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Abstract

The rapidly expanding volume of educational testing data from online assessments

has posed a problem for researchers in modern education. Their main goal is to

utilise this information in a timely and adaptive manner to infer skills mastery,

improve learning facilities and adapt them to individual learners. Over the past few

years, several static statistical models have been proposed for extracting knowledge

about skills mastery from item response data. However, realistic models typically

lead to complex, computationally expensive fitting methods such as Markov chain

Monte Carlo (MCMC). In an extensive comparison study, this thesis showed that

the MCMC methods are unusable for streaming data, which appear to be very slow

even for the efficient and fastest methods such as Hamiltonian Monte Carlo (HMC).

On the other hand, the sequential Monte Carlo (SMC) methods have been widely

used to reduce the time of dynamic Bayesian analysis. This thesis contributed to

the application of two different settings of the SMC algorithms to the item response

theory (IRT) model and compared the output to the MCMC results. However, the

results showed that these methods were not fast enough to estimate students’ ability

in real-time and provide immediate feedback even for a small dataset. Moreover,

the efficiency of the SMC methods depends on the user settings, which might be

difficult for real-time inference or non-professional users.

Therefore, these methods will not scale well for streaming data and large-scale

real-time systems. The main objective of this thesis is to develop approximate

Bayesian inference based on the Laplace approximation method (LA), which allows

faster inference for item response theory (IRT) models.

The LA estimation method’s performance for the logistic IRT models has been

compared with the MCMC method in simulation studies. Based on the results of

several comparison criterion methods such as bias, RMSE, and Kendall’s τ , the

performance of the LA is very good in small, moderate, and relatively large sample

size settings. The LA estimated abilities results are very close to the actual and

MCMC values. In addition, LA resulted in between a 120 to 900 times speedup

over MCMC, making it a more practical alternative for large educational testing
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datasets. Also, this thesis investigated the issue of the high-dimensional covariance

matrix for massive datasets, which may slow the LA method. Two solutions: using

the LA diagonal and the block matrix techniques, have been proposed to reduce the

computation cost. In addition, a novel sequential LA approach was proposed and

successfully applied in this thesis to allow using LA in a dynamic inference. The

result showed that this method is comparable to the full LA method. Moreover,

the use of a real dataset confirmed that the proposed LA inference method provided

similar estimates to MCMC estimation with much faster computation.
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Chapter 1

Introduction

In modern society, exams are widely used in different fields. For example, exams are

used more and more for various educational purposes, like evaluating the educational

qualification systems, students’ learning improvement and measuring individual

differences. This has encouraged the development of better exams and improved

statistical methods for analysing exam results. Furthermore, the interest in managing

common test issues, such as building tests, and investigating and interpreting the

results, has increased recently. It all stimulated the development of item response

theory (IRT). Fox (2010) stated that ”In the second half of the twentieth century,

item-based statistical models were used for the measurement of individual states like

intelligence, arithmetic ability, customer satisfaction, or neuroticism”. Today, some

important educational tests, such as the Graduate Record Examination (GRE) and

Scholastic Aptitude Test (SAT), are developed by using the IRT (Binh and Duy,

2016).

Educational measurement is an exciting field where many researchers look to

construct objective measurements of examinees’ knowledge, skills and abilities. Item

response theory (Lord, 1952) is one of the most popular methods in education for

estimating latent traits of examinees and the test (e.g. difficulty, discrimination,

probability of answering correctly without previous knowledge, etc.). Latent traits

are a specific type of constructs that refer to unobservable or unmeasurable objects

(e.g. ability, attitude, etc.). The focus of the IRT models is on the pattern of the

responses, not on the total score. There are two common possible choices of the

functions that model the relationship between a latent ability and the probability

of a correct response; the normal distribution, which is the cumulative distribution

function (CDF) of the standard normal distribution, and the other is the CDF of

the standard logistic distribution. Baker (1961) contributed an empirical comparison

between logistic and normal ogive functions. This thesis will consider the use of the

1
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logistic function.

Based on the number of latent traits being measured, IRT models can be divided

into unidimensional or multidimensional models. Unidimensional IRT (UIRT) models

are used when all test items measure one single latent trait (ability). On the

contrary, multidimensional IRT (MIRT) models can deal with complex models by

providing a different ability for each skill being measured by the test and modelling

the relationships between examinees’ ability and test items. Using a MIRT model

allows separate inferences to be made about each skill or ability measured in the

test (Walker and Beretvas, 2000). The focus of this thesis will be on UIRT models.

Binary UIRT models can be applied to tests where two response categories are

used, such as correct/incorrect or true/false responses. In the test that is designed

with more than two opinions, Samejima (1969) proposed the graded response model

for polytomous options, which is outside the scope of this thesis. Moreover, various

models have been developed in the literature based on the number of items, including

the one-parameter, two-parameter, and three-parameter models.

To date, many estimation methods have been developed for implementing item

response theory (IRT) models. The utility of the IRT models mostly depends on

the accuracy of item and ability parameter estimates. Different factors can influence

the frequentist approach (classical marginal maximum likelihood) for estimating IRT

model parameters. One of these factors could be sample size, where analyses with

small numbers of samples may suffer from worse parameter estimation accuracy,

affecting the standard errors for the estimates (more detail about this approach will

be described in section 7.2.). To address this issue, using the prior distributions in

the Bayesian approach can help increase the accuracy of IRT parameter estimation

with small sample sizes, as suggested by Swaminathan et al. (2003). With the help of

modern computer techniques, Bayesian estimation methods have been widely used

for IRT models via Markov chain Monte Carlo (MCMC). However, the challenge

arises when one needs to estimate the parameters of interest in a dynamic system,

where the data arrives in real-time continuously, such as in real-life scenarios when

students take a test at different times or on other days. In reality, teachers and

students are interested in immediate test results, especially the estimation of the

students’ ability.

Although real-time inference and online methods arise in several areas, including

statistics, network and machine learning, the application of online inference in IRT
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models is still limited. As far as is known, a few studies have considered the

estimation of the IRT model parameters in real-time, such as Weng et al. (2018)

and Su et al. (2018). However, both studies are outside of the educational area and

focus on online product ratings using IRT models.

In the case of real-time inference, MCMC techniques may be unusable since it

is computationally expensive to estimate with streaming data. There is however

extensive literature on applying MCMC methods to static IRT models, some of

which will be briefly mentioned in Chapter 4. In this thesis, a comparison study will

be carried out between two MCMC algorithms; Gibbs Sampler within Metropolis

algorithm and Hamiltonian Monte Carlo algorithm, to assess the usability of the

MCMC method in real-time inference.

To reduce the computational time of dynamic Bayesian inference, some authors

such as Isard and Blake (1996), Berzuini et al. (1997), Liu and Chen (1998) and

Gilks and Berzuini (2001) have been developing more efficient methods that combine

importance sampling and the Monte Carlo method to explore a sequence of posterior

distributions. This method is known as the sequential Monte Carlo (SMC) method,

which involves importance sampling and resampling, allowing an efficient inference

for real-time whenever new data becomes available. However, as far as is known,

currently, there is no application of SMC methods to IRT models. This thesis will

contribute applications of two different settings of the SMC methods to the IRT

models, including studying their properties, tuning parameters and comparing their

performance to MCMC methods. However, most of the SMC techniques become

computationally expensive as the dynamic process evolves.

The speed and volume present considerable challenges to apply MCMC and

SMC methods to the IRT model when real-time inference is required or for dynamic

problems. Approximation methods can be valuable alternatives to MCMC for

Bayesian inference. Approximation methods, such as variational Bayes, expectation

propagation, Laplace approximation, and so on, are considered simple and

computationally cheap. Therefore, they have been widely used in machine learning

and neural-network to solve large data issues. Wu et al. (2020) applied variational

Bayes method to Multidimensional item response theory (MIRT ) models and compared

the results to Hamiltonian Monte Carlo and Maximum Likelihood Estimation (MLE).

Their results suggested that variational inference is faster than the MCMC method

without losing the accuracy of the estimation results. Ulitzsch and Nestler (2022)

applied variational inference through Stan ( Stan Development Team, 2022) to

MIRT and compared the output to MCMC and MLE. Although their focus was on
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estimating the item parameters, they concluded that Stan’s built-in VB algorithm

could not be a useable alternative for estimating MIRT models.

This thesis will contribute to using the Laplace approximation (LA) methods

on the IRT models. A comprehensive comparison between the estimation results

from LA and MCMC will be carried out, taking into account the accuracy and

the speed. This thesis will discuss in large detail the issue of the high dimensional

covariance matrix problem, providing two contributed solutions. A novel approach

will be provided for Laplace approximation in dynamic IRT models.

1.1 Thesis Goals and Contributions

This thesis aims to find a fast computation method within a fully Bayesian framework

to estimate the item response theory models parameters for real-time inference or

massive datasets. Although the main goal is to evaluate the students’ ability in

real-time, the items’ parameters estimate are taken into account also. This thesis

extensively studies using the Laplace approximation method as an alternative to

the Markov chain Monte Carlo (MCMC) method and studies some other possible

methods for dynamic IRT models. The main contributions of this thesis can be

summarised as follows:

• Study the MCMC methods in detail and discuss the tuning of the two algorithms

employed in this work. The Hamiltonian Monte Carlo in this work is implemented

in R code rather than Stan.

• Apply the sequential Monte Carlo approach in two different algorithm settings

to introduce the data in the dynamic 1PL IRT model. Discuss in detail the

effect of tuning the parameters, such as the number of particles, the scaling

factor of the proposal variance, the number of intermediate distributions and

the proposal variance in the MCMC move step.

• Implement an extensive comparison study between the MCMC and Laplace

approximation methods for simple 1PL IRT and more complex 2PL models,

which involves accuracy, ordering the ability estimates and computational

costs.

• Investigate potential high dimensional covariance matrix issues using Laplace

approximation and provide some possible solutions.

• Provide a novel approach to the sequential Laplace approximation method in

a dynamic IRT model. Discuss the proposed method in greater detail using

simulated datasets.
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• Apply the proposed Laplace approximation method to the real dataset obtained

from the General Aptitude Test (GAT) provided by the Education and Training

Evaluation Commission in Saudi Arabia for this thesis.

1.2 Outline of the Thesis

This thesis is divided into 8 chapters. A brief overview of each chapter and a

description of the general structure of this thesis is now given.

In Chapter 2: This chapter will present the statistical background to the

Bayesian inference methods. The chapter will provide the reader with a literature

review of Bayesian inference and the MCMC methods, including three types of

algorithms; Gibbs sampler, Metropolis-Hastings and Hamilton Monte Carlo. The

idea of sequential Monte Carlo will be discussed in this chapter also. Finally, this

chapter will introduce the Laplace approximation method and explain how it works

by giving an example.

In Chapter 3: This chapter will present a literature review of the unidimensional

item response theory model (UIRT). This will include three IRT parameter logistic

models; 1PL, 2PL and 3PL. Identification issues will be discussed and addressed

in this chapter. This chapter does not intend to provide a complete overview of

previous inference studies but will briefly mention some of them.

In Chapter 4: This chapter will provide an application of Bayesian inference

with MCMC on UIRT Models. A general overview of the previous application

of MCMC in IRT models and the idea of the prior distribution choices will be

considered in this chapter. A comparison study between two MCMC algorithms;

Gibbs Sampler within Metropolis and Hamiltonian Monte Carlo, will be presented

in this chapter.

In Chapter 5: The application of two different settings for sequential Monte

Carlo algorithms will be presented in this chapter. In addition, a comparison study

of each method to the MCMC method results will be carried out.

In Chapter 6: A detailed description of the use of the Laplace approximation

for the IRT model is given in this chapter. In addition, comparison studies to

the MCMC results, considering three possible sample sizes; small, moderate and

relatively large, will be implemented and discussed in greater detail. Furthermore,
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the issue of the high-dimensional covariance matrix will be discussed, and some

possible solutions will be proposed. Finally, this chapter will also provide an application

of the Laplace approximation method in dynamic IRT models.

In Chapter 7: A case study which considers an application of the Laplace

approximation method explained in Chapter 6 on the General Aptitude Test (GAT)

will be provided and compared the output to the MCMC and marginal maximum

likelihood method (MML).

In Chapter 8: The results obtained from the experimental work will be reviewed

in this chapter, with a brief discussion on possible directions for future work.



Chapter 2

Bayesian Inference Methods

This chapter reviews the statistical concepts and methods in Bayesian inference.

The main goals are to review essential concepts of the Bayesian Inference methods

that will be used and developed throughout this thesis. The review will consider

the basic idea of Bayesian statistics in sections 2.1, 2.2 and 2.3. Bayesian Inference

with Markov chain Monte Carlo will be discussed in sections 2.4, 2.5, providing

more details on the specific MCMC algorithms: Metropolis-Hastings 2.4.1, Gibbs

sampler 2.4.2 and Hamiltonian Monte Carlo 2.4.3. Monte Carlo methods 2.6 and one

approximation Method, known as Laplace Approximation 2.8 will also be discussed

in detail in this chapter.

2.1 Introduction to Bayesian Statistics

In statistical inference, the interpretations of probability can be divided into two

prime categories: classical inference and Bayesian inference. The differences between

these views are the essential nature of the probability. In classical inference, it is

assumed that the true values of the parameters interest θ are fixed, and the observed

data is random. On the other hand, in Bayesian inference, parameters are treated as

random variables. Thus, for each parameter, we can assign probability distributions

representing our degree of belief. This distribution is the so-called prior distribution,

and it can be updated according to further information or new observations to give

a posterior distribution.

The idea of updating our beliefs can be done through Bayes theorem. This theorem

was developed by Thomas Bayes (Bayes, 1763), which offers a way to combine our

confidence using the prior distribution and the data using the likelihood function.

According to this theory, the combination of the likelihood function and the prior

distribution is expressed in the posterior distribution, which summarises all the

information about the parameter of interest θ after observing data.

7
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Originally, Bayes’ theorem is applied to probability, and the basic formula simply

states:

p(A|B) =
p(B|A)p(A)

p(B)
, (2.1)

where p(A|B) is the conditional probability that tells how likely event A occurs, given

event B has happened, and p(A), p(B) is the marginal probability of observing event

A and B. This formula can be expressed in terms of random variables as following:

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (2.2)

p(θ) is the prior distribution for unknown parameter θ, and p(D) is a normalisation

constant (marginal distribution) of the observed data D. The prior belief can then

be updated after observing the data D via the likelihood p(D|θ) to give the posterior

distribution p(θ|D).

The normalisation constant p(D) is the marginal probability of the data D, which

does not depend on the parameter θ. Therefore, the posterior distribution can be

expressed as proportional to the likelihood multiplied by the prior distribution for

the parameters θ.

p(θ|D) ∝ p(D|θ)p(θ). (2.3)

2.2 Prior Distributions

The concept of the prior distribution has already been mentioned in the previous

section. This section will provide some details about different types of prior distributions.

The inference for a given parameter θ depends on the data and the choice of prior;

therefore, by using different sets of priors, the inference for unknown parameter θ

will change. The prior distribution can represent all the information we know about

the parameter θ or our ignorance.

Priors can be divided into informative, weakly informative and non-informative.

The informative term expresses our knowledge about θ, which might come from

available studies on similar data sets, a literature review or experts (O’Hagan et al.,

2006). On the other hand, the prior can be chosen simply to represent the ignorance

or the lack of prior information, hence being weakly informative priors. In this
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case, the information on the posterior distribution will mainly be derived from the

data (via the likelihood) since the prior has minimal influence on the posterior,

keeping the posterior within reasonable bounds. Finally, the prior distributions are

non-informative if they are flat over the entire real number line and thus have no

information to influence the posterior distribution.

An example of non-informative priors on the interval [0, 1] would be a uniform

distribution; Uniform(0, 1). This can be interpreted as we have no prior information

and all possible values are equally likely a priori on the unit interval. A common

example of a weakly informative prior is a normal distribution with very large

variance (e.g. N(0, 100)). Even though weakly informative priors are widely used,

extra care should be taken when applying them. A fundamental problem would be

produced by a type of priors known as improper priors, such as Uniform(−∞,∞),

where the prior here is not a finite density and cannot be integrated into one.

Improper priors can lead to an improper posterior distribution, where the inference

is invalid. To define a posterior distribution as proper, we have to make sure that

the integral of the normalising constant p(D) in Bayes’ theorem is a positive finite

value for all D, where D is the data.

In some cases, it is useful and possible to use a conjugate prior; the basic idea

is the posterior distribution, and the prior distribution belongs to the same family.

The advantage of that is to obtain a closed-form expression which makes calculation

straightforward to evaluate. For example, the beta distributionBeta(a, b) is conjugate

to the binomial distribution binomial(n, θ). Thus, if the likelihood from the binomial

distribution with known n and unknown θ and if our prior belief about θ is a beta

distribution, the posterior will be simply a beta distribution Beta(x+ a, n− x+ b)

with different parameters where x is the observed success in n trails. For more

information about the types of prior distributions, see Gelman (2002).

2.3 Inference

In order to use Bayesian modelling, we should be able to compute the posterior

distributions for the model parameters. In some simple models, calculating the

posterior distributions is straightforward, such as considering a conjugate prior

(as discussed in section 2.2), which can help provide a posterior distribution with

standard distributional form. However, in more complex models where a conjugate

prior cannot be applied, the computation of the posterior distribution might require

more advanced methods such as numerical simulation.

An example of these methods is the Monte Carlo method. These methods are
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mathematical approaches that use a large number of samples drawn randomly from

the posterior distribution to estimate the distributions of the model parameters.

One can then obtain summary statistics by calculating the sample mean, variance

and quantiles. The problem with this method appears in high dimensional models

where it may not work well. These models might require a large number of different

parameters and hence high dimensions of the prior distributions. Consequently,

we have to evaluate the posterior distributions numerically in high dimensional

space (Van Ravenzwaaij et al., 2018). A greater explanation of this method will

be provided in section 2.6.

Next section will introduce the most common method used to draw a sample from

a high dimensional space known as Markov chain Monte Carlo (MCMC). Also, this

section will explain three different MCMC methods which will be carried out in this

thesis; Metropolis-Hastings algorithm, Gibbs sampler and Hamiltonian Monte Carlo.

2.4 Bayesian Inference with Markov chain Monte

Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is the most common method for drawing

samples from high dimensions and complex posterior distributions (Hastings, 1970).

However, these samples will not be independent but will be drawn from a Markov

chain. This Markov chain is a sequence of random variables (θn) with the property

that the new sample only depends on the current sample. This can be seen as:

π(θn+1|θ0, θ1, ..., θn) = π(θn+1|θn);n = 0, . . . ,∞. (2.4)

The objective of MCMC simulation is constructing a Markov chain that, after a

long run time, will converge to the posterior distribution of interest as its stationary

distribution π(θ) = p(θ|D). For more details about the Markov chain concepts and

their properties, see Gamerman and Lopes (2006). The following subsections will

introduce three MCMC algorithms, which are the focus of this thesis.
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2.4.1 Metropolis-Hastings Algorithm (M-H)

The Metropolis-Hastings algorithm (Hastings, 1970) (M-H) is an MCMC method,

which can be used to sample from the posterior distribution by using a proposal

distribution. The algorithm is based on simulating a candidate sample θ∗ from a

proposal distribution q conditional on the current value θ(t−1), q(θ∗|θ(t−1)) (Chib and

Greenberg, 1995), then make use of a certain acceptance probability α(θ∗, θ(t−1)) to

accept or reject the new value θ∗ as following;

α(θ∗, θ(t−1)) = min

{
1,

p(θ∗)q(θ(t−1)|θ∗)
p(θ(t−1))q(θ∗|θ(t−1))

}
; t = 1, . . . , T. (2.5)

p(θ∗) is the target distribution (posterior distribution in a Bayesian framework)

at θ∗. The acceptance probability α(θ∗, θ(t−1)) is compared to a uniform random

variable u on the interval [0,1]; u ∼ Unif(0, 1) . The new value θ∗ is accepted if

α(θ∗, θ(t−1)) is greater than u, otherwise, it will be rejected. If the proposed value θ∗

is rejected, the chain will stay at the current value θ(t−1), and we set θ(t) = θ(t−1) .

The M-H algorithm for generating samples from the posterior (target) distribution

is displayed in Algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm

1: Starting with the initial value θ(0). Set the maximum number of iterations T
For iteration t = 1, . . . , T

2: Propose a candidate value θ∗ ; θ∗ ∼ q(θ∗|θ(t−1))
3: Compute

α(θ∗, θ(t−1)) = min

{
1,

p(θ∗)q(θ(t−1)|θ∗)
p(θ(t−1))q(θ∗|θ(t−1))

}
4: Set θ(t) = θ∗ with the probability α(θ∗, θ(t−1))

else
5: Reject θ∗ and remain at current state, θ(t) = θ(t−1)

One of the special cases of M-H is known as the Metropolis algorithm; this was

first introduced by Metropolis et al. (1953). In this setting, the proposal distribution

is chosen to be symmetric e.g. q(θ∗|θt) = q(θt|θ∗). When q is symmetric the

acceptance probability (2.5) simplifies to:

α(θ∗, θ(t−1)) = min

{
1,

p(θ∗)

p(θ(t−1))

}
(2.6)
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The M-H algorithm’s performance and efficiency rely on the choice of the proposal

distribution (Rosenthal et al., 2011). There are two types of proposal distribution,

which are used frequently. The first type is normal random walks. In this type of

proposal, a random walk is generated using a normal distribution with a mean equal

to the current parameter value θ(t−1);

q(θ∗|θ(t−1)) = N(θ(t−1), σ2). (2.7)

The variance σ2 should be tuned to control the algorithm’s performance and obtain

an efficient algorithm. If σ2 is chosen to be small, the acceptance probability (2.5)

will be high, which means that the algorithm will accept a slight movement in the

state space. As a result, θ∗ will move very incrementally, causing a strong correlation

in the resulting Markov chain as displayed in Figure 2.1a. Conversely, if σ2 is chosen

to be large, the θ∗ will move very fast. Yet, the acceptance probability will be low,

and most of the new proposed values will be rejected, leading to slow convergence

towards the target distributions as shown in Figure 2.1b. Both of these situations

are referred to as bad mixing, where mixing time for a Markov chain is the number

of steps required for the Markov chain to approach the posterior distribution. In

the literature, the aim usually is to have an acceptance probability between 0.20

and 0.60. For example, Gelman et al. (2013) suggested that the optimal acceptance

probability for one dimension is around 0.44, and in high dimensions, this acceptance

probability decreases to 0.23.

The second common choice of the proposal distribution is an independent normal

distribution, which is given by;

q(θ∗|θ(t−1)) = q(θ∗) = N(µ, σ2). (2.8)

In this type of proposal distribution, the proposal value θ∗ does not depend on the

current value θ(t−1) which means the previously accepted value cannot be used as

guidance to converge to the posterior distribution.

For more explanation of the Metropolis-Hastings algorithm and the way of choosing

and tuning the proposal can be found in Roberts et al. (1997), Gelman et al. (2013)

and Robert et al. (2010).
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(a) Trace plot of small choice of σ2, and large
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(b) Trace plot of large choice of σ2, and small
acceptance probability, a large movement

Figure 2.1: Comparison of two Markov chains with different choices of the variance
σ2 for the proposal distribution.

2.4.2 Gibbs Sampler Algorithm

The Gibbs sampler is a special case of the M-H algorithm and was introduced first

by Geman and Geman (1984) and then developed by Gelfand and Smith (1990).

It is used when the full conditional distribution is available; where the proposal

distribution in this method can be split into the conditional distribution of the

posterior distributions.

The idea is sampling each variable θi ∈ θ from its conditional distribution in turn,

depending on the current value of all the other variables, θ−i ∈ θ in the joint

distribution. Using a Gibbs sampler requires the conditional distributions of θi to

follow a standard distributional form. This results in always accepting each move

(with probability one) in 2.5. Using the fact that the proposal distributions for the

Gibbs sampler are the posterior conditionals, the proposal distribution is given as:
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q(θ∗i ,θ
(t)
−i |θ

(t)
i ,θ

(t)
−i) = p(θ∗i |θ

(t)
−i) (2.9)

Applying this proposal to the Metropolis-Hastings acceptance probability (2.5)

yields:

α(θ∗i , θ
(t)
i ) = min

{
1,
p(θ∗i ,θ

(t)
−i)q(θi

(t),θ
(t)
−i |θ∗i ,θ

(t)
−i)

p(θ
(t)
i ,θ

(t)
−i)q(θ

∗
i ,θ

(t)
−i |θ

(t)
i ,θ

(t)
−i)

}
(2.10)

= min

{
1,
p(θ∗i ,θ

(t)
−i)p(θ

(t)
i |θ

(t)
−i)

p(θ
(t)
i ,θ

(t)
−i)p(θ

∗
i |θ

(t)
−i)

}
(2.11)

= min

{
1,
p(θ∗i |θ

(t)
−i)p(θ

(t)
−i)p(θ

(t)
i |θ

(t)
−i)

p(θ
(t)
i |θ

(t)
−i)p(θ

(t)
−i)p(θ

∗
i |θ

(t)
−i)

}
(2.12)

= min(1, 1) = 1 (2.13)

Here, we made use of the chain rule, where we wrote the full joint distribution

p(θ∗i ,θ
(t)
−i) as the product of two terms: p(θ∗i |θ

(t)
−i)p(θ

(t)
−i). For more details about the

Gibbs sampler, see Gelfand (2000).

The Gibbs sampler algorithm for drawing T samples from the posterior distribution

is given in Algorithm 2.

Algorithm 2 Gibbs Sampler Algorithm

1: For each iteration t = 1, . . . , T , and (θi)
k
i=1; starting with the initial value

θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k )

2: Sample θ
(t)
1 from its conditional distribution

θ
(t)
1 ∼ p(θ

(∗)
1 |D, θ

(t−1)
2 , . . . , θ

(t−1)
k )

3: Sample θ
(t)
2 from its conditional distribution

θ
(t)
2 ∼ p(θ

(∗)
2 |D, θ

(t)
1 , . . . , θ

(t−1)
k )

...
4: Sample θ

(t)
k from its conditional distribution

θ
(t)
k ∼ p(θ

(∗)
k |D, θ

(t)
1 , θ

(t)
2 , . . . , θ

(t−1)
k )

5: Repeat step 2 and 3 until convergence.

2.4.3 Hamiltonian Monte Carlo (HMC) Algorithm

Many Markov chain Monte Carlo algorithms may suffer from random walk behaviour,

which leads to inefficient algorithms. The main problem is that a large number



Chapter 2. Bayesian Inference Methods 15

of sample sizes are needed to obtain reasonable effective samples. Thus, complex

models may take a long time to run. Hence, improving mixing and reducing random

walk behaviour is important to accelerate MCMC methods. Some strategies such

as reparameterisation and adaptive acceptance rate could improve the mixing, but

this random walk behaviour may remain (Gelman et al., 2013) for high-dimensional

posterior distributions. HMC is an MCMC algorithm that avoids inefficient random

walk behaviour and autocorrelated parameters using a physical system known as

Hamiltonian dynamics. This method was originally developed in physics by Duane

et al. (1987) and then was introduced to statistics by Neal et al. (2011).

This section will introduce a brief introduction to the Hamiltonian Monte Carlo

(HMC), and the explanations here will closely follow Neal et al. (2011) and Betancourt

(2017).

Hamiltonian dynamics

Before presenting Hamilton Monte Carlo, the basic concept of Hamilton dynamics

in one dimension needs to be defined. In physics, Hamiltonian dynamics is a way

of describing the movement of a frictionless object. The description of the object’s

motion depends on its position q and momentum r (equal to the product of the

object’s mass and its velocity) at some time t. For each position q, there is related

energy called potential energy U(q), and for each momentum r, there is a related

kinetic energy K(r). The total energy then is the sum of potential energy and kinetic

energy, which is known as the Hamiltonian function H(q, r):

H(q, r) = U(q) +K(r). (2.14)

In Bayesian inference applications, the potential energy U(q) in this system is defined

by the negative of the log posterior distribution (− log p(q|D) ) where the position

q is the variable that we want to estimate (e.g. if we are going to estimate the θ

parameter then q = θ). For each variable q, we add an auxiliary momentum variable

r to draw a proposal distribution that can use gradient information in the posterior

distribution. In most applications of HMC, the kinetic energy K(r) is a standard

normal distribution. HMC in Bayesian inference applications will be discussed in

detail in the next section.
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Hamiltonian dynamics satisfies the following Hamiltonian equations:

dq

dt
=
∂H

∂r
(2.15)

dr

dt
= −∂H

∂q
, (2.16)

which determine how the system change through time t.

Hamiltonian Monte Carlo Algorithm (HMC)

This subsection will discuss how we can use Hamiltonian dynamics for MCMC. As

mentioned earlier, using a proposal distribution in Metropolis-Hastings algorithms

will result in a random walk without considering further information about the

target distribution. Hence, if the target distribution is differentiable, its shape can be

accessed through its gradient. The main idea is to develop the Hamiltonian function

H(q, r) and use the results of the Hamiltonian dynamics to help us efficiently explore

the posterior distribution using the gradient. This gradient indicates which direction

the trajectory goes in to find the high probability state, and we can draw from the

proposal distribution in that direction.

In order to relate between the Hamiltonian function H(q, r) and the posterior

distribution p(q|D), we can use some basic concepts from statistical mechanics called

the canonical distribution. The idea is for some energy functions E(θ), over a set of

variables θ, we can define the canonical distribution as:

p(θ) =
1

Z
exp(−E(θ)), (2.17)

where the variable Z is a normalising constant, which is used here to scale the

canonical distribution to integrate or sum to one. As we discussed early in section

2.1, MCMC methods can sample from an unnormalised probability distribution, and

hence this can be written as:

p(θ) ∝ exp(−E(θ)) (2.18)

Now, as we saw in the previous section in 2.14, the energy function for Hamiltonian

dynamics is the sum of potential and kinetic energies:
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E(θ) = H(q, r) = U(q) +K(r) (2.19)

Therefore, the joint canonical distribution for q and r for the Hamiltonian function

is given by

p(q, r) = exp (−H(q, r)) (2.20)

= exp (−U(q)−K(r)) (2.21)

= exp (−U(q)) exp (−K(r)) (2.22)

= p(q)p(r) (2.23)

We can clearly see that the two variables are independent, and each variable has

canonical distributions as:

p(q) = exp (−(U(q)) (2.24)

p(r) = exp (−K(r)) (2.25)

The canonical distribution p(r) is independent of q. Therefore, we can sample

the momentum variable r from any distribution. In most applications of HMC, the

common choice is a normal distribution with a zero-mean, and for simplicity, the

variance is chosen to be one;

p(r) = exp(−r2/2)) (2.26)

With this form of p(r), equation (2.25) can be written as

exp(−r2/2)) = exp(−K(r)) (2.27)

K(r) = r2/2 (2.28)
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Now we can use equation(2.24) to define a formula for the potential energy as

following:

First, take the log of both sides;

log(p(q)) = log(exp(−(U(q))) (2.29)

The log will cancel out the exp function then we will get a formula for U(q);

U(q) = − log(p(q)) (2.30)

In Bayesian inference, the main interest is in the posterior distribution for the model

parameters. Hence, p(q) here represents the posterior distribution which can be

written in term of prior distribution p(q) times the likelihood function p(D|q));

U(q) = − log(p(q)p(D|q)), (2.31)

where the position variable q can be replaced by the model parameters.

Simulating Hamiltonian dynamics (The Leapfrog Method)

As mentioned early, the differential equations (2.15) and (2.16) determine an object’s

motion via time t, which is a continuous variable. Hence, in practice, these equations

cannot be solved analytically and to simulate Hamiltonian dynamics, numerical

methods are required to discretize time. This can be done by dividing the time

interval of t into a series of smaller length intervals ε. There are several numerical

methods, but the interest in this thesis will be in one method called the Leapfrog

integrator.

The leapfrog algorithm consecutively updates the momentum variable r and the

position variable q. We start by updating the momentum variable r for a small time



Chapter 2. Bayesian Inference Methods 19

interval (ε/2), then update the position variable q for a longer time interval(ε), and

then end up by completing r update for another small time interval (ε/2).

The leapfrog algorithm can be summarised as follows:

1. Update the momentum variable r a half step in time:

r(t+ ε/2) = r(t)− (ε/2)
∂U

∂q
(q(t))

2. Update the position variable q a full step in time; using the new value of r

resulting from step (1).

q(t+ ε) = q(t) + εp(t+ ε/2)

3. Update the momentum variable r another half step in time; using the new

value of q resulting from step (2).

r(t+ ε) = r(t+ ε/2)− (ε/2)
∂U

∂q
(q(t+ ε))

The Leapfrog method can be run for L leapfrog steps to draw a total of L ∗ ε
time. At the end of these simulations, the resulting state will be denoted by (r∗, q∗),

representing the proposal points.

Hamiltonian Monte Carlo (HMC) Algorithm

Now that we have a better idea about Hamiltonian dynamics and how they can be

simulated, the Hamiltonian Monte Carlo algorithm can be introduced. In HMC,

to explore the posterior (canonical) distribution, which is defined by U(q), the

Hamiltonian dynamics are used as a proposal distribution for a Markov Chain.

The first step is drawing a new value for the momentum r that is independent of

the current position variable values q;
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r ∼ Normal(0, 1)

Next, starting at current state (q, r), we can propose a new state (q∗, r∗) using

Hamiltonian dynamics. As explained in the previous section, we can simulate

Hamiltonian dynamics using the leapfrog method for L number of steps and ε

step size. The choice of these two parameters L and ε will affect the algorithm’s

performance (more details will be given in the next section), so extra care should

be taken to tune them. Finally, the new proposed values are accepted or rejected

using the Metropolis acceptance probability(2.5);

α = min(1, exp(−H(q∗, r∗)/exp(−H(q, r)) (2.32)

= min(1, exp(−H(q∗, r∗) +H(q, r)) (2.33)

= min(1, exp(−U(q∗) + U(q)−K(r∗) +K(r))) (2.34)

If the new value is rejected, the next Markov chain state is set the same as the

current value (q, r). We can perform an approximate procedure listed as Algorithm

3.

