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Abstract 

 

Understanding interactions between individuals is imperative for predicting how 

groups may react to changing environmental landscapes. Animal populations 

have displayed variation in behaviour when responding to different 

environmental cues. Variation in behaviour has been linked to differences in 

physiology, including metabolic phenotypes and locomotor performance. 

Understanding how these differences in individuals present themselves in groups 

provides insight into how physiology affects group behaviour, and how this may 

change in different contexts. Collective movement in animals is an increasingly 

prevalent theme in behavioural research, and understanding how and why groups 

decide to move is critical to our knowledge of animal life. Group movement may 

emerge from the decisions of one or few individuals, i.e. leadership, or be a 

shared decision by all individuals. Leadership has been previously linked to 

individual behavioural traits, which has also been related to physiological 

differences, however the specific links between physiology and leadership are 

understudied. Using laboratory experiments, I investigated the role of physiology 

in leadership of schools of fish, and how different contexts altered leadership in 

groups in order to examine how groups move and the mechanisms underpinning 

leadership.  

In the first data chapter, I tested whether metabolic composition of groups 

affected leadership by compiling groups of nine fish according to their standard 

metabolic rate and recorded their swimming behaviour. We measured behaviour 

at 15 °C, and again at 18 °C to see how temperature increases affect leadership 

and group dynamics. We found that metabolic composition had no consistent 

effect on group behaviour and leadership, but increases in temperature caused 

fish to be less synchronised and leadership to be disrupted.  

The metabolic cost of digestion has been shown to affect individual behaviour. 

Our second experiment investigated how group behaviour changed with feeding 

and time since feeding. Before and during feeding showed relationships between 

behaviour and meal size, where fish that ate the most were found to be 

followers when a leader was accelerating, however a fish who has eaten more 
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food is more likely to be a leader when turning. There was no association 

between meal size and leadership after feeding, however leadership in groups 

changed before and after feeding events.  

Our results from chapter 3 and 4 indicated that different environmental contexts 

disrupted group behaviour, rather than creating consistent differences in 

specific individual leadership ability. To see how social context affected these 

metrics, I tested individual swimming performance testing how cost of transport 

related to leadership and see how individuals alter their voluntary swim speeds 

to stay within groups and how this relates to their physiological optimum. We 

found that higher cumulative costs are found when swimming alone compared to 

groups. Leadership is also not linked to deviation from optimum swim speed, 

showing that leaders in groups do not influence groups to swim at their optimum 

swim speed. This study confirms that leadership is not more costly in terms of 

transport speed, and overall swimming in groups is less costly than swimming 

alone. 

These results provide evidence that changing contexts affect group behaviour 

and leadership in schools of fish. Leadership may not be attributed to one or few 

specific individuals however how leadership is distributed among individuals may 

still change in different contexts. Chapters 3 and 4 suggest that physiological 

processes affect leadership behaviour, and chapter 5 shows that social context 

will affect group behaviour. Our results provide insight into how leadership in 

groups change in different contexts and how I may expect collective behaviour 

to change with environmental variation groups may experience in the wild.
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1 General Introduction 

 

Group living is ubiquitous among taxa, observed across most environmental 

contexts and can range from pairs of organisms to large aggregations and 

communities. Animals in groups may show various degrees of cohesion, and while 

they may aggregate, they can also be largely independent in their individual 

actions while maintaining inter-individual distances. Alternatively, they may be 

synchronous and appear to move as one mass, similar to murmurations in 

starlings (Major & Dill, 1978) or schools of fish (Katz et al., 2011). Group living 

may occur at specific life stages (e.g. only in the juvenile stage: Bazazi et al., 

2008) or throughout lifespans of individuals (Whitehead et al., 1991; Wittemyer 

et al., 2005). Group members may experience these social bonds for a lifetime 

(Dunbar & Shultz, 2007; Buston et al., 2009; Jordan et al., 2010) or these bonds 

may be ephemeral or unstable (Wilson et al., 2014).  

There are many costs and benefits associated with group living including 

increased mating opportunities (Grueter & Van Schaik, 2010). The competition 

for successful mating is often greater between individuals, which will increase 

the risk of injury or death (Croft et al., 2011a; Griffin & Nunn, 2012) while 

decreasing reproductive opportunities (Kokko & Johnstone, 1999). Another 

benefit to living in groups is that individuals have access to more resources for 

example feeding or preferred habitat (Ward & Hart, 2005; Strodl & 

Schausberger, 2012). As a result, they may be more visible to predators or other 

competitors which may lead to negative consequences (lack of food; 

injury/death; loss of territory). Additionally, individuals may get benefits from 

group living which are more useful independently and in a moment-to-moment 

basis, such as conserving energy through spatial position and sharing of 

information that another group member may not be able to perceive (McComb 

et al., 2001; Swaney et al., 2001; Vital & Martins, 2009). 

Group behaviour can also be influenced by environmental conditions, which vary 

across short and long time scales. Environmental conditions affect migration 

speeds and locations (barnacle geese: Jonker et al., 2010), where migration 
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patterns can change due to temperature changes and predation. Long-term 

environmental effects on sociality are important for predicting group patterns 

over seasonality or lifespans. Shorter term, moment-to-moment interactions 

between individuals may be affected by much more subtle shifts in 

environmental conditions, and study of these effects may give insight into the 

mechanisms underlying changes that occur over more prolonged timescales 

(Guttal & Couzin, 2010; Farine et al., 2017). Short term variability in the 

environment has been shown to affect group behaviour. Cohesion measures how 

far apart individuals are from each other. Higher temperatures can cause schools 

of fish to be less cohesive (giant danios: Bartolini et al 2015), however this 

contrasts with previous studies that zebrafish and guppies are more cohesive at 

higher temperatures (Weetman et al., 1999; Pritchard et al., 2001). Many 

schooling fish species only form groups during the day, while at night, the fish 

tend to increase distances between groupmates, in some cases causing 

dissolution of the groups (Aoki & Inagaki, 1988; Smith et al., 1993). Locomotion 

method will change group behaviour, where flocks of birds were closer together 

when on the ground or water in comparison to flying (Ballerini et al., 2008). In 

the presence of a predator, groups of stickleback became more synchronised, as 

individuals perceiving greater threat increase the rate where they receive 

information from peers (Bode et al., 2010). Polarisation, a measure of whether 

individuals within a group are facing the same direction, in swarms of 

crustaceans decreased in the presence of food and in the presence of a predator 

(O’Brien, 1989). Behaviour may also change with group size, where how 

information is shared, and the quality of information changes with social scale, 

in terms of accuracy and amount of information (Jolles et al., 2020a). In great 

tits (Parus major), pairs showed no synchronisation but as group size increased, 

the time spent to coordinate activity reduced (Aplin et al., 2015). In a study on 

chacma baboons (Papio ursinus), a greater likelihood of synchronous behaviour 

was found across groups early in the day, when the animals were intent on 

foraging, and that the animals were more synchronised in woodland as opposed 

to open habitat, which may relate to the foraging strategies of the animals in 

woodland, and when the groups were more cohesive (King & Cowlishaw, 2009; 

King et al., 2009). Group dynamics are important to study as they provide insight 

into how environmental changes may alter short and long term patterns of social 

interactions, affecting numerous forms of behaviour and ecological phenomena 
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including with foraging, predator avoidance, reproduction, disease transfer, and 

migrations. 

 

1.1.1 Heterogeneity in Group Living 

Within animals groups there is among-individual heterogeneity in genotypes and 

phenotypes (Jolles et al., 2020a). Theoretical work has suggested evolutionary 

implications of phenotypic variation in groups (Farine et al., 2015), but it is 

relatively unknown how phenotypic variation affects group behaviour and 

movement. Individual variation may present itself in terms of physiological 

state, through metabolic traits, nutritional state or age (Wittemyer et al., 2005; 

Bazazi et al., 2008; Seebacher & Krause, 2017). Physiological differences are 

increasingly related to behaviour, where variation may incur differences in 

sociability, aggression, activity and hunger (Metcalfe et al., 2016). Previous work 

has explored the relevance of behavioural and physiological phenotypic variation 

to ecological changes, where individuals may react differently to different 

stressors, for example individuals may react differently to increasing 

temperatures (Bartolini et al., 2015; Cooper et al., 2018) or hypoxia (Cook et 

al., 2011; Killen et al., 2013; Pineda et al., 2020), which may show how these 

species may react in the face of climate change and increasingly extreme 

conditions. An increase in research shows that consistent behavioural differences 

(Ward et al., 2004) can influence group behaviour such as spatial distribution or 

reactions to environment, but so far the physiological underpinnings in such 

processes are rarely considered. Studies exploring individual behaviour in the 

context of groups should consider that individual behaviour may change in 

response to other group member’s behaviour, and this may be governed by the 

focal individual’s motivation and also the physiological capacity to respond 

(Jolles et al., 2020a). 

Collective movement is often related to resource acquisition, and this is 

suggested to be linked to physiological state (Killen et al., 2017). In this case, 

resources could be food, suitable habitat, and breeding opportunities. An 

individual may have autonomy in deciding where to move to and behaviours to 

express, but group movement requires individuals reach consensuses when 
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assessing their environment when deciding direction of travel, activities and 

choices in movement, while remaining cohesive and coordinated (Conradt & 

Roper, 2005). If collective consensus is not reached then a group may split and 

benefits of group living are reduced (Krause & Ruxton, 2002; Conradt & Roper, 

2007). Organisms that move together must follow quantifiable interaction rules, 

such as attraction, repulsion, and alignment, which allow them to structure their 

interactions and maintain group cohesion (Strandburg-Peshkin et al., 2018). 

Coordination within groups is dependent on how information is transmitted 

among the individuals (Conradt & Roper, 2005; Conradt & List, 2009). If 

individuals do not have a complete assessment of their environment, they may 

rely on interactions with neighbours to guide their movements, which is 

particularly found in large, synchronous fish schools or bird flocks, where 

movement is self-organised, and it is unclear if there are leaders but it is 

ordered movement (Couzin et al., 2002, 2005; Jolles et al., 2020a). When these 

groups move in a self-organised way, but rely on a degree of social structure or 

include behavioural differences among individuals, this is referred to as 

collective behaviour (Jolles et al., 2020a). Ultimately, all group members are 

able to gain information regardless of “quality” of information from either or 

both their environment and peers, and understanding how this information 

influences collective behaviour is critical to understanding the ecology of group 

movement.  

 

1.1.2 Leadership in Collective Behaviour 

Group consensus can stem from egalitarianism where all individuals contribute 

to a decision, or leadership, where specific individuals or an individual 

determine or repeatedly influence group behaviour (Reebs, 2001; Conradt & 

Roper, 2005; Strandburg-Peshkin et al., 2015). Leaders are only successful if 

followed by other group members which can be instigated voluntarily or via 

hierarchical dominance. When short term group movements are driven primarily 

by one or few individuals, then collective behaviour is maintained by leadership. 

Individuals within a group can be inferred as a leader if it has repeated influence 

on other members of the group, whether directly or hierarchically (Strandburg-

Peshkin et al., 2018), and this influence can be inferred in different ways. It is 

important to differentiate between influence and leadership, where an 
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individual may have influence if its actions results in some behavioural change 

from other individuals in its group (Galton F., 1907), but leadership is a measure 

of how repeated this influence is. It is important to note that leadership and 

leaders may be inherent, where leaders are pre-determined according to traits 

or social status. Alternatively, leadership may be emergent (Couzin et al., 2002; 

McComb et al., 2001) where leaders are identified from initiating coordinated 

movements which are linked together, where interaction rules vary according to 

individual traits, and this affects collective behaviour no matter the mode of 

leadership (Conradt et al., 2009; Berdahl et al., 2013; Strandburg-Peshkin et al., 

2013; Pettit et al., 2015). Previous work has identified small numbers of 

individuals which have a large influence on groups without any active signalling. 

Additionally, individuals may try and influence others by using movements and 

behaviours which are seen as initiations (Morrell et al., 2008), and may change 

behaviours of potential followers that are obeying more general interaction rules 

of the group. It is important to note that, regardless of initiation events or 

influence a leader may have, leading a group is only successful if other 

individuals are willing or capable of following (Sueur et al., 2009).  

It is also important to consider how leadership is spread across a group. It is 

necessary to consider group interactions in terms of the distribution of influence 

and the consistency of the influence. The distribution of influence can be 

distributed or centralized, where each group decision is controlled by a different 

single individual (distributed, variable leadership), or the same (centralized, 

unshared leadership). The influence can be consistent, where one individual 

controls all the group decisions (centralized, unshared leadership) or all 

individuals contribute equally to all group decisions (shared leadership). Groups 

with true shared decision-making, in the sense of all individuals contributing to 

each group decision, can take advantage of the “wisdom of crowds” (Couzin, 

2009; Aplin et al., 2015) and other types of collective information processing 

(Couzin et al., 2002; Conradt & List, 2009), whereas a system in which a 

different individual controls the decision each time would be more likely to 

represent “leading according to need” (Berdahl et al., 2013) or leadership by 

informed individuals (Gavrilets et al., 2016). The tendency to lead in fish is 

often associated with motivation driven by more information than an individual’s 

peers (Ioannou et al., 2015), or greater need (Bjornson & Anderson, 2018). Reebs 
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(2001) showed fish (golden shiners, Notemigonus crysoleucas) that had been 

trained to expect food at a particular time and place each day were able to lead 

the rest of their naive group mates to that location. Within three-spined 

stickleback (Gasterosteus aculeatus) shoals, fish that have found food patches 

tend to return to them, with uninformed fish locating the food patches by 

following these individuals (Atton et al., 2012, 2014; Webster et al., 2013). 

Previous experience of individuals must be considered in leadership analysis as 

even in emergent systems with no clear social structure, this could affect 

leadership hierarchies. 

Previously, leadership has often been inferred in group experiments using 

previously conducted behavioural assays in pairs, and the leader is defined as 

the first individual to leave a refuge (Kurvers et al., 2009) or explore an arena 

(Herbert-Read et al., 2019). Ultimately, leadership is assessed by measuring 

influence on the other individuals in the group and subsequent movements to 

follow those leaders, generating different roles within these groups. Leadership 

in individuals has been linked to animal behavioural phenotypes, often referred 

to as personality, when describing latency of reaction in a behavioural assay 

(Kurvers et al., 2009; Bevan et al., 2018). However, these assays are often 

conducted in pairs (one leader, one follower) and do not encapsulate group 

dynamics (Sasaki et al., 2018). 

 

1.1.3 Different Modes of Leadership 

There are many studies on leadership in groups which focus on the social 

interactions between group members, such as dominance or experience (Flack et 

al., 2012). Studies focus on moving groups and collective behaviour as a 

precursor to studying larger group dynamics and understanding why leadership 

occurs, rather than identify which individual is the leader and why this may be. 

Previously, leadership data has been collected by human observation but this has 

been on different scales and accuracy in terms of time, space, and numbers or 

individuals and interactions in comparison to current methods of analysis. Due to 

recent technological advancement, data can shift from human observation which 

focused on how individuals influenced whole groups, to using tracking (GPS or 
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video) exploring individual to individual dynamics. Improved tracking 

technologically leads to moment-to-moment analysis and individual 

identification which allows for different modes of leadership to be explored 

simultaneously and identify the nuances of leadership changes in different 

environmental contexts. 

 

1.1.4 Spatial position 

Leadership in moving groups can be defined by spatial position; animals 

positioned at the front of a group are assumed to drive direction of travel and 

are thus may be considered as leaders (spotted hyenas: Smith et al., 2011); 

roach: Krause et al., 1998). This is an example of individual to group influence, 

and total influence was assessed by how much time was spent at the front of a 

group. Moreover, leadership hierarchy is inferred at an individual to individual 

level by observing which individuals are ahead of others (Altmann, 1974). While 

using spatial position is one of the most popular ways of defining leadership, this 

requires the assumption that front positions have the most influence. However, 

in three-spined sticklebacks, individuals who are further away from their 

groupmates and on the periphery of groups were more influential in deciding 

group motion, even when not in anterior positions (Jolles et al., 2017). Other 

research has shown that animals in the centre of a group can initiate behavioural 

changes within the group (Leca et al., 2003; Sueur & Petit, 2008b, 2008a; Sueur 

et al., 2009). Individuals at the front of groups may have greater access to 

resources (DeBlois & Rose, 1996), and may make decisions which benefit 

themselves at the cost of the other members of the group (King et al., 2008). 

Followers benefit from this strategy as they will be led to resources by more 

informed individuals without having to gather information themselves, which 

may be costly (Guttal & Couzin, 2010; Björnsson et al., 2018; Palacios-Romo et 

al., 2019). 
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1.1.5 Initiating and followship 

Identifying individuals that successfully initiate group movements, regardless of 

their spatial position within the group, is another method of inferring leadership. 

Initiators are identified by their initial deviation from the current movement 

vector or centre of the group if stationary, and a number or proportion of the 

group must then follow within a set time frame. This is regularly carried out by 

direct observations of individuals using human observation but also from fine 

scale movement data. This assumes that initiations of group departures are 

important in determining whole group movement (Strandburg-Peshkin et al., 

2015). Identifying leaders in this way can be applied when the group is initially 

stationary or mid movement, but prior knowledge is required to identify how far 

away an individual has to move before a successful movement could be initiated, 

and if distances do not change very much between individuals then this method 

cannot be used. Initiations may also results from acoustic or visual signals in 

addition to movement (meerkats: Bousquet & Manser, 2011; white faced 

capuchins: Boinski, 1993; Campbell & Boinski, 1995). Behaviours such as 

vocalisations or physical cues can be incorporated into analysis as a measure of 

initiation success or frequency. This can be in the case of moving from stationary 

position to moving (Stueckle & Zinner, 2008; King et al., 2011). Initiation of 

movement may come from previous information obtained by the leader.  

Leadership through initiation of movement can be explored using time delays 

and hierarchical networks, which uses correlations of movements to ascertain 

which individual, or individuals, have the most influence over group movement 

(Couzin et al., 2002; Nagy et al., 2010). The time delay between changes in 

direction of pairs of individuals is used to infer which animal influenced the 

other. Leadership can be identified by which individual influences others in the 

group and construct rankings of individuals (Nagy et al., 2010). Time delays are 

particularly useful when using automated tracking of individuals, as it can use 

frame by frame moments to measure leadership, but requires individuals to be 

moving continuously so their directional headings have meaning, and they must 

be coordinated for their measurements to be distinguished from noise (Nagy et 

al., 2013; Giuggioli et al., 2015) or initiating group movement using time delays 

in rummy-nose tetra (Jiang et al., 2017) 
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1.1.6 Inferring influence from outcomes of decisions 

Observing individual preferences of group members and relating them to group 

behaviour is another way of inferring influence. Additionally, leadership can be 

assessed by observing decisions and group destination to preference of 

individuals, as seen in baboons (King & Sueur, 2011) and social learning in fish 

(Ward et al., 2008) where individual preference or knowledge of specific 

individuals was able to drive the group. Inferring “destination based” influence 

requires testing of the preference of group members, which is not always 

possible with groups of large animals or in the field where you cannot control a 

population. Even if all preferences are known there may be conflicting factors 

affecting group decisions such as correlated preferences or physical capability to 

be a leader or follower (Ward et al., 2018). Individuals whose preferences are 

tested in a solo setting may alter their preferences in the presence of 

conspecifics, which will determine leaders and followers, but if two individuals 

prefer the same location and this is reflected in a group trial, it provides no 

insight how group behaviour is determined. Preferences could be identified 

through spending time in abiotic environmental conditions such as temperature 

(Christensen et al., 2021), or reflect individual status conditions such as hunger 

(Wilson et al., 2019) but also about innate physiological differences such as 

optima. Ultimately, individual preferences will be reflected through behaviour, 

and linking how these preferences affect collective behaviour and what 

underlies these preferences is critical to understanding the physiological 

mechanisms behind leadership.  

 

1.1.7 Physiology and Leadership 

Differences in behaviour are often attributed to variation in physiology, thus a 

link between physiology and leadership is likely, specifically in groups which 

have emergent leadership based on individual state. Leadership can arise from 

individual differences which then influence collective behaviour. These 

individual differences can be due to variation in knowledge and experience 

(Jolles et al., 2014; Webster, 2017; Ward et al., 2018); behavioural phenotypes 

or personality (Kurvers et al., 2009; Johnstone & Manica, 2011; Nakayama et al., 

2012a) or energetic state (Reebs, 2001; Fischhoff et al., 2007), and have all 
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been linked to physiological phenotypes. Additionally, there is growing evidence 

that these consistent behavioural differences can present themselves in terms of 

leaders and followers (Harcourt et al., 2009b; Nagy et al., 2010; Nakayama et 

al., 2013). By looking at preferences of individuals in an experimental setting, 

information can be obtained through behavioural assays and physiological 

measurements to explore the capabilities and relationships between these 

characteristics and leadership (Ward et al., 2018; Wilson et al., 2019).  

Physiological traits related to metabolism and swimming performance are likely 

to affect individual and group behaviour, and this is likely to be related to 

leadership and following (Ward et al., 2018). There is variation in minimum 

metabolic rate (standard metabolic rate (SMR) in ectotherms) within species 

(Millidine et al., 2006; Rønning et al., 2007; Burton et al., 2011; Killen et al., 

2011). Individual standard metabolic rates have rarely been linked to group 

behaviour, but due to individual assays fish with high SMR are hypothesised to be 

less cohesive, and fish with low SMR may be more social (Killen et al., 2012b). 

Maximum metabolic rate (MMR) is also linked to behaviour, specifically position 

in school (Killen et al., 2012b), which suggests leadership may be related to 

physiology. Aerobic scope (AS) is the difference between MMR and SMR, and is 

the capacity for aerobic metabolism above which is required for maintenance. 

AS constrains the number of aerobic processes (e.g. activity, growth, digestion) 

that can be performed simultaneously and may affect various aspects of 

behavioural ecology, for example individuals with lower aerobic scopes may be 

more sociable and less food motivated (Pörtner & Farrell, 2008; Jørgensen et 

al., 2012; Marras et al., 2015a; Killen et al., 2017).  

Metabolic rate also affects measures of locomotor performance linked to 

travelling speeds which in turn may affect group behaviour. Locomotor 

performance can be measured by critical sustained swim speed in fish (Brett, 

1964) and has been shown to correlate with both maximum metabolic rate and 

routine swimming activity (Plaut, 2001; Oufiero & Garland, 2009), suggesting 

that physiological traits are crucial in understanding behaviour. As metabolic 

traits are affected by aerobic processes such as digestion and activity, these 

aerobic processes are have shown to be linked to measures of locomotor 

performance. Mclean et al. (2018) showed how fish altered their spatial 
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positions when swimming within a shoal dependent on the interaction between 

meal size, the energetic cost of digestion, and physiology. Fish that ate the least 

moved to the front of the school, and fish that ate larger meals moved to the 

back of the school, however this study was undertaken in a swim tunnel where 

fish swam at a specific velocity. Individuals may be constrained in their 

swimming positions by their aerobic scope and swimming capacity while 

digesting, however testing this in free swimming schools may produce different 

results (Killen et al., 2012b; Ward et al., 2018), where individuals may be able 

to maintain their positions and roles within groups despite meal size. Locomotor 

performance is also linked to spatial position in group, which is a popular 

measure of leadership, where individuals with higher maximum metabolic rates 

are suggested to occupy front positions (Killen et al., 2012b).  

Additionally, when animals move in their environment, they tend to travel at 

speeds which are energetically efficient, and leaders may dictate these speeds 

(Alexander, 2005). Voluntary travel speeds are relatively slow and differences in 

metabolic phenotype or locomotor performance are unlikely to prevent 

individuals from maintaining pace with the rest of the group (Ward et al., 2018). 

Collective movement models predict that variation in locomotor speed means 

faster animals may adopt front positions (Romey, 1996; Couzin et al., 2002; 

Herbert-Read et al., 2011; MacGregor et al., 2020). Indeed, there may be 

animals which are unable to occupy specific spatial positions physically, but 

group mates may adjust their behaviour to maintain leadership hierarchy. 

Animal systems with a stable social structure have shown that leaders may be 

physiologically distinct from their conspecifics, for example the oldest female 

bison (Ramos et al., 2015) may dictate group movement, or males more likely to 

copy females in sheep (Gautrais et al., 2007; Michelena et al., 2008). Exploring 

whether leadership is defined by physiology in more dynamic systems has only 

been studied a few times. In pigeons, leaders were found to be the older 

individuals in the group, but this also correlated to the individuals who were the 

most experienced so hard to disentangle physiology from social effects (Nagy et 

al., 2010, 2013; Flack et al., 2012). Exploring how leaders may be identified by 

trackable traits is key to identifying how groups move and how individuals 

respond to others.  
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Leadership and followership may interact with environmental factors as 

physiology changes to cope with environmental stressors. It is known that abiotic 

environmental factors change behaviour as well as metabolic traits (Killen et al., 

2013; Mathot et al., 2015; Cooper et al., 2018) and this must be considered 

when measuring leadership behaviour. Social environment must be considered as 

another potential environmental stressor, individuals will act differently when 

alone, or depending on group size (Jolles et al., 2020a). Rather than fulfil a 

basic need, i.e eating food after a period of starvation, individuals may elect to 

maintain social contact than increase short term fitness. Additionally, individuals 

will compromise physiologically optimum conditions to stay with conspecifics, 

for example fish will choose to experience higher temperatures than their 

optimums to stay with their group (Cooper et al., 2018). This may then affect 

leadership in groups, and understanding how leadership changes under different 

environmental conditions must be considered. 

 

1.1.8 The Use of Fish in Leadership and Collective Behaviour Studies 

In particular, fish are regularly used when exploring heterogeneity within groups 

(Katz et al., 2011; Jolles et al., 2017, 2020a; Bailey et al., 2022). Additionally, 

fish are ectotherms, where their external environment affects their internal 

physiology, which includes their metabolic capacity for activities such as 

exploration, digestion and swimming capacity. These environmental stressors 

can be something species may face seasonally, in day to day environmental 

fluctuations, or in extreme conditions. Environmental stresses will reduce 

availability in metabolic scope for baseline activities thus causing change in 

behaviour. These changes in behaviour will be reflected in individuals, but when 

exploring the intersection with social behaviour, this may change how individuals 

and groups react. By understanding how this social behaviour changes, and in 

more detail, leadership, I will be able to predict how groups move in response to 

the other individuals in the group and the surrounding environment.  
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The general aim of this thesis is to explore leadership and collective behaviour in 

different contexts. Within this thesis, different “contexts” in which social 

dynamics will be tested can be classed as ecological, environmental or 

physiological, or a mix of these. Ecological contexts include influences such as 

food availability, group composition and habitat changes. Larger meals or 

presence of food has been shown to reduce physiological capability for 

movements, which in turn may decrease leadership ability in individuals. 

Environmental contexts comprise temperature changes and group size and 

individual contexts focus on individual physiological measures through metabolic 

phenotypes. Physiological environmental stressors such as changes in 

temperature may prevent leadership behaviour being expressed, and affect 

overall group behaviour. Each project is designed in an attempt to address at 

least one of these ecological, environmental or individual contexts.  

 

1.4 Aims 

 

Chapter 2: Extracting Behavioural Metrics from Equations 

Here, I present the equations used to mathematically describe how the 

leadership and group metrics used for the rest of this thesis are calculated. 

These form the methods for the rest of the thesis and are referred to 

throughout. 

 

Chapter 3: The effect of temperature and group composition of metabolic 

phenotypes on leadership and collective behaviours in fish 

In this laboratory based experiment, I investigated how different compositions of 

metabolic traits change group behaviour in an open field arena, and how this 

changed with acute temperature exposure. European minnows (Phoxinus 

phoxinus) were profiled for their SMR, AS and MMR, and sorted into groups of 
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high, medium or low SMR, or mixed SMR (equal mix of phenotypes). The groups 

were then placed in an arena to analyse voluntary swimming behaviour at 15 °C 

and exposed to 18 °C, and their behaviour recorded again. This allowed me to 

determine the relationship between individual leadership and metabolic 

phenotype, how leadership in groups may change with temperature, and how 

group behaviour differs with group composition and temperature change. 

 

Chapter 4: Effects of Feeding and digestion on leadership and collective 

behaviour in schooling fish.  

This experiment investigated how leadership and group behaviour changed 

during and after a feeding event in qingbo (Spinibarbus sinensis). Individuals 

were able to feed naturally as food items appeared randomly in the arena and 

this was linked to leadership and group behaviour. Oxygen consumption was 

measured during feeding in separate fish to investigate if estimated remaining 

AS after digestion is related to leadership and group behaviour. Data was 

compared to that of groups that did not experience a feeding event. 

 

Chapter 5: Increased cost of transport as a hidden energetic cost of sociality 

in moving animal groups 

In this study, individual optimum swimming speeds of zebrafish (Danio rerio) 

were compared to voluntary swimming speeds while swimming in groups, pairs 

and alone. This allowed us to calculate cost of transport in each trial and 

ascertain if there were unpredicted energetic costs of moving in groups and 

compromising to maintain social groups than alone. This was then related to 

individual leadership and group behaviour metrics to see if energetic 

compromises were taken by individuals with specific leadership roles. 
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2 Development of Code-Based Functions for Extracting 

High-Resolution Behavioural Metrics From Coordinates 

 

2.1 Introduction  

The increased popularity of automated tracking in behavioural studies and 

experimental biology has revealed the need for open-source software packages 

that process positions in orthogonal coordinate systems into individual and group 

behavioural metrics. A variety of programmes compute the locations of 

individuals on a frame-by-frame basis, and there are benefits and criticisms of 

each which need to be considered when conducting a behavioural experiment 

and analysing the resulting data. These packages also only provide the user with 

a series of x-y coordinates, which must then be processed to obtain usable 

measures such as individual speed, directionality, or group-level polarity and 

cohesion. Some software packages (e.g. Ethovision XT) are able to extract 

movement metrics directly from videos, but are a black box when outputting 

behavioural data and may be less suitable for wide usage as are they not open 

source. There is also difficulty when selecting a programme which allows your 

individuals to cross over spatially and individual identities to be retained. For 

example, some programmes allow tracking of multiple individuals but they must 

be in separate experimental arenas (CTrax; Branson et al., 2009). Other 

programmes may be more sensitive in terms of the algorithm they use to identify 

individuals and may fail when backgrounds change slightly, which is especially 

important to consider when measuring aquatic animals. As well as computational 

power and suitability, it is necessary to select a tracking programme which is 

user-friendly and time efficient. Unlike other programmes which are under 

development, idTracker (2014) has a graphical user interface which allows users 

to set the parameters for the algorithm to identify individuals. Users can view 

parameter suitability throughout videos without running the tracking process, 

which can be time intensive depending on the number of individuals, quality of 

video and ease of identification. Although generating tracks from videos in 

idTracker may be time intensive, knowing the correct results are being obtained 

before starting this process is extremely beneficial, as most other programmes 

do not have this pre-screening feature (review by Sridhar et al., 2019). Another 
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benefit to idTracker is that it has a sister programme, idPlayer, which allows 

users to edit individual locations to correct tracks if the algorithm has 

mislabelled identities after they have spatially crossed over in the video.  

