of six chapters. The current chapter introduces the background of the 

proposed study as well as the research aim and objectives. 

Chapter 2 reviews relevant literature on applications of GIS approaches in public healthcare 

management and planning, with a focus on EMS accessibility and optimization. First, 

various definitions of healthcare accessibility are described and discussed, after which a 

range of measures for geographic accessibility is examined. Then, common facility location 

models that have been adopted in healthcare planning are reviewed, primarily including 

median and coverage models. Finally, the limitations of existing studies are discussed, and 

the potential contribution of this research is presented. 
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Chapter 3 focuses on the first research objective—measuring spatiotemporal accessibility of 

EMS in consideration of two one-way trips (e.g., Trip 1 and Trip 2). The geographic 

accessibility of EMS was measured by travel time along road networks, which varies across 

different times of the day. The online map service Baidu Map (https://map.baidu.com/) was 

used to obtain the real-time travel time between EMS stations, hospitals, and each demand 

concerned. The empirical results demonstrate the spatial variations in EMS accessibility 

across Wuhan for the two related trips, as well as the impact of rush-hour traffic on EMS 

accessibility. 

Chapter 4 focuses on the second research objective—improving EMS service coverage in 

consideration of the EMS overall trip. This chapter proposes two spatial optimization models 

for siting EMS stations and emergency departments with the goal of improving EMS service 

coverage with respect to the overall trip. Specifically, the first model is intended to maximize 

the total number of demands met by the coverage related to Trip 1 and Trip 2. The second 

model attempts to maximize the total number of demands met by the coverage for Trip 1 and 

the overall trip. Two proposed models are implemented with the empirical data from Wuhan. 

Chapter 5 focuses on the third research objective—reducing regional inequalities in EMS. 

This chapter develops two bi-objective models for siting EMS stations, attempting to reduce 

urban–rural inequalities through two means: minimizing the total weighted travel distance 

between the uncovered rural population and the nearest open stations, and reducing the 

difference in population coverage between urban and rural areas. With another objective of 

maximizing total service coverage, the model explores various trade-offs between service 

coverage and urban–rural inequalities using the empirical data from Wuhan. 

Chapter 6 summarizes the major findings as well as the contributions of this research to the 

fields of health geography and spatial optimization. The findings are discussed in relation to 

existing literature and public healthcare planning. The limitations of this research and 

potential areas for further study are also discussed. The thesis finishes by highlighting the 

policy implications of this research.

https://map.baidu.com/
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Chapter 2 Literature Review 

The review discusses three topics relevant to the applications of GIS in EMS planning, 

including EMS system efficiency and equality, measures of accessibility of healthcare in 

general and EMS in particular, and optimizing healthcare facility location with GIS-based 

spatial optimization. Specifically, section 2.1 delves into details of efficiency and equality of 

EMS systems. The methods for measuring spatial accessibility to healthcare services, as well 

as their applications in EMS, are covered in section 2.2. Section 2.3 considers a range of 

classic spatial optimization models and their extensions for location optimization of health 

facilities and EMS stations. Finally, section 2.4 summarizes the limitations of existing 

literature and the prospective contributions of this research. 

2.1. Efficiency and Equality of EMS Systems  

The quality of EMS is often assessed against efficiency and equality. In general, the 

efficiency of EMS is often evaluated by accessibility and service coverage (e.g., Sayed and 

Mazen, 2012). The inequality of EMS is attributed to disparities in elements like funding, 

qualified EMS personnel, geographic barriers, or road infrastructure (Jennings et al., 2006; 

Carr et al., 2009; do Nascimento Silva and Padeiro, 2020).  

2.1.1. Efficiency of EMS 

Although efficiency of EMS is related to numerous factors (e.g., governance, organization, 

training personnel), accessibility to EMS and service coverage are the most common 

indicators when evaluating the level of EMS efficiency. Service coverage is easily 

interpreted; it is the proportion of demand covered within the pre-defined service coverage 

for travelling (e.g., 5 km or 10 min). In general, a well-developed service coverage often 

represents good accessibility, and vice versa. This section mainly introduces common 

accessibility measures adopted in the health geography field, particularly those applied to 

EMS. Then, various planning policies related to EMS accessibility are discussed. 

As a multidimensional concept, accessibility to healthcare services often concerns the ability 

to use healthcare services when and where people are needed (Aday and Anderson, 1981). 

It assesses and describes the potential relationship between the features of the service 

delivery systems and the attributes of the healthcare demands (Cromley and McLafferty, 
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2011). Scholars from various disciplines, including geography, sociology, and public policy, 

have extensively researched healthcare accessibility. (Joseph and Bantock, 1982; Gulliford 

and Morgan, 2003; Curtis, 2010; Wang, 2012).  

Accessibility to healthcare services can be divided into four categories (see Figure 2-1) 

depending on utilization (revealed versus potential) and whether adopting spatial dimension 

(spatial versus non-spatial) (Khan, 1992). From the utilization perspective, accessibility can 

be divided into revealed and potential. Revealed accessibility refers to the actual use of 

health services. It is usually relevant to the service utilization or the perceived satisfaction 

level with the service. Potential accessibility is based on the probable utilization of the 

service but no guarantee of the actual utilization. Policymakers or planning analysts are often 

interested in potential accessibility, which can help assess the healthcare delivery and 

identify feasible strategies for further improvements (Luo and Wang, 2003). From the spatial 

perspective, accessibility to healthcare services can be differentiated as either a spatial or 

non-spatial dimension. The former concerns the geographic distance, travel time, or spatial 

interaction between demand and suppliers. The latter concerns socioeconomic status, 

demographic characteristics, or the healthcare organization system that might influence the 

ease of receiving healthcare services. GIS necessarily stresses the spatial dimension of 

accessibility to healthcare services as the framework of time and geography provides critical 

insights into individual healthcare decision-making in space and time (Kwan et al., 2015). 

This study concerns potential spatial accessibility to healthcare services, especially in EMS 

sector. In addition, some studies also use the term "access" to represent accessibility, which 

has the same meaning (e.g., Patel et al., 2012). Therefore, the term "access" is equivalent to 

"accessibility" in this thesis. 

 

Figure 2-1. Classification of accessibility to healthcare (Khan, 1992). 
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Regarding EMS, potential spatial accessibility and service coverage are the most critical 

measures of service efficiency, where the former is the ease and speed of the service action, 

and the latter refers to the number or proportion of underlying demands that can be 

encompassed during the service standard. Both measures are often related to the time elapsed 

by the EMS response process. Specifically, the total EMS response time can include five 

intervals (see Table 2-1): alarm time, preparation time, arrival time (Trip 1), on-scene time, 

and transport time (Trip 2) intervals. The alarm time interval and on-scene time are often 

related to EMS management, the training of personnel, or the physical barriers on the scene 

(e.g., a high-rise building). The arrival and transport time intervals are highly linked with 

spatial and temporal factors such as the travel distance/time between original and destination 

locations, or traffic condition on the route. According to Spaite et al. (1993), the arrival and 

transport time intervals are the majority components of the EMS response time, accounting 

for about 70% of the total time spent on average.  

Service standards with respect to EMS accessibility and coverage vary across countries and 

regions over the world. For Trip 1, about 90% of emergency calls must be serviced within 9 

min in urban areas (Fitch, 2005). The UK National Health Service (2018) stresses that 75% 

of urban emergency calls must be serviced within 8 min and 95% in a maximum of 19 min. 

For Trip 2, South Korea is building an EMS network so then patients can reach their local 

emergency hospital within 30 min (Jang et al., 2021). For the overall trip, in China, the 

National Health and Medical Commission (2018) launched the "60-min circle for stroke" 

project to construct an EMS service coverage that patients could use to reach the nearest 

stroke hospital within 60-min after stroke onset.    

 

 

 

 

 

 

 

 

 



 

18 

 

 

 

Different time intervals Definition 

Alarm time 

Time interval between the arrival of an EMS call 

and the selecting of an ambulance with an EMS 

team ready to be dispatched. 

Preparation time 
The time cost of preparing an ambulance with a 

team after receiving the dispatch decision.   

Arrival time interval 

(i.e., travel time for Trip 1) 

Time interval between preparing an ambulance 

with an EMS team and arriving at the scene of an 

emergency. 

On-scene time 

Time spent by the team at the scene of an 

emergency, including searching the patient, on-

scene treatment, and patient removal.  

Transport time 

(i.e., travel time for Trip 2) 

Time interval between taking the patient to the 

ambulance and their arriving at a definitive care 

facility.  

Table 2-1. Five major intervals for EMS response. 
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2.1.2. Equality in EMS  

Inequalities in EMS include differences in access and experience to such services, which are 

not only apparent at the national, regional, and local scales, but also common for 

communities and individuals. First, inequalities in EMS are apparent at a national level, 

especially between developed and developing countries. Many studies have indicated that 

healthcare accessibility in developed countries is much better than that in developing 

countries (Van Doorslaer and Masseria, 2004; Roudsari et al., 2007), which might contribute 

to the disparity in public health outcomes. Van Doorslaer and Masseria (2004) compared the 

healthcare services in 21 organization for economic co-operation and development (OECD) 

countries. They found that high-income countries had better hospital accessibility than 

relatively low-income countries. The high-income countries often have more EMS resources 

and better health outcomes than those middle-or-low-income countries. Roudsari et al. (2007) 

compared the EMS systems in 11 countries, and they found that the group of developed 

countries had the higher ratio of air ambulance use than the group of developing countries, 

resulting in faster EMS response time in developed countries. 

Second, inequalities in EMS are common within/across regions in relation to accessibility 

and service coverage. Many studies have indicated that accessibility to EMS in urban areas 

is better than that in rural regions (e.g., Grossman et al., 1997; Gonzalez et al., 2006; 

Raatiniemi et al., 2015). First, such inequalities can be represented by travel time. For 

example, Gonzalez et al. (2006) revealed that the average travel times for ambulance arrival 

were 11.2 versus 13.9 min in urban and rural settings in Alabama statewide in the USA. 

Similar findings are also confirmed by Grossman et al. (1997) or Raatiniemi et al. (2015). 

Second, the urban-rural inequalities can be represented by EMS service coverage (e.g., 

Aftyka et al., 2014; Luo et al., 2018; Luo et al., 2018; Ahmed et al., 2019). For example, 

Aftyka et al. (2014) reported that 69.7% and 7.2% of demands in both urban and rural 

settings of Poland could be covered by the 10-km service coverage for emergency 

department, respectively, reflecting the notable regional inequality in the service coverage. 

Further, healthcare inequalities are also a common issue within communities and between 

individuals. Such inequalities are often associated with demographic variables (such as age, 

sex, and race), socioeconomic status (i.e., high income versus low income), and sociocultural 

barriers (e.g., a linguistic barrier) within neighborhoods and individuals (Wang and Luo, 

2005). Regarding EMS, it was found that deprived communities in Lisbon generally had 

worse spatial accessibility to EMS than affluent communities (do Nascimento Silva and 
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Padeiro, 2020). Riney et al., (2019) indicated that poor EMS accessibility was highly linked 

with deprived communities in Hamilton County in the United States. In Chongqing, China, 

it was reported that EMS provision was more accessible to wealthy residents than to the 

disadvantaged population with a need for EMS (Liu et al., 2015).  

Improving the fairness in accessibility to healthcare services like EMS is an important policy 

concern in many countries and regions. In the United States, the National Highway Traffic 

Safety Administration (NHTSA) (2020) established the EMS agenda 2050 Vision, which 

aimed to build a sustainable, efficient, and equitable EMS system, allowing for timely 

services available to different groups of people. In England, ensuring that all people can 

access various healthcare services on an equal footing is one of the primary objectives set 

out in the national health service (NHS) Operational Planning and Contracting Guidance 

2017-19 (NHS England, 2016). To reduce the inequalities in accessibility to EMS, the 

Scottish government (2022) undertook a comprehensive approach to communications and 

engagement, guaranteeing that the underserved groups can be involved in further EMS 

planning. In China, Wuhan Municipal Health Commission (2020) set the goal of improving 

the EMS equalities. It indicated that residents should be covered by their nearest EMS 

stations within the 10-min driving time for urban areas or 12-min driving time from rural 

areas. 

There is, however, no widely accepted method to measure inequalities (Marsh and Schilling, 

1994). Table 2-2 shows various indexes that could measure and represent inequalities in 

EMS, mainly including the range, variance, standard deviation, mean absolute deviation, 

sum of the absolute deviation, semi-deviation and Gini coefficient. These measures have 

been applied to quantify inequalities in relation to preparation time, arrival time, on-scene 

time, transport time, or health outcomes (e.g., Vukmir, 2004; Gonzalez et al., 2006; Gonzalez; 

2009; Fatovich et al., 2011; Horeczko et al., 2014). The adoption of equality measures 

usually depends on research target and aim. 



 

21 

 

 

 

 

 

 

 

 

  

 

Table 2-2. Various socio-economic indexes of inequality measurement in EMS. 

Inequality 

measure 
Definition/Description Relevant studies 

Range 
The difference in EMS variable values 

between their highest and lowest levels 

McLay and Mayorga, 2013; 

Westgate et al., 2016 

Variance 

The difference in EMS variable values 

between an influence on each group and 

the system. 

Liu and Duan, 2020 

Standard deviation 
An index of the amount of dispersion or 

variation of EMS variables 

Wang and Tang, 2013; 

Doyle et al., 2015 

Mean absolute 

deviation 

An index of the mean absolute deviation 

of n EMS variable values between an 

effect on each group and the system-wide 

average effect 

Mendonça and Morabito, 

2001; Newton et al., 2022 

Sum of the 

absolute 

deviations 

Sum up the absolute deviations of EMS 

variable values (e.g., distance/travel time) 

between groups 

He and Qin, 2019 

Semi deviation 

A changeable measure to variance or 

standard deviation, which only concerns 

the negative fluctuations 

Ogryczak, and Ruszczyński, 

2001 

Gini coefficient 
A degree of inequality index between all 

pairs of seriocomic status, or other effects 
Barbati et al., 2016 
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2.2. Measuring Spatial Accessibility of EMS 

First, this section introduces the data representation of EMS demand and supplier in a GIS 

environment. Then, three types of spatial accessibility measures are presented: (1) 

geographic proximity-based methods, (2) the provider to population ratios (PPRs), and (3) 

gravity-based models. This is followed by a brief overview of other relevant measures. 

2.2.1. Spatial representation of EMS data in a GIS environment 

In a GIS environment, EMS data can be classified into spatial data – geographic locations 

of EMS facilities and demands, and non-spatial data – attribute information associated with 

EMS facilities and demands (e.g., capacity of facility, or demand volume).  

GIS-based research tends to use points of interest to represent the locations of service 

facilities (e.g., Luo and Wang, 2003; Xia et al., 2019) because most of the healthcare facilities 

(e.g., hospitals, EMS stations) are affiliated with buildings, and their total footprint is often 

negligible compared with the whole study area (e.g., county, district, city).  

Demands can be abstracted into discrete points or areas. First, discrete points are the most 

common spatial features employed in GIS to represent EMS demands. Many studies used 

the centroids of geographical and administrated areas (e.g., postcode zones) as the demand 

locations (Henneman et al., 2011; Ahmed et al., 2019; Hu et al., 2020). Population-weighted 

centroids of the demand areas were also widely used (e.g., Luo and Wang, 2003; Busingye 

et al., 2011; Bailey, 2011; Joyce et al., 2018). In some studies, the demand locations are first 

represented by lattice grids, and the central centroid of each grid is represented as a demand 

location (e.g., Tansley et al., 2015; Tansley et al., 2016; Deng et al., 2021). In addition, some 

studies modified historical EMS recorded data as the point dataset to simulate the demand 

location in the future (Vanderschuren and Mckune,2015). The advantage of using the point 

representation is that it can facilitate model formulation in spatial analysis and spatial 

optimization and is also easy to understand. The disadvantage is that not all demands are 

located in/near such points in the real world, large-scale areas in particular.  

Second, demands can be represented by areas, such as neighborhood communities, 

postcodes, or a continuous space (Yin and Mu, 2012; Van Barneveld, 2016; Murray and Tong, 

2007). Each polygon (area) has potential demands distributed within its boundary somehow 

(e.g., Peleg and Pliskin, 2004; Yin and Mu, 2012; Pulver et al., 2016). For example, Yin and 

Mu (2012) considered a continuously spatial demand based on polygon-overlay 
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representation in a GIS environment. Specifically, their data preprocessing was handled by 

GIS overlay operations and the demand polygons/objects were defined and depicted by the 

coverage areas for the candidate facility locations. The advantage of using the area 

representation is that it can precisely describe the locations of potential demands. However, 

it is often computationally intensive and difficult to apply in a GIS environment. Generally, 

the spatial result might highly depend on how the demand location is represented (Murray, 

2005; Tong and Murray, 2009). 

Non-spatial data are often organized in a table, which is linked to spatial locations with 

unique identities (IDs). Non-spatial data of service facilities often relates to the capacity that 

can be represented by the number of ambulances (Zhu et al., 2021), inpatient beds (Vora et 

al., 2017), levels of hospital facilities (Lilley et al., 2019), or the modelled capacity index 

(Rocha et al., 2017). Healthcare demand volume can be obtained from historical records 

(RoCha et al., 2013; Vanderschuren and Mckune,2015; Hu et al., 2018), population Census 

data (Henneman et al., 2011; Hu et al., 2020; Hassler and Ceccato, 2021), Global Position 

System (GPS) (Xia et al., 2019) or questionnaire survey (Panciera, 2016). 

2.2.2. Geographic proximity  

The geographic proximity approach can be defined as the travel distance/time between an 

origin and its destination, which is often employed to estimate the geographic barriers 

between demands and their healthcare suppliers. Three indicators are usually implemented, 

including Euclidean distance, network distance, and travel time along a road network.  

Euclidean distance measures the straight-line distance between a patient location and his/her 

nearest service provider site. Euclidean distance is appropriate when the researcher works 

with projected geographical coordinates, as in UTM coordinate systems or the state plane. 

Some studies also use Euclidean distance when transport network data is unavailable. 

Euclidean distance is widely used to measure healthcare accessibility (Love and Lindquist, 

1995; Parker and Campbell, 1998; Jordan et al., 2004). For example, Love and Lindquist 

(1995) found that older adults had relatively poor accessibility to healthcare services by 

calculating the straight-line distance to geriatric health services. Although Euclidean 

distance is easy to compute, the limitation is that Euclidean distance fails to consider the 

travelling routes or geographic barriers to the movements. In other words, people rarely 

move from one location to another location in straight lines.  
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Network distance refers to the total travel distance involved when traversing a specific traffic 

network. With the development of remote sensing and mapping technologies, transport 

network data has become easier to obtain from open sources and is now freely available. 

Thus, an increasing number of scholars have used network distance to measure accessibility 

to healthcare services (e.g., Victoor et al., 2014; Kadobera et al., 2012; Apparicio et al., 2017). 

Apparicio et al. (2008) compared these two types of distance-based metrics and found that 

Euclidean distance is less precise, especially in underdeveloped areas with poor traffic 

networks (e.g., rural areas or low-income countries). Network distance is extensively 

implemented for measuring accessibility to healthcare services (e.g., Henneman et al., 2011; 

Tansley et al., 2015). 

Although distance-based measures are fundamental indicators of geographic accessibility, 

travel time is more relevant to healthcare service utilization. Estimating travel time always 

requires an accurate dataset, such as real traffic running data or detailed attribute data (e.g., 

speeds on classes of roads) for a certain transport mode (e.g., walk, cycling, or driving). 

Travel time offers a more accurate indication of the geographic barriers to healthcare 

suppliers than distance-based measures. Many relevant studies have used the travel time-

based proximity method to evaluate healthcare accessibility (e.g., Joyce et al., 2018; 

Reshadat et al., 2018). 

Travel time along a road network can be estimated differently. GIS-based tools are 

commonly employed to measure travel distance/time (e.g., Mao and Nekorchuk., 2013; Dai, 

2011; Luo et al., 2018). For estimating the travel time between two locations, the travelling 

route can be identified to connect the nodes along the road network in a GIS environment. 

The overall estimated travel time can be represented by the sum of the estimated travel times 

along all road segments in the travelling route. For example, Mao and Nekorchuk (2013) 

measured healthcare accessibility using multiple transportation modes (private car and 

public transit) by setting different travel speeds on the road network. Hu et al. (2020) 

evaluated the travel time of each road type using a transportation simulation model.  

Since the development of the Internet of Things, web-based map services such as Google 

Maps (https://www.google.co.uk/maps) and other applications (i.e., TripIt 

(https://www.tripit.com/web)) can estimate travel distance/time using their Application 

Programming Interface (API) services considering real-time traffic. Recently, an increasing 

number of studies have employed such services and applications when measuring 

accessibility to healthcare services (e.g., Wang and Xu, 2011; Tao et al., 2018).  

https://www.google.co.uk/maps
https://www.tripit.com/web


 

25 

 

The geographic proximity-based method is overwhelmingly popular to employ in EMS 

accessibility research. Most of the reviewed studies focus on static travel times, taking into 

account average speeds or speed limits on different classes of the road or in relation to 

physical barriers (RoCha et al., 2013; Henneman et al., 2011; Tansley, et al., 2015; Deng et 

al., 2021). When considering different EMS trips, this method has been widely employed in 

Trip 1 (e.g., Jezek et al., 2011; Tansley et al., 2016; Hu et al., 2020) or Trip 2 (Rocha et al., 

2007; Huang, Meyer and Jin,2016). For example, Joyce et al. (2018) compared the travel 

time to the nearest emergency hospitals between different demographic groups, which is 

linked with Trip 1. One study used the geographic proximity method to evaluate the ratio of 

the population within the 30-, 60-, or 90-min service coverages for stroke medical units in 

East Tennessee, which is associated with Trip 2 (Ashley et al., 2010).  

Two reasons can explain why the proximity method is widely employed by EMS 

accessibility studies. First, the procedure of the EMS operation is consistent with the rule of 

proximity, as ambulances are often dispatched from the nearest EMS station and transport 

the patient to the nearest quantified hospital (Zachariah and Pepe, 1995). Second, distance 

or travel time is easy to interpret and understand. Thus, policymakers and health practitioners 

can understand the existing spatial distribution of EMS accessibility through intuitive data 

descriptions and undertake further EMS planning. 

Although the proximity method is widely used in healthcare studies, many scholars still point 

out its significant shortcomings. This approach might over-weight the effect of geographic 

barriers because the demand might not be willing to select their nearest service supplier. 

Factors like scale, popularity, competition and service quality can also affect public choice 

(Birkin and Clarke, 1999). The use of this approach should rely on customer behavior and 

service type in different situations. Guagliardo (2004) suggested that the proximity method 

is suitable for measuring spatial accessibility in rural areas where the choices for consumers 

are usually limited and where the customers are likely to defer to the closest healthcare 

facility. This approach is also suitable for emergency services where the demanders are more 

likely to interact with their nearest facilities, such as EMS or firefighting. 

2.2.3. PPRs 

The PPRs refer to the estimation of supply-demand ratios within geographically bounded 

areas. It is a popular approach for measuring potential spatial accessibility from the 

availability perspective. Specifically, the numerator of the PPRs is associated with healthcare 

capacity indicators such as the number of physicians, hospital beds, clinics, or ambulances. 



 

26 

 

At the same time, the denominator of PPRs considers the demand aspect, such as the number 

of historical users or population within the bounded area (Guagliardo, 2004). This data is 

always obtained from census, but some are taken from enrolment files from healthcare 

systems, such as emergency calls or medical insurance enrolment.  

As an indicator incorporating availability, a larger number of policy-based studies have 

applied PPRs to compare the healthcare supply between large-scale service areas or 

geopolitical regions. Policy analysts have used it for setting the minimum standards of 

healthcare supply and identifying healthcare shortage areas (Connor et al., 1995; Schonfeld 

and Falk, 1972; Susi. 2002). Based on the implementation of PPRs, Connor and his 

colleagues (1995) found that there was an uneven spatial distribution of primary care 

physicians in rural areas. They suggested that further healthcare planning needs to pay more 

attention to the healthcare resources in rural regions. 

PPRs are also helpful in EMS policy studies because many counties have set up minimum 

standards for their supplier to demand ratios such as ambulances (1:57,000) in France 

(Directorate-General for Health & Consumers, 2008) or defibrillators (1:100,000) in China. 

In general, PPRs are highly intuitive, and the data is readily available from the healthcare 

departments, and the researchers do not necessarily require GIS-based expertise. In recent 

years, some studies have employed the PPRs cooperated with other methods in order to 

measure accessibility to EMS (Baloyi et al., 2017; Fishman et al., 2018; Tew et al., 2021). 

However, rare of extant studies use the PPRs to measure accessibility to EMS.  

The PPRs measurement has some shortcomings. First, it does not incorporate any metrics of 

distance or travel time costs. Second, PPRs do not consider the patients who seek out services 

by border crossing, especially in small-scale regions such as postcode areas. Third, spatial 

variations in healthcare accessibility within border areas are challenging to identify. 

2.2.4. Gravity-based models 

Gravity-based models were inspired by Newton’s law of gravity. In general, gravity-based 

models integrate both proximity and PPRs approaches, accounting for the spatial interactions 

between demands and service providers following a distance-decay role. 

Reilly (1931) proposed the first gravity model and applied it to retail planning. He noted that 

the proximity method only considers travel distance or time between providers and 

customers, but people might bypass the nearest shop to select other stores with more, better 

and or cheaper goods, all of which are more attractive to customers. Gravity models can 
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account for both travel costs and facilities’ attraction. Reilly’s law was further extended by 

the Huff Model to include multiple service providers in response to a range of problems 

(Huff, 2003, p.34). The general form of the gravity-based model is as shown in (2.1) and 

(2.2): 

𝐴𝑖
𝐺 = ∑

𝑆𝑗𝑓(𝑑𝑖𝑗)

𝑉𝑗

𝑛
𝑗=1                                                                                                               (2.1)  

where 

𝑉𝑗 = ∑ 𝐷𝑖𝑓(𝑑𝑖𝑗)𝑚
𝑖=1                                                                                                            (2.2) 

Where 𝐴𝑖
𝐺   represents the index of the gravity model, and a higher value means better 

accessibility at the location i. 𝑆𝑗 is the capacity of the healthcare provider j (e.g., ambulances, 

EMS staff), and 𝑉𝑗  is the potential demand served by the provider j. 𝐷𝑖  is the amount of 

potential demand at location 𝑖. The distance decay effect is formulated by 𝑓(𝑑𝑖𝑗). 𝑛 and 𝑚 

represent the total number of services (e.g., hospitals or EMS stations) and the total demands, 

respectively. Therefore, the nature of the above model is the ratio of supply to demand, which 

follows a distance decay effect. 

Regarding their extensions in healthcare accessibility, Joseph and Bantock (1982) improved 

the gravity model that considered the capacity of the health supply and the amount of demand 

using a negative exponent distance decay function. An integrated approach composed of a 

sequence of individual measures was proposed by Khan (1992). He started with a gravity 

model and then integrated it with a series of new elements in relation to potential spatial 

accessibility. Congdon (2001) employed a gravity model to quantify the referral flows from 

residences to emergency hospital services. A hybrid form of gravity model was developed 

with a consideration of the three thresholds of the distance decay function (Schuurman, 

2010). Crooks and Schuurman (2012) provided general guidance in applying the basic 

gravity models to measure healthcare accessibility.  

Inspired by the gravity model and the floating catchment area (FCA), Luo and Wang (2003) 

proposed the 2SFCA method, which considers the PPRs involving both demands and 

providers. The FCA is a common approach for spatial smoothing, where the catchment area 

could be represented by a circle (Immergluck, 1998), square (Peng, 1997), or a fixed 

distance/travel time range (Wang and Minor, 2002). The 2SFCA method is composed of two 

steps. The first step (Step 1) is to compute the PPRs or provide-to-demand ratios within a 

pre-defined distance/travel time standard for each service facility 𝑗. The mathematical model 

of step 1 is as shown in equation (2.3): 
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𝑅𝑗 =
𝑆𝑗

∑ 𝐷𝑘𝑘∈{𝑑𝑘𝑗≤ 𝑑0}
                                                                                                                (2.3) 

Where 𝑑𝑘𝑗  is the travel costs from the demand site 𝑘  to the service location 𝑗 , while 𝑑0 

represents the pre-defined travel costs. Dk is the demand at each site 𝑘 whose centroid is 

located inside the catchment (𝑑𝑘𝑗 ≤  𝑑0), and Sj is the supply capacity of the service location 

(e.g., ambulances, physicians). 𝑅𝑗 is the PPR value based on each service facility 𝑗.  

The second step (Step 2) involves adding up all PPRs of all of the involved the provider 𝑗 

within the catchment of each demand location 𝑖. The mathematical model of Step 2 is shown 

in (2.4): 

𝐴𝑖
𝑓

= ∑ 𝑅𝑗𝑖∈𝑑𝑖𝑗≤ 𝑑0
                                                                                                                 (2.4) 

Where 𝐴𝑖
𝑓
  represents accessibility to the healthcare service at the demand location  𝑖  - a 

higher value means the better accessibility. 𝑑𝑖𝑗 represents the travel time or distance between 

each demand site i and supply location j.  

Recent years have seen a decrease in the application of traditional gravity models involving 

the measurement of EMS accessibility (e.g., Neutens, 2015). Comparatively, more studies 

tend to use the special case of gravity models - the 2SFCA method to measure spatial 

accessibility to various healthcare services. It is because the 2SFCA is relatively simple to 

compute and easy to intuit. The method has been widely applied in health-related studies 

such as (Yang et al., 2006; Wang and Luo, 2005; McGrail and Humphreys, 2009a; Xiao et 

al., 2021), and also broadly employed to measure accessibility to various emergency services, 

such as EMS stations (Hu et al., 2020; Hashtarkhani et al., 2020) or emergency departments 

(Huang et al., 2016). The 2SFCA method helps policymakers deploy and plan healthcare 

resources while considering their long-term availability. For example, this method has been 

employed to help plan the Chinese National Healthcare Plan (“Healthy China 2030”) for the 

patient referral system (Xiao et al., 2021). However, the limitation of the 2SFCA method is 

the denominator of Equation (2.2) – a dichotomous method that defines a service as only 

accessible or inaccessible using a cut-off travel time (distance). 

Several scholars have attempted to extend the distance decay function in different ways, such 

as creating a continuously gradual decay within a threshold of travel costs and no effect 

beyond (Guagliardo, 2004; Dai, 2010; Shi, 2012). The travel distance/ time decay function 

can also be formulated by a discrete function (Luo and Qi, 2009) or by combining both 

discrete and continuous functions (McGrail and Humphrey, 2009c). Wang (2012) 



 

29 

 

summarizes the different assumptions for conceptualizing the distance decay rule as part of 

the interactions between the healthcare demand and providers shown in Figure 2-2. Those 

functions can be represented by a continuous formulation (e.g., Joseph and Bantock, 1982), 

a discrete set of choices (Luo and Wang, 2003; Luo and Qi, 2009), or in a hybrid form (e.g., 

Dai, 2010). In practice, the distance decay function and associated parameters are often 

determined by analyzing healthcare seeking behaviors as well as healthcare planning criteria. 

A general 2SFCA model was proposed by Wang (2012), which summarized different 

conceptualizations of the distance decay function in provider-population interactions. The 

mathematical formulation of the generalized 2SFCA model is as shown in equation (2.5): 

𝐴𝑖 =  ∑ [
𝑆𝑗𝑓(𝑑𝑖𝑗)

∑ 𝐷𝑘𝑓(𝑑𝑘𝑗)𝑚
𝑘=1

 ]𝑛
𝑖=1                                                                                                   (2.5) 

 

Figure 2-2. Conceptualizing the distance decay functions through the healthcare demand – 

service supplier interactions: (a) basic gravity function, (b) binary discrete, (c) kernel density, 

(d) Gaussian function, (e) multiple discrete, and (f) three-zone hybrid (Wang, 2012) 

Also, many studies have improved the 2SFCA method from other perspectives, such as 

considering various transportation modes (Mao and Nekorchuk, 2013; Langford et al., 2006; 

Tao et al., 2018), demographic factors in the healthcare demand (Ngui and Apparicio, 2011; 

Hashtarkhani et al., 2020), the potential interaction between supply and healthcare demand 

(Wan et al., 2012; Delamater, 2013), spatiotemporal factor (Xia et al., 2019), or online 

healthcare services (Alford-Teaster et al., 2021). For example, Wan et al. (2012) introduced 

a three-step floating catchment area (3SFCA) method that added an additional step to 
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consider a travel time-based competition scheme to address the problem where previous 

2SFCA approaches might overestimate the healthcare demand for some service facilities. 

Furthermore, the catchment radius can be extended based on the administrative division (e.g., 

urban or rural) (McGrail and Humphrey, 2009b) or provider and neighbourhood type (Yang 

et al., 2006).  

There are some limitations of those gravity-based methods. First, the coefficient of the 

distance decay function is usually unknown. Computing the coefficient value typically needs 

various data on healthcare utilization and the calculation processes can be complex. Second, 

the obtained results are not intuitively comprehensible and challenging to understand by the 

public. Thus, the gravity models are difficult to accept in practice. Then, the 2SFCA method 

may overweight consider the influence of some emergency facilities on users because 

emergency teams (e.g., firefighting or EMS) are usually dispatched from their nearest 

facilities. Moreover, the 2SFCA approaches are not suitable for every healthcare system. For 

example, this method cannot fit the Scottish healthcare system, where patients can only seek 

healthcare services in their registered public hospitals. 

2.2.5. Other methods 

There are several other methods to measure EMS accessibility, including the n-closest 

facility method and the kernel density estimation (KDE) approach. Both are occasionally 

applied to measure potential spatial accessibility to healthcare services. First, the n-closest 

facility method evaluates the average distance/travel time between each demand location 

and the n closest service facilities. From the author's knowledge, studies rarely use this 

method to measure healthcare accessibility (e.g., Dutt et al., 1986; Apparicio et al., 2007). 

One problem with the n-closest facility method is that it might weight the influence of the 

nearest service facility less, especially in an emergency. Another problem is that this 

approach's results are inconsistent with health policymakers' needs because most health 

policies are concerned about proximity.  

Second, the KDE approach is a non-parametric approach for measuring the probability 

density function of random variables. It is often used to generate a continuous surface for 

discrete point events. It has been widely used to identify the spatial layouts of all diseases 

and epidemiological risk distributions. Guagliardo (2004) developed a KDE model to 

measure healthcare accessibility, including two kernel density raster layers. The former layer 

represents healthcare providers, and the latter represents the healthcare demand locations. 

Then, the former layer is divided by another layer to compute a layer with the spatially 
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continuous equivalent of zonal supply-demand ratios, with the index representing the spatial 

accessibility to healthcare. Spencer and Angeles (2007) applied the KDE through two types 

of PPRs (population - per facility; population - per physician) to estimate accessibility to 

healthcare at the national level in Nicaragua. Yang et al. (2006) compared the 2SFCA and 

KDE methods and suggested that the 2SFCA produced more reasonable accessibility ratios 

than the KDE method. Based on the 2SFCA and KDE approaches, Dai and Wang (2011) 

introduced a kernel density 2SFCA method (KD2SFCA), while the main contribution is to 

use kernel density to simulate the distance decay function. Polzin et al. (2014) improved the 

KD2SFCA approach by adding weights for different social groups, which makes it better at 

identifying groups that are less empowered to use healthcare services (Polzin et al., 2014).  

The KDE approach has several limitations. First, the accessibility index in boundary areas 

is less accurate because the bandwidth will stretch beyond the peripheral areas. Second, 

unoccupied lands such as forests, rivers or big lakes distort the results of the KDE method. 

Furthermore, the neat circular form of kernels used in healthcare studies does not consider 

the impact of traffic networks. As a result, KDE is rarely adopted in measuring healthcare 

accessibility alone. 

