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Abstract 

Giardia duodenalis is a gastrointestinal parasite that infects most mammals, 

including humans. Outcome of infection ranges from asymptomatic carriage to 

severe clinical disease, leading to digestive abnormalities lasting years beyond 

infection. In high-income countries, this parasite was once primarily thought to 

be contracted by individuals with a history of foreign travel. Recent evidence 

suggests that endemic infection is an important factor in the epidemiology of 

giardiasis, and consequently human patients without a history of travel should be 

screened for Giardia to aid in the understanding of endemic infection. 

The first objective of the present study was to undertake a literature review of 

human giardiasis outbreaks to determine the primary routes of transmission in 

high-income countries. Outbreaks were categorised by transmission route, which 

included waterborne, foodborne, travel, person-to-person, zoonotic and direct 

faecal exposure. Waterborne transmission emerged as the route associated with 

the highest number of outbreak studies, followed by person-to-person 

transmission. This review highlighted the need for increased screening protocols 

in high-income countries and investigation into transmission routes other than 

travel. 

Being able to discern between different sub-types of Giardia, termed assemblages, 

is an important aspect of transmission analysis since different assemblages show 

varying levels of host-specificity, with some capable of infecting both humans and 

animals. Current Giardia typing methods rely largely on PCR of marker loci and 

sequencing of amplicons, however these suffer from poor amplification success 

rates particularly when applied to non-human assemblages. In this study, recently 

published genomic data was used to modify and optimise one such Giardia marker 

to increase sensitivity. Using this improved marker, the success rate across 

multiple assemblages increased markedly and it was subsequently applied to type 

a large collection of UK human and companion animal field samples. This revealed 

an appreciable presence of zoonotic assemblages in the companion animal 

population and highlighted them as potential source of human infection. This 

study adds to the knowledge on Giardia epidemiology in the context of a high-

income country and provides improved genotyping methodology which can be 

applied to future studies.  
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Chapter 1. Introduction 

1.1 Public Health Significance 

1.1.1 Worldwide Significance 

Giardia duodenalis is a binucleate flagellated eukaryotic protozoan found 

worldwide that infects the gastrointestinal system of a wide variety of mammals, 

including humans (Adam, 2000; 2001; Caccio & Ryan, 2008). It is a ubiquitous 

organism that causes the disease giardiasis in both low-/middle-income and high-

income countries. The World Health Organization (WHO) identified giardiasis as a 

“Neglected Disease” in its 2004 initiative to identify and eliminate diseases 

directly contributing to human sickness and death (Savioli et al, 2006). In low- and 

middle-income countries giardiasis is linked to poor sanitation, often as a result 

of poor quality drinking water (Aw et al, 2019; Daniels et al, 2018; Squire & Ryan, 

2017). In high-income countries human outbreaks of varying size and sporadic 

cases are often caused by ingestion of contaminated water (Adam, 2001; Caccio 

& Ryan, 2008; Daly et al, 2010; Mahbubani et al, 1992) while citing travel as a 

major route of transmission, termed “travellers’ diarrhoea” (ECDC, 2018; 

Ferguson et al, 2020; Morch & Hanevik, 2020). Contaminated food or food handlers 

are also responsible for many Giardia outbreaks in humans. Although it primarily 

causes diarrhoea, it can also result in serious long-term side effects. Giardiasis 

affects the growth and development of young children, evidenced by a study in 

India which found that children infected with Giardia consistently showed 

cognitive deficits compared to others their age (Ajjampur et al, 2011; Jethwa, 

2015; Simsek et al, 2004). Additionally, a prolonged chronic colitis can result as a 

secondary effect of giardiasis (Dann et al, 2018; Hanevik et al, 2009; Hanevik et 

al, 2014; Wensaas et al, 2012) and the possibility of asymptomatic infection also 

exists (Caccio & Ryan, 2008; Thompson & Ash, 2016). While gastrointestinal illness 

on its own may not seem serious when compared to a more acutely deadly disease, 

the economic impact alone from an outbreak within a workforce can have a 

noticeable impact, both in high- and low-/middle-income countries (Mathews et 

al, 2022; Papadopoulos et al, 2019; Sandler et al, 2002; Sang et al, 2014). In 2016, 

diarrhoea was named as one of the top five causes of death worldwide 

(Collaborators, 2017). When explained in the wider global sense of human health 
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and monetary benefit, the importance of detection, treatment and baseline 

knowledge of disease-causing organisms such as Giardia begins to become clearer. 

1.1.2 A Neglected Tropical Disease 

In the last 30 years, infectious diseases have seen a growing amount of attention 

from major organisations such as the Institute of Medicine in the United States 

and the World Health Organisation (WHO), thanks in part to publications such as 

emerging infection reports and the list of Neglected Tropical Disease (Nii-Trebi, 

2017; Savioli et al, 2006). Several factors contribute to the increase in infectious 

disease prevalence, many of which have also increased in recent years. Changes 

in environment or climate potentially alter ecosystems to allow certain organisms 

to flourish where they could not before, and with growing populations in a finite 

space, the pathogen-host interaction time and frequency has increased (Nii-Trebi, 

2017). For example, malaria, a disease whose vectors are largely affected by 

environmental change, was the cause of over 1.1 million deaths worldwide in 2012 

(Bhutta et al, 2014). Low-income areas are disproportionately affected by 

infectious disease and, according to a study by Hotez in 2005, policymakers 

decided neglected tropical diseases should be defined as those with a high 

prevalence in poverty-stricken areas (Hotez et al, 2020). Another reason these 

diseases are placed on lists of public health organisations is that there needs to 

be significant funding in place to research the aetiological organisms involved, 

which is a problem in poverty-stricken areas (Nii-Trebi, 2017). Investigation and 

intervention of neglected disease in low-income regions is hampered by several 

factors, including the lack of funding to multiple intervention areas. 

Pharmaceutical companies with the technology to formulate preventative 

medication or post-exposure treatments are disinterested in doing so where there 

is no opportunity for profit (Hotez et al, 2020). Funding for low-income countries 

is therefore left to academic institutions, special interest groups, or donations 

from foreign governments. Additionally, there is a low utilisation of health 

services in low-income countries, particularly by women. These services may be 

expensive in themselves, but they become particularly inaccessible when the price 

of travel and accommodation is added (Bhutta et al, 2014). Some other barriers 

to healthcare experienced in lower-/middle-income countries include long 

distances to travel to the nearest healthcare provider and long wait times (Harris 

et al, 2011). 
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In 2013, the WHO published a guide outlining five strategies to address these 

neglected tropical diseases, termed “Key Interventions” (WHO, 2013). They 

include preventive chemotherapy, innovative and intensified disease management, 

vector control, safe water, sanitation and hygiene, and veterinary public health 

services. Each of these categories requires a thorough understanding of the 

biology and molecular mechanisms of a disease-causing organism to succeed as an 

intervention. In particular, where transmission pathways are unknown, sometimes 

as a consequence of limited pathogen typing methods, it may be difficult for 

public health services to develop effective control strategies. Where the role of 

animals in disease transmission is unclear, assistance potentially available from 

veterinary professionals may be underutilised or entirely absent. Giardiasis is one 

such neglected disease, where isolate typing methods are currently inadequate 

and the role of animal hosts in the epidemiology of human disease is not 

sufficiently-well characterised. 

1.2 Basic Biology and Life-Cycle 

1.2.1 Cellular Details 

Humans and animals become infected by ingesting the cystic stage of Giardia, 

which is carried via faeces through a variety of transmission routes. The cysts 

excyst in the small intestine to release the mature adult stage, which are termed 

trophozoites (Bernander et al, 2001b). The trophozoite stage is at least tetraploid 

(4N), having two sister nuclei each containing a full set of chromosomes (Figure 

1-1: Life cycle of Giardia duodenalis Figure 1-1) (Adam, 2000; 2001; Bernander et 

al, 2001b; Le Blancq & Adam, 1998). Each of the two 2N nuclei in a single 

trophozoite replicates to become four 2N nuclei (8N), a cycle that occurs within 

replication during the vegetative growth stage. Another round of replication takes 

place between the vegetative growth stage to encysting, meaning the cyst 

contains four 4N nuclei (16N). Once this cyst begins the excystation process it 

divides into four trophozoites, each with two 2N nuclei (4N) (Bernander et al, 

2001a; Capewell et al, 2021). While the Giardia parasite is understood to 

reproduce asexually on the villi of the small intestine, the involvement of non-

obligate sexual or parasexual reproduction has also been suggested (Caccio & Ryan, 

2008; Yu et al, 2002). Following encystation, the parasites exit the body into the 

environment via faeces, to be ingested and repeat the transmission cycle. These 
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cysts are highly environmentally resistant and can survive outside the host for days 

to months, depending on variables such as location, surrounding temperature and 

amount of organic matter present (Alum et al, 2014). This means removing organic 

matter from the environment as quickly and regularly as possible aids in disrupting 

the transmission cycle of Giardia and can help lower infection rates. 

 

Figure 1-1: Life cycle of Giardia duodenalis 

Adapted from Capewell et al 2020. 

Although Giardia duodenalis is considered a single species, multiple genotypically 

distinct sub-types exist. These sub-types are termed “assemblages” and exhibit 

varying degrees of mammalian host specificity, with some assemblages found in 

multiple host species (Adam, 2000; 2001; Caccio & Ryan, 2008; Lebbad et al, 2010; 

Read et al, 2004). Eight assemblages have been defined and have been assigned 

the letters A through to H (Table 1-1). Assemblage A consists of two sub-

assemblages, A1 and A2, which are able to infect humans along with assemblage 

B. Despite the ability of these assemblages to infect multiple mammals they are 

often identified by one host, such as assemblage F which is termed the “feline 

assemblage” (Caccio et al, 2018; Rojas-Lopez et al, 2022). Assemblage 

nomenclature is intended, in part, to signify the main host species infected. It is, 

however, possible for parasites to enter and attach to the small intestine of other 
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species although they may be unable to excyst (Caccio et al, 2018). The list of 

species able to successfully harbour each individual assemblage increases as time 

progresses and more studies are undertaken on a wider variety of mammals 

(Heyworth, 2016). 

Assemblage Known Potential Hosts  

A Humans, dog, cat, livestock (cattle, 

sheep, pigs, goats), horses, alpacas, 

deer, cetaceans, chinchillas, ferrets, 

beavers, jaguars, marsupials, muskox, 

non-human primates, seals, Australian 

sea lions, moose, reindeer, chickens, 

gulls 

B Humans, cats, dogs, livestock (cattle, 

sheep, pigs), horses, deer, chinchillas, 

beavers, gazelles, muskrats, ferrets, 

rabbits, Desmarest’s hutia, 

marsupials, guinea pig, rock hyrax, 

non-human primates, chickens, seals, 

Australian sea lions, ostrich, dolphins, 

porpoises, gulls 

C Dogs, cattle, pigs, cetaceans, 

kangaroos 

D Dogs, cattle, foxes, cetaceans, 

chinchillas, kangaroos 

E Livestock (cattle, sheep, pigs, goats), 

horses, alpacas, yaks, foxes, deer, 

cats, humans 

F Cats, cetaceans, pigs 

G Rats, mice 

H Seals, gulls 

Table 1-1: Summary of assemblage hosts 

Primary host in bold font (Heyworth, 2016) 
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1.2.2 Advances in Giardia typing 

Historically morphological differences were used to attempt to differentiate 

between host-specific strains of Giardia under microscopic examination (Feely & 

Erlandsen, 1985). This misguided methodology named each new morphological 

type as a separate species of the parasite (Adam, 2001). Microscopy was then 

determined to be insufficient as a method for assemblage discrimination and 

zymodeme analysis was adopted in addition to chromosome comparison (Adam, 

2001; Adam et al, 1988; Meloni et al, 1988; 1995; Proctor et al, 1989). This 

approach, undertaken by Proctor et al, was an attempt to discover a correlation 

between clinical presentation of giardiasis with the visualised isoenzyme patterns 

of Giardia isolates from both humans and beavers using starch gel electrophoresis. 

It was ultimately unsuccessful, as Proctor found isolates corresponding to multiple 

isoenzyme patterns were able to cause clinical signs in both humans and beavers. 

Eventually the field settled on the use of more specific genetic techniques, such 

as multilocus gene sequencing using polymerase chain reaction (PCR) (Caccio et 

al, 2002; Read et al, 2004; Sulaiman et al, 2003). These methods have seen little 

improvement since their invention in the early 2000s, a point recognised by 

researchers in Brazil (Durigan et al, 2018). In an attempt to overcome difficulties 

with these markers, discussed in Section 1.2.5, they screened the limited number 

of Giardia genomic sequences publicly available on GiardiaDB for microsatellites 

to find new genetic targets for development (Durigan et al, 2018). This comprised 

genomes representing two assemblage A isolates (Genomes WB, DH), one 

assemblage B isolate (Genome GS) and one assemblage E isolate (Genome P15). 

The Brazilian researchers found over 1,850 simple sequence repeats (SSRs) loci in 

the five GiardiaDB genomes, of which 20 were polymorphic and only one was found 

in each of the five full genomes. This study went on to develop 60 new primers 

based on microsatellites, developed with ‘Primer 3 Plus’ and ‘Primer Select’ tools. 

Limitations of these primers include their exclusive in silico testing and the 

exclusion of isolates that did not fit exclusively into one assemblage using the 

three traditionally used markers. Novel techniques to discern between 

assemblages should ideally consider subtle differences in genotype but also be 

tested in vitro to determine if they can be used to draw epidemiological and 

biological conclusions. Whole genome sequencing (WGS) has also been utilised in 
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a few recent Giardia studies. One study in British Columbia, Canada, used a 

NexteraXT DNA Prep Kit (Illumina, San Diego, CA) to prepare a DNA library for WGS 

using the Illumina sequencing platform after a historic outbreak (Prystajecky et 

al, 2015). The reads were assembled to create whole genome sequences which 

were compared against reference genomes A, B, and E (Prystajecky et al, 2015). 