IdTracker provides files with cartesian coordinates for each individual over the 

video, which then can be used in metric calculation. Using these coordinates, 

specific types of behaviour can be quantified using mathematical equations to 

infer social interactions, activity of individuals and group metrics (Couzin et al., 

2002; Nagy et al., 2010; Jolles et al., 2017). Here, I describe the calculations I 

developed and definitions of the metrics I used throughout this thesis, which can 

be applied to any individual track measured in two dimensions. 

 

2.2 Methods 

To investigate collective and individual behaviour, individuals and groups were 

placed in behavioural arenas and recorded using video cameras with a frame 

rate of minimum 24 frames per second (fps). Video cameras were positioned 

directly above arenas to be as close to individuals as possible while still 

recording the whole arena. Cameras were positioned using tripods or secure 

structuring (Unistrut or pvc pipes) and did not cast any shadow on the arena. 

Typically, this was at least 80 cm from the water’s surface. Behavioural arenas 

were illuminated from the top and sides to prevent any shadows, and lighting 

was arranged to prevent reflection on the water surface. Lights were positioned 

inside a large tent covered with opaque material to prevent any external 

disturbance. Arenas had altered features, for example feeding tubes, depending 

on the research question and were different sizes depending on species used in 

each investigation.  

Videos were collected of each behavioural trial and individual positions in each 

frame were estimated using idTracker (Pérez-Escudero et al., 2014). After 

individual tracks were processed, positions were manually inspected for errors 

and corrected if necessary using idPlayer. If individuals swam extremely close to 

each other or crossed over each other multiple times in a short time frame, the 

location for both individuals was unable to be identified by the tracking 
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software, resulting in missing data. Individual tracks were manually inspected if 

overall they had more than 15% missing data.  

 

2.2.1 Computation of Behavioural Data 

Using the frame-by-frame positions obtained via idTracker, individual and group 

characteristics were calculated using path geometry and obtained using R v4.0.5 

and RStudio v1.4.1103 (R Core Team 2021; RStudio 2022). Equations and 

descriptions are adapted from Jolles et al. (2018) and Nagy et al (2010). Using 

ImageJ (Abràmoff et al., 2004), the size of arenas in pixels can be measured 

from still images from trial videos. From known lengths in cm, I can then 

calculate a conversion rate as to convert any measurements by pixels to a 

standard cm scale. 

 

2.2.2 Individual Metrics 

The positions of individual i at time t is indicated by 𝒇𝒊(𝒕) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)), where 

x and y represent cartesian coordinates in a field of view; Velocities are used in 

calculations and obtained using positions over time, 𝒗𝒊(𝑡) = (𝒗𝒙𝒊(𝒕), 𝒗𝒚𝒊(𝒕)) . 

𝛥𝑡 =  1/𝑓𝑝𝑠 is the time interval between position measurements and calculated 

from the frames per second of recording. Individual distance travelled is 

calculated by: 

𝒅𝑖(𝑡) = √(𝑥𝑖(𝑡) − 𝑥𝑖(𝑡 + 𝛥𝑡))2 + (𝑦𝑖(𝑡) − 𝑦𝑖(𝑡 + 𝛥𝑡))2 

 

Individual distance is measured in pixels and is converted to cm or BL in relation 

to the focal individual. Total individual speed is calculated across whole trials. 

Individual velocity at time t is calculated from the forward finite difference: 

𝒗𝒊(𝒕) =
𝒇𝒊(𝑡 + 𝛥𝑡) − 𝒇𝒊(𝑡)

𝛥𝑡
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Individual speed at time t 𝒗𝒊(𝑡) is calculated from the absolute values of the 

velocity vector: 

𝒗𝒊(𝒕) = |𝒗𝒊(𝒕)| = √𝑣𝑥𝑖
2(𝑡) + 𝑣𝑦𝑖

2(𝑡) 

 

Individual speed is measured in pixels/frame and is converted to cm/s or BL/s in 

relation to the focal individual. Mean individual speed is calculated across whole 

trials. 

We calculate the acceleration of an individual at time t, where 𝒇𝒊 represents 

individual fish: 

𝑎𝑖(𝑡) =
𝑓𝑖(𝑡 + 𝛥𝑡) − 2𝑓𝑖(𝑡) + 𝑓𝑖(𝑡 − 𝛥𝑡))

𝛥𝑡2
 

The heading at time t is calculated using the angle between the velocity vector 

and positive y axis given by 

𝜓𝑖(𝑡) = 𝑎𝑡𝑎𝑛2(𝑣𝑦𝑖(𝑡), 𝑣𝑥𝑖(𝑡)) 

From heading data at time t, I can calculate turning speed for each individual 

using change of angle calculated through direction of movement. 

𝛾𝑖(𝑡) =
𝜓𝑖(𝑡 + 𝛥𝑡) − 𝜓𝑖(𝑡)

𝛥𝑡
 

Angular difference from heading was converted from Cartesian coordinate 

system with individuals at origin, to radians. The correct angular difference with 

regard to the periodicity of 𝛾𝑖(𝑡) was calculated, where anti-clockwise from 0 to 

180 and clockwise from 0 to 180: 

{𝛾𝑖(𝑡) < −𝜋}: 𝛾𝑖 = 2𝜋 − |𝛾𝑖(𝑡)| 𝑜𝑟 {𝛾𝑖(𝑡) > 𝜋}: −(2𝜋 − 𝛾𝑖(𝑡)) 
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Nearest neighbour distances were calculated from a matrix of distances for all 

individuals at time t and determining the minimum value for each individuals: 

𝑁𝑁𝐷𝑖(𝑡) = 𝑗 ∈
𝑚𝑖𝑛

𝑁 𝑗≠𝑖
(√(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))2 + (𝑦𝑖(𝑡) − 𝑦𝑗(𝑡))2) 

Where N is the set of all individuals. Nearest neighbour distance is measured in 

pixels and can be converted cm or BL in relation to the focal individual. Mean 

Neighbour Distance is the mean distance of all individuals across the trial and is 

measured in pixels and can be converted cm or BL in relation to the focal 

individual. This is a measure of how close one individual is to the rest of the 

group over the course of the trial. 

 

2.2.3 Group metrics 

Group metrics can be calculated and compared to identify differences between 

groups and within groups. For each time step the mean coordinates of all 

individuals were calculated 𝑓𝑐(𝑡) = (𝑥𝑐(𝑡), 𝑦𝑐(𝑡)) , where xc and yc are the 

average of the x and y positions of individuals in groups. These are used to 

obtain the x-y position for the group centroid 𝑓𝑐 which can then be used to 

calculate group vectors, speed, distance travelled, acceleration and heading at 

time t as in individual metrics, as follows: 

Vector of centroid 𝒇𝒄(𝒕) = (𝑥𝑐(𝑡), 𝑦𝑐(𝑡)) denoting position of centroid c at time t, 

I approximated the centroid velocity at time t by calculating the forward finite 

difference: 

 

𝒗𝒄(𝒕) =
𝑓𝑐(𝑡 + 𝛥𝑡) − 𝑓𝑐(𝑡)

𝛥𝑡
 

Centroid speed at time t 𝑣𝑐(𝑡) is calculated from the absolute values of the 

velocity vector: 



21 | C o t g r o v e  
 

𝒗𝒄(𝒕) = |𝒗𝒄(𝒕)| = √𝑣𝑥𝑐
2(𝑡) + 𝑣𝑦𝑐

2(𝑡)  

I calculate the acceleration of the centroid at time t: 

𝑎𝑖(𝑡) =
𝑓𝑖(𝑡 + 𝛥𝑡) − 2𝑓𝑖(𝑡) + 𝑓𝑖(𝑡 − 𝛥𝑡))

𝛥𝑡2
 

Centroid heading at time t is calculated using the angle between the velocity 

vector and positive y axis given by: 

𝜓𝑐(𝑡) = 𝑎𝑡𝑎𝑛2(𝑣𝑦𝑐(𝑡), 𝑣𝑥𝑐(𝑡)) 

Distance from centroid was calculated for all individuals. For each timestep t, 

the distance from each individual i’s location to the centroid can be determined 

as: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑖(𝑡) = √(𝑥𝑖(𝑡) − 𝑥𝑐(𝑡))2 + (𝑦𝑖(𝑡) − 𝑦𝑐(𝑡))2 

Distance from centroid is measured in pixels and can be converted to cm or BL in 

relation to the focal individual. 

To calculate position in group, coordinates of individual positions are required to 

be transformed dependent on centroid position and heading of group. The 

coordinate system is first transformed so that the origin is at the group centroid 

at time t, and the angle between the positive y axis through the centroid and an 

individual’s position is calculated: 

𝛿𝑖(𝑡) = 𝑎𝑡𝑎𝑛2(𝑥𝑖(𝑡) − 𝑥𝑐(𝑡), 𝑦𝑖(𝑡) − 𝑦𝑐(𝑡)) 

This is then used to calculate the individual’s relative direction to the group 

centroid which is then adapted to fit the Cartesian coordinate system pointing 

north: 

𝜎𝑖(𝑡) = 𝛿𝑖(𝑡) − 𝜓𝑐(𝑡) 

{𝜎𝑖(𝑡) < −𝜋}: 𝜎𝑖 = 2𝜋 − |𝜎𝑖(𝑡)| 𝑜𝑟 {𝜎𝑖(𝑡) > 𝜋}: −(2𝜋 − 𝜎𝑖(𝑡)) 
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From the coordinate transformation, relative position can be calculated for each 

individuals to the group centre: 

(𝑥𝑖
′, 𝑦𝑖

′) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑖(𝑡)(𝑠𝑖𝑛(𝜎𝑖(𝑡)),  𝑐𝑜𝑠(𝜎𝑖(𝑡))) 

The transformation means that individuals with greater y coordinates are 

considered at the front of the group relative to direction of travel at a given 

time step t. From these values I can calculate proportion of time each individual 

spends in a position, and look at variation and shuffling of these positions. 

Position in school is measured from 1 to the maximum number of individuals, 

where 1 indicates front positions and higher numbers are in the rear. Mean 

Position in school is a mean position per individual across the whole trial.  

Mean interindividual distance can be calculated as a measure of group cohesion, 

based on the 𝐼𝐼𝐷𝑖𝑗 between all individuals (n) in a group between all fish (n) in 

the group 

𝐼𝐼𝐷𝑐(𝑡) =
1

𝑛(𝑛 − 1)
∑ ∑ 𝐼

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑗=1

𝐼𝐷𝑖𝑗 

where 

𝐼𝐼𝐷𝑖𝑗(𝑡) = √(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))2 + (𝑦𝑖(𝑡) − 𝑦𝑗(𝑡))2 

Mean interindividual distance is measured in pixels and is converted to cm. 

Alignment of each individual relative to others in the group at each timepoint t 

was calculated and defined as polarisation.  

𝜌(𝑡) =
1

𝑛
√(∑ 𝑠

𝑛

𝑖=1

𝑖𝑛(𝜓𝑖(𝑡)))

2

+ (∑ 𝑐

𝑛

𝑖=1

𝑜𝑠(𝜓𝑖(𝑡)))

2
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Polarity is measured across the group with values ranging from 0 (non-alignment) 

to 1 (complete polarity). 

Swimming vs schooling is the proportion of time (%) spent schooling, defined as 

when a group is cohesive (within 4 body lengths of a neighbour) and moves with 

considerable speed and alignment versus shoaling, which is when a group is 

cohesive but has minimal speed or polarity. 

 

2.2.4 Propagation of Movement 

Leadership was measured by quantifying the propagation of movement changes 

in a group by examining the temporal correlations in acceleration and turning (as 

listed above) for all pair combinations within groups (Nagy et al., 2010; Katz et 

al., 2011; Jolles et al., 2017). Speed and direction of two individuals in a dyad 

were compared up to 150 frames (5 s) before and after a change in movement, 

in time steps according to the frame rate of the recording. Leading events were 

identified when an individual’s change in motion had the maximum correlation 

to another individual within 5 s after that time point. The mean time point of 

events in comparison to other group members was calculated, and will identify 

whether individuals are leaders (react first) or followers (react after). 

Leadership networks are able to be constructed from these time delays between 

all individuals in group following (Nagy et al., 2013). Analysis was restricted to 

frames where individuals were traveling above 0.25 body lengths per second and 

within 4 body lengths from other individuals to ensure followers are moving due 

to interaction rules with the group (Lukeman et al., 2010; Herbert-Read et al., 

2011) 

Propagation of movement is measured in terms of mean lag after a leadership 

event (while turning or accelerating) and is measured in frames, where smaller 

numbers (negative) indicate earlier recorded movement, and therefore 

leadership. Higher numbers (closer to 0) mean later movement and indicate 

followership.  
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Leadership stability quantifies whether leading is performed by the same 

individual during every change in speed or directionality (0 – disorder, 1 – same 

individual each event) and leadership consistency quantifies whether leadership 

is happening at a constant rate through the trial or never, whether or not it is 

the same individual leading (0 – leadership never occurs, 1 – throughout 

constantly throughout the trial). 

 

2.3 Discussion 

The described equations were coded into R for use and summarised below by 

individual or group level metric, and the relevant units. I describe metrics which 

can be calculated from 2 dimensional positions of individuals alone or in a group, 

in any organism. Tracks can be calculated using any suitable tracking programme 

and metrics are able to be generated. Previous studies have used such equations 

in calculating group behaviour of fish (Jolles et al., 2017), birds (Nagy et al., 

2010, 2013) or insects (Bazazi et al., 2008). Individual metrics are regular 

measures of activity in studies outside the collective behaviour discipline 

(MacGregor & Ioannou, 2021). 

Available open source tracking programmes have grown in number over the last 

5-10 years as accessibility to programming and resources to build software have 

increased (review by Sridhar et al., 2019). While this surge in software ability 

has potential to revolutionise the analysis of behavioural data, a major hurdle to 

wide-spread usage of these programs is that the data provided by must be 

transformed into useful metrics. This is not a straightforward endeavour, and 

there are currently no accompanying open-source tools or R packages available 

for translating tracked coordinates into behavioural metrics. This is a key reason 

why black box programmes such as Ethovision XT are so popular, but even these 

programs require extra user processing to obtain the nuanced leadership metrics 

and among-individual correlation data I present in this thesis. By creating an 

open source tool, utilising R freeware which is used globally by data analysts in 

all fields, I aim to aid projects in behavioural data analysis. However, the code I 

developed independently could be used by others to facilitate data processing 

for any software package which exports two-dimensional coordinates.  



25 | C o t g r o v e  
 

Table 2.3-1: Table displaying behavioural metrics and units discussed in this thesis. 

Individual Metric Group Metric Units/Bounding 

Mean Individual Speed Mean Group Speed px/frame 

Total distance travelled Mean Total Distance Travelled pixels 

Individual Acceleration Centroid Acceleration px/second 

Individual heading Group Polarisation 0 (unorganised) – 1 
(polarised)  

Turning speed Centroid Direction -360 – 360°  

Mean Lag after Leading Event 
while Turning  

 -4 (leading) – 0 
(following) 

Mean Lag after Leading Event 
while Accelerating  

 -4 (leading) – 0 
(following) 

Average Position in School  1 (front) – number in 
group (back) 

 Leadership Consistency 0 (disorder) – 1 (same 
individual each event) 

 Leadership Stability 0 (leadership never 
occurs) - 1 (leadership 
occurs constantly 
throughout the trial) 

Distance from centroid Area of group px2 

Interindividual Distance Average Neighbour Distance px 

 Swimming vs Schooling % trial 0 (schooling) - 
100 (swimming) 

Nearest Neighbour Distance  px 
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3 The effect of temperature and group composition of 

metabolic phenotypes on leadership and collective 

behaviours in fish 

  

3.1 Abstract 

Group living is ubiquitous among animal taxa and comes with costs and benefits 

associated with predator avoidance, foraging and reproduction. Collective 

behaviour is an emergent property of behavioural phenotypes and interactions 

between groupmates, and differences in traits associated with energy 

requirements and metabolism may affect emergent group behaviours. Overriding 

effects of the environment, including differences in temperature, may also 

modulate the effects of metabolism on group behaviours, especially in 

ectotherms. Using common minnows (Phoxinus phoxinus),  the standard 

metabolic rate (SMR) of individual fish were measured at 15 °C and the shoaling 

behaviour of free-swimming groups was examined at two temperatures (15 and 

18 °C) in an open field (9 fish per group) using groups comprised entirely of fish 

with either a high SMR (randomly selected from the top 25% of SMR for all fish 

measured), medium SMR, or low SMR (bottom 25%). A fourth treatment consisted 

of heterogenous groups with three high, medium, and low SMR fish per group. 

There were no consistent effects of metabolic composition on leadership or 

group behaviour. At the higher temperature, groups were less cohesive, in terms 

of among-individual distances, but were more polarised and moved at a higher 

speed. While leadership was not related to spatial position within schools for any 

group composition or temperature, changes in group turning or acceleration was 

less consistently initiated by specific individuals at 18 °C. These results provide 

insight into the mechanistic underpinnings of group functioning, and in a wider 

perspective, how changing environmental temperatures may affect the 

functioning of fish social groups.  
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3.2 Introduction 

 

It is increasingly recognised that social groups contain a large degree of among-

individual phenotypic heterogeneity and that leadership within groups may be 

linked to individual behavioural phenotypes (Jolles et al., 2020a). Collective 

movement requires group members to combine their individual perceptions of 

the environment and reach a consensus about the speed and direction of travel 

while remaining some level of cohesiveness (Conradt & Roper, 2005). While 

collective group decisions can be initiated by an individual, these are only 

successful if followed by groupmates, either voluntarily or through exerted 

dominance (Conradt & Roper, 2010). Frontal positions in moving groups are often 

thought to be occupied by individuals who have more information about the 

surrounding environment, a greater need for resources, or a higher motivation to 

locate preferable environments (Couzin et al., 2005; Ioannou et al., 2015). 

Accordingly, leadership may be a selfish strategy employed to influence 

collective behaviour in the leader’s favour (King et al., 2008). Depending on 

numerous factors, including within-individual, within-group, and environmental 

variation, leadership roles within groups be may stable or fluctuate among 

individuals (Asher & Collins, 2012). If group members fail to reach a consensus in 

movement or habitat selection, the group may split and the benefits of group 

living such as protection from predation, increased reproductive opportunities 

and access to resources may be reduced (Krause & Ruxton, 2002; Conradt & 

Roper, 2007).  

Group splitting could result in among-group phenotypic assortment, particularly 

for phenotypic traits related to resource demand, locomotion, or habitat 

preference. For example, the minimum metabolic rate needed to sustain life 

(standard metabolic rate (SMR) in ectotherms; basal metabolic rate in 

endotherms) is often correlated with traits known to play a role in leadership 

within groups, and potentially among-group assortment, including boldness 

(Metcalfe et al., 2016) and sociality (Cooper et al., 2018), possibly because 

individuals with a higher SMR have an increased foraging motivation (Killen et 

al., 2016). Aerobic scope (AS) is defined as the difference between the 

maximum metabolic rate (MMR) and SMR, where MMR is the maximum amount of 



28 | C o t g r o v e  
 

oxygen consumed in aerobic respiration (Norin & Clark, 2016). Furthermore, an 

animal’s aerobic scope is influenced by their SMR, and depending on context, 

aerobic scope may be related to the spatial position of individuals within moving 

groups (Killen et al., 2012b; McLean et al., 2018), due to effects on locomotor 

capacity or feeding motivation. Initially heterogenous groups, which have a mix 

of individuals with variable metabolic requirements, may fail to reach a 

consensus leading to group fission and assortment based on individual SMR to 

reduce conflicting priorities among group members (Seebacher & Krause, 2017). 

However, any changes in group-level metabolic composition could affect overall 

group behaviour and functioning. A group composed of all high SMR individuals, 

for example, may be less cohesive (Killen et al., 2017) if they are all motivated 

to forage and therefore put less priority on the anti-predation benefits of 

grouping. Conversely, lower SMR groups may show less goal-orientated behaviour 

and therefore be more cohesive and coordinated (Careau et al., 2008; Hansen et 

al., 2020). The analysis of individual physiology when analysing collective 

behaviour has been understudied, and it is still unknown if individuals naturally 

group by similar metabolic phenotypes and how these groups may differ in 

behaviour according to their composition (review by Jolles, King, et al., 2020). 

As spatial and temporal environmental heterogeneity becomes more common, 

among group phenotypic assortment may become more likely. The effects of 

metabolic composition of groups are critical to understanding how groups may 

move and change their behaviour in variable conditions. 

Considering that environmental temperature has direct effects on animal 

physiology and behaviour, especially for ectotherms, it is surprising how little is 

known about the influence of temperature on group behaviour. This is a critical 

knowledge gap given the effects of global climate change on the magnitude and 

variation in temperatures experienced by social animals. Animals in aquatic 

environments experience especially pronounced spatial and temporal variation 

in temperature, with potential effects on a range of processes related to social 

behaviour including metabolic demand, aerobic scope, aggression, cognition, 

and locomotor ability (review on performance curves by Killen, Cortese, et al., 

2021). As animals encounter acute changes in their environment, an increase in 

temperature will in general increase metabolic rate and likely movement speed 

for ectotherms (Bartolini et al., 2015), potentially reducing group cohesion and 



29 | C o t g r o v e  
 

coordination as individuals experience increased foraging motivation. The exact 

effects of temperature change on group behaviour may differ depending on the 

metabolic composition of the group, particularly because thermal preference 

can be related to metabolic rate at the individual level (Cooper et al., 2018). 

More heterogenous groups may therefore show a disproportionately strong 

reduction cohesion with an increase in temperature, while more homogeneous 

groups may be better able to maintain cohesion and coordination in the face of 

an elevation in temperature. Increased knowledge of the effects of temperature 

on group functioning is important for gaining a fuller understanding of how this 

crucially important but highly variable environmental factor affects processes 

such as group foraging and predator avoidance.  

Using the common minnow (Phoxinus phoxinus), I examined the effect of an 

acute temperature increase on group movement, and the role of individual 

metabolic rates and group metabolic composition in collective behaviour. In 

many ectothermic species metabolic rates are sensitive to shifts in temperature 

and individual behaviour has been shown to change (Bartolini et al., 2015; 

McMeans et al., 2020; Morissette et al., 2021). Exploring group behavioural 

changes in an experimental arena can provide insight into how fish schools 

respond to seasonal changes and extreme weather events. Minnows are a social 

species that commonly inhabit areas with high spatiotemporal variation in 

temperature. At the group level, I examined the effects of group composition on 

group behaviour by assembling groups of individuals with either relatively high 

metabolic rates, low metabolic rates, intermediate metabolic rates, or 

heterogenous groups with equal proportions of each type of individuals. Within 

groups, leadership was quantified as initiation of changes in the directionality 

(turning) and speed of movement (acceleration), and via proximity to the front 

of the group while moving. Specifically, I aimed to address the following 

questions: 1) How is leadership within groups related to individual metabolic 

demand, and does this vary with group metabolic composition; 2) How is group 

movement and cohesion affected by metabolic composition of the group; and 3) 

how does temperature influence the behaviour of groups with different 

metabolic compositions and the role of leadership within groups. We 

hypothesized that schools with high metabolic rates would show a weaker 

leader-follower dynamic, and when exposed to higher temperatures, groups 
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would become less cohesive and coordinated, and leadership may decrease in 

strength. 

3.3 Materials and Methods 

3.3.1 Experimental Animals 

Juvenile common minnows (Phoxinus phoxinus) were collected from the River 

Kelvin, Glasgow, United Kingdom using dip nets. Fish were acclimated in aerated 

stock tanks (100 x 40 x 30 cm) for 6 months prior to experiments. Throughout 

the whole experimental process, tanks were supplied with re-circulating, UV 

treated freshwater on a 12L:12D photoperiod. The water temperature was 

initially kept between 13 and 14 °C which gradually increased to 14 and 15 °C 

during the summer months. Fish were fed once a day with bloodworm and 

commercial fish flakes.  

 

3.3.2 Measurement of Metabolic Traits 

After acclimation, a total of 180 fish were subjected to intermittent flow 

respirometry after a 24 h fasting period to provide estimates of metabolic 

phenotype (SMR, MMR, AS, for details see Table 8.1-23) (Svendsen et al., 2016; 

Killen et al., 2021a). Per day, 16 fish were haphazardly caught from holding 

tanks using dip nets and profiled. Estimates of maximum metabolic rate (MMR) 

were achieved by manually chasing individual fish in 10 cm water to exhaustion 

in a circular tank (40 cm diameter). Fish were manually chased to exhaustion for 

2 min (Chrétien et al., 2021), exhaustion was determined by the point where fish 

were no longer receptive to chase stimulus. The manual chase method is 

assumed to induce maximum oxygen uptake rate as fish recover from anaerobic 

exercise. Once exhausted, fish were immediately transferred to individual 

cylindrical glass respirometry chambers (75 mL volume) attached to an 

intermittent flow respirometry system, containing the glass cylinder and gas 

impermeable tubing through which water is recirculated using a peristaltic 

pump. 16 respirometry chambers containing 16 individual fish were submerged in 

an air saturated, temperature-regulated water bath (15 ± 0.1 °C; 50 L) and 

shielded from disturbance and light with an opaque plastic cover. Oxygen 

content of water in the respirometry chambers was recorded every two seconds 
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using a 4-channel fibre optic oxygen meter with associated oxygen sensors and 

software (FireStingO2; PyroScience GmBH, Aachen, Germany). Probes were 

calibrated at the start of the experiment and 100% oxygen saturation was 

calibrated before every new fish was put in the chamber. Every 8 minutes, an 

automated flush pump was programmed to flush tubing and chambers for 5 min 

and fully aerated water would enter the chamber and would return to normoxia. 

After, the pump would switch off, sealing the respirometry chambers to allow 

decreases of oxygen due to fish respiration to be measured. Estimates of MMR 

were obtained by calculating the rates of oxygen uptake for each 8 min interval, 

disregarding the first and last 30 seconds of the measurement, throughout the 

first 30 min of recovery immediately following chase protocol; MMR (mg O2 h-1) 

was taken as the highest rate of aerobic metabolism during recovery. After MMR 

measurement, fish remained in their respirometry chambers overnight to allow 

for measurement of SMR and removed after approximately 20 hrs. Whole animal 

SMR (mg O2 h-1) was estimated as the lowest 10th percentile of measurements 

taken after MMR and the subsequent recovery (Chabot et al., 2016). Absolute 

aerobic scope (AS) was calculated as the difference between MMR and SMR. 

Background respiration was measured by measuring oxygen declines in empty 

chambers for 3 cycles before and after fish were present, and was assumed to be 

a linear change. Before measuring MMR in the next trial of 16 fish, the system 

was bleached and rinsed to prevent bacterial build up and water in the trials was 

continuously exposed to UV lamp. 

After respirometry, fish were removed from the chambers, sedated with 

benzocaine solution (0.1 g L-1) and each individual was measured for length, 

mass and tagged with a unique Visible Implant Elastomer (VIE) tag combination 

to allow for identification (Northwest Marine Technology Inc., Shaw Island, USA). 

SMR values were adjusted to account for variation in body mass (Cutts et al., 

2002; Auer et al., 2015). SMRadj was calculated by adding residuals from the 

predicted relationship between log-transformed SMR and individual mass to the 

metabolic rate predicted for a fish with the mean body mass of all fish in the 

study. Based on adjusted SMR, fish were assigned metabolic phenotypes; high 

(highest 40 fish) , medium (100 fish) or ; low (lowest 40 fish). Fish were split in 
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ratios of their adjusted SMR (1 high:2 medium:1 low) between 4 holding tanks 

(100 x 40 x 30 cm) tanks where they were held throughout the experiment.  

 

3.3.3 Open Field Trial 

An open field experimental design using a circular basin with a central column to 

facilitate swimming (110 x 30cm) was filmed using a Canon EOC 6D camera. Four 

different group compositions (Table 2) of 9 fish per trial were tested during the 

experiment. Fish from each SMR bracket were randomly selected from one 

holding tank at a time for each group to have the same level of familiarity, and 

were left to acclimate after transfer to the arena for 30 minutes at 15 °C before 

recording behaviour for 20 minutes. After 15 °C trials were completed, the 

water temperature of the trial arena was raised to 18 °C over 30 minutes and 

fish were recorded for a further 20 minutes to look at the effect of acute 

exposure to higher temperatures on schooling behaviour. 

 

Table 3.3-1: Final numbers of trials with each metabolic composition used in schooling 
behaviour trials. 
 

High SMR Intermediate SMR Low SMR Mixed SMR Total Trials 

15 °C 4 4 5 5 18 

18 °C 4 4 5 5 18 

Total Trials 8 8 10 10 36 trials 

  

3.3.4 Video Analysis 

Videos were processed using idTracker (Pérez-Escudero et al., 2014). XY 

coordinates were identified for individual fish using the programme’s algorithm 

and positions were estimated where possible when individuals crossed over 

vertically when swimming. Tracks were checked via visual inspection and 

positions corrected if needed. For all automatically tracked trials, missing and 

interpolated data for each individual was quantified. 
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For trials where there was a significant amount of crossing over of individuals, or 

where the reliability of tracks was under 80%, as calculated by idTracker, 

manual tracking was used on a subset of frames (imageJ). These subsets were 

excluded from leadership metrics as the subset results were not found to be 

representative of these measures. Mean lag after a leadership event while 

turning and accelerating and position of school had a R < 0.80 comparing results 

from subset and automated tracking of same video (n = 5; Pearson’s 

Correlation)). Subset results were used when analysing cohesion and speed 

metrics as these were found to be representative of a full dataset. Subset videos 

measured 400 frames total whereas automatic tracking tracked approximately 

20,000 frames.  

From the coordinates of each individual, movement speed, direction, 

acceleration and turning speed were calculated for each trial using equations 

from Jolles et al. 2018 (see Chapter 2 for further details). from individual 

positions and metrics, group metrics such as polarity and cohesion were 

calculated. Fish groups were defined as shoaling or schooling depending on 

cohesion and speed travelled (Pitcher & Parrish, 1993; Delcourt & Poncin, 2012). 