2.3. Spatial Optimization in EMS Planning 

Spatial optimization can be defined as the optimal spatial arrangement science, which 

combines GIS and mathematical (facility location) models (Church, 2001). Facility location 

models often use computational and mathematical formulations with one or multi-

objective(s) to find optimal solutions to geographic/spatial decision problems under certain 

constraints. Recent years have seen a proliferation in the applications of spatial optimization 

approaches in healthcare planning, which often improves healthcare services' capacity, 

efficiency or equity (Ndiaye and Alfares, 2008; Pulver et al., 2016; Taiwo, 2020). This 

section will focus on the classic facility location models and various extensions as well as 

their applications in healthcare planning, especially in the EMS sector. 

2.3.1. Classic models 

Spatial optimization approaches for healthcare planning can be classified into three groups: 

coverage, p-median, and p-center problems. Two classic coverage models are the location 

set covering problems (LSCP) (Toregas, 1970), and the maximal covering location problem 

(MCLP) (Church and ReVelle, 1974). The LSCP looks for the minimum number of facilities 

necessary to serve the entire population with a pre-determined service standard. Given the 



 

32 

 

number of facilities, the MCLP seeks the best locations for such facilities in order to 

maximize the demand covered by the service. The p-median and p-center models concern 

about accessibility to healthcare, where the former considers how to locate a certain number 

of service facilities so that the total weighted travel cost (e.g., distance or time as geographic 

barriers) can be minimized. The latter locates a set of facilities, attempting to the maximal 

geographic barrier between the demand and its nearest facility. The remainder of this section 

first explains the two coverage models, followed by descriptions of median and center 

problems. 

The LSCP concerns the total number of facilities needed that can represent the total cost of 

offering emergency services. In the context of EMS, the LSCP aims to cover all demand 

within the service coverage by locating the minimal number of EMS stations. The planning 

area can be viewed as the transport network connecting a set of nodes representing the 

demand locations and potential facilities. Using the following notation: 

 𝐼, 𝐽 = set of demand locations and potential facility locations, respectively. 

𝑖, 𝑗 = index of demand locations and potential facility locations, respectively. 

S = maximum acceptable service distance or response time standard. 

𝑑𝑖𝑗= distance or travel time between 𝑖 and 𝑗. 

𝑁𝑖 =  {(𝑗|𝑑𝑖𝑗 ≤ 𝑆)}  

𝑥𝑗 = {
1, if a facility is locted at node 𝑗
0, otherwise                                    

  

Toregas (1970) structured the LSCP as the following model: 

    Minimize: ∑ 𝑥𝑗
𝑛
𝑗=1                                                                                                             (2.6) 

Subject to: 

 ∑ 𝑥𝑗 ≥ 1                                                                ∀𝑖 ∈ 𝐼𝑗∈𝑁𝑖
                           (2.7) 

𝑥𝑗 ∈ {0,1}                                                                   ∀𝑗 ∈ 𝐽                           (2.8) 

Objective (2.6) minimizes the total number of facilities in needed. Constraints (2.7) 

guarantee that for every demand location 𝑖, at least a service facility 𝑗 is opened from 𝑁𝑖. 

Constraints (2.8) define those decision variables. The LSCP is a compact model that involves 

n variables and n constraints. This model is important to EMS facility deployment as it can 

be employed for planning purposes by solving the LSCP over a range of service coverages.  

The MCLP maximizes the number of demands that can be served by given facilities with a 

service standard, which was developed by Church and ReVelle (1974). As an extension of 
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the coverage problem, it addressed one limitation of the LSCP – the number of available 

facilities is insufficient to cover all demands with a predefined service standard. Using the 

following additional notation, the MCLP can be formulated as follows: 

p = number of facilities to be located 

𝑎𝑖  = the total amount of demand at the location i 

𝑦𝑖 =  {
1, if demand 𝑖 is covered within the service standard                    
0, otherwise                                                                                                 

    

 Maximize: ∑ 𝑎𝑖𝑦𝑖
𝑛
𝑖=1                                                                                                          (2.9)  

Subject to: 

∑ 𝑥𝑗 ≥ 𝑦𝑖                                                                ∀𝑖 ∈ 𝐼𝑗∈𝑁𝑖
                            (2.10)  

∑ 𝑥𝑗 ≥ 𝑝𝑗                                                                                                    (2.11) 

𝑥𝑗 ∈ {0,1}                                                                      ∀𝑗 ∈ 𝐽                          (2.12) 

𝑦𝑖 ∈ {0,1}                                                                      ∀𝑖 ∈ 𝐼                            (2.13) 

Objective (2.9) aims to maximize the covered demand. Constraints (2.10) decide whether 

the demand location 𝑖 is severed within the service coverage or not. The variable 𝑦𝑖 could 

be allowed to equal 1, only if one or more facilities are selected to cover the location 𝑖. The 

total number of facilities to be located is limited by constraint (2.11). The binary integer 

variables are presented by constraints (2.12) - (2.13). The MCLP is critical to the EMS 

facility deployment as it could be solved for a given application by changing the number of 

facilities (𝑝). 

Instead of service coverage, p-median and p-center problems concern total travel cost, which 

is often employed to represent accessibility in EMS planning. Hakimi (1964) proposed the 

p-median problem (PMP), which, given p facilities, attempts to minimize the total (weight) 

travel cost (e.g., distance or time) between each demand 𝑖 and its nearest open facility 𝑗. 

ReVelle and Swain (1970) proposed an integer-linear programming formulation of the p-

median problem, which is presented in (2.14) - (2.19):  

𝑧𝑖𝑗 =  {
1, if demand 𝑖 is assigned to facility 𝑗                               
0, otherwise                                                                             

   

𝑧𝑗𝑗 = {
1, if node 𝑗 has been selected for a faiclity and assigns to itselfs     
0, otherwise                                                                                                      
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Minimize:  ∑ ∑ 𝑎𝑖𝑑𝑖𝑗𝑧𝑖𝑗∈𝐽𝑖∈𝐼                                                                                      (2.14) 

Subject to                                                                                                                             

∑ 𝑧𝑖𝑗 = 1                                               𝑗 ∀𝑖 ∈ 𝐼;𝑗 ∈ 𝐽                                      (2.15) 

∑ 𝑧𝑗𝑗 = 𝑝                                               ∀𝑗 ∈ 𝐽                                            𝑗     (2.16) 

𝑧𝑖𝑗 ≤ 𝑧𝑗𝑗                                                   ∀𝑖 ∈ 𝐼;𝑗 ∈ 𝐽                                      (2.17) 

𝑧𝑖𝑗 ∈ {0,1}                                               ∀𝑖 ∈ 𝐼;𝑗 ∈ 𝐽                                     (2.18) 

𝑧𝑗𝑗 ∈ {0,1}                                               ∀𝑗 ∈ 𝐽                                             (2.19) 

Objective (2.14) minimizes the total weight travel cost of the demand assignment. 

Constraints (2.15) enforce that every demand 𝑖  should be assigned to an open facility. 

Constraint (2.16) indicates that the total number of facilities to be located is p. Constraints 

(2.17) guarantee that demand 𝑖  can be assigned to facility 𝑗  only if that facility is open. 

Constraints (2.18) (2.19) define decision variables.  

The p-center model was developed by Hakimi (1964) with the intention of easing the worst-

off scenario through minimizing the maximal geographic barrier between a demand location 

and its nearest facility. The p-center problem can be formulated as follows:  

 Minimize  𝑊                                                                                                       (2.20) 

Subject to 

∑ 𝑧𝑖𝑗 = 1                                              ∀𝑖 ∈ 𝐼; ∀𝑗 ∈ 𝐽𝑗                             (2.21) 

∑ 𝑧𝑗𝑗 = 𝑝𝑗                                                                                            (2.22) 

𝑧𝑖𝑗 ≤ 𝑧𝑗𝑗                                                    ∀𝑖 ∈ 𝐼;∀𝑗 ∈ 𝐽                           (2.23) 

 𝑊 ≥ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗𝑗                                                                                      (2.24) 

𝑧𝑖𝑗 ∈ {0,1}                                                 ∀𝑖 ∈ 𝐼;∀𝑗 ∈ 𝐽                          (2.25) 

𝑧𝑗𝑗 ∈ {0,1}                                                 ∀𝑗 ∈ 𝐽                                       (2.26) 

 

The objective (2.20) minimizes the maximal travel distance/time or cost between a demand 

and its nearest open service facility. Constraints (2.21) ensure that each demand 𝑖 is only 

assigned to one facility. Constraint (2.22) states that in total 𝑝 facilities are to be located. 
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Constraints (2.23) ensure that demand 𝑖 can be assigned to facility 𝑗 only if the facility at 𝑗 

is open. Constraints (2.24) states that the maximum geographic barrier between any demand 

and its nearest open facility (𝑊) must be larger than the distance between any demand 𝑖 and 

its closest facility 𝑗. Constraints (2.25) and (2.26) define decision variables. The p-center 

problem is a complex model where the decision variables and constraints increase 

exponentially with the area size.  

All classic models have been widely employed in locating EMS facilities. For example, an 

existing study employs the MCLP to seek the best sites for the COVID-19 testing facilities 

in Nigeria (Taiwo, 2020), ensuring the testing facilities can be accessible across the country. 

Chanta et al., (2014) used the p-center problem to improve EMS accessibility in rural areas. 

These traditional models, however, fall short of capturing several factors and circumstances. 

First, traditional models do not consider the busyness or unavailability of each facility. 

Second, traditional models only involve a single type of facility. However, some services 

require the cooperation of multiple types of facilities (e.g., EMS stations and emergency 

hospitals). In addition, the MCLP and p-median problem tend to locate facilities in densely 

populated areas (e.g., urban regions), leaving fewer facilities in sparsely populated areas 

(e.g., rural regions), which might cause spatial inequalities in access to such services. 

2.3.2. Extensions of classic models 

The classic models mentioned above have been extended in many ways to account for the 

EMS planning practice in reality. Those extensions largely focus on three aspects of a model: 

(1) demand, (2) service coverage, and (3) objective functions.   

(1) Demand  

In facility location modeling, demand refers to the underlying population, communities or 

groups who need the service provided by the facilities. The underlying motivation of facility 

location modelling is to enhance the service capacity to serve people in need in an efficient 

and fair manner. It is a pre-requisite and the most important element of the public service 

sectors.  

In an EMS system, the demand is often uncertain or random attributed mainly to the EMS 

arrival process. Many scholars have attempted to extend the classic models to account for 

the uncertainties or randomness in the EMS demand. For example, Beraldi et al. (2004) 

developed a stochastic model considering the demand uncertainty. They assumed that each 



 

36 

 

EMS facility was able to handle a fixed number of EMS calls in each day, described as the 

facility capacity. As an extension of the LSCP, the model was further extended by adding 

probabilistic constraints with a random demand variable to guarantee patient satisfaction 

with the acceptable level of reliability. Later, a two-stage framework incorporating the 

demand uncertainty was developed (Beraldi and Bruni, 2009). To the best of my knowledge, 

Beraldi and Bruni (2009) engaged in the first attempt to implement a two-stage approaches 

with demand uncertainty in the EMS facility location. Following this idea, the demand 

uncertainty in the EMS was further extended by Zhang and Jiang (2014) and Zhang and 

Jiang (2015) by simultaneously minimizing the EMS calls not served on time. The 

uncertainty or randomness of the EMS demand was also developed by Nickel et al. (2016) 

and Boujemaa et al. (2017) by considering the discrete probability distributions or various 

types of ambulances. Currently, the uncertainty or randomness of the EMS demand has been 

widely implemented in EMS facility location modelling (e.g., Ruslim and Ghani, 2006; Yang 

et al., 2020). For example, based on the EMS data from the Songjiang district, Shanghai, one 

study focused on the location-allocation problem of EMS facilities in inner Shanghai city, 

with the consideration of the uncertainty or randomness of the EMS demand (Yang et al, 

2020). 

(2) Service coverage 

Service coverage is an important component of coverage models (e.g., the LSCP and MCLP) 

(Schilling et al., 1979; Eaton et al.,1985; Murray et al. 2007). Classic models often require 

a demand is covered by the nearest facility. However, the nearest facility might not be always 

available, or there is a probability associated with the availability of a facility. As a result, 

various forms of service coverage have been proposed to better reflect the service provision 

in practice, primarily including (1) multiple and backup coverage, (2) coordinated coverage, 

(3) hierarchical coverage, and (4) probabilistic coverage. 

Multiple or backup coverage means that two or more coverages from the same service should 

encompass demand locations. It intends to address problems where a demand covered by a 

single facility might be insufficient because one facility might not be capable of offering the 

quality of service needed to meet a large number of demands. Toregas (1970) observed that 

some services acted as the backup coverage to fill the gap when the primary coverage was 

unavailable. Daskin and Stern (1981) proposed a novel backup coverage problem structured 

using a bi-objective formulation to minimize the number of EMS facilities to cover all 

demand locations and then to maximize the number of demands covered at least twice. This 
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work was further extended by Storbeck (1982) and Hogan and Revlle (1986). The former 

aimed to minimize the uncovered demands and to maximize the number of demands covered 

by at least twice based on the given number of facilities, and the latter introduced a multi-

service MCLP that intended to maximize the demands that could be covered by the desired 

number of facilities. Later, Gendreau et al. (1997) improved the previous work by combining 

the concepts of double coverage and different coverage radiuses. The multiple coverage 

problems have cooperated with many variables, such as the operating cost, the additional 

cost for EMS delay, the workload of EMS stations or the priority (Liu et al., 2014; Su et al., 

2015; Liu et al., 2016). The multiple/backup coverage problems have also been employed to 

deal with the disaster, hazard, or large-scale emergency cases (e.g., earthquake, flood or 

nuclear accidents) (e.g., Pual et al., 2017; Yang et al., 2020). At present, the multiple 

coverage problems have been widely employed to EMS sector (e.g., Laporte et al., 2009; 

Mohamadi and Yaghoubi., 2017). Many spatial optimization studies have applied the 

Multiple or backup coverage problems to their different planning criteria (Doerner et al., 

2005; Laporte et al., 2019). 

Coordinated coverage problems consider that coverages are cooperative and coordinated to 

provide a complete service. ReVelle et al. (1976) was the first to focus on the coordinated 

accessibility problem which defined the maximum EMS service distance /travel time as the 

sum of the travel time of two-related EMS trips. Based on the above concept, Branas et al. 

(2000) introduced a Trauma Resource Allocation Model for Ambulances and Hospitals 

(TRAMAH) to locate two types of facilities (trauma centers and air EMS stations) with a 

consideration of different service coverages for different trips. As an extension of the LSCP, 

Moon and Chaudry (1984) developed a conditional covering model to minimize the number 

of facilities required to cover all demands. Meanwhile, the model ensures that each demand 

location is covered by at least one facility, and it guarantees that when a facility j is opened, 

there must be another opened facility k located within T travel distance/time from the opened 

facility j. The conditional covering problem has been further extended by many studies (e.g., 

Hale and Moberg., 2005; Ratick et al., 2008; Paul et al., 2017). All types of coordinated 

coverage problems have been widely employed in EMS planning practice (Branas and 

ReVelle, 2001; Branas et al., 2005; Wang and Okazaki, 2007; Rana, 2012; Liu et al., 2016; 

Bozorgi-Amiri et al., 2017).  

Hierarchical coverage problems often consist of at least two types of coverages in relation 

to hierarchical facilities, such as clinics and hospitals. Moore and ReVelle (1982) introduced 

a model with respect of successively inclusive services which strives to locate types of 
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facilities in a way so then the facilities in the lower level can be served by the higher-level 

facilities. Then, an extended hierarchical model incorporating a distance decay function is 

proposed (Hodgson, 1988), which considered the referral trip. Butler et al. (1992) developed 

a hospital-based hierarchical model to address multi-level hospital location with considering 

the referral trip. One study also considered the factor of socioeconomic demand groups with 

different income levels (Marianov and Taborga, 2001). Previous models were also further 

extended by several studies (Gerrard and Church, 1994; Galvão et al., 2002; Galvão et al., 

2006). For example, Galvão et al. (2006) improved the three-dimension model by adding 

capacity constraints, especially for the resource-limited and higher level of the hierarchical 

facilities. Some studies improved the hierarchical coverage problem by adding other 

variables, such as the fixed and variable costs for facility construction (Ratick, 2008), the 

risk of disruption (Smith et al., 2009) or the multi-flow nested hierarchical system 

(Zarrinpoor et al., 2017). A special case of the hierarchical location problem was discussed 

by Church and Eateon (1987) that involved activities between the levels such as the referral 

activities in select healthcare systems. (Church and Eateon, 1987). The hierarchical location 

problem is often implemented in the planning of emergency response facilities (e.g., shelters, 

hospitals) during hazards or disasters (e.g., Chen et al., 2013; Zhang et al., 2017; Trivedi et 

al., 2017). 

Probabilistic coverage problems involve a non-zero probability that the service facilities 

might not often be available when needed. In general, the probabilistic coverage problems 

can be divided into (1) reliable coverage and (2) expected coverage. On the one hand, the 

concept of reliable coverage was introduced by Chapman and White (1974). That is, whether 

a demand could obtain a timely service depends not only on the location within the service 

coverage but also on the probability of a facility being unavailable. The probabilistic 

coverage location model was improved by ReVelle and Hogan (1988), which aimed to 

enforce that at least one ambulance was available for each demand with a given level of 

reliability. One study also considered two types of service facility with a minimum level of 

reliability (ReVelle and Marianov, 1991). To estimate the busyness fraction depending on 

each facility, Marianov and ReVelle (1994, 1996) developed two approaches incorporated 

with the queueing theory. The model was further extended by several studies (Harewood, 

2002; Galvão, 2005; Shariat-Mohaymany et al., 2012). 

On the other hand, the expected coverage problem incorporates the likelihood that a facility 

would be unavailable or busy. The first expected coverage problem was introduced by 

Daskin (1982, 1983). They proposed an expected coverage model (MEXCLP) to maximize 

https://www.sciencedirect.com/science/article/abs/pii/S0377221704008070#!
https://www.sciencedirect.com/science/article/abs/pii/S0377221704008070#!
https://www.sciencedirect.com/science/article/abs/pii/S0377221704008070#!
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the expected coverage by locating a fixed number of vehicles, considering the nature of 

facility availability. Differing from the reliable coverage problem, the works by Daskin 

(1982, 1983) have counted the service coverage as providing a benefit rather than needing a 

minimum coverage reliability threshold. The MEXCLP and its further extensions (Bianchi 

and Church, 1988; Daskin et al., 1988) consider three major assumptions: the fraction of 

unavailability is (1) the same for all facilities and already known; (2) is independent of each 

facility; (3) is independent of each ambulance. Later, ReVelle and Hogan (1989) developed 

a maximal availability model (MALP) It considered how to optimize the spatial layout of 

EMS stations, thus the maximal number of demands could be provided α-reliable coverage. 

The expected coverage was then developed by considering the different types of ambulances 

as in the work of Mandell (1998) and McLay (2009). A variant of MEXCLP called the 

adjusted MEXCLP (AMEXCLP) was developed by (Restrepo et al., 1989), which integrated 

the corrective factor from a hypercube model (Larson, 1974) and a queuing theory (Larson, 

1975) to simulate the expected coverage with a predetermined plan. Goldberg et al. (1990) 

improved the MEXCLP by considering the stochastic travel times to scenes and their priority 

level. Many studies further improved the expected coverage problem (e.g., Ingolfsson et al., 

2008; Van den Berg and Aardal, 2015; Van den Berg et al., 2016). Recent years have seen a 

proliferation in the application of involving EMS in location planning (e.g., Ball and 

Lin,1993; Sorensen and Church, 2010; Lei et al., 2014). 

(3) Objective functions  

The objectives of classic models have been extended to account for three characteristics of 

EMS systems: system efficiency, service inequality, and the trade-off between efficiency and 

inequality.  

Improving system efficiency is the mainstream of facility location modelling, which is 

mainly achieved in two ways. The first type of approach is often the extension of the LSCP, 

which aims to minimize an index that obstructs system inefficiency. Early extensions of the 

objective often considered equipment needed (e.g., ambulances) or both facility and 

equipment. For example, Schilling et al. (1979) developed a spatial optimization model that 

aimed to minimize the total amount of all types of equipment needed in the system (such as 

basic and advanced emergency vehicles). Unlike the traditional LSCP and early extensions, 

some studies intend to minimize other indexes that might obstruct EMS systems, such as 

financial costs, or uncertainties. For example, Beraldi et al. (2004) developed a deterministic 

EMS location model to minimize the total EMS financial costs, including the opening and 

javascript:;
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assignment costs. Similar works are also conducted by several scholars (e.g., Beraldi et al., 

2009; Zhang and Jiang 2014; Su et al., 2015; Nickel et al., 2017). Differently, some studies 

aimed to minimize or enforce various uncertainties within an acceptable level, such as the 

likelihood of EMS delay or random travel time (Ingolfsson et al., 2008; Zhang and Jiang, 

2014; Zhang and Jiang, 2015).  

The second type of approach to improve EMS efficiency is to maximize an index that 

represents system efficiency, which is often the extension of the MCLP. Early extensions 

improved the objective of the MCLP by considering more than one coverage (Hogan and 

ReVelle,1986; Gendreau et al., 1997), the expected coverage (Daskin, 1983), or different 

facilities or equipment (Bianchi and Church, 1988). For example, Bianchi and Church (1988) 

developed a Location and Equipment Emplacement Technique (FLEET) problem, which 

aimed to maximize the amount of demand covered by an equipment by locating service 

facilities and allocating emergency vehicles. Moore and ReVelle (1982) introduced a 

hierarchical coverage model that aimed to minimize the uncovered demands by any level of 

health service (i.e., clinic or hospital). Unlike the objective of the classic MCLP and previous 

extensions, which only involved the covered demand, current extensions also consider the 

maximal positive outcomes from other perspectives, such as survivals. For example, Erkut 

et al. (2008) developed a maximal survival model by maximizing the expected number of 

survivals. Similar work is also represented by Knight et al. (2012). 

Many objectives are developed to improve equality in healthcare services by minimizing 

disparities in the influences or outcomes such as travel distance/time/costs. The frequently 

used objectives of equality measures often minimize the variance (e.g., Wang and Tang, 

2013), the range (e.g., McLay and Mayorga, 2013), the mean deviation (e.g., Newton et al., 

2022), or the Gini coefficient (Drezner et al., 2009), and among many others. For example, 

Wang and Tang (2013) developed a quadratic spatial optimization model that aims to 

minimize the variance of 2SFCA scores across demand locations by optimizing the spatial 

locations of service providers. Newton et al. (2022) developed a generalized equality model 

for minimizing the mean absolute deviation of spatial effect in the siting of EMS stations. 

Drezner et al. (2009) developed an equitable spatial optimization model to reduce the Gini 

index in relation to facility location analysis.  

Trade-off between efficiency and equality is also considered by some EMS location studies, 

which can be achieved by adding equitable constraints or using multi-objective models. On 

the one hand, some studies are committed to adding equity constraints, guaranteeing that the 

systems can maintain minimum levels of equitable services (ReVelle and Hogan, 1989; Ball 
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and Lin, 1993; Gendreau et al., 1997; McLay and Mayorga, 2013). For example, a reliability 

model was developed by Ball and Lin (1993), which incorporated equitable constraints, 

leading to the result that every demand location has an acceptable opportunity to accessibility 

an available ambulance. On the other hand, EMS location models can balance efficiency and 

equality through objective functions where one or more objectives are relevant to improving 

equality (Chanta et al., 2014; Khodaparasti et al., 2016). For example, Khodaparasti et al. 

(2016) introduced a bi-objective model where the primary objective was to maximize the 

total efficiency index assigned to the EMS stations and the secondary objective proposes 

maximizing the equality performance system.
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2.4. Research gap 

GIS-based spatial approaches have been widely employed in EMS such as measuring spatial 

accessibility to EMS and optimizing spatial layout of EMS facilities. However, there are four 

research limitations or challenges that remain to be addressed.  

The first research limitation is that, in general, the travel time in existing EMS accessibility 

studies is usually estimated with fixed speed limits for different types of roads, transportation 

models and land-use types, such as 70 miles/hour on highways and 30 miles on local roads 

for driving (e.g., Cudnik et al., 2012; Dekamater et al., 2012; Mao et al., 2013), or estimated 

by transportation simulation models (e.g., Hu et al., 2020). Such methods often ignore the 

real-time traffic, which can greatly affect the travel time of ambulances (e.g., Earnest et al., 

2011). In particular, the travel time in urban areas during peak and off-peak hours can be 

very different (Luo et al., 2020). If an ambulance is delayed during the peak hour due to 

traffic congestion, it might have a huge impact on the patient's health. Therefore, the 

consideration of traffic conditions during peak hours has strong practical significance. 

The second research limitation is that most studies have only considered a one-way trip (Trip 

1 or Trip 2). Although this is common to general healthcare-seeking behavior (e.g., primary 

care, general hospital), it is not suitable for EMS, which often includes two related trips. 

Even if the work by Vanderschuren and McKune (2015) considered both trips when 

evaluating spatial accessibility to EMS, they employed static road networks with speed limits 

to estimate travel time for ambulances. In fact, both EMS trips (i.e., Trips 1 and 2) are 

important to survival rates and patients’ outcomes. Therefore, it is necessary to consider the 

two related EMS trips when evaluate accessibility to EMS.  

The third research limitation related to service coverage with respect to two related EMS 

trips. Most EMS location optimization work only considered the service coverage for one of 

the two related trips, either for Trip 1 (Van den Berg et al., 2016) or for Trip 2 (Salman and 

Yucel, 2015). Similarly, it is not suitable for EMS because it typically entails two related 

trips, both of which are critical to saving lives. Therefore, it is necessary to consider service 

coverages for two related trips to guarantee the overall EMS provisions. 

Finally, how to reduce inequalities in EMS through location optimization of EMS facilities 

remains a great challenge. In particular, few studies of EMS location optimization have 

focused on the urban-rural inequalities in EMS although such inequalities have been well 

documented (e.g., Jennings et al., 2006; do Nascimento Silva and Padeiro, 2020). Compared 
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with the inequalities between communities or individuals, regional inequalities in EMS have 

received less attention, especially between urban and rural areas. However, achieving 

regional healthcare equality, is a critical goal of national or regional policies (e.g., Wuhan 

Municipal Health Commission, 2019; the State Council of China, 2012). Thus, reducing 

regional inequalities in EMS has strong policy implications. 

The thesis intends to fill the four research gaps mentioned above. The first and second 

research limitations will be addressed in Chapter 3. The last two research gaps will be 

covered by Chapters 4 and 5, respectively. 

2.5. Chapter summary 

In summary, this section finds that efficiency and equality are two important factors that 

worldwide EMS systems have widely concerned. According to the review on GIS-based 

methods, the geographic proximity and 2SFCA method are widely employed in measuring 

accessibility to EMS. In spatial optimization, classic models and their various extensions 

have been also broadly employed in EMS sections, which can be discussed based on three 

perspectives: EMS demand, service coverage and objective functions. Finally, four research 

gaps are presented, which will be addressed in this thesis. 
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Chapter 3 Measuring Spatiotemporal Accessibility to EMS 

This chapter aims to measure spatial and spatiotemporal accessibility to EMS with a 

consideration of two-related trips and real-traffic conditions. The proximity and E-2SFCA 

methods were adopted to measure both spatial and spatiotemporal accessibility. In addition 

to traditional methods using standard speed limits on the road network, real-time traffic 

conditions are considered when calculating accessibility measures. An empirical study is 

carried out with the data from Wuhan, China. 

3.1. Introduction 

Accessibility to healthcare is a multifaceted term. From the utilization aspect, revealed 

accessibility concerns the actual use of health services. Potential accessibility focuses on the 

probable utilization of the service but does not guarantee the actual utilization of the services. 

From a spatial aspect, geographic accessibility often refers to travel distance/time between 

healthcare providers and demands or consider their potential spatial interaction (Joseph and 

Bantock 1982). The non-spatial perspective mainly focuses on factors that could influence 

the easiness of healthcare acquisition, such as demographic, socioeconomic status 

dimensions (Donabedian, 1973). Of interest in this study is potential spatial accessibility and 

its variations over space and time, accounting for two-related EMS trips.  

Many GIS-based methods have been employed to measure potential geographical 

accessibility to healthcare services, which can be classified into three major categories: 

proximity-based measures, PPRs, and gravity-based approaches, including the traditional 

gravity models and 2SFCA-based methods.  

However, most relevant studies concern static travel times (e.g., average travel times) or 

focus on a one-way EMS trip (e.g., Trip 1 or Trip 2) from an EMS station to a scene or from 

the scene to a hospital (see Figure 1-1 in Chapter 1). Although two-related trips and real-

time traffic conditions are important to EMS provision (e.g., O’Keeffe et al., 2010; Earnest 

et al., 2012; Carr et al., 2018), the spatial variations in EMS accessibility caused by real-time 

traffic conditions (e.g., non-peak verse peak hours) with respect to two-related trips are often 

ignored.  
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The aim of this chapter is to measure spatial and spatiotemporal accessibility to EMS, 

accounting for two related EMS trips and real-time traffic conditions. An empirical study is 

carried out in Wuhan, China. Specifically, three objectives are to be achieved in this chapter: 

(1) to measure spatial accessibility to EMS with standard/predefined speed-limit (static); (2) 

to measure spatiotemporal accessibility to EMS with a consideration of real-time traffic 

conditions; (3) to compare spatial patterns of ambulance accessibility (Trip 1) and hospital 

accessibility (Trip 2). Two approaches are employed to measure accessibility to EMS: the 

proximity approach – measuring EMS travel times, and the E-2SFCA approach – 

considering spatial interactions between demands and suppliers. 

This chapter is organized as follows. Section 3.2 reviews existing studies on EMS 

accessibility. Section 3.3 describes the data and methods employed in this research. Section 

3.4 presents the results of spatial and spatiotemporal accessibility of EMS in Wuhan. Section 

3.5 discusses the major findings and associated policy implications.  

3.2. Background 

This section first reviews the influence of Trip 1 and Trip 2 on health outcomes in the context 

of EMS. Then, the impacts of traffic condition on accessibility to EMS are discussed. Finally, 

limitations of existing study are summarized, followed by highlighting the chapter’s aim and 

objectives again.  

Trip 1 plays a critical role in improving health outcomes for EMS demands. Short travel time 

for Trip 1 means patients is likely to obtain early on-scene medical treatment, resulting in 

favorable healthcare outcomes. Many studies have found that Trip 1 is associated with out-

of-hospital cardiac arrest (OHCA) (Cummins et al.,1991; O’Keeffe et al.,2010; Sladjana et 

al.,2011). For example, O’Keeffe et al. (2010) reported that a 1-min reduction in travel time 

for Trip 1 could improve the chances of survival by 24% from cardiac arrest. Similar results 

were also indicted by De Maio et al. (2003), Heidet et al. (2020) and Park et al. (2021). Short 

travel time for Trip 1 is also crucial to EMS demands with other illnesses or injuries 

(Sánchez-Mangas et al.,2010; Mahama et al., 2018). In addition, Trip 1 is vital to favorable 

healthcare outcomes regarding different illnesses or injuries (Wilde, 2012; Gauss et al., 

2019). For example, a cohort study found a linear association between the travel time for 

Trip 1 and all-cause deaths in-hospital, so that mortality risk would increase 18% for each 

10-min increase in travel time for Trip 1 (Gauss et al., 2019).   
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The importance of Trip 2 has been highlighted by numerous scholars (Haegi, 2002; Ouma 

et al., 2018; Carr et al., 2018). Short travel time for Trip 2 means patients is likely to receive 

early advanced and specialized medical treatments in hospitals. Many studies have indicated 

that Trip 2 is important to trauma patients (Newman, 1997; Higgs, 2004; Rammohan et al., 

2013; Mucunguzi et al., 2014). For example, more than 50% of deaths in the UK resulting 

from road accidents happened at the scene or in the EMS vehicle, that is, prior to getting 

comprehensive and specialized medical care in hospitals (Higgs, 2004). Some studies have 

reported that short travel time for Trip 2 is also crucial to the health outcomes of infants and 

mothers (Nesbitt et al., 1990; Chay et al., 2009). For example, Chay et al. (2009) reported 

that the post-neonatal mortality was highly associated with short travel time to the hospital, 

and investment in improving geographic accessibility to healthcare facilities could have a 

long-term effect on health outcomes for infants and mothers. Further, short travel time for 

Trip 2 is also important to cardiac arrest patients (Langhorne et al., 1993; Rhee et al.,2000; 

Pajunen et al., 2005). In general, reducing travel time for Trip 2 is crucial to help patients 

receive in-hospital specialized medical treatments on time, therefore resulting in favorable 

healthcare outcomes.  

The variation in real-time traffic conditions can greatly affect EMS accessibility. Congested 

traffic conditions are likely to cause ambulance delays, and patients might not be served on 

time, thereby influencing patients' health outcomes. Many studies have found that 

ambulance travel time or accessibility scores were significantly reduced during traffic peak 

hours (Earnest et al., 2011; Hu et al., 2020; Fraser et al.,2020). For example, Earnest et al. 

(2011) found that Singapore's short EMS travel time was significantly associated with 

uncongested traffic, such as during off-peak hours or weekends. Some studies found that the 

estimated travel time was often shorter than the actual travel time recorded because 

uncertainties in reality, like congested traffic conditions, were not always considered in the 

estimation (Neeki et al., 2016). In addition, the change in weather, lights and sirens were 

also associated with EMS travel times (Fleischman et al., 2013). Therefore, understanding 

the spatiotemporal influence of the traffic condition is crucial to help healthcare planners to 

maintain an accessible EMS system during rush hours, ensuring that patients can get 

relatively good EMS accessibility even if traffic flows are large. 

Two major limitations in current studies on EMS accessibility remain to be addressed. One 

is that the EMS travel time is usually measured by a static travel speed.  Although it might 

be suitable for places where traffic conditions are often stable, it might not be applicable to 

measure accessibility in densely populated areas, such as metropolises. Even if the culture 
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that traffic gives way to an EMS vehicle is adhered to in some countries, not all areas follow 

this role. China always meets this problem that ambulances are difficult to priority pass-

through traffic because some drivers lack the awareness to give way to ambulances. 

Moreover, drivers are sometimes difficult to give way to ambulances due to extremely 

overcrowded roads that do not have extra space for giving way to ambulances. Thus, traffic 

flow is an essential factor in influencing the quality of EMS and survival rates, while good 

traffic condition usually leads to better health outcomes. Nowadays, dynamic traffic 

condition can be already estimated through online map services like Google Maps 

(https://www.google.com/maps). Many studies have employed online map services in 

measuring accessibility to healthcare services (Tao et al., 2018; Wang and Xu, 2011). 

Another limitation is that, in general, only one-way trips are considered when measuring 

EMS accessibility, either Trip 1 (Hu et al., 2020) or Trip 2 (Bailey et al., 2011; Rocha et al., 

2017). This is problematic as EMS includes two related trips and both trips play important 

roles in saving lives. Some people might be reached easily by ambulances but spend a long 

time to reach their nearest hospitals, and vice versa. Although the work by Vanderschuren 

and McKune (2015) considered both trips, they used the static travel time to measure EMS 

accessibility.   

As can be seen from the above discussion, involving real-time traffic and two-related trips 

is crucial to better understanding and improving EMS accessibility from a spatiotemporal 

perspective. 

3.3. Methods 

3.3.1. Study area and data  

Wuhan consists of 13 districts, with 6 in the rural region and 7 in the urban area. The EMS 

response times set by local government for urban and rural areas are different: 10 and 12 

min, respectively (Wuhan Municipal Health Commission, 2020). In this empirical study, 

residential locations are employed in representing locations of demands (i.e., patient origins), 

which is frequently used to assess healthcare accessibility due to the lack of actual health 

data (Wang and Xu, 2011; Balamurugan et al. 2016; Hu et al., 2020). EMS stations and 

hospitals are used as locations of EMS providers.  