This study used stored samples from the historic human outbreak, water samples 

gathered periodically over four years, faecal samples from sporadic, non-travel 

associated human cases of giardiasis, and faecal samples from local beavers to 

create a pool of data. WGS was then used to demonstrate the relatedness of these 

samples in more depth than would have been possible with any single marker on 

its own, which aided the discovery that beavers in the area were harbouring a 

different assemblage than previously thought. These results led to heightened 

surveillance of the parasite in British Columbia. Following that study, another 

study in the same location used WGS to characterise Giardia in additional host 

species (Tsui et al, 2018). Whereas the previous study focussed on human and 

beaver samples, this study also included canine, ovine and feline samples. The 

researchers used MiSeq Illumina to analyse 89 isolates and the phylogenetic 

analysis of the results showed evidence supporting beaver involvement in two 

outbreaks in the area. The other animal isolates were found to be human-infective 

assemblages A and B, with six samples showing mixed infection. The authors note 

that the use of WGS overcomes one limitation of using individual loci, i.e. the 

inability to identify mixed infection, as there will be a preferential PCR primer 

binding with one of the two assemblages. They suggest important data is being 

lost, which could be retained using a method such as WGS. 

1.2.3 Detection of unexpected assemblages 

Before the genome was being explored by researchers in Brazil and Canada, 

important host discoveries were being made worldwide. In Spain an assemblage F 

isolate (putatively a feline assemblage) was found in several samples taken from 

cattle (Cardona et al, 2015). This study attempted to use two loci, bg and gdh, 

with which to assemblage-type 68 samples. However, bg was only able to amplify 

4/68 (0.06%) samples, none of which were found to be assemblage F amplicons. 

Another study in China identified assemblage E amplicons (putatively a livestock 

genotype) from several rabbit hosts, which was the first reported case of its kind 

(Qi et al, 2015). In this study, all three loci in addition to the 18s subunit loci were 
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used on 80 microscopy-positive samples. Of these, only five samples were able to 

amplify at all four loci, and while these results agreed on the assigned assemblage, 

there was no agreement of sub-assemblages. Four of the six assemblage E 

amplicons isolated from these samples disagreed with at least one additional locus, 

while the two remaining amplicons agreed between multiple loci.  Additionally, a 

study in Egypt discovered an assemblage E isolate in human samples using the tpi 

locus (Foronda et al, 2008). The authors mention the limitations of using one locus 

for genotyping, but the previous two studies highlight another limitation, i.e. 

discordance between different markers. These studies describe samples with 

novel host-assemblage findings, yet few samples have corroborating results from 

multiple markers. This is a consequence of the lack of well-characterised, high-

resolution genetic markers available for Giardia analysis. In addition to 

discordance, low PCR amplification rates further hamper the reproducibility of 

novel results such as these. An improvement in the current panel of molecular 

markers is needed to increase amplification success and support novel findings. 

1.2.4 Reproductive Discoveries 

An issue that has plagued the Giardia field is that its mode of reproduction is not 

fully known and this has been evident since early microscopic studies. The 

reproductive mechanism of Giardia was unable to be visualised in its entirety, 

leading to gaps in the understanding of this process (Sagolla et al, 2006). One issue 

raised was the inability to visualise intermediate stages of mitosis, which was 

addressed by Sagolla et al. Where previously microscopy was used to visualise the 

intermediate stages of mitosis, Sagolla’s team used three-dimensional 

visualisation with components tagged by immunofluorescent markers to observe 

mitotic events from all angles. This allowed the visualisation of unexpected events, 

such as the two nuclei stacking on top of each other in the middle of the 

trophozoite before replication occurs. Giardia was also observed to undergo a 

process called semi-open mitosis, which occurs in the prometaphase stage of 

replication (Lagunas-Rangel et al, 2021). In this phase, the central spindles and 

microtubules can form within the nuclear envelope, as with closed mitosis, 

through partial openings in strategic locations in the nuclear envelope, as with 

semi-open mitosis, or outwith a disassembled nuclear envelope, as with open 

mitosis (Asakawa et al, 2016; Lagunas-Rangel et al, 2021; Sagolla et al, 2006). 

Giardia was visualised as having external central spindles and microtubules 
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through polar openings in the nuclear envelope, with the remaining envelope 

intact. This process is not unique to Giardia; it is a phenomenon known to occur 

in Drosophila melanogaster, Asterina miniata, Aspergillus nidulans, Ustilago 

maydis, Caenorhabditis elegans and Schizosaccharomyces japonicus (Asakawa et 

al, 2016; Lagunas-Rangel et al, 2021). These findings are important for a number 

of reasons: first, a mitotic process that requires externalisation of nuclear 

components is an ideal target for treatment development; second, if the genetic 

sequence for the nuclear envelope could be identified, it could be modified for 

anti-protozoal effect or studied further. These discoveries served to increase the 

understanding of Giardia basic biology and have the potential to advance the work 

in applied areas of study. 

1.2.5 Current issues with Giardia genotyping 

The entire genome of Giardia duodenalis is estimated to be around 1.2x107 bp 

with a GC content of nearly 50%, and does not contain a large amount of non-

coding sequences or introns (Adam, 2000; Ankarklev et al, 2015; Capewell et al, 

2021). The genomes of each nucleus within a trophozoite are not always exact 

copies, and there can be as many as four sites of heterozygosity per genome 

(Capewell et al, 2021). This potential for heterozygosity has led to the endeavour 

to discern between genetically distinct Giardia lineages. Genotyping technology 

has been utilised to gain information in multiple areas such as host-assemblage 

relationships, disease-assemblage relationships and epidemiological assemblage 

data (Monis et al, 2009). Multilocus sequence typing (MLST), the currently adopted 

genetic typing methodology used in determining these relationships, can provide 

useful information, but this technique is still relatively low-resolution due to the 

gaps in knowledge regarding genomic heterogeneity (Caccio et al, 2008; Capewell 

et al, 2021). A large proportion of samples cannot be typed using MLST due to PCR 

failure, presumably because of allelic polymorphism in the Giardia population. As 

mentioned in a review by Capewell et al, this may mean the PCR primers used for 

assemblage-typing are too specific to cope with the amount of target loci 

variability in field samples (Capewell et al, 2021). The reproducibility of results 

with one marker or between multiple markers is also low. Due to frequently 

conflicting results, it is worthwhile considering what the underlying reason may 

be, for example (a) poorly characterised markers, (b) the presence of mixed 

infection, (c) genetic exchange between assemblages or (d) a combination of the 
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above. These are important questions that must be addressed to facilitate 

effective outbreak investigation. An alternative approach, using markers 

specifically designed for one assemblage, may not allow for the amplification of 

non-target assemblages and important epidemiological information being 

overlooked (Ankarklev et al, 2015). Further assemblage classification information 

and more in-depth reproductive information could be gained from analysing more 

genetically diverse sequences with a higher degree of confidence using reliable 

markers (Capewell et al, 2021). 

One study in France attempted to use two markers, bg and tpi, to assemblage-

type 19 human isolates which were Giardia positive on microscopy (Bonhomme et 

al, 2011). All isolates were successfully amplified as assemblage A or B, and while 

the markers agreed on assemblage for all 19 samples, 14/19 (73.7%) disagreed on 

sub-assemblage. Another study in China used gdh, bg and tpi to screen 279 samples 

of unknown Giardia status from domesticated chipmunks across seven pet shops 

(Deng et al, 2018). Of 279 samples, 24 samples amplified with multiple loci: 8/279 

(8.6%) were positive using bg, 17/279 (6.1%) were positive for gdh and another 

17/279 (6.1%) were positive for tpi. The two predominant assemblages identified 

were A and G, and while the assemblage-assignment was agreed between at least 

two loci for 17 samples, 6 of those 17 were not able to amplify at a third locus 

and four of all 24 successfully-typed samples only be amplified at a single locus. 

Additionally, there was agreement on sub-assemblage for only five of the 

successfully amplified samples. A third study in England looked at over 400 

microscopy-positive faecal samples from symptomatic patients and assemblage-

typed the samples using the gdh, bg, tp, and 18s loci. Out of 406 samples, 218 

(54%) amplified at least one marker (Minetti et al, 2015a). While the authors state 

these amplicons were unambiguously assemblage A, again sub-assemblage typing 

results rarely agreed among all loci. Additionally, data for only 76/218 (38.9%) is 

shown, suggesting the remaining samples returned ambiguous assemblage results 

between loci. The authors also speculate that these results indicate these human 

hosts are harbouring multiple sub-assemblages, without discussing the possibility 

of poor-quality markers. Even where assemblage data may match between loci, 

sub-assemblage data is often contradictory. 
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1.2.6 Bergen Outbreak 

One of the most well-known outbreaks of Giardia occurred in 2004 in Bergen, 

Norway, which infected an estimated 5,000-6,000 people from ingesting 

contaminated water (Landvik, 2015). This contamination was caused by a period 

of increased rainfall, which, in conjunction with a compromised sewage system, 

pushed an increased volume of raw, contaminated water through a processing 

plant and to the general populous. This inspired a series of studies, not only around 

the time of the outbreak for the sake of outbreak investigation, but also in 

subsequent years to observe the cohort and resulting after effects. Before sewage 

and rainfall were implicated in this outbreak, dog faecal material was investigated 

as a potential source of infection (Landvik, 2015; Robertson et al, 2015). 

Genotypic analysis would have been useful to determine animal involvement in 

this case, as animal samples could have been assemblage-typed and undergone 

phylogenetic analysis with the outbreak samples to determine the degree to which 

they were related. One year after the outbreak, a study was undertaken to type 

Giardia isolates recovered from the sewage of four major processing stations 

servicing Bergen (Robertson et al, 2008). These were analysed using gdh, bg and 

tpi. For 3/16 (18.8%) samples no locus was amplified, 2/16 (12.5%) samples 

resulted in assemblage B, 1/16 (6.3%) samples resulted in assemblage A, and 9/16 

(56.3%) samples amplified both A and B amplicons. Four samples failed to amplify, 

and the authors note these samples were the only four samples that did not 

undergo pre-analysis preparation such as buffer washes, centrifugation, or 

immunomagnetic separation. These results, corresponding to the two accepted 

human-infective assemblages, were not unexpected as the establishments were 

processing human waste from households within the city. This data is useful in 

that it provides an insight into the baseline epidemiological situation, regarding a 

potentially endemic parasite in Bergen. Other studies to stem from the Bergen 

outbreak focussed on those with chronic fatigue three and five years post-

exposure and post-infection gastrointestinal disorders (Hanevik et al, 2017; 

Martinez et al, 2020). The utilisation of efficient genotypic markers in situations 

such as this can help identify reservoirs of infection and prevent future outbreaks. 

1.3 Objectives of this work 

The objectives of this work were two-fold: 
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1. To investigate the importance of Giardia duodenalis as an endemic, 

outbreak-associated pathogen in the context of high-income countries. This was 

achieved by performing a scoping review of the literature to provide a 

comprehensive overview of the subject and to determine the relative importance 

of different transmission routes. 

2. To compare, genetically, companion animal and human Giardia isolates in 

a high-income country, using improved genotyping methodology. Published 

genomic data was utilised to increase sensitivity of a PCR-based assemblage 

marker and this improved assay was applied to a large collection of Scottish cat, 

dog and human isolates to provide new, baseline molecular epidemiological data.  
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Chapter 2. A scoping review of risk factors and transmission 
routes associated with human giardiasis outbreaks in high-
income settings 

2.1 Background 

Giardia duodenalis (synonyms Giardia intestinalis and Giardia lamblia) is one of 

the leading causes of parasitic gastrointestinal disease, leading to potentially over 

180 million annual cases worldwide (Torgerson et al, 2015). This flagellated 

protozoan parasite causes giardiasis, with symptoms including diarrhoea, nausea, 

vomiting, abdominal pain, and excessive gas production. The disease can be 

effectively treated with nitroheterocycles, in particular metronidazole, although 

there are emerging reports of metronidazole resistance (Ansell et al, 2015; Leitsch, 

2015; Muller et al, 2018). Infection can result in long-term complications including 

irritable bowel syndrome (IBS) and chronic fatigue (Dormond et al, 2016; Hanevik 

et al, 2014; Litleskare et al, 2018). The parasite is ingested in its cystic form and 

remains contained until it reaches the stomach. Once exposed to stomach acid, 

the cyst releases vegetative trophozoites that attach to the small intestine, 

causing clinical signs as they replicate (Adam, 2001; Bernander et al, 2001a). After 

moving through the proximal portion of the gastrointestinal system, some 

trophozoites re-encyst in the jejunum before being excreted to continue the life-

cycle of the parasite and infect new hosts (Adam, 2001). Although trophozoites 

rapidly degrade once excreted, cysts are highly robust and can last many months 

in the environment without a host. Transmission of infectious cysts is possible via 

a variety of different routes, including person-to-person contact, animal-to-

human contact, and contaminated water and food sources. Poor quality sanitation 

and water filtration systems are typically thought to be responsible for 

transmission of cysts in lower to middle income countries (LMICs), whereas travel 

and food are more commonly thought to be the transmission route in higher 

income countries (Leung et al, 2019). Infection then occurs when faecal material 

containing infective cysts is ingested through one of these routes. The parasite 

has a wide host range, and a variety of subtypes exist, known as assemblages A–F. 