Propagation of speed and turning changes were calculated as a measure of 

individual leadership and used to calculate leadership consistency, which was 

defined by the average correlation of movement, which indicates how 

consistently followers react to any given leader, and describe whether the group 

is synchronised or not. If the leader was the same individual throughout the 

trial, this is described as leadership stability (Nagy et al., 2010; Jolles et al., 

2018). Leadership was only quantified for individuals within 4 BLs of another 

fish, as further than that distance would suggest they are unlikely to be directly 

interacting with each other.  

 

3.3.5 Statistical Analysis 

All statistical analyses were performed in R.4.0.5 (R development Core Team). 

Linear mixed effect models (lme4, lmertest) estimated using REML were fitted 

to investigate how metabolic composition of groups and individual differences 

affected leadership and group behaviour. Model selection was performed by 
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sequentially dropping non-significant terms starting with lowest t-values but 

were retained if their removal resulted in higher AIC values (ΔAIC > 2; Arnold, 

2010). For each specific model structure see supplementary methods, however 

for each individual metric of leadership or collective behaviour, group, ID and 

time of trial were included as random effects and individual size (Total Length), 

SMR and MMR rank within group, temperature and metabolic composition were 

included as explanatory variables. For each group metric, group was included as 

a random effect, and temperature and metabolic composition were included as 

explanatory variables. Homoscedasticity and normality of residuals were 

assessed by visual inspection of residual plots and used to determine whether 

transformation of data was necessary. Metrics associated with propagation of 

movement (Mean Lag after leadership, Leadership consistency and leadership 

stability for turns and acceleration) were scaled. Total length of individual, 

individual speed, average neighbour distance, and group polarity were log 

transformed for inclusion in statistical models. 

 

3.4 Results 

3.4.1 Leadership and group movements are not affected by individual 

metabolic phenotype  

In general, fish that lead their groups while turning tended to also be those that 

lead while accelerating (Figure 3.4-1; Table 8.1-1). In contrast, position within 

school was generally not associated with either leadership while turning or 

leadership while accelerating, except for low SMR groups at 18 °C (leadership 

while accelerating: r = 0.38, t(41) = 2.62, p < .05; leadership while turning: r = 

0.45, t(39) = 3.16, p < .01) and mix SMR groups at 15 °C when accelerating (r = 

0.42, t(31) = 2.56, p < .05). Followers in low metabolic composition groups were 

found at the back of the group in 18 °C when leading while turning and 

accelerating.  

Regardless of temperature, none of SMR rank, MMR rank, or body mass were 

related to leadership while turning or accelerating, or position in school, and 

were excluded from the final model (Table 8.1-12; Table 8.1-13; Table 8.1-14; 

Table 8.1-5). Overall followers had a larger mean lag after leading and so 
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responded faster to leadership at 18 °C when turning or accelerating . Followers 

in medium and mixed groups responded slower to leaders than in low groups 

when turning, where medium groups respond the slowest when turning (Figure 

3.4-3; Table 8.1-2). Similarly, while accelerating, followers responded slower in 

medium, high and mixed groups than in low metabolic composition groups 

however there was no difference between medium, mix and high groups (Figure 

3.4-3; Table 8.1-3). 
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Figure 3.4-1: Comparison of A) Leadership Response while Accelerating and Leadership 
Response while Turning, B) Mean position in school, where 1 is front of school and 9 is 
back, and Leadership Response while Accelerating and C) Mean position in school and 
Leadership while Turning. Points represent individual fish in Low (light blue), Medium 
(mid blue), High (dark blue), and Mix (orange) metabolic composition. Lines represent 
linear regression between the behavioural metrics, while the shaded area corresponds 
to 95% confidence intervals  . Both 15 °C and 18 °C temperature treatments are 
displayed. 
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Figure 3.4-2: Relationship between rank of MMR, where 1 is the highest MMR of the 
group and 9 is the lowest, and mean response to leadership event while accelerating 
(A), mean lag after leadership event while turning (B), and mean position in school (C). 
Each line represents a different group within the temperature treatments (15˚C or 
18˚C) and group compositions (low: light blue, medium: med blue, high: dark blue and 
mix: orange) standard metabolic rate represented by the different colours. Thick linear 
lines represent the linear regression between MMRrank and behavioural metric for each 
treatment. 
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3.4.2 Leadership and group movements are affected by the overall 

phenotypic composition of the group 

Leadership while turning is more stable (same individual leading) and consistent 

(same time interval between followers reacting) at 18 °C compared to 15 °C 

(Consistency: t(23) = 4.26, p < .001; Stability: t(23) = 3.45, p < .001). In leading 

while accelerating, temperature and metabolic composition did not have an 

effect on group stability or consistency (Table 8.1-6; Table 8.1-6). 

Followers reacted faster to leaders at 18 °C, fish generally swam significantly 

faster at 18 °C compared to 15 °C for low and mixed metabolic compositions 

(Low: t(316) = 11.03, p < .001; Mix: t(316) = 3.89, p < .001;). In medium 

metabolic compositions there was a significant decrease in speed at 18 °C 

(t(316) = -3.86, p < .001) and there was no difference in high metabolic groups 

metabolic groups except in comparison to mixed metabolic groups, which swam 

faster (Table 8.1-7; Table 8.1-8). 

Groups were generally more polarised at 18 °C than at 15 °C, but the amount of 

variation increased at 18 °C. There was an interaction between temperature and 

metabolic composition, where medium (t(314) = -10.21, p < .001) and mixed 

(t(314) = -2.44, p < .05) groups at 18 °C were less polarised at 15 °C, despite 

having larger among-group variation. Low and high metabolic groups significantly 

increased at 18 °C (Table 8.1-7; Table 8.1-10).  

In general, groups were less cohesive at 18 °C than at 15 °C. Low and mix groups 

were the least cohesive at both 15 and 18 °C, followed by high metabolic groups 

and then medium metabolic groups (Table 8.1-7; Table 8.1-9). 

Swimming vs schooling was less varied at among groups at 18 °C, and 

significantly more time was spent schooling at 18 °C than 15 °C (t(317) = 17.27, 

p < .001). There was no difference between metabolic groups for this 

metric(Table 8.1-7; Table 8.1-11). 
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Figure 3.4-3: Boxplots of group leadership metrics for Low, Medium, High and Mix 
metabolic compositions at 15 °C and 18 °C temperature treatments. Boxplot upper and 
lower hingers represent the 25th and 75th percentiles respectively and the horizontal 
line within the box represent the median. Length of the whiskers represents the range 
of datapoints between each hinge.  
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Figure 3.4-4: Boxplots of group behavioural metrics for Low, Medium, High and Mix 
metabolic compositions at 15 °C and 18 °C temperature treatments. Boxplot upper and 
box represent the median. Length of the whiskers represents the range of datapoints 
between each hinge. 
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3.5 Discussion 

There was no consistent effect of metabolic composition of groups on individual 

behaviour of leaders and followers, but an acute temperature shift caused 

different metabolic compositions to change their group behaviour to differing 

extents. For example, depending on the temperature and exact metabolic 

composition, different groups showed varying degrees of leadership consistency, 

leadership stability, and group movement speed. Within groups, there was no 

effect of metabolic rank on metrics of individual behaviour. Interestingly, 

position within school when moving was not correlated with either leadership 

when turning or leading when accelerating. However, in low metabolic rate 

groups, leaders when both turning and accelerating were found at the back of 

the group, indicating that propagation of movement does not necessarily come 

from the front of a group, contrasting with previous work (Leblond & Reebs, 

2006; Nagy et al., 2010). Overall, these results indicate that while temperature 

is an important factor affecting both individual and group behaviours, the exact 

magnitude of these effects may depend on the traits present within social 

groups and the degree of within group heterogeneity in metabolic rates. 

The effects of metabolic composition on group behaviour were complex and 

dependent on the prevailing ambient temperature. For example, group 

movement speed only increased with temperature for the low and mixed 

composition groups. Previous work has shown increased temperature can cause 

increased swimming speed and decreased group cohesion (Davis et al., 2019) but 

the result here suggests that the magnitude of this effect is dependent on the 

metabolic composition of the group. Additionally, while previous work has found 

that group cohesion can decrease with temperature in fish (Bartolini et al., 

2015), the results here show no effect of temperature on cohesion but instead 

indicate that low and mixed groups are generally the least cohesive. Fish have 

been found to be less cohesive at higher testing temperatures and more 

polarized at lower testing temperatures, with higher tail beat frequency at 

maximum testing temperatures. Weetman et al. (1999) and Pritchard et al. 

(2001) found that fish swam closer together at higher temperatures, but 

(Bartolini et al., 2015) found opposite, however this is in water flow therefore 

high energy expenditure while swimming is required (Johansen & Esbaugh, 

2017). Fish at higher temperatures could have greater energetic demands and 



42 | C o t g r o v e  
 

have decreased cohesion to increase foraging opportunities (Pitcher & Parrish, 

1993; Hoare et al., 2004). However, fish activity and speed increased at higher 

temperatures, which could also decrease cohesion (Robinson & Pitcher, 1989), 

contrasting with evidence that individual nearest neighbour decreases as fish 

swim faster (Partridge et al., 1983; Gimeno et al., 2018). Reduced cohesiveness 

of groups caused by increasing temperatures can lead to alterations in ecological 

interactions such as dilution of information transfer, changes in competition for 

resources and predation response (Ioannou, Couzin, James, Croft, & Krause, 

2011; Malavasi et al., 2013; Weetman, Atkinson, & Chubb, 1998). On a wider 

scale, the thermal environment may enhance or hinder the benefits of group 

living through resource availability, which could lead to disrupting established 

relationships or affecting opportunities to form new bonds, such as increased 

temperatures increased roost decay and thus roost switching, facilitating and 

increase in information transfer (Willis & Brigham, 2004; Wilkinson et al., 2019; 

Patriquin et al., 2016; Wildeet al., 2018). In social weavers, individuals spent 

more time thermoregulating and less time associating with conspecifics (Rat et 

al., 2020).  

Group metabolic composition did not affect leadership stability or consistency, 

but an increase in temperature causes leadership to be less stable and less 

consistent between individuals, with leadership changing among individuals more 

frequently and groups becoming less synchronised. In heterogenous groups of 

individuals past work has shown there may be divergence in behaviour for 

individuals with different thermal optima, for example three spined stickleback 

may forego associations with conspecifics as the difference between 

environmental and individual’s preferred temperature increases (Cooper et al., 

2018). Individual heterogeneity in metabolism may result in unequal distribution 

of behaviours which generate and maintain structure in social groups (Cowlishaw 

& Dunbar, 1991). In the present study, heterogenous groups show no difference 

in leadership consistency or stability at higher temperatures in comparison to 

homogenous groups, however temperature has a significant effect on both 

leadership stability and consistency when turning, where groups at 18 °C have 

more consistent leadership where the leading fish maintains their role 

throughout the trial. Some individuals, regardless of physiology, may maintain 

their role within groups despite environmental stressors. The disruption of 
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leadership at 18 °C suggests that even though there may not be clear leadership 

in groups by one or few individuals, the cues used in coordination of groups are 

disrupted. 

Metabolic composition of group did not affect individual rates of leadership 

while turning or accelerating. Leadership was not driven by one consistent 

individual, and there is not consistent leadership at 18 °C. Previous work has 

suggested spatial positioning, leadership and foraging performance of individuals 

was conditional on behavioural phenotypic composition of their group (Jolles et 

al., 2018), which may be translated to physiological composition. Previously, 

leadership has been found to be a repeatable trait in individual stickleback 

(Georgopoulou et al., 2022), and other work looking at sticklebacks have also 

shown consistent leader-follower interactions (e.g. Bevan et al., 2018a; Jolles, 

Mazué, et al., 2020) which have shown that temperature disrupts group 

dynamics.  

While previous work has suggested that metabolic traits can be linked to spatial 

positioning or leadership within groups under specific contexts (Killen et al., 

2017; Ward et al., 2018). The results here show that initiation of group changes 

in directionality or speed are not related to rank SMR or MMR within moving 

groups. Harcourt et al. (2009) and Nakayama et al. (2016; 2012) showed 

individuals that leave cover and explore environments (“bold” behavioural 

phenotype) also displayed stronger leadership tendencies. Additionally, boldness 

has been correlated to high metabolic rates (Metcalfe et al., 2016), which 

suggested that leaders may have higher metabolic phenotypes than followers. 

We also hypothesised that individuals with a higher SMR may have a higher 

feeding motivation, and therefore be more goal-oriented in their movement and 

be more likely to initiate group movement. The current study suggests that 

leadership when turning or accelerating is not strongly influenced by metabolic 

phenotypes only, and may be influenced by other physiological or behavioural 

metrics. It is notable that, while the lack of a link between leadership and 

metabolic traits was consistent across temperatures, it is possible that differing 

results could be obtained depending on the prevailing environmental conditions. 

For example, when in a fast flow, fish with higher maximum metabolic rate and 

aerobic scope have been found to be near front of schools (Killen et al., 2012b). 
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In contrast, individuals with a lower aerobic capacity have been observed to be 

near the back of schools while moving in still, benign conditions (Ward et al., 

2018), possibly because higher performing leaders would decrease group 

cohesion. I also theorised that groups with more heterogeneity in metabolic 

traits may show stronger links between leadership and either SMR or MMR. On 

the contrary, I observed no effect of metabolic composition on correlations 

between leadership and metabolic traits. It is possible that, under relatively 

benign conditions, variation in metabolic phenotypes within groups is unlikely to 

be sufficient to prevent lower performing individuals from maintaining pace with 

the group, as voluntary swimming speeds in fish tend to be efficient and 

relatively slow compared to their theoretical maximum (Bale et al., 2014). 

Under faster moving conditions or when swimming against a stronger flow, it 

may become difficult for fish with low AS and MMR to maintain their positions at 

the front of the group. Front positions are the most energetically expensive to 

maintain and as hypothesised by Killen et al. (2012), lower performing 

individuals may be forced to adopt positions at the back of the group where they 

can save energy, should the speed of the group increase. Regardless, the results 

here suggest that group structuring or splitting based on metabolic phenotypes 

are unlikely for European minnows, at least under the conditions tested here. 

The spatial position of an individual within the group did not affect leadership 

while either turning or accelerating at either test temperature, indicating that 

propagation of movement does not necessarily come from the front of a school 

of fish. This contrasts with previous evidence that leadership of motion and 

frontal positions in moving groups are positively correlated (Nagy et al., 2010; 

Herbert-Read et al., 2011; Katz et al., 2011; Gimeno et al., 2018). The 

relationship between leadership and spatial positioning could be species 

specific, where propagation of movement and position in group also depends on 

how animals aggregate and school, the number of animals, and the location of 

the study (field or experiment). Interestingly, in low metabolic groups, initiators 

of group turns or changes in speed were found at the rear of groups, suggesting 

that leadership cues may be generated through some other means, rather than 

visual or movement cues from more anteriorly located groupmates.  

The effects of temperature on social behaviour are unlikely to be the same 

across all group members. Indeed, dominance status can affect how individuals 
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respond to temperature, and thereby, the extent to which groups shift to more- 

or less-ordered states (Kochhann et al., 2015). While temperature shifts could 

influence cohesiveness, synchronicity of members could also be affected. If a 

group is homogenous in terms of their metabolic composition and therefore food 

and energy requirements, members may have similar activity budgets and 

temperature shifts may enhance cohesiveness by inducing group movement 

(Michelena et al., 2008; Conradt & Roper, 2010). Our study found that mixed 

metabolic groups had more variation in cohesion than homogenous groups, but in 

general were not different from high, medium, or low metabolic groups. 

However, higher activity levels could disrupt cohesion by making it more 

difficult for individuals to maintain physical proximity (Hurst, 2007; Bartolini et 

al., 2015; Colchen et al., 2017). While the results here show that groups with 

mixed metabolic composition were generally less cohesive, this trend was not 

statistically significant, possibly owing to the relatively low number of groups 

that were tested. This trend is in line with suggestions that groups with high 

phenotypic variation may have decreased cohesion and a higher propensity for 

group fission (Delgado et al., 2018), as well as a reduced capacity information 

transfer, foraging efficiency, and predator avoidance (reviewed by Killen et al., 

2017) 

Differences between collective behaviour patterns from other studies may be 

due to species specific differences, where black neon tetra of similar sizes and 

group number were more polarized and cohesive than studies of zebrafish (Soria 

et al., 2007; Gimeno et al., 2016). Moreover, these species-specific differences 

may be exacerbated depending on the experimental arena, where species may 

react differently to height of the water column, and orientate themselves to 

enhance information transfer which may be different to how they aggregate in 

the wild (Magurran, 1990; Couzin, 2007). Similarly, when quantifying leadership 

in terms of position in school, Partridge (1980) found that in minnow dyads there 

are clear leader-follower interactions (i.e. one fish at the front). Leadership 

then dissolves in larger groups and so while leader-follower dynamics may be 

present in some groups of species, they may not be seen in minnows. Our study 

adds to the growing evidence that integrating physiological measures into 

studies of individual variation in collective behaviour is imperative when 

determining group functioning and how this changes with environmental 
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stressors. Increasing temperatures has been shown to disrupt group behaviour 

while in experimental settings, however traditionally experiments only utilise 

one or two stressors which may not reflect the variability in field environments 

leading to confounding affects. Additionally, these temperature affects are 

analysed over acute change. While our study is not aimed at replicating the 

environmental fluctuations of real-world systems, the next steps would be to 

assess whether different stressors have independent effects on collective 

behaviour and whether the trends we see in controlled environments are 

reflected in the field. Linking these works to seasonal or long-term temperature 

changes is imperative to understanding how fish schooling behaviour and 

leadership will be affected as animals experience more extreme weather events 

due to shifts in climate change. Understanding how these roles emerge and 

change over time will be imperative to understanding individual- and group-level 

behavioural evolution (Bengston & Jandt, 2014). 

  



47 | C o t g r o v e  
 

4 Effects of feeding and digestion on leadership and 

collective behaviour in schooling fish.  

 

4.1 Abstract 

 

Position within a group can be related to aerobic metabolic scope and hungry 

fish have been shown to occupy anterior positions within a moving school. After 

feeding, the metabolic cost of digestion reduces swimming capacity, and fed fish 

are unable to maintain front positions within groups. Notably, however, this 

previous work has been performed with fish swimming against a current. Here 

we investigated schooling behaviour during and after feeding in a free-swimming 

environment to study how group dynamics change to accommodate the cost of 

digestion for individuals after feeding. Using qingbo carp (Spinibarbus sinensis), 

we examined the routine shoaling behaviour of free-swimming schools in an open 

field arena (9 fish per group) before and after a feeding event. Specific Dynamic 

Action was measured to understand metabolic rate post feeding, and these 

results were applied to behavioural data to determine the relationship between 

metabolism, meal size and behaviour. I provide evidence that while meal size is 

not necessarily associated with leadership across short (2 hour) timescales, 

feeding within a group does affect behaviour after feeding. Fed groups reacted 

slower when a leader was turning compared to control groups that were not fed, 

but reacted faster to leaders that were accelerating. Meal size didn’t affect who 

was the leader after feeding, but whether any fish in the group ate or not had 

more influence on group behaviour. Overall, my results show how overall group 

behaviour, but not leadership changes and spatial positioning, is constrained by 

feeding and provide insight as to how food availability affects group dynamics, 

providing important information how moving groups traverse a changing world. 
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4.2 Introduction 

 

Group living has been observed in all animal taxa, and the costs and benefits of 

sociality have been explored in a variety of contexts (Krause & Ruxton, 2002; 

Ward & Webster, 2016). While collective behaviour has been comparatively well 

studied, the importance of the individual physiological and behavioural 

differences within these groups is not as well understood (Metcalfe et al., 2016; 

Seebacher & Krause, 2017). Individual benefits from grouping may include 

reduced predation risk, reduced energetic cost of locomotion, and increased 

access to mates and social information. Individuals must trade-off these benefits 

against costs of group living, which may include increased competition for food, 

increased visibility to predators, and greater transmission rates of parasites and 

disease (Ward & Webster, 2016). The extent of compromises are likely to be 

unequal among individuals within a group, depending on their specific 

phenotype. In turn, the phenotypes of individuals within groups will be affected 

by a range of intrinsic and extrinsic factors, and potentially show plastic changes 

over short or longer timescales. While individual phenotypes and the degree of 

heterogeneity within groups appears fundamental to how groups function, the 

overall effects of phenotypic changes on groups functioning remaining almost 

entirely unknown. 

Group living has been observed in all animal taxa, and the costs and benefits of 

sociality have been explored in a variety of contexts (Krause & Ruxton, 2002; 

Ward & Webster, 2016). While collective behaviour has been comparatively well 

studied, the importance of the individual physiological and behavioural 

differences within these groups is not as well understood (Metcalfe et al., 2016; 

Seebacher & Krause, 2017). Individual benefits from grouping may include 

reduced predation risk, reduced energetic cost of locomotion, and increased 

access to mates and social information. Individuals must trade-off these benefits 

against costs of group living, which may include increased competition for food, 

increased visibility to predators, and greater transmission rates of parasites and 

disease (Ward & Webster, 2016). The extent of compromises are likely to be 

unequal among individuals within a group, depending on their specific 
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phenotype. In turn, the phenotypes of individuals within groups will be affected 

by a range of intrinsic and extrinsic factors, and potentially show plastic changes 

over short or longer timescales. While individual phenotypes and the degree of 

heterogeneity within groups appears fundamental to how groups function, the 

overall effects of phenotypic changes on groups functioning remaining almost 

entirely unknown. 

Factors such as food availability and metabolic cost of digestion can greatly 

influence individual physiology and possibly their behaviour within a social 

group. Differences in hunger state among individuals generates variability in 

behaviour (Reichard et al., 2008; Björnsson et al., 2018), where hungrier 

individuals will take more risks while foraging (Balaban-Feld et al., 2019), 

occupy the frontal positions of moving groups (Krause, 1993, 1994; McLean et 

al., 2018), or show increased movement speeds (Spiegel et al., 2013; Hansen et 

al., 2015, 2020). Moreover, the effect of nutritional state will vary over time as 

animals feed and move through their environment. Another important 

consequence of feeding, besides changes in hunger state, is the metabolic cost 

of digestion, termed specific dynamic action (SDA; Axelsson et al., 2000; 

Axelsson & Fritsche, 1991). After feeding, the energy required for the 

mechanical and chemical breakdown of food and its subsequent assimilation, can 

constrain the capacity for other oxygen-demanding physiological processes 

within an animal’s aerobic scope (e.g. locomotion). For ectotherms in particular, 

the rise in metabolism can be substantial, possibly occupying the majority of an 

animal’s aerobic capacity, depending on meal size (Spiegel et al., 2013; Hansen 

et al., 2015). Depending on the environmental context, aerobic scope can affect 

the spatial positioning of individuals within moving groups (Killen et al., 2012b; 

Ward et al., 2018). For example, a reduction in available aerobic scope after 

feeding, combined with lowered feeding motivated, may cause individuals within 

moving groups to move to more posterior positions within groups (McLean et al 

2018). Despite this, however, it remains unknown how these changes in spatial 

following feeding may affect leader-follower dynamics within groups and overall 

group activity, coordination, and cohesion.  

Leadership requires an individual to initiate behaviours or movements in 

conspecifics while maintaining group cohesion and coordination (Couzin et al., 
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2002, 2005). Leader-follower dynamics can be affected by individual differences 

within the group such as movement speed (Pettit et al., 2015), experience 

(Flack et al., 2012), behavioural phenotype (Sasaki et al., 2018) or physiology 

(Ward et al., 2018). Leadership is often defined by position within group, where 

individuals at the front of groups may have greater access to resources (DeBlois 

& Rose, 1996). Although leaders may make decisions which benefit themselves 

(King et al., 2008), followers can benefit as they will be led to resources by 

more informed individuals without having to gather information themselves 

(Guttal & Couzin, 2010; Björnsson et al., 2018; Palacios-Romo et al., 2019). 

While leaders can clearly have a strong influence on group behaviour, including 

group foraging (Atton et al., 2012, 2014; Webster et al., 2013)), risk-taking, and 

migration route choice, change in leadership due to environmental factors could 

alter group functioning. For example, changes in foraging motivation or activity 

level due to locomotor constraints after feeding could render leaders less able to 

direct group movements or indeed remain leaders at all. The extent to which 

this may occur in free-ranging groups remains unknown but could fundamentally 

alter the way that social groups function. 

In this study I used qingbo (Spinibarbus sinensis), a highly gregarious cyprinid fish 

species as a model of fish behaviour. Qingbo are one of the most common fish in 

the Yangtze River system, with an omnivorous diet. Previous work has examined 

the effects of food availability on locomotor capacity (Zhao et al., 2012; Pang et 

al., 2014) and sociability (Killen et al., 2016) but the effects of food availability 

on leadership is unknown. We tested the following questions: (i) Does size of 

meal affect leadership within groups; (ii) How does leadership change with time 

after feeding in relation to changes in the metabolic costs of digestion; and(iii) 

How does group behaviour change after feeding and is this linked to individual 

meal size and digestive costs. 
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4.3 Methods 

 

4.3.1 Experimental Animals 

Approximately 270 juvenile Qingbo (Spinibarbus sinensis) were obtained from a 

local supplier and housed at Chongqing Normal University, China for at least 30 

days before experiments began. Fish were maintained in a large laboratory stock 

tank in recirculating, aerated freshwater at 20°C and fed to satiation daily 

(commercial bloodworm), the photoperiod was 14L:10D. Fish were fasted for 24 

hours prior to tagging, and 12 hours before behavioural trials, with 30 groups of 

9 fish were randomly selected to take part in trials from the stock population. 

They were measured for length and mass, then tagged for identification with 

Visible Implant Elastomer tags (Northwest Marine Technology Inc., Shaw Island, 

USA). Groups of fish were contained in tanks separate from the main population 

to acclimatise as a group and encourage schooling behaviour and familiarisation 

with group mates. 

 

4.3.2 Behavioural trials and measurements 

After social acclimation, the individuals from a group were simultaneously 

placed into an oval arena (120 x 60 cm) and left to acclimatise for 1 hour before 

the recording began. 10 minutes after the beginning of the trial, fish were 

exposed to a feeding event, which lasted approximately 10 minutes. The arena 

was permanently fitted with 6 flexi tubes which were attached to the walls of 

the arena at different points and using syringes, one blood worm was inserted 

into the arena using alternating tubes haphazardly to encourage swimming 

around the arena. 50 worms in total were inserted approximately every 5 – 10 

seconds and the number of worms consumed by each fish was noted. Each trial 

was recorded from above using a Go Pro Hero 4 (30 fps) for a total of 3 hr 20 

min, to later examine behaviour before, during, and after a feeding event. 

Behaviour was recorded for 27 groups in total, including 10 control groups which 

were not fed but were recorded for the same time duration. 
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Behaviour was compared for individual fish and between the control and testing 

groups throughout the trials. The testing group videos were spilt into time 

periods, 10 minutes before feeding, during feeding (10 minutes) and behaviour 

was compared after feeding for 5 minutes (9000 frames) every 20 minutes. For 

the control groups, tracks were split into ten minutes, ten minutes and 5 

minutes (9000 frames) every 20 minutes for 3 hours, to mimic the same splits as 

in the feeding trials. For each video segment, individual fish were tracked using 

idTracker (2014) and then positions were manually corrected if needed. From 

these tracks and positions, leadership metrics were calculated via temporal 

correlations (Nagy et al 2010; Jolles et al 2018) and position in school (Krause, 

1993). Behavioural metrics such as polarity, cohesion and acceleration were 

calculated and compared between control and treatment groups and during each 

time period of trial (see Chapter 2 for calculations and descriptions).  

 

4.3.3 Estimation of metabolic cost of feeding 

The increase in oxygen consumption following feeding, or Specific Dynamic 

Action (SDA), of qingbo was measured to compliment the behavioural 

measurements from the open field trials. SDA was measured using continuous-

flow respirometry (Fu et al., 2011; Auer et al., 2015), consisting of 4 

respirometry systems, each consisting of 50 L experimental water bath (20°C) 

holding 10 glass respirometry chambers. The respirometry set ups were covered 

with an opaque plastic cover to minimise disturbance. A large reservoir was kept 

under each respirometry set up, where water oxygen content kept to saturation 

using air stones, and temperature maintained to 20°C using aquarium heaters. 

An additional heater was placed in the water bath containing respirometry 

chambers in order to maintain temperature when water circulated through 

system. A submerged pump moved water from the reservoir to a small water 

tower above each respirometry set up to generate a constant flow through the 

respirometry set up. Flow of water was controlled using a switch between the 

water tower and the distributing pipe to each chamber and was measured for 

each respirometer immediately after each oxygen measurement was taken by 

observing the time taken for 100 ml of water to flow through the respirometer. 
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Water from the outlet of each chamber was filtered and returned to the 

reservoir tank.   

Fish were placed in individual glass respirometers and individual flow rates were 

measured after individual oxygen consumption recorded, however this was set to 

allow for oxygen consumption levels to be detected without letting the oxygen 

content drop below 80% saturation. Chambers had a maximum internal diameter 

of 45 mm, and the size of the chamber was chosen such that the fish could not 

swim, but was able to turn around if needed. The size of chamber was 

accounted for in oxygen uptake calculations, as flow rate is used in continuous 

flow respirometry. Dissolved oxygen content of water at outlet of the 

respirometers for individual fish was manually recorded using a water oxygen 

meter (HQ20; Hach Company, Loveland, CO, USA) once per hour for 10 hours. An 

additional fish-free chamber served as a control measure of background 

respiration rates measure for any background oxygen uptake by bacteria, which 

was subtracted from each individual fish in that respirometer.  

Each set up measured 9 individual fish and one chamber in each set up was left 

empty as a control and measured at the same time as individual fish, allowing 

for 36 fish to be measured in total per day, fish were fed set numbers of 

bloodworms before immediately being placed within the respirometry chambers 

(one fish per chamber). Naïve qingbo (n = 36) were starved for 48 hours before 

being measured for oxygen uptake for 40 hours following feeding different 

amounts of food items (0, 5, 10, 15, 20 or 25 bloodworms). Fish that were fed 0 

worms were used as a control to account for the oxygen consumed during 

handling. Fish were immediately placed into respirometers and measured using 

the same protocol as SMR to quantify the oxygen consumption of individuals 

while digesting increasing food amounts, which is used to form part of a 

predictive equation to quantify specific dynamic action. This data was then used 

to calculate the oxygen uptake (MO2: mg O2 h-1) of individual fish using equation 

1, where ΔO2 is the difference in oxygen concentration (mg O2 L-1) between an 

experimental and control respirometer, and v is the water flow rate in an 

experimental chamber (L h-1).  