Algorithm 3 Hamilton Monte Carlo

1: Starting with the initial value q0, set number of iterations T.
For iteration t;

2: Sample an initial momentum variable r0 ∼ p(r); r ∼ Normal(0, 1).
3: Run leapfrog algorithm for L steps and ε step size starting at (q0, r0) to obtain

a new proposed value (q∗, r∗).
4: Compute:

α = min(1, exp(−U(q∗) + U(q(t))− k(r∗) + k(r(t))))
5: Draw a random number u ∼ Unif(0, 1).
6: If u ≤ α accept the proposed state position q∗ and set q(t) = q∗

else;
7: Reject q∗ and remain at current state; q(t) = q(t−1)

Tuning Hamiltonian Monte Carlo

While HMC is recognised as an efficient method, the algorithm’s performance is

sensitive to the choice of step size ε and the number of steps L. Unfortunately,

selecting an optimal step size of ε is not easy. When ε is chosen to be too small,

the Hamiltonian dynamics system does not explore the target distribution rapidly,

which causes wasted computation time as shown in figure 2.2a. On the other hand,
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when ε is chosen to be too large, it will reject most of the proposal points during

the Metropolis step, and hence very low acceptance probability as shown in figure

2.2b.

Also, the number of step size L that represents the trajectory length needs to

be selected carefully. The aim of the trajectory length is to avoid random walk

behaviour when exploring the target distribution. Even though it is advisable to

have a large number of step sizes to reduce random walk behaviour (Neal et al.

(2011)), a too large L may take a long time to compute and hence waste time.

Alternatively, a too small L may lead to random walk behaviour and thus slow

mixing.

In practice, we can fix the number of steps sizes L to 10 per sample and then

automatically tune the step size ε to reach an optimal acceptance probability. Theoretically,

Beskos et al. (2013) and Neal et al. (2011) concluded that the optimal acceptance

probability is around 0.65. Figure 2.3 shows the results of tuning ε automatically

and fixed L to reach 65% acceptance probability.
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Figure 2.2: Plots of HMC sampling with difference step sizes ε. The dark circles
represent the accepted points, and the empty circles represent the rejected points.
The dark red areas represent the high probability of the posterior density.
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Figure 2.3: Plot of HMC sampling with the step size ε automatically to get 65%
acceptance probability. The dark circles represent the accepted points, and the
empty circles represent the rejected points. The dark red area represents the high
probability of the posterior density.

2.5 MCMC Convergence Diagnostics

A major issue when running MCMC algorithms is determining when we should stop

sampling and use this result samples to estimate the target distribution. Therefore,

we can utilise a set of diagnostics to assess if the simulation process is behaving

correctly. There are several methods to check for signs of non-convergence. This

section will briefly explain some of these methods.

Trace Plot

Convergence can be evaluated through trace plots for every parameter. Trace plots

involve drawing two or more chains of parameter values and plotting the values

of each chain against the number of iterations. One possible way is to run two

or multiple chains with different initial values. It is assumed that convergence is

achieved when all the chains converge to the same distribution. As the early samples

of the chain can be a poor representative of the target distribution, it is better to

discard these initial samples. This is known as a burn-in. All the samples obtained

after the burn-in are assumed to be drawn from the target distribution. However,

it is crucial to implement some other convergence diagnostics to ensure the Markov

chain converges to the posterior distribution.
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Figure 2.4 displays the trace plots for three Markov chains run independently

with different starting values. After a period of time (around 200 iterations), all

the chains converge to similar distributions even though they started far from each

other. Hence, we assume that these chains after 200 iterations represent a reasonable

estimate for the target distribution (the true posterior), and we could remove the

first 200 iterations (burn-in).
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Figure 2.4: Comparison of three MCMC runs for the same parameter with different
starting values.

Gelman-Rubin(R̂ Statistics) Test

Another strategy for evaluating convergence is a test suggested by Gelman et al.

(1992) to assess the convergence of multiple chains initialised from different values

based on an analysis of the variance. The idea is we run M parallel chains, each

of length T . We can label the individual draws as θtm = (t = 1, . . . , T,M =

1, . . . ,m). Then we calculate the between-chain B and within-chain W variance for

each parameter θ:

B =
T

M − 1

m∑
M=1

(θ̄.m − θ̄..)2 (2.35)

and
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W =
1

M

m∑
M=1

s2m

where

θ̄.m =
1

T

T∑
t=1

θtM

and

θ̄.. =
1

M

M∑
m=1

θ̄.m

s2t =
1

T − 1

T∑
t=1

(θtM − θ̄.M)2

The estimated variance of the marginal posterior can be calculated as:

v̂ar(θ|D) =
T − 1

T
W +

1

T
B (2.36)

The estimated potential reduction in the scale of θ, R̂ is defined as:

R̂ =

√
v̂ar(θ|D)

W

If all chains converge to the target distribution, the between chains variability

should be small, and R̂ should be close to one. Therefore, as T → ∞, the value

of R̂ decreases to 1. If the value of R̂ is higher than 1, we could have evidence for

non-convergence and increasing the number of simulations may help to reduce the

variance v̂ar(θ|D). Gelman et al. (2013) suggested running the chain until achieving

R̂ values close to 1.1.

Autocorrelation

Because of the offer dependent nature of the Markov chain, it is common that the

autocorrelation exists between the posterior samples from the MCMC chain. This

means that the samples are dependent on each other (Fox, 2010). To get an idea of

how these samples correlated, we can plot the autocorrelation of our chains using

autocorrelation function (ACF). This plot shows how the autocorrelation between

samples changes as a function of their lag (k). High autocorrelation can lead to

slower convergence, and it can be reduced by storing only every tth iterate (after

burn-in) from the sample and discarding all others. This is known as thinning.

However, in practice, some researchers such as Link and Eaton (2012) suggested that

unthinned Markov chains can produce more precise results, implying that thinning

is not necessary. Therefore, in this thesis, all results by MCMC will be based
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on summary statistics of posterior distributions resulting from unthinned Markov

chains.

Effective Sample Size

In practice, drawing independent random samples from the posteriors distribution

is desirable. However, a lot of MCMC chains are strongly autocorrelated, which

increases uncertainty relative to an independent sample. The equivalent number

of independent samples, which is known as the effective sample size (ESS), can be

calculated as following:

ESS =
T

1 + 2
∑∞

k=1 ρ(k)
,

where T is the number of samples and ρ(k) is the correlation at lag k. If the samples

are independent, ESS will be equal to the actual sample size (T ). However, If the

correlation ρ(k) at lag k is very high and decreases slowly, ESS will be very small.

Thus, the efficiency of the MCMC can be measured by the number of effectively

independent samples (ESS) generated per second. More methods are highlighted

and described for convergence diagnostics in Cowles and Carlin (1996).

2.6 Monte Carlo Methods

Monte Carlo (MC) methods are a class of algorithms that aim to overcome the

numerical issue of intractable target distributions in Bayesian inference. Monte

Carlo approaches can be used to obtain numerical estimations of unknown parameters

by drawing random samples from the target distributions (Metropolis and Ulam,

1949) (Robert et al., 2010).

The main idea of MC is to approximate a complicated distribution by sampling

N independent and identically distributed (i.i.d.) random samples x1, . . . , xN from

the target distribution π(x), where the probability density π(x) corresponds to the

posterior density π(θ|D) in Bayesian inference. Monte Carlo method approximates

π(x) by the empirical measure as follows:

π̂N(x0:t) ≈
1

N

N∑
i=1

δxi0:t(x0:t), (2.37)

where δ denotes the Dirac delta mass function, with a unit mass at xi, and {xi}Ni=1 is

the collection of i.i.d sample (particles) generated from π(x). For further information

see Robert et al. (2010).

However, with the basic Monte Carlo approach, it is not always possible to sample
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efficiently from the target distribution, when π(x) is complex or high-dimensional.

Therefore, alternative sampling techniques have been developed to draw a sample

from the target distribution within the Monte Carlo framework. One of these

methods is importance sampling.

2.6.1 Importance Sampling

The main idea of the importance sampling method (IS) is to introduce an importance

density q(x), which is also known as the proposal distribution, such that

π(x) > 0⇒ q(x) > 0.

It then makes use of this density q(x) to generate a sample xi to approximate the

target distribution π(x). The difference between the target π(x) and the proposal

q(x) densities can be measured by the importance weight w(x). The resulting

samples are used to approximate π(x) as follows:

π̂N(x) ≈ 1

N

N∑
i=1

π(x)

q(x)
δxi(x), (2.38)

where π(x)
q(x)

is the importance weight w(x), which is used to correct the discrepancy

between the target density π(x) and the proposal density q(x) since the sample

derived from q(x) not from π(x). The collection of points {xi}Ni=1 is a set of iid

samples generated from the target. The Monte Carlo sample methods can be then

written as:

π̂N(x) ≈ 1

N

N∑
i=1

w(xi)δxi(x) (2.39)

This estimator is known as the self-normalised importance sampling (SNIS), and

the algorithm is presented in Algorithm 4.

Algorithm 4 SNIS Algorithm

1: Sample xi ∼ q(x) where i = 0, · · · , N
2: Compute the weight w(i) = π(xi)

q(xi)

3: Compute the normalised weight w(xi) = w(i)∑N
j=1 w

(j)

In general, importance sampling can give a consistent and effective estimation,

comparable to the classical Monte Carlo method (Murphy, 2012). This is because of
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the idea that the samples only concentrate in the important region of the probability

space. This implies that importance sampling needs fewer samples compared to

sampling from the exact distribution. However, in some cases, the method can be

ineffective because of the large difference between importance and target densities

leading to higher variability of the weights.

Moreover, each time new data arrives, the importance weights have to be recomputed

over the entire sequence in real-time data. This means that the computational

complexity will increase with time (Smith, 2013).

In the case of a complex high dimensional target distribution π(x), utilising importance

sampling can be difficult because choosing importance density requires some knowledge

about the target distribution that is unavailable. More explanations and details the

about importance sampling method can be found in (Glynn and Iglehart, 1989),

(Robert et al., 2010) and (Hastings, 1970). The other Monte Carlo methods, such

as rejection sampling, are out of this thesis scope. For interest and more details, see

(MacKay et al., 2003) and (Hammersley, 2013).

The following section introduces a method that addresses the issue of recomputing

the importance weights in real-time data.

2.7 Sequential Monte Carlo Method (SMC)

Importance sampling can be modified by sampling from a sequence of intermediate

distributions to compute the estimation of the target distribution without computing

previous simulation tracks. This method is known as the Sequential Monte Carlo

Method (SMC). The idea is to construct the importance density sequentially as

described in (Del Moral et al., 2006) as follows:

qt(x0:t) = qt−1(x0:t−1)qt(xt|xt−1) = q0(x0)
t∏

k=1

qk(xk|x0:k−1) (2.40)

This means that firstly at initial time t = 0, x0 can be sampled from the initial

proposal, xi0 ∼ q0(x0). Then, at time k, where k = 1, . . . , t, the xik can be obtained by

sampling from the proposal such that xik ∼ qk(xk|xi0:k−1). The associated unnormalised

weights can be computed sequentially by:

wt(x0:t) =
πt(x0:t)

qt(x0:t)
=
πt−1(x0:t−1)

qt−1(x0:t−1)

πt(x0:t)

πt−1(x0:t−1)qt(xt|x0:t−1)
(2.41)
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This method is known as sequential importance sampling (SIS), which is a particular

case of SMC (Doucet and Johansen, 2009). More details and descriptions of this

method are given in the following section.

2.7.1 Sequential Importance Sampling (SIS)

Suppose that at time t − 1, the target distribution πt−1 is approximated by using

the weighted samples {xi0:t−1, wi0:t−1}Ni=1 as:

π̂Nt−1(x0:t−1) ≈
N∑
i=1

π(xi0:t−1)

q(xi0:t−1)
δxi0:t−1

(x0:t−1) ≈
N∑
i=1

wt(x
i
0:t−1)δxi0:t−1

(x0:t−1) (2.42)

The next distribution πt is obtained by propagating these samples (particles) by

utilising the proposal distribution qt to have a set of samples xi0:t. The associated

unnormalised weight is evaluated as:

wt(x
i
0:t) = wit−1

πt(x
i
t)

qt(xit)

Hence, the target distribution πt is estimated as the following:

π̂Nt (x0:t) ≈
N∑
i=1

wt(x
i
0:t)δxi0:t(x0:t) (2.43)

The procedure of SIS is described in Algorithm 5.

Particle Degeneracy

The main advantage of SIS is that the particles are placed in important regions of

the probability space with a high mass in the target distribution. If the proposal

distribution is proportional to the target distribution, the particles will have a similar

importance weight. Therefore, the quality of the estimation can be measured by the

variance of the weighted particles. However, the major problem encountered by the

SIS method is that when t increases, the difference between the importance density

qt and the target density πt can increase too, which results in particle degeneracy.

This means that after a few iterations, only a few particles have high importance

weights and others have negligible weights (Doucet et al., 2000), (Cappé et al., 2007).

As a result, the variance of the importance weights increases dramatically as time

increases. Consequently, the algorithm fails to represent the target distributions
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adequately.

Algorithm 5 SIS Algorithm

1: For i = 1, · · · , N , Initialise sample

xi0 ∼ q0(x0:t)

Assign initial weight:

w0(x
i
0) =

π(xi0)

q(xi0)

wi0 =
w0(x

i
0)∑N

j=1w0(x
j
0)

2: At the next time t = 1, · · · , T and for i = 1, · · · , N propagate:

xit ∼ q(xit|xit−1)

3: Compute the importance weight:

wt(x
i
0:t) = wit−1

πt(x
i
t)

qt(xit)

4: Compute the normalised weight:

wit =
wt(x

i
0:t)∑N

j=1wt(x
i
0:t)

The degeneracy of particles can be quantified by the effective sample size (ESS)

through iterations. This measurement is different from 2.5, and can be defined as:

EES =
1∑

(wit)
2

A small effective sample size indicates the high degeneracy of the algorithm. If all

weights are equal, the ESS equals N. On the other hand, if all mass is concentrated

in one particle, the ESS equals 1. ESS can be interpreted as minimum number of

particles that is needed to present the target distributions.

To avoid this degeneracy, one needs to introduce an additional selection step to

minimise the variance between weights. The key idea is to eliminate the particles

that have lower weights and multiply the particles with high weight (Gordon et al.,

1993). This method is known as sequential importance resampling (SIR).
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2.7.2 Sequential Importance Resampling (SIR)

Sequential importance resampling (SIR) was introduced by Gordon et al. (1993) to

address the issue of particle degeneracy described in the previous section (2.7.1).

The algorithm has three main steps: resampling, propagation and weighting. This

algorithm follows the same procedure as the SIS algorithm (2.7.1), but an extra

resample step is added. In the resampling step, particles that have higher weights

are repeated while particles with small weights are eliminated. Therefore, only

high-weight particles will be used. The idea is that the particles with large weights

are more expected to represent the target distribution than particles with small

wights (Li et al., 2015). As a result, in the next step, new particles will be generated

from the region of the large weight. Hence, this will improve the exploration of the

parameter space after resampling .

Resampling Method

There are different schemes for resampling particles, such as multinomial sampling,

residual resampling and stratified sampling. More details about these strategies are

provided by Carpenter et al. (1999), Kitagawa and Sato (2001), Douc and Cappé

(2005) and Hol et al. (2006). This thesis will focus on the residual resampling

method.

One of the disadvantages of the resampling method, besides being computationally

expensive, is that it increases the estimator’s variance (Speekenbrink, 2016) by

using some method such as multinomial sampling. To address this issue, residual

resampling is considered an alternative method with a smaller variance. Residual

resampling (Liu and Chen, 1998), which is also called remainder resampling, is

based on using a set restriction. The method consists of two steps. In the first step,

each particle with a weight greater than 1/N is replicated. In the second step, the

remaining weights (residuals) will be used for random sampling. The process of this

resampling scheme can be summarised as follows:

1. Calculate Ri= bNwic copies of particles xi, For i = 1, · · · , N . Where bc
denotes the integer part.

2. Allocate Ri to the new distribution.

3. Resample K = N−
∑
Ri from xi, with the probability of selecting the xi that

is proportional to wi = Nwi − Ri. This step can be done using other resampling

schemes; frequently, multinomial sampling is used. In short, the integer value of



Chapter 2. Bayesian Inference Methods 32

the particles is allocated first and copied, leaving the remainder for multinomial

resampling. The greater the weights of the particles, the more copies of particles.

Although the resampling step can help to increase the number of active particles, it

also can generate serious issues. One of these issues is that performing resampling

at each stage can result in decreasing the diversity within the particle set, which

is known as sample impoverishment (Carpenter et al., 1999). Because of this, it is

not desirable to resample at each time step, which means it should be performed

only when necessary. The effective sample (ESS) can be used to determine the

necessity of the resampling step. One can define a specific threshold on the ESS,

which usually is set to N/2 (Doucet and Johansen, 2009), and when the ESS drops

below the predefined threshold, resampling should be carried out. The procedure of

SIR is described in Algorithm 6.

Algorithm 6 SIR Algorithm

1: for i = 1, · · · , N , Initialise sample

xi0 ∼ q0(x0)

Assign initial weight:

wi0 =
π(xi0)

q(xi0)

wi =
wi1∑N
j=1w

j
1

2: At the next time t = 1, · · · , T and for i = 1, · · · , N
propagate:

xit ∼ q(xit|xt−1)

3: Compute the importance weight:

w(xt, x0:t−1) =
πt(x0:t)

πt−1(x0:t−1)qt(xt|x0:t−1)
wt−1

4: Compute the normalised weight:

wit = w(xit, x
i
0:t−1), wit =

wit∑N
j=1w

j
t

5: Compute the ESS

EES =
1∑

(wit)
2

6: If ESS < N/2 resample
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Moreover, replacing high weights with multiple replicas of a unique particle may

result in a high correlation between particles (Chopin, 2002). Gilks and Berzuini

(2001) developed an algorithm by adding a rejuvenation step which consists of a

resample step and a move step. The idea of the rejuvenation step is that the

resampled particles are moved from time t to t + 1 according to a Markov chain

transition kernel q with the invariant distribution. The transition kernel q could

be, for example, a Gibbs sampler or Metropolis-Hastings. This method could be

an alternative method to limit the degeneracy of the particles (see (Doucet et al.,

2001) and (Fearnhead, 2002)). The efficiency of the rejuvenation step depends on

the choice of this kernel density; for discussion of the choice of the kernel, see

Gilks and Berzuini (2001). Elfring et al. (2021) explained in greater detail the

challenge of applying SMC methods with several examples. Further details about

the applications of the SMC methods will be discussed in Chapter 5.

2.8 Approximation Method

MCMC and SMC have the advantage that they will eventually converge to the

target distribution and hence find exact samples from the posterior distributions

(Robert et al., 1998). However, these methods may become very slow in a large

problem. Therefore, simulation methods are suitable for smaller data sets and when

more precise inference samples are required. An alternative way to address the

computational issue in inference problems is by using approximation methods such

as variational inference (Fox and Roberts, 2012) or Laplace approximation. In order

to find the best approximation for the target distributions, we follow an optimisation

process. These methods are relatively simple to compute and can derive helpful

information about the models’ parameters (Gelman et al., 2013). This thesis will

consider the use of the Laplace approximation methods.

2.8.1 Laplace Approximation Method

The Laplace approximation (LA) (Tierney and Kadane, 1986) is an analytical

approximation method that aims to find a Gaussian approximation to a continuous

target distribution. The idea behind the Laplace approximation is using the second-order

Taylor expansion of the log-posterior of interest p(θ|D) around its maximum θ̂, which

corresponds to a Gaussian approximation at the mode. Formally, we have:

p(θ|D) ≈ N (θ̂,H−1),
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where

θ̂ = arg max
θ
p(θ | D) = arg max

θ
p(D, θ) = arg max

θ
p(D | θ)p(θ) = arg max

θ
[log p(D | θ)+log p(θ)].

H is the Hessian matrix of the negative log-posterior at the mode (θ̂);

H = − ∇2 log p(θ | D)
∣∣
θ=θ̂

= − ∇2 log p(D, θ)
∣∣
θ=θ̂

= − ∇2[log p(D | θ) + log p(θ)]
∣∣
θ=θ̂

.

Now, we can approximate p(θ|D) using its 2nd order Taylor expansion.

Suppose log p(D, θ) = f(θ), one can approximate f(θ) using its 2nd Taylor

expansion as following:

f(θ) ≈ f (θ0) + (θ − θ0)>∇f (θ0) +
1

2
(θ − θ0)>∇2f (θ0) (θ − θ0) ,

where θ0 is an arbitrary point. If we chose θ0 = θ̂, we get

log p(D, θ) ≈ log p(D, θ̂) +
1

2

(
θ − θ̂

)>
∇2 log p(D, θ̂)

(
θ − θ̂

)
, (2.44)

where we know that ∇f(θ̂) = ∇ log p(D, θ̂)) = 0, since θ̂ is at a maximum.

Now, we can use Bayes’ rule to write the unnormalised posterior distribution as

following:

p(θ | D) ≈ p(D | θ)p(θ) = p(D, θ) = elog p(D,θ)

Plugging in this formula to the 2nd order Taylor approximation for log p(D, θ),
using equation (2.44), we get

p(θ | D) ≈ elog p(D,θ) ≈ elog p(D,θ)≈log p(D,θ̂)+
1
2(θ−θ̂)

>
∇2 log p(D,θ̂)(θ−θ̂)

simplify this formula, we get

p(θ | D) ≈ e−
1
2(θ−θ̂)

>
(−∇2 log p(D,θ̂))(θ−θ̂)

Hence, Laplace approximation of the posterior distribution p(θ | D) is a Gaussian;
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p(θ | D) ≈ N (θ̂,H−1),

where H = −∇2 log p(D, θ̂).

The Laplace Approximation is considered to be very fast. The reason is that LA

only has to find the posterior mode, and it does not have to explore the whole space

of posterior distribution as in MCMC or SMC. Laplace Approximation methods can

be more efficient for uni-modal target distributions or when it is possible to apply

separately to each mode for multimodal distributions (Gelman et al., 2013). The

performance of LA in approximating the posterior distribution is illustrated in the

following example.

2.8.2 Example: Binomial Data with a Beta Prior

In this simple example, assume that the likelihood is drawn from a binomial(n, θ)

distribution where n is known, and θ is the (unknown) parameter of interest. The

model is, therefore

x | θ ∼ binomial(n, θ)

θ ∼ Beta(α, β)

Since the beta distribution is a conjugate prior to the binomial likelihood (see

section 2.2), the posterior will also be a beta distribution. Therefore, the posterior

distribution has the following closed-form:

θ | x ∼ Beta(α + x, β + n− x)

Figure 2.5 shows the posterior for the rate parameter θ of a Binomial distribution

given n = 20 and x = 10. The black line represents the true posterior, and the

Laplace approximation is the red line. In this case, the Laplace approximation

works pretty well around the mode and also when moving farther away from the

mode. In Figure 2.6, we can see the posterior of the same model but with less

data, n = 6 and x = 4. In this case, the approximation is reasonable around the

neighbourhood of the mode. However, when we move away from the mode, the tail

of the true posterior is heavier on the left and slanted to the right, and the symmetric
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normal distribution cannot match it. This kind of problem generally occurs when

parameters have bounds. This was the case with θ that bounded between [0, 1].

There are two ways to address this issue. The first way is that one would expect

the approximation to improve by collecting more data. As shown in Figure 2.5,

the more data, the better the Laplace approximation, where the posterior becomes

asymptotically normally distributed.

However, in practice, collecting more data for better approximations is not always

possible. The better way is to re-parameterise the bounded parameters using logarithms

so that they extend the real line [−∞,∞]. Figure 2.7 displays the same posterior,

and the only difference is that the approximation is made on the logarithm scale.

In this case, the parameter θ from the binomial model re-parameterised using the

logit transform log
(

θ
1−θ

)
. Thus, θ extends from [0, 1] to [−∞,∞]. An overview of

variable transformation and Laplace approximation can be found in Hobbhahn and

Hennig (2021).
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Figure 2.5: Laplace Approximation of Posterior for Binomial Distribution Given
n = 20, x = 10.
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Figure 2.6: Laplace Approximation of Posterior for Binomial Distribution Given
n = 6, x = 4.
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Figure 2.7: Laplace Approximation of Posterior for Binomial Distribution Given
n = 6, x = 4, and using the logit transform.
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For further reading about the Laplace method and its applications in Bayesian

inference, see Kass et al. (1991). Extensive details about the algorithm setting

and the optimisation methods that will be used under the Laplace method will be

discussed in Chapter 6.

2.9 Summary of the Chapter

This chapter provided an overview of the statistical methods of interest to this

thesis. First, a general introduction to Bayesian statistics was given. The prior

distributions greatly affect Bayesian inference; hence, different types of priors are

discussed.

In addition, Bayesian inference with Markov chain Monte Carlo was explained in

detail. In particular, three different algorithms were presented; Metropolis-Hastings,

Gibbs Sampler and Hamiltonian Monte Carlo. Information was provided regarding

the efficiency of each method, setting and tuning each technique.

Besides the MCMC methods, the idea of the Monte Carlo method was introduced.

The primary MC method, importance sampling, was first explained. We found this

method can be inefficient for a dynamic system; hence the idea of sequential Monte

Carlo was introduced. Two important methods of SMC were explained in detail;

sequential importance sampling and sequential importance resampling. The concept

of particle degeneracy and the resampling techniques were also mentioned.

The idea of approximation inference was introduced to address the expensive

computational cost that may result from using MCMC or SMC methods. The

concept of the Laplace approximation method was first explained, and then the

performance of the proposed method in approximating the posterior distributions

was clarified using a toy example.

Further explanation about the application of these methods in item response theory

models and related works will be provided later. The following chapter will present

a literature review of the unidimensional item response theory model (UIRT).



Chapter 3

Item Response Theory

Item response theory modelling improvement has a long history and wide literature.

This chapter provides a brief overview of some common IRT models and their

assumptions.

Section 3.1 will present an overview of unidimensional item response theory

(UIRT). Based on the number of item parameters, this chapter will explain three

types of this model; the one-parameter logistic model (1PL), two-parameter logistic

model (2PL) and three-parameter logistic model (3PL). Finally, section 3.3 will

discuss an identifiability issue for item response theory model and will give some

ideas of how it could be addressed.

3.1 Unidimensional IRT Models

Item response theory (IRT) models demonstrate the relationship between the ability

or attitude (denoted θ) and an item response (e.g. questions). These models can be

categorized based on different factors such as the dimensionality of the ability, type

of questions or the number of item parameters. If all items measure one common

ability, this will result in a so-called unidimensional item response theory model

(UIRT).

The item response might have two categories (dichotomous), like yes or no, right

or wrong, agree or disagree. Also, it may have more than two categories such as

Likert scale on a survey. In a large-scale quizzes, multiple choice format is most

commonly used for IRT, where the answer is either correct (1) or incorrect (0).

Often also a single ability variable θ(unidimensional) is assumed. For dichotomous

(UIRT), there are three common types of models which are named according to the

number of item parameters, and they will be described in the following sections.

39
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3.1.1 One-Parameter Logistic (1PL) Model

The first and most straightforward item response theory model is the one-parameter

logistic (1PL) model. This model is also known as the Rasch model and was

introduced first by Rasch (1960). The model contains one item parameter which is

the difficulty parameter.

Each IRT model has a unique item characteristic curve (ICC). This ICC shows

how changing the ability variable (θ) results in changing the probability of a correct

item response. Different item response models can be obtained by writing the (ICC)

in various mathematical forms. The ICC of 1PL can be written as:

p(Xij = 1) =
exp(θi − bj)

(1 + exp(θi − bj))
, θi and bj ∈ R, (3.1)

where Xij is the result for the jth item by examinee i, and 1 indicates a correct

response. The ability parameter (latent trait) in this formula is represented by θi,

and the difficulty parameter is bj. The subscript j = (1, 2, ...,m) represents the items

where m is the total number of items. The subscript i = (1, 2, ..., n) represents the

examinees where n is the total number of examinees.

In this formula, the difficulty parameter measures the difficulty of getting the

correct answers. High (low) values of bj means hard (easy) questions. In other words,

given the same ability level, for an item to be easier than another, the probability

of correct answer should be higher. Also, high (low) values of θi mean high (low)

levels of examinee skill. The theoretical range of a person ability θi as well as item

difficulty bj is from −∞ to∞ . However, in general, b′s tend to range between -2 to

to 2, so as for questions not to be too easy or too hard (DeMars, 2010). In practice,

the bj values are estimated from data.

As an example of 1PL, according to the model in equation (3.1), the probability

that randomly selected person with ability equal to 0.5 gets item with difficulty

equal to 1 right would be ;

p(Xij = 1) =
exp(0.5− 1)

(1 + exp(0.5− 1))
= 0.3775407

This means this person has a probability of about 0.38 to answer this question

correctly.
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Figure 3.1: ICCs for the one-parameter model corssponding to three item difficulty
levels.

Figure 3.1 shows three ICCs with different values of item difficulty. It can be

seen that the ICC increases from the left to the right when the ability increases.

The difficulty parameters are -1, 0 and 1, respectively. Item 3 with b = 1 is more

difficult than item 1 (b = −1) and item 2 (b = 0); for any given value of θ, the

probability of answering item 1 correctly is lower than answering item 2 or item 3

correctly.

3.1.2 Two-Parameter Logistic (2PL) Model

The main limitation of 1PL model (Rasch model) is that items only vary in terms of

difficulty where the discrimination between the items is assumed to be fixed as equal.

As a result, all item discriminate between examinees with different levels of ability

in the same way. Thus, the model can be extended to set a different discrimination

parameter aj for each item; this model is called the two-parameter model (2PL).

The discrimination parameter aj measures the slope of the curve of ICC, which

tells how steeply the probability of correct answer changes at the steepest point;

where the probability of correct answer changes rapidly when ability increases.
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In other words, the discrimination parameter can tell us how well this question

discriminates between students with high and low ability levels.

The probability of correct answer for the 2PL model or ICC is written as:

p(Xij = 1) =
exp[aj(θi − bj)]

(1 + exp[aj(θi − bj)])
; θi , bj and aj ∈ R (3.2)

Theoretically, the discrimination parameters aj can range between −∞ to ∞.

Items with positive discrimination values suggest that lower ability students have a

low probability of answering an item correctly, and higher ability students have a

high chance of getting the item right. Items with negative discrimination parameters

suggest that examinees with high abilities are less likely to answer the items correctly.

Hence, these items should be removed or edited. Hence, this parameter can measure

the differential capability of items. A higher value means that the item better

discriminates between examinees with different ability levels. In practice, the discrimination

values of a good test item can take range between 0.5 to 2 (DeMars, 2010).

Figure 3.2 shows three ICCs of the two-parameter model with the same difficulty

parameter (bj = 0.5) and different discrimination parameters aj. The discrimination

parameter values are 0.5, 1 and 2, respectively. It is noticeable that as the aj

values increase the slope becomes steeper around 0. The ICC with aj = 2 (highest

value) has the steepest slope. The higher (lower) values of aj means better (less)

discrimination between high and low ability levels. For the 1PL model, aj = 1 for

all items.

3.1.3 Three-Parameter Logistic (3PL) Model

In reality, it is reasonable to assume that examinees with low ability skills might

choose the correct answer in a difficult item by luck or guess. Therefore, the

two-parameter can be extended to measure the probability of answering questions

correctly in spite of low ability by adding a third item parameter. This parameter

is called the item guessing parameter cj. In the 1PL and 2PL models, we assume

that the guessing parameters are zero for all items.

The probability of the correct answer for the 3PL model (ICC) is described as

following:



Chapter 3. Item Response Theory 43

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ability

pr
ob

ab
ilit

y

a=0.5
a= 1
a=2

a=0.5
a= 1
a=2

Figure 3.2: ICCs for the two-parameter model corresponding to three discrimination
level (with an equal difficulty level).

p(Xij = 1) = cj+(1−cj)
exp[aj(θi − bj)]

(1 + exp[aj(θi − bj)])
; θi , bj and aj ∈ R and cj > 0. (3.3)

In the case of the multiple-choices test, the probability of answering multiple

choice question with k choices is 1
k

even for examinees who has a low ability. For

example, If we have four multiple choices item (k = 4), cj would be approximately

0.25, which is the chance that an examinee with an extremely low ability could

randomly answer this item correctly. Theoretically, cj can range between 0 and 1.

Figure 3.3 displays three ICCs of 3PL plotted with the same difficulty (b = 0)

and discrimination level (a = 1) , but with three different guessing parameters, low

(c = 0), medium (c = 0.2) and high(0.5). The guessing parameters in the ICCs are

the height of the lower asymptote, so is referred to as the lower asymptote parameter.

It can be seen that for the low ability such as -2 the probability of getting the correct

answer is 0.5 for item 3 (c = 0.5). However, as the ability level increases , the effect

of guessing parameter on the probability of getting the correct answer is very small



Chapter 3. Item Response Theory 44

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ability

pr
ob

ab
ilit

y

c=0
c= 0.2
c=0.5

c=0
c= 0.2
c=0.5

Figure 3.3: ICCs for the two-parameter model corssponding to three guessing levels
and an equal difficulty and discrimination level.

since the ICCs are almost identical at the end of the ability scale.