Specifically, the dataset employed include 3,493 local communities in Wuhan (often called 

Shequ in China; 1,172 and 2,321 in the urban and rural areas), 79 EMS stations (54 in the 

https://www.google.com/maps
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urban area) and 72 EMS care facilities (equal to general hospitals in Wuhan; and 53 in the 

urban area). Shequ is the lowest administrative geographical unit in China, covering a certain 

spatial area where residents have close social interaction. The finest geographical scale at 

which census population data are available is Shequ. In our dataset, there are 2,880 

(people/km2) per shequ on average in Wuhan. The number of ambulances based at each 

station in Wuhan is not available. Therefore, we presume that all EMS stations have an equal 

number of ambulances (usually two to three). In China, the hospital is a hierarchical system 

that is categorized into three groups: Level I, II or III. Level III hospitals have the highest 

medical capacity, but Level I hospitals have the lowest medical capacity. As Levels II and 

III hospitals are the main EMS care facilities in China, our study only includes hospitals for 

these two levels (74 hospitals above Level II). Overall, the EMS demand is represented by 

the total population of each shequ. The two types of providers are represented by EMS 

stations and hospitals. 

All data adopted here are from free and open databases. Specifically, the location of 

providers was collected from Baidu Map (https://map.baidu.com/), the largest and most 

well-known web-based map service in China. The population data, capacity of hospitals and 

road network were obtained from the Geographical Information Monitoring Could Platform 

(http://www.dsac.cn/) and Hubei Institute of Land Surveying and Mapping 

(http://dzj.hubei.gov.cn/chy/). 

Figure 3-1 (a) depicts the related spatial and population density information in Wuhan. It is 

evident that the rural region is less densely populated than the urban area. Seven urban 

districts account for 51.9% of the total population but only cover 20.5% of the overall area. 

Among the 13 districts, Jianghan has the highest population density (19,380 people/km2), 

but Jiangxia has the lowest population density the lowest density (485 people/km2). In the 

urban area, only the northeast of Hongshan is relatively sparsely populated. In the rural area, 

most population concentrates around town centers where local EMS is provided. It is thus 

not surprising that most EMS stations and hospitals are located in the urban region. For 

example, eleven EMS stations and nine hospitals are located in Jiangan, even though this 

district occupies only 9% of Wuhan’s total area. In contrast, rural districts have fewer 

numbers of EMS stations and hospitals, even though their total area accounts for more than 

three-fourths of Wuhan. For example, only two EMS stations and three hospitals are located 

in Xinzhou, but this district accounts for 21% of Wuhan’s total area. Therefore, it that EMS 

stations and hospitals are spatially unevenly distributed, especially between urban and rural 

areas. Figure 3-1 (b) presents the different road types in Wuhan, and the figure shows that 

https://map.baidu.com/
http://www.dsac.cn/
http://dzj.hubei.gov.cn/chy/
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the urban road network is significantly more developed than the rural road network. Densely 

populated areas tend to have better road networks around them, and vice versa. For example, 

the road network in the northwest boundary of Wuhan is less developed, and this area also 

has small population density. 
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Figure 3-1. Study area in Wuhan (a) EMS locations and population density; (b) different road types. 
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3.3.2. Measuring accessibility to EMS 

Two types of measures are employed: the proximity and E-2SFCA approaches. Both are 

based on estimated travel times, obtained from (1) calculation using static road network with 

average speeds on different road types, and (2) online map service considering real-time 

traffic conditions.  

The framework of analysis is described in Figure 3-2. First, average, and real-time traffic 

travel times are estimated in relation to two trips (i.e., Trips 1 and 2) involved in one EMS 

journey (i.e., overall trip). The demand location is represented by the centroid of each shequ. 

The average (static) travel times are based on 2020 Wuhan Road network dataset. This is 

implemented with the network analyst extension in ArcGIS (version 10.7). The road network 

contains the average speed on each type of road, and Wuhan has four road classes (see Table 

3-1). The average speed on the urban highways is 60 km/hour, which is the fastest road class, 

including urban high-speed roads and ring roads. The average speeds on main roads and 

secondary urban roads are between 40-55 km/hour. The average speed on rural roads is 

lowest, only 30 km/hour. In general, traffic conditions on the urban highway and rural roads 

are stable, but on main roads or secondary urban roads are often unstable, which means the 

traffic congestion occurs more frequently here. The distribution of road network in Wuhan 

has been shown in Figure 3-1. 

Figure 3-2. Analysis Framework of Spatial / Spatiotemporal Accessibility to EMS. 
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Table 3-1. Average travel speeds on different road types. 

 Types Average Speed (km/h) Speed Stability 

Urban area 

Urban highways 60 Stable 

Main roads 55 Unstable 

Secondary urban 

roads 
40 Unstable 

Rural area Rural roads 30 Stable 

To estimate real-traffic travel times, Baidu online map service (https://map.baidu.com/) is 

employed here, which contains the most updated road network in China and accounts for 

real traffic flows. Java scripts (see https://github.com/WeicongLuo/PhD_thesis_Chapter_3) 

were developed to call Baidu Map's Application Programming Interface (API) for route 

planning (https://lbsyun.baidu.com/products/products/direction). It is worth noting that all 

API services provided by Baidu Map run in the BD-09, which is a geographic coordinate 

system used by Baidu Maps. Therefore, the coordinated system of the demand and provider 

locations should be transferred into the BD-09 geographic coordinate system during the 

estimation process. 

Based on the estimated travel times, the E-2SFCA model then uses to combine accessibility 

and availability. The estimation of travel time is implemented for traffic peak and off-peak 

periods. Two traffic peak periods (7:30–8:30 and 17:30–18:30) and one off-peak period 

(21:00– 22:00) are involved. They are based on the traffic off-peak/peak intervals stipulated 

by Wuhan Traffic Management Bureau. As traffic congestion occurs mainly during 

weekdays, the estimation of EMS travel time was processed at the five consecutive working 

days between September 5th – 10th, 2021. During those days, there were no large-scale events 

that would impact traffic and weather was good. 

There are two steps in the E-2SFCA. The first stage is to calculate the supply-to-demand 

ratio for each EMS facility (EMS station or hospital) within a predetermined journey time, 

divided by a discrete distance-decay function (Luo and Qi, 2009). The distance-decay 

function is then used in the second step to add up the PPRs of all EMS facilities within 

the specific travel time of each demand site. The E-2SFCA model extends the 2SFCA by 

https://map.baidu.com/
https://github.com/WeicongLuo/PhD_thesis_Chapter_3
https://lbsyun.baidu.com/products/products/direction
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dividing the total travel times into various time zones, each with a set weight that accounts 

for the influence of travel time decay. The E-2SFCA is employed in this situation because 

EMS often requires a minimum service standard, such as 10 or 12 min, which can be used 

to specify various service coverage zones. Using the following notation: 

𝑖, 𝑗, 𝑘: the index of EMS stations, hospitals and scenes (population locations), 

respectively; 

𝐸𝑖, 𝐻𝑗: the supply capacity at the 𝑖th EMS station and the 𝑗th hospital, respectively; 

𝑃𝑘: the population at location 𝑘; 

𝑡𝑖𝑘, 𝑡𝑗𝑘: the travel time from the 𝑖th EMS station to the 𝑘th population location, and 

from the 𝑘th population location to the 𝑗th hospital, respectively; 

𝑟 , 𝑇𝑟 , 

𝑤𝑟: 

the index of travel time zones, the 𝑟 th time zone and its associated weight, 

respectively. 

the definition of E-2SFCA in the context of this research can be formulated as in (3.1) - (3.3): 

𝑅𝑖 =
𝐸𝑖

∑ ∑ 𝑃𝑘𝑤𝑟𝑘∈(𝑡𝑖𝑘∈𝑇𝑟)𝑟
                      𝑅𝑗 =

𝐻𝑗

∑ ∑ 𝑃𝑘𝑤𝑟𝑘∈(𝑡𝑗𝑘∈𝑇𝑟)𝑟
                                            (3.1)  

𝐴𝑘
𝐸 = ∑ ∑ 𝑅𝑖𝑤𝑟𝑖∈(𝑡𝑖𝑘∈𝑇𝑟)𝑟                   𝐴𝑘

𝐻 = ∑ ∑ 𝑅𝑗𝑤𝑟𝑗∈(𝑡𝑗𝑘∈𝑇𝑟)𝑟                                    (3.2) 

𝐴𝑘 = 𝐴𝑘
𝐸 + 𝐴𝑘

𝐻                                                                               (3.3) 

where the PPRs for the EMS station 𝑖 and the hospital 𝑗 are computed, represented by 𝑅𝑖 and 

𝑅𝑗 , respectively. Besides, accessibility scores of the demand location 𝑘  are calculated, 

represented by 𝐴𝑘
𝐸  for Trip 1 and 𝐴𝑘

𝐻 for Trip 2. Then, they are derived by summing up the 

corresponding weighted 𝑅𝑖 and 𝑅𝑗 . Finally, the sum of 𝐴𝑖
𝐸  and 𝐴𝑖

𝐻 is calculated to represent 

the overall accessibility (𝐴𝑘) at the demand location k. A higher value of accessibility score 

indicates better accessibility.    

Due to the lack of accurate ambulance data, it is presumed that all EMS stations have an 

equal number of EMS vehicles; that is, 𝐸𝑖 = 2  for all EMS stations 𝑖 . The number of 

inpatient beds in each hospital is employed to represent the medical capacity of hospital  𝐻𝑗, 

ranging from 50 to 3,300. Three time zones are used in this study (r ∈[0,10], (10,12] and 

(12, +∞) min) since Wuhan has approved two criteria for EMS response times: 10 min for 

urban districts and 12 min for rural districts. The value of 𝑤𝑟 is then determined based on 
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those three time zones. Specifically, 𝑤𝑟 = 1 when the travel time 𝑡𝑖𝑘 or 𝑡𝑗𝑘 is less than 10 

min. If the travel time 𝑡𝑖𝑘 or 𝑡𝑗𝑘 is between 10 and 12 min, the weight of 𝑤𝑟 reduces with the 

increase of 𝑡𝑖𝑘 or 𝑡𝑗𝑘, which follows the Gaussian function applied in studies on healthcare 

access (see Dai, 2011). 𝑤𝑟 = 0 if the travel time 𝑡𝑖𝑘 or 𝑡𝑗𝑘 is beyond 12 min.  

As the different 𝐸𝑖 and 𝐻𝑗 scales adopted in this study, the values of 𝐴𝑘
𝐸  and 𝐴𝑘

𝐻 should be 

standardized by Equation (3.4) before being employed Equation (3.3) to obtain 𝐴𝑘 .  In 

Equation (3.4), 𝐴𝑘
𝐸  or 𝐴𝑘

𝐻 is represented by 𝑣, and the standardized value is  𝑣′. After the 

standardized process, the values of 𝐴𝑘
𝐸   and 𝐴𝑘

𝐻  have a range between 0 and 1+σ. The 

parameter σ is employed to distinguish areas with standardized 0 score and areas with no 

accessibility score. Equation (3.4) represents the ‘relative accessibility’ in comparison with 

the maximum and minimum values. In detail, a local community has the best access within 

the study area if it has a score 1+σ. In this study, the value of σ  is defined as 0.01. A higher 

score means better accessibility to EMS. If the 𝐴𝑘
𝐸  or 𝐴𝑘

𝐻 equals to 0 in an area, it means this 

area cannot access to the nearest EMS station or hospital within the pre-defined longest 

travel time threshold (i.e., 12 min), and  𝑣′  would equal to 0, representing the poorest 

accessibility to EMS.  

 𝑣′ = {
0                         if 𝐴𝑘

𝐸  𝑜𝑟 𝐴𝑘
𝐸 = 0   

𝑣−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
+ σ           otherwise   

                                                          (3.4) 

3.4. Results 

3.4.1. Spatial accessibility of EMS  

(1) Proximity-based spatial accessibility 

Figure 3-3 describes spatial patterns of estimated travel times for three trips: Trip 1, Trip 2 

and the overall trip. Regarding two related EMS trips, the average and median travel times 

in urban districts are much smaller than the values in rural districts. However, travel times 

in rural districts have higher ranges of interquartile. According to the median depicted in 

Figure 3-3, among those urban districts, more than 98% population in Jianghan could reach 

the nearest ambulance or hospital within 10 min driving time (i.e., urban service coverage 

standard). Qiaokou has the shortest average travel times for trip 1 (3.1 min). Jianghan has 

the shortest average travel times for Trip 2 and overall trip, which are 2.4 min and 5.7 min, 

respectively. Meanwhile, more than 95% population in Jiangan, Qiaokou, Qinshan and 
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Wuchang could reach the nearest ambulances or hospitals within 10 min driving time. The 

average travel times in those districts were within 5 min for one-way trips (i.e., Trip 1, or 

Trip 2) and within 10 min for the overall trip. In comparison, EMS accessibility in Hongshan 

is the poorest among other urban areas. Only 78.2% of the population in Hongshan could 

reach the nearest ambulances or hospital within 10 min, and 77.5% of the people could 

complete the overall trip within 20 min. Hongshan has the highest average travel times 

among urban districts, 8.8 min for Trip 1, 10.4 min for Trip 2 and 19.2 min for the overall 

trip. Meanwhile, Hongshan has more extensive interquartile ranges than other urban districts. 

When considering EMS travel times for the six rural districts, Dongxihu has the shortest 

average travel times for all trips, 23.5 min for Trip 1, 21.1 min for Trip 2, and 44.6 min for 

the overall trip. In Dongxihu, 38.8% and 72.2% of the population could reach the nearest 

EMS stations and hospitals within 12 min (i.e., rural service coverage standard), and 74.5% 

of the people could complete the overall trip within 24 min. The highest average travel time 

for Trip 1 is in Huangpi (42.0 min), where only 24.9% of people could reach the nearest 

ambulances within 12 min. The second-highest average travel time for Trip 1 is 35.0 min in 

Hannan, where only 46.9% of people can be served by their nearest ambulances within 12 

min. As for Trip 2, the highest average travel time is in Jiangxia (55 min), where 23.1% of 

the population could arrive at their nearest hospitals within 12 min. the second-highest 

average travel time for Trip 2 is in Huangpi, where the average travel time is 43.9 min, and 

only 24.6% of the population could be served by their nearest hospitals within 12 min. For 

the overall trip, the highest average travel time is in Huangpi (86.0 min), and 19.9 % of the 

population could complete the total journey within 24 min. Then, the second-highest average 

travel time for the overall trip is in Jiangxia (85.8 min), and 21.4 % of the population could 

complete the overall journey within 24 min. 
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Figure 3-3. Boxplots of the estimated average travel time of different districts: (a) Trip 1 

(EMS station to Scene); (b) Trip 2 (Scene to Hospital); (c) overall trip (EMS station to Scene 

to Hospital). 
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Comparing EMS accessibility between urban and rural districts, Figure 3-4 presents that the 

average urban travel times are shorter than the average travel time in rural areas in relation 

to all trips. Specifically, the average travel times in the urban areas are 5.05 and 5.07 min for 

Trip 1, and Trip 2, respectively. However, the average travel times in the rural areas are 33.39 

and 39.18 min for Trips 1 and 2, which are 28.34 and 34.11 min higher than the urban values, 

respectively. For the overall travel time, the urban average value is 10.12 min, but the rural 

average is 72.57 min, with a one-hour difference.  For Trip 1, about 94.4% of patients living 

in urban districts could reach to EMS vehicles from their closest EMS stations within 10 min, 

but only 28.2% of people living in the rural districts could reach their nearest ambulances 

within 12 min. For Trip 2, around 93.6% of urban patients could be transported to their 

nearest emergency hospitals within 10 min, but 32.3% of rural patients could reach their 

nearest ambulances within 12 min. For the overall trip, around 93.5% of urban patients could 

complete the overall trip within 20 min, but 30.3% of rural people could finish the overall 

trip within 24 min. 

 

Figure 3-4. Average travel times for different trips between urban and rural areas. 

The spatial patterns of average travel times are described in Figures 3-5. In general, EMS 

travel times for all trips increase from the central urban areas toward rural areas. Most shequs 

in the central urban areas have relatively good EMS and hospital accessibility (i.e., Trip 1 or 

Trip 2 ≤10min, the EMS response standard in the urban area) as well as overall accessibility 
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(i.e., Trip 1 + Trip 2 ≤ 20 min). The urban shequs with relatively poor ambulance 

accessibility (i.e., Trip 1 > 10min) are clustered in the south and the east of Hongshan (see 

Figure 3-5 (a)). The urban shequs with relatively poor hospital accessibility (i.e., Trip 2 > 

10min) are located in the south, the east and the north of Hongshan (see Figure 3-5 (b)). For 

the urban area with relatively poor overall accessibility (i.e., the overall trip > 20 min), those 

shequs are mainly distributed in the south, the east and the north of Hongshan (see Figure 3-

5 (c)). Among the urban groups, the community with the longest travel time for Trip 1 is 

Kuailin shequ located in the east of Hongshan, where local residents need to take 29.62 min 

to reach an ambulance. The urban community with the longest travel time for Trip 2 is 

Jintang shequ, located in the south of Hongshan. Local residents need take 33.6 min to reach 

the nearest hospital. In urban areas, the longest travel time for the overall trip is Kuailin 

shequ located in the east of Hongshan, where local residents need take about one hour to 

complete the overall EMS trip.  

In contrast, most shequs in rural districts have relatively poor ambulance and hospital 

accessibility (i.e., Trip 1 or Trip 2 >12 min, the EMS response standard in the rural area) as 

well as poor overall accessibility (i.e., Trip 1 + Trip 2 > 24 min). Except for some areas close 

to EMS stations or hospitals, most rural shequs could not be served by the ambulance or 

hospital services within the 12-min time standard. Specifically, those rural shequs with 

relatively good ambulance accessibility are mainly clustered in the middle and southwest of 

Huangpi, the middle and the southwest of Xinzhou, the north and the south of Jiangxia, the 

west of Hannan, the north of Caidian and the east of Dongxihu (see Figure 3-5 (a)). Areas 

with relatively good hospital accessibility are mainly clustered in the middle of Huangpi, the 

middle and east of Xinzhou, the north of Jiangxia, the east of Hannan, and the north of 

Caidian east Dongxihu (see Figure 3-5 (b)). Rural shequs with relatively good overall 

accessibility are mainly clustered in the middle of Huangpi, the middle of Xinzhou, the north 

of Jiangxia, the north of Caidian, and the east of Dongxihu (see Figure 3-5 (c)). When we 

consider an individual community, the area with the longest travel times for Trip 1 and Trip 

2 are in Yaoshan shequ that is located in the northwest of Huangpi district, with 322 residents. 

Those local residents are estimated to spend more than two hours to reach the nearest EMS 

station or hospital and they might need five hours to complete the overall EMS trip. 
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Figure 3-5. Trave time zones for different trips: (a) Trip 1; (b) Trip 2; (c) overall trip. 
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Figures 3-6 (a) (b) depict the areas (in grey) that are distributed in various travel time zones 

for Trip 1 and Trip 2. The highlighted shequs have relatively good ambulance accessibility 

(Trip 1≤10 min) but relatively poor hospital accessibility  (Trip 2 >12 min), and vice versa. 

Figure 3-6 (a) shows that 206 shequs with 457,657 population can be reached at their nearest 

EMS stations within 10 min but are more than 12 min away from the closest hospitals. It is 

because those areas are near to EMS stations but far from hospitals. Spatially, those shequs 

are located mainly in the south of Jiangxia, the west of Hannan, the southwest and northeast 

of Caidian, the south and northeast of Dongxihu, the southwest of Huangpi, the southwest 

of Xinzhou, and the southwest and the northeast of Hongshan. Taking Qinlin shequ (located 

in the south of Hongshan) as an example, the travel time for Trip 1 is only 2.18 min, but 

21.77 min for Trip 2. It means that local residents are within easy reach of an ambulance, 

but they would find that it is difficult to reach an emergency hospital. Figure 3-6 (b) shows 

that 199 shequs with 318,076 population can reach their nearest hospitals within 10 min but 

cannot find the nearest EMS stations within 12 min. It is because those areas are near to 

hospitals but far from EMS stations. Geographically, those shequs are mainly distributed in 

the east of Hannan, the southeast and the northwest of Caidian, the middle of Dongxihu, the 

middle and the east of Huangpi, the west of Xinzhou, the north of Jiangxia, the northwest of 

Qinshan, and the west of Hanyang. Taking Haijing shequ as an example, which is located in 

the east of Dongxihu and with more than 10,000 residents, the travel time for Trip 2 is only 

1.45 min, but 14.55 min for Trip 1. It means that local residents are likely to reach the nearest 

hospital quickly, but they are difficult to access from the nearest EMS station. The above 

results confirm that it is necessary to consider the two-related trips in an EMS journey, which 

is still the weakness of extant studies on EMS accessibility.   
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Figure 3-6. Locations of the Shequ within different travel time zones: (a) Trip 1≤10min, 

Trip 2＞12 min; (b) Trip 1＞10min, Trip 2≤12 min. 
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(2) E-2SFCA-based spatial accessibility  

Based on the E-2SFCA, spatial variations in accessibility scores in relation to different trips 

are depicted in Figure 3-7. Given the range of scores for different trips, the majority of values 

are relatively low, with more than 75% of the values for Trips 1 and 2 having a score lower 

than 0.15 for a single trip and 0.3 for the overall trip. The range of ambulance accessibility 

(Trip 1) and hospital accessibility (Trip 2) is between 0 and 1.01 (0 means poorest 

accessibility). The range of overall EMS accessibility is between 0 and 1.59. Average and 

median accessibility scores of districts are also presented in Figure 3-7. It is not surprising 

that seven urban districts have the higher average accessibility scores than suburban and 

rural districts. For ambulance accessibility, Qinshan has the highest average score (0.17), 

and more than 70.5% of the shequs in Qinshan have at least a 0.15 ambulance accessibility 

score. The second-highest average score is in Jiangan (0.11), and more than 56% of local 

residents lived in the shequs with at least 0.15 ambulance accessibility score. Xinzhou has 

the lowest average ambulance accessibility score (0.01), and only 13.9% of the local shequs 

have at least a 0.15 ambulance accessibility score. Huangpi has the second-lowest average 

ambulance accessibility score (0.02), and only 21.3% of the local shequs have at least a 0.15 

ambulance accessibility score. For hospital accessibility, Jianghan has the highest average 

score (0.21), and more than 68.3% of the shequs have at least a 0.15 hospital accessibility 

score. The second highest average hospital score is in Qinshan (0.20), and more than 66.7% 

of residents lived in shequs with at least a 0.15 hospital accessibility score. Huangpi has the 

lowest average hospital accessibility score (0.02), and only 16.8% of the local shequs have 

at least a 0.15 hospital accessibility score. Jiangxia has the second-lowest average hospital 

accessibility score (0.02), and only 17.1% of the local shequs have at least a 0.15 hospital 

accessibility score.  

For overall accessibility, Qinshan has the highest overall accessibility score (0.37), and more 

than 65.8% of the shequs in here have at least a 0.30 overall accessibility score. The second-

highest average overall score is in Jianghan (0.31), and more than 57.6% of residents lived 

in shequs with at least a 0.3 overall accessibility score. Huangpi has the lowest average 

overall accessibility score (0.04), and only 14.5% of the local shequs have at least a 0.3 

overall accessibility score. Xinzhou has the second-lowest average overall accessibility 

score. Only 18.3% of the local shequs have at least a 0.3 overall accessibility score. In 

general, the above results indicate that Qinshan and Jianghan have relatively high 
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accessibility scores among all districts, but Huangpi and Xinzhou have relatively low 

accessibility scores for all trips.  

 

Figure 3-7. Boxplots of E-2SFCA score: (a) Trip 1(EMS station to Scene); (b) Trip 2 (Scene 

to Hospital); (c) overall trip (EMS station to Scene to Hospital). 
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Figure 3-8 indicates that the urban area has a higher average accessibility score than that of 

the rural area with respect to each trip. In detail, the average ambulance score (i.e., Trip 1) 

is 0.1 in the urban but 0.03 in the rural area. The average hospital score (i.e., Trip 2) is 0.15 

in the urban area and 0.03 in the rural area. For the overall trip, the urban average score is 

0.26, but the rural average score is 0.06, with a 0.2 difference. In other words, the urban area 

has better EMS accessibility than that in the rural area regarding all trips. 

 

Figure 3-8. Average travel times for different trips between urban and rural areas. 
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Figures 3-9 describe spatial variations of accessibility scores in Wuhan, where shequs with 

the estimated travel time more than 12 min for Trip 1 or Trip 2 are left blank; that is 𝐴𝑘
𝐸=0 

or 𝐴𝑘
𝐻=0. The reason for using 12 min as the threshold is that it is the secondary standard of 

EMS response time in Wuhan (for rural area). Those blank areas mean patients are difficult 

to reach the ambulance or hospital within 12 min in those shequs. Then, the E-2SFCA 

accessibility score for one-way trips (i.e., Trip 1 and Trip 2) higher than 0.15 and score for 

the overall trip higher than 0.3 are defined as “relatively good accessibility”.  

The urban districts have better EMS accessibility of all trips than rural areas. Specially, about 

73% of urban shequs have relatively good EMS and hospital accessibility, and 70% of urban 

shequs have good overall EMS accessibility. Comparatively, only 18%, 17.5%, and 15% of 

rural shequs have relatively good ambulance accessibility, hospital accessibility, and the 

overall accessibility, respectively. Among the urban region, the central urban area (i.e., the 

west of Wuchang or the east of Jiangan) has better EMS accessibility related to all trips than 

the peripheral urban areas (i.e., the southwest or northeast of Hongshan). For rural districts, 

only shequs near EMS stations or hospitals have either relatively good ambulance or hospital 

accessibility. It is worth noting that the shequ with the highest ambulance accessibility score 

is located in the southeast of Caidian, and the shequ with the highest score of hospital 

accessibility is sited in the west of Xinzhou. Both shequs are distributed in the rural areas. 

Those areas have less potential demand and near to providers, where are the major reasons 

for the highest accessibility score.
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Figure 3-9. E-2SFCA accessibility score for single and overall trips: (a) ambulance accessibility; (b) 

hospital accessibility; (c) overall accessibility 
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Figures 3-10 (a) (b) underlines areas with different accessibility for the two single trips based 

on the E-2SFCA scores. The shequs are highlighted if they have relatively good ambulance 

accessibility with a score higher than 0.15, and also have relatively poor hospital 

accessibility with a score of 0, and vice versa. Figure 3-10 (a) shows that 79 shequs with a 

168,427 population have relatively good ambulance accessibility but relatively poor hospital 

accessibility. Geographically, those shequs are mainly distributed in the south and southwest 

of Jiangxia, the west of Hannan, the west and northeast of Caidian, the north of Dongxihu, 

and the southwest of Huangpi, the southwest of Xinzhou, and the southwest, middle, and 

north of Hongshan, respectively. Taking Zhangwan shequ (located in the east of Caidian) as 

an example, the ambulance accessibility score is 0.158, but the hospital accessibility score 

is 0, which means the shequ has relatively good ambulance accessibility, but poor hospital 

accessibility. In contrast, Figure 3-10 (b) shows that 56 shequs with 106,215 people have 

relatively good hospital accessibility but poor ambulance accessibility. Those shequs are 

distributed in the middle and east of Huangpi, the west of Xinzhou, the north of Jiangxia, 

the east of Hannan, the southeast and north of Caidian, the east of Dongxihu, respectively. 

Taking Sungang shequ (located in the west of Xinzhou) as an example, the hospital 

accessibility score (𝐴𝑘
𝐸) is 0.5, but the ambulance accessibility score (𝐴𝑘

𝐻) is 0. 
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Figure 3-10. Locations of the Shequs within different travel time groups for Trip 1 and Trip 

2; (a) 𝐴𝑘
𝐸 ≤ 0.15 and 𝐴𝑘

𝐻 = 0  ; (b) 𝐴𝑘
𝐻 ≤ 0.15 and 𝐴𝑘

𝐸 = 0. 

3.4.2. Spatiotemporal accessibility of EMS 

(1) Proximity-based spatiotemporal accessibility  

Based each time period of the day (morning or evening peak period; off-peak period), travel 

times on the five estimated weekdays were averaged for each shequ. Figure 3-11 presents 

the statistical information of the estimated travel times for different EMS trips. In general, 

travel times for both morning and evening peak periods are precisely similar, but they differ 

from the travel times for the off-peak period. Compared with the values for off-peak hours, 

travel times for morning and evening peak hours have higher median and average values.  

It is not surprising that the average travel time for the same trip is generally higher during 

the peak hours than that in off-peak periods. For example, the average travel times for Trip 

1 are 21.7 min and 21.5 min during the morning and evening peak hours, respectively. 

However, it only takes 19.1 min during the off-peak period, with a more than 2-min reduction. 

Besides, the average travel time for Trip 2 is 23.4 min and 23.3 min during the morning and 
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evening peak hours, respectively, but it only takes 21.1 min during the off-peak period. 

Finally, the travel time for the overall trip during two peak periods is between 44-45 min on 

average, which is 4-5 min higher than that in the off-peak period. 

For the overall trip, 57.7 % and 65.1% of the total population could complete the whole EMS 

journey within 20 min and 24 min at the off-peak period, respectively. During traffic peak 

hours, these proportions are notably decreased. Meanwhile, the median travel time for the 

overall trip is 38.1 min at the off-peak hours, but the values would increase over 40 min 

during morning and evening traffic peak periods. According to Figure 3-11, the average 

travel time for Trip 1 is lower than the average travel time for Trip 2 during all periods of a 

day. For example, the average travel time for Trip 1 is 19.1 min at the off-peak hours, which 

is 2.0 min higher than the travel time for Trip 2 at the same time.  
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Figure 3-11. Boxplots of travel times in different time periods: (a) Trip 1; (b) Trip 2; (c) 

overall trip. 
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Table 3-2 shows that the average travel times in urban areas are significantly less than in 

rural areas value for any trip during any time of a day. During the off-peak period, the average 

urban travel time for Trip 1 or 2 is around 9 min, and the average travel time for overall trip 

is about 18 min. However, the rural average travel time for Trip 1 or 2 is over 20 min, and 

over 50 min for the overall trip. Urban-rural differences in EMS travel time are 15.4 min for 

Trip 1, 18.4 min for Trip 2 and 33.8 min for the overall trip. Average travel times for all trips 

are increased during traffic peak periods. For example, compared with the travel time at the 

off-peak period, the average value for Trip 1 is increased by 2.2 min in the urban area, and 

2.8 min in the rural area during the morning peak hours. The similar findings also occur 

during the evening peak period.  

Table 3-2. Average travel times during between peak and off-peak hours. 

 Time Urban (min) Rural (min) 

Trip 1 

Off-peak 8.9 24.3 

Morning peak 11.1 27.1 

Evening peak 11.0 26.9 

Trip 2 

Off-peak 9.0 27.4 

Morning peak 11.3 29.6 

Evening peak 11.2 29.3 

Overall trip 

Off-peak 17.9 51.7 

Morning peak 22.4 56.7 

Evening peak 22.2 56.2 

Temporal traffic variation ratios are calculated by equation (3.5). A high value of temporal 

traffic variation ratio means the large difference of travel times between peak and off-peak 

hours. The traffic peak hours have a notable influence on EMS accessibility in those places. 

A low value of temporal traffic vitiation ratio means the traffic peak hours have a minor 

influence on EMS accessibility. Difference in travel times between peak and off-peak hours 

is slight. Figure 3-12 shows the temporal traffic variation ratios for different trips. The 

average ratios for seven urban districts are significantly higher than the values for rural 

districts. The average ratios for seven urban districts are higher than 0.2, but the average 

ratios for five of six rural districts are lower than 0.2. For Trip 1, Wuchang and Qiaokou have 

the highest and second-highest variation ratios. For Trip 2. Hongshan and Jianghan have the 
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highest variation ratio, followed by Qiaokou, where the variation ratio is 0.03 lower than the 

highest level. As for the overall trip, Wuchang and Qiaokou have the highest variation ratio, 

followed by Hongshan, where the variation ratio is 0.01 lower than the highest level. In 

contrast, the variation values for rural areas are much lower than those in the urban districts. 

The lowest ratios for all trips are pointed to Hannan, which mean traffic condition during 

peak hours have very slight impact on this district. The variation ratios for Huangpi are also 

less than 0.1 for all trips. The highest variation ratios among rural districts are Dongxihu, 

and its variation ratios for all trips are higher than 0.2. Due to higher temporal traffic 

variation ratios in urban areas, real-time traffic conditions have stronger impact on EMS 

accessibility in urban areas than in rural districts. 

[Average peak hour traveltime]−[off peak hour traveltime ]

[off peak hour traveltime]
                                                 (3.5) 
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Figure 3-12. Temporal traffic variation ratios for different trips. 
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Spatial variations of the average travel times for peak and off-peak periods are presented in 

Figures 3-13. In general, most areas with good ambulance accessibility, hospital accessibility 

(i.e., travel time for Trip 1or Trip 2 ≤10 min), as well as overall accessibility (i.e., travel 

time for the overall trip ≤ 20 min) are clustered in the central part of the urban region. The 

east part of the urban region has relatively poor accessibility for all trips (i.e., travel time for 

Trip 1or Trip 2 >10 min; travel time for the overall trip > 20 min). As for rural districts, in 

addition to some areas near to EMS stations or hospitals, most shequs have travel times more 

than 12 min for Trip 1 or Trip 2, and over 24 min for the overall trip. It is worth noting that 

the number of shequs with good EMS accessibility decreases dramatically during morning 

and evening peak hours, especially in the central part of the urban region. Some shequs (e.g., 

the south of Hongshan) might have relatively good ambulance accessibility during off-peak 

hours but have relatively poor ambulance accessibility during the morning or evening peak 

hours. For example, Lianxishi shequ, located in the south of Wuchang, could reach an 

ambulance within 7 min during off-peak hours but more than 16 min during traffic rush 

hours. Besides, some areas have relatively good hospital accessibility during off-peak hours 

but have poor hospital accessibility during peak hours. For instance, Yudai shequ, located in 

the southeast of Qiaokou, could reach the nearest hospital within 6 min during off-peak hours 

but more than 17 min during peak hours. As for the overall travel times, Hudian shequ, 

located in the middle Hongshan district, could complete the overall trip within 10 min in the 

off-peak hours but more than 20 min during the peak hours. It is worth noting that some 

shequs might take an extremely long travel times during any time of the day. For example, 

Liujiashan shequ, is estimated to take 79 min to receive the nearest ambulance and more 

than 88 min on getting to the closest hospital.  
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 Figure 3-13.  Average travel time for single and overall trips at different times of the day; 

Off-peak period: (a) Trip 1, (b) Trip 2, (c) overall trip; Morning peak period: (d) Trip 1, (e) 
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Trip 2, (f) overall trip; Evening peak period: (g) Trip 1, (h) Trip 1, (i) overall trip).  

Figures 3-14 depict shequs (in grey) with different levels of travel times for Trip 1 and Trip 

2, which   highlight the shequs that have relatively good ambulance accessibility (Trip 1≤

10 min) and poor hospital accessibility (Trip 2 > 12min), and vice versa. Figure 3-14 (a) 

shows that 188 shequs with the 603,874 population can reach their nearest EMS stations 

within 10 min, but more than 12 min to reach the closest hospitals during the off-peak hours. 

Those areas are mainly distributed in the southwest of Hongshan, the south of Jiangxia, the 

west of Hannan and Caidian, and the south of Xinzhou. Figure 3-14 (b) shows that 173 

shequs with the 508,635 population can reach their nearest EMS stations within 10 min, but 

it takes more than 12 min to reach the closest hospitals during the morning peak hours. Those 

shequs are mainly distributed in the south of Jiangxia, the east of Hannan, the east and 

northeast of Caidian, the southwest and the northeast of Hongshan. Figure 3-14 (c) describes 

168 shequs with the 501,555 population that have relatively good ambulance accessibility 

and poor hospital accessibility at the evening peak hours. Those shequs are mainly 

distributed in the south and southwest of Jiangxia, the east of Hannan, the east and northeast 

of Caidian, the southwest and the northeast of Hongshan. 