Equation 1: 𝑀𝑂2 =  ∆𝑂2 × 𝑣 
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When removed after 10 hours, fish were measured for length and weight To 

account for any effects of handling during feeding or transfer to the 

respirometry chambers during the period over which specific dynamic action was 

measured, the mean oxygen consumption for the control fish was subtracted 

from all fed individuals. 

Individual SDA responses were modelled by applying a polynomial function to the 

oxygen uptake data for 24 hours after feeding. The function for each individual 

was then used to estimate the time until peak oxygen uptake, time taken to 

reach this peak, and return to baseline oxygen uptake. Based on measures of 

oxygen uptake during respirometry-based feeding trials, a multiple regression 

was constructed including number of worms eaten, time since feeding and fish 

body mass to estimate oxygen consumption of fish during behaviour trials 

according to the SDA response.  

Predicted change in oxygen consumption over the course of the behavioural 

trials was predicted using this equation, accounting for the predicted rise in 

oxygen consumption post feeding, decreasing with meal size and time.  

 

4.3.4 Statistical Analysis 

All statistical analyses were performed in R.4.0.5 (R development Core Team). 

Linear mixed effect models or Generalised Linear Mixed Effect Models (lme4, 

lmertest) estimated using REML were fitted to investigate how meal size, time 

since feeding, and treatment affected leadership and group behaviour. Model 

selection was performed by sequentially dropping non-significant variables 

starting with lowest t-values, but were retained if their removal resulted in 

higher AIC values (ΔAIC > 2 Arnold 2010). For each specific model structure and 

model selection see supplementary methods (Table 8.2-10 – Table 8.2-15), 

however for each metric of leadership or collective behaviour, group and ID 

were included as random effects and meal size, time since feeding, mean mass 

fish in each group and treatment were included as explanatory variables. 

Homoscedasticity and normality of residuals were assessed by visual inspection 

of residual plots, and used to determine whether transformation of data was 
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necessary. Mean Lag after leadership for both turns and acceleration were 

scaled and plotted on the negative axis, where lower numbers indicate earlier 

leadership. Mass, individual speed, average neighbour distance, and group 

polarity were log transformed. 

 

4.4 Results 

4.4.1 Measures of Leadership and Food Availability 

Fish that ate the most food items during the feeding trial were those that, both 

before and during feeding, had the greatest lag response in terms of 

acceleration but the lowest lag response for turning (acceleration: (t(1633) = 

3.10, p = 0.002; turning: t(1633) = -2.22, p = 0.027; Figure 4.4-1A-B; Figure 

4.4-2). In other words, fish that fed most were those that were leaders for the 

direction of group movement but followers in terms changes in group speed 

(accel: Table 8.2-2; turns: Table 8.2-3).  

Post-feeding, the number of food items consumed was not related to leadership 

in terms of either group turning or accelerating (Figure 4.4-1A-B and 2). Also 

post-feeding, fish responded faster to a leader’s change in speed compared to 

pre-feeding, but responded slower to changes in directionality(t(1631) = -2.18, p 

= 0.029). Before, during, and post-feeding, larger fish were more likely to 

initiate or respond quicker to changes in group speed but there was no effects of 

body size on leadership or response to changes in group turning.  

As time progressed after feeding, individuals that ate less during the feeding 

trial moved toward the front of the group while schooling (t(1631) = 3.14, p = 

0.002; Figure 4.4-2C). Larger fish also moved to the front of the group as time 

since feeding increased (t(1631) = 1.97, p = 0.049), but there was no direct 

relationship between fish body mass and number of food items they consumed 

during the feeding trial (Table 8.2-4). 

In fed groups post feeding, mean lag after a leadership event while accelerating 

decreased compared to in controls but increased after turning, meaning that 

individuals reacted quicker to leader’s change after feeding but slower to 
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changes in directionality (t(201) = -2.18; Table 8.2-2 (t(762) = 3.10, p = 0.002; 

Table 8.2-3). 

 

 

Figure 4.4-1: (A) Relationship between Mean Lag after Leadership Event while 
Accelerating and number of food items eaten during a period of feeding. (B) 
Relationship between Mean Lag after Leadership Event while turning and number of 
food items eaten during a period of feeding. (C) Relationship between mean position in 
school and number of food items eaten during a period of feeding. Panels show time in 
minutes after feeding, where -10 indicates the 10 minutes before feeding (time 0). 
Points represent data for individual qingbo. Trendline calculated with glm and shaded 
areas represent the 95% confidence intervals. 
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Figure 4.4-2: Plots of values in linear regression (Pearson’s correlation) between for 
leadership metrics over time, using data from each regression line in figure 4.6-1, 
showing intercept of regression line (A) and R2 (B). Intercept represents the magnitude 
of difference in value, and R2 represents relation to number of food items consumed at 
time 0 and how they change over time in the trial (Time Since Feeding). 

 

4.4.2 Group Behaviour and Food Consumption 

During feeding, fish that ate the most food items were those that moved faster 

and had a larger mean distance from the group centroid (Figure 4.4-3; Figure 

4.4-4). Post-feeding, however, the number of food items eaten showed no 

relation to either individual movement speed or distance from centroid. As time 

progressed since feeding, fish swim speeds gradually declined before beginning 

to increase at around 110 minutes post-feeding (t(1632) = -8.35, p < .001; Table 

8.2-6). Group cohesion, measured as mean fish distance from the group 

centroid, was lowest when feeding occurred (i.e. fish were more spread apart), 

but similar to group speed, groups gradually became more cohesive post-

feeding, stabilizing around 110 min post-feeding. Overall, larger fish had a 

higher mean distance from centroid compared to smaller fish (t(1631) = 3.24, p = 

0.001; Table 8.2-5). Individuals in groups became more polarised after feeding, 

peaking at around 70 min post-feeding (t(1635) = -3.21, p = 0.001;  
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Table 8.2-7).  

For mean speed (t(1632) = -2.41, p = 0.016; Table 8.2-6) and mean distance from 

centroid (t(1631) = -3.45, p < .001; Table 8.2-5) there were differences between 

the feeding trials and controls, where fish that fed swam slower and were more 

cohesive after feeding than in control groups with no feeding. There was no 

difference in polarity between feeding trials control groups (Table 8.2-15). 

 

Figure 4.4-3: (A) Relationship between individual mean speed and number of food 
items eaten during a period of feeding. (B) Relationship between group cohesion and 
number of food items eaten during a period of feeding. (C) Relationship between 
polarity and number of food items eaten during a period of feeding. Panels show time 
in minutes after feeding, where -10 indicates the 10 minutes before feeding (time 0). 
Points represent data for individual qingbo. Trendline calculated with glm and shaded 
areas represent the 95% confidence intervals.  
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Figure 4.4-4: Plots of values in linear regression (Pearson’s correlation) between for 
leadership metrics over time, using data from each regression line in figure 4.6-3, 
showing intercept of regression line (A) and R2 (B). Intercept represents the magnitude 
of difference in value, and R2 represents relation to number of food items consumed at 
time 0 and how they change over time in the trial (Time Since Feeding). 

 

 

4.4.3 Specific Dynamic Action 

There was no effect of food items consumed on the time taken to reach peak 

oxygen consumption after feeding, larger meals resulted in a higher peak in 

oxygen uptake as compared to smaller meals (Table 8.2-9). Fish that ate the 

smallest meals did not show an identifiable peak in oxygen uptake, but displayed 

a shallow, gradual rise in oxygen uptake throughout the measurement period. 

The median time to reach peak oxygen uptake post-feeding was 160 minutes 

(Figure 4.4-5).  

The effects of meal size and time since feeding from the SDA measurements 

were subsequently applied to individuals in the behavioural trials, to estimate to 

predicted rise in oxygen uptake post-feeding and any associated effects on 

individual behaviour. In general, fish that ate more food items were predicted to 

show the greatest increase in oxygen uptake, and the variation in oxygen uptake 

among individuals increased as time progressed post-feeding (Figure 4.4-6; Table 

8.2-8; Table 8.2-9).  
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There was no consistent relationship between predicted increase in oxygen 

uptake post feeding with mean lag after a leadership event while accelerating or 

turning, or mean position in school (Figure 4.4-7). Before feeding, during feeding 

and 30 minutes post feeding, if predicted oxygen uptake increased, mean lag 

after leadership while accelerating was smaller (t(2110) = 2.06, p = 0.039; Table 

8.2-8). In later times post feeding, there was no relationship between mean lag 

after leadership event while accelerating and predicted increase in oxygen 

uptake.  

 

  

Figure 4.4-5: Changes in oxygen consumption with time in individual qingbo after 
consuming various amounts of food. Each curve represents data for one individual and 
is a polynomial function (detailed in the main text). The vertical shaded area is the 
time period corresponding to feeding and the subsequent 3 hours in the group 
swimming trials. 
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Figure 4.4-6: The relationship between change in predicted available oxygen after 
feeding and number of food items consumed at time 0. Different lines and colours 
represent different time periods in minutes after feeding. Predictive line calculated 
via loess and shaded area around each line represents 95% CI.  
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Figure 4.4-7 Scatterplots to show the relationship between the predicted increase in 
oxygen uptake post feeding and leadership metrics. Different lines and colours 
represent different time periods in minutes after feeding. Predictive line calculated 
via general linear model and shaded area around each line represents 95% CI. 
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4.4.4 Leadership Correlations  

There was a strong positive correlation between mean lags after leadership 

event while accelerating and turning across all experimental time periods 

(feeding trials: r = 0.62, p < .001; control: r = 0.53, p < .001; Table 8.2-1). There 

was no correlation between either mean lag after leadership event while 

accelerating or turning and mean position in school for feeding trials (Figure 

4.4-8). For control groups, however, there was a weak negative correlation 

between mean position and school and mean lag after leadership event while 

turning (r = -0.22, p < .001). 

 

Figure 4.4-8: Scatter plots showing the correlation between leadership metrics: Mean 
Lag after Leadership Event while Turning and Mean Lag after Leadership Event while 
Accelerating (A), Mean Lag after Leadership Event while Accelerating and Mean 
Position in Group (B), Mean Lag after Leadership Event while Turning and Mean 
Position in Group (C). Extreme grouping of points in panel A attributed to very small 
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differences between mean lags while turning and accelerating, where points represent 
individual fish at every time point in every trial. 

4.5 Discussion 

While previous work has shown that the spatial positioning of individuals within 

moving social groups can change due to the metabolic costs of feeding and 

digestion (McLean et al., 2018), my data show much more direct effects on 

leader-follower dynamics, including how changes of speed and directionality 

propagate across free-ranging groups, and can manifest from the common act of 

food consumption. Before and during feeding, fish that ate the most were found 

to be followers when the group was changing speed, but those same fish were 

most likely to lead group changes in directionality while turning. After feeding, 

however, there was no association between the amount of food consumed by 

individuals and their status as a leader or follower in terms of group speed or 

directionality. At the group level, however, individuals in feeding trials 

responded slower to changes in direction by leaders in comparison to unfed 

control groups, and faster to changes in group speed. In contrast to previous 

work, there was little or no effect of spatial positioning on the amount of food 

that fish were able to consume, and conversely, the amount of food eaten had 

no effect on the spatial position within groups that individuals occupied during 

the digestive period after feeding. Polarity, cohesion and speed of groups 

changed with time since feeding, unlike control groups which were not fed. 

Finally, unlike previous work examining schools swimming against a flow (McLean 

et al. 2018), I observed no consistent effect of the metabolic costs of digestion 

on individual behaviour within groups post-feeding. Together, these results 

suggest that, in free-ranging groups, the behavioural conformity required to 

maintain group cohesion may alter relationships between bioenergetics and 

behaviour at the individual level.  

Before and during feeding, fish that ate more lead the directional movements of 

the group but were followers in terms of changes in group speed. In general, 

leadership while turning and accelerating are strongly correlated, and so this 

result suggests that, at least under the conditions of my study, initiation of 

group turning was important for being able to obtain food items. In my assay, 

food was introduced at various points throughout the arena, and accordingly, the 

fish would need to turn from one location to the next to obtain the food items. 
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Individuals that turned first may have therefore been most likely to find and 

obtain the food; while others would then speed up while attempting to reach the 

feeding location, possibly explaining why apparent initiators of changes in group 

speed where actually the least successful at finding food. Interestingly, 

leadership of group turning, even before food was introduced to the arena, was 

a predictor of which individuals would obtain the most food once it was 

available. This again highlights that those individuals that are predisposed for 

exploration or initiators of group changes in directionality may be most capable 

of finding food sources that are unpredictably scattered throughout an area.   

Followers reacted slower to leaders immediately after feeding, but gradually 

resumed pre-feeding reaction times as time since feeding progressed. This 

pattern of change in leader-follower dynamics was not present in the control 

groups that did not feed, indicating that this trend was most likely due to the 

effects of feeding and digestion and not baseline changes in information transfer 

or re-enforcement of leader-follower roles over time (Nie & Fu, 2017; Tóth et 

al., 2017). This rise in oxygen consumption post-feeding may occupy a large 

portion of an individual’s total aerobic scope, which can then constrain 

locomotor ability (Soofiani & Priede, 1985; Norin & Clark, 2016), or reduce the 

motivation to move and react to others. Indeed, overall movement speed 

decreased post-feeding, providing additional evidence of a locomotor constraint 

causing a decrease in movement and likely reaction speeds. While increased 

swim speed is known to use most energy per unit time in fish, theoretical 

(Hughes & Kelly, 1996) and empirical work (Wilson et al., 2013) also suggests 

that turning can be more energetically costly than straight forward movement, 

possibly explaining why even responses to group changes in directionality may be 

reduced post-feeding. In any case, the results here demonstrate nuanced effects 

of digestion on leader-follower dynamics post-feeding, linking physiological 

processes at the individual level to behaviour at the group level.  

In contrast to some previous work (Krause, 1993; Hirsch, 2007a), there was no 

consistent relationship between spatial position relative to the forward 

movement of a school, either during or after feeding, and the number of food 

items that an individual consumed. Firstly, during feeding, fish in frontal 

positions were no more likely to obtain food items compared to individuals 
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located in other positions within the group. This contrasts with previous work, 

where individuals near the front of moving groups were most able to obtain food 

items within their movement path (DeBlois & Rose, 1996). In the current study, 

however, food items were presented in an unpredictable pattern throughout the 

arena, seemingly reducing the importance of spatial positioning on food 

acquisition and instead highlighting the importance of initiation of movement 

after food detection. Perhaps more strikingly, there was no effect of the amount 

of food consumed on the spatial position occupied by individual post-feeding, 

during the digestive phase. It has previously been shown that, in constantly 

moving groups, metabolic constraints imposed by digestion can limit the 

locomotor capacity of individuals that have fed the most, causing them to 

subsequently occupy more posterior positions within the group (McLean et al., 

2018). In the current study, the overall group response to feeding was to reduce 

movement, obviating the need for individuals which have eaten the most to 

“keep pace” at the rear of a moving group. The results here show that the 

interplay between spatial positioning and food consumption is likely highly 

context dependent and influenced by the pattern of prey availability during 

feeding and subsequent demands on group movement post-feeding.  

While overall group speed decreased immediately post-feeding and group 

cohesion increased (before both gradually returned to pre-feeding levels), the 

amount for food consumed did not influence post-feeding swim speed or average 

neighbour distances at the individual level. This also suggests that, despite 

heterogeneity in amount of food consumed, individuals still conform to the rest 

of the group, altering their behaviour to match those that did eat more. Our 

results also suggest that factors that directly affect some group members may 

influence others by proxy. Previous work has shown that fish in groups with a 

higher proportion of hungry fish swim faster than those with a lower proportion 

of hungry fish, although there was no difference between the speeds of hungry 

and well-fed fish within groups (Wilson et al 2016). Although I did not examine 

the proportion of fish that ate no food within a group, I observed that groups 

with a mix of nutritional states (feeding trials) swam faster than control groups. 

Although individuals may have independent preferences for expressing 

behaviour, the lack of differences within groups show that regardless of 

physiological state or prior feed intake, the social environment modulates how 
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behaviours are expressed and individuals may conform to the movement speed 

of their group mates. Although animals increase speed when seeking food, they 

often increase their turning rate, which may contribute to the difference in 

speeds and polarisation of the control group compared to the fed groups 

(Bennison et al., 2018). 

The number of food items consumed had no relationship with position in school, 

movement speed, or cohesion pre-feeding. During feeding, fish that ate more 

swam faster and were further away from the group, although these were not the 

fish initiating changes in group speed. Previous studies have explored the role of 

behaviour in food intake rate, finding that increased activity and low sociability 

can be positively related to feeding or growth rate in a social context (Wilson et 

al., 2013). Additionally, high foraging tendency and front positions have been 

linked to fish with lower social proximity (Jolles et al 2017). Interestingly, 

increased cohesion and swimming speed is often associated with an increased 

metabolic rate and a sign of stress (Svendsen et al., 2021). After acclimation and 

over time in the trial we would expect groups to become more coordinated, 

have less activity and to see polarisation and speed to be positively related. We 

show that after feeding, groups initially swam slower over time and more 

cohesive, which could be because individuals were no longer restricted in speed 

and aerobic scope by their digestion, and so their preferred speed while 

searching for more resources may be faster, and also explain why these speeds 

are different to control groups. After feeding, fish are more satiated and so the 

motivation to move in order to increase feeding opportunities may be less, and 

so they will prioritise increasing cohesion and safety in groups. Other studies 

have found that nutritional stress had little effect on voluntary speeds and inter 

individual distances of fish (Hansen et al., 2020, 2021), which suggests 

cohesiveness is easier to maintain when not having to compromise between 

feeding and group cohesion, and so this may be reflected in our results over time 

(Tunstrøm et al., 2013). 

Throughout the post-feeding phase in fed groups, individuals gradually resumed 

their pre-feeding swimming speeds and levels of group-level cohesion. As 

digestion processed and time increased, it is possible individuals became less 

metabolically constrained. When we predicted SDA response with different food 
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item amounts, eventually metabolic rate should decrease again to baseline 

levels of oxygen consumption, which is within the behavioural trial length. 

Individuals may also have been more motivated to resume their normal levels of 

activity and cohesion, and this was not altered by the amount of food eaten. 

Group cohesion, information transfer and group decision making in fish are 

believed to be mediated mainly through movement, and adaptable inter-

individual interaction rules can buffer the effects of variability in internal and 

external stimuli (Katz et al., 2011). After feeding, fish may be motivated to 

resume regular patterns of movement to share information within the group. 

Individuals in groups who may not be metabolically constrained, i.e ate no food 

items, still maintained group behaviour and matched their behaviour to those in 

the group who did feed. Despite unequal food distribution, those who did not 

eat were motivated to conform to other’s behaviour in the group, likely in order 

to maintain group cohesion and information transfer.  

Predicted increase in oxygen uptake after feeding was not linked to mean lag 

after leadership events while turning or accelerating, or position in school, 

which suggests that the SDA response may not constrain leadership after feeding 

in a group context. Unlike previous observations groups that were swimming 

against a flow, and therefore required to constantly maintain forward 

movement, my results indicate that in free-ranging groups, overall reduction in 

group activity post-feeding erode potential links between post-feeding increases 

in individual oxygen uptake and behaviour within a group. There are at least two 

scenarios that could explain the observed trends: (1) any amount of food intake 

will cause a general reduction in movement and leadership capacity (or 

motivation) for individuals within groups; or (2) fish that consumed the most 

food become constrained in their locomotor ability, reduced their movement 

frequency and speed, and other individuals also reduce their own movement to 

maintain group cohesion. Further studies could explore how individual predicted 

remaining aerobic scope after feeding could alter individual behaviour in a group 

(Mclean et al 2018). There are likely to be interactions between physiological 

traits, feeding motivation or ability and magnitude of specific dynamic action 

response. Fish with larger aerobic scopes consume more when given the 

opportunity (Auer et al., 2015), and I have confirmed that specific dynamic 

action is positively linked to meal size (also Secor, 2009). It is therefore 
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important to examine how individuals with varying specific dynamic action 

responses may respond to different meal sizes, and how this relates to individual 

behaviour as well as group. Additionally, further studies could focus solely on 

the feeding period, where moment-to-moment changes in behaviour and 

leadership likely occur, and link to how vision and olfactory cues play a role in 

group behaviour during feeding.  

The current study adds to the growing evidence that collective behaviour is 

driven by various internal and external factors, and that ecological context is 

key for the expression of social behaviour. Here I show that leadership is 

distributed among individuals, but it changes in feeding contexts. Previous work 

has shown that age, position and behavioural phenotype may influence 

leadership (Jolles et al., 2018; Sueur et al., 2018), and while these phenotypes 

may be linked to physiology in previous studies, there is no relationship in the 

current work. I show that leadership through temporal correlation is not 

necessarily linked to position in school, and leadership may be altered by 

energetic state. Leadership may change on a moment-to-moment basis, and 

while consistent differences over time may enhance emergence of leader or 

follower roles, these may be overruled by immediate reactions stemming from 

motivation and the capacity to lead after feeding. Research is needed to 

understand the consequences of locomotor constraints for group leadership, 

group learning, and group decision making in other ecological situations, 

particularly if leaders are physiologically incapable of occupying specific roles 

within groups. Teasing apart the relationships between leadership and 

bioenergetics will lead to better understanding of group behaviour in self-

organised and hierarchical systems, and improve further experimental design or 

inform theoretical models of animal movement.  

 

  



70 | C o t g r o v e  
 

5 Determining hidden energetic costs and benefits of 

sociality in moving animal groups using cost of 

transport 

 

5.1 Abstract 

 

Group living is widespread among animal taxa and comes with costs and benefits 

associated with predator avoidance, foraging and reproduction. While individuals 

in moving groups move at a similar speed to maintain group cohesion, the extent 

to which group members deviate from their own optimal locomotor speed and 

accumulate disparate energetic costs of transport per unit distance moved has 

not been investigated. For example, leaders may move at their own optimal 

movement speed, with groupmates changing their own speed to match the 

leaders, and therefore accumulating higher costs of transport due to moving at a 

non-optimal speed. Here, I observed swimming behaviour in single zebrafish 

(Danio rerio), as well as fish in pairs and in groups of four, to examine variation 

in movement speed among individuals in moving groups. Each individual was also 

measured for optimal swimming speed and minimum cost of transport using 

swim-tunnel respirometry. Fish in groups accumulated lower costs of transport 

per unit distance compared to fish swimming alone or in pairs. Within each pair 

and group, leadership was not related to individual optimal swimming speed, 

and there was no evidence that pairs or groups were moving closer to the 

leader’s individual optimum speed. Despite these findings, however, individuals 

with a lower optimal speed within each pair or group had a higher cumulative 

cost of transport during group movements. These results suggest that while 

convergence on a common group movement speed may facilitate group 

cohesion, the cumulative energetic deficit acquired while moving at a non-

optimal speed may constitute an important but to date unrecognised cost of 

group living. This work explores the energetic costs of social behaviour and how 

individuality can alter collective movement, while confirming that it is 

energetically more efficient to move in a group rather than alone.  
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5.2 Introduction 

 

Group living is common among animals and confers benefits associated with 

resource acquisition (Ward & Hart, 2005), information transfer (Swaney et al., 

2001), predator avoidance (Santos et al., 2014) and efficiency of movement 

(Killen et al., 2012a). To gain the advantages of group living and prevent group 

splitting (Krause & Ruxton, 2002; Conradt & Roper, 2007), group members must 

engage in some degree of behavioural synchronisation through emulating 

movements of their neighbours. Although the internal state of animals can 

motivate them to move from one location to another (Sergio & Newton, 2018) the 

environment the animal experiences is also expected to influence variation in these 

movements, and this includes their social environment. It is thought that animal 

movement is ultimately defined by the trade-offs between the environment that 

determines the energetic cost of movement and the benefits associated with 

achieving these movement-driven goals (Halsey, 2016). 

Individual locomotor performance influences dispersal, foraging and predation, 

and behavioural interactions (Hillman et al., 2014; Husak et al., 2006; Irschick 

and Garland, 2001). Locomotor performance is related to muscle power output 

and the energetic cost to achieve that power output, which is in turn 

determined by metabolic rate. Within social groups, there can be variation in 

locomotor costs experienced by individuals, due to individual differences in 

physiology, activity level, or their spatial position within the group, and these 

differences may influence interactions among groupmates (Curtin and Woledge, 

1991; Lichtwark and Wilson, 2005; Woledge et al., 2009). Activity of individuals 

and the associated energetic costs are often explored in terms of movement 

costs per unit time, but how this is related to voluntary swim speeds and how 

this changes as groups conform to the movement patterns of their social group is 

largely unknown. While the energetic cost per unit time can provide a useful 

metric of movement costs over a given timeframe, it is the cost of transport per 

unit distance that defines movement efficiency. For an individual animal, their 

optimal movement speed in that which minimises their costs of movement per 

unit time, and in animals that run, swim, or fly, this usually occurs at some 

intermediate speed where there is a trade-off between inertial and frictional 
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forces. While the minimum cost of transport and optimal movement speed are 

often used to compare locomotor performance among species or transport 

methods (Tucker 1970) and can influence interindividual differences in 

behaviour, the relevance of optimal movement speeds in social behaviour has 

not been examined. 

Theory predicts that voluntary speed reflects minimisation of the cost of 

transport (i.e. the energy used for a given distance travelled), which occurs at a 

locomotor speed that is a fraction of maximal speed (Weihs, 1973; Pettersson 

and Hedenstrom, 2000; Wickler et al., 2000; Claireaux et al., 2006; Palstra et 

al., 2010). In reality, however, voluntary movement speed will likely differ from 

optimal speeds due to various trade-offs associated with foraging, predator 

avoidance, or dispersal (Weihs, 1973; Irschick and Losos, 1998; Husak and Fox, 

2006; Humphries et al., 2010; Wilson et al., 2013). In addition, due to among-

individual differences in optimal speeds, some individuals in moving social 

groups are likely to deviate from their own optimum speeds, to a greater extent 

than others, to maintain group cohesion and continue to derive the benefits of 

group membership. The extent to which such a compromise occurs, has not been 

studied, but the accumulation of excess and uneven movement costs among 

group members could constitute an unrecognised cost of social group 

membership. In addition, inequality in the locomotor costs among group mates 

may influence leader-follower dynamics within groups, especially if leaders are 

more likely to move near their own optimal speed while others are forced to 

conform but swim at speeds that, for them, are non-optimal.  

Coordination of group behaviour is achieved via consensus reaching, which 

involves a compromise for some group members that deviate from their own 

optimal patterns of behaviour (Plaut, 2001). Consensus can either be driven by 

influential individuals, causing a hierarchal leadership influence (Nagy et al 

2010; King et al 2008), or decision-making can be distributed among multiple 

individuals (Strandburg-Peshkin et al., 2015; Gall et al., 2017). Regardless of 

leadership via one or multiple individuals, the other members must copy these 

movements or risk losing spatial cohesion and the benefits of group membership 

(Conradt & Roper, 2005; Couzin et al., 2005; Ioannou et al., 2015). Leadership 

can be defined as a disproportionate influence on collective movement, through 
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spatial position (Pettit et al., 2013b), behavioural similarity (Harcourt et al., 

2009a) or directional correlation delay (Nagy et al., 2010). Further, the manner 

in which leaders exert influence and followers respond can be affected by 

individual differences within the group related to movement speed (Petit et al 

2015), experience (Flack et al 2012), behavioural phenotype (Sasaki et al., 2018) 

or physiology (Ward et al., 2018). In addition to increasing the locomotor costs 

for specific group members, heterogeneity in optimal movement speed or 

minimal costs of transport within groups could alter the influence that leaders 

are able to have within their social groups or the capacity of others to follow, 

therefore possibly disrupting overall group cohesion, coordination, and the 

emergent benefits of grouping.  

Using zebrafish (Danio rerio) as a model, I explored how indidivual cost of 

transport per unit distance varies with group size, and how variation from 

optimum swim speed is related to overall group behaviour and individual 

behaviour within groups. Zebrafish are a shoaling species that will swim 

individually in swim tunnel respirometers, thus allowing their cost of transport 

per unit distance to be accurately estimated on an individual basis. By measuring 

optimum swim speed in individuals and voluntary swimming behaviour when 

alone, in pairs, and in groups, I investigated whether individual optimum swim 

speed affects leadership, whether cumulative cost of transport while moving is 

affected by individual optimum swim speed and leadership, and whether group 

size alters the cumulative cost of transport during routine swimming. I predicted 

that: (1) Individual optimum speeds are linked to leadership in groups, (2) 

individuals who lead group movements will display the least compromise, in 

terms of deviating from their own optimal swim speed; and (3) individuals will 

compromise their optimum swim speed to a larger degree while in a group 

compared to in pairs and alone. 

 

 

 

https://elifesciences.org/articles/68653#bib49
https://elifesciences.org/articles/68653#bib46
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5.3 Methods 

5.3.1 Animals 

25 zebrafish (Danio rerio) total were selected randomly from five different 

families (5 fish from each family) and kept in aquariums in University of Glasgow 

in accordance to UK Home Office regulations. Fish were housed in the same tank 

(30 cm×40 cm×30 cm) and maintained at 28 °C (± 0.5 °C) throughout the trial 

period. The tank was supplied with UV treated recirculating water. Fish were fed 

daily with a combination of commercial fish flakes and live Artemia nauplii, 

except when fasted prior to experiments, and maintained on a 13:11 hour 

light:dark photoperiod. Fish were approximately 8 months old at the start of the 

trial (reared at University of Glasgow from May 2018) and 10 months at the end 

of the trial. Fish were tagged with visual implant elastomer (VIE) (Northwest 

Marine Technology, WA, USA) one month before trials began (Rácz et al., 2021) 

and measured at the beginning and end of the investigation period for standard 

length, total length, and wet mass. Sex was also noted. Sex and family were 

identified before selection to ensure fish of different families were tested in pair 

and group behavioural trials fish to control for potential familial effects. Both 

males and females were tested In trials fish of the same sex were used to avoid 

aggression between the fish. Pairs and groups were selected to ensure fish were 

not tested with the same fish more than once. 