3.1.4 Model Assumptions

The unidimensional item response theory models consider that any change in the

ability variable θ will lead to a change in the probability of selecting the correct

response p(θ). In other words, as the ability level increases the probability p(θ) will

increase too which is usually called the monotonicity assumption. This assumption

can be clearly described by the item characteristic curve (ICC). This ICC shows

how the changing in the latent or ability variable result in changing the probability

of an item response. Different item response models can be obtained by writing the

(ICC)s in various mathematical forms, as introduced before.

Besides this assumption, there are two main assumptions that are (1) unidimensionality

of the latent variable and (2) local independence. A unidimensional IRT model is

shown in Figure 3.4 as Model A. In this model, each item has a single common

ability θ1.
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Figure 3.4: Alternative models: A)- unidimensional model, B) Between-Item
(dimensionality), C)- Within-Item (dimensionality) structure

In the other hand, in C (within-item dimensionality), each item can be associated

with two or more abilities measured by the test. In between-item (model B), item

1 to item 5 are associated with the first ability, θ1, while item from 6 to 10 are

associated with the second ability, θ2. Which means θ1 and θ2 do not share any

common items. Therefore, the test becomes a multi-unidimensional structure where

each ability is defined by a set of unidimensional items while the overall structure

becomes multidimensional. In the within-item model C, the items are associated

with both θ1 and θ2, and thus the test has a complex structure. This thesis focuses

on model A.

The second assumption, local independence, indicates that if the first assumption

is held, then examinees responses to one item will be independent of their responses

to other items conditional on the latent ability. In other words, locally independent
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items are assumed to be uncorrelated after conditioning on θi (DeMars, 2010).

Several diagnostic methods have been discussed in the literature to test the violations

of local independence assumption in different simulation studies (e.g. Yen (1984),

Chen and Thissen (1997), Kim et al. (2011) and Edwards et al. (2018) for testing the

local independence assumption in the 2PL and 3PL models). Liu and Maydeu-Olivares

(2013) described 6 different statistics and assessed the performance of these statistics

in detecting local independence in 2PL IRT models for binary data under various

simulated conditions. Debelak and Koller (2020) proposed and evaluated two new

quasi-exact non-parametric methods for testing the local independence assumption

for the Rasch model.

3.2 Parameter Estimation in IRT Models

In the literature, there have been extensive estimation techniques in IRT models in

both Bayesian and frequentist approaches. For example, Joint Maximum Likelihood

Estimation (JML), Marginal Maximum Likelihood Estimation (MML) have wide

applications and different techniques for estimating both item and ability parameters.

For more details, see for example, Embretson et al. (2000), Baker and Kim (2004)

and De Ayala (2013).

Many researchers such as Swaminathan and Gifford (1982), Baker (1998) and

Baker and Kim (2004) suggested that Bayesian estimations methods can be useful

for complex IRT models and for small data sets. Using Bayes’ theorem allows

us to combine the previous knowledge belief (prior distribution) with data (the

likelihood function) to obtain the probability distribution of possible parameter

values (the posterior distribution). With the help of modern computer techniques,

Bayesian estimation methods have been widely used for IRT models via Markov

chain Monte Carlo (MCMC). For example, Patz and Junker (1999b) developed a

Metropolis-Hastings algorithm and demonstrated the performance of this method

in the two-parameter logistic (2PL) model: Martin and Quinn (2002) and Wang

et al. (2013) introduced and discussed the idea of the MCMC methods for dynamic

IRT models. See Albert (2015) for a brief overview of the developments of Bayesian

inference in the IRT model. Weng et al. (2018) discussed the idea of estimating

parameters in real-time and developing an efficient online algorithm for online product

ratings and IRT models.

Focusing on IRT models in the context of educational testing, the challenge

arises when the data arrives in real-time continuously and the parameters need to

be estimated online. For example, if we want to update the estimates in a model quiz
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where students can answer the questions at different stages. In this case, when there

is new data arriving from individuals or questions through time, dynamic structures

of student abilities and questions difficulties need to be included in the model, to

accommodate changes in ability and difficulty. In this case, we cannot see the results

of all individuals at the same time. Therefore, in order to use frequentist approaches,

the person who actually took the test has to wait for other colleagues to take the test

to get feedback on their own ability. Contrary to the frequentist statistics, using the

Bayesian methods do not require many students to take the test, because using a

prior distribution can direct the result. Assuming prior knowledge is available that

allows formulation of the Bayesian model. According to this setting, the inference

of unknown parameters is based on the posterior distribution obtained from Bayes’

theorem. Hence, if the data arrive sequentially in real-time, and one is interested

in making inference about an unknown parameter online, it is important to update

the posterior distribution as new data arrive. This thesis aims to investigate some

possible methods that can be used for real-time inference, taking into account the

accuracy of the estimation results and the velocity of the methods.

3.3 IRT Model Identifiability

IRT models often suffer from model identification problems. This section will

illustrate the issue of identifiability in IRT. To illustrate non-identifiability in IRT,

the two-parameter logistic model will be given as an example. Also, some ideas for

addressing this problem will be given in this section.

Non-identifiability of a model means that more than one set of parameter values

can lead to the same likelihood. For the 2PL model, it is enough to show that

different sets of parameters can lead to the same likelihood function (San Mart́ın

et al., 2013).

The likelihood function for IRT can be written as:

L(x,π) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij ,

where logit(πij) = aj(θi − bj).

Applying the following linear transformation for any constant value δ

θ′i = θi ∗ δ
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and

b′j = bj ∗ δ

and

a′j =
aj
δ

where b 6= b′ , a 6= a′ and θ 6= θ′.

With some simple algebra, one can see that;

L(x,π) = L(x,π′)

π′ij = a′j(θ
′
i − b′j) =

aj
δ

(θiδ − bjδ) = aj(θi − bj) = πij

This means different parameter values induce the same probability distribution;

π′ij = πij. Similarly, the parameters for both 1PL and 3PL are not identifiable,

because one can add the same constant to all θi and all bj and obtain the same

probability distribution.

In 1PL (Rasch model), the only concern is the difference between the ability

parameter θ and the difficulty parameter b. If θ =2 and b=1, then the difference

(θ−b) is 1.0 and the probability of answering the item correctly p(Xij = 1) is 0.7311.

However, if we add the same constant (δ) to θ and b, the difference (θ + δ − b− δ)
will still equal 1.0, and hence, the Rasch model would result in exactly the same

probability of answering item correctly. For example, if δ =5, then θ′ = θ + δ = 7

and b′ = b + δ = 6, so the the difference (θ − b) is one and p(Xij = 1) is 0.7311,

which exactly the same probability as before. For more information of how to show

non-identifiability in 3PL see Maris and Bechger (2009).

From a Bayesian perspective, several authors in the literature review (e.g., Chaloner

and Verdinelli (1995), Bernardo and Smith (2009)) have pointed out that there is

no identifiability issue when proper prior (2.2) distributions are assumed for all

parameters as this case will lead to proper posterior distributions. Therefore, every

parameter can be well estimated; see Shariati et al. (2009) for more details about

this point of view. However, taking the view that non-identifiability may cause

concerns for the Bayesian inference, these concerns can appear clearly in practice.

Practically, there might be strong correlations between estimated parameters in the

posterior distribution. Hence, the appearance of strong correlations results in poor

mixing of the Markov chain. In this way, the chain may not be able to converge to
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the target distribution within a reasonable time.

In order to resolve the non-identifiability issue in IRT, we can impose various

constraints upon the estimated parameters. For instance, setting θ1=1 (that means

using first person as a baseline), or we can set b1=0 (using first item as a comparison

point). We can also constrain the all θi to sum to 0, or constrain all bj to sum to 0.

In Bayesian inference, a common way is assuming that the ability parameters are

standard normally distributed by setting µθ= 0 and σ2
θ=1. Another possible solution

is rescaling the sample difficulty values in each MCMC iteration. For instance,

restricting their sum to be zero: Define µ̂bt =
∑

j=1 b
(t)
j /m and transform the sample

as b
∗(t)
j = b

(t)
j -µ̂bt . Then, one can sample θ parameters using the values of rescaled

sample of item difficulty (Fox, 2010).

The alternative approach is to constrain the a′s to have positive signs, as explained

by Gelman and Hill (2006). This thesis will use this approach since it is desirable

in educational testing for items j to have high values of aj to discriminate better

between high and low abilities. . If aj is not fixed, changing the sign of aj can be

compensated by changing the sign of θi with no change in the probability of getting

the correct answer.

In summary, this chapter reviewed the basic concept of the unidimensional item

response theory models. Three standard models; 1PL, 2PL and 3PL, have been

discussed in this chapter. However, this thesis will consider the application of the

1PL and 2PL models. The next chapter will consider the application of Bayesian

inference with MCMC methods on the UIRT models.
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Bayesian Inference with MCMC

on the UIRT Models

4.1 Introduction to Parameter Estimation with

MCMC methods

The popularity of the MCMC method has increased due to the flexibility of its

application, especially for complex models. To date, many researchers have investigated

the application of the MCMC methods to the IRT models. Patz and Junker (1999b)

introduced a general MCMC methodological guidance in complex IRT models for

Bayesian inference. Their results suggested that MCMC, based on Metropolis

Hastings sampling, can accurately fit the two-parameter logistic (2PL) model. Patz

and Junker (1999a) extended their methodology to address some issues such as

missing data and non-response and studied the behaviour of a guessing parameter

in the 3PL model. They succeeded in applying MCMC based on Metropolis Hastings

within Gibbs, but they pointed out that the 3PL model required a longer time to

run the Markov chain. Hence, they have found some difficulty in the computational

efficiency, which was not a concern for their study.

Many studies with the help of software development have been carried out to improve

the application of the MCMC in the IRT model for educational uses. For examples,

see Kim and Bolt (2007), Levy et al. (2011) and Junker et al. (2016) for more

explanation of the applications of MCMC in the IRT models. Moreover, several

studies have shown an advantage feature of Bayesian estimation in the IRT model

for small sample sizes by using MCMC methods, such as Finch and French (2019).

Within MCMC methods, several algorithms have been widely examined in the IRT

models, such as Gibbs sampling (Jiang and Templin 2019, Do 2021 and Fu et al.

50
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2021), Metropolis Hastings (Patz and Junker 1999b), Metropolis Hastings within

Gibbs ( Patz and Junker 1999a), blocked Metropolis and Metropolis Hastings Robins

Monroe (Cai 2010). However, a few researchers have studied the application of the

Hamiltonian Monte Carlo (HMC) algorithm in the IRT models, which is considered

the new MCMC method, such as Luo and Jiao (2018), Ames and Au (2018) and Do

(2021). These studies have been implemented through a software program called

Stan ( Stan Development Team, 2022).

This chapter aims to compare the application of two MCMC methods extensively:

Metropolis Hastings within Gibbs and Hamiltonian Monte Carlo to the IRT model,

which explores the accuracy, complexity of the implementation, and computational

costs.

4.2 Prior Distributions for UIRT Models

In Bayesian inference, the accuracy of parameter estimations is expected to improve

by taking into account the prior information for the unknown parameter in the

estimation procedures, while misspecification of the prior distribution could lead to

incorrect inference (Evans and Moshonov, 2006). As mentioned in 2.2, the prior

distribution is typically specified by the user, based on personal belief from previous

experience with the parameter or from the statistical properties of the parameter

that need to be estimated. Therefore, one of the critical issues in Bayesian analysis

is the specification of prior distributions.

Despite the increased popularity of using Bayesian inference via MCMC methods

in the IRT models, a few studies have considered the impact of the choices of the

prior distributions on the accuracy of the estimates. For example, Ghosh et al.

(2000) discussed the choice of priors and its effect on posterior propriety for the

one-parameter normal model, p(Xij = 1) = π(θi − bj), where π is the standard

normal cumulative distribution function. Also, Sheng (2010) investigated the impact

of prior specification on the accuracy of the three parameters IRT normal model.

However, this model is outside of the scope of this thesis.

Marcoulides (2018) investigated the effectiveness of using different specified priors

in estimating item parameters in the two-parameter logistic (2PL) using simulated

data. The study focused on a comparison of using three different types of prior;

non-informative, bad informative and good informative, using some statistical

measurements, such as relative bias (Flora and Curran, 2004), to quantify the

accuracy of parameter estimates. The results were all different and presented varying
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levels of estimation bias, suggesting that Bayesian estimation of a 2PL model appears

quite sensitive to the prior choice. However, the researcher recommended that more

investigation was needed to include different types of priors for other models and

sample sizes. Also, one of the recent studies investigated how the choice of prior

distribution in the IRT model may influence the sensitivity of the posterior predictive

checks; see (Ames, 2018) for further details.

The choice of prior distributions becomes more critical for smaller sample sizes.

One way of specifying prior distribution, as recommended in Kim and Bolt (2007),

is by eliciting experts’ information. In this method, experts face a carefully created

list of questions, which they answer according to their knowledge. However, the

applications of this method have been limited in the IRT models. For more information

about the prior elicitation and its application in the IRT models, see the Ames and

Smith (2018) and Andrade and Gosling (2018).

Although it is expected that suitable informative priors would give the best

estimation result, it is more common in practice to specify a weakly informative

prior for different IRT models, such as Sinharay (2006), Kim and Bolt (2007) and

Junker et al. (2016). This thesis will also consider the use of weakly informative prior

distributions. In practice, the prior distributions will independently be determined

on the person (ability) and item parameters. For more details about prior distributions

for Bayesian IRT models, see Fox (2010) and Bürkner (2019).

Prior Setting for this Application

With respect to the ability parameters θ, it is common to apply the same prior for

all examinees. The most common choice is a normal distribution (e.g. Patz and

Junker (1999a) and Bürkner (2020)) with a mean equal to zero and a variance set

in advance by the user; θi ∼ Normal (0, σ2
θ). The interest in this chapter is in the

2PL IRT model (3.1.2). Therefore, there will be two item parameters; the difficulty

(b) and the discrimination (a). In practice, it is also common to choose the normal

distribution with the mean being zero and a reasonable value for the variance for

b; bj ∼ Normal (0, σ2
b ). By using this prior distribution for b, it is assumed that

the item parameters of the same item are uncorrelated (Fox, 2010). The variance

of both priors of θ and b will be relatively large for the weakly informative prior

goal. In terms of the item discrimination parameters (a), in most testing settings,

aj is typically greater than 0 (DeMars, 2010), suggesting that the prior distribution

of a can be modelled by positively skewed distribution. For that purpose, a gamma

distribution will be used in this application; a ∼ gamma (α, β). An important
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advantage of the MCMC methodology is that there is much freedom in choosing the

prior distributions, where less or more informative priors or using different types of

distribution forms could be chosen as well. The prior specifications are summarised

in Table 4.1.

Table 4.1: Prior Specification for the 2PL Model.

Parameter Prior
Ability θ ∼ N(0, σ2

θ)
Difficulty b ∼ N(0, σ2

b )
Discrimination a ∼ gamma(α, β)

4.3 MCMC Algorithms Settings

The most common Bayesian algorithms for estimating IRT model parameters are

Metropolis Hastings (explained in 2.4.1) and Gibbs sampling (explained in 2.4.2).

The Gibbs sampling algorithm is frequently used for the normal model, where

full conditional posterior distributions of parameters can be derived in closed-form

expressions. However, this is not the case for the logistic models. Jiang and Templin

(2019) provided a new method for deriving conditional distributions of IRT and using

Gibbs sampling for the logistic model. Still, this approach is outside of the focus of

this thesis since it will not lead to an improvement in computation time.

The Metropolis Hastings algorithm requires a decision to reject/accept the new

samples from the proposal distribution for each parameter in every step of the

Markov chain. However, controlling the acceptance rate for IRT models with large

numbers of examinees and items for large datasets becomes hard. As suggested by

Patz and Junker (1999a) and Patz and Junker (1999b), combining strategies from

the Gibbs and MH algorithms could simplify the process of generating the Markov

chain for logistic IRT models. Therefore, this thesis will consider the combination

of the Gibbs sampler and MH algorithm called Metropolis-Hasting within Gibbs

(MH/Gibbs).

In addition to Gibbs sampling and the MH algorithm, Hamiltonian Monte Carlo

has recently gained researchers’ attention in the IRT models. HMC can provide

preciser proposal values than MH by using the Hamiltonian dynamic as explained

in 2.4.3. Therefore, this method will also be considered in this thesis because of the

computational efficiency of the algorithm (Brooks et al. 2011 and Hoffman et al.

2014).
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4.3.1 Metropolis Algorithm within Gibbs Sampler

The main structure of the MH/Gibbs algorithm is similar to the Gibbs sampler 2.4.2,

in which we can sample one or a couple of parameters simultaneously based on the

full conditional distribution. However, the MH algorithm 2.4.1 is added to overcome

the difficulty of computing the full conditional distribution. The MH/Gibbs algorithm

for the two-parameter 3.1.2 model can be composed of 4 steps as follows;

Repeat for t = 1, 2, ..., T , where T is the number of iterations:

1. sample θ
(t+1)
i from p(θi|X,θ(t)−i) for 1 ≤ i ≤ n

(a) Generate a candidate value, θ∗i from a proposal density; θ∗i ∼ N(θ
(t)
i , σ

2
θ).

(b) Update θ
(t+1)
i = θ∗i with acceptance probability, α(θ

(t)
i , θ

∗
i ).

i. Compute α(θ
(t)
i , θ

∗
i );

α(θ
(t)
i , θ

∗
i ) = min

{
1,

p(θ∗i )p(X|θ∗i ,θ
(t)
−i)

p(θ
(t)
i )p(X|θ(t)i ,θ

(t)
−i)

}
ii. Draw a random number u from uniform(0, 1).

iii. If u < α then accept the proposal θ
(t+1)
i = θ∗i , otherwise reject the

proposal and set θ
(t+1)
i = θ

(t)
i .

2. sample b
(t+1)
j from p(bj|X, b(t)−j) step for 1 ≤ j ≤ m.

(a) Generate a candidate value, b∗j from a proposal density; b∗j ∼ N(b
(t)
j , σ

2
b ).

(b) Update b
(t+1)
j = b∗j with acceptance probability; α(b

(t)
j , b

∗
j).

i. Compute α(b
(t)
j , b

∗
j);

α(b
(t)
j , b

∗
j) = min

{
1,

p(b∗j)p(X|b∗j , b
(t)
−j)

p(b
(t)
j )p(X|b(t)j , b

(t)
−j)

}
ii. Draw a random number u from uniform(0, 1).

iii. If u < α then accept the proposal b
(t+1)
j = b∗j , otherwise reject the

proposal and set b
(t+1)
j = b

(t)
j .

3. sample a
(t+1)
j from p(aj|X,a(t)

−j) step for 1 ≤ j ≤ m.

(a) Generate a candidate value, a∗j from proposal density; a∗j ∼ N(a
(t)
j , σ

2
a)

(b) Update a
(t+1)
j = a∗j with acceptance probability, α(a

(t)
j , a

∗
j).
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i. Compute α(b
(t)
j , b

∗
j);

α(a
(t)
j , a

∗
j) = min

{
1,

p(a∗j)p(X|a∗j ,a
(t)
−j)

p(a
(t)
j )p(X|a(t)j ,a

(t)
−j)

}
ii. Draw a random number u from uniform(0, 1).

iii. If u < α then accept the proposal a
(t+1)
j = a∗j , otherwise reject the

proposal and set a
(t+1)
j = a

(t)
j .

4. Repeat steps 1, 2 and 3 until t reaches the total number of iterations T .

The Gibbs sampler is summarised in steps 1, 2 and 3, while the sub-steps (a) and

(b), in each step, contain the same structure as the single iteration MH algorithm.

Those sub-steps generate the full conditional distribution by proposal distributions

of θ, b and a. Due to their simplicity, symmetric distributions are a popular choice

for the proposal distribution when the MH/Gibbs algorithm is used for IRT models.

Therefore, a normal distribution with mean equal to a current iteration and standard

deviation, which is fixed in advance, is used in this setting. This will simplify the

algorithm to the Metropolis algorithm 2.4.1. Therefore, from now on, this method

will be referred to as M/Gibbs. The choice of the proposal variance, as mentioned

in section 2.4.1 affects the algorithm’s performance. In this study, the variance is

tuned automatically to obtain an acceptance probability between 25% to 50%, as

recommended by Patz and Junker (1999a).

4.3.2 Hamiltonian Monte Carlo Algorithm in the UIRT Models

The main structure for the HMC algorithm has been explained in greater detail

in section 2.4.3. In order to use the HMC algorithm in the IRT models, the

first derivatives of the log-posterior distribution with respect to each parameter

are required, which can be implemented in equation 2.31, and hence the following

processes of the HMC algorithm. The log-posterior is the sum of the log-likelihood

and the log-prior distribution for each parameter. Thus, we can start by finding

the first derivative of the log-likelihood concerning each parameter. The likelihood

function for the 2PL model can be written as:

L(x,π) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij ,

where πij = eηij and ηij = aj(θi − bj).
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Hence, The log-likelihood function for the 2PL model can be written as:

lij = log(πij)
xij + log(1− πij)1−xij .

This can be simplify as:

lij = xij

(
log

(
πij

1− πij

)
+ log(1− πij)

)
.

lij = xij

(
log

(
1− πij

1 + πij

))
lij = xij

(
log

(
1

1 + πij

))
lij = xij

(
log

(
1

1 + eηij

))
lij = xijηij − log(1 + eηij)

The first derivative derivative with respect to ηij:

dlij
dηij

= (xij − πij)

The first derivative derivative with respect to θi:

∂lij
∂θi

=
∂lij
∂ηij

∂ηij
∂θi

=
∑i=n

i=1 (xij − πij) ∗ aj.

The first derivative derivative with respect to bj:

∂lij
∂bj

=
∂lij
∂ηij

∂ηij
∂bj

= −
∑j=m

j=1 (xij − πij) ∗ aj.

The first derivative derivative with respect to aj:

∂lij
∂aj

=
∂lij
∂ηij

∂ηij
∂aj

= −
∑j=m

j=1 (xij − πij) ∗ (θi − bj).

The specifications of the prior distribution for each parameter, that will be used

in this application, can be found in Table 4.1. Regarding the first derivative of the

prior distributions, the first derivative of the normal distribution with respect to θi:

p(θi) =
(
2πσ2

θ

)−1/2
exp

(
−1

2

(θi − µθ)2

σ2
θ

)

dpi
dθi

=
− (θi − µθ)

σ2
θ
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The first derivative of the normal distribution with respect to bj :

p(bj) =
(
2πσ2

b

)−1/2
exp

(
−1

2

(bj − µb)2

σ2
b

)

dpj
dbj

=
− (bj − µb)

σ2
b

The first derivative of the gamma distribution with respect to aj :

p(aj) =
aα−1j e−βaβα

Γ(α)
for aj > 0 α, β > 0

dpj
daj

=

(
α− 1

aj

)
− 1

Finally, the resulting derivative from the log-likelihood concerning each parameter

is added to its first derivative of the prior distribution to find the log-posterior

distribution. This result will be coded in the R programming code in order to be

able to apply the HMC algorithm. Implementing the HMC algorithm also requires

setting and tuning two parameters carefully; trajectory length (L) and step size

(ε) 2.4.3. These will be set automatically to achieve the recommended acceptance

probability (2.32) between 60% to 70%.

4.4 Comparison Study

This section will compare the performance of the Hamiltonian Monte Carlo (HMC)

and Metropolis within Gibbs samplers (M/Gibbs) for UIRT models. The comparison

between the two algorithms will be carried out in terms of accuracy, efficiency and

computational time.

4.4.1 Simulated Data

The data in this setting will be represented as a matrix X; where

Xij =

{
1 if examinee i answer item j correctly

0 if examinee i answer item j incorrectly,

and i = 1, 2, ..., n (number of rows (examinees)) and j = 1, 2, ...,m (number of

columns (items)). In this setting, the questions or items are measure the same skill

(unidimensional ability), and the examinees are assumed to answer all questions.

Therefore, Xij ∼ Bernoulli(πij) where logit(πij) = aj(θi − bj) which give the
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likelihood of this model as:

L(x|θi, bj, aj) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij

The θ′is range uniformly from -4 to 4, b′js range uniformly from -2 to 2, as these

ranges suggested by DeMars (2010). Both parameters θ and b are centred around

zero. The a′is is set to be positive (as explained in 3.1.2) and range uniformly

between 0.5 to 1.

This experiment will be carried out for the two-parameter logistic model (2PL)

with binary responses (correct answer=1, incorrect answer=0) and unidimensional

ability. The comparison study will consider the case of moderate sample size and

test length; n = 200 and m = 20.

4.4.2 Simulation Framework

The main aim of performing this experiment is to compare the computational

expensiveness, efficiency and the accuracy of M/Gibbs and HMC.

For a fair comparison, both algorithms will be applied to the same dataset.

Also, the same prior distributions and same initial values will be used. Finally,

the comparison will be carried out by checking for accuracy, mixing, efficiency and

convergence to the desired target distribution using the following:

• To determine the quality of the approximation obtained from the two methods,

the resulting posterior distributions will be compared to the true values.

• The trace plots (2.5) will be used to visually assess the mixing of the Markov

chains for both methods.

• The autocorrelation (2.5 )and the effective sample size (2.5) per second will

be used to compare the efficiency between these two algorithms.

• To assess the convergence of the chains, four chains with different initial values

will be run and use the plot of Gelman-Rubin statistics (R̂) test (2.5). For

convergence, R̂ should be approximately 1± 0.1.

• The computational time for both algorithms will also be recorded.

Some previously studied, such as Kim and Bolt (2007),Patz and Junker (1999b)

and Patz and Junker (1999a), have used 10,000, 25,0000 and 50,000 iterations,
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respectively for estimating 2PL models. In this thesis, 100,000 iterations will be used

to ensure both algorithms will converge to the desired posterior distributions, and

obtain stable parameter estimates. The convergence diagnostics that will be carried

out in this section, will be implemented through coda package in R (Plummer et al.,

2006).

4.4.3 Comparison

The comparison of results between the two proposed algorithms will be discussed in

this section. The priors’ parameters are set as follows;

θ ∼ N(0, σ2
θ = 10)

b ∼ N(0, σ2
b = 10)

a ∼ gamma(α = 1, β = 2)

The tuning of other parameters, such as the proposals’ variances, trajectory length

and step size, which are set for this result, has been discussed early in 4.3.1 and

4.3.2.

Figure 4.1 displays the resulting posterior distributions from both algorithms for

three levels of examinees’ abilities. These abilities were randomly selected according

to the number of correct answers to represent low, moderate and high abilities.

Also, the figure shows the posterior distributions of the difference between the two

abilities. The result shows that the two posterior densities (black dashed line for

M/Gibbs and blue line for HMC) are very close to being identical, which indicates

that both methods track the same target distributions.

Because weakly informative priors were used (dashed green line), as detailed in 4.2,

most of the information in the posteriors is obtained from the data. Taking the prior

distribution into account, we notice that both methods result in biased estimations.

However, by taking the difference between these two parameters, the estimations of

these differences become almost unbiased, where the actual values (red line) become

close to the mean of the posterior distributions.

Figure 4.2 shows the trace plots after the burn-in period, which represent sampling

histories of the chain obtained from M/Gibbs (left) and HMC (right). The first 1000

iterations were discarded based on an initial visualisation. The results do not show

a lack of convergence using either algorithm. The chains appear to mix well in

both algorithms. The parameters move quickly to the target distribution, and the
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algorithms explore the space well by moving rapidly through the range of the target

distribution.

Figure 4.3 displays the autocorrelation function plots (ACF) for three different

parameters; θ40, θ95 and θ126 . These plots show how the autocorrelation between

samples decreases as a function of their lag. The ACF plots resulting from both

algorithms do not provide evidence for any problem where we can see that the

autocorrelation at lag 1 is already less than 0.8 and then dropped to zero quickly.

However, it is noticeable that HMC dropped faster than M/Gibbs.

To measure the efficiency of the proposed algorithms, the effective sample size

per second (ESS/Sec) was recorded for both methods and plotted in Figure 4.4

against the ability estimates. The ESS/Sec for M/Gibbs ranged from 1 to 20, and

HMC ranged from 10 to 50. The results indicate that HMC produces samples from

the posterior distribution with much lower autocorrelations compared to M/Gibbs.

Therefore, in order to get the same information, we have to run M/Gibbs for a

longer time. Thus, HMC is sampling more efficiently from the target distribution

than M/Gibbs.
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Figure 4.1: Posterior density plots for M/Gibbs and HMC methods of selected
examinees’ abilities with different numbers of correct answers.
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Figure 4.2: Trace plots of three levels of randomly selected examinees’ abilities
obtained from M/Gibbs (left) and HMC (right). The red line indicates the true
parameter value.
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Figure 4.3: Autocorrelations between the samples returned by M/Gibbs (left) and
HMC (right) for three levels of randomly selected examinees’ abilities.
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Figure 4.4: ESS per second from the performance of M/Gibbs (blue) and HMC
(black).

The impact of using different initial values on convergence has been investigated

using the Gelman-Rubin statistic test (R̂), also known as the potential scale reduction.

Figure 4.5 shows the plots of the Gelman-Rubin statistic test . These plots result

from running four chains initialised from different values. Two chains are initialised

far from the true values, one chain is initialised from zero, and the final chain is

initialised from values close to the true values. The plots show that after 100,000

iterations, the samples generated by M/Gibbs show a lack of convergence where R̂

has not reached the suggested value for convergence 1 ± 0.1. For example, the R̂

for θ40 ranged between 1.33 to 3.13. However, samples generated by HMC reached

R̂ = 1 fast, after approximately, 1000 iterations. The lack of convergence that

appears in this experiment suggests that M/Gibbs are more sensitive to the starting

values from HMC. Moreover, a large number of iterations is required if the starting
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values are not chosen carefully. Figure 4.6 shows the plot of R̂ for two different

chains initialised from values not so far from the actual values by using the logit

function to estimate those values. It is clear the convergences have improved for

M/Gibbs, where R̂ ≤ 1.1. However, the potential scale reduction values become

stable after 40,000 iterations.
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Figure 4.5: Potential scale reduction (shrink factor R̂) resulting from M/Gibbs (left)
and HMC (right).The first row represents the result for θ40, the second row θ95, and
the third row is the result of θ126.
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Figure 4.6: Potential scale reduction (shrink factor R̂) resulting from M/Gibbs for
θ40, θ95, and θ126.

Regarding computational time, the average running times of repeating both

algorithms 20 times are 960 and 540 seconds for M/Gibbs and HMC, respectively.

This result suggests that HMC is almost twice as fast as M/Gibbs. That can be seen

by tracing the path (trajectory) of the movements of both methods. The trajectory

of 100 HMC, and M/Gibbs iterations are shown in Figure 4.7. It is clearly seen

that the HMC converges to the high probability density region of the posterior

distribution (red area) faster than M/Gibbs. The computational times will remain

high, even using fewer iterations, such as 10,000. For example, Table 4.2 summarises

the average run time of repeating both algorithms 20 times for different scenarios of

simulated data and 10,000 iterations. Although HMC produces results faster than

M/Gibbs, it still provides some high computational costs, especially in the case that

real-time inference is required.

Table 4.2: Average running time of M/Gibbs and HMC for 10,000 iterations and
different amounts of datasets.

Time in seconds
Amount of Data HMC M/Gibbs
n=200, m=20 49 92
n=500, m=20 131 201
n=1000, m=20 254 386
n=1500, m=20 400 599
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Figure 4.7: Trajectory of 100 iterations of HMC method, and M/Gibbs for two
dimensions (2D) posterior distribution. The dark circles represent the accepted
points, and the empty circles represent the rejected points.

4.5 Summary of the Chapter

Over the past years, many researchers have been using MCMC methods to estimate

IRT model parameters. This chapter provided a brief summary of the application of

MCMC methods to the IRT models. Moreover, Metropolis-Hastings within Gibbs

(M/Gibbs), which is one common MCMC method for the logistic IRT model, was

implemented for the 2PL IRT model. The result of this method was compared to

the Hamiltonian Monte Carlo (HMC) algorithm, which is a new MCMC method
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and is considered to be fast. The comparison was carried out in terms of accuracy,

efficiency and computational time. The two-parameter logistic model (2PL) was first

used to simulate the dataset. Each of the two MCMC algorithms was then separately

implemented to estimate the posterior distributions of the ability parameters (θ) and

the item parameters (b and a). Both methods were applied successfully.

In this experiment, we found that HMC appeared less sensitive to the initial values,

where the result of R̂ ≤ 1.1 was fast, even where we started the chain far from the

actual values. As a result, HMC was able to achieve a reasonable convergence to the

target distribution more quickly with fewer iterations. Moreover, HMC appeared

to be more efficient with high effective sample sizes per second and negligible

autocorrelation. On the other side, using reasonable initial values for M/Gibbs

showed no signs of non-convergence. However, M/Gibbs appeared to have sensitivity

to the initial values that require running the algorithm for a longer time. Moreover,

for the same number of iterations, HMC has less computational time compared

to M/Gibbs. This comparison study suggests using the HMC method would be

preferable to the M/Gibbs. Although this chapter focuses on presenting the result

of the ability parameter θ, the same conclusion is valid for the item parameters. See

Appendix A for some results of estimation of the difficulty parameter.

A bigger challenge arises when the data arrives in real-time continuously, and the

parameters need to be estimated online. When new data comes from individuals

or questions through time, dynamic structures of student abilities and questions

difficulties need to be included in the model to accommodate changes in ability and

difficulty. Focusing on real-time response data, as we have seen from this chapter,

the methods such as MCMC appear to be computationally expensive. Therefore,

these methods will not tend to scale well for streaming data and large-scale real-time

systems. To reduce the computational time of dynamic Bayesian inference, sequential

Monte Carlo methods (SMC) 2.7 have been widely used to explore a posterior

sequence. The application of two settings for SMC algorithms will be presented

in the next chapter, and the results will be compared to the MCMC method.