Figures 3-14 (d) (e) (f) highlight shequs with relatively good hospital accessibility (Trip 2≤ 

10 min) and poor ambulance accessibility (Trip 1 > 12 min). In detail, Figure 3-14 (d) finds 

187 shequs with the 770,824 population can arrive at their nearest hospitals within 10 min 

but cannot reach the nearest EMS stations within 12 min during the off-peak hours. Those 

shequs are sited in the south of Hongshan, the east of Hannan, the southwest and northeast 

of Caidian, the middle of Dongxihu, and the west of Xinzhou, respectively. Figure 3-14 (e) 

depicts 166 shequs with the 570,824 people have relatively good hospital accessibility and 

poor ambulance accessibility at the morning peak hours. The spatial distribution of those 

shequs is similar to the layout at off-peak hours. Figure 3-14 (f) indicates that there are 170 

shequs with the 603,212 residents with relatively good hospital accessibility and poor 

ambulance accessibility at the morning peak hours. The spatial distribution of those shequs 

is similar to the layout at off-peak hours. Overall, the above results show that good 

ambulance accessibility cannot guarantee good hospital accessibility, nor overall 

accessibility during any time of the day, and vice versa. 
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Figure 3-14. Locations of the Shequs within different travel time zones for Trip 1 and Trip 

2; Trip 1 ≤10min and Trip 2> 12min; (a) off-peak periods, (b) morning peak periods, (c) 

evening peak periods; Trip 1>12 and Trip 2≤10min; (d) off-peak periods, (e) morning peak 

periods, (f) evening peak periods.  
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(2) E-2SFCA-based spatiotemporal accessibility 

Variations in the average E-2SFCA values between peak and off-peak periods are depicted 

by Figure 3-15. As the range of the E-2SFCA score is between 0 and 1.01 for Trip 1 or Trip 

2, most of the scores are relatively small, with only less than 25% of shequs with a score of 

more than 0.15 for a single trip and 0.3 for the overall trip. In other words, most E-2SFCA 

scores are less than 0.15 for ambulance accessibility and hospital accessibility and less than 

0.3 for the overall accessibility during any time of a day. Among the time periods, the highest 

average and median scores are at the off-peak hours, indicating the best EMS accessibility 

in relation to all trips occurs during this period. Similar to the variations in travel times, there 

are evident disparities in accessibility scores between off-peak and peak hour periods. In 

general, average accessibility scores for all trips at the off-peak period are higher than that 

in peak hours. Comparing two traffic peak hours, the morning peak period has higher 

accessibility scores for all trips than those in the evening peak hours. The median values for 

all trips are 0 because at least 50% of shequs are not within the12-min travel time catchment 

for Trip1 or Trip 2 based on the estimation of Baidu online map service.  
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Figure 3-15. Boxplots of E-2SFCA score in different time periods: (a) Trip 1; (b) Trip 2; 

(c) overall trip.  
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Table 3-3 shows that urban-rural differences in average E-2SFCA scores decrease during 

peak periods. At the off-peak hours, the urban-rural average difference is 0.07 for ambulance 

accessibility score, 0.08 for hospital accessibility score and 0.13 for overall accessibility 

score. However, the urban-rural difference reduces during traffic peak hours. The urban-rural 

difference in average scores for morning peak hours is 0.06 for ambulance accessibility score, 

0.06 for hospital accessibility score, and 0.13 for the overall accessibility score. The urban-

rural differences for the evening peak period are 0.05 for ambulance accessibility score, 0.06 

for hospital accessibility score, and 0.10 for overall accessibility score. This is because scores 

in urban areas drop significantly during peak periods, while scores in rural areas remain 

comparatively stable. In other words, real-time traffic conditions have stronger impact on 

urban EMS accessibility rather than rural EMS accessibility.  

Table 3-3. Average accessibility scores during between peak and off-peak hours. 

  Urban Rural 

Ambulance 

accessibility score 

Off-peak hour 0.13 0.06 

Morning peak hour 0.11 0.05 

Evening peak hour 0.10 0.05 

Hospital 

accessibility score 

Off-peak hour 0.14 0.06 

Morning peak hour 0.11 0.05 

Evening peak hour 0.11 0.05 

Overall accessibility 

score 

Off-peak hour 0.25 0.12 

Morning peak hour 0.21 0.11 

Evening peak hour 0.20 0.10 
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Figure 3-16 shows spatiotemporal variations in average E-2SFCA accessibility scores for all 

trips during various day periods. Shequs with travel time more than 12 min for Trip1 or Trip 

2 are left as blank, and the E-2SFCA scores higher than 0.15 as “relatively good accessibility” 

for single trips and more than 0.3 as “relatively good accessibility” for the total trips. Most 

urban shequs and some rural shequs have relatively good ambulance accessibility, hospital 

accessibility and the overall accessibility, especially during off-peak hours. Among shequs 

in Wuhan, Qiaoliang shequ in the middle of Hongshan, has the highest ambulance 

accessibility score, representing the best ambulance accessibility. The highest hospital 

accessibility and overall accessibility scores are pointed to Tazihu shequ in Jiangan, 

indicating the best hospital accessibility and the overall EMS accessibility.  

When comparing EMS accessibility between traffic peak and off-peak periods, it is clear 

that the number of shequs with relatively good accessibility is highest during the evening 

off-peak hours, and the number of shequs with relatively good accessibility decreases during 

the morning and evening off-peak hours. It is worth noting that most shequs have a sharply 

decrease in accessibility scores for all trips during the morning and evening peak hours, 

especially in the central urban area. Comparatively, only some urban shequs in Qinshan and 

Hongshan districts, some shequs along the Yangtze River and most shequs near to EMS 

facilities have consistently good EMS accessibility for two single trips and the overall trip 

(𝐴𝑘
𝐸 , 𝐴𝑘

𝐻 ≥ 0.15 and 𝐴𝑘 ≥ 0.3) during anytime of a day. For instance, Taoyuan shequ in the 

east of Qinshan district has good overall accessibility scores at any time interval. Urban 

districts are most impacted by real-time traffic conditions, especially in the east of Yangtze 

River, Wuchang and Hongshan. For example, Shengjun shequ in Wuchang district has an 

excellent overall accessibility score (0.412) at the evening off-peak period, but the score 

decreases to 0.10 during the morning and evening peak hours. 
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Figure 3-16. E-2SFCA accessibility score for single and total trips at different times of the 

day (Off-peak period: (a) ambulance accessibility, (b) hospital accessibility, (c) overall 

accessibility; Morning peak period: (d)ambulance access, (e) hospital accessibility, (f) 
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overall accessibility; Evening peak period: (g) ambulance accessibility, (h) hospital 

accessibility, (i) overall accessibility). 

Figures 3-17 underlines shequs (in grey) with different accessibility for the two single trips 

based on the E-2SFCA scores during off-peak hours. That is, if a highlighted shequ has 

relatively good ambulance accessibility (𝐴𝑘
𝐸≥0.15), while this shequ has relatively poor 

hospital accessibility with a blank score (𝐴𝑘
𝐻 = 0), and vice versa. Figures 3-17 (a) (b (c) 

mark the shequs with relatively good ambulance accessibility and poor hospital accessibility. 

In detail, Figure 3-17 (a) shows that 112 shequs with the 325,315 population have relatively 

good ambulance accessibility but poor hospital accessibility during the off-peak hours. 

Those areas are mainly distributed in the south and southwest of Jiangxia, the west of 

Hannan, the southwest and northeast of Caidian, the south boundary and north of Dongxihu, 

the southwest of Huangpi and the northeast of Hongshan districts. Figure 3-17 (b) shows 

that 101 shequs with the 152,386 population have relatively good ambulance accessibility 

but poor hospital accessibility during the morning peak hours. Those shequs are mainly 

located in the south of Jiangxia, the west and northeast of Caidian, the northeast of Hongshan. 

During the evening peak hours, 100 shequs have relatively good ambulance accessibility but 

poor hospital accessibility (see Figure 3-17 (c)). Those shequs are mainly distributed in the 

south and west of Jiangxia, the west of Hannan, the west and northeast of Caidian, and the 

northeast of Hongshan.  Figures 3-17 (d) (e) (f) highlight the neighborhoods with relatively 

good hospital accessibility but poor ambulance accessibility. In detail, Figure 3-17 (d) shows 

93 shequs with the 216,457 people having relatively good hospital accessibility (𝐴𝑘
𝐻 ≥ 0.15), 

but relatively poor ambulance accessibility (𝐴𝑘
𝐸 = 0), during the off-peak hours. Those areas 

are chiefly located in the east of Hannan, the north of Caidian, the east of Huangpi, the west 

of Xinzhou, and the north Jiangxia. Figure 3-17 (e) depicts 72 shequs with the 268,703 

people who have relatively good hospital accessibility but relatively poor ambulance 

accessibility during the morning peak hours. Those shequs are mainly located in the east of 

Hannan, and the west of Xinzhou. Figure 3-17 (f) depicts 81 shequs with the 294,057 people 

having relatively good hospital accessibility but relatively poor ambulance accessibility 

during the evening peak hours. The spatial distribution of those shequs is similar to the 

spatial layout discussed before. Overall, good ambulance accessibility cannot guarantee 

good hospital accessibility, nor the overall accessibility during any time of the day, and vice 

versa. 
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Figure 3-17. Locations of the Shequs within different travel time zones for Trip 1 and Trip 

2; 𝐴𝑖
𝐸≥0.15 and 𝐴𝑖

𝐻=0; (a) off-peak period, (b) morning peak period, (c) evening peak 

period; 𝐴𝑖
𝐸≥0.15 and 𝐴𝑖

𝐻=0; (d) off-peak period, (e) morning peak period, (f) evening peak 

period. 



 

85 

 

3.5. Discussion 

The results highlight the importance of incorporating two-related EMS trips (Trip 1 and Trip 

2) in evaluating EMS accessibility, endorsed by the empirical findings of extant studies using 

actual EMS data. On the one hand, the importance of ambulance accessibility (Trip 1) has 

been widely documented by numerous studies (e.g., O’Keeffe et al., 2010; Serbia et al., 2011; 

Heidet et al., 2020). Good ambulance accessibility means patients are likely to obtain early 

on-scene medical treatment, resulting in favorable healthcare outcomes. On the other hand, 

hospital accessibility (Trip 2) also plays a vital role in affecting EMS health outcomes, which 

a large number of extant studies have reported (e.g., Higgs, 2004; Ouma et al., 2018; Carr et 

al., 2018). Good hospital accessibility means patients are likely to receive early advanced 

and specialized medical treatments in hospitals. According to the empirical results based on 

the proximity and E-2SFCA approaches, many areas have relatively good ambulance 

accessibility and poor hospital accessibility, such as the southwest of Hongshan, the south 

of Jiangxia and the southwest of Xinzhou. Residents in those areas might easily reach 

ambulances but might have difficulty reaching hospitals. In contrast, the results also find that 

some areas have relatively good hospital accessibility and poor ambulance accessibility, such 

as the middle of Dongxihu, the north of Jiangxia, and the west of Xinzhou. Demands in those 

areas might easily reach emergency hospitals but might have difficulty finding ambulances. 

Hence, healthcare planners and local authorities need to coordinate the EMS planning 

framework between EMS stations and emergency hospitals, ensuring that patients reach 

ambulances and emergency hospitals as quickly as possible.  

Besides, the empirical results indicate that regional inequalities in EMS accessibility 

between urban and rural areas. The results show that the urban districts have better EMS 

accessibility in relation to all trips. The urban-rural inequalities in accessibility to EMS are 

common problems many countries/regions face, whcih many studies have reported (e.g., 

Grossman et al., 1997; Nordberg et al., 2004; Gonzalez et al., 2009; Masterson et al., 2015). 

Uneven distribution of EMS facilities is one of the major reasons for urban-rural inequalities 

in EMS accessibility. We can take Jiangan and Jiangxia and Jiangan districts as an example 

in the empirical study. Jiangan is an urban district located in the central urban areas, and 

Jiangxia is a rural district located in the south part of Wuhan. Jiangxia covers 23% of the 

area of Wuhan, but only 3 EMS stations and 4 hospitals are located inside the district. The 

lack of EMS resources leads to poor accessibility in Jiangxia. In comparison, 12 EMS 

stations and 8 hospitals are distributed in Jiangan, which maintain good EMS accessibility 

during any time of a day. It is clear that Jiangxia needs more EMS resources to improve local 
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accessibility and thus bringing better health outcomes for local residents. Hence, urban-rural 

inequalities in accessibility to EMS remain challenges for local authorities and decision-

makers, while reducing such inequalities in accessibility is necessary for the further EMS 

planning contexts.  

Further, real-time traffic condition during peak hours is found having a notable impact on 

EMS accessibility, especially in urban areas. This finding is consistent with many studies 

using actual EMS running data (e.g., Earnest et al., 2011; Fleischman et al., 2013; Fraser et 

al., 2020). EMS delays are associated with congested traffic, peak hours, bad weather (e.g., 

raining, snowing), etc. Unlike the general healthcare-seeking behavior (e.g., primary 

healthcare, hospital), patients can seek healthcare during off-peak hours. Emergency medical 

cases might happen anytime and anywhere, but patients require immediate medical care. 

Thus, the temporal variation in traffic conditions is necessary to consider in accessibility to 

EMS. According to the empirical study, shequs in Wuhan are likely to have longer travel 

times and lower E-2SFCA scores for a same trip during morning and evening traffic peak 

hours. In general, traffic conditions during peak hours have a stronger impact on EMS 

accessibility in urban areas rather than in rural areas. It is because traffic congestion occurs 

more frequently in the urban road network. Thus, local authorities should take appropriate 

measures to reduce the impact of peak traffic on EMS accessibility, such as the traffic light 

controlling system.  

Online map services are valuable tools to measure spatiotemporal accessibility to public 

services such as EMS. Due to the timeliness of rescue in emergency events, the most 

approved indicator of EMS accessibility is travel time. There are various advantages of using 

web-based map service to evaluate accessibility to EMS. First, the travel time can be directly 

computed from web-based application without implementing GIS, and no need to prepare 

relevant datasets such as road networks. Second, online map services usually provide 

updated road network information, resulting in more precise travel times in the estimation. 

Third, dynamic traffic conditions are often contained in web-based map services, thus 

providing more accurate travel time estimation. However, many online map services are only 

free for a certain subset of origin-destination (O-D) pairings; for additional O-D pairs, a 

payment is necessary. For example, Google Maps offers just 10,000 free OD calculations 

every month for each account and charges $5 for each additional group of 1,000 

computations. In comparison, Baidu Map offers 30,000 free OD calculations every day for 

each user and additional free calculations for academic pursuits. A monthly payment of USD 

2800 is required for the limitless computations service offered by Baidu Map. 
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The proximity-based and E-2SFCA approaches present different spatial variations in EMS 

accessibility. The results from the proximity-based approach show that the majority of 

shequs with good EMS accessibility of all trips are distributed in the central part of the urban 

area. The results from the E-2SFCA model display that some rural areas have better EMS 

accessibility than urban areas. Urban areas often have a tremendous potential demand, which 

might offset the advantages of having more nearby EMS stations and hospitals. However, 

although some rural areas are surrounded by only one EMS station or one hospital, those 

areas have a much smaller population, therefore sharply increasing the likelihood of better 

EMS accessibility. The proximity-based technique is simple to compute and understand. 

Therefore, it can be used to plan EMS in the short term or to make decisions about emergency 

services in real-time. As it takes into account both supply and demand factors, the E-2SFCA 

technique is more suited for long-term EMS planning to address large-impact catastrophes, 

pandemics, or planning blueprints. It is also important to keep in mind that both of the 

methodologies utilized here can be applied in different contexts, even though this empirical 

study uses Wuhan as a case region. In many parts of the world, such as Wuhan, the estimated 

travel time based on current traffic conditions can be typically derived through web-based 

map services, such as Google Maps. Meanwhile, the input parameters of the 2SFCA (e.g., 

inpatient beds) can be also employed in other places. With a similar dataset, the methods 

described in this paper can be applied to evaluate EMS accessibility outside of China 

anyplace in the world. 

As for policy implications, the results can reflect public healthcare policies on EMS planning 

and management. First, this chapter finds that good ambulance accessibility cannot 

guarantee good hospital accessibility nor the overall accessibility, and vice versa. For 

example, the south of Jiangxia has relatively good ambulance accessibility, but poor hospital 

accessibility. Hence, this study suggests healthcare planners and relevant authorities need 

develop a collaborative system between EMS stations and emergency hospitals, ensuring 

patients can be rapid served by both ambulance and hospital services. Besides, we find the 

significant urban-rural inequalities in EMS accessibility, which meet the concerns of Wuhan 

EMS planning document that aims to improve the rural EMS system (Wuhan Municipal 

Health Commission, 2019). For example, when considering static/average travel times for 

Trip 1, the urban and rural average values are 5.05 and 33.39 min, with a 28.34 min 

difference. It is suggested that the EMS system in the rural areas should be further developed. 

In particular, facility location models can be used to investigate the best spatial layouts for 

locating EMS facilities when healthcare resources are limited so that EMS facilities can 

reach as many patients as possible under pre-defined constraints related to accessibility 
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standards (i.e., 10- or 12-min travel time for Trip 1). Accordingly, the improvement of 

accessibility to EMS can be achieved by relocating some existing EMS stations that are 

usually easy to adjust their locations. Likewise, similar methods such as the LSCP can be 

employed for obtaining the minimum number of new stations to locate, which are needed 

for a geographical unit if any patient is required to be served by an EMS vehicle from the 

nearest EMS stations within a pre-defined travel time. Further, effective measures are needed 

to mitigate traffic impact, especially in the central area of the urban region because traffic 

congestion occurs more frequently in the urban areas. 

The study in this chapter has some limitations. First, this study uses residential locations as 

scenes due to the lack of real-world EMS-run data. However, emergency cases also 

frequently occur in other sites, such as workplaces and highways. Thus, it is necessary to 

involve other scenes to measure EMS accessibility, such as locations with high risk of traffic 

accidents, or historical records of EMS calls.  Second, patients with specific severe diseases 

(e.g., stroke and trauma) can only access specialized hospitals, but this research only 

considers general hospitals. Hence, examining EMS accessibility regarding specialized 

healthcare facilities would help understand existing services for those specific diseases. 

Third, online map services that estimate travel time might lack precision because we cannot 

adjust the locations of demands and service facilities or visualize those selected routes. All 

computations are conducted in a black box from API services. Finally, considering the off-

peak and peak hours analyzed above, it may be possible for two EMS trips (Trips 1 and 2), 

one occurring during off-peak hours and the other during peak hours, or vice versa, which 

might be impacted by the EMS and on-site rescue time again. 

Regarding future research, first, if the real-world EMS-run records are available, they would 

be employed for validating the EMS travel time predicted by GIS and online map services 

to improve the accuracy of the estimation of EMS accessibility. In addition, the accessibility 

measures can be improved by adding and integrating the on-scene accessibility time if those 

data are available. Second, various EMS on-scene times can be predicted from historical 

EMS records in the real world for different types of diseases (Spaite et al., 1993) to be 

integrated with EMS travel times in obtaining disease-specific accessibility measures. 

Finally, a future study can be carried out to identify how patient outcomes, such as morbidity 

and mortality, are related to accessibility to EMS using these proposed approaches. 
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3.6. Chapter Summary  

Two spatial accessibility measures (i.e., the proximity and E-2SFCA) were employed to 

estimate spatial and spatiotemporal accessibility to EMS. The ArcGIS Network Analyst and 

Baidu online maps were employed to estimate average and traffic-based travel times, 

respectively. There are three major findings of this chapter. First, an area with good 

ambulance accessibility cannot guarantee that this area also has good hospital accessibility, 

and vice versa. Second, this chapter finds the urban-rural inequalities in EMS accessibility 

for Trip 1, Trip 2 and the overall trip. Urban districts generally have less travel times and 

higher E-2SFCA scores than those in suburban and rural areas. Third, traffic conditions 

during peak hours can significantly decrease EMS accessibility, especially in urban areas. 

EMS accessibility decreases sharper in the urban areas than in the rural areas during the peak 

hours.  

This chapter adds to the literature by accounting for two-related trips in measuring EMS 

accessibility. According to the empirical study, good ambulance accessibility cannot 

necessarily guarantee good hospital accessibility or overall accessibility, and vice versa. 

Thus, we urge the need to account for both related trips in evaluating EMS accessibility. 

Healthcare planers are necessary to build a collaborative system for EMS stations and 

emergency hospitals. Besides, the existence of urban-rural inequalities in EMS accessibility 

has been clearly presented by both methods. Reducing such inequalities is necessary for 

future EMS planning and remains a challenge to governments and local authorities. In 

addition, online map services are usually valuable tools that can be employed in the studies 

of accessibility to public service.
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Chapter 4  Improving EMS Service Coverage Through Spatial 

Optimization 

This chapter aims to improve EMS service coverage through spatial optimization approaches. 

Specifically, two optimization models are developed to improve service coverages in relation 

to different EMS trips. The two proposed models ensure that as many people as possible can 

be served by ambulance and hospital services within the service standard (e.g., time 

thresholds). The proposed models are applied in an empirical study in Wuhan, China, to seek 

the best locations for EMS stations and emergency hospitals simultaneously. Two scenarios 

are explored. First scenario (Scenario 1) assumes that all existing facilities remain open, 

while the second scenario (Scenario 2) allows to relocate some of the current facilities. The 

work presented in this chapter can help the planning practice of public services like EMS 

systems, where the collaborative work between different types of health services is essential. 

4.1. Introduction 

Service coverage, an important indicator of quality of EMS provision, refers to the amount 

potential demand that can be covered with a pre-defined service standard S, often represented 

by travel distance or time. Accordingly, the service coverage relating to Trip 1, Trip 2 and 

the overall trip can be considered as: (see Figure 4-1). 

• Ambulance coverage (i.e., Trip 1 ≤ 𝑆𝑡𝑟𝑖𝑝1) 

• Hospital coverage (i.e., Trip 2 ≤ 𝑆𝑡𝑟𝑖𝑝2) 

• Overall coverage (i.e., Trip 1 + Trip 2≤ Soverall) 
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Figure 4-1. Different EMS service coverages. 

Service coverages involving different trips are employed in EMS systems across the world. 

First, most EMS systems throughout the world have specific standards for ambulance service 

coverage. For example, the U.K. National Health Service (NHS) (2018) stresses that 75% of 

urban emergency calls must be serviced within 8 min, and 95% must be occur within a 

maximum of 19 min. In China, the ambulance standard varies in different cities, such as 12 

min in Beijing and 10 min in the urban area of Wuhan (Beijing government 2020; Wuhan 

Municipal Health Commission,2020). Second, rather than ambulance coverage, hospital 

coverage or overall coverage is often employed in some countries, such as the 30 min of 

emergency hospital coverage in South Korea (Jang et al., 2021) or the 60 min of overall 

coverage for stroke patients in China (National Stroke Center, 2021). Coordinating the 

distribution of those service coverages is essential to improving overall EMS provision, 

ensuring that patients can quickly receive pre-hospital and in-hospital treatment.  

Service coverages are linked with the timeliness of receiving ambulance and hospital 

services, which affect healthcare outcomes for EMS demands (Rogers et al., 2005; Chay et 

al., 2009; Sladjana et al., 2011; O’Keeffe et al., 2010; Rammohan et al.,2013; Mucunguzi et 

al.,2014; Gauss et al.,2019). As discussed in Chapter 3, short travel time for Trip 1 does not 

necessarily guarantee equally short travel time for Trip 2 or the overall trip; the converse is 

true as well. Improving overall EMS provisions that ensures reliable access to both 

ambulance and hospital remains a challenge for many governments and local authorities.  

This chapter focuses on the challenge of improving overall EMS provisions, accounting for 

different coverages involved to multiple EMS trips. In fact, service coverage is highly 

dependent on the spatial layout of EMS facilities, which has been widely studied by spatial 

optimization that combines operational research and GIS to find the optimal locations of 

facilities. In spatial optimization, classic coverage models include the LSCP (Toregas et al., 

1971) and MCLP (Church and ReVelle, 1974). These models and their extensions have been 
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widely adopted in numerous applications in locating EMS facilities (e.g., Church and Eaton 

1987; Gerrard and Church 1994). 

Several facility location models have been developed and adapted to address the coverage 

problem related to different trips or types of facilities. ReVelle et al. (1976) were the first to 

suggest that EMS location modelling should consider two related trips (i.e., Trip 1 and Trip 

2). Branas et al. (2000) attempted to coordinately locate EMS helicopter depots and hospitals 

(i.e., trauma centers), taking into account ground-based hospital coverage (demand – trauma 

center) and air-based overall coverage (helicopter depots – demand – trauma center), 

ensuring the maximal number of demands that can be encompassed by at least one coverage. 

In addition, multiple coverage standards have been proposed for a single type of facility, 

namely the double standard model (e.g., Hogan and Revelle, 1986; Gendreau et al., 1997; 

Su et al., 2015; Laporte et al., 2019). Similarly, different types of facilities can have different 

coverage standards. For example, basic EMS units verse advanced EMS units, the coverage 

standard of advanced EMS units is often larger than that of basic EMS units (Brotcorne et 

al., 2003; Liu et al., 2014; Liu et al., 2016). In addition, multiple coverage from several 

facilities have been considered in some studies, namely the conditional covering problem or 

a double set covering problem (e.g., Moon and Chaudry,1984; Lotfi and Moon, 1997; Rana, 

2012). Moreover,  referral coverage (e.g., clinic–hospital) or hierarchical service coverages 

(e.g., demand–clinic and demand–hospital) are also extended by several studies on coverage 

models (e.g., Moore and ReVelle.,1982; Eitan et al.,1991; Galvão et al.,2006). 

The main limitation of existing studies is that the extant facility location models seldom seek 

to coordinately locate EMS stations and hospitals, though a completed EMS journey 

involves two one-way trips. Some exceptions include the studies by ReVelle et al. (1976) 

and Branas et al. (2000), which used the overall coverage to include two related one-way 

trips. Although the two studies attempted to maximize the overall coverage, they could not 

guarantee the expected ambulance coverage. In other words, they could not guarantee that 

all patients could be reached by an ambulance with the service standard. 

To this end, this study aims to propose two facility location models to improve overall EMS 

provision by coordinately locating EMS stations and hospitals, accounting for service 

coverages for different EMS trips. One proposed model involves both ambulance and 

hospital coverages, and the other considers ambulance and overall coverages. The major 

contribution of this study lies in the two proposed models that aim to improving overall EMS 

provisions, ensuring that as many people as possible can be reached quickly by both 

ambulance and hospital services.  

https://www.sciencedirect.com/science/article/abs/pii/S0377221704008070#!
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This chapter is organized as follows. Section 4.2 reviews relevant studies and particularly 

coverage models in EMS/hospital location optimization. The proposed spatial optimization 

models are presented in Section 4.3. Section 4.4 introduces the empirical study and illustrates 

the results, where the results from different models are compared. This chapter ends with a 

discussion of major findings and policy implications of the empirical study. 

4.2. Background  

A broad range of facility location models has been developed for the service coverage, which 

can be classified into two main categories: the LSCP (Toregas et al., 1971) and the MCLP 

(Church and ReVelle, 1974). Detailed descriptions of the above models, including 

mathematical formulations and common solution approaches, can be found in Chapter 2. 

The remainder of this section will briefly review multiple coverages, different trips, and 

facility types involved in coverage-based models. 

Toregas (1970) observed that some public services need multiple coverages when the 

primary coverage was busy or unavailable. The multiple coverage problem was proposed by 

Daskin and Stern (1981) as a bi-objective formulation. The primary objective minimizes the 

number of EMS facilities required to cover all demands and then the secondary objective 

maximizes the demands encompassed by at least two coverages based on a given minimum 

number of EMS facilities. This problem was further developed by Hogan and ReVelle (1986). 

Later, Gendreau et al. (1997) proposed a double standard model (DSM) that combined both 

the concept of double coverage and different coverage radiuses. The multiple coverage 

problem is also cooperated with the operating cost, the additional cost for EMS delay, the 

workload of EMS stations or the various priority levels (Liu et al., 2014; Su et al., 2015; Liu 

et al., 2016). 

Various trips are another factor that researchers have focused on facility location modelling. 

Moon and Chaudry (1984) developed a conditional covering problem (CCP) with a 

consideration of the trip between the demand and the nearest emergency station, and an 

additional trip between different EMS stations. ReVelle et al. (1996) extended the CCP 

model to site facilities in such a way as to maximize the number of facilities that are 

themselves covered by another facility. The consideration of the additional trip between 

different facilities is often employed in dealing with large scale disasters, hazards, or terrorist 

attacks that the local service might paralysis and need such support from other areas/cities 

(Lunday et al.,2005; Huang et al, 2010; Paul et al., 2017). Another type of facility location 

modelling aims to locate emergency shelter facilities, which often considers two related trips 
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(i.e., demand – shelter; shelter – hospital) (e.g., Almeida et al., 2009; Coutinho-Rodrigues et 

al; 2012; Kilci et al; 2015). These studies aim to minimize total distance/travel time from 

demand locations to shelters and then to hospitals. 

Multiple types of facilities have also been a concern of healthcare facility location modelling. 

For example, Moore and ReVelle (1982) developed a hierarchical model to site successively 

inclusive facilities such as clinics and hospitals. This problem was further extended by 

adding different variables or factors, such as the distance decay rule, healthcare capacity, 

socioeconomic demand groups, risk of disruption, or the referral trip (Hodgson, 1988; Butler 

et al., 1992; Taborga, 2001; Galvão et al.,2006; Zarrinpoor et al., 2018). A special case was 

proposed by Church and Eateon (1987) that involved the trip between different types of 

facilities, such as referral trips in healthcare systems.  

With respect to EMS, studies have seldom considered service coverages for different trips 

involving all of stations, scenes, and hospitals. In general, ReVelle et al. (1976) were the first 

to suggest that facility location modellings should involve two related one-way trips (i.e., 

Trip 1 and Trip 2). They introduced the concept of EMS overall coverage from the EMS 

station to the scene and then to the hospital. Branas et al. (2000) developed the TRAMAH 

model. The model aims to maximize the number of demands covered at least by hospital 

coverage (demand – trauma center) using ambulances or covered by overall coverage (Air 

Depot – demand – trauma center) using helicopters. However, both of them have not 

considered the importance of ambulance coverage. 

As can be seen from the above discussion, multiple coverages, different trips or facility types 

have been addressed in location optimization of healthcare facilities in various ways. 

However, the research limitation is that few studies have attempted to coordinately locate 

EMS stations and hospitals, accounting for the two-related trips. At present, coverage models 

are still the primary option for EMS location optimization, as EMS systems in many 

countries and regions have specific service standards of ambulance coverage, hospital 

coverage, or overall coverage.   

4.3. Model Specification  

Two spatial optimization models are proposed to seek locations of EMS stations and 

hospitals, namely Model 1 and Model 2. Model 1 maximizes the amount of demand covered 

by both Trip 1 (i.e., ambulance coverage) and Trip 2 (i.e., hospital coverage). Model 2 aims 

https://www.sciencedirect.com/science/article/abs/pii/S0377221704008070#!
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to find the maximal number of people that can be served by both Trip 1 and overall trip (i.e., 

overall coverage).  

Both models ensure that as many patients as possible can be quickly served by ambulances. 

This is because Trip 1 is highly associated with EMS response time, and the standard of 

ambulance coverage is a common component of EMS systems. The major difference 

between the two models is the representation of Trip 2, which is explicitly represented by 

hospital coverage in Model 1, and implicitly represented by the overall coverage in Model 

2. In general, Model 1 is an extension of the MCLP, and it explicitly considers two one-way 

trips. As an extension of ReVelle et al. (1976), Model 2 considers the overall trip as well as 

the one-way trip to the scene. In order to compare the performance of the proposed models, 

a general formulation derived from ReVelle et al. (1976) is presented first, namely overall 

coverage MCLP (i.e., MCLP-OC), which only considers the overall coverage. 

4.3.1. The MCLP-OC: considering overall coverage 

Generalized from the work by ReVelle et al. (1976), the MCLP-OC seeks the best locations 

for EMS stations and hospitals in order to maximize the number of EMS demands covered 

by overall service coverage. Specifically, if the demand is encompassed by the overall 

overage, the overall travel time for Trip 1 and Trip 2 would be no more than the standard of 

the overall coverage (𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙) (see Figure 4-1). Using the following notation,  

i, j,k = index of potential demands, EMS stations, and emergency hospitals, respectively;  

I, J, K = set of potential demands, EMS stations, and emergency departments, respectively; 

𝑎𝑖 = amount of demand at location i; 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = travel standard from the nearest EMS station to a patient location and then to the 

neatest hospital; 

𝑝𝐸𝑀𝑆 = number of EMS stations to be sited; 

𝑝𝐸𝐻 = number of emergency hospitals to be sited; 

𝑞𝐸𝑀𝑆 = number of existing EMS stations to remain in the system; 

𝑞𝐸𝐻 = number of existing emergency hospitals to remain in the system; 

Φ𝐸𝑀𝑆 = set of existing EMS stations; 

Φ𝐸𝐻 = set of existing EMS hospitals; 

𝑡𝑗𝑖 = travel time between j and i; 

𝑡𝑗𝑘 = travel time between j and k; 

𝑀𝑖= {(𝑗, 𝑘)|( 𝑡𝑗𝑖 + 𝑡𝑖𝑘) ≤ 𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙} (EMS station - demand - hospital) pairs within  
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the time standard 𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 

and the decision variables: 

𝑋𝑗
𝐸𝑀𝑆 = {

1   if an EMS station is sited at location 𝑗                   
0   otherwise                                                             

     

 

𝑋𝑘
𝐸𝐻 = {

1   if an emergency hospital is sited at location 𝑘                                               
0   otherwise                                                                                                     

  

 

𝑌𝑖 = {
1   if demand 𝑖 is covered by the overall service coverage        
0   otherwise                                                                                           

  

 

𝑍𝑗𝑘 = {
1 if a EMS station is  located at  𝑗 and a hospital is located at 𝑘                 
0   otherwise                                                                                                               

  

the MCLP-OC can be expressed as follows: 

Maximize: ∑ 𝑎𝑖𝑌𝑖𝑖∈𝐼                                                                                                              (4.1) 

Subject to: 

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑝𝐸𝑀𝑆

𝑗∈𝐽                                                                                              (4.2) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑝𝐸𝐻

𝑘∈𝐾                                                                                                 (4.3) 

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑞𝐸𝑀𝑆

𝑗∈Φ𝐸𝑀𝑆
                                                                                       (4.4) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑞𝐸𝐻

𝑘∈Φ𝐸𝐻
                                                                                            (4.5) 

𝑌𝑖 − ∑ 𝑍𝑗𝑘 ≤ 0(𝑗,𝑘)∈𝑀𝑖
                                                ∀𝑖 ∈ 𝐼                              (4.6) 

𝑍𝑗𝑘 ≤ 𝑋𝑗
𝐸𝑀𝑆                                                                 ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾                 (4.7) 

𝑍𝑗𝑘 ≤ 𝑋𝑘
𝐸𝐻                                                                   ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾                 (4.8) 

𝑋𝑗
𝐸𝑀𝑆 , 𝑋𝑘

𝐸𝐻 ∈ {0,1}                                                      ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾                 (4.9) 

𝑌𝑖 ∈ {0,1}                                                                     ∀𝑖 ∈ 𝐼                          (4.10) 

Objective (4.1) is to maximize the amount of demand covered within a specific overall 

distance or travel time (𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙)  to complete Trips 1 and 2. Constraints (4.2) and (4.3) 

enforce the total number of EMS stations and emergency hospitals equal to 𝑝𝐸𝑀𝑆 and 𝑝𝐸𝐷, 

respectively. Constraints (4.4) and (4.5) specify the number of existing EMS stations and 

emergency departments that will remain open in the system equal to 𝑞𝐸𝑀𝑆  and 𝑞𝐸𝐻 , 

respectively. Constraint (4.6) ensures that the decision variable 𝑌𝑖  must be 0 if no EMS 

station or emergency department can cover demand 𝑖 within the overall coverage, that is, 
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(∑ 𝑍𝑗𝑘(𝑗,𝑘)∈𝑀𝑖
= 0). Due to the preference of maximizing objective (4.1), 𝑌𝑖 can equal 1 only 

if demand 𝑖 is covered by the overall coverage (i.e.,   ∑ 𝑍𝑗𝑘(𝑗,𝑘)∈𝑀𝑖
≥ 1). Constraints (4.7) 

and (4.8) ensure that the decision variables 𝑍𝑗𝑘 must be 0 if an EMS station is not opened at 

location 𝑗, or an emergency department is not opened at location 𝑘. Constraints (4.9) and 

(4.10) define the decision variables. 