 

5.3.2 Swimming Performance 

Measurements of individual swimming performance and cost of transport were 

conducted in a Blazka-type swim-tunnel respirometer (Loligo Systems, Denmark) 

measuring (ID 26.4 x L 100 mm, Volume: 170 mL). Water flow through the 

working section was made laminar by a honeycomb lattice. Flow speed within 

the tunnel was controlled with motor and external control box, calibrated using 

a laser digital particle tracking velocimetry and associated software(Loligo 

Systems, Denmark). Temperature of the swim tunnel and surrounding water bath 

was maintained at 28 C (+- 0.1 C) to match fish holding temperature and an air 

stone was placed in the water bath to maintain oxygen content of water 

entering the chamber. A camera was placed above the swim tunnel respirometer 

and the top and sides of the swim tunnel were covered in black plastic to 
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prevent disturbance except window for camera to record fish behaviour and 

identify the speed threshold where burst swimming, and thus anaerobic 

movement, occurred. Water oxygen content was measured every 2 s using a 

Firesting oxygen meter and associated sensors (PyroScience GmbH, Aachen, 

Germany). Oxygen content in the swimming tunnel was kept above 80% air 

saturation at all times via intermittent flushing of the chamber using a pump 

system (6 minute measurement period: 2 minute flush).  

Prior to swim tunnel trials, individual fish were fasted for 24 hours to account 

for the metabolic cost of digestion before being transferred in water using a 

funnel to the respirometer to prevent air exposure and additional stress. Fish 

were acclimated in the swim tunnel for approximately 12 hours overnight while 

swimming gently at 2 body lengths (BL)/s (Plaut, 2000). During the trial, flow 

speed was increased by 1 BL/s per speed increment, and three 

flush/measurement cycles were measured per speed increment. The trial ended 

when fatigue occurred, defined as the point when the fish could no longer 

maintain swimming position and made contact with the downstream grid of the 

respirometer for 2 seconds. When fatigue occurred, swim speed was recorded, 

then flow speed was immediately lowered to 2 BL/s and fish were left to recover 

for at least 30 minutes before being returned to their holding tank (Hammill et 

al., 2004; Seebacher et al., 2015). 

Fish were fed as soon as they exited the respirometer and returned to their 

tank. Fish were tested twice to measure the repeatability of the Uopt protocol, 

with at least 24 hours between tests to allow for recovery. Fish were not tested 

more than twice to prevent training effects. Before and after each swimming 

trial, three measurements of oxygen consumption were taken to account for 

bacterial respiration. 

To calculate cost of transport (Tucker, 1970), speeds at which burst swimming 

occurred were not included for each trial calculation. Using individual oxygen 

consumption (MO2), a polynomial curve (k = 2) was fitted to the data and the 

parabola of this curve was identified to estimate minimum cost of transport 

(COTmin), and the speed at which this occurred (optimum swim speed; Uopt), 

where:  
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𝐶𝑂𝑇𝑚𝑖𝑛 =  𝑚𝑖𝑛 {
𝑀𝑂2

𝑠𝑤𝑖𝑚 𝑠𝑝𝑒𝑒𝑑
}  

For two fish, one trial each was excluded due to disturbance and stress which 

caused the oxygen consumption during these trials to be unusually high. Mean 

COTmin was taken of the two trials where possible and, from this value, 

optimum swim speed (BL/s) was calculated by locating the lowest point or 

parabola in these curves (Figure 8.3-1)  

 

5.3.3 Behaviour 

After optimum swim speed trials for each individual, fish were allowed to 

recover for at least 48 hours. Individual fish were placed in isolation and fasted 

for 24 hours before trials, then placed in an oval arena measuring 65 x 45 x 6 

cm. Water was replaced every trial to control for any olfactory effects and 

water was aerated using an air stone. Water temperature was controlled to 28 ± 

0.1 °C using a heating coil and the in-flow and air stone were located outside of 

the trial arena to encourage consistent water temperature and aeration across 

the arena. Fish acclimated for 20 min before recording started. Fish were tested 

alone twice, and once as part of a pair and once as part of a group of 4 

individuals. Fish were tested under the same conditions as individual trials as in 

pair and group trials.  

Fish swimming behaviour was recorded using a Sony Handycam FDR-AX53 4K for 

20 minutes and subsequently tracked using idTracker (2014) to ascertain 

behavioural metrics for speed, position in school, and propagation of movement 

through acceleration and turning (see Chapter 2 for details). Additionally, 

cumulative cost of transport was calculated by using each individual’s cost of 

transport at each swimming speed, estimated from swim tunnel respirometry 

data from that individual. The cost of transport was then summed over the 

whole trial. For each individual in each trial, the difference (Udiff) between their 

average speed throughout the trial (BL/s) and their mean Uopt, where: 

𝑈𝑑𝑖𝑓𝑓 =   𝑆𝑝𝑒𝑒𝑑– 𝑈𝑜𝑝𝑡 
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5.3.4 Statistical Analysis 

The consistency of an individual fish’s Uopt (adjusted repeatability, Radj) was 

calculated using the rptR package (Stoffel et al 2017). The overall Radj using a 

LME structure, including total length to account for any variation in body size.  

All statistical analyses were performed in R.4.0.5 (R development Core Team). 

Linear mixed effect models (lme4, lmertest) estimated using REML were fitted 

to predict mean cumulative cost of transport with either leadership rank while 

turning or accelerating in pairs and groups, and included Optimum swim speed 

rank (within each pair or group) and group size as fixed effects in both models 

and group_id as a random effect (Table 8.3-7; Table 8.3-8). Leadership rank 

while turning and leadership rank while accelerating were highly correlated 

(Pearson’s: R(121) = 0.82, p <0.001) and therefore separate models were used to 

determine whether each of these indices of leadershp were related to indiviual 

Optimum swim speed. For all analysis, mean position was dropped from models 

due to non significance during model selection. Model selection was performed 

by sequentially dropping non-significant variables starting with lowest t-values, 

but were retained if their removal resulted in higher AIC values (ΔAIC > 2 Arnold 

2010). A separate model was constructed ignoring leadership metrics and 

including all group sizes (alone, pair, group). For this (Table 8.3-10), cumulative 

cost of transport as the response variable including Optimum swim speed rank, 

mean swim speed, and all group sizes (alone, pair, group) as explanatory 

variables, and group ID as a random effect. Homoscedasticity and normality of 

residuals were assessed by visual inspection of residual plots, and used to 

determine transformation of data, where leadership metrics were scaled and 

transformed to positive axis.  

 

5.4 Results 

5.4.1 Does optimum swim speed affect leadership? 

Optimum swim speed was highly repeatable (Radj = 0.726, p < 0.001; Table 

8.3-12; Figure 5.4-1). In both pairs and groups, Uopt had a no effect on 

leadership, with no link between Uopt and leading while either turning (R2 = 0.13, 

p = 0.352) or accelerating (R2 = 0.23, p = 0.109; Figure 5.4-2). Similarly, there 
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was no correlation between Uopt and mean swim speed (BL/s) in the open field 

trials (R2 = 0.02, p = 0.794). 

 

 

Figure 5.4-1: Results from swim tunnel respirometry for each individual. Different 
colour lines represent the oxygen uptake for two trials for each individual (separated 
by panel). Uopt calculated from mean parabola of curves.  
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Figure 5.4-2: Scatter plots to show optimum swim speed (Uopt; BL/s) for each 
individual fish and leading response while turning (A) and accelerating (B) in pairs and 
groups. For both leadership when accelerating and leadership when turning, a general 
linear model has been fitted. 

 

 

As with the previous chapters in this thesis, correlations were conducted 

between the measures of leadership, separated by group size. Leadership while 

turning and leadership while accelerating was not correlated with spatial 

relative positioning while moving in either pairs or groups (Table 5.4-1; Figure 

5.4-3), however leadership while turning and accelerating were positively 

correlated (pair: (r = 0.996, p < .001 ; group: r = 0.96, p < .001). Data for one 

individual was highly influential on this relationship, but leadership during 

turning and accelerating remained correlated even after removal of this 

individual (pair: r = 0.95, p < .001; group: r = 0.78, , p < .001).  
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Figure 5.4-3: Scatterplots showing correlations among Leading while turning, leading 
while accelerating and mean position in group. Red dot indicates an influential point 
and outlier which was removed to check whether the two measures of leadership are 
still correlated. Trendlines here are to show the visual relationship between the two 
leadership variables. 

 

Table 5.4-1: Correlations between leadership metrics for pairs and group trials. 

Group Size Variable 1 Variable 2 r n p - value 

Pair LeadTurnResp LeadAccelResp 0.99 13 p <.001 

LeadTurnResp AvePosSchool 0.14 18 n.s. 

LeadAccelResp LeadTurnResp 0.99 13 p <.001 

LeadAccelResp AvePosSchool 0.41 14 n.s. 

AvePosSchool LeadTurnResp 0.14 18 n.s. 

AvePosSchool LeadAccelResp 0.41 14 n.s. 

Group LeadTurnResp LeadAccelResp 0.96 31 p <.001 

LeadTurnResp AvePosSchool 0.1 33 n.s. 

LeadAccelResp LeadTurnResp 0.96 31 p <.001 

LeadAccelResp AvePosSchool 0.14 34 n.s. 

AvePosSchool LeadTurnResp 0.1 33 n.s. 

AvePosSchool LeadAccelResp 0.14 34 n.s. 

 

5.4.2 Cumulative cost of transport in group sizes 

When comparing cumulative cost of transport across individuals in the different 

group-size treaments, there were weaker correlations between individuals 

moving alone and individuals in a pair (Pearson correlation: r = 0.42, t(120) = 

5.03, p < .001), and those alone and in a group (r = -0.08, t(120) = -0.88, n.s), as 

compared to the correlation observed between those in a pair and those in a 
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group (r = -0.30, t(120) = -3.43, p < .001). There was a smaller change in 

cumulative cost of transport in a pair and in a group compared to when alone, 

and it was more costly to be alone than in any group size. Additionally, a higher 

cumulative cost of transport was incurred in the trials with fewer fish per group 

(Figure 5.4-4). 

 

Figure 5.4-4: Scatterplots showing correlations between cumulative cost of transport 
between individuals in different group sizes (top row) and correlations between mean 
speed at different group sizes of individuals in different group sizes (bottom row): 
Alone vs Pair; Alone vs Group; Pair vs Group. Dashed line shows 1:1 line for comparison 

 

 

5.4.3 Is cumulative cost of transport affected by leadership? 

For all group sizes, there was no effect of mean swim speed on cumulative COT. 

Individuals in groups had a lower cumulative COT than single fish (t(117) = -2.66, 

p < .01; Table 8.3-2), and there was no difference in cumulative COT between 
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swimming in a pair and alone or in a group and a pair (Table 8.3-13; Figure 

5.4-5). However, a more direct comparison of pairs versus groups, incorporating 

individuals within-group ranks for leadership when accelerating, leadership when 

turning, and Uopt, showed that individuals swimming within groups had a lower 

cumulative COT as compared to those swimming in pairs (Accel: t(76) = -2.62, p 

< .01; Turns: t(76) = -2.78, p < .01). . 

For pairs and groups, within-group leadership rank while accelerating (Table 

8.3-5) was not related to cumulative COT among individuals, but leaders while 

turning had a higher cumulative COT (t(76) = 2.67, p < .01; Table 8.3-4). 

However, individuals with a higher Uopt relative to others in their group had a 

higher cumulative cost of transport (t(76) = 2.30, p < .05). For both leadership 

while accelerating and turning, followers swam slower than leaders (Accel: t(76) 

= -2.47, p < .05; Turns: t(76) = -2.96, p < .01). There was no difference in mean 

speed between groups and pairs of fish. Within group rank for Uopt was not 

related to cumulative COT. 

 

5.4.4 Is individual speed affected by the Uopt of leaders? 

Mean speed for individuals was greater in groups than when swimming alone, but 

there was no difference between swimming speed in pairs and groups or pairs 

and alone (t(115) = 3.54; Table 8.3-6). Larger fish in groups swam slower than 

smaller fish (t(115) = -3.41, p < .001), but this was not the case in pairs or when 

swimming alone.  

Individuals in groups with lower Uopt deviated more from their Uopt (Udiff) while 

swimming than individuals with higher Uopt (t(117) = -9.80, p < .001); Fish 

deviated more from their optimum swim speed when swimming alone compared 

to groups, and those swimming in pairs deviated more from their optimums 

compared to groups (Table 8.3-1). 
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Figure 5.4-5: Boxplots to show the relationship for A) Individual mean cumulative cost 
of transport, (b) Individual Speed and (c) difference between optimum swim speed and 
mean voluntary speed of group compared to rank of optimum swim speed (left), 
leadership while accelerating (centre) and leadership while turning (right) where 1 is 
the lowest optimum swim speed and indicates leadership while accelerating or turning, 
and 4 indicates higher optimum swim speeds and followship after a leadership event. 
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5.5 Discussion 

My results show that higher cumulative locomotor costs are incurred in groups 

with fewer individudals, where swimming alone is the most costly, followed by 

swimming in a pair, while swimming in a four was the least costly. It is notable 

that this difference in locomotor costs is due to inherent differences in 

swimming efficiency while moving at different speeds, and not due the to 

hydrodynamic benefits of swimming in formation that is normally the focus of 

studies examining the energetic costs of swimming in groups. Optimum swim 

speed was not a predictor of individual speed in the open field arena, suggesting 

that fish do not voluntarily swim at their theoretical optimum for minimising the 

costs per unit distance travelled. Optimum swim speed was also not linked to 

leadership through propagation of movement or position in school in pairs or 

groups of fish. There was no evidence that followers within groups are 

influenced to swim at speed closer to the Uopt of the groups’ leaders as 

compared to their own, with no consistent effects of leadership on the 

cumulative COT experienced by individuals. This study confirms that while 

leadership is not any more or less costly than following, in terms of transport 

cost per unit distance travelled, swimming in groups appears to shift the balance 

of the trade-offs associated with engaging in activity, such that all group 

members can increase their efficiency of movement by swimming at speeds 

closer to their Uopt relative to if they are swimming alone. Still, however, those 

individuals with the lowest Uopt within groups accumulated the greatest 

locomotor costs, suggesting there remains some imbalance among individuals in 

the energetic costs and benefits living and moving in groups.  

Individual optimum swim speed was not related to voluntary swim speed in any 

group size. While theoretical work suggests that voluntary swim speed may align 

with that which provides the minimum cost of transport (Pettersson & 

Hedenström, 2000; Claireaux et al., 2006; Palstra et al., 2010), empirical work 

suggests that individuals will often move at speeds slower than their predicted 

minimum cost of transport. This is because other factors, such as predation risk 

or the physiological constraints of foraging may also shift behaviours away from 

predictions based on efficiency (Higham et al., 2015). Functional demands of 

prey capture (Han et al., 2017), or conservation of aerobic scope (Killen et al., 

2007), may all cause individuals to deviate from their predicted optimal speed. 
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In the current study, I observed that although fish in pairs and groups did not 

display a statistically significant increase in mean movement speed, the trend 

toward increased speed that was observed was biologically significant in that it 

decreased the predicted cumulative COT of group members. While swimming 

alone, individuals may have swam moderately slower or in a more saltatory 

manner, causing them to incur a greater cumulative COT per unit distance 

travelled. Fish in groups swim marginally faster, probably due to a reduction in 

perceived risk, but are also more likely to swim continuously with reduced need 

for constant costly bouts of acceleration or deceleration. Increased energetic 

costs typically arise when stabilising swimming posture and maintaining direction 

at lower speeds, and swimming against disturbing frictional forces at higher 

speeds. While there is likely to be a small energetic cost to pigeons that 

compromise on speed to fly in a flock (Sankey et al., 2019), this does not appear 

to occur for zebrafish swimming in schools. Previous work has shown fish 

swimming alone do not receive the energetic benefit of swimming with a group 

(Marras et al., 2015b) due to not being able to take advantage of the vortices 

produced by groupmates to help propel their own forward movement. 

Additionally, there may be increased energy use while swimming alone, due to 

the stress of social isolation, which can not be measured by examining 

movement patterns (Nadler et al., 2016; Rupia et al., 2016). Deviation from this 

optimum when swimming voluntarily  demonstrates how an individual’s energy is 

partitioned into locomotion and estimate remaining capacity for expressing 

behaviours and other physiological processes. My results show that individuals in 

groups may be able to conserve additional energy while swimming due to a 

reduction in the cost of transport per unit distance, and may allow energy to be 

used on other physiological processes such as growth or reproduction.   

While fish in groups displayed an overall decrease in cumulative COT compared 

to those swimming alone, there was a large degree of within-group individual 

variation in locomotor costs per unit distance. This indicates that the costs and 

benefits of group membership are not equal among groupmates, regardless of 

the overall locomotor benefits of moving in a group. The cost of compromising 

energetically optimum swim speeds could possibly be offset through behavioural 

adjustments. For example, fish that incur an increased COT due to strong 

deviations from their own Uopt could choose spatial positions within group that 
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allow them to further reduce their locomotor costs by taking advantage of 

vortices produced by groupmates (Usherwood et al., 2011). In any case, 

differences in the total energy devoted to movement among groupmates due to 

inequalities in the COT would represent a costs of group living that has so far 

been overlooked, but could greatly affect the residual energy that individuals 

can allocate to other physiological processes (Sumich, 1983). While I found no 

evidence to suggest that leaders were directly influencing the cumulative 

locomotor costs incurred by groupmates, it is still possible that heterogeneity in 

factors such as Uopt and minimum COT could encourage group splitting or 

assortment to reduce the compromises being made by specific individuals within 

groups (Couzin, 2006).   

Cumulative cost of transport was not linked to leadership or relative Uopt within 

groups , indicating that leadership may not cause groupmates to incur more 

energetic cost in the form of speed or movement by following. Group behaviour 

is likely to be governed by local interaction rules in response to external 

environments, and individuals are hypothesised to modulate their behaviour in 

terms of their cohesion and speed to maintain group structure (Couzin et al., 

2002). Slower individuals will be able to maintain their position at the rear of 

the group due to social forces, unless they are physically unable to keep up, 

despite the increased energetic cost (Herbert-Read et al., 2011; Katz et al., 

2011; Jolles et al., 2017). Similarly, faster individuals may slow down as their 

distance increases from the front of the group to stay with the group (Jolles et 

al., 2017). It was assumed that leadership would cause some individuals to vary 

from their optimum more than others in a group, by swimming faster or slower 

than their optimum. However, differences in cost of transport are not linked to 

leadership, and there is no difference in leadership between pairs and groups, 

suggesting that members of the group must be reaching a consensus in 

locomotion speed. This corroborates (Sankey et al., 2019) with the goldilocks 

principle, where birds deviate from their preferred individual speed to fly at as 

part of a group, which may not be the physiological optimum. In this case, while 

fish reached a consensus of speed to stay within group, this was faster than their 

optimums. Given that relative within-group optimum swim does not affect which 

individual is the leader, and individuals that lead do not differ from their Uopt in 

mean swim speed more or less than followers, it is apparent that while there are 
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imbalances in the cumulative costs that individuals occur while moving in 

groups, this inequality is not directly related to leader-follower dynamics and is 

more due to the physiolgoical, behavioural, and morphological characteristics of 

individual fish. 

Leadership metrics while turning and accelerating are correlated with each 

other but not position in school, suggesting that leadership does not always 

come from the front of a group. Previous work in pairs of fish (Ward et al., 2004; 

Nakayama et al., 2013; Jolles et al., 2014) have only used position in school as a 

proxy of leadership, especially in pairs. Leadership is often linked to position in 

school and the frontal positions in school are more energetically expensive, 

while fish at back of school do not have as much hydrodynamic expense. When 

investigasting leadership in groups in behavioural assays, position in school is not 

the only important metric of behaviour to consider when analysing collective 

behaviour, and propagation of movement must be considered. As leadership 

through propagation of movement is not related to position in school, it suggests 

that if there are other energetic costs of leadership rather than cost of 

transport, the cost of leadership does not change. Additionally, social animal 

groups including mammals such as horses, primates and marine mammals have 

displayed social hierarchy and dominance behaviour which indicates which 

animal is leading, and not necessarily from the front (King & Sueur, 2011; Lewis 

et al., 2011; Krueger et al., 2014; Tokuyama & Furuichi, 2017). In synchronous 

groups where individual identification is more difficult and hierarchies are less 

obvious, leadership may be more nuanced. In pairs of pigeons, Petit et al. (2013) 

found interaction rules were mediated by turning responses, not acceleration 

and deceleration. This suggests that individuals could fly at their preferred 

speeds and faster individuals could turn more while allowing the group to remain 

cohesive. Indeed, it was observed that individuals who led via turning 

propagation of movement also led via acceleration. However, relating this to 

physiological capacity for movement has yet to be confirmed, as propagation of 

movement and initiation of turns and acceleration may also incur cost in a 

moment-to-moment basis, and therefore warrant analysis on a smaller time 

scale. 
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In conclusion, I show that leadership is not necessarily linked to locomotor 

capacity as expressed in optimum swim speed or cost of transport, confirming 

that fish tend towards consensus. Deviation from optimum swim speed and cost 

of transport is one proxy which can provide vital information for individual state 

space movement models which can integrate social aspects into movement 

predictions. Models are available which use water depth, velocity and turbidity 

to look at bioenergetics in specific modes of activity i.e. foraging (Jowett et al., 

2021), but it is important to consider inter-individual interactions when 

predicting schooling behaviour using inference models. Individuals may alter 

their movement in relation to their physiology and social scale, and may 

contribute to models of bioenergetics in specific modes of activty. The present 

study forms the foundation for the investigation of how physiological capacity 

affects individual and group level mechanisms influencing collective movement. 

Previously, deviation from individual optimum locomotion speed and incurring 

cost of transport has rarely been considered in social behaviour, and linking this 

to leadership is novel. Leadership is not linked to optimum swim speeds or 

cumulative cost of transport which adds to increasing knowledge of what makes 

a leader, and how groups react to behavioural and physiological heterogeneity. 

Cost of transport is just one measure of bioenergetics of leadership and it is 

imperative for future work to identify other hidden energetic costs and benefits 

to group living. 
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6 General Discussion 

 

6.1 Summary 

Environmental variability affects group movement and this is integral to 

understanding collective behaviour. By using fish of different species as models, and 

integrating behavioural analysis with physiological data, I have shown that 

leadership in schools of fish changes under different environmental or social 

conditions. While specific metabolic traits may not be directly related to individual 

leadership, both metabolism and swimming performance can play important roles in 

driving group behaviour. By quantifying the movement of individuals in groups, 

across different environmental contexts, I have gained novel insights into how 

physiology interacts with behaviour and how this may be applied to larger groups in 

the wild.  

The studies presented are among the first to thoroughly link different forms of 

leadership in groups to physiology and variation in environmental context. Previous 

studies have explored how group behaviour changes in different contexts, or how 

leadership is displayed in groups, but not at how leadership changes with the 

environment. In the last decade the ability to track animals in the lab has 

progressed enough to make strong conclusions, and there has been an increased 

need to understand how changing environments affect physiological and behaviour 

ecology. Prior to this, research on leadership in animal groups was relatively scarce. 

Measuring group behaviour and leadership in the field is near-impossible in groups of 

fish where animals are difficult to observe, and individuals may be recruited to (or 

leave)the group at any moment. It is also complex to gather individual physiological 

measures in the wild and tag individuals in a short amount of time without altering 

their behaviour. Finally, the environmental conditions are shaped by many abiotic 

and biotic factors which will change with time and space, therefore it is difficult to 

measure behaviour consistently and accurately while attributing behavioural 

changes to the correct environmental factor.  

Chapter 2 explains how behavioural metrics were calculated using individual 

identity tracking and geometry. Temporal correlations and position in group relative 

to direction was used to identify leadership rank. Coordinate data was used in the 

calculation of polarity, cohesion, speed and distance. This work underpinned the 
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remainder of the thesis and was itself a major contribution to the field. Although 

there are various software packages available for the tracking of animal movements 

in experimental settings, most of these simply output a series of x-y coordinates, 

leaving it up to the user to turn these into useful data. While many of the 

subsequent calculations are relatively straight-forward (e.g. for calculating speed or 

distance moved), many are complex, including those required for group cohesion, 

polarity, and the spatial positioning of individuals within groups. My work in coding 

these calculations allow the relevant metrics to be quickly calculated from any 

dataset with x-y coordinates from individual animals, and I anticipate these 

functions will be of great use to researchers in this field going forward. 

Chapter 3 explored the relationship between metabolic composition of groups, 

group behaviour, and acute temperature exposure in P. phoxinus. Here I asked 

whether group composition of high, medium, and low or a mix of metabolic rates 

affected group swimming behaviour, and whether an acute rise in temperature 

changes this behaviour. Individual leadership while turning or accelerating and 

position in school was not affected by metabolic phenotype. While metabolic 

composition in groups did not have a consistent effect on group behaviour, groups 

with different compositions reacted differently to temperature increase. In medium 

and mixed groups at 18 °C followers did not respond as quickly to leaders while 

turning and accelerating as compared to when tested at 15oC. In high groups, 

followers did not respond as quickly in leadership when accelerating at 18C, in 

comparison to low groups. Leadership while turning is more stable and consistent 

at 18 °C compared to 15 °C but this is not the case while accelerating. At 18 °C, 

fish generally swam faster, were more polarised but were less cohesive. 

In Chapter 4, I looked at how feeding behaviour and subsequent energetic costs of 

digestion affects group behaviour, where individuals in groups were allowed to feed 

and then behaviour measured for the next three hours. Their behaviour was then 

examined in relation to specific dynamic action, and whether individual capacity for 

digestion was linked individuals behaviour in groups and well as the behaviour of the 

group as a whole. Feeding altered the behaviour of leaders, where individuals that 

ate more were likely to be leaders while turning, and those that ate less were more 

likely to be leaders while accelerating. Individuals that ate more moved to the front 

of the group over the course of the trial. In feeding trials, fish reacted slower 

when a leader was turning compared to control groups, and reacted faster to 
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leaders that were accelerating. After feeding, polarity, cohesion and speed of 

groups changed with time since feeding. 

Finally, in Chapter 5 I examined the interplay among leader-follower dynamics, 

optimal movement speed, and cumulative locomotor costs of individuals in moving 

groups. Higher cumulative swimming costs are incurred in groups with fewer 

indiviudals, where swimming alone is the most costly group size, interms of cost 

of transport per unit distance. Fish did not voluntarily swim at their optimum 

swim speed, and optimum swim speeds were not related to leadership through 

propagation of movement or position in school. Leadership was also not related 

to degree to which fish deviated from their Uopt while swimming, in pairs or in 

groups. Accordingly, leaders did seem to directly influence the swimming speed 

of the rest of the group, suggesting that individuals reach a concensus swimming 

speed. 

 

6.2 Metabolism, Temperature, and Leadership 

Metabolic traits are often been correlated with behaviours that can in turn be 

associated with leadership (Nakayama et al., 2016). In specific contexts, for 

example, metabolic rate is positively correlated with boldness, activity, and 

associability, all of which have been observed to be linked with spatial positioning 

within groups (Killen et al., 2012b; Metcalfe et al., 2016). An animal’s aerobic 

scope is influenced by their standard metabolic rate, and aerobic scope may be 

related to the spatial position of individuals within moving groups, due to effects 

on locomotor capacity or motivation (Killen et al., 2012b; McLean et al., 2018). I 

show here that neither position in group nor temporal correlations of leadership 

were related to metabolic traits, suggesting that metabolic rate is not a driver 

of leadership in groups. If leadership was highly dependent on metabolic rate, I 

would expect to see differences groups with different metabolic compositions, 

and differences among individuals exaggerated in mixed metabolic composition 

groups (review by Jolles, King, et al., 2020). However, my results suggest that 

leadership may still be related to internal state and be changed with 

environmental stress. Although there is no link between standard metabolic rate 

and leadership, increasing temperature alters leadership in groups depending on 
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metabolic composition, indicating that low metabolic rate individuals reacted 

more than other groups to leaders at 18 °C. In general, all groups swam faster at 

18 °C, so for low metabolic rate fish to be reacting to an even greater extent to 

this temperature increase suggests that they may be experiencing higher stress 

than individuals in the other groups (Svendsen et al., 2021). In general, fish at 

higher temperatures reacted slower to leaders and were less synchronised in 

their movements, indicating that even though higher temperatures may not 

directly affect individual leadership, physiological disruption affects group 

behaviour. Our findings suggest that while individual capacity for leadership 

within a group may not always have a strong bioenergetic basis, acute 

temperature change can disrupt leader-follower relationships and group 

functioning, which compliments studies showing that decision making and 

routine behaviour are affected by temperature increase (Prosser & Nelson, 1981; 

Reilly & Thompson, 2007).   

  

6.3 Food availability and Leadership 

More consistent feeding is one of the most important benefits of living as part of a 

group, and understanding how leadership and group behaviour intersect with 

feeding behaviour is critical to our understanding of populations (Hirsch, 2007b; 

Ioannou et al., 2019). My work shows that where individuals that ate more were 

likely to be leaders while turning, and those that ate less were more likely to be 

leaders while accelerating, suggesting that leadership may be linked to energetic 

state, but more influential than individual feeding success is whether any fish in 

the group fed, i.e before and after feeding. More information is needed about 

individual trade-offs of group living, namely, if schooling fish could have an 

unlimited number of food items before group motivation changes, would we 

expect to see equal distribution of food items, informing us as to how feed 

availability affects group behaviour in the wild. Before and during feeding, fish 

that ate the most were followers when a leader was accelerating, but fish that 

ate more during feeding were more likely to lead group changes in directionality 

via turning. After feeding, during digestion, there was no association between 

meal size and leadership while turning or accelerating, or position in school. 

After feeding, however, individuals reacted quicker to leaders, which could be 



93 | C o t g r o v e  
 

related to information transfer in the group, rather than leadership specifically 

(Sueur et al., 2009; Ioannou et al., 2015). If there is more potential food in an 

arena, it would make sense that groups would react faster to acquire more food. 

My work showed that behaviour while feeding may be very different to post feeding. 

This could be because individuals within groups modulate their behaviour to 

maintain positions, however individuals did not have repeatable positions in school.  

My work highlights the need to understand consequences of locomotor constraints 

for group leadership and understanding if there is physiological constraint on 

occupying leadership roles. In chapter 3, I also observed behavioural changes with 

environmental change, with increases in temperature, leadership stability and 

consistency decreases, likely due to physiological response to stress. In chapter 5 I 

observed that followers do not compromise their optimum swim speeds differently 

than leaders, showing that while leadership may be linked to aspects of physiology, 

the traits I focused on may not be directly related to swimming performance under 

the conditions studied.  

 

6.4  Locomotor performance and Leadership 

In chapter 4, I show that leadership through propagation of movement or position 

in school is not linked to an individual’s optimum swim speed. Similarly, 

leadership is also not linked to deviation from optimum swim speed, showing 

that leaders in groups do not influence groups to swim at their own optimum 

swim speed. I also show that leadership may not incurr more energetic cost in 

movement than following. Chapter 4 results are interesting to compare to 

chapters 3 and 5, where physiological capacity does not consistenly affect 

individual leadership, but does affect group behaviour and coordination. This 

study confirms that leadership is not more costly in terms of transport speed, 

and overall swimming in groups is less costly than swimming alone. Leadership 

when acceleratying tended to be less costly than leadership while turning. 