Chapter 5

Sequential Monte Carlo Methods

on the Dynamic IRT Model

The main goal of this thesis is to provide an efficient Bayesian inference for both

massive data and online inference, taking into account the accuracy and speed.

We have seen from the previous chapter that Markov chain Monte Carlo (MCMC)

techniques are infeasible for massive data due to computational cost. Standard

MCMC methods generally require re-computing the posterior distributions every

time new data becomes available. Even though for the fastest MCMC method,

such as Hamiltonian Monte Carlo and moderate sample size as provided in Chapter

4, MCMC remains computationally expensive. Therefore, the velocity and volume

present considerable challenges to apply MCMC methods when real-time inference

is required or for dynamic problems where the posterior distribution develops over

time.

Sequential Monte Carlo (SMC) methods (2.7) have been widely used in the

literature to reduce the computational cost of dynamic Bayesian analysis (e.g Liu

and Chen (1998)). In this method, the posterior distribution is constructed in such a

way to avoid re-computing the likelihood of old data when new data arrive, allowing

use of the information without great computational cost. However, although SMC

methods have become very common over the last few years to solve a variety of

sequential Bayesian inference problems, the application of SMC remains limited

in IRT models, and as far as is known, currently, there is no application of SMC

methods to IRT models. Therefore, the main contribution of this chapter is applying

the SMC method to the IRT model and a comprehensive investigation into the

performance of the proposed method.

70
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5.1 Classic Sequential Monte Carlo Methods

In this section, the SMC algorithm described in 2.7 will be developed using the

classical SMC method; moving from prior to posterior (Del Moral et al., 2006).

This method is the most commonly used in the literature for different types of

models for both online and offline inference. However, most of the methodological

results occurred outside the scope of education. For example, see Schäfer and Chopin

(2013) and McLean et al. (2017). This method will be denoted by SMC1. The goal

of using this method is that we want to estimate the ability of students every time

a new student answers the test. Therefore, we start from the prior distribution, and

the likelihood is updated gradually until we reach the desired posterior distribution.

The intermediate distributions in this setting help us approximate the final target

distribution. In educational scenarios, these intermittent distributions can be developed

in different ways. For example, we could assume these intermediate distributions to

be a sequence of students’ ability distributions. Every time a new student answers

the test, the likelihood is updated until the last student finishes the test. Hence,

there is no need to re-evaluate the whole process every time students take the test

in this setting. Therefore, it could be helpful for dynamic systems.

The performance of the classical SMC methods will be demonstrated in this

section. This section aims to explain the basic SMC1 method and cover some of the

comparison results to MCMC that justify this method in practice.

5.1.1 Algorithm Setting

The algorithm explained in section 2.7 is very general. There is a wide range of

possible options to consider when setting an SMC algorithm, such as the appropriate

sequence of intermediate distributions π and the choice of importance density.

There are different ways of choosing a sequence of π. One way is given by Neal

(2001) as the following:

πi(θ | D) = p(D | θ)τip(θ), i = 0, . . . , s

where s is the number of stages, and τi is non-decreasing such that:

0 = τ0 ≤ · · · ≤ τi ≤ · · · ≤ τs = 1

When τ0 = 0, the samples are coming from the prior p(θ) , and when τs = 1,

the samples are coming from the posterior distribution. Therefore, the effect of

the likelihood is included gradually in order to obtain at the end( i = s) an
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approximation of the posterior distribution π(θ | D). The intermediate distributions,

i.e. τi(θ1:i) for i < s, are useful in helping us to approximate the final target posterior

τs(θ1:s). In practice, it shows that it is essential to have τi closer to each other near

the prior; therefore, many researchers have been using the following sequence of τi:

τi =

(
i

s

)c
,

where c is a small natural number. Frequently c = 3 or c = 4. In this thesis c = 4.

To investigate the performance of SMC1, where the sequence moves from prior

to posterior, the basic SIR algorithm (6) described in subsection (2.7.2) will be

run to make inference about the posterior distributions of the ability parameter θ,

and the difficulty b. This experiment will look at a small dataset simulated from

the one-parameter logistic model (1PL) with binary responses (correct answer=1,

incorrect answer=0) and unidimensional ability.

The proposal (kernel) densities (2.7) for the ability parameter qi(θ) and difficulty

qi(b) are chosen to be an adaptive normal distribution with variance estimated with

a population variance of the previous SIR stage. This variance will be multiplied by

a scaling factor so that every single intermediate density is slightly smaller than the

previous one. More information about choosing and adapting the proposal density

can be found in Fearnhead and Taylor (2013).

The ESS is monitored during the run at each stage to ensure particle diversity

(2.7.1). If the ESS falls below N
2

samples, the particles are re-sampled according to

their weights. Therefore, at every stage of the sequential sampler, N particles are

used.

5.1.2 Comparison Study

Simulated Data

The probability of getting the correct answer for 1PL can be written as:

p(Xij = 1) =
exp(θi − bj)

(1 + exp(θi − bj))
, θi and bj ∈ R

Therefore, the data in this setting will be represented as a matrix X; where
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Xij =

{
1 if examinee i answers item j correctly

0 if examinee i answers item j incorrectly,

and i = 1, 2, ..., n (number of rows) and j = 1, 2, ...,m (number of columns). In this

setting, the questions or items are measure the same skill (unidimensional ability),

and the examinees are assumed to answer all questions.

Hence, Xij ∼ Bernoulli(πij) where logit(πij) = (θi − bj) which give the likelihood

of this model as;

L(x|θi, bj) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij

The θ′is range uniformly from -4 to 4, b′js from -2 to 2, as these ranges suggested

by DeMars (2010). Both parameters θ and b are centred around zero.

The comparison study will be carried out in small sample size, with n = 10

students and a test of length m = 5.
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Figure 5.1: Distributions of the ability parameter (θ4) at the first stage (i = 1), the
intermediate stages (i = 6), (i = 9) and the final stage (i = 11) of SMC1 sampler
comparing to MCMC method (M/Gibbs). The vertical red line represents the actual
value.

Comparison Studies Results

This section will present the results of the comparison study between the SMC1

method (5.1.1) and one of the MCMC methods, M/Gibbs (4.3.1). The comparison

will be carried out to compare the point estimates, the shape of the posterior

(density distributions) and the computational cost resulting from each method. The

M/Gibbs was applied first using a 100, 000 iterations. The mixing and convergence of

the samples were then assessed through the suggested methods presented in section

2.5. Therefore, according to the visual result of the trace plots, the initial 500

iterations are discarded. For a fair comparison, the same setup in terms of priors

and initial conditions is used.

Comparison of Distributions:

The posterior distributions generated from M/Gibbs are used to assess the accuracy

of its corresponding approximation posterior distributions obtained from the SMC1

algorithm.
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Figure 5.1 shows the posterior distribution resulting from the MCMC method

(M/Gibbs) for one randomly selected ability parameter (θ4) and three corresponding

intermediate distributions resulting from SMC1. The figure illustrates the samples at

the first stage (i = 1), where all the particles are coming from the prior distribution,

two of the intermediate distributions (i = 6) and (i = 9), and the samples at the

final stage which represent the density of the posterior distribution (i = 11). It

is noticeable that the density distribution starts quite wide at the first stage and

matches the prior very well. Then as we move away from the prior and include more

stages (more data), the density becomes tighter and defines a reasonable posterior

at the final stage, which matches the target estimate posterior generated by MCMC.

One of the main objectives is to investigate how much the quality of the

approximation has been affected by various choices of the number of particles N .

Thus, the SMC1 is performed with different particle numbers N = {10, 000, 50, 000,

100, 000, 500, 000}.

The results are shown in Figure 5.2 for two different examinees θ3 and θ6, where

the number of correct answers is 2 and 3 respectively. The results indicate that

increasing the number of particles used in the SMC1 algorithm has a powerful

effect on improving the approximation. As we can see that using a small number

of particles (N = 10, 000) provides a poor approximation to the target estimate

posterior (black dashed line). It is clear from Figure 5.2 (green line) that the

samples have not fully discovered the parameter space compared to M/Gibbs. The

approximation is improved by increasing the number of particles to N = 50, 000 and

N = 100, 000. Moreover, by increasing the number of particles to N = 500, 000, the

posterior distributions resulting from SMC1 become almost identical to the posterior

distributions generated from M/Gibbs. Therefore, according to this result in this

particular case, at least 500, 000 particles are needed for the posterior distributions

of the IPL model parameters generated from the SMC1 algorithm to cover the whole

target posterior distributions, even the tails of the distributions.

The ESS of performing SMC1 with different numbers of particles is recorded and

presented in Figure 5.3. The ESS for all parameters remain high at most stages.

When ESS falls below the defined threshold N
2

, the resampling step is performed.

In this experiment, the ESS is dropped more frequently. This means that the

resampling step in the SMC1 algorithm is carried out more and will add additional

computation time. However, the ESS values for all runs have not dropped to very

small value near to zero. The ESS can be improved by changing the proposal’s

scaling factor for the estimate variance, which has an important impact on the
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performance of the SMC1 algorithm. Figure 5.4 shows the effect of using different

scaling factors on improving the quality of ESS and hence the performance of the

algorithm. For a small scaling factor of 0.2, the ESS is very small, ranging from

1.7 to 5. In this experiment, a scaling factor of 0.7 seems reasonable to get a larger

ESS. Moreover, the ESS can also be improved by adding more stages between the

prior and the posterior distribution (more intermediate distributions). As shown in

Figure 5.5, by increasing the number of stages, the minimum ESS increases too. For

example, in this particular case, ESS at the last stage was 2.8, 171.81 and 346.81 for

the number of stages 5, 10 and 15, respectively. However, the computational time

is increased as well, such as the total run time for this experience, where n = 10,

m = 5 and N = 10, 000, was 318, 682 and 1, 148 seconds for the number of stages

5, 10 and 15, respectively.

Comparison of the Point Estimates:

Table 5.1 provides the numerical results for the samples’ mean resulting from M/Gibbs

and SMC1 for different numbers of particles. Each method was repeated 20 times

for the same dataset, and the average of the posteriors’ mean was recorded in this

table. In terms of the point estimates, The numerical results indicate that using

a small number of particles N = 10, 000 can provide a reasonable approximation

compared to the M/Gibbs for point estimates values. However, by increasing the

number of particles, the point estimates resulting from each method become almost

identical and only vary in the second or third decimal places.

Summary:

Although the classical SMC method (SMC1) has been successfully applied to the

1PL model, from this experiment, we can see that the efficiency of the SMC1

algorithm depends on the user settings. First, the number of particles can affect

the ESS and hence the accuracy of the approximation. Many particles will require

more computational time to achieve the target distributions. Second, the variance of

the proposal distribution plays a substantial effect. Therefore, it needs to be chosen

carefully to result in accurate estimations. Finally, the number of intermediate

distributions is also essential. For example, if the prior distribution is very far from

the posterior, a large number of intermediate distributions may be required. As a

result, the computational time will be expensive.

Therefore, the time cost is not only caused by the size of the data but also by the
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previous setting, where these settings can affect the ESS. Hence, the re-sample step

is required if the ESS is small, so extra running time costs are needed. Therefore, for

educational use to estimate the students’ ability in real-time, using this algorithm

requires more effort and sometimes more computational time. The following section

will introduce a more efficient SMC method to improve the quality of the estimation

results with less computational cost.
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Figure 5.2: Posterior density of θ3 and θ6 obtained from M/Gibbs algorithm (black
dashed line) compared with the approximated posteriors obtained from the SMC1
with different number of particles N. The vertical red line represents the actual
value.
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Figure 5.3: ESS values from performing the SMC1 algorithm with different number
of particles N. X-axis is represented the number of SMC1 stages. The horizontal
dashed red line represents the threshold (N/2).
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Table 5.1: Comparison of point estimates for the ability parameter (θ) among
different numbers of particles for SMC1.

Numbers of particles
Parameter True value M/Gibbs N=1e4 N=5e4 N=1e5 N=5e5

θ1 -4.000 -4.6029 -4.5973 -4.5743 -4.6351 -4.5982
θ2 -4.620 -4.6117 -4.7081 -4.6684 -4.6448 -4.6072
θ3 -0.770 -0.7598 -0.7853 -0.7453 -0.7886 -0.7537
θ4 -0.783 -0.7642 -0.8510 -0.7430 -0.7909 -0.7681
θ5 -0.757 -0.7607 -0.8773 -0.7691 -0.7933 -0.7670
θ6 0.742 0.7397 0.5938 0.7081 0.7430 0.7402
θ7 2.350 2.3678 2.1781 2.3110 2.3464 2.3552
θ8 -0.769 -0.7535 -0.7158 -0.8081 -0.8005 -0.7677
θ9 4.674 4.6137 4.5774 4.5772 4.5843 4.6180
θ10 4.626 4.6401 4.3612 4.5655 4.5931 4.6238

5.2 Sequential Monte Carlo Samplers with Markov

Chain Monte Carlo Proposals

The previous setting of classic SMC (SMC1) is less time consuming than the MCMC

method. This is because we can use the most updated information in SMC1 without
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having to re-run the entire procedure like MCMC methods. However, we have seen

that the resampling step is frequently required, adding extra time. Moreover, in this

setting, all particles need to be stored, even those not useable, and using a lot of

particles will slow the running time. Also, in the classic setting, the data is added

incrementally, and if the prior is very far from the posterior, many intermediate

distributions are needed. Therefore, in this section, two techniques, one for the

resampling step and one for introducing the data, will be added to SMC to improve

the estimation’s quality with a faster time. For short, this method will be denoted

by SMC2.

5.2.1 Data Update and Algorithm Setting

This section will discuss the two techniques that could be used to improve the

efficiency of the SMC1 method. First, an improved way of introducing the data

gradually as new data arrive is presented. We will then consider one way of improving

the resampling step given by 2.7.2.

Data Update

In this setting, the focus is on adding data sequentially in the likelihood instead of

sampling from the sequence of intermediate distributions until getting the posterior

distribution, such as πi(θ | D) = p(D | θ)τip(θ), where 0 = τ0 ≤ · · · ≤ τi ≤ · · · ≤
τs = 1.

The sequence of π can be introduced as the following:

πi(θi | D) = p(D | θ1:i)p(θ), i = 1, . . . , n ,

where πi(θi | D) represents the posterior distribution for a current student i, and

p(θ) is the prior distribution. The likelihood; p(D | θ1:i) represents the information

from the previous students (from 1 to i − 1 students) until the current student i.

This means that the data will be updated sequentially every time a new student

answers the test. For example, in the IRT model, the data can be stored as a matrix

X; where

Xij =

{
1 if examinee i answers item j correctly

0 if examinee i answers item j incorrectly,

and i = 1, 2, ..., n (number of rows) and j = 1, 2, ...,m (number of columns).
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The posterior distribution for a current student will then be the product of the

updated likelihood and the prior. Therefore, in the context of the SMC2, it is

unsuitable to have a posterior distribution for a single student; it has to be a joint

posterior distribution, updated every time a new student answers the test.
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Algorithm Setting

The goal of using this method in an educational setting is to estimate the ability of

students in real-time inference or a dynamic system such as students answering the

test at different times. Therefore, the algorithm setting presented in this section is

considered the 1PL model 3.1.1. Although the focus is on the 1PL model, the same

setting can be straightforwardly applied to 2PL 3.1.2 or 3PL 3.1.3 models.

Given the 1PL model, as mentioned earlier, the likelihood can be written as:

L(x|θi, bj) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij ,

The SMC2 algorithm begins by sampling k = 1, . . . , N particles from the prior

distribution of the ability parameter p(θ), which is assumed to be the same for

all students. Similarly, we sample N particles from the prior distributions of the

questions’ difficulties p(b). In this setting, it is assumed that we have no prior belief

about the difficulties of the questions, and hence the prior distribution is assumed

to be the same for all questions. However, in most educational testing, we expect to

have some knowledge about the difficulty of the questions, and then different prior

distributions for each question may be required. This can also be applicable in the

SMC2 algorithm.

For each particle, we assign an initial weight; w0 = 1 so that {θk0 , wk0} is a

weighted sample from the prior p(θ), and {bk0, wk0} is a weighted sample from the

prior p(b).

In most applications of this method, the weighted particles from distribution

πs−1 are used to produce particles from the distribution πs, where s represents the

stage. However, the important technique of using SMC2 is that method will use a

mixture of weighted particles from all previous π1:(i−1) to produce particles from πi.

For π1, the initial particles from the prior distributions will be used to produce the

sample from the posterior distribution for a first student. This technique can be

done through three different possible steps at each stage as follows:

Re-weight step: For given weighted samples {θki−1, wki−1} and {bki−1, wki−1}, set

the weights from πi:

wki = wki−1
πi(θ

k, bk)

πi−1(θk, bk)
,
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where k = 1, . . . , N is the number of particles and i = 1, . . . , n is the students

sequence. Then the weight need to be normalised by setting wk ← wk/
∑N

k=1w
k.

Re-sample step: If ESS < N
2

, residual resampling is carried out; see (Douc

and Cappé, 2005). In this step, particles with low weights will be discarded and

multiplied particles with high weights. Finally, the weights of the resampled particles

are reset to 1.

Move step: In order to increase particle diversity and overcome problems such

as sample impoverishment (2.7.2), some selected parameters (from θ1 to θi) samples

are replaced according to MCMC transition kernel density q (proposal density) such

that:

θk,∗i ∼ qi(θ
′k
i , .),

where {θ′i, wki } is a sample from the current posterior πi after re-weighting and

(possibly) resampling. Similarly, for {b′i, wki },

bk,∗i ∼ qi(b
′k
i , .).

The selected parameter in the MCMC move step can be one or more. Moreover,

the parameter θ and the b are updated in two different stages. Therefore, the

kernel density can be chosen differently. However, in this application, the kernel

density is chosen as a normal random walk density for both parameters. The

mean is the current particles for the selected parameters, and the user sets the

variances. Similarly to the standard Metropolis-Hastings, for each k = 1, . . . , N , we

set θk,∗i = θki with probability

α
(
θki ,θ

k,∗
i

)
= min

(
1,
πi(θ

k,∗, bk)

πi(θk, bk)

)

The exact process is repeated for the difficulty parameter b. Hence, for each

k = 1, . . . , N , we set θk,∗i = θki , we set bk,∗i = bki with probability

α
(
bki , b

k,∗
i

)
= min

(
1,
πi(θ

k, bk,∗)

πi(θk, bk)

)
This MCMC movement step can be repeated several times. The resulting particles

are then used in the denominator of the re-weighting step (5.2.1).



Chapter 5. Sequential Monte Carlo Methods on the Dynamic IRT
Model 85

This method has wide applications outside the scope of the educational models,

such as the IRT model. There are also more advanced strategies in the MCMC move

step. See for example, Fan et al. (2008), Creal (2012) and Everitt et al. (2020).

The performance of the SMC2 algorithm will be investigated in the next section

through a comparison study. The comparison study will be carried out between the

proposed method (SMC2) and one of the MCMC methods (M/Gibbs).

5.2.2 Comparison Study

To investigate the performance of SMC2, the same dataset presented in 5.1.2 will

be used. Therefore, the investigation will be conducted into a small dataset with

a sample size of 10 students and 5 questions. The SMC2 algorithm will be run

for different numbers of particles to check the effect of increasing the number of

particles on the approximation result; N = {10, 000, 50, 000, 100, 000, 500, 000}.
The comparison study will be focused on the posterior distributions and the point

estimates. For the M/Gibbs method, the same results provided in section 5.1.2, for

the SMC1, will be used in this comparison study as well.

Comparison Studies Result

Comparison of Distributions:

Figure 5.6 shows two different ability distributions, where the number of correct

answers is 2 and 3 respectively. The figures indicate that starting with a small

number of particles, 10, 000 can still provide a reasonable approximation to the

parameters space compared to the posterior distribution resulting from M/Gibbs.

However, the two resulting distributions from SMC2 (green line) and M/Gibbs

(black dashed line) are not quite the same. As we can notice, the posterior distributions

of SMC2 have larger variances and do not fully cover the peaks and the tails of the

posterior distributions of M/Gibbs. That indicates higher numbers of particles are

required.

Increasing the number of particles to 50, 000 has a noticeable effect on improving

the shape of the distributions (blue line), where the variances of the posterior

distributions generated from SMC2 become smaller. However, the peaks of the

SMC2 distributions (blue line) are slightly shifted toward the right, indicating that

the two posteriors’ means are not quite the same yet.



Chapter 5. Sequential Monte Carlo Methods on the Dynamic IRT
Model 86

Therefore, using 100, 000 numbers of particles seems reasonable in this experiment,

where the two resulting distributions (yellow line and black dashed line) become

identical. Also, we can see that increasing the number of particles from 100, 000 to

500, 000 has an invisible effect since the approximation posteriors generated by the

SMC2 algorithm with N = 100, 000 can cover the entire parameters space.

In terms of ESS, Figure 5.7 shows the ESS resulting from the four different

number of particles. The X-axis represents the sequence of the students. The ESS

follows the same scenarios for all numbers of particles, such as the lowest ESS is

for the third student, and the largest ESS is for the fifth student. However, the

ESS for the current student depends on the results of the previous students since

we are using a mixture of the particles on the proposal density to produce samples

for a current student. Therefore, if there are big differences between the previous

students’ abilities and a current student’s ability, some of these particles will have

negligible weights. Hence, the ESS will be smaller, such as in the ability’s estimate of

the third student is -0.78 and the ability’s estimates for the first and second students

is -4.62.

In this experiment, the ESS never dropped below 500. However, the ESS drooped

below the defined threshold N
2

every time. Therefore, the resampling step is performed

in each step.
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Figure 5.6: Posterior density of θ3 and θ6 obtained from M/Gibbs algorithm (black
dashed line) compared with the approximated posteriors obtained from the SMC2
with different number of particles N.
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Figure 5.7: ESS values from performing the SMC2 algorithm with different numbers
of particles N. The x-axis represents the sequence of students. The horizontal dashed
red line represents the threshold (N/2).

For further analysis of the ESS, Figures 5.8 shows ESS values from performing

the SMC2 algorithm for six different datasets with n = 10 and m = 5. In each

experiment, the order of the students’ ability estimates is different. Hence, the ESS

is affected by the previous particle results. However, in all experiments, the ESS

did not drop below 500, but it fell below the defined threshold (N
2

), indicating the

resampling step was needed at every stage.

The ESS is also affected by the size of the dataset. Figure 5.9 presents the ESS

values for four different scenarios of the simulated dataset and 10, 000 particles.

For example, there are 20 students and 5 questions in the sub-figure 5.9a. The ESS

values range from 932 to 4739, with a mean equal to 2607. By increasing the number

of questions to 10 in sub-figure 5.9b, the minimum ESS drooped to 73. The average

ESS also dropped to 1517, but the maximum ESS increased to 8113, with one outlier

point. A similar scenario occurs in sub-figures 5.9c and 5.9d . For example, for a

dataset of n= 30 and m= 5, the ESS range from 658 to 5486, with a mean equal

to 2563. However, these values are drooped sharply by increasing the number of

questions to 10 in 5.9c . Hence, the ESS values range from 29 to 5043, with a mean

equal to 1555.
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This result is expected since an increase in the number of questions will increase

the variety of the students’ abilities. Therefore, this could increase the difference

between the current posterior distribution and the proposal distribution. Hence,

the difference affects the weight, which will lead to small weights if the difference

is large. Consequently, the ESS will be small, where ESS =
(
∑N

k=1 wk)
2∑N

K=1 w
2
k

, and then

more particles are required.
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Figure 5.8: ESS values from performing the SMC2 algorithm for six different
datasets with n = 10 and m = 5. The x-axis represents the sequence of students.

Adding the MCMC move step in the SMC2 re-samples procedure has an important

effect on the performance of the algorithm. As explained earlier in 2.4.1, the variance

of normal random walk density should be tuned carefully to control the algorithm

performance and thus obtain an efficient algorithm. The objective of this study is
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to obtain between 30% to 50% acceptance rate in the MCMC step .

Figure 5.10 displays a comparison of the density plot for θ6 with different choices

of the proposal distribution variance σ2 in the MCMC step and different numbers

of particles. The top panel of Figure 5.10 shows the result of the density estimate

with a large choice of the variance in random walk kernel density (MCMC move

step). We can see that by using a larger proposal variance, the density estimate

generated by SMC2 can converge faster to the objective density estimate obtained

M/Gibbs by a smaller number of particles. However, this choice will result in a

smaller acceptance rate and therefore more computational time.
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Figure 5.9: ESS values from performing the SMC2 algorithm with 10000 numbers
of particles N and different datasets, where n is the number of students and m is
the number of questions. The X-axis represents the sequence of students.

On the other hand, the bottom panel of Figure 5.10 shows the result of the

density estimate with a smaller choice of the variance in the random walk kernel

density. We can see clearly that using a smaller variance in the kernel density will

take longer to explore the entire parameter space. As a result, a larger number of

particles is required to achieve an acceptable density estimate. It is noticeable in
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this plot that even with a high number of particles N = 500, 0000, the posterior

estimate has not converged to the objective density estimate obtained by M/Gibbs.

Figure 5.11 emphasises that using a smaller variance will require a higher number

of particles to be able to converge to the target posterior mean obtained by M/Gibbs.

However, using a larger variance will require a smaller number of particles, but in

both cases will be computationally expensive. In the terms of ESS, Figure 5.12

shows that the choice of the proposal variance can also affect the value of the ESS.

The figure shows that if the variance is small, the ESS will be smaller as well.
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(a) The density plot of large choice of σ2, and a small acceptance rate.
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Figure 5.10: Density plot of the ability parameter θ6 with different choices of the
proposal distribution variance σ2 in the MCMC step for the SMC2 algorithm with
varying numbers of particles.
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Figure 5.11: Ability point estimates with different choices of the proposal
distribution variance σ2 in MCMC step for SMC2 algorithm and different numbers
of particles.
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Figure 5.12: ESS values from performing the SMC2 algorithm with large and small
proposal distribution variance σ2 in MCMC step. The horizontal dashed red line
represents the threshold (N/2).

Comparison of the Point Estimates:

From comparing the posterior distribution resulting from SMC2 and M/Gibbs, we

have seen that many factors can affect the resulting distributions, such as the

variance in the proposal distribution, the number of selected parameters in the

MCMC move steps and the number of particles. In the same way, the numerical

results, such as the posterior mean, can be affected by the previous factors. Table

5.2 shows the numerical results for the samples’ mean resulting from M/Gibbs and

SMC2 for different numbers of particles. Each method was repeated 20 times for the

same dataset, and the average of the posteriors’ mean was recorded in this table. The

proposal variance in this experiment is chosen based on several initial experiments

to reach an acceptance rate between 30% to 50%. The average acceptance rate from

repeating the SMC2 20 times is 45%. We can see that when N = 500, 0000, the

point estimates resulting from SMC2 become close enough to those resulting from

M/Gibbs.
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Table 5.2: Comparison of point estimates for the ability parameter (θ) among
different numbers of particles for the SMC2.

Numbers of particles
Parameter True value M/Gibbs N=1e4 N=5e4 N=1e5 N=5e5

θ1 -4.000 -4.6029 -4.5063 -4.6129 -4.5873 -4.6239
θ2 -4.620 -4.6117 -4.2773 -4.5227 -4.5972 -4.6756
θ3 -0.770 -0.7598 -0.5458 -0.8814 -0.6906 -0.7729
θ4 -0.783 -0.7642 -0.6802 -1.0033 -0.7619 -0.7901
θ5 0.757 -0.7607 -0.7987 -0.9065 -0.7566 -0.7932
θ6 0.742 0.7397 1.0148 0.5133 0.8236 0.7132
θ7 2.350 2.3678 2.4100 1.9546 2.3862 2.2747
θ8 -0.769 -0.7535 -0.6992 -1.0128 -0.6641 -0.7697
θ9 4.674 4.6137 4.7833 4.3537 4.8363 4.5808
θ10 4.626 4.6401 4.5133 5.0738 4.5159 4.4341

5.3 Comparison of the Computational Time

This section compares the computational time between the two SMC proposed

methods; SMC1 and SMC2. The runtime for each algorithm will be recorded for

a single student since both methods can be sequentially used when a new student

answer the test.

The average runtime for M/Gibbs for n = 10, m = 5 and 100, 000 number

of iterations is 44.0 seconds, where the algorithm was repeated 20 times. Table

5.3 represents the runtime between SMC1 and SMC2 in seconds for the different

number of particles. It is clear that the classic SMC method (SMC1) is very slow

compared to both MCMC and SMC2. For example, even for a small number of

particles (N=10,000), it took about 6 minutes (360 seconds). The reason is that the

number of intermediate stages is an essential algorithmic parameter that the user

should choose, and for each stage, we need the same number of particles (10,000).

Therefore, for the experiments presented in this chapter, the algorithm required

10×N particles, where 10 is the number of stages. However, if the data is increased,

the number of stages should also increase to minimise the difference between the

prior and the posterior distributions. Hence, this requires expensive computational

time.

On the other hand, we can see that the SMC2 is less expensive than SMC1.

However, we have seen that the approximation results can be improved by increasing

the number of particles. Therefore, for this particular experiment, many particles

were needed (N = 500, 000) to provide a sample that could represent the posterior
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distributions well. Thus, the cost time for this experiment is 248 seconds.

Table 5.3: Comparison of the computation time between SMC1 and SMC2 method
for sample size of n = 10 and numbers of items m = 5, and different number of
particles (N). MCMC took 44 seconds.

Time (in seconds)

N SMC1 SMC2
1e4 360 7
5e4 662 27
1e5 8713 54
5e5 190898 248

5.4 Summary of the Chapter

This chapter contributes to applying the sequential Monte Carlo methods to the

IRT model. The SMC method has been applied using two different settings of

algorithms; the classical SMC method and the SMC method with MCMC update.

Both methods have been successfully applied to the 1PL model for a small dataset.

The performance of each method has been compared to one of the MCMC methods;

M/Gibbs. After several experiments in each algorithm, a comparative estimation

to the MCMC method in terms of the shape of the posterior distributions and the

point estimates has been achieved.

However, this thesis aims to find a fast and not very complex method for real-time

online inference for an educational model. As we have seen from the experiments

presented in this chapter, the efficiency of the SMC methods depends on the user

settings, which might be difficult for real-time inference or non-professional users.

Moreover, even for a small dataset, the SMC methods were not fast enough to

estimate students’ ability in real-time and provide immediate feedback.

However, further investigation could be made if one is interested in other uses

of the IRT model, such as online rating. For example, one could investigate the

performance of SMC methods in a large dataset. Moreover, the performance of the

SMC can be primarily affected by the choice of the proposal density. Hence, the

effect of different proposals can also be investigated. Daviet (2018) proposed a new

Monte Carlo method combining the advantages of sequential Monte Carlo simulators

and the Hamiltonian Monte Carlo method. Also, South et al. (2019) developed a

new and efficient SMC method using independent MCMC proposals. The authors

compared the normal random walk kernel, which was chosen and applied in section

6, and an independent MCMC proposal kernel. The result suggested that there are
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some improvements in the efficiency of the estimation of the parameter. This method

could be applied to the IRT model and compared the results with the random walk

kernel.

The following chapter will consider applying the Bayesian approximation method

based on the Laplace approximation, which is expected to be fast and straightforward

for educational uses.



Chapter 6

Laplace Approximation Method

6.1 Laplace Approximation on the UIRT Models

The comparison study in Chapter 4 showed that MCMC techniques may be unsuitable

for dynamic IRT models as they need to generate a different chain run for each

posterior as new data arrives, and most of the time do not take into account the

previous generations posterior. Hence, it is computationally expensive for streaming

data. On the other hand, in several previous studies, the sequential Monte Carlo

method (SMC) was shown to be an effective method to explore a sequence of

posterior distributions. However, as we saw in Chapter 5 most of the SMC techniques

become computationally expensive as the dynamic process evolves. Moreover, the

efficiency of the SMC algorithms depends on the user setting, which appears to be

more complex for education petitioners design.

The Laplace approximation (LA) is mathematically simple and computationally

cheap for Bayesian inference. This chapter aims to explore the performance of

the LA method in IRT models. This will include a comprehensive discussion of

the techniques and challenges in implementing the LA method in the IRT setting

and performing an extensive comparison of this approach with MCMC method on

simulated data.

Algorithm settings

The general idea of Laplace approximation (LA) in Bayesian inference as explained

in (2.8.1) is to take a differentiable uni-mode posterior distribution and approximate

it with a normal distribution. The implementation of the LA algorithm requires the

estimation of the maximum posterior through optimization and construction of a

normal distribution around it, where the covariance matrix Σ̂ΣΣ is the inverse curvature

around the mode.

97
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At the first stage, we need to find the maximum points of the log posterior

distributions for each parameter. For example, for the 1PL IRT model, we need

to get the maximum point for each individual’s ability θi and the maximum point

for each question’s difficulty bj. There are many different optimisation methods in

the literature for finding the maximum points of the log posteriors. Some of these

methods are described to be derivative-free and straightforward methods, such as

the Nelder-Mead algorithm (Nelder and Mead, 1965). However, this method can be

slow (Wang et al., 2019). It is known that Newton’s method is very efficient and fast.

Since the posteriors distribution in IRT models are differentiable, a generalisation of

the classical Newton’s method known as the Quasi-Newton family will be used to find

the maximum points of the model parameters. The Broden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm is one of the most popular quasi-Newton methods. It is a type of

second-order optimisation algorithm, which means it uses a second-order derivative

to find the minimum (or maximum) of an objective function. The method was

developed and published simultaneously in 1970 by Broyden, Fletcher, Goldfarb

and Shanno. The BFGS algorithm will be used in this thesis through the optim

function in R.