4.3.2. Model 1: considering ambulance and hospital coverages 

Model 1 attempts to site EMS stations and emergency hospitals in order to maximize the 

number of demands covered by both ambulance and hospital coverages (see Figure 4-2). 

This model ensures that as many people as possible can reach ambulances and emergency 

departments within their specific time standards, thus ensuring good overall EMS provision. 

Model 1 addresses a limitation of the MCLP that only considers the coverage for a one-way 

trip. Using the following added/refined notation: 

𝑆𝑡𝑟𝑖𝑝1 = Standard of ambulance service coverage between the EMS station and the scene; 

𝑆𝑡𝑟𝑖𝑝2 = Standard of hospital service coverage between the scene and the emergency 

hospital. 

N𝑖
𝐸𝑀𝑆= {𝑗|𝑡𝑗𝑖 ≤ 𝑆𝑡𝑟𝑖𝑝1}; the set of EMS stations capable of providing service to demand i; 

N𝑖
𝐸𝐻= {𝑘|𝑡𝑖𝑘 ≤ 𝑆𝑡𝑟𝑖𝑝2}; the set of emergency departments capable of providing service to 

demand i; 

𝑌𝑖
𝑀1 = {

1   if demand 𝑖 is covered by both ambulance and hosptial coverages          
0   Otherwise                                                                                                                    

  

Model 1 can be formulated as follows: 

Maximize: ∑ 𝑎𝑖𝑌𝑖
𝑀1

𝑖∈𝐼                                                                                                      (4.11) 

Subject to:                                                                                                                                 

  

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑝𝐸𝑀𝑆

𝑗∈𝐽                                                                                          (4.12) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑝𝐸𝐻

𝑘∈𝐾                                                                                             (4.13) 

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑞𝐸𝑀𝑆

𝑗∈Φ𝐸𝑀𝑆
                                                                                   (4.14) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑞𝐸𝐻

𝑘∈Φ𝐸𝐻
                                                                                        (4.15) 

∑ 𝑋𝑗
𝐸𝑀𝑆

𝑗∈𝑁𝑖
𝐸𝑀𝑆 ≥ 𝑌𝑖

𝑀1                                                  ∀𝑖 ∈ 𝐼                        (4.16) 
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∑ 𝑋𝑘
𝐸𝐻

𝑗∈𝑁𝑖
𝐸𝐻 ≥ 𝑌𝑖

𝑀1                                                      ∀𝑖 ∈ 𝐼                        (4.17) 

𝑋𝑗
𝐸𝑀𝑆 , 𝑋𝑘

𝐸𝐻 ∈ {0,1}                                                               ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾           (4.18) 

𝑌𝑖
𝑀1 ∈ {0,1}                                                                          ∀𝑖 ∈ 𝐼                        (4.19) 

Objective (4.11) aims to maximize the demands that are encompassed by both ambulance 

and hospital coverages. Constraints (4.12) and (4.13) enforce that the total number of EMS 

stations and emergency departments should equal 𝑝𝐸𝑀𝑆 and 𝑝𝐸𝐻, respectively. Constraints 

(4.14) and (4.15) specify that the number of existing EMS stations and emergency 

departments. Constraints (4.16) (4.17) ensure that the decision variable 𝑌𝑖
𝑀1 must be 0 if no 

EMS station or hospital can cover demand 𝑖. Due to the preference of maximizing objective 

(4.11), 𝑌𝑖
𝑀1  can equal 1 only if demand 𝑖  is located within both ambulance and hospital 

coverages  (i.e., ∑ 𝑋𝑗
𝐸𝑀𝑆

𝑗∈𝑁𝑖
𝐸𝑀𝑆 ≥ 1 𝑎𝑛𝑑  ∑ 𝑋𝑘

𝐸𝐻
𝑘∈𝑁𝑖

𝐸𝐻 ≥ 1). Constraints (4.18) and (4.19) 

define the decision variables.  

 

Figure 4-2. Model 1; Considering ambulance and hospital coverages. 

4.3.3. Model 2: considering ambulance and overall coverages 

Model 2 seeks the best locations for EMS stations and hospitals in order to maximize the 

number of people covered by both ambulance coverage and overall coverage (see Figure 4-

3). Unlike Model 1, the hospital coverage is implicitly included in the overall coverage. 

Model 2 can be considered as an extension of the works by ReVelle et al. (1976) and Branas 

et al. (2000). However, unlike these works, Model 2 aims to improve overall EMS service 

so that demands can easily be severed by both ambulance and hospital services. Using the 

following added/refined notation: 

𝑌𝑖
𝑀2 = {

1   if demand 𝑖 is covered by both ambulance and overall coverages           
0   Otherwise                                                                                                                  

  

Model 2 can be defined as follows:  
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Maximize: ∑ 𝑎𝑖𝑌𝑖
𝑀2

𝑖∈𝐼                                                                                                        (4.20) 

Subject to: 

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑝𝐸𝑀𝑆

𝑗∈𝐽                                                                                           (4.21) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑝𝐸𝐻

𝑘∈𝐾                                                                                              (4.22) 

∑ 𝑋𝑗
𝐸𝑀𝑆 = 𝑞𝐸𝑀𝑆

𝑗∈Φ𝐸𝑀𝑆
                                                                                    (4.23) 

∑ 𝑋𝑘
𝐸𝐻 = 𝑞𝐸𝐻

𝑘∈Φ𝐸𝐻
                                                                                         (4.24) 

∑ 𝑋𝑗
𝐸𝑀𝑆

𝑗∈𝑁𝑖
𝐸𝑀𝑆 ≥ 𝑌𝑖

𝑀2                                                      ∀𝑖 ∈ 𝐼                            (4.25) 

∑ 𝑍𝑗𝑘(𝑗,𝑘)∈𝑀𝑖
≥ 𝑌𝑖

𝑀2                                                           ∀𝑖 ∈ 𝐼                           (4.26) 

       𝑍𝑗𝑘 ≤ 𝑋𝑗
𝐸𝑀𝑆                                                                          ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾               (4.27) 

𝑍𝑗𝑘 ≤ 𝑋𝑘
𝐸𝐻                                                                             ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾               (4.28) 

𝑋𝑗
𝐸𝑀𝑆 , 𝑋𝑘

𝐸𝐻 ∈ {0,1}                                                             ∀𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾               (4.29) 

𝑌𝑖
𝑀2 ∈ {0,1}                                                                        ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾      (4.30) 

Objective (4.20) maximizes the demands that are served by both ambulance and overall 

coverages. Constraints (4.21) and (4.22) define the total number of EMS stations and 

emergency departments, respectively. Constraints (4.23) and (4.24) specify the number of 

existing EMS stations and emergency departments that will remain open in the system. 

Constraints (4.25) (4.26) ensure that the decision variable 𝑌𝑖
𝑀2 can equal 1 only if demand 𝑖 

is covered by both coverages (i.e., ∑ 𝑋𝑗𝑗∈𝑁𝑖
𝑒𝑚𝑠 ≥ 1 𝑎𝑛𝑑  ∑ 𝑍𝑗𝑘(𝑗,𝑘)∈𝑀𝑖

≥ 1 ). Constraints 

(4.27) and (4.28) ensure that the decision variables 𝑍𝑗𝑘 must be 0 if an EMS station is not 

opened at location 𝑗 or an emergency department is not opened at location 𝑘. In other words, 

𝑍𝑗𝑘  can equal to 1 only if an EMS station and an emergency department are opened at 

locations j and k, respectively. Constraints (4.29) and (4.30) specify the decision variables. 
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Figure 4-3. Model 2: Considering ambulance and overall coverages. 

4.4. Empirical Study  

The proposed models are applied in an empirical study in Wuhan, China, to seek EMS 

stations and stroke centers, ensuring that as many stroke patients as possible can be quickly 

served by both ambulance and hospital services. To assess the performance of the proposed 

models, the classic MCLP is also solved and the results from different models are compared.  

4.4.1. Planning context of EMS stations and stroke centers in Wuhan 

A stroke can occur suddenly anytime and anywhere, affecting the arteries and leading to 

brain death. Stroke is one of the leading global causes of death and disability, accounting for 

more than 27% of total fatalities in 2019 (World Health Organization, 2020). It is predicted 

that 25% of males and 20% of females aged 45 years can expect to suffer a stroke if they 

reach their 85th year (Wolfe, 2000). The number of strokes in people aged 40 and above has 

reached 13.18 million in China, with 2.4 million new stroke patients each year and the 

morbidity trending younger (Wang et al., 2019). China has become one of the countries with 

the highest lifetime risk of stroke and the heaviest disease burden. Improving the capability 

of preventing and treating stroke remains a challenge to authorities and healthcare planners. 

The development of emergency stroke care systems has been a major concern in many 

countries or regions. For example, the national Stroke and Cardiovascular Disease Control 

Act, enacted by the Japanese government, aims to build a speedy ambulance system for 

transporting and accepting stroke patients (Toyoda et al., 2019). In China, the National 

Health and Medical Commission (2018) has launched the "60-min treatment circle for 

stroke" project. It stipulates that the patient should arrive at the affiliated hospital for 

specialized medical treatment within one hour after a stroke occurs. In addition, the 
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provincial capital cities in China should establish stroke-navigation maps that show the 

location of stroke care centers. As can be seen from these planning policies, providing speedy 

ambulance and stroke care systems is a major objective in various countries. 

Wuhan Stroke Management (Prevention) Center was launched in 2016, which focuses on 

controlling high-risk factors for stroke onset, implementing early diagnosis and early 

treatment, and building a medical and preventive coordination system with the EMS system. 

The local stroke planning aims to increase the number of general hospitals that have the 

capacity for stroke treatments and to encourage community-based health centers to establish 

grassroots prevention projects for preventing stroke and hypertension. Accordingly, the 

standardization of stroke prevention and treatment should be promoted in an orderly way. 

The planning also proposes to set up the full coverage of hierarchical diagnosis and fast 

response emergency care for stroke patients in the following years.  

In 2017, Wuhan had only 20 stroke centers deployed in general hospitals; therefore, patients 

were likely to wait a long time before entering such hospitals. In conjunction with the 

“golden hour circle for stroke” project that patient can arrive at the affiliated hospital for 

specialized medical treatment within one hour after a stroke occurs, the Wuhan government 

plans to increase the numbers of EMS stations or stroke centers. Over its four-year 

development, the number of stroke centers has increased to 42, and the number is going to 

increase by 3–5 every year. All new stroke centers will be established based on the Level-II 

and above hospitals in the urban area and all hospitals in the rural area. The dataset employed 

includes the census population data based on the finest spatial scale (Shequ), existing EMS 

stations, hospitals with stroke centers, candidate sites for new stations, and new stroke 

centers. In this study, the existing hospitals from all levels without EMS stations have been 

chosen as the candidate locations for new EMS stations. As the task of rescuing stroke 

patients is also undertaken by general hospitals in Wuhan (medical units at/above Level II), 

the existing hospitals without stroke centers have been chosen as candidate locations for 

establishing new stroke centers. The population census data derive from the Geographical 

Information Monitoring Cloud Platform (http://www.dsac.cn/) that provides population 

census data at the finest scale currently available, represented by a centroid of shequ. The 

entire city contains 3,493 shequs. EMS stations, stroke centers, and population are 

represented as spatial points in the modelling procedure. Existing EMS stations and hospitals 

and candidate EMS and stroke center locations are extracted from Baidu Maps 

(https://map.baidu.com/). 

http://www.dsac.cn/
https://map.baidu.com/
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The relevant spatial, as well as population, information is presented in Figure 4-4. The data 

show that some densely populated areas are close to EMS stations but are far from stroke 

centers, and vice versa. In addition, some shequs are far from both EMS stations and stroke 

centers. Based on the locations of existing EMS facilities, and population distribution in 

Wuhan, only 66.1% of the total population can complete the entire ambulance journey (EMS 

station–demand location–stroke center) within 40 min, and 68.6 % of the population can 

complete the journey within 50 min. 
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Figure 4-4. (a) Spatial distributions of population, existing EMS stations; (b) stroke care facilitates and candidate locations. 
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4.4.2. Model settings 

Two scenarios, named Scenarios 1 and 2, are employed in the empirical study to demonstrate 

the performances of the proposed models. They attempt to simulate as to whether existing 

EMS facilities should remain in the system. Both scenarios are helpful to the planning 

practice of public services such as EMS systems where the spatial configuration of facilities 

can be optimized.   

Scenario 1 aims to find optimal sites for six new EMS stations and four stroke centers, under 

the condition that the existing EMS stations and stroke centers remain open (𝑞𝐸𝑀𝑆 =79; 

𝑞𝐸𝐻=42). This scenario is suitable for the short-term EMS planning (i.e., one-year planning) 

because relocation of existing EMS stations and hospitals usually need long-term discussion 

and ongoing financial support.  

Scenario 2 seeks for optimal locations for two types of facilities under the condition that up 

to 10% of the existing EMS stations (i.e., maximum eight stations) and 12% of stroke centers 

(i.e., maximum five centers) can be relocated to other places (71 ≤

∑ 𝑋𝑗
𝐸𝑀𝑆 =𝑗∈Φ𝐸𝑀𝑆

𝑞𝐸𝑀𝑆 ≤ 79; 37 ≤ ∑ 𝑋𝑗
𝐸𝐻 =𝑗∈Φ𝐸𝐻

𝑞𝐸𝐻 ≤ 42). Therefore, total numbers of 

EMS stations and stroke centers will increase to 85 and 46, respectively (𝑝𝐸𝑀𝑆=85; 𝑝𝐸𝐻=46). 

This scenario meets the dynamic changing spatial distribution of underlying demand. With 

the urbanization process in China, especially in large cities such as Wuhan, the increasing 

number of people are shifting to newly developed towns in the suburbs due to the new 

working opportunities and more affordable housing prices. Thus, some existing facilities 

should be changed to other places in order to fit in the demand distribution.  

In Wuhan, the "60-min treatment circle for stroke" project stipulates that stroke patients can 

reach stroke centers within one-hour since the stroke onset. It mainly includes three-time 

intervals, including ambulance arrival time (Trip 1), on-scene time interval, and transport 

time (Trip 2). Although there is no on-scene EMS data, the study of Spaite et al. (1993) found 

that the on-scene time was often between 10 and 20 min. Therefore, this study assumes three 

different on-scene intervals (10, 15, 20 min), resulting in different standards of service 

coverages (see Table 4-1). As the standard of rural ambulance coverage is 2 min higher than 

that in the urban area, this study defines the same difference of the overall coverage standard 

between urban and rural areas.  
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Table 4-1. Different time intervals of the service coverages. 

Standards 
Ambulance 

coverage (min) 

On-scene 

time (min) 

Hospital 

coverage 

(min) 

Overall 

coverage 

(min) 

(1) 
10 - urban and 

12- rural 
10 40  

50 - urban and 

52 - rural 

(2) 
10 - urban and 

12- rural 
15 35  

45 - urban and 

47 - rural 

(3) 
10 - urban and 

12- rural 
20 30  

40 - urban and 

42 - rural 

 

Four facility location models are employed in the empirical study, including the MCLP & 

Model 1, MCLP-OC and Model 2. The four models can be divided into two groups based 

on their concerns. One group uses hospital coverage to directly represent Trip 2, which is 

composed of a classic model (the MCLP) and its extension (i.e., Model 1). Another group 

employed the overall service coverage to represent Trip 2 implicitly, including the MCLP-

OC and its extension (i.e., Model 2). In order to identify whether the proposed models 

perform better in term of service coverage, the following two sections compare the results 

within the first group (MCLP verse Model 1) and then compare the results within the latter 

group (MCLP-OC verse Model 2). In addition, the MCLP is implemented twice for locating 

EMS stations and stroke centers, respectively.  

The technical implementation for solving optimization problems in this thesis is depicted by 

Figure 4-5. First, a commercial GIS software (ArcGIS version 10.7) was used for data 

processing and management. Second, Python scripts were developed to build spatial 

optimization models and set up relevant parameters, which were based on Python 3.8 with 

the gurobipy package. Third, the python scripts called Gurobi optimization service (version 

9.0.2) to solve the defined spatial optimization problems and to find the optimal solution. 

Gurobi is a commercial optimization software and one of the fastest and most powerful 

mathematical programming solvers for linear, mixed-integer linear, quadratic and mixed-

integer quadratic programming problems. Finally, the optimal solution found by Gurobi was 

visualized and presented by ArcGIS 10.7. The codes in this chapter and testing data can be 

found via the following link (https://github.com/WeicongLuo/PhD_thesis_Chapter_4).  

https://github.com/WeicongLuo/PhD_thesis_Chapter_4
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Figure 4-5. The technical implementation for solving the optimization problem.  

4.4.3. Results 

(1) Scenario 1 

Selected sites for MCLP and Model 1 

Locations for new EMS stations and stroke centers for the MCLP and Model 1 are depicted 

in Figures 4-5, with a consideration of three hospital coverage standards (i.e., 30, 35, 40 min) 

(see Table 4-1). Results from the MCLP model is presented in Figures 4-6 (a)-(c). Figures 

4-6 (d)-(f) show the results from the Model 1 that aims to maximize the total population 

covered by both ambulance and hospital coverages. All results were computed on a desktop 

with an Intel processor 3.80 GHz and 32GB RAM, and the computational time was 2-3 

seconds. 

When the 30 min of hospital coverage is applied, the MCLP model suggests that two EMS 

stations are located in the north of Jiangxia, and the other four EMS stations are located in 

Hongshan, Hannan, Caidian, and Dongxihu, respectively (see Figure 4-6 (a)). Meanwhile, 

four-stroke centers are located in Qiaokou, Hongshan, Jiangxia, and Xinzhou. By 

comparison, Model 1 (Figure 4-6 (d)) suggests that two EMS stations in different locations 

than Figure 4-6 (a); these are located in Qinshan, and the boundary of Xinzhou and Huangpi, 

respectively (see Figure 4-6 (d)). The locations for four stroke centers from Model 1 are as 

same as the MCLP result in Figure 4-6(a). 

Considering the 35 min of hospital coverage, the MCLP (Figure 4-6 (b)) suggests that the 

spatial distribution of EMS stations is the same as in Figure 4-6 (a). Then, four stroke centers 

are located in Jiangxia, Hongshan, Caidian, and Xinzhou. By comparison, Model 1 suggests 
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that two EMS stations should be located in Hongshan. The other four stations should be 

located in Hannan, Dongxihu, Jiangxia, and Qinshan (see Figure 4-6 (e)), with four of the 

six stations different from the MCLP results in Figure 4-6 (b). Then, Model 1 also suggests 

that four stroke care centers are located in Caidian, Hongshan, Jiangxia, and Xinzhou, with 

one location different from the MCLP result (the site in Xinzhou). 

When hospital coverage is 40 min, the MCLP suggests that two EMS stations should be sited 

in the north of Jiangxia. The other four EMS stations should be located in the Hongshan, 

Hannan, Caidian, and Dongxihu. All of them are same to the results of Figures 4-6 (a) and 

(b).  Then, the MCLP suggests two of new stroke centers should be located in the west of 

Huangpi, and the other two should be sited in Hongshan and Xinzhou (see Figure 4-6 (c)). 

By comparison, Model 1 suggests that two EMS stations should be located in Hongshan, 

and the other four stations should be located in Jiangxia, Hanan, Dongxihu, and Qinshan 

(see Figure 4-6 (f)), with two of the six stations being different from the MCLP result. The 

Model 1 indicates two of the new stroke centers should be located in the west of Huangpi, 

and the other two should be located in Xinzhou, and the boundary of Qinshan and Hongshan.
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Figure 4-5. Scenario 1 based on 30, 35, 40 min hospital coverages: (a) (b) (c) new sites from 

MCLP; (d) (e) (f) new sites from Model 1. 

The service coverages achieved by the MCLP and Model 1 are summarized in Table 4-2, 

which shows the different performances of the two models. When considering the 30-min 

hospital coverage, the MCLP suggests that 7.82 million people is within the ambulance 

coverage, and 9.09 million people is within the hospital coverage, accounting for 77.7% and 

90.3% of the total population, respectively. Meanwhile, the MCLP suggests that 7.59 million 

people can be covered by both ambulance and hospital coverages, accounting for 75.3% of 

the total population. By comparison, Model 1 suggests that the number of people covered 

by either ambulance coverage or hospital coverage is slightly smaller than the same value 

from the MCLP. However, 7.79 million people can be served by both ambulance and hospital 

coverages using Model 1, with a 2.2% increase compared to the MCLP result.  
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When hospital coverage is 35 min, the MCLP results (Table 4-2) show that 7.82 million 

people is within ambulance coverage, and 9.41 million residents is within hospital coverage, 

accounting for 77.7% and 94.5% of the total population, respectively. Meanwhile, the MCLP 

indicates that 7.60 million people can be covered by both coverages, accounting for 75.5% 

of the total population. In comparison, Model 1 suggests that 77.6% and 91.8% of the total 

population can be covered by either ambulance or hospital coverage, slightly smaller than 

the same result for the MCLP model. However, 7.81 million people can be served by both 

coverages using Model 1, with a 2.1% increase compared to the MCLP result. 

As hospital coverage extends to 40 min, the MCLP (Table 4-2) suggests that people covered 

by ambulance and hospital coverages are 7.82 and 9.59 million respectively, accounting for 

77.7% and 93.9% of the total population. In addition, 7.63 million people can be covered by 

both coverages, accounting for 75.8% of the total population. By contrast, Model 1 shows 

that the number of people covered by either ambulance or hospital coverage is less than the 

result from the MCLP. However, 77.7% of the total population can be served by both 

coverages using Model 1, with a 1.9% of rise compared to the MCLP result. 

In summary, regardless of the degrees of hospital coverages (i.e., 10, 15, 30 min), the results 

from Model 1 and the MCLP show different spatial configurations of new sites and achieve 

different levels of service coverage when considering two single-trip separately. Although 

the results from the MCLP enable most patients to be covered by a single-trip coverage (e.g., 

ambulance coverage or hospital coverage), there is no guarantee that a patient can receive 

both ambulance and hospital coverages simultaneously. In contrast, Model 1 ensures as 

many people as possible to have both good ambulance and hospital accessibility by 

considering both ambulance and hospital coverages. 
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Table 4-2. Service coverage from Model 1 and MCLP in scenario 1 (Higher value is bold). 

 Covered population (million people) 

Hospital coverage 30 min 35 min 40 min 

Covered population (million 

people) 
Model 1 MCLP Model 1 MCLP Model 1 MCLP 

ambulance coverage 7.79 7.82 7.81 7.82 7.82 7.82 

hospital coverage 9.01 9.09 9,24 9.41 9.45 9.59 

both coverages 7.79 7.59 7.81 7.60 7.83 7.63 

Covered population (%)       

ambulance coverage 77.4% 77.7% 77.6% 77.7% 77.7% 77.7% 

hospital coverage 89.6% 90.3% 91.8% 94.5% 93.9% 95.4% 

both coverages 77.5% 75.3% 77.6% 75.5% 77.7% 75.8% 
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Selected sites for MCLP -OC and Model 2 

Figures 4-7 show the selected locations for new EMS stations and stroke centers based on 

both models. Different overall coverages are employed. Figures 4-7 (a)-(c) show spatial 

outcomes of the MCLP-OC that aim to maximize the total people covered by the overall 

coverage. Figures 4-7 (d)- (f) show the spatial locations for Model 2 that propose to 

maximize the total population covered by both ambulance coverage and the overall coverage.  

When the overall coverage equals 40/42 min, the MCLP-OC (see Figure 4-7 (a)) suggests 

that two EMS stations should be located in Huangpi. The other four EMS stations should be 

located in Hongshan, Hannan, Caidian, and Dongxihu. Meanwhile, the MCLP-OC suggests 

that two stroke centers should be located in Huangpi. The other two should be sited in 

Caidian and Xinzhou, respectively. By comparison, Model 2 (see Figure 4-7 (d)) suggests 

that two EMS stations should be located in the north of Jiangxia. The other four stations 

should be located in Hongshan, Hannan, Dongxihu, and Caidian, with only one station at the 

same place as the MCLP-OC result. Then, four stroke stations should be located in Caidian, 

Xinzhou, Huangpi, and the boundary between Qinshan and Hongshan.  

As the overall coverage extends to 45/47 min, the MCLP-OC (see Figure 4-7 (b)) indicates 

that two EMS stations should be located in Xinzhou, and the other four stations should be 

located in Caidian, Hannan and Jiangxia and Huangpi. Meanwhile, the MCLP-OC shows 

that two stroke centers should be located in Xinzhou, and the other two should be sited in 

Huangpi, respectively. By comparison, Model 2 (i.e., Figure 4-7 (e)) suggests that two EMS 

stations should be located in the north of Jiangxia, and the other four stations should be 

located in Hongshan, Hannan, Caidian, and Dongxihu, all of which are different from the 

locations for the MCLP-OC. Then, four stroke stations should be located in Huangpi, 

Hannan, Jiangxia and Xinzhou, all of which are different from the locations for the MCLP-

OC. 

When the overall coverage is 50/52 min, the MCLP-OC (Figure 4-7 (c)) advises that three 

EMS stations should be located in Huangpi, and the other three stations should be sited in 

Dongxihu, Caidian, and Xinzhou. Meanwhile, the MCLP-OC also shows that two stroke 

centers should be located in Xinzhou, while the other two should be sited in the center and 

the east of Huangpi, respectively. By contrast, Model 2 (Figure 4-7 (f)) suggests that two 

EMS stations should be located in Jiangxia, with the other four stations located in Hongshan, 

Hannan, Caidian, and Dongxihu, all of which are different from the locations for the MCLP-

OC. Model 2 suggests that four stroke stations should be located in Hannan, Huangpi, 
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Xinzhou, and Jiangxia, all of which are different from the locations for the MCLP-OC. 

Compared with Figures 4-7 (c) and (f), only one EMS station is at the same location, while 

other EMS stations and stroke centers are scattered throughout the locations.
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Figure 4-6. Scenario 1 based on 40/42.45/47,50/52 min overall coverages; (a) (b) (c) new 

sites from MCLP-OC; (d) (e) (f) new sites from Model 2.
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According to Table 4-3, the MCLP-OC and Model 2 achieve different levels of service 

coverage. When considering the 40/42 min overall coverage, the MCLP-OC suggests that 

8.61 million people are within the overall coverage, accounting for 85.6% of the total 

population. At the same time, 7.50 million people can be covered by both ambulance and 

overall coverages, accounting for 74.5% of the total population in Wuhan. By comparison, 

8.35 million people can be served within the overall coverage using Model 2, accounting for 

83.0% of the total population, 2.6% smaller than the result for the MCLP-OC. However, 

7.80 million people can be served by ambulance and overall coverages using Model 2, 

accounting for 77.5% of the total population, with a 3.0% increase compared to the MCLP-

OC.  

When the overall coverage shifts to 45/47 min, 8.81 million people are covered by the overall 

coverage using the MCLP-OC, accounting for 87.6% of the total population (see Table 4-3). 

In addition, 7.54 million people can be covered by both ambulance and overall coverages, 

accounting for 75.0% of the total population. By contrast, residents covered by the overall 

coverage are 8.57 million using Model 2; this is smaller than the same value for the MCLP-

OC. Meanwhile, 7.81 million people can be served by ambulance and overall coverages 

based on Model 2, accounting for 77.6% of the total population, with a 2.1% increase 

compared to the MCLP-OC. 

When the overall coverage increases to 50/52 min, the MCLP-OC suggests that 9.02 million 

residents are covered by the overall coverage, accounting for 89.7% of the total population 

(see Table 4-3). Moreover, 7.72 million residents are covered by both ambulance and overall 

coverages, accounting for 76.7% of the total population. By comparison, 8.78 million 

residents can be served within the overall coverage using Model 2, accounting for 87.0% of 

the total population, with a 2.7% decrease compared to the result of MCLP-OC. Furthermore, 

Model 2 also indicates that 7.82 million people can be served by ambulance and overall 

coverages, accounting for 77.7% of the total population, with a 1.0% increase compared to 

the MCLP-OC. 

In summary, regardless of different standards of overall coverages, the results from the 

MCLP-OC and Model 2 show different spatial layouts of new sites and achieved different 

levels of service coverages when considering two single trips. Although the MCLP -OC can 

enable most patients to be covered by the overall coverage, there is no way to guarantee that 

a patient can receive fast ambulance service. However, the Model 2 ensures that as many 
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people as possible to have both ambulance and hospital accessibility by considering both 

ambulance and overall service coverages.
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Table 4-3. Service coverage from the MCLP-OC and Model 2 in scenario 1 (Higher value is bold). 

 Covered population (million people) 

Overall coverage 40/42 min 45/47 min 50/52 min 

 MCLP-OC Model 2 MCLP-OC Model 2 MCLP-OC Model 2 

Overall coverage 8.61 8.35 8.81 8.57 9.02 8.78 

Ambulance and overall coverages 7.50 7.80 7.54 7.81 7.72 7.82 

Proportion covered by (%)       

Overall coverage 85.6% 83.0% 87.6% 85.2% 89.7% 87.0% 

Ambulance and overall coverages 74.5% 77.5% 75.0% 77.6% 76.7% 77.7% 
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(2) Scenario 2 

Selected sites for MCLP and Model 1 

Scenario 2 assumes that up to eight EMS stations and five stroke centers in the system can 

be closed or relocated. Accordingly, the total numbers of EMS stations and stroke centers 

reach to 85 and 46, respectively.  

As the hospital coverage is defined as 30 min, the MCLP (i.e., Figure 4-8 (a)) suggests that 

eight EMS stations and five stroke centers should be closed, all located in urban districts, 

including Wuchang, Jiangan, Jianghan, Qiaokou, and Hanyang. Then, 14 new EMS stations 

and 9 stroke centers should be built or relocated. For new/relocated EMS stations, three 

selected locations should be located in the south of Huangpi, and Dongxihu, Caidian, 

Hongshan, and Jiangxia should each contain two locations. The other three new stations 

should be located in Hannan, Xinzhou, and Qinshan. For planning new stroke centers, three 

selected locations should be situated in Hongshan, followed by Jiangxia, where two selected 

locations should be located. The other four stroke centers should be located in Caidian, 

Dongxihu, Qiaokou, and Xinzhou. By comparison, Model 1 (Figure 4-8 (d)) indicates that 

eight EMS stations and five stroke centers should be closed, which are sited in the urban 

area. For new/relocated EMS stations, Model 1 suggests that three selected locations should 

be located in Xinzhou, while Jiangxia, Dongxihu, and Hongshan should each have two EMS 

stations. The other EMS stations are sited in Huangpi, Hanyang, and Hannan. For locating 

stroke centers, three selected locations should be located in Hongshan, and two sites should 

be situated in Jiangxia. Each of Caidian, Dongxihu, Xinzhou, and Qiaokou should have one 

stroke center.  

When the hospital coverage increases to 35 min, the MCLP model (i.e., Figure 4-8 (b)) 

suggests that eight EMS stations and five stroke centers should be closed, and they are all 

located in urban districts. 14 new EMS stations and 9 stroke centers should be built, 

including relocated facilities. The locations of new EMS stations in Figure 4-8 (b) are the 

same as the results in Figure 4-8 (a). The locations of stroke centers, however, are different 

from the previous results. Xinzhou, Jiangxia, Caidian should each have two selected 

locations for new stroke centers. The other three centers should be located in Dongxihu, 

Huangpi, Hongshan, respectively. By comparison, Model 1 (Figure 4-8 (e)) indicates that 

eight EMS stations and five stroke centers should be closed, which are sited in the urban 

area. Model 1 also suggests that each of Huangpi, Xinzhou, Jiangxia, Hongshan, and 
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Dongxihu should each have two EMS stations for planning new/relocated EMS stations. The 

other four stations should be located in Hannan, Caidian, the northwest of Hanyang, and 

Qinshan. For locating stroke centers, Jiangxia, Caidian, and Huangpi should each have two 

selected locations, and the other three locations should be distributed in Dongxihu, Xinzhou, 

and Hongshan, respectively. 

If the hospital coverage increases to 40 min, the MCLP model (i.e., Figure 4-8 (c)) suggests 

eight EMS stations and five stroke centers should be closed, and they are all located in urban 

districts. All locations of new EMS stations are the same as the previous MCLP results (see 

Figure 4-8 (a) or (b)). For planning new stroke centers, four selected locations should be 

located in Huangpi, followed by Xinzhou in which two should be located. Other stroke 

centers should be sited in Jiangxia, Caidian, and Hongshan, respectively. By contrast, Model 

1 indicates that eight EMS stations and five stroke centers should be closed, which are sited 

in the urban area. For new/relocated EMS stations, Model 1 suggests that three locations 

should be located in Huangpi, while Caidian, Jiangxia, Hongshan, and Dongxihu should 

each have two EMS stations; the other three stations should be located in Hannan, Xinzhou, 

and Qinshan. For locating stroke centers, two locations should be located in Jiangxia, and 

Huangpi, respectively (Figure 4-8 (f)). The rest of the new stroke centers should be sited in 

Hannan, Caidian, Caidian, Hongshan, and Xinzhou. In addition, two stroke centers based on 

Model 1 are the same to the MCLP results. 
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Figure 4-7. Scenario 2 based on 30, 35, 40 min hospital coverage (a) (b) (c) results from 

MCLP; (d) (e) (f) results from Model 1. 
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The service coverages achieved by the MCLP and Model 1 are summarized in Table 4-4, 

and they achieve different performances. Specifically, when considering the 30-min hospital 

coverage, the MCLP model suggests that 8.10 million people are within ambulance coverage 

and 9.40 million residents are within hospital coverage, accounting for 80.5% and 93.5% of 

the total population, respectively. Meanwhile, 7.97 million residents can be served by both 

ambulance and hospital coverages, accounting for 79.2% of the total population. By contrast, 

Model 1 suggests that 8.10 million residents are within ambulance coverage and 9.28 million 

people can be served within the hospital coverage; they are slightly smaller than the same 

values for the MCLP model. However, 80.4% of the total population can be covered by both 

ambulance and hospital coverages using Model 1, with a 1.2% increase compared to the 

MCLP result.  

When the hospital coverage is increased to 35 min, 8.10 million people are within either 

ambulance or hospital coverage using the MCLP, accounting for 80.5% and 94.6% of the 

total population, respectively. Meanwhile, 8.0 million people can be covered by both 

ambulance and hospital coverages, accounting for 79.5% of the total population. By 

comparison, Model 1 indicates that 80.5% and 93.1% of the total population can be covered 

by either ambulance coverage or hospital coverage; this is slightly smaller than the same 

results for MCLP. However, 80.4% of the total population can be covered by both coverages, 

with a 0.9% increase compared to the MCLP result. 

When the hospital coverage expands to 40 min, the MCLP model suggests that 80.5% and 

97.7% of the total population can be covered by either ambulance or hospital coverages, 

respectively. Meanwhile, 79.9% of the total population can be covered by both ambulance 

and hospital coverages. By comparison, Model 1 shows that 80.5% and 95.3% of the total 

population can be covered by ambulance coverage and hospital coverage, respectively; they 

are slightly less than the same values for the MCLP model. However, 80.5% of the total 

population can be served by both coverages based on Model 1, with a 0.6% increase 

compared to the MCLP result. 