These assemblages infect many mammals and are largely host-specific, although 

assemblages A and B demonstrate the capacity to be zoonotic (Ryan & Caccio, 

2013).  
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Giardiasis is supposedly less prevalent in high-income countries than LMICs, 

ranging from 2–7% for the former to 20–30% for the latter (Leung et al, 2019). The 

condition is diagnosed in higher income countries using a range of methods, with 

conventional identification involving microscopy to directly identify trophozoites 

and cysts excreted in faeces. However, microscopy is being replaced by more 

sensitive molecular methods, including polymerase chain reaction (PCR) and 

enzyme immunoassays (EIA) that detect parasite-specific genes or antigens. These 

permit the efficient and rapid screening of large numbers of samples for Giardia 

and other gastrointestinal pathogens simultaneously. In the past, diagnostic 

testing of patients in many higher income countries has largely been confined to 

testing symptomatic individuals with a history of travel to specific, perceived 

Giardia-risk countries, resulting in significant under-reporting of this pathogen 

(Alexander et al, 2017). With this increasing awareness of endemic disease in 

higher income countries, a greater number of samples from symptomatic cases 

are now being tested using more sensitive tools. As this includes patients without 

a history of travel, it is likely that a greater number of sporadic cases, clusters, 

and outbreaks will become evident. This will lead to more accurate assessment of 

the potential risk factors and transmission routes in higher income countries. 

Improving our understanding of Giardia transmission and raising awareness of 

giardiasis are essential to ensure cases receive appropriate treatment and are 

important for public health authorities to identify points at which interventions 

can be made. This is of particular concern as the parasite is easily spread between 

humans and has the potential to cause long-term complications (Hanevik et al, 

2014; Litleskare et al, 2018). There is also evidence from LMICs that infection in 

young children can impact growth and development, impacting such biological 

processes as iron absorption, retinal morphology, and hepatic and pancreatic 

functionality (EPA, 1999; Lehto et al, 2019; Rogawski et al, 2017; Rogawski et al, 

2018). With the increased recognition that there is significant under-reporting of 

Giardia in higher income countries, we hypothesise that there are 

underappreciated endemic sources of infection that may impact public health. 

Additionally, previous studies have primarily focused on one transmission route. 

These routes have been included and expanded upon (Baldursson & Karanis, 2011; 

Efstratiou et al, 2017; Karanis et al, 2007). The aim of this work was, therefore, 

to undertake a systematic review of the literature to identify sources and 

transmission routes associated with human giardiasis outbreaks in higher income 
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countries and establish the accuracy of the hitherto accepted assertion that 

giardiasis is primarily a sporadic travel-associated illness. 

2.2 Search Approach 

2.2.1 Literature search 

The original search was performed between September 2016 up to and including 

November 2021, with assistance from Paul Capewell and Alison Smith-Palmer. 

Searches of titles and abstracts were undertaken on Medline, Embase, and PubMed 

databases using the following query: ((Giardia OR Giardiasis) AND Outbreak) OR 

(((Giardia OR Giardiasis) AND Outbreak) AND (Risk Factor OR Travel OR Pets OR 

Water OR Swimming Pools OR Food OR Cat OR Dog OR “companion animal”)). The 

searches yielded a total of 254 articles. 

2.2.2 Inclusion and exclusion criteria 

Manuscripts were initially screened based on titles and abstracts to exclude 

irrelevant studies, such as those that primarily examined animal outbreaks over 

human outbreaks or were primarily reporting data for another pathogen but 

mentioned Giardia as a comparator. Manuscripts were also excluded if Giardia 

was not suspected as the primary pathogen of interest or if they were not 

originally written in English to avoid issues with translation accuracy. The full text 

versions of all manuscripts from the initial screen were obtained using a 

combination of library services and online repositories. To ensure an accurate and 

minimally biased systemic review, this procedure was performed independently 

by myself and an additional expert reviewer (Paul Capewell). The full texts of the 

potential manuscripts were then assessed by both reviewers in discussion using 

the following inclusion criteria: (i) that the manuscript reported primary outbreak 

data and was not a case report describing an individual patient; (ii) that the 

outbreak primarily focused on human cases; (iii) that the source and causative 

agent of an outbreak were unambiguously identified; (iv) the reported outbreak 

occurred in a country on the Organisation for Economic Co-Operation and 

Development’s (OECD) list of upper-middle-income countries and territories 

(Figure 2-1). 
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Figure 2-1: Flowchart of exclusion criteria 

 

All study designs that met these criteria were included, including case-control and 

observational studies, as the primary aim of the review was to identify potential 

sources and transmission routes associated with Giardia outbreak rather than 

estimate the size of these risks. The identified sources and transmission routes for 

each outbreak were determined by each researcher independently and classed as 

being associated with travel, water contamination, food contamination, animal 

contact, person-to-person contact, or exposure to raw sewage. More refined 

distinctions were made within each class to provide further details (Appendix 

Table 1- 1). All articles could be classified into these six categories, which were 

generated during assessment of the literature. Due to the observational nature of 

the data, the MOOSE Guidelines for Meta-Analyses and Systematic Reviews of 

Observational Studies were applied (Stroup et al, 2000). Identified transmission 
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routes were encoded in a shared data table for ease of access, including additional 

metadata, such as authors, number of cases, PMID, date of study, date of 

publication, and country. After a final discussion between the reviewers to resolve 

disparities, a total of 75 papers were included in the review (Figure 2-2). 

 

 

Figure 2-2: Country distribution and transmission routes cited by study (n = 75) 

 
 
2.2.3 Sources of bias and heterogeneity 

It was noted that very few of the manuscripts were case-control studies or 

presented an estimate of risk, with the majority reporting a description of a 

Giardia outbreak in a higher income country with an identified source of infection. 

This is likely an example of publication bias in which outbreaks without an 

identifiable source are not deemed sufficiently interesting to merit publication. 

In addition, there was significant heterogeneity in the study type, methodology, 

and detection tools used across the 75 papers with almost no study being directly 

analogous to any other. Both the apparent bias and high study heterogeneity 

prevent a formal meta-analysis of the data. However, as the aim of this review 

was to establish a list of potential outbreak sources and transmission routes in 

higher income countries rather than estimate risks, the systematic analysis of the 

data served to highlight areas in which further analysis and formal case-control 

experiments are required in the future. 
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2.3 Waterborne Transmission 

 

Figure 2-3: Transmission routes for giardiasis cited in studies (n = 75) 

 

Waterborne transmission is one of the most important Giardia transmission routes 

in LMICs (Fakhri et al, 2021) and was found to account for the majority of 

outbreaks in this systematic analysis of higher income countries (Figure 2-3). This 

includes outbreaks in the USA, Canada, UK, Europe, the Nordics, and Southeast 

Asia, demonstrating that a range of water treatment approaches across a 

spectrum of higher income countries can be vulnerable to failure, leading to water 

contamination. Previously, a review of waterborne parasites in higher income 

countries found that Giardia was the second most frequently cited protozoan 

agent after Cryptosporidium, responsible for 37% of waterborne outbreaks 

(Efstratiou et al, 2017). Similarly, a review of waterborne outbreaks in Nordic 

countries indicated that parasites accounted for the largest outbreaks of 

gastrointestinal upset during the time period studied, even when compared to 

bacterial or viral causes (Guzman-Herrador et al, 2015). Of particular note with 

respect to waterborne outbreaks is the large number of cases per outbreak, with 

some having several hundred or more (Dykes et al, 1980; Lopez et al, 1980; Navin 

et al, 1985; Nygard et al, 2006; Weniger et al, 1983). Waterborne transmission of 
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Giardia cysts occurs via a variety of routes, including contaminated drinking water, 

swimming pools, rainwater tanks, and recreational lakes. These transmission 

routes increased the risk of contracting giardiasis, demonstrated both through 

case-control studies and outbreak investigations. 

2.3.1 Drinking water 

Of the 46 outbreaks described as having a water transmission route or water 

involvement, approximately 33 involved contaminated drinking water and led to 

at least 8045 laboratory confirmed cases of giardiasis in higher income countries 

from 1974–2016 (Table 2-1; several studies did not attribute outbreaks to case 

numbers and were therefore not included in the case count). Contamination of 

treated water by raw, untreated water or sewage was stated as a factor in at least 

five outbreaks. Other contributing factors cited included structural defects in 

water distribution systems, insufficient chlorination or poor to no filtration system, 

and the presence of Giardia-positive North American beavers (Castor canadensis) 

in the water catchment area (Dykes et al, 1980; Istre et al, 1984; Navin et al, 

1985). This has been further explored in work by Tsui et al. (Tsui et al, 2018), who 

used whole genome sequencing to suggest the presence of beavers in water 

catchment areas and along riverbeds was a possible source of human infection via 

contaminated water but acknowledged that this was only one factor in a complex 

cycle of zoonotic spread. Direct contact with raw sewage following a system 

failure in a private residence caused at least one outbreak in Bratislava, Slovakia 

(Totkova et al, 2004). Rainwater run-off from sewer systems after severe natural 

events (including volcanic eruption) also led to contamination of surface water 

(Weniger et al, 1983). One German study investigated two separate sewer systems 

that tended to overflow when rainwater contributed to their volume, which would 

contaminate nearby natural bodies of water. Giardia was found in 12/38 (31.6%) 

water samples from sewer run-off, which emptied into a nearby catchment area 

where the local population frequently walked with their companion animals 

(Schreiber et al, 2019). This highlights how rivers and other water sources 

contaminated with Giardia from slaughterhouses and sewage run-off can pose a 

contamination risk for humans and animals in the area (Ma et al, 2019a; b). 

Communal water supplies are normally treated to prevent contamination with 

Cryptosporidium and Giardia, but this requires carefully controlled conditions and 
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proper maintenance of treatment systems. Failure in any aspect of these systems 

can result in outbreaks due to inadequate removal of infective cysts. Outbreaks 

may also arise from post-treatment contamination due to pipe system damage or 

wastewater leakage. Welch (Welch, 2000) conducted a meta-analysis to test the 

hypothesis that consumption of water in rural regions of North America posed a 

statistically significant risk for the acquisition of giardiasis. The author notes that 

published reports demonstrate a higher incidence of giardiasis among people 

engaging in outdoor recreational activities, but there is minimal evidence for an 

association between this and giardiasis. The study also states that although 

greater emphasis is given to water purification when in the rural outdoors, the 

reason for increased giardiasis incidence may be due to relaxed hygiene practices 

on camping trips rather than raw water consumption. The use of private water 

supplies may also contribute to increased risk of giardiasis as they are more 

common in rural areas and are not subject to the same stringent water quality 

testing or regulations as public water supplies (Reeve et al, 2018; Welch, 2000). 

Masina et al. (Masina et al, 2019) and Ma et al. (Ma et al, 2019a; b) suggest that 

the use of indicator bacteria such as E. coli and coliforms to test the quality of 

tap water for ingestion may not be adequate for all pathogens present, as the 

absence of indicator bacteria does not necessarily indicate the absence of 

waterborne parasites such as Giardia spp. Parasites are notably more difficult to 

identify in water samples as they cannot be readily cultured and are found at 

lower concentrations in the environment. 

 

Location Reference Year No. of cases 
or samples 

(Lab 
confirmed) 

 

Tap water Untreated 
water 

Recreational 
water 
(swimming, 
etc.) 

Beaver 
involvement 

Pre-
treatment 

Post-
treatment 

 

Australia  Dale et al. (2010) 2001–
2007 

12 (3)          

Canada  Isaac-Renton et al. 
(1999) 

1996 590 (590)          

Canada  Isaac-Renton et al. 
(1994); Isaac-

Renton et al. 
(1993) 

1991–
1992 

124 (124)         

Canada  Greensmith et al. 
(1988) 

1986 59 (30)          

Finland  Rimhanen-Finne et 
al. (2010) 

2007–
2008 

37 (37)          

Italy Resi et al. (2021) 2018–

2019 

228 (228)          
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Netherlands  Pijnacker et al. 
(2016) 

2010–
2013 

219 (219)          

New Zealand  Wilson et al. 

(2008) 

2006 1214 (1214)         

Norway Nygard et al. 

(2006) 

2004–

2005 

2500 (1268)          

South Korea  Cheun et al. 

(2013) 

2010 9 (7)          

Sweden  Neringer et al. 

(1987) 

1982 56 (56)          

UK  Jephcott et al. 
(1986) 

1985 108 (108)          

UK  Gray et al. (1994) 1992–
1993 

74 (74)         

UK  Hall et al. (2017) 2012 4 (4)          

USA Levine et al. 

(1990) 

1986–

1988  

4 unique 

outbreaksa 
        

USA  Kramer et al. 
(1996) 

1993–
1994 

9 unique 
outbreaksa 

      

USA  Moore et al. 
(1993) 

1991–
1992 

8 unique 
outbreaksa 

      

USA  Herwaldt et al. 
(1991) 

1989–
1990 

7 unique 
outbreaksa 

        

USA  Birkhead & Vogt 
(1989) 

1983–
1986 

1211 (1211)         

USA  Birkhead et al. 
(1989) 

1986 37 (23)         

USA  Navin et al. (1985) 1982 324 (324)         

USA  Kent et al. (1988) 1985–
1986 

703 (703)         (and 

muskrat) 

USA  Lopez et al. (1980) 1977 213 (213)        , C. can 

USA  Dykes et al. (1980) 1976 128 (128)        , C. can 

USA  Istre et al. (1984) 1981 20 (8)          

USA  Weniger et al. 