The resulting maximum points vectors (e.g. θ̂θθ and b̂bb) are used to calculate the

Hessian matrix (H), which is the second derivative at these estimated points. Hence,

the approximate covariance matrix Σ̂ΣΣ is obtained by inverting the (H) matrix. This

calculation can be time-consuming for high-dimensional models. The problem of

the high-dimensional covariance matrix will be discussed in detail in Section 6.3.

Figure 6.1 illustrates the performance of LA (contours in red lines) in approximating

the log posterior of the 1PL model (blue circles) for two parameters. To explore the

performance of the proposed approximation method, two simulation studies will be

conducted in the next sections.
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Figure 6.1: The contour plot of the log posterior (blue lines) and the approximate
posterior (red lines) resulting from the LA method for θ1 and θ2.

6.2 Comparison Studies

The shape of the posterior distribution in IRT scenarios has been investigated in

Chapter 4 using some MCMC methods such as Hamiltonian Monte Carlo (HMC)

and Metropolis within Gibbs samplers (M/Gibbs). From these previous experiences,

it is found that the posterior distributions for model parameters are uni-modal, and

hence LA is appropriate for the IRT model.

In this section, simulation studies are designed and carried out to compare the

performance of the Laplace approximation method presented above to the estimation

method M/Gibbs. The main objective of the comparison study is to investigate the

performance of the LA in different scenarios; small, moderate and large data sets

for the 1PL IRT model.

When it comes to determining the prior distributions on the model parameters

in these experiments, it is assumed that there is a lack of information about the

difficulty of the questions and the ability level of the students. Therefore, all students

are given the same prior distributions, and the same prior distribution is given to

all questions.
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Comparison Criterion

The main objective of conducting this comparison study is to evaluate the accuracy

of using the Laplace approximation method. For this purpose, the posterior distributions

generated from M/Gibbs will be used to compare the approximation posterior

distributions resulting from the LA method. Various criteria methods will be used

to assess the differences between the posteriors (resulting from the M/Gibbs) and

approximated posteriors (resulting from the LA). Some of the suggested methods

are mentioned below:

Comparison of Distributions:

• The density plot of the posterior distributions generated from M/Gibbs will be

compared visually to the density plot of the approximate posterior distributions

obtained from the LA methods.

• The Jensen-Shannon divergence (JSD) (Menéndez et al., 1997) is one

method that is used to measure the difference between two probability distributions

over the same variable. It will be used here to quantify the discrepancy between

the resulting target posterior distributions (M/Gibbs) and approximate (LA)

posterior distributions that are obtained from each algorithm, which is defined

as:

JSD (πi | π∗i ) =
1

2

∑
i

(
πi log

πi
1
2

(πi + π∗i )

)
+

1

2

∑
i

(
π∗i log

π∗i
1
2

(πi + π∗i )

)
,

where the term π∗i indicates the approximate density obtained from LA and

πi represents the density obtained from the MCMC. The index i represents

the parameter (e.g. for θ, given n is the total number of students, i =

1, ..., n). The value of the JSD describe the amount of divergence between

two distributions. The higher the JSD value, the greater the discrepancy

between the two distributions. The original Jensen-Shannon divergence (JSD)

ranges between [0, 1], where 0 means the two distributions are identical, and

1 is strongly different. See Fuglede and Topsoe (2004) and Nielsen (2019) for

more explanation of this method.

Comparison of the Point Estimates:

• The idea of a rank distance measure can be used to determine whether there

is a correspondence between two measurements. For example, one can look at
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the order of the students’ point estimated ability resulting from both methods,

and hence look at the distance measure between the two orders.

Kendall’s τττ (Noether, 1967) is one method that can be used to compare

evaluation measures. For two different rankings of the same size n, this method

counts the number of pairs agreed in the same order in each of the two orders

and which are not agreed in reverse order. If C is the number of agreements,

and D is the number of disagreements,

τ =
C −D
C +D

.

The value of τ ranges from -1 to 1, where 1 means the two rankings are

identical, and -1 means one is opposite of the other. Each τ value can be

mapped directly to a corresponding percentage. If the value of τ is 0, this

means that 50% of the pairs are identical (concordant) and 50% discordant.

The value of τ will be equal to 1 if the two lists are identical, and n(n− 1)/2

if one list is the reverse of the other. Kendall’s τ distance is the number of

discordant pairs D. The greater the distance, the more different the two lists

are. The idea of the rank order has been used several times in the literature

to measure the difference between the abilities estimate resulting from item

response theory (IRT) and classical test theory (CTT); see for examples Zaman

et al. (2008) and Binh and Duy (2016). For more details about Kendall’s τ

method, see Abdi (2007).

• There are two common methods that can be used to measure the difference

between true parameters and their estimated values: Bias, which explains

for systematic error, and root mean square error (RMSE), which indicates

the overall variability in estimation error for point estimates. Therefore, the

quality of the point estimates for the ability parameters can be evaluated in

terms of the closeness between the estimated and true values using the average

estimated bias and RMSE. These values can be calculated using the following

equations:

Bias(θ̂) =
1

R

1

N

N∑
n=1

(
θ̂nr − θnr

)
,

and

RMSE(θ̂) =
1

R

R∑
r=1

√√√√∑N
n=1

(
θ̂nr − θnr

)2
N

,
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where R is the number of replications (number of repeated simulated datasets),

θnr is the true ability parameter for student n, θ̂nr is its estimated value in

the rth replication for student n, where N is the total number of parameters.

For an unbiased estimator, the mean bias is expected to be close to zero.

The reason is that we can get both positive and negative deviations from the

true parameter values and thus cancel each other out. The value of the RMSE

indicates how widely the estimates are spread around the true parameter. The

smaller the RMSE, the closer the point estimates to the true parameter values

and hence better estimates.

• Credible interval (CI) is used to summarise the uncertainty about the

estimates parameter. As the Bayesian inference returns a posterior distribution,

the credible interval is just a range that contains a certain percentage of

potential values. For example, the 95% credible interval is simply the central

portion of the posterior distribution that contains 95% of the values. For an

in-depth explanation and interpretation of the credible interval, see Hespanhol

et al. (2019).

The simulation study data and framework will be explained in detail in the following

sections, and the results will be illustrated.

6.2.1 Comparison Study for 1PL

In the literature, there are still concerns about the accuracy of the parameter

estimation for small samples. Finch and French (2019) discussed a comparison

of estimation techniques for IRT models with small samples. Their result suggested

that under many small sample sizes (n = 25, 50, 100, 250, 500 and 1000), MCMC

estimation methods can provide greater accuracy compared to other methods. However,

their comparison study only focused on item parameters estimation.

Current recommendations in the literature are generally for samples of at least

200 to 300 for the Rasch model (Chen et al., 2014), and this increase to 500 in 2PL

model De Ayala (2009). A comprehensive study of the effects of test length and

sample size to estimate item parameters accurately in the unidimensional binary

IRT models can be found in Sahin and Anil (2017). The comparison studies in this

section aim to investigate the performance of the LA method on three levels of the

datasets; small, moderate and relatively large. Also, the investigation will consider

a variety of test lengths from short m = 10 to large test m = 100.
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Simulated Data

The data in this setting will be represented as a matrix X; where

Xij =

{
1 if examinee i answer item j correctly

0 if examinee i answer item j incorrectly,

and i = 1, 2, ..., n (number of rows) and j = 1, 2, ...,m (number of columns). In this

setting, the questions or items measure the same skill (unidimensional ability), and

the examinees are assumed to answer all questions.

Therefore, Xij ∼ Bernoulli(πij) where logit(πij) = (θi − bj) which give the

likelihood of this model as;

L(x|θi, bj) =
n∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij

The θ′is range uniformity from -4 to 4, b′js from -2 to 2, as these ranges suggested

by DeMars (2010). Both parameters θ and b are centred around zero.

This experiment will be run for one parameter logistic model (1PL) with binary

responses (correct answer=1, incorrect answer=0) and unidimensional ability (explained

in 3.1.1). The first comparison study for 1PL will investigate the performance of the

LA in a small sample size n = 30 and test of length m = 10. The second study will

consider the case of moderate data set, where n=200 and the test length m = 10.

The final comparison study for the 1PL model will assume a larger data set with a

sample size n = 600 and the test length m = 10. In further analysis, the effect of

increasing the test length to 30, 50, 70 and 100 will be investigated and compared to

M/Gibbs results. The summary of these simulated datasets is described in Table 6.1.

Table 6.1: Simulated Data for 1PL Model

Variable Setting
Study 1
Number of Examinees n=30
Number of Items m=10

Study 2
Number of Examinees n=300
Number of Items m=10

Study 3
Number of Examinees n=600
Number of Items m=10
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Comparison Studies Result

This section presents the results of the comparison study between the MCMC

estimation method (M/Gibbs) described in 4.3.1 and the approximate Laplace method.

MCMC is used to produce a target inference, and the performance of the approximate

approach (LA) on the 1PL model is illustrated and then compared with the MCMC

inference.

The proposed inference methods will be applied to the simulated datasets listed

in Table 6.1. The MCMC method will be run for a 100, 000 iterations, and the initial

2,000 iterations will be discarded (burn-in). After that, the average of the posterior

distribution for each parameter is used as the point estimate. The comparison study

will be focused on the accuracy of the posterior distribution approximation resulting

from LA. Hence, different numerical and graphical diagnostics will be discussed in

this section to assess the quality of the estimates provided by the two inference

methods.

Results of Study 1

Comparison of Distributions:

Figure 6.2 shows the approximated posterior resulting from the LA and the posterior

resulting from M/Gibbs. The figure presents three randomly selected abilities

of different levels. We can see that LA provide similar estimates of the abilities

parameter, with the posterior mode closely matching M/Gibbs for all three ability

level. However, due to the fact that the posterior densities resulting from M/Gibbs

are not completely symmetric, the mode of the two densities are not precisely

in the same place. When the density of the posterior resulting from M/Gibbs is

almost symmetric, such as θ14, the two posteriors’ modes become almost identical.

Moreover, we can see that the shape and the highest of the densities are almost the

same, suggesting that the approximate posterior distributions generated from LA

explore the proper parameters space well and in a similar way to MCMC.

The results of the JSD divergences for each student’s ability parameter are

recorded and visualised in Figure 6.3 to measure the dissimilarity between the

resulting target (M/Gibbs) and approximate (LA) posterior distributions that are

obtained from each method. The average JSD values in these experiments range

between 0.005 to 0.24. The most largest difference (JSD values) between the two

posterior distributions resulting from each method appears for very high/low ability

students, such as student 28 with a very high ability and student 2 with a very low
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ability. However, this maximum value of 0.24 is relatively small since the original

JSD ranges between 0 and 1, where 0 means the two distributions are identical, and

1 means strongly different.
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Figure 6.2: Posterior density plots for M/Gibbs and LA methods of selected
examinees’ abilities with different numbers of correct answers for sample size n = 30
and m = 10.
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Figure 6.3: Jensen-Shannon divergence (JSD) for each student’s ability parameter
obtained from M/Gibbs and LA for sample size n = 30 and m = 10.

Comparison of the Point Estimates:

The 95% credible intervals for all students’ abilities estimates are calculated and

visualised in Figure 6.4 to compare the uncertainty (interval width) resulting from

the two methods. Due to the fact that the posterior distributions resulting from

the LA method (black line) are symmetric, distance from the centre to the lower

and upper credible interval are equal. However, this is not the case of the posterior

distributions resulting from M/Gibbs. Therefore, we can notice some differences

between the two intervals range results from each method. Moreover, as we have

seen before that the most biggest difference between the two posteriors resulting

from each method appears for high/low abilities; the credible intervals are also quite

wide for high/low abilities. Although the credible intervals resulting from the LA

are wider for these students, the posteriors’ means (black circles) are lie inside the

M/Gibbs credible intervals and even very close to the M/Gibbs posteriors’ means

(red circles). For the moderate students’ abilities, such as students from 10 to 25,

the two credible intervals seem to be very close to each other. From a practical

perspective, the accuracy of the point estimates is more critical than the interval

width. In other words, teachers are usually more curious about the ability estimates

of the students. Hence, for the usual practical view, ability estimates are used to rank

students. However, the interval width can give an idea of how much overlap may
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be in these estimates. So, for example, if the intervals are very wide, we may have

a lot of uncertainty about these estimates, and the ranking may not be meaningful.

Section 6.4 will discuss using the interval width to estimate the students’ abilities

in a dynamic IRT model.

Figure 6.5 displays the comparison of the point estimates of the examinees’

abilities resulting from the M/Gibbs and LA (y-axis ) versus actual values (x-axis).

As we can see in this figure, the point estimates align very closely for abilities ranging

between -2 to 2. However, the point estimates varied slightly outside this range

for very high/low abilities. The correlation between the abilities estimates and the

actual values is 0.98 for both methods and 0.99 between the point estimates resulting

from the two methods, where we can see in Figure 6.6 the strong relationship between

the two sets of ability estimates. However, it is noted that M/Gibbs overestimated

high abilities such as the ability estimate of students 27, 28, 29 and 30, and it

underestimated low abilities such as the ability estimate of students 2, 4, 5, 6 and

8. The average absolute difference between the points estimates resulting from each

method is 0.37, and the absolute maximum is 0.85, which occurs between very

high/low abilities.

To measure the accuracy of the estimated methods and ensure the findings in the

current comparison study, the simulated data in Table 6.1 for study 1 is repeated 20

times with the same conditions and sample size n = 30 and test of length m = 10.

Repeating the simulated data will result in a different pattern of students’ answers

and hence a different order for the true abilities. The average results of the bias

and the root mean square error (RMSE) are calculated and presented in Table

6.2. The result showed that the average bias by both methods was considerably

small. However, bias under the LA estimation is slightly smaller (-0.004) than bias

under M/Gibbs (-0.005). In terms of average RSME, M/Gibbs produced a greater

value (1.04) than LA (0.84). In terms of bias concerning students’ abilities, results

demonstrated that the larger values are for students with more extreme parameter

values (e.g. around -3 and 3) for each estimation technique.

The average value of Kendall’s τ rank correlation between the point estimates

resulting from both methods and the actual values are also presented in Table 6.2.

This method evaluates the degree of similarity between the ranking of the true

values set and the ability estimates set resulting from each method. The value of

the Kendall rank (τ) between the order given by both methods is large 0.80 and 0.86

for the M/Gibbs and the LA, respectively. These large values of (τ) indicate that the

two methods the rank order resulting from abilities estimates are very close to the
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true abilities order. However, we can see that the LA method has slightly stronger

order abilities than the M/Gibbs. Moreover, The Kendall’s (τ) value between the

rank order of the abilities given by these two methods is 0.98, indicating that the

two methods strongly agree on evaluating the order of the students’ abilities.

In comparing the point estimates for the ability parameters, the measurement

values (bias, RMSE and Kendall’s τ) indicate that the LA method provides a slightly

more accurate estimation than M/Gibbs.

The comparison between the point estimates of the difficulty parameters resulting

from each method and the true values are presented in Table 6.3. The result shows

that both methods are very similar in estimating the difficulty parameters. The

small positive bias, 0.02 and 0.01 for M/Gibbs and LA, respectively, indicates that

both methods slightly overestimated the true parameter values. We can see that

RMSE are pretty small for both methods. Moreover, the difference between RMSE

resulting from both methods for the point estimates of the difficulty parameters is

smaller than RMSE between the two methods for the point estimates of the ability

parameters. The average Kendall’s τ value between point estimates resulting from

the methods and the true values are 0.84, indicating that the order of the difficulty

of the question estimates are strongly similar to the true order of the question’s

difficulties. The average Kendall’s τ value between the rank order of the abilities

given by these two methods is 0.95, indicating that the two methods strongly agree

on evaluating the questions’ difficulties.
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Figure 6.4: Posterior means and 95% credible intervals (CI) of the point estimates
resulting from M/Gibbs and approximation method LA for sample size n = 30 and
m = 10.

The number of items can influence the difficulty and ability parameters estimation

result. Researchers have investigated the effect of sample size and test length on

parameter estimations in the literature. For example, Uyigue and Orheruata (2019)

discussed the impact of the test length and sample size for difficulty parameter

estimation in IRT and compared the result to some published works. Their result

recommended that the sample size, n, should be at least 1000 for a test of length

10 to have high accuracy of difficulty parameters estimation. The following section

will consider the impact of increasing the number of questions (test length) in the

accuracy of estimating the ability and difficulty parameters.
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Figure 6.5: Point estimates of the examinees’ abilities resulting from the M/Gibbs,
and LA versus true values for sample size n = 30 and m = 10. The red line illustrates
the quality line.
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Figure 6.6: Point estimates of the examinees’ abilities resulting from the M/Gibbs
versus LA for sample size n = 30 and m = 10. The red line illustrates the quality
line.

Table 6.2: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the ability parameter θ,
averaged across 20 different simulated data sets with sample size n = 30 and m = 10.

Method Bias RMSE Kendall’s τ

MCMC -0.005 1.04 0.80
LA -0.004 0.85 0.86
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Table 6.3: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the difficulty parameter b,
averaged across 20 different simulated data sets with sample size n = 30 and m = 10.

Method Bias RMSE Kendall’s τ

MCMC 0.02 0.57 0.84
LA 0.01 0.50 0.84

Further Analysis

This section considers the effect of increasing the number of questions from 10 to

30, 50, 70 and 100 in the accuracy of the estimations for a small sample size n = 30.

These values are identified to represent a variety of test lengths, from short (10

items) to long (100 items). The results of the Laplace approximation method will

be compared to the M/Gibbs method. The comparison will be implemented with

respect to points estimates, and the accuracy of the results will be examined using

the previous measurements; bias, RMSE and Kendall’s τ .

There are four different experiments, where every test length is considered one

experiment. The simulated data is repeated 20 times for each experiment with the

same conditions and sample size n = 30. The average bias, RMSE and Kendall’s τ

for the abilities point estimates resulting from M/Gibbs and LA for each experiment

is shown in Table 6.4.

Table 6.4: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the ability parameter θ with
sample size n = 30 and a different number of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC -0.006 0.75 0.88
LA -0.007 0.58 0.90

50 MCMC 0.015 0.63 0.92
LA 0.013 0.50 0.93

70 MCMC -0.03 0.57 0.93
LA -0.02 0.44 0.94

100 MCMC 0.017 0.48 0.95
LA 0.015 0.37 0.95
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Table 6.5: Average Kendall’s τ values between the point estimates of the students
abilities resulting from LA and M/Gibbs for a sample size n = 30 and different
numbers of items.

Number of Items Kendall’s τ

10 0.98
30 0.98
50 0.99
70 0.99
100 100

Table 6.6: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the difficulty parameter b for sample size
n = 30 and different numbers of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC 0.009 0.58 0.76
LA 0.006 0.53 0.77

50 MCMC -0.009 0.56 0.75
LA -0.008 0.52 0.77

70 MCMC 0.014 0.58 0.74
LA 0.013 0.54 0.77

100 MCMC -0.005 0.57 0.74
LA -0.004 0.54 0.77

Table 6.7: Average Kendall’s τ values between the point estimates of the difficulty
of the questions b resulting from LA and M/Gibbs for a sample size n = 30 and
different numbers of items.

Number of Items Kendall’s τ

10 0.95
30 0.95
50 0.96
70 0.97
100 0.97

From the results in Table6.4, we can see that increasing the number of questions

leads to a slight increase in the average bias values. Furthermore, the increase in

the bias values is more noticeable when the number of questions is larger than the

number of sample size (n = 30). However, the average bias values are still quite

small for all four experiments.

The average RMSE values dropped from 1.04 and 0.85 in the shorter test of

length 10 to 0.75 and 0.58 in the longer test of length 30 for M/Gibbs and LA,

respectively. The average RMSE values are reduced noticeably by adding more
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questions for both methods. We can also notice that the RMSE resulting from

LA are smaller than RMSE resulting from M/Gibbs. The average RMSE resulting

from LA is approximately 0.14 smaller than RMSE resulting from M/Gibbs. This

may imply that LA is more accurate in estimating ability parameters than M/Gibbs.

The average Kendall’s τ values are also increased by adding more questions for

both methods. For a short test length (m = 30), LA appears to order the ability

point estimates more similar to the true values than M/Gibbs, where the average

Kendall’s τ for LA is 0.90 and 0.88 for M/Gibbs. From Table 6.5, we can see that the

difference between the two methods in ordering the ability point estimates dropped

gradually as we added more questions. The two sets of orders become identical for

the test of length 100.

Regarding difficulty parameter b, Table 6.6 shows that the bias values resulting

from M/Gibbs and LA dropped from 0.01 and 0.02 for a test of length 10 to 0.009 and

0.006 for a test of length 30. However, the average bias values have no considerable

changes by increasing the questions from 30 to 100. Also, RMSE values are not

noticeably affected by increasing the test length. The RMSE resulting from LA is

approximately smaller than M/Gibss by 0.04.

The Kendall’s τ values between the methods and the true values dropped from

0.84 for a test of length 10 to 0.76 (M/Gibbs) and 0.77 (LA) for a test of length

30. These values decreased slightly by increasing the test length. However, from

Table 6.6, we can see that Kendall’s τ values between the two methods increase by

adding more questions. Kendall’s τ values indicate that increasing the test length

for a small sample size n = 30 results in the less accurate ordering of the difficulty

of the point estimates compared to the true values for both methods. However, the

LA is approximately better in ordering the difficulty estimates of the questions than

M/Gibbs by 0.03.

Table 6.8: Comparison of the computation time between M/Gibbs method and LA
method for sample size n = 30 and different numbers of items.

Time (in seconds)

Number of Items Gibbs/M LA
10 120 0.01
30 195 0.02
50 269 0.03
70 339 0.04
100 442 0.07
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In terms of the computational cost, the average computational time for each

experiment is recorded in seconds and presented in Table 6.8. The M/Gibbs took

approximately 120 to 442 seconds (2 to 7 minutes) for a small sample size n = 30

and different tests length, while the LA took between 0.01 to 0.07 seconds.

We have seen from this comparison study that the performance of Laplace is

good in a small sample size setting, where we have only 30 students. Based on

the comparison criterion presented in this study, the approximation abilities results

are very close and sometimes even better than the estimation abilities result from

M/Gibbs. Moreover, the approximations of the difficulty of the questions are also

very similar to M/Gibbs. The following section will consider the result of increasing

the sample size to 300.

Results of Study 2

This section presents and discusses the results of a moderate sample size; n = 300.

The main comparison result will be focused on the test of length 10. The framework

of the results will follow the same order of study 1.

Comparison of Distributions:

Figure 6.7 demonstrates the approximated posterior resulting from the LA and the

posterior resulting from M/Gibbs for sample size n = 300 and a test of length 10.

The figure presents three different level randomly selected abilities, which are the

same level shown in the first study. We can see that increasing the sample size

from 30 to 300 did not clearly affect or improve the approximation results of the

posterior densities. The relation between the two posterior densities resulting from

each method is the same as study 1 for all three different levels (explained in detail

in 6.2.1).

The results of the JSD divergences for each students ability parameter are

recorded and visualised in Figure 6.8. The JSD values that measured the differences

between the two posterior densities in these experiments range between 0.0 to 0.4.

The largest difference (JSD values) between the two posterior distributions appears

for very high/low ability students. The maximum differences between the two

resulting densities for the 300 sample size are higher than the maximum differences

between the two resulting densities for the 30 sample size. However, there are only

ten students with JSD values greater than 0.3. These differences dropped below 0.1
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for moderate students abilities, such as students from 50 to 250.

Comparison of the Point Estimates:

The comparison of the point estimates of the 300 students’ abilities resulting from

the M/Gibbs and LA versus actual values are presented in Figure 6.9. Similarly to

the finding of the first study (6.5), the point estimates resulting from each method

are very close for moderate abilities ranging between -2 to 2. However, the point

estimates varied slightly outside this range for very high/low abilities. Also, as we

noticed for the small sample size (n = 30), M/Gibbs overestimated high abilities

and underestimated low abilities. The average absolute difference between the points

estimates resulting from each method is 0.30, and the absolute maximum is 0.76,

which occurs between very high/low abilities. The correlation between the abilities

estimates and the actual values are 0.92 and 0.93 for M/Gibbs and LA, respectively,

which is less than the correlation for a sample size of 30. However, the correlation

between the points estimates resulting from the two methods is 0.99, which indicates

a strong relationship between the two sets of ability estimates methods, as shown

in Figure 6.10.
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(c) Number of Correct Answers = 7

Figure 6.7: Posterior density plots for M/Gibbs and LA methods of selected
examinees’ abilities with different numbers of correct answers for sample size n = 300
and m = 10.

The outcomes of the measurement distances (bias, RMSE and Kendall’s τ)

between the point estimates and the true values resulting from both methods,

M/Gibbs and LA, is presented in Table 6.9. The results are the average values

of repeating the simulations data 20 times. The result showed that the average
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bias by both methods was very small and almost close to zero. Bias under the LA

estimation is affected by increasing the sample size, which dropped from (-0.004)

to nearly zero (-0.000003). However, bias under M/Gibbs is slightly dropped from

(-0.005) to (-0.0004). The average result of RSME also decreases by increasing the

sample size for both methods. However, RMSE under LA is smaller than RMSE

under M/Gibbs by 0.23 differences. In terms of ordering the point estimates of the

abilities, Kendall’s τ values show that the LA method is much closer to the order

set of the true abilities (0.83) than M/Gibbs (0.77).

Regarding the comparison between the point estimates of the difficulty parameters

generating from each method and the true values, the results of the average bias,

RMSE and Kendall’s τ are presented in Table 6.10. The outcomes show that

increasing the sample size from 30 to 300 improve the accuracy of the difficulty

parameter estimations. As we can see, the average bias and RMSE dropped sharply

for both methods. The average biases are almost zero; 0.0004 and -0.0005 for

M/Gibbs and LA. Moreover, the resulting RMSE from both methods are very small;

0.18 and 0.159 for M/Gibbs and LA. Kendall’s τ values increase mainly from 0.84

to 0.99 for both methods by increasing sample size. The large values of Kendall’s

τ (0.99) indicates that both methods are ordering the difficulties of the questions

almost in the same way as the actual order. Additionally, the order of abilities

resulting from each method is identical, where Kendall’s τ value between the two

methods is 1.
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Figure 6.8: Jensen-Shannon divergence (JSD) method for each student’s ability
parameter obtained from M/Gibbs and LA for sample size n = 300 and m = 10.

−4 −2 0 2 4

−4
−2

0
2

4

True Value

Es
tim

ate
d V

alu
e 

M/Gibbs
LA

Figure 6.9: Point estimates of the examinees’ abilities resulting from the; M/Gibbs,
and LA versus true values. The red line illustrates the quality line.
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Figure 6.10: Point estimates of the examinees’ abilities resulting from the M/Gibbs
versus LA for sample size n = 300 and test length m = 10. The red line illustrates
the quality line.

Table 6.9: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the ability parameter θ, averaged across 20
different simulated datasets with sample size n = 300 and m = 10.

Method Bias RMSE Kendall’s τ

MCMC -0.0004 1.014 0.77
LA -0.000003 0.84 0.83

Table 6.10: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the difficulty parameter b, averaged across
20 different simulated data sets with sample size n = 300 and m = 10.

Method Bias RMSE Kendall’s τ

MCMC -0.0004 0.185 0.99
LA 0.0005 0.159 0.99

Further Analysis

This section discusses the effect of increasing the test length to 30, 50,70 and 100

for a sample size of 300. Table 6.11 presents a comparison of average bias, average

RMSE, and Kendall’s τ values between the estimated points resulting from M/Gibbs

and LA and the actual values for the ability parameter θ and a different number of

items. The result shows that increasing the test length did not affect the average

bias, where both methods remain with a very small bias close to zero. However,

the RMSE values dropped gradually by increasing the test length. It is clear that
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RMSE values under LA are smaller than RMSE under M/Gibbs, where the values

range between 0.71 to 0.40 for M/Gibbs and between 0.59 to 0.36 for LA. The

differences between the RMSE resulting from each method decreased as the test

length increased.

Kendall’s τ values, which measure the difference between the actual abilities

order and the order of the ability estimates resulting from each method, also increased

by increasing the test length. Moreover, Kendall’s τ values are higher for a sample

size of 300 than 30. This implies that the accuracy in ordering the students’ abilities

is increased by increasing the sample size or the test length. Also, we can see that

the order abilities resulting from LA are much closer to the true abilities order,

where the value of Kendall’s τ is higher. Table 6.12 shows Kendall’s τ that measure

the differences between the two methods. As we can see from the result that the

two methods become almost identical by increasing the test length.

Table 6.11: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the ability parameter θ with sample size
n = 300 and different number of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC -0.0004 0.71 0.86
LA -0.0002 0.59 0.88

50 MCMC -.000002 0.56 0.89
LA -0.0005 0.48 0.90

70 MCMC -0.002 0.48 0.90
LA -0.003 0.42 0.91

100 MCMC -0.0004 0.40 0.90
LA 0 0.36 0.92

Table 6.12: Average Kendall’s τ values between the point estimates of the students
abilities resulting from LA and M/Gibbs for a sample size n = 300 and different
numbers of items.

Number of Items Kendall’s τ

10 0.97
30 0.98
50 0.99
70 0.99
100 0.99
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Table 6.13: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the difficulty parameter b for
sample size n = 300 and different numbers of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC 0.003 0.17 0.94
LA 0.004 0.16 0.94

50 MCMC 0.0017 0.17 0.92
LA 0.0018 0.16 0.93

70 MCMC 0.009 0.17 0.92
LA 0.007 0.16 0.92

100 MCMC -0.000003 0.17 0.92
LA -0.0004 0.17 0.92

Table 6.14: Average Kendall’s τ values between the point estimates of the difficulty
of the questions b resulting from LA and M/Gibbs for a sample size n = 300 and
different numbers of items.

Number of Items Kendall’s τ

10 1
30 0.99
50 1
70 0.99
100 0.99

Regarding difficulty parameter b estimations, the outcomes of measurements

result between the estimations methods; M/Gibbs and LA and the true values are

presented in Table 6.13. The accuracy of the difficulty point estimates is improved

by increasing the sample size to 300, where both bias and RMSE values are much

smaller than the study of sample size 30. Also, the differences between the order

of the true questions’ difficulty and the order of difficulty of the point estimates

become very small, where Kendall’s τ increased from 0.70 to 0.90. All the three

measurements, bias, RMSE and Kendall’s τ , show that both methods perform in

the same way in estimating the difficulty parameter b and result in the same accuracy

level.

In terms of the computational cost, Table 6.15 summarises the average computational

time of each experiment in seconds for M/Gibbs and LA. We can see that LA is

computationally very cheap. For example, even for a large test of length 100, the

LA only took approximately one second, while the M/Gibbs took about 31 minutes

(1874 seconds).
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This comparison study also emphasises the first study’s results of small sample

size (n = 30). The performance and the accuracy of the Laplace approximation are

also very good in a moderate sample size setting (n = 300). Based on the comparison

criterion; bias, RMSE and Kendall’s τ , the approximation abilities results are close

to the true values and sometimes even better than the estimation abilities from

M/Gibbs. Moreover, the approximations of the difficulty of the questions are almost

identical to M/Gibbs. The following section will consider the result of increasing

the sample size to 600 and test of length 10. The effect of varying the test length

for a large sample size n = 600 will also be discussed.

Table 6.15: Comparison of the computation time between M/Gibbs method and LA
method for sample size n = 300 and different numbers of items.

Time (in seconds)

Number of Items Gibbs/M LA
10 871 0.13
30 1130 0.33
50 1375 0.54
70 1617 0.63
100 1874 0.98

Results of Study 3

This section summaries the result of large sample size; n = 600. The main comparison

result will be focused on the test of length 10. The effect of varying the test length

for this samples size will be considered in the further analysis section.

Comparison of Distributions:

Figure 6.11 displays the approximated posterior resulting from the LA and the

posterior resulting from M/Gibbs for sample size n = 600 and a test of length 10.

The figure presents three different levels of randomly selected abilities, which are

the same level indicated in the first and second studies. The difference between the

two densities resulting from each method remains almost the same by increasing

the sample size to 600, where we cannot see, for example, evidence of changing the

modes of the densities’ places. The relation between the two posterior densities

resulting from each method is the same, as explained in studies 1 and 2 for all three

different ability levels.
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In order to measure the distance between the two posterior densities resulting

from M/Gibbs and LA, JSD divergences for each students ability parameter are

computed and visualised in Figure 6.12. Similarly to study 2, The JSD values range

from 0.0 to 0.4. However, only a few students with JSD values are greater than

0.3. The largest difference (JSD values) between the two posterior distributions also

appears for very high/low ability students. These differences decreased by less than

0.1 for moderate students abilities, such as students from 100 to 500.
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(c) Number of Correct Answers = 7

Figure 6.11: Posterior density plots for M/Gibbs and LA methods of selected
examinees’ abilities with different numbers of correct answers for sample size n = 600
and m = 10.
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Figure 6.12: Jensen-Shannon divergence (JSD) for each student’s ability parameter
obtained from M/Gibbs and LA for sample size n = 600 and m = 10.

Comparison of the Point Estimates:

In terms of point estimates, Figure 6.13 shows the plot of the point estimates of the

600 students’ abilities resulting from the M/Gibbs and LA versus actual values. In

the same way, to study 1 and 2, the point estimates resulting from each method are

very close when students’ abilities range between -2 to 2 and vary slightly outside

this range for very high/low abilities. Also, for this large sample size, M/Gibbs

appears to overestimate high abilities and underestimate low abilities. The average

absolute difference between the points estimates resulting from each method is 0.30,

and the absolute maximum is 0.78, which occurs between very high/low abilities.