In summary, regardless of the degrees of hospital coverages (i.e., 10, 15, 30 min), the results 

from Model 1 and the MCLP show various spatial layouts of new and relocated sites and 

achieve different levels of service coverage when considering two single - trip separately. 

Although the MCLP’ results enable most demands to be covered by ambulance coverage or 

hospital coverage, there is no guarantee that a patient can receive both coverages 
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simultaneously. In contrast, Model 1 ensures as many people as possible to have both good 

ambulance and hospital accessibility by considering both ambulance and hospital coverages. 
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Table 4-4. Service coverage from Model 1 and MCLP in scenario 2 (Higher value is in bold). 

 People covered by (million people) 

Hospital coverage 30 min 35 min 40 min 

 Model 1 MCLP Model 1 MCLP Model 1 MCLP 

ambulance coverage 8.10 8.10 8.10 8.10 8.10 8.10 

hospital coverage 9.28 9.40 9.37 9.51 9.59 9.83 

both coverages 8.09 7.97 8.09 8.0 8.10 8.04 

Proportion covered by (%)       

ambulance coverage 80.5% 80.5% 80.5% 80.5% 80.5% 80.5% 

hospital coverage 92.2% 93.5% 93.1% 94.6% 95.3% 97.7% 

both coverages 80.4% 79.2% 80.4% 79.5% 80.5% 79.9% 
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Selected sites for MCLP-OC and Model 2 

Figures 4-9 depict the spatial results for the MCLP-OC and Model 1, including the selected 

locations for new EMS stations, new stroke centers, and the existing facilities to be closed.  

As the overall coverage is 40/42 min, the MCLP-OC (Figure 4-9 (a)) suggests that eight 

EMS stations and five stroke centers should be closed, and all closed locations are sited in 

urban districts. Meanwhile,14 new EMS stations should be established (including relocated 

facilities), with four in Xinzhou, five in Huangpi, and the other five stations in Dongxihu, 

Caidian, Hannan, Jiangxia, and Hongshan. There are 9 new stroke centers should be located. 

Xinzhou and Huangpi should each have three locations, and the other three locations should 

be located in Caidian, Dongxihu and Hongshan. By comparison, Model 2 (Figure 4-9 (d)) 

indicates that eight EMS stations and five stroke centers should be closed, which are all sited 

in the urban area. Then, 14 new EMS stations and 9 stroke centers should be built, including 

relocated facilities. For new EMS stations, Huangpi should have three EMS stations. 

Jiangxia, Caidian, Dongxihu, and Hongshan should have two new EMS stations, respectively. 

The other EMS stations should be located in Qinshan, Hannan, and Xinzhou. For new stroke 

centers, Huangpi should have three selected locations. The other stroke centers should be 

distributed in Jiangxia, Hannan, Caidian, Dongxihu, Xinzhou, and Hongshan.  

When the overall coverage expands to 45/47 min, the MCLP-OC (Figure 4-9 (b)) shows that 

eight EMS stations and five stroke centers should be closed, all located in the urban districts. 

Then, there are 14 new EMS stations and 9 stroke centers, including relocated facilities. For 

new EMS stations, Huangpi, Xinzhou, and Jiangxia should each have three locations, and 

Caidian should have two new stations. The rest of stations should be situated in Hannan and 

Dongxihu. As for stroke centers, four should be distributed in Xinzhou, followed by Huangpi, 

which should have two new stroke centers. The other stroke centers should be distributed in 

Jiangxia Hannan, and Caidian, respectively. By contrast, Model 2 (Figure 4-9 (e)) suggests 

that eight EMS stations and five stroke centers should be closed, all located in the urban area. 

For planning new EMS stations, one location is located in urban district (Hongshan). The 

rest of locations should be situated in the six rural areas. As for stroke centers, three locations 

are located in urban districts (two in Hongshan, one in Qinshan). Other new stroke centers 

are sited in the six rural districts.  

As the overall coverage is increased to 50/52 min, the MCLP-OC (Figure 4-9 (c)) shows that 

eight EMS stations and five stroke centers should be closed, while all closed facilities should 

all be located in the urban district. Then, there are 14 new EMS stations and 9 stroke centers, 
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including relocated facilities. New EMS stations are located in all rural districts, and 

Xinzhou has the highest number of new EMS stations (i.e., 4). As for new stroke centers, 

new locations are distributed in Xinzhou, Huangpi, Caidian, Hannan, Jiangxia and Qinshan. 

By comparison, Model 2 (Figure 4-9 (f)) suggests that eight EMS stations and five stroke 

centers should be closed, all distributed in the urban area. For planning new EMS stations, 

three stations should be located in Huangpi, while Jiangxia, Caidian, Dongxihu, and 

Hongshan should each have two selected EMS stations, respectively. The rest of the three 

selected locations should be situated in Hannan, Xinzhou, and Qinshan, respectively. As for 

new stroke centers, Jiangxia and Caidian should each have two locations. The rest of the 

stations are distributed in Hannan, Dongxihu Huangpi, and Xinzhou.  
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Figure 4-8. Scenario 2 based on 40/42, 45/47, 50/52 min the overall coverage; (a) (b) (c) 

the results from MCLP-OC; (d) (e) (f) the results from Model 2. 

According to Table 4-5, the MCLP-OC and Model 2 achieve different performances in 

locating EMS stations and stroke centers. When the 40/42 min overall coverage is employed, 
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the MCLP-OC suggests that 88.9% of the total population are covered by the overall 

coverage. Meanwhile, 78.8% of the total population can be served by ambulance and overall 

coverages. By contrast, Model 2 suggests 87.6% of the total population can be served within 

the overall coverage; that is slightly smaller than the same value for the MCLP-OC. However, 

Model 2 suggests 80.40% of the total population can be covered by ambulance and overall 

coverages, with a 1.6% increase compared to the MCLP-OC result.  

If the overall coverage is defined as 45/47 min, the MCLP-OC model suggests that 93.0% 

of the total population can be covered by the overall coverage (see Table 4-5). Meanwhile, 

79.1% of the total population can be covered by both ambulance and overall coverages. By 

comparison, Model 2 shows that 91.3% of the total population can be covered by ambulance 

and overall coverages; that is slightly less than the same value for the MCLP-OC. However, 

Model 2 shows that 80.44% of the total population can be served by ambulance and overall 

coverages, with a 1.34% increase compared to the result of the MCLP-OC. 

When the overall coverage is increased to 50/52 min, the MCLP-OC suggests that 94.9% of 

the total population can be served by overall coverage. Meanwhile, 79.4% of the total 

population can be covered by ambulance and overall coverages. By comparison, Model 2 

suggests that 92.7% of the total population can be covered by the ambulance and overall 

coverages. This result is slightly smaller than the value of MCLP-OC. However, Model 2 

shows that 80.5% of the total population can be covered by ambulance and overall coverages 

using Model 2, with a 1.1% increase compared to the MCLP-OC result. 

In summary, regardless of different standards of overall coverages, the results from the 

MCLP-OC and Model 2 show different spatial layouts of new/relocated sites and achieved 

different levels of service coverages when considering two trips. Although the MCLP-OC 

can enable as many people as possible to be covered by the standard of overall coverage, 

there is no way to guarantee that a patient can receive fast ambulance service. However, the 

Model 2 guarantees that as many people as possible to have both quickly ambulance and 

hospital services by considering both ambulance and overall service coverages.
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Table 4-5. Service coverages for the MCLP-OC and Model 2 in scenario 2 (Higher value is in bold). 

 People covered by (million people) 

Overall coverage  40/42 min 45/47 min 50/52 min 

 MCLP-OC Model 2 MCLP-OC Model 2 MCLP-OC Model 2 

overall coverage 8.95 8.81 9.35 9.19 9.54 9.33 

Ambulance and overall coverages 7.93 8.09 7.96 8.09 7.99 8.10 

Proportion covered by (%)       

overall coverage 88.9% 87.6% 93.0% 91.3% 94.9% 92.7% 

Ambulance and overall coverages 78.8% 80.4% 79.1% 80.4% 79.4% 80.5% 
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4.5. Discussion 

This study proposes two spatial optimization models (i.e., Model 1 and Model 2) for locating 

EMS stations and hospitals, accounting for service coverages of different trips. Both models 

are to maximize the amount of demand covered by Trip 1 and Trip 2. The major difference 

is that Model 1 uses the hospital coverage to represent Trip 2 directly, but the Model 2 

employs the overall service coverage to represent Trip 2 implicitly. According to the 

empirical study, Model 1 performs better than the MCLP when different trips are involved. 

It is because the former can enable more demands to be covered by both ambulance and 

hospital coverages than the latter model. The MCLP-OC and Model 2 implicitly involve Trip 

2 using the overall coverage. From the results, Model 2 can guarantee that more patients to 

be covered by ambulance and overall coverages than the MCLP-OC. Therefore, Model 2 has 

a better performance in considering coverages for different trips as the MCLP-OC cannot 

guarantee that as many people as possible can be covered by the ambulance coverage.  

The proposed models in this chapter are valuable in practice. The empirical results from 

Chapter 3 have indicated that an accessible Trip 1 cannot guarantee an accessible Trip 2 or 

the overall trip, and vice versa. This is often caused by different spatial layouts of EMS 

stations and emergency hospitals, and they lack cooperation in space. Some areas are near 

EMS stations but far away from their nearest hospitals, such as the east of Caidian (see 

Figures 3-6 (a) in Chapter 3). By contrast, some places are near hospitals but far away from 

their nearest EMS stations, such as the west of Xinzhou (see Figures 3-6 (b) in Chapter 3). 

Therefore, the work in this chapter can add in the collaborative planning of EMS systems 

that often consist of two trips and different types of facilities, while ensuring that as many 

people as possible can easily access to different facilities.  

Although there are some similarities between Models 1 and 2, the difference is that the 

former employs hospital coverage to represent Trip 2, and the latter uses overall coverage to 

represent the trip indirectly. By comparison, Model 1 has a stricter requirement for the 

service provisions than Model 2. For example, we assume that ambulance, hospital, and 

overall coverages are 10, 30 and 40 min, and the travel times for Trip 1 and Trip 2 are 1 and 

31 min, respectively. It has met the requirement of Model 2 because travel times for Trip 1 

and the overall trip are less than 10 and 40 min. However, this area still does not meet the 

requirement for Model 1 because the travel time for Trip 2 exceeds the standard of hospital 

coverage (i.e., 30 min). Thus, good ambulance and hospital coverage often ensure good 

overall coverage. However, good ambulance coverage and overall coverage might not 
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guarantee good hospital coverage. The selection of Model 1 and Model 2 should depend 

upon local EMS planning criteria. Model 1 is applicable in EMS systems where the standards 

of one-way trip coverages have been stipulated. Model 2 is suitable for the EMS systems 

that primarily concern the overall coverage.  

Some policy implications emerge from Chapter 4. First, the two scenarios can provide 

healthcare planners and local authorities with different suggestions. Scenario 1 provides the 

short-term advice for decision-makers, that is, how to locate new facilities on the existing 

basis. Scenario 2 provides an additional view regarding which existing stations are suitable 

to close and move to other places to achieve the long-term planning goals in order to meet 

the dynamic movement of demands. Second, Wuhan stroke planning criteria have the 

clarified standards for ambulance coverage and overall coverage, but the hospital coverage 

has not clearly defined. Hence, Model 2 is more applicable to employ here. Third, according 

to the existing spatial layouts of EMS stations and stroke centers, about 40% of the 

population in Wuhan might not be covered by both ambulance and overall coverages. In 

other words, a large number of residents still cannot be served by fast ambulance and hospital 

services. Thus, it is necessary to provide additional EMS stations and stroke care facilities 

to meet those underserved areas. Furthermore, the two proposed models provide decision 

supports for healthcare planners and policymakers. For example, the application of Model 2 

suggests that the next EMS station should be located in Hongshan, and the next stroke center 

should be sited in Huangpi when existing facilities remain open. Meanwhile, one EMS 

station in Hanyang and one stroke center in Jiangan should closed and relocated to other 

places if the scenario 2 is considered.  

This chapter has some limitations, including the specification of candidate locations for new 

EMS facilities and underlying demands. New EMS stations and emergency hospitals can be 

sited at locations other than existing candidate locations. Moreover, the site suitability 

analysis can be implemented to identify candidate locations, which often needs the 

knowledge of land-use restrictions and local development plans in the case study area. 

Second, this chapter uses residential locations to represent demand locations, which cannot 

accurately reflect the spatial distribution of stroke patients across the study area. Furthermore, 

the variation in on-scene accessibility and on-scene building height data have not been 

considered. For example, the patient’s floor (high-rising building vs low-rising building) or 

the environment of the neighborhood community can affect the on-scene time (e.g., 

Balamurugan et al., 2016), resulting in a variation in overall travel times across 

neighborhood communities and different population groups.  
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There are several potential extensions. First, the proposed models have not considered EMS 

accessibility in uncovered areas. However, it does not mean that people living further away 

from EMS stations or hospitals than the standards of service covera ge will not use such 

services. According to the results in both scenarios, more than 20% of the population remains 

outside at least one service coverage. Therefore, it is worth considering accessibility to EMS 

for those uncovered areas. Examples of research on this subject include Church et al. (1991) 

and Chanta et al. (2014). Furthermore, it is worth determining the minimal number of 

facilities needed to cover the entire study area, such as using the LSCP-based model. 

Additionally, factors like facility availability and maximal service capacity can be extended 

in both studies, which must cooperate with real EMS-running data and specific disease 

records. 

4.6. Chapter Summary 

Trip 1, Trip 2 and the overall trip are essential to EMS provisions, often determined by 

ambulance coverage, hospital coverage, and the overall coverage, respectively. However, 

fast ambulance service does not necessarily guarantee timely hospital or overall EMS service, 

and vice versa. This chapter proposes two spatial optimization models to improve the overall 

EMS provision, ensuring that as many people as possible can be quickly served by both 

ambulance and hospital services. Specifically, two facility location models are developed to 

seek the best locations for the given numbers of EMS stations and emergency hospitals, 

considering coverages for different EMS trips. As an extension of the MCLP, Model 1 seeks 

the maximal number of people covered by both ambulance and hospital coverages. As an 

extension of the MCLP-OC, Model 2 intends to maximize the number of patients covered 

by the ambulance coverage and the overall coverage. According to the empirical study, the 

two proposed models perform better than the previous models when different EMS 

coverages and trips are considered. The work presented in this paper can aid the planning 

practice of public services like EMS systems, where the collaborative work between EMS 

stations and hospitals is an essential concern. 
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Chapter 5  Reducing Urban-Rural Inequalities in EMS Through 

Spatial Optimization 

This chapter aims to reduce regional inequalities in EMS through spatial optimization 

approaches. Two bi-objective optimization models are developed. They have a same primary 

objective related to service coverage, and two alternative inequality objectives focusing on 

service accessibility and coverage, respectively. The proposed models are applied in an 

empirical study in Wuhan, China, to seek optimal locations for EMS stations to improve 

local EMS capacity in the pandemic period, accounting for urban-rural equalities in EMS. 

The empirical results indicate that a reduction in urban-rural inequalities in both accessibility 

and service coverage leads to a decrease in the total covered population, especially in urban 

areas. The work demonstrated in this chapter can help the planning practice of healthcare 

services, such as EMS, where improving equalities between urban and rural areas is an 

essential concern. 

5.1. Introduction 

Equity in receiving healthcare facilities such as EMS is crucial to social fairness, which is 

one of the objectives of sustainable development (i.e., Goal 10: Reduce inequality within 

and among countries) (United Nations, 2015). Inequalities in receiving EMS within/across 

regions and among population groups widely exist, often attributed to insufficient healthcare 

resources including financial support (e.g., fundings), traffic infrastructure or geographic 

barriers (i.e., travel distance/time) (Jennings et al., 2006; Luo et al., 2020; do Nascimento 

Silva and Padeiro, 2020). Improving spatial equality in the delivery of EMS remains a 

challenge to national and local governments and authorities. 

This chapter focuses on improving equalities in service coverage and accessibility, both of 

which are common measures for evaluating EMS system performance (ReVelle et al., 1977; 

Bélanger et al., 2019). Service coverage refers to the amount of demand that can be served 

with pre-defined service standards. In comparison, accessibility is considered as the ease and 

speed of action, where shorter responses often lead to more favorable health outcomes. Both 

dimensions of accessibility and service coverage have been studies in the field of spatial 

optimization. For example, a classic coverage model (MCLP) was extended to maximize 
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EMS survival rate (Erkut et al.,2008). P-center problem was used to improve EMS 

accessibility in rural areas (Chanta et al., 2014). 

In general, coverage-based models remain the dominant type of EMS facility location 

approach because response time standards (or service radius) and EMS provision (e.g., cover 

90% population or respond to 90% of calls within a certain time frame) are the most 

important components of EMS systems (Başar et al., 2012; Church and Murray, 2018). The 

integration of accessibility and service coverage is a common practice in EMS location 

optimization (e.g., Church et al., 1991; Pirkul and Schilling, 1991). 

Numerous inequality measures have been developed and incorporated into facility location 

modelling (Mulligan, 1991; Erkut, 1993; Marsh and Schilling, 1994; Barbati and Bruno, 

2018). Those models are often based upon the influence or potential outcomes of facility 

layout on communities or individuals, often represented by distance, travel time or other 

indexes (e.g., accessibility scores). Common approaches consist of variance (e.g., Wang and 

Tang, 2013), range (e.g., McLay and Mayorga, 2013), mean deviation (e.g., Ogryczak, 2009), 

among other indexes. Moreover, some indexes from economic or demographic perspective 

for evaluating inequities related to socioeconomic status (e.g., income, education level, 

housing). For example, the Gini coefficient have become a popular measure of evaluating 

inequalities in EMS (e.g., Drezner et al., 2009; Burkey et al., 2012; Enayati et al., 2019). 

The majority of extant studies on facility optimization have concerned EMS equalities 

between communities, different demographic/socioeconomic groups, or individual users. 

However, the improvement of regional equality in EMS has received relatively less concern, 

especially between urban and rural areas. Three exceptions can be discussed. McLay and 

Mayorga (2013) and Chanta et al. (2014) attempted to improve EMS equality between urban 

and rural areas by increasing the service coverage of rural population or areas. Amaral and 

Murray (2016) used the p-median model to assess the equity between different states in 

Brazil in access to a health service.  

At present, there is no widely acceptable measure on spatial optimization. Many inequality 

approaches can be employed relying upon the specific inequality perspective concerned by 

the researcher. Moreover, service coverage can be varied in different areas even if they are 

within the same EMS system. For instance, American EMS systems intend to serve 90% of 

EMS demands within 15 min for rural areas, but within 9 min for urban regions (Fitch, 2005). 

In Wuhan, China, the standard of ambulance coverage is 10 min in the urban districts, but 

12 min in the rural districts (Wuhan Municipal Health Commission, 2020 b). However, the 
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urban-rural difference in standards of service coverages has been widely ignored in extant 

work. 

This chapter intends to improve equalities in EMS accessibility and service coverage 

between urban and rural areas using spatial optimization approaches that incorporate 

different EMS planning standards for urban and rural settings. Two bi-objective models are 

proposed to optimize EMS stations to reduce such urban-rural inequalities in access to EMS. 

The major contributions are the two proposed models of reducing urban-rural inequalities in 

the delivery of EMS – one for accessibility and the other for the urban-rural service coverage, 

as well as the consideration of different service standards for the urban and rural areas. The 

proposed models are implemented in an empirical study in Wuhan, China, where the 

planning of EMS system development and promotion (which is in progress) has been 

highlighted by the COVID-19 pandemic.  

This chapter is organized as follows. Next section reviews the urban-rural inequalities in 

EMS and various facility location models for EMS in general and those accounting for 

inequality in particular. The proposed two bi-objective spatial optimization models are then 

presented in section 5.3. The empirical results are described and interpreted in section 5.4. 

This chapter ends with a discussion of major contributions and policy implications of the 

empirical study. 

5.2. Background  

Three topics are reviewed in this section: one is inequality measures adopted in assessing 

EMS systems, the second is common inequality measures of EMS systems. This section ends 

with the discussion of various measures of spatial inequalities in EMS.  

5.2.1. Urban-rural inequality in EMS 

The terms “urban” and “rural” settings are often widely adopted in planning criteria, and 

their definitions have been widely concerned by geographers, epidemiologists, economists, 

demographers, or political scholars for many years (e.g., Isserman 2005; Susan et al., 2006; 

Gianotti et al., 2016; Chen, 2016). The following paragraphs review common measures for 

classifying urban and rural areas.  

First, the population density is the most common indicator for classifying urban and rural 

areas. Recently, the population density measure has been widely employed to classify urban 

and rural areas. For example, England is divided into 171,372 Output Areas (OAs), and those 
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OAs with more than 10,000 people are classified as urban areas (Government Statistical 

Service, 2011). However, these measures might not be suitable for large-scale countries such 

as in China or America due to the large range of population density across those countries. 

For example, in the United States, the population density is 11,535 people per square mile 

in the District of Columbia versus 1.1 people per square mile in Alaska. The large differences 

in population density make it impossible to have a nationwide standard for classifying urban 

and rural areas. 

Second, the standardized definition can be used to classify urban and rural areas. For instance, 

The US Census created a dichotomous standardized definition for urban and rural areas by 

a complicated algorithm, including many factors, such as income, insurance and so on. The 

designation of urban and rural areas is often implicated in the finest level like census units, 

districts, or Metropolitan areas. The US Census 2000 Bureau developed the ZIP Code 

Tabulation Areas (ZCTAs) to classify urban and rural areas. The most recent US Census 

2020 defines the urban area as densely developed territory, which takes into account several 

factors like commercial indexes, residential factors, and other non-residential urban land-

uses (United States Census Bureau, 2020).  

Third, classification of urban and rural areas can depend on empiricism, such as traffic 

networks, cultural, or administrative areas. Some metropolises define their urban area/inner 

city by traffic networks. For example, urban areas in Beijing, China, can be classified by the 

communities within the 5th Ring Road. Similarly, the inner city in Shanghai is defined by 

the area bordered by the Inner Ring Road (Hu et al., 2020). Some cities defined their urban 

areas by administrative districts. For example, Wuhan, China, describes urban areas as seven 

districts with intensive socio-economic activities. In summary, the definition of urban and 

rural areas varies across countries or within a country. At present, there are plenty of 

measures to delineate urban/rural regions, and we need to classify urban and rural areas. 

However, compared with rural areas, urban areas in general have denser population and more 

intensive socio-economic activities. 

Various studies have found urban-rural inequalities in delivering EMS service, which relates 

to Trip 1, Trip 2, on-scene time interval, transfer rates, or survival rates (Grossman et al., 

1997; Nordberg et al., 2004; Gonzalez et al., 2009; Masterson et al., 2015). As the urgent 

EMS response to the scene, this paragraph focuses on urban-rural inequalities in Trip 1. In 

general, the urban-rural disparities in ambulance arrival time (i.e., Trip 1) have been widely 

documented in numerous studies, which might cause inequalities in healthcare outcomes 
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between urban and rural residents (e.g., Vukmir et al., 2004; Moore et al., 2008; Aftyka et 

al., 2014; Masterson et al., 2015). 

This study concerns the inequalities in Trip 1 as prehospital medical care is always the most 

crucial factor in saving lives in emergency. Urban and rural inequalities in Trip 1 can be 

represented by accessibility as well as service coverage. On the one hand, such inequalities 

in EMS accessibility have been widely reported (Layon et al., 2003; Gonzalez et al., 2006; 

Sørensen et al., 2011; Masterson et al., 2015). For example, Gonzalez et al. (2006) reported 

an average ambulance arrival time of 11.2 min (urban settings) and 13.9 min (rural settings) 

(p<0.0002), which was linked to higher mortality rates in rural areas. Masterson et al. (2015) 

reported that rural patients received emergency medical care eight min slower than urban 

patients on average. On the other hand, urban-rural inequalities can be represented by service 

coverage. For example, Aftyka et al. (2014) indicated more than 80% of urban patients could 

reach ambulances within 10 km travel distance, but only 7.2% of rural patients could find 

the same service within the same distance. Overall, urban-rural inequalities in both 

accessibility and service coverage are still challenges to governments and localities.  

5.2.2. Inequality measures of EMS systems 

Common measures of inequalities in EMS response/travel time mainly include the variance, 

standard deviation, average absolute deviation, range, Gini coefficient and among others.  

First, the variance of the relative variables (e.g., distance, travel time or survival rate) is a 

common approach for evaluating EMS inequality (Felder and Brinkmann, 2002; Mapuwei 

et al., 2013). It often focuses on the difference in spread between EMS values in a dataset, 

while the high variance value is associated with severe inequality. For example, Felder and 

Brinkmann (2002) used the variance of average EMS response time to evaluate EMS 

equality and then used the spatial optimization method to balance the efficiency and equality 

of the EMS system. 

Second, the standard deviation of the relative variables is also frequently employed in 

measuring EMS equality (e.g., Tomioka et al., 2019; Omidi, 2021). The limitation is that the 

standard for each cost should be established during the variance analysis, which might cause 

deficiencies and affect the results. Standard deviation is a statistic value which evaluates the 

dispersion of a dataset relative to its average value and it is computed as the square root of 

the variance. A lower standard deviation value often represents smaller inequality. For 

instance, one recent study used the standard deviation of waiting times to measure spatial 
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inequality in access to fracture treatment facilities in Japan (Tomioka et al., 2019). The 

limitation of standard deviation is that it has not clearly measured how far a value is from 

the average point.  

The average absolute deviation is also a measure of inequalities in EMS (Li et al., 2022; 

Newon et al., 2022). It concerns the average difference between each value in the data set 

and the average value of the data set. Similarly, a higher average absolute deviation value 

represents higher inequality. For example, Newon et al. (2022) used the absolute deviation 

of travel time to assess EMS equality before reducing such inequalities. However, this index 

might bring a larger probable error than the standard deviation (Fisher, 1920).  

The range is computed as the difference between the maximum and minimum values of the 

variables, which is also a common measure of EMS inequalities. For example, Dahllöf et al. 

(2018) optimized the locations of mobile stroke units and used one of the inequality indexes 

represented by the range of ambulance response time. The limitation of the range is that this 

method only concerns the highest data difference.  

In addition, the Gini coefficient aims to show the inequality of socioeconomic or the wealth 

within a social group or a spatial area, which has been widely implemented in assessing 

inequalities in EMS systems (e.g., Khdaparasti et al., 2016; Yan et al., 2017; Erdenee et al., 

2017). For example, Erdenee et al. (2017) used the Gini coefficient to evaluate the spatial 

distribution of healthcare resources in both urban and rural areas of Mongolia. Further, other 

measures of inequalities, such as the sum of the absolute deviations and semi deviations, 

have also been mentioned (Marsh and Schilling,1994). The limitation of the Gini coefficient 

is that the accuracy is highly dependent on the size of the dataset and sample. Overall, 

although there are numerous inequality measures of EMS systems, we should select the 

suitable method based on the research aim, objectives and dataset. 

5.2.3. Measures of spatial inequalities in EMS  

Classic spatial optimization always concerns efficiency, but another conflicting aspect – 

equality, is often overlooked. For example, given the fact that the MCLP tends to locate 

facilities in densely populated areas while leaving sparsely populated areas underserved. The 

early works on inequality measures were based on the work of Mumphreys et al. (1971), 

McAllister (1976) and Savas (1978). They started to build an underlying channel between 

spatial optimization research and equality. Although many facility location measures have 

been employed in inequalities issues, there is no widely acceptable agreement on equality 
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measures. EMS response/travel time is the common index of evaluating the quality of an 

EMS system 

Many inequality measures have been employed in spatial optimization studies (e.g., 

Mulligan, 1991; Erkut, 1993; Marsh and Schilling, 1994; Barbati and Bruno, 2018). Table 

5-1 summarized some common equality measures in healthcare services include range (e.g., 

McLay and Mayorga, 2013), variance (e.g., Wang and Tang, 2013) and mean deviation (e.g., 

Ogryczak, 2009), among many others. In addition, some indices from demographics and 

economics for assessing inequity of socioeconomic welfare – such as the Gini coefficient – 

were often considered equivalently as measures of inequality (Burkey et al., 2012) and have 

been employed by many studies (e.g., Drezner et al., 2009; Chanta et al., 2011; Enayati et 

al., 2019). Center and median models also involve in addressing inequality problems (Chanta 

et al., 2014; Amaral and Murray,2016).  

Church and Murray (2018) indicated that coverage-based models play a better role in the 

meaning of equality by using certain service standards to the overall demands. For example, 

the total number of uncovered geographical units was minimized to reduce the inequality 

between different demand areas (Chanta et al., 2014; Khodaparasti et al., 2016). More 

frequently, inequality issues can be represented by an index incorporated into facility 

location models as a constraint or an objective function. For example, Chanta et al. (2011) 

proposed an index of “envy” and then developed a facility location problem to minimize the 

associated index - “p-envy” that is associated with the perception of inequity in the delivery 

of EMS. Based on extra inequalities constraints, McLay and Mayorga (2013) define the 

index for both the priority level and survival rates by the closest EMS station and developed 

a facility location model that aimed to minimize this index. Three indices were used by 

Enayati et al. (2019) to quantify the disparities in individual reaction times: variance, squared 

coefficient of variation, and Gini coefficient. Each of these indices served as an alternate 

objective function to be minimized. In addition to the inequalities between users, some 

scholars also attempted to balance the workload between servers (e.g.Toro-Diaz et al., 2015; 

Enayati et al., 2019). However, most spatial optimization approaches have only concerned 

EMS-related inequalities at community/individual level, in a single type of spatial context 

(i.e., either urban or rural) (e.g., Chanta et al., 2011; Toro-Diaz et al., 2015) or easing off 

regional disparities in EMS access from a nationwide planning perspective (e.g., Amaral and 

Murray, 2016). Comparatively, urban-rural disparities in EMS have received less attention 

even if such inequalities have been widely reported. To the best of our knowledge, the work 

by Chanta et al. (2014) is one of the few studies that considered the inequalities between 
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urban and rural settings in seeking optimal sites for EMS facilities. This chapter attempts to 

address urban-rural inequalities in EMS through spatial optimization, with two alternative 

inequality measures to improve equalities in EMS between urban and rural areas with respect 

to accessibility and service coverage. 
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Table 5-1. Common extension of the objectives in classic model with respect to EMS 

inequality. 

Objective functions (this should 

be the 1st column) 

Inequality 

measure  

Dimension 

of 

inequality 

Relevant studies 

Minimize the variance in 

distance/travel time between an 

influence on each group and the 

system. 

Variance accessibility 
Maimon, 

1983,1986 

Minimize the mean absolute 

deviation of distance/travel time 

between an effect on each group 

and the system-wide average effect 

Mean 

absolute 

deviation 

accessibility Newton et al., 2022 

Minimize the sum of the absolute 

deviations of distance/travel time 

between groups 

Sum of the 

absolute 

deviations 

accessibility 
Lindner-Dutton et 

al. 1991 

Minimize the difference between 

the highest-lowest values of travel 

distance/time 

Range of 

travel cost 
accessibility 

McLay and 

Mayorga, 2013 

Minimize the average absolute 

values of the variations in travel 

distance/time between all demand 

-supplier pairs 

Gini 

coefficient 
accessibility Barbati et al., 2016 

Minimize the sum of travel 

distance/time for the uncovered 

zones 

sum of 

weighted 

travel cost 

accessibility  Church et al., 1991 

Minimize the uncovered 

zones/people for a disadvantaged 

group 

The number 

of uncovered 

areas 

Coverage Chanta et al., 2014 
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5.3. Model Specification  

5.3.1. Mathematical formulation  

Two bi-objective optimization models are developed to reduce urban-rural inequalities in 

service accessibility and coverage of EMS, respectably. As service coverage remain the 

primary concerns of the EMS planning, the primary objective of the two bi-objective models 

is from the MCLP, which is to maximize the total covered demand. 

As is well-known that, the MCLP is likely to site service facilities in areas with more 

demands (or more densely populated areas), this might cause rural areas to be underserved 

(McLay and Mayorga, 2010; Chanta et al., 2014). Hence, two alternative secondary 

objectives are proposed to consider urban-rural inequalities. The first alternative objective 

intends to minimize the total weighted travel time (TWT) of the rural uncovered population 

from their nearest EMS stations. The second alternative objective consider the difference in 

covered population ratios between urban and rural regions. 

With the following parameters:  

i, j = index of demands and potential EMS stations, respectively;  

I, J = set of demands and potential EMS stations, respectively; 

𝑎𝑖 = amount of demand at location i; 

𝑆𝑢 = EMS service standard for urban area; 

𝑆𝑟 = EMS service standard for rural area; 

𝑝 = total number of EMS stations to be located; 

𝑞 = number of existing EMS stations to remain in the system; 

𝑑𝑖𝑗 = shortest travel time between i and j;  

𝑟𝑖 = {
1   if demand 𝑖 is in rural area

0   Otherwise                             
  

Ω𝑖 = set of EMS stations capable of providing service to demand i; 

{𝑗|𝑑𝑖𝑗 ≤ 𝑆𝑢(1 − 𝑟𝑖) + 𝑆𝑟𝑟𝑖}, that is, {𝑗|𝑑𝑖𝑗 ≤ 𝑆𝑢} for i in  urban area and {𝑗|𝑑𝑖𝑗 ≤ 𝑆𝑟} for i 

in rural area;  

Φ = set of existing EMS stations; 

𝑊𝑢, 𝑊𝑟 = proportion of covered demand in urban and rural areas, respectively; 

and the decision variables: 

𝑋𝑗 = {
1   if an EMS station is sited at 𝑗
0   Otherwise                                  

  



 

141 

 

𝑌𝑖𝑗 = {
1   if demand 𝑖 is not within the standard of its nearest EMS station 𝑗
0   Otherwise                                                                                                          

 

 

Primary objective:  maximize the total covered demand 

Maximize  𝑍1 = ∑ 𝑎𝑖(1 − ∑ 𝑌𝑖𝑗)𝑗∉Ω𝑖𝑖∈𝐼                                                                  (5.1)                                                           

 

First alternative objectives: minimize the TWT of the rural uncovered population from their 

nearest EMS stations. 

Minimize  𝑍2 = ∑ ∑ 𝑎𝑖𝑑𝑖𝑗𝑌𝑖𝑗𝑟𝑖𝑗∉Ω𝑖𝑖∈𝐼                                                                      (5.2)                                                                              

 

Second alternative objectives: minimize the difference in the proportions of the covered 

demand to the total population between urban and rural regions 

Minimize  𝑍3 = |𝑊𝑢 − 𝑊𝑟|                                                                                     (5.3)                                                                                               

 

In order to investigate how the inclusion of inequality objectives will affect the service 

coverage, four models are solved in this chapter: two single-objective models – Model 1 

(M1) only includes Objective (5.1), Model 2 (M2) only includes Objective (5.2), and two 

bi-objeictve models – Model 3 (M3) includes Objectives (5.1) and (5.2), and Model 4 (M4) 

includes Objectives (5.1) and (5.3). The mathematical formulations of the four models are 

as follows. 