(1983) 

1980 Estimated 781 

(49) 
         

USA  Karon et al. (2011) 2007 46 (26)          

USA  Shaw et al. (1977) 1974–

1975 

350 (350)          

USA  Levy et al. (1998) 1995–

1996 

3 unique 

outbreaksa 

       

USA  Reses et al. (2018) 2003–

2004 

52 (52)         

USA  Bedard et al. 

(2016) 

2009 36 (36)          

USA  Daly et al. (2010) 2007 31 (17)           

USA  Hopkins & Juranek 

(1991) 

1983 31 (31)          

USA  Porter et al. 

(1988) 

1985 9 (8)          

USA  Katz et al. (2006) 2003 149 (97)          

USA  Harter et al. 

(1984) 

1982 70 (70)          

USA  Eisenstein et al. 

(2008) 

2006 38 (35)          

Table 2-1: Giardiasis outbreaks due to waterborne transmission 

aNumber of individual cases undetermined as some studies referenced in these papers overlap with those included 

individually this table; cases and specific outbreak studies are not linked to one another in the original study. 
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2.3.2 Waterborne transmission: Recreational water 

Swimming pool or recreational water was identified as the sole transmission route 

in seven outbreaks in higher income countries (Table 2-1), resulting in at least 463 

laboratory-confirmed cases of giardiasis. Swimming in pools or natural water has 

previously been found to be a risk factor in several case-control studies (Dennis et 

al, 1993; Hoque et al, 2002; Reses et al, 2018; Xiao et al, 2017). Faecal 

contamination of pool water was stated as a source for four outbreaks in Canada 

and the USA with an increased incidence of giardiasis upon diving into the pool, 

due to the potential for accidental water ingestion (Greensmith et al, 1988; Harter 

et al, 1984; Katz et al, 2006; Porter et al, 1988). Swimming pools with additional 

features such as splash pads, water slides, or classes with young children in 

attendance accounted for several outbreaks (Eisenstein et al, 2008; Greensmith 

et al, 1988; Harter et al, 1984). While actively flowing water makes infectious 

agent identification difficult, Giardia was one of a range of pathogens identified 

among cases of gastrointestinal illness associated with an open swimming event in 

the River Thames, London (Hall et al, 2017). 

2.4 Person-to-person Transmission 

Direct or indirect person-to-person transmission was the basis for 12 outbreaks, 

with a laboratory confirmation of 2195 human cases (Table 2-2). Giardiasis 

outbreaks associated with person-to-person contact have been linked to 

households with young children or in childcare settings where young children are 

in close contact with each other, likely due to handling diapers (Hoque et al, 2002; 

Hoque et al, 2003; Hoque et al, 2001; Minetti et al, 2015b; Reses et al, 2018). 

Such associations highlight the importance of good personal hygiene in reducing 

transmission via regular hand washing by those caring for infants. Six outbreaks 

involved day-care facilities (Table 2-2), five of which involved children below five 

years of age. Transmission in childcare facilities was greatest when children were 

ambulatory but had not yet been toilet trained. Person-to-person transmission 

both within and out with households was identified in several studies (Table 2-2), 

with a consistent factor being contact with young children and/or involvement in 

the changing of infants’ diapers. Of particular interest, one study reported a high 

percentage of asymptomatic cases (37 individuals out of 41 positive cases, with 

children aged 0–9 years most heavily affected) (Waldram et al, 2017) that were 
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only detected as a result of the household screening undertaken as part of the 

study. This also underlines the importance of good personal hygiene measures in 

the prevention of transmission. 

Demonstrating the power of modern molecular genotyping approaches, Wang et 

al. (Wang et al, 2019) investigated the genetic diversity of G. duodenalis in cases 

in Spain between 2012 and 2018, comparing the distribution and clinical 

presentation of assemblages A and B between children and adults. They showed a 

significant difference in the distribution of assemblages between children and 

adults (P = 0.001) and that children under 12 years of age were more likely to have 

been infected by assemblage B (44/53, 83%) than assemblage A (9/53, 17%). 

Conversely, adults in this sample had comparable distributions of assemblages A 

and B (20/42, 47.6% and 22/42, 52.4% respectively). There was no significant 

difference in the distribution of assemblages by gender. Cases with assemblage A 

(4/29, 13.8%) were more likely to have asymptomatic infection than cases with 

assemblage B (1/66, 1.5%), with OR 10.4, 95% CI 1.108–97.625. The genotyping 

and subtyping results also suggest that anthroponotic transmission, such as within 

childcare facilities, is an important area of study for giardiasis outbreaks. 

Although uncommon, sexual transmission has been identified as a potential route 

for some communities (Table 2-3) (Meyers et al, 1977; Reses et al, 2018). This 

transmission mechanism is recognised for a number of gastrointestinal pathogens 

including Cryptosporidium (Hellard et al, 2003), Shigella (Borg et al, 2012), and 

hepatitis A (Ndumbi et al, 2018). A study in England (Mook et al, 2018) used gender 

distributions in routine surveillance data stratified by age and region to show an 

excess of Giardia cases among males that the authors posit is linked to 

transmission in men who have sex with men (MSM). This has also been suggested 

from studies in the USA (Escobedo et al, 2014; Muller et al, 2018; Phillips et al, 

1981; Reses et al, 2018). One multi-centre study testing samples from patients 

with acute gastroenteritis in Seattle, USA reported that enteric pathogens were 

detected in 56.3% of MSM cases tested. This was substantially higher than the 33.5% 

seen in the general population. Of these pathogens, Giardia was found in 20.5% of 

diarrheic MSM samples compared to 1.9% in the general population (Newman et 

al, 2020). Both studies used multiplex PCR panels for parasite detection. 
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Location  Reference Year No. of cases or 
samples (Lab 

confirmed) 

 

Household 
GI illness 

Daycare 
attendance 

Young 
children 

Canada  Keystone et 
al. (1978) 

1976–
1977 

116 (116)     

New 

Zealand  

Wilson et al. 

(2008) 

2006 1214 (1214)      

New 

Zealand  

Hoque et al. 

(2001) 

1998–

1999 

183 (183)      

UK Waldram et 

al. (2017) 

2014–

2015 

143 (132)     

UK  Ang (2000) 1999 11 (10), 3 

asymptomatic 

    

UK  Rauch et al. 
(1990) 

1986–
1987 

27 (27), also 
asymptomatic 

outbreaks within 
the same 

population 

     

USA  Polis et al. 

(1986) 

1982 39 (39)     

USA  Bartlett et al. 

(1985) 

1982–

1983 

187 (187), 105 

asymptomatic 

    

USA  Black et al. 

(1977) 

1975 38 (38)     

USA  Katz et al. 

(2006) 

2003 149 (97), 105 via 

person-to-person 

     

USA  Reses et al. 

(2018) 

2003–

2004 

80 (80)      

USA  White et al. 

(1989) 

1986 88 (72)      

Table 2-2: Giardiasis outbreaks due to person-to-person transmission 

 

 

Location Reference Year No. of cases or 
samples (Lab 
confirmed) 

 

Sexual 
transmission 

Direct faecal 
contact 

Netherlands  Pijnacker 
et al. 
(2016) 

2010–
2013 

219 (219)    

New 
Zealand  

Wilson et 
al. (2008) 

2006 1214 (1214)    

Slovakia  Totkova et 
al. (2004) 

1998 7 (7)    

USA  Newman 
et al. 
(2020) 

2017–
2018 

31 (31)    

USA  Reses et 
al. (2018) 

2003–
2004 

17 (17)    

USA  Meyers et 
al. (1977) 

1975 6 (5)    

Table 2-3: Giardiasis outbreaks due to transmission via direct faecal exposure 
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2.5 Foodborne Transmission 

Where foodborne transmission has been identified, 1401 laboratory-confirmed 

human cases were identified and contamination by an infected food handler was 

a key feature in these outbreaks. Few reports suggest the possibility of food items 

being intrinsically infected (Dawson, 2005; Dixon et al, 2013; Rose & Slifko, 1999; 

Slifko et al, 2000). Ten foodborne outbreaks of giardiasis were identified in this 

analysis across higher income countries (Table 2-4), with asymptomatic food 

handlers or people asymptomatic at the time of food preparation who later 

developed giardiasis contributing to eight of these. This included an outbreak at 

a private party (Porter et al, 1988); those who consumed fruit salad were seven 

times more likely to have been ill than those who did not. It was noted that the 

household had a child in diapers and a pet rabbit present in the kitchen where the 

fruit salad was prepared, both of whom were positive for Giardia. Therefore, it 

was likely that the food preparer became infected by the child and/or rabbit and 

then contaminated food due to poor hand hygiene. The contaminated food 

became the primary transmission route for the outbreak. In another outbreak, no 

individual food item was identified; the assemblage and subtype from one of the 

asymptomatic food handlers matched the two outbreak cases for which genotyping 

was available (Figgatt et al, 2017). An outbreak among UK tourists residing at a 

hotel in Greece was linked to several risk factors, including the consumption of 

raw vegetables (Hardie et al, 1999). Salads were identified as a risk factor in two 

case-control studies of sporadic giardiasis (Espelage et al, 2010; Stuart et al, 2003), 

while another study identified inadequate washing of raw fruits and vegetables as 

a risk factor (de Lucio et al, 2017). This route of transmission is further supported 

by the identification of Giardia in 10 of 19 salad products tested in a study from 

Spain (Amoros et al, 2010); however, rates of positivity were lower (10 of 475 

samples) in a Norwegian study (Robertson & Gjerde, 2001). Conversely, two 

studies of sporadic cases in the USA (Reses et al, 2018) and UK (Minetti et al, 

2015b) found eating raw fruit and vegetables was inversely associated with 

giardiasis. Reses et al. (Reses et al, 2018) suggested repeated exposure via 

contaminated raw produce could provide protective immunity and that this 

inverse association could reflect increased healthy behaviours among controls 

compared to cases. Individuals who frequently consume fruit and vegetables might 
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possess better general health habits than those who do not and could be less likely 

to contract giardiasis or develop a systemic infection. 

 

Location Reference Year No. of cases or 
samples (Lab 
confirmed) 

 
 

Unwashed 
fruit and 
vegetables 

Food 
handlers 

Germany  Espelage et 
al. (2010) 

2007–
2008 

24 (24)    

New 
Zealand  

Wilson et al. 
(2008) 

2006 1214 (1214)    

Spain de Lucio et 
al. (2017) 

2014 6 (6), also 16 (16) 
dogs 2 (2) cats 

   

USA  Porter et al. 
(1990) 

1986 10 (8)    

USA  Figgatt et 
al. (2017) 

2015 20 (20)    

USA  Quick et al. 
(1992) 

1990 27 (11)    

USA  White et al. 
(1989) 

1986 88 (72)    

USA  Petersen et 
al. (1988) 

1985 13 (11)    

USA  Mintz et al. 
(1993) 

1990 27 (18)    

USA  Osterholm 
et al. (1981) 

1979 31 (17)    

Table 2-4: Giardiasis outbreaks due to foodborne transmission 

2.6 Zoonotic Transmission 

The search results yielded two studies each for farm animal and companion animal 

contact transmission routes for giardiasis, affecting 408 people and the elderly at 

a rate of 5193/10000 people (Table 2-5) (Brunn et al, 2019; Jagai et al, 2010; 

Rehbein et al, 2019; Wojcik-Fatla et al, 2018). Until relatively recently, the lack 

of robust molecular genotyping for Giardia has hampered work to fully understand 

zoonotic transmission. One study conducted in the USA (Jagai et al, 2010) on the 

impact of cattle density on rates of Cryptosporidium and Giardia concluded that 

higher annual rates of giardiasis were recorded in rural areas with low population 

density, and these populations were likely to be at greater risk of protozoan 

infections regardless of cattle density (Jagai et al, 2010). It did, however, find 

strong seasonal patterns, with areas with a large cattle-to-human population ratio 

showing a peak in Cryptosporidium and Giardia infections during late October. 

Conversely, a lack of association with cattle was reported from a study of children 
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and cattle in Spain (Cardona et al, 2011) despite another study in the same area 

detecting Giardia in 18.8% of cattle fecal samples (Cardona et al, 2015). Brunn et 

al. (Brunn et al, 2019) investigated the associations between livestock reservoirs 

and sporadic cases of giardiasis in Ontario, Canada. Livestock reservoirs were 

investigated by testing either dairy, beef, or swine farms every month. Case 

crossover analysis found that livestock reservoirs were associated with an 

increased risk of human giardiasis with a one-week lag period (OR: 1.65, 95% CI: 

1.23–2.22, P = 0.001). Assemblage typing data confirmed that zoonotic 

assemblages A and B were present in the livestock reservoir, which further 

supports the likelihood of zoonotic transmission (Brunn et al, 2019). This study is 

supported by another project undertaken in Scotland that demonstrated the 

presence of human assemblages in both beef and dairy cattle (Bartley et al, 2019). 