The correlation between the abilities estimates and the actual values remain the

same as in study 2 (n = 300) 0.92 and 0.93 for M/Gibbs and LA. The correlation

between the points estimates resulting from the two methods is 0.99, indicating a

strong relationship between the two sets of ability estimates approaches, as shown

in Figure 6.14.

To measure and compare the accuracy of the point estimates resulting from

M/Gibbs and LA methods to the actual values, Table 6.16 presents the average

bias, RMSE and Kendall’s τ . The results show only small noticeable changes by
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increasing the sample size from 300 to 600. For example, RMSE under M/Gibbs

increased slightly from 1.01 to 1.02 and 0.84 to 0.86 for LA. On the other hand,

Kendall’s τ values drooped from 0.77 and 0.83 to 0.76 and 0.82 for M/Gibbs and

LA, respectively. These results may indicate that the test length of 10 is insufficient

for a sample size of 600.

The results of the comparison of the difficulty parameter b point estimates

resulting from M/Gibbs and LA for n = 600 and test of length 10 are shown in

Table 6.17. From the results values, we can see that bias and RMSE values under

LA are slightly smaller than those under M/Gibbs. However, both methods are

identical in ordering the difficulties of the questions, where Kendall’s τ values are 1

for both methods.

Further analysis will be done in the next section to investigate the effect of increasing

the test length to 30, 50, 70 and 100 for a sample size of 600.
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Figure 6.13: Point estimates of the examinees’ abilities resulting from the; M/Gibbs,
and LA versus true values for sample size n = 600 and m = 10. The red line
illustrates the quality line.



Chapter 6. Laplace Approximation Method 127

−4 −2 0 2 4

−4
−2

0
2

4

Estimated Value (M/Gibbs) 

Es
tim

ate
d V

alu
e (

LA
) 

Figure 6.14: Point estimates of the examinees’ abilities resulting from the M/Gibbs
versus LA for sample size n = 600 and m = 10.

Table 6.16: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the ability parameter θ,
averaged across 20 different simulated datasets with sample size n = 600 andm = 10.

Method Bias RMSE Kendall’s τ

MCMC -0.0005 1.02 0.76
LA -0.0002 0.86 0.82

Table 6.17: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the difficulty parameter b,
averaged across 20 different simulated data sets with sample size n = 600 and
m = 10.

Method Bias RMSE Kendall’s τ

MCMC 0.014 0.13 1
LA 0.011 0.12 1

Further Analysis

The summary results of increasing the test length to 30, 50, 70 and 100 for a sample

size of 600 will be presented in this section.

Table 6.18 shows the outcomes of average bias, RMSE and Kendall’s τ resulting

from measuring the accuracy between the actual values and point estimates resulting

from M/Gibbs and LA. Regarding bias values, there are no noticeable changes by

increasing the test length or the sample sizes, where both methods produce very
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similar small biases. However, regarding RMSE dropped largely by expanding the

test length from 10 to 30 and then started dropping slightly by increasing the test

length. In terms of increasing the sample size from 300 to 600, RMSE under both

methods only decreased by 0.01 points. For example, when m = 30, RMSE were

0.71 and 0.59 for M/Gibbs and LA and became 0.70 and 0.58. Moreover, RMSE

values under LA are smaller than values under M/Gibbs.

Increasing the test length to 30 and more yields more accuracy in ordering the

point estimates of the students’ abilities resulting from both methods. For example,

as we can see, Kendall’s τ values that measure the differences between the order of

the point estimates of the abilities and the true abilities increased from 0.76 and 0.82

when m = 10 to 0.86 and 0.88 when m = 30 M/Gibbs and LA. Moreover, Kendall’s

τ values for LA are slightly higher than M/Gibbs. This difference between the two

methods in ordering the abilities become smaller by adding more questions, as shown

in Table 6.19.

The comparison results between the actual values and the point estimates of

the difficulty parameter b are presented in Table 6.20. Similarly to the results of

studies 1 and 2, according to the outcomes of the criteria measurements, the point

estimates resulting from each method are very close to being identical. However,

bias and RMSE under LA are slightly smaller. Kendall’s τ in Table 6.21 shows that

the two methods are almost identical in ordering the questions’ difficulties.

The average computational time for 20 different simulated datasets of sample

size 600 and different tests length are calculated and presented in Table 6.22. As

we can see, the LA method is high-speed, and even for a large dataset and test of

length of 100, the method only took 4 seconds to produce the results. In contrast,

M/Gibbs spent about one hour (3729 seconds) on the same dataset.
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Table 6.18: Comparison of average bias, average RMSE, and Kendall’s τ values
between the estimated points and the true values for the ability parameter θ with
sample size n = 600 and different number of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC 0.0008 0.70 0.86
LA 0.0012 0.58 0.88

50 MCMC 0.0004 0.54 0.89
LA 0.002 0.47 0.90

70 MCMC -0.0003 0.46 0.90
LA -0.001 0.40 0.91

100 MCMC -0.000002 0.39 0.91
LA -0.0012 0.35 0.92

Table 6.19: Average Kendall’s τ values between the point estimates of the students
abilities resulting from LA and M/Gibbs for a sample size n = 600 and different
numbers of items.

Number of Items Kendall’s τ

10 0.96
30 0.99
50 0.99
70 0.99
100 0.99

Table 6.20: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the difficulty parameter b for sample size
n = 600 and different numbers of items.

Number of Items Method Bias RMSE Kendall’s τ

30 MCMC -0.005 0.124 0.97
LA -0.003 0.114 0.97

50 MCMC -0.008 0.120 0.95
LA -0.006 0.116 0.95

70 MCMC 0.003 0.118 0.94
LA 0.002 0.115 0.95

100 MCMC 0.003 0.119 0.95
LA 0.0008 0.116 0.95

Summary of the Comparison Results for 1PL

Regarding the point estimates of ability parameter θ, the biases for the LA were

generally smaller than those from M/Gibbs. The only exceptions to this result

occurred for 50 questions and a sample size of 300 and for 100 questions and 600
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Table 6.21: Average Kendall’s τ values between the point estimates of the difficulty
of the questions b resulting from LA and M/Gibbs for a sample size n = 600 and
different numbers of items.

Number of Items Kendall’s τ

10 1
30 1
50 0.99
70 0.99
100 0.99

Table 6.22: Computation time comparison between M/Gibbs method and LA
method for sample size n = 600 and different numbers of items.

Time (in seconds)

Number of Items Gibbs/M LA
10 1691 0.53
30 2122 1.33
50 3060 1.80
70 3360 2.40
100 3729 4.00

sample size, in which cases the M/Gibbs approach yielded the lowest biases. In

addition, the RMSE for the LA estimates were lower than those of the M/Gibbs

estimator across all sample sizes and the number of questions, with the most noticeable

differences in smaller sample sizes and shorter test lengths. Kendall’s τ values were

generally larger for the LA method, with the most marked differences occurring with

smaller sample sizes and shorter test lengths. However, Kendall’s τ values became

almost identical for longer tests under both methods.

In terms of the point estimates of difficulty parameter b, mostly the biases were

slightly smaller for the LA than those for M/Gibbs. In addition, the RMSE were

also smaller for the LA method, with the most apparent differences occurring in

sample sizes of 30 and 300 for all test lengths. However, this difference between the

two methods of RMSE was very small for the sample size of 600. Kendall’s τ values

were smaller under the LA method for the sample size of 30, and the two resulting

values become almost identical for the sample sizes of 300 and 600.

From the results of these comparison studies, we can see that the LA method

provides very accurate approximations in very cheap computational time. Therefore,

the LA method seems to be a useful tool for researchers interested in obtaining

estimates of students’ abilities in real-time. Further analysis for larger sample sizes;

n = 1000 and n = 2000 can be found in the Appendix B, where the results confirm
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the findings of the comparison studies presented in this section.

6.2.2 Comparison Study for 2PL Model

In the literature, more complex models tend to be more complicated to fit, and

can take longer when using MCMC estimation methods with more convergence

issues (e.g. Gelman et al. (2013), Bürkner (2019)). Therefore, this section will

investigate the performance of the Laplace approximation method in the 2PL model.

The performance of two MCMC methods; Hamiltonian Monte Carlo (HMC) and

Metropolis within Gibbs samplers (M/Gibbs), in estimating the 2PL model’s parameters,

have been investigated in detail in Chapter 4. The procedure of the comparison study

will be carried out in the same way as the comparison study for the 1PL model.

However, this study will be focused on one sample size and test length.

Simulated Data

The data in this setting will be generated using the 2PL model described in 4.4.1.

In the previous comparison studies, there is only one item parameter: the difficulty

parameter bj, which measures the difficulty of the questions. In the 2PL model, we

can also estimate how strongly question j distinguishes the student’s ability θi by

adding the discrimination parameter aj. However, extra care should be taken when

using the LA method to approximate the discrimination parameter. The following

is a brief description of the issue one may face when estimating this parameter and

a proposed solution.

Discrimination Parameter and Transformation

As mentioned in 2.8.2, a general issue that may occur when using LA for bounded

parameters is that the approximations of the posterior distributions may become

less accurate when moving away from the posteriors’ mode. Since the discrimination

parameter is bounded between [0.5, 1] and to avoid this issue, this parameter will be

re-parametrised using the logarithm transformation. If a transformation is applied

to the discrimination parameter; g(a) : R→ R, then its probability density function

(pdf) will change too. Hence, if g(a) is a monotonic and differentiable function, the

pdf pa′(a) of the transformed random variable a′ can be computed as:

pa′(a′) = pa
(
g−1(a′)

) ∣∣∣∣ dda′ (g−1(a′))
∣∣∣∣ ,

where g−1 represent the inverse function of g. The Jacobian part, | d
da′

(g−1(a′)) |,
makes sure that the new pdf pa′(a′) is a valid pdf, which is still integrated to 1. For

more explanation about parameter transformation, see Casella and Berger (2021).
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We can apply a non-linear transformation to the discrimination parameter, such

as a′ = log(a). In this case of the logarithm, small values (0.5 < a < 1) are mapped

to larger negative numbers. Since the gamma distribution is used as prior, the log

transformation can be found as follows:

pa′(a′) = fa
(
g−1(a′)

) ∣∣∣∣ dda′ (g−1(a′))
∣∣∣∣

=
βα

Γ(α)
g−1(a′)α−1 exp

(
−βg−1(a′)

) ∣∣∣∣ dda′ (g−1(a′))
∣∣∣∣

=
βα

Γ(α)
exp(a′)α−1 exp(−β exp(a′)) · exp(a′)

=
βα

Γ(α)
exp(a′)α exp(−β exp(a′))

Hence, the transformation prior can be used now for the posterior distribution.

Regarding sample sizes, we have seen from the previous studies that the two methods,

M/Gibbs and LA, become comparable for a sample size of 300 students. However,

as suggested in the literature, as the complexity of the model increases, more data

is required (e.g. Sahin and Anil (2017)). Therefore, this study will aim to use a

relatively large sample size of 600 students and a moderate test length of 50 questions

to ensure the accuracy of the M/Gibbs method, which is aimed to use as a baseline

to compare the LA method results to its results.

Comparison Results

This section presents the results of the comparison study between the M/Gibbs and

the LA methods for estimating the 2PL model’s parameters. The MCMC method

will be run for a 500, 000 number of iterations, and the initial 2,000 part of iterations

will be discarded (burn-in) based on initial visualisation. The same comparison

criterion 6.2 used for previous comparison studies will also be used here.

Comparison of Distributions:

Figure 6.15 shows the approximated posterior resulting from the LA and the posterior

resulting from M/Gibbs for sample size n = 600 and a test of length 50. The posterior

distribution generated from LA seems slightly higher than M/Gibbs’s posteriors,

indicating that LA may underestimate the variance. To measure the divergence

between the two posteriors, JSD divergences for each student’s ability parameter

are computed and visualised in Figure 6.16. The JSD values range from 0.001 to

0.32. However, only a few students with JSD values are greater than 0.25, about 1%.
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The largest difference (JSD values) between the two posterior distributions appears

for very high ability students. In most cases, these differences become less than 0.1

for moderate students’ abilities, such as students from 200 to 400.
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(a) Number of Correct Answers= 10
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(b) Number of Correct Answers= 20
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(c) Number of Correct Answers= 30

Figure 6.15: Posterior density plots for M/Gibbs and LA methods of selected
examinees’ abilities with different numbers of correct answers for the 2PL mode.
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Figure 6.16: Jensen-Shannon divergence (JSD) for each student’s ability parameter
obtained from M/Gibbs and LA for the 2PL model.

Comparison of the Point Estimates:

In terms of point estimates, Figure 6.17 displays the comparison of the point estimates

of the students’ abilities resulting from the M/Gibbs and LA (y-axis ) versus actual

values (x-axis). Similarly to the 1PL, we can see that the point estimates are very

close for abilities ranging between -2 and 2. However, the point estimates varied

slightly outside this range for very high/low abilities, whereas M/Gibbs slightly

underestimated low abilities and overestimated high abilities. Figure 6.18 also

confirms that a strong relationship between the two sets of ability estimate methods

and a slight variation appears for low/high abilities.

The simulated data is repeated 30 times under the same conditions and the

average results of the bias, RMSE and Kendall’s τ are calculated and presented in

Table 6.23 for the ability, difficulty and discrimination parameters. The biases of

both estimation methods are small enough to be regarded as practically negligible in

the ability and difficulty parameter, although the LA estimates have a slightly larger

bias. The bias of the discrimination parameter is larger than other parameters’

biases; however, it is slightly smaller for the LA. In addition, the RMSEs of LA

estimates are generally smaller than the M/Gibbs method for all three parameters.
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The average value of Kendall’s τ (Table 6.23), which evaluates the degree of

similarity between the true values set and the point estimates set, indicates that

the two approaches are ordering the ability of the students and the difficulty/

discrimination of the questions almost in the same way. Furthermore, the average

values of the Kendall rank (τ) between the order given by both methods in Table

6.24 are large, confirming the high similarity between the point estimates sets.

Regarding time cost, M/Gibbs took 17,521 seconds on average (almost 5 hours)

to produce the results, while LA only took 6 seconds. Therefore, in general, applying

the LA method to the 2PL model does not appear to have any issues, as the results

are very comparable to the MCMC method and much faster.
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Figure 6.17: Point estimates of the examinees’ abilities resulting from the; M/Gibbs,
and LA versus true values for sample size for 2PL model. The red line illustrates
the equality line.
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Figure 6.18: Point estimates of the examinees’ abilities resulting from the M/Gibbs
versus LA for 2PL model. The red line illustrates the equality line.

Table 6.23: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the ability (θ), difficulty (b) and
discrimination (a) parameters for the 2PL model.

Parameter Method Bias RMSE Kendall’s τ

θ MCMC 0.0008 0.91 0.87
LA -0.0068 0.58 0.87

b MCMC -0.005 0.38 0.94
LA -0.009 0.17 0.94

a MCMC -0.15 0.17 0.77
LA 0.02 0.09 0.76

Table 6.24: Average Kendall’s τ values between the point estimates of the 2PL
model’s parameters resulting from LA and M/Gibbs.

Parameter Kendall’s τ

θ 0.99
b 0.99
a 0.95

6.3 High-Dimensional Covariance Matrix Problems

Computational time is an essential criterion for assessing the efficiency of the Laplace

approximation method for the purpose of online inference or massive data sets.

The performance of the LA method depends on obtaining the covariance matrix
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Σ̂ΣΣ by inverting the Hessian matrix (H). However, computing the inverse of H is

computationally expensive when a posterior distribution is fitted on high-dimensional

data when there is a large sample size of students (n).

This section will discuss two different methods to reduce the computational cost.

The first method is to use the idea of the block matrix. The second method is to

approximate the posterior distribution with the diagonal of the H matrix. The speed

efficiency of these methods will be assessed by comparing the running time to the

standard Laplace approximation 6.1. The following sections will explain the uses

and benefits of the two proposed methods.

6.3.1 Covariance Matrix Structure with Laplace Approximation

Before making any assumptions about the covariance matrix, a toy example will

be used to explain the structure of the Hessian and covariance matrices. A small

sample size of students and a short test length will be considered to make it easy to

look at the matrices’ structure. Therefore, this example will assume 3 students are

answering 5 questions. The same procedure of applying the LA method on the 1PL

model will be used here.

Toy Example

As mentioned early, the H matrix of the full posterior distribution P (θ, b|X) is the

matrix of the second derivative of the log posterior at its maximum point estimates;

θ̂θθ and b̂bb. Which can be formally written as:

Hp =


∂2p
∂θ21

∂2p
∂θ1∂θ2

· · · ∂2p
∂θ1∂θn

∂2p
∂θ1∂b1

· · · ∂2p
∂θ1∂bm

∂2p
∂b21

· · · ∂2p
∂b1∂bm

∂2p
∂θ2∂θ1

∂2p
∂θ22

· · · ∂2p
∂θ2∂θn

∂2p
∂θ2∂b1

· · · ∂2p
∂θ2∂bm

∂2p
∂b2∂b1

· · · ∂2p
∂b2∂bm

...
...

. . .
...

...
. . .

...
...

. . .
...

∂2p
∂θn∂θ1

∂2p
∂θn∂θ2

· · · ∂2p
∂θ2n

∂2p
∂θn∂b1

· · · ∂2p
∂θn∂bm

∂2p
∂bm∂b1

· · · ∂2p
∂b2m



Hence, the resulting matrix is a square (n + m) × (n + m) matrix, where n is

the number of students and m is the number of questions. Therefore, the H matrix

is a way to combine all the information from the second derivative of the posterior

distribution. The following is the H matrix for the toy example, where n = 3 and

m = 5.
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H =

0.95 0.00 0.00 −0.20 −0.20 −0.20 −0.05 −0.20

0.00 1.15 0.00 −0.22 −0.22 −0.22 −0.18 −0.22

0.00 0.00 0.35 −0.03 −0.03 −0.03 −0.14 −0.03

−0.20 −0.22 −0.03 0.54 0.00 0.00 0.00 0.00

−0.20 −0.22 −0.03 0.00 0.54 0.00 0.00 0.00

−0.20 −0.22 −0.03 0.00 0.00 0.54 0.00 0.00

−0.05 −0.18 −0.14 0.00 0.00 0.00 0.47 0.00

−0.20 −0.22 −0.03 0.00 0.00 0.00 0.00 0.54





In statistics, the Hessian matrix of the log posterior distribution with respect to

the parameters is the negative inverse of the covariance of the parameter estimates;

H = −ΣΣΣ−1, which is known as the precision matrix (Yuen, 2010). The elements

in this matrix tell us about the conditional information because they are obtained

by fixing all other parameters. Hence, the diagonal elements are the negative of

the conditional variance of the parameters. We see that in 6.3.1 the sub-matrix

of θ′s (red rectangle) and the sub-matrix of the b′s (blue rectangle) have zero for

off-diagonal elements. This implies that θ′s and b′s are conditionally independent

of each other. In other words, a student’s response to a question is independent of

another students conditional on the student’s ability. Therefore, there should not

be any correlation between questions after conditioning on θ but only correlation

in the full problem. This result confirms a critical assumption for the IRT model,

known as local independence or conditional independence (explained in Chapter 3).

Figure 6.19 displays a graphical representation of conditional independence for

two students and two questions. As we see, questions (b1 and b2 ) are not linked

to each other and are only associated via the ability (θ1 and θ2 ) . Therefore, a

correct/wrong response to one question should not lead to a correct/wrong response

to another question.
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Figure 6.19: Graphical representation of conditional independence.

To apply the LA method, we need to invert theH = −ΣΣΣ−1 matrix. The following

is the result of inverting H matrix and multiplying by -1, which is the covariance

matrix ΣΣΣ.

ΣΣΣ =

2.17 1.10 0.76 1.27 1.27 1.27 0.88 1.27

1.10 1.98 0.85 1.23 1.23 1.23 1.13 1.23

0.76 0.85 3.68 0.80 0.80 0.80 1.50 0.80

1.27 1.23 0.80 2.84 1.00 1.00 0.85 1.00

1.27 1.23 0.80 1.00 2.84 1.00 0.85 1.00

1.27 1.23 0.80 1.00 1.00 2.84 0.85 1.00

0.88 1.13 1.50 0.85 0.85 0.85 3.08 0.85

1.27 1.23 0.80 1.00 1.00 1.00 0.85 2.84





Unlike the H matrix, which presents the conditional correlations among the

parameters, the covariance matrix ΣΣΣ shows the marginal correlations. Therefore,

the diagonal elements in the covariance matrix are the marginal variances of the

parameters. Also, as we can see, the covariance matrix ΣΣΣ is dense, implying that

every pair of the parameter is marginally correlated.

Figure 6.20 shows the correlation matrix between 1PL model’s parameters for

n = 3 and m = 5. The result shows moderately strong correlations between

students’ ability and questions’ difficulty. These correlations occur because of the

model identifiability issue, explained in 3.3. The 1PL model suffers from additive
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identifiability issues, i.e adding a constant number to each θi and bj will result in the

same likelihood. There are also moderately high correlations between b′s, and less

correlation occurs between θ′s. However, it might not be evident, for this is a small

example. Hence in Appendix B, Figures B.2, B.3, and B.4 provide more examples

of the correlation between the model’s parameters for larger datasets.
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Figure 6.20: Correlation matrix between 1PL model parameters for n = 3 and
m = 5.

Summary

In summary, there are some important results that can help make assumptions

about Hessian; H and covariance; ΣΣΣ matrices to reduce the computational time of

inverting the H matrix for massive data sets. First, from the analysis of the H

matrix, we found that θ′s and b′s are conditionally independent, and hence these

two sub-matrices are sparse matrices. This will help in storing matrices in special

block structures. The idea of this method will be discussed in detail in section

6.3.2. The second assumption that could be made is using only the diagonal of the

H matrix. From the correlation between the model’s parameters, we found less

correlation between θ′s than between b′s or θ′s and b′s. This knowledge will help

us understand and track the differences between using the full Hessian matrix and

using only the diagonal of the H matrix. This method will be discussed in detail in

section 6.3.3.
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6.3.2 Block Matrix Strategy for Laplace Approximation

This section provides a strategy to invert the Hessian matrix to reduce the computational

time by using a block matrix strategy. The idea is that we can divide the H matrix

into sub-matrices or block matrices and use some linear algebra strategies to simplify

calculations of inverting the H matrix.

Block Matrix Strategy

We have seen from the structure of theH matrix 6.3.1 that this matrix can be broken

into four sub-matrices or blocks. Therefore, the H matrix can be interpreted as a

flowing block matrix:

H =

(
Hθθ Hθb

Hbθ Hbb

)
,

where Hθθ represents Hessian matrix for students and Hbb is the Hessian matrix for

questions. The two sub-matrices Hθb and Hbθ are for both students and questions.

The H matrix has been convert from (n+m)× (n+m) to 2× 2 matrix. Therefore,

working with the 2 × 2 matrix is mathematically more straightforward. This will

allow us to use a common inverse formula for 2 × 2. There are several formulas,

but in this thesis, the focus will be on the procedure related to the Hessian matrix,

which is the square diagonal partition, where Hθθ and Hbb are square matrices.

This method can be explained shortly as follows;

A nonsingular or invertible square matrix M (its determinant is non-zero), that

can be divided into 2× 2 blocks is given by:

M =

(
A B

C D

)
,

and its inverse is given by:

M−1 =

(
E F

G H

)
.

In the case that A, D, E and H are square matrices, where A and E have the same

size, as well as D and H, the matrix M is invertible if and only if A is nonsingular,

and the Schur complement (D − CA−1B) of A is invertible. Thus, the following

formula can be used to invert M ;
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M−1 =

[
A−1 + A−1B (D − CA−1B)

−1
CA−1 −A−1B (D − CA−1B)

−1

− (D − CA−1B)
−1
CA−1 (D − CA−1B)

−1

]
.

From comparing M matrix to the H matrix, we can see that A = Hθθ, B = Hθb,

C = Hbθ and D = Hbb. More details about this method and other formulas can

be found in Lu and Shiou (2002).

While this formula still looks complex, using some linear algebra strategies with

some advanced computer programming in R can make it mathematically cheap. For

example, A(Hθθ) is a diagonal matrix and only needs to take the inverse of the

diagonal. However, if we use the full H matrix, the programme does not take this

point into account and calculates for the whole matrix, which is mathematically

expensive. Another essential strategy is that B(Hθb) and C(Hbθ), in this case, are

symmetric, which means C = BT . Hence, we can only calculate the top right of

the M−1; E and then transpose the result to get G.

Comparison of Computation Time

Converting the Hessian matrix into a 2 × 2 block matrix and using the previously

mentioned formula to invert the new matrix will not change the point estimates

or the approximate posterior distributions. In other words, the resulting point

estimates and posterior distributions from the block matrix method will be exactly

the same as those resulting from using a full Hessian matrix. Therefore, this

subsection will only focus on comparing computation time using the full Hessian

matrix and the block matrix to produce the covariance matrix, which operates in

the Laplace approximation method. All experiments will be conducted on the same

computer to ensure the computer system does not affect the computation time.

To illustrate the computational time, this comparison will consider an increasing

of sample sizes from n = 1000 to n = 10, 000 and test of length (m = 50). Table 6.25

presents calculation times for inverting the full H matrix (Full H) and inverting the

H block utilising the strategy of the 2 × 2 block matrix for a different number of

students. As the results show, inverting the H matrix becomes expensive for larger

datasets, particularly a sample size of 5,000 students or more. However, it is not

enormously expensive, such as inverting the H matrix of 10, 050×10, 050 took only

11 minutes. On the other hand, the computing time can essentially drop to 8 seconds

using the block matrix strategy. Therefore, the proposed block matrix strategy can

be very efficient in reducing the computational time in the high-dimensional matrix
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Table 6.25: Comparison of the computation time between inverting the full Hessian
matrix (Full H) and using the block matrix method (Block H) for a test of length
m = 50 and different numbers of students.

Time (in seconds)

Number of Student Full H Block H
1000 0.75 0.72
2000 6.20 0.28
5000 86.20 1.63
8000 337.86 5.38

10,000 670.00 8.08

6.3.3 Diagonal Laplace Approximation

This section considers another method to address the computational issue of inverting

the Hessian matrix in high dimensions. This method aims to calculate the diagonal

of the inverse Hessian matrix over the mode to obtain the variance estimates used

to operate LA. For example, the approximation posterior distributions of the ability

parameters can be obtained as following:

θ ∼ N
{
θ̂, diag(−Hθ̂)

−1
}

Therefore, inverting the Hessian matrix will not be a full covariance matrix but only

gives the vector of all diagonal elements of variance for each parameter. In this

setting, we will lose some information from the correlation between the students’

abilities and questions’ difficulty, as explained earlier in 6.3.1. As a result, this will

lead to a change in the posterior distributions. Using the diagonal of the Hessian

matrix in LA is commonly used in machine learning and neural networks; see as

examples Ritter et al. (2018),Trippe et al. (2019) and Perone et al. (2021). A

comparison between using full and diagonal Hessian matrices in the LA method will

be carried out in the following subsection. This comparison study will consider the

amount of change between the two resulting posterior distributions by measuring

the distance between the two distributions.

Comparison Study Between Full and Diagonal LA

In this comparison study, the focus will be on the change in the posterior distributions

when using the diagonal of the H matrix instead of the full matrix. Therefore, a small

data set will be used to explore and track the change on all ability levels. However,

to emphasise, the purpose of using this method is to reduce the computational time

in massive datasets and high-dimensional matrix. A comparison of computation

time for massive datasets will be considered later.
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Simulated Data

The simulated data used in study 1 ( 6.2.1) will be utilised in this comparison study.

For this dataset, there are 30 students and 10 questions.

Comparison Result

This method will not affect the point estimates results, meaning that the point

estimates resulting from full and diagonal LA will be equal. Therefore, the focus

will be on comparing the distributions.

Figure 6.21 displays comparisons between the approximate posterior distributions

of the full and diagonal LA for five different randomly selected abilities levels. We

can see that the variances are slightly underestimated in most cases by using the

diagonal LA (LA diag). However, if a student has a very low ability, with no correct

answer, such as θ2 or very high ability, with all questions answered correctly, such as

θ28, the two variances are almost identical. On the other hand, for moderate abilities

students such as θ10, θ14 and θ20, the approximate posterior distributions resulting

from the diagonal LA are narrower than those resulting from full LA, where the

variances of the posterior distributions are slightly smaller.

The difference between the resulting posterior distributions from both methods

comes from setting all non-diagonal elements in the Hessian matrix to zeros. This

setting is valid for θ′s and b′s because, as we have seen in 6.3.1, they are conditionally

independent. However, this is not the case between θ′s and b′s, where there is some

correlation between them. Figure 6.22 shows the correlation resulting from using

the full LA (inverting the entire Hessian matrix), where large/ small circles indicate

large/ small correlations. We can notice that for very low/high abilities, where

students got all questions wrong or all questions correct, such as θ2, θ5, θ28 or

θ30, the correlations between these abilities and the difficulties of the questions are

smaller than those of moderate abilities, such as θ10, θ14 or θ20. Therefore, these

abilities are less affected by setting non-diagonal elements to zeros in the Hessian

matrix. Hence, the variances resulting from both methods are almost the same, and

thus the two posterior distributions become practically identical. On the contrary,

the correlation between moderate abilities and difficulties of the question is high and

hence affected more by this setting.
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Figure 6.21: Posterior density resulting form full LA (LA full) and diagonal LA
(LA diag) methods for selected examinees’ abilities with different numbers of correct
answers for sample size n = 30 and m = 10.
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Figure 6.22: Correlation matrix between 1PL model parameters for sample size
n = 30 and m = 10.

Although the diagonal LA method slightly underestimated the variance, the

two posterior distributions resulting from both methods are very similar. In this

example, the average difference between the diagonal and full LA variances is 0.23,

which is still a relatively small difference. The divergence between the two resulting

distributions from each method for the 30 students’ abilities is calculated using the

Jensen-Shannon divergence (JSD) method (0) and presented in Figure 6.23. As we

can see, the values of the JSD range between 0.005 and 0.015, indicating that the

difference between the two distributions is tiny for all students’ abilities. In addition,

Figure 6.24 shows 95% credible intervals for the abilities estimates of 30 students,

as we can see their uncertainty estimates align closely, with only smaller uncertain

intervals range for diagonal LA.
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Figure 6.23: Jensen-Shannon divergence (JSD) method for each student’s ability
parameter obtained from full and diagonal LA for sample size n = 30 and m = 10.
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Figure 6.24: Posterior means and 95% credible intervals (CI) of the ability point
estimates resulting from full and diagonal LA for sample size n = 30 and m = 10.
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Figure 6.25: Posterior density resulting form full LA (LA full) and diagonal LA
(LA diag) methods for the difficulty parameter, for sample size n = 30 and m = 10.
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In terms of the difficulty parameter b, the posterior distributions resulting from

both methods for all questions’ difficulties are present in Figure 6.25. This figure

shows that the variation between the two distributions is larger than the abilities

distributions, where the distributions resulting from diagonal LA are narrower. Also,

Figure 6.26 shows 95% credible intervals, as we see the uncertain intervals range for

diagonal LA is smaller than full LA. The reason is that the correlation between b’s

and θ′s and between b′s themself are larger, as shown in Figure 6.22. Therefore,

by setting non-diagonal to zero, we lose this information. This result is expected

since the number of students is three times the number of questions, and hence we

have more information about the difficulty of the questions. Furthermore, in this

simulation study, the range of correct answers is between 7 and 22. Consequently,

there are no extreme point estimates, such as a question answered correctly by all

students or a question with no correct answers. However, the JSD values in Figure

6.27, which represent the measurement distance between the two distributions, are

pretty small.
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Figure 6.26: Posterior means and 95% credible intervals (CI) of the difficulty point
estimates resulting from full and diagonal LA for sample size n = 30 and m = 10.

In general, the diagonal LA method underestimated the variance due to ignoring

the correlations between θ′s and b′s and setting the non-diagonal of the Hessian

matrix to zero. This result can be seen more clearly for moderate abilities or

difficulties. However, as presented in this study, the resulting variance is not massively
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off. The following subsection will compare computation time and a general comparison

of mean and maximum difference between the variance resulting from full and

diagonal LA methods for large datasets.
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Figure 6.27: Jensen-Shannon divergence (JSD) method for each questions’ difficulty
parameter obtained from full and diagonal LA for sample size n = 30 and m = 10.

Comparison of Computation Time for Massive Datasets

The computational time of the diagonal LA method against the large sample size is

investigated using five different datasets, the same datasets used in the block matrix

6.25. Therefore, the investigation is on increasing the sample size from n = 1000 to

n = 10, 000 with a test of length m = 50. Since the main difference between the

full and diagonal LA is using the inverse of the diagonal of the Hessian matrix (H)

instead of the full matrix, the focus will be on computing the time of inverting the

diagonal of H .

The result of computing the time of inverting the diagonal of H is 0.001 seconds

for each sample size. Which is computationally very cheap compared to other

methods. As we have seen in 6.25, this can take up to 670 seconds for full LA

and 8 seconds for the block LA (for 10, 000).

The more interesting result is that as we increase the sample size, the difference

between the variance estimates resulting from the full H matrix and those resulting

from the diagonal H matrix becomes negligible for both θ and b. Table 6.26 presents

the mean and the maximum difference between the variance estimates resulting

from both methods. As we can notice, both the mean and the maximum values are
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minimal and only differ on the fourth decimals. This result indicates that the two

variances become almost identical for larger datasets.

The main reason for this result is that the correlation between the model’s

parameters decreases by increasing the sample size. Table 6.27 summarises the

maximum correlations between the parameters for the previous five sample sizes.