Linking chapter 5 trends to results of chapter 4, where those that ate more were 

likely to be leaders while turning, suggests that there may be unidentified 

physiolgoical consequences of different modes of leadership. Past work in birds 

has shown that individuals reach a concensus on travelling speed, which is an 
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average of all indidivuals preferred swim speed (Sankey et al., 2019). Here, I 

saw that leadership metrics are not related to influence on group speed, and yet 

a concensus movement speed is also reached. While I measured cumulative cost 

of transport over the trial duration, it would be interesting to investigate the 

exact cost of leading while accelerating or turning in comparison to position in 

school, or as a measure of efficiency (Faustino et al., 2017). Interestingly, pairs 

and individudal fish may be experiencing a level of stress which may not be 

reflected in our cumulative cost of transport data. Ionly examined female fish, 

to decrease chances of chasing in pairs, through aggression or mating behaviour, 

but there may have been interactions we did not catch in our video analysis 

(Bass & McKibben, 2003). Also, when alone, fish may have not exhibited normal 

volitional swimming behaviour as part of a stress response to not being part of a 

group in a new environment. While cost of transport and optimum swim speed 

are not correlated with position in school or leadership, only pairs or groups of 

four were tested, so this work provides initial data to ascertain whether this 

non-correlation is seen in larger groups and in more complex environments.   

 

6.5 Future Work 

It is clear that there is still much to be done to understand leadership in moving 

groups. One of the prevailing themes of this thesis is that temporal correlations of 

movement, i.e. leadership when turning and accelerating are not necessarily linked 

to spatial positioning within moving groups . Many previous studies discuss how 

leadership is correlated to behavioural phenotypes, or how leadership emerges in 

different environmental contexts (Leblond & Reebs, 2006; Kurvers et al., 2009; 

Bevan et al., 2018). Future work might give more consideration to the suitability of 

the form of leadership being examined in relation to the study question. Past work 

has had much success defining leadership by social rank, movement and dominance 

cues, however these social groups often have complex and pre-determined social 

structure, such as baboons (Strandburg-Peshkin et al., 2015) or orca (Croft et al., 

2011b), where the leader can be identified through more than one mode of 

movement or signal. It is important to consider that while these individuals may 

have experienced similar situations to those depicted in these experiments (e.g. 

feeding events and groupmates) before experimental trials, looking at emerging 

leadership in these novel set ups is critical to determining whether leadership is 
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purely based on physiology. By testing individuals with no prior knowledge of the 

experiment, we show that leadership is not reliant on physiology and that context 

over longer time scales or learning is imperative to consider in future work. 

Realistically, including individual tracking in every behaviour study of fish groups 

may not be possible due to time and computing constraints of frame by frame 

individual identity tracking and extracting leadership metrics. For example, in 

experiments looking at pairs of animals, leaders are usually quantified as the 

individual at the front of the pair. However, I show mean lag after a leadership 

event while turning and accelerating is not correlated to position in group. This lack 

of relationship highlights that some other method of quantifying leadership is 

required to understand the initiations of moment-to-moment movements of groups. 

It would be interesting to be able to mathematically quantify if leadership occurred 

from the edges or periphery of groups in larger school. Those on the edge of the 

group may have access to the same information that a fish in the front has, but may 

be benefiting energetically from less hydrodynamically expensive spatial positions 

(Abraham & Colgar, 1988; Deng & Shao, 2006). More recent tracking software such 

as Trex (Walter & Couzin, 2021) can identify individuals and also their field of 

vision, which would be interesting to see how leadership propagates through a group 

in relation to vision.  

It is human nature to attribute patterns we recognise in ourselves in other 

organisms. Biologists commonly anthropomorphise animals, explaining movements 

and behaviours with principles that we have identified in our conspecifics. Despite 

the relatively small group sizes we have used in this work, where leadership is not 

identifiable in any one individual we could be seeing how self-organised groups start 

to operate (Ioannou, 2017). Swarm behaviour is the collective motion of self-

propelled entities and is emergent from a group of animals and do not follow any 

central coordination (Hemelrijk & Hildenbrandt, 2012). There is a possibility that 

this is the case in this work, and generally in the study of leadership in fish, where 

overall order occurs through local interactions between parts of an initially 

disordered system (Ioannou, 2017). We must consider that some characteristics are 

unable to be quantified by our own characteristics, and use mathematical principles 

to be able to predict these movements. More likely, is that there are ways of 

communicating between fish and interaction rules we are yet to identify which 

dictate these leader-follower relationships. 
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Understanding the mechanisms how individuals perceive their social environment 

and decide leadership rather than focusing on which individual is the leader is the 

natural next stage to this research (Strandburg-Peshkin et al., 2018). Future 

research could focus on how sensory capacity and sensory cues can drive 

leadership in groups. Olfaction, hearing, gustation and vision are all critical in 

mediating physiological and behavioural responses to the environment, and 

understanding how these are used in group behaviour is currently unknown. 

Work has shown that olfactory cues are used in movement and orientation, but 

how differences in sensory cues relate to groupmates is an unknown area 

(Tavolga & Wodinsky, 1965; Kasumyan, 2000; Hubbard et al., 2002).  

Future work will ideally explore different forms of leadership in groups in varying 

environments and experimental settings. This will allow us to understand the 

moment-by-moment changing dynamics in groups, and how groups react to different 

stimuli. Future work is likely to use telemetry tracking of whole populations with 

high resolution data to analyse leadership in groups on a large scale (Nathan et al., 

2022). While this data nearly exists in lake ecosystems, not every organism in a 

population has been tagged, and the error margins for estimating exact individual 

positions to the degree in which you can predict leadership are still too large 

(Lennox et al., 2021). As accessibility of software and technological power to track 

individuals accurately in 3D space improves, our knowledge of how groups of fish 

interact with their group mates and environment will increase. This thesis looks at 

schooling behaviour in a two-dimensional plane, however, in their natural habitat, 

schools of fish are likely to occupy three dimensional space, and so leadership could 

also propagate through the z-axis, as opposed to what I have measured in my 

studies. The data presented in this thesis could inform agent based models, 

predicting how leadership or preferences effect individual decision making, social 

behaviour and aggregations in habitats (Alós et al., 2012). Knowledge will also 

inform further research when building theoretical models of group movement, 

allowing us to predict larger scale movements such as migrations or habitat shifts in 

reaction to changing climates.  

Past work has explored leadership in terms of position in school in groups in a flow 

system, or in volitional swimming studies in still water, however it would be 

interesting to analyse how leadership and group behaviour presents itself in a 

stream system where groups are required to decide between volitional swimming 
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and exploration or maintaining positions within the water column. Differences in 

leadership in flow systems and volitional swim speed may allude to physiological 

differences in leaders from followers which we were unable to identify in this work. 

Analysis of individuals through genotyping via molecular genetics could highlight 

whether leadership is a heritable trait, and the extent to which leaders are born, 

not made (Árnason et al., 2009). Further physiological traits could be included 

such as measuring respiratory frequency via accelerometery and profiling of 

swimming performance (e.g. Stehfest*, 2003) to characterise leaders. 

Additionally, raising juveniles and incorporating some level of social learning into 

their upbringing compared to naïve fish could inform us how leadership develops in 

groups over time. Alternatively, this could highlight how information transfers 

through a group to maintain egalitarianism.  

 

6.6 Conclusions 

To conclude, what we understand about leadership and collective behaviour has 

vastly improved since technology is able to calculate metrics over more extreme 

time and spatial scales than we ever could before (Oudman et al., 2020; Lennox 

et al., 2021). Understanding how animal groups decide to move is critical to 

ecosystem health, conservation management or any species vulnerable to human 

exploit, whether by sustainable measures or not (Kölzsch et al., 2015; Biro et 

al., 2016; Sasaki & Biro, 2017). Research on leadership in fish is increasing in 

complexity, and the nuances surrounding behavioural and physiological 

phenotypes, and heterogeneity in groups is only just being understood (Jolles et 

al., 2020a). Unlocking the physiological principles underlying leadership in 

groups can provide us with insight to how populations may react in changing 

environments, which is becoming more crucial as planet earth experiences more 

extreme weather events and changing climates.  
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8 Appendix 

 

8.1 Chapter 3 Supplementary Materials  

Table 8.1-1: Pearson’s product-moment correlation between Mean Lag after Leadership 
Event while Accelerating and Mean Lag after Leadership Event while Turning. The 
correlation coefficient is indicated by r. 95% Confidence Intervals are represented by 
95% CI, t shows the t statistic associated with the correlation and df indicates the 
degrees of freedom. P value indicates the significance of the result. 

Group r 95% CI t df p- value 

Low SMR:15 °C 0.74 0.56-0.85 6.90 39  <0.001 

Medium SMR: 15 °C 0.92 0.67-0.98 6.37 7 <0.001 

High SMR: 15 °C 0.69 0.45-0.84 5.30 31 <0.001 

Mix SMR: 15 °C 0.76 0.55-0.8 6.24 29 <0.001 

Low SMR:18 °C 0.79 0.63-0.88 7.88 38 <0.001 

Medium SMR: 18 °C 0.98 0.95-0.99 24.98 31 <0.01 

High SMR: 18 °C 0.42 0.008-0.71 2.11 21 <0.05 

Mix SMR: 18 °C 0.61 0.33-0.79 4.17 30 <0.001 

 

 

Figure 8.1-1: Density plot of Polarity (1 = aligned, 0, unorganised) and Minimum 
Neighbour Distance (cm). Plots show data for every available frame and individual and 
the majority (XX) of the data. Red indicates more time spent within those intersections 
of data and blue indicates no time spent within those parameters. 
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Table 8.1-2: Results of the best-fit model for Mean Lag after Leadership Event While 
Turning (LeadTurnResp). Results of the best-fit model from Table 8.2-11. Marginal R2 
describes the proportion of variance explained by the fixed factors alone. Conditional 
R2 describes the proportion of variance explained by both fixed and random factors. 
Standard error in brackets in estimate column; statistic shows the t statistic associated 
with the variable and df indicates the degrees of freedom. P value indicates the 
significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept -0.71 (0.07) -10.21 144.12 <0.001 

MMRrank -0.02 (0.01) -2.43 101.00 0.017 

18 °C 0.01 (0.05) 0.13 137.94 0.897 

Medium Metabolic Composition -0.05 (0.08) -0.69 171.88 0.494 

High Metabolic Composition -0.03 (0.07) -0.42 122.05 0.676 

Mixed Metabolic Composition -0.04 (0.07) -0.58 105.88 0.560 

Random Effects 

σ2 0.15 

τ00 group:ID 0.00 

τ00 ID 0.00 

N group 18 

N ID 122 

Observations 249 

Marginal R2 / Conditional R2 0.026 / NA 

 

Table 8.1-3: Results of the best-fit model for Mean Lag after Leadership Event While 
Accelerating (LeadAccelResp). Results of the best-fit model from Table 8.2-10. 
Marginal R2 describes the proportion of variance explained by the fixed factors alone. 
Conditional R2 describes the proportion of variance explained by both fixed and 
random factors. Standard error in brackets in estimate column; statistic shows the t 
statistic associated with the variable and df indicates the degrees of freedom. P value 
indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept -0.84 (0.05) -16.91 187.58 <0.001 

18 °C 0.02 (0.05) 0.32 140.29 0.752 

Medium Metabolic Composition -0.03 (0.08) -0.35 179.69 0.724 

High Metabolic Composition -0.04 (0.07) -0.60 126.24 0.549 

Mixed Metabolic Composition -0.05 (0.06) -0.82 105.16 0.416 

Random Effects 

σ2 0.15 

τ00 group:ID 0.00 

τ00 ID 0.00 

N group 18 

N ID 124 

Observations 257 

Marginal R2 / Conditional R2 0.003 / NA 
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Table 8.1-4: Results of the best-fit model for Mean Position in School. 

 

Table 8.2-12 Marginal R2 describes the proportion of variance explained by the fixed 
factors alone. Conditional R2 describes the proportion of variance explained by both 
fixed and random factors. Standard error in brackets in estimate column; statistic 
shows the t statistic associated with the variable and df indicates the degrees of 
freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept 4.48(0.05) 83.61 316.00 <0.001 

18 °C 0.16(0.08) 2.07 158.00 0.040 

Medium Metabolic Composition 0.28(0.08) 3.51 316.00 0.001 

High Metabolic Composition -0.16(0.08) -1.98 316.00 0.049 

Mixed Metabolic Composition 0.09(0.08) 1.23 280.37 0.219 

18 °C: Medium Metabolic Composition -0.65(0.11) -5.71 158.00 <0.001 

18 °C: High Metabolic Composition 0.03(0.11) 0.25 158.00 0.799 

18 °C: Mixed Metabolic Composition -0.16(0.11) -1.52 158.00 0.130 

Random Effects 

σ2 0.13 

τ00 group:ID 0.00 

τ00 ID 0.00 

N group 18 

N ID 126 

Observations 324 

Marginal R2 / Conditional R2 0.139 / NA 

 

Table 8.1-5: Tukey Post-hoc test examining between group differences of Mean Position 
in School in different Metabolic Compositions (MRcomp) and temperatures. SE 
represent standard error; df represents degrees of freedom; Lower and Upper CI show 
95% confidence intervals; t-ratio shows t-ratio associated with statistic; p value shows 
significance.  

MR Comp 
Comparison 

Temp Estimate SE df Lower 
CI 

Upper 
CI 

t - 
ratio 

p - 
value 

Low - High 15 0.16 0.08 245.98 -0.00 0.32 1.92 0.06 

Low - Mix 15 -0.09 0.08 216.86 -0.25 0.06 -1.20 0.23 

High - Mix 15 -0.25 0.08 222.38 -0.42 -0.09 -3.06 <0.01 

Low - High 18 0.13 0.08 245.98 -0.03 0.29 1.58 0.12 

Low - Mix 18 0.07 0.08 216.86 -0.08 0.22 0.88 0.38 

High - Mix 18 -0.06 0.08 222.38 -0.22 0.10 -0.74 0.46 
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Table 8.1-6: Results of the best-fit model for group Leadership metrics;Lead turn con; leadturnstab; leadaccelcon;p leadaccelstab.  

Table 8.2-13Marginal R2 describes the proportion of variance explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. Standard error in brackets in estimate (est) column; statistic (stat) shows the t statistic 
associated with the variable and df indicates the degrees of freedom. P value indicates the significance of the result. 

 LeadTurnCon LeadAccelCon LeadTurnStab LeadAccelStab 

Coeffcient Est Stat df p value Est Stat df p value Est Stat df p value Est Stat df p value 

Intercept -0.41 
(0.09) 

-4.49 16.88 <0.001 -0.92 
(0.11) 

-8.61 16.88 <0.001 -1.13 
(0.11) 

-10.14 15.28 <0.001 -1.39 
(0.10) 

-13.45 15.76 <0.001 

18 °C 0.40 
(0.09) 

4.17 14.62 0.001 0.18 
(0.11) 

1.65 14.62 0.120 0.31 
(0.09) 

3.38 13.35 0.005 0.15 
(0.09) 

1.65 13.81 0.122 

Medium Metabolic 
Composition 

-0.11 
(0.14) 

-0.79 15.92 0.443 -0.06 
(0.16) 

-0.38 15.92 0.708 -0.02 
(0.17) 

-0.12 15.57 0.904 0.07 
(0.16) 

0.47 15.76 0.645 

High Metabolic 
Composition 

0.04 
(0.12) 

0.30 10.82 0.771 -0.09 
(0.14) 

-0.65 10.82 0.532 -0.01 
(0.16) 

-0.07 11.91 0.947 -0.14 
(0.14) 

-1.00 11.51 0.340 

Mixed Metabolic 
Composition 

-0.14 
(0.12) 

-1.22 11.51 0.247 -0.07 
(0.14) 

-0.50 11.51 0.629 -0.22 
(0.15) 

-1.47 12.43 0.167 -0.02 
(0.14) 

-0.11 12.10 0.913 

Random Effects 

σ2 0.06 0.08 0.05 0.06 

τ00 0.00 group 0.00 group 0.03 group 0.01 group 

ICC     0.33 0.21 

N 18 group 18 group 18 group 18 group 

Observations 30 30 30 30 

Marginal R2 /  

Conditional R2 

0.411 /  

NA 

0.108 /  

NA 

0.305 /  

0.531 

0.161 /  

0.333 
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Table 8.1-7: Results of the best-fit model from group metrics for tables 8.1-12-15. Marginal R2 describes the proportion of variance explained by 
the fixed factors alone. Conditional R2 describes the proportion of variance explained by both fixed and random factors. Standard error in brackets 
in estimate (est) column; statistic (stat) shows the t statistic associated with the variable and df indicates the degrees of freedom. P value 
indicates the significance of the result. 

 logSpeed Mean sw.vs sh logAND LogPol 

Coefficient Est. Stat df p Est. Stat df P Est. Stat df P Est. Stat df P 

Intercept 0.65 
(0.03) 

20.27 269.38 <0.001 67.84 
(4.66) 

14.55 14.11 <0.001 0.98 
(0.02) 

62.40 218.01 <0.001 -0.40 
(0.03) 

-
14.96 

15.80 <0.001 

18 °C 0.21 
(0.03) 

5.99 158.00 <0.001 10.07 
(0.58) 

17.27 305.00 <0.001 0.03 
(0.01) 

2.43 158.00 0.016 0.15 
(0.01) 

11.68 302.00 <0.001 

Medium Metabolic 
Composition 

-0.12 
(0.05) 

-2.44 269.37 0.015 -8.17 
(6.98) 

-1.17 14.00 0.261 -0.16 
(0.02) 

-6.73 213.95 <0.001 0.08 
(0.04) 

2.13 15.80 0.049 

High Metabolic 
Composition 

-0.10 
(0.05) 

-2.03 269.32 0.044 -3.81 
(6.98) 

-0.55 14.00 0.594 -0.05 
(0.02) 

-2.02 208.91 0.044 0.01 
(0.04) 

0.29 15.80 0.776 

Mixed Metabolic 
Composition 

0.14 
(0.05) 

3.12 216.58 0.002 8.08 
(6.58) 

1.23 14.00 0.240 -0.04 
(0.02) 

-1.91 136.34 0.059 0.01 
(0.04) 

0.28 15.80 0.786 

18 °C:Medium Metabolic 
Composition 

-0.08 
(0.05) 

-1.46 158.00 0.145 
    

0.06 
(0.02) 

3.09 158.00 0.002 -0.20 
(0.02) 

-
10.21 

302.00 <0.001 

18 °C:High Metabolic 
Composition 

0.04 
(0.05) 

0.81 158.00 0.420 
    

-0.00 
(0.02) 

-0.01 158.00 0.988 0.01 
(0.02) 

0.30 302.00 0.767 

18 °C:Mixed Metabolic 
Composition 

0.01 
(0.05) 

0.21 158.00 0.834 
    

0.05 
(0.02) 

2.78 158.00 0.006 -0.04 
(0.02) 

-2.44 302.00 0.015 

Random Effects 

σ2 0.03 27.51 0.00 0.00 

τ00 0.02 group:ID 106.67 group 0.00 group:ID 0.00 group 

ICC 0.42 0.79 0.68 0.46 

N 18 group 18 group 18 group 18 group  
126 ID   126 ID   

Observations 324 324 324 324 

Marginal R2 / Conditional 
R2 

0.336 / 0.612 0.314 / 0.859 0.229 / 0.757 0.366 / 0.655 
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Table 8.1-8: Tukey Post-hoc test examining between group differences of average 
speed in cm/s for different Metabolic Compositions (MRcomp) and temperatures. SE 
represent standard error; df represents degrees of freedom; Lower and Upper CI show 
95% confidence intervals; t-ratio shows t-ratio associated with statistic; p value shows 
significance. 

MRcomp 
Comparison 

Temp estimate SE df Lower 
CI 

Upper 
CI 

t - 
ratio 

p - 
value 

Low - Medium 15 0.12 0.05 269.37 0.02 0.21 2.44 0.02 

Low - High 15 0.10 0.05 269.32 0.00 0.19 2.03 0.04 

Low - Mix 15 -0.14 0.05 216.58 -0.23 -0.05 -3.12 <0.01 

Medium - High 15 -0.02 0.05 269.36 -0.12 0.08 -0.39 0.69 

Medium - Mix 15 -0.26 0.05 242.92 -0.35 -0.16 -5.39 <0.001 

High - Mix 15 -0.24 0.05 225.74 -0.33 -0.14 -4.98 <0.001 

Low - Medium 18 0.19 0.05 269.37 0.10 0.29 4.02 <0.001 

Low - High 18 0.06 0.05 269.32 -0.04 0.15 1.16 0.25 

Low - Mix 18 -0.15 0.05 216.58 -0.24 -0.06 -3.35 <0.001 

Medium - High 18 -0.14 0.05 269.36 -0.24 -0.04 -2.71 <0.01 

Medium - Mix 18 -0.35 0.05 242.92 -0.44 -0.25 -7.18 <0.001 

High - Mix 18 -0.21 0.05 225.74 -0.30 -0.11 -4.32 <0.001 

 

Table 8.1-9: Tukey Post-hoc test examining between group differences of average 
neighbour distance in different Metabolic Compositions (MRcomp) and temperatures. 
SE represent standard error; df represents degrees of freedom; Lower and Upper CI 
show 95% confidence intervals; t-ratio shows t-ratio associated with statistic; p value 
shows significance. 

MRcomp Comparison Temp estimate SE df Lower  

CI 

Upper  

CI 

t  

ratio 

P 

 value 

Low - Medium 15 0.16 0.02 213.95 0.11 0.20 6.73 <0.001 

Low - High 15 0.05 0.02 208.91 0.00 0.09 2.02 0.04 

Low - Mix 15 0.04 0.02 136.34 -0.00 0.08 1.91 0.06 

Medium - High 15 -0.11 0.02 213.54 -0.16 -0.06 -4.48 <0.001 

Medium - Mix 15 -0.12 0.02 168.70 -0.16 -0.08 -5.39 <0.001 

High - Mix 15 -0.01 0.02 146.38 -0.05 0.03 -0.40 0.69 

Low - Medium 18 0.10 0.02 213.95 0.05 0.15 4.22 <0.001 

Low - High 18 0.05 0.02 208.91 0.00 0.09 2.04 0.04 

Low - Mix 18 -0.01 0.02 136.34 -0.05 0.03 -0.56 0.58 

Medium - High 18 -0.05 0.02 213.54 -0.10 -0.00 -2.09 0.04 

Medium - Mix 18 -0.11 0.02 168.70 -0.15 -0.07 -4.99 <0.001 

High - Mix 18 -0.06 0.02 146.38 -0.10 -0.02 -2.71 <0.01 
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Table 8.1-10: Tukey Post-hoc test examining between group differences of mean 
polarity in different Metabolic Compositions (MRcomp) and temperatures. SE represent 
standard error; df represents degrees of freedom; Lower and Upper CI show 95% 
confidence intervals; t-ratio shows t-ratio associated with statistic; p value shows 
significance. 

MRcomp 
Comparison 

Temp estimate SE df Lower 
CI 

Upper 
CI 

t - 
ratio 

p - 
value 

Low - Medium 15 -0.08 0.04 15.80 -0.17 -0.00 -2.13 0.05 

Low - High 15 -0.01 0.04 15.80 -0.10 0.07 -0.29 0.78 

Low - Mix 15 -0.01 0.04 15.80 -0.09 0.07 -0.28 0.79 

Medium - High 15 0.07 0.04 15.80 -0.02 0.16 1.75 0.10 

Medium - Mix 15 0.07 0.04 15.80 -0.01 0.16 1.87 0.08 

High - Mix 15 0.00 0.04 15.80 -0.08 0.09 0.03 0.98 

Low - Medium 18 0.11 0.04 15.80 0.03 0.20 2.81 0.01 

Low - High 18 -0.02 0.04 15.80 -0.10 0.07 -0.43 0.67 

Low - Mix 18 0.03 0.04 15.80 -0.05 0.11 0.90 0.38 

Medium - High 18 -0.13 0.04 15.80 -0.22 -0.04 -3.08 <0.01 

Medium - Mix 18 -0.08 0.04 15.80 -0.16 0.01 -1.96 0.07 

High - Mix 18 0.05 0.04 15.80 -0.03 0.14 1.28 0.22 

 

Table 8.1-11: Tukey Post-hoc test examining between group differences of swimming vs 
schooling in different Metabolic Compositions (MRcomp) and temperatures. SE 
represent standard error; df represents degrees of freedom; Lower and Upper CI show 
95% confidence intervals; t-ratio shows t-ratio associated with statistic; p value shows 
significance. 

MRcomp 
Comparison 

Temp estimate SE df Lower 
CI 

Upper 
CI 

t - 
ratio 

p - 
value 

Low - Med 15 8.17 6.98 14.00 -6.79 23.14 1.17 0.26 

Low - High 15 3.81 6.98 14.00 -11.15 18.78 0.55 0.59 

Low - Mix 15 -8.08 6.58 14.00 -22.19 6.03 -1.23 0.24 

Med - High 15 -4.36 7.36 14.00 -20.14 11.41 -0.59 0.56 

Med - Mix 15 -16.25 6.98 14.00 -31.22 -1.29 -2.33 0.04 

High - Mix 15 -11.89 6.98 14.00 -26.86 3.07 -1.70 0.11 

Low - Med 18 8.17 6.98 14.00 -6.79 23.14 1.17 0.26 

Low - High 18 3.81 6.98 14.00 -11.15 18.78 0.55 0.59 

Low - Mix 18 -8.08 6.58 14.00 -22.19 6.03 -1.23 0.24 

Med - High 18 -4.36 7.36 14.00 -20.14 11.41 -0.59 0.56 

Med - Mix 18 -16.25 6.98 14.00 -31.22 -1.29 -2.33 0.04 

High - Mix 18 -11.89 6.98 14.00 -26.86 3.07 -1.70 0.11 
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Table 8.1-12: List of all linear mixed effect models (LMEs) in model selection 
performed for LeadTurnResp (Mean lag after a leadership event while turning). 
SMRrank is the rank of individual SMR in group. MMRrank is the rank of individual MMR 
in group. AvePosSchool is the mean position in school throughout the trial. Temp is the 
temperature treatment; logTL is the log-transformed total length of the fish; MRComp 
is the metabolic composition of the group; ID indicates individual fish ID and group is 
group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

Model df AIC 𝒳2 p 
value 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*AvePosSchool +   
SMRrank*logTL + SMRrank*MRcomp + MMRrank*SMRrank +   
MMRrank*temp + MMRrank*AvePosSchool + MMRrank*  logTL + 
MMRrank*MRcomp + AvePosSchool*logTL +   AvePosSchool*temp + 
AvePosSchool*MRcomp +   temp*logTL + temp*MRcomp + 
logTL*MRcomp + (1|ID/group) 

37 442.58   

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*temp +   
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
AvePosSchool*logTL + AvePosSchool*  temp + 
AvePosSchool*MRcomp + temp*logTL + temp*  MRcomp + 
logTL*MRcomp + (1|ID/group) 

36 440.59 0.01 0.921 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
AvePosSchool*temp + AvePosSchool*  MRcomp + temp*logTL + 
temp*MRcomp + logTL*MRcomp +   (1 | ID/group) 

35 439.34 0.75 0.387 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
AvePosSchool*MRcomp + temp*logTL + temp*  MRcomp + 
logTL*MRcomp + (1|ID/group) 

34 438.05 0.71 0.398 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
AvePosSchool*MRcomp + temp*logTL + logTL*  MRcomp + 
(1|ID/group) 

31 441.03 8.98 0.030 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
temp*logTL + logTL*MRcomp + (1|ID/group) 

28 439.07 4.04 0.257 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
temp*logTL + (1|ID/group) 

25 436.45 3.37 0.338 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*SMRrank + MMRrank*AvePosSchool +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 

24 434.45 0.00 0.945 
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(1|ID/group) 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*temp + SMRrank*logTL +   
SMRrank*MRcomp + MMRrank*AvePosSchool + MMRrank*  logTL + 
MMRrank*MRcomp + AvePosSchool*logTL +   (1 | ID/group) 

23 432.47 0.02 0.889 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + SMRrank*MRcomp +   
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
AvePosSchool*logTL + (1|ID/group) 

22 430.53 0.06 0.805 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + SMRrank*MRcomp +   
MMRrank*logTL + MMRrank*MRcomp + AvePosSchool*  logTL + 
(1|ID/group) 

21 428.75 0.22 0.638 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + SMRrank*MRcomp +   
MMRrank*MRcomp + AvePosSchool*logTL + (1|ID/group) 

20 428.89 2.14 0.144 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + MMRrank*MRcomp +   
AvePosSchool*logTL + (1|ID/group) 

17 425.75 2.86 0.414 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + AvePosSchool*  logTL + 
(1|ID/group) 

14 421.82 2.07 0.558 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + SMRrank*logTL + (1|ID/group) 

13 421.13 1.31 0.252 

LeadTurnResp ~ SMRrank + MMRrank + AvePosSchool +   temp + 
logTL + MRcomp + (1|ID/group) 

12 420.42 1.29 0.256 

LeadTurnResp ~ MMRrank + AvePosSchool +   temp + logTL + 
MRcomp + (1|ID/group) 

11 418.64 0.22 0.639 

LeadTurnResp ~ MMRrank + temp + logTL + MRcomp +   (1 | 
ID/group) 

10 417.84 1.20 0.273 

LeadTurnResp ~ MMRrank + temp + MRcomp + (1 |ID/group) 9 415.99 0.15 0.696 
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Table 8.1-13: List of all linear mixed effect models (LMEs) in model selection 
performed for LeadAccelResp (Mean lag after a leadership event while accelerating). 
SMRrank is the rank of individual SMR in group. MMRrank is the rank of individual MMR 
in group. AvePosSchool is the mean position in school throughout the trial. Temp is the 
temperature treatment; logTL is the log-transformed total length of the fish; MRComp 
is the metabolic composition of the group; ID indicates individual fish ID and group is 
group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

 

Model df AIC 𝒳2 p 
value 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  temp + 
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
SMRrank*temp + SMRrank*AvePosSchool +   SMRrank*logTL + 
SMRrank*MRcomp + AvePosSchool*  logTL + AvePosSchool*temp + 
AvePosSchool*  MRcomp + temp*logTL + temp*MRcomp + 
logTL*MRcomp +   (1 | ID/group) 

37 422.38   

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  temp + 
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
SMRrank*temp + SMRrank*AvePosSchool +   SMRrank*logTL + 
SMRrank*MRcomp + AvePosSchool*  temp + AvePosSchool*MRcomp + 
temp*logTL + temp*  MRcomp + logTL*MRcomp + (1|ID/group) 

36 420.53 0.16 0.692 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  temp + 
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
SMRrank*AvePosSchool + SMRrank*logTL +   SMRrank*MRcomp + 
AvePosSchool*temp + AvePosSchool*  MRcomp + temp*logTL + 
temp*MRcomp + logTL*MRcomp +   (1 | ID/group) 

35 418.54 0.00 0.951 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  temp + 
MMRrank*AvePosSchool + MMRrank*logTL + MMRrank*  MRcomp + 
SMRrank*AvePosSchool + SMRrank*logTL +   SMRrank*MRcomp + 
AvePosSchool*temp + AvePosSchool*  MRcomp + temp*logTL + 
logTL*MRcomp + (1|ID/group) 

32 417.89 5.36 0.148 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  AvePosSchool 
+ MMRrank*logTL + MMRrank*MRcomp +   SMRrank*AvePosSchool + 
SMRrank*logTL + SMRrank*  MRcomp + AvePosSchool*temp + 
AvePosSchool*  MRcomp + temp*logTL + logTL*MRcomp + 
(1|ID/group) 

31 417.06 1.17 0.279 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  logTL + 
MMRrank*MRcomp + SMRrank*AvePosSchool +   SMRrank*logTL + 
SMRrank*MRcomp + AvePosSchool*  temp + AvePosSchool*MRcomp + 
temp*logTL + logTL*  MRcomp + (1|ID/group) 

30 415.06 0.00 0.987 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + MMRrank*  MRcomp + 
SMRrank*AvePosSchool + SMRrank*logTL +   SMRrank*MRcomp + 
AvePosSchool*temp + AvePosSchool*  MRcomp + temp*logTL + 
logTL*MRcomp + (1|ID/group) 

29 415.75 2.68 0.101 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  AvePosSchool 

26 410.94 1.19 0.755 
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+ SMRrank*logTL + SMRrank*MRcomp +   AvePosSchool*temp + 
AvePosSchool*MRcomp +   temp*logTL + logTL*MRcomp + 
(1|ID/group) 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  AvePosSchool 
+ SMRrank*logTL + SMRrank*MRcomp +   AvePosSchool*MRcomp + 
temp*logTL + logTL*MRcomp +   (1 | ID/group) 

25 409.03 0.09 0.769 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  AvePosSchool 
+ SMRrank*logTL + SMRrank*MRcomp +   temp*logTL + 
logTL*MRcomp + (1|ID/group) 

22 406.11 3.08 0.379 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  logTL + 
SMRrank*MRcomp + temp*logTL + logTL*MRcomp +   (1 | ID/group) 

21 404.43 0.32 0.570 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  logTL + 
temp*logTL + logTL*MRcomp + (1|ID/group) 

18 399.99 1.56 0.670 

LeadAccelResp ~ SMRrank + AvePosSchool +   temp + logTL + 
MRcomp + MMRrank + MMRrank*SMRrank + SMRrank*  logTL + 
temp*logTL + (1|ID/group) 

15 396.21 2.22 0.528 

LeadAccelResp ~ SMRrank + temp + logTL + MRcomp +   MMRrank + 
(1|ID/group) 

11 394.31 6.11 0.191 

LeadAccelResp ~ SMRrank + temp + logTL + MRcomp +   (1 | 
ID/group) 

10 392.70 0.39 0.535 

LeadAccelResp ~ temp + logTL + MRcomp + (1|ID/group) 9 390.99 0.29 0.591 

LeadAccelResp ~ temp + MRcomp + (1|ID/group) 8 389.00 0.01 0.934 
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Table 8.1-14: List of all linear mixed effect models (LMEs) in model selection 
performed for AvePosSchool. AvePosSchool is the mean position in school throughout 
the trial. SMRrank is the rank of individual SMR in group. MMRrank is the rank of 
individual MMR in group. Temp is the temperature treatment; logTL is the log-
transformed total length of the fish; MRComp is the metabolic composition of the 
group; ID indicates individual fish ID and group is group ID. df represents degrees of 
freedom and AIC shows the Akaike Information Criterial for the model. Chi-squared and 
p value represents the difference between the previous model. 