A separate study among veterinarians in Poland suggested the risk of transmission 

between animals and humans was low (Wojcik-Fatla et al, 2018), but an Australian 

study (Zajaczkowski et al, 2018) found contact with domestic, farm animals, or 

wildlife to be a risk factor. One study investigated shedding of Giardia cysts from 

pet owners (3/69; 4%) who had either cats or dogs; one household pair of human 

and dog samples had similar, although not identical, assemblage B genetic 

sequences, suggesting possible transmission. In this study, more dog than cat fecal 

samples were found to be Giardia positive (39% vs 14% respectively) (Rehbein et 

al, 2019) (Table 2-5). Likewise, a study conducted in northern Spain comprising 

63 households with domestic cats and dogs found no evidence that they were a 

significant reservoir for human infection (de Lucio et al, 2017), nor were domestic 

or farm animals in a study in Germany (Espelage et al, 2010). A review of Giardia 

in eastern Europe suggested assemblages A and B were common among domestic 

animals (Plutzer et al, 2018). Assemblage A is thought to be more likely 

zoonotically transmitted to humans (Horton et al, 2019) than assemblage B. This 

concept is supported by a multivariate analysis from England (Minetti et al, 2015b) 

that found dog ownership was a significant risk factor for developing giardiasis, 

although this effect was limited to contracting assemblage A infections. In 

summary, it appears that the involvement of animals in the transmission of Giardia 

is variable and depends on local factors that require further investigation with 

accurate genotyping tools. 
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It is also important to note that of the previously described outbreaks in which 

drinking water was involved, six involved C. canadensis beavers that were positive 

for Giardia, which may have contributed to multiple cases of human giardiasis 

(Birkhead et al, 1989; Dykes et al, 1980; Isaac-Renton et al, 1993; Isaac-Renton 

et al, 1994; Kent et al, 1988; Lopez et al, 1980; Navin et al, 1985) (Table 2-1). 

Contaminated water in these cases was found to be insufficiently filtered and/or 

treated, suggesting the impact of wild animals in the transmission can be 

alleviated with proper system maintenance. In outbreaks in which beavers were 

involved, assemblage typing was not always available but, notably, when beavers 

were removed from the vicinity of the water supply, there were no further cases 

of giardiasis (Isaac-Renton et al, 1993; Isaac-Renton et al, 1994; Navin et al, 1985). 

While the evidence does not support zoonotic transmission as a major risk for 

human infections when compared with other transmission routes, it is a route that 

should be considered, especially when positioning reservoirs and designing water 

distribution networks. 

 

Location Reference Year No. of cases or 
samples (Lab 
confirmed) 

Animal contact  

Companion Farm 

Canada  Brunn et al. 
(2019) 

2006–
2013 

403    

Germany  Rehbein et 
al. (2019) 

2019 3 (3)    

Poland  Wojcik-Fatla 
et al. (2018) 

2018 2 (2) Occupational 
exposure in 
veterinarians 

  

USA  Jagai et al. 
(2010) 

1991–
2004 

5193 (5193) 
per 10,000 
elderly 

   

Table 2-5: Giardiasis outbreaks due to zoonotic transmission 

 

2.7 Travel-association 

International travel was associated with outbreaks in a small number of studies, 

which affected 1288 people as a primary transmission route (Table 2-6) (Gray et 

al, 1994; Wilson et al, 2008) and was suggested as a risk factor in some analyses, 

although this was not universal. In one of two Australian studies of giardiasis risk 

factors, international travel was only significant in univariate analysis and not in 

multivariable analysis (Zajaczkowski et al, 2018). International travel was not 
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considered a risk factor in a study from Spain (de Lucio et al, 2017). The risk 

identified with both international and domestic travel may be related to activities 

undertaken in the destination and the resulting water or environmental exposures. 

Some of the studies included in this review were case-control studies or outbreak 

investigations that excluded any cases of giardiasis with a travel history from the 

study cohorts, so this was unable to be explored as a risk factor. 

A study in England showed assemblage B to be the type most frequently isolated 

from human samples where companion animals were not involved, accounting for 

64% of cases compared to 33% for assemblage A. Cases of mixed assemblages were 

rare (Minetti et al, 2015a), which is consistent with studies in several other 

countries. A study in Spain also found assemblage B was more common than 

assemblage A (66/95, 69.5% and 29/95, 30.5% respectively) (Wang et al, 2019). 

The opposite was found to be true in a Scottish study of 30 Giardia-positive cases, 

where assemblage A was isolated most frequently (21/30, 72%). This was followed 

by assemblage B and mixed infections of assemblages A and B (4/30, 14% and 3/30, 

10% respectively) (Alexander et al, 2014). This difference in predominant 

assemblage by country may also contribute to travel-associated giardiasis, due to 

traveller exposure to novel assemblages as they move to different regions. 

Another factor which is not mentioned is a potential selection bias that affects 

who receives Giardia screening tests, which until recently was predominantly 

those with a history of travel. 

 

Location Reference Year No. of cases or 
samples (Lab 
confirmed) 

 

International 
travel 

New 
Zealand  

Wilson et 
al. (2008) 

2006 1214 (1214)  

UK  Gray et al. 
(1994) 

1992–
1993 

74 (74)  

Table 2-6: Giardiasis outbreaks due to travel-associated transmission 

2.8 Multiple Transmission Routes 

Multiple transmission routes for Giardia were described in 11 studies, which 

included 1308 laboratory confirmed human cases (Table 2-7). Among these, 

international travel was the single most important factor identified in seven 
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studies. However, it should be noted that many countries in which these studies 

were based require a history of foreign travel before testing for Giardia, adding 

an element of bias into these multivariate analyses. Other risk factors reflect 

those described above for person-to-person transmission, contaminated water, 

and animal and environmental exposures. One study also identified taking 

antibiotics and having a chronic gastrointestinal condition (Reses et al, 2018) while 

another showed primary immunodeficiencies such as that of immunoglobulin A 

(IgA) (Agarwal & Mayer, 2013) as risk factors for giardiasis acquisition. 

Loc Ref Y No. 
of 

cases 
or 

sampl
es 

(Lab 
confir

med) 

Trave
l-

associ
ated 

Waterborne Foodborne Person-to-
person 

Faecal 
exposure 

Animal contact/other 

D I Tap 
Water 

U
T 

RW  R
F 

UFV F
H 

H
H 

D
C 

YC S
T 

DFC CA F
A 

W
A 

Other 

PrT  

Austr

alia 

Zajac

zkows
ki et 

al. 
(2018) 

20

16 

68 

(68) 

     

  

    

  

                   

UK Hardi
e et 

al. 
(1999) 

19
97 

58 
(58) 

    

  

    
  

                      

UK Stuart 
et al. 

(2003) 

19
98

-
19

99 

192 
(192) 

      

  

   

  

                       

UK Minet

ti et 
al. 

(2015)
a 

20

12
-

20
13 

236 

(150) 

      

  

   
  

                        

      

  
  

  

                    Reporting IBS 

symptoms, 
taking 

indigestion 
medication 

USA Reses 
et al. 

(2018) 

20
03

-
20

04 

213 
(213) 

      
  

  

  

                  Taking 
antibiotics/h

aving a 
chronic GI 

condition 
New 

Zeala
nd 

Hoque 

et al. 
(2002) 

19

98
-

19
99 

183 

(183) 
      

  
  

  

                      

New 
Zeala

nd 

Hoque 
et al. 

(2003) 

19
99

-
20

00 

69 
(69) 

childr
en 

under 
5 

      
  

  
  

                       

Swed
en 

Ander
sson 

et al. 
(1972) 

19
71 

30 
(30) 

      
  

    
  

                       

USA Lopez 

et al. 
(1978) 

19

76 

27 

(27) 

      

  

    

  

                      

USA Denni
s et 

al. 
(1993) 

19
84

-
19

85 

273 
(273) 

      
  

  

  

                      

USA Novot

ny et 
al. 

(1990) 

19

83 

45 

(45) 
          

b 

       

Table 2-7: Giardiasis outbreaks due to multiple modes of transmission 
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aStudy included two separate multivariate analyses, both with and without international travel as a risk factor 

bFound to be a factor with a family size ≥ 4 people 

Abbreviations: Loc, location; Ref, Reference; Y, Year; Travel-associated: I, international; D, domestic; Waterborne: PrT, 

pre-treatment; UT, untreated; RW, recreational water; Foodborne: RF, reconstituted foodstuff; UFV, unwashed 

fruit/vegetables; FH, food handler; Person-to-person: HH, household GI illness; DC, day-care attendance; YC, young 

children; Faecal exposure: ST, sexual transmission; DFC, direct faecal contact; Animal contact/other: CA, companion 

animal; FA, farm animal; WA, wild animal; IBS, irritable bowel syndrome; GI, gastrointestinal 

 

 

2.9 Conclusion 

This review challenges the hypothesis that Giardia outbreaks in higher income 

countries are primarily associated with foreign travel and shows that transmission 

can occur through a wide range of local routes. This likely reflects endemic 

populations of Giardia that have been overlooked due to an insistence of a history 

of foreign travel before testing in several higher income countries. Of these routes, 

contaminated water was the most frequently identified route of Giardia 

transmission in the literature, primarily due to insufficient treatment or post-

treatment contamination due to poor maintenance or practices. Water-linked 

outbreaks are also common to LMICs, but the situations are not directly 

comparable as poverty and a lack of proper sanitation are the major causes of 

high giardiasis prevalence in LMICs rather than a temporary disruption in water 

quality. This suggests that continued investment in water distribution networks in 

higher income countries is essential to control the disease and there is a need to 

avoid complacency. This systematic study also highlights a lack of robust case-

control studies for assessing the risk of Giardia in higher income countries. 

Without such analyses, it was not possible to perform a detailed meta-analysis in 

this review as has been done for LMICs (Fakhri et al, 2021). This was exacerbated 

by extremely high heterogeneity in study methods and design. It was also noted 

very few studies examined a range of possible transmission routes for an outbreak, 

with most focusing on water supply or travel. It is likely that many researchers 

similarly limit themselves and if an origin is not one of these two common routes, 

an outbreak is unlikely to be reported, further adding to the publication bias. This 

may explain the large number of outbreaks linked to water in the literature. This 

review therefore highlights the need for more in-depth studies with consistent 

methodology to improve our understanding of this pathogen in higher income 
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countries. It also underscores the need for full and publicly available 

epidemiological examinations of Giardia outbreaks to avoid such publication bias. 

Our understanding of the various transmission pathways is further hampered by 

the lack of studies that include in-depth molecular data, such as assemblage 

typing, that could be used to understand zoonotic transmission. Indeed, it was 

noted that only three studies reported molecular genotyping in their results. 

Wider employment of molecular genotyping and improved tools to determine 

specific variants will improve surveillance of sporadic cases and help identify 

outbreaks and associated risk factors. Despite these caveats, just focusing on 

reported sources and transmission routes rather than estimating risks, our 

systematic analysis suggests that there are numerous sources and routes for 

Giardia outbreaks in higher income countries, particularly due to failures in water 

treatment and infrastructure.  
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Chapter 3. Bridging section 

As Giardia duodenalis is increasingly identified in developed countries due to the 

increased sensitivity of detection techniques and a greater awareness that 

transmission is not necessarily linked to a history of foreign travel (Minetti et al, 

2016), further infection analysis will inevitably follow. In addition to standard 

epidemiological analysis, the increased application of molecular methods to 

genetically characterise parasite isolates will facilitate the investigation of 

sporadic and outbreak-associated cases. This may help in the identification of an 

infectious source, a route of transmission, and perhaps even a timeline of disease 

progression through a population. For this type of genotypic analysis to be 

efficacious, the genotyping assay deployed needs to be reliable and to 

discriminate between assemblages. This is particularly important where zoonotic 

transmission or outbreaks may occur, as biosecurity measures can be put into 

place to prevent spread from domestic or wild animals. In instances of human 

outbreaks, connections between individual cases can be established and 

potentially traced to a source, if an appropriate assay is utilised. Similar 

methodology can be applied to the investigation of giardiasis outbreaks in animals. 

One major issue with Giardia is its poorly understood reproductive biology, 

especially the role of recombination in the generation of parasite diversity. The 

historic approach of using a singular PCR assay to discern between all assemblages 

is associated with a poor success rate, which compromises not only ongoing 

attempts to understand the reproductive biology of this parasite, but efforts to 

document its transmission and prevalence. The following chapter details efforts 

to improve a commonly used molecular marker, namely tpi, for assemblage-typing 

of Giardia isolates. A particular limitation of current protocols based on this 

marker is their failure to PCR amplify a substantial proportion of field samples. 

Using published genomic sequence data for this locus, the goal of this work was 

to improve the sensitivity of this marker in terms of increasing the genetic 

diversity it encompasses, thereby improving the PCR success rate. Broad 

application of an improved marker such as this has the potential to increase the 

base knowledge of Giardia duodenalis not only in higher income countries, but 

also in LMICs.  
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Chapter 4. Molecular characterisation of Giardia duodenalis 

from human and companion animal sources in the United 

Kingdom using modified molecular markers 

4.1 Introduction 

4.1.1 General Background 

Giardia duodenalis is a protozoal parasite that has been under increasing scrutiny 

since its inclusion in the WHO’s neglected disease initiative in 2004 (Savioli et al, 

2006). The route of infection is faecal-oral and there is growing evidence of 

zoonotic transmission, increasing the importance of biosecurity in its control 

(Adam, 2000; 2001; Heyworth, 2016). It can cause gastrointestinal upset as well 

as several other long-term gastrointestinal and cognitive sequelae, placing it in a 

category of importance for children in particular (Ajjampur et al, 2011; Dann et 

al, 2018; Hanevik et al, 2009; Hanevik et al, 2014; Jethwa, 2015; Simsek et al, 

2004; Wensaas et al, 2012). Asymptomatic infections also commonly occur (Caccio 

& Ryan, 2008; Thompson & Ash, 2016). Detection of Giardia is mainly performed 

by qPCR, microscopy or ELISA. While quantitative information can be gained from 

qPCR assays, qualitative PCR when combined with Sanger sequencing can provide 

useful genetic information on isolate genotype, or ‘assemblage’ (Caccio et al, 

2002; Read et al, 2004; Savioli et al, 2006; Verweij et al, 2003). 