The result shows that the maximum correlations between the abilities (θ′s) are very

small (e.g. at n = 1000, the max correlation is 0.08) and get smaller by increasing the

number of students, which can be negligible at all sample sizes. On the other hand,

the maximum correlations between (θ′s) and (b′s) are slightly larger but get smaller

as well by increasing the sample size and become negligible at n = 10000. Finally,

the correlations between the difficulties are higher, where the maximum correlation is

0.55 and is not affected so much by increasing the sample sizes. Therefore, from the

analysis of the correlations, we can find that setting the non-diagonal of the H matrix

to zeros, and hence assuming there are no correlations between the parameters, will

not affect the estimation of the variances since the correlations are already minimal

in most cases.

Table 6.26: Mean and maximum values of the difference between the estimated
variance resulting from diagonal and the full LA for the ability parameter θ and the
difficulty parameter b for different number of students

Number of Student θ b

Mean Maximum Mean Maximum
1,000 0.0093 0.0095 0.0096 0.0097
2,000 0.0048 0.0049 0.0050 0.0051
5,000 0.00195 0.00199 0.00200 0.00202
8,000 0.00116 0.00124 0.00120 0.00124
10,000 0.00092 0.00099 0.00098 0.0.00099

Table 6.27: Maximum correlation between the abilities, the abilities and the
difficulties and between the difficulties.

Number of Student θ′s θ′s & b′s b′s

1000 0.08 0.21 0.54
2000 0.04 0.15 0.54
5000 0.02 0.10 0.54
8000 0.01 0.08 0.55
10000 0.009 0.07 0.55
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Diagonal of Laplace approximation and the Optimisation Method

It is noticeable that, as we increase the sample sizes, the optimisation method that

we use to find the maximum vector points of θ and b and the Hessian matrix as well

becomes computationally expensive. Where in this thesis, as mentioned earlier, the

BFGS algorithm is used through the optim function in R.

Therefore, the main advantage of using the diagonal of the H matrix is that we

can use the second derivative of the log posterior distribution and evaluate it at the

maximum vector points. In other words, we can use the BFGS algorithm through

the optim function in R to return only the maximum points, which in this case

is computationally cheaper. The diagonal of the Hessian matrix can be found as

follows:

diag(Hp) =

(
∂2p

∂θ21
(θ̂1), · · · ,

∂2p

∂θ2n
(θ̂n),

∂2p

∂b21
(b̂1), · · · ,

∂2p

∂b2m
(b̂m)

)
,

where p is the log posterior distribution of the 1PL model in this case, n is the

number of students and m is the number of questions. The resulting of the second

derivative is then evaluated at maximum points (θ̂1, · · · , θ̂n, b̂1, · · · , b̂m).

Figure 6.28 shows a time comparison of the four methods presented and discussed

in this chapter. Full LA refers to using the full Hessian matrix. Block LA refers to

utilising the formula of the 2 × 2 block matrix to invert the H matrix. Diagonal

LA refers to using the diagonal of the H matrix returned by the optim function.

Finally, gradient LA refers to using the second derivative of the log posterior to

find the diagonal of the H matrix. The computational time presented in this figure

is for running the whole process of the Laplace approximation methods to find

the approximate point estimates and the corresponding covariance matrix (full LA

and block LA) or the variance estimates (diagonal and gradient LA). The time is

calculated in seconds for five different numbers of students, and a test of length

m = 50.

The results show that as the sample size increases, the difference between the

run times of the full LA and the other proposed methods becomes larger. In this

case, the optimisation method and inverting the H matrix become computationally

expensive. In the block and diagonal LA, the proposed strategies that were used

to reduce the computational time of inverting the H matrix worked successfully.

However, the optimisation method becomes expensive for a massive dataset, where

n = 5000 or more. In the gradient LA method, the BFGS algorithm is only used

to return the maximum point estimates. Therefore, the total run time becomes

very cheap. For example, in a sample size of 10,000, the optimisation method took
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approximately 330 seconds to return the maximum point estimates and H matrix.

In comparison, it took 53 seconds to produce only maximum point estimates. Hence,

from this comparison of the computational time, we can see that we can use the

gradient LA method to find comparable results to the full LA in less than one minute

for a massive dataset of a sample size of 10,000.

2000 4000 6000 8000 10000

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Number of Students

T
im

e
 (

S
e

co
n

d
s)

Full LA 
Block LA
Diagonal LA
Gradient LA 

Figure 6.28: Time comparison of the whole process of the four Laplace
approximation methods; Full LA: using the full Hessian matrix, Block LA: utilising
the formula of the 2×2 block matrix to invert theH matrix, Diagonal LA: using the
diagonal of the H matrix returned by the optim function and gradient LA: using
the second derivative of the log posterior to find the diagonal of the H matrix.

6.4 Laplace Approximation on the Dynamic IRT

Models

In educational measurement, we expect the estimation of item parameters in IRT

models (e.g. the difficulty parameter b) to change over time whenever one or a

group of students answer the same test. This section considers the more common

situation in a reality where the students complete a test at different times or even
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on different days. This section formally introduces and illustrates a novel approach

to the Laplace approximation method on the one-parameter dynamic IRT model.
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6.4.1 Sequential Update Method

This subsection presents the idea of updating Laplace approximation (LA) sequentially

when students finish the same test at different times or on other days.

The procedures of the LA method will be the same as explained earlier. The

main difference is in determining the prior distribution of the difficulty parameter b.

Basically, the setting of the prior distribution will work in the following general way.

First, before students answer a given test, it is assumed that there is no information

about the difficulties of the questions, so a single weakly informative prior will be

set for all questions. Hence, this setting of the prior distribution will be used for the

first group of students who will take the test. The Laplace approximation method

will be applied in the same way as explained before to estimate the ability of the

students θ and the difficulty of the questions b.

This procedure will produce point estimates vector for both ability and difficulty

parameters (θ̂θθ and b̂bb) as well as covariance matrices (Σ̂θ and Σ̂b ). In the next update,

the resulting points vector of the difficulty parameter (b̂bb) and the covariance matrix

(Σ̂b) will be used as prior distributions for the difficulty parameter. Formally, the

prior distribution can be generated from a multivariate normal distribution with a

mean equal to the points vector (b̂bb) and covariance matrix (Σ̂b);

b ∼ N (b̂bb, Σ̂b).

In other words, the posterior distributions of the difficulty parameter for every

question based on one update based on a group of students becomes the prior

distribution for the next update when a new group of students answer the same

questions of a test. Thus, the prior distributions become more peaked (have a lower

standard deviation) when more students answer the questions. Therefore, it is

expected that with each update, the parameter estimates of the questions’ difficulty

become more tightly concentrated. This idea will be explained in detail with visual

examples in the results section 6.4.2.

In the sequential estimation update of ability parameter θ, essentially the same

likelihood is used, but, at each sequence, only the data of the group of students in

that sequence is utilised. Therefore, the likelihood of 1PL model in this setting can

be written as;

L(x|θi, bj) =
ns∏
i=1

m∏
j=1

π
xij
ij (1− πij)1−xij ,
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where ns is the total number of students in each sequence update, and m is the

total number of questions.

The prior distribution for the ability parameter θ is assigned the same for all

students in each update.

The performance of the proposed method will be evaluated on three scenarios

of simulated datasets. The simulated data present in study 3 for a sample size of

600 will be used here with three different levels of test length 10, 50 and 100. Each

simulated data scenario will be repeated 20 times. Therefore, each test length will

have 20 different datasets. Which will ensure there are a variety of students’ abilities

and questions’ difficulties when evaluating the proposed sequential update method.

The performance of the proposed method is assessed by comparing the results

versus the complete results using full LA. Therefore, the approximation posteriors

generated from full LA and the point estimates of both ability (θ) and difficulty (b)

parameters will be used as baseline results to compare the approximation posteriors

and point estimates resulting from the sequential LA method.

6.4.2 Comparison Study of Sequential Update Method

The present study aims to investigate the performance and accuracy of applying

the LA in sequential updates. The full LA update’s performance and accuracy have

been investigated and compared to one of the MCMC methods (M/Gibbs) in the

previous section. The goal now is to compare the ability point estimates resulting

from the LA sequential updates to those resulting from the LA fully update. The

same criteria methods explained in 6.2 for the point estimates will be used; bias,

RMSE and Kendall’s τ , to evaluate the quality of sequential updates and measure

the differences between the point estimates resulting from the two updates.

Simulated Data

The simulated data in comparison study 3 (6.2.1) for a sample size of 600 will be

used to investigate the performance of the sequential LA. The study will consider

three different test lengths; short (m = 10), moderate (m = 50) and long (m = 100).

In each setting, the simulated dataset will be repeated 20 times to ensure there is

a variety of student abilities levels. Hence, the average criteria methods will be

calculated.

Since it is assumed that students answer a given test in a dynamic system,

the total number of students will be divided into groups. For this setting, four
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different scenarios of grouping students are assumed. In other words, the total

number of students will be divided into four different block sizes. The first scenario

is considered to have a block size of 20 students (ns = 20). After this group finish

the test, they receive the results of their ability immediately, and we get an update

on the difficulties of the questions. Consequently, the result of the difficulties of

the questions can be stored and then used as prior distributions for the questions

when the following 20 students take the test. We keep updating our prior beliefs

about the difficulties of the questions and set the same prior distribution for the

students abilities until all the students finish the test. The same analysis is repeated

for a block size of 50, 100 and 200 students. A summary of simulated datasets is

presented in Table 6.28.

Table 6.28: Simulated Data for Sequential Update Method

Variable Setting
Number of Students 600
Number of Items 10, 30 and 100
Bock Sizes 20, 50, 100 and 200

Sequential Update Results

This section discusses the comparison results between the full LA update (6.1)

and the proposed sequential LA update (6.4.1). First, the change in the difficulty

parameter estimates during the sequence update will be considered in terms of point

estimates and posterior distributions. Then, the previously mentioned measurements,

bias, RMSE and Kendall’s τ will be used to measure the differences between ability

point estimates resulting from each update.

Figure 6.29 shows posterior distributions of one randomly selected difficulty

parameter estimate for sequential LA update at three different sequence updates

and a posterior distribution of full LA. The figure presents four different scenarios of

the number of students in each block sizes update. At the beginning of the analysis,

there is no information about the difficulty of the parameter, so it is expressed

as a weakly non-informative prior distribution, which is almost flat (dashed green

line). After the first group of students finish the test, more information about the

difficulty of the question becomes available. Hence, the prior, which is the posterior

at the current update, becomes more peaked with smaller standard deviation. In

addition, we notice that the number of students in each block size affects the prior

distribution. For example, the prior distribution at the first sequence (black line) for

a block size of 20 students is wider than the one of a block size of 100 students. This
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effect is expected because the more students answer the test, the more information

about the difficulty of the questions. At the final sequence update, the posterior

distribution becomes identical to the posterior distribution resulting from the full LA

update. Therefore, in this sequential update, priors of the difficulty of the questions

are specified from the data, not from our beliefs and become more informative when

more students answer the test.

Regarding the point estimates of all the difficulties of the questions, Figure 6.30

shows the point estimates of the difficulty parameters b for sequential LA update at

first, middle and final sequences and full LA update for three different test lengths

(m = 10, 50 and 100). As an example, the figure presents the case of a block size

of 20 students, and more results for other block sizes can be found in the Appendix

B. It is clear that the difficulty point estimates in the first sequence, where only

one group of students has finished the test, are pretty far from the target point

estimates resulting from the full LA in all three test lengths. However, the difficulty

level of the questions (high/low) is approximately correct. In addition, the number

of questions does not primarily affect the difference between the point estimates in

each sequence. For example, the average absolute mean difference between point

estimates in first and middle sequences are 0.44, 0.45 and 0.46 for the test of lengths

10, 50 and 100, respectively.
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(a) Block Size= 20
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(b) Block Size= 50
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(c) Block Size= 100
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(d) Block Size= 200

Figure 6.29: Posterior distributions of a difficulty parameter estimate for sequential
LA update at first (black line), middle (purple line) and final (blue dotted line)
sequences and full LA update (red line). The green dashed line represents the prior
distribution.

After we have some ideas about updating the estimate of the difficulty parameters,

we can compare the ability point estimates resulting from the sequential LA update

with those points resulting from the full LA updates. Table 6.29 presents a summary

of average bias, RMSE, and Kendalls τ values between the estimated points resulting

from both updates for the ability parameter θ for three different number of questions

(10, 50 and 100) and four different block sizes of students (20, 50, 100 and 200).

The average biases show that sequential LA is slightly underestimated the students’

ability. However, the differences are very small and get smaller by increasing the
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Figure 6.30: Point estimates of the difficulty parameters for sequential LA update at
first, middle and final sequences and full LA update for three different test lengths
(m = 10, 50 and 100). The block size of the sequential update is 20.
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number of questions. The biases also decrease as the number of students in each

block size increases in most cases.

The same pattern was found across all conditions for RMSE values. First, the

RMSE values are minimal even for a short test (m = 10) and small block size (20);

0.11, indicating that the sequential LA method accurately estimates students’ ability.

The estimation results get more accurate by increasing the number of questions, as

noted in the smaller RMSE values. In addition, the block sizes also affect the values

of RMSE, as these values decrease by increasing the number the size of the blocks.

Therefore, it is noticeable that the estimation can be improved by increasing the

information about the questions in terms of test lengths and block sizes.

In educational settings, teachers or researchers usually are more interested in the

qualitative inference for the students’ ability than quantitative inference. In other

words, the correct order or rank of students’ ability is more curious than the exact

ability values. This can be measured by Kendall’s τ , which is calculated for all

conditions and presented in Table 6.29. We can see that Kendall’s τ value is very

large, even for a small block size (20) and short test (m = 10); 0.96. These large

values indicate that the sequential LA update method orders students’ ability the

same way as the full LA method, which almost becomes identical for the test of

lengths 50 and 100.

Table 6.29: Average bias, RMSE, and Kendall’s τ values between the estimated
points resulting from the sequential LA update and the full LA update for the
ability parameter θ for sample size n = 600 and different number of items.

Number of Items Block Size Bias RMSE Kendall’s τ

20 -0.0087 0.11 0.96
10 50 -0.0097 0.10 0.96

100 -0.0095 0.08 0.97
200 -0.0080 0.06 0.97

20 -0.0071 0.062 0.99
50 50 -0.0077 0.062 0.99

100 -0.0079 0.058 0.99
200 -0.0082 0.046 0.99

20 -0.0032 0.042 0.99
100 50 -0.0035 0.041 0.99

100 -0.0038 0.039 0.99
200 -0.0045 0.031 0.99

As shown in Figure 6.31, the full and final sequential LA point estimates align

very closely for all test lengths, which confirmed the previous numerical results.
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Moreover, there is no evidence in the figure if the differences between the two

methods occur for very high/low or moderate ability. Also, Figure 6.32 displays

the point estimates resulting from each method versus the true values. As shown in

this figure, the sequential LA method yields estimate comparable to those from the

full LA. The Appendix B shows average bias, RMSE, and Kendall’s τ values between

the estimated points resulting from the sequential LA update and the true values

for the ability parameter θ across all conditions, which agrees with all numerical

and graphical previous results.

Table 6.30: Average absolute mean and maximum values of the difference between
the estimated points resulting from the sequential LA update and the full LA update
for the ability parameter θ for sample size n = 600 and different number of items.

Number of Items Block size Mean difference Maximum difference

20.00 0.076 0.39
10 50.00 0.069 0.31

100.00 0.059 0.20
200.00 0.041 0.12

20.00 0.050 0.168
50 50.00 0.049 0.160

100.00 0.045 0.130
200.00 0.340 0.091

20.00 0.034 0.110
100 50.00 0.032 0.100

100.00 0.030 0.085
200.00 0.024 0.063

To investigate more about the main differences between the ability point estimates

resulting from the two methods, Table 6.30 shows the average absolute mean and

maximum differences across all conditions. The average of the absolute mean

differences between the ability point estimates resulting from each method ranges

between 0.076 and 0.024 across all conditions. We can see that these values are

decreased incrementally by increasing the number of questions and the block sizes.

These differences are very small, even when there is less information about the test

for a short test (m = 10) and a block of size 20. The average absolute maximum

differences range between 0.39 and 0.063 across all conditions. The largest values

appear for the shortest test and a block of size 20, which is still acceptable given

the amount of information about the test.

The largest considerable maximum differences occur in the early sequences updates

in most cases. For example, Figure 6.33 shows one ability parameter estimate at the

first sequence and another ability parameter estimate at the last sequence update,



Chapter 6. Laplace Approximation Method 163

where both parameters are randomly selected. In the first sequence, we can see that

the mode of the posterior distribution (point estimate) resulting from the sequential

update is not equal to the mode of the posterior distribution resulting from the full

update. Moreover, the estimation result varies between the block sizes. However,

as we can notice, these differences are not quite large. The posterior distributions

resulting from sequential LA are only shifted slightly to the right, with almost

the same variance for all the block sizes. On the other hand, the two posterior

distributions from both updates become identical for all the block size cases in the

last update. More examples about the ability parameters estimates at the first

sequence can be found in the Appendix B (Figure B.8).
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Figure 6.31: Point estimates of the students’ abilities resulting from full LA update
method versus sequential LA method, for a block size of 20. The red dashed line
illustrates the equality line.
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Figure 6.32: Point estimates of the students’ abilities resulting from full and
sequential LA method update methods versus true values, for a block size of 20.
The black dashed line illustrates the equality line.
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Figure 6.33: Posterior distributions of an ability parameter at the first sequence
update and an ability parameter at the last sequence update for four different block
sizes.
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6.4.3 Summary and Discussion

This section has introduced a novel approach for the sequential Laplace approximation

method in a Dynamic IRT model. The main idea of this method is that the difficulty

parameter estimates are updated sequentially from the data every time new students

answer the test. Hence, the results are used as prior distributions for the difficulty

parameters to estimate the following students’ abilities. The idea of this method

has been illustrated by the comparison study to the full LA update method. Based

on the criterion measurements presented in this study, the sequential LA method

resulted in ability point estimates comparable to those from the full LA. However,

the most considerable differences between the point estimates resulting from each

method appeared for the early sequence updates.

The advantage of this method is that it can be a helpful tool for research problems

for big data or online inference. As described earlier, the procedure of sequential

LA is to summarise current information regarding difficulty parameters and store

the data in terms of means (b̂bb) and covariance matrix (Σ̂b) to use these as prior

distributions when new students answer the test. Therefore, we only need to store

the (m ∗m) covariance matrix in this setting, where the number of questions in the

most real-life scenario is not very massive. Hence, this procedure will help avoid

storing large data sets in computer memory since keeping the previous student’s

information is unnecessary. Moreover, the likelihood only needs to be calculated

for the new students to estimate their abilities, making this method very cheap for

online inference.

The next chapter will consider the application of the Laplace approximation to

the non-dynamic and dynamic 1PL IRT model for the real dataset.



Chapter 7

General Aptitude Test Case Study

7.1 Data

This case study considers an application of the Laplace approximation method

explained in Chapter 6 on a real dataset. This data was obtained from the General

Aptitude Test (GAT), a test that targets high school graduates and is used for

university admission purposes in Saudi Arabia. See Alghamdi and Al-Hattami

(2014) and Dimitrov and Shamrani (2015) for more information about the GAT test.

As described in the test website (https://etec.gov.sa/en/productsandservices/

Qiyas/Education/GeneralAbilities/Pages/default.aspx), the GAT tests the

general ability to learn regardless of any specific skills in a particular subject or

topic. The test consists of two parts: verbal and quantitative. The verbal section

(GAT-V) consists of 52 multiple-choice items divided into four domains: reading

comprehension, sentence completion, verbal analogy, and contextual error. The

quantitative section (GAT-Q) consists of 44 multiple-choice items, which focus on

mathematical problems and are divided into five domains: arithmetic, geometry,

algebra, statistical and analytical and comparison questions. In each section, the

questions are supposed to be arranged in order of difficulty level from easiest to most

difficult. The data includes a sample of 4000 students and the 96 dichotomously

scored multiple-choice questions, but there are 652 students who left some questions

unanswered. Hence the analysis is based on 3348 students who completed all 96

questions.

In an initial exploration of the GAT data, Figure 7.1 presents the proportions

of correct responses by the number of items for the two sections of the GAT. We

can see that item 1 seems to be the easiest question with the highest proportion

of correct responses for both sections. On the other hand, item 37 appears to

168

https://etec.gov.sa/en/productsandservices/Qiyas/Education/GeneralAbilities/Pages/default.aspx
https://etec.gov.sa/en/productsandservices/Qiyas/Education/GeneralAbilities/Pages/default.aspx
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be the most difficult question for the verbal section (GAT-V), with only 16 % of

students answering this question correctly, and item 22 is the hardest question for

the quantitative section (GAT-Q) with only 21% of students answering correctly.

The average proportions of correct responses are 50% for the GAT-V and, 47 % for

the GAT-Q.

Figure 7.2 shows the histogram of the students’ total number of correct answers

for the GAT data set with all questions (GAT-all), the verbal section (GAT-V)

and the quantitative section (GAT-Q). As mentioned early, the total number of

questions for GAT-V is 52. We see that the peak of the histogram is between 20

to 25, with about 600 students getting that number of correct questions. The total

number of GAT-Q questions is 44, and we can see that the peak of the histogram

with almost 800 students is between 10 to 15. Moreover, in the GAT-Q, about 300

students answered only 10 questions or less, while in GAT-V, about 100 students

answered 10 questions or less. For GAT-all, where the total number of questions

is 96, Figure 7.2 shows that the total number of questions answered correctly in

the peak of the histogram ranges between 20 to 60, where these total number is

noticeably decreased after 60 questions. From the initial analysis, we can assume

that the ability of students to answer the GAT- V section is higher than answering

the GAT-Q section. However, we cannot directly compare them since the total

number of questions is different in each section.

In the following sections, a formal analysis will be applied to the General Aptitude

Test data set to estimate the difficulty of the questions for each section (GAT-V and

GAT-Q), the abilities of the students for each section separately and the general

students’ abilities (GAT-all).
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Figure 7.1: Proportions of correct responses by item for the General Aptitude Test
(GAT) dataset. The upper panel represents the proportions of correct responses
for the verbal section (52 questions), and the lower panel represent the quantitative
section (44 questions).
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Figure 7.2: Histogram of the students’ total number of correct answers for the
General Aptitude Test data set with all questions (GAT-all), the verbal section
(GAT-V) and the quantitative section (GAT-Q).

7.2 Method

The main objective of this study is to estimate students’ ability for the GAT dataset

in a reasonable time, assuming that same inference and the conclusion must be made

in real-time. In reality, both teachers and students are interested in immediate test
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results. Compared to both MCMC (Chapter 4) and the sequential Monte Carlo

method SMC (Chapter 5), Laplace approximation allows for computing results much

more quickly. From the simulation and comparison studies in Chapter 6, we can see

that Laplace approximation is an effective inference method in terms of accuracy

and time consumed for small and large datasets for the IRT model. Therefore, the

Laplace approximation will be applied to the GAT dataset to find the estimates of

the ability of the students and the difficulty of the questions. It has been mentioned

earlier that the frequentist approaches require a large sample size. Therefore, to use

frequentist approaches in online inference, the student who has answered the test

questions has to wait for other students to finish the test to get feedback on their

ability. Since, in this case study, there is a large sample size, and we have all the

data at one point, the Maximum likelihood approach will be implemented in this

section beside the MCMC method for comparison purposes to check the accuracy

of the Laplace approximation method.

To explore the performance of the Laplace approximation method (LA) in the

GAT data set, the Rasch model (1PL) described in Chapter 3 will be used to model

the data. The equation that expresses the probability of correct answer as a function

of examinees’ abilities (θi) and items’ difficulties (bj), can be written as:

p(Xij = 1) =
exp(θi − bj)

(1 + exp(θi − bj))
, θi and bj ∈ R,

where Xij is a binary response given by student i to item (1 for correct, 0 for

incorrect). The subscript j = 1, 2, ...,m represents the number items, and m is

the total number of items. The subscript i = 1, 2, ..., n represents the number of

examinees where n is the total number of examinees, which is 3348 in this data set.

In this model, it is assumed that all items measure a single ability θ. In terms of

questions, the study will be carried out in three different settings; estimating the

ability parameters for the verbal section (52 items), estimating the ability parameters

for the quantitative section (44 items) and estimating the ability parameters for all

GAT test questions (96 items). Therefore, if one is interested in diagnostic testing

according to which type of skill is mastered or not, the student’s ability for each

section can be compared. Then, students can know immediately which section they

have the low ability, and how it can affect their overall ability.

To explore the LA results, the output is compared to the ability parameters’

estimation resulting from a frequentist fitting of the Rasch model. In the frequentist

IRT, the item parameters and person’s ability parameters are estimated in two

different steps (Feuerstahler, 2018). In the first step, item parameters are estimated
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using one of the most common methods; marginal maximum likelihood (MML)

(Bock and Aitkin, 1981). The process starts by assuming that the ability parameter θ

follow a distribution, usually standard normal. Hence, given the initial θ distribution

and the item response, the marginal likelihood of the item parameters is estimated.

The next object is to find the item parameters (difficulty) estimates where the

likelihood function reaches a maximum point. The second step is to estimate the

ability parameters given the previously estimated result of item parameters. There

are three common approaches: maximum likelihood estimation (MLE), expected a

posteriori (EAP), and maximum a posteriori (MAP). The resulting ability estimates

from all three methods are point estimates. For more details about the IRT parameters

estimate in frequentist see DeMars (2010). In this case study, the difficulty parameters

will be estimated using MML, and then the ability parameters will be estimated

using MLE. The process will be implemented using a R package irtoys (Partchev

et al., 2017).

Furthermore, the MCMC method is used to evaluate the accuracy of the approximation

results obtained from the Laplace approximation in this real data set. The Gibbs

sampler within the Metropolis algorithm (M/Gibbs), which is explained in detail

in Chapter 4, will be used in this case study. To improve the accuracy of MCMC

estimates, the M/Gibbs algorithm will run for a large number of draws. The MCMC

point estimates will be based on the average of these draws’ values. See Luo (2018)

for an example of applying and comparing MML and MCMC methods in the GAT-V

data for a generalized partial credit model which is a polytomous IRT model.

7.3 Results

This section provides parameter estimation results for the Rasch model for the

GAT data set for the three methods MLE, MCMC and LA. The result is based on

implementing the three methods in three different scenarios; estimating the ability

and the difficulty parameters for GAT-V, GAT-Q and GAT-all. In each setting, the

three methods are executed independently, and the numerical and graphical results

are recorded.

In the Bayesian framework, for MCMC and LA application, the choice of the

prior distributions could be made based on the previous GAT test results, since the

test is repeated several times during the year, and the difficulty levels of the questions

are assumed to be equal for all tests. However, due to the lack of information in this

study about the previous test results and the privacy of the test questions, the prior
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distributions for items difficulty and students ability are chosen to be the same as

in the simulation studies. The prior distributions are defined as follows:

θi ∼ N(0, σ2
θ = 10) ∀i

and

bj ∼ N(0, σ2
b = 10) ∀j

The result of the MCMC method is based on running the Gibbs sampler within

the Metropolis algorithm for a run of a hundred thousand samples. Hence, the mean

of the posterior distribution for each parameter is calculated by taking the average

of the drawn values after burn-in.
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Figure 7.3: Difficulty Estimates for the General Aptitude Test (GAT) questions,
where MML refers to the result of using marginal maximum likelihood, M/Gibbs
refers to the result of using the Gibbs sampler within the Metropolis algorithm for
MCMC method, and LA indicates the Laplace approximation method. The upper
panel represents the estimate result of the verbal section (52 questions), and the
lower panel represent the quantitative section (44 questions).
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Figure 7.3 provides a visual presentation of the difficulty parameter estimates

for the verbal section (GAT-V) and the quantitative section (GAT-Q) based on all

participating students. All three methods seem to estimate the difficulty parameter

in the same order. The resulting difficulty estimates are almost arranged between

-2 to 2, with most of them between -1 to 1. In the GAT-V, question 1 appears to

be the easiest question, with the difficulty estimation being -1.33, -1.45 and -1.34

for M/Gibbs, MML and LA respectively. In this section, question 37 is the hardest

question, with difficulty estimation being 1.88, 2.09 and 1.94 for M/Gibbs, MML

and LA respectively. On the other hand, In the GAT-Q, question 1 is the easiest

question, with the difficulty estimation being -1.54, -1.58 and -1.53 for M/Gibbs,

MML and LA, respectively. The hardest question for this section is question 22,

with difficulty estimation being 1.55, 1.61 and 1.48 for M/Gibbs, MML and LA,

respectively. The resulting estimation from MML is more extreme because the use

of the prior distribution pulls both M/Gibbs and LA toward zero (the mean of the

prior distribution). This can be more useful when there are some extreme points

where the students answer all questions right or wrong. In this case, it can be

challenging to find the maximum point using MML, where the results may go to

infinity. However, the conservative estimates, in this case, do not matter since these

estimates are usually used for ranking students or ordering the difficulty of the

questions. For that purpose, Figure 7.3 shows that the ordering of the questions’

difficulties is similar in all the methods.

We can notice that the results of the descriptive analysis in Figure 7.1 are also

validated by the estimation resulting from the three methods. Where items 1 and

37 are the most difficult and the easiest, respectively, for the GAT-V, and items 1

and 22 are the most difficult and the easiest, respectively, for the GAT-Q. However,

the estimation result of the items’ difficulty does not agree with the assumption

that questions are arranged according to the difficulty, from the easiest to the more

difficult in each section. For example, we can see in the GAT-V section that question

16 is the second hardest question, while questions 33 and 50 are the second and

third easiest questions. Similarly, in the GAT-Q, the difficulty of the questions has

a random arrangement, where for example, question 44 seems to be easiest than

question 32.

Regarding the correlations between the points estimates, Figure 7.5 displays

the scatter plots of the difficulty parameters’ point estimates for all the GAT test

questions that have been answered by 3348 students across the three methods;

M/Gibbs, MML and LA. The Figure shows that the three sets of estimates are

not identical but highly similar. The red dotted equality line (x = y) in this figure
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also indicates the slight difference between the three methods: as we can notice,

most points lie on this line or tightly cluster around it.

The scatter plot of M/Gibbs against LA shows that the point estimates look close

to being equal. The mean absolute difference between M/Gibbs and LA is 0.011, the

maximum absolute difference is 0.03 and the minimum is 0. The maximum difference

appears in particular for more extreme point estimates (i.e., especially for the most

challenging questions when a few students answer these questions correctly). For

example, the maximum difference is for question 37, where we have seen that this is

the most difficult item for all GAT questions in both sections, and only 566 students

have answered this question correctly. Unlike the maximum difference, the minimum

difference between M/Gibbs and LA appears for the easiest questions, when a lot

of students answer this question correctly. For example, the minimum difference

between these two methods is for questions 46, 78 and 33, where these questions

answered correctly by 2328, 2278 and 2445, respectively.

The scatter plot of MML against M/Gibbs and LA in Figure 7.5 shows more

deviations, especially for more extreme point estimates (for easiest and hardest

questions). The mean absolute difference between M/Gibbs and MML is 0.081, the

maximum absolute difference is 0.32 and the minimum is almost 0. Moreover, the

mean absolute difference between LA and MML is 0.088, the maximum absolute

difference is 0.35 and the minimum is 0.006. The minimum difference here is for

the moderate questions, such as the lowest difference between M/Gibbs and MML

is for question 51 with difficulty estimate being -0.13 and 1738 students answered

this question correctly.

Moving to the students’ ability estimates, which is the primary goal of this

study, Figure 7.4 displays box plots of parameters ability estimate of θ for the

three methods; MLE, M/Gibbs and LA. The upper panel represents the estimation

results of 3348 students’ ability for answering the verbal section (52 questions), and

the lower panel represents the quantitative section (44 questions). As displayed in

this figure, all three methods agree that the majority of the students’ abilities range

between -2 to 2.5 for both sections, with only a few students having abilities higher

than 3. The average abilities estimates for all the students in GAT-V is 0.010, 0 and

0.018 for MLE, M/Gibss and LA, respectively. Similarly, in the GAT-Q, the average

abilities estimates is 0.014, 0 and -0.034 for MLE, M/Gibbs and LA, respectively.

To find the main differences between the three methods, Figure 7.6 shows the

scatter plots of the total ability point estimates resulting from the answer to all
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GAT-V and GAT-Q questions. The same analysis can be applied to each section

separately to find the difference between the three estimation methods. Appendix C

displays the comparison of scatter plots for each section. As displayed in Figure 7.6,

the ability parameter estimates of all methods are pretty similar except for more

extreme point estimates when students perform very well or poorly. This difference

is more apparent for the higher-level ability; the ability that higher than 3, where

we can see these points diverge from the equality line. The mean absolute difference

between M/Gibbs and LA is 0.013, the maximum absolute difference is 0.52 and

the minimum is almost 0. It is clear that the difference between M/Gibss and MLE

is larger, where the maximum absolute difference is 2.03, with the mean equals

0.13 and 0 minimum. Similarly, the maximum absolute difference between LA and

MLE is 1.50, with the mean equals 0.14 and 0 minimum. The maximum difference

appears for students who answered all questions correctly (i.e. student 1 and student

2626). The minimum difference between M/Gibbs and LA is when students answer

approximately 30% of the questions correctly (between 25 to 29 questions). In the

difference between MLE and the other two methods, the minimum appears when

students answer approximately 50% of the questions correctly (between 45 to 48

questions).

Furthermore, we can check the divergence between the three methods using a

ranking measurement distance method. The idea is that we look at the order of the

student ability estimates resulting from each method, then we find the distance

measure between the two sets of ordering. The Kendall’s τ distance method,

explained in Chapter 6 6.2, could also be used here to measure the differences.
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Figure 7.4: Box plots of parameters ability estimate θ for the three methods; MLE,
M/Gibbs and LA. The upper panel represents the students’ ability estimates in the
verbal section (52 questions), and the lower panel represent the quantitative section
(44 questions).
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Figure 7.5: Comparison between the points estimates of the difficulty parameters
for all GAT test questions (96 items) across the three methods; M/Gibbs, MML and
LA. The red line illustrates the equality line.