Model 1 

Maximize  𝑍1 = ∑ 𝑎𝑖(1 − ∑ 𝑌𝑖𝑗)𝑗∉Ω𝑖𝑖∈𝐼                                                                                   

Subject to                                                                                                                                  

  

∑ 𝑋𝑗𝑗∈Ω𝑖
+ ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

≥ 1                                ∀𝑖 ∈ 𝐼                                      (5.4) 

∑ 𝑋𝑗𝑗∈𝐽 = 𝑝                                                                                             (5.5) 

∑ 𝑋𝑗𝑗∈Φ = 𝑞                                                                                            (5.6) 

𝑋𝑗 ≥ 𝑌𝑖𝑗                                                              ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖      (5.7) 

𝑋𝑗 = {0, 1}                                                         ∀𝑗 ∈ 𝐽                                 (5.8) 
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𝑌𝑖𝑗 ≥ 0                                                                 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖     (5.9) 

 

M1 is equivalent to MCLP, which aims to maximize the demand coverage in the whole study 

area, which is based on the MCLP model. Constraints (5.4) define that demand location i is 

either covered by an EMS station 𝑗 (𝑗 ∈ Ω𝑖) within the coverage or assigned to an open 

station 𝑗 (𝑗 ∉ Ω𝑖) outside the coverage. If ∑ 𝑋𝑗𝑗∈Ω𝑖
≥ 1, demand i would be served by at 

least one station within the coverage, therefore the associated 𝑌𝑖𝑗 (𝑗 ∉ Ω𝑖) would be equal to 

zero because of the preference of ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖
= 0  in objective (5.1). If ∑ 𝑋𝑗𝑗∈Ω𝑖

= 0 , the 

demand i would not be served by the coverage and the value of ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖
 would be equal to 

one given the nature of objective (5.1); that is, demand i would be assigned to only one open 

station j in this case. Constraint (5.5) enforces that the total number of stations to be sited is 

equal to a constant p. Constraint (5.6) specifies the number of existing EMS stations that 

would remain to open in the system. Constraints (5.7) ensure that demand i can be assigned 

to an EMS station j only if this station is opened at j. Constraints (5.8) define the binary 

variable of 𝑋𝑗, and Constraints (5.9) restrict that the decision variables 𝑌𝑖𝑗 are non-negativity. 

Model 2 

Minimization: 𝑍2 = ∑ ∑ 𝑎𝑖𝑑𝑖𝑗𝑌𝑖𝑗𝑟𝑖𝑗∉Ω𝑖𝑖∈𝐼  

Subject to 

∑ 𝑋𝑗𝑗∈Ω𝑖
+ ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

≥ 1                             ∀𝑖 ∈ 𝐼                                (5.10) 

∑ 𝑋𝑗𝑗∈𝐽 = 𝑝                                                                                     (5.11) 

∑ 𝑋𝑗𝑗∈Φ = 𝑞                                                                                    (5.12) 

𝑋𝑗 ≥ 𝑌𝑖𝑗                                                       ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖    (5.13) 

𝑋𝑗 = {0, 1}                                                   ∀𝑗 ∈ 𝐽                               (5.14) 

𝑌𝑖𝑗 ≥ 0                                                          ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖  (5.15)  

M2 aims to minimize the TWT of the uncovered rural areas, which is based on an extension 

of the work of Church et al. (1991) that concerns the overall service coverage as well as 

service accessibility of uncovered population. Constraints (5.10) refer to that demand 

location i is either assigned to an open station 𝑗 (𝑗 ∉ Ω𝑖) or covered by an EMS station 𝑗 (𝑗 ∈

Ω𝑖). When ∑ 𝑋𝑗𝑗∈Ω𝑖
= 0, demand i would not be served by the coverage and the value of 
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∑ 𝑌𝑖𝑗𝑗∉Ω𝑖
 would be equal to one; that is, demand i would be assigned to only one open station 

j in this case. When ∑ 𝑋𝑗𝑗∈Ω𝑖
≥ 1, demand i would be served by at least one station within 

the coverage, therefore the associated 𝑌𝑖𝑗 (𝑗 ∉ Ω𝑖) would be equal to zero because of the 

preference of ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖
= 0 in the minimization nature of the function in objective (5.2). 

Constraint (5.11) limits the total number of stations and Constraint (5.12) defines the number 

of existing EMS stations that would remain to open. Constraints (5.13) ensure that demand 

i can be assigned to an EMS station j only if this station is opened. Constraints (5.14) define 

the binary variable of 𝑋𝑗, and Constraints (5.15) limit the non-negativity decision variables 

𝑌𝑖𝑗. 

Model 3 

Maximize  𝑍1 = ∑ 𝑎𝑖(1 − ∑ 𝑌𝑖𝑗)𝑗∉Ω𝑖𝑖∈𝐼   

Minimize  𝑍2 = ∑ ∑ 𝑎𝑖𝑑𝑖𝑗𝑌𝑖𝑗𝑟𝑖𝑗∉Ω𝑖𝑖∈𝐼  

Subject to 

∑ 𝑋𝑗𝑗∈Ω𝑖
+ ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

≥ 1                                     ∀𝑖 ∈ 𝐼                                                 (5.16)  

∑ 𝑋𝑗𝑗∈𝐽 = 𝑝                                                                                                                (5.17) 

∑ 𝑋𝑗𝑗∈Φ = 𝑞                                                                                                               (5.18) 

𝑋𝑗 ≥ 𝑌𝑖𝑗                                                                   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖                     (5.19) 

𝑋𝑗 = {0, 1}                                                               ∀𝑗 ∈ 𝐽                                                      (5.20) 

𝑌𝑖𝑗 ≥ 0                                                                     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖                      (5.21) 

M3 is a bi-objective model that contains Objectives (5.1) and (5.2). This model aims to 

maximize the number of covered demands in the whole study area, while minimizing the 

TWT of the uncovered rural population. Constraints (5.16) define that demand location i is 

either covered by an EMS station 𝑗 (𝑗 ∈ Ω𝑖)  or assigned to an open station 𝑗 (𝑗 ∉ Ω𝑖) . 

Constraints (5.16) and (5.17) enforce that the total number of stations to be sited and the 

existing EMS stations that would remain to open in the system, respectively. Constraints 

(5.19) ensure that demand i can be assigned to an EMS station j only if this station is sited 

at j. Constraints (5.20) and (5.21) define the binary variable of 𝑋𝑗 and the non-negativity 

decision variables 𝑌𝑖𝑗. 
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Model 4 

Maximize  𝑍1 = ∑ 𝑎𝑖(1 − ∑ 𝑌𝑖𝑗)𝑗∉Ω𝑖𝑖∈𝐼  

Minimize  𝑍3 = |𝑊𝑢 − 𝑊𝑟| 

Subject to 

∑ 𝑋𝑗𝑗∈Ω𝑖
+ ∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

≥ 1                             ∀𝑖 ∈ 𝐼                                      (5.22)  

∑ 𝑋𝑗𝑗∈𝐽 = 𝑝                                                                                              (5.23) 

∑ 𝑋𝑗𝑗∈Φ = 𝑞                                                                                             (5.24) 

𝑋𝑗 ≥ 𝑌𝑖𝑗                                                          ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖           (5.25) 

𝑊𝑢 =
∑ 𝑎𝑖(1−𝑟𝑖)(1−∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

)𝑖∈𝐼

∑ 𝑎𝑖(1−𝑟𝑖)𝑖∈𝐼
                                                                    (5.26) 

𝑊𝑟 =
∑ 𝑎𝑖𝑟𝑖(1−∑ 𝑌𝑖𝑗𝑗∉Ω𝑖

)𝑖∈𝐼

∑ 𝑎𝑖𝑟𝑖𝑖∈𝐼
                                                                          (5.27) 

𝑋𝑗 = {0, 1}                                                     ∀𝑗 ∈ 𝐽                                      (5.28) 

𝑌𝑖𝑗 ≥ 0                                                            ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑗 ∉ Ω𝑖           (5.29) 

M4 is a bi-objective model that contains objectives (5.1) and (5.3). This model intends to 

maximize the number of the overall covered people in the whole city, while minimizing the 

difference in service coverage between urban and rural areas. Constraints (5.22) are same as 

constraints (5.4) or (5.10). Constraints (5.23) and (5.24) defines the total number of stations 

to be sited and the existing EMS stations that should remain open. Constraints (5.25) defines 

that demand i cannot be assigned to an EMS station j only if there is no station at j. 

Constraints (5.26) and (5.27) are the equations to compute 𝑊𝑢 and 𝑊𝑢. The binary variable 

of 𝑋𝑗  and the non-negativity decision variables 𝑌𝑖𝑗  are defined by Constraints (5.28) and 

(5.29). 

5.3.2. Solution approach  

Common approaches for solving multi-objective problems include the ε-constraint, 

weighted sum and weighted-norm approaches. In this chapter, the ε-constraint method is 

employed, developed by Haimes et al. (1971), and a wide discussion can refer to Chankong 
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and Haimes (1983). The main idea of the ε-constraints method is to transform the original 

multi-objective model into a single-objective formulation by only maintaining one objective 

whilst incorporating the other objectives into the constraints of the transformed model, where 

their values are bounded at acceptable levels.  

As M1 and M2 only include one objective and can be solved by commercial optimization, 

this section focuses on the solution approaches of the bi-objective problems (M3 and M4). 

As two conflicting objectives are affiliated to Objectives (5.1), (5.2) & (5.3), the Pareto-

optimal solutions (also called as non-dominated solutions) involve the trade-offs between 

various objectives. The Pareto-optimal solution is a non-inferior solution in the objective 

space that specifies a limit beyond which none of the objectives can be improved without 

compromising at least one of the other objectives 

Step 1. Find the initial solutions for M3 and M4  

Solve M1 and get the outcome as the initial solution of M4. Use the calculated 𝑌𝑖𝑗 values to 

compute the values of objectives (5.1) and (5.3), represented as 𝑍1
0 , 𝑍3

0 , 𝑊𝑢
0  and 𝑊𝑟

0 , 

respectively. Based the nature of the MCLP, it is not difficult to find that 𝑊𝑢
0 ≥ 𝑊𝑟

0, while 

𝑍1
0 and 𝑍3

0 are the upper bounds of 𝑍1 and 𝑍3, respectively.  

Similarly, solve M2 and get the outcome as the initial solution of M3. Use the calculated 𝑌𝑖𝑗 

to compute objective (5.1) and (5.2), denote as 𝑍1
′ , 𝑍2

0. It is not tough to find that 𝑍2
0 is the 

lower bound of 𝑍2. 

Step 2. Initialize iteration parameters and reformulate M3 and M4.  

Considering following additional notation: 

𝑘: iteration indicator, set 𝑘 =  1; 

K: maximum number of iterations;  

𝜀1: a constant representing the percent of total covered demand to be increased in each 

iteration; 

𝜀𝑟: a constant representing the percent of covered rural demand to be increased in each 

iteration; 

𝜀𝑍1
, 𝜀𝑍3

: threshold of the objective value difference in two consecutive iterations for (1) 

and (3), respectively.   

Additional constraints can be defined as in (5.30) and (5.31). 

𝑍1
𝑘 ≥ 𝑍1

′ + ∑ 𝑎𝑖𝑖∈𝐼 ∗ 𝑘 ∗ 𝜀1                                                                                                 (5.30) 

𝑊𝑟
𝑘 ≥ 𝑊𝑟

𝑘−1 + 𝜀𝑟                                                                                                               (5.31) 
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Constraint (5.30) defines the minimum number of total covered demands, which should be 

not less than a constant number 𝑍1
′ + ∑ 𝑎𝑖𝑖∈𝐼 ∗ 𝑘 ∗ 𝜀1 . Constraint (5.31) stipulates the 

minimum proportion of covered rural population in each iteration, which should be equal or 

higher than a constant 𝑊𝑟
𝑘−1 + 𝜀𝑟. Accordingly, the transformed M3 consists of objective 

(5.2), subject to constraints (5.16) - (5.21) and (5.30), and the redefined M4 is composed of 

objective (5.1), subject to constraints (5.22) - (5.29) and (5.31). 

Step 3. Update the solutions of M3 and M4.  

Solve M3 and M4 based on the new formulation in Step 2. Calculate the values of (5.1) and 

(5.3), 𝑍1
𝑘 and 𝑍3

𝑘, respectively.  

Step 4. Decide whether to continue or stop the iteration. 

For M3, if 𝑍1
0 − 𝑍1

𝑘 > 𝜀𝑍1
∑ 𝑎𝑖𝑖∈𝐼  and 𝑘 < 𝐾, set 𝑘 =  𝑘 + 1 and go to Step 3; otherwise, 

go to Step 5.  

For M4, if 𝑍3
𝑘−1 − 𝑍3

𝑘 > 𝜀𝑍3
 and 𝑘 < 𝐾, set 𝑘 =  𝑘 + 1 and go to Step 3; otherwise, go to 

Step 5.  

Step 5. End the solving procedure. 

All models and the solving process are written in Python scripts, and the models are solved 

using the commercial optimization software Gurobi (version 9.0.2). The most widely used 

commercial GIS software, ArcGIS (version 10.7), is used for all spatial data processing, 

management, and result visualization. 

5.4. Empirical Study 

5.4.1. Study area and data 

Based on the locations of current 79 EMS stations and population distribution in Wuhan, 

currently, only 71.4% of residents are within the standards of service coverages – 10 min for 

urban areas and 12 min for rural districts. Meanwhile, urban-rural inequalities are evident. 

For example, 94.9% of urban residents are within the urban service coverage standard, while 

only 32.2% of rural people are within the rural coverage standard. Considering the dramatic 

climbed demands for public health services, the frequency of the pandemic and uncertainty 

in the duration, the Wuhan Municipal Health Commission planned to start constructing six 

new EMS stations at the end of 2022. In addition to increasing the overall covered population 
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within the service standards, one of the primary objectives is to reduce urban-rural disparity 

(Wuhan Government, 2021). 

The dataset employed consists of current EMS stations, potential candidate locations for new 

stations, and the spatial distribution of population in Wuhan (see Figure 5-1). Based on the 

strong collaborations between EMS system and hospitals in Wuhan, the candidate sites for 

new EMS stations includes the levels II and III hospitals in the urban area and all levels of 

hospitals in the rural area. Same to chapter 3, the population data are obtained from the 

Geographical Information Monitoring Could Platform (http://www.dsac.cn/), which offers 

the population census dataset at the finest scale (Shequs) currently available. This chapter 

uses centroids of shequs to represent the demand locations. In total 3,493 shequs within the 

study area are adopted as the demand. 

http://www.dsac.cn/
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Figure 5-1. Spatial distributions of population and EMS stations.
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5.4.2. Model settings  

Two scenarios are considered here: Scenario 1 assumes keeping all existing EMS stations in 

the system and Scenario 2 allows relocating some of the existing stations. Both scenarios are 

helpful to the planning practice of public services such as EMS systems where the spatial 

configuration of facilities can be optimized.   

Scenario 1 aims to select optimal sites for six new EMS stations to be built, assuming that 

the existing 79 EMS stations remain open. This is a common approach for planning new 

EMS stations particularly during the short-term EMS planning due to financial and 

governance constraints.  

Scenario 2 considers the relocation problem of EMS stations, under the assumption that at 

least 90% of existing stations remain open at existing places. In other words, up to eight 

existing EMS stations can be relocated to other places (that is, 71 ≤ ∑ 𝑋𝑗𝑗∈Φ = 𝑝 ≤ 79). 

This scenario is to meet the dynamic changing spatial distribution of underlying demand. 

With the urbanization process in China, especially in large cities such as Wuhan, the 

increasing number of people are shifting to new towns in the suburbs due to the new working 

opportunities and more affordable housing prices. This scenario provides a general blueprint 

for long-term EMS planning.  

In terms of the parameters for solution procedure, the maximum number of iterations (K) is 

defined as 100; the percent of total covered demand to be increased in each iteration (𝜀1) is 

defined as 0.2%; the percent of covered rural demand to be increased in each iteration (𝜀𝑟) 

enforces to 0.01%; threshold of the objective value difference in two consecutive iterations 

for (5.1) –(𝜀𝑍1
)and (5.3) – (𝜀𝑍3

) are defined as 0.2% and 0.01%, respectively. For the 

empirical study, the four models are solved using Gurobi (version 9.1.1) on a desktop with 

an Intel processor 3.80 GHz and 32GB RAM. The technique procedure is the same as Figure 

4-5. Codes for all models in this chapter with testing data can be found via the following link 

(https://github.com/WeicongLuo/PhD_thesis_Chapter_5).  

https://github.com/WeicongLuo/PhD_thesis_Chapter_5
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Table 5-2. Parameter values for the empirical study. 

Parameter Value Parameter Value 

𝑝 85  𝜀1 0.2% 

𝑞 
79 (Scenario 1) 

71-79 (Scenario 2) 
𝜀𝑟 0.01% 

𝑆𝑢 10 min 𝜀𝑍1
 0.2% 

𝑆𝑟 12 min 𝜀𝑍3
 0.01% 

𝐾 100   

5.4.3. Results 

For Scenario 1, the computational time is 2-3 seconds for both single-objective models and 

about 1-5 mins for the Pareto-solutions of the two bi-objective models. For Scenario 2, the 

computational time is 10 - 60 seconds for both single-objective models and about 3-10 min 

for the Pareto-solutions of both multi-objective models. The total computational time is 

about 1 hour for the model parameter values in Table 5-2. 

(1) Scenario 1 

Results from single-objective models 

The selected locations for new EMS stations for the optimal solutions for two single-

objective models (M1 and M2) are depicted by Figure 5-2. M1 intends to maximize the total 

number of covered demands with locating six new EMS stations. M1 suggests that only one 

EMS station is located in the urban district (the southwest of Hongshan), and other five new 

EMS stations are distributed in rural districts. Among those rural districts, two EMS stations 

are located in the north of Jiangxia. One new EMS station is located in each of the east of 

Hannan, and the central of Caidian, and the southeast of Dongxihu. As a result, the total 

number of 7,820,914 people can be covered by the urban/rural service coverage, with an 

increase of 635,692 population compared with the current service provision. When 

considering the covered population ratio, 77.63% of the total population can be covered by 

the urban/rural service coverage, with an increase of 6.2% compared with the current service 

provision. In particular, 96.6% of urban residents could be found by the ambulance within 

10 min, and the ambulance could reach 46.1% of rural people within 12 min, with an increase 

of 1.7% and 13.9% compared with the existing EMS provision respectively.     
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M2 is to improve EMS accessibility for the uncovered population in rural areas. It is not 

surprising that all six new EMS stations are located in rural districts (see Figure 5-2). 

Specifically, three selected locations are located in the north, the west and the east of 

Huangpi. One EMS station is located in the southeast of Dongxihu. The rest of two EMS 

stations are located in the east of Hannan and the middle of Caidian, respectively, which are 

coincide with the selected sites of M1. Compared with the existing provision, the  𝑍2 value 

decreases from 8.2E+7 to 5.9E+7 min, with a reduction rate of 28.2%. If considering the 

average travel time (ATT) – computed as the 𝑍2 value divided by the total uncovered rural 

population (i.e., 𝑍2/ ∑ ∑ 𝑎𝑖𝑌𝑖𝑗𝑟𝑖𝑗∉Ω𝑖𝑖∈𝐼 ), the value decreases from 34.3 min (current service 

deployment) to 28.5 min, which is still 16.5 min longer than the service standard in the rural 

region.  
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Figure 5-2. Selected sites for new EMS stations. 
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Results from bi-objective models 

Figure 5-3 depicts the Pareto-optimal solutions of M3, with data labels representing the order 

of the computed solutions. In total, nine solutions are computed, where the initial obtained 

solution (labelled by “1”) is the same as that of M2 and the last solution (labelled by “9”) is 

the same as that of M1. It serves to show that the range of the Z2 value is between 5.91E+07 

and 6.95E+07, and the range of the ATT in the uncovered rural areas is between 28.5 and 

34.5 min. The difference between the highest and lowest values are 1.04E+07 min for the 

𝑍2 value, and 6.0 min for the ATT in the uncovered rural areas, showing a largely difference 

from the two optimal solutions. Meanwhile, the difference between the highest and 

lowest 𝑍1 values is 1.56%, and therefore the reduction in the 𝑍2 value significantly impacts 

EMS overall coverage. In detail, the rise in total covered population ratio (𝑍1) follows the 

increase in the 𝑍2  value and the ATT in uncovered rural areas. In other words, the 

improvement of EMS efficiency is at the cost of equality between urban and rural settings, 

especially in sparsely populated areas. Specifically, the initial solution from M2 results in 

the smallest 𝑍2 value (5.91E+07 min) and the smallest AAT value (28.5 min), but it reaches 

the smallest proportion of the covered population, 76.18%. On the contrary, the 9th solution 

ensures the largest 𝑍2 value (6.95E+07 min) and the highest ATT value (34.5 min), resulting 

in the highest proportion of the total covered population, 77.74%. 𝑍2  and ATT values 

increase slightly between the 1st and 4th solutions. Since the four iterations (i.e., from the 5th 

solution), the values of 𝑍2 and ATT values sharper increase than previous results. To the 8th 

solution, the 𝑍2 value increases by 1.42E+07 min and ATT raise by 5.9 min compared to 

their minimum levels. From the 8th -9th solution, Z2 and ATT values increase stable again at 

the last iteration, increasing by 0.015E+07 min for the Z2 value and 0.1 min for the ATT. 

Meanwhile, the rise of the total covered population rate is relatively stable, at 0.2% - 0.4% 

for each iteration. 
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Figure 5-3. Variations of total covered population ( 𝑍1 ) and service accessibility for 

uncovered rural population (𝑍2). 

Figure 5-4 shows the spatial locations of all Pareto-optimal solutions of M3. Although nine 

solutions are obtained, only 14 unique locations for new EMS stations are contained in the 

solution set as some locations are included in multiple solutions. Again, the labels near to 

the selected locations represent the number of solutions. For instance, one EMS station 

located in the east of Hannan district is included all solutions from one to nine. In detail, 

most selected locations are distributed in rural districts; only one selected site (belonging to 

Solution 9, i.e., the solution of M1) is in the urban area. Six selected locations are near the 

urban-rural boundary (three in the north of Jiangxia, two in the east of Dongxihu, and one in 

the south of Huangpi). Among rural districts, the most selected EMS locations (i.e., four) 

are distributed in Huangpi. Besides, three selected locations are located in the north of 

Jiangxia. Two selected locations are located in the middle of Caidian, and two selected 

locations are distributed in the east of Dongxihu. One selected location is located in the east 

of Hannan, and the last selected location is sited in the west boundary of Xinzhou. Notably, 

only one site is included in all Pareto-optimal solutions, which is located in the east boundary 

of Hannan. One selected location in the north of Jiangxia is included in six Pareto-optimal 

solutions (2nd, 4th-9th Solutions), ranked the second highest. The selected location is located 

in the east of Dongxihu, which is also included in six Pareto-optimal solutions (1st-4th, 6th-
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7th Solutions). Five selected locations are only included in one solution, and three of them 

are near to other selected locations. For example, one selected location in the Caidian is only 

included in the 6th Pareto-optimal solution. However, it is very close to another selected 

location on the eastern side.  

 

 

Figure 5-4. Selected sites for new EMS stations for M3. 
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According to Figure 5-5, four Pareto-optimal solutions are computed by M4, which aims to 

reduce urban-rural inequality in EMS coverage. In addition to solutions of two objectives – 

the total covered population in Wuhan (𝑍1, converted to percentages) and the difference in 

covered population ratios between urban and rural areas (𝑍3 ), two additional types of 

solutions are presented: the trade-off between urban covered population (𝑊𝑢) and rural 

covered population (𝑊𝑟 ), respectively. It serves to show that the range of the covered 

population ratio (𝑍1) is between 77.37% and 77.74%, with a 0.37% difference. the range of 

the 𝑍3 value is between 47.49% and 50.50%, with a 3.01% difference (𝑍1). Therefore, a 

reduction in the Z3 value significantly impacts on EMS overall coverage. According to the 

1st solution for M4, the urban covered ratio is 96.63% and the rural covered population ratio 

is 46.13%, resulting in the highest urban-rural disparity in ratio of covered population (𝑍3), 

50.5% and the largest 𝑍1 value (77.74%). The final solution (4th solution) finds the smallest 

urban-rural difference in the covered population ratio (47.65%), and also the smallest service 

coverage ratio (77.37%). At the first iteration (1st -2nd Solutions), the values of 𝑍1 and 𝑍3 

decreased by 0.05% and 0.93%. For the second iteration (2nd Solution -3rd Solution), the 

values of 𝑍1 and 𝑍3 reduced by 0.16% and 1.82% compared to the initial values. For the 

third iteration (3rd Solution - 4th Solution), the values of 𝑍1 and 𝑍3 dropped by 0.37% and 

3.01% compared to values from the initial values. When considering the trend of the results, 

the decrease in the 𝑍3 value follows the reduction in the overall service coverage in the entire 

city, which is similar to the previous findings. In other words, reducing urban-rural 

inequality in urban-rural covered demand ratios is also at the cost of the decline of EMS 

efficiency. 
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Figure 5-5. Variations of total covered population (𝑍1) and urban-rural inequality in service 

coverage (𝑍3). 

The spatial locations of four Pareto-solutions for M4 are described in Figure 5-6. It is clear 

to observe that ten unique selected sites are included in the four solutions, with the labels 

next to the selected sites depicting the solutions. In detail, it is clear to see that most selected 

locations are distributed in rural districts; only two selected sites are located in the urban 

area, which are all located in the south of Hongshan district (i.e., 1st and 2nd Solutions). Seven 

selected locations are near the urban-rural boundary (four in the north of Jiangxia, one in the 

east of Dongxihu, one in the south of Huangpi, one in the south of Hongshan), which can 

share the coverages for urban and rural populations. Among the districts, four selected sites 

are located in the north of Jiangxia. Two selected locations are sited in the south and the 

southwest of Hongshan. One EMS station is sited in the east of Hannan. The central of 

Caidian has one selected EMS station. A selected site is located in the east of Dongxihu, and 

a selected site is located in the south of Huangpi. In detail, four selected sites are included in 

all Pareto optimal solutions, which are distributed in the east of Hannan, the middle of 

Caidian, the east of Dongxihu, and the north of Jiangxia, respectively. Two selected sites are 

involved in two solutions, which are located in the south of Huangpi and the north of Jiangxia, 

respectively. Four sites are only included in one solution, and all of them are close to other 

potential selected EMS sites. In fact, eight of ten selected locations for M4 are depicted in 
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the selected locations for M3 as well. For example, the selected locations in the middle of 

Caidian and the east of Hannan are included in all solutions of M3 and M4.  

Meanwhile, the 4th solution is the result of the minimal Z3 value. According to Figure 5-6, it 

is not surprising that all the six selected sites are located in rural districts. Specifically, two 

EMS stations are located in the north of Jiangxia. One EMS station is located in the east of 

Hannan, and the middle of Caidian has one EMS station. the other two EMS stations are 

located in the east of Dongxihu, and the south of Huangpi, respectively. Meanwhile, the 4th 

Solution has the minimal Z3 value. It is not surprising that all the six selected sites are located 

in rural districts (see Figure 5-6). Specifically, two EMS stations are located in the north of 

Jiangxia. One EMS station is located in each of the east of Hannan, and the middle of Caidian. 

the other two EMS stations are located in the east of Dongxihu, and the south of Huangpi, 

respectively. 

 

Figure 5-6. Selected sites for new EMS stations for M4. 
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(2) Scenario 2 

Results from single-objective models 

The selected locations for closed and new EMS stations for M1, and M2 have been depicted 

in Figure 5-7. To the total number of covered people (𝑍1), M1 suggests that 71 existing EMS 

stations should remain open (that is, q=71) because the model finds 8 existing EMS stations 

to be closed and relocated to other places. Specifically, one EMS station located in the 

middle of Wuchang should be closed. Three EMS stations in Jiangan should be moved to 

other places. Then, two stations in the south of Jianghan and one station in the north of 

Hanyang should be moved to other places (see Figure 5-7 (a)). On the contrary, the optimized 

locations are depicted in Figure 5-7 (b), which includes six new EMS stations and eight 

relocated stations. In detail, three optimized locations are located in urban areas, including 

one in the middle of Qinshan and two locations in the south and west of Hongshan. Among 

rural areas, two optimized stations are located in the north of Jiangxia. One optimized site is 

distributed in the east of Hannan, and two optimized EMS station is located in the middle 

and northeast of Caidian. Dongxihu has two selected locations that are located on the 

southwestern side and the eastern side, respectively. Three EMS stations are distributed in 

the south of Huangpi, and one EMS station is located in the west of Xinzhou. As a result, 

the total number of 8,223,025 population can be covered by the urban/rural service coverage, 

with the 1,037,803 more-population compared with the current service provision. When 

considering the covered population ratio, 80.5% of the total population can be covered by 

the urban/rural service coverage, increasing 9.1% compared with the current service 

provision. After the optimization, 98.1% of urban residents could be served by ambulances 

within 10 min, and 51.2% of rural people could reach ambulances within 12 min, with an 

increase of 3.2% and 19.0% compared with the existing EMS provision respectively.     

To minimize the TWT in uncovered rural areas (𝑍2), M2 suggests that eight existing EMS 

stations should be closed and moved to other places, that is p = 71, and there are 14 optimized 

locations for new and relocated stations. All relocated locations are distributed in urban 

districts (see Figure 5-7 (a)). In general, one EMS station to be closed is located in the middle 

of Jiangxia, and the two stations to be closed in the north of Jiangxia. Then, two stations to 

be closed are located in the middle of Wuchang, and two locations to be closed are 

distributed in the middle of Jianghan. One EMS station to be closed is located in the 

southeast of Qiaokou. In contrast, the optimized locations of 14 stations (i.e., new and 

relocated EMS stations) are depicted in Figure 5-7 (b). In detail, none of the optimized 



 

160 

 

locations is located in urban districts, and all locations are distributed in rural districts. Two 

optimized locations are located in the north and the west of Jiangxia, respectively. One EMS 

station is located in the east of Hannan. Two optimized sites are distributed in the middle, 

and the west of Caidian, and two sites are located in the east and the southwest of Dongxihu, 

respectively. Four optimized locations are distributed in the Huangpi, where three are on the 

eastern side, and one is located on the western side. Three EMS stations are distributed in 

the north, the northeast and the south of Xinzhou, respectively. As a result, the 𝑍2 value 

decreases from 82,345,572 min (existing EMS provision) to 45,358,098 min, with a 

reduction rate of 44.9 %. When considering the ATT in the uncovered rural areas, the value 

decreases from 34.3 min (existing EMS provision) to 19 min. However, it is still 6.0 min 

longer than the service standard in the rural region.
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Figure 5-7. Selected EMS locations for M1 and M2 (a) stations to be closed; (b) new/relocated stations. 
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Results from bi-objective models 

Twelve Pareto-optimal solutions of M3 are found for M3 (see Figure 5-8) with labels 

representing the order of the computed solutions. The first solution (labelled by 1) is the 

same as that of M2 and the final solution (labelled by 12) is the same as that of M1. All 

Pareto-optimal solutions from M3 have 71 existing EMS stations that remain open (that is, 

q=71) because every solution finds 8 existing EMS stations to be closed and relocated to 

other places. As same as the results in Scenario 1, the number of covered population (𝑍1) is 

derived to the ratio of total covered population in the entire city. It serves to show that the 

range of 𝑍2 values is between 4.53E+07 and 6.13E+07, and the range of the ATT in the 

uncovered rural areas is between 24.18 and 33.3 min. The difference between the highest - 

lowest values of 𝑍2 and the ATT are 1.60E+07 min and 9.12 min, respectively, showing a 

significant disparity between accessibility outcomes from the two Pareto-optimal solutions. 

Meanwhile, the range of the total covered population ratio is between 78.1% and 80.5%, 

with the 2.4% difference. Obviously, the first solution from M3 reaches the lowest 𝑍2 value 

(4.51E+7 min) and the smallest ATT of the uncovered rural population (24.18 min). 

Meanwhile, it computes the lowest ratio of the total covered population (𝑍1), only 78.1%. In 

contrast, the 12th Solution ensures the highest 𝑍2 value (6.13E+07 min) as well as the highest 

ATT of the uncovered rural population (33.3 min). It also results in the highest proportion of 

the total covered population (80.5%). Hence, the rise in the covered population ratio (𝑍1) 

follows the increase in the 𝑍2 value as well as the ATT of the uncovered rural population. In 

other words, the improvement of EMS efficiency is at the cost of equality between urban 

and rural settings, especially in sparsely populated areas. Between the initial and 7th solutions, 

the Z2 and ATT values are steady growth, which increased by 0.19E+07 min and 1.75 min, 

respectively. Since the seven iterations (i.e., from the 8th Solution), Z2 and the ATT raise 

sharply than before. Up to the 11th Solution, values are decreased by 0.98E+07 min for Z2 

and 5.91 min for the ATT compared to the smallest values, respectively. At the last iteration, 

the values increase by 0.6E+07 min and 3.21 min for the 𝑍2  and ATT, respectively. 

Meanwhile, the rise of the total covered population rate is relatively stable, at 0.2% - 0.5% 

for each iteration. 
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Figure 5-8. Variations of total covered population (𝑍1) and accessibility for uncovered 

rural population (𝑍2). 

Figure 5-9 shows spatial locations of all Pareto-optimal solutions of M3. Although the M3 

contains twelve solutions, there are 27 unique locations for closed/relocated EMS stations 

and 25 unique locations for new EMS stations. All solutions have eight existing stations 

should be closed/relocated. On the one hand, all stations to be closed are distributed in urban 

districts. In detail, Hongshan has the most EMS locations to be closed (i.e., nine), followed 

by Wuchang, which has five locations to be closed. Four selected sites to be closed are 

located in Jiangan. Jianghan has three selected sites to be closed. Each of Hanyang, Qiaokou 

have two selected sites to be closed. The highlighted locations represent the selected sites 

included in more than six solutions. In other words, those highlighted sites are highly 

suggested to close and relocate to other places. The three highlighted locations are sited in 

the middle of Qiaokou, the north of Hongshan, and the west of Jiangan (see Figure 5-9 (a)). 

In general, those highlighted stations to be closed are extremely near to many EMS stations 

nearby, and they responsibility can be undertaken by many stations nearby.  

On the other hand, Figure 5-9 (b) shows the locations of new/relocated EMS stations. The 

labels next to the selected locations represent the number of solutions that belongs to each 

location. For instance, the selected location located in the east of Hannan district is included 
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all solutions from one to twelve. In detail, it is clear to see (Figure 5-8 (b)) that most selected 

locations are distributed in rural districts; only three selected sites are located in urban 

districts (i.e., two in the south, the southwest of Hongshan, and one in the middle of Qinshan). 

Eight selected locations are near the urban-rural boundary (three in the north of Jiangxia; 

one in the south of Hongshan, one in the east of Caidian, one in the west of Dongxihu, and 

two in the south of Huangpi). Among those rural districts, the most selected EMS locations 

(i.e., seven) are distributed in Huangpi, with four sites in the north, and three in the south. 

Besides, five selected locations are located in Xinzhou, mainly distributed near to boundary. 

Then, four selected locations are located in Jiangxia, distributed on the north and west sides. 

Three selected locations are located in the west, the middle and the east of Caidian, and two 

stations are located in the south and east of Dongxihu. Further, one selected location is 

located in the east of Hannan. Particularly, four selected sites are included in all Pareto-

optimal solutions, which are located in the east of Hannan, the middle of Caidian, the 

southwest and the east of Dongxihu, respectively. One selected site in the north of Jiangxia 

is included in eleven solutions (Solutions 1-5; 7-12), ranked the second highest. Three 

selected locations are included in ten solutions located in the north of Jiangxia (Solutions 3-

12), the west and the east of Huangpi (Solutions 1-10), respectively. In contrast, four selected 

locations are included in one solution, located in the north and south of Huangpi, and the 

north of Jiangxia. It is worth noting that three selected locations from the 1st solution (M2) 

are only included in one solution.
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Figure 5-9. Selected EMS locations for M3 (a) stations to be closed (b) new/relocated stations. 
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Nine Pareto-optimal solutions are found for M4 (see Figure 5-10) with labels representing 

the order of the computed solutions. All Pareto-optimal solutions from M4 have 71 existing 

EMS stations that remain open (that is, q=71) because every solution finds 8 existing EMS 

stations to be closed and relocated to other places. The first solution (labelled by 1) is the 

same as that of M1, and the final solution (labelled by 9) is the result for minimizing 𝑍3. 