4.1.2 Genetic Background 

Giardia is recognised as being ubiquitous and detrimental to health and there has 

been an increasing call for an improvement in methods for detection and genetic 

characterisation (Caccio & Ryan, 2008; Caccio et al, 2005; Durigan et al, 2018; 

Savioli et al, 2006). Correct identification of assemblage types can aid in 

highlighting outbreak sources, determining or predicting directionality of infection 

and general epidemiological monitoring of the parasite. Assemblage A is a 

potentially zoonotic human type which may be sub-divided into sub-assemblages 

A1 and A2. A1 has the potential to infect humans as well as a range of other 

mammals, whereas A2 is more generally found in human hosts. Assemblage B also 

infects human and other mammals, assemblages C and D are considered the canine 

assemblages, assemblage E is primarily found in livestock, assemblage F in felines, 
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assemblage G in murines and assemblage H in seals and gulls (Table 1.1) (Heyworth, 

2016). The genetic loci used for typing should be present in all genotypes, exhibit 

an appreciable level of polymorphism among isolates and, ideally, be single copy 

in the parasite genome to help ensure detection methods are consistent, 

reproducible and informative. 

4.1.3 Limitations in genotyping 

Throughout the 1990s, the primary method for assigning assemblages to Giardia 

isolates was isoenzyme or allozyme electrophoresis, which required a large 

amount of parasite to be cultured in vitro (Monis et al, 1999; Thompson, 2004). 

However, attempts to culture Giardia from field samples are often unsuccessful 

due to excystation failure and microbial contamination (Cruz et al, 2003; Nash, 

2019). The entire small ribosomal subunit locus was initially evaluated as a genetic 

marker by restriction enzyme mapping and by PCR in the 1990s (van Keulen et al, 

1991; van Keulen et al, 1998; van Keulen et al, 1993). Subsequently, conventional 

PCR of this locus was investigated as a method of detection followed by amplicon 

sequencing and phylogenetic comparison to classify isolates. This protocol was 

developed to determine to what extent different assemblages are restricted to a 

particular host species, which assemblages have zoonotic potential and to broadly 

gauge genetic variability between assemblages. While this PCR was initially used 

to target the 18S subunit locus, additional loci were later assessed to increase the 

genotyping success rate and to provide additional genetic discrimination. 

The genes beta giardin (bg), triosephosphate isomerase (tpi) and glutamate 

dehydrogenase (gdh) were evaluated by Caccio, Sulaiman and Read respectively 

(Caccio et al, 2002; Read et al, 2004; Sulaiman et al, 2003) for their degree of 

polymorphism and found to be sufficient to draw phylogenetic inferences to 

assemblage and sub-assemblage level. However, genetic markers based on these 

genes have proven to be inconsistent in terms of PCR success rate and genetic 

classification and only limited further development of markers based on bg and 

tpi has been undertaken. Thus, many studies have been reliant on the original 

published markers (Abd El-Latif et al, 2020; Abe et al, 2010; Caccio & Ryan, 2008; 

Colli et al, 2015; Daly et al, 2010; ElBakri et al, 2021; Lebbad et al, 2010; Nolan 

et al, 2017; Robertson et al, 2007; Volotao et al, 2007; Yang et al, 2010). Many of 

the current PCR primers contain several degenerate bases, which increases the 
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possibility of off-target primer binding. While this can accommodate a degree of 

genetic variation within and between assemblages, it decreases the ability of all 

primers in a reaction to bind to template, as only a proportion of the primer mix 

will match the template at degenerate positions. Additionally, when phylogenetic 

comparisons are undertaken using each of these genes, conflicting results often 

arise  (Caccio et al, 2008). For example, tpi and gdh showed assemblage ambiguity 

when compared with one another and when compared with the 18S genotyping 

results (Read et al, 2004; Traub et al, 2004). Due to its conflict with other markers 

and low amplification success, tpi is a good candidate for further development 

(Zajaczkowski et al, 2021). If isolates cannot be amplified or definitively placed 

within a specific assemblage, it limits the capacity of the marker to be applied to 

outbreak analysis and elucidate transmission pathways (Thompson & Ash, 2016). 

4.1.4 Developing Primers 

To develop new primers, a representative collection of Giardia-positive samples 

is needed from the field, as opposed to a limited number of laboratory-cultivated 

isolates. Additionally, a consistent and reproducible method of DNA extraction is 

required to maximise the amount of Giardia DNA recovered from samples 

(Thompson & Ash, 2016). Improved genotyping methods should encompass as much 

Giardia genetic diversity as possible and should be tested on a range of field 

samples to determine if they have utility in drawing epidemiological and biological 

conclusions. 

4.1.5 Study Objectives 

The first objective of the present study was to refine an existing genetic marker 

to improve sensitivity, in terms of ability to detect a range of genotypes, when 

applied to a panel of Giardia qPCR positive field samples. The second aim was to 

utilise the improved markers to characterise a national collection of companion 

animal and human samples to evaluate host specificity of Giardia duodenalis in a 

high-income country, i.e. the United Kingdom. 

Firstly, an optimal method for DNA extraction from Giardia cysts in faecal material 

was identified, as Giardia cysts are relatively robust (Adam, 2000; 2001; Caccio 

et al, 2005) and may be present in low numbers. Although the literature describes 

many techniques for extracting genetic material from the cysts, an optimal 
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method has not yet been agreed upon. Secondly, published sequences of Giardia 

genes were assessed to identify allelic polymorphisms between and within 

assemblages, which may have been contributing to a lack of PCR amplification for 

some isolates. Once this was completed, the primer sequences were redesigned 

based on the genetic diversity found at the binding sites of the target loci. This 

allowed the development of adjusted primers, for which the amplification 

parameters were optimised. The new primers were applied to a wide panel of 

field isolates which, in addition to experimentally validating the markers, 

provided new insights into host-specificity of assemblages in the context of a high-

income country. 

4.2 Materials and Methods 

4.2.1 Parasite Material 

Faecal samples from companion animals were obtained from the University of 

Glasgow’s Veterinary Diagnostic Services (VDS). This comprised samples sent to 

the laboratory to investigate infectious causes of diarrhoea in animals attending 

a variety of veterinary clinics primarily in the United Kingdom between the 9th 

January 2018 and the 7th June 2021. DNA extracts of faecal samples which were 

found to be Giardia positive by a diagnostic qPCR (Verweij et al, 2003) were 

retained for the present study and were stored at 4 °C. 125 feline and canine 

samples with Ct values ranging from 17 to 39 were collected.  

Human faecal samples containing Giardia were obtained from the Scottish 

Parasite Diagnostic and Research Laboratory (SPDRL), which forms part of the 

National Health Service (NHS) in Scotland. Historically, only foreign travel-

associated cases of diarrhoea were tested for Giardia, however following a recent 

change in policy, Giardia antigen ELISA testing is now routinely undertaken on all 

samples submitted to NHS laboratories for diarrhoea investigation. A total of 79 

samples from the Glasgow and Clyde areas were collected between September 

2019 and March 2020, and a sub-sample of each was stored in Faeces Stabilization 

Buffer (Stratec) at 4 °C before DNA extraction for the current study. 

4.2.2 DNA Extraction 

A preliminary comparison of extraction methods was performed using 0.2 g sub-

samples of companion animal faecal material. Using the standard manufacturer-
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recommended protocols, results were compared for (a) the taco Nucleic Acid 

Automatic Extraction System (Genereach), (b) repeated freeze-thaw using liquid 

nitrogen followed by a PSP stool kit and (c) bead beating with a Tissuelyser 

followed by a PSP stool kit. A comparison of Ct values from a Giardia-specific qPCR 

on the various extracts indicated that the taco method generated the highest 

concentration of recovered Giardia DNA and it was therefore selected for use in 

this study. Thus, for each companion animal sample, approximately 0.2 g of faecal 

material was placed into an Eppendorf tube containing 1 mL of lysis buffer 

containing 3% Polyvinylpolypyrrolidone (PVPP). The buffer consisted of 0.24 M 

Triton X-100, 0.36 M diaminoethanetetra-acetic acid disodium salt dihydrate and 

10 M guanidine thiocyanate in 0.1 M Tris (pH 6.4). 100 µL of a solution containing 

a known quantity of feline herpesvirus (FHV) in extraction buffer was added, to 

act as a control for DNA extraction. The tube was vortexed to mix and left to sit 

for ten minutes, with another brief vortex five minutes later. After this, the 

sample was centrifuged for one minute at 16.2 g (Eppendorf Centrifuge 5415D). 

The taco Nucleic Acid Automatic Extraction System was then employed, which 

utilised magnetic bead separation technology. 200 µL of supernatant was then 

loaded into the left-most well of the pre-loaded taco plates, which contained lysis 

buffer and magnetic beads, according to manufacturer’s instructions. Each plate 

contains 48 pre-loaded wells and is used for the simultaneous extraction of eight 

samples. The wells contain a series of washing buffers, with the final well 

containing a proprietary elution buffer. This plate is loaded into a taco machine 

which performs a dual DNA/RNA extraction cycle over the course of 30 minutes. 

If a sample was to be utilised for Sanger sequencing following PCR analysis, the 

buffer in the final cell of the plate was replaced with 200 µL of dH2O. DNA extracts 

were then removed from the right-most well and placed into new Eppendorf tubes. 

Human samples were extracted using a Stratec PSP Spin Stool DNA Plus Kit 

according to manufacturer’s instructions. A different extraction method was used 

for these samples as there was no access to the taco machine in the human ethics-

approved laboratory where they were extracted. 

4.2.3 Designing and Optimising Primers 

The five whole-genome sequences available in GiardiaDB (https://giardiadb.org) 

were queried and five tpi gene sequences were downloaded as FASTA files 

together with 1 kb of upstream and downstream sequence data. The sequences 
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were then aligned and trimmed to the published tpi primer sites (Sulaiman et al, 

2003) using Geneious Prime (Dotmatics). The published primers for tpi were 

directly compared with the corresponding target loci in Giardia duodenalis 

genomic sequences present in GiardiaDB using ClustalX2 (Larkin et al, 2007). New 

primers were designed by modifying the existing primers to match bases in the 

full genomic alignment (Figure 4-1). New tpi primers were ordered from Eurofins 

Genomics (Ebersberg, Germany) and temperature gradients and concentration 

grids performed on four samples of canine origin and three of feline origin with Ct 

values ranging from 17 to 33 to determine the optimal PCR conditions. A Giardia-

rich positive control DNA sample representing assemblage A1 (genome WB clone 

6) derived from sterile, lab-cultivated trophozoites at a diluted concentration of 

1:200 was used as template in the first round of a nested PCR. To determine the 

optimal annealing temperature for both rounds, an annealing range of 53.2-

66.7 °C was tested first with the internal primers then with the external primers, 

with a constant 1 pmol concentration of forward and reverse primers (Figure 4-2). 

The concentration grid tested all combinations of forward/reverse primers at 

concentrations of 4 pmol, 2 pmol, 1 pmol and 0.5 pmol in a 20 µL total reaction 

volume again with the internal primers first then with the external primers (Figure 

4-3). Optimal annealing temperature and primer concentrations were determined 

before the PCR assay was applied to field sample material. 
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Figure 4-1: Published and modified primers aligned to full Giardia sequences 

Alignment of five full Giardia genomes along with published and modified primers with differences outlined by a box. 

GL50803_93938_AWB: Assemblage A1; DHA2_93938_A2: Assemblage A2; GLP15_4986_EP15: Assemblage E; 

GL50591_1369_BGS: Assemblage B; GSB_93938_BGSB: Assemblage B. 
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Figure 4-2: Temperature gradient using modified tpi primers 

Optimisation of annealing temperature using purified DNA extract. A: First round of the nested PCR using the modified 
tpi primers. B: Second round of the nested PCR using the modified tpi primers. *: Brightest band indicating the selected 
conditions. “Other” refers to a different DNA sample than that used in the remaining columns for simple comparison. The 
positive control was DNA extract of a WB line of assemblage A sterile trophozoites (ATCC 50803) diluted to 1:20. 
 

 

Figure 4-3: Primer concentration grid using modified tpi primers 
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Optimisation of primer concentration using purified DNA extract. A: First round of the nested PCR using the modified tpi 
primers. B: Second round of the nested PCR using the modified tpi primers. *: Brightest band indicating the selected 
conditions 

 

4.2.4 Novel TPI Assay 

As the original tpi PCR assay was developed as a nested protocol, the same 

approach was applied in the current work. Both rounds comprised a total 20 µL 

reaction volume including 3 µL of template DNA, 0.5 U of HotStart Taq (Qiagen) 

and 25mM dNTPs. While the first round used 0.5 pM and 2 pM of forward and 

reverse primers respectively, the second round used 0.5 pM of both forward and 

reverse primers. The first round involved an initial denaturation step of 5 minutes 

at 95 °C followed by 40 cycles of 94 °C, 54.2 °C and 72 °C for 1 minute each, 

ending with 10 minutes at 72 °C. The product was diluted 1:1000 before being 

added to the reaction mix of the second round, which comprised 5 minutes at 

95 °C followed by 40 cycles of 94 °C, 57.8 °C and 72 °C for 1 minute each, ending 

with 10 minutes at 72 °C. 

Once the second round of the PCR was completed, 15 µL of the product and 3 µL 

of loading dye was subjected to electrophoresis on a 1 % TBE agarose gel at 100 V 

for 45 minutes using a 100 bp ladder. The target sequence was 531 bp, and any 

band appearing around this location was excised using a Qiagen gel purification 

kit and sent to Eurofins for sequencing. 