 

Model df AIC 𝒳2 p 
value 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*  
MRcomp + SMRrank*temp + SMRrank*logTL + SMRrank*MRcomp +   
temp*logTL + temp*MRcomp + logTL*MRcomp + (1|ID/group) 

29 293.11   

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*  
MRcomp + SMRrank*temp + SMRrank*logTL + SMRrank*MRcomp +   
temp*MRcomp + logTL*MRcomp + (1|ID/group) 

28 291.11 0.00 0.953 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*  
MRcomp + SMRrank*temp + SMRrank*logTL + temp*MRcomp +   
logTL*MRcomp + (1|ID/group) 

25 285.83 0.71 0.870 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*  
MRcomp + SMRrank*temp + temp*MRcomp + logTL*MRcomp +   (1 | 
ID/group) 

24 283.99 0.16 0.687 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*temp + MMRrank*logTL + SMRrank*  
temp + temp*MRcomp + logTL*MRcomp + (1|ID/group) 

21 279.70 1.71 0.635 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + MMRrank*logTL + SMRrank*temp + temp*  
MRcomp + logTL*MRcomp + (1|ID/group) 

20 277.91 0.22 0.642 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
MMRrank*SMRrank + SMRrank*temp + temp*MRcomp + logTL*  
MRcomp + (1|ID/group) 

19 276.45 0.54 0.463 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + MMRrank +   
SMRrank*temp + temp*MRcomp + logTL*MRcomp + (1 |   ID/group) 

18 275.77 1.32 0.250 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + SMRrank*  
temp + temp*MRcomp + logTL*MRcomp + (1|ID/group) 

17 273.82 0.04 0.836 

AvePosSchool ~ SMRrank + temp + logTL + MRcomp + temp*  
MRcomp + logTL*MRcomp + (1|ID/group) 

16 272.38 0.56 0.453 

AvePosSchool ~ temp + logTL + MRcomp + temp*MRcomp +   
logTL*MRcomp + (1|ID/group) 

15 270.42 0.04 0.849 

AvePosSchool ~ temp + logTL + MRcomp + temp*MRcomp +   (1 | 
ID/group) 

12 268.56 4.14 0.247 

AvePosSchool ~ temp + MRcomp + temp*MRcomp + (1|ID/group) 11 267.97 1.41 0.235 
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Table 8.1-15: List of all linear mixed effect models (LMEs) in model selection 
performed for logSpeed. logSpeed is the log transformed mean speed of individuals in 
cm/s. SMRrank is the rank of individual SMR in group. MMRrank is the rank of individual 
MMR in group. Temp is the temperature treatment; logTL is the log-transformed total 
length of the fish; MRComp is the metabolic composition of the group; ID indicates 
individual fish ID and group is group ID. df represents degrees of freedom and AIC 
shows the Akaike Information Criterial for the model. Chi-squared and p value 
represents the difference between the previous model. 

 

Model df AIC 𝒳2 p 
value 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
MMRrank*MRcomp +   SMRrank*temp + SMRrank*logTL + 
SMRrank*MRcomp + temp*  logTL + temp*MRcomp + logTL*MRcomp 
+ (1|ID/group) 

29 -66.85   

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
SMRrank*temp +   SMRrank*logTL + SMRrank*MRcomp + temp*logTL 
+ temp*  MRcomp + logTL*MRcomp + (1|ID/group) 

26 -72.82 0.03 0.999 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
SMRrank*temp +   SMRrank*logTL + temp*logTL + temp*MRcomp + 
logTL*  MRcomp + (1|ID/group) 

23 -78.29 0.53 0.913 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
SMRrank*temp +   SMRrank*logTL + temp*logTL + temp*MRcomp + 
(1|ID/group) 

20 -83.28 1.01 0.799 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
SMRrank*logTL +   temp*logTL + temp*MRcomp + (1|ID/group) 

19 -85.21 0.08 0.782 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*temp + MMRrank*logTL + 
SMRrank*logTL +   temp*MRcomp + (1|ID/group) 

18 -87.03 0.18 0.672 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*logTL + SMRrank*logTL + 
temp*MRcomp +   (1 | ID/group) 

17 -88.86 0.17 0.684 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + MMRrank*logTL + temp*MRcomp + 
(1|ID/group) 

16 -88.92 1.94 0.164 

logSpeed ~ SMRrank + temp + logTL + MRcomp + MMRrank + 
MMRrank*  SMRrank + temp*MRcomp + (1|ID/group) 

15 -90.11 0.81 0.367 

logSpeed ~ SMRrank + temp + MRcomp + MMRrank + 
MMRrank*SMRrank +   temp*MRcomp + (1|ID/group) 

14 -91.71 0.40 0.526 

logSpeed ~ SMRrank + temp + MRcomp + MMRrank + 
MMRrank*SMRrank +   (1 | ID/group) 

11 -92.60 5.10 0.164 

logSpeed ~ temp + MRcomp + temp*MRcomp + (1|ID/group) 11 -94.10 3.48 0.062 

logSpeed ~ SMRrank + temp + MRcomp + MMRrank + 
(1|ID/group) 

10 -91.12 4.98 0.026 
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Table 8.1-16: List of all linear mixed effect models (LMEs) in model selection 
performed for logPol. logPol is the log transformed polarity of a group over a trial. 
SMRrank is the rank of individual SMR in group. MMRrank is the rank of individual MMR 
in group. Temp is the temperature treatment; logTL is the log-transformed total 
length of the fish; MRComp is the metabolic composition of the group; ID indicates 
individual fish ID and group is group ID. df represents degrees of freedom and AIC 
shows the Akaike Information Criterial for the model. Chi-squared and p value 
represents the difference between the previous model. 

Model df AIC 𝒳2 p 
value 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*MRcomp +   
SMRrank*temp + SMRrank*logTL + SMRrank*MRcomp + temp*  logTL 
+ temp*MRcomp + logTL*MRcomp + (1 | group) 

28 -796.70   

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*MRcomp +   
SMRrank*temp + SMRrank*logTL + temp*logTL + temp*  MRcomp + 
logTL*MRcomp + (1 | group) 

25 -802.70 0.00 1.000 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*temp + MMRrank*logTL + MMRrank*MRcomp +   
SMRrank*logTL + temp*logTL + temp*MRcomp + logTL*  MRcomp + 
(1 | group) 

24 -804.69 0.00 0.966 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*temp + MMRrank*logTL + SMRrank*logTL +   
temp*logTL + temp*MRcomp + logTL*MRcomp + (1 | group) 

21 -810.69 0.01 1.000 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*logTL + SMRrank*logTL + temp*logTL +   
temp*MRcomp + logTL*MRcomp + (1 | group) 

20 -812.64 0.05 0.823 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*logTL + SMRrank*logTL + temp*logTL +   
temp*MRcomp + (1 | group) 

17 -818.61 0.03 0.999 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*logTL + temp*logTL + temp*MRcomp +   (1 | 
group) 

16 -820.61 0.00 0.968 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
SMRrank + MMRrank*logTL + temp*MRcomp + (1 | group) 

15 -821.76 0.84 0.358 

logPol ~ SMRrank + temp + logTL + MRcomp + MMRrank + MMRrank*  
logTL + temp*MRcomp + (1 | group) 

14 -823.73 0.03 0.865 

logPol ~ temp + logTL + MRcomp + MMRrank + MMRrank*logTL +   
temp*MRcomp + (1 | group) 

13 -825.73 0.00 0.997 

logPol ~ temp + logTL + MRcomp + MMRrank + temp*MRcomp +   (1 
| group) 

12 -827.70 0.04 0.848 

logPol ~ temp + logTL + MRcomp + temp*MRcomp + (1 | group) 11 -829.70 0.00 0.980 

logPol ~ temp + MRcomp + temp*MRcomp + (1 | group) 10 -831.69 0.01 0.923 
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Table 8.1-17: List of all linear mixed effect models (LMEs) performed for logAND. 
LogAND is the log transformed mean neighbour distance for each individual. SMRrank is 
the rank of individual SMR in group. MMRrank is the rank of individual MMR in group. 
Temp is the temperature treatment; logTL is the log-transformed total length of the 
fish; MRComp is the metabolic composition of the group; ID indicates individual fish ID 
and group is group ID. df represents degrees of freedom and AIC shows the Akaike 
Information Criterial for the model. Chi-squared and p value represents the difference 
between the previous model. 

Model df AIC 𝒳2 p 

value 

logAND ~ SMRrank + temp + MRcomp + MMRrank + 
MMRrank*SMRrank +   MMRrank*temp + MMRrank*MRcomp + 
SMRrank*temp + SMRrank*  MRcomp + temp*MRcomp + 
(1|ID/group) 

22 -607.00   

logAND ~ SMRrank + temp + MRcomp + MMRrank + 
MMRrank*SMRrank +   MMRrank*temp + MMRrank*MRcomp + 
SMRrank*MRcomp +   temp*MRcomp + (1|ID/group) 

21 -609.00 0.00 0.978 

logAND ~ SMRrank + temp + MRcomp + MMRrank + 
MMRrank*SMRrank +   MMRrank*temp + MMRrank*MRcomp + 
temp*MRcomp + (1 |   ID/group) 

18 -614.85 0.15 0.986 

logAND ~ SMRrank + temp + MRcomp + MMRrank + MMRrank*temp +   
MMRrank*MRcomp + temp*MRcomp + (1|ID/group) 

17 -616.72 0.13 0.717 

logAND ~ SMRrank + temp + MRcomp + MMRrank + MMRrank*temp +   
temp*MRcomp + (1|ID/group) 

14 -620.61 2.10 0.551 

logAND ~ temp + MRcomp + MMRrank + MMRrank*temp + 
temp*MRcomp +   (1 | ID/group) 

13 -622.33 0.29 0.593 

logAND ~ temp + MRcomp + MMRrank + temp*MRcomp + 
(1|ID/group) 

12 -623.94 0.39 0.533 

logAND ~ temp + MRcomp + temp*MRcomp + (1|ID/group) 11 -624.10 1.84 0.175 

 

Table 8.1-18 List of all linear mixed effect models (LMEs) performed for mean.sw.sh. 
Mean.sw.sh is the mean time a group spent swimming rather than shoaling. Temp is 
the temperature treatment; MRComp is the metabolic composition of the group; group 
is group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

Model df AIC 𝒳2 p value 

mean.sw.sh ~ temp + MRcomp + temp*MRcomp + (1 | group) 10 2072.03   

mean.sw.sh ~ temp + MRcomp + (1 | group) 7 2078.49 12.46 0.006 
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Table 8.1-19: List of all linear mixed effect models (LMEs) performed for 
LeadAcccelCon. LeadAccelCon is the leadership consistency while accelerating. Temp is 
the temperature treatment; MRComp is the metabolic composition of the group; group 
is group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

Model df AIC 𝒳2 p value 

LeadAccelCon ~ temp + MRcomp + temp*MRcomp + (1 | group) 10 19.38   

LeadAccelCon ~ temp + MRcomp + (1 | group) 7 18.77 5.39 0.146 

 

 

Table 8.1-20: List of all linear mixed effect models (LMEs) performed for LeadTurnCon. 
LeadTurnCon is the leadership consistency while Turning. Temp is the temperature 
treatment; MRComp is the metabolic composition of the group; group is group ID. df 
represents degrees of freedom and AIC shows the Akaike Information Criterial for the 
model. Chi-squared and p value represents the difference between the previous model. 

Model df AIC 𝒳2 p  

value 

LeadTurnCon ~ temp + MRcomp + temp*MRcomp + (1 | roup) 10 13.64   

LeadTurnCon ~ temp + MRcomp + (1 | group) 7 9.58 1.94 0.585 

 

Table 8.1-21: List of all linear mixed effect models (LMEs) performed for 
LeadAccelStab. LeadAccelStab is the leadership stability while accelerating. Temp is 
the temperature treatment; MRComp is the metabolic composition of the group; group 
is group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

Model df AIC 𝒳2 p  

value 

LeadAccelStab ~ temp + MRcomp + temp*MRcomp +(1 | group) 10 13.53   

LeadAccelStab ~ temp + MRcomp + (1 | group) 7 13.69 6.16 0.104 

 

Table 8.1-22: List of all linear mixed effect models (LMEs) performed for 
LeadTurnStab. LeadTurnStab is the leadership stability while turning. Temp is the 
temperature treatment; MRComp is the metabolic composition of the group; group is 
group ID. df represents degrees of freedom and AIC shows the Akaike Information 
Criterial for the model. Chi-squared and p value represents the difference between the 
previous model. 

Model df AIC 𝒳2 p  

value 

LeadTurnStab ~ temp + MRcomp + temp*MRcomp + (1 | group) 10 17.10   

LeadTurnStab ~ temp + MRcomp + (1 | group) 7 15.82 4.72 0.193 
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Table 8.1-23: Checklist of 53 essential criteria for the reporting of methods for aquatic intermittent-flow respirometry (Killen et al 2021). 
     

Number Criterion and Category  Response Value (where 
required) 

Units 

      
EQUIPMENT, MATERIALS, AND SETUP 

   

1 Body mass of animals at time of respirometry Mean 2.7 g 

2 Volume of empty respirometers Y  96 mL 

3 How chamber mixing was achieved Peristaltic pump 
  

4 Ratio of net respirometer volume (plus any associated tubing in mixing circuit) to animal body mass   Na     

5 Material of tubing used in any mixing circuit Na 
  

6 Volume of tubing in any mixing circuit  Na     

7 Confirm volume of tubing in any mixing circuit was included in calculations of oxygen uptake Na 
  

8 Material of respirometer (e.g. glass, acrylic, etc.)  glass     

9 Type of oxygen probe and data recording FireStingO2 4-channel optical oxygen meter and 
asso- ciated sensors and software (Pyro Science 
GmbH, Aachen, Germany) 

  

10 Sampling frequency of water dissolved oxygen  2 seconds  2  sec 

11 Describe placement of oxygen probe (in mixing circuit or directly in chamber) In mixing circuit 
  

12 Flow rate during flushing and recirculation, or confirm that chamber returned to normoxia during 
flushing 

Chamber returned to normoxia     

13 Timing of flush/closed cycles 3 min open, 8 min close 
  

14 Wait (delay) time excluded from closed measurement cycles  Na     

15 Frequency and method of probe calibration (for both 0 and 100% calibrations) Na 
  

16 State whether software temperature compensation was used during recording of water oxygen 
concentration 

NA     

      
MEASUREMENT CONDITIONS 

   

17 Temperature during respirometry 13 C 13 C 

18 How temperature was controlled  Temperature regulator and water bath with 
heating coil 
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19 Photoperiod during respirometry Na 
  

20 If (and how) ambient water bath was cleaned and aerated during measurement of oxygen uptake 
(e.g. filtration, periodic or continuous water changes) 

 Aerated with air stone and pumped through UV 
filter 

    

21 Total volume of ambient water bath and any associated reservoirs 50 L 50 L 

22 Minimum water oxygen dissolved oxygen reached during closed phases  Na     

23 State whether chambers were visually shielded from external disturbance Opaque plastic blind 
  

24 How many animals were measured during a given respirometry trial (i.e. how many animals were in 
the same water bath) 

 Maximum of 16 per respirometry trial     

25 If multiple animals were measured simultaneously, state whether they were able to see each other 
during measurements 

NA 
  

26 Duration of animal fasting before placement in respirometer  24 hours  24  h 

27 Duration of all trials combined (number of days to measure all animals in the study) Na 
  

28 Acclimation time to the laboratory (or time since capture for field studies) before respirometry 
measurements 

 3 weeks  3  weeks 

      
BACKGROUND RESPIRATION 

   

29 State whether background microbial respiration was measured and accounted for, and if so, 
method used (e.g. parallel measures with empty respirometry chamber, measurements before and 
after for all chambers while empty, both) 

Empty respirometer measurement before and 
after trial 

  

30 State if background respiration was measured at beginning and/or end, state how many slopes and 
for what duration 

 3 slopes     

31 State how changes in background respiration were modelled over time (e.g. linear, exponential, 
parallel measures) 

Linear 
  

32 Level of background respiration (e.g. as a percentage of SMR)  Na     

33 Method and frequency of system cleaning (e.g. system bleached between each trial, UV lamp) System bleached between each trial 
  

      
STANDARD OR ROUTINE METABOLIC RATE 

   

34 Acclimation time after transfer to chamber, or alternatively, time to reach beginning of metabolic 
rate measurements after introduction to chamber 

First 5 hours excluded 
  

35 Time period, within a trial, over which oxygen uptake was measured (e.g. number of hours) 15 h total  15  h 

36 Value taken as SMR/RMR (e.g. quantile, mean of lowest 10 percent, mean of all values) Lowest 10th percentile 
  

37 Total number of slopes measured and used to derive metabolic rate (e.g. how much data were NA     
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used to calculate quantiles) 

38 Whether any time periods were removed from calculations of SMR/RMR (e.g. data during 
acclimation, periods of high activity [e.g. daytime]) 

Data during acclimation 
  

39 r2 threshold for slopes used for SMR/RMR (or mean)  Na     

40 Proportion of data removed due to being outliers below r-squared threshold Na 
  

      
MAXIMUM METABOLIC RATE 

   

41 When MMR was measured in relation to SMR (i.e. before or after) Before 
  

42 Method used (e.g. critical swimming speed respirometry, swim to exhaustion in swim tunnel, or 
chase to exhaustion) 

Chase to exhaustion     

43 Value taken as MMR (e.g. the highest rate of oxygen uptake value after transfer, average of highest 
values) 

Highest MO2 value after transfer 
  

44 If MMR measured post-exhaustion, length of activity challenge or chase (e.g. 2 min, until 
exhaustion, etc.) 

2 min  2 min 

45 If MMR measured post-exhaustion, state whether further air-exposure was added after exercise No further air exposure     

46 If MMR measured post-exhaustion, time until transfer to chamber after exhaustion or time to start 
of oxygen uptake recording 

Less than 10 s <10 sec 

47 Duration of slopes used to calculate MMR (e.g. 1 min, 5 min, etc.)  2 min slopes  2  min 

48 Slope estimation method for MMR (e.g. rolling regression, sequential discrete time frames) NA 
  

49 How absolute aerobic scope and/or factorial aerobic scope is calculated (i.e. using raw SMR and 
MMR, allometrically mass-adjusted SMR and MMR, or allometrically mass-adjusting aerobic scope 
itself) 

 Mass adjusted SMR and MMR     

     

 DATA HANDLING AND STATISTICS    

50 Sample size 180 180 
 

51 How oxygen uptake rates were calculated (software or script, equation, units, etc.)  Slopes extracted from Labchart     

52 Confirm that volume (mass) of animal was subtracted from respirometer volume when calculating 
oxygen uptake rates 

Na 
  

53 State whether analyses accounted for variation in body mass and describe any allometric mass-
corrections or adjustments 

Standardized to mean body mass using residuals     
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8.2 Chapter 4 Supplementary Materials 

 

Table 8.2-1: Pearson’s Correlation Table for leadership metrics for feeding and control 
treatments. Variables 1 and 2 show leadership metrics where LeadTurnResp, 
LeadAccelResp and AvePos School represent mean lag after leadership event while 
turning, mean lag after leadership event while accelerating and mean position in 
school respectively. R shows correlation coefficient, n shows number of datapoints and 
p value displays significance, where “n.s.” means non-significant. 

Treatment Variable 1 Variable 2 r n p - value 

feeding LeadTurnResp LeadAccelResp 0.62 1534 p <.001 

LeadTurnResp AvePosSchool 0.0019 1575 n.s. 

LeadAccelResp AvePosSchool -0.01 1576 n.s. 

control LeadTurnResp LeadAccelResp 0.53 641 p <.001 

LeadTurnResp AvePosSchool -0.22 677 p <.001 

LeadAccelResp AvePosSchool -0.034 674 n.s. 

 

Table 8.2-2: Results of the best-fit model from Table 8.2-10 for Mean Lag after 
Leadership Event While Accelerating. Marginal R2 describes the proportion of variance 
explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. Standard error in brackets in 
estimate column; statistic shows the t statistic associated with the variable and df 
indicates the degrees of freedom. P value indicates the significance of the result. 

Coefficient Estimates Statistic df p value 

Intercept -0.44 (0.17) -2.53 192.63 0.012 

TimeSinceFeed 0.00 (0.00) 1.70 1533.86 0.089 

FeedingTrial -0.41 (0.19) -2.18 201.13 0.030 

Mass -0.12 (0.04) -2.84 185.76 0.005 

TimeSinceFeed: FeedingTrial 0.00 (0.00) -2.39 1533.38 0.017 

FeedingTrial: mass 0.12 (0.05) 2.56 193.39 0.011 

Random Effects 

σ2 0.22 

τ00 FishID:GroupID 0.00 

ICC 0.01 

N FishID 206 

N GroupID 25 

Observations 1639 

Marginal R2 / Conditional R2 0.008 / 0.018 
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Table 8.2-3: Results of the best-fit model from Table 8.2-11 for Mean Lag after 
Leadership Event While Turning. Marginal R2 describes the proportion of variance 
explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. Standard error in brackets in 
estimate column; statistic shows the t statistic associated with the variable and df 
indicates the degrees of freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept -0.96 (0.04) -22.40 768.79 <0.001 

TimeSinceFeed 0.00 (0.00) 1.73 1518.77 0.083 

FeedingTrial 0.16 (0.05) 3.10 762.36 0.002 

TimeSinceFeed: 

FeedingTrial 

-0.00 (0.00) -2.22 1515.04 0.027 

Random Effects 

σ2 0.27 

τ00 FishID:GroupID 0.02 

ICC 0.06 

N FishID 206 

N GroupID 25 

Observations 1639 

Marginal R2 / Conditional R2 0.007 / 0.070 

 

Table 8.2-4: Results of the best-fit model from  

 

Table 8.2-12 for MeanPositionSchool. Marginal R2 describes the proportion of variance 
explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. Standard error in brackets in 
estimate column; statistic shows the t statistic associated with the variable and df 
indicates the degrees of freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept 4.91 (0.27) 17.93 232.53 <0.001 

TimeSinceFeed -0.00 (0.00) -4.75 1480.37 <0.001 

FeedingTrial -0.00 (0.30) -0.01 229.42 0.991 

Mass -0.17 (0.07) -2.56 227.55 0.011 

TimeSinceFeed: FeedingTrial 0.00 (0.00) 3.14 1474.96 0.002 

FeedingTrial:mass 0.15 (0.07) 1.97 223.31 0.050 

Random Effects 

σ2 0.13 

τ00 FishID:GroupID 0.06 

ICC 0.31 

N FishID 206 

N GroupID 25 

Observations 1639 

Marginal R2 / Conditional R2 0.379 / 0.574 
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Table 8.2-5: Results of the best-fit model from  

 

Table 8.2-14 for log10(DistCent). Marginal R2 describes the proportion of variance 
explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. Standard error in brackets in 
estimate column; statistic shows the t statistic associated with the variable and df 
indicates the degrees of freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept 2.50 (0.10) 25.39 255.10 <0.001 

Mass -0.07 (0.02) -3.07 255.18 0.002 

TimeSinceFeed -0.00 (0.00) -7.44 1461.17 <0.001 

FeedingTrial -0.37 (0.11) -3.45 230.29 0.001 

mass:TimeSinceFeed 0.00 (0.00) 6.47 1460.02 <0.001 

FeedingTrial:mass 0.08 (0.03) 3.24 224.48 0.001 

Random Effects 

σ2 0.01 

τ00 FishID:GroupID 0.01 

ICC 0.39 

N FishID 206 

N GroupID 25 

Observations 1639 

Marginal R2 / Conditional R2 0.080 / 0.437 

 

Table 8.2-6: Results of the best-fit model from  

Table 8.2-13 for logSpeed. Marginal R2 describes the proportion of variance explained 
by the fixed factors alone. Conditional R2 describes the proportion of variance 
explained by both fixed and random factors. Standard error in brackets in estimate 
column; statistic shows the t statistic associated with the variable and df indicates the 
degrees of freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept 0.97 (0.08) 11.47 226.48 <0.001 

TimeSinceFeed -0.00 (0.00) -8.35 1455.30 <0.001 

Mass -0.03 (0.02) -1.31 220.81 0.193 

FeedingTrial -0.22 (0.09) -2.41 221.80 0.017 

FeedingTrial:mass 0.06 (0.02) 2.79 216.04 0.006 

Random Effects 

σ2 0.01 

τ00 FishID:GroupID 0.01 

ICC 0.40 

N FishID 206 

N GroupID 25 
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Coeffcient Estimates Statistic df p value 

Observations 1639 

Marginal R2 / 
Conditional R2 

0.062 / 0.437 

 

 

Table 8.2-7: Results of the best-fit model from  

Table 8.2-15 for polarity. Marginal R2 describes the proportion of variance explained 
by the fixed factors alone. Conditional R2 describes the proportion of variance 
explained by both fixed and random factors. Standard error in brackets in estimate 
column; statistic shows the t statistic associated with the variable and df indicates the 
degrees of freedom. P value indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept -0.01 (0.01) -1.01 27.62 0.320 

TimeSinceFeed -0.00 (0.00) -3.21 1621.03 0.001 

Random Effects 

σ2 0.00 

τ00 GroupID 0.00 

ICC 0.36 

N GroupID 25 

Observations 1639 

Marginal R2 / Conditional R2 0.004 / 0.359 

 

Table 8.2-8: Results of the best-fit model from Table 8.2-16 for change in SDA. 
Marginal R2 describes the proportion of variance explained by the fixed factors alone. 
Conditional R2 describes the proportion of variance explained by both fixed and 
random factors. Standard error in brackets in estimate column; statistic shows the t 
statistic associated with the variable and df indicates the degrees of freedom. P value 
indicates the significance of the result. 

Coeffcient Estimates Statistic df p value 

Intercept 0.00 (0.00) -168.94 850.00 <0.001 

NoWorms 1.19 (0.00) 148.77 850.00 <0.001 

log(mass) 1.13 (0.04) 3.66 850.00 <0.001 

log(TimeSinceFeed + 1) 1.77 (0.01) 133.57 850.00 <0.001 

Random Effects 

σ2 0.03 

τ00 FishID:GroupID 0.00 

N FishID 117 

N GroupID 17 

Observations 856 

Marginal R2 / Conditional R2 0.977 / NA 
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Table 8.2-9: Results of the general linear model to describe Specific Dynamic Action curves, where log.mass indicates log transformed mass in 
grams and NoWorms indicates number of worms fed, with a suffix of how many worms in that group. 5 worms is the baseline. Standard error in 
brackets in estimate column; statistic shows the t statistic associated with the variable and df indicates the degrees of freedom. P value indicates 
the significance of the result. 