Like the results in the Scenario 1, the covered population ratio (𝑍1) is derived from the total 

covered population in the entire city. It shows that the range of urban population ratio is 

between 82.98% and 98.06%. The highest - lowest value of the rural population ratio is 

between 51.18% and 53.44%, with a 2.26% of difference. The range of the Z1 value is from 

71.91% to 80.05%. The range of the Z3 value is between 29.50% and 46.90%. The set of 

solutions show a notable difference in the EMS overall coverage. The 1st Solution from M4 

reaches the largest 𝑍3 value (46.90%), the smallest rural covered ratio (𝑊𝑟 – 51.18%) and 

the highest urban covered ratio (𝑊𝑢  – 98.06%). However, it computes the highest ratio of 

the total covered population (𝑍1), 80.5%. In contrast, the 9th Solution results in the lowest 

𝑍3  value (29.51%), the highest rural covered ratio (Wr – 53.44%) and the lowest urban 

covered ratio (𝑊𝑢  – 82.95%). Meanwhile, the solution obtains the lowest ratio of the total 

covered population (𝑍1), 71.91%. It is obvious that the reduction of the 𝑍3 value follows the 

decrease in the 𝑍1 value. In other words, the improvement of EMS efficiency is at the cost 

of equality between urban and rural settings. The Z1  value decreases from 80.5% (1st 

Solution) to 79.6% (8th Solution), with the 0.9% of difference. The 𝑍3 value reduces from 

46.9% (1st Solution) to 42.4% (8th Solution), with the 4.5% difference. Meanwhile, the value 

of 𝑊𝑢 decreases from 98.06% to 95.51%, and the value of 𝑊𝑟 increases from 51.18% to 

53.44%. During the last iteration, the values of Z1 and Z3 drop down dramatically. The 𝑍1 

value decreases from 79.6% (8th Solution) to 71.9% (9th Solution), with the 7.7% difference. 

The 𝑍3  value reduces from 42.4% (8th Solution) to 29.5% (9th Solution), with a 12.9% 

difference. 
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Figure 5-10. Variations of total covered population (𝑍1) and urban-rural inequality in service coverage (𝑍3). 
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Figure 5-11 shows the spatial locations of nine Pareto-optimal solutions for M4. Although 

the M4 computes various solutions, there are 25 common locations for EMS stations that 

should be closed or moved, and 19 unique locations for new EMS stations. Each of solution 

has eight existing EMS stations should be closed/relocated. On the one hand, most stations 

to be closed/relocated are distributed in urban districts (see Figure 5-11 (a)). Only two EMS 

stations to be closed are located in rural districts, in the middle of Huangpi and the west of 

Caidian, respectively. In detail, each of Wuchang and Hongshan has six EMS stations to be 

closed, which are the most among all districts. Besides, four EMS stations to be closed are 

located in Jianghan, ranked the second highest. Jiangan has three EMS stations to be closed, 

followed by Qinshan and Qiaokou, which each have two EMS stations to be closed. In 

addition, we find seven highlighted EMS stations to be closed, which are distributed in the 

middle and the north of Hongshan, the middle of Wuchang, the west of Qinshan, the east of 

Jianghan, and the south of Qiaokou, the north of Hanyang and the east of Caidian, 

respectively. The highlighted locations mean that those sites are included in more than six 

solutions. In other words, we highly suggest closing those highlighted EMS stations in the 

future.  

On the other hand, Figure 5-11 (b) shows the locations of new EMS stations, including the 

optimized locations of relocated EMS stations. The labels next to the selected locations 

represent the number of solutions that belongs to each location. For instance, the EMS station 

located in the east of Hannan district is included all solutions from one to nine. In detail, it 

is clear to see (Figure 5-11 (b)) that most new EMS stations are distributed in rural districts; 

only three selected sites are located in urban districts (i.e., two in the south of Hongshan, and 

one in the middle of Qinshan). Eight selected locations are near the urban-rural boundary 

(three in the north of Jiangxia; one in the south of Hongshan, one in the east of Caidian, one 

in the west of Dongxihu, and two in the south of Huangpi). Among those rural districts, the 

most selected EMS locations (i.e., five) are distributed in Huangpi, with one site in the 

eastern area, two in the southern part, and two in the western area. Besides, three selected 

EMS stations are located in the north, east and middle of Xinzhou. Then, three selected 

locations are located in the north of Jiangxia. Two selected EMS stations are located in the 

middle and the east of Caidian. One EMS station is located in the east of Hannan. Two 

stations are located in the south and the east of Dongxihu. Mainly, nine selected sites are 

included in all Pareto-optimal solutions, which are distributed in the north of Jiangxia, the 

east of Hannan, the middle of Caidian, the south and east of Dongxihu, the south of Huangpi 
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and the west of Xinzhou, respectively. One selected site is included in eight solutions, located 

in the north of Jiangxia. 

The last solution (9th Solution) is in relation to the minimal value of 𝑍3. In detail, one EMS 

station in each of Wuchang, Jiangan and Jianghan should be relocated to other places. Three 

EMS stations are located in Qiaokou should be closed. Two existing EMS stations in 

Hanyang should be closed. In contrast, the locations of 14 new/relocated stations are all 

located in rural districts. Specifically, two new EMS stations are located in the north of 

Jiangxia, and one station is located in the west of Hannan. The central of Caidian has one 

EMS station. Two new EMS locations are distributed in the east and south of Dongxihu, 

respectively. Huangpi has four selected locations, which are located in the south, the middle 

and the west sides. Then, four selected locations are located in the west, the middle, the east 

and the north of Xinzhou, respectively. 
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Figure 5-11. Selected EMS locations for M4 (a) stations to be closed (b) new/relocated stations.
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5.5. Discussion 

This chapter proposes two bi-objective optimization models for locating EMS stations, 

aiming to improve equalities in EMS accessibility and service coverage between urban and 

rural areas. Instead of seeking the most equitable solution, bi-objective formulations are 

usually necessary for finding the trade-off between service provision and equality. In general, 

service efficiency and inequality objectives are usually conflicting with each other. For 

instance, in this study, optimizing objective (5.1) tends to locate EMS stations in densely 

populated areas (e.g., urban areas), leaving sparsely populated sites (e.g., rural areas) with 

worse accessibility or service coverage. On the other hand, optimizing the inequality 

measures alone, objective (5.2) or (5.3), often contradicts the objective of improving the 

service quality. An extreme example is that EMS stations are sited infinitely further away 

from the city, so all demands in urban and rural areas have the same spatial accessibility. 

The trade-offs between two or multi conflicting objectives are often explored by the Pareto-

optimal solutions.  

Because of the time-sensitive nature of EMS and other emergency services, the standard of 

service coverage can be defined as travel distance or travel time. At present, service 

coverages are commonly adopted in facility location modelling of EMS stations and often 

the maximal service coverage is perused. However, residents living further away from the 

nearest stations than the coverage standard will also need to use EMS or other emergency 

services. A common approach to improving EMS accessibility in relation to those uncovered 

population is to reduce the total weighted distance/travel time as much as possible with the 

available facilities (e.g., Church et al., 1991). This is applied in objective (5.2) in this 

research. Unlike Church et al. (1991), which focuses on accessibility for the uncovered 

people in a whole study area, only uncovered rural people are considered in this study to 

migrate inequality in EMS accessibility between urban and rural areas. The developed 

models are also different from the model proposed by Chanta et al. (2014) that used the 

objective of p-center problem (i.e., minimizing the longest travel time between any 

uncovered demand location and its closest facility). Objective (5.2) in this study considers 

all uncovered rural people rather than only the worst-off individual users/communities 

involved (i.e., the shequ/patient with the poorest accessibility to EMS), which can better 

represent the nature of equality.  

Different from objective (5.2) that only considers EMS accessibility for the uncovered rural 

population, objective (5.3) involves EMS inequality in urban-rural service coverages 
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explicitly. It is represented by the disparity of achieved levels of the ratios of the covered 

population in urban/ rural area (i.e., service provisions). As the EMS mortality rate in rural 

areas is usually higher than that in urban areas (do Nascimento Silva and Padeiro, 2020), a 

frequently used approach in optimizing EMS facilities when concerns urban-rural inequality 

is to improve the service coverage for rural areas (e.g., McLay and Mayorga, 2013; Chanta 

et al., 2014). Objective (5.3) gives a novel inequality objective to consider urban-rural 

service coverages, which can be employed in spatial optimization in EMS facilities. 

Meanwhile, an acceptable level of urban-rural inequality in service coverage (i.e., 𝑍3) can 

be reached based on the solution procedure with a pre-defined parameter 𝜀𝑍3
. Given the 

opposite changing directions of 𝑊𝑢 and 𝑊𝑟, an equivalent formulation of objective (5.3) can 

be derived by minimizing the ratio of uncovered population in rural areas. Compared with 

previous inequalities studies (e.g., Chanta et al.,2014; McLay and Mayorga,2013) that aim 

to minimize the number of uncovered rural demand zones or population, objective (5.3) 

arguably concerns the whole demand in the study areas as well as their equality levels. 

Different from many studies devoted to finding the most equitable solution (e.g., Lindner-

Dutton et al. 1991; Zheng et al. 2013; Kim & Jung, 2017), this chapter intends to seek a 

trade-off to balance EMS efficiency and equities in EMS accessibility and service coverage 

between urban and rural areas, while ensuring that there is satisfactory EMS 

efficiency. According to the results, higher equitable solutions often imply lower service 

efficiency. For example, in scenario 2, the most equitable solution (9th solution) of urban-

rural coverage ratio results in 71.9% of the total covered population, with a 7.7% decrease 

compared to the 8th Solution’s result. The improvement in EMS fairness is at the expense of 

a decrease in EMS efficiency, and there is a common way to reduce such inequalities by 

finding a trade-off point to balance efficiency and equality instead of the most equitable 

solution.  

The proposed models in this chapter strongly connect with chapter 3, which found the 

inequality in EMS accessibility between urban and rural areas. Recently, many new towns 

have been developed in rural districts of Wuhan, such as the Economic development zone in 

Hannan. Due to more job opportunities and affordable housing prices, the increasingly 

number of people are moving to suburban and rural areas, resulting in a dramatic increase 

the in demand for medical care and bringing much pressure on the local EMS system. In 

addition, due to the COVID-19 pandemic, in particular the Omicron variant, there is likely 

to be an exponential increase in the number of potential infections requiring EMS services 

in the coming years, which puts much potential stress on the local healthcare system, 
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especially in large cities with tens of millions of people. Although EMS has played a crucial 

role in the pandemic response, it also suffered tremendous pressure due to limited capacity 

and increasingly amount of potential demand. Under the conditions of limited resources and 

the increase in EMS demands, the adjustment of existing EMS locations and seeking 

optimized sites for new EMS stations are common approaches that are necessary, especially 

in the situation where urban-rural inequalities in EMS accessibility and service coverage 

have been clearly confirmed. Thus, the models proposed in this study can be a future 

approach to help balance the relationship between EMS efficiency and equality, especially 

during the fast urbanization and pandemic periods. 

Further, this research has significant policy implications. First, two scenarios employed in 

this study can provide different advice to healthcare planners and local authorities. Scenario 

1 assumes that all existing EMS stations are open, thereby providing the decision support in 

relation to the optimal locations for new EMS stations. It gives the most realistic suggestions 

for decision-makers, that is, how to locate new stations on the existing basis. Scenario 2 is 

to optimize the spatial layout of EMS facilities under the assumption that up to 10% of 

existing EMS stations (the maximum number of 8 stations) can be relocated to other places. 

It provides an additional view on which existing stations are suitable to relocate in order to 

achieve the planning goals. Second, given the existing spatial configuration of EMS stations, 

service coverage and accessibility to EMS stations in seven urban districts are much better 

than those in rural areas. To reduce the urban-rural inequalities in EMS accessibility, M3 

and M4 in both scenarios suggest that the one new EMS station should be located in the east 

of Hannan. Then, M3 suggests one EMS station should be located in the middle of Caidian, 

but M4 advises that the north of Jiangxia needs a new EMS station in both scenarios. Besides, 

M3 and M4 in Scenario 2 suggest some existing EMS stations in urban districts can be 

relocated to the rural areas in order to improve such inequalities. For instance, one station in 

the north of Hongshan should be moved to rural areas. It is worth noting that an EMS station 

in the middle of Huangpi needs to move to other areas because its coverage overlays another 

EMS station nearby. Finally, the Pareto-optimal solutions in various scenarios can help 

decision-makers explore trade-offs between service efficiency and urban-rural equality. In 

Scenario 1, to reduce urban-rural inequalities in EMS accessibility, Figure 5-3 shows that 

the 𝑍1 value of the 7th Solution is 0.94% lower than that of the maximal value, but values of 

𝑍2 and the ATT in the uncovered rural population sharply decrease. It means a small decrease 

in EMS efficiency can result in a significant improvement of the equality in accessibility in 

the 7th Solution. Hence, the 7th Solution can be often preferable in practice. To reduce urban-
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rural inequalities in EMS accessibility, Figure 5-5 shows that the 4th Solution is a reasonable 

choice for decision-makers, which can reduce the urban-rural disparity in covered ratios, 

meanwhile it keeps the covered ratio of the entire city at an acceptable level. In Scenario 2, 

to reduce urban-rural inequalities in EMS accessibility, Figure 5-8 shows that the 𝑍1 value 

of the 10th Solution is often preferable in practice because the values of 𝑍2 and the ATT in 

the uncovered rural population have a notable reduction than the last solution, but still 

maintains the good overall coverage ( 𝑍1 >80%). To reduce urban-rural inequalities in the 

service coverage, the 8th Solution might be a suitable option for decision-makers. It is 

because this solution has much smaller urban-rural disparity in the service coverage than the 

9th Solution, but the covered population ratio of the entire city at an acceptable level 

(𝑍1 >95%).  

This work presented in this chapter has several limitations. The first limitation concerns the 

specification of candidate locations for new EMS stations and demand locations since the 

new EMS stations may be sited in other places than the existing candidate location. Moreover, 

additional weight can be assigned to the demand points to represent the proportions of 

vulnerable people (e.g., with heart disease, ageing population, shequs) who are more 

possibly EMS calls, better reflecting the spatial variations of EMS in need. Again, the study 

requires more accurate dataset, such as historical EMS data related to personal health 

information or specialized disease records because the population census cannot accurately 

represent their spatial distribution. A further limitation is that fixed or static travel times are 

used to represent service standards and travel costs for urban and rural areas. In practice, the 

travel time can vary within the response time threshold (e.g., 10 to 12 min in the case of 

Wuhan) due to various periods, traffic conditions, road types and weather. Historical 

ambulance trajectories can improve the distance and travel-time estimations.  

Based on the work presented here, two extensions are possible. An obvious extension is to 

increase the number of new EMS stations to be sited. In both scenarios, the ambulance 

coverage still does not cover the significant numbers of potential demands. Hence, it is worth 

exploring how much more population can be served by siting additional stations based on 

existing candidate locations or other new sites by increasing the number of EMS facilities to 

be built and then solving the models using the same procedure.  

Another extension would be locating some EMS stations in other places rather than existing 

candidate locations, cooperating with land-use restrictions and development plans in the case 

study area. Moreover, it is necessary to explore the optimal spatial layout of locations based 

on other inequality indicators because there is a lack of widely acceptable consensus on 
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measures of inequalities related to EMS systems. Furthermore, factors like facility 

availability and maximal service capacity can be extended in further studies. 

5.6. Chapter Summary 

In this chapter, two bi-objective optimization models are developed to reduce urban-rural 

inequalities in EMS accessibility and service coverage, respectively. This is achieved 

through two alternative inequality measures that are incorporated into Objectives (5.2) and 

(5.3). The former intends to minimize the total weighted travel time of uncovered rural 

population (i.e., accessibility), and the latter reduces the urban-rural disparity in achieved 

coverage level. Two bi-objective models have a common objective (5.1), which maximizes 

the total covered population in the entire study area. The Pareto-optimal solutions of the two 

bi-objective models from the empirical study show various spatial configurations of the new 

stations and stations to be relocated, which demonstrate the trade-offs between the overall 

service provision and urban-rural inequalities. 

In both scenarios, the value of 𝑍1 increases with the values of 𝑍2 and 𝑍3. In other words, 

the improvement of EMS equalities in relation to accessibility and service coverage is often 

at the expense of decreases in overall service coverage. According to the results in Scenario 

1, when the value of 𝑍1 is at the highest level, the values of 𝑍2  and 𝑍3 are also located at the 

highest levels as well. In Scenario 2, if the value of 𝑍1 is at the highest level, there are the 

highest values of 𝑍2 and 𝑍3. The above finding is consistent with the previous findings that 

the improvement of EMS equality is usually at the cost of reductions in the overall service 

coverage. 

Again, the major contribution of this study lies in the two ESM inequality measures, which 

are incorporated into spatial optimization models to reduce urban and rural inequality in 

EMS. The empirical results suggest that the improvement of service accessibility for 

uncovered rural people is at the expense of a decrease in the total covered population. Also, 

reducing the urban-rural gap in achieved service level is at the cost of reduced coverage in 

the urban area and the entire city. The work presented in this paper can aid the planning 

practice of public services like EMS systems, where reducing urban-rural inequalities is an 

essential concern.
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Chapter 6 Discussion and Conclusions 

EMS is a crucial component of the public healthcare system, which provides emergency 

medical care and hospital transportation service to patients with severe illnesses or injuries. 

Currently, many EMS systems face two common challenges: insufficient EMS provision and 

inequalities in delivering EMS. The main focus of the thesis is to improve service efficiency 

and equality of EMS systems using GIS-based spatial analysis and spatial optimization. 

Empirical studies are carried out using the data from Wuhan, China. 

Specifically, three objectives are achieved in this research:  

• Research objective 1: to measure spatiotemporal accessibility to EMS with GIS-

based spatial analyses. 

• Research objective 2: to improve EMS service coverage using spatial optimization 

approaches.  

• Research objective 3: to reduce regional inequality in EMS through spatial 

optimization approaches. 

These objectives were designed to expand the scope of knowledge and complement the 

existing literature by measuring potential spatiotemporal accessibility to EMS and 

optimizing EMS/healthcare facility location. 

According to the literature review, four research gaps are found. First, the majority of studies 

on EMS accessibility are based on fixed travel speed even if many studies have indicated 

that real-time traffic conditions can greatly affect EMS accessibility, especially during traffic 

peak hours. Second, most studies on EMS accessibility have only considered a one-way 

EMS trip from the facility to demand location, and vice versa. Although this is commonly 

the case for general healthcare-seeking behavior (e.g., primary care, general hospital), it is 

not suitable to seek EMS, which includes two related trips. The third limitation is that most 

spatial optimization research with regards to EMS only considers service coverage for one 

partial trip (e.g., Trip 1 or Trip 2). The final research gap is that most spatial optimization 

research consider EMS inequalities between nationwide, communities or individual users. 

However, rare of relevant studies have considered urban-rural inequalities in EMS even if 

such inequalities have been widely documented (e.g., Jennings et al., 2006; do Nascimento 

Silva and Padeiro, 2020). 
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This chapter summarizes the major findings, highlighting the contributions of this research 

to the field of health geography as well as spatial optimization. As the empirical study is an 

important component of this thesis, its policy implications are also discussed. Finally, the 

limitations of this research and further work are discussed. 

6.1. Research summary 

The three research objectives of this research are addressed by Chapters 3, 4 and 5, 

respectively. The remainder of this section summarizes the major findings, emphasizing the 

contributions to methodology and/or substantive applications.  

Chapter 3 aims to measure spatial and spatiotemporal accessibility to EMS, accounting for 

two related EMS trips and real-time traffic conditions. Specifically, Chapter 3 attempts: (1) 

to measure spatial accessibility (static) and spatiotemporal accessibility to EMS, (2) to 

compare spatial layouts of EMS accessibility between Trip 1, Trip 2, and the overall trip; (3) 

to explore and investigate EMS accessibility considering real-time traffic information. Two 

spatial methods, geographic proximity and the E-2SFCA approaches, are employed to 

measure spatiotemporal accessibility to EMS.  

Major findings of Chapter 3 include: (1) notable differences in spatial patterns of EMS 

accessibility between Trips 1 and 2, (2) a significant urban-rural disparity in EMS 

accessibility for all trips, and (3) traffic peak hours significantly impacting EMS accessibility, 

especially in urban areas. First, good ambulance accessibility cannot necessarily guarantee 

good hospital accessibility or overall accessibility, and vice versa. It frequently occurs in 

EMS systems across many countries and regions, mainly caused by different spatial 

configurations of EMS stations and hospitals and the uneven distribution of EMS demands. 

Second, urban areas have better EMS accessibility than suburban and rural areas. This 

finding is consistent with numerous GIS-based studies on EMS that have indicated regional 

disparities in accessibility to healthcare services (e.g., Gabrysch et al., 2011; Tansley et al., 

2015; Luo et al., 2018). Finally, real-time traffic conditions can significantly impact EMS 

accessibility, especially in urban areas.  

Chapter 3 makes two contributions. First, it demonstrates the impact of two related trips on 

EMS accessibility, suggesting that it is necessary to consider two related EMS trips when 

measuring potential spatial accessibility to EMS. Second, it shows the impact of real-time 

traffic on spatiotemporal accessibility to EMS, indicating that traffic conditions should be 

considered when measuring spatiotemporal accessibility to EMS.  
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Chapter 4 focuses on improving EMS accessibility through spatial optimization approaches. 

We consider service coverages for two related EMS trips. Chapter 4 develops two facility 

location models (i.e., Model 1 and Model 2) to improve overall accessibility to EMS. Model 

1 attempts to improve overall accessibility by considering ambulance and hospital coverage 

cooperatively so that more people can enjoy fast ambulance and hospital services. Model 2 

integrates ambulance coverage and overall coverage, guaranteeing that the rapid ambulance 

and hospital services can provide more potential demands.  

There are several interesting findings in Chapter 4. According to the empirical study in 

Wuhan, China, the two proposed models can effectively improve EMS overall accessibility 

while ensuring that more patients are served on time by ambulances. If siting the same 

number of new EMS stations and stroke centers, the spatial layout given by proposed models 

can cover more population compared with the traditional MCLP and MCLP-OC models.  

The contribution of Chapter 4 lies in two facility location models (Model 1 and Model 2), 

which seek the best locations for EMS stations and hospitals simultaneously and ensure that 

as many people as possible can be quickly served by ambulance and hospital services 

collaboratively. The two proposed models relate to the travel-time standards of ambulance, 

hospital, and overall coverages. Thus, the work of chapter 4 can aid the planning practice of 

public services like EMS systems, where the collaborative work between ambulances and 

hospitals is essential. 

Chapter 5 intends to reduce regional inequality in accessibility to EMS using spatial 

optimization approaches. Two bi-objective models are proposed to reduce urban-rural 

disparities in EMS accessibility and coverage, respectively. In addition to the primary goal 

of maximizing the total covered demand, the two models attempt to reduce urban-rural 

inequality in EMS in different ways: the first model aims to minimize the TWT in uncovered 

rural areas, and the second model attempts to minimize the disparity in covered population 

ratios between urban and rural areas.  

The major finding of Chapter 5 is, according to the empirical results from Wuhan, China, 

the improvement of EMS equalities in relation to accessibility and service coverage is often 

at the expense of decreases in overall service coverage. The trade-offs between two or multi 

conflicting objectives are often explored by the Pareto-optimal solutions. The two proposed 

models can effectively reduce urban-rural inequalities in EMS accessibility and service 

coverage. 
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The contribution of Chapter 5 lies in the two inequality measures, one for EMS accessibility 

and the other for EMS coverage, which are incorporated into two bi-objective optimization 

models for locating EMS stations considering urban and rural inequalities as well as different 

service standards for different geographic settings. Thus, this work of Chapter 5 can aid the 

planning practice of public services, such as EMS systems, where reducing inequalities 

between urban and rural areas is essential. 

6.2. Policy Implications 

There are several policy implications of the empirical results, particularly with respect to 

future EMS planning and management in relation to improve overall EMS provision and 

reduce urban-rural equality in accessibility and service coverage: 

(1) This study suggests that the existence of urban-rural inequalities in accessibility to EMS, 

and the reduction of urban-rural inequalities in EMS is still a challenge. According to 

the empirical findings, rural districts have poorer accessibility to EMS in relation to all 

trips. Therefore, more EMS resources are needed in rural districts, particularly in 

Jiangxia and Hanan districts, with relatively poor EMS accessibility.  

(2) The study indicates that the improvement of urban-rural equality in EMS, in terms of 

either accessibility or service coverage, is at the cost of decreased overall service 

coverage, particular in urban districts. In other words, improving urban-rural equalities 

in EMS is often at the expense of the system’s efficiency. In order to pursue urban-rural 

equity, the action that the movement of EMS resources from urban to rural areas might 

reduce the efficiency of the urban EMS system, causing urban residents to be dissatisfied 

with the policy implication. Thus, balancing the efficiency and urban-rural inequality in 

EMS through a set of Pareto-optimal solutions is necessary, ensuring that the system 

maintains efficiency while reducing such inequalities. A suitable Pareto-optimal solution 

is necessary for decision-makers to reduce the urban-rural disparity while keeping the 

overall service coverage of the entire city at an acceptable level. Therefore, urban and 

rural residents are willing to accept the policy implication.  

(3) Government and local authorities should take corresponding measures (e.g., real-time 

traffic light system) to reduce the impact of traffic condition on EMS accessibility, 

especially in the urban area. It is because the real-time traffic condition during peak hours 

can greatly decrease EMS accessibility, especially in urban districts in Wuhan. For 

example, the temporal traffic variation ratios for Trip1 or Trip 2 are higher than 0.2 in 
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all urban districts, but the values are extremely smaller than 0.2 in five of six rural 

districts (see Chapter 3, Figure 3-12). In Wuhan, areas with the largest difference of 

travel time between off-peak and peak hours are mainly located in the urban area. Some 

measures can be adopted to reduce the traffic impact, such as the intelligent traffic 

control system that plays a critical role in clearance for being congested emergency 

vehicles (Sundar, Hebbar and Golla, 2015). This system is increasingly implementing in 

the world, such as Liverpool, UK (Woods et al., 2017), or Beijing, China (Zhang and Qi, 

2010). 

(4) There is a need to coordinate the planning of EMS stations and hospitals or emergency 

centers receiving patients. Given the essential contribution of both Trip 1 and Trip 2 to 

the overall EMS trip, the results from Chapter 3 demonstrate that good ambulance 

accessibility cannot guarantee good hospital accessibility or overall accessibility, and 

vice versa. Thus, we urge the need to account for both related trips (i.e., Trip 1 and Trip 

2) in evaluating EMS accessibility. Therefore, healthcare planers are necessary to build 

a collaborative system for EMS stations and emergency hospitals. Chapter 4 further 

shows that the proposed facility location models (i.e., Model 1 and Model 2), which 

account for both ambulance and hospital accessibility can generate more service 

coverage than classic MCLP and MCLP-OC models, given the same number of EMS 

stations to site.  

(5) Two different scenarios adopted provide various options for future EMS planning and 

management. Scenario 1 only considers new planning facilities and the existing EMS 

facilities remain open. This scenario is suitable for short-term EMS planning (i.e., one-

year planning) because closing EMS stations and hospitals or moving existing EMS 

faculties to other places usually need long-term planning and ongoing financial support. 

Scenario 2 considers both location and relocation problems that some of existing 

facilities can be closed and relocated to other areas. This scenario to meet the dynamic 

changing spatial distribution of underlying demand. With the urbanization process in 

China, especially in large cities such as Wuhan, the increasing number of people are 

shifting to newly developed towns in the suburbs due to the new working opportunities 

and more affordable housing prices. 

(6) This research can be implicated in the broad planning context of other public services. 

First, the idea of involving different trips in accessibility and spatial optimization can be 

used in the planning of services like warehouses or emergency shelters, which are 

necessary to consider different trips. Then, the work can also be employed in other 
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emergency services (such as firefighting or policing) that also require the quick reaction 

capability in both urban and rural areas. Further, the proposed methods can be revised to 

meet a specific public policy requirement. For example, the Ministry of Education of the 

People’s Republic of China (2021) plans to provide more educational resources (e.g., 

schools, and teachers) to improve school accessibility in impoverished areas. The 

proposed models in this thesis can be modified to meet their planning requirements and 

provide suitable decision-support to policymakers, such as which areas/groups have poor 

school accessibility or how to allocate those resources optimally. 

6.3. Limitations and Further Research 

6.3.1. Limitations 

The limitations of the thesis are mainly associated with the representation of service demand 

and services, measurement of travel distance/time, spatial abstraction, and social 

engagement. The following context discusses those dimensions in detail. This section ends 

with a discussion of the most critical limitation.   

(1) Online map services were employed in measuring O-D travel time in Chapter 3. It might 

lack precision because the locations of demands and service facilities cannot be adjusted, 

and it is also difficult to visualize those selected routes. In online map services, all 

computations are conducted in a black box from API services, and private researchers are 

hard to control those processes. Meanwhile, when considering the traffic off-peak and 

peak hours analyzed above, it may be possible for two EMS trips (Trips 1 and 2), one 

occurring during off-peak hours and the other during peak hours, or vice versa, which 

might be impacted by the EMS and on-site rescue time again. 

(2) The variation in on-scene accessibility has not been considered in the study. For example, 

the patient’s floor (high-rising building vs low-rising building) or the environment of the 

neighborhood community can affect the on-scene time (e.g., Balamurugan et al., 2016), 

resulting in a variation in overall travel times across neighborhood communities and 

different population groups. 

(3) The specification of candidate new locations of service providers may be sited in other 

places than the existing candidate locations in facility location research (see Chapters 4 

and 5). In our research, candidates of new EMS facilities are mainly based on the existing 

planned service locations, but more appropriate places are not considered, which may lead 
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to some better solutions being ignored. In addition, the site suitability analysis has not 

been implemented to identify and evaluate those candidate locations, which often needs 

the knowledge of land-use restrictions and local development plans in the case study area.  

(4) Spatial abstraction is often necessary in facility location model. In this research, both 

demand and service in EMS systems are represented by spatial points. Further, residential 

locations are adopted as scenes due to the lack of real-world EMS-run data. However, 

emergency calls can also occur in other sites, such as workplaces and highways. Similarly, 

general hospitals are employed here without considering different types of emergency 

centers. In some countries/regions, patients with specific severe diseases (e.g., stroke and 

trauma) can only access specialized hospitals. 

(5) Our research uses the total population to represent the EMS demands, but some specific 

vulnerable groups (e.g., with heart disease, ageing population) have not considered here. 

However, those vulnerable groups are often more possible need healthcare services such 

as EMS, and they can better reflect the spatial variations of EMS in need.  

(6) Some limitations are associated with social and political dimensions. First, it is not 

necessary to consider two related EMS trips in some EMS systems like Beijing, China, 

because EMS stations and emergency hospitals are often located in the same locations in 

those systems (Hung et al., 2009). Second, people might not be willing to live near the 

EMS station or emergency hospital as they often make disturbing noises (e.g., ambulance 

alarm). Therefore, residents might disagree that the EMS station or hospital is located in 

their community. Third, setting stroke centers or emergency centers needs consider more 

realistic factors, such as finance, staffing and the planning for the selected hospital. For 

example, some hospitals are not willing to set up stroke centers due to the lack of financial 

supports even if they are located in suitable places.   

The most crucial limitation is that the actual EMS data has not applied, which influences the 

results and outcomes in this thesis. For example, the potential EMS demand is represented 

by the residential population in this research due to the lack of actual data. However, the 

spatial distribution of EMS demands might often be determined by many factors, such as 

age, income, environmental and sanitary conditions. The residential locations cannot 

accurately describe the actual distribution of EMS demands, which is likely to cause errors 

or deviations, thus affecting the results, findings, and study outcomes. In addition, if the 

actual EMS data is available, many other factors could be considered, such as the EMS 



 

183 

 

busyness fraction, real ambulance travel time, demand uncertainty, survival rate, or a specific 

type of EMS demand. 

6.3.2. Further research 

Several further works can be extended in the future, which include the implementation of 

actual EMS data, more candidate locations needed, the consideration of uncovered residents 

in Chapter 4, and exploration of other inequality indicators for spatial optimization.  

(1) The estimation of travel time can be improved by using the real-world ambulance-run 

records and historical EMS data. The ambulance-run records can be employed to validate 

the EMS travel time predicted by ArcGIS’s network analyst and online map services to 

improve the accuracy of estimating EMS accessibility. The spatial variation of the on-

scene time if those data will be considered. Historical EMS data can better reflect the 

spatial distribution of demands in relation to different types of diseases. It will help to be 

integrated with disease-specific accessibility measures. Moreover, EMS survival rates, 

health outcomes, and other EMS information can be incorporated into further work. 

(2) Alternative candidate locations can be employed for the future EMS and hospital 

planning. The future work should cooperate with land-use restrictions and development 

plans in the case study area. Then, demand locations can be represented by the surface 

rather than the set of points, which might better reflect the locations of EMS demands. 

Meanwhile, real-time conditions and dynamic relocation models for ambulances are 

necessary to developed in the future. In addition, other factors like facility availability and 

maximal service capacity should be extended, which need to cooperate with actual EMS-

running data and specific historical EMS records. Meanwhile, both studies need to 

increase the number of new facilities to be sited in order to explore how much more 

population can be served by siting additional stations based on existing candidate 

locations or other new sites. 

(3) Dynamic relocation problem (for ambulances) with a consideration of temporal factors 

needs to be addressed in the future work. Temporal relocation problem can be determined 

such as how many ambulances should be placed at each EMS station at different times in 

order to deal with temporal factors such as traffic congestion or peak demand period. 

Sometimes, an ambulance may be dispatched to a new task before it returns to the 

corresponding EMS station. Therefore, it is also necessary to plan to build temporary EMS 

stations to improve EMS response time.  



 

184 

 

(4) EMS accessibility in areas that are not covered by both service coverages is necessary to 

consider. In Chapter 4, the two proposed facility location models only consider the service 

coverage as most of the traditional coverage-based models (e.g., LSCP, MCLP). However, 

it does not mean that people living further away from EMS stations or hospitals than the 

standards of service coverage will not use such services. Thus, EMS provision and 

equality in overall EMS service can be studied in the future.  

(5) Alternative inequality measures can be adopted in EMS/hospital location optimization. 

As there is a lack of widely acceptable consensus on measures of inequalities related to 

EMS systems, it is necessary to explore the optimal spatial layout of facility locations 

based on other inequality indicators in facility location research. Moreover, it is worth 

comparing various indicators of inequality measures in facility location research and 

discussing their similarities and differences. 

(6) The future work is necessary to incorporate recent developments in spatial accessibility 

and optimization (e.g., Li et al., 2022, Griffith, 2021; Griffith et al., 2022). For example, 

Li (2022) found that the 2-step optimization model could provide a more effective strategy 

to balance equality and efficiency in EMS accessibility and availability. Recent studies 

also indicated that spatial statistics could contribute to spatial optimization by helping to 

determine the spatial optima (Griffth, 2021), exploiting spatial autocorrelation to deal with 

missing data problems in any georeferenced dataset, or by examining the colocation of 

spatial medians and local spatial autocorrelation hotspots (Griffith et al., 2022). Thus, the 

focus on recent developments is conductive to improving the quality of current work in 

this thesis.   

(7) The impact of demographic heterogeneity (e.g., gender, age, race, socioeconomic status, 

educational attainment, etc.) should be considered in the future. For example, many 

studies indicated that the probability of using EMS would increase with rising age, 

especially for the group aged 70 years and older (e.g., Veser et al.,2015). In addition, some 

studies also found that poor socioeconomic status (e.g., low-income residents) and socio-

cultural barriers (e.g., minorities) tended to experience poor accessibility to healthcare 

services (e.g., Wang and Luo, 2005; Wang et al., 2008). Therefore, the future work should 

consider the impact of demographic factors and focus on those groups with a high need 

for EMS. 
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6.4. Conclusion 

EMS is an essential public service in protecting public health and safety. This research 

includes three studies with respect to measuring EMS accessibility, improving overall 

provision/efficiency, and reducing spatial inequalities in EMS, respectively. This research 

recommends that it is necessary to consider two related trips and traffic conditions when 

measuring spatiotemporal accessibility to EMS. spatial optimization research can help 

improving service efficiency and equality in EMS systems. Overall, the work presented in 

this thesis can aid the planning practice of public services like EMS and provide decision 

support for policymakers.
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