4.2.5 Amplicon Cloning and Sequencing 

A PCR Thermofisher pJET cloning kit was used per the manufacturer’s instructions 

to clone and amplify low concentration amplicons. The kit was used with 1 µL 

sample for the ligation reaction transformed into Escherichia coli. Three plates 

per sample of LB-agar spiked with ampicillin at a final concentration of 100 µL/mL 

were set up, and half the plate was seeded with one drop of transformed E. coli 

while the other half was seeded with three drops. The plates were incubated 

overnight at 37.5 °C. Three large colonies from each plate were picked for each 

sample and incubated overnight in 5 mL of LB. The broth was centrifuged to pellet 

the E. coli and the supernatant discarded. The pellet was resuspended into 50 µL 

water and plasmids were purified using a Qiagen miniprep kit. The samples were 

analysed on a Qubit 4 (ThermoFisher Scientific) to confirm there was at least 25 ng 
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of plasmid DNA for a 500 bp target product, which was then diluted to 5 ng/µL for 

Sanger sequencing using a Mix2seq kit (Eurofins). Two tubes of 15 µL extract were 

sent to Eurofins for sequencing, containing either 2 µL of the forward or reverse 

primer at 10 pmol/µL. 

4.2.6 Phylogenetic and Statistical Analysis 

Amplicon sequences along with reference genomes WB-A1, DH-A2, GS-B, 

KT728520_C, P15-E and KP866788_F were aligned using CLUSTAL Omega (Sievers 

et al, 2011), trimmed to the same length and sample phylogeny estimated using 

RAxML (Stamatakis, 2014) and maximum likelihood with 100 bootstraps. Outputted 

Newick trees were visualised using FigTree (Rambaut, 2014). Diagnostic assay Ct 

values of amplifying and non-amplifying samples were compared using a Wilcoxon 

Rank Sum method. 

4.3 Results 

4.3.1 Primer Analysis and Redesign 

The published primer sequences were compared with available complete Giardia 

genomic sequences at the tpi locus to detect mismatches in the primer sequences 

that may explain PCR failure (Figure 4-1). Whenever a mismatch between a primer 

base position and any of the genomes of assemblages A, B or E was detected, a 

suitable alternative to encompass all genomic sequences was inserted in its place. 

In total, six mismatching positions were identified between the published primers 

and the full genomes. These bases were either replaced with appropriate 

degenerate bases or the primer was shifted slightly. Care was taken to avoid 

hairpin formation, provide optimal GC content and match annealing temperatures 

(Northwestern University’s OligoCalc: Oligonucleotide Properties Calculator). For 

one primer, one base was not amended as the replacement base provided an 

unsuitable melting temperature (under 50 °C) and the primer could not be shifted 

without significantly altering melting temperature. A single base was also removed 

from the end of the internal reverse primer to bring the melting temperature from 

68-70 °C to 66-68 °C. The newly designed primers for first round (external) 

amplification were 5 ′ -AAATYATGCCTGCTCGTCG-3 ′  (Forward) and 5 ′ -

CAAACCTTYTCYGCAAACC-3′ (Reverse). The primers used for the internal second 
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round were 5 ′ -CCCTTCATCGGYGGTAACTT-3 ′  (Forward) and 5 ′ -

TGGCCACCACRCCCGTGCC-3′ (Reverse) (Y and R notations, Cornish-Bowden, 1985). 

4.3.2 Optimisation of New Primers 

The newly designed primers were tested to find the optimal annealing 

temperature and oligo concentration for each round of the nested PCR assay. For 

the first-round external primers, the optimal annealing temperature was found to 

be 54.2 °C, with concentrations of 0.5 pM and 2 pM for forward and reverse 

primers, respectively. The second-round internal primers were found to have an 

optimum annealing temperature of 57.8 °C with concentrations of 0.5 pM each for 

forward and reverse primers. Following a series of test dilutions of 1:100, 1:500 

and 1:1000, the optimal concentration of the primary product for the second-

round reaction was found to be 1:1000. Following optimisation, both sets of 

markers were tested on the seven field samples picked to represent a range of 

parasite loads, as inferred from diagnostic PCR Ct values, and host species 

together with the DNA extract of the sterile trophozoites as a positive control. 

These seven samples were used with the initial PCR primers at the beginning of 

the project and throughout the troubleshooting process, then retested with the 

modified primers at the end of designing and optimising (Figure 4-). The published 

assay was able to generate clear, convincing bands from three samples together 

with weak amplicons from a further two, which were insufficient for Sanger 

sequencing. In contrast, the novel assay was able to generate strong bands from 

each of the seven DNA samples. These samples were sequenced and found to 

represent assemblages A, C and F. Sequence data is available on the GenBank 

database under accession numbers 2645542-OP860417 through 2645542-OP860514. 
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Figure 4-4: Comparison of published and modified tpi primers 

Target product at 531 bp. Top photo: published primers using published conditions on seven field samples from 

Veterinary Diagnostic Services, Bottom photo: modified primers using optimised conditions on the same seven field 

samples 

4.3.3 Genotyping of Scottish human and animal-derived Giardia 

The redesigned and optimised tpi PCR assay was applied to 174 companion animal 

and 79 human faecal samples positive for Giardia by qPCR and ELISA respectively. 

Of these samples, 73 companion animal samples and 37 human samples generated 

bands in the expected location and these were sent for Sanger sequencing. This 

corresponded to genotyping success rates of 41.95% and 45.6% respectively. Using 

99 samples for which full-length good-quality sequence was obtained, a cladogram 

was constructed incorporating published sequences representing assemblages A1, 

A2, B, C, and F trimmed to the tpi locus as reference and Giardia muris as an 

outgroup (Figure 4-4).  
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Figure 4-4: Phylogenetic tree of field sample results 
Phylogenetic tree representing the assemblage distribution of the field sample amplicons generated. Bootstrap values 
on major branches are included. The scale of the genetic distance is indicated. * indicates reference genome. 
Genome_GS-B: Assemblage B. Genome_WB-A1: Assemblage A1. Genome_DH-A2: Assemblage A2. KP866788_F: 
Assemblage F. KT728520_C: Assemblage C. G_Muris: Giardia muris genome. 

 

Two feline assemblage F sequences were excluded due to insufficient sequence 

length. The field samples formed into four discrete clusters corresponding to the 
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assemblage A, B, C and F reference sequences, supporting the anticipated 

phylogeny of Giardia and demonstrating the utility of the modified primers for 

assemblage-typing. Isolates representing different assemblages cluster into 

monophyletic groups and while there is strong bootstrap support for most major 

branches of the tree, there is some ambiguity as to the relative position of B, C 

and A/F clades. The tree supports the current delineation of G. duodenalis into 

assemblages via the representative sequences of assemblages A, B, C, and F.  The 

phylogenetic tree revealed that the amplicons generated in this study represented 

a mixture of assemblages A, B, C and F. Human samples generated 12 assemblage 

A (one A1 and 11 A2) and 25 assemblage B amplicons, these two human-associated 

assemblages being anticipated in the human samples. Five companion animal 

samples generated assemblage A amplicons, comprising four feline and one canine 

samples, and four amplicons from feline samples were placed in assemblage B. 

Three of four feline samples and the canine sample categorised as A were sub-

typed as A1 and the remaining feline sample was sub-typed as A2. The panel of 

canine samples, anticipated to correspond to either of the putatively canine-

specific assemblage C or D, resulted in a mixture of assemblages C, A and F. 

Amplicons derived from feline samples, expected to correspond with putatively 

feline-specific assemblage F, were found to be primarily of assemblage F, although 

four corresponded to assemblage B (Table 4-1: Summary of field sample results). 

Eight companion animal samples produced faint bands which were too weak to 

sequence. 

Assemblage Total Amplified per Species 

A Human n=12 (A1 n=1, A2 n=11) 

  Canine n=1 (A1 n=1, A2 n=0) 

  Feline n= 4 (A1 n=3, A2 n=1) 

B Human n=25 

  Canine n=0 

  Feline n= 4 

C Human n=0 

  Canine n=10 

  Feline n=0 

F Human n=0 

  Canine n=8 

  Feline n=38 
Table 4-1: Summary of field sample results 
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Table demonstrates the number of samples successfully sequenced (n) out of total number of 

samples tested (N). Humans N = 79. Canine N = 52. Feline = 122. 

The Ct values of the companion animal samples which could be typed ranged from 

17 to 37, while those that could not ranged from 23 to 36. Overall, the Ct values 

of the non-tpi amplifying samples was found to be significantly higher (P = <0.001, 

Wilcoxon Test), indicating that parasite DNA concentration within samples is a 

contributing factor explaining the success or failure of PCR and consequently the 

ability to genotype samples. 

4.4 Discussion 

The novel tpi-based genotyping assay described here may be used to classify 

human and animal derived isolates into the currently accepted assemblages with 

improved sensitivity in terms of the proportion of samples that can be genotyped 

when compared with the lower rates 23.2% (19/82) and 20% (9/45) in the Rafiei 

and Wang studies   (Rafiei et al, 2020; Wang et al, 2017; Zajaczkowski et al, 2021). 

However, the failure to amplify from a marked proportion of field samples reflects 

the ongoing challenge of genotyping Giardia isolates. This is an issue shared with 

markers based on bg and gdh loci unless the assemblages of interest are limited 

to A and B, which appear to be associated with a higher success rate (Calegar et 

al, 2022; Correa et al, 2020; Rafiei et al, 2020; Zajaczkowski et al, 2021). The 

tendency of tpi to be used in studies where animal samples are involved helped 

the decision to begin modifying the existing primers for this locus (Caccio et al, 

2008; Lebbad et al, 2010; Zou et al, 2021). We demonstrate that this new assay 

can amplify a wider range of field samples than the published protocol, as 

illustrated in Figure 4-2. The higher level of success of the new primers illustrates 

that amplification failure associated with the existing primers may be explained 

in some cases by hitherto unappreciated polymorphism at the primer binding site, 

which would cause a mismatch in bases and prevent PCR amplification. 

The current trend in publishing Giardia PCR amplification success rates allows the 

comparison of these modified primers to the original published primers. The 

amplification rate of companion animal and human samples was 73/174 (41.95%) 

and 37/79 (46.8%) respectively. When compared with the success rates of tpi 

quoted in similar studies, the companion animal success rate of tpi in this study 

was consistently much higher and the human success rate was either higher or 
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lower, depending on the study (Correa et al, 2020; Rehbein et al, 2019; Sommer 

et al, 2018; Wu et al, 2022; Zajaczkowski et al, 2021). In the present study, 

samples with a higher parasite load were associated with a slightly higher 

likelihood of genotyping success. This is logical and an even stronger correlation 

may have been observed if the primers had been able to capture more of the 

allelic polymorphism suspected to exist in the Giardia population. It is possible 

the greater amount of parasite genetic material in lower Ct samples increases the 

likelihood of partial or imperfect binding, sufficient to initiate a PCR reaction. 

The increased parasite load may also simply ensure there is enough genetic 

material to which the primers can bind.  

While many of the Giardia assemblages detected in this study were of the 

anticipated type given their host, some unexpected results were generated. 

Several canine samples contained assemblage F genotypes; this has not been 

documented previously, although assemblage F has been found in cetaceans and 

pigs (Heyworth, 2016). While this may represent true cross-species infection, one 

may speculate that it could be explained by dogs ingesting Giardia-positive feline 

faecal material and experiencing a transient infection. Judging by the Ct range of 

these samples, which ranged from 24 to 37, both scenarios may be possible. This 

result does, however, call into question how strictly host-specific this and 

potentially other assemblages truly are. In 2016 Heyworth published a paper 

detailing the various mammalian hosts found with each assemblage. The only 

assemblage that remained strictly within its host niche was assemblage G, which 

until that point had still only been found in rodents (Heyworth, 2016). The findings 

of the present study and others (Caccio et al, 2018; Cardona et al, 2011; Deng et 

al, 2018; Foronda et al, 2008; Qi et al, 2015) suggest that the idea of host-

specificity should perhaps be better considered as host-propensity. As more 

samples from different hosts are typed, the likelihood of finding different 

assemblages in different hosts can be better quantified in different geographical 

areas with varied epidemiological situations. In line with these ideals, four feline-

derived samples were found to contain classic human assemblages; these 

comprised three assemblage A and one assemblage B samples and this echoes the 

findings of previous studies utilising samples from a combination of low- and high-

income countries (Adam, 2000; 2001; Caccio & Ryan, 2008; Lebbad et al, 2010; 

Read et al, 2004). Assemblage C was detected in a range of canine samples in the 
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present study. In terms of the efficacy of the presented tpi assay, this is an 

encouraging finding as no assemblage C genome was available for the genomic 

analysis. 

While the putative dog and cat-specific genotypes were not identified in humans, 

the finding of human-infective assemblages A and B in companion animals, 

specifically cats, raises the possibility of zoonotic disease transmission in the 

domestic setting. These findings highlight the importance of applying suitable 

hygiene measures when handling diarrhoeic companion animals suspected of or 

diagnosed with Giardia infection even in high-income countries. Heyworth’s study 

cites that assemblages A and B have been found in companion animals in several 

countries, which further supports the need for appropriate biosecurity measures 

around diarrhoeic animals or where companion animals may be around food 

preparation or eating surfaces such as in cat cafes (Covacin et al, 2011; Lebbad 

et al, 2010; Li et al, 2013; Suzuki et al, 2011; Volotao et al, 2011). 

The field trial of an oral canine Giardia vaccine in 2016 provided new and 

important insights into the potential of companion animals to pose a risk of 

zoonotic transmission in a developing country. This study showed a dramatic 

reduction in infection rate and protective effect in companion animals while 

simultaneously reducing the rate of infection in children (Serradell et al, 2016). 

The reduction in childhood infection occurred as a secondary effect due to the 

treatment of the human-infective strain harboured by the animals in the area. 