  Peak Oxygen Consumption Time to Peak Oxygen Consumption Time to Return to SMR 

Coefficient Estimate Statistic df p value Estimate Statistic df p value Estimate Statistic df p value 

Intercept -0.46 (0.49) -0.93 19.00 0.363 -209.74 (574.30) -0.37 19.00 0.719 1488.64 (489.79) 3.04 16.00 0.008 

log.mass 0.35 (0.25) 1.40 19.00 0.177 281.63 (294.92) 0.95 19.00 0.352 -624.31 (252.17) -2.48 16.00 0.025 

NoWorms10 0.15 (0.16) 0.91 19.00 0.375 50.38 (191.05) 0.26 19.00 0.795 133.27 (164.51) 0.81 16.00 0.430 

NoWorms15 0.54 (0.19) 2.88 19.00 0.010 34.54 (217.63) 0.16 19.00 0.876 -214.33 (192.86) -1.11 16.00 0.283 

 

NoWorms20 0.43 (0.20) 2.22 19.00 0.039 116.91 (227.27) 0.51 19.00 0.613 -190.22 (191.72) -0.99 16.00 0.336 

Observations 24 24 21 
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Table 8.2-10: List of all linear mixed effect models (LMEs) performed for 
LeadAccelResp. LeadAccelResp is the lag of response to a leadership event while 
acclerating, where higher values indicate higher propensity to lead and lower values 
mean higher propensity to follow while accelerating.No Worms indicates number of 
worms eaten at time 0, TimeSinceFeed indicates time since feeding at time 0 in 
minutes and Treatement is whether the fish were feeding or control group. Individual 
fish was nested within group for random factors. Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

LeadAccelResp ~ NoWorms*TimeSinceFeed + NoWorms* Treatment 
+ TimeSinceFeed*Treatment + Mass*NoWorms +  
Mass*TimeSinceFeed + Mass*Treatment + (1 | FishID:GroupID) 

12 2169.73   

LeadAccelResp ~ NoWorms*TimeSinceFeed + NoWorms* Treatment 
+ TimeSinceFeed*Treatment + Mass*TimeSinceFeed +  
Mass*Treatment + (1 | FishID:GroupID) 

11 2168.01 0.28 0.599 

LeadAccelResp ~ NoWorms*Treatment + TimeSinceFeed* 
Treatment + Mass*TimeSinceFeed + Mass*Treatment + (1 |  
FishID:GroupID) 

10 2166.16 0.15 0.695 

LeadAccelResp ~ NoWorms + NoWorms*Treatment +  
TimeSinceFeed*Treatment + Mass*Treatment + (1 | FishID:GroupID) 

9 2167.29 3.12 0.077 

LeadAccelResp ~ NoWorms + TimeSinceFeed*Treatment +  
Mass*Treatment + (1 | FishID:GroupID) 

9 2167.29 0.00  

LeadAccelResp ~ TimeSinceFeed*Treatment + Mass* Treatment 
+ (1 | FishID:GroupID) 

8 2169.03 3.75 0.053 

Table 8.2-11: List of all linear mixed effect models (LMEs) performed for 
LeadTurnResp. LeadTurnResp is the lag of response to a leadership event while 
acclerating, where higher values indicate higher propensity to lead and lower values 
mean higher propensity to follow while turning. No Worms indicates number of worms 
eaten at time 0, TimeSinceFeed indicates time since feeding at time 0 in minutes and 
Treatement is whether the fish were feeding or control group. Individual fish was 
nested within group for random factors. Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

LeadTurnResp ~ NoWorms*TimeSinceFeed + NoWorms* Treatment + 
TimeSinceFeed*Treatment + Mass*NoWorms +  Mass*TimeSinceFeed 
+ Mass*Treatment + (1 | FishID:GroupID) 

12 2605.22   

LeadTurnResp ~ NoWorms*TimeSinceFeed + NoWorms* Treatment + 
TimeSinceFeed*Treatment + Mass*TimeSinceFeed +  
Mass*Treatment + (1 | FishID:GroupID) 

11 2603.23 0.01 0.927 

LeadTurnResp ~ NoWorms*Treatment + TimeSinceFeed* Treatment 
+ Mass*TimeSinceFeed + Mass*Treatment + (1 |  FishID:GroupID) 

10 2601.23 0.00 0.985 

LeadTurnResp ~ NoWorms*Treatment + TimeSinceFeed* Treatment 
+ Mass*TimeSinceFeed + (1 | FishID:GroupID) 

9 2600.07 0.84 0.360 

LeadTurnResp ~ NoWorms*Treatment + TimeSinceFeed* Treatment 
+ (1 | FishID:GroupID) 

7 2598.03 1.97 0.374 

LeadTurnResp ~ NoWorms + TimeSinceFeed*Treatment +  (1 | 
FishID:GroupID) 

7 2598.03 0.00  

LeadTurnResp ~ TimeSinceFeed*Treatment +  

(1 |  FishID:GroupID) 

6 2596.09 0.06 0.807 
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Table 8.2-12: List of all linear mixed effect models (LMEs) performed for AvePosSchool. 
AvePosSchool is the mean position in school for each individual relative to the group's 
direction of travel in every frame for individual fish in each group. No Worms indicates 
number of worms eaten at time 0, TimeSinceFeed indicates time since feeding at time 
0 in minutes and Treatement is whether the fish were feeding or control group. 
Individual fish was nested within group for random factors. Bold indicates selected 
model. 

Model df AIC 𝒳2 p 
value 

MeanPositionSchool ~ NoWorms + TimeSinceFeed + Treatment + 
NoWorms* TimeSinceFeed + TimeSinceFeed*Treatment + 
Mass*NoWorms +  Mass*TimeSinceFeed + Mass*Treatment + (1 | 
FishID:GroupID) 

12 1640.70   

MeanPositionSchool ~ NoWorms + TimeSinceFeed + Treatment + 
TimeSinceFeed* Treatment + Mass*NoWorms + Mass*TimeSinceFeed 
+ Mass* Treatment + (1 | FishID:GroupID) 

11 1638.74 0.04 0.841 

MeanPositionSchool ~ NoWorms + TimeSinceFeed + Treatment + 
TimeSinceFeed* Treatment + Mass*TimeSinceFeed + 
Mass*Treatment + (1 |  FishID:GroupID) 

10 1636.91 0.17 0.679 

MeanPositionSchool ~ TimeSinceFeed + Treatment + 
TimeSinceFeed* Treatment + Mass*TimeSinceFeed + 
Mass*Treatment + (1 |  FishID:GroupID) 

9 1635.28 0.37 0.540 

MeanPositionSchool ~ TimeSinceFeed*Treatment + 
Mass*Treatment +  (1 | FishID:GroupID) 

8 1633.39 0.11 0.744 

 

Table 8.2-13: List of all linear mixed effect models (LMEs) performed for logSpeed. 
logSpeed is the median speed of individual fish in each group over each trial duration. 
No Worms indicates number of worms eaten at time 0, TimeSinceFeed indicates time 
since feeding at time 0 in minutes and Treatement is whether the fish were feeding or 
control group. Individual fish was nested within group for random factors. Bold 
indicates selected model. 

Model df AIC 𝒳2 p 
value 

log10(MeanSpeed) ~ NoWorms*TimeSinceFeed + TimeSinceFeed* 
Treatment + Mass*NoWorms + Mass*TimeSinceFeed + Mass* 
Treatment + (1 | FishID:GroupID) 

12 -2626.33   

log10(MeanSpeed) ~ NoWorms*TimeSinceFeed + TimeSinceFeed* 
Treatment + Mass*TimeSinceFeed + Mass*Treatment + (1 |  
FishID:GroupID) 

11 -2628.31 0.02 0.891 

log10(MeanSpeed) ~ NoWorms + TimeSinceFeed*Treatment +  
Mass*TimeSinceFeed + Mass*Treatment + (1 | FishID:GroupID) 

10 -2629.84 0.48 0.489 

log10(MeanSpeed) ~ TimeSinceFeed*Treatment + 
Mass*TimeSinceFeed +  Mass*Treatment + (1 | FishID:GroupID) 

9 -2630.25 1.59 0.207 

log10(MeanSpeed) ~ Mass*TimeSinceFeed + Mass*Treatment +  (1 
| FishID:GroupID) 

8 -2628.65 3.59 0.058 

log10(MeanSpeed) ~ TimeSinceFeed + Mass*Treatment +  

(1 |  FishID:GroupID) 

7 -2627.31 3.34 0.067 
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Table 8.2-14: List of all linear mixed effect models (LMEs) performed for logDistCent. 
logDistCent is the mean distance from centroid of individual fish in each group over 
each trial duration. No Worms indicates number of worms eaten at time 0, 
TimeSinceFeed indicates time since feeding at time 0 in minutes and Treatement is 
whether the fish were feeding or control group. Individual fish was nested within group 
for random factors. Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

log10(DistCent) ~ NoWorms*TimeSinceFeed + TimeSinceFeed* 
Treatment + Mass*NoWorms + Mass*TimeSinceFeed + Mass* 
Treatment + (1 | FishID:GroupID) 

12 -2139.11   

log10(DistCent) ~ NoWorms*TimeSinceFeed + TimeSinceFeed* 
Treatment + Mass*TimeSinceFeed + Mass*Treatment + (1 |  
FishID:GroupID) 

11 -2141.08 0.03 0.853 

log10(DistCent) ~ NoWorms*TimeSinceFeed + 
Mass*TimeSinceFeed +  Mass*Treatment + (1 | FishID:GroupID) 

10 -2142.43 0.65 0.422 

log10(DistCent) ~ NoWorms + Mass*TimeSinceFeed + Mass* 
Treatment + (1 | FishID:GroupID) 

9 -2140.84 3.59 0.058 

log10(DistCent) ~ Mass*TimeSinceFeed + Mass*Treatment +  
(1 | FishID:GroupID) 

8 -2141.53 1.31 0.253 

 

Table 8.2-15: List of all linear mixed effect models (LMEs) performed for Polarity. 
Polarity is a value indicating how polarised individuals are, where 1 = all facing the 
same direction and 0 = disorganised. No Worms indicates number of worms eaten at 
time 0, TimeSinceFeed indicates time since feeding at time 0 in minutes and 
Treatement is whether the fish were feeding or control group. Individual fish was 
nested within group for random factors. Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

Pol ~ TimeSinceFeed + Treatment + TimeSinceFeed*Treatment +  
Mass*TimeSinceFeed + Mass*Treatment + (1|GroupID) 

9 -5019.31   

Pol ~ TimeSinceFeed + Treatment + TimeSinceFeed*Treatment +  
Mass*Treatment + (1|GroupID) 

8 -5020.35 0.96 0.327 

Pol ~ TimeSinceFeed + Treatment + Mass*Treatment +  (1 | 
GroupID) 

7 -5021.62 0.72 0.395 

Pol ~ TimeSinceFeed + Treatment + (1|GroupID) 5 -5023.81 1.81 0.404 

Pol ~ TimeSinceFeed + (1|GroupID) 4 -5022.59 3.22 0.073 
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Table 8.2-16: List of all generalised linear mixed effect models (GLMEs) performed for 
ChangeSDA. ChangeSDA is the percentage change in predicted oxygen consumption 
after feeding in behavioural trials. No Worms indicates number of worms eaten at time 
0, TimeSinceFeed indicates time since feeding at time 0 in minutes and Treatement is 
whether the fish were feeding or control group. Individual fish was nested within group 
for random factors. Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

ChangeSDA ~ NoWorms*TimeSinceFeed + Mass* NoWorms + 
Mass*TimeSinceFeed + (1 | FishID:GroupID) 

9 -7417.55   

ChangeSDA ~ NoWorms*TimeSinceFeed + Mass* TimeSinceFeed + 
(1 | FishID:GroupID) 

8 -7419.54 0.00 0.948 

ChangeSDA~ NoWorms + Mass + TimeSinceFeed +  
Mass*TimeSinceFeed + (1 | FishID:GroupID) 

7 -7418.63 2.91 0.088 

ChangeSDA~ NoWorms + Mass + TimeSinceFeed +  

 (1 | FishID:GroupID) 

6 -7420.50 0.14 0.711 
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8.3 Chapter 6: Supplementary Materials 

 

Table 8.3-1: Results of the best-fit model for all data from Table 8.3-11 for Udiff. 
Marginal R2 describes the proportion of variance explained by the fixed factors alone. 
Conditional R2 describes the proportion of variance explained by both fixed and 
random factors. 

Coeffcient Estimates Statistic df p value 

Intercept -3.35(1.42) -2.35 115.00 0.020 

UoptRank -3.08(0.91) -3.37 59.72 0.001 

trialpair 2.39(1.49) 1.60 114.59 0.112 

trialgroup 8.31(2.15) 3.87 93.93 <0.001 

Mass 0.17(3.22) 0.05 114.66 0.957 

UoptRank:mass 4.40(2.15) 2.05 60.03 0.045 

trialpair:mass -3.62(3.24) -1.12 114.98 0.266 

trialgroup:mass -13.64 (4.87) -2.80 85.93 0.006 

Random Effects 

σ2 0.96 

τ00 group_id 1.43 

ICC 0.60 

N group_id 70 

Observations 123 

Marginal R2 / Conditional R2 0.302 / 0.719 

 

Table 8.3-2: Results of the best-fit model for all data Table 8.3-10 for mean 
cumulative cost of transport. Marginal R2 describes the proportion of variance 
explained by the fixed factors alone. Conditional R2 describes the proportion of 
variance explained by both fixed and random factors. 

Coeffcient Estimates Statistic df p value 

Intercept 3.30(0.12) 28.25 114.93 <0.001 

trialpair 0.06(0.06) 0.92 41.33 0.361 

trialgroup -0.01(0.07) -0.14 15.91 0.893 

MeanSpeed 0.06(0.02) 2.72 109.96 0.008 

Mass 0.72(0.23) 3.06 113.85 0.003 

trialpair:ave.speed.cms -0.02(0.01) -1.89 46.11 0.064 

trialgroup:ave.speed.cms -0.03(0.01) -2.40 30.03 0.023 

ave.speed.cms:mass -0.09(0.04) -2.50 111.64 0.014 

Random Effects 

σ2 0.03 

τ00 group_id 0.00 

ICC 0.15 

N group_id 70 

Observations 123 

Marginal R2 / Conditional R2 0.158 / 0.281 
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Table 8.3-3: Results of the best-fit model for all data from Table 8.3-9 for mean speed 
in BL/s. Marginal R2 describes the proportion of variance explained by the fixed factors 
alone. Conditional R2 describes the proportion of variance explained by both fixed and 
random factors. 

Coefficient Estimates Statistic df p value 

Intercept -2.97(2.04) -1.46 71.39 0.149 

TL 1.11(0.57) 1.95 71.39 0.055 

trialpair 2.61(2.34) 1.11 102.01 0.269 

trialgroup 7.97(2.25) 3.54 94.92 0.001 

TL:trialpair -0.72(0.65) -1.11 102.64 0.271 

TL:trialgroup -2.13(0.63) -3.41 96.25 0.001 

Random Effects 

σ2 0.20 

τ00 group_id 0.88 

ICC 0.82 

N group_id 70 

Observations 123 

Marginal R2 / Conditional R2 0.085 / 0.834 

 

Table 8.3-4: Results of the best-fit model for pairs and group data from Table 8.3-8 for 
mean cumulative cost including leadership rank while turning. Marginal R2 describes 
the proportion of variance explained by the fixed factors alone. Conditional R2 
describes the proportion of variance explained by both fixed and random factors. 

Coefficient Estimates Statistic df p value 

Intercept 3.56(0.06) 59.88 78.82 <0.001 

LeadRankTurns 0.07(0.03) 2.69 61.28 0.009 

MeanSpeed 0.02(0.01) 1.86 78.35 0.067 

trialgroup -0.10(0.04) -2.31 29.80 0.028 

leadrank.turns:ave.speed.cms -0.01(0.00) -2.79 70.14 0.007 

Random Effects 

σ2 0.02 

τ00 group_id 0.01 

ICC 0.23 

N group_id 31 

Observations 84 

Marginal R2 / Conditional R2 0.166 / 0.362 

 

Table 8.3-5: Results of the best-fit model for pair and group data from Table 8.3-7 
looking at mean cumulative cost of transport including leadership rank while 
accelerating. Marginal R2 describes the proportion of variance explained by the fixed 
factors alone. Conditional R2 describes the proportion of variance explained by both 
fixed and random factors. 

Coeffcient Estimates Statistic df p value 

Intercept 3.54 (0.07) 52.99 75.62 <0.001 
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Coeffcient Estimates Statistic df p value 

UoptRank 0.04 (0.02) 2.30 46.98 0.026 

MeanSpeed 0.02 (0.01) 1.48 75.53 0.143 

trialgroup -0.13 (0.05) -2.62 38.32 0.013 

LeadRankAccel 0.05 (0.03) 1.79 56.75 0.079 

ave.speed.cms:leadrank.accel -0.01 (0.00) -2.47 62.58 0.016 

Random Effects 

σ2 0.02 

τ00 group_id 0.01 

ICC 0.24 

N group_id 31 

Observations 84 

Marginal R2 / Conditional R2 0.170 / 0.369 

 

Table 8.3-6: Results of the best-fit model for all data from Table 8.3-9 for speed in 
BL/s. Marginal R2 describes the proportion of variance explained by the fixed factors 
alone. Conditional R2 describes the proportion of variance explained by both fixed and 
random factors. 

Coeffcient Estimates Statistic df p value 

Intercept -2.97 (2.04) -1.46 71.39 0.149 

TL 1.11 (0.57) 1.95 71.39 0.055 

trialpair 2.61 (2.34) 1.11 102.01 0.269 

trialgroup 7.97 (2.25) 3.54 94.92 0.001 

TL:trialpair -0.72 (0.65) -1.11 102.64 0.271 

TL:trialgroup -2.13 (0.63) -3.41 96.25 0.001 

Random Effects 

σ2 0.20 

τ00 group_id 0.88 

ICC 0.82 

N group_id 70 

Observations 123 

Marginal R2 / Conditional R2 0.085 / 0.834 
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Table 8.3-7: List of all linear mixed effect models (LMEs) performed for 
MeanCumulativeCost for pairs and groups. MeanCumulativeCost is the mean cumulative 
cost of transport for each group. Group Size indicates Size of Group, TL is Total Length 
of fish in cm, UoptRank, LeadRankAccel and LeadRankTurns indicate rank of optimum 
swim speed and leader rank while accelerating and turning, where 1 has the lowest 
optimum and is the leader, and 4 shows following or high optimum swim speed. Mean 
Position in School indicates position in school where high values are the rear of group 
and low values the front. GroupID indicates group was included as a random effect. 
Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + 
UoptRank*MeanSpeed +  LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  GroupSize*MeanSpeed + 
UoptRank*GroupSize + Mass*LeadRankAccel +  Mass*UoptRank + 
Mass*MeanSpeed + Mass*GroupSize + (1 |  group_id) 

18 -
58.35 

  

MeanCumulativeCost ~ LeadRankAccel*UoptRank + 
UoptRank*MeanSpeed +  LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  GroupSize*MeanSpeed + 
UoptRank*GroupSize + Mass + LeadRankAccel +  Mass*UoptRank + 
Mass*MeanSpeed + Mass*GroupSize + (1 |  group_id) 

17 -
60.34 

0.01 0.941 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  GroupSize*MeanSpeed + 
UoptRank*GroupSize + Mass + LeadRankAccel +  Mass*UoptRank + 
Mass*MeanSpeed + Mass*GroupSize + (1 |  group_id) 

16 -
62.31 

0.03 0.866 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  GroupSize*MeanSpeed + Mass + 
LeadRankAccel + Mass*UoptRank +  Mass*MeanSpeed + 
Mass*GroupSize + (1|GroupID) 

15 -
64.22 

0.09 0.763 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  GroupSize*MeanSpeed + Mass + 
LeadRankAccel + Mass*UoptRank +  Mass*GroupSize + (1|GroupID) 

14 -
66.11 

0.12 0.733 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  Mass + LeadRankAccel + Mass*UoptRank 
+ Mass*GroupSize +  (1 | group_id) 

13 -
67.80 

0.31 0.578 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  Mass + LeadRankAccel + Mass*UoptRank 
+ (1|GroupID) 

12 -
69.40 

0.40 0.527 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*GroupSize + 
LeadRankAccel*MeanSpeed +  Mass + LeadRankAccel + (1|GroupID) 

11 -
70.69 

0.71 0.400 

MeanCumulativeCost ~ LeadRankAccel*UoptRank + UoptRank + 
MeanSpeed +  GroupSize + LeadRankAccel*MeanSpeed + Mass + 
LeadRankAccel +  (1 | group_id) 

10 -
71.81 

0.88 0.349 

MeanCumulativeCost ~ UoptRank + MeanSpeed + GroupSize + 
LeadRankAccel* MeanSpeed + LeadRankAccel + (1|GroupID) 

8 -
71.09 

4.72 0.094 
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Table 8.3-8: List of all linear mixed effect models (LMEs) performed for 
MeanCumulativeCost for pairs and groups. MeanCumulativeCost is the mean cumulative 
cost of transport for each group. Group Size indicates Size of Group, TL is Total Length 
of fish in cm, UoptRank, LeadRankAccel and LeadRankTurns indicate rank of optimum 
swim speed and leader rank while accelerating and turning, where 1 has the lowest 
optimum and is the leader, and 4 shows following or high optimum swim speed.Mean 
Position in School indicates position in school where high values are the rear of group 
and low values the front. GroupID indicates group was included as a random effect. 
Bold indicates selected model. 

Model df AIC 𝒳2 p 
value 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
UoptRank*GroupSize + UoptRank*MeanSpeed + Mass*LeadRankTurns +  
Mass*UoptRank + Mass*MeanSpeed + Mass*GroupSize + (1 |  group_id) 

18 -
62.99 

  

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
UoptRank*GroupSize + UoptRank*MeanSpeed + Mass*LeadRankTurns +  
Mass*UoptRank + Mass*GroupSize + (1|GroupID) 

17 -
64.90 

0.08 0.771 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
UoptRank*GroupSize + Mass*LeadRankTurns + Mass*UoptRank +  
Mass*GroupSize + (1|GroupID) 

16 -
66.81 

0.09 0.760 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
UoptRank*GroupSize + Mass*UoptRank + Mass*GroupSize + (1 |  
group_id) 

15 -
68.80 

0.01 0.912 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
Mass*UoptRank + Mass*GroupSize + (1|GroupID) 

14 -
70.59 

0.21 0.648 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
GroupSize + LeadRankTurns*MeanSpeed + GroupSize*MeanSpeed +  
Mass*UoptRank + (1|GroupID) 

13 -
71.74 

0.84 0.358 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
MeanSpeed + GroupSize*MeanSpeed + Mass*UoptRank +  (1 | 
group_id) 

12 -
72.72 

1.03 0.311 

MeanCumulativeCost ~ LeadRankTurns*UoptRank + LeadRankTurns* 
MeanSpeed + GroupSize*MeanSpeed + Mass + (1|GroupID) 

11 -
73.88 

0.84 0.359 

MeanCumulativeCost ~ LeadRankTurns + UoptRank + LeadRankTurns* 
MeanSpeed + GroupSize*MeanSpeed + Mass + (1|GroupID) 

10 -
74.55 

1.33 0.249 

MeanCumulativeCost ~ LeadRankTurns + UoptRank + LeadRankTurns* 
MeanSpeed + GroupSize + MeanSpeed + Mass + (1|GroupID) 

9 -
75.38 

1.17 0.279 

MeanCumulativeCost ~ LeadRankTurns + UoptRank + LeadRankTurns* 
MeanSpeed + GroupSize + MeanSpeed + (1|GroupID) 

8 -
73.76 

3.61 0.057 

MeanCumulativeCost ~ LeadRankTurns*MeanSpeed + GroupSize +  
(1 | group_id) 

7 -
72.01 

3.75 0.053 
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Table 8.3-9: List of all linear mixed effect models (LMEs) performed for MeanSpeedBL. 
MeanSpeedBL is the mean speed for individuals in bodylengths per second. Group Size 
indicates Size of Group, TL is Total Length of fish in cm, UoptRank, LeadRankAccel and 
LeadRankTurns indicate rank of optimum swim speed and leader rank while 
accelerating and turning, where 1 has the lowest optimum and is the leader, and 4 
shows following or high optimum swim speed. Mean Position in School indicates 
position in school where high values are the rear of group and low values the front. 
GroupID indicates group was included as a random effect. Bold indicates selected 
model. 

Model df AIC 𝒳2 p 
value 

MeanSpeedBL ~ UoptRank*GroupSize + LeadRankTurns*UoptRank +  
LeadRankTurns*GroupSize + TL*UoptRank + TL*GroupSize + TL* 
LeadRankTurns + (1|GroupID) 

15 313.23   

MeanSpeedBL ~ UoptRank*GroupSize + LeadRankTurns*GroupSize + 
TL* UoptRank + TL*GroupSize + TL*LeadRankTurns + (1|GroupID) 

14 311.25 0.01 0.905 

MeanSpeedBL ~ LeadRankTurns*GroupSize + TL*UoptRank + TL* 
GroupSize + TL*LeadRankTurns + (1|GroupID) 

13 309.26 0.01 0.924 

MeanSpeedBL ~ LeadRankTurns*GroupSize + TL*UoptRank + TL* 
GroupSize + (1|GroupID) 

12 307.36 0.10 0.752 

MeanSpeedBL ~ LeadRankTurns*GroupSize + TL*GroupSize + 
(1|GroupID) 

10 303.68 0.32 0.852 

MeanSpeedBL ~ TL*GroupSize + (1|GroupID) 8 302.88 3.20 0.202 

 

Table 8.3-10: List of all linear mixed effect models (LMEs) performed for 
MeanCumulativeCost for all groups. MeanCumulativeCost is the mean cumulative cost 
of transport for each group. Group Size indicates Size of Group, TL is Total Length of 
fish in cm, UoptRank, LeadRankAccel and LeadRankTurns indicate rank of optimum swim 
speed and leader rank while accelerating and turning, where 1 has the lowest optimum 
and is the leader, and 4 shows following or high optimum swim speed.Mean Position in 
School indicates position in school where high values are the rear of group and low 
values the front. GroupID indicates group was included as a random effect. Bold 
indicates selected model. 

Model df AIC 𝒳2 p 
value 

MeanCumulativeCost ~ UoptRank + GroupSize + MeanSpeed + 
GroupSize* MeanSpeed + UoptRank*GroupSize + 
UoptRank*MeanSpeed +  UoptRank*Mass + GroupSize*Mass + 
MeanSpeed*Mass + (1 |  group_id) 

16 -55.61   

MeanCumulativeCost ~ UoptRank + GroupSize + MeanSpeed + 
GroupSize* MeanSpeed + UoptRank*GroupSize + 
UoptRank*MeanSpeed +  UoptRank*Mass + MeanSpeed*Mass + 
(1|GroupID) 

14 -59.27 0.34 0.845 

MeanCumulativeCost ~ UoptRank + GroupSize + MeanSpeed + 
GroupSize* MeanSpeed + UoptRank*MeanSpeed + UoptRank*Mass +  
MeanSpeed*Mass + (1|GroupID) 

13 -61.27 0.01 0.929 

MeanCumulativeCost ~ UoptRank + GroupSize + MeanSpeed + 
GroupSize* MeanSpeed + UoptRank*Mass + MeanSpeed*Mass +  (1 | 
group_id) 

12 -63.16 0.10 0.749 

MeanCumulativeCost ~ UoptRank + GroupSize + MeanSpeed + 
GroupSize* MeanSpeed + MeanSpeed*Mass + Mass + (1|GroupID) 

11 -65.06 0.11 0.746 

MeanCumulativeCost ~ GroupSize*MeanSpeed + MeanSpeed* 
Mass + (1|GroupID) 

10 -64.51 2.55 0.110 
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Table 8.3-11: List of all linear mixed effect models (LMEs) performed for Udiff for all 
groups. Udiff is the difference between optimum swim speed and mean swim speed in 
behavioural trials. Group Size indicates Size of Group, TL is Total Length of fish in cm, 
UoptRank, LeadRankAccel and LeadRankTurns indicate rank of optimum swim speed and 
leader rank while accelerating and turning, where 1 has the lowest optimum and is the 
leader, and 4 shows following or high optimum swim speed. Mean Position in School 
indicates position in school where high values are the rear of group and low values the 
front. GroupID indicates group was included as a random effect. Bold indicates selected 
model. 

Model df AIC 𝒳2 p 
value 

Udiff ~ UoptRank + GroupSize + Mass + UoptRank*GroupSize + 
UoptRank* Mass + GroupSize*Mass + (1|GroupID) 

11 439.94   

Udiff ~ UoptRank + GroupSize + Mass + UoptRank*Mass + 
GroupSize*Mass +  (1 | group_id) 

10 440.46 2.52 0.113 

 

Table 8.3-12: Adjusted repeatability (Radj) of Optimum swim speed was calculated 
using rptR package (Stoffel et al., 2017). TL is the total length of the individual and 
fish is the fish ID which was included in the model as a random effect. 23 fish were 
measured twice to get 46 observations. 

Model Structure Radj 95% CI p value 

1: Uopt ~ TL + (1| fish) 0.726 0.509 – 0.852 <0.001 

 

 

Figure 8.3-1: Scatter graph showing Optimum swim speed for each individual fish at 
the first and second swimming trial in bodylengths per second showing the linear 
regression line and 95% confidence interval. Dashed line shows 1:1 line which indicates 
exact repeatability. Radj displays adjusted-R for repeatbility and significance. 
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Table 8.3-13: Table showing the results of the Tukey’s posthoc model comparisons of 
the effect of group size on cumulative cost of transport using the emmeans package. 

Group Size 
Comparison 

estimate SE df t - ratio p - value 

alone - pair 0.0398 0.0424 78.9 0.939 0.62 

alone - group 0.1363 0.0459 43.7 2.971 0.01 

pair - group 0.0965 0.0458 30.1 2.107 0.11 

 

 

Figure 8.3-2: Heatmap to show polarity vs cohesion in mean neighbour distance (cm). 
Different panels represent the different group sizes. 

 

Figure 8.3-3: Heatmap to show polarity vs speed in bodylengths/s. Different panels 
represent the different group sizes. 
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Figure 8.3-4: Heatmap to show cohesion in bodylegnths vs speed in bodylengths/s. 
Different panels represent the different group sizes. 

 