This method counts the number of pairs agreed in the same order in each of

the two orders and which are not agreed in reverse order. If C is the number of

agreements, and D is the number of disagreements,

τ =
C −D
C +D
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The value of τ ranges from -1 to 1, where 1 means the two rankings are identical,

and -1 means one is opposite of the other. Table 7.1 represents the τ values that

measure the differences between the ordered abilities resulting from three methods.

It is clear that the resulting order abilities from the three methods are almost

identical.

Table 7.1: Kendall’s τ distance values between the three methods; M/Gibbs, MLE
and LA.

Method M/Gibbs MLE LA

M/Gibbs 1 0.98 0.99
MLE 0.98 1 0.98
LA 0.99 0.98 1

Although all the three methods approximately present similar estimation results,

the proposal approximation method, LA, appears to be a suitable method for this

type of model and data in terms of accuracy and time. Furthermore, we have seen

that LA distinguished between extreme points, where students have high abilities,

better than MLE. Moreover, MLE is time-consuming to be applied in real-time,

where estimation takes two different steps for difficulty and ability parameters. The

MCMC running time for the GAT-V section took 8 hours and 17 minutes, and 5

hours and 12 minutes for the GAT-Q sections. When all the questions (96) were

used, the algorithm was run for 9 hours and 48 minutes, making this method too

slow for real-time inference. On the other hand, LA took only less than 2 minutes

to estimate the difficulties of the 96 questions and the abilities of 3348 students at

the same time.

After evaluating the accuracy of the Laplace approximation (LA) by comparing

the estimation results to the MCMC method (M/Gibbs) and the frequentist method

(MLE), the next step is to further explore the LA results in the real data set. Figure

7.7 shows the histograms of student abilities θ resulting from LA for each GAT test

section (GAT-V and GAT-Q) and the total student abilities to answer both sections

(GAT-all). The histogram of GAT-V shows the θ values mainly distributed in the

range [-2,5]. Most of the students in this section have abilities between 0 to -1, about

1300 students, and the next group has ability level 0.5. There are a few students

who have abilities less than -1, about 300 students have almost -1.5 ability level,

and 50 students have -2 ability level. In the same way, a few students in this section

have an abilities level of 1.5 or more. On the other hand, the histogram of GAT-Q
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shows the θ values distributed in the range [-2.5,5]. We can see that the performance

of the students in this section is less than the GAT-V section, where most of the

students answered only 20 questions or less as described in Figure 7.2, and hence

they got fewer abilities levels.

Running LA for each GAT section could help students find their abilities’ weaknesses

based on the difficulties of the questions, not only the total points of correct answers.

Table 7.2 shows as examples of the ability estimates for the first 20 students resulting

from LA for all GAT questions (GAT-all), verbal section questions (GAT -V), and

quantitative section questions (GAT- Q). We can see for example student 1 has

almost equal high ability for both sections, which result in average of high ability

for all test question. Student 9 has higher ability in the GAT-Q (0.79) than GAT-V

(-0.11), while for example students 13 and 20 have a noticeable higher abilities in

the GAT-V than the GAT-Q.
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Figure 7.6: Comparison between the points estimates of the ability parameters (θ)
based on all GAT test questions (96 items) across the three methods; M/Gibbs,
MML and LA. The red line illustrates the equality line.
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Figure 7.7: Histograms of student abilities for each GAT test sections (GAT-V
and GAT-Q), and the total student abilities for answering both sections (GAT-all),
resulting from Laplace approximation method (LA).

7.4 Further Analysis

The challenge arises in real-life scenarios when students take a test at different times

or on other days. This section deals with the case of updating the students’ abilities
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Table 7.2: Ability Estimates for the first 20 students resulting from Laplace
approximation for all GAT questions (GAT-all), verbal section questions (GAT -V),
and quantitative section questions (GAT- Q).

Student GAT-V GAT-Q GAT-all
1 4.90 4.78 5.42
2 -0.81 -1.07 -0.93
3 -1.57 -1.07 -1.34
4 -1.57 -0.83 -1.21
5 -1.21 -0.95 -1.09
6 -1.21 -0.95 -1.09
7 -0.81 -0.20 -0.52
8 -0.91 -1.65 -1.21
9 -0.11 0.79 0.30
10 -0.54 -0.01 -0.29
11 -1.01 -0.40 -0.72
12 -1.21 -1.20 -1.21
13 0.57 -0.30 0.16
14 -1.32 -0.83 -1.09
15 -0.81 -0.95 -0.87
16 -1.11 -0.40 -0.77
17 -1.11 -0.83 -0.98
18 -0.91 -1.07 -0.98
19 -0.37 -1.20 -0.72
20 0.86 -0.51 0.21

sequentially in the GAT dataset. From the previous sections, we can see that both

the MLE method and MCMC are unsuitable for this type of analysis. The reason

is that MLE needs to be done in two different steps to estimate the difficulty of

the questions and then the students’ abilities. Moreover, MCMC algorithms must

be restarted each time a new student takes the test. Thus, this can take a long

time for the purpose of immediate results in real-time. For educational use, we

have seen from the simulation studies in Chapter 6 that Laplace approximation is

a quick method, and we can easily store the information from the previous inference.

In this setting, the analysis is started by setting the same prior distribution

for all students and the same prior for all questions as described in section 7.3.

The total number of students is divided into groups, and four different scenarios of

grouping students are assumed. Each group of students is supposed to answer all

96 questions and then estimate their abilities (the same analysis can be applied for

each test section separately). The first scenario is considered to have a block size of

50 students. After this group finish the test, they receive the results of their ability

immediately, and we get an update on the difficulties of questions. Consequently,

the result of the difficulties of the questions can be stored and then used as prior
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distributions for the questions in the next 50 students. We keep updating our prior

beliefs about the difficulties of the questions and set the same prior distribution

for the student’s abilities until all the student finish the test. The same analysis is

repeated for a block size of 200, 500 and 1000 students.

The goal now is to compare the result of these four different scenarios of estimating

the abilities parameters sequentially to the result of estimating all students’ abilities

in a single update. Table 7.3 shows the Kendall’s τ values between the student’s

abilities resulting from LA by updating all students at one time and updating

the abilities of the students sequentially for different numbers of students in each

block size, where 1 means the two sets of group are identical, and -1 means one

is opposite of the other. The values of τ for all order sets are higher than 0.3,

which indicates a strong association between the two ranking sets (Walker and

Beretvas, 2003). Moreover, all the τ values are 0.97 or higher, indicating that the

abilities estimates resulting from these sequentially updated are almost identical to

the abilities estimates resulting from updating all abilities once.

Table 7.3: Kendall’s τ values between the students abilities resulting from LA
by updating all students at one time and updating the abilities of the students
sequentially for different numbers of students in each block size.

Block size Kendall’s τ

50.00 0.97
200.00 0.97
500.00 0.98
1000.00 0.99

Table 7.4 displays the average and maximum values of the absolute difference

between abilities estimates resulting from updating all abilities once and sequentially

for different block sizes. We can see that the highest average difference is for using

50 students in the block size and updating them sequentially. The average values

decreased slightly for the block of 200 students (from 0.0385 to 0.0373), and more

noticeable decreases for the block size of 500 and 1000. The maximum absolute

difference appears to be higher for small block sizes; 50 and 200 and slightly smaller

for larger block sizes; 500 and 1000. These maximum differences seem to appear

frequently in the first and second sequences for each block size and for the students

of higher abilities, who answer all the 96 questions correctly. This might happen

because of the lack of information about the difficulty of the questions in early

sequences. Figure 7.8 provides a visual presentation of the absolute average values

of the difference between the difficulties of the questions estimates resulting from

the updating of all the difficulties once and sequentially for different block sizes (50,
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200, 500 and 1000) at the first sequence, middle sequence and final sequence. We

can see that the average difference is relatively high for the first sequence in all four

scenarios when the same prior distribution is used for all questions. After that, this

difference decreases gradually by updating the prior distributions for the difficulty

of the questions until it becomes almost zero in the final sequence. Furthermore,

the average difference is increased by the number of block sizes, where it is below

0.1 for the block size of 50 and increase to 0.35 for the block size of 1000.

Table 7.4: Average and maximum values of the absolute difference between abilities
estimates resulting from updating all abilities once and updating the abilities
sequentially for different block sizes.

Block size Average absolute difference Maximum absolute difference

50.00 0.0385 0.1894
200.00 0.0373 0.1907
500.00 0.0296 0.1342
1000.00 0.0216 0.1428
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Figure 7.8: Average absolute values of the difference between the difficulties of the
GAT all (96) questions estimates resulting from the updating of all the difficulties
once (LA all) and updating the difficulties sequentially for different block sizes (50,
200, 500 and 1000) at the first sequence, middle sequence and final sequence.

Table 7.5 and Table 7.6 compare the differences between estimating students’

ability in different block sizes (50, 200, 500 and 1000) updated sequentially and
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updated once for the first and last 10 students, where these students belong to the

first and last sequences (blocks), respectively. We can see in the first 10 students

(Table 7.5), where we have no information about the difficulty of the questions, there

are some differences between the abilities estimate in each sequence. It seems that

the abilities for students 2 to 10 in each sequence are slightly overestimated. These

differences between estimating the abilities in each sequence decrease incrementally

as we add more data (blocks), and they become approximately identical, as shown

in Table 7.6.
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Table 7.5: Comparison of the differences between estimating students’ ability for the
first 10 students in different block sizes (50, 200,500 and 1000) sequentially updates
and a single update.

Student LA seq 50 LA seq 200 LA seq 500 LA seq 1000 LA all

1 5.42 5.50 5.43 5.37 5.51
2 -0.86 -0.76 -0.84 -0.90 -0.94
3 -1.26 -1.16 -1.24 -1.30 -1.35
4 -1.14 -1.04 -1.12 -1.18 -1.22
5 -1.03 -0.92 -1.00 -1.06 -1.11
6 -1.03 -0.92 -1.00 -1.06 -1.11
7 -0.47 -0.36 -0.44 -0.49 -0.54
8 -1.14 -1.04 -1.12 -1.18 -1.22
9 0.34 0.45 0.37 0.32 0.28
10 -0.24 -0.13 -0.21 -0.26 -0.31

Table 7.6: Comparison of the differences between estimating students’ ability for the
last 10 students in different block sizes (50, 200, 500 and 1000) sequentially updates
and a single update.

Student LA seq 50 LA seq 200 LA seq 500 LA seq 1000 LA all
3339 0.81 0.81 0.81 0.81 0.81
3340 -0.78 -0.78 -0.78 -0.78 -0.78
3341 -0.68 -0.68 -0.68 -0.68 -0.68
3342 -0.34 -0.35 -0.35 -0.35 -0.35
3343 0.43 0.42 0.43 0.42 0.42
3344 0.47 0.47 0.47 0.47 0.47
3345 0.24 0.24 0.24 0.24 0.24
3346 0.62 0.61 0.62 0.61 0.61
3347 -0.12 -0.12 -0.12 -0.12 -0.12
3348 2.08 2.08 2.08 2.08 2.07

To ensure that there is no effect of choosing the first group on each block size,

the experiment was repeated 10 times randomly reordering the students in the data

set each time. Each experiment was run independently to estimate the difficulties

of the questions and the student’s abilities using sequential Laplace approximation

for block sizes of 50, 200, 500, and 1000 and one update. Table 7.7 shows the

average of the Kendall’s τ values between the student’s abilities for the 10 different

experiments. As we can see that the ordering abilities estimates resulting from these

sequentially updated are almost identical to that if the abilities estimates resulting

from updating all abilities once. We notice that the average Kendall’s τ is higher

than Kendall’s τ values in the original experiment due to the effect of having a

high-ability student, who answered all questions correctly in the first group. The

experiment was run again while keeping the three more competent students, who

answered all questions correctly, in the first group to investigate the effect of having



Chapter 7. General Aptitude Test Case Study 190

more than one high ability student in the early group. The Kendall’s τ values in

Table 7.8 shows that having three very high ability students in the first sequence

have the same effect as having one high ability student.

Table 7.7: Average Kendall’s τ values between the students abilities resulting from
LA by updating all students at one time and updating the abilities of the students
sequentially for different numbers of students in each block size for 10 different
experiments.

Block size Kendall’s τ

50.00 0.98
200.00 0.98
500.00 0.99
1000.00 0.99

Table 7.8: Kendall’s τ values between the students abilities resulting from LA
by updating all students at one time and updating the abilities of the students
sequentially for different numbers of students in each block size with very competent
students in the first sequence.

Block size Kendall’s τ

50.00 0.97
200.00 0.97
500.00 0.98
1000.00 0.99
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7.5 Conclusion

This case study has proposed using the Laplace approximation (LA) method to

estimate the difficulty of the questions and the students’ ability for the one-parameter

(1PL) item response theory (IRT) model. The experiment has conducted on the

General Aptitude Test (GAT) dataset, which includes 3348 students answered 96

questions divided into two sections: the verbal section (GAT-V) and the quantitative

section (GAT-V). For comparison purposes in terms of accuracy and computational

time, the same experiment has conducted using one of the frequentist approaches

(Maximum Likelihood) and one of the Markov chain Monte Carlo (MCMC) methods

(Gibbs sampler within the Metropolis algorithm). The three methods have been

implemented for three different settings; estimating the ability parameters for the

verbal section (52 items), the quantitative section (44 items) and all GAT test

questions (96 items) to compare the students’ abilities in each section to the total

abilities. The novel approach explained in Chapter 6 (6.4), where the sequential

Laplace approximation method can be applied in a dynamic IRT model, has also

been carried out in the GAT data set.

Experimental results confirmed that the proposed LA method could produce

precise approximation results for students’ abilities and questions’ difficulties in a

short time. The point estimates for both students’ abilities and questions difficulties

resulting from the three methods were highly similar. However, the LA and M/Gibbs

were almost identical due to the use of the prior distribution in both settings. The

time required to estimate the difficulties and abilities parameters of the GAT dataset

using M/Gibbs was between 5 to 9 hours. While this time was only two minutes

or less when implemented the same experiment using the standard LA method. On

the other hand, implementing the MLE method requires estimating the difficulties

and abilities parameters in two different steps, which can be time-consuming when

real-time inference is required. In this particular experiment, the MLE produced

the final results in approximately 4 minutes.

With regard to point estimates of the difficulty of the questions for the GAT

data set, most of the questions were in a reasonable range between -2 to 2 for both

sections (GAT-V and GATQ). Although the estimated difficulties do not agree with

the assumption that questions are arranged from easiest to the more difficult in each

section, they are distributed across the desired range; -2 to 2 (DeMars, 2010). A

few questions were so easy that between 2400 to 2604 students were able to answer

these questions correctly; questions 1, 33 and 50 for GAT-V and only question 78

for GAT-Q. The most challenging questions were questions 37 and 16 for GAT-V
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and questions 47 and 84 for GAT-Q, where only between 566 to 880 answered these

questions correctly.

Considering the point estimates of the students’ abilities, approximately 96 %

of the students’ abilities were between -2 to 2,5. There were three students able to

answer all the questions correctly to achieve high abilities equal to 5.5. The average

of the abilities was approximately 0, and the standard deviation was 0.9.

The analysis result of updating Laplace approximation (LA) sequentially showed

a perfect match to update LA once. Moreover, even if starting with a small block

size of 50 students, Kendall’s τ measurement had a value of 0.97, indicating that

the two sets are almost identical in terms of ranking the students’ abilities. The

experiment was repeated several times by randomly ordering the students in the

GAT data set to get a different range of students’ abilities in the first blocks. The

average Kendall’s τ of these experiments indicated that the two sets of students’

abilities resulting from the sequential LA and updating the LA once are almost

identical.

The analysis presented here is considered the case of a single skill model, which

could be extended in a multi-skill model (Multidimensional IRT Approach MIRT).

Using the Laplace approximation in MIRT models for real-time inference could

give students immediate feedback on their abilities and which abilities they should

improve at a reasonable time. However, we have seen that MCMC and MLE methods

are expensive for one skill model. Moreover, MLE usually requires a large data set,

so in real-time inference, the students who finish the test have to wait until other

students finish. Therefore, if the goal is to give immediate feedback, the LA is a

suitable method, where we have seen in sequential LA that the number of students

does not affect the abilities estimates.



Chapter 8

Conclusion

8.1 Summary and Conclusion

One of the most challenging tasks in the educational field is to evaluate students’

ability levels accurately. Item response theory (IRT) provides a valuable theoretical

framework for educational measurement, focusing on the response pattern, not the

total score. However, inferring students’ ability and item difficulty or discrimination

can be a technical challenge, as one needs to achieve a balance between speed and

accuracy. A larger challenge arises when one needs to estimate these parameters

in a dynamic system or for massive datasets. In many real-life scenarios, teachers

and students are interested in immediate test results and feedback for evaluating

students’ abilities. However, the speed and volume can present considerable challenges

in applying a common method such as Markov chain Monte Carlo (MCMC) to the

IRT model when real-time inference or large-scale datasets is required. The main

objective of this thesis is to develop approximate Bayesian inference based on the

Laplace approximation method (LA), which allows faster inference for IRT models

and matches MCMC’s accuracy.

This thesis’s focus was mainly on estimating students’ ability in a reasonably fast

time, considering the case that real-time inference is required. Although it did not

intend to provide a complete overview of other inference approaches for estimating

IRT model parameters, some of these methods were briefly reviewed in Chapter 3,

giving more details for the MCMC method in Chapter 4. The results of applying

two MCMC methods in Chapter 4: Metropolis-Hastings within Gibbs (M/Gibbs)

and Hamiltonian Monte Carlo (HMC), to two-parameter logistic IRT model, showed

that these methods are not usable for real-time inference due to their computational

expense. Despite the fact that the HMC method is more efficient with a high effective

sample size per second than M/Gibbs and is twice as fast, this method is still too
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expensive for online inference or massive datasets. Moreover, the computational

cost remained high even using a smaller number of iterations and small datasets.

To reduce the computational cost, Chapter 5 provided an application of the

sequential Monte Carlo Method (SMC), the most common method used in the

literature for a dynamic system. Applying the SMC to the IRT model was considered

first in the use of classical SMC method (SMC1), where the likelihood is added

gradually to overcome the difference between the prior and the posterior distributions.

Although this method was successfully applied to the 1PL IRT model and compared

to M/Gibbs, the result showed that using this method may require more effort for

educational use, such as estimating the students’ ability in real time. The reason

is that the efficiency of this algorithm depends on the user settings, e.g. number of

particles, the variance of the proposal distribution and the number of intermediate

distributions between prior and posteriors. All these factors can directly affect the

ESS; hence, small ESS will require a re-sample step, which increases the time cost.

A different setting of SMC algorithms (SMC2) was also presented in Chapter 5

to reduce the additional computational time that occurred by resampling steps and

increase the SMC’s efficiency by using fewer particles. In this setting, data is added

sequentially in the likelihood instead of sampling from the sequence of intermediate

distributions, eliminating the time to introduce the data. Moreover, an additional

MCMC move step was added to increase particle diversity and overcome problems

such as sample impoverishment. This method was successfully applied to the 1PL

IRT model, and can also be straightforward in other models. The comparison result

of the time showed that SMC2 was about 7 (using 10,000) to 700 (using 500,000)

times speed up over SMC1. However, for a particular experiment presented in

Chapter 5, the approximation results were improved by increasing the number of

particles to 500, 000, which was 248 seconds for very small data (n = 10 and m = 5).

Moreover, same as SMC1, the performance of the SMC2 depends on the user setting,

including the number of particles, introducing of the sequence of the data, choosing

the proposal density in the MCMC step, and choosing resampling methods. These

settings can be complicated for real-time inference or non-professional users.

Therefore, from these experiences conducted in Chapters 4 and 5, we can see

that MCMC and SMC are still too slow in real-time inference. Therefore, simulation

methods are suitable for smaller data sets and when more precise inference samples

are required. However, for educational use to estimate students’ ability, for most

teachers, it is a qualitative inference, not quantitative inference. That means the

exact ability point estimates (e.g. 4.70 or 4.72) may not be necessary, it is enough
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to get them roughly correct particularly the order. Therefore, this suggested using an

alternative method to address the computational cost by using Bayesian approximation

methods based on Laplace approximation. This method is relatively simple to

compute and can derive helpful information about the models’ parameters.

The Laplace approximation (LA) method was applied successfully for the 1PL

and extended to the more complex; 2PL model. Chapter 6 provided comprehensive

comparison studies between the MCMC method using M/Gibbs and the LA method.

Regarding the 1PL IRT model, the comparison studies were carried out considering

three different simulated data: small, moderate and large and various test lengths

from very small (m=10) to very large (m=100). In terms of the 2PL model, the

comparison study was carried out for a relatively large number of students (n = 600)

and moderate test length (m = 50). Based on several comparison criteria, such as

Jensen-Shannon divergence (JSD), Kendall’s τττ , Bias and RMSE, the LA method is

faster than the MCMC algorithm, with 120 to 900 times speedup, without losing

accuracy. Regarding the point estimates of ability parameter θ, the biases and the

RMSE for the LA were generally smaller than those from M/Gibbs, with a few

exceptions. On the other hand, Kendall’s τ values were generally larger for the

LA method, with the most marked differences occurring with smaller sample sizes

and shorter test lengths, indicating that the LA ordered the actual abilities more

accurately than M/Gibbs. However, Kendall’s τ values became almost identical

for more extended tests and larger sample sizes under both methods. Regarding

the difference between the posterior distribution generated by both methods, the

JDS measurement values and the plots of the posterior densities suggested that the

largest difference between the two resulting posteriors appeared for more extreme

point estimates (very low/high ability). The analysis of the difficulty point estimates

confirmed this conclusion also. Therefore, the results showed that the LA method

could provide very accurate approximations in very cheap computational time.

Thus, the LA method seems useful for researchers interested in obtaining real-time

estimates of students’ abilities or for massive datasets.

The Laplace approximation requires calculating the Hessian matrix around a

mode and inverting the results to obtain the covariance matrix. In high-dimensional

problems, the covariance matrix elements will be large according to the number of

examinees and items. Hence, this will increase the time cost of the LA method. Two

proposed solutions were discussed in section 6.3 to reduce the time. The first method

was to use the idea of the block matrix and some linear algebra strategies. This

method does not require changes in process or optimisation. It can be implemented

in a few lines of code to achieve a reasonable time reduction, providing the same
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result as standard LA. This method was successfully applied to the LA method and

reduced the time for massive datasets, such as 10,000 students and 50 items, from

670 seconds to almost 8.0 seconds.

The second and most straightforward solution is to take a diagonal approximation

of the Hessian and invert it to obtain the variance rather than using the entire

matrix. The proposed approach was investigated by an extensive comparison study

between full and diagonal LA to estimate students’ ability and questions’ difficulty

uncertainty. The result showed that, the diagonal LA method underestimated the

variance in general, which appeared more clearly for moderate ability or difficulty

levels. Nevertheless, this difference became negligible for a huge dataset. The time

cost was comparable to the first approach. However, the main advantage of using the

diagonal LA is that we can use the second derivative of the log posterior distribution

directly to obtain the diagonal of the Hessian matrix rather than the optimisation

method. Considering this strategy, the cost time was considerably dropped, which

allowed estimating the ability of 10,000 students and the difficulty of 50 questions

in 53 seconds. This study demonstrated that a diagonal Hessian approximation

not only can reduce the computational cost of massive data problems but also can

overcome the limitation of computer memory.

In a common real-life scenario, students can take the test on different days or

other times. Hence, it is expected that the estimation of item parameters in IRT

models (e.g. the difficulty parameter b) to change over time whenever one or a

group of students answer the same test. This thesis provided a novel approach in

section 6.4 to the sequential Laplace approximation method on the one-parameter

dynamic IRT model, which can also be straightforward to apply to other models.

The main idea was that the difficulty parameter estimates are updated sequentially

from the data every time new students answer the test and then used the results as

prior distributions for the difficulty parameters to estimate the following students’

abilities. The idea of this method was illustrated by the comparison study to the

full LA update method in three different simulated datasets. Based on several

criterion measurements, the sequential LA method resulted in ability point estimates

comparable to those from the full LA. The most considerable differences between

the point estimates of each method unsurprisingly appeared for the early sequence

updates. The biggest advantage of this method is that it can be a helpful tool for

research problems for big data taking into account online inference. This method can

help avoid storing large data sets in computer memory since keeping the previous

student’s information is unnecessary. Moreover, the posterior distribution only needs

to be calculated for the new students to estimate their abilities, making this method
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very fast for online inference.

The Laplace approximation method was applied to a real dataset, taking into

consideration non-dynamic and dynamic IRT models. This data was obtained from

the General Aptitude Test (GAT), which is used for university admission in Saudi

Arabia. The analysis was based on 3,348 students who completed all 96 questions,

where the questions were divided into two sections; the verbal section (GAT-V)

and the quantitative section (GAT-Q). The MCMC method based on M/Gibbs and

marginal maximum likelihood (MML) was applied to this data set for comparison

purposes to investigate the performance of LA. The three methods were carried out

for three different settings; estimating the ability parameters for the verbal section

(52 items), the quantitative section (44 items) and all GAT test questions (96 items)

to compare the students abilities in each section to the ordered abilities. The results

showed that the LA method produced approximate results for students abilities and

questions difficulties comparable to M/Gibbs in a short time; using M/Gibbs was

cost between 5 to 9 hours and only two minutes or less for full LA. The analysis result

of updating the LA sequentially showed a perfect match to the full LA. Moreover,

even if starting with a small block size, Kendall’s τ had a value of 0.97, indicating

that the two sets are almost identical in ranking the students abilities.

The Bayesian approximation method based on the LA demonstrates a simple

application to unidimensional item response theory without requiring extra tuning

of parameters like the SMC and MCMC methods. Moreover, it produces fast

estimation results even for the massive dataset, which appeared from different

experiments in this thesis that the results are comparable to the MCMC results.

The following section will provide a brief guide to some directions for future work.

8.2 Future work

The analysis presented in this thesis could be extended in various directions. First,

one could fit more complex models such as polytomous IRT models that take into

account more than two options for the questions’ answers.

Although this thesis successfully applied to real data for the UIRT model, assuming

a single ability is sometimes insufficient to distinguish variation in examinees’ responses.

Hence, the Laplace approximation could be applied to dynamic or non-dynamic

multidimensional item response theory, carrying two or more abilities.
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Prior distributions play an essential role in Bayesian inference. Prior elicitation,

mentioned briefly in 4.2, has gained more attention to Bayesian inference. However,

the application of this method to the IRT models is still limited. The performance

of the Laplace approximation can be investigated more using the prior elicitation;

it is expected in education that experts or teachers have some knowledge about the

IRT models’ parameters, especially item parameters.

Considering online inference for education measurement, this thesis has no more

motivations to do further analyses in sequential Monte Carlo methods. However,

this method could be investigated further for other measures, such as online ranking.

For example, the performance of the SMC can be primarily affected by the choice

of the proposal density; hence one can investigate the effect of different proposals.

8.3 Software Implementation

The algorithms employed in this work were implemented using R. I have my own

implementations codes of the M/Gibbs, HMC, SMC1, SMC2, full LA, block LA,

diagonal LA, and sequential LA algorithms, which are available on request.
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Figure A.1: Posterior density plots for M/Gibbs and HMC methods of three levels
of selected questions’ difficulties
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Figure A.2: Trace plots of three levels of randomly selected questions’ difficulties
obtained from M/Gibbs (left) and HMC (right). The red line indicates the true
parameter value.
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Figure A.3: Autocorrelations between the samples returned by M/Gibbs (left) and
HMC (right) for three levels of randomly selected questions’ difficulties.
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Additional Results for LA

Additional Results of Comparison Studies

Table B.1: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the ability parameter θ with sample size
n = 1000 and a different number of items.

Number of Items Method Bias RMSE Kendall’s τ

10 MCMC 0.00025 1.02 0.76
LA 0.000001 0.85 0.82

30 MCMC 0.0007 0.705 0.86
LA -0.000002 0.587 0.88

50 MCMC -0.00047 0.555 0.89
LA 0.0011 0.478 0.90

70 MCMC 0.00079 0.468 0.90
LA 0.0017 0.410 0.91

100 MCMC 0.00016 0.372 0.91
LA 0.0016 0.339 0.92
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Table B.2: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the difficulty parameter b for sample size
n = 1000 and different numbers of items.

Number of Items Method Bias RMSE Kendalls τ

10 MCMC -0.0607 0.119 1
LA -0.0045 0.09 1

30 MCMC 0.0015 0.099 0.98
LA 0.00026 0.95 0.98

50 MCMC 0.00068 0.092 0.96
LA 0.0012 0.088 0.97

70 MCMC -0.0026 0.091 0.96
LA -0.0013 0.088 0.96

100 MCMC -0.0036 0.096 0.96
LA -0.0018 0.094 0.96

Table B.3: Comparison of the computation time between M/Gibbs method and LA
method for sample size n = 1000 and different numbers of items.

Time (in seconds)

Number of Items Gibbs/M LA
10 3288 1.80
30 4260 3.30
50 5320 5.00
70 6040 6.80
100 7143 9.82

Table B.4: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the ability parameter θ with sample size
n = 2000 and a different number of items.

Number of Items Method Bias RMSE Kendall’s τ

10 MCMC -0.0008 1.011 0.76
LA 0.0003 0.846 0.82

30 MCMC -0.0026 0.70 0.85
LA -0.0026 0.586 0.88

50 MCMC 0.00028 0.56 0.89
LA -0.00084 0.48 0.90

70 MCMC -0.0003 0.46 0.90
LA -0.0002 0.41 0.91

100 MCMC -0.00034 0.39 0.92
LA 0.00024 0.35 0.92
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Table B.5: Average bias, average RMSE, and Kendall’s τ values between the
estimated points and the true values for the difficulty parameter b for sample size
n = 2000 and different numbers of items.

Number of Items Method Bias RMSE Kendall’s τ

10 MCMC 0.005 0.09 1
LA 0.005 0.7 1

30 MCMC 0.0058 0.07 0.99
LA 0.0022 0.066 0.99

50 MCMC 0.002 0.07 0.98
LA 0.001 0.06 0.98

70 MCMC -0.00026 0.068 0.97
LA -0.00037 0.065 0.97

100 MCMC -0.002 0.06 0.97
LA -0.001 0.06 0.97

Table B.6: Comparison of the computation time between M/Gibbs method and LA
method for sample size n = 2000 and different numbers of items.

Time (in seconds)

Number of Items Gibbs/M LA
10 6354 10
30 7604 16
50 9089 23
70 10119 31
100 11743 41
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Figure B.1: Posterior means and 95% credible intervals (CI) of the point estimates
resulting from M/Gibbs and approximation method LA for sample size n = 300 and
m = 10.
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Additional Results of High-Dimensional Problem
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Figure B.2: Correlation matrix between 1PL model parameters for n = 10 and
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Figure B.3: Correlation matrix between 1PL model parameters for n = 10 and
m = 10.
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Additional Results of Sequential LA
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Figure B.5: Point estimates of the difficulty parameters for sequential LA update at
first, middle and final sequences and full LA update for three different test lengths
(m = 10, 50 and 100). The block size of the sequential update is 50.
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Figure B.6: Point estimates of the difficulty parameters for sequential LA update at
first, middle and final sequences and full LA update for three different test lengths
(m = 10, 50 and 100). The block size of the sequential update is 100.
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Figure B.7: Point estimates of the difficulty parameters for sequential LA update at
first, middle and final sequences and full LA update for three different test lengths
(m = 10, 50 and 100). The block size of the sequential update is 200.
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Figure B.8: Posterior distributions of ability parameters at the first sequence update
for four different block sizes
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Appendix C

Additional Results for the Case

Study
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Figure C.1: Comparison of the points estimates of the difficulty parameters for
MCMC method (M/Gibbds) against the LA. The red line illustrates the equality line
The upper panel represents the estimate result of the verbal section (52 questions),
and the lower panel represent the quantitative section (44 questions).
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Figure C.2: Comparison between the point estimates of the ability parameters (θ)
based on the verbal section (GAT -V) test questions (52 items) across the three
methods; M/Gibbs, MML and LA. The red line illustrates the equality line.
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Figure C.3: Comparison between the point estimates of the ability parameters (θ)
based on the quantitative section (GAT -Q) test questions (44 items) across the
three methods; M/Gibbs, MML and LA. The red line illustrates the quality line.
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Figure C.4: Histograms of student abilities for each GAT test sections (GAT-V
and GAT-Q), and the total student abilities for answering both sections (GAT-all),
resulting from M/Gibbs.
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Figure C.5: Histograms of student abilities for each GAT test sections (GAT-V
and GAT-Q), and the total student abilities for answering both sections (GAT-all),
resulting from MLE.
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Table C.1: Comparison of the differences between estimating students’ ability for
the middle 10 students in different block sizes (50, 200,500 and 1000) sequentially
updates and a single update.

Student LA seq 50 LA seq 200 LA seq 500 LA seq 1000 LA all
2001 -0.10 -0.09 -0.08 -0.07 -0.08
2002 -1.07 -1.07 -1.06 -1.04 -1.05
2003 0.54 0.55 0.56 0.57 0.56
2004 -0.01 -0.00 0.01 0.02 0.01
2005 -0.19 -0.18 -0.17 -0.16 -0.17
2006 0.17 0.18 0.19 0.20 0.19
2007 -0.51 -0.51 -0.50 -0.49 -0.49
2008 0.79 0.79 0.80 0.81 0.81
2009 0.74 0.74 0.75 0.76 0.76
2010 1.87 1.88 1.89 1.89 1.89
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