This vaccine has yet to enter mass-production. In another study, dogs in urban 

settings in the USA without any clinical signs were also found to harbour 

assemblage A and B strains, meaning they have the potential to shed strains which 

may be human-infective. This highlights the notion that biosecurity should not be 

limited to diarrhoeic animals (Covacin et al, 2011). Our study found that 8/46 

(17.4%) of successfully sequenced feline samples contained potentially human-

infective strains, based on assemblage typing. In high-income countries where 

felines are often kept indoors as pets, this underscores the need to wash hands 

after cleaning litter boxes, disinfect litter boxes regularly and dispose of waste 

safely. Common sense hand washing before eating and waste disposal measures 

should be applied with all companion animals to prevent the spread of any 

infectious material. 
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This project has highlighted the need to appreciate assemblage types in terms of 

differing host propensity rather than absolute species-specificity and it would be 

advantageous if epidemiological models were to incorporate this concept. 

Additionally, increasing the resolution of markers in terms of sub-assemblage 

typing would help appreciate and quantify the zoonotic risk that particular strains 

pose. With more refined genetic markers, medical and public health officials may 

discover the actual risk of zoonotic infection may be higher than estimated and 

more detailed, evidence-based public health advice may be developed to limit 

parasite spread. 

4.5 Conclusion 

This study details a novel tpi-based genotyping assay for Giardia, accounting, so 

far as possible, for genetic variation in the parasite genome, based on published 

sequence data. Genetic polymorphism in the parasite population appears to be a 

major factor in determining the success or failure of PCR-based genotyping 

methods and further investigation into other genetically informative loci is 

warranted to underpin development of an effective multi-locus genotyping 

approach. However, as evidenced in this study, even a single-marker based 

approach can provide new insights into the molecular epidemiology of giardiasis. 

Several human-infectious assemblages were found in companion animals using this 

single-marker, which provides further evidence for zoonotic infection and a basis 

for further research into potential non-human reservoirs. 

By integrating new information from the ever-expanding number of genomic 

sequences into the improvement of Giardia genetic markers, it may be predicted 

that the rate of genotyping success will increase together with confidence in 

assigning assemblages. It is possible that amount of diversity in the field 

population of Giardia is sufficiently great that, even at single genetic loci, several 

assemblage-specific PCRs may be required, which could be developed as a 

multiplex PCR. The development of higher resolution markers will allow 

directionality and origin of infection to be inferred more easily which would allow 

public health bodies to develop biosecurity measures specific to the major routes 

of transmission in their region. In high-income countries, this may mean paying 

particular attention to companion animals and water purification (Krumrie et al, 

2022). While attention is classically paid to water as a transmission route in low-
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income countries (Aw et al, 2019; Saaed & Ongerth, 2019; Squire & Ryan, 2017), 

the availability of knowledge of companion animal infection may also influence 

biosecurity advice surrounding free-roaming animals to include washing hands 

whenever contact is made with the animal or with soil in which an animal is known 

to defaecate. 

As more comprehensive genotyping methodology is developed, the veracity of the 

current assemblage paradigm can be reviewed and revised if necessary. With more 

complete genomic information and refined detection techniques, the molecular 

epidemiology of Giardia can be explored in different areas of the world, 

addressing its neglected status with the WHO. 
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Chapter 5. General Discussion 

5.1 Challenging Historic Notions 

In the first part of this thesis, outbreak studies in high-income countries with 

confirmed Giardia aetiologies were analysed for transmission routes. While 

previously travel-associated transmission was thought to contribute to a high 

number of Giardia outbreaks in these countries, the literature review indicated 

that waterborne and person-to-person transmission involving young, ambulatory 

children was the key underlying factor. This shows how Giardia duodenalis is still 

a poorly understood parasite, especially in high-income countries where the 

extent of its endemic nature is still being explored. Part of the reason for this 

poor understanding is the perpetuation and historically held ideas about 

transmission that continue unchallenged, coupled with low resolution markers 

that are not improved or rejected completely in the pursuit of better methods. 

This thesis has not only challenged the idea that historically held notions should 

be consistently questioned with ever-evolving molecular typing methods, but 

highlighted the apathy of the Giardia community to press forward with the 

development of novel techniques that would provide more complete and useful 

information about the organism, such as WGS. In this thesis, we have 

demonstrated Giardia to be an endemic parasite transmitted by means other than 

travel. Currently it is rarely included in basic diarrhoeal screening protocols from 

those without a history of travel because the cause is believed unlikely to be 

giardiasis. Medical and public health professionals will eventually need a rapid, 

easily accessible method with which to genetically characterise samples to gain 

important epidemiological and biological insights and to generate more definitive 

information on Giardia’s endemic nature and host specificity. It is unknown 

whether in the future isolate phenotype, in terms of pathogenicity or drug 

resistance, can be inferred from genomic data. If pathogenicity is linked to 

genotype, the creation of suitable and easy-to-access knowledge bases will be 

essential in exploiting this type of information. 

While only one marker was optimised in this project due to time constraints, 

ideally markers based on beta-giardin and glutamate dehydrogenase would also 

have been redesigned and optimised. One locus provides sufficient information 

for assemblage typing, but three loci which are applied using the same extraction 
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techniques could potentially provide additional supportive information and 

increased genetic resolution. While the reliance on a single marker is a limitation 

of the present study, the distinct clustering observed in the cladogram provides 

reassurance that assemblage assignment is valid. If all markers could be improved 

and applied regularly, one may hypothesise that new routes of transmission and 

pockets of infection may be discovered. 

5.2 The Limitations of Published Studies 

A considerable limitation at the beginning of the project was the lack of published 

success rates of current genetic markers when applied to non-human samples. The 

practice of not sharing Giardia genotyping success rates has decreased in recent 

years. However, the lack of published results in this area meant that a significant 

proportion of project time was devoted to repeating the work of others. More 

generally, across the scientific discipline, a substantial amount of time is spent 

repeating techniques that have been previously attempted but not published, as 

competition for research funding and publication pressures create a bias toward 

obtaining and publishing positive, potentially non-reproducible results (Baker, 

2016; Jarvis & Williams, 2016). Yet it may be argued that by publishing negative 

results, time and effort would be spared, projects would progress more rapidly, 

the amount of animals involved in science could be minimised and trends could be 

discovered in negative data (Boorman et al, 2015; Gundogan & Agha, 2016; 

Matosin et al, 2014). This project discovered some small, novel fragments of 

information in the process of troubleshooting, such as the most effective of three 

extraction techniques, but time could have been better spent testing more 

samples, modifying the two other loci or looking for new genotyping techniques. 

Perhaps high-impact scientific journals should accept more negative result studies, 

making better use of research funds thereby allowing science to progress even 

more rapidly. 

5.3 Future Genotyping Technology 

Despite the improvements documented in this study, the feasibility of using a 

single nested PCR for each assemblage for even one locus, let alone three, in a 

public health surveillance setting is low due to time and resources required, 

balanced against the likelihood of generating actionable information. This is 

particularly true in LMICs, where funding may not be as readily available to public 
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health services. Designing assemblage-specific primers may be challenging due to 

the large amount of polymorphism that has gone undetected thus far. One may 

hypothesise that without the future publication of additional wide-scale Giardia 

WGS datasets, any improvements in marker design will be incremental in nature. 

Even if samples can be amplified, the three loci commonly used to assign 

amplicons to their respective assemblages often disagree (Heyworth, 2016), yet 

the Giardia community still uses them to draw important epidemiological 

information. An immediate question would be whether each locus is identifying 

different components of a mixed infection or if the assemblages are not as 

genetically isolated as currently assumed. An alternative method that would 

provide useful fundamental and practical information is whole genome sequencing, 

a technique that has been used by Salmonella reference laboratories to detect 

and sequence various serotypes after other molecular techniques failed to capture 

the genetic variability of the bacteria (Ibrahim & Morin, 2018). This is a technique 

widely available to government and public health laboratories and, with recent 

advances in technology, is much less time consuming and labour intensive than a 

series of nested PCRs. This would provide a large amount of baseline sequence 

data from which we could learn more about Giardia. Once this data is gathered, 

a comprehensive database of complete genomes would be helpful for 

epidemiological analysis and other research purposes. To date, WGS has only been 

applied to cultured Giardia isolates and with only a proportion of isolates capable 

of adapting to culture, an inevitable bias exists in the generation of sequencing 

libraries. This may be overcome in the future with the development of DNA 

capture methods for Giardia, which offer the potential of enabling WGS from 

limited levels of template DNA. If this system could be developed, this would still 

necessitate Giardia WGS being a two-step endeavour, which is considerably more 

involved than, for example, sequencing bacteria. 

5.4 Inadequacy of Current Genotyping Markers 

The inability to type a large proportion of field isolates of Giardia means that the 

zoonotic potential of this parasite and relationship of genotype to virulence 

phenotype cannot be fully explored. This raises the question of what other 

pathogens are being overlooked or underestimated due to poor detection 

techniques and pinned on low- or middle-income countries as regions of origin, 
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such as Schistosomes or Leishmania, which are both considered neglected tropical 

pathogens associated with poverty (Engels & Zhou, 2020). Many outbreak studies 

in the chapter 2 review were excluded from formal analysis because there was not 

definitive evidence to state a clear aetiology, which is an important public health 

aspect. If no aetiology is identified in an outbreak, preventative measures cannot 

be as accurately applied and trends for a particular organism cannot be 

extrapolated from data. While disease-causing organisms are difficult to isolate 

from some locations, such as where rapidly moving water is involved, the situation 

is not helped by the baseline inability to detect the pathogen consistently and 

accurately in a laboratory setting. If these PCR markers were improved or another 

more reliable method, such as WGS, was developed, the quality of evidence 

provided in outbreak studies would undoubtedly improve. 

5.5 Protecting Children 

One of the important transmission routes that emerged from the review was from 

children to other children or from children to adults. This is aided, in part, by the 

small cyst diameter of 5 by 7 to 10 µm and the cyst’s immediately infective nature 

upon excretion, coupled with the potential for infection with ingestion of as few 

as ten cysts (Adam, 2001). This highlights the potential for faecal pathogens to be 

transmitted in households with children and also suggests more appropriate 

biosecurity measures should be applied in institutions where children are 

commonly present. These discoveries mirror those of Salmonella, for which 

children are an important reservoir and where strict biosecurity measures are able 

to restrict spread (Bula-Rudas et al, 2015). These measures are especially 

important given the developmental deficits that can arise from infant giardiasis 

and the ease with which spread can be halted. Ensuring day care facilities use the 

correct disinfectant, regularly decontaminating splash pads where children are 

known to play, and heightened biosecurity around swimming pools at times when 

children are present could potentially disrupt the transmission of infective cysts 

by a significant amount. While it is difficult to monitor the frequency and thorough 

nature with which washing occurs at an individual level, more general, population-

based cleanliness measures can be applied although this can only happen if the 

biology and transmission of pathogens such as Giardia are more completely 

understood. Countries should be working to learn everything they can about 

pathogens that threaten the health and future of their children. 
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5.6 Issues with Treatment 

Treatment of Giardia is rapidly becoming an issue, due to both failure of 

treatment and treatment resistance (Carter et al, 2018; Lalle & Hanevik, 2018; 

Leitsch, 2015; Morch & Hanevik, 2020). Treatment failure is defined as the failure 

of an intervention to produce eradication of a parasite or organism. This is often 

the result of human error, such as inappropriate medication dosage, failure to 

complete a course of treatment, or lack of adherence to dosage advice (Lalle & 

Hanevik, 2018). In contrast, treatment resistance is defined as the ability of an 

organism to survive and/or multiply despite the administration of an appropriate 

dosage of an agent meant to counteract this activity (Carter et al, 2018; Lalle & 

Hanevik, 2018). Treatment resistance is becoming an increasing concern within 

the medical community and is being monitored more frequently by public health 

officials (Lalle & Hanevik, 2018; Leitsch, 2015). The first line treatment for 

humans has been metronidazole with albendazole as a second line or concurrent 

treatment (Carter et al, 2018; Lalle & Hanevik, 2018; Leitsch, 2015), and 

metronidazole or fenbendazole in companion animals (Thompson et al, 2008). 

Metronidazole has been used since the 1960s as a defence against Giardia, which 

is yet another demonstration of how this parasite has been left behind in scientific 

progress (Lalle & Hanevik, 2018). One area of discussion in the veterinary 

community is whether to treat apparently asymptomatic cases of Giardia, given 

that inappropriate treatment may contribute to resistance (Tysnes et al, 2014). 

Appropriate and effective assemblage-typing markers may help determine 

whether host apathogenic host species/assemblage combinations can be defined 

and this may in turn reduce unnecessary treatment and the development of 

resistance. If a host is not truly harbouring an assemblage commonly found in its 

species and is showing no clinical signs, treatment can be foregone. It may be 

hoped that once higher-resolution markers are available, a database relating 

treatment success with Giardia genetic determinants can be developed, a tactic 

used to combat multi-drug resistant Staphylococcus aureus (Lowy, 2003). 

5.7 Concluding Remarks 

The WHO’s top Neglected Tropical Diseases list is important in drawing attention 

to pathogens which are not receiving sufficient research interest and financial 

support, and these particularly affect developing countries. These pathogens, 
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such as Giardia, do not recognise or respect international borders and can also 

cause underappreciated endemic disease in higher income countries. With limited 

resources being directed towards these diseases, it is particularly important that 

both positive and negative study results find their way into the public domain to 

avoid unnecessary duplication of effort. This would accelerate research activities, 

in particular the development of higher-quality molecular typing methods, which 

in turn will allow better-informed intervention by human and veterinary public 

health bodies.  
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